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Preface 

The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) is 
a leading international conference in the area of data mining and knowledge 
discovery. It provides an international forum for researchers and industry practitioners 
to share their new ideas, original research results and practical development 
experiences from all KDD-related areas including data mining, data warehousing, 
machine learning, databases, statistics, knowledge acquisition and automatic scientific 
discovery, data visualization, causality induction, and knowledge-based systems. This 
year’s conference (PAKDD 2005) was the ninth of the PAKDD series, and carried the 
tradition in providing high-quality technical programs to facilitate research in 
knowledge discovery and data mining. It was held in Hanoi, Vietnam at the Melia 
Hotel, 18–20 May 2005.  

We are pleased to provide some statistics about PAKDD 2005. This year we 
received 327 submissions (a 37% increase over PAKDD 2004), which is the highest 
number of submissions since the first PAKDD in 1997) from 28 countries/regions: 
Australia (33), Austria (1), Belgium (2), Canada (11), China (91), Switzerland (2), 
France (9), Finland (1), Germany (5), Hong Kong (11), Indonesia (1), India (2), Italy 
(2), Japan (21), Korea (51), Malaysia (1), Macau (1), New Zealand (3), Poland (4), 
Pakistan (1), Portugal (3), Singapore (12), Taiwan (19), Thailand (7), Tunisia (2), UK 
(5), USA (31), and Vietnam (9). The submitted papers went through a rigorous 
reviewing process. Each submission was reviewed by at least two reviewers, and most 
of them by three or four reviewers. The Program Committee members were deeply 
involved in a highly engaging selection process with discussions among reviewers, 
and, when necessary, additional expert reviews were sought. As a result, the PAKDD 
2005 Program Committee accepted for publication and oral presentation 48 regular 
papers and 49 short papers, representing 14.6% and 14.9% acceptance rates, 
respectively. The PAKDD 2005 program also included two workshops (“Knowledge 
Discovery and Data Management in Biomedical Science” and “Rough Set Techniques 
in Knowledge Discovery”), and four tutorials (“Graph Mining Techniques and Their 
Applications,” “Rough Set Approach to KDD,” “Web Delta Mining: Opportunities 
and Solutions,” and “Advanced Techniques for Information and Image Classification 
for Knowledge Management and Decision Making”). 

PAKDD 2005 would not have been possible without the help of many people and 
organizations. First and foremost, we would like to thank the members of the Steering 
Committee, the Program Committee and external reviewers for their invaluable 
contributions. We wish to express our gratitude to:  

– Honorary conference chairs: Dang Vu Minh (President of the Vietnamese 
Academy of Science and Technology, Vietnam) and Hoang Van Phong 
(Minister of Science and Technology, Vietnam); 

– Conference chairs: Hiroshi Motoda (Osaka University, Japan) and Phan Dinh 
Dieu (Vietnam National University, Hanoi, Vietnam); 
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– Keynote and invited speakers: Tom Mitchell (Carnegie Mellon University, 
USA), Nada Lavrac (J. Stefan Institute, Slovenia) and Unna Huh (Information 
and Communications University, Korea); 

– Local organizing committee chairs: Luong Chi Mai (Institute of Information 
Technology, Hanoi, Vietnam) and Nguyen Ngoc Binh (Hanoi University of 
Technology, Vietnam); 

– Workshop chair: Kyuseok Shim (National Korean University, Korea); 
– Tutorial chair: Takashi Washio (Osaka University, Japan); 
– Industrial chair: Wee Keong Ng (Nanyang Technological University, 

Singapore); 
– Publicity chair: Tran Tuan Nam (Japan Advanced Institute of Science and 

Technology, Japan); 
– Publication chair: Saori Kawasaki (Japan Advanced Institute of Science and 

Technology, Japan); 
– Registration chair: Nguyen Trong Dung, Institute of Information Technology, 

Hanoi, Vietnam); 
– Award selection committee: David Cheung (University of Hong Kong, China), 

Huan Liu (Arizona State University, USA) and Graham Williams (ATO, 
Australia); 

– Chani Johnson for his tireless effort in supporting Microsoft’s Conference 
Management Tool; 

– Workshop organizers: Kenji Satou and Tu Bao Ho (Japan Advanced Institute of 
Science and Technology, Japan), Marcin S. Szczuka and Nguyen Hung Son 
(Warsaw University, Poland). Tutorialists: Sharma Chakravarthy (University of 
Texas at Arlington, USA), Sanjay Madria (University of Missouri-Rolla, USA), 
Nguyen Hung Son and Marcin S. Szczuka (Warsaw University, Poland) and 
Parag Kulkarni (Capsilon India, India). 

– External reviewers. 
 

We greatly appreciate the financial support from various sponsors: Japan 
Advanced Institute of Science and Technology (JAIST), Vietnamese Academy of 
Science and Technology (VAST), Ministry of Science and Technology of Vietnam 
(MoST), Hanoi University of Technology (HUT), AFOSR/AOARD, IBM and Oracle 
Vietnam.  

Last but not least, we would like to thank all authors, and all conference attendees 
for their contribution and participation. Without them, we would not have had this 
conference. We hope all attendees took time to exchange ideas with each other and 
enjoyed PAKDD 2005.  
 
May 2005          Tu Bao Ho, David Cheung, Huan Liu 
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In Loving Memory of 
Professor Hongjun Lu 

1945–2005 

Professor Lu was one of the founders of the PAKDD conference series. He played a 
key leadership role in nurturing and establishing the PAKDD conferences to become 
a world-recognized forum. He served as the Steering Committee Co-chair (1998–
2001), and as Chair (2001–2003) of PAKDD.  He was the Program Co-chair of the 
inaugural PAKDD (1997). He was honored with the inaugural PAKDD Distinguished 
Contribution Award (2005) for his significant and ongoing contributions in research 
and services to the advancement of the PAKDD community and series of conferences.  
 
Professor Lu also served in many important and influential positions in the research 
community. He was elected as a Trustee of the VLDB Endowment in 2000. He was a 
member of the Advisory Board of ACM SIGMOD (1998–2002). He was an Editor for 
IEEE Transactions on Knowledge and Data Engineering (TKDE) (1996–2000) and 
for Knowledge and Information Systems: An International Journal (1998–2001). He 
has served on the program committees of numerous international conferences in 
databases. 
 
Professor Lu passed away on March 3 from complications arising from his treatment 
for cancer. His research has made an impact in many areas, especially in the many 
important issues related to query processing and optimization, data warehousing and 
data mining. His long-term contributions through over 200 research publications in 
scientific journals, conferences and workshop proceedings have provided the 
foundations for many other researchers, and will be an ongoing contribution to our 
scientific endeavors for many years to come.  
 
He will always be remembered as a great scholar, researcher, teacher and leader, and 
as a caring, considerate and compassionate friend to very many. 
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Machine Learning for Analyzing  
Human Brain Function 

Tom Mitchell 

Center for Automated Learning and Discovery, 
Carnegie Mellon University, USA 

Abstract. A major opportunity for knowledge discovery and data mining over 
the coming decade is to accelerate scientific discovery by providing new com-
puter tools to analyze experimental data. Scientific fields from astronomy to 
cell biology to neuroscience now collect experimental data sets that are huge 
when compared to the data sets available just a decade ago. New data mining 
tools are needed to interpret these new data sets. 

This talk presents our own research in one such scientific subfield: studying 
the operation of the human brain using functional Magnetic Resonance Imaging 
(fMRI). A typical fMRI experiment captures three-dimensional images of hu-
man brain activity, once per second, at a spatial resolution of a few millimeters, 
providing a 3D movie of brain activity. We present our recent research explor-
ing the question of how best to analyze fMRI data to study human cognitive 
processes. We will first describe our recent successes training machine learning 
classifiers to distinguish cognitive subprocesses based on observed fMRI im-
ages. For example, we have been able to train classifiers to discriminate 
whether a person is reading words about tools, or words about buildings, based 
on their observed fMRI brain activation. We will then introduce an algorithm 
for learning a new class of probabilistic time series models called Hidden Proc-
ess Models, and discuss their use for tracking multiple hidden cognitive proc-
esses from observed fMRI brain image data. 
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Abstract. This paper presents the advances in subgroup discovery and
the ways to use subgroup discovery to generate actionable knowledge
for decision support. Actionable knowledge is explicit symbolic knowl-
edge, typically presented in the form of rules, that allow the decision
maker to recognize some important relations and to perform an appro-
priate action, such as planning a population screening campaign aimed
at detecting individuals with high disease risk. Two case studies from
medicine and functional genomics are used to present the lessons learned
in solving problems requiring actionable knowledge generation for deci-
sion support.

1 Introduction

Rule learning is an important form of predictive machine learning, aimed at
inducing classification and prediction rules from examples [2]. Developments
in descriptive induction have recently also gained much attention of researchers
interested in rule learning. These include mining of association rules [1], subgroup
discovery [11, 4, 6] and other approaches to non-classificatory induction.

This paper discusses actionable knowledge generation by means of subgroup
discovery. The term actionability is described in [10] as follows: “a pattern is in-
teresting to the user if the user can do something with it to his or her advantage.”
As such, actionability is a subjective measure of interestingness.

The lessons in actionable knowledge generation, described in this paper, were
learned from two applications that motivated our research in actionable knowl-
edge generation for decision support. In an ideal case, the induced knowledge
should enable the decision maker to perform an action to his or her advantage,
for instance, by appropriately selecting individuals for population screening con-
cerning high risk for coronary heart disease (CHD). Consider one rule from this
application:

CHD ← body mass index > 25 kgm−2 & age > 63 years

This rule is actionable as the general practitioner can select from his patients
the overweight patients older than 63 years.

This paper provides arguments in favor of actionable knowledge generation
through recently developed subgroup discovery approaches, where a subgroup
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discovery task is informally defined as follows [11, 4, 6]: Given a population of
individuals and a specific property of individuals that we are interested in, find
population subgroups that are statistically ‘most interesting’, e.g., are as large
as possible and have the most unusual distributional characteristics with respect
to the property of interest.

We restrict the subgroup discovery task to learning from class-labeled data,
and induce individual rules (describing individual subgroups) from labeled train-
ing examples (labeled positive if the property of interest holds, and negative
otherwise), thus targeting the process of subgroup discovery to uncovering prop-
erties of a selected target population of individuals with the given property of
interest. Despite the fact that this form of rules suggests that standard super-
vised classification rule learning could be used for solving the task, the goal of
subgroup discovery is to uncover individual rules/patterns, as opposed to the
goal of standard supervised learning, aimed at discovering rulesets/models to be
used as accurate classifiers of yet unlabeled instances [4].

In subgroup discovery, the induced patterns must be represented in explicit
symbolic form and must be relatively simple in order to be recognized as ac-
tionable for guiding a decision maker in directing some targeted campaign. We
provide arguments in favour of actionable knowledge generation through recently
developed subgroup discovery algorithms, uncovering properties of individuals
for actions like population screening and functional genomics data analysis. For
such tasks, actionable rules are characterized by the experts’ choice of the ‘ac-
tionable’ attributes to appear in induced subgroup descriptions, as well as by
high coverage (support), high sensitivity and specificity1, even if this can be
achieved only at a price of lower classification accuracy, which is the quality to
be optimized in classification and prediction tasks.

This paper is structured as follows. Two applications that have motivated our
research in actionable knowledge generation are described in Section 2. Section 3
introduces the ROC and the TP/FP space needed for better understanding of
the task and results of subgroup discovery. Section 6 introduces the functional
genomics domain in more detail, where the task is to distinguish between differ-
ent cancer types.

2 Two Case Studies

The motivation for this work comes from practical data mining problems in a
medical and a functional genomics domain.

1 Sensitivity measures the fraction of positive cases that are classified as positive,
whereas specificity measures the fraction of negative cases classified as negative. If
TP denotes true positives, TN true negatives, FP false positives, FN false negatives,
Pos all positives, and Neg all negatives, then Sensitivity = TPr = TP

TP+FN
= TP

Pos
,

and Specificity = TN
TN+FP

= TN
Neg

, and FalseAlarm = FPr = 1 − Specificity =
FP

TN+FP
= FP

Neg
. Quality measures in association rule learning are support and confi-

dence: Support = TP
Pos+Neg

and Confidence = TP
TP+FP

.



The medical problem domain is first outlined: the problem of the detection
and description of Coronary Heart Disease (CHD) risk groups [4]. Typical data
collected in general screening include anamnestic information and physical ex-
amination results, laboratory tests, and ECG at-rest test results. In many cases
with significantly pathological test values (especially, for example, left ventricular
hypertrophy, increased LDL cholesterol, decreased HDL cholesterol, hyperten-
sion, and intolerance glucose) the decision is not difficult. However, the hard
problem in CHD prevention is to find endangered individuals with slightly ab-
normal values of risk factors and in cases when combinations of different risk
factors occur. The results in the form of risk group models should help gen-
eral practitioners to recognize CHD and/or to detect the illness even before
the first symptoms actually occur. Expert-guided subgroup discovery discovery
is aimed at easier detection of important risk factors and risk groups in the
population.

In functional genomics, gene expression monitoring by DNA microarrays
(gene chips) provides an important source of information that can help in under-
standing many biological processes. The database we analyze consists of a set of
gene expression measurements (examples), each corresponding to a large num-
ber of measured expression values of a predefined family of genes (attributes).
Each measurement in the database was extracted from a tissue of a patient with
a specific disease; this disease is the class for the given example. The domain,
described in [9, 5] and used in our experiments, is a typical scientific discovery
domain characterised by a large number of attributes compared to the number
of available examples. As such, this domain is especially prone to overfitting, as
it is a domain with 14 different cancer classes and only 144 training examples in
total, where the examples are described by 16063 attributes presenting gene ex-
pression values. While the standard goal of machine learning is to start from the
labeled examples and construct models/classifiers that can successfully classify
new, previously unseen examples, our main goal is to uncover interesting pat-
terns/rules that can help to better understand the dependencies between classes
(diseases) and attributes (gene expressions values).

3 Background: The ROC and the TP/FP Space

A point in the ROC space (ROC: Receiver Operating Characteristic) [8] shows
classifier performance in terms of false alarm or false positive rate FPr =

|FP |
|TN |+|FP | = |FP |

|N | (plotted on the X-axis), and sensitivity or true positive rate

TPr = |TP |
|TP |+|FN | = |TP |

|P | (plotted on the Y -axis).
A point (FPr, TPr) depicting rule R in the ROC space is determined by

the covering properties of the rule. The ROC space is appropriate for measur-
ing the success of subgroup discovery, since rules/subgroups whose TPr/FPr
tradeoff is close to the diagonal can be discarded as insignificant; the reason
is that the rules with TPr/FPr on the diagonal have the same distribution
of covered positives and negatives as the distribution in the training set. Con-
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Subgroup Discovery Techniques and Applications 5

Fig. 1. The left-hand side figure shows the ROC space with a convex hull formed of
seven rules that are optimal under varying TPr/FPr tradeoffs, and two suboptimal
rules B1 and B2. The right-hand side presents the positions of the same rules in the
corresponding TP/FP space

versely, significant rules/subgroups are those sufficiently distant from the di-
agonal. Subgroups that are optimal under varying TPr/FPr tradeoffs form a
convex hull called the ROC curve. Figure 1 presents seven rules on the convex
hull (marked by circles), including X1 and X2, while two rules B1 and B2 below
the convex hull (marked by +) are of lower quality in terms of their TPr/FPr
tradeoff.

It was shown in [6] that for rule R, the vertical distance from the (FPr, TPr)
point to the ROC diagonal is proportional to the significance of the rule. Hence,
the goal of a subgroup discovery algorithm is to find subgroups in the upper-
left corner area of the ROC space, where the most significant rule would lie in
point (0, 1) representing a rule covering only positive and none of the negative
examples (FPr = 0 and TPr = 1).

An alternative to the ROC space is the so-called TP/FP space (see the right-
hand side of Figure 1), where FPr on the X-axis is replaced by |FP | and TPr
on the Y -axis by |TP |.2 The TP/FP space is equivalent to the ROC space when
comparing the quality of subgroups induced in a single domain. The reminder
of this paper considers only this simpler TP/FP space representation.

4 Constraint-Based Subgroup Discovery

Subgroup discovery is a form of supervised inductive learning of subgroup de-
scriptions of the target class. As in all inductive rule learning tasks, the language
bias is determined by the syntactic restrictions of the pattern language and the
vocabulary of terms in the language. In this work the hypothesis language is
restricted to simple if-then rules of the form Class ← Cond, where Class is the
target class and Cond is a conjunction of features. Features are logical condi-

2 The TP/FP space can be turned into the ROC space by simply normalizing the TP
and FP axes to the [0,1]x[0,1] scale.



tions that have values true or false, depending on the values of attributes which
describe the examples in the problem domain: subgroup discovery rule learning
is a form of two-class propositional inductive rule learning, where multi-class
problems are solved through a series of two-class learning problems, so that each
class is once selected as the target class while examples of all other classes are
treated as non-target class examples.

This section briefly outlines a recently developed approach to subgroup dis-
covery that can be applied to actionable knowledge generation.

4.1 Constraint-Based Subgroup Discovery with the SD Algorithm

In this paper, subgroup discovery is performed by SD, an iterative beam search
rule learning algorithm [4]. The input to SD consists of a set of examples E
and a set of features F that can be constructed for the given example set. The
output of the SD algorithm is a set of rules with optimal covering properties on
the given example set. The SD algorithm is implemented in the on-line Data
Mining Server (DMS), publicly available at http://dms.irb.hr.3

In a constraint-based data mining framework [3], a formal definition of sub-
group discovery involves a set of constraints that induced subgroup descriptions
have to satisfy. The following constraints are used to formalize the SD constraint-
based subgroup discovery task.

Language Constraints

– Individual subgroup descriptions have the form of rules Class ← Cond,
where Class is the property of interest (the target class), and Cond is a
conjunction of features (conditions based on attribute value pairs) defined
by the language describing the training examples.

– For discrete (categorical) attributes, features have the form Attribute =
value or Attribute �= value, for continuous (numerical) attributes they have
the form Attribute > value or Attribute ≤ value. Note that features can
have values true and false only, that every feature has its logical complement
(for feature f1 being A1 = v1 its logical complement f1 is A1 �= v1, for A2 >
v2 its logical complement is A2 ≤ v2), and that features are different from
binary valued attributes because for every attribute at least two different
features are constructed.

– To simplify rule interpretation and increase rule actionability, subgroup dis-
covery is aimed at finding short rules. This is formalized by a language
constraint that every induced rule R has to satisfy: rule size (i.e., the num-
ber of features in Cond) has to be below a user-defined threshold: size(R) ≤
MaxRuleLength.

3 The publicly available Data Mining Server and its constituent subgroup discovery
algorithm SD can be tested on user submitted domains with up to 250 examples and
50 attributes. The variant of the SD algorithm used in gene expression data analysis
was not limited by these restrictions.

6 N. Lavrač
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Evaluation/Optimization Constraints

– To ensure that induced subgroups are sufficiently large, each induced rule R
must have high support, i.e., sup(R) ≥ MinSup, where MinSup is a user-
defined threshold, and sup(R) is the relative frequency of correctly covered
examples of the target class in examples set E:

sup(R) = p(Class · Cond) =
n(Class · Cond)

|E| =
|TP |
|E|

– Other evaluation/optimization constraints have to ensure that the induced
subgroups are highly significant (ensuring that the class distribution of ex-
amples covered by the subgroup description will be statistically significantly
different from the distribution in the training set). This could be achieved in
a straight-forward way by imposing a significance constraint on rules, e.g., by
requiring that rule significance is above a user-defined threshold. Instead, in
the SD subgroup discovery algorithm [4] the following rule quality measure
assuring rule significance, implemented as a heuristic in rule construction, is
used:

qg(R) =
|TP |

|FP | + g
(1)

In Equation 1, TP are true positives (target class examples covered by rule
R), FP are false positives (non-target class examples covered by rule R),
and g is a user defined generalization parameter. High quality rules will
cover many target class examples and a low number of non-target examples.
The number of tolerated non-target class cases, relative to the number of
covered target class cases, is determined by parameter g. It was shown in
[4] that by using this optimization constraint (choose the rule with best
qg(R) value in beam search of best rule conditions), rules with a significantly
different distribution of covered positives and negatives, compared to the
prior distribution in the training set, are induced.

5 Experiments in Patient CHD Risk Group Detection

Early detection of artherosclerotic coronary heart disease (CHD) is an impor-
tant and difficult medical problem. CHD risk factors include artherosclerotic
attributes, living habits, hemostatic factors, blood pressure, and metabolic fac-
tors. Their screening is performed in general practice by data collection in three
different stages.

A Collecting anamnestic information and physical examination results, includ-
ing risk factors like age, positive family history, weight, height, cigarette
smoking, alcohol consumption, blood pressure, and previous heart and vas-
cular diseases.

B Collecting results of laboratory tests, including information about risk factors
like lipid profile, glucose tolerance, and thrombogenic factors.



C Collecting ECG at rest test results, including measurements of heart rate,
left ventricular hypertrophy, ST segment depression, cardiac arrhythmias
and conduction disturbances.

In this application, the goal was to construct at least one relevant and interesting
CHD risk group for each of the stages A, B, and C, respectively.

A database with 238 patients representing typical medical practice in CHD
diagnosis, collected at the Institute for Cardiovascular Prevention and Rehabil-
itation, Zagreb, Croatia, was used for subgroup discovery [4]. The database is
in no respect a good epidemiological CHD database reflecting actual CHD oc-
currence in a general population, since about 50% of gathered patient records
represent CHD patients. Nevertheless, the database is very valuable since it in-
cludes records of different types of the disease. Moreover, the included negative
cases (patients who do not have CHD) are not randomly selected persons but
individuals considered by general practitioners as potential CHD patients, and
hence sent for further investigations to the Institute. This biased dataset is ap-
propriate for CHD risk group discovery, but it is inappropriate for measuring
the success of CHD risk detection and for subgroup performance estimation in
general medical practice.

5.1 Results of Subgroup Discovery

The process of expert-guided subgroup discovery was performed as follows. For
every data stage A, B and C, the SD algorithm was run for values g in the range
0.5 to 100 (values 0.5, 1, 2, 4, 6, ...), and a fixed number of selected output rules
equal to 3. The rules induced in this iterative process were shown to the ex-
pert for selection and interpretation. The inspection of 15–20 rules for each data
stage triggered further experiments, following the suggestions of the medical ex-
pert to limit the number of features in the rule body and avoid the generation
of rules whose features would involve expensive and/or unreliable laboratory
tests.

In the iterative process of rule generation and selection, the expert has se-
lected five most interesting CHD risk groups. Table 1 shows the induced sub-
group descriptions. The features appearing in the conditions of rules describing
the subgroups are called the principal factors. The described iterative process
was successful for data at stages B and C, but it turned out that medical history
data on its own (stage A data) is not informative enough for inducing subgroups,
i.e., it failed to fulfil the expert’s subjective criteria of interestingness. Only af-
ter engineering the domain, by separating male and female patients, interesting
subgroups A1 and A2 have actually been discovered.

Separately for each data stage A, B and C, we have investigated which of
the induced rules are the best in terms of the TP/FP tradeoff, i.e., which of
them are used to define the convex hull in the TP/FP space. At stage B, for
instance, seven rules (marked by +) are on the convex hull of the TP/FP space
shown in Figure 1. Notice that the expert-selected subgroups B1 and B2 are
significant, but are not among those lying on the convex hull in Figure 1. The
reason for selecting exactly those two rules at stage B are their simplicity (con-
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Subgroup Discovery Techniques and Applications 9

Table 1. Induced subgroups in the form of rules. Rule conditions are conjunctions of
principal factors. Subgroup A1 is for male patients, subgroup A2 for female patients,
while subgroups B1, B2, and C1 are for both male and female patients. The subgroups
are induced from different attribute subsets (A, B and C, respectively) with different
g parameter values (14, 8, 10, 12 and 10, respectively)

Expert Selected Subgroups

A1 CHD ← positive family history &
age over 46 year

A2 CHD ← body mass index over 25 kgm−2 &
age over 63 years

B1 CHD ← total cholesterol over 6.1 mmolL−1 &
age over 53 years &
body mass index below 30 kgm−2

B2 CHD ← total cholesterol over 5.6 mmolL−1 &
fibrinogen over 3.7 gL−1 &
body mass index below 30 kgm−2

C1 CHD ← left ventricular hypertrophy

sisting of three features only), their generality (covering relatively many posi-
tive cases) and the fact that the used features are, from the medical point of
view, inexpensive laboratory tests. Additionally, rules B1 and B2 are interesting
because of the feature body mass index below 30 kgm−2, which is intuitively
in contradiction with the expert knowledge that both increased body weight
as well as increased total cholesterol values are CHD risk factors. It is known
that increased body weight typically results in increased total cholesterol val-
ues while subgroups B1 and B2 actually point out the importance of increased
total cholesterol when it is not caused by obesity as a relevant disease risk
factor.

5.2 Statistical Characterization of Subgroups

The next step in the proposed subgroup discovery process starts from the discov-
ered subgroups. In this step, statistical differences in distributions are computed
for two populations, the target and the reference population. The target popu-
lation consists of true positive cases (CHD patients included into the analyzed
subgroup), whereas the reference population are all available non-target class
examples (all the healthy subjects). Statistical differences in distributions for all
the descriptors (attributes) between these two populations are tested using the
χ2 test with 95% confidence level (p = 0.05).

To enable testing of statistical significance, numerical attributes have been
partitioned in up to 30 intervals so that in every interval there are at least 5
instances. Among the attributes with significantly different value distributions
there are always those that form the features describing the subgroups (the
principal factors), but usually there are also other attributes with statistically
significantly different value distributions. These attributes are called supporting



Table 2. Statistical characterizations of induced subgroup descriptions (supporting
factors)

Supporting Factors

A1 psychosocial stress, cigarette smoking, hypertension, overweight

A2 positive family history, hypertension, slightly increased LDL cholesterol,
normal but decreased HDL cholesterol

B1 increased triglycerides value

B2 positive family history

C1 positive family history, hypertension, diabetes mellitus

attributes, and the features formed of their values that are characteristic for the
discovered subgroups are called supporting factors.

Supporting factors are very important for subgroup descriptions to become
more complete and acceptable for medical practice. Medical experts dislike long
conjunctive rules which are difficult to interpret. On the other hand, they also
dislike short rules providing insufficient supportive evidence. In this work, we
found an appropriate tradeoff between rule simplicity and the amount of sup-
portive evidence by enabling the expert to inspect all the statistically significant
supporting factors, whereas the decision whether they indeed increase the user’s
confidence in the subgroup description is left to the expert. In the CHD ap-
plication the expert has decided whether the proposed supporting factors are
meaningful, interesting and actionable, how reliable they are and how easily
they can be measured in practice. Table 2 lists the expert selected supporting
factors.

6 Experiments in Functional Genomics

The gene expression domain, described in [9, 5] is a domain with 14 differ-
ent cancer classes and 144 training examples in total. Eleven classes have 8
examples each, two classes have 16 examples and only one has 24 examples.
The examples are described by 16063 attributes presenting gene expression val-
ues. In all the experiments we have used gene presence call values (A, P , and
M) to describe the training examples. The domain can be downloaded from
http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi. There is also an in-
dependent test set with 54 examples. The standard goal of machine learning is to
start from such labeled examples and construct classifiers that can successfully
classify new, previously unseen examples. Such classifiers are important because
they can be used for diagnostic purposes in medicine and because they can help
to understand the dependencies between classes (diseases) and attributes (gene
expressions values).

10 N. Lavrač
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6.1 Choice of the Description Language of Features

Gene expression scanners measure signal intensity as continuous values which
form an appropriate input for data analysis. The problem is that for contin-
uous valued attributes there can be potentially many boundary values sepa-
rating the classes, resulting in many different features for a single attribute.
There is also a possibility to use presence call (signal specificity) values com-
puted from measured signal intensity values by the Affymetrix GENECHIP
software. The presence call has discrete values A (absent), P (present), and
M (marginal). Subgroup discovery as well as filtering based on feature and rule
relevancy are applicable both for signal intensity and/or the presence call at-
tribute values. Typically, signal intensity values are used [7] because they impose
less restrictions on the classifier construction process and because the results do
not depend on the GENECHIP software presence call computation. For sub-
group discovery we prefer the later approach based on presence call values. The
reason is that features presented by conditions like Gene = P is true (mean-
ing that Gene is present, i.e., expressed) or Gene = A is true (meaning that
Gene is absent, i.e., not expressed) are very natural for human interpretation
and that the approach can help in avoiding overfitting, as the feature space is
very strongly restricted, especially if the marginal value M is encoded as value
unknown.

In our approach, the M value is handled as an unknown value, as we do
not want to increase the relevance of features generated from attributes with
M values. The M values are therefore handled as unknown values as follows:
unknown values in positive examples are replaced by value false, while unknown
values in negative examples are replaced by value true. As for the other two
values, A and P , it holds that two features for gene X, X = A and X �= P , are
identical. Consequently, for every gene X there are only two distinct features
X = A and X = P .

6.2 The Experiments

The experiments were performed separately for each cancer class so that a two-
class learning problem was formulated where the selected cancer class was the
target class and the examples of all other classes formed non-target class exam-
ples. In this way the domain was transformed into 14 inductive learning prob-
lems, each with the total of 144 training examples and between 8 and 24 target
class examples. For each of these tasks a complete procedure consisting of fea-
ture construction, elimination of irrelevant features, and induction of subgroup
descriptions in the form of rules was repeated. Finally, using the SD subgroup
discovery algorithm [4], for each class a single rule with maximal qg value was
selected, for qg = |TP |

|FP |+g being the heuristic of the SD algorithm and g = 5 the
generalization parameter default value. The rules for all 14 tasks consisted of
2–4 features. The procedure was repeated for all 14 tasks with the same default
parameter values. The induced rules were tested on the independent example
set.



Table 3. Covering properties on the training and on the independent test set for rules
induced for three classes with 16 and 24 examples. Sensitivity is |TP |

|P | , specificity is
|TN|
|N| , while precision is defined as |TP |

|TP |+|FP |

Cancer Training set Test set
Sens. Spec. Prec. Sens. Spec. Prec.

lymphoma 16/16 128/128 100% 5/6 48/48 100%
leukemia 23/24 120/120 100% 4/6 47/48 80%
CNS 16/16 128/128 100% 3/4 50/50 100%

There are very large differences among the results on the test sets for vari-
ous classes (diseases) and the precision higher than 50% was obtained for only
5 out of 14 classes. There are only three classes (lymphoma, leukemia, and
CNS) with more than 8 training cases and all of them are among those with
high precision on the test set, while for only two out of eleven classes with
8 training cases (colorectal and mesothelioma) high precision was achieved.
The classification properties of rules induced for classes with 16 and 24 tar-
get class examples (lymphoma, leukemia and CNS) are comparable to those
reported in [9] (see Table 3), while the results on eight small example sets
with 8 target examples were poor. An obvious conclusion is that the use of
the subgroup discovery algorithm is not appropriate for problems with a very
small number of examples because overfitting can not be avoided in spite of
the heuristics used in the SD algorithm and the additional domain-specific tech-
niques used to restrict the hypothesis search space. But for larger training sets
the subgroup discovery methodology enabled effective construction of relevant
rules.

6.3 Examples of Induced Rules

For three classes (lymphoma, leukemia, and CNS) with more than 8 training
cases the following rules were induced by the constraint-based subgroup dis-
covery approach involving relevancy filtering and handling of unknown values
described in this chapter.

Lymphoma class:
(CD20 receptor EXPRESSED) AND
(phosphatidylinositol 3 kinase regulatory alpha subunit NOT EXPRESSED)
Leukemia class:
(KIAA0128 gene EXPRESSED) AND
(prostaglandin d2 synthase gene NOT EXPRESSED)
CNS class:
(fetus brain mRNA for membrane glycoprotein M6 EXPRESSED) AND
(CRMP1 collapsin response mediator protein 1 EXPRESSED)

12 N. Lavrač
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The expert interpretation of the results yields several biological observations:
two rules (for the lymphoma and leukemia classes) are judged as reassuring and
one (the CNS class) has a plausible, albeit partially speculative explanation.
Namely, the best-scoring rule for the lymphoma class in the multi-class cancer
recognition problem contains a feature corresponding to a gene routinely used
as a marker in diagnosis of lymphomas (CD20), while the other part of the
conjunction (phosphatidylinositol, the PI3K gene) seems to be a plausible bi-
ological co-factor. The best-scoring rule for the leukemia class contains a gene
whose relation to the disease is directly explicable (KIAA0128, Septin 6). Both
M6 and CRMP1 appear to have multifunctional roles in shaping neuronal net-
works, and their function as survival (M6) and proliferation (CRMP1) signals
may be relevant to growth promotion and CNS malignancy.

Both good prediction results on an independent test set as well as expert
interpretation of induced rules prove the effectiveness of described methods for
avoiding overfitting in scientific discovery tasks.
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IT Development in the 21st Century and Its Implications 

Unna Huh 

President, Information and Communications University, Korea 

Abstract. This talk discusses general IT development in the 21st century and its 
positive and negative effects. It also talks about Korea’s IT development and 
makes suggestions for Korea’s further advances in IT.  The three keywords to 
describe the IT development in the 21st century are digitalization, convergence, 
and ubiquitous revolution. This IT development has presented new opportuni-
ties for our society, corporations and individuals while posing a threat to us.  
That is, IT revolution may dramatically improve the quality of human life and 
allow amazing degree of comfort in our lives, but like a double-edged sword, IT 
may also be misused and have disastrous impacts on our daily lives, such as in-
vasion of privacy, leakage and abuse of personal information, and hacking.  In 
dealing with these problems, technological advances alone may not be suffi-
cient.  There is a need for innovative education regionally and worldwide to 
cultivate wisdom in U-citizens so that they can use the modern convenience of 
IT with strong ethics.  We also need to establish new laws and societal systems 
appropriate for the ubiquitous era. 

Ladies and Gentlemen! 
It is my great pleasure and honor to be here.  I am Unna Huh, President of Informa-
tion and Communications University (ICU), Korea.  First of all, I would like to ex-
press my sincere gratitude to the Pacific Asia conference on Knowledge Discovery & 
Data Mining (PAKDD) for giving me this opportunity to share my views on the 21st 
century’s IT development. 

1   Introduction 

I have been asked to speak about general IT development.  In the next few minutes, I 
will discuss the trends of IT development in the 21st century and analyze both the 
positive and the negative effects of the development.  Then I will focus on the IT 
development in Korea and suggest some strategies for future IT development. 

In my opinion, the three keywords to describe the IT development in the 21st cen-
tury are digitalization, convergence, and ubiquitous revolution.  This IT development 
has presented new opportunities for our society, corporations and individuals while 
posing a threat to us.  In order to maximize the positive effects of IT development and to 
minimize its negative effects, I believe society must develop general coping strategies. 

2   The Trends of IT Development in the 21st Century 

The rapid IT development in the 20th century brought about drastic changes in the 
operational styles of organizations, society’s infrastructure and culture, and individu-
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als’ life styles.  There are several rules of thumb that we have gathered from the past 
IT development and that would help us predict the future trends of IT development in 
terms of quantity, and these are as follows:  

o Moore’s Law: Every 18 months computer chips fall in price half, but the per-
formance doubles.  

o Glider’s Law: In the near future, the overall performance (bandwidth) of the 
IT system will triple every 12 months.  

o Metcalfe’s Law: The value of IT network increases non-linearly as the num-
ber of users increases; therefore, the future value of IT network will make an 
explosive leap.    

Let me review now the three key elements of the IT development in the 21st  
century. 

2.1   Digitalization 

First of all, I expect that there will be rapid digitalization of IT equipment.  We will 
soon see digital TVs, digital camera/phone/DVDs, and digital household electronic 
appliances.  There will also be digitalization of IT networks, such as digital broadcast-
ing stations, digital cable TVs, digital mobile communication (2.5G/3G), IP-
connected wired telephone network, and digital satellites.  Furthermore, the digitaliza-
tion of information or contents will be accelerated; thus, there will be widespread use 
of MP3 music files, digital photos and animation, and e-books. 

2.2   Convergence 

Secondly, we have come to witness the phenomenon of convergence as the computer 
and communication are converged.  Especially thanks to the far-reaching digitaliza-
tion, there will be active device convergence, and it will be difficult to determine the 
specific characteristics of a product.  For example, we will be using smart phones in 
which mobile phones and PDA are integrated and Internet TVs, a combination of the 
Internet and TVs. Moreover, the different infrastructures of various communication 
networks that have existed separately will become broadband, converged, and com-
posite as in the cases of the convergence of communication and broadcasting and the 
wireless and wired integration.  As digital contents with identical standards have be-
come available, they are used in different media and different types of equipment.  
We now can take photos with a digital camera, edit them in the computer, and send 
them via mobile phones.  Presently beyond the boundary of the existing IT industries, 
IT and banking are being converged, and we also see super convergence taking place 
between IT, NT, and BT. 

2.3   Ubiquitous Revolution 

In the core of the 21st century’s information and communication technologies lie ubiq-
uitous services combining the strengths of the Internet and wireless and wired IT.  In 
other words, we should expect to live in an era of ubiquitous revolution soon, where 
we can be connected to anyone anywhere any time.  This will be made possible by the 
combination of wired and wireless communication technologies and computing 
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technologies.  RFID in particular is getting attention as one of the most important 
technological, industrial elements in the next-generation ubiquitous environment and 
is expected to create new markets in various areas. 

3   The Implications of IT Development 

I have so far described the three major phenomena of IT development in the 21st cen-
tury.  This is an overview of both the constructive aspects and the threats and dangers 
against our society, corporations, and individuals that the 21st century’s IT develop-
ment has brought to us. 

3.1   The Impact of Digitalization 

First, digitalization will dramatically increase the efficiency and performance of IT 
equipment and network.  As the content compatibility and the extent of inter-
operation among different types of equipment improve, we are likely to enjoy more 
the benefits of having networks.  We will get exposed to more and better-quality in-
formation that is generated and disseminated, and it will be much easier for the users 
to have interactions with one another.  We will also benefit from affordable e-Life, 
i.e., distance e-health services made available by information and communication 
technologies, and thus enjoy better-quality life.    

On the other hand, it will be critical to determine when to raise investment funds 
and how to measure the outcome of future investment as we expect a considerable 
amount of investment in digital upgrade.  Some of the traditional businesses, such as 
conventional photo studios, video rentals, film manufacturers, and analog watch ven-
dors, will go out of business thanks to the emergence of digital technologies.  The 
number of the video rentals in Korea in 1996, which exceeded 32,000, considerably 
decreased to 8000 rentals by February 2003.  In addition, there will be a problem of 
digital divide between those who have access to and make use of digital technologies 
and those who do not.  In the digital era, where intellectual property is one’s major 
asset, we will be faced with frequent problems of hacking and plagiarism, made easier 
by the characteristics of digital technologies. 

3.2   The Impact of Convergence 

Secondly, it is possible to create a new service or product using digital technologies as 
value transfer has already begun in all types of industries and fields.  Conventional 
manufacturing industries are given new opportunities to overcome the existing 
boundaries and to explore a new aspect of growth: Telematics is an integration of auto 
and IT technologies; cyber apartments are an outcome of combining construction and 
Internet technologies; the home appliance industry is leading home networking.  

However, some of the traditional companies have had to deal with competition that 
they can’t possibly win because of the collapse of the boundaries among the indus-
tries. Credit companies, for example, have suffered a serious blow because of the 
advent of a payment system via portable phones.  The value chain of the existing 
industries has been destroyed, and multiple value chains are being converged and 
combined into a new value network, which has put traditional companies in a difficult 
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position to compete against new breeds of businesses.  We have seen the severe com-
petition to occupy the wireless portal market between mobile companies and tradi-
tional Internet portals. 

3.3   The Impact of Ubiquitous Revolution 

Finally, with the advent of ubiquitous services that overcome spatial, time constraints, 
the efficiency of companies and society in general will greatly improve.  In a ubiqui-
tous environment, there will be a large number of devices and sensors surrounding the 
user.  As the user moves around, the user device will be able to access the network 
that can provide the best quality of service at the most economic rate in a seamless 
manner. Ubiquitous computing also establishes USN (ubiquitous sensor network), 
where invisible computers automatically detect time-varying contexts and makes it 
possible to execute information sharing, behavior proposals, and action measures 
necessary for human life.  In sum, ubiquitous services will contribute to the improve-
ment of the quality of individuals’ everyday lives.    

Unfortunately, omnipresent computing technologies have also had negative effects, 
such as the broadening of information gap and digital waste created by the digitaliza-
tion and networking of equipment.  The right of being unconnected is not guaranteed, 
which may give rise to serious violations of individual privacy.  Furthermore, IT de-
velopment may aggravate people’s feelings of isolation, the phenomenon called digi-
tal isolation.  Ubiquitous computing is defined as “connected to any device anytime 
and anywhere.”  Because of these all-pervading characteristics, it is likely that new 
kinds of problems in information protection will arise; the seriousness of the existing 
issues will be amplified.  RFID in specific has innate problems of information leak-
age, distortion, and supervision.  If we do not take proper measures to deal with these 
problems, they will act as stumbling blocks in the expansion of RFID and in our entry 
into ubiquitous society. 

4   Korea’s Current State of IT Technologies and Issues 

To this point I have discussed the general IT development, and the rest of my talk will 
concentrate on the IT development in Korea and its related issues. 

4.1   Major Achievements 

The most noteworthy IT achievement that Korea has made in recent years is the fact 
that Korea has achieved the commercialization and localization of major digital tech-
nologies, such as CDMA, DRAM, and TDX, for the first time in the world.   

Furthermore, mobile communication terminals have grown to be a strategically 
important item of exports, taking up approximately 8% of the total national exports, 
and become high-quality, high-end products in the world’s market. 

In addition, the number of domestic users of mobile communication services has 
reached 34 million; the majority of them are subscribers of digital communications.  
The number is close to 73% of the overall distribution rate, and more than the half of 
them are wireless Internet subscribers.  One out of every two Korean citizens (59%) is 
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using the Internet, and 73% of the households are subscribers of VHS Internet.  Korea 
has taken the fifth place in Internet use and risen as the world’s digital power.   

Also, Korea boasts of the world’s best information infrastructure: the Korean gov-
ernment has created a world-class service infrastructure to be an electronic government 
and established a VHS information communication network connecting 144 major cities 
across the nation in 2000.  This was the world’s first achievement of its kind. 

4.2   Some Issues of Note   

While Korea has had some remarkable achievements in IT, there are also some limita-
tions that should be overcome for further speedy advance.  Most of all, there is a lack 
of core technologies to carry out digital convergence.  In the case of semi-conductor 
technology, which is considered a core technology, the domestic semi-conductor 
industry focuses on manufacturing of memory chips but heavily depends on the im-
ports of ASIC (SOC) while the proportion of non-memory and memory chips in the 
world market is 80 vs. 20.    

Insufficient manpower and technological prowess in the area of software, the axis 
of digital convergence, are other major problems. To set off a rapid growth of soft-
ware industry, we are in urgent need of more software experts, especially high-quality 
manpower ready with both knowledge of software engineering technologies and pro-
ject management skills. In the next four years, the domestic software industry will 
suffer from a shortage of human resources, up to  6 000 people.   

Finally, although digital contents are at the heart of IT industry as digitalization, con-
vergence, and ubiquitous revolution are in progress, Korea does not hold strong com-
petitive power over emotional contents, where culture, technology and economy meet. 

4.3   Suggestions for Solutions and Coping Strategies 

Above all, I must say that it is necessary to establish academic departments of com-
posite disciplines in higher education and to train manpower of complex knowledge 
and skills in order to carry out the digitalization and convergence. Digitalization and 
convergence are not passing fads. Society needs experts who can draw the overall 
picture for the general public. That is to say what leads to the success of information 
and communication technologies, including digitalization and convergence, is not the 
technology itself but the humans. We need no other choice but to make a bold in-
vestment in IT education.  Korea in large part has maintained the traditional education 
system, and only a few institutions produce human resources equipped with knowl-
edge of composite technologies.  We will need to encourage multifaceted learning and 
produce manpower of complex knowledge beyond the boundary of the existing tradi-
tional education system.  The case of Information and Communications University 
(ICU), where disciplinary education in the true sense is provided between the disci-
plines of IT engineering and IT management, is worth notice. ICU is Korea’s most 
prominent IT institution and strives to become world’s foremost research-centered 
university in the field of IT. Its mission is to educate world’s future IT leaders.  

Moreover, an emphasis has to be placed on the industry of digital contents.  It is 
recommended that Korea learn to train/produce rule makers, e.g., J. K. Rowling, au-
thor of Harry Potter series, and Steven Spielberg, that is, composite talents who can lead 
world’s trends and take hold of cultural power in the wave of digitalization, conver-

5 , 
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gence, and ubiquitous revolution. Also, it is necessary to discover novel, unique ideas, 
materialize them into digital contents, and service and utilize them via digital media.  

Furthermore, IT industry needs to shift gear from manufacturing-oriented to 
marketing-oriented. It needs to learn and find out people’s digital needs. When one 
makes a large amount of investment in a technology without an appropriate viewpoint 
of marketing, it may help facilitate the widespread use of the technology, but it is not 
certain whether or not such development is useful or will eventually improve the 
quality of life. Therefore, it is important for the industry to find out what the consum-
ers ultimately want from digitalization and convergence.  

Lastly, there should be deterrence measures to discourage indiscriminate digitali-
zation, convergence, and ubiquitous revolution. There is no guarantee that the digi-
talization or convergence of particular items will lead to success in the market.  Sev-
eral years ago, a digital camera equipped with a MP3 player was on the market, but it 
turned out a disastrous failure. It is not necessary to do convergence on all the items.  
Some may need convergence and others, divergence.  This requires a balanced ap-
proach on the basis of an appropriate strategy.  

In this talk, I have discussed the IT development as a worldwide phenomenon and 
the Korean example. I have also illustrated the positive and negative aspects of the 
advances in digital technologies, convergence, and ubiquitous computing.  IT revolu-
tion may dramatically improve the quality of human life and allow amazing degree of 
comfort in our lives, but like a double-edged sword, IT may also be misused and have 
disastrous impacts on our daily lives, such as invasion of privacy, leakage and abuse 
of personal information, and hacking.  In dealing with these problems, technological 
advances alone may not be sufficient.  There is a need for innovative education re-
gionally and worldwide to cultivate wisdom in U-citizens so that they can use the 
modern convenience of IT with strong ethics.  We also need to establish new laws and 
societal systems appropriate for the ubiquitous era.  As we are heading for a U-
society, where one can be connected to any one any time and any where, the task for 
all of us who are here today is to establish collaboration among different regions, na-
tions, and continents to facilitate the constructive, beneficial aspect of IT advances and 
to discuss how to do so effectively from our points of view.  I hope you will have a 
wonderful, meaningful stay during the conference.  Thank you very much for listening. 
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Abstract. We used discrete combinatoric methods and non numerical
algorithms [9], based on weighted prefix trees, to examine the data min-
ing of DNA microarray data, in order to capture biological or medical
informations and extract new knowledge from these data. We describe
hierarchical cluster analysis of DNA microarray data using structure of
weighted trees in two manners : classifying the degree of overlap be-
tween different microarrays and classifying the degree of expression lev-
els between different genes. These are most efficiently done by finding
the characteristic genes and microarrays with the maximum degree of
overlap and determining the group of candidate genes suggestive of a
pathology.

Keywords: combinatoric of words, weighted trees, data mining, cluster
analysis, DNA microarrays.

1 Introduction

DNA microarray is technology used to measure simultaneously the expression
levels of thousands of genes under various conditions and then provide genome-
wide insight. Microarray is a microscope slide to which the thousands of DNA
fragments are attached. The DNA microarrays are hybridized with fluorescently
labelled cDNA prepared from total mRNA of studied cells. The cDNA of the
first cell sample is labelled with a green-fluorescent dye and the second with a
red-fluorescent dye. After hybridization, the DNA microarrays are placed in a
scanner to create a digital image of the arrays. The intensity of fluorescent light
varies with the strength of the hybridization. The measure of expression level of
a gene is determined by the logarithm of the ratio of the luminous intensity of
the red fluorescence IR to the luminous intensity of the green fluorescence IG,
E = log2(

IR

IG
). In this work, a change of differential expression of a gene between

two cell samples by a factor of greater than 2 was considered significant. Thus,
if E ≥ 1, the gene is said up-regulated; if −1 < E < 1, it is said no-regulated; if
E ≤ −1, it is said down-regulated in the second cell sample [3].

The important application of microarray techology is an organization of mi-
croarray profiles and gene expression profiles into different clusters according to
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degree of expression levels. Since some microarray experiments can contain up
to 30 000 target spots, the data generated from a single array mounts up quickly.
The interpretation of the experiment results requires the mathematic methods
and software programs to capture the biological or medical information and to
extract new knowledge from these data. There exist already several statistical
methods and software programs to analyze the microarrays. Examples include
1) Unsupervised learning methods : hierarchical clustering and k-means clus-
tering algorithms based on distance similarity metrics [3, 4] are used to search
for genes with maximum similarity. 2) Supervised learning methods : support
vector machine approaches based on kernel function [5], the bayesian naive ap-
proach based on maximum likelihood method [6, 7] are used to classify the gene
expression into a training set. These methods are based essentially on numerical
algorithms and do not really require structured data.

In this paper, we used combinatoric methods and non-numerical algorithms,
based on structure of weighted prefix trees, to analyze microarray data, i.e :

1. defining the distances to compare different genes and different microarrays,
2. organizing the microarrays of a pathology into the different clusters,
3. classifying the genes of a pathology into the different clusters,
4. researching the characteristic genes and/or characteristic microarrays,
5. determining the group of candidate genes suggestive of a pathology.

The key to understanding our approach is the information on gene expression in a
microarray is represented by a symbolic sequence, and a collection of microarrays
is viewed as a language, which is implementated by weighted prefix trees [8, 9].
In fact, the expression levels of a gene will be modeled as an alphabet whose
size is the number of expression levels. Thus, a microarray profile or a gene
expression profile is viewed as a word over this alphabet and a collection of
microarrays forms a language that is called a DNA microarray language. In
this study, we chose three symbols to represent the three expression levels of
a gene according to : a spot representing a gene up-regulated is encoded by +;
a gene no-regulated is encoded by ◦; a gene down-regulated is encoded by −.
From this modeling, we obtain an alphabet X = {+, ◦,−} and a microarray
is then represented by a ternary word over X. And a collection of microarrays
is represented as the set of ternary words. The encoding by symbol sequences
permits the analysis of the microarrays by using ternary weighted trees. These
trees provide a visual of a set of data and also are tools to classify enormous
masses of words according to the overlap degree of their prefixes. Thus, these
structures open a new way to examine the data mining step in the process of
knowledge discovery in databases to understand general characteristics of DNA
microarray data. In other words, they permit the extraction of hidden biological
and medical informations from the mass of this data. They also address the
automatic learning and pattern recognition problems. This paper describes two
manners of hierarchical cluster analysis of DNA microarray data, using weighted
prefix trees, includes clustering the profile of microarrays and clustering genes
expression profiles. The next section recalls elements of words and languages.
Section 3 presents weighted prefix trees. Section 4 describes the experimental
results on a DNA microarray data of breast cancer cells.

C Hoang.Nguyen
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2 Elements of Words and Languages

2.1 Words and Precoding of Words

Let X = {x1, . . . , xm} be an alphabet of the size m. A w is a sequence. The
lenght of the word w over X is |w|. In particular, the empty word is denoted
by ε. The set X∗ is the set of words over X. For any h ≥ 0, we denote Xh the
set {w ∈ X∗, s.t. |w| = h}. The concatenation of word xi1 . . . xik

and xj1 . . . xjl

is the word xi1 . . . xik
xj1 . . . xjl

. Equipped with the concatenation product, X∗

is a monoid whose element neuter is the empty word ε. A word u (resp. v) is
called prefix, or left factor (resp. suffix, or right factor) of w if w = uv. For any
u, v ∈ X∗, let a be the longest left common factor of u and v, i.e u = au′ and
v = av′. For xi ∈ X, let precod(xi) = i be the precoding of xi, for i = 1, ..,m.
The precoding precod(w) of w in base m = CardX is defined as precod(ε) = 0
and precod(w) = m precod(u) + precod(x), if w = ux, for u ∈ X∗ and x ∈ X.

2.2 Languages

Let L be a language containing N words over X∗. For u ∈ X∗, let us consider
Nu = Card{w ∈ L|∃v ∈ X∗, w = uv}, in particular Nε = N . Thus, for u ∈ L,

Nu =
∑
x∈X

Nux and for any h ≥ 0, N =
∑

u∈Xh

Nu. (1)

Let μ : L → IN be the mass function defined as μ(u) = Nxi1
+ · · ·+ Nxih

, for all
u = xi1 . . . xih

∈ L. For u ∈ X∗, let us consider also the ratios Pu = Nu/N , in
particular Pε = 1. For u ∈ X∗, xi ∈ X, to simplify the notation, let

p = precod(u), qi = precod(uxi) = mp + precod(xi). (2)

and we consider the ratios

Pp,qi
= Nuxi

/Nu, for i = 1, ..,m. (3)

By the formula (1), since
∑

xi∈X Nuxi
= Nu then the ratios Pp,qi

define the
discrete probability over X∗ : 0 ≤ Pp,qi

≤ 1 and
∑

u∈X∗,xi∈X Pp,qi
= 1. For

u = xi1 . . . xih
∈ Xh, the appearance probability of u is computed by

Pu = Pqi0 ,qi1
. . . Pqih−1 ,qih

. (4)

Note that
∑

w∈L Pw = 1 and for any h ≥ 0,
∑

u∈Xh Pu = 1.

2.3 Rearrangement of Language

Let L = {w1, . . . , wN} be the language such that |wi| = L, for i = 1, .., N . Let SL

denote the set of permutations over [1, .., L]. Let σ ∈ SL and let w = xi1 . . . xiL
.

Then σw = xσ(i1) . . . xσ(iL). We extend this definition over L as σL = {σw}w∈L.
There exists a permutation σ ∈ SL such that σw1 = av1, . . . , σwN = avN , where
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v1, . . . , vN ∈ X∗ and a is the left longest factor of L. The σ is not unique. The
Rearrangement(L) algorithm is proposed in [9] as : for h ≤ L and for x ∈ X,
let nh(x) be the number of letters x in the position h of the words in L and
let nh = maxx∈X nh(x) and

∑
x∈X nh(x) = N . One rearranges then n1, . . . , nL

appearing in the order nσ(1) ≥ · · · ≥ nσ(L) by sorting algorithm [2].

Example 1. Let L = {+ + −◦, ◦ + +◦,− + +◦}. One has n2(+) = n4(◦) = 3 >
n3(+) = 2 > n1(+) = n1(◦) = n1(−) = 1, so one permutes the position 1 and 4.

One obtains σ =
(

1 2 3 4
4 2 3 1

)
and σL has a = ◦+ as a longest common prefix.

3 Weighted Prefix Trees [9]

3.1 Counting Prefix Trees

Let L ⊆ X∗ be a language. The prefix tree A(L) associated to L is usually used
to optimize the storage of L and defined as follows

• the root is initial node which contains the empty word ε,
• the set of the nodes corresponds to the prefixes of L,
• the set of the terminal nodes represents L,
• the transitions are of form precod(u) x−−−→ precod(ux), for x ∈ X, u ∈ X∗.

Equipped with the number Nux as defined in (1), the prefix tree A(L) be-
comes a counting tree. To enumerate the nodes of a tree, we use the precoding
of words defined in (2). The internal nodes p = precod(u) associated to prefix u
are nodes such that Nu ≥ 2 and the simple internal nodes q are nodes such that
Nu = 1. Thus, an internal node p = precod(u) corresponds to Nu words starting
with the same prefix u stored in sub-tree p. The counting tree of the language
L is constructed by Insert(L,A) algorithm in [8, 9]. By this construction, the
transitions between the nodes on a counting tree have the form : for x ∈ X

and u ∈ X∗,precod(u)
x,Nux−−−−−→ precod(ux). Counting prefix trees permits the

comparison of all words of L according to the mass of their prefixes as defined
in section 2.2. We proposed the Characteristic-Words(A(L)) algorithm in [8, 9],
which returns the words having the maximum number of occurences, to extract
characteristic words.

3.2 Probabilistic Prefix Trees

To compute the appearance probability of an output word over an alphabet X, we
introduce the probabilistic tree. Augmented with the probability Pp,q defined in
(3), the counting tree A(L) becomes a probabilistic tree. The labelled probability
is estimated by the maximum likelihood method (see (3)). It is the conditional
probability that the word w accepts the common prefix ux knowing the common
prefix u. The transitions between the nodes on a probabilistic tree have the form :

for x ∈ X and u ∈ X∗, p = precod(u)
x,Pp,q−−−−−→ q = precod(ux). The appearance

probability of a word is computed by (4).

T. Tran, .C. , and N.MC Hoang.Nguyen
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Example 2. Let L = {+−+◦,++◦◦,++◦◦,++◦◦,+−+◦,+−+◦,++◦◦,++
−◦} be the language over X = {+, ◦,−}, we have the weighted trees as below.

a) prefix tree b) counting tree c) probabilistic tree
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Fig. 1. Weighted trees associated to L. The sequence of nodes 0 → 1 → 4 → 14 →
44 represents the characteristic word + + ◦◦ with the maximum mass

3.3 Trees Having Longest Prefix

Consider the schema as follows

A(L) ←→ L σ−→ σL ←→ A(σL),

where A(L) (resp. A(σL)) is the tree associated with L (resp. σL). Where the
tree A(σL) represents the longest prefix of σL (see section 2.3).

Example 3. Let L given in Example 2 and let σ =
(

1 2 3 4
1 4 2 3

)
. One presents these

trees in the Figure 2.
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We have proposed the Longest-Prefix-Tree(L∪w) algorithm to insert a word
into a longest prefix tree and to give a new longest prefix tree [9].

4 Experimental Results

4.1 Descriptions

We employ the weighted trees, to organize microarrays (resp. genes) expression
profiles into different clusters such that each cluster contains all microarrays
(resp. genes) which represents a highly similar expression in degree of overlap.
Here, we describe the cluster according to two manners including 1) the cluster
analysis of DNA microarrays for searching common profile of microarray data;
2) the cluster analysis of gene expression profiles to search common expression
profile of genes. Consider a collection of L genes across in N different measure
experiments. The gene expression profiles or the gene expression patterns is the
matrix E =

(
log2 IRij

/IGij

)
1≤i≤L,1≤j≤N

, where IRij
(resp. IGij

) is the luminous
intensity of the red (resp. green) fluorescence dye of spot i in experiment j. By
symbolic represention, the gene expression profiles is represented as a language
of L words of length N over alphabet {+, ◦,−}. In the same way, the profile
of microarray data is the transposition of the matrix E, and the profile of mi-
croarray data is representated by a language of N words of lenght L. These two
languages are implemented by use of longest prefix tree permitting automatically
to classify profile of microarrays (resp. genes) according to common expression
levels as Figure 3, where the longest common expression indicates the similarity
between microarrays (resp. genes). In the case of gene expression profiles (Sec-
tion 4.3), the prefixe indicate also the co-regulated genes. This method returns
then the hierarchical clustering using weighted trees which is an unsupervised
learning technique and thus it does not requires a priori knowledge of cluster
number before clustering. This criterion is important in DNA microarray data
analysis since the characteristics of the data are often unknown.
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Fig. 3. Counting trees of microarray data. Two sub-trees associated to node 5
define two clusters corresponding. The process of nodes 0 → 1 → 5 → 16 → 50
represents 5 microarrays (resp. 4 genes) having the same expression levels + + +−
(resp. + ◦ +◦) with maximum degree of overlap
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4.2 Clustering of DNA Microarrays

As an example, we analyze the data of 77 microarrays of 9216 genes of breast
cancer cells coming from 77 patients available at the website http://genome-
www.stanford.edu/breast-cancer/. The cluster analysis and the characteristic
microarrays were represented in the Figures 4, 5, 6 and Table 1.
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Fig. 4. Counting and probabilistic tree. Each depth of tree gives the number
(probability) of microarrays having the common expression. The microarrays having a
maximal common expression are represented by a dark line
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Fig. 6. Appearance probability of prefixes. At the depth 427 there are two mi-
croarrays, 18 and 29, with coincident probability of 0.026. It can be considered as the
characteristic microarrays

Table 1. Group of similar microarrays. At depth 245 there are 4 groups of mi-
croarray with highly degree of overlap. Microarray 18 and 29 are most similarity : there
are 427 first genes having the same expression levels in which 35 genes are up-regulated,
377 genes are no-regulated and 15 genes are down-regulated

cluster slideID overlap degree (+, ◦,−)

1 18 427 (35,377,15)
29 427 (35,377,15)

2 20 392 (30,350,12)
25 392 (30,350,12)

3 7 324 (29,284,11)
23 324 (29,284,11)

4 5 261 (25,266,10)
42 261 (25,266,10)
32 245 (25,210,10)
36 248 (25,213,10)
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Fig. 7. Cluster of gene expression profiles. The graphs represent the appearance
probability of expression prefixes of genes. The weighted tree gives the genes with the
maximum degree of overlap of co-upregulated and co-downregulated expression levels
which are represented in Table 2

4.3 Clustering Gene Expression Profiles

The Figure 7 and Table 2 give the cluster analysis of gene expression profiles.

4.4 Observations and Notes

There are two groups of co-regulated genes. In Table 2, the maximum co-upregu-
lated (resp. co-downregulated) genes are represented on the left (resp. right) table.
Each cluster represents the maximum co-regulated genes with the corresponding
microarray identity : the cluster A (resp. a) of Table 2 represents 2 up-regulated
(resp. 1 down-regulated) genes over 77 microarrays corresponding to three first
depths of Figure 5. These maximum co-regulated genes could be then consid-
ered as characteristic genes of breast microarrays. These results permit also
to isolate the groups of no-regulated genes : from the depth 4 to the depth 12,
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Table 2. Groups of the co-regulated genes. Left table represents 5 clusters of 21
co-upregulated genes. Right table represents 4 clusters of 21 co-downregulated genes

cluster gene symbol overlap (+, ◦,−)

A FCER1G 77 (77,0,0)
RNASE1 77 (77,0,0)

B C1orf29 58 (58,0,0)
G1P2 58 (58,0,0)
MGP 58 (58,0,0)
ISLR 58 (58,0,0)
C1QG 58 (58,0,0)
SPARCL1 58 (58,0,0)

C HLA-DQA2 50 (50,0,0)
IGHG3 50 (50,0,0)
? 50 (50,0,0)
CD34 50 (50,0,0)
C1QB 50 (49,1,0)

D SFRP4 41 (41,0,0)
FCGR3A 41 (41,0,0)

E MS4A4A 32 (32,0,0)
FBLN1 32 (32,0,0)
FLJ27099 32 (32,0,0)
FCGR2A 32 (32,0,0)
CTSK 32 (32,0,0)
FGL2 32 (32,0,0)

cluster gene symbol overlap (+, ◦,−)

a ? 77 (0,0,63)
DLG7 63 (0,0,63)
AHSG 63 (0,0,63)
RPS6KA3 63 (0,0,63)
GASP 63 (0,0,63)

b MPO 49 (0,0,49)
HBZ 49 (0,0,49)
SERPINE2 49 (0,0,49)
DHFR 49 (0,1,48)
ESDN 49 (0,1,48)

c FGA 45 (0,1,44)
LGALS4 45 (0,0,45)
SLCA5 45 (0,0,45)

d APOB 29 (0,0,29)
GPA33 29 (0,0,29)
MAL 29 (0,0,29)
ARD1 29 (0,1,28)
ETV4 29 (0,1,28)
ASGR 29 (0,1,28)
APOH 29 (0,1,28)
AFP 29 (0,1,28)

there are 9 no-regulated genes over 77 microarrays and at the depth 5500 of the
counting tree there are 4348 no-regulated genes (48%) in least 50 microarrays
(65%).

5 Conclusions

We used the weighted prefix trees to examine the data mining in the process
of knowledge discovery in DNA microarray data. The hierarchical clustering us-
ing weighted trees gives a tool to cluster gene expression microarray data. The
longest prefix tree is used to establish the characteristic genes and/or character-
istic microarrays that have the longest common expression and the maximum
degree of overlap. It permits also to determine the groups of candidate (and
no-regulated) genes of pathologic condition. We anticipate that with further re-
finement these methods may be extremely valuable in analysing the mass of
DNA microarray data, with possible significant clinical applications. In addi-
tion to application on microarrays, weighted prefix tree could be also used to
explore other kinds of genomic data and they are pontentially usefull in other
classification problems.
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Abstract. In this paper, we propose a new learning method for ex-
traction of low-frequency bilingual word pairs from parallel corpora with
various languages. It is important to extract low-frequency bilingual word
pairs because the frequencies of many bilingual word pairs are very low
when large-scale parallel corpora are unobtainable. We use the following
inference to extract low frequency bilingual word pairs: the word equiv-
alents that adjoin the source language words of bilingual word pairs also
adjoin the target language words of bilingual word pairs in local parts of
bilingual sentence pairs. Evaluation experiments indicated that the ex-
traction rate of our system was more than 8.0 percentage points higher
than the extraction rate of the system based on the Dice coefficient.
Moreover, the extraction rates of bilingual word pairs for which the fre-
quencies are one and two respectively improved 11.0 and 6.6 percentage
points using AIL.

1 Introduction

Use of parallel corpora with various languages is effective to build dictionar-
ies of bilingual word pairs because bilingual sentence pairs that are pairs of
source language (SL) sentences and target language (TL) sentences include nat-
ural equivalents and novel equivalents. Moreover, it is important to extract low-
frequency bilingual word pairs because the frequencies of many bilingual word
pairs are extremely low when large-scale parallel corpora are unobtainable. Con-
sequently, systems based on similarity measures [1, 2] fall into the sparse data
problem because bilingual word pair candidates with close similarity value in-
crease when many low-frequency bilingual word pairs exist.

From the perspective of learning [3], we propose a new method for extraction
of low-frequency bilingual word pairs from parallel corpora. We call this new
learning method Adjacent Information Learning (AIL). The AIL is based on
the inference that the equivalents of the words that are adjacent the SL words

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 32–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Automatic Extraction of Low Frequency Bilingual Word Pairs 33

of bilingual word pairs also adjoin the TL words of bilingual word pairs in lo-
cal parts of bilingual sentence pairs. Our method easily acquires such adjacent
information solely from parallel corpora. Moreover, our system can extract not
only high-frequency bilingual word pairs, but also low-frequency bilingual word
pairs, which typically have the sparse data problem. Thereby, our system can
limit the search scope for the decision of equivalents in bilingual sentence pairs.

Evaluation experiments using five kinds of parallel corpora indicated that the
extraction rate of our system using AIL was more than 8.0 percentage points
higher than the extraction rate of a system based on the Dice coefficient. More-
over, the extraction rate of bilingual word pairs for which the frequencies are
one and two respectively improved 11.0 and 6.6 percentage points using AIL. We
thereby confirmed that our method is effective to extract low-frequency bilingual
word pairs efficiently.

2 Outline

Our system consists of four processes: a method based on templates, a method
based on two bilingual sentence pairs, a decision process of bilingual word pairs,
and a method based on similarity measures.

First, the user inputs SL words of a bilingual word pair. In the method based
on templates, the system extracts bilingual word pairs using the bilingual sen-
tence pairs, the templates, and the SL words. In this paper, templates are defined
as rules to extract new bilingual word pairs. Similarity between SL words and
TL words is determined in all extracted bilingual word pairs. In the method
based on two bilingual sentence pairs, the system obtains bilingual word pairs
and new templates using two bilingual sentence pairs and the SL words. Sim-
ilarity is determined in all templates. Moreover, during the decision process of
bilingual word pairs, the system chooses the most suitable bilingual word pairs
using their similarity values from among all extracted bilingual word pairs. The
system then compares similarity values of chosen bilingual word pairs with a
threshold value. Consequently, the system registers the chosen bilingual word
pairs to the dictionary for bilingual word pairs when their similarity values are
greater than the threshold value.

The system extracts bilingual word pairs using the Dice coefficient with bilin-
gual sentence pairs and the SL words in the method based on similarity measures.
It does so when their similarity values are not over the threshold or when no
bilingual word pairs are extracted.

3 Extraction Process of Bilingual Word Pairs

3.1 Method Based on Two Bilingual Sentence Pairs

In the method based on two bilingual sentence pairs, the system obtains bilin-
gual word pairs and templates using two bilingual sentence pairs. Details of the
method based on two bilingual sentence pairs are the following:
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(1) The system selects bilingual sentence pairs for which the SL words exist.
(2) The system compares the bilingual sentence pairs selected by process (1) with

other bilingual sentence pairs in the parallel corpus. The system selects those
bilingual sentence pairs that have the same word strings as those adjoining
the SL words, i.e., the common parts, and those that have parts in common
with TL sentences.

(3) The system extracts the TL words that correspond to the SL words using
the common parts from the bilingual sentence pairs selected through process
(1). When the system uses the common parts that exist near words at the be-
ginning of a sentence, it extracts, from the TL sentence, those parts between
words at the beginning of a sentence and words that adjoin the left sides of
the common parts. When the system uses the common parts that exist near
words at the end of a sentence, it extracts, from the TL sentence, those parts
between words that adjoin the right sides of common parts and words at the
end of a sentence. When the system uses several common parts, it extracts,
from the TL sentence, those parts between the two common parts.

(4) The system only selects parts that are nouns, verbs, adjectives, adverbs, or
conjunctions.

(5) The system calculates the similarity values between the SL words and the
parts selected by process (4) using the Dice coefficient [1].

(6) The system replaces the extracted bilingual word pairs with variables in
bilingual sentence pairs.

(7) The system acquires templates by combining common parts and variables.
(8) The system calculates the similarity values between SL words and TL words

in the acquired templates using the Dice coefficient; it registers the templates
to the template dictionary.

Figure 1 shows an example of acquisition of template: (by @; @ de) is acquired
as the template. The system replaces the SL word “air mail” and the TL word
“koukubin” with the variable “@” in bilingual sentence pair by process (6). In
this case, “by” and “de” are common parts between two bilingual sentence pairs.
Consequently, the system obtains (by @; @ de) as a template by combining “by
@” and “@ de.” In this paper, the parts extracted from SL sentences are called
SL parts; the parts extracted from TL sentences are called TL parts.

�How long does it take by air mail?
Bilingual sentence pair

�koukubin de dono kurai kakari masu ka?�

Templates � �by @�@ de�Similarity value� 0.56

Bilingual word pair� (air mail�koukubin)

�How long does it take by @?�@ de dono kurai kakari masu ka?�

Fig. 1. An example of template acquisition
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3.2 Method Based on Templates

In the method based on templates, the system extracts bilingual word pairs using
the acquired templates. Details of the extraction process of bilingual word pairs
using templates are the following:

(1) The system selects bilingual sentence pairs for which the SL words exist.
(2) The system compares the bilingual sentences selected by process (1) with the

templates in the dictionary. Subsequently, the system selects the templates
for which SL parts have the same parts as those adjoining the SL words, and
for which TL parts have the same parts as those in TL sentences.

(3) The system extracts TL words that correspond to the SL words. The system
extracts words that adjoin the left sides of common parts from TL sentences
when variables exist on the left sides in TL parts of templates. The system
extracts words that adjoin the right sides of common parts from TL sentences
when variables exist on the right sides in TL parts of templates.

(4) The system calculates similarity values between the SL words and the parts
extracted from TL sentences using the Dice coefficient.

Bilingual sentence pair�

Noun bilingual word pairs� �parcel�kozutsumi�

�And what about this parcel by sea mail?

Templates �this @�kono @�

Input words� parcel, sea mail

Similarity values� 0.57 0.52

�soshite , kono kozutsumi ha senbin de wa dou desu ka?�

�by @�@ de�

�sea mail�senbin�

Fig. 2. Examples of extraction of bilingual word pairs

Figure 2 shows examples of extraction of bilingual word pairs from English –
Japanese bilingual sentence pairs. In Fig. 2, (parcel;kozutsumi) and (sea mail;sen-
bin) are extracted respectively as the noun bilingual word pairs using the tem-
plates (by @;@ de) and (this @;kono @). The template (by @;@ de) has informa-
tion that equivalents of words, which adjoin the right side of “by”, exist on the
left side “de” in TL sentences. This fact indicates that the acquired templates
have bilingual knowledge that can be used to process the differing word orders
of SL and TL. Moreover, our system using AIL can extract bilingual word pairs
efficiently without depending on the frequencies of bilingual word pairs using the
templates.

3.3 Decision Process of Bilingual Word Pairs and the Method
Based on Similarity Measures

In the decision process of bilingual word pairs, the most-suitable bilingual word
pairs are selected according to similarity values when several bilingual word pairs



36 H. Echizen-ya, K. Araki, and Y. Momouchi

are extracted. The extracted bilingual word pairs are sorted so that bilingual
word pairs with the largest similarity values are ranked highest.

Moreover, in the method based on similarity measures, the system extracts
bilingual word pairs using only the Dice coefficient without AIL when the sim-
ilarity values are not greater than a threshold value or when no bilingual word
pairs are extracted.

4 Performance Evaluation and Conclusion

Five kinds of parallel corpora were used in this paper as experimental data.
These parallel corpora are for English – Japanese, French – Japanese, German –
Japanese, Shanghai-Chinese – Japanese and Ainu – Japanese. They were taken
from textbooks containing conversational sentences. The number of bilingual
sentence pairs was 1,794. We inputted all SL words of nouns, verbs, adjectives,
adverbs, and conjunctions to our system using AIL and the system based on
the Dice coefficient, respectively. The initial conditions of all dictionaries are
empty. Moreover, our system using AIL uses 0.51 as its best threshold value. We
repeated the experiments for each parallel corpus using each system. We eval-
uated whether correct bilingual word pairs are obtained or not, and calculated
the extraction rate for all SL words.

Experimental results indicated that the extraction rate of our system using
AIL was more than 8.0 percentage points (from 52.1% to 60.1%) higher than that
of the system based on the Dice coefficient. Moreover, in each parallel corpus, the
extraction rates improved using AIL. Therefore, our method is effective when
using parallel corpora of various languages.

Tables 1 and 2 show extraction rate details in our system using AIL and the
system based on the Dice coefficient. In Tables 1 and 2, the extraction rates of
the bilingual word pairs for which the frequencies are one and two respectively
improved 11.0 and 6.6 percentage points using AIL. This result verified that our
system using AIL can extract low-frequency bilingual word pairs efficiently.

In related works, K-vec [4] is applied only to bilingual word pairs for which
the frequencies are greater than three. Therefore, it is insufficient in terms of
extraction of low-frequency bilingual word pairs. In one study [5] that acquired
low-frequency bilingual terms, a bilingual dictionary and MT systems were used
for measuring similarity. Therefore, it is difficult to deal with various languages
because of the use of large-scale translation knowledge. On the other hand, one
study [6] that uses the co-occurrence of words depends on the number of co-
occurrence words and their frequency. Therefore, such a method is insufficient
in terms of efficient extraction of bilingual word pairs. In contrast, AIL merely
requires a one-word string as the co-occurrence word, e.g., only “by” and “this”,
as shown in Fig. 2. Moreover, AIL can extract bilingual word pairs even when
the frequencies of the pairs of the co-occurrence words and the bilingual word
pairs are only one. In Fig. 2, the respective frequencies of “by sea mail” and “this

1 This value was obtained through preliminary experiments.
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Table 1. Details of extraction rates in our system using AIL

Number of
Frequency English French German Sh.-Chinese Ainu Total

bilingual word pairs

1 46.4% 49.4% 51.3% 49.1% 56.9% 50.4% 681

2 71.4% 80.0% 71.4% 90.7% 74.4% 78.6% 168

others 89.7% 73.5% 79.2% 82.1% 61.5% 75.4% 232

Total 58.0% 56.7% 61.0% 62.9% 61.5% 60.1% 1,081

Table 2. Details of extraction rates in the system based on the Dice coefficient

Number of
Frequency English French German Sh.-Chinese Ainu Total

bilingual word pairs

1 35.7% 37.5% 39.5% 40.0% 45.0% 39.4% 681

2 64.3% 80.0% 67.9% 74.4% 71.8% 72.0% 168

others 89.7% 73.5% 79.2% 83.9% 58.5% 75.0% 232

Total 49.7% 47.9% 53.3% 54.9% 54.0% 52.1% 1,081

parcel”, which are pairs formed by the co-occurrence of words and the SL words
of bilingual word pairs, are only one. The method [7] that acquires templates
requires many similar bilingual sentence pairs to extract effective templates.

Future studies will apply this method to a multilingual machine translation
system.
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Abstract. Cluster analysis is one of main methods used in data mining. So far 
there have existed many cluster analysis approaches such as partitioning 
method, density-based, k-means, k-nearest neighborhood, etc. Recently, some 
researchers have explored a few kernel-based clustering methods, e.g., kernel-
based K-means clustering. The new algorithms have demonstrated some 
advantages. So it’s needed to explore the basic principle underlain the 
algorithms such as whether the kernel function transformation can increase the 
separability of the input data in clustering and how to use the principle to 
construct new clustering methods. In this paper, we will discuss the problems. 

Keywords: Data mining, clustering, supper-sphere, ke nel function. 

1   Introduction 

Cluster analysis is one of main methods used in data mining. So far there have existed 
many cluster analysis approaches. For example, partitioning method [1][2], density-
based [3][4], k-means [5], k-nearest neighborhood [4], neural networks [6], fuzzy 
clustering [7] etc. For each kind of clustering, the key is to define a specific metric to 
measure the similarity (or dissimilarity) among objects. So far various metrics have 
been adopted such as Euclidean distance, Manhattan distances, inner product, fuzzy 
membership function, etc. No matter what kind of measurement is used, in principle, 
there are basically two kinds: one for measuring the similarity between two objects 
(two data), the other for measuring the similarity between an object and a cluster (a 
set of data). It’s known that the possible regions partitioned by a clustering are 
limited. For example, K-means algorithm [5] can only partition the data into elliptical 
regions. So it’s hard to use these kinds of clustering to complex clustering.  

Kernel-based methods have wisely been used in machine learning [8][9]. So far 
they were used to supervised learning (classification) mainly [10]. In kernel-based 
classification algorithms, the input data set is mapped into a high dimensional space 
by a kernel function. The basic principle underlain the algorithms is to increase the 
separability of the input data by the non-linear transformation. For example, the SVM 
is one of the well-known supervised learning algorithms [10]. In the algorithm, by 

                                                           
1  Supported by National Nature Science Foundation of China (Grant No. 60135010)  Chinese 

National Key Foundation Research Plan (2004CB318108) and Innovative Research Team of 
211 Project in Anhui University. 

r

r



 A Ke nel Function Method in Clustering 39 

 

using the kernel function transformation the input data become linearly separable on 
the new space whereas the same data set is non-linearly separable on the original 
space. Therefore, the SVM algorithms have demonstrated more efficiently. Recently 
some researchers have explored a few kernel-based unsupervised learning algorithms, 
e.g., kernel-based K-means clustering [8][11]. So it’s needed to explore the basic 
principle underlain the algorithms such as whether the kernel function transformation 
can increase the separability of the input data in clustering and how to use the 
principle to construct new clustering methods. In this paper, we will discuss the 
problems. 

2   Two Propositions 

Definition 1: Given a space X, a set D X⊂  and a criteria G, the clustering problem 
can be stated as follows: find a partition { }1 2, ,..., mP C C C= of X such that the points 

within iC  belong to the same class and the partition is optimal in some sense under 

the criteria G. Set iC  is called a cluster (class) of D and P is the clustering of D.  

Then we have the following propositions. 

Proposition 1: Given a metric space X. Assume that cluster C consists of n super-

spheres 1 2, ,..., nS S S  with r as their radius and 1 2, ,..., nx x x as their centers, 

respectively. There exists a kernel function K and its corresponding map φ. Space X is 

mapped into a feature space Z by φ such that ( )Cφ can be approached by the 

intersection of a super-sphere B and ( )Xφ  (see fig. 1,2). 

Proof: We first prove that the trajectory of 1( )f x e−=  and the boundary of C are 

approximate.  
Construct a function 2 2( ) exp( ( ) / ), 1,2,...,i if x x x r i n= − − = .  

Let 1 2( ) ( ) ( ) ,..., ( )nf x f x f x f x= + + + . 

Obviously, the solution of 1( )if x e−=  and that of 2 2( )ix x r− =  are equivalent, i.e., 

a super “spherical surface”. Letting 1( )f x e−= , x falls into the boundary of C. 

Assume that x falls into the boundary 2 2( )ix x r− = of iS  but does not fall into the 

inside of iS . Omitting the effect of ( ),jf x j i≠ , then 1( )f x e−≈ . Therefore, the super 

spherical surface 1( )f x e−=  can be approached by the boundary of set C that consists 

of n super-spheres. That is, C can represent set { }1( )x f x e−≥  approximately. 

Secondly, we prove that ( )Cφ  is the intersection of some super-sphere and ( )Xφ in 

space Z. 
Given a kernel function 2 2( , ) exp( ( ) / )K x y x y r= − − and φ is its corresponding 

map. Then 2 2exp( ( ) / ) ( ), ( )ix y r x xφ φ− − =< > .  

r
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Letting the point ( )i
i

xφ  in the feature space Z be 0φ , then 

1
0( ),x eφ φ −< >=  is a super-plane in Z with 0φ as its normal in the feature space Z. 

1
0( ),x eφ φ −< >≥  is a half space S of Z. Then ( )Cφ falls into S. 

Since ( , ) 1K x x = , ( )Xφ  falls into a unit super-sphere of Z.  The intersection of the 

unit super-sphere and the half space of Z is a super-sphere neighborhood. Therefore, 
( )Cφ  falls into the intersection of the super-sphere neighborhood and ( )Xφ .  

Proposition 2: X is a bounded Euclidean space and D X⊂ . { }1 2, ,..., mP C C C= is a 

clustering of D. There exists a kernel function K. X is mapped into a feature space Z 
by its corresponding map φ such that each ( )iCφ  can be approached by the 

intersection of ( )Xφ  and a super spherical surface with d as its radius in Z.  

Proof: Since X is bounded, iC  is bounded as well. Let 'iC  be the closure of iC . 'iC  

is a bounded close and compact set in the Euclidean space. For 'iC , construct a ε-

cover { }( , ), 'iB B x x Cε= ∈ . According to the bounded covering theorem in compact 

set, we may choose a limit number { }1 2, ,..., kB B B of covers from B such that they 

cover 'iC . That is, 'iC can be represented by the union of a limit number of super-

spheres approximately. From proposition 1, we prove proposition 2.   

3   Kernel-Based Clustering 

From the above propositions, we know that in clustering the separability of input data 
is also increased by using the kernel function transformation, since a simple sphere-
like region can represent any cluster approximately in the new transformed space. 
Therefore, the principle can be used to improve the clustering algorithms.  

As we known, some simple clustering algorithms such as K-means [5] can only 
partition the data into elliptical regions. It’s difficult to use these kinds of algorithms 
to complex clustering problems. Kernel-based clustering algorithms can overcome the 
drawback, since a sphere-like region can represent any cluster in the transformed 
space in despite of the complex clustering problem.  

In neural networks, we presented a constructive learning algorithm based on the 
same principle as presented in Section 2. We transform the training data into a high 
dimensional space. In the new space the data can be covered (partitioned) by a set of 
simple sphere neighborhoods easily. Therefore the algorithm is quite efficient 
[12][13].  
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4   Conclusion 

 

Fig 1. The contour lines 

 

Fig. 2. A cluster 
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By using kernel-based clustering, the input data are transformed into a new high 
dimensional space. In the new space, we can always use a simple supper-sphere to 
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we can use less and simpler rules to describe the same data by using kernel-based 
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Abstract. This paper establishes the foundation for the performance measure-
ments of privacy preserving data mining techniques. The performance is mea-
sured in terms of the accuracy of data mining results and the privacy protection
of sensitive data. On the accuracy side, we address the problem of previous mea-
sures and propose a new measure, named “effective sample size”, to solve this
problem. We show that our new measure can be bounded without any knowledge
of the data being mined, and discuss when the bound can be met. On the privacy
protection side, we identify a tacit assumption made by previous measures and
show that the assumption is unrealistic in many situations. To solve the problem,
we introduce a game theoretic framework for the measurement of privacy.

1 Introduction

In this paper, we address issues related to the performance measurements of privacy
preserving data mining techniques. The objective of privacy preserving data mining is
to enable data mining without violating the privacy of data being mined.

We consider a distributed environment where the system consists of a data miner
and numerous data providers. Each data provider holds one private data point. The
data miner performs data mining tasks on the (possibly perturbed) data provided by the
data providers. A typical example of this kind of system is online survey, as the sur-
vey analyzer (data miner) collects data from thousands of survey respondents (data
providers). Most existing privacy preserving algorithms in such system use an ran-
domization approach which randomizes the original data to protect the privacy of data
providers [1, 2, 3, 4, 5, 6, 8].

In this paper, we establish the foundation for analyzing the tradeoff between the
accuracy of data mining results and the privacy protection of sensitive data. Our contri-
bution can be summarized as follows.

– On accuracy side, we address the problem of previous measures and propose a new
accuracy measure, named “effective sample size”, to solve this problem. We show
that our new measure can be upper bounded without any knowledge of the data
being mined and discuss when the bound can be met.

– On privacy protection side, we show that a tacit assumption made by previous mea-
sures is that all adversaries use the same intrusion technique to invade privacy. We
address the problems of this assumption and propose a game theoretic formulation
which takes the adversary behavior into consideration.

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 43–49, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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2 System Model

Let there be n data providers C1, . . . , Cn and one data miner S in the system. Each data
provider Ci has a private data point (e.g., transaction, data tuple, etc.) xi. We consider
the original data values x1, . . . , xn as n independent and identically distributed (i.i.d.)
variables that have the same distribution as a random variable X . Let the domain of X
(i.e., the set of all possible values of X) be VX , and the distribution of X be pX . As
such, each data point xi is i.i.d. on VX with distribution pX .

Due to the privacy concern of data providers, we classify the data miners into two
categories. One category is honest data miners. These data miners always act honestly
in that they only perform regular data mining tasks and have no intention to invade pri-
vacy. The other category is malicious data miners. These data miners would purposely
compromise the privacy of data providers.

3 Related Work

To protect the privacy of data providers, countermeasures must be implemented in the
data mining system. Randomization is a commonly used approach. It is based on an
assumption that accurate data mining results can be obtained from a robust estimation
of the data distribution [2]. Thus, the basic idea of randomization approach is to distort
individual data values but keep an accurate estimation of the data distribution.

Based on the randomization approach, the privacy preserving data mining process
can be considered as a two-step process. In the first step, each data provider Ci perturbs
its data xi by applying a randomization operator R(·) on xi, and then transfers the
randomized data R(xi) to the data miner. We note that R(·) is known by both the
data providers and the data miner. Let the domain of R(xi) be VY . The randomization
operator R(·) is a function from VX to VY with transition probability p[x → y]. Existing
randomization operators include random perturbation operator [2], random response
operator [4], MASK distortion operator [8], and “select-a-size” operator [6].

In the second step, a honest data miner first employs a distribution reconstruction
algorithm on the aggregate data, which intends to reconstruct the original data distribu-
tion from the randomized data. Then, the honest data miner performs the data mining
task on the reconstructed distribution. Various distribution reconstruction algorithms
have been proposed [1, 2, 6, 4, 8]. Also in the second step, a malicious data miner may
invade privacy by using a private data recovery algorithm. This algorithm is used to
recover individual data values from the randomized data supplied by the data providers.

Clearly, any privacy preserving data mining technique should be measured by its ca-
pability of both constructing the accurate data mining results and protecting individual
data values from being compromised by the malicious data miners.

4 Quantification of Accuracy

In previous studies, several accuracy measures have been proposed. We classify these
measures into two categories. One category is application-specified accuracy measures
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[8]. Measures in this category are similar to those in systems without privacy concern
and are specific to a data mining task (e.g., classification, association rule mining, etc.).
The other category is general accuracy measures. Measures in this category can be
applied to any privacy preserving data mining systems based on the randomization ap-
proach. An existing measure in this category is information loss measure [1], which is
in proportion to the expected error of the reconstructed distribution.

We remark that the ultimate goal of the performance measurements is to help the
system designers to choose the optimal randomization operator. As we can see from
the privacy preserving data mining process, the randomization operator has to be deter-
mined before any data is transferred from the data providers to the data miner. Thus, in
order to reach its goal, a performance measure must be estimated or bounded without
any knowledge of the data being mined. As we can see, the application-specified accu-
racy measures depend on both the reconstructed data distribution and the performance
of data mining algorithm. The information loss measure depends on both the origi-
nal distribution and the reconstructed distribution. Neither measure can be estimated
or bounded when the original data distribution is not known. Thus, previous measures
cannot be used by the system designers to choose the optimal randomization operator.

We propose effective sample size as our new accuracy measure. Roughly speaking,
given the number of randomized data points, the effective sample size is in proportion to
the minimum number of original data points needed to make an estimate of the data dis-
tribution as accurate as the distribution reconstructed from the randomized data points.
The formal definition is stated as follows.

Definition 1. Given randomization operator R : VX → VY , let p̃ be the maximum
likelihood estimate of the distribution of xi reconstructed from R(x1), . . ., R(xn). Let
p̃0(k) be the maximum likelihood estimate of the distribution based on k variables
randomly generated from the distribution pX . We define the effective sample size r as
the minimum value of k/n such that

DKol(p̃0(k), pX) ≤ DKol(p̃, pX) (1)

where DKol is the Kolmogorov distance [7], which measures the distance between an
estimated distribution and the theoretical distribution 1.

As we can see, effective sample size is a general accuracy measure which measures
the accuracy of the reconstructed distribution. We now show that the effective sample
size can be strictly bounded without any knowledge of pX .

Theorem 1. Recall that p[x → y] is the probability transition function of R : VX →
VY . An upper bound on the effective sample size r is given as follows.

r ≤ 1 −
∑

y∈VY

min
x∈VX

p[x → y]. (2)

Due to space limit, please refer to [9] for the proof of this theorem.

1 Other measures of such distance (e.g., Kuiper distance, Anderson-Darling distance, etc) can
also be used to define the effective sample size. The use of other measures does not influence
the results in this paper.
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5 Quantification of Privacy Protection

In previous studies, two kinds of privacy measures have been proposed. One is infor-
mation theoretic measure [1], which measures privacy disclosure by the mutual infor-
mation between the original data xi and the randomized data R(xi) (i.e., I(xi;R(xi))).
This measure was challenged in [5], where it is shown that certain kinds of privacy
disclosure cannot be captured by the information theoretic measure. The other kind
of privacy measure can be used to solve this problem [5, 10, 2]. In particular, the pri-
vacy breach measure [5] defines the level of privacy disclosure as maxx,x′∈VX

p[x →
y]/p[x′ → y] for any given y ∈ VY . This measure captures the worst case privacy
disclosure but is (almost) independent of the average amount of privacy disclosure.

Note that the data miner has the freedom to choose different intrusion techniques
in different circumstances. As such, the privacy protection measure should depend on
two important factors: a) the privacy protection mechanism of the data providers, and
b) the unauthorized intrusion technique of the data miner. However, previous measures
do not follow this principle. Instead, they make a tacit assumption that all data miners
will use the same intrusion technique. This assumption seems to be reasonable as a
(rational) data miner will always choose the intrusion technique which compromises
the most private information. However, as we will show in the following example, the
optimal intrusion technique varies in different circumstances. Thereby, the absence of
consideration of intrusion techniques results in problems of privacy measurement.

Example 1. Let there be VX = {0, 1}. The original data xi is uniformly distributed on
VX . The system designer needs to determine which of the following two randomization
operators, R1 and R2, discloses less private information.

R1(x) =
{

x, with probability 0.70,
x̄, with probability 0.30.

R2(x) =

⎧⎨
⎩

0, if x = 0,
1, if x = 1, with probability 0.01,
0, if x = 1, with probability 0.99.

In the example, we have I(x;R1(x)) � I(x;R2(x)). Due to the information the-
oretic measure, R2 discloses less privacy. However, R2 discloses more privacy due to
the privacy breach measure. The reason is that if the data miner receives R2(xi) = 1,
then it can always infer that xi = 1 with probability of 1. We now show that whether
R1 or R2 discloses more private information actually depends on the system setting. In
particular, we consider the following two system settings.

1. The system is an online survey system. The value of xi indicates whether a survey
respondent is interested in buying certain merchandise. A malicious data miner
intends to make unauthorized advertisement to data providers with such interest.

2. The system consists of n companies as the data providers and a management con-
sulting firm as the data miner. The original data xi contains the expected profit of
the company which has not been published yet. A malicious data miner may use
xi to make investment on a high-risk stock market. The profit from a successful
investment is tremendous. However, an unsuccessful investment results in a loss
five times greater than the profit the data miner may obtain from a successful in-
vestment.
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In the first case, an advertisement to a wrong person costs the data miner little. As
we can see, R1 discloses the original data value with probability of 0.7, which is greater
than that of R2 (0.501). Thus, R2 is better than R1 in the privacy protection perspective.

In the second case, the data miner will not perform the intrusion when R1 is used by
the data providers. The reason is that the loss from an incorrect estimate of xi is too high
to risk. As we can see, when R1 is used, the expected net benefit from an unauthorized
intrusion is less than 0. However, the data miner will perform the intrusion when R2 is
used. The reason is that when R2(xi) = 1, the data miner has a fairly high probability
(99%) to make a successful investment. If a randomized data R2(xi) = 0 is received,
the data miner will simply ignore it. As such, in this case, R1 is better than R2 in the
privacy protection perspective.

As we can see from the example, the data miner will choose different privacy intru-
sion techniques in different system settings (in the above example, there is an intrude-
or-not selection), which will result in different performance of randomization operators.
Thus, the system setting has to be considered in the measurement of privacy disclosure.

In order to introduce the system setting and the privacy intrusion technique to our
privacy measure, we propose a game theoretic framework to analyze the strategies of
the data miner (i.e., privacy intrusion technique). Since we are studying the privacy
protection performance of the randomization operator, we consider the randomization
operator as the strategy of the data providers.

We model the privacy preserving data mining process as a non-cooperative game
between the data providers and the data miner. There are two players in the game. One
is the data providers. The other is the data miner. Since we only consider the privacy
measure, the game is zero-sum in that the data miner can only benefit from the violation
of privacy of the data providers. Let Sc be the set of randomization operators that the
data providers can choose from. Let Ss be the set of the intrusion techniques that the
data miner can choose from. Let uc and us be the utility functions (i.e., expected bene-
fits) of the data providers and the data miner, respectively. Since the game is zero-sum,
we have uc +us = 0. We remark that the utility functions depend on both the strategies
of the players and the system setting.

We assume that both the data providers and the data miner are rational. As such,
given a certain randomization operator, the data miner always choose the privacy in-
trusion technique which maximizes us. Given a certain privacy intrusion technique, the
data providers always choose the randomization operator which maximizes uc. We now
define our privacy measure based on the game theoretic formulation.

Definition 2. Given a privacy preserving data mining system G 〈Ss, Sc, us, uc〉, we
define the privacy measure lp of a randomization operator R as

lp(R) = uc(R,L0), (3)

where L0 is the optimal privacy intrusion technique for the data miner when R is used
by the data providers, uc is the utility function of the data providers when R and L0 are
used.

As we can see, the smaller lp(R) is, the more benefit is obtained by the data miner
from the unauthorized intrusion. Let σ be the ratio between the benefit obtained by
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a malicious data miner from a correct estimate and the loss of it from an incorrect
estimate. A useful theorem is provided as follows.

Theorem 2. Let there be maxx0∈VX
Pr{xi = x0} = pm in the original data distribu-

tion. We have lp(R) = 0 if the randomization operator R : VX → VY satisfies

max
y∈VY

maxx∈VX
p[x → y]

minx∈VX
p[x → y]

≤ 1 − pm

σpm
. (4)

Please refer to [9] for the proof of this theorem.

6 Conclusion

In this paper, we establish the foundation for the measurements of accuracy and pri-
vacy protection in privacy preserving data mining. On accuracy side, we address the
problem of previous accuracy measures and solve the problem by introducing an ef-
fective sample size measure. On privacy protection side, we present a game theoretic
formulation of the system and propose a privacy protection measure based on the for-
mulation. Our work is preliminary, and there are many possible extensions. We are cur-
rently investigating using our performance measurements to derive the optimal trade-
off between accuracy and privacy which can be achieved by the randomization ap-
proach.
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Abstract. In this paper, first we introduce frequent few-overlapped
monotone DNF formulas under the minimum support σ, the minimum
term support τ and the maximum overlap λ. We say that a monotone
DNF formula is frequent if the support of it is greater than σ and the sup-
port of each term (or itemset) in it is greater than τ , and few-overlapped
if the overlap of it is less than λ and λ < τ . Then, we design the algo-
rithm ffo dnf to extract them. The algorithm ffo dnf first enumerates
all of the maximal frequent itemsets under τ , and secondly connects the
extracted itemsets by a disjunction ∨ until satisfying σ and λ. The first
step of ffo dnf , called a depth-first pruning , follows from the property
that every pair of itemsets in a few-overlapped monotone DNF formula
is incomparable under a subset relation. Furthermore, we show that the
extracted formulas by ffo dnf are representative. Finally, we apply the
algorithm ffo dnf to bacterial culture data.

1 Introduction

The purpose of data mining is to extract hypotheses that explain a database. An
association rule is one of the most famous forms of hypotheses in data mining
or association rule mining [1, 2, 6]. In order to extract association rules from a
transaction database, the algorithm APRIORI, introduced by Agrawal et al. [1,
2], first enumerates frequent itemsets as sets of items satisfying the minimum
support . Then, by dividing items in each frequent itemset into a premise and a
consequence of an association rule, we can extract the association rules satisfying
both the minimum support and the minimum confidence.

However, the frequent itemset is inappropriate when we extract hypotheses
that explain a database nearly overall , because it just reflects the items with
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very high frequency, which are not interesting in general. Furthermore, when we
deal with a reconstructed transaction database by paying our attention to the
specified attribute value v, it is natural to extract an association rule X → v
with the consequence v rather than a standard association rule X − Y → Y
(Y ⊆ X) from a frequent itemset X of the database.

In our previous works [7, 12], we have given an appropriate form of hypotheses
in the above case, by regarding an itemset as a monotone term and by extending
it to a monotone DNF formula as a disjunction of monotone terms (or itemsets).
We say that a monotone DNF formula f = X1 ∨ · · · ∨Xm is frequent if each Xi

is a frequent itemset under τ , that is, supp(Xi) ≥ τ , and supp(f) ≥ σ, where
supp(f) denotes the support of f . We call such σ and τ the minimum support
and the minimum term support , respectively.

In order to reduce a search space to extract frequent monotone DNF formulas,
we have introduced the overlap ol(f) of a monotone DNF formula f , and dealt
with a frequent monotone DNF formula f satisfying that ol(f) ≤ λ. We call
such a λ the maximum overlap. By using σ, τ and λ, we have designed the
algorithms dnf cover [7] and cdnf cover [12] to extract frequent and frequent
closed monotone DNF formulas under σ, τ and λ from a transaction database.

It is known disjunction-free [4, 5, 8] and generalized disjunction-free [9, 10]
itemsets as the researches to introduce a disjunction into itemsets. The difference
between their works and this paper (and our previous works [7, 12]) is that their
disjunction has been introduced into the conclusion in association rules, whereas
our disjunction is into the premise. Furthermore, the main purpose of their works
is to formulate the concise or condensed representations .

In the algorithms dnf cover [7] and cdnf cover [12], we have adopted a breadth-
first pruning . The algorithm dnf cover (resp., cdnf cover) first not only extracts
itemsets satisfying σ by APRIORI [1, 2] (resp., CHARM [16]), but also stores
itemsets not satisfying σ but satisfying τ (resp., and that are closed) to a seed .
Next, it constructs monotone DNF formulas by connecting each element of a seed
to a disjunction ∨ until satisfying σ and λ. Note that dnf cover and cdnf cover
do not store all itemsets not satisfying σ but satisfying τ to a seed. They store
just itemsets satisfying τ when not satisfying σ by APRIORI and CHARM.

In this paper, we extract monotone DNF formulas under σ, τ and λ from a
transaction database with another pruning. We pay our attention to a natural
assumption that λ < τ . If not, then it is possible to extract a monotone DNF
formula f containing a redundant itemset X such that τ ≤ supp(X) ≤ λ. We call
a monotone DNF formula satisfying that λ < τ and ol(f) ≤ λ few-overlapped .

Then, we design the algorithm ffo dnf to extract frequent few-overlapped
monotone DNF formulas under σ, τ and λ. The algorithm ffo dnf first enumer-
ates all of the maximal frequent itemsets [3, 11] under τ , and secondly connects
the extracted itemsets by a disjunction ∨ until satisfying σ and λ.

Under the assumption that λ < τ , every pair of itemsets in a few-overlapped
monotone DNF formula f is always incomparable under a subset relation, that
is, neither X ⊆ Y nor Y ⊆ X for each X,Y ∈ f such that X �= Y . Hence, ffo dnf
first enumerates all maximal frequent itemsets but not all frequent itemsets. We
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call this pruning a depth-first pruning . Furthermore, we show that the extracted
formulas by ffo dnf are representative.

Finally, we implement the algorithm ffo dnf and apply it to bacterial culture
data, which are full version of data in [13, 14, 15] and have given the empiri-
cal results in [7, 12]. We use 5 kinds of data, which are reconstructed data of
which detected bacterium are MRSA (methicillin-resistant Staphylococcus au-
reus), Bacteroides, Fusobacterium, Prevotella and Streptococcus, respectively.
The last 4 data are spices of Anaerobes. The number of records in them is 118,
498, 154, 157 and 155, respectively. In particular, we also use all data consist-
ing of 118 MRSA data and 4886 MSSA (methicillin-suspectible Staphylococcus
aureus) and initial data from a patient consisting of 35 MRSA data and 1613
MSSA data. Then, we verify the extracted formulas from MRSA data to MSSA
data.

This paper is organized as follows. In Section 2, we show the several proper-
ties of overlaps and introduce frequent few-overlapped monotone DNF formulas.
In Section 3, we design the algorithm ffo dnf to extract frequent few-overlapped
monotone DNF formulas under σ, τ and λ with depth-first pruning, and show
that the extracted formulas are representative. In Section 4, we give some em-
pirical results by applying the algorithm ffo dnf to bacterial culture data.

2 Frequent Few-Overlapped Monotone DNF Formulas

Let X and I be finite sets. We call an element of X an item and I a transaction
id (tid , for short). Also we call X ⊆ X an itemset and I ⊆ I a tidset . We
call {x ∈ X | (i, x) ∈ D} ⊆ X a transaction of a tid i. Then, D ⊆ I × X is a
transaction database. For a tidset I ⊆ I and an itemset X ⊆ X , we define the
following function tid : 2X → 2I .

tidD(X) = {i ∈ I | ∀x ∈ X, (i, x) ∈ D}.

Then, the frequency and the support of X in D are defined as freqD(X) =
|tidD(X)| and suppD(X) = freqD(X)/|D|, respectively. In the remainder of this
paper, we omit the phrases ‘of X’ and ‘in D,’ and the subscript D.

Definition 1 (Agrawal et al. [1, 2]). We say that an itemset X is frequent if
supp(X) ≥ σ. Here, we call the threshold σ (0 ≤ σ ≤ 1) the minimum support .

We denote the set of all frequent itemsets under σ by Freqσ.
As a special frequent itemset, we introduce a maximal frequent itemset.

Definition 2 (Pasquier et al. [3, 11]). We say that a frequent itemset X ∈
Freqσ is maximal if there exists no frequent itemset Y ∈ Freqσ such that Y ⊃ X.

We denote the set of all maximal frequent itemsets under σ by MaxFreqσ.
In this paper, we regard an item x ∈ X as a variable and an itemset X ⊆

X as a monotone term over X , that is, a conjunction of variables. Then, we
extend a monotone term over X to a monotone DNF formula X1 ∨ · · · ∨Xm (or
{X1, . . . , Xm}) over X as a disjunction of monotone terms X1, . . . , Xm.
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Let f be a monotone DNF formula X1 ∨ · · · ∨ Xm. Then, we extend the
function tid as tid(f) = tid(X1) ∪ · · · ∪ tid(Xm). The frequency of f in D and
the support of f in D are defined as freq(f) = |tid(f)| and supp(f) = freq(f)/|D|.

Definition 3. We say that a monotone DNF formula f = X1 ∨ · · · ∨ Xm is
frequent if supp(f) ≥ σ and supp(Xi) ≥ τ for each i (1 ≤ i ≤ m). Here, we call
the minimum support τ (0 ≤ τ ≤ 1) for each Xi the minimum term support .

Here, the condition τ > σ is meaningless, so we implicitly assume that τ ≤ σ.
Next, we introduce another measure overlap [7]. The overlap set olsD(X,Y )

of itemsets X and Y in D and the overlap set olD(f) of a monotone DNF formula
f = X1 ∨ · · · ∨ Xm in D are defined in the following way.

olsD(X,Y ) = tidD(X) ∩ tidD(Y ),
olsD(f) =

⋃
1≤i<j≤m olsD(Xi, Xj).

The overlap of f in D is defined as olD(f) = |olsD(f)|/|D|. As similar as tid , we
omit the subscript D.

Theorem 1 (Hirata et al. [7]). The overlap is monotonic, that is, it holds that
ol(f) ≤ ol(f ∨ g) for monotone DNF formulas f and g.

Theorem 2 (Hirata et al. [7]). For a monotone DNF formula f and an item-
set X, it holds that ols(f ∨ X) = ols(f) ∪

(⋃
Y ∈f ols(Y,X)

)
.

Theorem 3. For a monotone DNF formula f and an itemset X, it holds that
tid(f ∨ X) = tid(f) ∪ tid(X) and ols(f ∨ X) = ols(f) ∪ (tid(f) ∩ tid(X)).

Proof. The first statement is obvious by the definition of tid . By Theorem 2, the
following equation holds for a monotone DNF formula f = X1 ∨ · · · ∨ Xm.

ols(f ∨ X)
=

(⋃
1≤i<j≤m(tid(Xi) ∩ tid(Xj))

)
∪

(⋃
1≤i≤m(tid(Xi) ∩ tid(X))

)
= ols(f) ∪

((⋃
1≤i≤m tid(Xi)

)
∩ tid(X)

)
= ols(f) ∪ (tid(f) ∩ tid(X)).

Hence, the second statement holds. ��

Theorem 4. Let X1, . . . , Xm and Y1, . . . , Ym be sequences of itemsets such that
Xi ∩ Xj ⊆ Yi ∩ Yj for each i and j (1 ≤ i, j ≤ m) and f a monotone DNF
formula. Then, it holds that supp(f ∨X1 ∨ · · · ∨Xm) ≥ supp(f ∨ Y1 ∨ · · · ∨ Ym)
and ol(f ∨ X1 ∨ · · · ∨ Xm) ≥ ol(f ∨ Y1 ∨ · · · ∨ Ym).

Proof. Since Xi ⊆ Yi (just the case that j = i), it holds that tid(Xi) ⊇
tid(Yi), so tid(X1 ∨ · · · ∨ Xm) ⊇ tid(Y1 ∨ · · · ∨ Ym). Hence, the first statement
holds.
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We show the second statement by induction on m. If m = 1, then it holds
that X1 ⊆ Y1, so tid(X1) ⊇ tid(Y1). Theorem 2 implies that ols(f ∨ X1) =
ols(f) ∪

(⋃
Z∈f ols(Z,X1)

)
⊇ ols(f) ∪

(⋃
Z∈f ols(Z, Y1)

)
= ols(f ∨ Y1).

Let g and h be monotone DNF formulas f ∨X1∨· · ·∨Xm−1 and f ∨Y1∨· · ·∨
Ym−1, respectively. Suppose that ols(g) ⊇ ols(h). By Theorem 2, the following
equations hold.

ols(g ∨ Xm) = ols(g) ∪
(⋃

Z∈f ols(Z,Xm)
)
∪

(⋃
1≤i≤m−1 ols(Xi, Xm)

)
,

ols(h ∨ Ym) = ols(h) ∪
(⋃

Z∈f ols(Z, Ym)
)
∪

(⋃
1≤i≤m−1 ols(Yi, Ym)

)
.

Since Xi ⊆ Yi, it holds that ols(Z,Xi) ⊇ ols(Z, Yi) for each Z ∈ f and 1 ≤
i ≤ m − 1. Furthermore, since Xi ∩ Xm ⊆ Yi ∩ Ym, it holds that ols(Xi, Xm) ⊇
ols(Xi, Ym) for each 1 ≤ i ≤ m − 1. By induction hypothesis, it holds that
ols(g) ⊇ ols(h). Hence, it holds that ols(g ∨ Xm) ⊇ ols(h ∨ Ym). ��

Definition 4. We say that a monotone DNF formula f = X1 ∨ · · · ∨ Xm sat-
isfying τ is few-overlapped under λ if λ < τ and ol(f) ≤ λ. Here, we call the
threshold λ (0 ≤ λ ≤ 1) the maximum overlap.

In Definition 4, we adopt a natural assumption that λ < τ . If not, then it is
possible to extract a monotone DNF formula f containing a redundant itemset
X such that τ ≤ supp(X) ≤ λ. In the remainder of this paper, we deal with
a frequent few-overlapped monotone DNF formula under σ, τ and λ, that is, a
monotone DNF formula f = X1∨· · ·∨Xm such that supp(f) ≥ σ, supp(Xi) ≥ τ
for each i (1 ≤ i ≤ m), ol(f) ≤ λ and λ < τ .

3 Extraction Algorithm with Depth-First Pruning

In this section, we design the algorithm ffo dnf to extract frequent few-overlapped
monotone DNF formulas under σ, τ and λ described as Fig. 1. In the algo-
rithm ffo dnf , the set FFO of frequent few-overlapped monotone DNF formu-
las is constructed by a simple depth-first search on the overlap, which follows
from the monotonicity of the overlap (Theorem 1). Here, for an itemset X,
we set ols(X) = ∅ and ol(X) = 0, and, for a set M = {X1, . . . , Xm}, we set
M [i] = {Xi, . . . , Xm} (1 ≤ i ≤ m) and M [m + 1] = ∅.

In the algorithm ffo dnf , we implicitly store the elements of MaxFreqτ as a set
of ordered pairs (X, tid(X)) for a maximal itemset X, so we enumerate MaxFreqτ

by the improvement of the algorithm CHARM [16], because it deals with directly
such an ordered pair. Here, we add the check whether or not an itemset of each
leaf in the search tree under τ is maximal to CHARM. Then, we maintain an
ordered triple (f, tid(f), ols(f)) to construct a monotone DNF formula f in
ffo search. By Theorem 3, we can obtain (f ∨ X, tid(f ∨ X), ols(f ∨ X)) from
(f, tid(f), ols(f)) and (X, tid(X)).

We call a pruning to first enumerate MaxFreqτ but not Freqτ in ffo dnf a
depth-first pruning . On the other hand, a breadth-first pruning in the algorithm
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procedure ffo dnf (σ, τ, λ)
M ← MaxFreqτ ; ffo search(∅, M, σ, λ);
procedure ffo search(f, M, σ, λ);
if M = ∅ then halt;
for i = 1 to m do begin /* M = {X1, . . . , Xm}, M [i] = {Xi, . . . , Xm} */

if ol(f ∨ Xi) ≤ λ then
if supp(f ∨ Xi) ≥ σ then FFO ← FFO ∪ {f ∨ Xi};
ffo search(f ∨ Xi, M [i + 1], σ, λ);

else ffo search(f, M [i + 1], σ, λ);
end /* for */
return FFO ;

Fig. 1. The algorithm ffo dnf

dnf cover [7] checks whether or not X ∪{x} ∈ Freqτ for just an itemset X ∪{x}
such that X ∈ Freqσ but X ∪ {x} �∈ Freqσ, instead of searching for Freqτ . Also
a breadth-first pruning in the algorithm cdnf cover [12] checks whether or not
X∪{x} ∈ FreqClosedτ for just an itemset X∪{x} such that X ∈ FreqClosedσ but
X ∪ {x} �∈ FreqClosedσ, instead of searching for FreqClosedτ . Here, FreqClosedσ

is the set of all frequent closed itemsets under σ [11, 16].
Hence, the algorithm ffo dnf with depth-first pruning searches for itemsets

satisfying τ , while the algorithms dnf cover and cdnf cover with breadth-first
pruning searches for just itemsets satisfying σ.

The depth-first pruning in ffo dnf is based on the following theorem.

Theorem 5. Let X and Y be itemsets such that supp(X) ≥ τ and supp(Y ) ≥ τ
and f a monotone DNF formula such that X ∈ f . If either X ⊆ Y or Y ⊆ X,
then it holds that ol(f ∨ Y ) > λ.

Proof. If X ⊆ Y , then tid(Y ) ⊆ tid(X), so it holds that ol(f∨Y ) ≥ ol(X∨Y ) =
|tid(X) ∩ tid(Y )| = |tid(Y )| ≥ τ > λ. If Y ⊆ X, then tid(X) ⊆ tid(Y ), so it
holds that ol(f ∨ Y ) ≥ ol(X ∨ Y ) = |tid(X) ∩ tid(Y )| = |tid(X)| ≥ τ > λ. ��

Theorem 5 claims that every pair of itemsets in a few-overlapped monotone DNF
formula f is always incomparable under a subset relation, that is, neither X ⊆ Y
nor Y ⊆ X for each X,Y ∈ f (X �= Y ). Hence, one of the reasons why we adopt
a depth-first pruning is that every maximal frequent itemset is incomparable.

Furthermore, another reason follows from the following theorem.

Theorem 6. For every few-overlapped monotone DNF formula f , there exists
a few-overlapped monotone DNF formula g such that for every X ∈ f , there
exists an itemset Y ∈ g such that X ⊆ Y and Y is maximal under τ .

Proof. Let f be a few-overlapped monotone DNF formula X1∨· · ·∨Xm. For l ≤
m, let p be a mapping {1, . . . , m} → {1, . . . , l} such that Xi ⊆ Yp(i) and Yp(i) is
maximal, and g a monotone DNF formula Y1∨· · ·∨Yl. Since tid(Xi) ⊇ tid(Yp(i)),
it holds that tid(Xi) ∩ tid(Xj) ⊇ tid(Yp(i)) ∩ tid(Yp(j)). Then, it holds that



56 Y. Shima, K. Hirata, and M. Harao

ols(f) =
⋃

1≤i<j≤m(tid(Xi) ∩ tid(Xj)) ⊇
⋃

1≤i<j≤m(tid(Yp(i)) ∩ tid(Yp(j))) =⋃
1≤i<j≤l(tid(Yi)∩tid(Yj)) = ols(g), so it holds that ol(f) ≥ ol(g). Since ol(f) ≤

λ, it holds that ol(g) ≤ λ. Hence, g is few-overlapped. ��

Theorem 6 claims that every few-overlapped monotone DNF formula f has a cor-
responding few-overlapped monotone DNF formula g such that each itemset in g
is maximal under τ . Hence, the extracted formulas by ffo dnf are representative.

By Theorem 4, 5 and 6, the algorithm ffo dnf extracts frequent few-overlap
monotone DNF formulas under σ, τ and λ that are representative.

4 Empirical Results from Bacterial Culture Data

In this section, we give the empirical results obtained by applying the algorithm
ffo dnf to bacterial culture data, which are full version in [15] and have given the
empirical results in [7, 12]. The computer environment is that CPU and RAM
are Pentium 4 2.8 GHz and 2 GB, respectively.

We use 5 kinds of data, MRSA (methicillin-resistant Staphylococcus aureus)
Bacteroides (Bact), Fusobacterium (Fuso), Prevotella (Prev) and Streptococcus
(Stre) data. The number of records in them is 118, 498, 154, 157 and 155,
respectively. The last 4 data are a part of Anaerobes data corresponding to 4
species of Anaerobes.

In particular, concerned with MRSA data, we use all data consisting of 118
MRSA data and 4886 MSSA (methicillin-suspectible Staphylococcus aureus) and
initial data from a patient consisting of 35 MRSA data and 1613 MSSA data.
Here, we use the MSSA data to verify the extracted formulas from MRSA data.
We refer all data and initial data for MRSA (resp., MSSA) to a MRSA (resp.,
a MSSA) and i MRSA (resp., i MSSA).

All of them consist of data between 4 years (from 1995 to 1998) with 93
attributes, containing 17 antibiotics for benzilpenicillin (PcB), synthetic peni-
cillins (PcS), augmentin (Aug), anti-pseudomonas penicillin (PcAP), 1st genera-
tion cephems (Cep1), 2nd generation cephems (Cep2), 3rd generation cephems
(Cep3), 4th generation cephems (Cep4), anti-pseudomonas cephems (CepAP),
aminoglycosides (AG), macrolides (ML), tetracyclines (TC), lincomycins (LCM),
chloramphenicols (CP), carbapenems (CBP), vancomycin (VCM) and RFP/FOM
(RFPFOM). Here, the above antibiotics have the value of resistant (R), intermediate
(I) or suspectible (S).

Fig. 2 describes the number of frequent few-overlapped monotone DNF for-
mulas extracted by ffo dnf . Here, τ is fixed to 25%. # Max and # DNF denote
the number of maximal itemsets and frequent few-overlapped monotone DNF
formulas. Note that # DNF is not always increasing when # Max is increasing.

Fig. 3 describes all occurrences of the items for the sensitivity of antibiotics
in the frequent few-overlapped monotone DNF formulas extracted by ffo dnf
under (σ, τ, λ) = (70, 25, 20). Note that Fig. 3 contains more information of
the resistant for Anaerobes than the result in our previous work [12], and such
information extracted by just ffo dnf is pruned by cdnf cover [12].
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data # Max σ λ # DNF time (sec.)
a MRSA 73 80 10 0 0.08

15 0 0.10
20 0 0.21

75 10 2 0.07
15 2 0.09
20 10 0.21

70 10 5 0.08
15 27 0.08
20 39 0.21

i MRSA 21 80 10 1 0.00
15 2 0.00
20 11 0.02

75 10 7 0.01
15 11 0.01
20 48 0.02

70 10 9 0.01
15 17 0.01
20 84 0.01

Bact 132 80 10 4 0.36
15 4 1.04
20 18 5.71

75 10 29 0.38
15 55 1.05
20 137 5.74

70 10 159 0.34
15 780 1.09
20 2007 5.43

data # Max σ λ # DNF time (sec.)
Fuso 39 80 10 0 0.04

15 0 0.04
20 0 0.06

75 10 0 0.05
15 0 0.04
20 0 0.05

70 10 4 0.04
15 6 0.04
20 6 0.05

Prev 61 80 10 1 0.09
15 2 0.11
20 22 0.18

75 10 20 0.10
15 23 0.12
20 68 0.17

70 10 107 0.11
15 159 0.14
20 228 0.21

Stre 37 80 10 10 0.01
15 10 0.02
20 24 0.03

75 10 10 0.01
15 13 0.03
20 37 0.01

70 10 15 0.01
15 75 0.04
20 203 0.04

Fig. 2. The number of frequent few-overlapped monotone DNF formulas extracted by

ffo dnf under the minimum term support τ is fixed to 25%

data PcB PcS PcAP Cep1 Cep2 Cep3 AG ML TC LCM CP CBP VCM RFPFOM

a MRSA R R R R R R R S S RS

i MRSA R R R R R R R S S RS

Bact R RS R S S RS S RS S S

Fuso S S S S S RS S S S S

Prev RS S RS S S S S S S S

Stre S S S S S S S S S S S

Fig. 3. The sensitivity of antibiotics appearing in the extracted formulas under

(σ, τ, λ) = (75, 25, 20)

The frequent few-overlapped monotone DNF formulas extracted by ffo dnf
under (σ, τ, λ) = (70, 25, 20) except from Stre have the following characteriza-
tion, which is the similar characterization by cdnf cover [12].

1. The extracted formulas always contains the items with information in 17
antibiotics. For MRSA, note that if Staphylococcus aureus are resistant for
PcB, PcS, Cep1 and AG, then it is determined to MRSA.

2. The extracted formulas are always non-redundant , that is, they contain no
formulas such as year = 95∨ year = 96∨ year = 97∨ year = 98 or male∨
female. Because all of the above itemsets are not maximal.
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a MRSA a MSSA ol
70.34 9.82 11.86 (CBP = S ∧ Cep1 = R ∧ LCM = R ∧ PcB = R ∧ PcS = R ∧ VCM = S

∧ML = R ∧ RFPFOM = S ∧ TC = R ∧ β= 0 ∧ male)30.51
∨(Cep1 = R ∧ LCM = R ∧ PcB = R ∧ PcS = R ∧ TC = R ∧ VCM = S

∧dis = 33)25.42 ∨ (RFPFOM = R ∧ β= 0)26.27
70.34 12.27 12.71 (CBP = S ∧ Cep1 = R ∧ LCM = R ∧ PcB = R ∧ PcS = R ∧ VCM = S

∧ML = R ∧ RFPFOM = S ∧ TC = R ∧ β= 0 ∧ male)30.51
∨(Cep1 = R ∧ β= 0 ∧ dis = 33)26.27 ∨ (RFPFOM = R ∧ β= 0)26.27

70.34 12.45 11.86 (CBP = S ∧ Cep1 = R ∧ LCM = R ∧ PcB = R ∧ PcS = R ∧ VCM = S
∧ML = R ∧ RFPFOM = S ∧ TC = R ∧ β= 0 ∧ male)30.51

∨(AG = R ∧ Cep1 = R ∧ LCM = R ∧ PcB = R ∧ dis = 33)25.42
∨(RFPFOM = R ∧ β= 0)26.27

73.73 13.01 4.24 (CBP = S ∧ Cep1 = R ∧ LCM = R ∧ PcB = R ∧ PcS = R ∧ VCM = S
∧ML = R ∧ RFPFOM = S ∧ TC = R ∧ β= 0 ∧ spl = 5)26.27

∨(Cep1 = R ∧ LCM = R ∧ PcB = R ∧ PcS = R ∧ VCM = S
∧spl = 1)25.42 ∨ (RFPFOM = R ∧ β= 0)26.27

i MRSA i MSSA ol
72.73 7.51 15.15 (CBP = S ∧ Cep1 = R ∧ LCM = R ∧ ML = R ∧ PcB = R ∧ PcS = R

∧VCM = S ∧ dis = 17)27.27
∨(AG = R ∧ Cep1 = R ∧ TC = R ∧ LCM = R ∧ PcB = R ∧ PcS = R

∧VCM = S ∧ dis = 7)27.27 ∨ (RFPFOM = R ∧ β= 0)33.33
72.73 7.56 15.15 (AG = R ∧ Cep1 = R ∧ TC = R ∧ LCM = R ∧ PcB = R ∧ PcS = R

∧VCM = S ∧ dis = 7)27.27
∨(Cep1 = R ∧ LCM = R ∧ PcS = R ∧ PcB = R ∧ β= 0

∧year = 95)33.33 ∨ (RFPFOM = R ∧ β= 0)33.33
72.73 7.83 18.18 (AG = R ∧ CBP = S ∧ TC = R ∧ Cep1 = R ∧ LCM = R ∧ PcB = R

∧PcS = R ∧ VCM = S ∧ male ∧ year = 95)30.30
∨(ML = R ∧ dis = 7)30.30 ∨ (RFPFOM = R ∧ β= 0)33.33

72.73 8.21 12.12 (Cep1 = R ∧ LCM = R ∧ PcS = R ∧ PcB = R ∧ β= 0 ∧ dis = 7)27.27
∨(CBP = S ∧ Cep1 = R ∧ LCM = R ∧ ML = R ∧ PcB = R ∧ PcS = R

∧VCM = S ∧ age = 70s)27.27 ∨ (RFPFOM = R ∧ β= 0)33.33

Fig. 4. The extracted formulas under (σ, τ, λ) = (75, 25, 20) from a MRSA (resp., i MRSA)

of which support in a MSSA (resp., i MSSA) is smaller than others

Also we can give the following characterizations of the extracted formulas
under (σ, τ, λ) = (70, 25, 20), not found in our previous works [7, 12].

1. From a MRSA and i MRSA, items for samples that spl=1 (catheter) and spl=5
(respiratory) are extracted from a MRSA, while just an item spl=1 is ex-
tracted from i MRSA. In particular, for a MRSA, the formula containing spl=1
also contains spl=5 in another itemset. Here, a MRSA and i MRSA contain 6
kinds of the items for samples.

2. From Bact, items that a β-lactamese is either 1 or 3 are extracted. Note that
just an item that a β-lactamese is 0 is extracted from other data.

3. From Fuso, for 6 extracted formulas, 3 formulas contain the resistant for
macrolides (Fig. 3).

4. From Prev, the formula containing PcB=S also contains PcB=R in another
itemset. Also the occurrence of Cep1=S is independent from one of Cep1=R.

5. From Stre, there are formulas not containing the items with the information
for antibiotics, for example, (β= 0 ∧ ctr = 1) ∨ (β= 0 ∧ wcl = 4) ∨ (β= 0 ∧
male ∧ spl = 1).

Fig. 4 describes the extracted formulas from a MRSA (resp., i MSSA) of which
support in a MSSA (resp., i MSSA) is smaller than others. Here, items dis=7,
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dis=17 and dis=33 denote that the disease is a tumor, respiratory and postop-
erative, respectively. Note that the items for samples appear in a MRSA, while
the items for ages and years appear in i MRSA.

All of the formulas in Fig. 4 contain a term X = (RFPFOM = R∧ β= 0). Here,
suppa MSSA(X) = 5.65%, suppi MSSA(X) = 4.97%, suppa MRSA(X) = 26.27% and
suppi MRSA(X) = 33.33%. On the other hand, for a term Y = (ML = R∧ dis = 7)
appearing in i MRSA but not in a MRSA, suppi MRSA(Y ) = 30.30%, suppi MSSA(Y ) =
2.81%, suppa MRSA(Y ) = 24.58% and suppa MSSA(Y ) = 3.32%. Hence, the reason
why X appears in both a MRSA and i MRSA but Y appears in just i MRSA is to
extract few-overlapped formulas.

5 Conclusion

In this paper, we have introduced frequent few-overlapped monotone DNF formu-
las and designed the algorithm ffo dnf to extract the formulas that are represen-
tative. We have adopted a depth-first pruning in the algorithm ffo dnf , different
from a breadth-first pruning adopted in dnf cover [7] and cdnf cover [12]. Finally,
we have applied it to bacterial culture data, the MRSA data and the 4 species
of Anaerobes data, and evaluated the extracted formulas.

We have adopted the depth-first pruning based on Theorem 5 in the algorithm
ffo dnf . Let f be a monotone DNF formula X1 ∨ · · · ∨ Xm such that ol(f) ≤ λ
and Xi ∈ MaxFreqτ . Such an f can be extracted as FO by adding the statement
“FO ← FO∪{f∨Xi};” between “if ol(f∨Xi) ≤ λ then” and “if supp(f∨Xi) ≥
σ then” in ffo dnf . By Theorem 6, we can enumerate all of the frequent few-
overlapped monotone DNF formulas as fX = (f − {Y ∈ f | X ⊂ Y }) ∨ X for
every f and X. It is a future work to efficiently enumerate all of the frequent
few-overlapped monotone DNF formulas without pruning .
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Abstract. Support vector machine (SVM) is applied to many research fields 
because of its good generalization ability and solid theoretical foundation. 
However, as the model generated by SVM is like a black box, it is difficult for 
user to interpret and understand how the model makes its decision. In this 
paper, a hyperrectangle rules extraction (HRE) algorithm is proposed to extract 
rules from trained SVM. Support vector clustering (SVC) algorithm is used to 
find the prototypes of each class, then hyperrectangles are constructed 
according to the prototypes and the support vectors (SVs) under some heuristic 
conditions. When the hyperrectangles are projected onto coordinate axes, the if-
then rules are obtained. Experimental results indicate that HRE algorithm can 
extract rules efficiently from trained SVM and the number and support of 
obtained rules can be easily controlled according to a user-defined minimal 
support threshold. 

1   Introduction 

Support vector machine (SVM) is a new class of machine learning algorithms, 
motivated by results of statistical learning theory [1], which is originally developed 
for pattern recognition. Because of its good generalization and solid theoretical 
foundation, SVM is applied to many research fields. However, a problem that SVM 
must face is that, after training, it is usually difficult to understand the concept 
representations and give a reasonable explanation. Like the neural networks, SVM 
generates a black box model. Usually, a concept representation learned by SVM is 
difficult to understand because the representation is encoded by a large number of 
real-valued parameters. However, it is important to be able to understand a learned 
concept definition. For example, for medical diagnosis, the users must understand 
how the system makes its decisions in order to be confident in its predictions [2]. 

In order to overcome the limitations of SVM, the hypothesis generated by SVM 
could be transferred into a more comprehensible representation. These conversion 
methods are known as rule extraction. In the last few years, some methods of rule 
extraction from the trained neural networks have been proposed [3, 4]. However, 
considering the difference between SVM and neural networks, most of them can not 
be directly applied to SVM. Nunez [5] introduced an approach for rule extraction 
from SVM, in which the K-means clustering is used to determine prototypes for each 
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class, and then prototypes are combined with support vectors to define an ellipsoid 
which are then mapped to if-then rules in the input space. But this approach does not 
scale well and the generated ellipsoid rules seriously overlap each other. Furthermore, 
as the solution quality of k-means excessively depends on initial values for centers, it 
is hard to control the number and quality of obtained rules. 

In this paper, a hyperrectangle rules extraction (HRE) algorithm is proposed to 
extract rules from trained SVM. Support vector clustering (SVC) algorithm [9] is 
adopted to find the prototypes of each class, then hyperrectangles are constructed on 
the base of prototypes and support vectors (SV) under some heuristic limitations. 
Even when training set contains outliers, HRE can also generate high quality rules 
because of merits of the SVC clustering algorithm. Experimental results show that it 
is easy for HRE to control the number and the support of the generated rules.  

This paper is organized as follows: Section 2 briefly reviews the basic theory of 
SVM. In section 3, The HRE algorithm based on SVC is presented. Section 4 
describes experimental results of HRE algorithm on some benchmark data sets. 
Finally, some conclusions are given in section 5. 

2   Support Vector Machines  

Assume that a training data set is given as 1 1{( , ),...( , ),..., ( , )},i i r ry y y= x x x  

1,..., ,i r=  where n
i ∈x R and { 1,1}iy ∈ − is class label. The goal of SVM is to find an 

optimal classification hyperplane. For binary classification case, to find the optimal 
hyperplane is equal to solve the quadratic programming (QP) problem as follows [6]:   
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Parameter G is slack factor which determines the trade off between structure and 
experience risk. Minimizing (1) captures the main insight of statistical learning 
theory: in order to obtain a small risk function, one needs to control both training 
error and model complexity. Introducing Lagrange multipliers and making some 
substitutions, we can obtain the Wolf dual of the optimization problem (1) as follows: 
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In nonlinear case, data points in input space are mapped into a high dimension 

feature space via mapping : nϕ →R H .Then in the space H , the optimal 

classification hyperplane is constructed. According to Mercer condition [5], there 
exist a mapping ϕ and a kernel function ( , )K  which satisfies 

( , ) ( ) ( )i j i jK ϕ ϕ=x x x x . The decision function can be written as 

1
( ) si ( ( , ) )

r

i i ii
f gn y K bα

=
= +x x x                                       (3) 

3   The HRE Algorithm 

3.1   Hyperrectangle Rule 

Salaberg describes a family of learning algorithms based on nested generalized 
exemplars (NGE) [7]. In NGE, an exemplar is a single training example, and a 
generalized exemplar is an axis-parallel hyperrectangle that may cover several 
training examples. The NGE algorithm grows the hyperrectangles incrementally as 
training examples are processed. Once the generalized exemplars are learned, a test 
example can be classified by computing the Euclidean distance between the example 
and each of the generalized exemplars. If an example is contained inside a generalized 
exemplar, the distance to that generalized exemplar is zero. The class of the nearest 
generalized exemplar is output as the predicted class of the test example. Each 

hyperrectangle 
, jj LH which is labeled with class label jL  is represented by its lower 

left cornet
, jj L

lowerH  and upper right cornet
, jj L

upperH . The distance between 
, jj LH  and an 

example 1( ,..., )T
Fx x=x is defined as follows [8]: 
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where 
,

,
jj L

lower iH  is the thi element of 
, jj L

lowerH . In order to obtain the hyperrectangle 

rules from trained SVM, a support vector clustering (SVC) algorithm is used to 
determine the clusters and prototypes of each class. And then the hyperrectangle rules 
are constructed according to the obtained prototypes and SVs. 
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3.2   SVC Algorithm 

The SVC clustering algorithm is presented by Ben-Hui [9]. Training set 

1{ ,..., ,..., }i l=T x x x in input space nR  is mapped into a high dimension feature space 

F  via mapping : nΦ →R F .Then in the space F , the smallest enclosing hypersphere 
with center a  and radius R  is determined by solving the quadratic programming 
problem as follows [10]: 
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                (6) 

where C  is slack factor which determines the trade off between the volume of the 
hypersphere and the number of target objects rejected. After solving the quadratic 
programming, the distance between a data sample and the center of feature space 
hypersphere is computed by 

, 1 1
( ) ( , ) ( , ) 2 ( , )

l l

i i j i j i i j i ji j j
D K K Kβ β β

= =
= + −x x x x x x x                (7) 

The radius of smallest enclosing hypersphere in feature space is determined by 
( ) | 0i iR D Cβ= ∀ < <x , and the contours that enclose the points in input space are 

defined by set{ | ( ) }D R=x x . The adjacency matrix between pairs of points ix and 

jx  whose images lie in or on the hypersphere in feature space is defined as 

follows: 

,

1  for all  on the line segment connecting   and ,  if ( )

0                                              otherwise                                  

i j
i j

D R≤
=

z x x z
A        (8) 

Clusters are now defined as the connected components of the graph induced 
by ,i jA .Checking the line segment is implemented by sampling a number of points. 

For each two points in the sample set, we take 10 points that lie on the line connecting 
these points and check whether they are within the hypersphere. If all the points on 
that line are within the hypersphere, the two sample points are assumed to belong to 
the same cluster. The most usually used kernel in SVC is Gaussian 

kernel
2|| ||

( , ) i jp
i jK e

− −= x xx x . As discussed below, the parameters p and C  control 

the number and support of rules. 

3.3   Confidence and Support 

Each discovered rule should have a measure of certainty associated with it which 
assesses the validity of the rule. There are two objective measures based on the 
structure of discovered rules and the statistics underlying them. One of them is the 
confidence. Confidence is referred to as reliability or accuracy which represents the 
strength or quality of a rule. Another is support which represents the percentage of 
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data samples that the given rule satisfies. In order to control the number and validity 

of the hyperrectangles, we define the support and confidence of 
, jj LH  as follows: 
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Rules that satisfy both a user-specified minimum confidence threshold (MCT) and 
minimum support threshold (MST) are referred to as strong association rules, and are 
considered interesting. On the contrary, rules with low support likely represent noises, 
or exceptional cases.  

3.4   Construction of Hyperrectangle 

For the training samples, its classification hyperplane can be obtained by SVM 
algorithm. Then for each class of samples with different class label, we use SVC 
algorithm to obtain its clusters and prototypes. Given a MCT and MST, the HRE 

algorithm follows an incremental procedure to generate
, jj LH . Beginning with a small 

hyperrectangel around the prototype, a partition test is applied on it. For every sample 
belong to the cluster, if the distance from it to the hyperrectangle is not equal zero, the 
hyperrectangle is extended to include the sample. Otherwise, another point in the 
cluster is selected to test using the same way. Repeat this procedure until one of the 
following conditions is satisfied,  

(a) All of the samples of the cluster are covered by 
, jj LH  and the confidence of 

, jj LH  is smaller than user-specified MCT (as 2, 1−H in Fig.1.). 

(b) One of support vectors of the cluster is covered by 
, jj LH  (as 1, 1−H  in Fig.1.). 

(c) Some samples with opposite class label are covered by 
, jj LH  and confidence of 

, jj LH is smaller than user-specified MCT (as 3, 1−H  in Fig.1.). 

(d) A prototype of another cluster is covered by 
, jj LH . 

Under condition (a), 
, jj LH  will cover all of the samples and have larger support, 

but perhaps it will cover some opposite samples. In condition (a) and (d), a MCT is 

specified to ensure 
, jj LH  has a higher confidence. If a cluster does not contain any 

support vectors, in that case, condition (d) is applied to limit the size of 
, jj LH  and it 

can avoid the hyperrectangle largely overlapping with other hyperrectangle. 
Fig.1 shows the rules extracted from a trained SVM. Samples with negative class 

are separated into three clusters which are covered by hyperrectangles. Although 
some conditions are adopted to avoid the hyperrectangles overlapping each other, 
there still exist some overlaps and some samples lie in several hyperrectangles with 
different class labels. In this case, the distances between the samples and those 
hyperrectangles are calculated and the samples are assigned the same class label as 
the hyperrectangle which has the smallest distances to it. For example, 
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sample 1x and 2x  belong to both hyperrectangle 1,1H and 3, 1−H , because of 
1,1 3, 1

1 1( , ) ( , )D H D H −<x x  and 1,1 3, 1
2 2( , ) ( , )D H D H −<x x , 1x and 2x  belong to 1,1H . 

1, 1−H

2, 1−H
3, 1−H

1,1H

support vector

prototype

1 2

 

Fig. 1. Hyperrectangle rules exaction from the trained SVM. Samples with negative class are 
separated into three clusters 

3.5   Parameters in HRE 

There are two important parameters in HRE algorithm. One is the scale parameter p  

of Gaussian kernel and another is the penalty factor C  in SVC. As discussed in [9], 
parameter p  determines the number of the clusters. When p  is small, there is only 

one cluster and the generated hyperrectangle rule has a larger support value (as shown 
in Fig.2 (a)), but it cannot cover all of the samples. With the increase of p  the 

clustering boundary fit the data more tightly and splits into more clusters (as shown in 
Fig.2 (b)). Although the support value of each generated hyperrectangle rules is 
smaller, most of samples are covered by those hyperrectangle rules. 

(a) a smaller  valuep (b) a larger  valuep  

Fig. 2.  Influence of the scale parameter p  of Gaussian kernel. With the increase of p  the 
clustering boundary fit the data more tightly and splits into more clusters 

As discussed in [10], the penalty factor C can be determined by setting a priori 
maximal allowed rejection rate of the error on the clusters. When parameter C  is 
larger than 1, all of the samples will belong to the generated cluster including some 

noises and outliers. Furthermore, Scholkopf [11] proofs that the parameter 1
lC is an 
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upper bound for the fraction of samples outside the clusters. As shown in Fig.3 (b), 
when parameter C  equals 0.5 , there are two outliers are excluded from the cluster, 
and the hyperrectangle fit more tightly to the samples. 

(a) a smaller  valueC (b) a larger  valueC

1

2

1

2

 

Fig. 3.  Influence of the scale parameter C . When parameter C  equals 0.5 , there are two 
outliers are excluded from the cluster, and the hyperrectangle fit more tightly to the samples 

4   Experimental Results 

In this section, we furthermore evaluate the performance of HRE algorithm in 
experiments. HRE is tested on UCI machine learning benchmark data sets [12] and 
Statlog collection [13]. Although HRE is originally designed for rule extraction rather 
than for classifying, in order to evaluate its performance, we use the hyperrectangle 
rules generated by HRE to predict unlabeled samples comparing with some common 
classification algorithms, such as CART, C4.5, k-NN, BP-neural network, naive bayes 
and radial basis function method.  

Table 1. Domain characteristics of training set 

Training Set Training Set Size Test Set Size Number of Features 

Iris 105 45 4 

waveform 300 100 21 

Adult 500 200 14 

DNA 2000 1186 180 

Australian 490 200 14 

diabetes 668 100 8 

heart disease 170 100 13 

Letter 15000 5000 16 

segment 1810 500 19 

satimage 4435 2000 36 

shuttle 43500 14500 9 

vehicle 646 200 18 

We present experiments on data sets: iris, waveform, adult, DNA, Australian, 
diabetes, heart disease, letter recognition, satimage, segment, shuttle and vehicle from 
UCI [12]. The training sets and their data features are reported in Table 1. 
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For each trial, the examples were divided into a training set and a test set. 70% of 
the examples were randomly chosen for each trial to be in the training set. Four 
different trials were run, and the final results were an average of those trials [7]. After 
training, the percentage of correct classification on the test set was measured. Table 2 
gives the prediction error of those algorithms and HRE. Usually, the Gauss RBF 
kernel is more widely used than other kernel [9]. So we choose it as the kernel 
function in HRE algorithm. The parameters of HRE are obtained by ten-fold cross-
validation. From Table 2, we can see the comparing performance of HRE with other 
algorithms. In some training sets such as iris, DNA, diabetes and satimage, the HRE 
algorithm has highest accuracy. 

The prediction error of HRE on iris data set is 0.033, which is smaller than that of 
ellipse (0.040) and interval (0.040) rules reported in [5]. And the rules generated by 
HRE have less overlap. It shows that the quality of rules generated by HRE is better 
than that of ellipse and interval rules.  

Note that the HRE algorithm isn’t originally designed for a learning method i.e. a 
classification target. As discussed in [6,9], SVC clustering algorithm used in HRE 
spends most of training time on calculating kernel functions matrix which has a 
dimension equal to the number of training examples. So the training process of HRE 
is very time-consuming. But if the most usually used kernel functions are cached to 
memory in the process of training SVM, the training time of HRE algorithm will be 
significantly reduced as it needn’t calculate kernel functions again.  

Table 2. Predicted error on different training sets 

Training Set 
CART C4.5 k-NN Naive 

Bayes 
BP-neural 
network 

Radial Basis 
Function 

HRE 

Iris 0.070 0.081 0.064 0.067 0.033 0.041 0.033 

Waveform 0.068 0.102 0.137 0.183 0.163 0.147 0.158 

Adult 0.083 0.089 0.091 0.104 0.133 0.197 0.094 

DNA 0.075 0.076 0.146 0.068 0.088 0.041 0.040 

Australian 0.145 0.099 -- 0.136 0.087 0.107 0.108 

Diabetes 0.227 0.131 0.324 0.239 0.198 0.218 0.113 

Heart disease 0.045 0.078 0.048 0.037 0.057 0.078 0.053 

Letter -- 0.132 0.068 0.529 0.327 0.233 0.244 

Segment 0.040 0.040 0.077 0.265 0.054 0.069 0.084 

Satimage 0.138 0.150 0.094 0.287 0.139 0.121 0.086 

Shuttle 0.080 0.100 0.440 0.450 0.430 0.140 0.143 

Vehicle 0.235 0.266 0.275 0.558 0.207 0.307 0.376 

Some hyperrectangle rules for iris data set with different parameters C and p  are 

shown in Table 3, 4 and 5. The MCT and MST are set as 0.9 and 0.1 respectively. We 
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can see that when 10p = , there are only three rules which have larger support. With 

the increase of p , more rules are obtained and each of them has smaller support. 

Table 3. Hyperrectangle rules for Iris data set with 0.5  and  10C p= =  

Hyperrectangle Rules [supp., conf.] 

1 2 3 41. if  x [4.4,5.7] x [2.9,4.4] x [1.2,1.9] x [0.1,0.5] then  class 1∈ ∈ ∈ ∈  [0.91,0.97]  

1 2 3 42. if  x [5.2,6.9] x [2.3,3.4] x [3.5.5.0] x [1.0,1.8] then class 2 ∈ ∈ ∈ ∈  [0.76,0.94]  

1 2 3 43. if  x [5.6,7.4] x [2.5,3.4] x [4.8,6.3] x [1.5,2.5] then class 3 ∈ ∈ ∈ ∈  [0.78,0.91]  

Table 4. Hyperrectangle rules for Iris data set with 0.5 and  60C p= =  

Hyperrectangle Rules [supp., conf.] 

1 2 3 41. if  x [4.6,5.0] x [3.0,3.4] x [1.2,1.6] x [0.1,0.3] then  class 1∈ ∈ ∈ ∈  [0.31,1.00]  

1 2 3 42. if  x [5.0,5.4] x [3.3,3.8] x [1.4,1.7] x [0.2,0.5] then  class 1∈ ∈ ∈ ∈  [0.34,0.99]  

1 2 3 43. if  x [6.2,7.0] x [2.8,3.3] x [4.3,5.0] x [1.3,1.7] then  class 2∈ ∈ ∈ ∈  [0.25,1.00]  

1 2 3 44. if  x [5.4,5.9] x [2.3,3.0] x [3.7,4.5] x [1.0,1.5] then  class 2∈ ∈ ∈ ∈  [0.35,1.00]  

1 2 3 45. if  x [6.2,7.2] x [2.7,3.4] x [5.1,6.0] x [1.8,2.5] then  class 3∈ ∈ ∈ ∈  [0.43,0.99]  

1 2 3 46. if  x [6.0,6.3] x [2.5,3.0] x [4.8,5.1] x [1.5,1.9] then  class 3∈ ∈ ∈ ∈  [0.12,0.99]  

As discussed in section 3, parameter 1
lC is an upper bound for the fraction of 

sample outside the clusters, so the smaller the parameter C  is, the less support of a 
rule has. From Table 5 we can see that with 0.1C = , support values of the three rules in 
Table 3 are reduced to 0.72, 0.63 and 0.67. 

Table 5. Hyperrectangle rules for Iris data set with 0.1 and  10C p= =  

Hyperrectangle Rules [supp., conf.] 

1 2 3 41.  if  x [4.6,5.5] x [3.0,4.2] x [1.3,1.7] x [0.1,0.5] then class 1 ∈ ∈ ∈ ∈  [0.72,0.99]  

1 2 3 42.  if  x [5.4,6.9] x [2.4,3.4] x [3.5,4.9] x [1.0,1.6] then class 2 ∈ ∈ ∈ ∈  [0.63,1.00]  

1 2 3 43.  if  x [5.6,6.9] x [2.5,3.4] x [4.8,6.0] x [1.5,2.5] then class 3 ∈ ∈ ∈ ∈  [0.67,1.00]  

5   Conclusions 

In this paper, a hyperrectangle rules extraction algorithm is proposed to extract rules 
from the trained SVM. A support vector clustering algorithm is used to find the 
prototypes of each class samples, and then hyperrectangle rules are constructed 
according the prototypes and SVs. Experimental results indicate that the HRE 
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algorithm can extract rules efficiently and it is easy to control the number and support 
of the obtained rules.  
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Abstract. Because exploratory rule discovery works with data that is
only a sample of the phenomena to be investigated, some resulting rules
may appear interesting only by chance. Techniques are developed for
automatically discarding statistically insignificant exploratory rules that
cannot survive a hypothesis with regard to its ancestors. We call such
insignificant rules derivative extended rules. In this paper, we argue that
there is another type of derivative exploratory rules, which is derivative
with regard to their children. We also argue that considerable amount
of such derivative partial rules can not be successfully removed using
existing rule pruning techniques. We propose a new technique to address
this problem. Experiments are done in impact rule discovery to evaluate
the effect of this derivative partial rule filter. Results show that the in-
herent problem of too many resulting rules in exploratory rule discovery
is alleviated.

Keywords: Exploratory rule discovery, impact rules, rule significance,
derivative rules.

1 Introduction

Exploratory rule discovery seeks to retrieve all implicit patterns and regularities
that satisfy some user-defined set of constraints in a population, with respect to
a set of available sample data. The best known such approach is association rule
discovery [1]. Most approaches seeks rules A → C for which there is a correlation
between the antecedent A and the consequent C. However, whenever one such
rule is found, there is a risk that many derivative and potentially uninteresting
rules A′ → C ′ will also be found. These derivative rules are those for which
there is a correlation between the antecedent and the consequent only by virtue
of there being a correlation between A and C. For example, if A and C are
correlated then for any term B that is unrelated to either A or C, AB will also
turn out to be correlated with C.

Considerable research has been devoted to automatically identify and discard
such derivative rules. The closed itemset techniques [12, 3, 16] can identify rules
for which some elements can be removed without changing the support of the
rule. Minimum improvement techniques [6] can to identify rules for which some
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elements can be removed without decreasing rule confidence. However, since ex-
ploratory rule discovery seeks to discover rules characterizing the features in a
population, with respect to a given sample, rules may happen to be interesting
simply due to sampling fluctuation. Statistical tests are also applied to assess
whether there is evidence that no elements can be removed without significantly
altering the status of the rule with respect to the population from which the
sample data is drawn [11, 5, 9]. However, all these techniques relate only to iden-
tifying rules that are derivative due to the addition of irrelevant or unproductive
elements.

There exists, however, another type of derivative rules that may also result
in many rules that are likely to be of little interest to the user. For any rule
AB → C which is not derivative from another rule and for which there is a
correlation between the antecedent and the consequent, both A and B may each
be correlated with C solely due to correlation between AB and C. In this case
A → C and B → C will both be potentially uninteresting derivative rules that
may be discovered by an exploratory rule discovery system.

The following example illustrates an occasion where such a potentially unin-
teresting rule may be generated.

Example 1. Suppose a retailer is trying to identify the groups of customers who
is likely to buy some new products. After applying the impact rule discovery with
the rule filters proposed by Huang and Webb [9, 10], two rules are identified as
solutions:

District = A → profit(coverage = 200,mean = 100)
District = A & age < 50 → profit(coverage = 100,mean = 200)

Although these two rules are both “significant” as is identified by the rule
filter proposed by Huang and Webb [9], the first rule, which is an ancestor of
the second one is misleading. Actually, no profit is produced by customers who
belong to district A and are older than 50 years! The retailer’s attention should
more sensibly focus on the group of customers who are under age 50 in district
A, instead of on all those in district A. Keeping the first rule in the resulting
solutions may confuse the decision makers.

Impact rule discovery is a type of exploratory rule discovery that seeks rules
for which the consequent is an undiscretized quantitative variable, referred to
as the target and is described using its distribution. This paper investigates the
identification of the second type of derivative rules in the context of impact rule
discovery [9, 14].

The rest of this paper is organized like this: a brief introduction to exploratory
rule discovery related concepts is presented in section 2. The definitions and no-
tations of impact rule discovery is charaterized in section 3. Derivative impact
rules are defined and relationship between different rules are clarified in section
4, together with the implementation of the derivative rule filter in section 3. Ex-
perimental results are evaluated in section 5, which is followed by our conclusions
in section 6.
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2 Exploratory Rule Discovery

Many machine learning systems discover a single model from the available data
that is expected to maximize some objective function of interestingness on un-
known future data. Predictions or classifications are done on the basis of this
single model [15]. However, alternative models may exist that perform equally
well. Thus, it is not always sensible to choose only one of the“best” models.
Moreover the criteria for deciding whether a model is best or not also varies
with the context of application. Exploratory rule discovery techniques overcome
this problem by searching for multiple models which satisfy certain user-defined
set of constraints and present all these models to the users to provide them with
alternative choices. Greater flexibility is achieved in this way.

Exploratory rule discovery techniques [9] are classified into propositional rule
discovery which seeks rules with qualitative attributes only and distributional-
consequent rule discovery which seeks rules with undiscretized quantitative vari-
ables as consequent. Propositional rules are composed of Boolean conditions only.
While the status or performance of the undiscretized quantitative attributes in
distributional-consequent rules are described with their distributions. Associa-
tion rule discovery [1], contrast sets discovery [5] and correlation rule discovery
[8] are examples of propositional exploratory rule discovery, while impact rule
[14] or quantitative association rule discovery [2], as is variously known, be-
longs to the class of distributional-consequent rule discovery. It is argued that
distributional-consequent rules are able to provide better descriptions of the in-
terrelationship between quantitative variables and qualitative attributes.

Considering the differences between propositional rule discovery and
distributional-consequent rule discovery, there are inherent differences between
the techniques for propositional and distributional-consequent rule pruning and
optimizations. Researchers have devoted extensive efforts to develop rule prun-
ing and optimization techniques. Reviews of such work can be found in many
related works [9].

We define some key notions of exploratory rule discovery as follows:

1. For propositional rule discovery, a record is an element to which we apply
Boolean predicates called conditions, while for distributional-consequent rule
discovery, a record is a pair < c, v >, where c is the nonempty set of Boolean
conditions, and v is a set of values for the quantitative variables in whose
distribution the users are interested.

2. Rule r1 is a parent of r2 if the body of r1 is a subset of the body of r2. If
the cardinality of the body of r1 is smaller than that of r2 by 1, then the
second rule is referred to as a direct parent of the first rule, otherwise, it is
a non-direct ancestor of the first rule.

3. We use the notion coverset(A), where A is a conjunction of conditions, to
represent the set of records that satisfy A. If a record x is in coverset(A),
we say that x is covered by A. If A is an ∅, coverset(A) includes all the
records in the database. Coverage(A) is the number of records covered by
A. coverage(A) = |coverset(A)|.
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3 Impact Rule Discovery

We construct our impact rule discovery algorithm on the basis of OPUS [13]
search algorithm, which enables successful discovery of the top k impact rules
that satisfy a certain set of user-specified constraints.

We characterized the terminology of k-optimal impact rule discovery to be
used in this paper as follows:

1. An impact rule takes the form of A → target, where the target is describe by
the following measures: coverage, mean, variance, maximum, minimum,
sum and impact. This is an example of impact rules discovered by our algo-
rithm:

Address = Brighton & profession = programmer → income
(coverage : 23%,mean : 60000, variance : 4000,max : 75000,

min : 44000, sum : 1380000, impact : 3903.98)

2. Impact is an interestingness measure suggested by Webb [14]1: impact(A →
target) = (mean(A → target) − targ) × coverage(A)).

3. An k-optimal impact rule discovery task is a 6-tuple:
KOIRD(D, C, T ,M, λ, k).
D: is a nonempty set of records, which is called the database. A record is

a pair < c, v >, c ⊆ C and v is a set of values for T . D is an available
sample from the global population D.

C: is a nonempty set of Boolean conditions, which are the set of available
conditions for impact rule antecedents, which is generated from the given
data in D.

T : is a nonempty set of the variables in whose distribution we are interested.
M: is a set of constraints. A constraint is a criteria which the resulting rules

must satisfy.
λ: {X → Y } × {D} → R is a function from rules and databases to values

and defines an interestingness metric such that the greater the value
of λ(X → Y,D) the greater the interestingness of this rule given the
database.

k: is a user specified integer number denoting the number of rules in the
ultimate set of solutions for this rule discovery task.

Pseudo code of the original algorithm for impact rule discovery is described in
table 1. In this table, current is the set of conditions, whose supersets (children)
are currently being explored. Available is the set of conditions that may be
added to current. By adding the conditions in available to current one by one,
the antecedent of the current rule: New → target, is produced. Rule list is an
ordered list of the top-k interesting rules we have encountered by now.

The search space of this algorithm is illustrated in figure 1. Each node in
this search space is connected with a potential impact rule, whose antecedent

1 In this formula, mean(A → target) denotes the mean of the targets covered by A,
and coverage(A) is the number of the records covered by A.
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Table 1. OPUS IR

Algorithm: OPUS IR(Current, Available, M)

1. SoFar := ∅
2. FOR EACH P in Available

2.1 New := Current ∪ P
2.2 IF current rule New → target does not satisfy any of the prunable constraints in

M
THEN go to step 2.

2.4 ELSE IF current rule New → target satisfies all the nonprunable constraints in M
Record New → target in the rule list;

2.5 OPUS IR(New, SoFar, (M));
2.6 SoFar := SoFar ∪ P
2.7 END IF

3. END FOR

¡div class=”moz-text-flowed” style=”font-family: -moz-fixed”¿

¡/div¿ {}

{a}
{b} {ab}

{c} {ac}
{bc} {abc}

{d}
{ad}
{bd} {abd}

{cd} {acd}
{bcd} {abcd}

{...}

Fig. 1. Fixed search space for OPUS IR

is composed of the conditions between the braces. By performing a depth-first
search through such a search space, the algorithm is guarantee to access every
nodes and generate all potential impact rules. Based on the OPUS structure,
powerful search space pruning is facilitated [13], making it suitable for discov-
ering impact rules in vary large, dense databases. The completeness of OPUS
based algorithms is proved by Webb [13].

4 Derivative Partial Impact Rules

Techniques for automatically discarding potentially uninteresting rules are exten-
sively explored, examples are the constraint-based techniques, the non-redundant
techniques and the techniques regarding the rule improvement and statistically
significance. The first classes of techniques seek to identify whether a rule r fails
to satisfy the constraints in M. The second class of techniques assess whether the
resulting rules are redundant or not by reference to the sample data. Example
of non-redundant rule discovery techniques are the closed set related techniques
and the trivial rule filter. Each assessment of whether r is desirable is not al-
ways free from the risk that the rule is not correct with respect to D due to the
sampling fluctuation [15].
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The third class was proposed to reduce the influence of sampling on resulting
rules. Statistical tests have been utilized for discarding potentially uninteresting
rules generated due to sampling fluctuation, both in context of propositional and
distributional-consequent rule discovery. For propositional rule discovery, Brin
et al. [8] proposed a pruning technique for removing insignificant correlation
rules using a chi-square test; Liu et al. [11] also made use of the chi-square test
to identify the significance of association rules with fixed consequents. Bay and
Pazzani [5] applied a significance test to remove the insignificant contrast sets in
STUCCO. Webb [15] sought to control the number of potentially uninteresting
association rules which happen to be interesting due to the sampling by apply-
ing a Fisher exact test. For distributional consequent rule discovery, Aumann
and Lindell [2] applied a standard z test to quantitative association rule discov-
ery and Huang and Webb [9] also developed an insignificance filter in impact
rule discovery whose efficiency is considerably improved by introducing several
efficiency improving techniques for rule discovery in very large, dense databases.

However, the techniques mentioned above can only successfully remove a
subset of derivative rules.

4.1 Relationship Among Rules

As is argued in the introduction, there are derivative rules other than the deriva-
tive extended rules that the existing techniques cannot successfully remove. Even
after both rules, A → target and A &B → target, have been identified as non-
derivative extended rules, there is still a risk that either or both of them are
potentially uninteresting. For example, if the target mean of coverset(A&¬B) is
not significantly higher than the target mean of coverset(¬A), it can be asserted
that the notably high target mean for coverset(A) derives solely from that of
coverset(A&B), which is only a subset of coverset(A). Such rules are defined as
derivative partial rules, which are insignificant compared to fundamental rules
which are their children.

Fig. 2. Relationship of different rules

The inter-relationships among different rules are explained in figure 2. In this
figure, fundamental rules can also be regarded as non-derivative rules. Derivative
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extended rules are those referred to as insignificant rules in previous research.
Unproductive rules are those exhibit no improvement in target mean comparing
with their parent rules. Trivial rules are rules whose antecedents cover exactly the
same records as one of their parent rules. As was proved by Huang and Webb [9],
trivial rules are a subset of unproductive rules. while those that are productive,
with respect to the sample, but fail the significance test are all classified as
statistically unproductive.

4.2 Derivative Partial Rules and Implementation

We first define derivative partial impact rules:

Definition 1. A non-derivative extended impact rule, A → target is an deriva-
tive partial rule, iff there exists a condition x, not included in A, where the target
mean for coverset(A) − coverset(A&x) is not higher than the target mean for
coverset(¬A) at a user specified level of significance.

InsigPartial(A → target) = ∃x ∈ (C − {A}),
TarMean(coverset(A&¬x)) � TarMean(coverset(¬A))

Statistical Test. Since by performing the exploratory rule discovery, we are
aiming at discovering rules that characterize the features of the population with
reference to sample data, hypothesis tests must be done to identify whether an
impact rule is derivative or not. A t test is applied to assess whether a partial
rule is derivative with regard to its children.

Table 2. Derivative rule Filter

Algorithm: OPUS IR Filter(Current, Available, M)

1. SoFar := ∅
2. FOR EACH P in Available

2.1 New := Current ∪ P
2.2 IF New satisfies all the prunable constraints in M except the nontrivial

constraint THEN
2.2.1 current rule = New → target
2.2.2 IF the mean of current rule is significantly higher than all its direct parents

THEN
2.2.2.1 add the parent rules to the parent rule list
2.2.2.2 IF the rule satisfies all the other non-prunable constraints in M.

THEN record Rule to the ordered rule list
2.2.2.3 END IF
2.2.2.4 FOR EACH parent rule in parent rule list

IF parent rule is a derivative partial rule with regard to
current rule

THEN delete parent rule from rule list.
END IF

2.2.2.5 END FOR
2.2.3 OPUS IR(New, SoFar, M)
2.2.4 SoFar := SoFar ∪ P
2.2.5 END IF

2.3 END IF
3. END FOR
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Implementation. The new algorithm with derivative partial rule filter is pro-
vided in table 2. In this algorithm all the parent rules of the current rule are
stored in the parent rule list while checking whether current rule is a derivative
extended rule or not. After current rule is identified as perspectively fundamen-
tal the derivative partial rule filter is then applied to check whether the parents
are derivative with regard to current rule. Derivative parent rules are deleted
from the rule list. Since all the parent rules of current rule has already been ex-
plored before current rule (please refer to the search space of OPUS IR), every
derivative rule is guaranteed to be removed.

5 Experimental Evaluations

We study the effectiveness of the algorithm in table 2 for the derivative partial
rule filter by applying it to 10 large databases chosen from KDD archives [4] and
UCI machine learning repository [7], in which many attributes are quantitative.
Great differences exist among these databases with the smallest database in size
having less than 300 records and the greatest having 2000 times as many records
as that of the smallest. Number of attributes vary from only 9 to almost 90.
Since complex interrelationships exist among the data, there is a strong necessity
for rule pruning. We choose a target attribute from among the quantitative
attributes in each database, and discretize the rest using a 3-bin equal-frequency
discretization. After discretization the numbers of available conditions turn out
to be over 1500 for some of the databases. The significance level for the derivative
rule filters is 0.05.

We did the experiments using following protocol. First, the program in ta-
ble 1 is run using the insignificance filter proposed by Huang and Webb [9] to
find the top 1000 significance rules from each database, with maximum number
of conditions on rule antecedent set to 3, 4 and 5. Then, the algorithm with
derivative partial rule filter in table 2 is executed to remove derivative partial
rules from the resulting solutions. Results are organized in table 4. The numbers
of fundamental rules found after both filters are applied are those before the
slashes. Integers after the slashes are those found using the insignificance filter
only. Decreases in resulting rules are also presented in percentage.

Here is an example of an impact rule which is discarded as derivative partial
Sex = M → Shucked weight(coverage : 1528,mean : 0.432946,

variance : 0.049729,min : 0.0065,max : 1.351, sum : 661.542, impact : 112.428)

It is derivative regarding its parent rule:
Sex = M&1.0295 <= Whole weight → Shucked weight(coverage : 687,

mean : 0.619229, variance : 0.0284951,min : 0.315,max : 1.351,
sum : 425.411, impact : 178.525)

In this example, if an abalone is male but have a whole weight less than
1.0295 cannot have a very high shucked weight. The first rule is thus misleading!

From the experimental results in table 4, we make the following observation:
When the number of maximum conditions on rule antecedent increases, gen-
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Table 3. Basic information of the databases

database records attributes conditions Target

Abalone 4117 9 24 Shuckedweight
Heart 270 13 40 Max heart rate

Housing 506 14 49 MEDV
German credit 1000 20 77 Credit amount
Ipums.la.97 70187 61 1693 Total income
Ipums.la.98 74954 61 1610 Total income
Ipums.la.99 88443 61 1889 Total income
Ticdata2000 5822 86 771 Ave. income

Census income 199523 42 522 Wage per hour
Covtype 581012 55 131 Elevation

Table 4. Experimental results

database MNC=3 MNC=4 MNC=5

Abalone 82/86 4.65% 127/138 7.97% 149/173 13.87%

Heart 43/57 24.56% 63/80 21.25% 81/100 19.0%

Housing 131/171 23.39% 168/255 34.12% 192/288 33.33%

German credit 152/197 22.84% 213/273 21.98% 222/295 24.75%

Ipums.la.97 949/1000 5.1% 867/1000 13.3% 809/1000 19.1%

Ipums.la.98 944/1000 5.6% 890/1000 11.0% 761/1000 23.9%

Ipums.la.99 959/1000 4.1% 930/1000 7.0% 896/1000 10.4%

Ticdata2000 803/1000 19.7% 739/1000 26.1% 674/1000 32.6%

Census income 894/1000 10.6% 776/1000 22.4% 744/1000 25.6%

Covtype 918/1000 8.2% 829/1000 17.1% 733/1000 26.7%

erally, more derivative partial rules are produced by the impact rule discovery
system. The greatest change for the numbers of resulting rules after the deriva-
tive partial rule filter is applied is as much as 34%. Even the database with a
slightest change saw a decrease of over 4%. This justify the argument that there
are considerable amount of derivative partial rules still exist in the resulting
rules even after the derivative extended rule filter (insignificance filter) is ap-
plied. The derivative partial rules can be pruned using our proposed algorithm
in reasonable period of time.

6 Conclusions

Exploratory rule discovery searches for multiple models within a set of given
data to represent the underlying patterns or regularities. However, it often re-
sults in large numbers of rules. Sometimes, the resulting rules are too numerous
for human to analysis. Research has investigated techniques for automatically
discarding potentially uninteresting rules, thus reducing the number of rules and
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removing those that are unlikely to be of fundamental interest. One class of these
techniques is to apply statistical tests to the resulting models, so as to alleviate
the risk of accepting rules which appear to be interesting by reference to the
given data which is only a sample, instead of the real world population. In this
paper, we argued that there is a type of potentially uninteresting rules which ex-
isting techniques fail to remove. We call these rules derivative rules. A derivative
rule filter is developed in a impact rule discovery system. Experiments showed
a considerable decrease in the number of resulting rules.
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Abstract. The problem of the relevance and the usefulness of extracted
association rules is becoming paramount, since an overwhelming number
of association rules may be derived from even reasonably sized real-life
databases. A possible solution consists in using results of Formal Con-
cept Analysis to generate a generic base of association rules. This set, of
reduced size, makes it possible to derive all the association rules via an
adequate axiomatic system. In this paper, we introduce a novel generic
and informative base of association rules, conveying two types of knowl-
edge: ”factual” and ”implicative”. We present also a valid and complete
axiomatic system allowing to derive the set of all association rules. Re-
sults of the experiments carried out on real-life databases showed impor-
tant profits in terms of compactness of the introduced generic base.

Keywords: Association rules, Generic base, Galois connection, Axio-
matic system.

1 Introduction

The problem of the relevance and usefulness of extracted association rules is
of primary importance. Indeed, in most real life databases, thousands and even
millions of high-confidence rules are generated, among which many are redun-
dant. This problem encouraged the development of tools for rule classification,
according to their properties, for rule selection according to user-defined criteria,
and for rule visualization. The Selection without loss of information is mainly
based on the extraction of a generic subset of all association rules, called generic
base, from which the remaining (redundant) association rules are generated.

In this paper, we introduce a new generic base of association rules called
IGB. Through IGB, we introduce a novel characterization of generic association
rules instead of the classical one, i.e., exact and approximative. In fact, we shall
distinguish between the ”factual” and the ”implicative” generic association rule.
Indeed, a factual generic association rule, fulfilling the premise part emptiness,
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permits to highlight item correlation without any conditionality. However, for an
implicative generic association rule, where the premise part is not empty, item
correlation is conditioned by the existence of premise items. The introduced
generic base IGB fulfills the ”informativeness property”, i.e., the support and
the confidence of the derived association rules can be exactly retrieved. In order
to derive valid association rules from the IGB base, we introduce an axiomatic
system, which it is shown to be valid and complete.

We conducted several experiments on typical benchmarking datasets to assess
the IGB compactness. The introduced generic rule characterization permitted
to explain the ”atypical” behavior of the variation of the reported generic asso-
ciation rules number versus the variation of the minconf value, i.e., the number
of the reported rules does not necessarily decrease with the augmentation of the
minconf value.

The remainder of the paper is organized as follows. Section 2 presents the
basic mathematical foundations for the derivation of generic bases of association
rules. We devote section 3 to a review of the literature relating to the extraction
of the generic bases. Section 4 introduces a novel informative base of generic
association rules and the associated axiomatic system. Results of the experiments
carried out on real-life databases are reported in section 5. The conclusion and
future work are presented in section 6.

2 Mathematical Background

Due to lack of available space, interested reader for key results from the Galois
lattice-based paradigm in FCA is referred to [1].

Frequent Closed Itemset: An itemset I ⊆ I is said to be closed if I = ω(I),
and is said to be frequent with respect to the minsup threshold if support(I)=
|ψ(I)|
|O| ≥ minsup [2].

Minimal Generator: An itemset g ⊆ I is said to be minimal generator of a
closed itemset I, if and only if ω(g) = I and does not exist g′ ⊆ g such that
ω(g′) = I [3, 4].

Iceberg Galois Lattice: When only frequent closed itemsets are considered
with set inclusion, the resulting structure (L̂,⊆) only preserves the join opera-
tor [1]. This is called a join semi-lattice or upper semi-lattice. In the remaining of
the paper, such structure is referred to as ”Iceberg Galois Lattice” [5]. Therefore,
given an Iceberg Galois lattice in which each closed itemset is ”decorated” with
its associated list of minimal generators, generic bases of association rules can be
derived in a straightforward manner. Indeed, generic approximative rules repre-
sent ”inter-node” implications, assorted with the confidence measure, between
two comparable equivalence relation classes, i.e., from a sub-closed-itemset to a
super-closed-itemset when starting from a given node in the partially ordered
structure [6].



IGB: A New Informative Generic Base of Association Rules 83

a c e g k
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Fig. 1. Left: The formal context K Right: Associated Iceberg Galois lattice for
minsup =1

Example 1. Let us consider the formal context K given by Figure 1 (Left). The
associated Iceberg Galois lattice, for minsup=1, is depicted by Figure 1 (Right)1.
Each node in the Iceberg is represented as a couple (closed itemset, support) and
is decorated with its associated minimal generator list.

3 Extraction of Generic Bases of Association Rules

The problem of the relevance and the utility of the association rules is of primary
importance. This is due to the high number of the association rules extracted
from the real-life databases and the presence of the high percentage of redun-
dant rules conveying the same information. In the literature, we can witness the
presence of some techniques to prune such set of rules, mainly based on statis-
tical metrics [7]. In what follows, we put the focus on the results issued from
the FCA, to retrieve a reduced set of rules without information loss. Indeed,
this reduced set, called base, is composed of generic rules and should fulfill the
following requirements:
– “Informativeness”: The generic base of association rules, allows to re-

trieve exactly the support and confidence of the derived (redundant) rules.
– “Derivability”: An inference mechanism should be provided (e.g., an ax-

iomatic system). The axiomatic system has to be valid (i.e., should forbid
derivation of non valid rules) and complete (i.e., should enable derivation of
all redundant valid rules).

1 We use a separator-free form for sets, e.g., cg stands for {c, g}.

A critical review of the dedicated literature permitted to mainly report the
following previous works:

1. Representative Rules: In [8], Kryszkiewicz introduced a new syntactic
derivation operator, called the ”Cover”, defined as follows: Cover(X ⇒Y) =
{X ∪ Z ⇒ V | Z, V ⊆ Y ∧ Z ∩ V = ∅ ∧ V �= ∅}.



84 G. Gasmi et al.

Based on the Cover operator, the author defined a minimal base of rules
called representative rules (RR), such that: RR={R ∈ AR | � R’∈ AR,
R�=R’ and R ∈ Cover(R’)} where AR is the set of all valid association rules.
RR was redefined in [9] under the name of ”representative basis (RB)”.
However, the premise and the conclusion parts of the generic rules of RB
are not necessarily disjoint. To derive redundant rules from RB, the author
proposed an axiomatic system composed of Left augmentation and Decom-
position axioms

As pointed out in [10], RR is the smallest rule set that covers all valid
association rules by means of the Cover operator. However, it is not infor-
mation lossless. Actually, RR is not informative (i.e., it does not allow to
retrieve exactly the support and the confidence of derived rules). In [8, 9],
the authors were the first to consider generic association rules whose premise
part can be empty. However, no attention was paid to a semantic interpre-
tation of this type of knowledge.

2. Generic basis for exact association rules and Informative basis for
approximative association rules: Bastide et al. characterized what they
called ”Generic basis for exact association rules” (adapting the global im-
plication base of Duquenne and Guigues [11]) which is defined as follows:
Let FCI be the set of frequent closed itemsets extracted from the context
and, for each frequent closed itemset I, let us denote GI the set of minimal
generators of I.

GBE = {R : g ⇒ (I − g) | I ∈ FCI ∧ g ∈ GI ∧ g �= I}.

The authors also characterized what they called ”Informative basis for
approximative association rules” (adapting the partial implications of Lux-
enberger [12]) which is defined as follows: GBA = {R : X c⇒ (Y-X), Y ∈ FCI
∧ ω(X) ⊂ Y ∧ c = confidence(R) ≥ minconf}.

As pointed out in [10], by using the Cover operator as axiomatic system,
the couple, proposed by Bastide et al. [3], (GBE ,GBA) forms a subset of as-
sociative rules which is information lossless. A couple of valid and complete
axiomatic systems for GBE and GBA, respectively, was given in [13]. How-
ever, the couple (GBE ,GBA) suffers from a huge number of generic rules, in
particular, when we consider dense databases.

4 A New Generic Base

The couple of generic bases proposed by Bastide et al. is informative. However, it
suffers from a huge number of generic association rules. The extraction of generic
base RR (RB) is the smallest rule set covering all valid association rules by
means of the cover operator. However, it is not information lossless. Hence, our
contribution consists in introducing a new approach permitting to extract infor-
mative generic base for association rules which is more compact than (GBE ,GBA).
Thus, we begin by redefining association rule-redundancy as follows:
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Definition 1. Let AR be the set of all association rules that can be derived
from an extraction context K. R: X⇒Y ∈ AR is redundant with respect to R1:
X1⇒Y1 if it fulfills the following conditions:

1. ω(XY ) = X1Y1

2. X1⊆ X ∧ Y ⊂ Y1

Based on the former definition, we introduce the following definition of the new
generic base called IGB:

Definition 2. Let FCI be the set of frequent closed itemsets and GI the set of
minimal generators of a frequent closed itemset I.
IGB = {R : gs ⇒ (I-gs) | I ∈ FCI ∧ I�= ∅ ∧ gs ∈ GI′ , I’ ∈ FCI ∧ I’ ⊆ I ∧
confidence(R) ≥ minconf ∧ � g′ / g’ ⊂ gs ∧ confidence(g′ ⇒ I-g′)≥ minconf }.

Proposition 1. The generic base IGB is informative, i.e., the support and the
confidence of all derived rules can be exactly retrieved from IGB.

Proof. Our approach consists in finding for each non empty frequent closed item-
set I, the smallest minimal generator gs of a frequent closed itemset I’ subsumed
by I and fulfilling the minconf constraint. Thus, generic association rules of IGB
have the following form: gs⇒I-gs. Therefore, we are able to reconstitute all fre-
quent closed itemset by concatenation of the premise and the conclusion parts
of a generic rule. Since the support of a frequent itemset is equal to the support
of the smallest frequent closed itemset containing it, then the support and the
confidence of all derived rules can be exactly retrieved.

4.1 The IGB Generic Base Construction

The IGB construction algorithm takes as input the set of all frequent closed
itemsets FCI extracted by using one of the dedicated algorithms2.

Proposition 2. Let I be a non empty frequent closed itemset, if support(I)≥
minconf, then the generic association rule R: ∅ ⇒I ∈ IGB.

Proof. Proposition 2 derives straightforwardly from Definition 2. Since confi-
dence (R:∅ ⇒I)=support(I), then the generic rule ∅ ⇒I is valid. Hence, R
presents the largest conclusion that can be drawn from the frequent closed item-
set I since there is no another rule R’:X’⇒Y’ such that X’ ⊂ ∅ and I ⊆ Y’.

2 A critical survey of these algorithms can be found in [6].

The IGB construction algorithm is based on Proposition 2. So, it considers the
set of frequent closed itemsets FCI. For each non empty closed itemset I, it checks
whether its support is greater than or equal to minconf. If it is the case, then we
generate the generic rule R:∅ ⇒I. Otherwise, it has to look for the smallest min-
imal generator gs, associated to a frequent closed itemset subsumed by I, and
then generates the generic rule R:gs ⇒I-gs if the minconf threshold is reached.
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Example 2. Let us consider the extraction context given by Figure 1 (Left).
Table 1 shows the running process of the IGB construction algorithm for minsup
= 1

7 and minconf = 1
5 .

Table 1. Running process of the IGB construction algorithm

Iteration non empty I support(I)> I1⊆ I Lsmallest−gen IGB
∈ FCI minconf

1 cegk No k, ek, cg, g, k, e, c, g k
1
5⇒ceg

gk, cegk e
1
4⇒cgk

c
1
2⇒egk

g
1
4⇒cek

2 aek yes ∅
2
5⇒aek

3 ek yes ∅
4
7⇒ek

4 k yes ∅
5
7⇒k

5 cg yes ∅
2
7⇒cg

6 gk yes ∅
2
7⇒gk

7 g yes ∅
4
7⇒g

4.2 Generic Association Rule Semantics

In the following, we have to discuss semantics attached to an association rule
R:X c⇒Y-X. Usually, R expresses that the probability of finding Y with a value c
depends on the presence of X. Thus, X constitutes a constraint for the correlation
Y items. In the IGB base, we can find generic association rules whose premise
part can be empty. Such rules were considered in [9, 10], but very little attention
was paid to a semantic interpretation attached to this type of knowledge.

Let us consider the extraction context given by Figure 1 (Left). For min-
conf = 1

7 and applying Bastide et al. approach, we obtain among the possibly
extracted generic association rules, c ⇒ egk, e ⇒ cgk, g ⇒ cek, k ⇒ ceg. How-
ever, does the correlation probability of the items c, e, g and k depend on the
presence of c, e, g or k? Actually, the probability of the correlation of c, e, g
and k with a value greater than or equal to minconf does not depend on any
condition. Thus, we propose to represent such type of correlation by only one
generic association rule, i.e., R: ∅ ⇒ cegk. The generic base IGB contains then
two types of knowledge: (i) ”Implicative knowledge” represented by a generic
association rule whose the premise part is not empty. (ii) ”Factual knowledge”
represented by a generic association rule whose the premise part is empty.
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4.3 Redundant Association Rule Derivation

In order to derive the set of all valid redundant association rules, we propose
in what follows an axiomatic system and we prove that it is valid (i.e., should
forbid derivation of non valid rules) and that it is complete (i.e., should enable
derivation of all the valid rules).

Proposition 3. Let us consider the generic base denoted by IGB and the set
of all valid association rules extracted from K, denoted by AR. The following
axiomatic system is valid.

A0. Conditional reflexivity: If X c⇒ Y ∈ IGB ∧ X �= ∅ then X c⇒Y ∈ AR
A1. Augmentation: If X c⇒Y ∈ IGB then X ∪ Z c′⇒Y-{Z} ∈ AR ,Z ⊂Y.
A2. Decomposition: If X c⇒Y ∈ AR then X c⇒Z ∈ AR, Z ⊂ Y ∧ ω(XZ) =

XY.

Proof. A0. Conditional reflexivity: follows from the proper definition of the
IGB.

A1. Augmentation: Since X c⇒Y ∈ IGB then confidence(X c⇒Y)=c ⇔
support(Y )
support(X) = c ≥ minconf. Since X ⊂ XZ, then support(X)> support(XZ) and

minconf < support(XY )
support(X) < support(XY )

support(XZ) . Thus, X ∪ Z c′⇒Y-{Z} is a valid associa-

tion rule having a confidence value equal to c’= support(XY )
support(XZ) .

A2. Decomposition: Since, X c⇒Y ∈ AR then confidence(X c⇒Y)=c ≥ min-
conf, c= support(XY )

support(X) then support(XY)=c × support(X). Also, we have ω(XZ)
= ω(XY ), then support(XZ)=support(XY) consequently, support(XZ) = c ×
support(X). Thus, X c⇒Z is a valid associative rule.

Remark 1. The constraint of non emptiness of the the premise was introduced in
respect to an implicit ”habit” stipulating that the premise part of an association
rule is usually non empty.

Proposition 4. The proposed axiomatic system is complete: the set of all as-
sociative rules extracted from K are derivable from IGB by using the proposed
axiomatic system.

Proof. Let IGB be the generic base extracted from the extraction context K for
given minsup et minconf. AR denotes the set of all association rules extracted
from K and FCI the set of frequent closed itemsets.

Let R:X⇒Y-X ∈ AR. In the following, we have to show that R can be de-
rived from a generic association rule of IGB by the application of the proposed
axiomatic system.
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– If Y ∈ FCI then two cases are possible:
1. Then, there is no rule R’:X’⇒Y-X’ ∈ AR such that X’⊂X, then

• if support(Y)< minconf then R:X⇒Y-X ∈ IGB. R:X⇒Y-X ∈ AR
by application of the conditional reflexivity axiom.

• Else it exists a rule R”:∅⇒Y∈ IGB. By application of the augmen-
tation axiom to R”, we obtain the rule R:X⇒Y-X.

2. It exists a rule R”:X”⇒Y-X”∈ IGB such that X”⊂X’ ∧ X”⊂X. By appli-
cation of the augmentation axiom to R”:X”⇒Y-X”, we obtain R:X⇒Y-
X.

– Otherwise, it exists a rule R’:X⇒Y’-X∈ AR such that Y’∈ FCI ∧ ω(Y ′)
= ω(Y ). Then, it exists a rule R”:X”⇒Y’-X”∈ IGB such that X”⊆X. We
apply firstly, the augmentation axiom to R”:X”⇒Y’-X”(if X”⊂X) in order
to obtain R’:X⇒Y’-X. Next, we apply the decomposition axiom to R’ to find
R:X⇒Y-X.

5 Experimental results

We carried out experimentations on benchmarking datasets, in order to evaluate
the number of generic association rules. We implemented algorithms in the C
language under Linux Fedora Core 2. Physical characteristics of the machine
are: a PC pentium 4 with a CPU clock rate of 3.06 Ghz and a main memory of
512 Mo.

In the following, we put the focus on the variation of the reported generic
rule number of the different generic bases versus the minconf value variation.

– IGB: For minconf =minsup, IGB contains only factual generic association
rules. The number of factual generic association rules is equal to the number
of frequent closed itemsets. This can be explained by the fact that all frequent
closed itemset supports are equal to or greater than minconf.

– By increasing the minconf value, the number of factual generic rules de-
creases until reaching 0 when minconf =1. Indeed, by varying minconf, each
factual generic rule is substituted by a number of implicative generic rules
equal to the cardinality of Lsmallest−gen. Thus, the more this cardinality
is important, the more increases the number of generic association rules of
IGB. A singularity for the Mushrooms dataset is noteworthy. In fact, the
number of factual generic rules is equal to 1 even for minconf =1 (usually,
it is equal to 0). This can be explained by the fact that the item coded by
’85’ appears in all dataset transactions. Thus, for any value of minconf, the
factual generic rule ∅ →85 is always valid.

– (GBE,GBA): We note that the number of exact generic rules of GBE is in-
sensitive to the variation of minconf value. However, the more minconf in-
creases, the more decreases the number of approximate generic rules of GBA.
Indeed, by increasing minconf, the number of minimal generators satisfying
the minconf constraint decreases.

– RR: When minconf =minsup, the set of generic rules of RR is composed
only of factual generic association rules and their number is equal to that
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of maximal frequent closed itemset. Following the variation of minconf, the
number of implicative generic rules, substituting factual generic rules, deter-
mines the number of generic rules of RR.

In what follows, we discuss the compactness degree of generic bases. We note
that the gap between IGB and the set of all valid rules extracted using the Apri-
ori algorithm is more important in dense datasets. Indeed, when minconf is less
than 100%, the compactness degree of IGB ranges from 0.4% to 80%. Conversely
to sparse datasets, compactness degree is limited to a value varying between 41%
and 100%. This gap widens by lowing support values. The compactness degree
of RR base ranges from 0.06% to 80% for dense datasets, while it ranges from
26% to 100% for sparse datasets. For sparse datasets, (GBE ,GBA) contains the
set of all valid rules. This is can be explained by the fact that for sparse datasets,
the set of frequent itemsets is equal to the set of frequent closed itemsets and the
set of minimal generators. However, for dense datasets, the compactness degree
of (GBE ,GBA) varies between 8% and 80%.
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Fig. 2. The generic association rules variation versus minconf variation

6 Conclusion

In this paper, we introduced a novel informative generic base, for association
rules which is more compact than (GBE ,GBA). We also provided a valid and
complete axiomatic system, composed of the conditional reflexivity, augmenta-
tion and decomposition axioms, permitting to derive the set of all valid rules.
We distinguished between two types of generic rules; ”factual” and ”implicative”
ones. We also implemented algorithms of IGB, (GBE ,GBA) and RR construc-

tant profits in terms of compactness of the introduced generic base. In the near
tion. Experimental results carried out on benchmarking datasets showed impor-
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future, we plan to examine the potential benefits from integrating the new base in
a query expansion system and in a generic bases visualization environment [14].
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Département des Sciences de l’Informatique
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Abstract. The steady growth in the size of data has encouraged the
emergence of advanced main memory trie-based data structures. Con-
currently, more acute knowledge extraction techniques are devised for
the discovery of compact and lossless knowledge formally expressed by
generic bases. In this paper, we present an approach for deriving generic
bases of association rules. Using this approach, we construct small par-
tially ordered sub-structures. Then, these ordered sub-structures are
parsed to derive, in a straightforward manner, local generic association
bases. Finally, local bases are merged to generate the global one. Exten-
sive experiments carried out essentially showed that the proposed data
structure allows to generate a more compact representation of an extrac-
tion context comparatively to existing approaches in literature.

1 Introduction

Classical approaches for extraction of such implicit knowledge suffer from the
huge number of potentially interesting correlations (specially association rules)
that can be drawn from a dataset. In order to limit the number of the reported
rules, while conserving the ”informativeness” property, a battery of results, pro-
vided by the mathematical foundations of the Formal Concept Analysis, yielded
a compact and lossless subset of association rules, called generic bases of associa-
tion rules [1]. In order to derive generic bases of association rules, the extraction
of knowledge base problem can be reformulated as follows:(1 )Discover two dis-
tinct ”closure systems”, i.e., sets of sets which are closed under the intersection
operator,: the set of closed itemsets and the set of associated minimal genera-
tors. Also, the upper covers (Covu) of each closed itemset should be available.
(2 )From all the information discovered in the first step, i.e., two closure systems
and the upper covers sets, derive generic bases of association rules (from which
all the remaining rules can be derived). It is noteworthy that the recently pro-
posed approaches advocate the use of advanced data structure, essentially based
on tries structures, to store compactly in main memory input dataset [2, 3] or to
store partial outputs (e.g.,[4]).

In this paper, we propose a new trie-based data structure called Itemset-
trie.The Itemset-trie extends the idea claimed by the authors of FP-Tree [2]
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and Cats [3] structures, aiming to improve storage compression and to allow
(closed) frequent pattern mining without ”explicit” candidate itemset generation
step. Next, we propose an algorithm, falling in the characterization ”Divide and
Conquer” to extract frequent closed itemsets with their associated minimal
generators. Hence, the derivation of approximative generic association rules is
based on the exploration of such closed itemsets organized upon their natural
partial order (also called precedence relation). That’s why we construct on the
fly, concurrently with the closed itemsets discovery process, the local ”iceberg
lattice” [5]. Such local ordered sub-structures can be drawn quite naturally in
a parallel manner. Then, these ordered sub-structures are parsed to derive, in
a straightforward manner, local generic bases of association rules. Finally, local
bases are merged to generate the global one. Such process can be recapitulated as
follows: (i)Construct the Itemset-trie, (ii)Construct the local ordered struc-
tures,(iii)Merge the local generic association rules to derive a global one.

The remainder of the paper is organized as follows : In Section 2, we present
the Itemset-trie. Section 3 introduces the construction of the partially ordered
structures topic1. Section 4 discusses preliminary results on the practical perfor-
mances of the presented algorithms. Section 5 concludes the paper and points
out future directions to follow.

In the context of mining frequent (closed) patterns in transaction databases or
many other kinds of databases, an important number of studies rely on Apriori-
like ”test-and-generate” approach2. However, this approach suffers from a very
expensive candidate set generation step, especially with long patterns or un-
der low user-requirements. This drawback is reinforced with tediously repeated
disk-stored database scans. To avoid the approach bottleneck, recent studies
(e.g, the pioneering work of Han et al. and its FP-tree structure [2]) proposed
to adopt an advanced data structure, where the database is compressed in order
to achieve pattern mining. The idea behind the compact data structure FP-
tree is that when multiple transactions share an identical frequent itemset,
they can be merged into one with a registered number of occurrences. Beside a
costly sorting step, the proposed FP-Tree structure is unfortunately not suited
for an interactive mining process, in which a user may be interested in vary-
ing the support value. In this case, the FP-tree should be rebuilt since its
construction is support dependent. Although the work presented in [3] tackles
this insufficiency, the proposed structure, called Cats, in which a single item is
represented in a node. That’s why we introduce a, support independent, more
compact structure called Itemset-trie, in which each node is composed by an
itemset. To illustrate this compactness, let us consider the extraction context
given by Figure 1(Up). Figure 1(a) depicts the associated FP-Tree, while Fig-
ure 1(b) represents the associated Itemset-trie. Indeed, we remark that the

1 Please note that algorithm pseudo-codes are omitted due to lack of available space.
2 For a critical overview of these approaches, please refer to [6].

2 Itemset-Trie Data Structure
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associated Itemset-Trie is more compact than the corresponding FP-Tree,
since it contains only 7 nodes and 3 levels while the FP-Tree contains 12 nodes
and 6 levels.

Fig. 1. (Left) The extraction context K (Right) FP-Tree and the Itemset-Trie
associated to the extraction context K

As output of the first step, we constructed the Itemset-trie. In order to perform
a generic association rule base extraction (specially the approximative one), we
need to construct partially ordered structures based on the precedence relation.
As we work only with closed itemsets, the order construction needs to retrieve
the precedence relation from the family of closed itemsets. The main objective
(and contribution also) of our approach is to discover the closed itemsets and to
order them on the fly. This is performed in a gradual process, i.e., by linking one
closed itemset at a time to a structure which is only partially finished. We do not
aim at constructing only one ordered structure from the input relation (which
turns to construct the Hasse diagram), but instead, we look for constructing
several ordered structures. Of course, some redundancy will appear, i.e., a given
closed itemset can appear in more than one ordered structure, but we avoid the
expensive cost of Hasse diagram construction [7].

Once the Itemset-trie tree is built, it can be used to mine closed item-
sets and their associated minimal generators repeatedly for different support
thresholds settings without the need to rebuild the tree. Like FP-growth [2]
and Feline [3], the proposed algorithm falls in the association rules mining
algorithms characterization ”Divide-and-conquer”. The initial itemset-trie is
fragmented into conditional sub-tries. Indeed, given a pattern called p, a p′s
conditional itemset-trie tree is built, representing faithfully all transactions
that contain the pattern p. For example, given the extraction context given by
Figure 1(Up), the set of 1-itemsets, with their associated supports, is as follows:
< a/3; b/3; c/4; f/4; m/3; p/3 >. Hence, we have to derive the a’s, b’s and so on
conditional itemset-tries.

3 Construction of the Partially Ordered Structures
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It is noteworthy that unlike FP-growth [2] and Closet [8] algorithms, we
consider only the lexicographic order and we consider that in a given conditional
trie all the remaining 1-itemset should be included. For example, in the above
mentioned algorithms (i.e., FP-growth and Closet), the conditional b’s trie
will not include the 1-itemset {a} and that of c will exclude both {a} and {b}.
The authors, aiming to discover only frequent closed itemsets, argue that there
is no need to include the 1-itemset {a} in the b’s one, since all frequent closed
itemsets containing {a} have been already extracted for the a’s conditional trie.
In our approach, we aim to extract closed itemsets and their associated minimal
generators to construct their associated ordered structure (i.e., Hasse diagram).
Since we plan to lead the mining process in a parallel manner, by assigning to
each processor a subset of the conditional tries set, each sub-trie should contain
an exhaustive description to ensure frequent closed itemsets discovery correct-
ness and to minimize the inter-processors communication cost to check itemsets
inclusions.

Example 1. Let us consider the extraction context given by Figure 1(Up). Below,
we describe the ordered structures construction for minsup=1. The set of 1-
itemsets, with their associated supports, is defined as follows: <a/3 ;b/3 ;c/4
;f/4 ;m/3 ;p/3>. Then starting with the a’s conditional Itemset-trie, we can
find the associated itemset La list :< b/1; c/3; f/3; m/3; p/2 >. From such list
we remark that the 1-itemsets c,f and m are as frequent as the 1-itemset a.
Hence, they constitute a closed itemset {acfm} with a support equal to 2 and
with the 1-itemset {a} as its minimal generator. The 1-itemsets c,f and m are
removed from La. Since it is not empty, we have to go recursively further in
depth and to construct the sub-tries, respectively for the 2-itemsets {ab} and
{ap}. From Lab, we discover the closed itemset {abcfm} with a support equal
to 1 and with the 2-itemset {ab} as its minimal generator. While from Lap,
we discover the closed itemset {acfmp} with support equal to 1 and with the
2-itemset {ap} as its minimal generator. The treatment of La ends since there
are no more elements to handle. As output, the local Hasse diagram (associated
with the a’s conditional Itemset-trie) can be drawn incrementally. Indeed,
the in-depth of La list enables to connect, first, the closed itemsets {acfm}
and {abcfm}, and second to connect {acfm} and {acfmp}. The algorithm has
to deal next with the Lb list :< a/1; c/2; f/2; m/1; p/1 >, extracted from the
conditional trie. We can easily check that no 1-itemset is so frequent as b and
then {b} is a closed itemset. Since the remaining list to develop is not empty,
we go further in depth and we start with the 2-itemset {ab}. Lab is defined as
follows: < c/1; f/1; m/1 > from that list we discover the closed itemset {abcfm}
with a support equal to 1 and with the 2-itemset {ab} as its minimal generator.
There is no more exploration of this list since it is empty. The closed itemset
{b} is connected to the closed itemset {abcfm}. Next, we have to tackle Lbc

which is equal to < a/1; f/1; m/1; p/1 >. Any 1-itemset in this list is so frequent
as {bc} and then we can conclude that {bc} is a closed itemset with a support
equal to 2 and having {bc} as its minimal generator. The list with which to
go further in depth remains unchanged. We have respectively to handle Labc,
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Lbcf and Lbcm lists, all yielding the closed itemset {abcfm}. The closed itemset
{bc} is connected to that of {abcfm}. Next, we have to connect {b} to {bc}.
This is performed after systematically checking whether they share a common
immediate successor, which is the case in this example. In fact, {bc} and {b} are
connected respectively to their immediate successor which is {abcfm}. That’s
why we have to delete the link between {b} and {abcfm}. The processing of
the Lbc list ends by launching the Lbcp list, which gives the closed itemset {bcp}
with a support equal to 1 and with {bcp} as its minimal generator.

This section presents some experimental results of the proposed algorithms.
Itemset-Trie and Sub-Trie algorithms were written in C, and were running
on a parallel machine IBM SP2 with 32 processors. All experiments have been
conducted on both sparse and dense datasets3.

Fig. 2. (Left)Number of nodes of Itemset-Trie vs those of FP-tree and Cats, re-
spectively. (Right)Size of Itemset-Trie vs those of FP-tree and Cats, respectively

From reported statistics illustrated by Figure 2, we can remark that the pro-
posed data structure is by far more compact than FP-tree and Cats, by reduc-
ing both the number of nodes and the required main memory for storing input
datasets4. In fact, sparse datasets in average are represented at most with 24.4%
from their actual size. While, dense datasets in average are represented at most
with 18.8% from their actual size. Figure2 assessing Itemset-Trie construction
algorithm performances, shows that the latter is correlated to the number of lev-
els. Moreover, it is highly dependent of the actual size of the dataset. We also
remark that the number of levels for dense datasets is higher than that of sparse
datasets. In fact, the more dense the dataset is, the higher the number of levels
(c.f., the Chess base reaches 25 levels). In the sequel, we are interested in the
study of another aspect putting the focus on the construction of ordered sub-
structures algorithm performances. To provide a better idea about trends that
lay behind the construction algorithm, we recorded statistics for sparse datasets

3 Freely downloadable at: http://fimi.cs.helsinki.fi/data.
4 All structures were constructed for minsup=1.

4 Experimental Results
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of variable size, by adding increments of fixed size (e.g., 1000 transactions for
the T10I4D100K base). We remarked that performances are linearly dependent
of the number of transactions. However, this augmentation tends to stagnate
reaching a given threshold number of transactions. For dense datasets, we were
constrained, due to a lack of available main memory, to evaluate performances
by varying the number of items. We remarked that the execution time is lin-
early dependent of the number of items. Also, execution times obtained for the
C73D10K base are less important than those obtained for the Chess base. This
difference can be simply explained by the density, highlighted by the correspond-
ing number of levels, of the considered bases (15 levels for the C73D10K base
vs 25 levels for the Chess base).

5 Conclusion

We presented in this paper a new data structure to extract frequent closed item-
sets in order to generate generic bases of association rules. Then, we proposed an
algorithm to construct local ordered structures from which it is possible to derive
generic bases of association rules. We examined benefits from implementing the
proposed approach on an MIMD machine (IBM SP2). Indeed, the construction
method leads to a natural parallelization, in the sense where each processor of a
parallel architecture can construct locally its ordered structure. Once the local
structures are constructed, a master processor can merge them to derive a global
generic base of association rules.
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Abstract. We define sporadic rules as those with low support but high
confidence: for example, a rare association of two symptoms indicating a
rare disease. To find such rules using the well-known Apriori algorithm,
minimum support has to be set very low, producing a large number of
trivial frequent itemsets. We propose “Apriori-Inverse”, a method of dis-
covering sporadic rules by ignoring all candidate itemsets above a maxi-
mum support threshold. We define two classes of sporadic rule: perfectly
sporadic rules (those that consist only of items falling below maximum
support) and imperfectly sporadic rules (those that may contain items
over the maximum support threshold). We show that Apriori-Inverse
finds all perfectly sporadic rules much more quickly than Apriori. We
also propose extensions to Apriori-Inverse to allow us to find some (but
not necessarily all) imperfectly sporadic rules.

1 Introduction

Association rule mining has become one of the most popular data exploration
techniques, allowing users to generate unexpected rules from “market basket”
data. Proposed by Agrawal et al. [1, 2], association rule mining discovers all rules
in the data that satisfy a user-specified minimum support (minsup) and mini-
mum confidence (minconf). Minsup represents the minimum amount of evidence
(that is, number of transactions) we require to consider a rule valid, and minconf
specifies how strong the implication of a rule must be to be considered valuable.

The following is a formal statement of association rule mining for transac-
tional databases. Let I = {i1, i2, . . . , im} be a set of items and D be a set of
transactions, where each transaction T is a set of items such that T ⊆ I. An
association rule is an implication of the form X → Y , where X ⊂ I, Y ⊂ I,
and X ∩ Y = ∅. X is referred to as the antecedent of the rule, and Y as the
consequent. The rule X → Y holds in the transaction set D with confidence c%
if c% of transactions in D that contain X also contain Y . The rule X → Y
has support of s% in the transaction set D, if s% of transactions in D contain
X ∪ Y [2]. One measure of the predictive strength of a rule X → Y is its lift
value, calculated as confidence(X → Y ) / support(Y ). Lift indicates the degree
to which Y is more likely to be present when X is present; if lift is less than 1.0,
Y is less likely to be present with X than Y ’s baseline frequency in D. The task
of generating association rules is that of generating all rules that meet minimum
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support and minimum confidence, and perhaps meet further requirements such
as having lift greater than 1.0.

The Apriori algorithm and its variations are used widely as association rule
mining methods. However, several authors have pointed out that the Apriori
algorithm, by definition, hinders us from finding rules with low support and
high confidence [3, 4, 5]. Apriori generates frequent itemsets (i.e. those that will
produce rules with support higher than minsup) by joining the frequent itemsets
of the previous pass and pruning those subsets that have a support lower than
minsup [2]. Hence, to generate rules that have low support, minsup must be
set very low, drastically increasing the running time of the algorithm. This is
known as the rare item problem. It means that, using the Apriori algorithm, we
are unlikely to generate rules that may indicate events of potentially dramatic
consequence. For example, we might miss out rules that indicate the symptoms of
a rare but fatal disease due to the frequency of incidences not reaching the minsup
threshold. Some previous solutions to this problem are reviewed in Section 2.

The aim of our research is to develop a technique to mine low support but
high confidence rules effectively. We call such rules “sporadic” because they
represent rare cases that are scattered sporadically through the database but
with high confidence of occurring together. In order to find sporadic rules with
Apriori, we have to set a very low minsup threshold, drastically increasing the
algorithm’s running time. In this paper, we adopt an Apriori-Inverse approach:
we propose an algorithm to capture rules using a maximum support threshold.
First, we define the notion of a perfectly sporadic rule, where the itemset forming
the rule consists only of items that are all below the maximum support threshold.
To enable us to find imperfectly sporadic rules, we allow maximum support to
be increased slightly to include itemsets with items above maximum support.
Finally, we demonstrate that Apriori-Inverse lets us find sporadic rules more
quickly than using the Apriori algorithm.

2 Related Work

The most well-known method for generating association rules is the Apriori
algorithm [2]. It consists of two phases: the first finds itemsets that satisfy a user-
specified minimum support threshold, and the second generates association rules
that satisfy a user-specified minimum confidence threshold from these “frequent”
itemsets. The algorithm generates all rules that satisfy the two thresholds and
avoids generating itemsets that do not meet minimum support, even though
there may be rules with low support that have high confidence. Thus, unless
minimum support is set very low, sporadic rules will never be generated. There
are several proposals for solving this problem. We shall discuss the MSApriori
(Multiple Supports Apriori), RSAA (Relative Support Apriori Algorithm) and
Min-Hashing approaches.

Liu et al. [4] note that some individual items can have such low support that
they cannot contribute to rules generated by Apriori, even though they may
participate in rules that have very high confidence. They overcome this problem
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with a technique whereby each item in the database can have a minimum item
support (MIS) given by the user. By providing a different MIS for different
items, a higher minimum support is tolerated for rules that involve frequent
items and lower minimum support for rules that involve less frequent items. The
MIS for each data item i is generated by first specifying LS (the lowest allowable
minimum support), and a value β, 0 ≤ β ≤ 1.0. MIS(i) is then set according to
the following formula:

M(i) = β × f (O ≤ β ≤ 1)
MIS = M(i), if(M(i) > LS)

= LS, otherwise

The advantage of the MSApriori algorithm is that it has the capability of
finding some rare-itemset rules. However, the actual criterion of discovery is
determined by the user’s value of β rather than the frequency of each data item.
Thus Yun et al. [5] proposed the RSAA algorithm to generate rules in which
significant rare itemsets take part, without any “magic numbers” specified by
the user. This technique uses relative support: for any dataset, and with the
support of item i represented as sup(i), relative support (RSup) is defined as:

RSup{i1, i2, . . . , ik} = max( sup(i1, i2, . . . , ik)/sup(i1),
sup(i1, i2, . . . , ik)/sup(i2),
. . . ,
sup(i1, i2, . . . , ik)/sup(ik))

Thus, this algorithm increases the support threshold for items that have low
frequency and decreases the support threshold for items that have high frequency.
Like Apriori and MSApriori, RSAA is exhaustive in its generation of rules, so
it spends time looking for rules which are not sporadic (i.e. rules with high
support and high confidence). If the minimum-allowable relative support value
is set close to zero, RSAA takes a similar amount of time to that taken by Apriori
to generate low-support rules in amongst the high-support rules.

Variations on Min-Hashing techniques were introduced by Cohen [3] to mine
significant rules without any constraint on support. Transactions are stored as
a 0/1 matrix with as many columns as there are unique items. Rather than
searching for pairs of columns that would have high support or high confidence,
Cohen et al. search for columns that have high similarity, where similarity is
defined as the fraction of rows that have a 1 in both columns when they have a
1 in either column. Although this is easy to do by brute-force when the matrix
fits into main memory, it is time-consuming when the matrix is disk-resident.
Their solution is to compute a hashing signature for each column of the matrix
in such a way that the probability that two columns have the same signature is
proportional to their similarity. After signatures are calculated, candidate pairs
are generated, and then finally checked against the original matrix to ensure
that they do indeed have strong similarity.

It should be noted that, like MSApriori and RSAA above, the hashing solu-
tion will produce many rules that have high support and high confidence, since
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only a minimum acceptable similarity is specified. It is not clear that the method
will extend to rules that contain more than two or three items, since mCr checks
for similarity must be done where m is the number of unique items in the set of
transactions, and r is the number of items that might appear in any one rule.
Removing the support requirement entirely is an elegant solution, but it comes
at a high cost of space: for n transactions containing an average of r items over
m possible items, the matrix will require n×m bits, whereas the primary data
structure for Apriori-based algorithms will require n × log2 m × r bits. For a
typical application of n = 109, m = 106 and r = 102, this is 1015 bits versus
approximately 2× 1012 bits.

For our application, we are interested in generating only sporadic rules, with-
out having to wade through a lot of rules that have high support (and are there-
fore not sporadic), without having to generate any data structure that would
not normally be generated in an algorithm like Apriori, and without generating
a large number of trivial rules (e.g. those rules of the form A → B where the
support of B is very high and the support of A rather low). In the next section,
we propose a framework for finding certain types of sporadic rules.

3 Proposal of Apriori-Inverse

In the previous section, the techniques discussed generate all rules that have high
confidence and support. Using them to find sporadic rules would require setting
a low minsup. As a result, the number of rules generated can be enormous,
with only a small number being significant sporadic rules. In addition, not all
rules generated with these constraints are interesting. Some of the rules may
correspond to prior knowledge or expectation, refer to uninteresting attributes,
or present redundant information [6].

3.1 Types of Sporadic Rule

We refer to all rules that fall below a user-defined maximum support level (max-
sup) but above a user-defined minimum confidence level (minconf) as sporadic
rules. We further split sporadic rules into those that are perfectly sporadic (have
no subsets above maxsup) and those that are imperfectly sporadic. We then
demonstrate an algorithm, which we call Apriori-Inverse, that finds all perfectly
sporadic rules.

Definition:

A→ B is perfectly sporadic for maxsup s and minconf c iff

confidence(A→ B) ≥ c, and
∀x : x ∈ (A ∪B), support(x) < s

That is, support must be under maxsup and confidence at least minconf,
and no member of the set of A ∪B may have support above maxsup. Perfectly
sporadic rules thus consist of antecedents and consequents that occur rarely (that
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is, less often than maxsup) but, when they do occur, tend to occur together (with
at least minconf confidence).

While this is a useful definition of a particularly interesting type of rule, it
certainly does not cover all cases of rules that have support lower than max-
sup. For instance, suppose we had an itemset A ∪ B with support(A) = 12%,
support(B) = 16%, and support(A ∪ B) = 12%, with maxsup = 12% and min-
conf = 75%. Both A→ B (confidence = 100%) and B → A (confidence = 75%)
are sporadic in that they have low support and high confidence, but neither are
perfectly sporadic, due to B’s support being too high. Thus, we define imperfectly
sporadic rules as the following:

Definition:

A→ B is imperfectly sporadic for maxsup s and minconf c iff

confidence(A→ B) ≥ c, and
support(A ∪B) < s, and
∃x : x ∈ (A ∪B), support(x) ≥ s

That is, a rule is imperfectly sporadic if it meets the requirements of maxsup
and minconf but has a subset of its constituent itemsets that has support above
maxsup. Clearly, some imperfectly sporadic rules could be completely trivial
or uninteresting: for instance, when the antecedent is rare but the consequent
has support of 100%. What we should like is a technique that finds all perfectly
sporadic rules and some of the imperfectly sporadic rules that are nearly perfect.

3.2 The Apriori-Inverse Algorithm

In this section, we introduce the Apriori-Inverse algorithm. Like Apriori, this
algorithm is based on a level-wise search. On the first pass through the database,
an inverted index is built using the unique items as keys and the transaction IDs
as data. At this point, the support of each unique item (the 1-itemsets) in the
database is available as the length of each data chain. To generate k-itemsets
under maxsup, the (k−1)-itemsets are extended in precisely the same manner as
Apriori to generate candidate k-itemsets. That is, a (k − 1)-itemset i1 is turned
into a k-itemset by finding another (k− 1)-itemset i2 that has a matching prefix
of size (k − 2), and attaching the last item of i2 to i1. For example, the 3-
itemsets {1, 3, 4} and {1, 3, 6} can be extended to form the 4-itemset {1, 3, 4, 6},
but {1, 3, 4} and {1, 2, 5} will not produce a 4-itemset due to their prefixes not
matching right up until the last item.

These candidates are then checked against the inverted index to ensure they
at least meet a minimum absolute support requirement (say, at least 5 instances)
and are pruned if they do not (the length of the intersection of a data chain
in the inverted index provides support for a k-itemset with k larger than 1).
The process continues until no candidate itemsets can be generated, and then
association rules are formed in the usual way.

It should be clear that Apriori-Inverse finds all perfectly sporadic rules, since
we have simply inverted the downward-closure principle of the Apriori algorithm;
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rather than all subsets of rules being over minsup, all subsets are under max-
sup. Since making a candidate itemset longer cannot increase its support, all
extensions are viable except those that fall under our minimum absolute sup-
port requirement. Those exceptions are pruned out, and are not used to extend
itemsets in the next round.

Algorithm Apriori-Inverse
Input: Transaction Database D, maxsup value
Output: Sporadic Itemsets

(1) Generate inverted index I of (item, [TID-list]) from D.
(2) Generate sporadic itemsets of size 1:

S1 = ∅
for each item i ∈ I do begin

if count(I, i)/|D| < maximum support and
count(I, i) > minimum absolute support

then S1 = S1 ∪ i
end

(3) Find Sk, the set of sporadic k-itemsets where k ≥ 2:
for (k = 2; Sk−1 = ∅; k + +) do begin

Sk = ∅
for each i ∈ {itemsets that are extns of Sk−1} do begin

if all subsets of i of size k − 1 ∈ Sk−1

and count(I, i) > minimum absolute support
then Sk = Sk ∪ i

end
end
return

⋃
k Sk

Apriori-Inverse does not find any imperfectly sporadic rules, because it never
considers itemsets that have support above maxsup; therefore, no subset of any
itemset that it generates can have support above maxsup. However, it can be
extended easily to find imperfectly sporadic rules that are nearly perfect: for
instance, by setting maxsupi to maxsup/minconf where maxsupi is maximum
support for imperfectly sporadic rules and maxsup is maximum support for
reported sporadic rules.

3.3 The “Less Rare Itemset” Problem

It is, of course, true that rare itemsets may be formed by the combination of less
rare itemsets. For instance, itemset A may have support 11%, itemset B support
11%, but itemset A ∪ B only 9%, making A ∪ B sporadic for a maxsup of 10%
and A → B a valid imperfectly sporadic rule for minconf of 80%. However,
Apriori-Inverse will not generate this rule if maxsup is set to 10%, for A→ B is
an imperfectly sporadic rule rather than a perfectly sporadic one.

It would be nice to be able to generate imperfectly sporadic rules as well. We
note, however, that not all imperfectly sporadic rules are necessarily interesting:
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in fact, many are not. One definition of rules that are trivial is proposed by
Webb and Zhang [7], and a similar definition for those that are redundant given
by Liu, Shu, and Ma [8]. Consider an association rule A → C with support
10% and confidence 90%. It is possible that we may also generate A ∪ B → C,
with support 9% and confidence 91%: however, adding B to the left hand side
has not bought us very much, and the shorter rule would be preferred. Another
situation in which trivial rules may be produced is where a very common item is
added to the consequent; it is possible that A→ C has high confidence because
the support of C is close to 100% (although in this case, it would be noticeable
due to having a lift value close to 1.0). Therefore, we do not necessarily wish to
generate all imperfectly sporadic rules.

We propose three different modifications of Apriori-Inverse, all of which pro-
duce rules that are not-too-far from being perfect. We refer to the modifications
as “Fixed Threshold”, “Adaptive Threshold”, and “Hill Climbing”. In general,
we adjust the maxsup threshold to enable us to find at least some imperfectly
sporadic rules: specifically, those that contain subsets that have support just a
little higher than maxsup.

Fixed Threshold: In this modification, we propose adjusting the maximum
support threshold before running Apriori-Inverse to enable us to find more rare
itemsets. The maximum support threshold is adjusted by taking the proportion
of the maximum support threshold and the minconf threshold. For example,
given a minsup threshold of 0.20 and a minconf of 0.80, the new minsup thresh-
old would be set to 0.2/0.8 = 0.25. However, during the generation of rules,
we only consider itemsets that satisfy the original maximum support threshold.
Rules that have supports which are higher than the original maxsup are not
generated.

Adaptive Threshold: In this modification, we propose changing the maximum
support by a small increment η (typically 0.001) at each value of k during the
generation of sporadic k-itemsets. The threshold is increased until the number
of itemsets in the current generation does not change when compared to the
previous generation. In general, we search for a plateau where the number of
itemsets found does not change.

Hill Climbing: Hill Climbing is an extension of Adaptive Threshold; it adjusts
the maximum support threshold by adding an increment that is the product of a
rate-variable η (like the learning constant for a gradient descent algorithm; but
typically 0.01) and the gradient of the graph of the number of itemsets generated
so far. Like the previous method we modify the threshold until the number of
itemsets reaches a plateau. Using this method in a large dataset the plateau is
likely to be found sooner, since the increment used becomes greater when the
gradient is steep and smaller when the gradient becomes less steep.
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4 Results and Discussion

In this section, we compare the performance of the standard Apriori algorithm
program with the proposed Apriori-Inverse. We also discuss the results of three
the different variation of Apriori-Inverse. Testing of the algorithms was carried
out on six different datasets from the UCI Machine Learning Repository [9].

Table 1 displays results from implementations Apriori-Inverse and the Apriori
algorithms. Each row of the table represents an attempt to find perfectly spo-
radic rules—with maxsup 0.25, minconf 0.75, and lift greater than 1.0—from the
database named in the left-most column. For Apriori-Inverse, this just involves
setting maxsup and minconf values. For the Apriori algorithm, this involves set-
ting minsup to zero (conceptually; in reality, the algorithm has been adjusted
to use a minimum absolute support of 5), generating all rules, then pruning out
those that fall above maxsup. In each case, this final pruning step is not counted
in the total time taken. In the first three cases, Apriori was able to generate all
frequent itemsets with maxsup greater than 0.0, but for the final three it was not
clear that it would finish in reasonable time. To give an indication of the amount
of work Apriori is doing to find low-support rules, we lowered its minsup thresh-
old until it began to take longer than 10, 000 seconds to process each data set.

Table 1. Comparison of results of Apriori-Inverse and Apriori

Dataset
Apriori-Inverse

(maxsup=0.25,minconf=0.75)
Apriori

(minconf=0.75)

Rules Passes Average
Sporadic
Itemsets

Time
(sec)

Min
Sup

Rules with
Min Sup
< 0.25

Rules Passes Average
Frequent
Itemsets

Time
(sec)

TeachingEval. 11 3 12 0.01 0 281 294 4 68 0.32

Bridges 9 3 8 0.01 0 24086 24436 9 405 6.44

Zoo 79 4 11 0.03 0 40776255 42535557 17 34504 8380.64

Flag 2456 7 128 1.32 0.11 16427058 16944174 14 57765 11560.77

Mushroom 1142015 13 3279 225.20 0.15 28709481 31894347 16 21654 11489.32

Soybean-Large 37859 10 307 6.51 0.43 0 101264259 17 46310 11550.22

Using Apriori, we were able to find all rules below a support of 0.25 for
the Teaching Assistant Evaluation dataset, Bridges dataset, and Zoo dataset.
However, using Apriori on the Flag dataset and Mushroom dataset, we could only
push the minimum support down to 0.11 and 0.15 respectively, before hitting the
time constraint of 10 thousand seconds. Compare this to Apriori-Inverse, finding
all perfectly sporadic rules in just a few minutes for the Mushroom database. For
the Soybean-Large dataset, no rules below a support of 43% could be produced
in under 10 thousand seconds.

We conclude that, while Apriori is fine for discovering sporadic rules in small
databases such as the first three in Table 1, a method such as Apriori-Inverse
is required if sporadic rules under a certain maximum support are to be found
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in larger or higher-dimensional datasets. We also note that Apriori is finding
a much larger number of rules under maxsup than Apriori-Inverse; this is, of
course, due to Apriori finding all of the imperfectly sporadic rules as well as the
perfectly sporadic rules. To take the Teaching Evaluation Dataset as an example,
Apriori finds

{course=11} → {instructor=7}
{course=11, nativeenglish=2} → {instructor=7}
{course=11} → {instructor=7,nativeenglish=2}

whereas, from this particular grouping, Apriori-Inverse only finds

{course=11} → {instructor=7}

However, since the second and third rules found by Apriori have the same
support, lift, and confidence values as the first, they both count as trivial ac-
cording to the definitions given in [8] and [7]. Apriori-Inverse has ignored them
(indeed, has never spent any time trying to generate them) because they are
imperfect.

Table 2 shows a comparison of the methods used to allow Apriori-Inverse
to find some imperfectly sporadic rules. The Fixed Threshold method finds the
largest number of sporadic rules, because it is “overshooting” the maxsup thresh-
olds determined by the two adaptive techniques, and therefore letting more item-
sets into the candidate group each time. As a result, it requires fewer passes of
the inverted index, but each pass takes a bit longer, resulting in longer running
times. However, the times for the Fixed Threshold version seem so reasonable
that we are not inclined to say that the adaptive techniques give any signifi-
cant advantage. Determining a principled way to generate imperfectly sporadic
rules—and determining a good place to stop generating then—remains an open
research question. Nevertheless, we note that the time taken to generate all of
the imperfectly sporadic rules by all three methods remains very much smaller
than the time taken to find them by techniques that require a minimum support
constraint.

Table 2. Comparison of results of extensions to Apriori-Inverse

Dataset Fixed Threshold Adaptive Threshold (η = 0.001) Hill Climbing (η = 0.01)

Rules Passes Avg
Spdc
Sets

Time
(sec)

Rules Passes Avg
Spdc
Sets

Time
(sec)

Rules Passes Avg
Spdc
Sets

Time
(sec)

TeachingEval. 46 4 22 0.01 11 6 12 0.03 11 6 12 0.04

Bridges 104 5 14 0.03 30 11 8 0.04 30 11 8 0.04

Zoo 203 5 15 0.03 203 19 13 0.14 203 19 13 0.12

Flag 12979 9 268 4.86 5722 31 165 9.49 13021 42 228 19.81

Mushroom 1368821 13 7156 791.82 1142015 26 3279 445.95 1142015 26 3279 474.88

Soybean-Large 1341135 11 801 31.47 95375 52 425 63.09 56286 30 352 27.38
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5 Conclusion and Future Work

Existing association mining algorithms produce all rules with support greater
than a given threshold. But, to discover rare itemsets and sporadic rules, we
should be more concerned with infrequent items. This paper proposed a more
efficient algorithm, Apriori-Inverse, which enables us to find perfectly sporadic
rules without generating all the unnecessarily frequent items. We also defined the
notion of imperfectly sporadic rules, and proposed three methods of finding them
using Apriori-Inverse: Fixed Threshold, Adaptive Threshold, and Hill Climbing.

With respect to finding imperfectly sporadic rules, our proposed extensions to
Apriori-Inverse are—at best—heuristic. More importantly, there are some types
of imperfectly sporadic rule that our methods will not find at all. Our future
work will involve ways of discovering rules such as A ∪ B → C where neither
A nor B is rare, but their association is, and C appears with A ∪ B with high
confidence. This is the case of a rare association of common events (A and B)
giving rise to a rare event (C). It is a particularly interesting form of imperfectly
sporadic rule, especially in the fields of medicine (rare diseases) and of process
control (disaster identification and avoidance).
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Abstract. In this paper we discuss an image mining application of Ege-
ria detection. Egeria is a type of weed found in various lands and water
regions over San Joaquin and Sacramento deltas. The challenge is to
find a view to accurately detect the weeds in new images. Our solution
contributes two new aspects to image mining. (1) Application of view
selection to image mining: View selection is appropriate when a specific
learning task is to be learned. For example, to look for an object in a
set of images, it is useful to select the appropriate views (a view is a set
of features and their assigned values). (2) Automatic view selection for
accurate detection: Usually classification problems rely on user-defined
views. But in this work we use association rule mining to automatically
select the best view. Results show that the selected view outperforms
other views including the full view.

Keywords: View, feature selection, image classification.

1 Introduction

With the advent of the Internet and rapid advances made in storage devices, non-
standard data such as images and videos have grown significantly. The process of
discovering valuable information from image data is called image mining, which
finds its sources in data mining, content-based image retrieval (CBIR), image
understanding and computer vision. The tasks of image mining are mostly con-
cerned with classification problems such as “labeling” regions of an image based
on presence or absence of some characteristic patterns, and with image retrieval
problems where “similar” images are identified. In image mining, “training” im-
ages are used for learning, and results (knowledge obtained from training) are
applied to a large number of new images to fulfill the required tasks.

In order to efficiently mine from images, we need to convert the image into
data that can be processed by image mining systems.The conventional data for-
mat used is the feature-value format (i.e., the tabular format). The attributes
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(or columns or features) are some characteristics representing an image ob-
ject (or instance or rows) having corresponding to those attributes. Features
describe the image pixel data. There could be hundreds of different features
for an image. These features may include: color (in various channels), texture,
etc. Domain experts can usually manually identify a set of relevant features in
an ad hoc manner. In general, no single feature can describe an image in its
entirety.

With many possible features for an image, often only a small number of
features are useful in an application. Using all available features may negatively
affect a mining algorithm’s performance (e.g., time and accuracy). In addition, it
takes time to extract these features, though many features may be irrelevant or
redundant. Furthermore, a large number of features would require a huge number
of instances in order to learn properly from data. This is known as the curse of
dimensionality [4]. With a limited number of instances but a large number of
features, many mining algorithms will suffer from data over-fitting. Hence, it is
imperative to choose a set of relevant features (i.e., feature selection [1]).

In this paper we discuss how to automatically identify a particular type of
weed called Egeria densa [5] in color infrared (CIR) images. These are available
as aerial photographs of various land and water regions over San Joaquin and
Sacramento deltas. The weed grows in water bodies and is present in various
parts of the image: clusters, patches, or sometimes as a ‘mesh’. When we apply
feature selection to this problem using some efficient algorithm [1, 2], we obtain
a number of features. One applies a learning algorithm to determine the exact
feature-value combinations for determining any particular task. An alternative
solution that we propose in this paper is to select a set of feature-value com-
binations directly. This combines the effect of feature selection that selects the
best features and classification that takes decision based on feature values. This
is termed as view selection [6] which is an instantiated feature set. It is appro-
priate when there is a specific learning task to be learned. For example, in a set
of images it is suitable to select the appropriate views.

In image mining, domain experts often play an important role in deciding
relevant features in a time-consuming process. Automatic view selection aims to
find relevant feature-values by learning from training images. Therefore, domain
experts are not required to specify relevant features, but only to identify or
label instances of interest in an image. The latter is a much easier task than the
former for experts, and its results are also more reliable because it directly deals
with image classification. However, for k features with binary values, the number
of possible views for a given class is 2k. Because k can be as large as hundreds,
enumeration of all views is clearly an insurmountable task. Hence, we need to find
an efficient search technique for view selection. In this work we use association
rule mining to automatically select the best view. The solution is a combination
of top association rules that gives the maximum accuracy. We test our method
on Egeria application. Results show that the selected view outperforms other
views including the full view that contains all features.
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2 View Validation via Learning

Here we define a view, and discuss how to learn good views. We give related work
onview selection in http://www.ntu.edu.sg/home/asmdash/pakdd expanded.pdf.

Views. Given a set of k features f1, f2, f3, ..., fk (feature vector fvk) and t
possible class labels C1, C2, ..., Ct for an image of t types of objects, the problem
of classifying an instance to one of the t classes can be defined as assigning a class
with maximum posterior probability, c = argmaxi P (Ci|fvk) where P (Ci|fv)
is the posterior probability of class label Ci, given the feature vector fvk.

A view is an instantiation of a subset of features for a class. In other words,
a view V for class Ci is: VCi

= {f1 = v1, f2 = v2, ..., fm = vm}. where m ≤ k, vj

is a value from the domain of feature fj , and each fj corresponds to a feature
describing the objects to be detected in an image I. A full view contains all k
feature values, i.e., m = k.

View Selection. In the search for good views, we need to find a suitable per-
formance measure that can differentiate good views from the others. The goal
of view selection is to find a sufficient and necessary subset of features with
suitable values that make good views. The necessity requirement indicates that
the subset of features should be as small as possible; and the sufficiency re-
quirement suggests that a good view can guarantee the attainment of specified
accuracy in image classification/detection. In image mining, positive means the
presence of an object of interest, negative otherwise. If an object of interest is to
be detected in an image, one of the four possibilities can arise: we may correctly
classify/detect the object’s presence (True Positive - TP); we may falsely detect
the object’s presence (False Positive - FP); we may miss the detection of the
object which should be present (False Negative - FN); we may correctly detect
that the object is absent (True Negative - TN).

In image classification, we are concerned about the presence or absence of a
particular object in a two-class classification problem. In building a good clas-
sification system, we wish to maximize TP and TN, and minimize FP and FN
(errors). Using TP, TN, FP, and FN, we define accuracy A = TP +TN

TP +FP +TN +FN .

Learning Good Views from Image Data. With the performance measure
defined, we can systematically generate views and estimate their accuracy based
on training data. We would prefer a view with the smallest number of features.
Therefore, we can start evaluating views of 1 feature, increasing the number
of features one at a time until all features are considered. However, exhaustive
search of all views is impractical when the number of features is moderately
large (e.g., k > 20) as the search space grows exponentially. There are many
search procedure in the feature selection literature [2] that are not exhaustive
yet produce reasonably good feature subsets. In this work we use association
rule mining (ARM) for selecting the best view. Association rules are mined
according to two measures: Support which measures generality of a rule and
Confidence which measures precision of the rule. For a given class C and feature-
values f ′

1 = v1, f
′
2 = v2, ..., f

′
m = vm, where m ∈ {1, ..., k} and f ′

1, ..., f
′
m are a
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subset of k features; let fv′j be f ′
j = vj . Support and confidence are defined

as P(fv′1, fv′2, ..., fv′m, C) and P(C|fv′1, fv′2, ..., fv′m), respectively. An associa-
tion rule with high support and confidence is both general and precise. Thus,
a good association rule in the pre-specified form of fv′1, fv′2, ..., fv′m ⇒ C can
define a good view. In addition, association rules avoid exhaustive search and
can be mined with efficient algorithms [3]. Thus, we have successfully mapped
the problem of view selection to a problem of ARM in the specific form of
fv′1, fv′2, ..., fv′m ⇒ C without resorting to exhaustive search. We can apply any
existing ARM algorithm to achieve automatic view selection. We evaluate our
method to detect Egeria weeds in aerial images.

3 Experimental Evaluation and Conclusion

In the empirical study, we investigate (1) how to learn good views, and (2) what
is the accuracy over testing data. We first describe the application domain used
in the experiments, next explain the conventional ways of identifying features
and detecting objects of interest, then present results of learning and evaluation.

Application - Detecting Egeria. In this application, the problem is to auto-
matically identify the Egeria weeds in aerial images of land and water regions
over San-Joaquin and Sacremento delta. A set of cover images corresponding to
51 images are provided in which the weeds are manually detected by experts
for evaluation purposes. One image is used for training to obtain good views via
learning and the remaining 50 are used for testing in experiments.

Images are available in TIF format with varying sizes: 1 of size 1644× 1574,
30 of size 300 × 300, the remaining 20 of varying sizes 528 − 848 × 312 − 444.
The largest image of size 1644 × 1574 was selected by the domain expert to be
used as the training image for learning. This large image covers multiple regions
of the delta, and is the most comprehensive image that contains a considerable
amount of information for defining features to extract Egeria from the image.

See http://www.ntu.edu.sg/home/asmdash/pakdd expanded.pdf for discus-
sion on feature identification and extraction.

Evaluation Results of Learning. In order to search for the best view, we apply
an ARM algorithm to the training data. We find association rules that describe
the relationships between feature-values with class label 1 (presence of Egeria),
i.e., in the association rule, the antecedent consists of the feature-values and the
consequent consists of the class label 1. As we discussed in the previous section,
the best view is the rule with the highest support and confidence. Support is
the first criterion, i.e., if a rule has higher support than all other rules then it is
chosen first. If two rules have equal support then the rule with higher confidence
is chosen. The best view found by ARM is: color 1 = 1 ∧ color 2 = 1 ∧ color 3
= 1 ∧ texture 1b = 0 ⇒ 1. This view (R1) has only 4 features: 3 color features
(all 3 channels) should be present, and the first channel of the second texture
feature should be absent. This view has support=0.751, confidence=0.95.
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It has the highest support among all views, indicating that three color features
and one texture feature (absence of water body) are sufficient to detect the weed
in the training data. The single texture feature has to be 0 in the combination
with the color features in order to predict the occurrence of the weed accurately.
This is quite different from the scenario where only the three color features
are considered in the view, or if the texture feature has a value 1. This view
has effectively filtered the possible inclusion of water body in our coverage of
the weed. Though 14 features are defined based on the domain, view selection
suggests that these 4 features with their proper values should be sufficient for
detecting weeds in this image.

The training image was a normal image (in terms of brightness), and hence
R1 works well. However, as we explained in the previous section, some of the
images are dark. R1 is not satisfactory for extracting features from dark images.
We observed that the next best view (second best association rule) contains the
edge feature (along with other feature-values) which is useful for dark images.
Next best view found by ARM is: color 1 = 1 ∧ color 2 = 1 ∧ color 3 = 1 ∧ edge
= 1 ∧ texture 2a = 0 ∧ texture 1a = 0 ⇒ 1.

This rule (R2) contains the three color features combined with the edge
feature and two texture features. It has a support of 0.61 and a confidence of
0.93. The regions which were misclassified as FP in the image (dark) when we
used the first view, are now labelled as TN using this view. We combine the two
rules with logical AND (∧), i.e., R1 ∧ R2 and then we choose that view which
has higher accuracy, i.e., AV = max (AR1;AR1∧R2).

Note that depending on applications a user can adapt the above rule. For
example, there may be cases where R1 fails to detect correctly (i.e., FN) but R2
detects correctly (i.e., TP). In such cases instead of AND we use OR (∨)to get
the next best view. So, one may have to choose that view which gives the highest
accuracy in the training image among the three: R1, R1∧R2, and R1∨R2, i.e.,
max (AR1;AR1∧R2;AR1∨R2).

An issue here is to determine how many rules to select. The following algo-
rithm is used to select the top rules in the Egeria application.

1. Estimate the base accuracy A0 using a full view.
2. Continue selecting top rules until accuracy of the new view A is larger than

base accuracy A0 by more than a user defined δ, i.e., A−A0 > δ.

A proper δ value is dependent on the application. But usually it is small. We
design experiments to verify in test images if this view indeed outperforms other
views including the full view and if it does so not by chance. So, we conducted
three comparative experiments: comparing the above best view (1) with the full
view, (2) with random views of four features, and (3) with the best random view.
We select random values (0 or 1) for the four randomly selected features. Each
image has a manually determined cover image (ground truth) that indicates
where Egeria blocks are. For the purpose of the experiments, this cover image
is defined as the perfect result achievable for Egeria detection. We use accuracy
gain to evaluate the difference between any two views. If the accuracy measures
of two views are A and A0, Gain is defined as: Gain = A−A0

A0
. Results show
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Fig. 1. Training: Mean - dotted line, Median - Solid line; Testing: 1 - Accuracy of Full

View, 2 - Accuracy of R1, 3 - Accuracy of R2, 4 - Gain of best-among R1, R2 over full

accuracy is – for best view (using our method): 0.92, for full view: 0.81, (gain for
our method = 14%); average of 30 random views: 0.56 (gain = 19%); and for best
random view: 0.8 (gain = 14%). For the group of 30 randomly selected views,
box plots of accuracy values are shown in Figure 1 (a). These two comparative
experiments show that the best view cannot be found by chance.

Evaluation Results for New Images. The best view is obtained from the
training image. We now evaluate its accuracy for the 50 testing images. The
performance is evaluated by comparing the accuracy gains of the full View and
the selected best view. Though there are some cases where we have negative
gains, on average the gain is about 22%. We compare the cover which we ob-
tained (using block processing) with the ground truth cover (which is in pixels).
Hence there would always be some approximation in our covers - especially in
images which have Egeria in thinner patches. These are more or less the images
which have negative gains too. The box-plot of the results for the 50 images
is shown in Figure 1 (b). Details of the experimental work can be found in
http://www.ntu.edu.sg/home/asmdash/pakdd expanded.pdf.

Conclusion. We define concepts of view and good view, identify the need for
automatic view selection, show that a full view can make image mining un-
necessarily more complicated and less efficient and effective, then propose and
verify a learning approach to automatic view selection. Our system can learn
good views from a training image data set and then the views can be applied to
unseen images for mass processing of image mining tasks. With this approach,
domain experts do not need to provide accurate information about what rele-
vant features are, but only need to focus on the tasks they are best at (in this
case, identifying if a block is Egeria or not in a training image). The presented
approach is independent of type of feature and hence can be applied to many
applications to determine good views. A future work is to consider the large
number of rules that are usually generated as part of association rule mining.
We acknowledge the contributions of Prof Huan Liu and Prof Trishi Foschi.
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Abstract. In this paper we extend the state-of-art of the constraints
that can be pushed in a frequent pattern computation. We introduce a
new class of tough constraints, namely Loose Anti-monotone constraints,
and we deeply characterize them by showing that they are a superclass
of convertible anti-monotone constraints (e.g. constraints on average or
median) and that they model tougher constraints (e.g. constraints on
variance or standard deviation). Then we show how these constraints can
be exploited in a level-wise Apriori-like computation by means of a new
data-reduction technique: the resulting algorithm outperforms previous
proposals for convertible constraints, and it is to treat much tougher
constraints with the same effectiveness of easier ones.

1 Introduction

Frequent itemsets play an essential role in many data mining tasks that try to
find interesting patterns from databases, such as association rules, correlations,
sequences, episodes, classifiers, clusters and many more. Although the collection
of all frequent itemsets is typically very large, the subset that is really interest-
ing for the user usually contains only a small number of itemsets. This situation
is harmful for two reasons. First, performance degrades: mining generally be-
comes inefficient or, sometimes, simply unfeasible. Second, the identification of
the fragments of interesting knowledge, blurred within a huge quantity of mostly
useless patterns, is difficult. Therefore, the paradigm of constraint-based mining
was introduced. Constraints provide focus on the interesting knowledge, thus
reducing the number of patterns extracted to those of potential interest. Addi-
tionally, they can be pushed deep inside the pattern discovery algorithm in order
to achieve better performance [9, 10, 14, 15, 16, 17, 18].

Constrained frequent pattern mining is defined as follows. Let I = {x1, ..., xn}
be a set of distinct literals, usually called items, where an item is an object
with some predefined attributes (e.g., price, type, etc.). An itemset X is a non-
empty subset of I. If |X| = k then X is called a k-itemset. A constraint on
itemsets is a function C : 2I → {true, false}. We say that an itemset I satisfies
a constraint if and only if C(I) = true. We define the theory of a constraint as
the set of itemsets which satisfy the constraint: Th(C) = {X ∈ 2I | C(X)}. A
transaction database D is a bag of itemsets t ∈ 2I , usually called transactions.

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 114–124, 2005.
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The support of an itemset X in database D, denoted suppD(X), is the number of
transactions which are superset of X. Given a user-defined minimum support σ,
an itemset X is called frequent in D if suppD(X) ≥ σ. This defines the minimum
frequency constraint: Cfreq[D,σ](X)⇔ suppD(X) ≥ σ. When the dataset and the
minimum support threshold are clear from the context, we indicate the frequency
constraint simply Cfreq . Thus with this notation, the frequent itemsets mining
problem requires to compute the set of all frequent itemsets Th(Cfreq). In general,
given a conjunction of constraints C the constrained frequent itemsets mining
problem requires to compute Th(Cfreq) ∩ Th(C).
Related Work and Constraints Classification. A first work defining classes
of constraints which exhibit nice properties is [15]. In that paper is introduced an
Apriori-like algorithm, named CAP, which exploits two properties of constraints,
namely anti-monotonicity and succinctness, in order to reduce the frequent item-
sets computation. Given an itemset X, a constraint CAM is anti-monotone if
∀Y ⊆ X : CAM (X) ⇒ CAM (Y ). The frequency constraint is the most known
example of a CAM constraint. This property, the anti-monotonicity of frequency,
is used by the Apriori [1] algorithm with the following heuristic: if an itemset
X does not satisfy Cfreq , then no superset of X can satisfy Cfreq , and hence they
can be pruned. Other CAM constraints can easily be pushed deeply down into
the frequent itemsets mining computation since they behave exactly as Cfreq : if
they are not satisfiable at an early level (small itemsets), they have no hope of
becoming satisfiable later (larger itemsets).

A succinct constraint CS is such that, whether an itemset X satisfies it or
not, can be determined based on the singleton items which are in X. A CS con-
straint is pre-counting pushable, i.e. it can be satisfied at candidate-generation
time: these constraints are pushed in the level-wise computation by substituting
the usual generate apriori procedure, with the proper (w.r.t. CS) candidate gen-
eration procedure. Constraints that are both anti-monotone and succinct can
be pushed completely in the level-wise computation before it starts (at pre-
processing time). For instance, consider the constraint min(S.price) ≥ v: if we
start with the first set of candidates formed by all singleton items having price
greater than v, during the computation we will generate only itemsets satisfying
the given constraint. Constraints that are neither succinct nor anti-monotone
are pushed in the CAP [15] computation by inducing weaker constraints which
are either anti-monotone and/or succinct.

Monotone constraints work the opposite way of anti-monotone constraints.
Given an itemset X, a constraint CM is monotone if: ∀Y ⊇ X : CM (X) ⇒
CM (Y ). Since the frequent itemset computation is geared on Cfreq , which is anti-
monotone, CM constraints have been considered more hard to be pushed in
the computation and less effective in pruning the search space [2, 8, 7, 12]: while
anti-monotone constraints can be used to effectively prune the search space to
a small downward closed collection, the upward closed collection of the search
space satisfying the monotone constraints cannot be pruned at the same time.
Recently, it has has been shown that a real synergy of these two opposite types
of constraints exists and can be exploited by reasoning on both the itemset
search space and the input database together, using the ExAnte data-reduction
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technique [4]. Using data reduction techniques, anti-monotone and monotone
pruning strengthen each other recursively [3, 5].

In [16, 17] the class of convertible constraints is introduced, and an FP-
growth based methodology to push such constraints is proposed. A constraint
CCAM is convertible anti-monotone provided there is an order R on items such
that whenever an itemset X satisfies CCAM , so does any prefix of X. A constraint
CCM is convertible monotone provided there is an order R on items such that
whenever an itemset X violates CCM , so does any prefix of X. In [16, 17], two FP-
growth based algorithms are introduced: FICA to mine Th(Cfreq) ∩Th(CCAM ),
and FICM to mine Th(Cfreq)∩Th(CCM ). A major limitation of any FP-growth
based algorithm is that the initial database (internally compressed in the prefix-
tree structure) and all intermediate projected databases must fit into main mem-
ory. If this requirement cannot be met, these approaches can simply not be ap-
plied anymore. This problem is even harder with FICA and FICM: in fact, using
an order on items different from the frequency-based one, makes the prefix-tree
lose its compressing power. Thus we have to manage much greater data struc-
tures, requiring a lot more main memory which might not be available. This
fact is confirmed by our experimental analysis reported in Section 4: sometimes
FICA is slower than FP-growth, meaning that having constraints brings no ben-
efit to the computation. Another important drawback of this approach is that
it is not possible to take full advantage of a conjunction of different constraints,
since each constraint in the conjunction could require a different ordering of
items.

The first (and to our knowledge unique) work, trying to address the problem
of how to push constraints which are not convertible, is [13]. The framework
proposed in that paper is based on the concept of finding a witness, i.e. an
itemset such that, by testing whether it satisfies the constraint we can deduce
information about properties of other itemsets, that can be exploited to prune
the search space. This idea is embedded in a depth-first visit of the itemsets
search space. The main drawback of the proposal is the following: it may require
quadratic time in the number of frequent singleton items to find a witness.
The cost can be amortized if items are reordered, but this leads to the same
problems discussed for FP-growth based algorithms. Moreover, even if a nearly
linear time search is performed, this is done without any certainty of finding a
witness which will help to prune the search space. In fact, if the witness found
satisfies the given constraint, no pruning will be possible and the search time
will be wasted. Our approach is completely orthogonal: while they try to explore
the exponentially large search space in some smart way, we massively reduce the
dataset as soon as possible, reducing at the same time the search space and
obtaining a progressively easier mining problem.

Paper Contribution. The contribution of this paper is threefold. First, we
extend the actual state-of-art classification of constraints that can be pushed in
a frequent pattern computation, by showing how to push tough constraints as
those ones based on variance or standard deviation. Second, we show that it is
possible to push convertible constraints in a level-wise Apriori-like computation,
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we propose a general Apriori-like algorithm, based on data-reduction techniques,
which is able to push all possible kinds of constraint studied so far.

2 Loose Anti-monotone Constraints

In this Section we introduce a new class of tougher constraints, which is a proper
superclass of convertible anti-monotone. The following example shows that exist
interesting constraints which are not convertible, and thus cannot be exploited
within a prefix pattern framework.

Example 1 (var constraint is not convertible). Calculating the variance is an
important task of many statistical analysis: it is a measure of how spread out a
distribution is. The variance of a set of number X is defined as:

var(X) =
∑

i∈X(i− avg(X))2

|X|
A constraint based on var is not convertible. Otherwise there is an order R
of items such that var(X) is a prefix increasing (or decreasing) function. Con-
sider a small dataset with only four items I = {A,B,C,D} with associated
prices P = {10, 11, 19, 20}. The lexicographic order R1 = {ABCD} is such that
var(A) ≤ var(AB) ≤ var(ABC) ≤ var(ABCD), and it is easy to see that we
have only other three orders with the same property: R2 = {BACD},R3 =
{DCBA},R4 = {CDBA}. But, for R1, we have that var(BC) � var(BCD),
which means that var is not a prefix increasing function w.r.t. R1. Moreover,
since the same holds for R2, R3, R4, we can assert that there is no order R such
that var is prefix increasing. An analogous reasoning can be used to show that
it neither exists an order which makes var a prefix decreasing function.

Following a similar reasoning we can show that other interesting constraints,
such as for instance those ones based on standard deviation (std) or unbiased
variance estimator (varN−1) or mean deviation (md), are not convertible as
well. Luckily, as we show in the following, all these constraints share a nice
property that we name “Loose Anti-monotonicity”. Recall that an anti-monotone
constraint is such that, if satisfied by an itemset then it is satisfied by all its
subsets. We define a loose anti-monotone constraint as such that, if it is satisfied
by an itemset of cardinality k then it is satisfied by at least one of its subsets
of cardinality k− 1. Since some of these interesting constraints make sense only
on sets of cardinality at least 2, in order to get rid of such details, we shift the
definition of loose anti-monotone constraint to avoid considering singleton items.

Definition 1 (Loose Anti-monotone constraint). Given an itemset X with
|X| > 2, a constraint is loose anti-monotone (denoted CLAM ) if: CLAM (X) ⇒
∃i ∈ X : CLAM (X \ {i})
The next proposition and the subsequent example state that the class of CLAM

constraints is a proper superclass of CCAM (convertible anti-monotone con-
straints).

outperforming previously proposed FP-growth based algorithms [16, 17]. Third,
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Table 1. Classification of commonly used constraints.

Constraint Anti-monotone Monotone Succinct Convertible CLAM

min(S.A) ≥ v yes no yes strongly yes
min(S.A) ≤ v no yes yes strongly yes
max(S.A) ≥ v no yes yes strongly yes
max(S.A) ≤ v yes no yes strongly yes
count(S) ≤ v yes no weakly A yes
count(S) ≥ v no yes weakly M no

sum(S.A) ≤ v (∀i ∈ S, i.A ≥ 0) yes no no A yes
sum(S.A) ≥ v (∀i ∈ S, i.A ≥ 0) no yes no M no

sum(S.A) ≤ v (v ≥ 0, ∀i ∈ S, i.Aθ0) no no no A yes
sum(S.A) ≥ v (v ≥ 0, ∀i ∈ S, i.Aθ0) no no no M no
sum(S.A) ≤ v (v ≤ 0, ∀i ∈ S, i.Aθ0) no no no M no
sum(S.A) ≥ v (v ≤ 0, ∀i ∈ S, i.Aθ0) no no no A yes

range(S.A) ≤ v yes no no strongly yes
range(S.A) ≥ v no yes no strongly yes

avg(S.A)θv no no no strongly yes
median(S.A)θv no no no strongly yes
var(S.A) ≥ v no no no no yes
var(S.A) ≤ v no no no no yes
std(S.A) ≥ v no no no no yes
std(S.A) ≤ v no no no no yes

varN−1(S.A)θv no no no no yes
md(S.A) ≥ v no no no no yes
md(S.A) ≤ v no no no no yes

Proposition 1. Any convertible anti-monotone constraint is trivially loose anti-
monotone: if a k-itemset satisfies the constraint so does its (k−1)-prefix itemset.

Example 2. We show that the constraint var(X.A) ≤ v is a CLAM constraint.
Given an itemset X, if it satisfies the constraint so trivially does X \ {i}, where
i is the element of X which has associated a value of A which is the most far
away from avg(X.A). In fact, we have that var({X \ {i}}.A) ≤ var(X.A) ≤ v,
until |X| > 2.Taking the element of X which has associated a value of A which
is the closest to avg(X.A) we can show that also var(X.A) ≥ v is a CLAM

constraint. Since the standard deviation std is the square root of the variance,
it is straightforward to see that std(X.A) ≤ v and std(X.A) ≥ v are CLAM . The
mean deviation is defined as: md(X) = (

∑
i∈X |i− avg(X)|) / |X|. Once again,

we have that md(X.A) ≤ v and md(X.A) ≥ v are loose anti-monotone. It is
easy to prove that also constraints defined on the unbiased variance estimator,
varN−1 = (

∑
i∈X(i− avg(X))2) / (|X| − 1) are loose anti-monotone.

In Table 1 we update the state-of-art classification of commonly used con-
straints. The next key Theorem indicates how a CLAM constraint can be ex-
ploited in a level-wise Apriori-like computation by means of data-reduction. It
states that if at any iteration k ≥ 2 a transaction is not superset of at least
one frequent k-itemset which satisfy the CLAM constraint (a solution), then the
transaction can be deleted from the database.

Theorem 1. Given a transaction database D, a minimum support threshold σ,
and a CLAM constraint, at the iteration k ≥ 2 of the level-wise computation, a
transaction t ∈ D such that: �X ⊆ t, |X| = k,X ∈ Th(Cfreq[D,σ])∩Th(CLAM ) can
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be pruned away from D, since it will never be superset of any solution itemsets
of cardinality > k.

Proof. Suppose that exists Y ⊆ t, |Y | = k + j, Y ∈ Th(Cfreq[D,σ]) ∩ Th(CLAM ).
For loose anti-monotonicity this implies that exists Z ⊆ Y, |Z| = k + j − 1
such that CLAM (Z). Moreover, for anti-monotonicity of frequency we have that
Cfreq[D,σ](Z). The reasoning can be repeated iteratively downward to obtain that
must exist X ⊆ t, |X| = k,X ∈ Th(Cfreq[D,σ]) ∩ Th(CLAM ).

Note that a conjunction of loose anti-monotone constraint is not a loose anti-
monotone constraint anymore, and therefore each constraint in a conjunction
must be treated separately. However, a transaction can be pruned whenever
Theorem 1 does not hold for even only one constraint in the conjunction (this
is implemented by line 14 of the pseudo-code in Figure 1).

In the next Section we exploit such property of CLAM constraints in a level-
wise Apriori-like computation by means of data-reduction.

3 The ExAMinerLAM Algorithm

The recently introduced algorithm ExAMiner [3], aimed at solving the prob-
lem Th(Cfreq) ∩ Th(CM ) (conjunction of anti-monotonicity and monotonicity),
generalizes the ExAnte idea to reduce the problem dimensions at all levels of a
level-wise Apriori-like computation. This is obtained by coupling the set of data
reduction techniques in Table 2 (see [3] for the proof of correctness), which are
based on the anti-monotonicity of Cfreq , with the data reduction based on the CM
constraint. Here, in order to cope with the mining problem Th(Cfreq)∩Th(CLAM ),
we couple the same set of Cfreq -based data reduction techniques with the CLAM -
based data reduction technique described in Theorem 1. The resulting algorithm
is named ExAMinerLAM.

Essentially ExAMinerLAM is an Apriori-like algorithm, which at each iter-
ation k−1 produces a reduced dataset Dk to be used at the subsequent iteration
k. Each transaction in Dk, before participating to the support count of candidate
itemsets, is reduced as much as possible by means of Cfreq -based data reduction,
and only if it survives to this phase, it is effectively used in the counting phase.

Table 2. Data-reduction techniques based on the anti-monotonicity of Cfreq

Gk(i) an item which is not subset of at least k frequent k-itemsets
can be pruned away from all transactions in D.

Tk(t) a transaction which is not superset of at least k + 1 frequent k-itemsets
can be removed from D.

Lk(i) given an item i and a transaction t, if the number of frequent k-itemsets which
are superset
of i and subset of t is less than k, then i can be pruned away from transaction
t.
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Procedure count&reduceLAM

Input: Dk, σ, CLAM , CM , Ck, Vk−1

1. forall i ∈ I do Vk[i] ← 0
2. forall tuples t in Dk do
3. forall C ∈ CLAM do t.lam[C] ← false
4. forall i ∈ t do if Vk−1[i] < k − 1
5. then t ← t \ i
6. else i.count ← 0
7. if |t| ≥ k and CM (t) then forall X ∈ Ck, X ⊆ t do
8. X.count++; t.count++
9. forall C ∈ CLAM do

10. if ¬t.lam[C] and C(X) then t.lam[C] ← true
11. forall i ∈ X do i.count++
12. if X.count = σ then
13. Lk ← Lk ∪ {X}; forall i ∈ X do Vk[i] + +
14. if ∀C ∈ CLAM : t.lam[C] then
15. if |t| ≥ k + 1 and t.count ≥ k + 1 then
16. forall i ∈ t if i.count < k then t ← t \ i
17. if |t| ≥ k + 1 and CM (t) then write t in Dk+1

Fig. 1. Pseudo-code of procedure count&reduceLAM

Each transaction which arrives to the counting phase, is then tested against the
CLAM property of Theorem 1, and reduced again as much as possible, and only
if it survives to this second set of reductions, it is written to the transaction
database for the next iteration Dk+1. The procedure we have just described, is
named count&reduceLAM, and substitutes the usual support counting proce-
dure of the Apriori algorithm from the second iteration on (k ≥ 2). Therefore
to illustrate the ExAMinerLAM algorithm we just provide the pseudo-code of
the count&reduceLAM procedure (Figure 1), avoiding to provide the well-known
Apriori algorithm pseudo-code [1]. We just highlight the we adopt the usual no-
tation of the Apriori pseudo-code: Ck: to denote the set of candidate itemsets,
and Lk to denote the set of frequent (or large) itemsets at iteration k.

In the pseudo-code in Figure 1, the count&reduceLAM procedure, at iteration
k takes in input the actual database Dk, the minimum support threshold σ, a
user-defined conjunction of loose anti-monotone constraints CLAM , a user-defined
conjunction of monotone constraints CM , the actual set of candidate itemsets Ck,
and an array of integers Vk−1 of the size of I. Such array is used in order to
implement the data-reduction Gk(i). The array Vk records, for each singleton
item, the number of frequent k-itemsets in which it appears. This information
is then exploited during the subsequent iteration k + 1 for the global pruning
of items from all transaction in Dk+1 (lines 4 and 5 of the pseudo-code). On
the contrary, data reductions Tk(t) and Lk(i) are put into effect during the
same iteration in which the information is collected. Unfortunately, they require
information (the frequent itemsets of cardinality k) that is available only at the
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end of the actual counting (when all transactions have been used). However,
since the set of frequent k-itemsets is a subset of the set of candidates Ck, we
can use such data reductions in a relaxed version: we just check the number of
candidate itemsets X which are subset of t (t.count in the pseudo-code, lines 8
and 15) and which are superset of i (i.count in the pseudo-code, lines 6, 11 and
16). Analogously, the data reduction based on loose anti-monotonicity described
in Theorem 1, is exploited in the same relaxed version with candidates instead
of frequent itemsets. In the pseudo-code, for each constraint C in the given
conjunction of loose anti-monotone constraints CLAM , we have a flag t.lam[C]
which is set to true as soon as an itemset X ∈ Ck, such that X ⊆ t,X ∈ Th(C),
is found (line 10). A transaction which has even only one of the t.lam[C] flags
set to false after the counting phase, will not enter in the database for the next
iteration Dk+1 (line 14 of the pseudo-code). In fact, such a transaction has not
covered any candidate itemset which satisfies the constraint C, for some C in
the conjunction CLAM , therefore it will not support any itemset satisfying such
constraint, and thus any solution itemset.

4 Experimental Analysis

In this Section we describe in details the experiments we have conducted in
order to assess loose anti-monotonicity effectiveness on both convertible con-
straints (e.g. avg(X.A) ≥ m) and tougher constraints (e.g. var(X.A) ≤ m). The
results are reported in Figure 2. All the tests were conducted on a Windows XP
PC equipped with a 2.8GHz Pentium IV and 512MB of RAM memory, within
the cygwin environment. The datasets used in our tests are those ones of the
FIMI repository1, and the constraints were applied on attribute values generated
randomly with a gaussian distribution within the range [0, 150000].

In Figure 2(a) and (b) are reported the tests with the CLAM constraint
var(X.A) ≤ m. We compare ExAMinerLAM against two unconstrained com-
putation: FP-Growth and ExAMiner without constraint (i.e. it only exploits
Cfreq -based data reduction). Such tests highlight the effectiveness of loose anti-
monotonicity: we have a speed up of much more than one order of magnitude,
and a data reduction rate up to four order of magnitude.

This behavior is reflected in run-time performances: ExAMinerLAM is one
order of magnitude faster than ExAMiner as reported in Figure 2(c). Con-
versely, FICA is not able to bring such improvements. In Figure 2(d) we re-
port the speed-up of ExAMinerLAM w.r.t. ExAMiner and FICA w.r.t. FP-
growth. The tests conducted on various datasets show that exploiting loose anti-
monotonicity property brings a higher speed up than exploiting convertibility.
In fact, ExAMinerLAM exhibits in average a speed up of factor 100 against its
own unconstrained computation, while FICA always provides a speed up w.r.t.
FP-growth of a factor lower than 10, and sometimes it is even slower than its
unconstrained version. In other words, FP-Growth with a filtering of the output

1 http://fimi.cs.helsinki.fi/data/
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Fig. 2. Loose anti-monotonicity: experimental analysis results

in some cases is better that its variant FICA, which is explicitly geared on con-
strained mining. As discussed before, this is due to the items ordering based on
attribute values and not on frequency.

5 Pushing Multiple Constraints

As already stated, one of the most important advantage of our methodology is
that, pushing constraints by means of data-reduction in a level-wise framework,
we can exploit different properties of constraints all together, and the total ben-
efit is always greater than the sum of the individual benefits. In other words,
by means of data-reduction we exploit a real synergy of all constraints that the
user defines for the pattern extraction: each constraint does not only play its
part in reducing the data, but this reduction in turns strengthens the pruning
power of the other constraints. Moreover data-reduction induces a pruning of



Pushing Tougher Constraints in Frequent Pattern Mining 123

the search space, and the pruning of the search space in turn strengthens future
data reductions.

Note that in the pseudo-code in Figure 1 we pass to the procedure both a set
of CLAM and a set of CM constraints: obviously if the set of CLAM constraints
is empty we obtain the standard ExAMiner count&reduce [3] (no CLAM data
reduction); while if we have an empty set of CM constraints, the CM testing (lines
7 and 17 of the pseudo code) always succeed and thus the μ-reduction is never
applied. Whenever we have both CM and CLAM constraints (i.e. a query corre-
sponding to the mining problem Th(Cfreq)∩Th(CM )∩Th(CLAM )) we can benefit
of all the data-reduction techniques together, obtaining a stronger synergy.

Example 3. The constraint range(S.A) ≥ v ≡ max(S.A) − min(S.A) ≥ v, is
both monotone and loose anti-monotone. Thus, when we mine frequent itemsets
which satisfy such constraint we can exploit the benefit of having together, in
the same count&reduceLAM procedure, the Cfreq -based data reductions of Table
2, the μ-reduction for monotone constraints, and the reduction based on CLAM .

Being a level-wise Apriori-like computation, our framework can exploit all
different properties of constraints all together. In other words, our contribution
can be easily integrated with previous works (e.g. [15, 3]), in a unique Apriori-
like computational framework able to take full advantage by any conjunction
of possible constraints. In particular, anti-monotone (CAM ) constraints are ex-
ploited to prune the level-wise exploration of the search space together with the
frequency constraint (Cfreq); succinct (CS ) constraints are exploited at candi-
date generation time as done in [15]; monotone (CM ) constraints are exploited
by means of data reduction as done in [3]; convertible anti-monotone (CCAM )
and Loose anti-monotone (CLAM ) constraints are exploited by means of data
reduction as described in this paper.

At Pisa KDD Laboratory we are currently developing such unified computa-
tional framework (within the P 3D project2) which will be soon made available
to the community.
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Abstract. Association Rule mining is one of the widely used data mining tech-
niques. To achieve a better performance, many efficient algorithms have been 
proposed. Despite these efforts, we are often unable to complete a mining task 
because these algorithms require a large amount of main memory to enumerate 
all frequent itemsets, especially when dataset is large or the user-specified sup-
port is low. Thus, it becomes apparent that we need to have an efficient main 
memory handling technique, which allows association rule mining algorithms 
to handle larger datasets in main memory. To achieve this goal, in this paper we 
propose an algorithm for vertical association rule mining that compresses a ver-
tical dataset in an efficient manner, using bit vectors. Our performance evalua-
tions show that the compression ratio attained by our proposed technique is bet-
ter than those of the other well known techniques. 

1   Introduction 

One of the widely used data mining techniques is association rule mining [1]. Asso-
ciation rule mining algorithms iterate dataset many times to enumerate frequent item-
sets that exist in the transactions of a given dataset. However, dataset scan is consid-
ered as an I/O exhaustive process [1]. Therefore, the performance degrades if mining 
algorithm requires multiple dataset scans. 

Since main memory plays a significant role in the association rule mining perform-
ance, in recent year several novel techniques have been proposed [4, 6, 9, 10] in order 
to efficiently use main memory. These techniques generally cut down the dataset size, 
so that the mining algorithms will be able to finish the mining task on bigger datasets 
or with a low support. We can categorize these existing techniques into three groups: 
(i) vertical compression [8, 9], and (ii) horizontal compression [7] and (iii) vertical tid 
compression [4, 10]. 

Vertical Compression: It uses vertical bit vector to represent the presence and ab-
sence of an item, and adopts a lossless compression. However, several researches 
show that these compression techniques heavily depend on user specified support or 
dataset characteristics [6, 7]. When the support is low or the dataset is sparse, these 
compression techniques may cause expansion, not compression [4]. 
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Horizontal Compression: It uses a tree based data structure [7] to compress horizon-
tal dataset. As a result, they are able to condense a dense dataset when the user speci-
fied support is high. On the other hand, it also causes an expansion rather than com-
pression, if the dataset is sparse or the user support is low [10]. 

Vertical Tid Compression: It stores the vertical tid dataset in an alternative way, for 
example, diffset [4] stores tids from transactions of a dataset where a particular item is 
absent. And subsequently, it gains a good compression ratio if the user specified is 
high. However, when the support is low, the diffset technique is unable to compress 
the dataset, because the number of diffset is larger than the actual tids (i.e. number of 
times each of the items occurs in the transaction). 

Since all of the abovementioned compression techniques heavily depend on user 
specified support and/or dataset characteristics, these techniques often do not allow us 
to enhance main memory utilization. However, from the above discussion it is appar-
ent that without main memory enhancement techniques, it becomes quite difficult to 
achieve any performance improvement. 

We are motivated by the abovementioned fact that main memory is an important 
resource and to improve performance we need to use it in an efficient way without 
exceeding its capacity. To enhance main memory capacity, in this paper we propose 
an algorithm that uses a bit-oriented approach to compress vertical tid dataset. The 
proposed technique keeps track of difference between two tids and converts the dif-
ferences into a bit format, and finally, stores these bits into a bit vector in an efficient 
way, so the resultant bit vector has only a few unused bits. 

The important outcome of this method is that the proposed technique is not bias, 
which means that it does not depend on a particular dataset characteristics (i.e. dense 
or sparse) or the user specified support. Rather, it has an ability to compress the origi-
nal dataset regardless of dataset size, type or user specified support. Our performance 
evaluation also shows that it achieves good compression ratio in all scenarios. There-
fore, it is able to keep large datasets and allows the mining algorithms to perform 
mining tasks on such datasets.  

The rest of paper is organized as follows. We describe the reason why we need ef-
ficient main memory in section 2. Next, we present our proposed efficient main mem-
ory compression algorithm. Then, we presented the performance evaluation and com-
parison followed by the conclusion. 

2   Rationale of Our Work and Analysis of Existing Work 

Performance improvement of association rule mining can normally be attained in two 
ways including the use of efficient mining techniques and the reduction in using main 
memory. However, during the mining task, if the algorithm exceeds the main memory 
limit, the mining process will take a long time regardless of how efficient the mining 
technique is. In other words, efficient mining techniques will only be efficient if and 
only if there is an abundant space in the main memory, so that the mining process will 
not exceed the main memory limit. 

Before we detail of our proposed memory enhancement technique, let us first ana-
lyze some of the existing algorithms and corresponding main memory management 
techniques. In the following few paragraphs we will discuss a number of well known 



An Efficient Compression Technique for Frequent Itemset Generation in Association 127 

 

association rule mining algorithms and the amount of main memory needed by these 
algorithms to perform the mining task. 

The Apriori algorithm [2] uses a horizontal dataset layout and a breadth-first bot-
tom-up search technique to enumerate all frequent itemsets that meet the user speci-
fied support. It achieves good performance with a high support threshold when the 
total number frequent itemsets and the length of frequent itemsets are small. How-
ever, it will exceed main memory when the number of frequent items is large.  

Another novel algorithm that uses a horizontal dataset layout but employs a depth-
first search technique is FP growth [7]. It aims to compress the horizontal dataset into 
FP tree after the first dataset scan. After that, it generates all frequent itemsets using 
the compressed dataset and it consequently solves the multiple dataset scan problem. 
However, the main problem of this approach is the size of compressed dataset. It is 
often unable to reduce the size if the number of items after the first iteration is large.  

A few algorithms [4, 5, 8, 9] use a vertical dataset layout to generate frequent item-
set. For example, Eclat [4] uses a depth-first search technique. However, the main 
problem of such approach is that when the dataset is dense, it has too many tids, and 
holding the intermediate results of these tids often exceeds the main memory capacity. 
To overcome such a memory constraint, Zaki et al [5] present another algorithm 
known as dEclat [5]. This algorithm stores diffset of two itemsets and generates fre-
quent itemsets from diffset, not from the entire tid. However, this algorithm is still not 
able to reduce the size of the difsets dataset compared to tid dataset, especially when 
the dataset is sparse and/or the support is low.  

VIPER [9] algorithm uses a vertical bit vector to represent items occurrence in the 
transactions of a dataset. For example, if item “A” appears in the “nth’ transaction, 
then it sets “1” to the nth position of A. This approach also requires a huge memory, 
when the number of transactions and the number of attributes in a dataset is large. 
VIPER algorithm then uses a compression technique known as skinning to reduce the 
size of the bit vector. However, in some cases this compression technique is not able 
to compress the bit vector [5], but rather its size increases. 

From the above discussions, it is clear that main memory is one of the key re-
sources to improve performance of association rule mining. However, due to a limited 
main memory capacity, the mining algorithms experience performance bottleneck 
particularly when performing the mining task on a large dataset. To enhance main 
memory capacity, in this paper we propose an algorithm that uses a bit-oriented ap-
proach to compress vertical tid dataset. The proposed technique keeps track of the 
difference between two tids and converts the differences into a bit format, and finally, 
stores these bits into a bit vector in an efficient way, so the resultant bit vector has 
only a few unused bits. 

3   The Proposed Technique 

To increase the performance of association rule mining, it is necessary to exploit main 
memory efficiently without exceeding its capacity. In order to achieve this goal in this 
paper we propose a main memory optimization technique to be used to perform the 
first phase of any association rule mining task, that is generating the frequent itemset. 
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We use a vertical dataset layout to compress the dataset because it allows us to per-
form intersection between one or more items in order to find their co-occurrence in 
the dataset. We can represent the vertical dataset into two different ways: vertical 
bitmap and vertical tids. Let us first analyze each of the vertical dataset representa-
tions and the amount of memory needed by them in order to find the possibilities 
where we can optimize the memory usage. 

Since vertical bitmaps vector needs to register both the absence and presence of an 
item in a transaction [9], it will reduce the dataset size when dataset is dense or the 
user specified support is high. In other words, if all items of the dataset occur many 
times, that is the bitmap vector has more ‘1’s than ‘0’s, subsequently the size of verti-
cal bitmaps is smaller than the dataset size. On contrary, it has more ‘0’s than ‘1’s 
when dataset is sparse or user specified support is low, vertical bitmaps size will go 
beyond the original dataset size. The total number of bits we require to hold the whole 
dataset in main memory can be calculated using the following formulae:  

∑∑ += 01 xxIBV                                                        (1) 

∑
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BVBV IT                                                             (2) 

where IBV is total number of bits require to hold all x1 and x0 ( i.e. the number of trans-
action where item I is present and absent) and TBV total number of bits we need to 
hold N number of items in the main memory. 

The vertical tids is an alternative representation of vertical bit vectors. Each item of 
this representation has a list, consisting of all transaction ids where that item appears. 
Since each item only represents the transaction id where it appears, we need less 
memory compared to vertical bit vectors when dataset is sparse and/or when the user 
specified support is low. However, this representation becomes more expensive com-
pare to bit vector in terms of space if user specified support is more than 3%. Because 
each entry is a word, and to hold this in main memory we need 32 bits [8]. We can 
calculate the total number of bits we need to hold vertical tids in main memory in the 
following formulae: 
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where m is number of times item I occur in the dataset, ITID is the total number of bits 
required to hold item I and TTID is total number of bit we need to hold all N number of 
items in the main memory. 

3.1   Observation 

The vertical tid representation always needs a minimum 32 bits to hold each occur-
rence of an item (i.e. word) appeared in the transaction regardless of the dataset size. 
However, when dataset is small, one can reduce a significant amount of space, if bits 
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are used instead of integer to represent a word. The rationale behind this is that in a 
small dataset, the total number of transactions is also small, and hence to accommo-
date these tids into main memory, we need less than 32 bits, if we convert integer 
value of all tids to corresponding bits. Converting any integer to bits or vice versa is 
quite straightforward; one can do it on the fly without any performance degradation. 
For simplicity, we name this representation as tid-bits. Nevertheless, this representa-
tion requires less than 32 bits to hold a word, and therefore it becomes less expensive 
in terms of space compared to the bit vectors, if the user specified support is less than 
(100/n)%, where n is number of bits when converting the last transaction id to bit. To 
illustrate the above rationale more clearly, let us consider the following example: 

Suppose a dataset has 1,000 items and 1 million transactions with an average trans-
action size of 20. Now, we will calculate number of bits required to hold this dataset 
in the main memory using the abovementioned three different techniques: vertical 
bitmaps, vertical tids and tid-bits format. Firstly, we employ formula (2) and calculate 
the total number of bits required in vertical bitmaps which is equal to 1,000,000,000 
bits. Secondly, using formula (4) we found that vertical tids needs 640,000,000 bits. 
Finally to find the total number of bits required in tid-bits format, we first convert the 
last tid of that dataset into bits; in this case we convert 1,000,000 to bit. Since the last 
transaction id is 20 bit long, therefore we can accommodate a word (i.e. any tid of this 
dataset) within 20 bits. And to hold entire dataset we only need 400,000,000 bits. 

From the above example, it is clear that tid-bits approach requires fewer bits than 
the other two vertical representations. However, we have not yet used any user speci-
fied support, and hence one may think that this calculation may not be appropriate in 
the presence of user specified support. In this regard, we would like to mention here 
that tid-bits approach requires less space than vertical tids no matter what the user 
specified support is. In contrast, with bitmap vector, it requires less space as long as 
the user specified support is less than 100/n% (where n is number of bits when con-
verting the last transaction id to bit). Because indeed the bitmap vector representations 
will have more ‘0’ than ‘1’ when user specified support is less than 100/n %. 

3.2   Algorithm 

Before we move to the proposed algorithm in details, it is important to explain why 
we need a specific number of bits for all tids (i.e. equal to the bit representation of last 
tid of a dataset) in the tid-bits approach. For example, when a dataset has 100,000 
transactions, we need 17 bits for each entry, and it increases up to 20 bits when data-
set has 1,000,000 transactions, although we can accommodate the first 100,000 trans-
actions within 17 bits. However we can not put different number of bits (i.e. size) for 
different tids, because when we convert each entry of bit vector to find its correspond-
ing tid, we need to read a specific number of bits for every entry; otherwise it is diffi-
cult to convert these bits to its corresponding tids. 

For example, an item that occurs in the 1st and 100th transaction of a dataset is 
converted its tids into a bit format (i.e. 1 and 1100100) and put these bits directly to a 
vector. However, doing such an insertion causes ambiguity when we try to convert 
entries of that vector to its corresponding tids, as we will not know how many tids 
there are or how many bits each entry has. Thus, we are unable to obtain the tid values 
of each entry of that vector. To overcome from such ambiguity, we can only use a 
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specific number of bits for all entries regardless the exact bit size of each individual 
entry. And if we come across a bit representation of a tid that is less than that number 
then we pad it with ‘0’. 

Since the length of bits (i.e. each entry) increases as tids increases, we can only 
achieve scalability when we are able to find an alternative approach that does not 
increase bits length as tids increases in the dataset. On the other hand, the above goal 
is only achievable when we are able to compress bit vector. In other words, we need 
to condense the bits representation of all tids, in such a way that its size remains con-
stant as the number of tids increases. 

3.2.1   Dif-Tid 
To achieve the above goal, we propose an enhancement technique that compresses 
tids in an efficient way. The proposed technique does not convert any tid into a bit 
format on the fly as it does with the tid-bits. Rather, during the dataset reading it finds 
the difference between current (i.e. transaction number of current reading position) 
and previous (i.e. the transaction number where this item appears last time) tid of 
every item and converts that value into a bit representation. For simplicity we called it 
dif-bit. Finally, it places these dif-bit into a bit vector. The analogy behind this can be 
described in the following property: 

Property 1: The difference between two tids is always smaller than the largest tid of 
those two. 

Rationale: Suppose T1 and T2 are two tid of an item ‘A’ and ‘D’, the difference be-
tween those two tids is D = T2 - T1. Since D is the subtraction of two tids, it is always 
smaller than T2. 

In addition, when we keep the difference of two tids, it will be simple to find the 
exact tids from those values, that is by adding n number of differences. For a better 
understanding, let us consider the following example: 

Item    TID

 1 3 5 6 7
1 2 5 7 8 10
2 4 8 10
1 2 4 7 8
8 10 11
 1 2 3 9
11
1 3 6 9
3 4 6 9 10 12
11

Item     Diffrence Bits

 A        
 B       
 C
D

1  1  0  1  0  1  1 
1  1  1  1  1  1  0  1  0
1  0  1  0  1  0  0  1  0 
1  1  1  0  1  1  1

E 1  0  0  0  1  0  1
F 1  1  1  1  1  0
G 1  0  1  1  
H 1  1  0  1  0  1  1  0  1
I 1  0  1  1  1  0  1  0  1  1  1  0
J 1  0  1  1  

(a) (b) (c)

 A        
 B       
 C
D
E
F
G
H
I
J

Item     TID-Difference

 1 2 2 1 1
 1 1 3 1 2 2
2 2 4 2
1 1 2 3 1
8 2 1
 1 1 1 3
11
1 2 3 3
3 1 2 3 1 2
11

 A        
 B       
 C
D
E
F
G
H
I
J

 

Fig. 1. (a)Dataset; (b)Difference between two TIDs and (c)Corresponding Bit Vector 

Suppose, we have a dataset, as shown in figure 1(a), where item “A” appears in the 
{1st, 3rd, 5th, 6th and 7th} transactions. To store these tids directly in the main mem-
ory, we need at least 32 × 5 = 160 bits. However, if we only keep the difference of 
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each two tids and convert these into bits (i.e dif-bit), then we can accommodate all 
appearance of item “A” within 7 bits as shown in figure 1(b and c).  

The above example clearly depicts that if we put dif-bit rather than the original tid 
value in the bit vector, we will be able to reduce bit vector size significantly. In addi-
tion, it is worth to mention that the proposed method only needs 32 bits when the 
difference between the two tids is more than 2.3 billions. But, it is quite uncommon 
that an item occurs in the dataset after such a large interval. Nevertheless, if any item 
occurs in the dataset after such a long interval, the corresponding item support is also 
low. For example, if an item always appears in the dataset after 2.3 billions transac-
tions, its support must be less than 4.4 × 10-9%. Indeed, it is apparent that association 
rule mining algorithms rarely or never use such small support threshold for generating 
frequent itemsets, thus the proposed technique rarely requires 32 bits to store dif-bits 
no matter how big the dataset is. 

Inserting difference bits into a bit vector reduces its size. On the other hand, it is 
difficult to convert bit vector to its original tids format because from that vector we do 
not know the exact number of bits we need to construct the original differences of two 
tids. To elevate this, we have modified our proposed technique and put n number of 
bits in the bit vector for every entry before inserting the original difference in a bit 
form, where n specify the number of bits the bit representation of difference value 
has. Therefore, during the conversion we know the exact size of the difference if we 
read that n number of bits in advance for every entry. 

Since inserting n bits in advance for every entry incurs some overhead, one may 
raise a question about the efficiency of our proposed technique. In this regard we 
argue that the size of n is very small. For example if n is equal 5, then we can put dif-
bit that has 32 bits. However from previous discussion we say that we rarely need 32 
bits because using 32 bits we can represent a difference of two tids that occur after 2.3 
billions transactions.  

Nevertheless, we can further reduce the dif-bit size, if we remove the left most bit. 
Since the left most bit of dif-bit always has “1”, hence we remove that from the dif-
bit. And when we convert dif-bit to its corresponding tid, we simply add “1” in the 
same position (i.e. left most bit) of the dif-bit, so that we obtain the original dif-bit 
value. For example, if the difference between two tids is 9 (i.e. 1001) and n is 3 (i.e. 
11), then we put “11001” to the bit vector rather than “111001” and subsequently 
reduce “1” bit from each tid (i.e. dif-bit). Finally, when we convert “11001” to its 
corresponding tid, we place “1” after the n bits, and in this case after “11” we obtain 
the original dif-bit value i.e. “1001”. 

The pseudocode of the proposed algorithm is shown in figure 2. Initially, it reads 
the dataset and finds the difference of each item (i.e. subtract current tid with the 
previous tid where that item appears last time) during reading. Then, it converts those 
tid difference values into bit format and finds the corresponding range bits. Finally, 
those bits and range bits are inserted into the bit vector of the corresponding item. 
During the conversion, it first reads the range bits, and from that range bits it finds the 
bit size of next difference. Subsequently, it reads that specific number of bits and 
converts it to the number format. Finally, it finds the exact tid by adding that differ-
ence value with the previous tid. 



132 M.Z. Ashrafi, D. Taniar, and K. Smith 

 

Fig. 2. The Proposed Algorithm 

4   Performance Evaluation 

We have done an extensive performance study on our proposed technique to confirm 
our analysis of its effectiveness. Four datasets are chosen for this evaluation study. 
Table 1 shows the characteristics of each datasets that are used in our evaluation. It 
describes the number of items, the average size of each transaction, and the number of 
transactions of each dataset has.  

Table 1. Dataset Characteristics 

Name Transaction
Size avg.

Number of
Distinct Items

Number of
Records

Cover Type 55 120 581012
Connect-4 43 130 67557
T40I10D100K 40 1000 100000
Kosarak 8 41000 990000  

 

When we put dif-bit into a bit vector we put ‘n’ number of bits prior to dif-bit in-
sertion in order to specify the size of that dif-bit. However, for choosing the value of 
‘n’ we have two alternatives: exact size and range. The former specifies the exact size 
of a dif-bit, hence the size of ‘n’ never goes beyond 5, since using 5 bits we can ex-
press the exact bit size of any number that has 32 or less bits. The latter approach is 
specified a dif-bit size, and therefore the size of ‘n’ becomes smaller. For example, 32 
bits can be divided into 4 groups (i.e. 1-8, 9-16, etc.) and to represent each group we 
need 2 bits only. And during the insertion, a particular range value that is suitable for 
a dif-bit size is found and placed before the dif-bit. Since the latter approach needs 
fewer bits, in the performance evaluation we adopt the range approach. 
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In the first experimentation, we evaluate the efficiency of our proposed method by 
comparing it with the tid-based approaches. It is worth to mention that this tid based 
approach uses a well known vertical dataset layout and have been used in many dif-
ferent association mining algorithms [4, 5, 10]. These algorithms discover frequent 
itemsets in two phases: at first it stores tids of all items separately into the main mem-
ory, then intersects tids of one item with other item’s and find the exact support.  

Because the aims of this experiment is to find out the total memory that each of the 
approaches consumes, therefore we are only keen to know how much memory space 
those tid-based algorithms [4] need in order to complete the first phase. In figure 3, 
we plot a detail comparison between dif-bit (our proposed method) and tid. It shows 
how much memory each of the approaches takes at different support thresholds.  
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Fig. 3. Comparison dif-bit vs. tid 

From the graph shown in figure 3, it is clear that the dif-bit approach always re-
quires less memory than those of the tid approach. The size of dif-bit approach is 5-8 
times smaller than the corresponding tid approach, as the dif-bit approach finds the 
difference of two tids, converts that difference in a bit format and finally puts those 
bits into a bit vector. Therefore, it often requires only fewer bits to represent a differ-
ence value. In contrast, the tid approach requires 4 bytes (32 bits) to hold each of the 
word (i.e each appearance), hence requires more memory. In addition, the proposed 
dif-bit approach increases the compression ratio as the support increases because in a 
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higher support the average difference value reduces and subsequently requires fewer 
bits to represent a difference. For example, when we consider T40I10D100K dataset 
at 500 (500/100,000 = 0.005%) support the proposed dif-bit size is 5.85 times smaller 
than the tid approach, whereas its size is 6 times smaller than the corresponding tid 
approach when support is 2,500 (2,500/100,000 = 0.025%). 

5   Conclusion 

Main memory is one of the important resources that can be used to improve the per-
formance of association rule mining. However, due to small main memory capacity, 
mining algorithms often experience performance bottleneck when performing a min-
ing task on a large dataset. Since association mining algorithms inheritably depend-
able on amount of main memory, hence when that amount is not sufficient then these 
algorithms will be unable to finish the mining task. Therefore, we critically need effi-
cient memory enhancement techniques to make any mining algorithm complete the 
mining task on large datasets. To achieve this goal in this paper we present a tech-
nique, known as “Diff-tid”, which gain good compression ratio regardless of dataset 
characteristics or user specified support. The performance evaluation confirms that 
the proposed algorithm needs only a small amount of memory compared to other 
compression techniques that had been used by many association rule mining. 
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Abstract. A time-profiled association is an association pattern consis-
tent with a query sequence over time, e.g., identifying the interacting
relationship of droughts and wild fires in Australia with the El Nino
phenomenon in the past 50 years. Traditional association rule mining
approaches reveal the generic dependency among variables in associa-
tion patterns but do not capture the evolution of these patterns over
time. Incorporating the temporal evolution of association patterns and
identifying the co-occurring patterns consistent over time can be done
by time-profiled association mining. Mining time-profiled associations is
computationally challenging due to the large size of the itemset space
and the long time points in practice. In this paper, we propose a novel
one-step algorithm to unify the generation of statistical parameter se-
quences and sequence retrieval. The proposed algorithm substantially
reduces the itemset search space by pruning candidate itemsets based on
the monotone property of the lower bounding measure of the sequence
of statistical parameters. Experimental results show that our algorithm
outperforms a naive approach.

1 Introduction

A time-profiled association is an association pattern [2] consistent with a query
sequence over time. One example is the frequent co-occurrences of climate fea-
tures with the El Nino phenomenon over the last 50 years [10]. El Nino, an
abnormal warming in the eastern tropical Pacific Ocean[1], has been linked to
climate phenomena such as droughts and wild fires in Australia and heavy rain-
fall along the eastern coast of South America in the past 50 years. Transaction
data are implicitly associated with time, i.e., any transaction is associated with
a certain time slot. Thus the association patterns might change over time. For
example, a sales association between diaper and beer is high only in the evening
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but not in other time slots. Association patterns found might have different
popularity levels over time. These variations in time are not captured under tra-
ditional association rule mining[2]. Hence time-profiled association mining can
be used to discover interacting relationships consistent with a query prevalence
sequence over time. Mining time-profiled associations is crucial to many applica-
tions which analyze temporal trends of interactions among variables, including
Earth science, climatology, public health, and commerce.

Mining time-profiled associations is computationally challenging since the
sizes of itemset space and temporal space are extremely large in practice. In
the example of the El Nino investigation, there are millions of spatial units
with climate features (e.g., temperature and precipitation), each having 50 years
worth of daily observations, i.e.,50*12*365=21,900 time points. An observation
at one time point in a specific location can be treated as one transaction, so there
are more than millions of transactions globally at one time snapshot. Therefore,
exploring a pair of climate features will involve about a trillion itemset space
and long time series, and exploring all relationships among features would be
even more exorbitant.

To our knowledge, there is no prior work directly tackling the problem of
mining time-profiled associations. Some relevant work has attempted to capture
the temporal dynamics of association patterns, including active data mining [4],
cyclic association rule mining [8], and calendar-based association rule mining [7].
However, these approaches do not appear to be directly applicable for identifying
consistent associations over time with a query sequence.

A naive approach to mining time-profiled associations can be characterized
using a two-phase paradigm. The first phase updates the history of the statis-
tical parameters (e.g., support) for rules at different time points using a tradi-
tional Apriori [2] approach, and generates a sequence of statistical parameters.
The second phase matches the sequences of statistical parameters to find time-
profiled associations with the query sequence. However, exponentially increasing
computational costs of generating all combinatorial candidate itemsets become
prohibitively expensive. We propose a novel one-step algorithm to unify the
generation of statistical parameter sequences and sequence searching. The pro-
posed algorithm prunes the candidate itemsets by using the monotone property
of the lower bounding measure of the sequence of statistical parameters. It sub-
stantially reduces the search space of itemsets, and is efficient in terms of the
number of candidate itemset generations. Experimental results show that our
algorithm outperforms the naive approach.

2 Problem Statement

A time-profile association is an association pattern consistent with a specific time
sequence over time. The problem of mining time-profiled association patterns is
to find all itemsets whose time sequences of prevalence measures are similar to
a user specified query sequence under a given similarity threshold. The detailed
problem definition is described as follows. We assume that a query time sequence
Q is in the same scale as the prevalence measures or can be transformed to the
same scale
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Given:

1) A set of items E = {e1, . . . , em}.
2) A time-stamped transaction database D. Each transaction d ∈ D is a tuple

< time-stamp, itemset > where time-stamp is a time that the transaction
d is executed and itemset is a set of items which is a subsets of E.

3) A time unit t. The ith time slot ti, 0 ≤ i < n, corresponds to the time
interval [i · t , (i + 1) · t). The set of transactions executed in ti is denoted
by Di.

4) A query time sequence Q =< q0, . . . , qn−1 > over time slots t0, . . . , tn−1.
5) A threshold of similarity value θ.

Find: A complete and correct set of itemsets I ⊆ E where fsimilar(PI , Q) ≤
θ, where PI =< pI

0, . . . , p
I
n−1 > is the time sequence of prevalence values of an

itemset I over time slots t0, . . . , tn−1 and fsimilar(PI , Q) is a similarity function
between two sequences PI and Q.

Objective: Minimize computational cost.

3 Properties of Time-Profiled Associations

3.1 Basic Concepts

Support Time Sequence : We use support as the prevalence measure of an
itemset since it represents how statistically significant a pattern is, and it has
an anti-monotone property [2].

Definition 1. Given a time-stamped transaction database D = D0∪ . . .∪Dn−1,
the support time sequence PI of an itemset I is the sequence of support values
of an itemset I over D0, . . . , Dn−1 such that

PI =< supportD0(I), . . . , supportDn−1(I) >

where supportDi
(I) = |{d ∈ Di|I ⊆ d}|/|Di|.

Choice of Similarity Measure: Several similarity measures have been pro-
posed in the time series literature [6]. We propose using Euclidean distance as
the similarity measure between two sequences since it is a typical similarity
measure and is useful in many applications [3, 5]. For two time sequences X =<
x0, . . . , xn−1 > and Y =< y0, . . . , yn−1 >, the Euclidean similarity measure is

defined as fsimilar(X,Y ) = D(X,Y ) =
√∑n−1

i=0 (xi − yi)2. If this distance is
below a user-defined threshold θ, we say that the two sequences are similar.

3.2 Upper Bound Time Sequence and Lower Bounding Measure

Lemma 1. Let Ik+1 be a size k+1 itemset ⊆ E and {I1
k , . . . , Ik+1

k } be a set of all
size k sub itemsets of Ik+1, where Ik ⊂ Ik+1. Let PIk+1

= < p
Ik+1
0 , . . . , p

Ik+1
n−1 >



be the support time sequence of Ik+1 and PIk
= < pIk

0 , . . . , pIk
n−1 > be the

support time sequence of Ik. The upper bound sequence of PIk+1
, UIk+1

=

< u
Ik+1
0 , . . . , u

Ik+1
n−1 > is < min{pI1

k
0 , . . . , p

Ik+1
k

0 }, . . . , min{pI1
k

n−1, . . . , p
Ik+1

k
n−1 } >.

Definition 2. Given a query time sequence Q, the lower bounding measure be-
tween Q and the support time sequence PI of an itemset I is defined as

Dlb(Q,PI) =

√√√√n−1∑
i=0

(qi − ui)2, qi ≥ ui,

where i is a time slot, qi ∈ Q =< q0, . . . , qn−1 > and ui ∈ UI =< u0, . . . , un−1 >,
the upper bound time sequence of PI .

Lemma 2. For the true similarity measure D(Q,PI) and the lower bounding
measure Dlb(Q,PI) of a query time sequence Q and the support time sequence
PI of an itemset I, the following inequality holds:

Dlb(Q,PI) ≤ D(Q,PI)

3.3 Monotone Property of the Lower Bounding Measure

Lemma 3. Let PIk
be the support time sequence of a size k itemset Ik and PIk+1

be the support time sequence of a size k+1 itemset Ik+1, where Ik+1 = Ik ∪ I1

and I1 /∈ Ik. The following inequality holds:

Dlb(Q,PIk
) ≤ Dlb(Q,PIk+1

)

It is clear by Lemma 1 and Definition 2. The upper bound of the support time
sequence of an itemset decreases with increasing itemset size. As a result, the
lower bounding measure does not decrease with increasing size of itemset. For
a similarity threshold θ, if Dlb(Q,PIk

) > θ, then Dlb(Q,PIk+1
) > θ. Lemma 3

ensures that the lower bounding measure can be used to effectively prune the
search space and efficiently find interesting itemsets.

4 Time-Profiled Association Mining Algorithm

We propose a one-step algorithm to combine the generation of support time
sequences and the time sequence search. Our algorithm prunes the candidate
itemsets by using the monotone property of the lower bounding measure of sup-
port time sequences without scanning the transaction database and even without
computing their true similarity measure. The following is the simple description
of the algorithm.

Generation of Support Time Sequences of Single Items: In the first scan
of a time-stamped database, the supports of all single items (k = 1) are counted
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per each time slot and their support time sequences are generated. If the lower
bounding measure between a query sequence and the support time sequence is
greater than a given similarity threshold value, the single item is pruned from
the candidate set. If the true similarity value between them satisfies the thresh-
old, the item is added to a result set.

Generation of Candidate Itemsets: All size k + 1 candidate itemsets are
generated using size k candidate itemsets.

Generation of Upper Bound Sequences: The upper bound time sequences
of size k + 1 candidate itemsets are generated using the support sequences of
their size k subsets.

Pruning of Candidate Itemsets Using the Lower Bounding Measure:
Calculate the lower bounding measure between the upper bound sequence of the
candidate itemset and the query time sequence. If the lower bounding measure
is greater than the similarity threshold, the candidate itemset is eliminated from
the set of candidate itemsets.

Scanning the Database and Finding Itemsets Showing Similar Sup-
port Time Sequences: The supports of candidate itemsets after pruning are
counted from the database and their support time sequences are calculated. If
the similarity value between the support sequences and the query sequence is
less than the threshold value, the itemset is included in the result set. The size
of examined itemsets is increased to k = k + 1 and the above procedures are
repeated until no candidate itemset remains in the previous pass.

5 Experimental Evaluation

Our experiments were performed to examine the effect of different threshold
values and the effect of itemset pruning by the lower bounding measure. The
results were compared with the naive method. The dataset was generated us-
ing the transaction generator designed by the IBM Quest project used in [2].
We added a time slot parameter for generating time-stamped transactions. All
experiments were performed on a workstation with 4 processors, each an Intel
Xeon 2.8 GHz with 3 Gbytes of memory running the Linux operating system.

Effect of Similarity Threshold: The effect of similarity measure was ex-
amined with different similarity thresholds using a synthetic dataset in which
the total number of transactions was 100,000, the number of items was 20, the
average size of transaction was 10 and the number of time slots was 10. The
query sequence was chosen near the median spport value of single items at each
time slot. In Fig. 1 (a), our method showed dramatically less execution time com-
pared with the naive approach. With the increase in the similarity threshold, the
execution time increased. Otherwise, the naive approach showed stable execu-
tion time because the approach calculated all time sequences of all combination
itemsets independent of the threshold value
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Fig. 1. Experiment Results: (a) Effect of threshold (b) Effect of pruning

Effect of Lower Bounding Pruning: Fig. 1 (b) shows the number of gener-
ated candidate itemsets per each pass in the experiment using the same dataset.
Note that the y value is in log scale. Our method generated much fewer candidate
itemsets compared with the naive method.

6 Conclusions

We introduced the problem of mining time-profiled association patterns and
proposed a one-phase algorithm to efficiently discover time-profiled associations.
The proposed algorithm substantially reduced the search space by pruning can-
didate itemsets based on the monotone property of the lower bounding measure
of the sequence of statistical parameters. Experimental results showed that our
algorithm outperformed the naive approach.
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Abstract. We study the problem of mining frequent value sets from a
large sensor network. We discuss how sensor stream data could be repre-
sented that facilitates efficient online mining and propose the interval-list
representation. Based on Lossy Counting, we propose ILB, an interval-
list-based online mining algorithm for discovering frequent sensor value
sets. Through extensive experiments, we compare the performance of ILB
against an application of Lossy Counting (LC) using a weighted trans-
formation method. Results show that ILB outperforms LC significantly
for large sensor networks.

1 Introduction

Data mining is an area of active database research because of its applicability in
various areas. One of the important tasks of data mining is to extract frequently
occurring patterns or associations hidden in very large datasets. In recent years,
stream processing and in particular sensor networks has attracted much research
interest [1, 3]. Stream processing poses challenging research problems due to large
volumes of data involved and, in many cases, on-line processing requirements.

Any device that detects and reports the state of a monitored attribute can
be regarded as a sensor. In our model, we assume that a sensor only takes on
a finite number of discrete states. Also, we assume that a sensor only reports
state changes. A sensor stream can thus be considered as a sequence of updates
such that each update is associated with a time at which the state change occurs.
Figure 1 shows a system of six sensors (S1, ..., S6), each could be in one of the two
possible states “low” (L) and “high” (H). Our goal is to discover associations
among sensor values that co-exist during a significant portion of time.

If one considers a sensor value, such as “S1 = H”, as an item, mining fre-
quent value sets is similar to mining frequent itemsets. One possible approach is
to transform the stream data into a dataset of transactions, and then apply a tra-
ditional mining algorithm like Apriori to the resulting dataset. A straightforward
data transformation would generate transactions by taking snapshots of sensor

� This research is supported by Hong Kong Research Grants Council grant HKU
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Fig. 1. Sensor data

Table 1. A simple transformation

Transaction ID S1 S2 S3 S4 S5 S6
1 H L L H L H
2 H L L H L H
3 H L L H L L
4 H L L L L L
5 H L L L L L
6 H L H L L L

Table 2. A weighted transformation

Transaction ID S1 S2 S3 S4 S5 S6 weight
1 H L L H L H 2
2 H L L H L L 1
3 H L L L L L 2
4 H L H L L L 1

states at regular intervals. Alternatively, one can derive a transaction only when
there is an update (from any sensor). With this approach, different snapshots of
the sensor states could have different life-spans, which are taken as the weights
of respective transactions. Tables 1 and 2 demonstrate these transformations.

A major problem with the two transformations is that the derived data con-
tain a lot of redundancy. One can observe from Tables 1 and 2 that successive
transactions only differ by at most one sensor value. The redundancy causes
traditional mining algorithms to perform badly.

A third transformation that could avoid the redundancy problem is to repre-
sent a stream by an interval list. Given a sensor S and a value v, the interval list
IL(S = v) is a list of (start-time, end-time) pairs. Each pair specifies the start
time and the end time of a time interval during which S assumes the value v.

Intuitively, the interval list representation can potentially support a more
efficient mining algorithm in a large sensor network environment over the tradi-
tional Apriori-based approaches. This is because the representation avoids data
redundancy which leads to a much smaller dataset. Moreover, determining the
support of a sensor value set is achieved by list intersection. This avoids the large
number of redundant subset testing performed by Apriori-based algorithms.

Due to the reactive nature of monitoring systems and the large volume of data
generated by a massive sensor network, data analysis algorithms should be online
and one-pass. In [4], Manku et al. proposed the Lossy Counting algorithm, which
is an online, one-pass procedure for finding frequent itemsets from a data stream
of transactions. In this paper, we study how the Lossy Counting framework can
be used to derive online one-pass algorithms for mining large sensor streams
under the two data representations (weighted transactions and interval list).

The rest of the paper is structured as follows. We formally define the problem
of finding frequently co-existing sensor value sets in Section 2. In Section 3,
we review the Lossy Counting algorithm. In Section 4, we define interval list
and propose an interval-list-based algorithm for solving the problem. Section 5
reports the experimental results. Finally, Section 6 concludes the paper.
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2 Problem Definition

We define a sensor as a device for monitoring and reporting the states of some
physical attribute. The set of all possible states of a sensor S is called the domain
of S. We assume that every sensor has a finite domain. (If the domain of a sensor
is continuous, we assume that it can be appropriately quantized and mapped to
a finite one.) We assume that the state of a sensor changes at discrete time
instants called updates. The state of a sensor stays the same between updates.

A sensor value is a state reported by a sensor. We denote a sensor value by
S = v where S is a sensor and v is the state reported. If the state of sensor S
is v at a certain time t, we say that the sensor value S = v is valid at time t.
Given a time interval I, if S = v is valid at every instant of I, we say that S = v
is valid in I. A sensor network consists of a number of sensors. A set of sensor
values V is valid in an interval I if all sensor values in V are valid in I.

We assume that all sensors in a sensor network start reporting values at time
0. At any time instant T (> 0), the support duration of a value set V, denoted by
SD(V), is the total length of all non-overlapping intervals within [0, T ] in which
V is valid. We define the support of V, denoted by sup(V), as SD(V)/T . A value
set V is frequent if sup(V) ≥ ρs, a user specified support threshold.

Under the stream environment, finding the exact set of frequent value sets
would require keeping track of all value sets that have ever occurred. The high
memory and processing requirements render this approach infeasible. As an al-
ternative, we adopt the Lossy Counting framework proposed in [4] and report all
value sets that are frequent plus some value sets whose supports are guaranteed
to be not less than ρs − ε for some user-specified error bound ε.

3 Lossy Counting

In [4], Manku and Motwani propose Lossy Counting, a simple but effective al-
gorithm for counting approximately the set of frequent itemsets from a stream
of transactions. Since our algorithms use the framework of Lossy Counting, we
briefly describe the algorithm in this section.

With Lossy Counting, a user specifies a support threshold ρs and an error
bound ε. Itemsets’ support counts are stored in a data structure D. We can
consider D as a table of entries of the form (e, f,Δ), where e is an itemset, f is
an approximate support count of e, and Δ is an error bound of the count. The
structure D is maintained such that if N is the total number of transactions the
system has processed, the structure D satisfies the following properties:

P1: If the entry (e, f, Δ) is in D, then f ≤ fe ≤ f + Δ, where fe is the exact
support count of e in the N transactions.

P2: If the entry (e, f, Δ) is not in D, then fe must be less than εN .

The data structure D is initially empty. To update D, transactions are di-
vided into batches. The size of a batch is limited by the amount of memory
available. Figure 2(a) illustrates the update procedure of D. Let B be a batch
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Fig. 2. Lossy Counting

of transactions. Let N1 denote the number of transactions before B and let D1

denote the data structure D before B is processed. Lossy Counting enumerates
itemsets that are present in B and counts their supports in the batch. Let e be
an itemset that appears in B whose support count w.r.t. B is fB . D is then
updated by the following simple rules (D2 denotes the updated D in the figure):

Insert: If D1 does not contain an entry for e, the entry (e, fB , εN1) is created
in D unless fB + εN1 ≤ εN2, where N2 is the total number of transactions
processed including those in B.

Update: Otherwise, the frequency f of e in D1 is incremented by fB .

Delete: After all updates, an entry (e, f,Δ) in D is deleted if f + Δ ≤ εN2.

For an efficient implementation of Lossy Counting, certain optimization is
done. Details of which can be found in [4]. Besides, to apply Lossy Counting to
our frequent value set mining problem, a few modifications have to be made.
Due to space limitation, readers are referred to [2] for details.

4 Interval List

In this section we formally define interval lists and discuss how they could be
used to mine frequent value sets under the Lossy Counting framework.

An interval is a continuous period of time. We denote an interval I by (t, t̄),
where t and t̄ are the start time and the end time of the interval, respectively.
The duration of I is given by δ(I) = t̄ − t. Given two intervals I1 = (t1, t̄1)
and I2 = (t2, t̄2) such that t1 ≤ t2, they are overlapping if t2 < t̄1 and their
intersection is given by I1 ∩ I2 = (t2, min(t̄1, t̄2)).

An interval list is a sequence of non-overlapping intervals. The intervals in an
interval list are ordered by their start time. The duration of an interval list IL
is given by δ(IL) =

∑
δ(I) | I ∈ IL. Given two interval lists IL1 and IL2, their

intersection is defined as: IL1 ∩ IL2 =
⋃
{I1 ∩ I2 | I1 ∈ IL1 ∧ I2 ∈ IL2}.

Given a set of sensor value V, we use the notation IL(V) to denote the interval
list that contains all and only those intervals in which the value set V is valid.
We call such an interval list the interval list of V. Given two sensor value sets, V1

and V2, it can be easily verified that the interval list of V1∪V2 can be obtained by
intersecting the interval lists of V1 and V2. That is, IL(V1∪V2) = IL(V1)∩IL(V2).
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1 C1 ← set of all size-1 value sets;
2 B ← {IL(V) | V ∈ C1};
3 i ← 1;
4 While Ci �= ∅ do
5 Foreach V ∈ Ci do

6 IL(V) =
⋂

{IL(v) | v ∈ V};
7 SD = δ(IL(V));
8 Update(D, V, SD, T1, T2, ε);
9 end-for
10 Di ← {(V, f, Δ) | (V, f, Δ) ∈ D ∧ |V| = i};
11 Ci+1 ← ApGen(Di, i + 1);
12 i ← i + 1;
13 end-while

Fig. 3. Procedure for updating D using

the interval list representation

1 function Update (D, V, SD, T1, T2, ε)
2 if (∃(V, f, Δ) ∈ D) do
3 f ← f + SD;
4 if (f + Δ < εT2) do
5 remove all entries (X, ., .) from D

where X ⊇ V;
6 end-if
7 else if (SD ≥ ε(T2 − T1)) do
8 D = D ∪ (V, SD, εT1);
9 end-if

Fig. 4. Function Update()

The interval list representation can be used to mine frequent value sets under
the Lossy Counting framework in the following way. First of all, time is parti-
tioned into a number of intervals, each corresponds to a batch of sensor updates
(see Figure 2(b)). Instead of representing a batch of updates as a set of weighted
transactions, the updates are represented by the interval lists of the sensor val-
ues. Similar to the case of Lossy Counting, the size of a batch is limited by the
amount of buffer memory available. Also, a data structure D is again used that
keeps track of certain sensor value sets’ support durations. The function and
properties of D is the same as those described in Section 3.

Figure 3 outlines our procedure for updating D. The number of sensor values
in a value set V is its size. The procedure starts by collecting all size-1 value sets
into a set of candidates, C1. The batch B is represented by a set of interval lists,
one for each sensor value. The procedure then executes a while loop. During
each iteration, a set of candidate value sets, Ci, is considered. Essentially, each
value set V in Ci is of size i and that V’s support duration up to time T2 has
the potential of exceeding εT2. The procedure then verifies whether V should be
included in D by finding its support duration in batch B. This is achieved by
computing IL(V) in B through intersecting the interval lists of relevant sensor
values, followed by determining the total length of all the intervals in IL(V). D
is then updated by function Update(), described in Figure 4, which essentially
follows the three update rules listed in Section 3.

After all candidates in Ci are processed, all the entries in D for size-i value
sets are properly updated. These entries are collected in Di. The set Di is used
to generate the candidate set Ci+1 for the next iteration. More specifically, a
size-(i+1) value set V is put into Ci+1 unless there is a size-i subset V ′ of V that
is not in Di. This is because by Property P2 of D (see Section 3), if the entry
(V ′, f,Δ) is not in Di, we know that the support duration of V ′ w.r.t. time T2

must be smaller than εT2. Since the support duration of V cannot be larger than
the support duration of its subset V ′, the support duration of V is smaller than
εT2 as well. That is, V should be left out of D and needs not be considered.

There are a number of optimizations that can be applied to speed up our
procedure of processing a batch. Interested readers are referred to [2] for details.
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5 Results

We performed extensive experiments comparing the performance of the min-
ing algorithms using different data representations. Due to space limitation, we
highlight some of the findings here. A detailed analysis can be found in [2].

Fig. 5. Dataset size under

two representations

Fig. 6. Running time vs.

ρs (600-sensor network)

Fig. 7. Running time vs.

ρs (400-sensor network)

As we have alluded to earlier, one major advantage of the interval list rep-
resentation is that it is more space-efficient than the weighted representation.
Figure 5 shows the size of the dataset generated for a stream history of 92000
time units when the number of sensors in the network varies from 100 to 600.
The dataset size grows linearly w.r.t. the number of sensors under the Interval-
List-Based Lossy Counting algorithm (ILB) described in Section 4. The weighted
transformation representation (LC), however, does not scale well.

The dataset size has a significant impact on the algorithms’ performance. As
an example, Figure 6 shows that ILB is much more efficient than LC for a 600-
sensor network, especially when ρs is small. It is because, as shown in Figure 5,
the dataset size for LC is much (31 times in this case) larger than that for ILB.
Hence, for LC, a batch contains 31 times fewer updates than that of ILB. The
small batch size is undesirable for the Lossy Counting framework because of the
false alarm effect, as discussed in [2].

Figure 7 compares the performance of ILB and LC for a 400-sensor net-
work. ILB still outperforms LC although the margin is less drastic than the
600-sensor case. It is because, for a 400-sensor network, the dataset size is much
smaller for LC. This allows a larger batch and thus the effect of false alarm is
ameliorated.

6 Conclusion

We study the problem of mining frequent sensor value sets from a massive sen-
sor network. We discuss methods for representing sensor stream data. We derive
online mining algorithms, namely, LC and ILB and evaluate the algorithms’ per-
formance through experiments. The results show that ILB could outperform LC
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by a significant margin, particularly for large sensor networks. The interval list
representation is thus a viable option in representing a massive sensor network.
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Abstract. Mining frequent patterns has been studied popularly in data mining 
research. All of previous studies assume that items in a pattern are unordered. 
However, the order existing between items must be considered in some applica-
tions. In this paper, we first give the formal model of ordered patterns and dis-
cuss the problem of mining frequent ordered patterns. Base on our analyses, we 
present two efficient algorithms for mining frequent ordered patterns. We also 
present results of applying these algorithms to a synthetic data set, which show 
the effectiveness of our algorithms. 

1   Introduction 

Mining frequent patterns from a large database is important and interesting to the fun-
damental research in the mining of association rule. It is also play an essential role in 
many other important data mining tasks [1-3]. Since the first introduction of mining 
of frequent itemsets in [4], various algorithms [5-7] have been proposed to discover 
frequent itemsets efficiently.  

However, very little work has been done on the problem of mining in the case that 
some order existing between items of a transaction. Agrawal [8] have studied the 
problem of mining sequential patterns. But, the order in sequential patterns mining is 
the sequence of transactions according to increasing transaction-times. In sequential 
patterns mining, items of a transaction are out-of-order. In some real applications, 
such as Web user navigation modeling, items of a set (or transaction) are ordered and 
the order existing between items must be considered in mining useful patterns. 

In this paper, we first bring forward the problem of mining frequent ordered pat-
terns and design efficient algorithms for this problem. As far as we know, this paper is 
the first one that systemically presents the study of mining frequent ordered patterns. 
There is no related study has been reported.  

The organization of the rest of the paper is as follows. In section 2, we give a for-
mal statement of the problem. In section 3, we present our algorithms for mining fre-
quent ordered patterns. In section 4, we present some experimental results. In section 
5, we conclude with a summary and point out some future research issues. 
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2   Basic Definitions 

Before embarking on describing the definition of frequent ordered patterns, we will 
briefly state some terminology. Let I = {a1, a2, … , am} be a set of items. 

Definition 1 (position order): Let A (⊆ I) be a set of items. According to the posi-
tions of items in A, we define a binary relation < on A as follows: For any two items 
ai, aj ∈ A, if ai occurs in A before aj then ai < aj, or else aj < ai. The set A with < is 
called an ordered pattern. The number of items in A is called its length. An ordered 
pattern with length l is also denoted l-pattern. For the convenience of discussion, we 
use expression ai <A aj to denote that there exists ai < aj in A. 

Definition 2: Given two ordered patterns A and B. B is a subset of A if and only if: (1) 
B ⊆ A; (2)∀ ai, aj ∈ B, ai <B aj ⇔ ai <A aj.  

The first condition requires that B should be a subset of A from the point of view of 
the set theory. The second condition requires that the position relations of any two 
items should be consistent in A and B. Let A = <a3, a1, a2> and B = <a3, a2> be two 
ordered patterns. It is obvious that B is a subset of A. But, C = <a2, a3> is not a subset 
of A because a2 <C a3 and a3 <A a2 violate the second condition of definition 2. If B is 
a subset of A, We also call A contains B and denote B { A. 

Lemma 1: Given three ordered patterns A, B, and C, B { A ∧ C { B   C { A. 

Proof. B { A implies that B ⊆ A. C { B implies that B ⊆ A. As a result, we have C ⊆ 
A. For ai, aj ∈ C, we have ai <C aj ⇔ ai <B aj because of C { B. In addition, we have ai 
<B aj ⇔ ai <A aj because of B { A. Therefore, we have ai <C aj ⇔ ai <A aj. 

Lemma 1 shows that subset relation between ordered patterns is transitive. 

Definition 3 (ordered transaction): a transaction T, which contains a set of items in 
I, with the relation < is called an ordered transaction. A database consisting of ordered 
transactions is called an ordered transaction database. 

Based on above definitions, we have the definition of frequent ordered patterns as 
follows. 

Definition 4: Given an ordered transaction database ODB and an ordered pattern A, 
the support of A is the number of ordered transactions containing A in ODB. A is a 
frequent ordered pattern if A’s support is no less than a predefined minimum sup-
port threshold ξ. 

Given an ordered transaction database ODB and a minimum support threshold ξ, 
the problem of finding the complete set of frequent ordered patterns is called the fre-
quent ordered pattern mining problem.  

3   Discovering Frequent Ordered Patterns 

3.1   Some Properties 

Before embarking on the algorithm description, we will briefly introduction some 
properties of frequent ordered patterns. Let ξ be the predefined threshold, and a data-
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base ODB = {T1, T2 , … , Tn}, where Ti (i ∈ [1..n]) is an ordered transaction. We have 
the following property. 

Property 1(anti-monotone): if A is infrequent, any ordered patterns containing A, 
which are also called supersets of A, must be infrequent. 

Rational. Let B is a superset of A and we assume B is frequent. For any transaction Ti 
containing B, Ti must contain A by Lemma 1. That is, The support of A must be great 
than that of B. We know B is frequent. So, we have A must be frequent. It conflict 
with the fact that A is infrequent. Therefore, our assumption is wrong and B should be 
infrequent. 

Property 1 shows that the Apriori property, which is the basic of mining of frequent 
patterns, is still reserved in ordered patterns. We can exploit this property to mining 
all ordered frequent patterns from short patterns to long patterns.  

3.2   ABMFOP Algorithm 

For mining frequent ordered patterns, we employ an iterative approach known as a 
level-wise search, where i-patterns are used to explore (i+1)-patterns. First, the set of 
frequent ordered 1-pattern is found. This set is denoted OL1. OL1 is used to find OL2, 
which is the set of frequent ordered 2-patterns, and then OL2 is used to find OL3, and 
so on, until no more frequent ordered i-patterns can be found. The finding of each OLi 
requires one scan of the database. To improve the efficiency of the level-wise genera-
tion of frequent ordered patterns, Property 1 are used to narrow the range of search. 

Based on above discussion, we design an algorithm called ABMFOP. ABMFOP is 
abbreviation for Apriori-Based Mining of Frequent Ordered Patterns. The main idea 
of ABMFOP is almost the same as Apriori algorithm [5] used to mine Frequent Pat-
terns. But, there are some differences betweem ABMFOP and Apriori algorithm be-
cause the order between items must be regarded in ABMFOP. First, the procedure of 
generating candidate pattern is different. Second, the procedure of judging the subset 
relation of two patterns is different. Gen_Candidate and Is_Subset() have more de-
tails. 

Algorithm: ABMFOP 
Input: Database, ODB, of ordered transactions; minimum support threshold ξ. 

Output: OL, frequent ordered patterns in ODB. 

Method:  
OL1 = find_frequent_ordered_1-pattern(ODB); 

for (i = 2; OLi-1 ≠ ∅; i++) 

SCi = Gen_Candidate(OLi-1); 

for each ordered transaction T∈ ODB  

for each candidate pattern C∈ SCi  

if (Is_Subset(C, T) then C.support++; 

OLi = {C∈ SCi | C.support ≥ ξ} 

return OL = ∪i OLi; 



 Mining Frequent Ordered Patterns 153 

 

Procedure Gen_Candidate(OLi-1) // generate candidate ordered patterns 

for each frequent ordered pattern A1(=<x1, x2 , …xi-2, xi-1 >)∈ OLi-1 

for each frequent ordered pattern A2(=<y1, y2 , …yi-2, yi-1 >)∈ OLi-1 

if ((x1= y1)∧ (x2= y2)∧…∧ (xi-2= yi-2) ∧( xi-1 ≠ yi-1)) then 

X = <x1, x2 , …xi-2, xi-1, yi-1>; 

If ¬ (Has_Infrequent_Subset(X, OLi-1)) then SCi = SCi ∪{X}; 

Y = <x1, x2 , …xi-2, yi-1, xi-1>; 

If ¬ (Has_Infrequent_Subset(Y, OLi-1)) then 

SCi = SCi ∪{Y}; 

return SCi; 

Procedure Has_Infrequent_Subset(A, OLi-1). 

Let A==<a1, a2, …ai-1, ai>; 

for (k = 1; k ≤ i; k++) { 

Ak = <a1, a2, …, ak-1, ak+1, …, ai>; 

If Ak ∉ OLi-1 then reture TRUE; 

reture FALSE; 

Procedure Is_Subset(Y, X)  

Let Y =<y1, y2, …xm-1, ym> and X =<x1, x2, …xn-1, xn>; 

if n < m then 

reture FALSE; 

A = X; 

for (k = 1; k ≤ m; k++)  

if yk ∉ A then reture FALSE; 

else       // there must exist xj ∈ A such that xj = yk; 

Let xj be the item in A that is equal to yk; 

if ( j > (n − m + k)) then reture FALSE; 

else A = <xj+1, x j+2, …xn-1, xn>; 

reture TRUE; 

3.3   ABMFOP_F Algorithm 

In experiment, we find that finding frequent ordered 2-patterns is the bottleneck of 
ABMFOP algorithm. Too many candidate 2-patterns make it time-consumed to find 
frequent ordered 2-pattern from them. Instead of generating candidate 2-patterns from 
frequent ordered 1-patterns, we design a more efficient algorithm called ABMFOP_F, 
which generates candidate 2-patterns directly from ordered transactions. This strategy 
greatly decreases the time for finding frequent ordered 2-patterns. ABMFOP_F is al-
most the same as ABMFOP except the process of 2-patterns. With the limitation of 
space, we do not describe ABMFOP_F in detail in this paper. 
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4   Experiments 

We experimented with the mining algorithms using a synthetic data set. All the ex-
periments are performed on a Pentium 4 PC running MS XP. All the programs are 
written in Microsoft/Visual C++ 6.0. The synthetic data set, T50.I10.L100k.D10K, is 
generated using the procedure described in [5]. We randomly change the orders of 
items in each transaction in order to mimic reality more effectively. ABMFOP and 
ABMFOP_F showed good scalability as the minimum support threshold decreased 
from 500 to 300. ABMFOP_F performs about 1.5 times faster than ABMFOP on av-
erage. The reason is that ABMFOP_F adopts a better way, which is called subset-
generating-and-counting, for finding all frequent ordered 2-patterns. 

5   Conclusions 

In this paper, we study the problem of mining frequent ordered patterns, which has 
not ever been proposed as far as we know. Based on the characteristic of ordered pat-
terns, we have designed two algorithms for deal with the problem. Our performance 
study shows the effectiveness of our algorithms. In the future, we will take efforts to-
wards more efficient algorithms by adopting useful ideas from many proposed algo-
rithms of mining frequent patterns. 
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Abstract. It is estimated that 20% of genes in the human genome en-
code for integral membrane proteins (IMPs) and some estimates are
much higher. IMPs control a broad range of events essential to the
proper functioning of cells, tissues and organisms and are the most com-
mon target of clinically useful drugs [1]. However there is a dearth of
high-resolution 3D structural information on the IMPs. Therefore good
prediction methods of IMPs structures are to be highly valued. In this
paper we apply Conditional Random Fields (CRFs) to build a probabilis-
tic model to solve the membrane protein helix prediction problem. The
advantage of CRFs is that it allows seamless and principled integration
of biological domain knowledge into the model. Our results show that the
CRF model outperforms other well known helix prediction approaches
on several important measures.

1 Introduction

A number of high throughput projects have been positioned to assist in the
interpretation of the human genome sequence data. Structural determination of
integral membrane proteins can be problematic due to difficulties in obtaining
sufficient amounts of sample. Protein sequence analysis methods extended by
our knowledge of protein structure may be suited to contribute significantly to
these aspects of protein structure and function.

In this paper we cast the protein helix prediction task as a binary sequen-
tial classification problem and use Conditional Random fields (CRFs) to solve
it [2]. Given a set of membrane proteins sequences, each single record in the
set contains pair of sequences: The observation sequence, represented by x and
the label sequence, represented by y. The protein observation sequence is a se-
quence of amino acids, represented by 20 different letters. The label sequence is
a transmembrane helical/non-helical structure sequence represented by binary
labels 0/1 respectively. This data, called the training data, is represented by
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T = (x(k), y(k))
N

k=1, where N is the total number of proteins. Our goal is to pre-
dict the helical structure of a target set, which has observation sequences only.

2 The Sequential Classification Problem

The sequential classification problem is well known in many different fields such
as computational linguistics, part of speech tagging, computational biology and
many more. Given set of observation sequences, goal here is to find correspond-
ing label sequences to these observations. A very common approach is using
generative models, such as Hidden Markov Models (HMMs), finding the joint
probability distribution p(X,Y ) where X and Y are random variables describ-
ing the observation and the labelled sequences respectively. This approach suffers
from a major drawback that in order to find the joint distribution, a generative
model has to calculate all possible observation sequences, which may be not prac-
tical [3]. In contrast, the conditional models specify the probability of a label
given an observation sequence p(Y |X). Thus, no effort is spent on modelling all
possible observation sequences, but only on selecting the labels which maximize
the conditional probability [2].

3 Conditional Random Fields (CRFs)

Conditional Random Fields (CRFs) is a probabilistic framework for labelling se-
quential data. CRFs is a form of undirected graphical state model that defines a
log-linear distribution for each state over the label sequence based on the obser-
vation sequence [3]. CRFs main advantage over other non-generative finite-state
models based on directed graphical models, such as Maximum Entropy Markov
Models (MEMMs), is by avoiding a weakness called the label bias problem.
The Markovian assumptions in MEMMs and similar state-conditional models
separate the decision making at one step from future dependent decisions of
consecutive steps, and may be biased towards states with fewer outgoing transi-
tions. In contrast, CRFs have a single exponential model for the joint probability
of the entire sequence of labels given the observation sequence [2].

Formally, we define G = (V,E) to be an undirected graph when v ∈ V
corresponding to each of the random variables representing a label sequence Yv

from Y and e ∈ E corresponding to the transition between a given label to the
next one. Even though in theory the structure of graph G may be arbitrary, in
our application the graph is a simple chain, where each node corresponds to a
label [3].

3.1 Definition

Let G = (V,E) be a graph that Y = (Yv)v ∈ V . If each random variable Yv in
the graph G obeys the Markov property, then (Y,X) is a conditional random
field F in which p(Yv|X,Yw, w = v) = p(Yv|X,Yw, w ∼ v), where w ∼ v are
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neighbors in G. A clique c in the graph G is defined as a subset of vertices which
are completely connected. In a chain graph the cliques are either from first order
(single vertex) or second order neighbors (two neighbor vertices).

From the definition of Gibbs Random Fields (GRFs), a set of random vari-
ables f is said to be a Gibbs random field if and only if its configuration obey a
Gibbs distribution of the form:

P (f) = Z−1 × e−
1
T U(f) (1)

where Z is a normalizing factor: Z =
∑

f∈F e−
1
T U(f), T is a constant called the

temperature which equals to 1 in the most simple case and U(f) is the energy
function. By the The Hammersley-clifford theorem if f obeys the Markov prop-
erty (and positivity) then the physical topology (chain) coincides with the logi-
cal topology and the energy function can be expressed as a sum of the cliques’s
neighbors order:

U(f) =
∑

{v}∈C1

V1(fv) +
∑

{v,w}∈C2

V2(fv, fw) (2)

[4]. Since conditional random fields also hold the conditions of Markov ran-
dom field, then according to Hammersley-clifford theorem, they have a Gibbs
distribution, leading us to the fundamental theorem of random fields:

pθ(y|x) ∝ exp

⎛
⎝∑

j

λjfj(yi−1, yi, x, i) +
∑

k

μkgk(yi, x, i)

⎞
⎠ (3)

where fj(yi−1, yi, x, i) is a transition feature function of the entire observation
sequence and the labels at positions i and i − 1, gk(yi, x, i) is a state feature
function of the entire observation sequence and the label at position i. λj and
μk are estimated from the training data. We assume that the feature functions
fk and gk are given and fixed [3].

3.2 Feature Functions and Model Estimation

Each potential function actually represents a constraint on subset of random
variables on which it operates. Thus, by satisfying a constraint we actually
increase the likelihood of the global configuration. In what follows, we look
at the transition function as a general case of the state function by writing
g(yi, x, i) = g(yi−1, yi, x, i). We also define the sum of a feature over the sequence
by Fj(y, x) =

∑n
i=1 fj(yi−1, yi, x, i) where fj(yi−1, yi, x, i) refers to either transi-

tion or state function [3]. Therefore, the probability of a label sequence y given
the observation sequence x is in the form

p(y|x, λ) =
1

Z(x)
exp(

∑
j

λjFj(y, x)) (4)

where Z(x) =
∑

y exp(
∑

j λjFj(y, x)). The parameters (λj) are computed by
maximizing the log-likelihood with the training data using either iterative scaling
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or conjugate gradient methods [5, 3]. The most likely label sequence ŷ for input
sequence x is

ŷ = arg max
y

p(y|x, λ) = arg max
y

∑
j

λj · Fj(y, x)

3.3 Feature Integration with the Model

The most important aspect of specifying the model is selecting the set of features
that capture the important relationships among the observation and the label
sequences, in our case the protein sequence and the helical structure respectively
[6]. In our work we have selected a basic set of features capturing the model’s
constraints and divided them into several groups:

Start, End and Edge Features. By using these features we capture the prob-
ability of starting/ending a sequence with assigning a given label or the transition
probability for moving from one state to the consecutive state. For instance, the
start unigram feature has the form:

ustart(x, i) =
{

1 if the Amino Acid at position i is the first in the sequence
0 otherwise

The relationship between the observation and a potential helix membrane struc-
ture is described in the feature:

fstartH
(yi, x, i) =

{
ustart(x, i) if yi = Helix membrane
0 otherwise

Similarly, we define another set of features for the relationship with a non-helix
membrane structure.

The Edge feature in contrast, is a bigram feature which depends on two
consecutive labels:

fedgeH−H (yi−1, yi, x, i)=

{
uedge(x, i) if yi−1=Helix membrane and yi=Helix membrane
0 otherwise

Basic Amino Acid Feature. Amino acids have different tendencies to popu-
late one membrane helical structure in preference to another. Since our language
contains 20 possible amino acids, we have 20 different unigram features from this
type. The unigram feature of amino acid n in position i is:

un(x, i) =
{

1 if the Amino Acid in sequence x at position i is from type n
0 otherwise

Amino Acid Property Feature. Amino acids differ one from another in their
chemical structure expressed by their side chains, providing them different prop-
erties. The fact that amino acids from the same classification group tend to
appear in similar locations, motivated us to create special property features. We
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have adopted the properties classification taken from Sternberg [7] classifying
the amino acids into nine groups1, each group described by a unigram feature.
Note that some amino acids may appear in more than one group simultaneously.

The hydrophobicity property for instance, is described in the feature:

uHydrophobic(x, i)=

{
1 if the Amino Acid in x at position i∈ (M,I,L,V,A,G,F,W,Y,H,K,C)
0 otherwise

4 Experiments, Results and Analysis

We now report on our experiments to test the effectiveness of features proposed
in Section 3.3, embedded in a CRF model, to predict the location of membrane
helical regions in protein sequences.

4.1 Data Set

The data set consists of a set of 148 transmembrane protein sequences with
experimentally confirmed transmembrane regions, which are significantly non-
similar, based on pairwise similarity clustering compiled by Möller et al [8].
The data set can be accessed via ftp://ftp.ebi.ac.uk/databases/testsets/trans
membrane. We randomly picked 24 sequences out of the 148 and grouped them
as a test set, using the remaining 124 sequences as the training set. We repeated
this procedure ten times, having a cross validation test of ten independent ex-
periments and calculated the average values of these measurements.

4.2 Results and Analysis

In our experiment we have evaluated the prediction accuracy of the test set with
the experimentally confirmed results based on two two main approaches: per-
residue accuracy and per-segment accuracy as described in Chen, Kernytsky and
Rost (henceforth referred as CKR) [9]. In per-residue accuracy the predicted
label and actual label are compared by residue. In per-segment accuracy we
determine how accurately a method correctly predicts the location of a trans-
membrane helix (referred as TMH) region. We have used two popular methods
to score per-segment accuracy. The first method requires a minimal overlap of 3
residues between the two corresponding segments and does not allow the same
helix to be counted twice, as used in the paper of Chen et al. [9]. This method
we refer as 3R. The second method requires minimal overlap of 9 residues but
does allow counting the same helix twice, indicated by 9R. For our comparison
we will closely follow the CKR paper as it has collated results of several methods
for transmembrane helix prediction on a common benchmark data set displayed
in the following table:

1 Aromatic (F,W,Y,H), Hydrophobic (M,I,L,V,A,G,F,W,Y,H,K,C), Positive (H,K,R),
Polar (W,Y,C,H,K,R,E,D,S,Q,N,T), Charged (H,K,R,E,D), Negative (E,D),
Aliphatic (I,L,V), Small (V,A,G,C,P,S,D,T,N), Tiny (A,G,S).
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Per-Residue Accuracy Per-Segment Accuracy
Q2 Q%obs

2T Q%prd
2T Q%obs

2N Q%prd
2N

83 67 74 92 88
Q

(3R)
ok Q

%obs(3R)
tmh Q

(9R)
ok Q

%obs(9R)
tmh Q%prd

tmh

28 43 44 72 99

In order to compare our results with other available methods, we consider
the work of Chen et al. [9] and methods contained within as a reference. In the
”Per-Residue Accuracy” results we have achieved high prediction accuracy for
both transmembrane and non-transmembrane residues, lower accuracy of trans-
membrane residues only, and higher accuracy of non-transmembrane residues. In
the ”Per-Segment Accuracy” results we can see a considerable difference between
the 3R test and the 9R test. The figures in Q%prd

tmh indicate high precision of true
prediction among those helices who were detected by the model. When com-
paring our prediction results with the other methods, our model performed well
with high percentage of accuracy on the per-residue test. The CRFs model
achieved the highest score among all 28 other methods in the over-
all percentage of residues predicted correctly in both transmembrane
and non-transmembrane helices (Q2) with 83% of true prediction. On
the per-segment test, our model achieved high precision but low prediction score
compared to the other models. Notice that some methods may have involved use
of proteins from the data set as training so their results may be overestimates.

5 Conclusions

In this paper we introduced the Conditional Random Fields (CRFs) technique
which has found good application in the solution of sequential mining problems.
We used CRFs to segment and label sequence data to solve the membrane pro-
tein helix prediction problem. Our results look promising compared to currently
available methods, and as such will motivate the future use of CRFs to solve se-
quential labelling data problems. For more information on this paper please check
our website on http://www.it.usyd.edu.au/∼chawla/publications/crf1.pdf.
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Abstract. Exact match queries, wildcard match queries, and k-
mismatch queries are widely used in lots of molecular biology appli-
cations including the searching of ESTs (Expressed Sequence Tag) and
DNA transcription factors. In this paper, we suggest an efficient index-
ing and processing mechanism for such queries. Our indexing method
places a sliding window at every possible location of a DNA sequence
and extracts its signature by considering the occurrence frequency of each
nucleotide. It then stores a set of signatures using a multi-dimensional
index, such as the R*-tree. Also, by assigning a weight to each position of
a window, it prevents signatures from being concentrated around a few
spots in indexing space. Our query processing method converts a query
sequence into a multi-dimensional rectangle and searches the index for
the signatures overlapped with the rectangle.

Keywords: DNA database, indexing, exact match, wildcard match,
k-mismatch.

1 Introduction

DNA sequences hold the code that determines the characteristics of living or-
ganisms, and can be represented as a long list over the four-letter alphabet of
A, C, G, and T known as nucleotides. DNA sequence searching is an opera-
tion that finds, from a DNA database, DNA (sub-)sequences whose nucleotide
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arrangements are similar to a given query sequence. To cater for the evolution-
ary mutations and noises in DNA sequences, approximate match queries are
preferred to exact match queries for DNA sequence searching.

The most fundamental way for processing approximate match queries is to
use the Smith-Waterman alignment algorithm [12], a dynamic programming ap-
proach for finding an optimal local alignment between two sequences. This algo-
rithm, however, takes a long processing time of O(mn), where m and n are the
lengths of the two sequences to be aligned, respectively. A natural idea to re-
solve this kind of drawbacks is to employ the filtering and refinement approach.
BLAST [4, 5] is a typical example that follows this approach. Due to perfor-
mance reasons, it uses a heuristic algorithm based on a similarity model that is
slightly different from the one adopted in the Smith-Waterman alignment algo-
rithm. Recently, Kaheci et al. [10] proposed the MR-Index for efficient processing
of k-difference queries. A k-difference query is to find data subsequences that
can be matched to a given query sequence by performing at most k replacing,
inserting, and deleting operations.

In this paper, we proposes an approach for efficient processing of DNA se-
quence searching, especially exact match queries, wildcard match queries, and
k-mismatch queries. Exact match queries search a DNA database for the subse-
quences that are exactly matched to a query sequence. Wildcard match queries
contain wildcard characters marked as ‘∗’ in a query sequence, and find the sub-
sequences that are matched to a query sequence. Note that a wildcard matches
with any single nucleotide. K-mismatch queries retrieve the data subsequences
that have at most k nucleotides mismatched to those of a given query sequence.
These queries are widely used in various molecular biology applications such as
retrieval of expressed sequence tags and DNA transcription factors [8].

2 Definitions

The alphabet
∑

of nucleotides consists of 15 characters that can occur in DNA
sequences (See Table1). Four characters, A, C, G, and T, are used to express the
regions of a DNA sequence whose characteristics are discovered completely. We
call these four characters as principal nucleotides.

A DNA sequence T = 〈t1, t2, · · · , tn〉 is an ordered list of characters in the
alphabet

∑
. |T | denotes the length of T . We use T ′ to denote a contiguous

subsequence of T . A window is defined as a subsequence of a fixed length taken
from a DNA sequence. W and |W | denote a window and its length, respec-
tively. The window beginning at the ith position of a DNA sequence is denoted
as Wi.

Any two characters s and q are said to be matched if the intersection of the
set of characters represented by s and the set of characters represented by q is
not empty. Given a DNA data sequence T and a query sequence Q, the DNA
sequence searching problem is to find all subsequences T ′ of T that satisfy both
of the following conditions: (1) |Q| = |T ′|, and (2) for each i between 1 and |Q|,
the ith character of Q matches the ith character of T ′.
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Table 1. Characters included in the alphabet of nucleotides

Code Bases Code Bases Code Bases

A A Y C or T B C or G or T
C C S G or C D A or G or T
G G W A or T H A or C or T
T T K G or T V A or C or G
R A or G M A or C N any base

3 Related Work

The Boyer-Moore algorithm [7] and the Knuth-Morris-Pratt(KMP) algorithm
[11] have been devised for exact match queries. Their worst-case time complexity
proved to be linear to the length of data sequence. These algorithms, however,
should access the entire data sequences from disk because they are based on the
sequential scan.

The method combining the Aho-Corasick algorithm [3] and the scan vector
has been proposed for processing wildcard match queries [8]. By eliminating all
the wildcards from a query sequence, this method first obtains a set of subpat-
terns and their starting positions within a query sequence. Next, by using an
one-dimensional array called a scan vector, it finds the data subsequences, each
of which contains all those subpatterns in order. This method, however, has a
large storage overhead since it maintains the scan vector as large as the data
sequence. Also, it requires much processing time because it accesses the whole
data sequences from disk.

For processing k-mismatch queries, the suffix-tree-based method [13] con-
structs a suffix tree on data and query sequences. Next, it finds from the suffix
tree the lowest one among the common ancestor nodes of both sequences. It then
traverses down the subtree of that node until it encounters k mismatches. This
method can be applied to the processing of exact match and wildcard match
queries in a similar way. However, it suffers from a large storage overhead and
high cost for maintaining and traversing a huge suffix tree.

4 Basic Signature Index

This section proposes a new indexing method called BSI (Basic Signature In-
dex) and also suggests a query processing method based on the proposed index
structure.

To construct an index, we first locate a sliding window of size |W | on every
possible position of data sequence T . We then extract a basic signature from each
window, considering the minimum and maximum frequencies of each principal
nucleotide.
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Definition 1. Basic Signature: BS
Let BS(Wi) be a basic signature of window Wi. BS(Wi) is expressed as follows:

BS(Wi) = (([minA,maxA], [minC ,maxC ], [minG,maxG], [minT ,maxT ]), i)

Here, minA and maxA denote the minimum and maximum numbers of occur-
rences of character A, respectively, in Wi. The meanings of minC , maxC , minG,
maxG, minT , and maxT are analogous.

BS(Wi) is regarded as a 4-dimensional rectangle of ([minA,maxA], [minC ,
maxC ], [minG, maxG], [minT , maxT ]) along with the identifier i and thus can
be stored in a multi-dimensional index such as the R*-tree [9] and the X-tree [6].
The total number of windows taken from a data sequence T is |T | − |W | + 1.
Since |T | � |W | in most cases, the index for T could be much larger than T
itself.

To reduce this storage space, we only store the MBRs (Minimum Bounding
Rectangles) which cover the signatures for consecutive c data windows extracted
from a data sequence. Note that the signatures for consecutive two data win-
dows are not that different from each other and thus are located closely in the
4-dimensional indexing space. Therefore, we expect that the MBR covering con-
secutive c signatures will not be enlarged much. By using this approach, we are
able to reduce storage space for indexing to 1/c. We call c the index compression
coefficient.

The first step for query processing is to construct a query rectangle from a
query sequence Q. A query rectangle is formed in a different way according to
the types of a query submitted. Let us first suppose that |Q| = |W |.

o Exact match query: We construct a 4-dimensional query rectangle, ([minA,
maxA], [minC , maxC ], [minG, maxG], [minT , maxT ]), from the query se-
quence.

o Wildcard match query: We first construct a 4-dimensional query rectan-
gle by using the procedure for exact match queries. We then increase maxA,
maxC , maxG, and maxT by the number of occurrences of the wildcard on
the query sequence.

o K-mismatch query: We construct a 4-dimensional query rectangle by
using the procedure for wildcard match queries. We then increase maxA,
maxC , maxG, and maxT by the value of k, and also decrease minA, minC ,
minG, and minT by the value of k. This implies that each principal nu-
cleotide in a data window is allowed to occur k times more or less than
that in a query signature by k mismatches. If an adjusted minimum value
becomes less than 0, we set it to 0.

After constructing a query rectangle from a query sequence, we search the in-
dex for the data rectangles overlapping with the query rectangle. We call them
candidate rectangles. Then, we perform a post-processing step to discard false
alarms, those candidates that are not real answers. Using the identifier of each
candidate rectangle, this step reads its corresponding data window from the
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database, and then verifies whether the data window actually matches with the
query sequence. Only the candidate rectangles which pass this verification are
returned as final answers.

The identifier of each candidate rectangle is the beginning position of its
consecutive c data windows. Therefore, by using the identifier of each candidate
rectangle, we actually retrieve and verify the corresponding c data windows
together in the post-processing step.

Until now, we assumed |Q| = |W |. When |Q| < |W |, we generate a new
query sequence Q′ of length |W | by appending |W | − |Q| wildcard characters
‘∗’ to the end of Q and then apply the above query processing procedure to
Q′. When |Q| > |W |, we first partition a query sequence Q into p sub-query
sequences, Q1, Q2, · · · , and Qp, such that p = �|Q|/|W |� and |Qi| = |W | for
every i between 1 and p. Here, the last sub-query sequence Qp can be overlapped
with Qp−1 to make the constraint |Qi| = |W | satisfied. Next, we apply the above
query processing procedure to every sub-query sequence, and then obtain the
final answers by merging all the results.

5 Weighted Signature Index

Let us first mention a couple of drawbacks of BSI. First, in BSI, the signature
of a window is decided only by the number of occurrences of each principal
nucleotide. Therefore, there may be a great number of windows that are dif-
ferent from one another but are represented as the same signature. It causes
a large number of false alarms, resulting in high index-searching and post-
processing costs. Second, in most DNA sequences, the occurrence ratios of the
four principal nucleotides, A, C, G, and T , are roughly 30%, 20%, 20%, and
30%, respectively. The windows taken from such sequences also show simi-
lar occurrence ratios regardless of their beginning positions. Therefore, it is
likely that lots of windows are represented by the signatures close to the center
(0.3× |W |, 0.2× |W |, 0.2× |W |, 0.3× |W |).

To overcome the above limitations, we need to increase the number of distinct
signatures and spread them evenly on the indexing space.

5.1 Basic Strategy

The simplest way to overcome the limitations of BSI is to extract more features
from windows. However, this increases the dimensionality of the underlying in-
dex, and thus leads to the well-known dimension curse. To represent windows
more discriminatively without increasing the dimensionality, we propose a sim-
ple but effective method that assigns a weight to each position within a window.
This makes it possible to express both occurrence frequencies and occurrence
positions of nucleotides with a signature of the same dimensionality. To incor-
porate this method into our indexing approach, we first define a weight function
w(j) (1 ≤ j ≤ |W |) which assigns a weight to each position i within a window.
We then extract a weighted signature from each window.
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Definition 2. Weighted Signature: WS
Let WS(Wi) be a weighted signature of window Wi. WS(Wi) is expressed as
follows:

WS(Wi) = (([wminA, wmaxA], [wminC , wmaxC ], [wminG, wmaxG],
[wminT , wmaxT ]), i)

Here, wminA is the sum of the weights of the positions at which character
A must occur in window Wi, and wmaxA is the sum of the weights of the
positions at which character A may occur in Wi. The meanings of wminC ,
wmaxC , wminG, wmaxG, wminT , and wmaxT are analogous.

By taking the above weighting scheme, disparate windows that were repre-
sented by the same basic signature may now be expressed by different weighted
signatures. We incorporate this weighing scheme into the proposed index struc-
ture, thus producing a very effective index structure called WSI (Weighted Signa-
ture Index). WSI solves the problems of BSI by scattering the disparate windows,
which were represented by the same basic signature, over the indexing space.

The query processing algorithm for WSI is not that different from that for
BSI. However, when we construct a query rectangle for answering a k-mismatch
query, we need to consider the positions at which mismatches may occur. The
procedure to build a query rectangle for a k-mismatch query is skipped due to
space limitation.

5.2 Weight Function

Since the weight function determines the distribution of signatures in indexing
space, it has to be carefully designed. Consider a set of data windows which
have the same basic signature. Their weighted signatures get scattered over the
indexing space by the weight function. Let us consider an MBR that covers all
such weighted signatures. Larger MBR implies that the weighted signatures are
scattered over larger space. However, if the weighted signatures are scattered
too much, the corresponding MBR may overlap with its neighboring MBRs,
producing new false alarms. Therefore, we have to choose a weight function
which enlarges MBRs as much as possible without making them overlap with
their neighboring MBRs.

Let us give a formal discussion on this issue. For each principal character X,
let Rmin(X, s) denote the minimum of all wminX values obtained from a set of
all windows in which X occurs s times. That is, Rmin(X, s) =

∑s
j=1 sw(j) where

sw(j) denotes the jth smallest weight in a window. Similarly, let Rmax(X, s)
denote the maximum of all wmaxX values obtained from a set of all windows in
which X occurs s times. That is, Rmax(X, s) =

∑|W |
j=|W |−s+1 sw(j).

To prevent neighboring MBRs from being overlapped, Rmax(X, s) < Rmin

(X, s+1) should be satisfied for every s between 0 and |W |− 1. Supposing w(j)
= j + C, let us solve the inequality. Note that sw(j) is identical to w(j) in this
case.
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Rmax(X, s) < Rmin(X, s + 1)
⇔
∑|W |

j=|W |−s+1 sw(j) −
∑s+1

j=1 sw(j) < 0

⇔
∑|W |

j=|W |−s+1 w(j) −
∑s+1

j=1 w(j) < 0
⇔ −C − (s2 + (1− |W |)s + 1) < 0

Since the above inequality should be satisfied for every s between 0 and
|W | − 1, we obtain C > (|W |−1)2

4 − 1. Among the values of C which satisfy
the inequality, we choose |W |2 for the sake of simplicity. That is, we use w(j) =
j + |W |2 for a weight function.

6 Performance Evaluation

In our experiments, as a data sequence T, we used six sets of DNA sequences
downloaded from NCBI [1]: human chromosome 3 (2.5Mbp), 17 (5Mbp), 1
(7.5Mbp), 2 (10Mbp), 10 (20Mbp), and 5 (40Mbp). As a query sequence, we
used 1,000 DNA sequences of length 256 to 2,048. A half of them were ran-
domly selected from T , and the other half were obtained from DNA sequences
[2] frequently used by biologists at laboratories.

We evaluated performances of four approaches: BSI, WSI, SeqScan, and Suf-
fix. SeqScan is the sequential scan based method, and Suffix is the method that
uses the suffix tree as an index structure.

6.1 Parameter Settings

It is desirable to set the window size slightly smaller than a typical size of a query
sequence. For determining a window size, we analyzed the lengths of 35,685 query
sequences downloaded from [2]. From the results, we observed that 62% of them
have the lengths of 256 to 2,048. Thus, we set the basic window size to 256 for
further experiments.

In order to find a good value for the index compression coefficient, while
changing the index compression coefficient, we evaluated the k-mismatch query
processing time of BSI and WSI using human chromosome 2 of 10Mbp as a data
sequence and 1% of the length of a query sequence as the value of k. As shown
in Fig. 1, as the compression coefficient increases up to 80, the query processing
time of both BSI and WSI decreases. From that point, however, their query
processing time increases as the compression coefficient gets larger. Therefore,
we set the base value for the compression coefficient to 80.

6.2 Results and Analyses

Experiment 1: Query Processing Time with Various Query Size
In this experiment, we compared query processing times of different approaches
while changing the length of query sequences. We used human chromosome 2 of
10Mbp as a data sequence. Also, we set both k for k-mismatch queries and the
number of wildcard characters for wildcard match queries to 10, which is 1% of
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Fig. 1. Query processing time with various

values for compression coefficient

Fig. 2. Processing time of k-mismatch

with various k values

the average length of query sequences. Fig. 3 depicts query processing times of
all the approaches for exact match, wildcard match, and k-mismatch queries.

In exact match queries, SeqScan and Suffix show nearly constant performance
regardless of the length of query sequences. In BSI and WSI, we observe that
the query processing time shrinks until the length of a query sequence reaches a
point (i.e., 512), and then grows gradually after that point.

In wildcard match queries, every approach spends more query processing time
compared with that of exact match queries. In BSI and WSI, wildcard characters
in a query enlarge the corresponding query rectangle and increase the number
of candidates, which leads to a large query processing time. As a query sequence
gets longer, however, the number of candidates decreases remarkably. Thus, the
performance improves significantly.

K-mismatch queries take a processing time much bigger than exact match
and wildcard match queries. In particular, Suffix shows performance worse than
even SeqScan since the part of the index to be traversed increases explosively. In
BSI and WSI, however, their performance is shown to be nearly constant, and
is not that affected by the changes of the length of query sequences.

In exact match queries, the results show that WSI outperforms SeqScan, Suf-
fix, and BSI 19 to 44 times, 2.9 to 6.1 times, and 2.2 to 2.7 times, respectively. In
wildcard match queries, WSI performs better than SeqScan, Suffix, and BSI 4 to
21 times, 1.4 to 4.5 times, and 1.5 to 1.8 times, respectively. Also, in k-mismatch
queries, BSI performs faster than SeqScan, Suffix, and BSI 7 to 28 times, several
thousand times, and 1.3 to 1.6 times, respectively.

Experiment 2: Processing Time of k-mismatch with Various k Value
In this experiment, we compared the processing times of k-mismatch queries of
different approaches with various k values. We used human chromosome 2 of
10Mbp as a data sequence. Fig. 2 shows an average query processing time of
each approach while setting k as 0%, 1%, 2%, and 3% of the length of a query
sequence. We observe that the query processing time of WSI, BSI, Suffix, and
SeqScan gets higher as k grows. In WSI and BSI, a higher k value makes the
part of an index to be traversed increased, and thus increases the query process-
ing time gradually. In Suffix, however, as k grows, the part of an index to be



170 W.-C. Kim et al.

traversed becomes explosively larger, and thus, the query processing time grows
abruptly. The results reveal that WSI shows the best performance, and performs
better than SeqScan, Suffix, and BSI 3.6 to to 31 times, 3 to several thousand
times, and 1.1 to 2.3 times, respectively.

Experiment 3: Query Processing Time with Various Lengths of Data
Sequences
In this experiment, we measured the query processing times of different ap-
proaches with various data sizes. We excluded Suffix in this experiment since its
performance degradation in performing k-mismatch queries on a large database
is too serious to conduct experiments. Here, we set both k for k-mismatch queries

(a) Exact match queries (a) Exact match queries

(b) Wildcard match queries (b) Wildcard match queries

(c) K-mismatch queries (c) K-mismatch queries

Fig. 3. Query processing time with various

lengths of query sequences

Fig. 4. Query processing time with various

data sizes



A DNA Index Structure Using Frequency and Position Information 171

and the number of wildcard characters for wildcard match queries to 10, which is
1% of the average length of query sequences. Fig. 4 shows an average processing
time of each approach for exact match, wildcard match, and k-mismatch queries.

The processing time of BSI and WSI for three kinds of queries increases
almost linearly as the data size grows. WSI performs better than the other
approaches in processing all kinds of queries. In exact match queries, WSI runs
faster than SeqScan and BSI 25 to 33 times and 1.8 to 2.5 times, respectively. In
wildcard match queries, WSI outperforms SeqScan and BSI 15 to 19 times and
1.7 to 1.9 times, respectively. Also, in k-mismatch queries, WSI performs better
than SeqScan and BSI 13 to 20 times and 1.0 to 1.5 times, respectively.

7 Conclusion

Exact match queries, wildcard match queries, and k-mismatch queries are widely
used in lots of molecular biology applications including the searching of ESTs
(Expressed Sequence Tag) and DNA transcription factors.

In this paper, we proposed an efficient indexing and processing technique for
processing such queries on large DNA databases. The proposed indexing method
places a sliding window at every possible location of a data sequence, and extracts
its signature by considering the occurrence frequency of each nucleotide char-
acter. It then stores and manages a set of signatures using a multi-dimensional
index, such as R*-tree. Especially, by assigning a weight to each position of a
window, it scatters the signatures over the index space and thus reduces false
alarms. The experiments with real biological data sets revealed that the pro-
posed method is at least 2.9 times, 1.4 times, and several orders of magnitude
faster than the suffix-tree-based method in performing exact match, wildcard
match, and k-mismatch queries, respectively.
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Abstract. In the domain of bioinformatics, extracting a relation such as protein-
protein interations from a large database of text documents is a challenging 
task. One major issue with biomedical information extraction is how to 
efficiently digest the sheer size of unstructured biomedical data corpus. Often, 
among these huge biomedical data, only a small fraction of the documents 
contain information that is relevant to the extraction task. We propose a novel 
query expansion algorithm to automatically discover the characteristics of 
documents that are useful for extraction of a target relation. Our technique 
introduces a hybrid query re-weighting algorithm combining the modified 
Robertson Sparck-Jones query ranking algorithm with a keyphrase extraction 
algorithm. Our technique also adopts a novel query translation technique that 
incorporates POS categories to query translation. We conduct a series of 
experiments and report the experimental results. The results show that our 
technique is able to retrieve more documents that contain protein-protein pairs 
from MEDLINE as iteration increases. Our technique is also compared with 
SLIPPER, a supervised rule-based query expansion technique. The results show 
that our technique outperforms SLIPPER from 17.90% to 29.98 better in four 
iterations. 

1   Introduction 

Rich information is embedded in unstructured text collections, and this information is 
often discovered in a structured or relational form. With more than 12 million 
abstracts in MEDLINE, processing time becomes a bottleneck in exploiting IE to 
leverage extracted information with relational databases. Current IE approaches, 
however, are not flexible for huge online biomedical text databases, which cover so 
many sub-domains [1]. We introduce an automatic querying technique, called 
DocSpotter, to identify the promising documents for the extraction of a relation from 
text. DocSpotter only requires an initial query to the text database provided by a user. 
Our technique is an unsupervised querying technique for retrieving useful documents 
for information extraction from large biomedical databases.  

There are several key advantages of using key phrases for queries in an iterative 
search process. First, it is relatively robust in that average performance of queries 
tends to be improved using this type of expansion. Second, it is a novel automatic 
query expansion technique that combines global analysis with local analysis. Global 
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analysis refers to a technique of extracting key phrases from the whole collection and 
then maps it out to synonymously as well as hierarchically related concepts. Local 
analysis means a technique to weigh noun phrases and converted noun phrases from 
verbs found in the same passages that contains the matched query. Our technique also 
translates candidate keyphrases to Disjunctive Normal Form (DNF) with Part-Of-
Speech (POS) categories. Third, our approach is based on the technique of iterative 
and exhaustive keyphrase extraction.  This approach fits well in the target application 
that requires the greedy and comprehensive retrieval results.  

The rest of the paper is organized as follows: Section 2 describes the overall 
architecture of DocSpotter. Section 3 describes the query expansion procedures. 
Section 4 reports on the experiments. Section 5 concludes the paper. 

2   The System Architecture 

DocSpotter is a novel querying technique to iteratively retrieve promising documents 
for information extraction. Figure 1 illustrates how a novel query expansion algorithm 
works in DocSpotter. 

 

Fig. 1. The System architecture of DocSpotter 

The outline of the approach described in Figure 1 is as follows: 

• Step 1: Starting with a set of user-provided seed instances our system retrieves 
a sample of documents from the databases.  

• Step 2: On the retrieved document set, we parse each document into sentences 
and apply the keyphrase extraction technique proposed in [6] to extract 
keyphrases from the input documents.  

• Step 3: Applying a hybrid querying expansion algorithm that combines the 
modified Robertson and Spark-Jones ranking algorithm with Information 
Gain-based keyphrase ranking to derive queries targeted to match—and 
retrieve— additional documents similar to the positive examples.  
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• Step 4: Running the information extraction over the documents, it produces a 
set of extracted patterns from the documents and these patterns are kept in the 
pattern base.  

• Step 5: Run the new queries from Step 4 to retrieve a set of promising 
documents form the databases, go to Step 2.  The whole procedure repeats 
until the no new additional documents are retrieved. 

3   Query Expansion Procedure 

In this section, we discuss what techniques and procedures are used for query 
expansion. The following three subsections gave detailed descriptions of the 
techniques used for keyphrase extracting, query re-weighting, and query translating in 
DocSpotter. 

3.1   Keyphrase Extraction Procedures 

As illustrated in Figure 2, keyphrase extraction in DocSpotter comprises the following 
two stages: 1) building extraction model and 2) extracting keyphrases. In Figure 2, the 
dotted line represents the processing logic for “building extraction model” whereas the 
solid line indicates the processing logic for “extracting keyphrases.” The detail 
descriptions are provided in the following subsections. These two stages are fully 
automated. 

 

Fig. 2. Keyphrase extraction procedure adopted in DocSpotter 

3.2   Keyphrase Ranking 

Automatic query expansion requires a term selection stage where the system selects 
the terms based on some criterion. The ranked order of terms is of primary importance 
in that the terms that are most likely to be useful are close to the top of the list. We 
exploit a state-of-art term weighting scheme from IR to re-weight candidate 
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keyphrases. While there are many promising alternatives to this weighting scheme in 
the IR literature [5], we chose Robertson-Spark Jones algorithm as our base because it 
has been demonstrated to perform well and is naturally well suited to our task. In 
addition, incorporating other term weighting schemes into DocSpotter is easy and 
does not require changes to our model. F4point-5 formula is first proposed by 
Robertson and Spark Jones [5]. It has been widely used in IR systems with some 
modifications (Okapi). We modified F4point-5 formula for information extraction 
tasks.  

3.3   Query Translation into DNF 

Query reformulation specifically in Boolean IR systems has been the subject of study 
for over 25 years. The algorithm for automating Boolean query formulation was 
proposed in 1970. This method employs a term weighting function first described in 
[4] to decide the “importance” of terms which have been identified. The terms are 
then aggregated into “sub-requests” and combined into a Boolean expression in 
disjunctive normal form (DNF). The algorithms proposed to translate a query to DNF 
include classification-based [4], decision-tree [2], and thesaurus-based [7] algorithms.  
Our POS category-based translation technique is differentiated from others in that 
ours is unsupervised which does not require training and easily integrated into other 
domains. In our technique, there are four different phrase categories defined; 1) 
MESH term category, 2) Non-MESH noun category, 3) Non-MESH proper noun 
category, and 4) Verb category. 

For the top N ranked keyphrases, DocSpotter looks up MESH to determine whether 
any corresponding heading to each keyphrase exists. If there is a corresponding 
heading, the keyphrase is categorized as MESH term category. Non-MESH 
keyphrases are then classified into three categories depending on the POS class of 
keyphrases.  Keyphrases within the category are translated into DNF and categories 
are then translated into Conjunctive Normal Form (CNF). 

4   Evaluation 

We conducted experiments to evaluate the performance of DocSpotter on the task of 
protein-protein interaction extraction. The protein-protein interaction data sets are 
composed of abstracts collected from the MEDLINE. ]The protein names are 
collected from the Database of Interacting Proteins (DIP) and Protein-Protein 
Interaction Database (PPID) databases. We also compare DocSpotter with SLIPPER, 
a supervised rule-based query expansion technique [3]. SLIPPER is one of the well-
accepted query expansion techniques. 

4.1   SLIPPER 

We chose SLIPPER to compare the performance of DocSpotter in generating queries. 
SLIPPER is an efficient rule-learning system, which is based on confidence-ruled 
boosting, a variant of AdaBoost [3]. SLIIPPER learns concise rules such as “protein 
AND interacts” --> Useful, which shows that if a document contains both term 
protein and term interacts, it is declared to be useful. These classification rules 
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generated by SLIPPER are then translated into conjunctive queries in the search 
engine syntax.  For instance, the above rule is translated into a query “protein AND 
interacts.” 

4.2   Experimental Results 

The experimental results are shown in Table 1. The first column, iteration, indicates 
the order of query expansion. There are four iterations in terms of query expansion. 
The second column is the number of retrieved documents from MEDLINE for 
iteration. The third column means the number of documents containing protein-
protein pairs in the retrieved documents by DocSpotter.  

  Table 1. Experimental results for four consecutive iteration of querying 

Iteration No of 
retrieved 
documents 

No of documents 
containing protein-
protein pairs 

First 30 18 
Second 609 289 
Third 832 352 
Fourth 1549 578 

1 iteration 2 iteration 3 iteration 4 iteration

Iteration

DocSpotter

SLIPPER

 

Fig. 3. The Performance Comparison between DocSpotter and SLIPPER 

As shown in Table 1, our approach is able to retrieve more documents that contain 
protein-protein pairs as the number of iterations increases. In first iteration, the initial 
query retrieved 30 documents. Within the 30 documents retrieved, 18 documents 
contain protein-protein pairs. In fourth iteration, out of 1549 documents retrieved, 578 
documents contain protein-protein pairs. Although accuracy seems decrease from first 
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to fourth iteration, our interest is in ability of retrieving more documents containing 
protein-protein pairs. The experimental results seem encouraging. 

We also conduct another set of experiments to compare DocSpotter with SLIPPER. 
SLIPPER is a supervised rule-based query expansion technique. Fig 3 shows the 
results of the performance comparison between DocSpotter and SLIPPER. The y axis 
represents the accuracy calculated by dividing the total number of relevant documents 
by the total number of retrieved documents. DocSpotter outperforms SLIPPER from 
17.90% to 29.98% better in all four cases. The accuracy in Fig 3 is calculated by 
dividing the documents containing protein-protein pairs by the total number of 
retrieved documents. It appears that accuracy for SLIPPER drops significantly in third 
iteration whereas accuracy for DocSpotter looks steady with marginal decreases. 

5   Conclusion 

We proposed novel effective query technique for information extraction. Our 
approach automatically discovers the characteristics of documents that are useful for 
extraction of a target relation. Our technique starts with only a handful of user-
provided examples of instances of the relation to extract. Using these seed instances, 
our system retrieves a sample of documents from the database. Then we apply 
machine learning and information retrieval techniques to learn queries that will tend to 
match additional useful documents. Our technique is different from other query 
expansion techniques in the following aspects. First, it proposes a hybrid query 
expansion algorithm combining the Robertson Sparck-Jones query re-ranking and the 
keyphrase extraction algorithm by Information Gain. Second, our technique adopts a 
query translation technique that converts candidate keyphrases to Disjunctive Normal 
Form (DNF) with POS categories. Third, our approach is based on the technique of 
iterative and exhaustive keyphrase extraction.  This approach fits well in the target 
application that requires the greedy and comprehensive retrieval results.  

We conducted a series of experiments to examine how accurately our technique 
retrieves a set of documents containing protein-protein pairs. The results show that 
DocSpotter is able to retrieve more documents that contain protein-protein pairs from 
MEDLINE as iteration increases. In another set of experiments, DocSpotter is 
compared with SLIPPER, a supervised rule-based query expansion technique. The 
results show that DocSpotter outperforms SLIPPER from 17.90% to 29.98 better in 
terms of accuracy in all four iterations. 
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Abstract. There are a huge number of protein sequences in databanks
whose functions are not known. Since the biological functions of these
proteins are closely correlated with their subcellular localization, it is
important to develop a system to automatically predict subcellular lo-
calization from sequences for large-scale genome analysis. In this paper,
we first propose a new formula to estimate the composition of amino acid
pairs for feature extraction, and then we present a voting scheme that
combines a set of fuzzy k-nearest-neighbor (k-NN) classifiers to predict
subcellular locations. In order to detect sequence-order features, individ-
ual classifier is constructed using different types of features, including
amino acid and amino acid pair compositions. We apply our method to
several datasets and significant improvements are achieved.

1 Introduction

Proteins are essential polymers involved in almost all biological functions. Di-
rectly finding out the function of a protein is not easy, but knowing the localiza-
tion of a protein in a cell can give us hints to understand the protein functions.
Experimental determination of subcellular location is time-consuming and costly.
With the number of protein sequences entering databanks rapidly increasing, the
importance of developing a powerful tool to automatically identify protein sub-
cellular location from protein sequences has become self-evident.

So far there have been many methods and systems being developed to pre-
dict protein subcellular locations. Most of them are grounded on global sequence
properties, in particular, the compositions of amino acids under investigation.
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The amino acid consists of 20 components, each representing the occurrence fre-
quency of one of the 20 native amino acids in a given protein. This approach was
first suggested by Nakashima and Nishikwa [8]. They found that the intracel-
lular and extracellular proteins could be accurately discriminated with only by
amino acid composition. Several machine learning methods were then employed
to improve the prediction accuracy. Cedano [2] adopted a statistical method with
Mahalanobis distance for prediction; Reinhardt [9] used neural networks while
Hua [5] constructed a prediction system using SVMs.

It is known that when a protein sequence is encoded in terms of amino
acid composition, its sequence-order properties will be lost. Hence, it is ex-
pected that a higher accuracy should be gained with new sequence encoding
schemes that can capture the sequence order features. Park [6] introduced the
concept of amino acid pair compositions and applied SVMs classifier for pre-
diction. Recently, Ying [10] employed a fuzzy k-NN algorithm based on amino
acid dipeptide composition and his result was superior compared to the other
methods.

In his work, Ying defined the composition of amino acid dipeptide as number
of dipeptide occurrences. In fact, the length of protein sequences is so varied that
we need to consider it when estimating the dipeptide composition. Hereby, we
propose a new representation of amino acid pair (including dipeptide) compo-
sitions using normalization by sequence length. Furthermore, in order to detect
more sequence-order features, we use different types of compositions to construct
multiple classifiers, and then a combination method is employed expecting that
prediction accuracy can be improved.

2 Feature Extraction

Proteins are sequences that consist of a chain of units called amino acids. An
amino acid is labeled as a letter in {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}
thus a protein is presented as a string of letters. The length of proteins is varied
from 50 to thousands so that it is not efficient to pass the whole sequences to
the prediction system. Thus, to encode protein sequences, the compositions of
a single amino acid and amino acid pair were proposed in previous works (see
Introduction).

Ying [10] simply defined the composition of amino acid dipeptide (0-gapped
amino acid pair) as number of dipeptide occurrences. If two proteins, one is
long and the other is short, are in the same class, the dipeptide occurrences are
so different that distance-based classifiers, such as fuzzy k-NN, could misclassify
them. Therefore, we should consider the sequence length when defining the com-
position. Statistically, there must be a relation between dipeptide occurrences
and the sequence length. To simulate this relation we devise a positive strength
parameter α which determine how heavily the sequence length is weighted when
calculating the composition. The composition of n-gapped amino acid pair is
then defined as follow:
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composition of n-gapped pair (ai, aj) =
occurrences of (ai, aj)

(total number of possible n-gapped amino acid pairs in protein)α

In our research, 4 types of amino acid pair compositions (0-3 gapped amino
acid pair compositions) are proposed in order to extract more sequence-order
features. In a sequence, an n-gapped amino acid pair is a couple of amino acids
between which there are n other amino acids located. There are 20 natural amino
acids, so a sequence is represented by a 400-dimensonal vector of amino acid pair
compositions.

3 Classification Algorithm

3.1 Fuzzy k-Nearest Neighbor Algorithm

The k-nearest neighbor (k-NN) rule [4] is one of the oldest and simplest methods
for performing nonparametric classification. The main idea of k-NN can be stated
as following: given a test pattern x with unknown label, its label is assigned
according to the labels of its k nearest neighbors in the training set. The k-NN
is widely used in machine learning and has many variations. Among them, fuzzy
k-NN [7] usually gives better classification performance, especially in biological
and medical data classification problems [10].

Let {x1, x2, .., xN} be the set of N already labeled pattern (training data),
{c1, c2, .., cc} be the result classification space and x be the pattern to be clas-
sified. At the beginning, the fuzzy k-NN assigns membership values for each
pattern to different categories rather than a particular class as in k-NN rule.
The membership value of a pattern xj to class ci, denoted as vi(xj), can be esti-
mated in several ways. In crisp initialization, vi(xj) is assigned to 1 if xj belongs
to class ci, otherwise it is assign to 0. After initializing membership values for
all patterns in the training data, membership value of x to class ci is calculated
as following equation:

μi(x) =

∑k
j=1 vi(xj)d(x, x(j))2/(1−m)

∑k
j=1 d(x, x(j))2/(1−m)

(1)

where k is the number of nearest neighbors; m is a fuzzy-strength parameter
which determines how heavily the distance is weighted when calculating each
nearest neighbor’s contribution to the membership value; d(x, x(j)) is the dis-
tance between x and its jth nearest neighbor x(j). Finally, the pattern x is
classified to class to which the membership value of x is maximum.

3.2 Voting Fuzzy kNN Classifiers

As stated above, we use amino acid composition and 0-3 gapped amino acid pair
compositions as features to build prediction system. For each type of compo-
sitions we construct a fuzzy k-NN classifier then a voting scheme is applied to
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combine the classifiers. By incorporating many classifiers, the model is expected
to capture more sequence-order features and be more stable.

For combining multiple classifiers, instead of using majority voting scheme,
we assign membership values for input pattern to every classes. Given unlabeled
pattern x, let μ

(j)
i (x) be the membership value that jth classifier assign for x

to class i, the membership value assigned by combined classifier is estimated as
Eq. 2, and x is predicted as the class to which the total membership value is
maximum.

μi(x) =
5∑

j=1

μ
(j)
i (x) (2)

4 Result and Discussion

Three datasets that were used in the previous works are investigated, including
FuzzyLoc dataset [10], PLoc dataset [6] and Reinhardt’s dataset [9]. In FuzzyLoc
dataset, there are 7203 eukaryotic proteins classified in 11 subcellular locations.
The PLoc dataset contains 7579 eukaryotic proteins in 12 locations and Rein-
hardt’s dataset has 2427 protein located in 4 locations. Jackknife test (leave-
one-out) is employed to evaluate the algorithm performance.

4.1 Searching for Optimal α Value

To search for the value of α that can best adapt to fuzzy k-NN classifier we
applied that classification algorithm to the three datasets with various α values.

Euclidian measure is used for distance measuring. At first we use amino acid
dipeptide compositions as features for classifying. While calculating dipeptide
compositions, α value is varied from 0 to 1 with step 0.1. Classification algorithm
performance is showed in Fig. 1. Ignoring sequence length factor (α=0), the
accuracies are 85.2 for Reinhardt’s dataset, 80.1% for PLoc dataset and 80.1%
for FuzzyLoc dataset, almost the same as Ying’s result. On the contrary, when
the composition is estimated as fraction of dipeptide (α=1), the accuracies are
dramatically decreased. Maximum accuracies are reached when α is equal to 0.5.
We have investigated this test with various values of fuzzy strength parameter
m and number of nearest neighbor parameter k. In all the cases 0.5 is still the
best value. Therefore, when estimating the composition of dipeptides, we select
α as 0.5.

4.2 Prediction Accuracy

Our voting procedure is devised in order to best utilize the potentials of 5 differ-
ent representations of sequences. To show the effectiveness of our voting scheme,
here, we apply it to FuzzyLoc dataset then analyze the result. The accuracies of
individual classifiers and the voted one are shown in Table 1 (column 2 to 7).
As shown in the table, there is a definite trend of improved accuracies in every
protein classes. Apparently, the incorporation of different types of compositions
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Fig. 1. Overall accuracies of fuzzy k-NN using amino acid dipeptide composition with
different α values for feature extraction

Table 1. The performace of individual classifiers and voted classifier. A comparison
bettween our result with Ying’s work

Locations Individual fuzzy k-NN classifier Proposed Ying’s
(No. of entries) Amino acid dipeptide 1-gap 2-gap 3-gap (Vote) Method

Extracelluar(2134) 79.0 93.6 93.4 92.5 92.8 94.3 93.3
Nuclear(2149) 87.3 87.5 86.6 84.6 86.2 89.9 81.9
Mitochondrial(692) 51.5 66.9 66.5 63.7 63.7 69.1 59.0
Cytoplasmic(1251) 65.3 75.9 74.3 74.4 77.0 78.8 70.2
ER(82) 42.7 58.5 63.4 61.0 59.8 62.2 57.3
Chloroplast(645) 71.2 87.4 86.2 87.0 87.0 89.5 84.7
Cytoskeleton(10) 50.0 50.0 50.0 50.0 50.0 50.0 40.0
Peroxisomal(81) 35.8 60.5 60.5 61.7 63.0 64.2 56.8
Golgi apparatus(31) 9.7 12.9 12.9 6.5 12.9 12.9 16.1
Lysosomal(83) 67.5 73.5 77.1 69.9 71.1 78.3 67.5
Vacuolar(41) 12.2 34.5 31.4 39.0 36.6 36.6 34.1

Overall accuracy 74.0 83.9 83.2 82.0 83.1 85.8 80.1

can better capture sequence-order effects in protein sequences. The last column
in Table 1 shows Ying’s results. He used fuzzy k-NN based on amino acid dipep-
tide composition, but the equation of the composition is different from ours. By
proposing a new formula and adding more sequence-order features, we can make
5.7% improvement compared to Ying’s result.

Beside the FuzzyLoc dataset, we also perform experiment on PLoc dataset
and Reinhardt’s dataset then compare the result with other previous works.
Park and his colleague used SVMs with the same features as ours, but they
did not explain the formula for calculating the amino acid pair compositions.
The overall accuracy they got was 78.2% on PLoc, their own dataset. Our new
formula and voting fuzzy k-NN method can achieve 8.8% improvement compared
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to Park’s result. On Reinhardt’s dataset, there were many methods being applied
including neural networks, SVMs, Markov chain, fuzzy k-NN. Among them, our
method can give the best performance (result is not shown here). Although this
dataset may be old and cover only 4 protein classes, the result can demonstrate
applicability of our relative simple method.

5 Conclusion

In this paper, for classifying protein subcellular locations we first proposed an
equation for estimating the composition of amino acid pairs from protein se-
quences. Then, we employed a voting procedure for combining fuzzy k-NN classi-
fiers which were built from multiple amino acid pair compositions. This method
could take the advantage of sequence-order and sequence-length effects in se-
quences. We have applied our method to several datasets and high predictive
accuracies were achieved using a jackknife test. Our method is simple and prac-
tical because it just needs raw sequence data. In the future we will use this
method to annotate protein database.
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1 Williams College, Williamstown, MA 01267, USA
deveaux@williams.edu

2 Laboratoire MAP5, UFR Biomédicale,
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Abstract. X-ray film mammography and physical examination of the
breast are the mainstays for early detection of breast cancer. Unfortu-
nately, error rates for mammograms read by radiologists are high. We
examine a particularly difficult to read series of 1618 mammograms where
in order to achieve a false positive rate lower than 50%, the false nega-
tive rate of radiologists is nearly 25%. We examine a variety of automatic
data mining tools in an attempt to improve the accuracy of the diagno-
sis. Our results suggest that roughly the same or higher accuracy rate
than the radiologists can be attained at a much reduced cost. This po-
tential cost savings could have a major financial impact for health care
in developing nations.

1 Introduction

X-ray film mammography and physical examination of the breast are the main-
stays for early detection of breast cancer. They contribute to the improvement of
survival in breast carcinoma by allowing early treatment of occult lesions. One
of the most important tasks in mammography is the assessment of calcifications
and 10% to 40% lesions thus identified turn out to be malignant in subsequent
biopsies.

A mammogram requires minimal cost (compared with newer instruments)
and intervention. Other than the instrument itself, the main cost of the mammo-
gram is the radiologist, who decides whether a suspicious area exists. A positive
reading often leads to more expensive and invasive biopsies.

Unfortunately the error rates for mammograms read by radiologists are not
low. The data we examined are the part of a series of 8421 mammograms [1] that
entailed both false positive and false negative rates near 25%. In western coun-
tries it has been reported that missed cancers (false negatives) are particularly
common in pre-menopausal women due to dense and highly glandular structure
of their breasts [2] [3]. They are also common among post-menopausal women
on estrogen replacement therapies [4]. In day-to-day practice in the USA, mam-
mograms can miss more than a quarter (28%) of all tumors [5]. Because early
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detection of breast cancer is so crucial to its successful treatment, a false nega-
tive has serious health and cost consequences. On the other hand, false positives,
(mistakenly diagnosed cancers from healthy tissue) are particularly common in
the same two groups [2] [4]. A false positive can lead to needless anxiety, more
X-ray exposure and unnecessary biopsies. As many as three-fourths of all post-
mammogram biopsy results turn out to be non-cancerous lesions [6]. It has been
estimated that the cumulative risk of false positives increases to ”as high as
100 percent” over a decade of screening tests [7]. In Asian women, in whom
smaller breasts result in higher density, the sensitivity of mammography is cor-
respondingly lowered [8] [9]. For applicability to Asian populations of any breast
cancer diagnostic system based on mammography it is therefore of interest to
see whether data mining techniques may help improving interpretation accuracy
for a mammogram series with high error rates of reading by experienced radiol-
ogists. Providing accurate screening of breast cancer from mammograms could
have a significant impact on the health and well being of women throughout the
developing world.

In this paper we will look at the relationship between radiologic parameters
and the presence of malignant breast diseases. We compare several data mining
techniques including classification trees (section 3), bagged and boosted trees
(section 4), and neural networks (section 5). We summarize and suggest some
directions for future research in section 6.

2 Data

The data consist of records of 1618 mammograms showing clustered microcalcifi-
cations on which follow up excisions were performed. The data were provided to
us by Dr. Bernard Asselain, Head of the Biostatistics Department of the Institut
Curie, and by Dr. Michèle Le Gal, senior radiologist now retired from the same
institution, who introduced in 1976 a five way classification of microcalcifications
based on the probability of malignancy [10] (see Fig. 1 where type 1 to 5 denote
increasing probability of malignancy). When assessing the Le Gal’s classification
against the BI-RADS (breast imaging reporting and data system) introduced
by the American College of Radiology (ACR) in 1992, Gülsün et al. (2003, [11])
found the former to entail higher positive predictive value for types 4-5 lesions
and better interradiologist agreement than the latter system. About 30% of the
mammograms were obtained in the Institut Curie with a Diagnost UM dedi-
cated unit (Philips Medical Systems), while 70% were obtained elsewhere with
various units of equivalent quality. The film used at the Institut Curie was Ortho
MA (Eastman Kodak, Rochester, NY) with Min R screens (Eastman Kodak).
Craniocaudal, lateral and oblique mediolateral views were obtained. The re-
sponse variable is whether the tumor was benign or malignant as resulting from
posterior histological examination. In addition, 11 other predictor variables are
available:



188 R. De Veaux and T. Hoàng

Fig. 1. Morphologic type of clusters according to Le Gal’s classification

– two clinical variables pertaining to the patient’s age and the indication about
the left or right side of the breast being examined,

– the main usual radiographic features, i.e., appearance of tissue density, size,
number, shape and location of both the clusters and the microcalcifications,

– the clusters’ morphology according to Le Gal’s classification. ( [12]; Fig. 1)

3 Classification Trees

A tree model splits the observations into bins, defined by combinations of values
on the predictor variables. It then estimates the probability of malignancy simply
by calculating the proportion of malignant cases in each bin. The depth of the
tree can be preselected but is usually chosen via cross-validation, by trying trees
of various depths and then choosing the depth that has lowest average error
across a series of test subsets.(see [15] for details) We found that using a minimum
subset size of 50 was optimal for our data set. Using all the predictor variables,
with a minimum subset size of 50, resulted in the tree shown in Fig. 2.

|
forme<3.5

age<55.5

prof:a

age<47.5 age<42.5

forme<2.5

forme<2.5

forme<4.5

nombre:abde

age<55.5

nombre:ad

nombre:abde

0.08537 0.18060 0.10340

0.18990 0.39330

0.29310 0.47220

0.36140 0.48890

0.58330

0.65590 0.66670 0.93420

Fig. 2. A classification tree for the microcalcification data using 999 training cases

Of course, this tree was fit to just one random split of the data into train-
ing and test sets. To compare the performance of a tree to other methods, we
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Table 1. Error Rates for Neural Networks and Trees

False Positive Rate False Negative Rate

Simple tree 0.322 0.337
Bagged trees 0.193 0.288
Boosted trees 0.249 0.325
Neural net 1 0.255 0.317
Radiologists 0.224 0.358

repeated the random splitting 1000 times, selecting 999 cases for training and
600 cases for testing each time. We report the average error rate for all methods.
including the radiologists’ assessment on the same 1000 test sets in Table 1.

4 Bagging and Boosting

Ensemble averaging methods have become widely used. Rather than training one
tree in order to predict on a test set, we trained an ensemble of trees, selecting a
bootstrapped (sampled with replacement) training set from the original training
set, each time predicting on the same test set. To estimate a case in the test
set, we fit each of the generated trees and take the model average prediction.
This is a case of bagging or bootstrap aggregation (see [14] or [13]). We also
generated each tree with a random set of predictor variables as well. In this case
there are three parameters to vary: the number of trees generated, the number
of predictors in each tree and the size of the tree. After some exploration, we
settled on choosing 10 of the 11 predictors at random, a minimum final node
size of 50 as before and 1000 trees. For the prediction, we found that rather
than using the majority vote, we had lower total error using a cutoff of 30%.
That is we took as predicting malignancy if 35% or more of the trees predicted
malignancy. (Actually using 40% lowered the total error slightly, but raised the
false negative rate significantly). The 35% rule gave error rates shown in Table 1,
substantially lower than either the single tree or the radiologists.

Boosting is another strategy for building an ensemble of models. Unlike bag-
ging, the data are reweighted after the first tree is fit, with the observations
that are misclassified given higher weights than the ones correctly classified. The
model is then refit and this process is repeated many time. At the end, we have a
sequence of predictions from the reweighted fits. These models are then weighted
by their misclassification rates and a weighted vote is produced for each new case
from the test set. (see [16], [15] and [13]).

In the case of trees, we used the commercial implementation of boosted trees
by Salford Systems, Treenet c©. The best fit was found after 120 trees were fit
and the classification errors on the test set are shown in table 1.
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5 Neural Networks

As a contrast to tree methods, we also considered fitting multilayer feedforward
neural networks. For both the hidden layer and the response, we used a sigmoidal
activation function. To avoid overfitting we used weight decay, which adds a
penalty term to the residual sum of squares, before minimization, choosing the
weight decay parameter via cross-validation.

We used the implementaion of neural networks available in JMP c©. We ad-
justed the output so that a case was predicted to be malignant if the predicted
probability of malignancy was at least 0.40, similar to the value we took for the
trees. The error rates are shown in Table 1. One of the advantages of this neural
network implementation is the ability to look at the generated function via a
contour profiler. For this model, this is shown in Fig. 3. From the profiler, we
can see the positive correlation of malignant probability on the variables age and
forme quite clearly. Notice the non linear increase in risk for older women (here
selected for forme = 4).

Fig. 3. A profiler for the neural network

6 Discussion

We investigated several data mining strategies in the hopes of providing more
automatic, and hence less costly diagnostic capability from mammograms. Our
results indicate that bagged trees may provide a diagnostic accuracy matching
or eventually better than that of radiologists. We are encouraged from our find-
ings that such automatic diagnostic capability might be realized. This has the
potential of providing breast cancer diagnostic/screening to developing nations
at a long far less than is currently available. Further research could be conducted
to assess the potential for combining these models into a committee of experts,
comprised perhaps from bagged trees, boosted trees and neural networks, using
the model diagnostic as a guide.
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with the data.
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Abstract. A challenging problem in data mining is the application of efficient 
techniques to automatically annotate the vast databases of biological sequence 
data. This paper describes one such application in this area, to the prediction of 
the position of signal peptide cleavage points along protein sequences. It is 
shown that the method, based on Bayesian statistics, is comparable in terms of 
accuracy to the existing state-of-the-art neural network techniques while 
providing explanatory information for its predictions. 

1   Introduction 

The amount of sequence data generated by experimental biologists and made 
available via Internet databases is growing at an increasing rate. For example, 
SWISS-PROT [2], the leading protein sequence database, consists of 170140 entries, 
with an additional 1.6 million sequences in a supplementary database [2] awaiting 
addition. One of the significant issues with data of this nature is how to annotate 
sequences with properties that can occur anywhere along the length of the sequence. 
Manual experimental annotation in a biologist’s laboratory is reliable but time 
consuming and expensive. Automatic annotation is fast and cheap. 

The case study presented in this paper is the problem of determining signal 
peptides. Given a database of protein sequences with the signal peptides annotated, 
can a machine learning system discover the rules underlying the form and nature of a 
signal peptide? 

Signal peptides are important because they direct proteins to their correct 
destination within the cell. Proteins need to have this “address” because they serve a 
multitude of functions, such as being reaction catalysts and transport molecules [12]. 
They are also the basic building blocks of the cell itself, and signal peptide failures 
can lead to diseases such as cystic fibrosis [3]. Knowledge of how signal peptides 
work is also useful when designing new drugs, which are often created in the form of 
proteins and therefore must have the correct signal attached to them [3]. 

Once a protein reaches its destination, its signal peptide is no longer needed. By a 
careful process of alignment, the signal peptide is cleaved off, severing it from the 
rest of the protein. An important point is that the signal peptide is always cleaved at 
exactly the same point along the protein sequence. The question posed here is: is it 
possible to predict this unique cleavage point for a newly sequenced protein? 

Bayesian Sequence Learning for Predicting Protein 
Cleavage Points 



 

The basic process described in this paper involves firstly extracting features from 
the training sequences. The frequencies of the features are determined and converted 
into probabilities, and then Bayes’ Theorem is applied to predict the posterior 
probability of a cleavage point given each feature. When a test sequence is presented, 
the posterior probability of a cleavage point at each position along the sequence can 
be calculated and the position with the highest posterior is taken to be the predicted 
cleavage site. 

This relatively simple Bayesian method is comparable to state-of-the-art neural 
network methods. Furthermore, this method can provide rudimentary explanations (in 
terms of ranked features) for its predictions. Such explanations are important for 
biologists trying to understand the nature of signal peptides. 

In the next section, the biological and machine learning background to this paper is 
reviewed. Section 3 describes my proposed Bayesian method, and Section 4 reports 
on some results using a signal peptide dataset. Section 5 is the conclusion and 
mentions some issues for future research to address. 

2   Background 

2.1   Biological Background 

All protein molecules are made up of a linear sequence of smaller molecules called 
amino acid residues. There are twenty amino acid residues in total. Each residue by 
convention has two abbreviations: a three-letter abbreviation and a one-letter 
abbreviation. For example, the abbreviations of Alanine are Ala and A. All twenty 
residues and their standard abbreviations are listed in Table 1.  

Computationally speaking, a protein 
sequence can be viewed as a string of symbols 
(the residues) drawn from an alphabet of size 
twenty. Although it is also possible to augment 
each residue with a set of its properties, in this 
paper I consider only the basic sequence itself. 

Signal peptides have a known structure that 
can aid in predicting the cleavage point, but 
within that structure there is considerable 
variability that makes the task difficult. In this 
study’s datasets, the length of the signal peptide 
varies from five residues up to 90 residues. The 
average length is approximately 25 residues. In 
contrast, the total length of a protein can be 
thousands of residues. Signal peptides always 
occur at the beginning (the N-terminal) of the 
protein. 

According to von Heijne [13] and Neilson & 
Krogh [7], a signal peptide consists of three 
main regions. Firstly, there is the n-region near 
the N-terminal, which comprises positively 
charged residues and is the greatest contributor 

Table 1. Amino acid residue 
abbre viations 

Residue Abbreviations 
Alanine  Ala  A 
Arginine  Arg  R 
Asparagine  Asn  N 
Aspartic acid  Asp  D 
Cysteine  Cys  C 
Glutamic acid  Glu  E 
Glutamine  Gln  Q 
Glycine Gly G 
Histidine  His  H 
Isoleucine  Ile  I 
Leucine  Leu  L 
Lysine  Lys  K 
Methionine  Met  M 
Phenylalanine  Phe  F 
Proline  Pro  P 
Serine  Ser  S 
Threonine  Thr  T 
Tryptophan  Trp  W 
Tyrosine  Tyr  Y 
Valine  Val  V  
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to the variability in the length of a signal peptide [3]. This is followed by a so-called 
h-region, which is a longer stretch of eight to fifteen hydrophobic residues. Finally, 
near the cleavage point, there is typically a c-region, consisting of around five mostly 
uncharged amino acids. This structure is depicted in Figure 1, using the sequence for 
human growth hormone as an example. 

Fig. 1. Structure of a signal peptide for human growth hormone 

The most important part of the signal peptide is the h-region: it serves the dual 
purpose of both encoding the protein’s destination, and it is also used to align the 
signal peptide for cleavage when it finally arrives [12]. 

It should be noted that each of these regions are not necessarily a contiguous run of 
like residues. The hydrophobic h-region, for example, can be interrupted more than 
once by sequences of non-hydrophobic residues. This contributes to the difficulty of 
making predictions.  

2.2   Signal Peptide Prediction Background 

The earliest signal peptide prediction method was known as “the (-3,-1) rule” [12, 8]. 
This basically followed from the observation that positions –3 and –1 upstream (i.e. to 
the left) of the cleavage point were often “small and neutral”. Using this simple rule 
seemed sufficient when the number of known signal peptides was small, but it has 
proved inadequate as the amount of data has increased. 

Chou [3] extended the (-3,-1) rule when he introduced the subsite coupling 
approach. Basically, he formulated an algorithm which takes into account additional 
positions such as +1, as well as the expected lengths of each of the regions. The 
algorithm outputs the position on the sequence most likely to be the actual cleavage 
point. Although Chou reports that the results are encouraging, this method was trained 
on different data than the other methods were trained on and so it is difficult to make 
comparisons. An important point is that both of these approaches operate directly on 
variable-length sequences. 

In contrast, more recent machine learning approaches do not operate directly on the 
variable length sequences but instead preprocess the sequences into fixed length 
records and transform the problem into one of classification rather than sequence 
annotation. For example, if the fixed record size is ten positions and the original 
sequence length is, say, 34, then 24 fixed length records would be produced from this 
single original sequence. Such preprocessing fits well with existing machine learning 
tools because they demand fixed-length data, but it does have a number of drawbacks. 

MATGSRTS LLLAFGLLCLPWL QEGSA FPTIPLSRLFDN…. 
n-region h-region c-region Mature Protein… 

 
Signal Peptide  



 

The main one is that since each original sequence only has a single cleavage point, 
there is going to be a high abundance of negative examples (in a single sequence, only 
one fixed length record ends in the cleavage point and is therefore labelled as 
positive; the rest are labelled negative). Many machine learning algorithms given this 
biased data may simply predict every sequence as negative in order to obtain a high 
level of testing accuracy. To eliminate this problem and balance the classes more 
evenly, a considerable number of negative examples have to be discarded – a situation 
that could result in important information being lost. 

The currently best-known and most widely used machine learning solution is the 
SignalP suite [1, 7, 8]. SignalP version 1 was a solely neural network approach. The 
neural network had a feedforward architecture and was trained on fixed length, 
sparsely encoded records derived from a “moving window” [8]. Hidden Markov 
models were added as a second predictor in SignalP version 2 [7], which increased 
accuracy slightly but also had the added benefit of being able to discriminate with 
high accuracy between signal sequences and non-signal sequences. SignalP version 3 
[1] is a refinement of both the neural network and hidden Markov model approaches, 
with a claimed significant increase in prediction accuracy. Table 2 summarises the 
prediction accuracy results as reported by Bendtsen et al. [1]. Different neural 
network architectures have failed to provide a significant improvement over Signal P 
(see, e.g., [4, 9]). 

Table 2. Best recorded accuracies of the SignalP suite of predictors 

 Eukaryotyes Gram- Gram+ 
SignalP1 70.2 79.3 67.9 
SignalP2 72.4 83.4 67.4 
SignalP3 79.0 92.5 85.0 

There are number of points worth mentioning about these results. Firstly, separate 
predictors were trained from data from three different sources: Eukaryotes (being all 
organisms except viruses, bacteria, and blue-green algae), and two types of 
Prokaryotes (bacteria): Gram-positive and Gram-negative. Other approaches do not 
subdivide the data at all and therefore the results are not directly comparable. 

One significant weakness of the SignalP evaluations was that they performed only 
five-fold cross validation. In most cases, 10-fold cross validation is the minimum 
required for statistical significance [14].  

Support Vector Machines (SVMs) have also been applied to this problem. Vert 
[11] developed a new SVM kernal for strings and applied his method to cleavage 
point prediction. His dataset was the same as that used to train SignalP1, but he did 
not subdivide the data. He reports 68% accuracy in predicting the cleavage point. 

Some authors have attempted to incorporate residue properties into their systems to 
improve prediction accuracy. Recently, Smith [10] used a naïve Bayes-based text 
mining approach and reported accuracy comparable to Vert’s SVM approach 
described above. Maetschke et al. [6] compared a number of different encoding of 
Blomaps using the WEKA machine learning workbench [14] and came to the 
conclusion that a particular encoding called BLOSUM62 combined with naïve Bayes 
produced the best results. 
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One difficulty when comparing these approaches is the lack of a standard 
benchmark dataset. It should be noted that Vert [11], Smith[10], and SignalP version 
1 [8] all use the same dataset, namely that developed for SignalP version 1. Other 
authors have generated their own datasets from the SWISS-PROT database, and 
therefore it is quite possible that differences in accuracy are largely due to differences 
in data. To date, the SignalP2 dataset is publicly available but the SignalP3 dataset is 
not available.  

3   Fast Bayesian Cleavage Point Prediction 

3.1   Dataset Description 

Before describing the method, it is necessary to briefly describe the sequence data 
used. 

The dataset in this study is the same dataset used to train SignalP version 2. Each 
record consists of three lines: firstly, a biological description of the sequence in 
English which ties the sequence to its original record in SWISS-PROT; second, the 
residues sequence from the N-terminal all the way to position 29 downstream of the 
cleavage site; and thirdly, an annotation showing which residues are part of the signal 
peptide, which are part of the mature protein, and which is the cleavage site (defined 
as the first residue of the mature protein). Figure 2 below depicts two sample records 
taken from the dataset. 

51 11SB_CUCMA     21 11S GLOBULIN BETA SUBUNIT PRECURSOR. 
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVWQQHRYQSPRACRLE 
SSSSSSSSSSSSSSSSSSSSSCMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 
 
54 41BB_MOUSE     24 T CELL ANTIGEN 4-1BB PRECURSOR. 
MGNNCYNVVVIVLLLVGCEKVGAVQNSCDNCQPGTFCRKYNPVCKSCPPSTFSS 
SSSSSSSSSSSSSSSSSSSSSSSSCMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 

Fig. 2. Two records taken from the dataset 

The method by which this dataset was derived is worth briefly mentioning. 
SWISS-PROT contains protein sequences both with experimentally verified cleavage 
points, and without them. The database is constantly being updated as new protein 
sequences are added, and errors in annotations of existing sequences are corrected. 
Only sequences with experimentally-verified cleavage points were included in the 
dataset. Furthermore, some sequences were removed if they met certain criteria, for 
example having an origin in a virus gene [7]. 

The next step in the dataset creation was homology reduction. Many protein 
sequences occurring in nature are homologous, that is, they share long common 
subsequences which may include the signal peptide. This means that simple string 
alignment could result in a very high accuracy when predicting cleavage points on test 
sequences homologous to the training sequences. To eliminate this potential source of 
bias, for all pairs of homologous sequences in the dataset, Neilson & Krogh [7] 



discarded one of the sequences. By this method, more than 50% of the sequences in 
the dataset were discarded. 

The final dataset contains 1666 protein sequences, of which 1137 are Eukaryote 
sequences, 697 are Gram negative Prokaryote sequences, and 280 are Gram positive 
Prokaryote sequences. 

3.2   Training Method and Model 

I will now describe the Bayesian method used for building a model based on the 
training data, and applying it to the prediction of signal peptide cleavage points. This 
approach is relatively simple, fast to train, and as shall been seen in the next section, 
has accuracy comparable to existing systems. 

The basic idea is to define a set of features that protein sequences can have, extract 
from the training set the frequencies of those features, and convert those frequencies 
into posterior probabilities. This set of features and their posteriors will be referred to 
as the model. The model is then used to predict the final posterior probability of a 
cleavage point at each position along a test sequence given all the features on the test 
sequence.  

What are the features? I define two types of feature: a pattern of residues that may 
occur anywhere along a sequence, and a pattern of residues at a fixed position relative 
to some other position. Table 3 gives some examples of features extracted from the 
human growth hormone sequence depicted in Figure 1. I have used an “@” symbol to 
denote patterns with a position specified. 

Table 3. Examples of features extracted from training dataset 

Feature Description 
A The residue Alanine. 
C_L Cysteine, followed some other residue, followed by Leucine. 
L@-10 Leucine at position –10 relative to some position c. 
C_L@-3 Cysteine at position –3 and Leucine at position –1, both relative to some 

position c. 

The following features were extracted from the training set because they resulted in 
the best accuracies during informal testing: all of the features comprising single 
residues, without any limits on the distance of the residue from the cleavage point 
(e.g. see the first and third rows of Table 3); and all the diresidue sequences separated 
by exactly one position (e.g. see second and fourth rows of Table 3). However, only 
the position-specific diresidue sequences (i.e. those with an “@” symbol) starting at –
3 were extracted. The reasoning for this is that such an approach makes the standard 
simplifying naïve Bayes assumption (i.e. that the occurrence of a residue at a 
particular position relative to the cleave point is independent of the residues at other 
positions given the cleave point). However, this does not hold for (-3,-1), which are 
considered non-independent. By having a specific feature for the diresidue pattern at 
(-3,-1), the system can therefore effectively model the (-3,-1) rule mentioned earlier. 

Now, for every feature, a probability is calculated. Suppose f is a single residue or 
pattern of residues without a specific position, and f@p is the same pattern with a 
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specific relative position. The probability P(f) is defined as the prior probability of 
f@p, and is determined by calculating the total fraction of occurrences of f in the 
training set, in both signal and non-signal portions of the sequences. For example, if 
f=A, then P(f) is simply the total fraction of residues in the training set that is Alanine. 

For each feature, a conditional probability is also calculated. Let cleave(c) denote 
the proposition that position c on the sequence is the cleavage point. P(f@p | 
cleave(c)) is defined as the fraction of occurrences in the training set of the feature at 
a particular fixed position relative to the known cleavage point. 

For example, from the dataset, the prior probability of the single-residue feature L, 
P(L), is 0.127, but P(L@-1|cleave(0)) = 0.019 and P(L@-15|cleave(0)) is 0.285. 
While the priors capture the general abundance of residues in the training data, the 
conditionals capture the distribution of residues across positions relative to the 
cleavage point. I also compute conditional probabilities for the patterns occurring at 
positions (-3,-1), as mentioned above. 

It is now time to explain how the posterior probabilities used for prediction are 
computed. Essentially, this is an application of Bayes’ Theorem. Equation (1) shows 
how the priors and conditionals are combined to compute the overall probability of a 
cleave at some position c. F is defined as the set of all features on a particular 
sequence with positions relative to some position c. The training model consists of a 
posterior probability for every feature present in the training data. 

P(cleave(c) | F )  ∝
P ( f @ p | cleave(c))

P ( f )

  
      

  
    f @ p ∈F

∏  (1) 

We now come to the prediction algorithm. Given a test sequence with an unknown 
cleavage point, the system predicts a score for every position c on the test sequence. 
The score is the posterior probability as defined in Equation (1) above. When every 
position is scored, the posteriors are normalised and the position with the highest 
posterior probability is the predicted cleavage point. Figure 3 depicts the output of the 
system when tested on the sequence for human growth hormone depicted in Figure 1 
after training on the entire dataset minus the human growth hormone sequence. The 
predicted probability of a cleave at the actual cleavage site is 0.87. 

MATGSRTSLLLAFGLLCLPWLQEGSAFPTIPLSRLFDNAMLRAHRLHQLAFDTYQE 
SSSSSSSSSSSSSSSSSSSSSSSSSSCMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 
… 
W S 0.00277371  
L S 0.000196609  
Q S 0.00609159  
E S 0.00524503  
G S 0.0381914  
S S 0.0577272  
A S 0.0125238  
F C 0.874029  ************ 
P M 0.000244162  
T M 0.0015616  
… 

Fig. 3. Normalised predictions for human growth hormone. Only residues with a non-negligible 
probability of being the cleavage point are shown 



 

4   Results 

I evaluated the method described in the previous section using Leaving One Out 
Cross Validation (LOOCV) on the SignalP version 2 dataset (the dataset for SignalP3 
is different and currently unavailable). LOOCV was applied to the entire dataset, as 
well as the same three subsets that SignalP was trained on, namely the Eukaryote, 
Gram positive Prokaryotes, and Gram negative Prokaryotes subsets. 

4.1   Accuracy 

Compared to computationally more expensive methods such as neural networks, this 
approach results in comparable testing accuracy. Table 4 compares the accuracies 
achieved by SignalP version 2 and this method, both of which were trained on the 
same dataset. A comparison with other versions of SignalP is not as useful because of 
the different datasets being used. 

Table 4. Comparison of SignalP2 and the Bayesian method described in this paper 

 Eukaryotyes Gram- Gram+ 
SignalP2 72.4 83.4 67.4 
Bayesian 69.2 81.5 66.5 

As can be observed, the Bayesian method is consistently 1-2% less accurate than 
SignalP2. However, such a slight difference is likely to be a reflection of the 
statistical variation arising from Neilson & Krogh’s [7] use of the less-rigorous five-
fold cross validation for testing. In contrast, the Bayesian method utilised the more 
reliable LOOCV method. The difference may also reflect the independence 
assumption made about all positions except (-3,-1): it is possible that including 
additional diresidue features could further increase accuracy. (Interestingly, treating 
positions (-3, -1) as non-independent contributes to a large proportion of the accuracy. 
If this feature is not extracted, and instead only two independent features for positions 
–3 and –1 are used, then the accuracy is reduced by about 25%.) 

I also tested the predictive performance of the Bayesian approach when trained on 
the entire SignalP2 dataset without subdivision. Again, LOOCV was applied. The 
accuracy for this experiment was 71.2%, which compares favourably with Vert’s 
SVM approach [11] that achieved 68% accuracy, albeit on the (mostly similar) 
SignalP1 dataset. 

Aside from raw accuracy, one can also consider how close erroneous predictions 
are from the actual predictions. In Figure 4, the distribution of predicted cleavage sites 
against proximity to the real cleavage site are depicted following LOOCV on the 
entire SignalP2 dataset. The diagram clearly shows that the majority of predictions 
(91.4%) lie within –5 and +5 of the actual cleavage site even though the raw accuracy 
is 71.2%. It is quite possible that many of these predictions are correct, but have been 
misclassified by the experimental biologist, as suggested by Hiller et al. [4].  

Finally, it is necessary to comment on the relationship between the value of the 
posterior probability and the confidence of the prediction. In other words, is the 
posterior  probability  calculated a good indicator of the reliability of the prediction? I  
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performed an  analysis  on 
the results of the LOOCV 
experiment applied to the 
entire dataset, and found a 
positive correlation between 
posterior probability and true 
positive rate. The result of 
this analysis is depicted 
graphically in Figure 5. 

Clearly, predictions with a 
high posterior probability are 
to be considered more 
confident than predictions 
with a low posterior 
probability. For example, 
where the best predicted 
cleavage point has a probability of only 0.5 or above, the true positive rate was only 
75%. However, for predictions with a posterior of 0.95 and above, the true positive 
rate is between 85% and 90% - quite a significant increase. 

 

Fig. 5. Posterior probability of predicted cleavage site vs. true positive percentage 

4.2   Explanations 

The Bayesian method has one significant advantage over neural network approaches: 
namely, the ability to extract the reason for the system making a particular prediction. 
Since the overall posterior probability of a cleave is simply the product of the 
individual posteriors of a cleave given a single feature, it is possible to rank the 
features in a test sequence by how much they contribute to the final prediction. In 
Figure 6, the features contributing to the human growth hormone prediction shown in 
Figure 3 are listed in decreasing order of individual posterior. 

It can be seen that the biggest contributor to the prediction is the presence if Ala at 
position –1. The pattern of Gly and Ala at positions (–3, –1) is the second largest 

 

Fig. 4. Accuracy of prediction vs. percentage frequency 
after LOOCV on entire dataset 



 

predictor, and this is followed by the occurrence of Leu at multiple positions from –6 
to –19, which is where the hydrophobic region is expected to be. Pro at positions 1 
and 4 also has a high posterior. 

Fig. 6. Features and their posteriors ranked from most significant to least significant, for the 
human growth hormone prediction 

5   Conclusion 

To conclude, an efficient and effective method of predicting signal peptide cleavage 
points along protein sequences has been presented. I have shown that computationally 
more expensive approaches are not necessarily better in terms of accuracy than 
simpler Bayesian approaches, and the Bayesian approach described here can offer 
some degree of explanations for its predictions. Some of the issues involved in 
applying data mining techniques to biological datasets (such as dealing with variable 
length sequences) have also been explored. 
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Abstract. In molecular biology, DNA sequence matching is one of the
most crucial operations. Since DNA databases contain a huge volume
of sequences, fast indexes are essential for efficient processing of DNA
sequence matching. In this paper, we first point out the problems of
the suffix tree, an index structure widely-used for DNA sequence match-
ing, in the respects of the storage overhead, search performance, and
difficulty in seamless integration with DBMS. Then, we propose a new
index structure that resolves such problems. The proposed index struc-
ture consists of the two parts: the primary part realizes the trie as binary
bit-string representation without any pointers, and the secondary part
helps fast accesses of leaf nodes of the trie that need to be accessed for
post-processing. We also suggest efficient algorithms based on that index
for DNA sequence matching. To verify the superiority of the proposed ap-
proach, we conduct performance evaluation via a series of experiments.
The results reveal that the proposed approach, which requires smaller
storage space, can be a few orders of magnitude faster than the suffix
tree.

Keywords: DNA databases, DNA sequence matching, indexing.

1 Introduction

DNA sequences hold the code that determines life characteristics of every liv-
ing organism. A DNA sequence is represented as a string of a four-character
alphabet of A, C, G, and T known as the nucleotide bases. The DNA database
contains a huge volume of DNA sequences. Historically, the database has roughly
doubled in size every 14 months, and the increasing rate is growing gradually [3].
Since the size of DNA databases increases considerably as such, fast indexing is
crucial for an efficient information retrieval from those databases. DNA subse-
quence matching is an operation that is most frequently performed on a DNA
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database [7][20]. Given a database S, a query sequence Q, and a tolerance T, it
finds subsequences S’ of S whose dissimilarity with some subsequences Q’ of Q
is less than T.

BLAST [1] is a de-facto standard tool widely used by molecular biologists
to perform DNA subsequence matching. BLAST provides high performance by
using a heuristic algorithm, however, does not guarantee accuracy; i.e, it may
loose some true answers. The most popular algorithm that guarantees accuracy
is the Smith-Waterman algorithm [16]. The Smith-Waterman algorithm uses a
dynamic programming approach for finding an optimal local alignment between
S and Q of the two sequences. However, it suffers from a long processing time of
O(|Q| × |S|).

The suffix tree has been known to be a good index structure for efficient DNA
subsequence matching [5][11]. The suffix tree is a compressed digital trie whose
set of keywords comprises the suffixes of given sequences. The suffix tree shows
reasonable performance in finding all the matched subsequences. Moreover, it is
ready to be applied to applications that necessitate DNA subsequence matching
since approximate matching algorithms for it have already been proposed [18][8].
The elapsed time of subsequence matching by using such algorithms, however, in-
creases dramatically as the length of a query sequence and a tolerance increase.
To alleviate this problem, reference [13] proposed a hybrid indexing method
that divides a query sequence into multiple smaller pieces, performs their subse-
quence matchings with a smaller tolerance, and then integrates the results thus
obtained. Also, reference [12] suggested a method that applies the best-first(A*)
search method [9] in traversing a suffix tree. It shows the performance of subse-
quence matching comparable to that of BLAST in case of short query sequences.
Moreover, it guarantees accuracy as in the Smith-Waterman algorithm.

The suffix tree still has the following drawbacks due to its structural charac-
teristics: (1) Storage space: The suffix tree requires a large storage space; It is
often several ten times larger than a database [10][13][6]. Hunt et al. [8] reported
that a suffix tree required 19G bytes when they built it on DNA sequences of
286M bases. (2) Search performance: The large storage space required by
a suffix tree inversely affects the search performance. In addition, the poor lo-
cality of the suffix tree causes a significant loss of efficiency in respect of disk
accesses [6]. Thus, overall search performance deteriorates in DNA databases.
(3) Integration with DBMS: DBMS uses a page as a unit for storing all
kinds of data on disk. In contrast, the suffix tree has a difficulty in employing
a page as a storage unit due to its structural characteristics [17][19]. Thus, the
suffix tree has a problem in integrating itself with DBMS seamlessly.

In this paper, we propose a novel index structure that supports DNA subse-
quence matching efficiently as well as resolves the above drawbacks of the suffix
tree. The proposed index adopts a trie [17] as its conceptual structure and re-
alizes the trie by binary bit-string representation without pointers. In addition,
it employs a multi-dimensional index as a secondary structure for fast accesses
of the target leaf nodes when traversing the trie. With these characteristics, the
proposed index successfully solves all the problems in the respects of the storage
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space, search performance, and integration with DBMS. We also propose algo-
rithms that effectively process both exact and approximate DNA subsequence
matching by using the proposed index. Through extensive experiments, we quan-
titatively verify the effectiveness of our approach in comparison with the previous
ones. The results reveal that, compared with the previous ones, our approach
requires smaller storage space and achieves several times to several ten times
improvement in DNA subsequence matching performance.

2 Indexing Method

2.1 Binary Suffix Trie

A trie is defined as a |
∑
|-ary tree in which each edge has a symbol from the

alphabet
∑

and symbols in each root-to-leaf path form a key. Here, |
∑
| is the

alphabet size. A selection of subtries at level i is determined only by the ith

symbol of the search key, not the whole key. The most straightforward imple-
mentation of |

∑
|-ary tries is to store |

∑
| pointers in each node. This method

enables to select a child node in constant time. However, it is not space-efficient
because trie nodes may contain lots of NULL pointers when |

∑
| is large. An

alternative is to use dynamic data structures such as linked lists. In the linked
list representation, each trie node stores two pointers, one to its leftmost right
sibling and one to its leftmost child. This implementation reduces a lot of NULL
pointers and therefore requires lesser storage space especially when |

∑
| is large.

However, it cannot select a child node in constant time. In the worst case, all
the child nodes have to be examined.

Shang et al. [15] suggested pointerless binary tries which attained competitive
search speed with a minimal storage requirement. Pointerless binary tries require
the alphabet

∑
to have only two symbols, 0 and 1. Therefore, every node has

at most two outgoing edges. In the pointerless binary bit-string representation,
the symbols on the edges do not have to be stored explicitly by enforcing the
following rules: (1) the outgoing edge labeled with 0 connects to the left child
node, and (2) the outgoing edge labeled with 1 connects to the right child node.
More specifically, the trie node storing the two-bit data ‘10’ has only one child
which is on its left, and the node storing the two-bit data ‘01’ has only one child
which is on its right. Similarly, the trie node with ‘11’ has both left child and
right child, and the node with ‘00’ has no child.

In this paper, we propose an index structure for efficient DNA sequence
matching, exploiting the basic concepts of pointerless binary tries. Our aim is to
efficiently find the subsequences matched exactly or approximately to a query
sequence. Therefore, we extract all the suffixes from the DNA sequences and
insert each one of them into the trie. Since the suffixes are the inputs to the trie
construction algorithm, the resultant tree has the properties of suffix tries [17].
Suffix tries compress the input data set substantially when the input sequences
have lots of common prefixes. A DNA sequence can be considered as a string
from the alphabet

∑
= {A,C, G, T}. Since the alphabet size is small (which
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Fig. 1. Binary code of each symbol
in the alphabet

Fig. 2. Binary representations of the suf-
fixes from S1 = ‘ACGT’ and S2 = ‘ACT’

Fig. 3. Binary suffix trie constructed from
the suffixes of Figure 2

Fig. 4. Internal representations of the
binary suffix trie in Figure 3

is 4), it is highly possible that there exist a considerable number of common
prefixes in the suffixes of the input data set.

In this research, we use the minimum number of bits to represent each symbol
rather than using a character of 8 bits, to obtain higher compression ratio. Note
that DNA sequences may contain wild-card characters as well as the four typical
symbols of A, C, G, and T. For example, the wild-card N denotes one from A, C,
G, and T, and B denotes one from C, G, and T. Although wild-card characters
do not occur frequently, we need to uniquely encode each wild-card character
in addition to the typical four characters. For instance, when the number of
disparate symbols occurring in the DNA sequences to be indexed is at most
seven, we can use 3 bits to encode each symbol uniquely. If we construct the suffix
trie from DNA sequences encoded binary, we can expect a higher compression
ratio due to the increased number of common prefixes.

Let us examine the steps to build a binary suffix trie using an example.
Figure 1 shows a binary code of each symbol in our alphabet. Here, ‘$’ is a
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special character used as an end marker of every suffix. Given two sequences
S1 = ‘ACGT’ and S2 = ‘ACT’, we first convert all of their suffixes into the
corresponding binary bit-string representations as shown in Figure 2. We then
construct the trie through successive insertions of binary suffixes according to
their lexicographic order. Insertions based on the lexicographic order make the
trie grow only one direction and thus facilitate the disk-based trie construction.
Figure 3 shows the binary suffix trie constructed from the suffixes of Figure 2,
and Figure 4 shows its internal representation.

For the trie construction, we use a disk-based algorithm [4]. Therefore, when-
ever the main memory space of a predetermined size (i.e. page size) becomes oc-
cupied by a sub-trie, it is written onto a secondary storage (i.e. disk). To prevent
a sub-trie larger than a page from being written onto a disk page, we precalcuate
the maximum number of trie levels and the maximum number of trie nodes that
can be stored within a single page. In each page, the child nodes of each level are
either entirely on or entirely off that page. In other words, edges can only cross
the horizontal boundaries of pages, not the vertical boundaries. This restriction
is to reduce the number of disk pages to be read during query processing. Since
the trie is partitioned into a set of pages, it is necessary to maintain the page
table [15] to figure out the page connections. Each entry of the page table cor-
responds to a page and stores information related to that page, and each entry
is filled right after the corresponding page has been written on the disk.

2.2 Storing Leaf Nodes

Each suffix is identified by the pair of the sequence identifier and the starting
offset. When a suffix is inserted into the trie, its identifier is stored in the corre-
sponding leaf node. However, every trie node is represented by a two-bit number
in our indexing scheme. Therefore, suffix identifiers have to be kept separately
from the trie, using, i.e., a leaf node table.

When a query sequence is given, we traverse down the trie to find a node
beyond which more comparisons are meaningless. When the matching is success-
ful, a series of labels on the path between the root node and the node visited
last becomes the subsequence we are looking for in the database. To find the
locations at which the subsequences matched to a query sequence start, we need
to retrieve all the leaf nodes under the node visited last and get the suffix iden-
tifiers stored in these leaf nodes. When the index is large and the traversal ends
at a position not deep, a large portion of the trie has to be visited.

In this work, we propose to use a multi-dimensional index to speed up the
operation that retrieves all the leaf nodes under a given internal node. By re-
garding a binary bit-string representation of a suffix as a multi-dimensional key,
we build a multi-dimensional index from a set of suffixes. Notice that suffixes do
not have the same length. Therefore, we need the following scheme to convert a
suffix of variable length into a set of predetermined k integers: (1) When the
binary bit-string representation of a suffix is shorter than k-integer
length, we append multiple 0s to the end of a binary bit-string to make it be
of k-integer length. (2) When the binary bit-string representation of a
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suffix is longer than k-integer length, we cut out the rightmost bits so that
the resultant binary bit-string becomes of k-integer length.

3 Query Processing Method

3.1 Exact Subsequence Matching

Since each trie node is represented by a two-bit number in the proposed index,
the pointers from parents to children are not stored explicitly. The information
on the trie levels is not stored explicitly, either. Therefore, while traversing down
the index to find the subsequences matched to a query sequence, the algorithm
has to fetch the corresponding page and then extract those implicit information
using the data in the page.

Algorithm 1. Query processing algorithm Search-Trie

Input : binary suffix trie T , query sequence Q, page table P

Output: set of answers

1 initialize C0, N0,c, S0, and N0,f ;
2 for j := 0; j < p Height; j++ do
3 if j > 0 then
4 page change(P );
5 reset C0, N0,c, S0, and N0,f ;

6 for i := 0; i < n Height; i++ do
7 while isBefore(Ni,c) do
8 increase Ci;
9 update Si;

10 if !(match(node(Ni,c), Qi)) then
return {};

11 if isLast(Qi) then
return find answers();

12 get(Qi+1); increase Ci; update Si;
13 while isBefore(Ni,f ) do

update Si;

14 if i < (n Height − 1) then
reset Ci+1, Ni+1,c, Si+1, and Ni+1,f ;

The algorithm Search-Trie which traverses the binary suffix trie T to retrieve
the subsequences matched to a query sequence is shown in Algorithm 1. We as-
sume that the query sequence Q has been already converted to its binary form.
Remember that the information related to the page partitioning is maintained
in the page table P . Let Li denote the ith trie level in the page that is being
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examined. The algorithm uses the following four variables to figure out the in-
ternal structure of the page. The variable Si stores the total number of nodes
located at Li. If a node at Li has the value ‘11’, it will increase Si+1 by one. On
the contrary, if a node at Li has the value ‘00’, it will decrease Si+1 by one. The
variable Ni,f denotes the position of the rightmost node at Li. Ni+1,f is simply
computed by summing Ni,f and Si+1. The variable Ni,c indicates the position
of the node at Li that should be compared with the ith query bit. The variable
Ci stores the total number of 1 bits counted from the leftmost node at Li to the
node positioned at Ni,c. Ni+1,c is obtained by summing Ni,f and Ci.

The algorithm Search-Trie operates as follows. We assume that the index
has p Height page levels and each page level has n Height node levels. First,
we initialize all the variables according to the fact that the first node of the
first page in the index is the root (line 1). The lines 3-5 in the external for
loop (lines 2-14) replace the current page level with the next page level. The
function page change(P ) in line 4 computes the location of the next page using
the information in the page table P , and reads in the next page. Next, all the
variables are updated before entering into the stage of traversing the nodes in
the new page. The internal for loop (lines 6-14) is for handling a node level,
and it consists of the following four steps. Increasing Ci and updating Si, the
first step (lines 7-9) sequentially reads the nodes positioned before Ni,c. The
second step (lines 10-12) checks whether the node Ni,c matches the ith query
bit Qi or not. If not matched, the statement in line 10 is executed. If matched,
the algorithm checks if there are more query bits to be examined. If there is no
more query bit left, the function find answers() is called in line 11. The function
find answers() retrieves the suffix identifiers from the leaf nodes under Ni,c. If
there are more query bits to be examined, the statement in line 12 is executed
where the next query bit is read and the variables Si and Ci are updated and
increased respectively. While updating the variable Si, the third step in line 13
sequentially reads the nodes positioned before Ni,f . The final step in line 14
resets all the variables if there remain more node levels in the current page.

3.2 Direct Access of Leaf Nodes

The algorithm Search-Trie has the step to retrieve all the leaf nodes under the
node Ni,c at which the last query bit is matched successfully. This operation is
mainly performed in the function find answers(). The multi-dimensional index
introduced in Section 2.2 enables direct retrieval of the leaf nodes under Ni,c.
When the path p from the root to Ni,c matches the query sequence, we take one
of the following three options according to the length of p. (1) When p has
the length shorter than k-integers: Let p0 denote the binary bit-string of
k-integer length obtained by appending multiple 0s to the end of p. And let p1

denote the binary bit-string of k-integer length obtained by appending multiple
1s to the end of p. From the multi-dimensional index, we retrieve all the leaf
nodes having the values between p0 and p1. (2) When p has the length of
k-integers: From the multi-dimensional index, we retrieve all the leaf nodes
having the value p. (3) When p has the length longer than k-integers:
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Let pk be the prefix of p with k-integer length. From the multi-dimensional
index, we retrieve all the leaf nodes having the value pk. Then, we perform the
post-processing to detect and discard false matches.

3.3 Approximate Subsequence Matching

The basic method for approximate subsequence matching in DNA databases
is the dynamic programming (DP) technique. Given two sequences Q and S,
the DP technique finds their optimal distance by building a two-dimensional DP
table of |Q|+1 rows and |S|+1 columns. The recurrence relations corresponding
to the similarity measure of a target application are used to fill in each cell of
the DP table. The edit distance function [8][17] is a popular similarity measure
for approximate subsequence matching.

There have been several approaches [18][13][8] which employ the suffix tree
as an index to speed up approximate subsequence matching. They traverse the
suffix tree in the depth-first order and build-up the DP table between a query
sequence and a path from the root node of the suffix tree. The proposed binary
suffix trie also can be used as an index structure for approximate subsequence
matching. However, since every node is represented by a two-bit number in the
binary suffix trie, we need to access more than one node to append a new column
to the DP table.

Fig. 5. DP tables constructed from the binary suffix trie of Figure 3

Let us use an example to explain the proposed approximate subsequence
matching algorithm. Suppose that we want to find the subsequences whose edit
distances to the query sequence ‘AGG’ are not larger than 1. Figure 5 shows how
the DP tables are constructed during the traversal of the binary suffix trie shown
in Section 2. Since every symbol is encoded by three bits, the algorithm accesses
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three successive nodes to append a new column to the existing DP table. That
is, the columns for the symbols ‘A(001)’, ‘C(010)’, and ‘G(011)’ are appended
individually to the DP table when the algorithm reaches the nodes v, w, and x,
respectively. D1 in Figure 5 is the resultant DP table. Whenever a new column
is added to the DP table, we check whether or not the cell at the last row of
the newly added column has a value not larger than a distance threshold. If so,
all the leaf nodes under the node being visited satisfy the query. We use the
multi-dimensional index to directly retrieve such leaf nodes. In D1 of Figure 5,
the column for the symbol ‘G(011)’ is the newly added column. Since the value
of the cell at its last row is 1, all the leaf nodes under the node x satisfy the
query. The DP table D2 is obtained when the node y is visited. Since all the
cells in the last column have values larger than 1, the traversal stops at the node
y and comes back to its parent. Note that the first two columns of D1 and D2

tables are identical. These two columns are shared by the two tables to save
space and time.

4 Performance Evaluation

In our experiments, we have used DNA sequences of human chromosomes 18,
19 and 21 downloaded from GenBank [14]. From those data sequences, we have
randomly extracted some subsequences of arbitrary lengths as query sequences.
The DNA sequences used in our experiments consist of four frequent characters
A, C, G, and T, and also contain some infrequent wild-card characters such as
N, S, and Y. In addition, we have used a special character $ for representing
the end of a sequence. Thus, 8 different characters may appear within the DNA
sequences in our experiments. The hardware platform is the Pentium IV 2GHz
PC equipped with 1 Gbyte main-memory and 40 Gbyte hard disk. The software
platform is the Windows 2000 Server.

In experiment 1, we have compared three approaches Trie-Rtree, Trie-Naive,
and Suffix in the respect of the index size. Trie-Rtree represents our approach
that employs the trie using pointerless binary bit-string representation in con-
junction with a multi-dimensional index. As a multi-dimensional index, we have
used the R*-tree [2], a most-widely used in the literature. Trie-Naive also rep-
resents our approach that uses just the trie using pointerless binary bit-string
representation without employing a multi-dimensional index. Finally, Suffix is
the previous approach based on the suffix tree. We have applied an incremental
disk-based algorithm [4] for suffix tree construction, and also have allocated 32
byte memory chunk for each node in the suffix tree.

Figure 6 shows the change of the index sizes in the three approaches with
different data sizes. We have set the page size for each index to 4K bytes. The
suffix tree in Suffix consists of internal nodes and leaf nodes. The index in Trie-
Naive consists of a binary suffix trie, a page table, and a leaf node table. The index
in Trie-Rtree contains those used in Trie-Naive, and also maintains an additional
R*-tree for fast accesses of leaf nodes of the trie. In the figure, we observe that
the index size increases almost linearly in proportion to the data size in all the
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Fig. 8. Elapsed times spent in finding all
the subsequences whose edit distances to a
query sequence are not larger than 1

Fig. 9. Elapsed times spent in finding
the subsequence most similar to a query
sequence

performance due to direct accesses of leaf nodes by using the R*-tree. For long
query sequences, however, a large number of bit operations increase the time for
traversing the suffix trie, and subsequently enlarge the entire elapsed time.

Figure 9 depicts the result of comparing the elapsed times of Suffix*, Trie-
Rtree* and SW. Here, the elapsed time is the total time required to find a set
of subsequences, each of which is most similar to a query sequence in each data
sequence, from a DNA database. Trie-Rtree* and Suffix* represent the elapsed
time of approximate subsequence matching by Trie-Rtree and Suffix, respectively,
that employ the best-first(A*) search algorithm [12]. Also, SW represents elapsed
time of approximate subsequence matching by the Smith-Waterman algorithm.
The result shows that Trie-Rtree* performs better than Suffix*. This is because
the way for storing nodes in the suffix trie harmonizes with the level-first traversal
fashion of the best-first(A*) search algorithm. That is, as mentioned in Section
2.1, all the child nodes of each level of a page are either entirely on or entirely
off that page. This is quite effective in such environment where all the sibling
nodes are accessed together as in the best-first(A*) search. The result shows
that, compared with Suffix* and SW, Trie-Rtree* performs about 4 to 9 times
and about 592 to 2,505 times better, respectively.

5 Conclusions

In this paper, we first have pointed out the problems occurring in the suffix tree
for DNA sequence matching: (1) high storage overhead, (2) low search perfor-
mance, (3) difficulty in seamless integration with DBMS. Then, we have pro-
posed a novel index structure that resolves them. Our index employs a trie as its
primary structure and implements it by using binary bit-string representation
without pointers. Major advantages of this implementation are to reduce the
storage overhead considerably and to build its structure easily in page units.
Also, our index employs a multi-dimensional index as a secondary structure for
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fast accesses of the target leaf nodes after traversing the trie. With the proposed
index, we can successfully alleviate the three problems of the suffix tree. We also
have proposed the algorithms that process DNA sequence matching effectively
based on the proposed index. To verify the effectiveness of our approach, we
have performed a series of experiments. The results reveal that the proposed ap-
proach, which requires smaller storage space, can be a few orders of magnitude
faster than the suffix tree. In case of exact matching, Trie-Rtree, our enhanced
approach, runs 13 to 29 times faster than the Suffix. In case of approximate
matching, it achieves 4 to 9 times speedup over Suffix.
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Abstract. One application of Association Rule Mining (ARM) is to
identify Classification Association Rules (CARs) that can be used to
classify future instances from the same population as the data being
mined. Most CARM methods first mine the data for candidate rules,
then prune these using coverage analysis of the training data. In this
paper we describe a CARM algorithm that avoids the need for coverage
analysis, and a technique for tuning its threshold parameters to obtain
more accurate classification. We present results to show this approach
can achieve better accuracy than comparable alternatives at lower cost.

1 Introduction

An Association Rule (AR) is a way of describing a relationship that can be ob-
served between database attributes [1], of the form “if the set of attribute-values
A is found together in a database record, then it is likely that the set B will
be present also”. A rule of this form, A → B, is of interest only if it meets at
least two threshold requirements: support and confidence. The support for the
rule defines the number of database records within which the association can be
observed. The confidence in the rule is the ratio of its support to that of its an-
tecedent. Association Rule Mining (ARM) aims to uncover all such relationships
that are present in a database, for specified thresholds of support and confidence.

One application of ARM is to define rules that will classify database records.
A Classification Association Rule (CAR) is a rule of the form X → c, where X
is a set of attribute-values, and c is a class to which database records (instances)
can be assigned. Mining of CARs usually proceeds in two steps. First, a training
set of database records is mined to find all ARs for which one of the target classes
is the consequent, and which satisfy specified thresholds of support and confi-
dence. This stage is essentially similar to ARM in the more general case, with the
classes c treated as attribute-values, and the restriction that the only rules we
need consider are those for which the consequent is one of these. A second stage
then sorts and reduces the set of rules found, with the aim of producing a con-
sistent set that will enable efficient and reliable classification of future instances.
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The CBA algorithm described in [6] exemplifies the approach. First, a version
of the well-known Apriori algorithm [2] is used to generate a set of ruleitems
that satisfy a required support threshold, where a ruleitem is a set of items
(attribute-values) associated with a class label, which thus defines a potential
CAR. The rules thus generated are pruned, using the calculated confidence to
eliminate those that fail to meet a required confidence threshold or which conflict
with higher-confidence rules. Finally, a classifier is built by selecting an ordered
subset of the remaining CARs. This process involves coverage analysis in which
each candidate CAR is examined in turn, to find a set of CARs that cover the
dataset fully. The CMAR algorithm of [7] has a similar general form, using a
version of the FP-growth algorithm [5] to generate the candidate CARs.

Results presented in [6] and[7] show that classification using CARs seems to
offer greater accuracy, in many cases, than other methods such as C4.5 [8]. The
problem with both CBA and CMAR, however, is that the cost of the coverage
analysis is essentially a product of the size of the dataset and the number of candi-
date CARs being considered. The CPAR algorithm [10] has a different approach
to generating rules, using a procedure derived from the FOIL algorithm [9] rather
than a classical ARM method. Although this improves performance by generat-
ing a smaller set of rules, the performance is still O(nmr), where n is the number
of records, m the number of items, and r the number of candidate rules. The
RIPPER algorithm [4] incorporates a pruning strategy that can be applied in a
manner independent of the rule generation strategy used. All these methods fol-
low an overfit and prune strategy that will be costly if used to construct classifiers
from the very large and wide datasets that are characteristic of classical ARM.

Thus, we identify three general problems of CAR mining. First, the ARM task
is inherently costly because of the exponential complexity of the search space.
Second, it is very likely that this first stage will generate a very large number
of candidate rules, and so the selection of a suitable subset for classification
may also be computationally expensive. Finally, the reliability of the resulting
classifier depends in some degree on the rather arbitrary choice of support and
confidence thresholds used in the mining process.

In this paper we describe a new approach to the generation of CARs, that
significantly reduces the cost of mining the training data by using both support
and confidence thresholds in the first stage of mining, to produce a small set of
rules without the need for coverage analysis. We present results to show that
this approach achieves a classification accuracy that is comparable with other
methods, but in many cases at much lower cost. We also describe a strategy for
tuning support and confidence thresholds to obtain a best accuracy.

2 Generating Classification Association Rules Using
TFPC

We begin with the observation that, if the support and confidence thresholds
have been selected correctly, then the existence of a rule X → c1 should make
it unnecessary to consider any other rules whose antecedent is a superset of
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X. In practice, however, we may still find a rule Y → c2, say, where Y is a
superset of X, which has higher confidence and to which we would wish to give
higher precedence. It remains possible, also, that there will be a further rule
Z → c1, where Z is a superset of Y , with still higher confidence, and so on. This
reasoning leads other methods to a process in which all possible rules are first
generated and then evaluated. In this paper we adopt an alternative heuristic:
If we can identify a rule X → c which meets the required support and confidence
thresholds, then it is not necessary to look for other rules whose antecedent is a
superset of X and whose consequent is c. It will still of course be necessary to
continue to look for rules that select other classes. This heuristic both reduces
the number of candidate rules to be considered, and the risk of overfitting.

We use a method derived from our TFP (Total From Partial) algorithm
to generate a set of CARS. This method, described in [3], first builds a set-
enumeration tree structure, the P-tree, that contains an incomplete summation of
support-counts for relevant sets. Using the P-tree, the algorithm uses an Apriori-
like procedure to build a second set enumeration tree, the T-tree, that finally
contains all the frequent sets (i.e. those that meet the required threshold of
support), with their support-counts. The T-tree is built level by level, the first
level comprising all the single items (attribute-values) under consideration. In
the first pass, the support of these items is counted, and any that fail to meet
the required support threshold are removed from the tree. Candidate-pairs are
then generated from remaining items, and appended as child nodes. The process
continues, as with Apriori, until no more candidate sets can be generated.

Figure 1 illustrates the form of a T-tree, for the set of items {A,B,C, x, y},
where x and y are class identifiers. This tree is complete, i.e it includes all possible
itemsets, except for those including both x and y which we will assume cannot
occur. In practice, an actual T-tree would include only those nodes representing
the frequent sets. For example, if the set {A,C} fails to reach the required
support threshold, then the node labelled AC would be pruned from the tree,
and the nodes ABC, ACx, ACy, ABCx and ABCy would not be created. All
the candidate itemsets that include the class-identifier x can be found in the
subtree rooted at x, and thus all the rules that classify to x can be derived from
this subtree (and likewise for y).

The algorithm used to build the T-tree in Figure 1 is a modification of the
original TFP approach. As each pass is concluded, we first remove from the tree
all those nodes representing sets that fail to meet the support threshold. The
remaining (frequent) sets that are included within the class-identifier subtrees
(x and y in this example) define possible classification rules: for example, the
set Bx corresponds to a rule B → x. We now calculate the confidence of all
such rules, i.e. in the case of Bx, the ratio (supportofBx)/(supportofB). If this
rule exceeds the required confidence threshold, we add the rule to our target set,
and remove the corresponding node (Bx) from the tree. The effect of this is that
when the next level is generated, supersets of Bx (ie ABx and BCx) will not
be added to the tree.
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Fig. 1. Form of a T-tree for {A, B, C, x, y}

This algorithm, which we call TFPC (Total From Partial Classification),
generates far fewer frequent sets than would be produced from a generic ARM
algorithm such as Apriori or TFP. Moreover, the sets left on the tree can immedi-
ately be used to define classification rules which meet our threshold requirements
for support and confidence. To classify using these rules, the rule set is sorted
by confidence. Between two rules of equal confidence, the more specific takes
precedence: i.e. if B → x, say, and BD → y, then the latter will be selected.

3 Experimental Results

To investigate the performance of TFPC, we carried out experiments using a
number of data sets taken from the UCI Machine Learning Repository. The
implementation of TFPC was as a Java program, and for comparison purposes
we have used our own (Java) implementations of the published algorithms for
CMAR [7] and CPAR [10]. In the first set of experiments, as in [6] and [7], we
have assumed a support threshold of 1% and a confidence threshold of 50%.
For the implementation of CPAR, we used the same parameters used in [10],
i.e. minimum gain threshold = 0.7, total weight threshold = 0.05, decay factor
= 2/3, and similarity ratio 1 : 0.99. We tried to use the same data sets as those
used to analyse CMAR and CPAR. However in many cases the data sets that
were used in [7] and [10] appear to be no longer available, and in others were
found not have identical parameters to those reported.

The data sets chosen therefore comprise a subset of those used in [7] and [10],
augmented by a further selection from the UCI repository. The choice of addi-
tional data sets concentrated on larger/denser data sets (2000+ records) because
the majority of the data sets used in the reported analysis of CMAR and CPAR
were relatively small (less than 1000 records). The sets chosen were discretized
using the LUCS-KDD DN software 1, where appropriate continuous attributes

1 Available at http://www.csc.liv.ac.uk/˜frans/KDD/Software/LUCS-KDD-DN/
lucs-kdd DN.html
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were ranged using five sub-ranges. The programs were run on a 1.2 GHz Intel
Celeron CPU with 512 Mbyte of RAM running under Red Hat Linux 7.3.

The results from these experiments are shown in Table 1. The row labels
describe the key characteristics of the data, in the form into which it was dis-
cretized. For example, the label anneal.D106.N798.C6 denotes the ’anneal’
data set, which includes 798 records in 6 classes, with attributes that for our
experiments have been discretized into 106 binary categories.

The last three columns in Table 1 tabulate the accuracy of the classification
obtained by the three methods. In all cases, the figure shown is the average
obtained from a 10-fold cross-validation using the full data set. The accuracy
obtained using the TFPC method is in most cases comparable with that ob-
tained from the other methods investigated. Although the average accuracy of
the method was slightly lower than the others, in 5 cases TFPC gave an accuracy
as high as or higher than both other methods, and only in two cases (ionosphere
and wine) was it markedly worse than both.

The significance of these results is that this level of accuracy was obtained
from a very efficient rule-generation process. The first three columns in Table 1
show the execution times for the three methods. In each case, the time shown is
that obtained for the full experimental evaluation using 10-fold cross-validation.
As can be seen, the performance of TFPC (in comparable implementations) is

Table 1. Results for support= 1%, confidence= 50%

Time Number of rules Accuracy
Data Set

CMAR CPAR TFPC CMAR CPAR TFP TFPC CMAR CPAR TFPC

adult.D131.N48842.C2 2088.6 809 80 3063 183 20530 82 71.2 76.7 76.1

anneal.D106.N798.C6 150.5 1.8 12.1 319 34 20525 61 83.5 90.2 84.6

breast.D48.N699.C2 7.5 0.7 1 191 16 4008 43 85.2 94.8 95.9

connect4.D129.N67557.C3 1449.2 24047 206.4 821 816 3600 106 66.9 54.3 65.9

heart.D53.N303.C5 36.2 1 11.4 305 53 13429 193 56.8 51.1 57.1

hepatitus.D58.N155.C2 160 0.3 15.2 99 14 31126 58 76.3 76.5 77.3

horseColic.D94.D368.C2 40.3 0.6 6.3 387 18 17219 99 74.5 82.3 78.7

ionosphere.D104.N351.C2 28.4 1.1 8.4 214 26 8581 380 96 92.9 83.8

iris.D23.N150.C3 0.2 0.2 0.1 69 11 200 20 94.7 94.7 94.7

led7.D24.N3200.C10 1.6 5.7 0.7 229 31 464 29 73.7 71.2 69

mushroom.D127.N8124.C2 1045.5 15.4 31.6 171 31 25253 116 99.1 98.8 96.1

nursery.D32.N12960.C5 22.2 51.7 5.2 487 84 1709 30 91.4 78.5 77.9

pageBlocks.D55.N5473.C5 25.3 15.5 2.4 243 56 7882 19 89.8 76.2 89.8

penDigits.D90.N10992.C10 222.7 101.9 56.8 2052 167 7667 3015 79.1 83 79.7

pimaIndians.D42.N768.C2 3.2 1 1.3 540 23 3693 34 77.4 75.6 74.9

waveform.D108.N5000.C3 1149 38.1 86.9 1186 114 22876 662 71.2 75.4 71.7

wine.D68.N178.C3 1018.7 0.3 8.7 110 18 31961 164 97.1 92.5 86.3

zoo.D43.N101.C7 780.5 0.2 6 31 19 25050 250 92 96 93

Average 457.2 1394.0 30.0 584.3 95 15361 298 82.0 81.2 80.7
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markedly superior to that of CMAR (in all cases) and CPAR (in many). The
improvement over CMAR results from the smaller number of rules that tend to
be produced using TFPC and because this approach eliminates the expensive
coverage analysis carried out in CMAR. The columns headed ’Number of rules’
show the average number of rules included in the final classifiers generated, for
the three methods. For comparison, the column headed TFP shows the total
number of classification rules generated by the TFP algorithm, which defines
the total number of candidate classification rules produced by a straightforward
ARM algorithm using the given support and confidence thresholds. A compari-
son of this column with that for TFPC shows the advantage gained during rule
generation from the heuristics used in the latter. In most (although not all) cases,
TFPC also produces fewer rules than CMAR.

CPAR, conversely, usually produces fewer rules than TFPC, and this is re-
flected in the faster execution times it achieves in some cases. The advantage of
TFPC, however, is that by dispensing with coverage analysis the performance
of the method scales better for larger data sets. In all the cases where the data
included more than 10000 records (adult, connect4, nursery, pendigits), TFPC
is much faster than CPAR, sometimes by an order of magnitude or more. CPAR
also performed relatively poorly in the cases (pageblocks, led) in which there
were both a moderately large number of records and a relatively large number
of classes. In all these cases, TFPC achieves a classification accuracy close to or
superior to CPAR at much lower cost.

4 Finding Best Support and Confidence

The results presented above show that it is possible to obtain a set of rules
that will in most cases provide acceptable classification accuracy, using CARM
techniques, without further coverage analysis. However, because the tree gener-
ation heuristic used in TFPC stops looking for more specific rules once a general
rule with satisfactory confidence has been found, it may sometimes fail to find
high-confidence rules that could be significant in special cases. The method may
therefore be more sensitive to the choice of support and confidence thresholds
used than is the case for methods that rely on coverage analysis to derive the
final ruleset. To investigate this further, we performed a series of experiments
to identify the combination of support and confidence threshold that would lead
to the highest classification accuracy in each of the data sets studied. Figure 2
shows the results obtained, in the form of 3-D plots, for a number of example
data sets selected to demonstrate the variety of the results obtained. For each
plot the X and Y axes represent support and confidence thresholds ranging from
100 to 0%, and the Z axis the classification accuracy obtained.

From Figure 2 it can be seen how the classification accuracy produced using
TFPC may vary significantly depending on the choice of support and confidence
thresholds. The extent of the variability depends on the characteristics of the
data. For example, the ’adult’ data set (Figure 2(a)) shows a substantial plateau
of support-confidence values within which accuracy is constant (although there is
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a) adult.D131.N48842.C2 b) breast.D48.N699.C2

c) horseColic.D95.N300.C3 d) ionosphere.D172.N351.C2

e) led7.D24.N3200.C10 f) nursery.D32.N12960.C5

Fig. 2. 3-D plots of classification accuracy v. support/confidence thresholds
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a small peak, highlighted in white, at which a higher accuracy can be obtained).
Conversely, the ’led7’ data set (e) illustrates a case in which the method is
highly sensitive to the choice of support and confidence threshold. In this case,
the values 1% and 50% used for the experiments of Table 1 were, fortuitously,
close to the peak, so reasonably good results were obtained. This was also the
case for the ’breast’ set (b) and ’horsecolic (c). In the cases of ’ionosphere’ (d)
and nursery (f) conversely, the relatively poor accuracy obtained using TFPC is
a consequence of a poor choice of support and confidence thresholds.

To obtain a best classification the TFPC algorithm was applied in an itera-
tive manner in conjunction with a ”hill-climbing” procedure. The hill climbing
technique makes use of a 3-D playing area measuring 100x100x100, as visualised
in the plots of Figure 2. The axes of the playing area represent percentage val-
ues for support thresholds, confidence thresholds and accuracies. The technique
commences with initial support and confidence thresholds, with an associated
accuracy, that describes a current location in the playing area. The procedure
then traverses the playing area with the aim of maximising the accuracy value.
To do this it continuously generates data for a “grid” of eight test locations,
obtained by applying to the current location positive and negative increments to
the support and confidence thresholds. The current and test locations thus form
a 3x3 location grid centred on the current location. The threshold increments
are reduced progressively as the procedure converges.

Table 2 shows the results obtained using TFPC-HC (columns headed THC)
for all the data sets included in Table 1. For comparison, the results obtained
from TFPC (without hill climbing), and from CMAR and CPAR, with 1% sup-
port and 50% confidence, are included.

The results confirm the theory demonstrated by the plots presented in Fig-
ure 2. In those cases (e.g adult, breast, led7, horsecolic) where, by chance, the
(1%, 50%) pair gives a near-best result, little improvement is obtained from the
hill-climbing procedure. In the cases of ionosphere and nursery, conversely, and
also anneal, hepatitis and pendigits, a very substantial increase in accuracy is
obtained. It is noteworthy, also, that both overall and in many particular cases,
TFPC-HC achieves a higher classification accuracy than either CMAR or CPAR.

Although these experiments show the gain that can be obtained by tuning
the selection of support and confidence thresholds, the hill-climbing procedure
is, of course, more time-consuming than CMAR, CPAR or TFPC without hill
climbing. To reduce the cost of this the algorithm was further adapted, TFPC-
HC+, so that hill-climbing was only carried out using a single division of the data
set into a (90%) training set and (10%) test set. The hill-climbing procedure was
used to find the support and confidence thresholds that led to the most accurate
classification of this test set. These thresholds were then used to apply the TFPC
method to the full data set, with ten cross-validation. The results are included
in the columns of Table 2 headed HC+.

As can be seen, this more restricted hill-climbing (essentially, on a sample
of the data) is still relatively effective in obtaining a near-optimal support and
confidence pairing for use in the method. Overall, the results from this show
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Table 2. Comparison of methods of classification

Accuracy Execution times
Data Set

CMAR CPAR TFPC THC HC+ CMAR CPAR TFPC THC HC+

adult.D131.N48842.C2 71.2 76.7 76.1 76.9 76.8 2089 809 80 1187 347

Anneal.D106.N798.C6 83.5 90.2 84.6 91.3 90.9 150 2 12 374 52

breast.D48.N699.C2 85.2 94.8 95.9 96.4 96.1 8 1 1 9 2

Connect4.D129.N67557.C3 66.9 54.3 65.9 65.9 65.9 1449 24047 206 11816 906

heart.D53.N303.C5 56.8 51.1 57.1 61.0 57.4 36 1 11 285 43

hepatitus.D58.N155.C2 76.3 76.5 77.3 86,0 77.3 160 1 15 249 24

horseColic.D94.D368.C2 74.5 82.3 78.7 80.9 79.5 40 1 6 186 41

ionosphere.D104.N351.C2 96.0 92.9 83.8 91.5 88.9 28 1 8 674 135

Iris.D23.N150.C3 94.7 94.7 94.7 94.7 94.7 1 1 1 6 1

Led7.D24.N3200.C10 73.7 71.2 69.0 71.3 68.8 2 6 1 7 3

mushroom.D127.N8124.C2 99.1 98.8 96.1 99.3 96.1 1046 15 32 1313 127

Nursery.D32.N12960.C5 91.4 78.5 77.9 92.2 90.5 22 52 5 263 22

pageBlocks.D55.N5473.C5 89.8 76.2 89.8 89.8 89.8 25 16 2 6 3

penDigits.D90.N10992.C10 79.1 83.0 79.7 89.0 88.1 223 102 57 2546 303

pimaIndians.D42.N768.C2 77.4 75.6 74.9 78.9 74.9 3 1 1 28 2

waveform.D108.N5000.C3 71.2 75.4 71.7 75.1 75.6 1149 38 87 5670 611

wine.D68.N178.C3 97.1 92.5 86.3 95.1 92.1 1019 1 9 55 6

Zoo.D43.N101.C7 92.0 96.0 93.0 96.0 93.0 781 1 6 148 14

Average 82.0 81.2 80.7 85.1 83.1 457 1394 30 1379 147

greater accuracy than either CMAR or CPAR, as well as improvements on TFPC
with the (1%, 50%) thresholds. The times obtained show that TFPC-HC+ is
relatively efficient, especially with respect to large datasets such as the adult
and connect4 sets.

5 Conclusions

Previous research has shown that ARM can be an effective route to accurate clas-
sification. A drawback of existing methods is that they involve detailed coverage
analysis of candidate rules to obtain a final set of classification rules. This pro-
cedure is expensive: prohibitively so when very large training sets are involved.
We have here introduced an algorithm, TFPC, which obtains a set of classifica-
tion rules directly from an ARM procedure, without further coverage analysis.
Our results show that the classification accuracy obtained is comparable with, or
close to, that obtained from established methods. The TFPC method, however,
is very much faster than alternatives that involve coverage analysis, especially
when dealing with large data sets. We believe this method offers a realistic ap-
proach to deriving classifiers from extremely large data sets, for which existing
methods would be inapplicable.
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The accuracy of classification obtained using TFPC is, however, relatively
sensitive to the choice of support and confidence thresholds used when mining
the classification rules. We have described a ’hill-climbing’ procedure we have
used to select the best values for these thresholds. Our results show that, using
these optimal values, the accuracy of classification of TFPC is improved very
substantially, in most cases improving on the best current methods. The signifi-
cance of these results is that they demonstrate how performance can be improved
by careful selection of these threshold values. Although the hill-climbing process
is, in general, too time-consuming to be used routinely for this purpose, we have
shown that a more limited version of this (TFPC-HC+) can give results that
are almost as good with a speed that, for large data sets, improves on methods
requiring coverage analysis.

It may also be the case that the tuning of support and confidence thresholds
with respect to accuracy, may improve the performance of other methods. There
is scope for further research in this direction, and also to investigate other ways
to perform this optimisation efficiently.
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Using Rough Set in Feature Selection and Reduction in 
Face Recognition Problem 
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Abstract. Feature selection and reduction are fundamental steps in pattern 
recognition problems. The idea of reducts in rough set theory has encouraged 
many researchers in studying the effectiveness of rough set theory in the 
problem mentioned above. Through results of experiments in this article, we 
will show that rough set theory, accompanied by appropriate heuristics, can 
increase significantly the system’s recognition accuracy. 

Keywords: rough set, feature selection, feature reduction, face recognition. 

1   Introduction 

Many researchers have proposed a lot of  methods for feature selection. Rough set 
theory, with its idea of reducts, becomes an attractive and potential approach for this 
problem. In this article, we construct a recognition model in which rough set based 
criteria are used to reduce the set of features which are extracted by Principle 
Component Analysis. The simple nearest – neighbor classifier is used in recognition 
phase. Finally, we end with some remarks about the recognition results that 
emphasize the advantages of  heuristic factor combined with rough set in the 
recognition accuracy and rough set based algorithms in choosing significant features. 

2   Definitions in Rough Set Theory 

In this section, we review some definitions in rough set theory ([1]), which are the 
basis of the presented reduction algorithms in the next sections. 

Information system: An information system is a pair A = ),( AU , in which U , 

called universe, is the non-empty finite set of objects concerned, and A  is the non-
empty finite set of all attributes (or features) used to evaluate objects such that 

AaVUa a ∈∀→ ,:  where aV  is the value set of attribute a . An information 

system is called a decision system if DCA ∪= , where C  is the set of all 
conditional attributes and D  is the set of all decision attributes. 

In the next sections, we let A = ),( AU denote the information system being 
concerned. 
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Discernibility: With any AB ⊆ , there is an equivalence relation IND )(B  called 

−B indiscernibility relation which is defined as followed: 

)(BIND = )}'()(,|)',{( 2 xaxaBaUxx =∈∀∈  (1) 

Set approximation: Let UXAB ⊆⊆ , . We can approximate X using only the 

information contained in B  by constructing the −B lower and −B upper 

approximation of X , denoted XB  and XB respectively, and are defined as 

followed: 

}][|{)( XxxXB B ⊆=  (2) 

}][|{)( ∅≠∩= XxxXB B  (3) 

Positive region: Let ADC ⊆, . The −C positive region of D is defined as 
followed: 

DUX
C XCDPOS

|

)()(
∈

=  (4) 

Relative core: The attribute a  is called −Q dispensible in P if 

)()( }{ QPOSQPOS aPP −= , otherwise it is called −Q indispensible. The set of all 

−Q indispensible objects in P  is called −Q relative core or −Q core of P và is 

denoted )(PCOREQ . 

3   Recognition Model Using Rough Set Theory 

In our testing model, we use the Principle Components Analysis (PCA) ([5]) to get 
feature vector for each face image. The features of these vectors will compose the 
conditional attribute set C , and the feature used to determine to which person a 
particular face image belongs will compose the decision attribute set D . The set of 
feature vectors, together with their personal identification feature, then constitutes a 
decision system ),( DCAU ∪= in which U is the set of all feature vectors of face 

images, C  and D  are respectively the conditional attribute set and decision attribute 
set. In the discretization stage, we use a simple algorithm to divide each feature’s 
value set into several equal ranges, so all real values in the same range will get the 
same discrete value after the discretization process. After that, reduction algorithms 
based on rough set theory will be applied to the information system to get the reduced 
conditional attribute set )( CRR ⊆ . In the training phase, we use Learning Vector 

Quantization ([6]) to find reference vectors describing the distributions of feature 
vectors of face images of each person in the reduced decision system 
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)',( DRAU ∪= . These reference vectors, associated with the nearest neighbors 

classifier, will be used to test the performance of the system in the recognition phase. 
All of the two phases are discribed in Figure 1 and 2. 

 

Fig. 1. In the training phase, rough set theory is used to select conditional features. The 
Learning Vector Quantization will be applied to the reduced decision system to get reference 
vectors 

In the next sections, we introduce three feature set reduction algorithms used in our 
model : Johnson algorithm ([4]) based on greedy strategy, random algorithm ([4]) and 
the algorithm that combines rough set theory and heuristic for generating rules ([3]). 

3.1   Johnson Algorithm 

Let ),( DCU ∪  be an information system, in which U is the set of all discrete 

value feature vectors of face images, C and D  respectively are sets of conditional 

and decision features. Our goal is to find a reduced set CR ⊆ such that: with any 

given two arbitrary vectors Uvv ji ∈, of two different persons, if they differ from 

each other in at least one feature in C , so do they in R  (i.e., there’s at least one 

feature in R  in which iv  and jv  differ from each other). 

Fig. 2. In the testing phase, Principle Components Analysis will be applied to the testing face 
images to get information system which is reduced by just remain features in reduced feature 
set. The nearest neighbors classifier, associated with reference vectors found earlier, is used to 
classify image into particular person 

 

Training face 
images 

PCA ),( DCAU =  

(Real value features) 

Discretization

Reducing conditional 
feature set (Rough Set) 

)',( DRAU =
 (Real value  

features) 

LVQ 

CR

Reference vectors 

),( DCAU =  

(Discrete value features)

PCA ),( CU  

(Real value features) 

Features Filter Reduced 
feature 
set R  

),( RU  

(Real value features) 

Nearest neighbors 

classifier

Reference 
vectors 

Person 1 Person 2 Person N 

Testing 
face 

images 



 Using Rough Set in Feature Selection and Reduction in Face Recognition Problem 229 

 

The Johnson algorithm is based on the greedy strategy in the sense that at each 
step, we will choose the feature in which there are the most feature vectors differing 
from each other. 

Let )(BW be the number of pairs of feature vectors vu,  belonging to two 

different persons and differing from each other in any features in B . At step i , 

assume that iR is the current reduced feature set. The attribute ii RCa \1 ∈+  will be 

selected at the next step 1+i  if: 

}\|}){(max{arg1 iii RCaaRWa ∈∪=+  (5) 

Johnson Algorithm 
Input: Information system ),( DCU ∪  

Output: Reduced feature set CR ⊆  

Step 1:   ∅=R  
Step 2:   Repeat 

}\|}){(max{argmax RCaaRWa ∈∪=  
}{ maxaRR ∪=  

        Until )( CR = or ( For any Uvu ∈, belonging to two different 
persons, u and v differ   
                                from each other in at least one feature in R )  

3.2   Random Algorithm 

This algorithm use the value )(BW above to evaluate the probability to choose feature 

at each step. At step 1+i , the probability to choose the feature iRCa \∈  is: 

i

RCa
i

i RCa
aRW

aRW
aP

i
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∈∀
∪

∪
=

!
∈
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Random algorithm 
Input: Information system ),( DCU ∪  

Output: Reduced feature set CR ⊆  

Step 1:   ∅=R  
Step 2:   Repeat 

Use RCaaP \,)( ∈∀  in (6) to choose feature maxa . 

}{ maxaRR ∪=  

         Until )( CR = or ( For any Uvu ∈, belonging to two different 
persons, u and v differ   
                           

     from each other in at least one feature in R )  
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3.3   Combining Rough Set Theory and Heuristic for Generating Rules 

Note that the ability of conditional attribute set C  to classify feature vectors into 

classes of persons is measured by the cardinal of the set )(DPOSC . On the other 

hand, the relative core )(CCORED  is the set of features which will change the 

positive region )(DPOSC  if being eliminated. So, the initial reduced feature set 

must be )(CCORED :  )(CCORER D= . 

Next, we will introduce the heuristic for adding the other features into R gradually 
until it becomes a reduct of C , or the following condition must satisfy: 

)()( DPOSDPOS CR = . This standard is a variant of one used in rule discovery 

system GDT-RS. The attribute RCa \0 ∈  will be chosen based on two comments: 

1. In order to get as small feature set as possible, we prefer to choose feature 

0a so that after adding 0a into R , the number of consistent objects grows 

fastest, expressed in the coefficient: 

RCaDPOScardv aRa \,))(( }{ ∈= ∪  (7) 

2. For any RCa \0 ∈ , the partition of all consistent objects (or feature 

vectors) created by equivalence relation )}{( 0 DaRIND ∪∪ , or the set 

)}{(|)( 0}{ 0
DaRINDDPOS aR ∪∪∪ , will change, and so does the set 

of generated rules. Among equivalence classes in this new partition, let 
M be the class that has the most feature vectors and r be the rule generated 
from M . We see that, the bigger the size of M is, the higher the coverage 
of r is, or in particular, the more feature vectors satisfy the rule r . Thus, we 
can use the size of M as the second standard for choosing features:  

RCaDaRINDDPOSsizem aRa \,))}{(|)((max_ }{ ∈∪∪= ∪  (8) 

These two coefficients are contrary to each other, so we consider av x am  to be 

the final standard to choose features in RC \ . 
Algorithm 

Input:  

• Information system ),( DCU ∪ . 
• Positive value threshold: the percentage of consistent objects. 

Output:  Reduced feature set CR ⊆ . 

 Step 1:   )(CCORER D= , RCP \=  
 Step 2:   Remove consistent objects : )(\ DPOSUU R=  
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 Step 3:   
)(

))((

Ucard

DPOScard
k R=  

  If   )( thresholdk ≥ or ))()(( DPOSDPOS CR =  

   Then :  Stop 
  End if 
 Step 4:   For each Pa ∈  

   ))(( }{ DPOScardv aRa ∪=  

  
 ))}{(|)((max_ }{ DaRINDDPOSsizem aRa ∪∪= ∪  

  End for each 

 Step 5:   )(maxarg0 aa
Pa

xmva
∈

=  

 Step 6:   }{\,}{ 00 aPPaRR =∪=  
 Step 7:   Go to step 2. 

4   Testing Results 

We use the face image database ORL (available at http://www.uk.research.att.com/ 
facedatabase.html) for testing. Because the number of face image of each person in 
this database is quite small, we change some images before proceeding. In table 1 and 
2 below, the second column (size of initial feature vectors) corresponds to the number 
of best eigen vectors remained in the phase of extracting feature vectors using 
Principle Components Analyisis. The third one is the recognition accuracy when we 
use these original feature vectors. Finally, the next columns are the size of reduced 
feature vectors and the recognition accuracy of three selection algorithms described 
above using these reduced vectors. 

Some good results in the above tables are in bold type. We have following 
remarks. 

Remark 1. Using the same size of feature vectors, the recognition accuracy obtained 
from reduced feature vectors is higher than from the original feature vectors (e.g. six 
– feature vectors: 94.33 % vs 87% in Table 1, ten – feature vectors: 95.5 % vs 85.25 
% in Table 2). 

Remark 2. Reducing the size of feature vectors increase the recognition accuracy (e.g. 
from 12 to 7 features: 92% vs 97.67% in Table 1; from 15 to 10 features: 86.5 % vs 
95.5 % in Table 2). 

Remark 3. For the reduced feature vectors, the recognition accuracy from ones 
generated by combining rough set theory and heuristic is higher than ones generated 
by Johnson and Random algorithms. 
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Table 1. The recognition accuracy of original and reduced feature vectors. The number of 
persons : 15, face images per person used in training phase : 24, face images per person used in 
recognition phase : 20, reference vectors (LVQ) : 10, the number of discrete ranges used in 
discretization phase : 3, training epoches : 8000 

Using Rough set to reduce feature set 

Johnson Rough set + Heuristic Random 

No. Size of 

initial 

feature 

vectors 

 

Recognition 

accuracy 

(%) 

(without 

reducing 

feature set) 

Size of 

reduced 

feature 

vectors 

Recogni

-tion 

accurac-

y (%) 

Size of 

reduced 

feature 

vectors 

Recogni-

tion accurac-

y (%) 

Size of 

reduced 

feature 

vectors 

Recogni

-tion 

accurac-

y (%) 

4 9 90.67 9 90.67 8 90.33 9 90.67
5 10 91.33 8 89.67 6 94.33 8 97.67

6 11 91.33 8 89.67 6 94.33 9 90.67

7 12 92 8 89.67 7 97.67 8 90.33

8 13 92.33 8 89.67 7 97.67 9 90.67

9 14 92.33 9 91.67 7 97.67 10 88.67

10 15 92.33 9 91.67 7 97.67 8 89.67

Table 2. The recognition accuracy of original and reduced feature vectors. The number of 
persons: 20, face images per person used in training phase : 24, face images per person used in 
recognition phase: 20, reference vectors (LVQ): 10, the number of discrete ranges used in 
discretization phase: 3, training epoches : 10000 

 feature 

vectors 

 

(%) 

(without 

reducing 

feature set) 

Size of 

reduced 

feature 

vectors 

Recogni

-tion 

accurac-

y (%) 

Size of 

reduced 

feature 

vectors 

Recogni-

tion accurac-

y (%) 

Size of 

reduced 

feature 

vectors 

Recogni

-tion 

accurac-

y (%) 

4 13 92.33 10 85.5 8 89.25 10 90.67
5 14 87.25 11 81.25 9 94.5 11 88.67

6 15 86.5 11 81.25 10 95.5 13 89.67

7 16 86.5 11 81.25 10 95.5 12 82

8 17 86.5 10 81.75 10 95.5 11 89.5

9 18 87 10 81.75 11 90.25 13 91.5

10 19 87.25 11 81.75 11 90.25 12 84.5

11 20 87.25 11 81.75 11 90.25 12 79.5

Using Rough set to reduce feature set No. Size of 

initial 

Recognition 

accuracy Johnson Rough set + Heuristic Random 
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5   Conclusion 

In this article, we see that rough set theory, accompanied by appropriate heuristic, is a 
potential approach in feature selection for recognition systems. An interesting result is 
that the reduced feature sets created by all rough set based approachs contain the most 
significant features which corresponds to the largest eigen values in the phase of 
feature extracting using PCA. However, we actually need to study more investigation 
into the problem of using rough set in feature selection in recognition systems. 

 

An important note is that the feature corresponding to the largest eigen value in the 
phase of feature extracting using PCA, i.e. the feature best describes the distribution 
of feature vectors in their space, always belongs to the reduced feature set. This is 
actually the interesting characteristic proving the potential success of rough set theory 
in features selection and reduction for recognition problem. 
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Abstract. This paper investigates why some companies grow faster
than others, by data mining a survey of a large number of companies in
Flanders (the northern part of Belgium). Faster or slower average growth
over a time period is explained by building a classification tree contain-
ing several categorical variables (both quantitative and qualitative). The
technique used – called genAID – splits the population at different levels.
It is inspired by the Automatic Interaction Detector (AID) technique to
find trees that explain the variability in average growth but uses a genetic
algorithm to overcome some of the drawbacks of AID.

Classical AID or other tree-growing techniques usually generate a
single tree for interpretation. This approach has been criticized because,
due to the artifacts of data, spurious interactions may occur. genAID
offers the user-analyst a set of trees, which are the best ones found over
a number of generations of the genetic algorithm. The user-analyst is
then offered the choice of choosing a tree by trading off explanatory
power against either the ease of understanding or the conformity with
an existing theory.

1 Introduction

Data mining is concerned with the development of tools and techniques to au-
tomate the extraction of information from data [1]. In recent years, a multitude
of data mining techniques have been developed. For a detailed overview we refer
to [2].

The genAID technique [14] used in this paper is based on the Automatic
Interaction Detector (AID) technique, originally developed by [8, 13]. AID was
developed to solve some of the shortcomings of statistical regression by building a
classification tree, of which the leaves represent classes in which the observations
are classified by repeated binary splits. Classification tree methods have been
used in machine learning (e.g. ID3 and C4.5 [10, 11]).
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2 Data Mining with the Automatic Interaction Detector
(AID) - Technique

The AID technique mimics the steps taken by an experienced data analyst to de-
termine the relationship between a set of binary independent (predictor) variables
and a continuous dependent variable. Given a set of observations, the variance
of the dependent variable is explained by classifying the observations according
to a binary classification tree. Such trees classify a set of observations into a
finite number of classes, represented by the leafs (or terminal nodes) of the tree.
Non-terminal nodes are labeled with a predictor variable, and the edges ema-
nating from a given node represent the possible values for this predictor value.
Observations are classified by following a path from the root to a leaf, taking
the path determined by the value of the predictor variables that correspond to
the observation.

In an AID tree, the leafs represent the classes and the nodes represent predic-
tor variables that have a good explanatory power. A predictor variable splits a
(sub)group in two parts, labeled + and − respectively. AID works by a recursive
exhaustive search of all predictor variables. In a first step, every possible predic-
tor variable x is tested to see which one has the strongest predictive power. This
is measured by eq. 1.

P (x) =
n1(x̄1 − x̄)2 + n2(x̄2 − x̄)2

ns2
, (1)

where x̄1 and x̄2 are the averages in subgroups 1 and 2, n1 and n2 are the
number of subjects in subgroups 1 and 2, x̄ is the population average, n is
the total number of subjects in the population, s2 is the population variance.
The population is then split into two classes according to this predictor variable.
Both subsets of observations that result are then split again according to the best
predictor variable for that subset. This process is repeated until some stopping
criterion is satisfied.

Later versions of the AID technique (CHAID and THAID, e.g.) improved on
some of its deficiencies [3, 4] by combining it with statistical hypothesis testing
methods [5]. Notwithstanding this fact, the AID technique only ever reports a
single tree.

3 genAID: An AID Based on Genetic Algorithms

To solve some of the shortcomings of AID, genAID was developed by [14]. This
technique uses a genetic algorithm (GA) to develop a diverse population of AID
classification trees. It uses a set of specifically constructed tree-based genetic
operators, borrowed from genetic programming [6] and the work of [15]. The
fitness of a tree in the genAID population is determined by a formula that
borrows from one-way ANOVA:
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f(A) =

K∑
i=1

ni(x̄i − x̄)2

K∑
i=1

ni∑
j=1

(xij − x̄)2
, (2)

where A is the tree, ni is the number of observations in class i, K is the number
of classes, xij is the j-th observation in class i, x̄i is the class i sample mean and
x̄ is the overall sample mean. Calculating the fitness of a classification tree is a
computationally difficult process because each subject in the population has to
be classified into one of the resulting classes.

genAID first builds a population of random trees and uses specifically tai-
lored genetic operators to combine parent trees into new (and hopefully better)
offspring trees. GenAID uses two types of operators: macro-operators exchange
entire subtrees in and between trees, micro-operators do not operate on subtrees,
but on labels only. For a complete description of genAID, we refer to [14].

4 The Analysis of Company Growth Data

The analysis uses data obtained both from quantitative financial statement data
and from qualitative data from a large-scale survey executed in April 2001. This
data set includes about 18% of all incorporated Flemish companies (1997) and
proved to be representative for the whole population of Flemish companies in
terms of size, economic activities and location.

In the analysis, the dependent variable expresses the company’s growth,
which can be seen as a very important measure of firm performance. In this
paper, growth is measured by the average growth rate of total assets over the
period 1993-1999. The use of growth rate of total assets as a measure for firm
growth has already been used in previous research on Belgian companies [7, 9].
An average growth over a number of years is preferred to a growth percentage of
a single year because growth percentages may fluctuate strongly from one year
to another.

As an example, the following list contains the names of some of the indepen-
dent variables, as well as their meaning and their set of potential values in the
analysis. The total number of variables in the study was 17.

1. vindwn: relates to the problem of finding suitable employees, associated to
growth (values: 1 = no problems up to 5 = a lot of problems);

2. karasom: relates to the characterization of the environment (values: 3 to 15;
the higher the value, the more benign the environment);

3. hfdstrat: relates to the main strategy regarding the company’s most impor-
tant product line (values: 1= innovative and risk seeking up to 4= conser-
vative and risk avoiding);

4. finken2: relates to the use of type of financial ratios in the company (values:
1 up to 4, depending whether at least one ratio of a certain type is used.
Four types are identified: profitability, solvency, liquidity and added value);
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5. ondind1: relates to the use of performance indicators in marketing, distri-
bution, sales and manufacturing (values: 1 up to 8, depending how many
indicators are used out of a list of eight).

4.1 Encoding of Predictor Variables

x x1 x2 x3 x4

1 0 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 1 1 0
5 1 1 1 1

Fig. 1. Thermometer encod-

ing for an ordinal variable

taking 5 possible values

Most of the data analyzed is of an ordinal nature.
This is a result of the fact that the data were col-
lected from a survey, asking the respondents to an-
swer on a scale of varying size (e.g. totally agree –
agree – indifferent – disagree – strongly disagree).
AID classifies a set of observations of a continuous
dependent variable based on a number of binary in-
dependent (predictor) variables. This implies that
all independent variables have to be binary encoded.
Ordinal variables are encoded using the so-called
thermometer coding [12]. For a variable x that can
take n values, n− 1 binary variables are created. A
binary variable xi is set to 1 if x > i + 1. E.g. if x
can take 5 values, 4 variables are created. This is
illustrated in Fig. 1.

With this encoding, the variables are interpretable. The binary variable x2,
e.g. splits the observations in a low and a high group: those having x < 3 and
those having x ≥ 3.

4.2 Results and Discussion

In an experiment, genAID is run for 1000 generations with a constant population
size equal to 50. genAID creates perfect binary trees of height three. This means
that seven (not necessarily different) variables can be used to define splits in
order to partition the population. During the process of subsequent generations
in the genetic algorithm the best 50 solutions in terms of predictive power are
kept in memory. The trees are presented to the user-analyst to choose a tree
which suits him best. The user-analyst may use secondary objective criteria to
make his choice, or he can use subjective knowledge to prefer one tree above
another. For each case, we work out an example.

Variables which appear in various branches of the splits of the tree repre-
sent a main effect. If the same variables appear only in one branch they are
considered to represent an interaction effect. The user-analyst might, for exam-
ple, be interested in finding as many main effects as possible and not too many
interactions, of which some might be spurious and, at least, maybe difficult to
interpret. A tree of height three, as we are using in the experiment, can involve
at maximum seven variables, while the tree in Fig. 2 involves only five. In this
reasoning minimizing the number of different variables in a tree could serve as
a secondary objective criterion.
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24 karasom

52 fin.ken2

� 9

39 hfdstrat

� 2

7.27 (73)

� 4

8.16 (340)

� 3

2 vindwn

� 1

8.91 (19)

� 3

24.39 (5)

� 2

56 ond.ind1

� 8

39 hfdstrat

� 3

9.56 (20)

� 4

7.07 (77)

� 3

39 hfdstrat

� 2

32.79 (7)

� 4

6.58 (39)

� 3

Fig. 2. A resulting tree

A second approach involves a user-analyst with some theories in mind and
exploring structures of trees in order to retrieve those who represent a confir-
mation of some theories with a high level of predictive power. Figure 2 shows
the tree preferred by such an analyst. This tree provides an interesting interpre-
tation of enablers and disablers of the growth process in companies and sheds
some new light on possible growth strategies.

Not surprisingly, the variable KARASOM is selected as the root variable, be-
cause it has been found to be an important factor in previous research [7]. It re-
flects the general perception of the CEO about the environment being either be-
nign or hostile. After this first split in the tree, companies with strong growth can
still be found in both branches, but depending on different conditions (variables).

If the environment is rather friendly, the strong growing companies apply a
more defensive, conservative strategy as opposed to being a prospector, a reactor
or an analyst (variable HFDSTRAT). The highest growth is found in companies
which have (or need) a rather limited follow-up of the company-policies that
are been carried out. In terms of performance they indicate in the survey a lim-
ited use of quantitative performance indices (variable OND.IND1). On the other
hand, if the environment is hostile, strong growing companies have to watch
their financial performance intensively by using various financial ratios (variable
FIN.KEN2) and by applying more aggressive strategies. This latter strategy
allows for more than half of the sample (340) to realize a higher than average
growth figure. The best five growing companies in a hostile environment however
operate in a good labour market, where they can find suitable labour forces (vari-
able VINDWN). These companies spend less effort in monitoring financial ratios.

5 Conclusions

In this paper, the genAID technique is applied to a set of company growth data to
be explained by subjective assessments from the presidents of companies through
a large survey. While the genAID technique uses binary splits on variables and
produces a binary classification tree, it is shown, through the right encoding



Analysis of Company Growth Data Using Genetic Algorithms 239

technique, how this data mining technique can be used if variables are categorical
but not binary.

Better growth patterns have been detected in companies that operate in a
benign environment and they can afford to apply a defensive strategy. The best
performing companies (7) carry out their policies by following up a limited num-
ber of indices in their balanced scorecard. If the environment is hostile, offering
less business opportunities, at least the labour market and labour climate should
be friendly. If not so, growth can only be realized through a more aggressive
strategy and by a good follow-up of financial performances.
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University of Alberta, Edmonton, Canada
{rrak, wstach}@ece.ualberta.ca
{zaiane, luiza}@cs.ualberta.ca

Abstract. There are numerous different classification methods; among
the many we can cite associative classifiers. This newly suggested model
uses association rule mining to generate classification rules associating
observed features with class labels. Given the binary nature of associa-
tion rules, these classification models do not take into account repetition
of features when categorizing. In this paper, we enhance the idea of asso-
ciative classifiers with associations with re-occurring items and show that
this mixture produces a good model for classification when repetition of
observed features is relevant in the data mining application at hand.

1 Introduction

Classification is one of the most common tasks in data mining and machine
learning. By and large, it consists of extracting relevant features from labelled
training data to build a model that discriminates between classes for unlabelled
observed objects. Myriad techniques have been proposed and while there are,
in general, better approaches than others, there is no clear winner in terms of
correctness and usability given a particular problem application.

Associative classification is a relatively new method. The main objective is to
discover strong patterns that are associated with the class labels in the training
set. The training set is modeled into transactions with items being the observed
features. As a final classification model, one obtains a set of association rules
associating features with class labels. In the literature, there are few known
classifiers based on the above-mentioned idea, i.e. CBA [4], CMAR [3], and
ARC-AC/ARC-BC [9].

One considerable limitation of all these algorithms is that they do not han-
dle the observations with repeated features. In other words, if a data object is
described with repeated features, only the presence of the feature is considered,
but not its repetition. However, in many applications such as medical image
categorization or other multimedia classification problems, the repetition of the
feature may carry more information than the existence of the feature itself [10].
Also in text mining and information retrieval, it is widely recognized that the
repetition of words is significant and symptomatic, hence the common use of
TF/IDF (i.e. the frequency of a term in a document relative to the frequency of
the term in a collection).
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Associative classifiers use association rule mining to build a classification
model. However, association rule mining typically considers binary transactions;
transactions that indicate presence or absence of items. Binary transactions sim-
ply do not model repetitions. A few approaches to mining association rules with
re-occurring items have been proposed, such as MaxOccur [10], FP’-tree [5] and
WAR [8]. The main goal of our research is to devise a classifier that combines
the idea of associative classification and association rules with reoccurring items.
Our contributions presented in this paper exploit, combine, and extend the ideas
mentioned above, especially ARC-BC and MaxOccur algorithms. We also sug-
gest new strategies to select rules for classification from the set of discovered
association rules. Our hypothesis is that associative classifiers with recurrent
items have more discriminatory power since they maintain and exploit more
information about both objects and rules.

A delicate issue with associative classifiers is the use of a subtle parameter:
support. Support is a difficult threshold to set, inherited from association rule
mining. It indicates the proportion of the database transactions that support
the presence of an item (or object). It is known in the association rule mining
field that the support threshold is not obvious to tune in practice. In the asso-
ciative classification literature it has been commonly and arbitrarily set to 0.1%.
However, the accuracy of the classifier can be very sensitive to this parameter.
In the case of re-occurring items, there are two ways of calculating support:
transaction-based support and object-based support [10] (i.e. either the propor-
tion of transactions or the proportion of objects that support the existence of
an object in the database). Our experiments show that an associative classifier
that considers re-occurrence of features is considerably less sensitive to the vari-
ation of support. This leads to more practical applications and eventually the
possibility to automatically determine and tune this parameter.

The remainder of the paper is organized as follows: Section 2 presents the
problem statement: the model of an associative classifier and the consideration in
the model of recurrent items. Related work on associative classification and min-
ing association rules with repetitions is also presented in Section 2. We present
our new approach ACRI in Section 3. The experiments showing the performance
of our approach are presented in Section 4. Section 5 offers some conclusions.

2 Problem Statement and Related Work

The first known classifier using association rules was introduced in [4]. The main
idea was to modify the form of transactions known from the traditional approach
to the form of < {i1, i2, ...in}, c >, where ik is an item in a transaction and c
is a class label. In other words, objects in a training set are represented by sets
of features appended with the observed class label. All the rules generated from
frequent itemsets are restricted to those with a class label as a consequent.

Our task is to combine the associative classification with the problem of
recurrent items. More formally, it can be stated that our goal is to modify the
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original approach using transactions to the form of < {o1i1, o2i2, ...onin}, c >,
where ok is the number of the occurrences of the item ik in the transaction.

Association rules have been recognized as a useful tool for finding interest-
ing hidden patterns in transactional databases. Several different techniques have
been introduced. However less research has been done considering transactions
with reoccurrence of items. In [8], the authors assign weights to items in trans-
actions and introduce the WAR algorithm to mine the rules. This method is
two fold: in the first step frequent itemsets are generated without considering
weights and then weighted association rules (WARs) are derived from each of
these itemsets. MaxOccur algorithm [10] is an efficient Apriori-based method for
discovering association rules with recurrent items. It reduces the search space
by effective usage of joining and pruning techniques. The FP’-tree approach
presented in [5] extends the FP-tree design [2] with a combination from the
MaxOccur idea. For every distinct number of occurrences of given item, the sep-
arated node is created. In case when a new transaction is inserted into the tree, it
might increase support count for the different path(s) of the tree as well. This is
based on the intersection between these two itemsets. Given the complete tree,
the enumeration process to find frequent patterns is similar to that from the
FP-tree approach. None of the existing associative classifier uses reoccurrence.

3 The Proposed Approach

Our approach, ACRI (Associative Classifier with Reoccurring Items), consists
of two modules: Rule generator and classifier. We decided to base our algorithm
for mining associations with reoccurring items on Apriori-based MaxOccur. The
building of the classification model follows our previous ARC-BC approach. The
rational is based on the efficiency of this method in the case of non-evenly dis-
tributed class labels. Indeed other associative classification methods are biased
towards dominant classes in the case when rare classes exist. Rare classes are
classes with very few representatives in the training set. MaxOccur run on trans-
actions from each known class separately makes the core of our rule generator
module. It mines the set of rules with reoccurring items from the training set.
These rules associate a condition set with a class label such that the condition set
may contain items preceded by a repetition counter. The classification process
might be considered as plain matching of the rules in the model to the features
of an object to classify. Different classification rules may match, thus the clas-
sifier module applies diverse strategies to select the appropriate rules to use.
In addition, simple matching is sometimes not possible because there is no rule
that has the antecedent contained in the feature set extracted from the object
to classify. With other associative classifiers, a default rule is applied, either the
rule with the highest confidence in the model or simply assigning the label of
the dominant class. Our ACRI approach has a different strategy allowing partial
matching or closest matching by modeling antecedents of rules and new objects
in a vector space. The following elaborates on both modules.
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Rule Generator: This module is designed for finding all frequent rules in the
form of < {o1i1, o2i2, . . . , onin}, c > from a given set of transactions. The mod-
ules’s general framework is based on ARC-BC [9]: transactions are divided into
N subsets - each for one given class (N is equal to the number of classes); Once
rules are generated for each individual class, the rules are merged to form a
classification model. The rule generator for each class Cx is an Apriori-based al-
gorithm for mining frequent itemsets that extends the original method by taking
into account reoccurrences of items in a single transaction à la MaxOccur [10].
In order to deal with this problem, the support count was redefined. Typically,
a support count is the number of transactions that contain an item. In our ap-
proach, the main difference is that single transactions may increase the support
of a given itemset by more than one. The formal definition of this approach
is as follows. A transaction T =< {o1i1, o2i2, . . . , onin}, c > supports itemset
I = {l1i1, l2i2, . . . , lnin} if and only if ∀i = 1..nl1 ≤ o1 ∧ l2 ≤ o2 ∧ . . . ∧ ln ≤ on.
The number t by which T supports I is calculated according to the formula:
t = min[ oi

li
]∀i = 1..n, li = 0 ∧ oi = 0.

The Classifier: This module labels new objects based on the set of mined rules
obtained from the rule generator. An associative classifier is a rule-based classifi-
cation system, which means that an object is labelled on the basis of a matched
rule (or set of rules in case of multi-class classification). This task is simple if
there is an exact match between a rule and an object. The model, however,
often does not include any rule that matches a given object exactly. In such
a case, in order to make the classification, all rules are ranked according to a
given scenario and the best one (or several) is matched to a given object. Rule
ranking might be performed following different strategies, which associate each
rule to a number that reflects its similarity to a given object. These strategies
may be used either separately or in different combinations. We have tested co-
sine measure, coverage, dominant matching class, support and confidence. Let
us consider the rule < {o1i1, o2i2, . . . , onin}, c > and the object to be classified
< l1i1, l2i2, . . . , lnin >. The corresponding n-dimensional vectors can be denoted
as −→0 = [o1, o2, . . . , on] and −→l = [l1, l2, . . . , ln]. The Cosine measure (CM)
assigns a value that is equal to the angle between these two vectors, i.e. The
smaller the CM value is, the smaller the angle, and the closer these vectors are
in the n-dimensional space. Coverage (CV) assigns a value that is equal to the
ratio of the number of common items in the object and rule to the number of
items in the rule (ignoring reoccurrences). In this case, the larger the CV ratio
is, the more items are common for the rule and the object. CV=1 means that
the rule is entirely contained in the object. With Dominant matching class,
the class label is assigned to the object by choosing the one being the most fre-
quent from the set of rules matching the new object. Notice that dominance can
be counted by simply enumerating the matching rules per class or a weighted
count using the respective confidences of the matching rules. The support and
confidence are used to rank rules. They refer to the rule property only and
do not depend on the classified object. Thus, they have to be used with other
measures that prune the rule set.
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4 Experiments

We tested ACRI on different datasets to evaluate the best rule selection strategy
as well as compare ACRI with an associative classifier like ARC-BC. As an
example, we report here an experiment with the mushroom dataset from the UCI
repository [7]. It appears that the rule selection strategies have roughly similar
performance in terms of accuracy. However, this accuracy varies with the support
threshold. The lower the support, the more rules are discovered allowing a better
result using selection based on cosine measure for example. Using the dominant
matching class was also doing well, confirming the benefit of the dominance factor
introduced in [9]. The selection based on best rule support was not satisfactory
in general and is not reported here. We also observed that coverage (CV) gave
better results when set to 1. Thus all results reported herein have CV set to
1. The other measures are comparable in performance and trend, except for
best confidence. When the support threshold is high, fewer rules are discovered
and confidence tends to provide better results while the cosine measure returns
matches that have big angles separating them from the object to classify, hence
the lower accuracy. Figure 1 on the left shows the superiority of the rule selection
strategy dominant matching class up to a support threshold of 25%, beyond
which best confidence becomes a winning strategy. Figure 1 on the right shows
how the more rules are discovered the more effective in terms of accuracy the
strategies dominant matching class and cosine measure becomes in comparison
to best confidence approach. The number of rules is correlated with support.
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Fig. 1. Accuracy of rule selection strategies vis-à-vis support and number of rules

We compare ACRI with ARC-BC using the Reuters-21578 text collection
as in the paper presenting ARC-BC for text categorization using the top 10
topics [6]. The total of 9980 documents is split into two sets: 7193 and 2787 for
a training and test set respectively. At first, we tested both approachesACRI
and ARC-BC using relatively high support. We produced several different sets
of rules to be used in the classifier. For ARC-BC we chose the support threshold
range from 10 to 30% with the step of 5%; and 15 to 65% with the same step for
our approach. The difference between the support thresholds lies in the definition
of support for mining rules with recurrent items. A single document can support
a set of words more than once. Therefore, if we consider support as the ratio of
support count to the total number of transactions, as it was introduced in [5], we
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may encounter support more than 100% for some itemsets. On the other hand,
if we choose the definition presented in [10], i.e., the ratio of support count
to the number of distinct items (words), the support will never reach 100%.
Actually, in practice, the latter support definition requires for setting very small
thresholds to obtain reasonable results. Hence, we decided to use the first one
as it is more similar to the ”classical” definition of support. It is important to
notice that no matter which definition we choose, it eventually leads to setting
the same support count with ARC-BC. For each support threshold we set three
different confidence thresholds: 0, 35, and 70%. The latter threshold was used
in [9] as minimum reasonable threshold for producing rules; the first one (no
threshold) was introduced to observe the reaction of the classifier for dealing
with a large number of rules; and the threshold of 35% is simply the middle
value between the two others. For each single experiment we tried to keep the
level of more then 98% of classified objects, which resulted in manipulating the
coverage CV from 0.3 to 1. We discarded cases for which it was not possible
to set CV to satisfy the minimum number of classified objects. More than 90%
of the remaining results had CV = 1. We also performed experiments without
specifying CV (using different methods of choosing applicable rules); however,
they eventually produced lower accuracy than those with specified CV ¿ 0.3.
We used different classification techniques for choosing the most applicable rule
matching the object. Best confidence and dominant matching class matching
methods were utilized for both ARC-BC and ACRI approaches. Additionally,
ACRI was tested with the cosine measure technique. So for all experiments herein
reported the coverage (CV) is set to 1. In other words, for a rule to be selected
for classification, all features expressed in the antecedent of the rule have to be
observed in the new object to classify. We also performed tests with combination
of matching techniques with different tolerance factors for each test. An example
scenario in Figure 2 A, combines cosine measure, dominant matching class and
best confidence: (1) choose top 20% of rules with the best cosine measure, then
(2) choose 50% of the remaining rules with the highest confidence, and then (3)
choose the rule based on the dominant class technique. We also did a battery
of tests using relatively low supports. This significantly increases the number of
classification rules. We varied the support between 0 and 0.1% and compared
the harmonic average of precision and recall (F1 measure) for the same cases
as before: Best confidence and dominant matching class for both ARC-BC and
ACRI approaches, and the cosine measure technique for ACRI (Figures 2 E-F).

Categorizing documents from the Reuters dataset was best performed when
the confidence level of the rules was at the 35% threshold for both the ACRI and
ARC-BC approaches. For ARC-BC classifier, the best strategy was to use dom-
inant factor, whereas in case of ACRI combination of cosine measure and con-
fidence factors worked best. Figure 2 A shows the relationship between support
and accuracy for these approaches. Comparing the best-found results, ARC-BC
slightly outperforms the ACRI using the dominant matching class strategy at
the 20% support level. However, ARC-BC seems to be more sensitive to changes
of the support threshold. The accuracy of ACRI virtually does not depend on the
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Accuracy vs. support (confidence = 35%)
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Fig. 2. A: Accuracy of ACRI and ARC-BC with high support; B: Algorithms CPU
time efficiency; C: Number of rules with confidence > 0%; D: Number of rules with
confidence > 35%; E: Effectiveness at low support; F: Effectiveness versus size of model

support threshold and is stable. In the case of ARC-BC the accuracy decreases
significantly when this support is greater than 20%.

Figures 2 C and D show the number of generated rules with and without
recurrent items. Considering recurrences results in having more rules, this has
its origin in different support definition. The other interesting relationship is that
by increasing the confidence threshold from 0% to 35%, the difference between
number of rules decreases more rapidly for ACRI.

Experiments using low support thresholds confirm the stability of ACRI with
regard to support. When varying the support from 0% to 0.1% ARC-BC loses in
precision and recall while ACRI remains relatively consistent or looses effective-
ness on a slower pace. Figure 2 E also shows that ACRI outperforms ARC-BC
at these lower support thresholds. Using the cosine measure for selecting rules
appears to be the best strategy. The cosine measure is also the best rule selection
strategy when considering the number of rules discovered. In addition, the more
rules are available the more effective the cosine measure becomes at selecting
the right discriminant rules.

Figure 2 B shows the relationship between running time for rule generator
with and without considering recurrent items. The algorithm with recurrences
is slower, since it has to search a larger space, yet the differences become smaller
when increasing the support threshold.

The best results for ACR-BC were found in [9] for confidence threshold
greater than 70%. However, our experiments show that effectiveness is better
on lower confidence for both ARC-BC and ACRI approaches. In other words,
some classification rules with low confidence have more discriminant power and
are selected by our rule selection strategies. This discrepancy with previous re-
sults may be explained by the use of the different method of counting support
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and confidence or/and by the fact that our classifier ACRI with re-occurring
items and without re-occurrence consideration to simulate ARC-BC is using a
different setup for rule selections.

5 Conclusion and Future Work

In this paper we introduced the idea of combining associative classification and
mining frequent itemsets with recurrent items. We combined these two and pre-
sented ACRI, a new approach of associative classification with recurrent items.
We also suggest new strategies to select classification rules during the classifi-
cation phase. In particular, using the cosine measure to estimate the similarity
between objects to classify and available rules is found very effective for associa-
tive classifiers that consider re-occurrence. When comparing our ACRI approach
with other associative classifiers represented by ARC-BC we found that consider-
ing repetitions of observed features is beneficial. In particular in the case of text
categorization, repetition of words has discriminant power and taking these repe-
titions in consideration can generated good classification rules. Our experiments
also show that ACRI becomes more effective as the number of rules increases
in particular with our cosine measure for rule selection. Moreover, ACRI seems
to be less sensitive, with respect to accuracy, to the support threshold, while
other associative classifiers are typically very sensitive to the support threshold
which is very difficult to determine effectively in practice. This research is still
preliminary. We intend to investigate the possibility to eliminate the need for
the support threshold by automatically selecting an optimal support based on
available data. This is in part possible because ACRI is not substantially sensi-
tive to the variation of the support. We are also investigating other rule selection
strategies since selecting the right rules has a paramount effect on the precision
of a classifier. Moreover, pruning the large set of classification rules can improve
the accuracy and speed of the classifier.
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Abstract. This paper proposes two new concepts: (1) the new evolutionary 
algorithm and (2) the new approach to deal with the classification problems by 
applying the concepts of the fuzzy c-means algorithm and the evolutionary 
algorithm to the artificial neural network. During training, the fuzzy c-means 
algorithm is initially used to form the clusters in the cluster layer; then the 
evolutionary algorithm is employed to optimize those clusters and their 
parameters. During testing, the class whose cluster node returns the maximum 
output value is the result of the prediction. This proposed model has been 
benchmarked against the standard backpropagation neural network, the fuzzy 
ARTMAP, C4.5, and CART. The results on six benchmark problems are very 
encouraging. 

1 Introduction 

In the past decades, data are being collected and accumulated at a dramatic pace. 
Therefore, there is an urgent need for a new generation of computational techniques 
and tools to assist humans in extracting useful information (knowledge) from the 
rapidly growing volumes of data [1]. This arouses many researchers to study into the 
area of data mining. One of the data mining functionalities, which plays an important 
role in business decision-making tasks, is classification. Classification is the process 
of finding a set of models that describe and distinguish data classes or concepts, for 
the purpose of being able to use the model to predict the class of objects whose class 
label is unknown [2]. A variety of techniques have been applied to deal with the 
classification problems, such as neural networks, decision trees, and statistical 
methods. However, many previous research works show that neural network 
classifiers have a better performance, lower classification error rate, and more robust 
to noise than the other two methods mentioned above. The proposed evolutionary 
neural network classifier described in this paper employs the concept of the fuzzy c-
mean clustering and the evolutionary algorithm to find and optimize the center and 
the standard deviation of each cluster. The performance of the proposed network is 
evaluated against the fuzzy ARTMAP, the backpropagation neural network, C4.5, and 
CART. 

This paper is organized as follows. Following this introduction, section 2 presents 
the architecture of the evolutionary neural network classifier. The learning algorithm 
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is described in section 3. In section 4, the experimental results are demonstrated and 
discussed. Finally, section 5 is the conclusions. 

2 The Proposed Model 

The architecture of the evolutionary neural network classifier is a three-layer 
feedforward neural network as shown in Figure 1. The first layer is the input layer, 
which consists of N nodes. Each node represents a feature component of the input 
data. The second layer is the cluster layer. The nodes in this second layer are 
constructed during the training phase; each node represents a cluster that belongs to 
one of the classes. The third layer is the output layer. Each node in the output layer 
represents a class. In this paper, the input vector is denoted by Xi = (xi1, …, xiN), 
where i is the ith input pattern, and N is the number of features in X. The nodes in the 
cluster layer are fully connected to the nodes in the input layer. Therefore, once the 
model receives the input and its associated target output (Xi, Yi), the input vector Xi is 
directly transmitted to the cluster layer via these connections. Each node in the cluster 
layer then calculates the membership degree to which the input vector Xi belongs to 
its cluster j.  

 

 
Fig. 1. Architecture of the evolutionary neural network classifier 
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M is the total number of nodes in the cluster layer. 

dji = ||Xi – cj||. It is the distance between the input vector Xi and the center of the jth 
cluster. 
cj is the center of the jth cluster.  
σj is the width of the jth cluster. 

The cluster node with the highest degree of membership is selected to be the 
winning node.  

 
}M...,,2,1j:T{maxT jJ == .         (2) 

 
Then, the class of the input vector Xi is predicted as the one whose cluster node 

exhibits the highest degree of membership (the winning node). 

3  The Learning Algorithm 

During the training period of the evolutionary neural network classifier, two phases of 
learning are involved: Phase 1 (Initialize the cluster node) and Phase 2 (Optimize the 
cluster node). 

3.1   Phase 1: Initialize the Cluster Node 

The fuzzy c-means algorithm is used in this phase to partition the input space into M 
clusters, which are then used to be the nodes in the cluster layer. The goal of the fuzzy 
c-means algorithm is to minimize the objective function Jm, which is  
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where P is the total number of patterns in the training data set. 

m is a weight exponent in the fuzzy membership. It can be any real number which 
is greater than 1. 
μji is the membership value of the ith data in the jth cluster. 
dji is the distance between the ith data and the center of the jth cluster.  

The detailed procedure of the fuzzy c-means algorithm is as follows: 

A. Initialize the center values of all clusters. 
B. Calculate μji as follows: 
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C. Update the center value cj by using the following formula: 
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where xi is the ith data in the series. 

D. Calculate Jm using Equation 3. 
E. If a convergence criterion is reached, stop the loop. Otherwise return to step B. 

After the centers of the clusters are obtained, the width of the jth cluster is 
calculated as follows: 
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3.2    Phase 2: Optimize the Cluster Node 

After the centers and the widths of the cluster nodes are initially determined in Phase 
1, this phase employs the evolutionary algorithm to optimize those clusters and their 
parameters (cj and σj) so that the prediction error of the system is minimal. A 
description of the process used in this phase is given below. 

A. Define the size (S) of the initial population. Encode the initial parameters of all 
clusters in the cluster layer into a starting chromosome. A gene in the chromosome 
represents the center and the width of each cluster. For each cluster node j, create 
a list of input patterns whose membership value μji are in the top S-1. Then repeat 
the following steps S-1 times: 
A.1. Randomly select an input pattern from each list, and assign it to be the center 

of the cluster. Then calculate the width of the cluster by using equation 6. 
A.2. Encode the centers and the widths of all clusters obtained from step A.1 into 

a new chromosome. 
B. Combine the newly generated S-1 chromosomes with the starting chromosome to 

form the initial population. 
C. Evaluate the fitness of each chromosome s in the population. The fitness function 

used in this research is as follows: 
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where S is the total number of chromosomes in the population. 

J is the winning cluster node. 
Yi is the target output of the ith input pattern. 

If the highest fitness value of the current population is equal to that of the last 
generation, increase the size (S) of the current population by 2 chromosomes. As 
long as there is no improvement in the fitness value of the current population, the 
size of the current population is continuously increased by 2 chromosomes. On the 
contrary, when the improvement is significant enough, the size of the current 
population will be reduced back to the initial stage.     

D. Create a new population by repeating the following steps S/2 times: 
D.1. Select two parent chromosomes from a current population using the roulette 

wheel technique. 
D.2. With a crossover probability, cross over the parent chromosomes to form the 

new offspring. 
D.3. Randomly pick a number from a set of {1, 2, 3}. If the picked number is 1, 

perform the mutation on the new offspring as follows: 
- Randomly select mutation positions. 
- With a mutation probability, mutate the selected positions by adding or 

subtracting a small random number to/from the original value of the 
selected positions. 

If the picked number is 2, add a new gene to the end of the new offspring. 
However, if the picked number is 3, delete a randomly-selected gene from 
the new offspring. 

D.4. Place the new offspring into a new population. 
E. Combine a new population with the current population. Then select S 

chromosomes from the combined list according to their fitness to form the next 
generation. 

F. If a predetermined number of iteration is reached or the end condition is satisfied, 
stop the loop and return the best chromosome in the current population. The genes 
of the best chromosome are then used as the parameters of the nodes in the cluster 
layer. If not, go to step C. 

4 Experimental Results 

To test the performance of the proposed approach, the experiments have been 
conducted on 6 benchmark data sets: the iris data [3], the vowel recognition problem 
[4], the Pima Indians diabetes database [5], the ionosphere data [5], the BUPA liver 
disorders data [5], and the heart disease problem [6]. 

Results of the experiments are shown in Table 1. For the iris data (data set 1), all 
three neural network models -- the fuzzy ARTMAP, the backpropagation neural 
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network (BPNN), and the proposed model – give a perfect accuracy (100%). 
However, it is the opposite way round for the data set 2, where both decision trees 
outpace all three neural network models. For the data set 3, the proposed model 
comes out to be the best among the compared methods, while the performance of the 
rest is about the same. For the data set 4, there is no significant difference in the 
performance of the three neural network methods. For the data set 5, the best 
prediction performance (71.68%) is obtained from the fuzzy ARTMAP neural 
network using the vigilance parameter (ρa) = 0.5 and the learning rate (β) = 0.7. 
However, the proposed model is not far behind the performance of the fuzzy 
ARTMAP (50 versus 49 misclassifications). For the data set 6, the proposed model, 
which yields an accuracy of 85.56%, outperforms other methods by a wide margin. 

 

Table 1. Experimental results 

5 Conclusions 

In this paper, the new evolutionary neural network, which applies the concepts of the 
fuzzy c-means algorithm and the evolutionary algorithm to the artificial neural 
network, is proposed and its performances are compared with two of the best decision 
trees and two of the best neural networks. The results of the proposed evolutionary 
neural network are the best among those of the compared methods.  
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Abstract. Privacy-preserving classification mining is one of the fast-growing 
sub-areas of data mining. How to perturb original data and then build a decision 
tree based on perturbed data is the key research challenge. By applying transi-
tion probability matrix this paper proposes a novel privacy-preserving classifi-
cation mining algorithm which suits all data types, arbitrary probability distri-
bution of original data, and perturbing all attributes (including label attribute). 
Experimental results demonstrate that decision tree built using this algorithm on 
perturbed data has comparable classifying accuracy to decision tree built using 
un-privacy-preserving algorithm on original data. 

1   Introduction 

Privacy and security has become the focus of many data mining researches [1~4]. It is 
well known that data mining requires aggregated data other than individual data. So, 
this research will focus on how to make individual information private and secure 
while maintaining a high level of accessibility for data miners.  

A novel privacy-preserving classification mining algorithm is proposed in this pa-
per. The main idea of this algorithm consists of two parts. The first part focuses on 
how to perturb the original data to preserve information privacy. Firstly, “single at-
tribute transition probability matrix” is proposed. Secondly, “multiple split attributes 
joint transition probability matrix” is proposed to express multiple attributes’ joint 
perturbing probability. Thirdly, a data perturbing method is described to perturb origi-
nal data by applying “single attribute transition probability matrix”. The second part 
focuses on how to recover the original support count of attributes value from per-
turbed data to build a decision tree. Firstly, a formula is derived to recover the original 
support count of attributes value from perturbed data. Secondly, another formula is 
derived to calculate Gain by the original support count of attributes value to choose 
the best split attribute and split point. Thirdly, a narrative privacy-preserving decision 
tree classification algorithm-PPCART is given. 

                                                           
1  This paper was supported by the National Natural Science Foundation of China 

(No.69933010, 60303008) and China National 863 High-Tech Projects 
(No.2002AA4Z3430). 
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2   Related Works 

R. Agrawal proposed a privacy-preserving classification mining algorithm in which 
firstly sensitive values of a user’s record was distorted by a randomizing function, 
and then the probability distribution of the original data was reconstructed by 
Bayesian rule [1]. However this algorithm has the following shortcomings: (1)It 
can’t perturb label attribute, so it can’t avoid privacy breaches. (2)It iteratively inte-
grates probability density functions and differentiates distribution functions to re-
construct the probability distribution of the original data, so the reconstruction accu-
racy depends on the distribution of the original data. (3)It doesn’t fit boolean and 
categorical type attributes well. Y. Lindell proposed a kind of privacy-preserving 
classification algorithm about building decision tree from two horizontally parti-
tioned data sets by using security multi-party computation [2]. D. Agrawal recovered 
original data probability distribution by EM [3], and said the algorithm outperformed 
R. Agrawal’s in reconstruction accuracy, but this algorithm didn’t rectify the defi-
ciencies of R. Agrawal’s. W.L. Du proposed a kind of privacy-preserving classifica-
tion mining algorithm based on randomized response techniques [4], but this algo-
rithm only fitted boolean type attributes.  

As is mentioned in above section, our algorithm is superior to all the others in that 
it rectifies their deficiencies and combines their merits. 

3   Definition 

3.1   Support Count of Attributes Value 

Definition 1. Support count of attributes value 

Let {A1,A2,…,Ak} denotes full attributes set X,   Y ⊆ X, Y ≠ ∅ , and  yi denotes one of 
values of Y.  Then we define the support count of yi as the number of records which 
values in Y are equal to yi . 

3.2   Attribute Transition Probability Matrix 

Definition 2. Single attribute transition probability matrix  

Assume A is one of attributes and A has n different values aj (1 )j n≤ ≤ , then we de-

fine A’s attribute transition probability matrix PA as 
11 1

1

n

n nn

λ λ

λ λ

K
M O M

L
, where 

(1 ,1 )kl k n l nλ ≤ ≤ ≤ ≤  denotes the probability of attribute value ak becoming al,  

0klλ ≥ ;  
1

n

kl
l

λ
=

=1 for any k; and PA’s inverse matrix PA
-1 exists. 
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Definition 3. Single split attribute transition probability matrix  

Assume  aj  is the first split point, and attribute A is split into two intervals 2 -(a1 ,aj) 
and (aj+1 ,an), then we define and calculate A’s split attribute transition probability ma-

trix PA= ( )11 12

21 22

' '
' '

λ λ
λ λ ,  where  

* *11 12
1 1 1 1 1 1

' ( ( )) / ' ( ( )) /,     ,
j j j j jn

k k k kk i k i
k i k k i j k

r r r rλ λλ λ
= = = = = + =

= =  

* *21 22
1 1 1 1 1 1

' ( ( )) / ' ( ( )) /,  ,
jn n n n n

k k k kk i k i
k j i k j k j i j k j

r r r rλ λλ λ
= + = = + = + = + = +

= =  

 (1 )k k nr ≤ ≤ is the distribution probability of attribute value ak in original data. 
When attribute A splits again, we could continuously calculate A’s split attribute 

transition probability matrix in the same way. 

Definition 4. Double split attributes joint transition probability matrix 

Assume attribute A has n split intervals ak (1 )k n≤ ≤ , (1 ,1 )kl k n l nλ ≤ ≤ ≤ ≤ is the 

element of row k and column l in PA; attribute B has m split intervals bi 

(1 )i m≤ ≤ , (1 ,1 )ij i m j mβ ≤ ≤ ≤ ≤  is the element of row k and column l in PB. Then 

we define “double split attributes joint transition probability matrix” of A and B as 
P(A,B) which is a square matrix of m*n dimensions, and its element of row ( (i-1)*n + 

k) and column ( (j-1)*n + l) is equal to *ij klβ λ  which denotes the probability of at-

tribute B’s value bi becoming bj and attribute A’s value ak becoming al. 

Definition 5.  Multiple split attributes joint transition probability matrix 

Similarly, we could define and calculate “multiple split attributes joint transition 
probability matrix” - P(A1,A2,…,Ak). 

3.3   Data Perturbing Method 

Let original data set T={T1,T2,…,Tn}, full attributes set X={A1,A2,…,Ak}. Assume at-
tribute Aj (1 ≤ j ≤ k) has n different values ak (k=1,2,…,n), and Aj’s transition probabil-

ity matrix P(Aj) =
11 1

1

n

n nn

λ λ

λ λ

K
M O M

L
. 

To each record Ti = ( ( 1) ( 2) ( ) , ,...,A A Aki i iT T T ) (1 ≤ i ≤ n), we independently and ran-

domly make each attribute value Ti(Aj)  become Di(Aj)  by the probability defined in P(Aj) 

where 1 ≤ j ≤ k. Thus we get Di=( ( 1) ( 2) ( ) , ,...,A A Aki i iD D D ). Eventually we get the whole 

perturbed data set D={D1,D2,…,Dn}. 

                                                           
2 If A is categorical type, then A is split into two non-intersected and non-sequential subsets. 
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3.4   Measure of Privacy-Preserving Level 

Definition 6. Measure of privacy-preserving level 

Privacy-preserving level of an attribute = “square root of the number of non-zero ele-
ments of an attribute transition probability matrix”/the domain size of the attribute in 
original data.  

4   Privacy-Preserving Classification Mining Algorithm 

4.1   Method to Recover the Original Support Count of Attributes Value from 
Perturbed Data 

Theorem 1: P(A1,A2,…,Ak)
-1 = P(A1

-1
,A2

-1
,…,Ak

-1
) . (1) 

Theorem 2: T(A1,A2,…,Ak) =D(A1,A2,…,Ak)* P(A1,A2,…,Ak)
-1 . (2) 

Where 1k ≥ ,T(A1,A2,…,Ak) / D(A1,A2,…,Ak) denotes the row matrix of
1

| |
k

i

i

A
=

∏ elements, and 

each element stands for the support count of each joint value of attributes A1,A2,…,Ak 
in original / perturbed data (If Ai  is a split attribute, then |Ai| is equal to the number of 
split intervals, otherwise |Ai| is equal to the number of different attribute values). 

4.2   How to Choose Split Attribute and Split Point by the Original Support 
Count of Attributes Value (Using CART as Prototype) 

(1) Calculating gini 
Assume S is a data set which has s samples. Label attribute C has m different values-
{c1, c2, …, cm}, related to m different classes-Ci(i=1,…,m). Then 

 gini(S)=1- 2

1

m

i
i

p
=

, where ip = si/s (si  is the support count of ci). 

(2) Choose split attribute and split point by calculating ginisplit and Gain 
Assume attribute A has v different values -{a1, a2, …, av} which divide S into v sub-
sets - {R1, R2, …, Rv}. sij  is the number of samples which label attribute value is equal 
to ci in Rj, and is actually equal to support count of ajci, which is the joint value of at-
tribute A and C. If there is a split point ak which divide S into two subsets- {S1, S2}, 

where S1=
1

k

j
j

R
=
U and S2=

1

v

j
j k

R
= +
U . Then 

gini(S1)= 1- 2

1

m

i
i

p
=

, where 
1 1 1

( ) /( )
k m k

i ij ij
j i j

p s s
= = =

= . 

gini(S2)= 1- 2

1

m

i
i

p
=

 , where 
1 1 1

( ) /( )
v m v

i ij ij
j k i j k

p s s
= + = = +

= . 
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ginisplit(S)=(
1 1 1 1

/
m k m v

ij ij
i j i j

s s
= = = =

)*gini(S1)+(
1 1 1 1

/
m v m v

ij ij
i j k i j

s s
= = + = =

)*gini(S2). 

Gain(S, A)= gini(S)- ginisplit(S) . (3) 

The largest Gain corresponds to the best split attribute and split point. 
Sequentially, a decision tree is created in the same way. 

4.3   Privacy-Preserving Decision Tree Classification Algorithm-PPCART  
(Using CART as Prototype) 

Partition(S, split_attr_list&value&flag) 

Input: Perturbed samples set S, split attributes, split point values and flag; 

Output: a decision tree; 

 

(1) Create node N; 
(2) If  (One of the support count of label attribute values is obviously large)  Then 

(Most samples in S are the same class C ), so Return (Node N as a leaf node la-
beled as class C ); 

(3) For each attribute A do 

a) Scan S and count the support counts of attributes values (here, attributes in-
cludes all split attributes up to now, attribute A and label attribute); 

b) Calculate “multiple split attributes joint transition probability matrix” 3; 

                                                           
3  In order to calculate the matrix, we need firstly recover each single attribute’ kr (described in 

Definition 3) by formula (2). 

c) Recover the original support count of attributes values from perturbed data 
by formula (2); 

d) Calculate Gain, and find out the best split attribute and split point by above 
support counts by formula (3); 

(4) Label node N as the best attribute & split point, and append the best attribute & 
split point into parameters - split_attr_list&value; 
Partition(S, split_attr_list&value&0) and Partition(S, split_attr_list&value&1); 

5   Experimental Results 

All attributes values (including label attribute values) are perturbed to preserve pri-
vacy in our experiments. Boolean, categorical, and numeric type attributes are 
adopted to test the adaptability of PPCART algorithm in this experiment (Please refer 
to document [5] for detailed attribute descriptions). In order to test the classification 
performance in different conditions, we adopt five classification functions introduced 
in document [5] to assign values to the label attribute “Group”. 

5( )
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6   Conclusions and Future Work 

The main topic of this paper is about privacy-preserving classification mining re-
search. Applying transition probability matrix to privacy-preserving association rules mining 
and OLAP is our future work. 
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Fig. 1. Algorithm Accuracy. The figure shows the average classification accuracy of five func-
tions to different privacy-preserving levels among PPCART, CART, and ByClass [2] on the ba-
sis of 100,000 uniformly distributed training sample records and 5,000 test sample records. Ex-
perimental results show classification accuracy of PPCART is better than ByClass. Furthermore 
PPCART perturbs all attributes including the label attribute -“group” to preserve privacy, and 
boolean, categorical and numeric type attributes are adopted in this experiment. So PPCART is 
superior to ByClass. Although the average classification accuracy of PPCART is 5% behind 
CART for privacy-preserving level of 100%, PPCART still keep 90% average classification 
accuracy. It shows that PPCART is reliable and practical 

Other experimental results show that classification accuracy of PPCART has little 
bearing on the samples’ distribution. 
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Abstract. In this paper, we first argue that various ways of using con-
text in WSD can be considered as distinct representations of a polyse-
mous word under consideration, then all these representations are used
jointly to identify the meaning of the target word. Under such a con-
sideration, we can then straightforwardly apply the general framework
for combining classifiers developed in Kittler et al. [5] to WSD prob-
lem. This results in many commonly used decision rules for WSD. The
experimental result shows that the multi-representation based combina-
tion strategy of classifiers outperform individual ones as well as known
techniques of classifier combination in WSD.

1 Introduction

Word sense disambiguation involves the association of a given word in a text
or discourse with a particular sense among numerous potential senses of that
word. As mentioned in [4], this is an “intermediate task” necessarily to accom-
plish most natural language processing tasks. Since its inception, many methods
involving WSD have been developed in the literature (see, e.g., [4] for a survey).
During the last decade, many supervised machine learning algorithms have been
used for this task. As observed in studies of machine learning systems, although
one could choose one of learning systems available to achieve the best perfor-
mance for a given pattern recognition problem, the set of patterns misclassified
by the different classification systems would not necessarily overlap. This means
that different classifiers may potentially offer complementary information about
patterns to be classified. This observation highly motivated the interest in com-
bining classifiers during the recent years. Especially, classifier combination for
WSD has been unsurprisingly received much attention recently from the com-
munity as well, e.g., [3, 10, 6, 2, 11].

As is well-known, there are basically two classifier combination scenarios. In
the first scenario, all classifiers use the same representation of the input pat-
tern. In the context of WSD, the work by Klein et al. [6], and Florian and

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 262–268, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Yarowsky [2] could be grouped into this first scenario. In the second scenario,
each classifier uses its own representation of the input pattern. An important
application of combining classifiers in this scenario is the possibility to integrate
physically different types of features. In this sense, the work by Pedersen [10],
Wang and Matsumoto [11] can be considered as belonging to this scenario. In
this paper, we focus on classifier combination for WSD in the second scenario.
Particularly, we consider various ways of using context in WSD as distinct repre-
sentations of a polysemous word. This allows us to immediately use the common
theoretical framework for combining classifiers developed in Kittler et al. [5] to
WSD problem. The experimental result shows that combining classifiers with
multi-representation of context significantly improves the accuracy of WSD.

2 Classifier Combination for WSD

2.1 WSD with Multi-representation of Context

Given an ambiguous word w, which may have m possible senses (classes): c1,
c2,. . . , cm, in a context C, the task is to determine the most appropriate sense
of w. For a target word w, we may have different representations of context
C corresponding to different views of context. Assume that we have such R
representations: f1, . . . , fR, serving for the aim of identifying the right sense of
w. The set of features fi is used by the i-th classifier. Due to the interpretation
of fi’s and the role of context in WSD, quite naturally, we shall assume that
the classification models are mutually exclusive, i.e. that only one model can be
associated with each target w.

Under such a mutually exclusive assumption, given representations fi (i =
1, . . . , R), the Bayesian theory suggests that the word w should be assigned to
class cj provided the a posteriori probability of that class is maximum, namely

j = arg max
k

P (ck|f1, . . . , fR) (1)

Then the following decision rule is derived due to Bayes theorem:

j = arg max
k

P (f1, . . . , fR|ck)P (ck) (2)

Further, we also easily see that the theoretical framework for combining clas-
sifiers developed in [5] can be applied for WSD problem as in the following.

2.2 Basic Combination Schemes

Product Rule. As we see, P (f1, . . . , fr|ck) represents the joint probability dis-
tribution of the representations extracted by the classifiers. Assume that the
representations used are conditional independent, so that the decision rule (2)
can be rewritten as follows:

j = arg max
k

P (ck)
R∏

i=1

P (fi|ck) (3)
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Using Bayes rule, we obtain the decision rule (4) that quantifies the likelihood of
a hypothesis by combining a posteriori probabilities generated by the individual
classifiers by means of a product rule:

j = arg max
k

P (ck)
R∏

i=1

P (ck|fi)P (fi)
P (ck)

= arg max
k

[P (ck)]−(R−1)
R∏

i=1

P (ck|fi) (4)

Sum Rule. Let us return to the decision rule (4), in some application it may be
appropriate further to assume that a posteriori probabilities computed by the
respective classifiers will not deviate dramatically from the prior probabilities
because of high levels of noise of information used for making decisions [5]. In
such a situation it can be assumed that the a posteriori probabilities can be
expressed as:

P (ck|fi) = P (ck)(1 + δki) (5)

where δki � 1. If we expand the product and neglect any terms of second and
higher order, we can obtain the sum rule as follows:

j = arg max
k

[
(1−R)P (ck) +

R∑
i=1

P (ck|fi)
]

(6)

2.3 Derived Combination Strategies

Mathematically, it is easy to see the following relation holds

R∏
i=1

P (ck|fi) ≤
R

min
i=1

P (ck|fi) ≤
1
R

R∑
i=1

P (ck|fi) ≤
R

max
i=1

P (ck|fi) (7)

This relationship has suggested in [5] that the product and sum decision rules
can be approximated by the upper or lower bounds appropriately, and under the
assumption of equal priors, we can derive the following decision rules:

Max Rule j = arg max
k

[
max

i
P (ck|fi)

]

Min Rule j = arg max
k

[
min

i
P (ck|fi)

]

Median Rule j = arg max
k

[
1
R

∑R
i=1 P (ck|fi)

]
Majority Vote Rule j = arg max

k

∑
i Δki

where functions Δki is defined by

Δki =

{
1, if P (ck|fi) = max

j
P (cj |fi)

0, otherwise
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3 Representations of Context for WSD

In [10], Pedersen used the topic context with different sizes of context windows,
grouping into three groups: small (with sizes of 0, 1, 2), medium (with sizes of 3,
4, 5), and large (with sizes of 10, 25, 50), for creating different representations of
a polysemous word. For the purpose of experimental comparison, we simply con-
sider the maximum window size in each group and generate nine representations
by combining different sizes of left and right windows. We call this Pedersen’s
multi-representation of context.

On the other hand, we observe that two of the most important information
sources for determining the sense of a polysemous word are the topic of con-
text and relational information representing the structural relations between the
target word and the surrounding words in a local context. Under such an obser-
vation, we have experimentally designed five kinds of representation defined as
follows: f1 is a set of unordered words in the large context; f2 is a set of words
assigned with their positions in the local context; f3 is a set of part-of-speech
tags assigned with their positions in the local context; f4 is a set of collocations
of words; f5 is a set of collocations of part-of-speech tags. Symbolically, we have

– f1 = {w−n1 , . . . , w−2, w−1, w1, w2, . . . , wn1}
– f2 = {(w−n2 ,−n2), . . . , (w−1,−1), (w1, 1), . . . , (wn2 , n2)}
– f3 = {(p−n3 ,−n3), . . . , (p−2,−2), (p−1,−1), (p1, 1), (p2, 2), . . . , (pn3 , n3)}
– f4 = {w−l · · ·w−1ww1 · · ·wr| l + r ≤ n4}
– f5 = {p−l · · · p−1wp1 · · · pr| l + r ≤ n5}

where wi is the word at position i in the context of the ambiguous word w and
pi be the part-of-speech tag of wi, with the convention that the target word w
appears precisely at position 0 and i will be negative (positive) if wi appears on
the left (right) of w. In the experiment, we design the window size of topic context
(for both left and right windows) as 50 for the representation f1, i.e. n1 = 50,
while the window size ni of local context as 3 for remaining representations.

4 Experimental Results

We tested on the datasets of four words, namely interest, line, serve, and hard,
which are used in numerous comparative studies of word sense disambiguation
methodologies such as Pedersen [10], Ng and Lee [9], Bruce & Wiebe [1], and
Leacock and Chodorow [7]. In the experiments, we use a 10-folds cross validation
and the experimental results are given in Tables 1 and 2.

From these results, we see that while the best combination strategies for
Pedersen’s multi-representation of context correspond to Sum rule and Median
rule, that for our multi-representation of context in most cases corresponds to
Product rule, with the exception of Median rule for hard. Turning back to Peder-
sen’s method, we see that different representations have some overlaps between
them, so that the conditional independence assumption imposed on individual
classifiers may not be suitable for this multi-representation and, consequently,
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Table 1. Results using Pedersen’s multi-representation

Best individual classifier Product Sum Max Min Median Majority Voting

(% ) (% ) (% ) (% ) (% ) (% ) (% )

interest 86.3 90.4 90.6 87.9 87.6 88.8 87.8

line 82.7 87.3 87.4 84.1 83.7 84.6 81.6

hard 89.4 88.8 86.0 89.2 89.1 90.4 90.1

serve 83.7 86.2 86.5 85.6 85.0 87.6 85.8

Table 2. Results using our multi-representation

Best individual classifier Product Sum Max Min Median Majority Voting

(% ) (% ) (% ) (% ) (% ) (% ) (% )

interest 86.8 91.4 89.2 90.0 89.9 90.2 88.7

line 82.8 89.4 81.4 86.6 87.0 83.9 79.8

hard 90.2 89.5 85.2 89.8 89.2 91.0 90.4

serve 84.4 89.6 86.9 87.5 87.9 88.6 85.4

Table 3. The comparison with previous studies

(%) BW M NL LC P
Best combined classifiers

Pedersen’s representation Our representation

interest 78 – 87 – 89 90.6 91.4

line – 72 – 84 88 87.4 89.4

hard – – – 83 – 90.4 91.0

serve – – – 83 – 87.6 89.6

the Product rule does not yield the best result. On the contrary, in our multi-
representation of context, each individual classifier corresponds to a distinct
type of features so that the conditional independence assumption seems to be
realistic.

Table 31 shows the comparison of results from the best classifier combination
with Pedersen’s method and our method of multi-representation with previ-
ous WSD studies tested on the same datasets. It is shown that the best clas-
sifier combination according to our method gives the highest accuracy in all
cases.

1 In Table 3, BW, M, NL, LC, and P respectively abbreviate for Bruce & Wiebe [1],
Mooney [8], Ng & Lee [9], Leacock & Chodorow [7], and Pedersen [10].
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5 Conclusion

In this paper we have argued that various ways of using context in WSD can
be considered as distinct representations of a polysemous word for jointly us-
ing to identify its meaning. This consideration allowed us to apply a common
theoretical framework for combining classifiers developed in [5] to develop numer-
ous strategies of classifier combination for WSD. In parallel with the experiment
conducted on Pedersen’s multi-representation of context, we have experimentally
designed a set of individual classifiers corresponding to distinct representation
types of context considered in the WSD literature. It has been shown that this
multi-representation of context significantly improves the accuracy of WSD by
combining classifiers.
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Abstract. We apply a machine learning method to the occupation cod-
ing, which is a task to categorize the answers to open-ended questions
regarding the respondent’s occupation. Specifically, we use Support Vec-
tor Machines (SVMs) and their combination with hand-crafted rules.
Conducting the occupation coding manually is expensive and sometimes
leads to inconsistent coding results when the coders are not experts of
the occupation coding. For this reason, a rule-based automatic method
has been developed and used. However, its categorization performance is
not satisfiable. Therefore, we adopt SVMs, which show high performance
in various fields, and compare it with the rule-based method. We also
investigate effective combination methods of SVMs and the rule-based
method. In our methods, the output of the rule-based method is used
as features for SVMs. We empirically show that SVMs outperform the
rule-based method in the occupation coding and that the combination
of the two methods yields even better accuracy.

1 Introduction

Occupation is a very important attribute in sociology. In social surveys, data
samples on occupation are mainly collected as responses to open-ended questions.
Researchers then assign one of nearly 200 occupation codes to each sample [3].
The reason why respondents are not supposed to choose an occupation code in
a questionnaire is that they often misunderstand their own occupation codes.
This classification task by researchers is called occupation coding, which must be
conducted immediately and accurately to statistically process occupations data
as well as other variables [5]. The manual occupation coding has two problems.
First, for coders, the task is time-consuming and complicated especially in large-
scale surveys. Second, the results are not always consistent when coders are not
experts of the occupation coding.

To solve these problems, a rule-based system has been developed, which has
a rule set derived from the definitions of the occupations and heuristic knowl-

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 269–279, 2005.
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edge of domain experts [12]. In this system, most of the rules are expressed as
the form of case frames (i.e., verb-object structures). The system tries to trans-
form responses to open-ended questions into case frames. The system has been
applied to 6 surveys including JGSS surveys (Japan General Social Surveys) 1.
Although the accuracy of the system is 65∼70%, it saves coders’ labor and pro-
duces consistent coding results [13, 14, 15, 16]. However, the system still has three
problems. First, creating accurate rules is quite difficult, because formalization of
all the knowledge about respondents’ occupations used in the occupation coding
is almost beyond our power. Second, the system can hardly deal with responses
which are not transformed into the form of case frame. 2 Third, the system
requires constant efforts to maintain the rule set and the thesaurus, because
both terms and expressions which respondents use in describing their occupa-
tions change with the times. Therefore, we apply a machine learning method to
the occupation coding. We select SVMs, which show high performance in docu-
ment classification [7, 11], since this task can be regarded as classification of very
short documents. For example, the average length of occupation data in JGSS is
approximately 15 characters, while that of a newspaper article in the Mainichi
Shinbun Newspaper in Japanese published in 2000 [20] is approximately 550
characters. However, the rule-based system has many effective rules containing
domain experts’ knowledge. We apply various combination methods of SVMs
and the rule-based method to the occupation coding, making use of information
provided by this system.

The following are our contributions. First, we develop a new automatic occu-
pation coding system based on SVMs, which is superior to the rule-based method
in accuracy. Second, we show that SVMs are also effective in the classification
task of very short “text” such as the occupation coding. Third, we show that the
combination of SVMs and the rule-based method works well in the classification
task. When we apply these methods to the occupation coding, we have to pre-
pare a large training data set with correct codes. Although we expect that the
more amount of a training data set, the higher an accuracy, it is desirable that
the amount of a training data set is smaller for coders. Therefore, we investigate
the relationship between the amount of the training data set and an accuracy.

2 Related Work

Giorgetti and Sebastiani proposed a method for automatically assigning a proper
code to the response to an open-ended question in a survey [2]. As survey coding
is a difficult task, they formulated the problem of automated survey coding as a
text categorization task using supervised machine learning techniques. Compar-

1 JGSS-2000, JGSS-2001 and JGSS-2002 are available at
http://jgss.daishodai.ac.jp .
They do not contain raw text but only coded data.

2 In 1995SSM (Social Stratification and social Mobility survey in 1995), nearly 20%
responses were not expressed in the form of a case frame [12].
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ing the supervised machine learning approaches, which were Naive Bayesian clas-
sifiers and SVMs, with the dictionary-based approaches through an experiment
using a corpus of social surveys (namely, General Social Surveys (GSS)), they
have shown that supervised machine learning approaches significantly outper-
formed dictionary-based approaches. In dictionary-based approaches, response
were classified according to the similarity between the feature vectors of the re-
sponse and the category vectors, whose elements were the manually collected
words. Park and Zhang [10] applied a combination method to Korean chunk-
ing. They forwarded the samples that could not be handled well by their rule-
based method to a machine-learning method. They showed that the combination
method was better in F-score than the rules or various machine learning meth-
ods alone. Isozaki and Hirao [6] applied a combination method to Zero Pronoun
Resolution in Japanese. They first sorted antecedent candidates by using rules,
which ranked candidates in the order of priority for applying. Second, they ap-
plied SVMs to the candidates in the order. Third, if SVMs judged that a can-
didate was a positive example, they selected the candidate and stopped there.
They showed that this combination gave better performance than either of the
two previous approaches.

3 The Occupation Coding

The occupation coding is a task in which researchers assign proper occupation
codes to occupation data collected in social surveys. One of the most common
occupation code sets in Japan is the SSM code set [3], which is based on a
national census. It is quite hard for coders to completely learn the definitions of
all the occupation codes, because the number of occupation codes is nearly 200
in both SSM and JGSS.3 A data sample on occupation consists of responses to
various questions regarding the respondents’ occupations [4]:

– “job task” (open-ended),
– “industry” (open-ended),
– “employment status” (close-ended),
– “job title” (close-ended),
– “firm size” (close-ended).

We show an example of an occupation data sample and occupation code. If
an occupation data is as follows:

– “job task” is “to arrange the delivery vehicles”,
– “industry” is “load and unload of luggage”,
– “employment status” is “2: Regular employee”,
– “job title” is “1: No managerial post”,
– “firm size” is “8: From 500 to 999”,

3 The numbers of occupations are 188 in SSM and 194 in JGSS.

then the occupation code is determined to “563” (a transportation clerk).
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Although coders judge mainly from responses to “job task”, they also have
to consider other responses. Coders cannot readily get skill in the occupation
coding, because the task is complicated. In large-scale surveys such as JGSS or
SSM, coding work is conducted to the same data more than twice in order to
make the results more reliable. Furthermore, in addition to the current occupa-
tions of respondents, their first occupations, current occupations of their spouses
and the occupations of their parents are often asked in such surveys. Therefore,
coders’ labor is huge. Consequently, since the task is conducted by many coders
over a long period of time, the results of the occupation coding are sometimes
inconsistent with each other.

4 Rule-Based Method

In this paper, we call the previous system using rules of the form of case frame
a rule-based method. At first the system was experimentally developed using a
part of occupation data of SSM in 1995 [12] and has manually been improved
every time a survey was conducted. In the system, it is supposed that a number
of responses are represented by a verb and the noun sub-categorized by the verb.
For example, “teach a tea-ceremony” corresponds to “539” (a tea master), while
“teach at a primary school” corresponds to “521” (a primary school teacher).

The process of the system is as follows. First, the system extracts a triplet of a
verb, the sub-categorized noun and the case of the noun from the response to “job
task”. The case is a shallow case such as “wo” or “de”, which are postpositional
particles in Japanese. Second, the system generalizes the verb to a verb class
using a thesaurus [1]. Then the system searches for a rule that matches the
generalized triplet. We call this type of rule rule-α4 :

<verb-class, case, noun> ⇒ <occupation code>.

If a rule-α is found, the occupation code is assigned to the sample, otherwise the
noun is also generalized using a thesaurus. If no rule matches the generalized
triplet, “undetermined” is assigned. The system also use information of responses
to “industry”, if necessary. Finally, for some occupation codes, the system checks
other occupation variables such as “employment status”, “job title” and ”firm
size”.5 We call this type of rule rule-β6 :

<occupation code, employment status, job title, firm size >⇒<occupation
code>.

We illustrate the rule-based method with the above-mentioned sample. First,
the system extracts a triplet that verb is “arrange”, case is “wo (accusative)” and

4 There are 3524 rules in the rule set.
5 For example, if “firm size” is small, the respondent is not regarded as “manager”,

even if the respondent answers “management work” in “job task” .
6 There are 27 rules.
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noun is “haisha (delivery vehicle)”. Second, the verb “arrange” is generalized
to a verb-class “class-arrange” by a thesaurus. Then the system finds a rule-
α: <class-arrange, wo, haisha(delivery vehicles)> ⇒ <563> and assigns the
occupation code “563” to the response. In this case, the system does not need to
generalize the noun because a rule matching the triplet is found before the noun
is generalized. For this occupation code, the system does not need to change the
first determined occupation code by the rule-β. The final output of the rule-based
method is “563”.

In the rule-based method, it is important to enrich both the rule set and the
thesaurus. We have to make a constant effort to maintain them, because new
words or expressions with which respondents describe their jobs are frequently
created. Moreover, this system has another problem that it can deal with only
the responses transformed into the form of case frames.

The rule-based system has been applied to 6 surveys including JGSS surveys.
Table 1 shows the performance of the rule-based method applied to JGSS [15,
16, 17]. Both total accuracy and accuracy for the label-assigned samples of the
other 3 surveys are similar to those of JGSS [13]. The accuracy in this paper is
defined as the number of correctly-classified samples divided by the number of
all samples. The accuracies in Table 1 are not so high, because this system does
not produce any codes for some samples. If the accuracy is measured for only
the samples to which the system assigns a code, its value reaches nearly 80%.

Table 1. Performance of the rule-based method (the label-assigned samples mean

samples assigned some label by rules.)

JGSS-2000 JGSS-2001 JGSS-2002

Total accuracy 67.3 65.8 66.1
Accuracy for the label-assigned samples 80.9 79.7 79.8

Total number of samples 6,848 6,448 6,770

5 Machine Learning Method

Compared with the rule-based method, machine learning methods have the ad-
vantage that human is not required to create rules. Consequently, we do not
have to make effort to maintain rules. Furthermore, machine learning methods
are applicable to many domains. Although machine learning requires a large
amount of training data for learning, there are both data samples on occupation
and correct codes available, because in social surveys, the occupation codes have
been manually checked after an automatic coding and we can use the labeled
data of the previous years as training data.

There are various methods in machine learning such as decision tree or neu-
ral network. Among them, we use SVMs in the occupation coding, because
SVMs [18] are superior to the other methods in accuracy in many tasks including
the document classification and the dependency structure analysis [9].
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5.1 Application of SVMs

We apply SVMs to the occupation coding in the following way. First, we create
basic features from responses:

– words in responses to “job task”
– words in responses to “industry”
– responses to “employment status” and “job title”

Next, we train SVMs, which then determine the occupation codes of test samples.
We have to extend SVMs to a multi-classifier for the occupation coding,

because SVMs are a binary-classifier. We use the one-versus-rest method [8].

5.2 The Combinations of SVMs and Rule-Based Method

Although the accuracy of the rule-based method is not satisfiable, its precision
for “code-assigned samples” (i.e., the samples to which the rule-based method
assigned a unique label) is quite high (see Table 1). We therefore propose the
following four combination methods of the rule-based method and SVMs. In the
first three methods, the output of the rule-based method is used as features for
SVMs. In the last method, the rule-based method and SVMs are used sequen-
tially. The proposed methods are as follows :

– add-code : the occupation codes provided by the rule-based method are added
to the feature set of SVMs,

– add-rule : the rules used to determine occupation codes in the rule-based
method are added to the feature set of SVMs,

– add-code-rule : both the occupation codes and the used rules are added to
the feature set of SVMs,

– seq : SVMs are applied only when the rule-based method cannot determine
a unique occupation.7

We show examples using above-mentioned sample. First, add-code adds a
new feature “563”, which is determined as occupation code by the rule-based
system, to basic features of SVMs. Second, add-rule adds the ID of rule-α that
is used in decision by the rule-based system as a new feature to basic features
of SVMs. Although only one rule is used in this case, two rules are added if
rule-β is used also. Third, add-code-rule adds two new features, which are “563”
and the ID of rule-α, to basic features of SVMs. Finally, seq outputs “563” as
the final occupation code, without proceeding to SVM classification, because
the rule-based system can determine one occupation code in this case. If the
rule-based system outputs two different codes or if it outputs the undetermined
occupation code “999”, seq uses SVMs.

We consider that seq is a sort of ensemble learning, which uses sequentially
results of more than two methods, although it is not a combination of machine
learning methods [11]. Similarly, we consider that add-code is a sort of stack-
ing [19].

7 There are two cases. One is the case that the rule-based method outputs undeter-
mined code. The other is the case that it outputs more than two occupation codes.
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6 Experiments

6.1 Experimental Settings and Preliminary Experiments

We conduct two kinds of experiments. In the first experiment (Experiment 1),
we compare SVMs8 with the rule-based system in terms of accuracy. We also
investigate effective combinations of SVMs and the rule-based method. In the
second experiment (Experiment 2), we investigate the relationship between the
size of a training data set and categorization accuracy.

The dataset we used here consists of three datasets: JGSS-2000, JGSS-2001
and JGSS-2002. Each dataset has approximately 6000 to 7000 samples9, and the
total number of the samples is 20066. In Experiment 1, we use JGSS-2000 and
JGSS-2001 as the training data set and JGSS-2002 as the test data set.

The purpose of the Experiment 2 is to estimate the required amount of train-
ing data in order to conduct coding work smoothly. We examine two cases; one
is the case where the coded samples of the previous surveys are available (Case
1), and the other is where coders have to conduct coding work from the scratch
(Case 2). In Case 1, the training dataset is JGSS-2000, JGSS-2001 and a part
of JGSS-2002. The test dataset is the rest of JGSS-2002. In Case 2, the training
dataset is a part of JGSS-2002, and the test dataset is the rest of JGSS-2002.
Thus, both cases are the simulation of coding JGSS-2002 with or without JGSS-
2000 and JGSS-2001. In both cases, we conduct n-fold cross validations (n=2, ·
· ·, 10), splitting JGSS-2002 in two parts in each fold. The two parts are later
exchanged for experiments with small training datasets. We conduct Experiment
2 with four methods: add-code, add-rule, add-code-rule and SVMs.

We use the linear kernel in SVMs and change the soft margin parameter C
within the range from 0.1 to 1.0 in Experiment 1, while we set C as the best value
tuned to each method in Experiment 2. A soft margin parameter C represents
a degree of allowance for exceptional samples. The smaller the value, the lighter
the weight for exceptional samples.

Before Experiment 1, we conducted the following preliminary experiments
using JGSS-2001.

– Experiment 2-gram/3-gram+basic features :
We add 2-gram/3-gram in responses to “job task” and “industry” to basic
features.

– Experiment kana-basic features :
We use kana (Japanese cursive) instead of Chinese character, which are used
in kana-basic features.

– Experiment 2-gram/3-gram+kana-basic features :
We add 2-gram/3-gram in responses to “job task” and “industry” to kana-
basic features.

8 http://chasen.org/~taku/software/TinySVM/
9 We excluded samples in which respondents are unemployed or students.
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In these experiments, no significant improvements in results have not been ob-
served. Feature selection by Information Gain [11] did not increase accuracy,
either. Therefore, we use basic features in the following experiments.

6.2 Experiment 1: Results and Discussion

At C = 1.0, the accuracy of SVMs is 71.9%, which is 5.8 % higher than that of
the rule-based method. One of the reasons is that according to the strategy of the
rule-based method, the rule-based method does not assign any occupation code
to difficult samples, while SVMs automatically assigns a code to all the samples.
The rule-based method assigns a code to only 74.6% of all the samples, and
79.8% of them are correct (see Table 1). For those code-assigned samples, SVMs
yield the accuracy of 78.5%, which is slightly less than that of the rule-based
method.

Figure 1 displays that the accuracy values of the four combination methods
as well as SVMs. These methods are, in terms of accuracy at C = 1.0, ranked in
the following order: add-code-rule > add-code > seq ≈ add-rule > SVM > (the
rule-based method). We call SVMs that are not combined with the rule-based
method as SVM.
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Fig. 1. Accuracy of each method with different values of C

The combination methods of SVMs and the rule-based method are effective,
because the combination methods are superior to SVMs at each point of C. The
accuracy of add-code is superior to that of add-rule at each point of C. A possible
reason is that the added features of add-rule are more widely distributed and
the reliable learning is not successful due to the lack of enough training data.10

The accuracy of add-code-rule is mostly the same as that of add-code. This fact
shows that little additional information is provided by the features of add-rule
in case there are add-code features.

10 Both 459 classes of rule-α rules and 18 classes of rule-β are used in add-rule, while
less than 200 classes of occupation codes are used in add-code.
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Since add-code, add-rule, add-code-rule and SVM are sensitive to the value
of C, we need to select the best value of C beforehand. Therefore, we conducted
additional experiments for tuning the value of C, splitting the training dataset
into two, where we use JGSS-2000 as a temporary training dataset and JGSS-
2001 as a temporary test dataset. Table 2 shows the accuracy at the predicted
best value of C in each method. The accuracy of each method at these values of
C corresponds to nearly the maximum accuracy.

Table 2. The predicted best values and the actual best values of C and the correspond-

ing values of accuracy. The values of C are predicted using JGSS-2000 and JGSS-2001.

The values of accuracy are calculated on JGSS-2002

add-code add-rule add-code-rule SVM

predicted best C 0.4 0.3 0.2 0.6
Accuracy 74.4 74.2 74.5 71.7

actual best C 0.2 0.2 0.2 1.0
Accuracy 74.8 74.3 74.5 71.9

In seq, 26% of all the samples are not code-assigned by the rule-based method
and henceforth forwarded to SVMs. Approximately, 30% of these forwarded
samples have been assigned to multiple codes and 70% to “undetermined”. When
seq uses SVMs, two types of samples can be used as a training data set. One
consists of all the samples, and the other consists of only undetermined samples.
Table 3 shows that accuracy of the former is higher than that of the latter.

Table 3. Accuracy of seq in two types of samples used as a training data set

all the samples only undetermined samples

C = 1.0 72.9 71.1
max 73.1 71.9
min 72.9 70.5

6.3 Experiment 2: Results and Discussion

Figure 2 shows the relationship between the size of a training data set and the
accuracy of add-code, add-rule, add-code-rule and SVM in Case 1 and Case 2
(C is set to the best value in each method).

The accuracy increases as a size of a training data set becomes larger. The
difference between accuracies of Case 1 and those of Case 2 decreases as the size
of the training data set becomes larger. In both cases, add-code and add-code-
rule are constantly better than add-rule and SVM. That difference is clearer in
Case 2 than in Case 1. Therefore, it is strongly recommended to use add-code or
add-code-rule especially when no previously coded samples are available. In each
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method, the accuracy in Case 2 with the half of the newly-added training data
approximately equals to the accuracy in Case 1 without any newly-added train-
ing samples (left-most of Figure 2). Therefore, if we cannot use coded samples,
conducting the occupation coding by a half size of all the samples is effective.

7 Conclusion

We have applied SVMs to the occupation coding and shown that SVMs are su-
perior to the rule-based method in terms of categorization accuracy also when a
document is very short. We have also applied the combinations of SVMs and the
rule-based method to the occupation coding and shown that each of the combina-
tion methods is superior to SVMs. Furthermore, we have conducted experiments
to investigate effects of feedback and shown that a feedback is effective. In future
work, we would like to find a method for measuring confidence for each output
of these automatic methods, in order to support manual check of the results. We
will also adopt active learning in the feedback process.
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Abstract. A new method for information retrieval which is on the ba-
sis of language model with relative entropy and feedback is presented in
this paper. The method builds a query language model and document
language models respectively for the query and the documents. We rank
the documents according to the relative entropies of the estimated doc-
ument language models with respect to the estimated query language
model. The feedback documents are used to estimate a query model by
the approach that we assume that the feedback documents are generated
by a combined model in which one component is the feedback document
language model and the other is the collection language model. Experi-
mental results show that the method is effective for feedback documents
and performs better than the basic language modeling approach. The
results also indicate that the performance of the method is sensitive to
both the smoothing parameters and the interpolation coefficients used
to estimate the values of the language models.

1 Introduction

The language modeling approach to information retrieval has recently been pro-
posed as a new alternative to traditional vector space models and other proba-
bilistic models owing to its sound theoretical basis and good empirical success.
Although the language modeling approach has performed well empirically, a sig-
nificant amount of performance increase is often due to feedback [5]. Several
recent papers[3][4] have presented techniques for improving language modeling
techniques using relevance or pseudo relevance feedback. In the most of existing
work, feedback has so far only been deal with heuristically within the language
modeling approach, and it has been incorporated in an unnatural way: by ex-
panding a query with a set of terms. Such an expansion-based feedback strategy
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is generally not very compatible with the essence of the language modeling ap-
proach, which is model estimation. As a result, the expanded query usually has
to be interpreted differently than the original query. This is in contrast to the
natural way of performing feedback in the classical relevance-based probabilistic
model, such as the binary independence model [9].

We propose a new retrieval method based on language model with relative
entropy and feedback. Different from the traditional language method in which
the query is assumed being generated from the document language model, in our
method we assume that the query and the document are respectively generated
from the query language model and the document language model. We rank
the documents according to the relative entropies of the estimated document
language models with respect to the estimated query language model. We think
that our assumption that the query is generated from the query model is more
reasonable than the assumption that the query is generated from the document
language model, because the query and the document are not completely same.
In order to better capture the important processes behind relevance feedback
and query expansion, we believe it is important to view the query as a sample
from a model of the information need. So, when estimating a query model,
we develop a natural approach to perform feedback, in which we assume the
feedback documents are generated by a combined model in which one component
is the feedback document language model and the other is the collection language
model.

2 Language Model for Retrieval

The general idea of using language model for information retrieval is to build a
language model Md for each document d, and rank the documents according to
how likely the query q can be generated from each of these document models, i.e.
p(q|Md). In different models, the probability is calculated in different ways. There
are two typical methods for doing it. For example, Ponte and Croft [6] treat the
query as a set of unique terms, and use the product of two probabilities – the
probability of producing the query terms and the probability of not producing
other terms – to approximate p(q|Md). The formula of this method is

p(q|Md) =
∏
w∈q

p(w|Md)
∏

wnot∈q

(1.0− p(w|Md)) (1)

Song and Croft [6] treat the query as a sequence of independent terms, taking
into account possibly multiple occurrences of the same term. Thus the query
probability can be obtained by multiplying the individual term probabilities,
and the formula can be written as

p(q|Md) =
n∏

i=1

p(wi|Md) (2)

where wi is the ith term in the query.
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In our approach, we also use language modeling for retrieval, but it is differ-
ent from the above approaches in which both the query and the document are
assumed to be generated from the document language model. We assume that
the query is generated from the query language model while the document is
generated from the document language model.

3 Relative Entropy

The relative entropy is a measure of the distance between two distributions. In
statistics, it arises as an expected logarithm of the likelihood ratio. The relative
entropy D(p||q) is a measure of the inefficiency of assuming that the distribution
is q when the true distribution is p .

Definition 1. The relative entropy between two probability mass functions p(x)
and q(x) is defined as D(p||q) =

∑
x

p(x) log p(x)
q(x)

In the above definition, we use the convention (based on continuity argu-
ments) that 0 log 0

0 = 0 and p log p
0 =∞.

The relative entropy is always non-negative and is zero if and only if p = q .
However, it is not a true distance between distributions since it is not symmetric
and does not satisfy the triangle inequality. Nonetheless, it is often useful to
think of relative entropy as a ”distance” between distributions [1].

4 Retrieval Based on Relative Entropy

4.1 Ranking Model with Relative Entropy

Let’s suppose that a query q is generated by a generative model p(q|Mq) with
Mq denoting the parameters of the query unigram language model. Similarly,
assume that a document d is generated by a generative model p(d|Md) with
Md denoting the parameters of the document unigram language model. Let M̂q

and M̂d be the estimated query language model and document language model
respectively, so, the relevance value of d with respect to q can be measured by
the following function:

R(M̂q||M̂d) = −D(Mq||Md) (3)

= −
∑
w

p(w|Mq) log
p(w|Mq)
p(w|Md)

(4)

=
∑
w

p(w|Mq) log p(w|Md)−
∑
w

p(w|Mq) log p(w|Mq) (5)

The second term of the formula (5) is a query-dependent constant, or more
specifically, the entropy of the query model Mq. It can be ignored for the purpose
of ranking documents, so we have a ranking formula such as
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R(M̂q||M̂d) ∝
∑
w

p(w|Mq) log p(w|Md) (6)

From the formula (6), we can observe that how to estimate the values of
p(w|Md) and p(w|Mq) will influences the retrieval accuracy of the ranking model.

4.2 Estimating the Document Model

In the language model, the simplest method to estimate p(w|Md) , which is
a unigram language model based on the given document d , is the maximum
likelihood estimator, simply given by relative counts

p(w|Md) = Pml(w|Md) (7)

=
tf(w, d)∑

w′
tf(w′, d)

(8)

where tf(w, d) is the number of times the word w occurs in the document d,∑
w′

tf(w′, d) is the total number of times all words occur in the document d , it

is essentially the length of the document d .
However, one obstacle in applying the maximum likelihood estimator to es-

timate p(w|Md) is the problem of zero probability [9]. From the formula (8), we
can see that if a word is unseen in the documentd , we will get a zero probability
according the maximum likelihood estimator. But a zero value of p(w|Md) is
not permitted to appear in the formula (6). To the problem, we use smoothing
methods in the estimating of p(w|Md) .

Some smoothing methods, such as Good-Turing method, Jelinek-Mercer
method, and Absolute discounting etc., have been proposed, mostly in the con-
text of speech recognition tasks. In general, all smoothing methods are trying to
discount the probabilities of the words seen in the document, and then to assign
the extra probability mass to the unseen words according to some ”fallback”
model [7]. For information retrieval, it makes much sense, and is very common,
to exploit the collection language model as the fallback model. Because a re-
trieval task typically requires efficient computations over a large collection of
documents, our study is constrained by the efficiency of the smoothing method.
In this paper, we select the Jelinek-Mercer method and Absolute discounting
method which are popular and relatively efficient to implement.

The Jelinek −Mercer method involves a linear interpolation of maximum
likelihood model with the collection model, using a coefficient λ to control the
influence of each model [8].The method is given by

p(w|Md) = (1− λ)pml(w|Md) + λp(w|C) (9)

p(w|C) =
tf(w,C)∑

w′
tf(w′, C)

(10)
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The idea of the Absolute discounting method is to lower the probability
of seen words by subtracting a constant from their counts. It is similar to the
Jelinek-Mercer method, but differs in that it discounts the seen word probability
by subtracting a constant instead of multiplying it by 1−λ . The model is given by

p(w|Md) =
max(tf(w, d)− δ, 0)∑

w′
tf(w′, d)

+ σp(w|C) (11)

where δ ∈ [0, 1] is a discount constant and σ = δ|d|u
|d| , so that all probabilities

sum to one. Here, |d|u is the number of unique terms in the document d , and
|d| =

∑
w′

tf(w′, d) is the total count of words in the document [11].

4.3 Estimating the Query Model

The simplest way to estimate p(w|Mq) is also the maximum likelihood estimator,
which gives us

p(w|Mq) = Pml(w|Mq) (12)

=
tf(w, q)∑

w′
tf(w′, q)

(13)

But for using feedback documents to improve retrieval performance, we ex-
plore a new method to exploit feedback documents when estimating the query
language model, which is different from the methods in [3] and [4]. In the new
method, we assume the feedback documents are generated by a combined model
in which one component is the feedback document language model and the other
is the collection language model.

Let q0 be the original query, and p(w|Mq0) be the original query language
model, q be the updated query, and p(w|Mq) be the updated query language
model. We assume that F = (f1, f2, ..., fn) is the set of feedback documents
which are judged to be relevant by a user, or which are the top documents from
an initial retrieval, and p(w|MF ) is the language model of the set F . We employ
a linear interpolation strategy for combining the language model of the feedback
documents set with the language model of the original query. Then, the updated
query model p(w|Mq) is

p(w|Mq) = (1− α)pml(w|Mq0) + αp(w|MF ) (14)

where α controls the influence of the feedback documents set model to p(w|Mq).
We will describe how to estimate p(w|MF ) as follows.

For estimating p(w|MF ), we assume that the feedback documents are gener-
ated by a probabilistic model p(F |MF ). Specifically, assume that each word in
F is generated independently according to MF by a generative model which is
a unigram language model. That is,

p(F |MF ) =
∏

i

∏
w

p(w|MF )tf(w,fi) (15)

where tf(w, fi) is the number of times word w occurs in the document fi.
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However, not all information contained in the feedback documents is relevant
to the query. Some information may be ”background noise”. The ”background
noise” is not considered in the above model, so, it is not very reasonable. A
more reasonable model would be a combined model that generates a feedback
document by combining the feedback document model p(w|MF ) with a collection
language model p(w|C). For most of the information contained in the collection
is irrelevant, it is reasonable to use the collection language model as the model
of the ”background noise” in a feedback document. Under the simple combined
model, p(F |MF ) is described as

p(F |MF ) =
∏

i

∏
w

((1− β)p(w|MF ) + βp(w|C))tf(w,fi) (16)

where β is a parameter that indicates the amount of ”background noise” in the
feedback documents, and that needs to be set empirically.

Now, for the given β, the feedback documents set F , and the collection
language model p(w|C) , we can use EM(Expectation Maximum) algorithm to
compute the maximum likelihood estimate of MF . The estimated MF is as

M̂F = argmaxMF
log p(F |MF ) (17)

The EM updating formulas for pβ(w|MF ) are as follows [9].

h(n)(w) =
(1− β)p(n)

β (w|MF )

(1− β)p(n)
β (w|MF ) + βp(w|C)

(18)

p
(n+1)
β (w|MF ) =

n∑
j=1

tf(w, fj)h(n)(w)

∑
i

n∑
j=1

tf(wi, fj)h(n)(wi)
(19)

We use the result of pβ(w|MF ) computed iteratively by the above EM up-
dating formulas as a substitute for p(w|MF ) of the formula (14). Then we can
obtain the value of p(w|Mq) by using the formula (14).

5 Experiments and Results

Our goal is to study the performance of our method presented in this paper by
comparing it with other retrieval methods. For the convenience of describing the
experiments, we call our method using the Jelinek-Mercer smoothing technique
the REJM method, and call our method using the Absolute discounting smooth-
ing technique the READ method, while we call the method (with feedback) in
[4] the BLM method. We use precision-recall plot and average precision as two
performance measures to evaluate the above three methods.
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5.1 Data Sets

We experiment over three data sets taken from TREC. They are the Associate
Press Newswire (AP) 1988-90 with queries 51-150, the Financial Times (FT)
1991-94 with queries 301-400, and the Federal Register (FR) 1988-89 with queries
51-100. The first two data sets are news corpora and they are homogenous. In
contrast, FR is a heterogeneous collection consisting of long documents than
can span different subject areas. Queries are taken from the title field of TREC
topics. Relevance judgments are taken from the judged pool of top retrieved
documents by various participating retrieval system from previous [2]. Detail
information of the data sets is given in Table 1.

Table 1. Information of data sets

Data set Contents Number of Docs Size Queries

AP Associate Press 242918 0.73GBytes TREC topics
Newswire 1988-90 51-150

FT Financial Times 210158 0.56GBytes TREC topics
1991-94 301-400

FR Federal Register 45820 0.47GBytes TREC topics
1988-89 51-100

5.2 Experimental Setup

Two sets of experiments are performed in this paper. The first set of exper-
iments is to compare the performances of the READ method and the REMJ
method with the performance of the BLM method. We get different results with
different parameter setting in the READ method and the REJM method, but
we use the best results of them to compare their performances. The second set
of experiments investigates whether the performances of the READ method and
the REMJ method are sensitive to the parameters which are λ, δ, α, and β.

For convenience of showing how the average precision changes according to
different values of the two interpolation coefficients α and β, in the experiment,
we assign fixed values (which make the methods have best retrieval performance
empirically) to a coefficient while we change the values of the other coefficient.

5.3 Experimental Results

Results of the first set of experiments are shown in Fig.1 and Table 2. From the
precision-recall plots in Fig.1, we can observe that the performances of the REJM
method and the READ method are better than that of the BLM method on the
three data sets. In Table 2, it is shown that the average precision of the READ
and the REJM on the three data sets are all better than the BLM method.
We think that the improvements are mainly attributed to that the methods of
performing feedback in REJM and READ are more compatible with the essence
of the language modeling approach than that in BLM . And, we also note that
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Fig. 1. Precision-Recall plots of BLM, REJM, and READ on AP, FT and FR

Table 2. The average precision of BLM, READ, and REJM on AP, FT and FR

Data set BLM READ Chg1 REJM Chg2

AP 0.265 0.291 +9% 0.310 +17%
FT 0.282 0.305 +8% 0.322 +14%
FR 0.250 0.306 +22% 0.328 +31%

the REJM method performs better in performance than the READ method. We
think it is a result of that the Jelinek-Mercer smoothing method performs better
than the Absolute discounting smoothing method.

Results of the second set of experiments are presented in Fig.2. The plots
of part (a) in Fig.2 show the average precision of the REJM method on the
three data sets according to different values of λ, while α=0.7 and β=0.6. We
can observe that the average precision of the REJM method is quite sensitive
to the setting of λ, and that the average precision is better when the value of λ
approximates to 0.6.

The plots of part (b) in Fig.2 show the average precision of the READ method
on the three data sets for different settings of the parameter δ, while the parame-
ters α and β are set to be 0.7 and 0.6 respectively. Similarly, we can also observe
that the average precision of the READ method is sensitive to the setting of δ.

The plots of part (c) in Fig.2 show the average precision of the REJM method
and the READ method for different values of α, while λ=0.6, δ=0.7, and β=0.55.
We find that the average precision of the REJM method and the READ method
is significantly sensitive to the setting of α on both AP data set and FT data
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Fig. 2. Sensitivity of average precision to the parameters on AP, FT, and FR

set, but it is relatively sensitive on FT data set. We think that the main reason
may be the AP data set and the FT data set are homogenous, but the FR data
set is heterogeneous.

The plots of part (d) in Fig.2 show the average precision of the REJM method
and the READ method on the three data sets for different values of β, while
λ=0.6, δ=0.7, and α=0.7. It is obvious that the average precision of the two
methods is relatively sensitive to the setting of β on three data sets, and the
average precision of the two methods decreases while the value of β is larger
than 0.55 on the FR data set. The phenomenon may be also relevant to that the
FR data set is heterogeneous.

6 Conclusions

We have presented a new method for information retrieval based on language
model with relative entropy and feedback. Experimental results show that the
method performs better than the method in [4]. Analysis of the results indicates
that the performance is sensitive to the smoothing parameters used to estimate
the value of the document language model. And the analysis also indicates that
the performance is not always very sensitive to the interpolation coefficients
which are used to estimate the value of the query language model. It sometimes
is only relatively sensitive on different data sets.
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Abstract. Hierarchical text classification concerning the relationship among 
categories has become an interesting problem recently. Most research has 
focused on tree-structured categories, but in reality directed acyclic graph 
(DAG) - structured categories, where a child category may have more than one 
parent category, appear more often. In this paper, we introduce three 
approaches, namely, flat, tree-based, and DAG-based, for solving the multi-
label text classification problem in which categories are organized as a DAG, 
and documents are classified into both leaf and internal categories. We also 
present experimental results of the methods using SVMs as classifiers on the 
Reuters-21578 collection and our data set of research papers in Artificial 
Intelligence.  

Keywords: text classification, hierarchies, multi-labels, SVM. 

1   Introduction 

The problem of text classification has been examined for a long time but most of 
studies have focused on flat classification ([24]), in which the predefined categories 
were treated in isolation, with no consideration about the relationship among them. 
For this problem, one-against-the-rest and pairwise classification methods ([11], [14]) 
have been widely applied. Based on the classification result of each binary classifier, 
those methods provided different ways to determine the categories to which a 
document should be assigned. 

Meanwhile, categories are usually organized in a hierarchical structure, usually like 
a tree or a directed acyclic graph (DAG). Therefore, researchers have turned into a 
new classification approach, namely hierarchical classification, in which the 
subsumption relationship among categories was taken into account for classification. 
Using the top-down level-based approach, a hierarchical classification method 
constructed some classifiers at each level of the category hierarchy. Beginning from 
the root category, the classifiers at one level determined if the documents presented to 
them should be passed to the classifiers at the next lower level for further 
classification. The categories of a document were those assigned to it during such a 
classification process. 

Some methods have been developed for solving the classification problem on 
hierarchical categories ([2], [3], [8], [13]). In [13], the classification method assigned 
a document to only one category, which was a leaf category, assuming that the 
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document also belonged to all the ancestors of that leaf category. For each internal 
category, a Naïve Bayes classifier was built to predict the probabilities of its child 
categories. Then the child category with the highest probability was selected for 
further classification at the next level. That classification process continued until a 
leaf category was reached. In order to classify a document to more than one leaf 
category, [8] improved [13] by defining a threshold for each level of the category tree, 
and considering all the child categories at the next level that exceeded the threshold 
for further classification, where SVMs were used as binary classifiers. 

That a document was assigned to only leaf categories was not satisfactory when, in 
practice, a document might not belong to a leaf category but an ancestor of that leaf 
category instead. In [3], classification was viewed as a mapping from a document into 
the leaf categories of a subtree of a category tree. As such, a document could be 
classified into both leaf and internal categories of the original tree. However, that did 
not allow a document to have both a category and some of its ancestors as its labels. 
Meanwhile, in [2] a document could be labeled by any subset of categories in a 
category tree of discourse. 

However, all the above-mentioned methods were for tree-structured categories 
only, where a category had at most one parent category. Ontologically, a category 
may have multiple parent categories, as often encountered in the real world. In this 
paper we introduce three approaches that can solve the multi-label text classification 
problem for DAG-based categories and analyze their performances. The first 
approach is called DAG-based, which manipulates the category DAG directly. The 
second approach is called tree-based, which transforms the category DAG into an 
equivalent tree and adapts the approach in [2] for it. The third approach is called flat, 
which converts the problem into a flat classification one.  

The paper is organized as follows. Firstly, Section 2 reviews the hierarchical 
method in [2] for category trees. Section 3 presents and analyzes our three methods 
for category DAGs. Section 4 shows experimental results using SVMs as binary 
classifiers. Finally, Section 5 concludes the paper and suggests future work. 

2   A Classification Approach for Category Trees 

The approach proposed in [2] was hierarchical classification for category trees where 
documents were assigned to both leaf and internal categories. All involved classifiers 
were binary ones. The subsumption relationship among categories was used during 
the training and classification phases of those binary classifiers. 

Building Classifiers  

o For each category Ci in the category tree of discourse, the coverage of Ci, 
denoted by Coverage(Ci), is the set of those categories in the subtree rooted at 
Ci, including Ci. Function Parent(Ci) returns the parent category of Ci.  

o For each internal category Ci, a binary classifier called subtree-classifier is built 
to determine whether a document should be assigned to any category in 
Coverage(Ci).  

o For each category Ci, another binary classifier called local-classifier is built to 
determine whether a document should be assigned to Ci. 



292 C.D. Nguyen, T.A. Dung, and T.H. Cao 

 

Training Phase 
Appropriate positive and negative training documents, respectively denoted by +ve 
and –ve, are selected for each kind of the above-mentioned classifiers.  

o Subtree classifier of an internal category Ci: 
 +ve: all documents dj such that dj is labeled by a category in Coverage(Ci). 
 –ve: all document dj such that dj is not labeled by any category in 

Coverage(Ci) but by a category in Coverage(Parent(Ci)). 

o Local classifier of an internal category Ci: 
 +ve: all documents dj such that dj is labeled by Ci. 
 −ve: all documents dj such that dj is not labeled by Ci but by a category in 

Coverage(Ci). 

o Local classifier of a leaf category Ci: 
 +ve: all documents dj such that dj is labeled by Ci. 
 −ve: all documents dj such that dj is not labeled by Ci but by a category in 

Coverage(Parent(Ci)). 

Classification Phase 
Information about the tree structure of categories is used during the classification 
phase. It is a top-down level-based classification process in which a document is 
presented to the classifiers of a category. If the classification process at that category 
cannot go further down, the classification along that branch will stop without 
consideration of its next level classifiers. Starting from the root category, for each 
document dj presented to a category Ci, do the followings:  

o If Ci is an internal category: 
The subtree classifier of Ci is used to classify dj. If dj is negatively classified, 
then return. Otherwise:  
  Use the local classifier of Ci to classify dj. If dj is positively classified, then 

add Ci into the set of categories for dj.  
  Continue classifying dj by the classifiers of the child categories of Ci.  

o  If Ci is a leaf category: 
Use the local classifier of Ci to classify dj. If dj is positively classified, then 
add Ci into the set of categories for dj.  

The approach was realized using SVM binary classifiers. The experiment results 
showed that it performed well for the Reuters-21578 collection [18] if given enough 
training documents. However, the method cannot be used directly for categories 
organized as a DAG, in which a category may have more than one parent. We have 
adapted it for DAG-structured categories as presented in the next section. 

3   Classification Approaches for Category DAGs 

3.1   Tree-Based Approach 

The approach proposed in [2] can be adapted for a category DAG by transforming the 
graph into an equivalent tree. Each category having multiple parents is copied into 
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different nodes whose number is equal to the number of branches from the root 
leading to that category. The tree can be created by traversing the graph in the depth-
first order. Each time a category is visited, a copy of its is made and indexed by the 
visiting time. Figure 3.1 illustrates such a transformation. Then, although the copies 
of a category are physically separated, they are logically treated as the same label in 
the training and classification phases. 

 
 

 
Fig. 3.1. DAG-to-Tree Transformation 

 
 

Fig. 3.2. A Large Category Tree Transformed from a Category DAG 

However, this adapted classification approach has two main drawbacks. Firstly, the 
resulted tree may be very large if the original DAG contains cascaded nodes with 
multiple parents as exemplified in Figure 3.2. Secondly, such a category tree has 
completely similar classifiers. For example in Figure 3.1, the classifiers of F1, F2 are 

 

A 

B C 

D 

E F 

G 

H I 

J 

A1

B1 C1

D1 D2

E1 F1 E2 F2 

G1 G2 G3 G4 

H1 I1 H2 I2 H3 I3 H4 I4 

J1 J2 J3 J4 J5 J6 J7 J8 

A 

B C D 

E F G 

H K 

A1

B1 C1 D1 

E1 F1

H1 H2 K1

F2 G1 

H3 K2 



294 C.D. Nguyen, T.A. Dung, and T.H. Cao 

 

similar because they are trained with the same training set. That wastes computation 
and time because, when a document is classified into the subtree rooted at F1, it does 
not need to be considered by any classifier in the subtree rooted at F2, and vice versa. 

3.2   DAG-Based Approach 

We propose another approach also adapted from [2] but manipulates directly on a 
category DAG, without transformation into a tree. The main idea is that each internal 
category (or leaf category) with n parents is equipped with n subtree classifiers (or local 
classifiers, respectively). So, not as in the tree-based approach, there can be more than 
one subtree classifier at an internal category (and more than one local classifier at a leaf 
category). A document is also classified into both leaf and internal categories. 

Building Classifiers 

o For each category Ci in a given category DAG, the coverage of Ci, denoted by 
Coverage(Ci), is the set of the categories in the subgraph rooted at Ci, including 
Ci.  

o For each internal category Ci and a parent category Ck of Ci, a binary classifier 
called subtree-classifierik is built to determine whether a document passed from 
Ck should be classified into any category in Coverage(Ci).  

o For each internal category Ci, another binary classifier called local-classifier is 
built to determine whether a document should be classified into Ci.  

o For each leaf category Ci and a parent category Ck of Ci, a binary local-
classifierik is built to determine whether a document passed from Ck should be 
classified into Ci. 

Training Phase 
Appropriate positive and negative training documents, respectively denoted by +ve 
and –ve, are selected for each kind of the above-mentioned classifiers. 

o Subtree-classifierik of an internal category Ci and its parent category Ck:   
 +ve: all documents dj such that dj is labeled by a category in Coverage(Ci).  
 −ve: all documents dj such that dj is not labeled by any category in 

Coverage(Ci) but by a category in Coverage(Ck). 

o Local classifier of an internal category Ci:  
 +ve: all documents dj such that dj is labeled by Ci.  
 −ve: all documents dj such that dj is not labeled by Ci but by a category in 

Coverage(Ci).  

o Local-classifierik of a leaf category Ci and its parent category Ck: 
 +ve: all documents dj such that dj is labeled by Ci.  
 −ve: all documents dj such that dj is not labeled by Ci but by a category in 

Coverage(Ck). 

Classification Phase 
Information about the DAG structure of categories is used during the classification 
phase. Not as in the tree-based approach, the classification along the branch leading to 
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a category will stop in two cases: (1) it cannot go further down; or (2) that category 
has already been in the list of categories assigned to the document in the previous 
steps. For each document dj presented to a category Ci from its parent category Ck, do 
the followings: 

o If Ci is an internal category: 
Subtree-classifierik of Ci is used to classify dj. If dj is negatively classified, then 
return. Otherwise:  

 Use the local classifier of Ci to classify dj. If dj is positively classified, then 
add Ci into the set of categories for dj.  
 Continue classifying dj by the classifiers at the child categories of Ci.  

o If Ci is a leaf category: 
Use local-classifierik of Ci to classify dj. If dj is positively classified, then add 
Ci into the set of categories for dj.  

3.3   Flat Approach 

Usually, a category is not fully covered by its child categories. That is, given a 
document of a category, it is not necessarily classifiable into any of its child 
categories. For each internal category, one can add in a dummy child category to 
represent the remaining unspecified subcategory of that category. Then, all the child 
categories of a category collectively cover it, and all the leaf categories, including the 
dummy ones, form an exhaustive set of categories for all documents in a domain of 
discourse.  

For example, in Figure 3.3 the nodes in dashed ovals represent supplemented 
dummy child categories. As such, the hierarchical text classification problem can be 
reduced to the flat one on the set of all leaf categories supplemented with dummy 
ones. If a document is classified as “Expert System” and “Data Miningc”, for instance, 
then that means it is about Expert System and a subject of Data Mining other than 
Information Extraction. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3. A Category DAG with Dummy Categories 

The advantage of this approach is its simplicity. However, when a category DAG 
is flattened and only leaf categories are used for classification, each classifier of a 
category has a very large number of negative training examples in comparison with 
positive ones, making a great bias in learning. Also, when the number of categories 
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considered at the same level is large, it is hard to distinguish them among each other, 
reducing classification accuracy. 

4   Experiments 

There have been various learning algorithms for text classification, among which 
SVMs ([21], [22]) has been shown to be one of the fastest and most effective 
algorithms ([7], [10]). Therefore, we have realized the three approaches mentioned 
above using SVM classifiers. We have implemented the SVM classifiers using the 
library LIBSVM provided by [5]. We have also employed the automatic model 
selection proposed in [12] for choosing C and kernel parameters of the SVM 
classifiers. 

Two data sets have been used to test and compare the performance of the three 
implemented methods, namely tree-based SVM, DAG-based SVM, and flat SVM. 
One data set is the commonly used Reuters-21578 ([18]) with 1327 documents. The 
other data set comprises 1,000 research papers in Artificial Intelligence (AI) based on 
the category DAG designed in [4]. Those AI papers have been retrieved from 
CiteSeer ([6]), MIT library ([17]), ACM Portal ([1]) and some technical reports of the 
Computer Science Department, Stanford University ([20]). We have extracted the 
abstracts of those papers and manually labeled them as our training set. The 
preprocessing phase (removing stop words and stemming) has been implemented 
using the BOW library ([15]). Based on the experiment of [9], the Document 
Frequency feature selection method has been used to build the feature vectors for our 
training set. 

In order to evaluate the performance of the presented methods, we have used the 
precision, recall and Fβ measures proposed in [19]. Let us recall the definitions of 
those parameters as follows: 
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where: 
|C| is the number of categories  
TPi is the number of documents positively classified into category Ci 
FPi is the number of documents negatively classified into category Ci 
FNi is the number of documents belonging to category Ci but negatively classified 
β is the user-defined importance of precision and recall. 

In our experiments, for the same importance of precision and recall, we set β = 1. 
Then F1 is given below: 

cc

ccF
RePr

RePr2
1 +

⋅⋅=   



 Text Classification for DAG-Structured Categories 297 

 

T

crude grain 

wheat ship nat-gas corn 

For the Reuters-21578, as in other research works, we have chosen 6 categories 
that have the highest numbers of documents. The tree structure of these categories is 
depicted in Figure 4.1. Since the tree-based SVM is a special case of the DAG-based 
SVM, which perform the same on a tree, we compare only the DAG-based SVM and 
the flat SVM as reported in Table 4.1. The result shows that the DAG-based SVM 
performs well, and a bit better than the flat SVM. 

 

   
 
 
 
 
 
 

 
 
 

 
 

 

For the AI paper data set, we have tested and compared the three methods on three 
of its subsets with different selected category labels. The subsets comprise 1000 
documents on 57 categories, 610 documents on 9 categories (Figure 4.2), and 502 
documents on 6 categories (Figure 4.3). Since the number of documents is quite 
small, we have used cross validation to evaluate the methods’ performance. Following 
[23], the number of folds we have chosen is 10 and, in order to get accurate results, 
we have run the cross validation for several times (1, 10, 50, 100). The performances 
of the three methods on the three data subsets are illustrated in Figures 4.4, 4.5, and 
4.6, respectively. 

 
 

Fig. 4.2. A 9-Category DAG 
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Category 

Pr Re Pr Re 

grain 1.0 0.872 1.0 0.879 
corn 0.925 0.661 0.921 0.625 
wheat 0.906 0.676 0.879 0.718 
crude 0.911 0.809 0.812 0.968 
ship 0.868 0.888 0.854 0.854 
nat-gas 0.913 0.833 0.92 0.767 
overall 0.9 0.8 0.889 0.854 
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Fig. 4.1. A Category Tree for Reuters-
21578 

Table 4.1. Flat SVM and DAG-Based SVM 
Performances on Reuters-21578 
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Fig. 4.3. A 6-Category DAG 

Figure 4.4 shows that the flat SVM has the poorest performance, with F1 being 
about 0.396, and the tree-based and DAG-based performances are nearly the same, 
with F1 being about 0.434. However, all the three methods have quite low F1 values, 
due to a large number of categories involved. As shown in Figures 4.5 and 4.6, when 
the number of categories is reduced, the performances of the methods are improved 
and the gap between the flat SVM and structure-based SVM (i.e., tree-based or DAG-
based) is also reduced. 
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Fig. 4.4. Performances on the 57-Category DAG 
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Fig. 4.5. Performances on the 9-Category DAG 
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Fig. 4.6. Performances on the 6-Category DAG 

5   Conclusion 

We have presented three approaches to tackle the text classification problem where 
categories are organized as a DAG. The tree-based approach adapts the method for 
tree-structured categories in [2] to work on the equivalent tree transformed from an 
original DAG. The DAG-based approach modifies the method in [2] to manipulate 
directly a category DAG. The flat approach adds in dummy leaf categories and 
reduces the problem to flat classification.  

We have conducted experiments on the Reuters-21578 data set and our constructed 
AI paper data sets, using SVMs as classifiers. The results show that the flat approach, 
which is simple, has a comparable performance to the hierarchical approaches when 
the number of categories involved is small. The tree-based and DAG-based 
approaches have nearly the same classification accuracy, but the former tends to 
produce large trees. 

The performance of a hierarchical approach depends on the performance of internal 
category classifiers. The closer a category is to the root, the more important its 
classifier is; if it makes a wrong decision, that will effect all the classifiers at the 
lower levels. We are researching a way to minimize the error at each internal category 
classifier. Also, we need to do experiments on larger data sets with more complicated 
hierarchical structures such as Yahoo or Google web pages. Those are among the 
topics that are being investigated. 
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Abstract. Document sentiment classification is a task to classify a doc-
ument according to the positive or negative polarity of its opinion (fa-
vorable or unfavorable). We propose using syntactic relations between
words in sentences for document sentiment classification. Specifically,
we use text mining techniques to extract frequent word sub-sequences
and dependency sub-trees from sentences in a document dataset and use
them as features of support vector machines. In experiments on movie
review datasets, our classifiers obtained the best results yet published
using these data.

1 Introduction

There is a great demand for information retrieval systems which are able to han-
dle reputations behind documents such as customer reviews of products on the
web. Since sentiment analysis technologies which identify sentimental aspects of
a text are necessary for such a system, the number of researches for them has
been increasing. As one of the problems of sentiment analysis, there is a docu-
ment sentiment classification task to label a document according to the positive
or negative polarity of its opinion (favorable or unfavorable). A system using
document sentiment classification technology can provide quantitive reputation
information about a product as the number of positive or negative opinions on
the web.

In the latest studies on document sentiment classification, classifiers based on
machine learning (e.g., [1], [6], [10]), which have been successful in other docu-
ment classification tasks, showed higher performance than rule-based classifiers.
Pang et al. [2] reported 87% accuracy rate of document sentiment classification
of the movie reviews by their classifier using word unigram as feature for support
vector machines (SVMs).

For these classifiers, a document is represented as a bag-of-words, where a
text is regarded as a set of words. Therefore, the document representation ig-
nores word order and syntactic relations between words appearing in a sentence
included in the original document. However, not only a bag-of-words but also
word order and syntactic relations between words in a sentence are intuitively

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 301–311, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. A word sequence and a dependency tree representation of a sentence and ex-

amples of sub-patterns of the sentence

important and useful for sentiment classification. Thus, there appears to remain
considerable room for improvement by incorporating such information.

To incorporate such information into document sentiment classification, we
propose to use a word sequence and a dependency tree as structured repre-
sentations of a sentence (we call simply “a sentence” below) and mining fre-
quent sub-patterns from the sentences in a document dataset as features for
document sentiment classification. We believe that the extracted set of frequent
sub-patterns includes subjective expressions and idioms in the domain.

As shown in Figure 1, we regard a sentence as a word sequence and a de-
pendency tree. We then extract frequent sub-patterns from these structured
representations of sentences.

The rest of the paper is organized as follows. In the next section, we show re-
lated works on sentiment classification. In Section 3, we describe our approach to
handle word order and syntactic relations between words in a sentence included
in a document. In Section 4, we report and discuss the experimental results of
sentiment classification. Finally, Section 5 gives conclusion.

2 Related Work

Sentiment classification is a task of classifying a target unit in a document to pos-
itive (favorable) or negative (unfavorable) class. Past researches mainly treated
three kinds of target units: a word, a sentence and an overall document. to pos-
itive or negative.

Word Sentiment Classification. Hatzivassiloglou et al. [11] used conjunctive
expressions such as “smart and beautiful” or “fast but inaccurate” to extract
sentiment polarities of words.
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Turney [7] determined the similarity between two words by counting the num-
ber of results returned by web searches. The relationship between a polarity-
unknown word and a set of manually-selected seeds was used to classify the
polarity-unknown word into a positive or negative class.

Sentence Sentiment Classification. Kudo et al. [9] used subtrees of word
dependency trees as features for sentence-wise sentiment polarity classification.
They used boosting algorithm with the subtree-based decision stamps as weak
learners.

Document Sentiment Classification. Pang et al. [1] attempted to classify
movie reviews. They applied to document sentiment classification a supervised
machine learning method which had succeeded in other document classification
tasks (e.g., on the task classifying articles of Reuters to 10 categories, Dumais
et al [8] achieved F-measure of 0.92 with SVMs. ). They used a word N-gram in
the dataset as bag-of-words features for their classifier. A word N-gram is a set
of N continuous words extracted from a sentence. The best results came from
word unigram-based model run through SVMs, with 82.9% accuracy.

Pang [2] also attempted to improve their classifier by using only subjective
sentences in the review. But accuracy of their method is less than that of the
classifier using full reviews, which was introduced in their former study [1].

Dave et al. [6] used machine learning methods to classify reviews on several
kinds of products. Unlike Pang’s research, they obtained the best accuracy rate
with word bigram-based classifier on their dataset. This result indicates that
the unigram-based model does not always perform the best and that the best
settings of the classifier is dependent on the data.

To use the prior knowledge besides a document, Mullen and Collier [10] at-
tempted to use the semantic orientation of words defined by Turney [7] and
several kinds of information from Internet and thesaurus. They evaluated on the
same dataset used in Pang et al.’s study [1] and achieved 84.6% accuracy with
the lemmatized word unigram and the semantic orientation of words.

To our knowledge, word order and syntactic relations between words in a
sentence have not been used for the document sentiment classification.

3 Our Approach

We propose to use word order and syntactic relations between words in a sen-
tence for a machine learning based document sentiment classifier. We give such
information as frequent sub-patterns of sentences in a document dataset: word
subsequences and dependency subtrees.

3.1 Word Subsequence

As shown in Figure 2, a word sequence is a structured representation of a sen-
tence. From the word sequence, we can obtain ordered words in the sentence.
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Fig. 2. A word sequence of a sentence “The film however is all good” and examples of

subsequences

We define a word subsequence of a word sequence as a sequence obtained by
removing zero or more words from the original sequence. In word subsequences,
the word order of the original sentence is preserved.

While word N-grams cover only cooccurrences of N continuous words in a
sentence, word subsequences cover cooccurrences of an arbitrary number of non-
continuous words as well as continuous words. Therefore incorporating the oc-
currences of subsequences into the classification appears to be effective.

For example, N-grams do not cover cooccurrence of “film” and “good”, when
another word appears between the two words as in Figure 2. On the contrary,
subsequences cover the pattern “film-good”, denoted by s in the figure.

3.2 Dependency Subtree

As shown in Figure 3, a dependency tree is a structured representation of a sen-
tence. The dependency tree expresses dependency between words in the sentence
by child-parent relationships of nodes. We define a dependency subtree of a de-
pendency tree as a tree obtained by removing zero or more nodes and branches
from the original tree. The dependency subtree preserves partial dependency
between the words in the original sentence. Since each node corresponding to a
word is connected by a branch, a dependency subtree would give richer syntactic
information than a word N-gram and a word subsequence.

Fig. 3. A dependency tree of a sentence “The film however is all good” and examples

of subtrees
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For example, in Figure 3, to express the relation between the words ”good”
and “film”, a dependency subtree t (denoted as (is(film)(good))) does not only
show the cooccurrence of “good” and “film”, but also guarantees that “good” and
“film” are syntactically connected by the word “is”.

3.3 Frequent Pattern Mining

The number of all sub-patterns of sentences in a document dataset tends to
be very large. Thus we consider not all sub-patterns but only all frequent sub-
patterns in the dataset. A sentence contains a pattern if and only if the pattern
is a subsequence or a subtree of the sentence. We then define the support of
a sub-pattern as the number of sentences containing the sub-pattern. If a sup-
port of a sub-pattern is a given support threshold or more, the sub-pattern is
frequent.

We mine all frequent sub-patterns from the dataset by the following mining
algorithms.

Frequent Subsequence Mining: Prefixspan [4]
Prefixspan introduced by Pei et al. [4] is an efficient algorithm for mining all the
frequent subsequences from a dataset consisting of sentences. First, the algorithm
starts with a set of frequent subsequences consisting of single items (in this paper,
corresponding to words). Then the algorithm expands each already-obtained fre-
quent subsequence of size k by attaching a new item to obtain frequent sequence
of size k + 1. By repeating the latter step recursively, the algorithm obtains all
frequent subsequences.

However, expanding a subsequence by attaching a new item to an arbitrary
position leads to duplicated enumeration of the same candidate subsequence.
To avoid such enumeration, the algorithm restricts the position to attach a new
item to the end of newly-obtained subsequence in left-to-right order.

Frequent Subtree Mining: FREQT [5]
FREQT introduced by Abe et al. [5] is an efficient algorithm to mine all fre-
quent subtrees from a dataset consisting of trees. First, the algorithm starts
with a set of frequent subtrees consisting of single nodes (in this paper, corre-
sponding to words). Then the algorithm expands each already-obtained frequent
subtree of size k by attaching a new node to obtain frequent tree of size k + 1.
By repeating the latter step recursively, the algorithm obtains all frequent sub-
trees.

However, expanding a subtree by attaching a new node to an arbitrary
position of the subtree leads to duplicated enumeration of the same candi-
date subtree. To avoid such enumeration, the algorithm restricts the position
to attach a new node to the end of newly-obtained subtree in depth-first
order.
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4 Experiment

4.1 Movie Review Dataset

We prepared two movie review datasets.
The first dataset, used by Pang et al. [1] and Mullen et al. [10], consists of

690 positive and 690 negative movie reviews. Following the experimental settings
presented in Pang et al. [1] and Mullen et al. [10], we used 3-fold cross validation
with this dataset for the evaluation.

The second dataset, used by Pang et al. [2], consists of 1000 positive and 1000
negative movie reviews. Following the experimental settings presented in Pang
et al. [2], we used 10-fold cross validation with this dataset for the evaluation.

4.2 Features

We extract word unigram, bigram, word subsequence and dependency subtree
patterns from the sentences in the dataset for features of our classifiers. Each
type of features is defined as follows.

– word unigram: uni
Unigram patterns which appear in at least 2 distinct sentences in the dataset.

– word bigram: bi
Bigram patterns which appear in at least 2 distinct sentences in the dataset.

– frequent word subsequence: seq
Frequent word subsequence patterns whose sizes are 2 or more. These pat-

Fig. 4. An example of a sentence and clauses obtained by splitting the sentence

terns are extracted from the dataset in the fashion mentioned in Section
3.31. We set the support threshold to 10. Since the number of frequent sub-
sequences usually grows exponentially with lengths of sequences for mining,
we do not use sentences but short clauses as the sequences. For example in
Figure 4, we regard each clause of this sentence as a word sequence. We split
a sentence to clauses with occurrences of the nodes labeled ′SBAR′, which
indicates a root of a subordinate clause, in a phrase structure tree of the sen-
tence 2. To further shorten sequences, we removed punctuations and words
tagged with a part-of-speech in Table 1. Words of these parts-of-speech are
presumably not a constituent of a subjective expression.

1 We use Prefixspan, which is available at http://www.chasen.org/~taku/software/.
2 In this paper, a phrase structure tree and part-of-speech tags of a sentence is given

with Charniak parser [3].
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Table 1. A list of Part-Of-Speech tags removed from word sequences of clauses

POS tag example POS tag example

AUX do done have is NNPS Americans Amharas

CC and both but either PDT all both half many

CD one-tenth ten million 0.5 POS ’ ’s

DT all an the them these this PRP hers herself him himself

EX there PRP$ her his mine my

FW gemeinschaft hund ich jeux RP aboard about across along

IN astride among uppon whether out SYM % & ’ ”

LS SP-44005 SP-44007 Second Third TO to

NNP Motown Venneboerger Ranzer WDT that what whatever which

– frequent dependency tree: dep
Frequent dependency subtree patterns whose sizes are 2 or more. These
patterns are extracted from the dataset in the fashion mentioned in Section
3.33. We set the support threshold to 10. To avoid mining noisy patterns,
we remove punctuations from the dataset.

We also extract another feature set whose elements are features consisting of
lemmatized words. As in the extraction of the features uni, bi, seq, dep described
above, we extract these lemmatized features (unil, bil, seql, depl).

To convert features of a document to an input of the machine-learning classi-
fier, we define a feature vector representation of the document. Each dimension
corresponds to a feature. The ith dimension’s value di is set to 1 if the ith feature
appears in this document, otherwise 0.

4.3 Classifiers and Tests

We used support vector machines (SVMs) with the linear kernel as a classifier
and the feature vector representation of each document normalized by 2-norm.
The linear kernel has a learning parameter C (called a soft margin parameter),
which needs adjustment. Since the results of the preliminary experiments in-
dicated the performance of the classifier are dependent on this parameter, we
carried out three kinds of cross-validation tests:

– test 1: Following past researches ([1], [2], [10]), we fix C as 1 in all learning
steps in each fold of the dataset. The result is used for comparison to the
past researches.

– test 2: Assuming that we can select the best value for C out of {e−2.0, e−1.5,
... , 1, ... , e2.0}, we report the average of the best accuracy rates of their folds
as final result. The result shows the potential performance of the classifier
with the features.

3 We use FREQT, which is available at http://www.chasen.org/~taku/software/.
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– test 3: In each fold, out of {e−2.0, e−1.5, ... , 1, ... , e2.0}, we predict a proper
value of C which gives the best accuracy rate of 5-fold cross-validation of the
training data. We then use the predicted C for learning the training data.
We report an average of these accuracy rates of their folds as final result.
Since proper C cannot be obtained before experiment, the result gives the
practical performance of the classifier with the features.

Since it takes too much time to evaluate all combinations of features, we first
select the best combination of bag-of-words features (we denote these features
as bow) according to the accuracy rate of test 2. We then evaluate the classifier
using combinations of the bow and word subsequence and/or dependency subtree
pattern features. We finally discuss the improvement of performance by adding
the sub-pattern features with the accuracy rate of test 1 and test 3.

4.4 Result and Discussion

The results of the experiment on the dataset 1 are shown in Table 2. The results
of the experiment on the dataset 2 are shown in Table 3.

Obviously, our approach is successful in both of the datasets.
In the test 1, our best classifier obtains 87.3% accuracy on the dataset 1 and

92.9% accuracy on the dataset 2. The comparison between these results and the
results of past researches ([1] [10] [2]) indicates that our method is more effective
for document sentiment classification than the past researches.

Table 2. Results for dataset 1

Features Acurracy(%)
test1 test2 test3

Pang et al. [1] 82.9 N/A N/A

Mullen et al. [10] 84.6 N/A N/A

word unigram (= uni) 83.0 83.7 83.0

lemma unigram (= unil) 82.8 83.8 83.2

word bigram (= bi) 79.6 80.4 80.1

lemma bigram (= bil) 80.4 80.9 80.7

uni + bi 83.8 84.6 84.0

uni + bil 83.6 84.2 83.5

unil + bi 84.4 84.8 84.6

unil + bil (= bow) 84.0 84.9 84.2

bow + seq 84.1 85.3 84.9

bow + seql 84.4 85.7 84.9

bow + dep 86.6 87.6 87.5

bow + depl 87.3 88.3 88.0

bow + seq + dep 86.2 87.2 87.2

bow + seq + depl 87.0 87.5 87.5

bow + seql + dep 86.5 87.5 87.0

bow + seql + depl 87.0 87.6 87.0

Table 3. Results for dataset 2

Features Acurracy(%)
test1 test2 test3

Pang et al. [2] 87.1 N/A N/A

word unigram (= uni) 87.1 88.1 87.0

lemma unigram (= unil) 86.4 86.9 85.9

word bigram (= bi) 84.2 85.3 85.1

lemma bigram (= bil) 84.3 85.2 84.7

uni + bi (= bow) 88.1 88.8 88.0

uni + bil 87.8 88.6 87.8

unil + bi 87.3 88.2 87.3

unil + bil 87.7 88.3 87.9

bow + seq 88.2 89.4 88.3

bow + seql 88.5 89.8 88.5

bow + dep 92.4 93.7 92.7

bow + depl 92.8 93.7 92.9

bow + seq + dep 92.6 93.5 92.8

bow + seq + depl 92.9 93.7 93.2

bow + seql + dep 92.6 93.2 93.0

bow + seql + depl 92.9 93.3 93.1
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In the test 3, our best classifier obtains 88.0% accuracy on the dataset 1
and 93.2% accuracy on the dataset 2. The comparison between these results
and the results obtained by the best bag-of-words classifiers in the test 3 indi-
cates that our classifiers are more effective for document sentiment classification
than the bag-of-words based classifiers. The contribution of dependency subtree
feature is large. Only using this feature with the best bag-of-words feature, we
obtained obviously better performance than the preceding bag-of-words based
classifiers.

Adding the word subsequence features slightly improves the baseline classifier
with bag-of-words features. Since our word pruning strategies is naive, there may
exist a more sophisticated strategy which gives higher performance.

The classifier using both word subsequences and dependency subtrees with
the best bag-of-words features yields almost the same performance as the classi-
fier using dependency trees and the best bag-of-words features. It suggests that
there exists large overlap between these two types of pattern features.

Opposite to Pang et al. [1], using word bigrams yields good influence to
the classification performance. We consider that the main reason of the dif-
ference is the setting of support threshold used to extract bigram patterns.
While our method used all bigram patterns which occur at least twice in the
dataset, Pang et al [1] used only patterns which occur at least 7 times in the
dataset.

Lemmatized features are not always more effective for classification than the
original ones. If the dataset is large, lemmatizing words may be harmful because
it ignores information in the conjugated forms. If the dataset is small, sub-
patterns consisting of unlemmatized words tend to be infrequent. Thus there is
a risk of missing sub-patterns which are useful for classification.

4.5 Weighted Patterns

A classifier, obtained by SVMs with the linear kernel, labels either of two distinct
classes to examples based on a weighted voting, where each voter corresponds
to a feature of SVMs. The absolute value of each weight indicates how large the
contribution of the feature is.

We observed pattern features with large weights in the SVM classifier with
the following features: uni, bi, seq and depl

4. We used all reviews in the dataset
2 as training data. The value of C was set to 1. In Table 4, we show some pat-
terns along with their weights. We could find several heavily-weighted patterns
which appear to be effective to detect sentiment polarity (e.g., ”stern”, ”pull
off”, ”little-life”, ”(without(doubt))” in Table 4). We also found an overlap of
patterns used for the classification. For instance, unigram pattern ”bad” and
”movie”, bigram pattern “bad movie”, word subsequence pattern “bad-movie”
and dependency subtree pattern “(movie(bad))” overlapped each other.

4 This combination of features follows our best classifier’s settings on the dataset 2.
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Table 4. Examples of patterns with their weights in the weight vector

the type of the pattern weight pattern

Word unigram (uni) 1.0618 hilarious
0.6221 masterpiece

-1.4265 stern
-0.3749 movie
-1.9937 bad

Word bigram (bi) 8.0561 pull off
0.8565 one of

-0.1150 little life
-0.3330 bad movie

Word subsequence (seq) -7.0200 little-life
0.2340 not-only-also
0.3497 good-film
0.3243 film-good

-0.5828 bad-movie
-0.0053 movie-bad

Dependency subtree (depl) 5.9784 (without(doubt))
0.0236 (film(good))

-1.1406 (should(have))
-0.8306 (movie(bad))

5 Conclusion

In this paper, we have shown the methods for incorporating word order and
syntactic relations between words in a sentence into the classification. We have
obtained sub-pattern features as information of word order and syntactic rela-
tions between words in a document by mining frequent sub-patterns from word
sequences and dependency trees in the dataset. In the experiments on the movie
review domain, our classifier with a bag-of-words feature and sub-pattern fea-
tures showed better performance than past classifiers. In future work, we would
like to incorporate discourse structures in a document into the classifier.
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Abstract. We present a method of classifier synthesis based on rough
set theory and hierarchical learning idea. The improvement of the gener-
ated classifiers is achieved by using concept ontology as a domain knowl-
edge. We examine the effectiveness of the proposed approach by com-
paring it with standard learning approaches with respect to different
criteria. Our experiments are performed on benchmark data set as well
as on artificial data sets generated by a road traffic simulator.

1 Introduction

Rough set theory has been introduced by [9] as a tool for concept approximation
from uncertainty. Till now, one can find many efficient applications of rough sets
in machine learning and data mining, since many problems like classification,
clustering or regression can be formulated as concept approximation problem
[4]. In a typical process of concept approximation we assume that there is given
information consisting of values of conditional and decision attributes on objects
from a finite subset (training set) of the universe and using this information one
should induce approximations of the concept over the whole universe.

In some learning tasks, e.g., identification of dangerous situations on the road
by unmanned vehicle aircraft (UAV), the target concept is too complex and it can
not be approximated directly from feature value vectors. The difficulty is based
either on the unlearnability of the hypothesis space or on the high complexity
of the the learning algorithm. In such cases, there is a need of using a domain
knowledge to improve the learning process. In this paper, we assume that domain
knowledge is given as a concept ontology, which can be understood as a treelike
structure with the target concept located at the root, with attributes (variables,
features) located at leaves, and with some additional concepts located in internal
nodes. With this assumption, the layered learning [15] seen as a generalization
of standard approach to concept approximation.

Given the concept ontology, the main idea is to gradually synthesize a target
concept from simpler ones. The importance of hierarchical concept synthesis is
now well recognized by researchers (see, e.g., [8] [11]). An idea of hierarchical
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concept synthesis, in the rough mereological and granular computing frameworks
has been developed (see, e.g., [11] [14]) and problems connected with compound
concept approximation are discussed, e.g., in [1] [8] [13].

In this paper we concentrate on concepts that are specified by decision classes
in decision systems [9]. The crucial for inducing concept approximations is to cre-
ate the description of concepts in such a way that makes it possible to maintain
the acceptable level of imprecision along all the way from basic attributes to final
decision. We discuss some strategies for concept composing based on rough set
theory. The effectiveness of layered learning approach and the comparison with
standard rule-based learning approach are performed with respect to generality
of concept approximation, preciseness of concept approximation, computation
time required for concept induction and concept description lengths.

2 Basic Notions

The problem of concept approximation can be treated as a problem of searching
for description (expressible in a given language) of an unknown concept.

Formally, given an universe X of objects and a concept C which can be
interpreted as a subset of X , the problem is to find a description of C which can
be expressed in a predefined descriptive language L. We assume that L consists
of such formulas that are interpretable as subsets of X . The approximation is
required to be as close to the original concept as possible.

In this paper, we assume that objects from X are described by finite set of
attributes (features) A = {a1, .., ak}. Each attribute a ∈ A corresponds to the
function a : X → Va where Va is called the domain of a. For any non-empty set
of attributes B ⊆ A and any object x ∈ X , we define the B-information vector
of x by: infB(x) = {(a, a(x)) : a ∈ B}. The set INFB(S) = {infB(x) : x ∈ U} is
called the B-information set. The language L, which is used to describe approx-
imations of the given concept, consists of Boolean expressions over descriptors
of the form (attribute = value) or (attribute ∈ set of values).

Usually, the concept approximation problem is formulated as an inductive
learning problem, i.e., the problem of searching for a (approximated) description
of a concept C based on a finite set of examples U ⊂ X , called the training
set. The closeness of the approximation to the original concept can be measured
by different criteria like accuracy, description length, etc., which can be also
estimated by test examples.

The input data for concept approximation problem is given by decision table
which is a tuple S = (U,A, dec), where U is a non-empty, finite set of training
objects, A is a non-empty, finite set, of attributes and dec /∈ A is a distinguished
attribute called decision. If C ⊂ X is a concept to be approximated, then the
decision attribute dec is a characteristic function of concept C, i.e., if x ∈ C
we have dec(x) = yes, otherwise dec(x) = no. In general, the decision attribute
dec can describe several disjoint concepts. Therefore, without loss of generality,
we assume that the domain of the decision dec is finite and equal to Vdec =
{1, . . . , d}. For any k ∈ Vdec, the set CLASSk = {x ∈ U : dec(x) = k} is called
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the kth decision class of S. The decision dec determines a partition of U into
decision classes, i.e., U = CLASS1 ∪ . . . ∪ CLASSd.

The approximated description of a concept can be induced by any learning
algorithm from inductive learning area. In the next Section we concentrate on
methods based on layered learning and rough set theory.

3 Rough Sets and Concept Approximation Problem

Let C ⊆ X be a concept and let S = (U,A, dec) be a decision table describing
the training set U ⊆ X . Any pair P = (L,U) is called rough approximation of C
(see [1] [9]) if it satisfies the following conditions:

1. L ⊆ U ⊆ X ;
2. L,U are expressible in the language L;
3. L ∩ U ⊆ C ∩ U ⊆ U ∩ U ;
4. L is maximal and U is minimal among those L-definable sets satisfying 3.

The sets L and U are called the lower approximation and the upper approxi-
mation of the concept C, respectively. The set BN = U−L is called the boundary
region of approximation of C. For objects x ∈ U, we say that “probably, x is in
C”. The concept C is called rough with respect to its approximations (L,U) if
L = U, otherwise C is called crisp in X .

The condition (4) in the above list can be substituted by inclusion to a degree
to make it possible to induce approximations of higher quality of the concept on
the whole universe X . In practical applications the last condition in the above
definition can be hard to satisfy. Hence, by using some heuristics we construct
sub-optimal instead of maximal or minimal sets.

3.1 Rough Classifier

The rough approximation of a concept can be also defined by means of a rough
membership function. A function μC : X → [0, 1] is called a rough membership
function of the concept C ⊆ X if, and only if (LμC

,UμC
) is a rough approxima-

tion of C, where LμC
= {x ∈ X : μC(x) = 1} and UμC

= {x ∈ X : μC(x) > 0}
(see [1]). The rough membership function can be treated as a fuzzyfication of
rough approximation. It makes the translation from rough approximation into
membership function. The main feature that stands out rough membership func-
tions is related to the fact that it is derived from data. Any algorithm that
computes the value of a rough membership function μC(x) having information
vector inf(x) of an object x ∈ X as an input, is called the rough classifier.

Rough classifiers are constructed from training decision table. Many methods
of construction of rough classifiers have been proposed, e.g., the classical method
based on reducts [9][10], the method based on k-NN classifiers [1], or the method
based on decision rules [1]. Let us remind the Rough Set based algorithm, called
RS algorithm, that constructs rough classifiers from decision rules. This method
will be improved in the next section.
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Let S = (U,A, dec) be a given decision table. The first step of RS algorithm
is construction of some decision rules, i.e., implications of a form

r ≡
df

(ai1 = v1) ∧ ... ∧ (aim
= vm)⇒ (dec = k) (1)

where aij
∈ A, vj ∈ Vaij

and k ∈ Vdec. Searching for short, strong decision
rules with high confidence from a given decision table is a big challenge for data
mining. Some methods based on rough set theory have been presented in [3] [5]
[10] [12]. Let RULES(S) be a set of decision rules induced from S by one of
the mentioned rule extraction methods. One can define the rough membership
function μk : X → [0, 1] for the concept determined by CLASSk as follows:

1. For any object x ∈ X , let MatchRules(S, x) be the set of rules which are sup-
ported by x. Let Ryes be the set of all decision rules from MatchRules(S, x)
for kth class and let Rno be the remainder of Ryes.

2. We define two real values wyes, wno by

wyes =
∑

r∈Ryes

strength(r) and wno =
∑

r∈Rno

strength(r)

where strength(r) is a normalized function depending on length, support,
confidence of r and some global information about the decision table S like
table size, class distribution (see [12][1]).

3. The value of μk(x) is defined by:

μk(x) =

⎧⎪⎪⎨
⎪⎪⎩

undetermined if max(wyes, wno) < ω
0 if wno ≥ max{wyes + θ, ω}
1 if wyes ≥ max{wno + θ, ω}
θ+(wyes−wno)

2θ in other cases

Parameters ω, θ should be tuned by the user to control of the size of boundary
region. They are very important in layered learning approach based on rough
set theory.

3.2 Construction of Complex Rough Classifier from Concept
Ontology

In this section we describe a strategy that learns to approximate the concept
established on the higher level of a given ontology by composing approximations
of concepts located at the lower level. We will discuss the method that gives us
the ability to control the level of the approximation quality along all the way
from attributes (basic concepts) to the target concept.

Let us assume that a concept hierarchy (or a ontology of concepts) is given.
The concept hierarchy should contain either inference diagram or dependence
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diagram that connects the target concept with input attribute through inter-
mediate concepts. Formally, any concept hierarchy can be treated as a treelike
structure H = (C,R), where C is a set of all concepts in the hierarchy including
basic concepts (input attributes), intermediated concepts and target concept and
R ⊂ C × C is a dependency relation between concepts from C. Usually, concept
hierarchy is a rooted tree including target concept at root and input attributes
at leaves. We also assume that concepts are divided into levels in such a way
that every concept is connected with concepts in the lower levels only. Some
examples of concept hierarchy are presented in Fig. 2 and Fig. 4.

In Section 3.1, we presented a classical approach (the RS algorithm) to con-
cept approximation problem. This algorithm works for flat hierarchy of concepts
(i.e., the target concept (decision attribute) is connected directly to input at-
tributes). The specification of RS algorithm is as follows:

Input: Given decision table SC = (U,AC , decC) for a flat concept hierarchy
(containing C on the top and attributes from AC on the bottom);

Parameters: ωC , θC ;
Output: Approximation of C, i.e., such a set of hypothetical classifiers hC that

indicates the membership of any object x (x not necessary belongs to
U) to the concept C. Let us suppose that hC(x) = {μC(x), μC(x)},
where C is a complement of the concept C.

For more complicated concept hierarchies, we can use the RS algorithm as
a building block to develop a layered learning algorithm. The idea is to apply
the RS algorithm to approximate the successive concepts through the hierar-
chy (from leaves to target concepts). Let prev(C) = {C1, ..., Cm} be the set of
concepts in the lower layers, which are connected with C in the hierarchy. The
rough approximation of the concept C can be determined by two steps:

1. Construct a decision table SC = (U,AC , decC) appropriated the concept C;
2. Apply RS algorithm to extract an approximation of C from SC ;

The main trouble in layered learning algorithms is based on the construction
of an adequate decision table. In this paper, we assume that the set of training
objects U is common for the whole hierarchy. The set of attributes AC is strictly
related to concepts C1, ..., Cm in the set prev(C), i.e., AC = hC1∪hC2∪ ...∪hCm

,
where hCi

denotes the set of hypothetical attributes related to the concept Ci.
If Ci is an input attribute a ∈ A then hCi

(x) = {a(x)}, otherwise hC(x) =
{μC(x), μC(x)}. The idea is illustrated in Fig. 1.

The problem which often occurs in layered learning algorithm is related to
the lack of decision attributes for intermediate concepts (see Section 4.1). In such
situations, we use a supervised clustering algorithm (using decision attribute of
the target concept as a class attribute) to create a synthetic decision attribute.

A training set for layered learning is represented by decision table SH =
(U,A,D), where D is a set of decision attributes corresponding to all interme-
diate concepts and to the target concept. Decision values indicate if an object
belong to the given concept in the ontology. The most advanced feature of the
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Fig. 1. The construction of decision table for a higher level concept using rough ap-

proximation of concepts from lower level

proposed method is the possibility of tuning the quality of concept approxima-
tion process via the parameters ωC , θC . More details about this problem will
be discussed in our next contribution. The layered learning algorithm based on
rough set theory is presented in Algorithm 1.

Algorithm 1. Layered learning algorithm
Input: Decision system S = (U, A, D), concept hierarchy H;
Output: Hypothetical attributes of all concepts in the hierarchy
1: for l := 0 to max level do
2: for (any concept Ck at the level l in H) do
3: if (Ck = a ∈ A) then
4: hk := {a} // Ck is an input attribute
5: else
6: Uk := U ; Ak :=

⋃
C∈prev(Ck) hC ;

7: Apply the RS algorithm to decision table SCk = (Uk, Ak, decCk) to generate
the rough approximation μCk of the concept Ck and μCk

of its complement;
8: set hk(x) := μCk , μCk

for all objects x ∈ U ;
9: end if

10: end for
11: end for

4 Experimental Results

We have implemented the proposed solution on the basis of RSES system [2]. To
verify a quality of hierarchical classifiers we performed the following experiments.

4.1 Nursery Data Set

This is a real-world model developed to rank applications for nursery schools
[7]. The concept ontology is presented in Figure 2. The data set consists of
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NURSERY : not recom, recommend, very recom, priority, spec prior
|−→ EMPLOY : Undefined (employment of parents and child’s nursery)
| |−→ parents : usual, pretentious, great pret
| |−→ has nurs : proper, less proper, improper, critical, very crit
| STRUCT FINAN : Undefined (family structure and financial standings)
| |−→ STRUCTURE: Undefined (family structure)
| | |−→ form : complete, completed, incomplete, foster
| | |−→ children : 1, 2, 3, more
| |−→ housing : convenient, less conv, critical
| |−→ finance : convenient, inconv
|−→ SOC HEALTH : Undefined (social and health picture of the family)

|−→ social : non-prob, slightly prob, problematic
|−→ health : recommended, priority, not recom

Fig. 2. The ontology of concepts in NURSERY data set

Table 1. Comparison results for Nursery data set achieved on 50% cases for training

rule-based classifier using Layered learning
original attributes only using intermediate concepts

Classification Accuracy 83.4 99.9%

Coverage 85.3% 100%

Nr of rules 634 42 (for the target concept)
92 (for intermediate concepts)

12960 objects and 8 input attributes which are printed in lowercase. Besides
the target concept (NURSERY) the model includes four undefine intermediate
concepts: EMPLOY, STRUCT FINAN, STRUCTURE, SOC HEALTH. To ap-
proximate intermediate concepts we have applied a supervised clustering algo-
rithm, in which the similarity between two vectors is determined by a distance
between their class distributions. Next, we use rule based algorithm to approxi-
mate the target concept. The comparison results are presented in Table 1.

4.2 Road Simulator

Learning to recognize and predict traffic situations on the road is the main issue
in many unmanned vehicle aircraft (UVA) projects. It is a good example of
hierarchical concept approximation problem. Some exemplary concepts and a
dependency diagram between those concepts are shown in Fig. 4. Definitions
of concepts are given in a form of a question which one can answer YES, NO
or NULL (does not concern). We demonstrate the proposed layered learning
approach on the simulation system called road simulator. The detail description
of road simulator has been presented in [6].

Road simulator is a computer tool generating data sets consisting of recording
vehicle movements on the roads and at the crossroads. Such data sets are next
used to learn and test complex concept classifiers working on information coming
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Fig. 3. Left: the board of simulation; Right: given vehicle and five vehicles around him

Fig. 4. The relationship diagram for presented concepts

from different devices (sensors) monitoring the situation on the road. During
the simulation data may be generated and stored in a text file in a form of
a rectangular table (information system). Each line of the table depicts the
situation of a single vehicle and contains the sensors’ and concepts’ values for
the vehicle and its neighboring vehicles, see Fig. 3.

Experiment Setup: We have generated 6 training data sets: c10 s100, c10 s200,
c10 s300, c10 s400, c10 s500, c20 s500 and 6 corresponding testing data sets
named by c10 s100N, c10 s200N, c10 s300N, c10 s400N, c10 s500N, c20 s500N.
All data sets consists of 100 attributes. The smallest data set consists of above
700 situations (100 simulation units) and the largest data set consists of above
8000 situations (500 simulation units).

We compare the accuracy of two classifiers, i.e., RS: the standard classifier
induced by the rule set method, and RS-L: the hierarchical classifier induced by
the RS-layered learning method. The comparison results are performed with re-
spect to the accuracy of classification, covering rate of new cases, and computing
time necessary for classifier synthesis.
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Table 2. Classification accuracy of a standard and hierarchical classifiers

Accuracy Coverage
Total Class NO Total Class NO

RS RS-L RS RS-L RS RS-L RS RS-L

c10 s100N 0.94 0.97 0 0 0.44 0.72 0.50 0.38

c10 s200N 0.99 0.96 0.75 0.60 0.72 0.73 0.50 0.63

c10 s300N 0.99 0.98 0 0.78 0.47 0.68 0.10 0.44

c10 s400N 0.96 0.77 0.57 0.64 0.74 0.90 0.23 0.35

c10 s500N 0.96 0.89 0.30 0.80 0.72 0.86 0.40 0.69

c20 s500N 0.99 0.89 0.44 0.93 0.62 0.89 0.17 0.86

Average 0.97 0.91 0.34 0.63 0.62 0.79 0.32 0.55

Table 3. Time for standard and hierarchical classifier generation (all experiments were

performed on computer with processor AMD Athlon 1.4GHz., 256MB RAM)

Tables RS RS-L Speed up
ratio

c10 s100 94 s 2.3 s 40

c10 s200 714 s 6.7 s 106

c10 s300 1450 s 10.6 s 136

c10 s400 2103 s 34.4 s 60

c10 s500 3586 s 38.9 s 92

c20 s500 10209 s 98s 104

Average 90

Classification Accuracy: Similarly to real life situations, we are interested on
the accuracy and the coverage of classifiers on the decision class “safe driving =
NO”, i.e., dangerous situations. This is a issue for this problem, since datasets
are is unbalanced (the concept states only 4% - 9% of training sets).

Table 2 presents the classification accuracy of RS and RS-L classifiers. One
can see that the hierarchical classifier showed to be much better than the stan-
dard classifier for this class. Accuracy of ”NO” class of the hierarchical classifier
is quite high when training sets reach a sufficient size. The generality of classi-
fiers usually is evaluated by the recognition ability for unseen objects. One can
observe the similar scenarios to the accuracy degree. The recognition rate of
dangerous situations is very poor in the case of the standard classifier. One can
see in Table 2 the improvement on coverage of the hierarchical classifier.

Computing Speed: The layered learning approach also shows a tremendous
advantage with respect to the computation time. One can see in Table 3 that
speed up ratio of the layered learning approach to the standard one reaches from
40 to 130 times.
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5 Conclusion

We presented a new method for improving rough classifiers using concept ontol-
ogy. It is based on the layered learning approach. Unlike traditional approach, in
the layered learning approach the concept approximations are induced not only
from accessed data sets but also from expert’s domain knowledge, which is nec-
essary to created an concept ontology. In the paper, we assume that knowledge
is represented by concept dependency hierarchy. The layered learning approach
showed to be promising for the complex concept synthesis. The advantages of
this new approach in comparison to the standard approach have been illustrated
by experiments with the road traffic simulator.
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Abstract. In this paper, we explore a new problem of ”temporal dense
region query” to discover the dense regions in the constrainted time inter-
vals which can be separated or not. A Querying tEmporal Dense Region
framework (abbreviated as QED) proposed to deal with this problem
consists of two phases: (1) an offline maintaining phase, to maintain the
statistics of data by constructing a number of summarized structures,
RF-trees; (2) an online query processing phase, to provide an efficient
algorithm to execute queries on the RF-trees. The QED framework has
the advantage that by using the summarized structures, RF-trees, the
queries can be executed efficiently without accessing the raw data. In
addition, a number of RF-trees can be merged with one another effi-
ciently such that the queries will be executed efficiently on the combined
RF-tree. As validated by our empirical studies, the QED framework per-
forms very efficiently while producing the results of high quality.

Keywords: Temporal dense region query, dense region query.

1 Introduction

Region-oriented queries have been recognized as important operations in many
applications for the purpose of locating the regions satisfying certain conditions,
e.g., those on density, total area, etc. [1][4][5][6][7]. In this paper, we focus on
the query to find all dense regions whose densities are larger than their surroud-
ing regions. In the literature, such queries are usually called as “dense region
queries”, and the dense region can be identified by examining whether its den-
sity exceeds a density threshold. The previous work STING [6] conducted a study
on speeding up the process of answering region-oriented queries by constructing
an index structure to capture the statistical information of the data. Thus the
queries can be executed efficiently by using the index structure without directly
accessing the raw data.

However, previous research tends to ignore the time feature of the data. They
treat all data as one large segment, and execute queries over the entire database.
However, in practice, the characteristic of the data may change over time. It is
noted that some dense regions may only exist in certain time intervals but will not
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be discovered if taking all data records into account since their average densities
may not exceed the density threshold. Therefore, discovering dense regions over
different time intervals is crucial for users to get the interesting patterns hidden
in data.

To discover such temporal patterns, we explore in this paper a novel problem,
named ”temporal dense region query” to address the dense region discovery in
constrainted time intervals. The time constraint will be represented by a contin-
uous time interval such as (6AM˜8AM), or a set of separated time intervals, such
as (6AM˜8AM) and (9AM˜10AM). The problem of temporal dense region query
is to find the dense regions in the queried time intervals. However, it is infeasible
for the previous work on dense region queries to efficiently execute the temporal
dense region queries. Because the queried time intervals are unknown in advance,
the direct extension of their methods would be to delay the construction of in-
dex structures until the user queries the dataset, which is, however, inefficient
for an interactive query environment. To the best of knowledge, despite of its
importance, the problem of temporal dense region query had not been explicitly
studied before.

Consequently, we devise in this paper a ”Querying tEmporal Dense region”
framework (abbreviated as QED), to execute temporal dense region queries.
The QED framework consists of two phases: (1) an offline maintaining phase, to
maintain the summarized structures of the evolving data; (2) an online query
processing phase, to provide an efficient algorithm to execute queries on the
summarized structures. Note that since the query processing is only applied to
the summarized structures rather than to the original data points, the QED
framework proposed is very efficient in practice. Furthermore, in order to sup-
port the diverse kinds of time intervals for dense region discovery, a number of
base time slots are provided in advance for users to specify the time periods of
interest, where the time slots are derived by segmenting the data into a number
of partitions. Thus users will specify the time intervals by a number of time slots
which can be separated or not. However the queried time periods are unknown
when the data are summarized in the offline maintaining phase. It is challenging
to summarize adequate statistics for queries with different time slots to be ex-
ecuted efficiently in the online phase. Therefore a novel summarized structure,
referred to as RF-tree (standing for Region Feature tree), is proposed, and it
has the property that a number of RF-trees can be merged with one another
efficiently. Explicitly, in the offline phase a RF-tree will be constructed for each
time slot, and in the online phase the queries will be executed efficiently on the
RF-tree derived by merging the RF-trees with respect to the queried time slots.
As validated by our experiments, the QED framework performs very efficiently
while producing query results of very high quality.

The rest of this paper is organized as follows. In Section 2, the problem
of temporal dense region query is explored. The offline maintaining phase of
the QED framework is presented in Section 3, and the online discovering phase
is described in Section 4. In Section 5 the empirical studies are conducted to
evaluate the performance of QED. This paper concludes with Section 6.



QED: An Efficient Framework for Temporal Region Query Processing 325

2 Temporal Dense Region Query

2.1 Problem Description

There are two concepts in the temporal dense region query: one is the dense
region; the other is the set of time intervals to be queried for dense regions.

Assume that the data records contained in the d−dimensional dataset are
viewed as points in the d-dimensional data space constructed by the d attributes.
In this paper, we use the grid-based approach to discover the dense regions.
Initially the data space is partitioned into a number of small and non-overlapping
cells which are obtained by partitioning each of the d dimensions into δ equal-
length intervals. A cell is called a ”dense cell” if it contains points exceeding a
predetermined density threshold ρ. Thus based on these dense cells, the dense
regions will be formed by a set of connected dense cells.

In addition, a number of ”time slots” are provided in advance for users to
specify a variety of time periods of interest. These time slots are obtained by
segmenting the data points with a time granularity, e.g. week, month, year, etc.
Two time slots are called separated if there are one or more slots between them.
Thus the time period specified in the query will be represented by one or some
separated time slots.

Problem Definition: (Temporal Dense Region Query)
Given a set of time slots, and the density threshold ρ, find the dense regions in
those data points contained in the queried time slots, where each of the dense
regions is formed by a set of connected dense cells with the number of data
points in each of them exceeding ρ.

2.2 Overview of the QED Framework

A ”Querying tEmporal Dense region” framework (abbreviated as QED), is pro-
posed in this paper to deal with the temporal dense region query. The QED
framework consists of two phases: (1) an offline maintaining phase, to maintain
the statistics of the data; (2) an online query processing phase, to execute tem-
poral dense region queries on the summarized statistics.

Phase 1: Offline maintaining phase
The main task of the offline maintaining phase is to maintain the statistics of the
data such that queries can be executed on the summarized information instead
of the original data points, thereby enabling the dense region discovery to be
very efficient. It is a two-step approach described as follows:

Step1: Partition the data set: The data set is partitioned into time slots.

Step2: Construct the RF-tree: For each time slot, a summarized structure,
RF-tree is constructed to maintain the statistics of the data points. The RF-tree
has the advantage that a number of RF-trees can be merged with one another
efficiently. Therefore in the online phase, the overall statistics in the queried
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time slots can be obtained by combining the corresponding RF-trees, and then
queries can be executed on the combined RF-tree.

Phase 2: Online query processing phase
When the user issues the queries, it is the main task of the online processing
phase to process these queries. The online query processing phase is also a two-
step approach:

Step1: Combine the RF-trees: Those RF-trees in the queried time slots are
combined into a RF-tree by an efficient algorithm to describe in Section 4.1.

Step2: Execute the query: The query is executed on the combined RF-tree
to discover the dense regions with respect to the density threshold δ specified in
the query.

3 Offline Maintaining Phase

In the offline maintaining phase, an RF-tree will be constructed for each time slot
to maintain the statistics of the data. In Section 3.1, we will give the definition of
the uniform region which is discovered in the RF-tree for summarizing the cells
in the data space. The algorithm for constructing the RF-tree will be described
in Section 3.2.

3.1 The Definition of the Uniform Region

In the RF-tree, the entire data space is represented by a numberofnon-overlapped
regions which are defined as follows:

Definition 1 (region): A region in the d-dimensional data space is defined
by the intersection of one interval from each of the d attributes, and can be
represented by a Disjunctive Normal Form expression (l1 ≤ A1 < h1) ∧ · · ·∧(ld ≤
Ad < hd).

Definition 2 (region feature): A Region Feature of a region R in the d−
dimensional data space is defined as a binary: RF =(NR, Nc) where NR is the
number of data points contained in region R, and Nc is the corresponding number
of cells.

It is noted that by setting δ to be a larger value the cells in the data space will
become smaller. Therefore, if the cells in a region have nearly the same number
of data contained in them, the total data points in this region can be viewed as
approximately uniformly distributed in it. Such a region is called as ”uniform
region”. In a uniform region, the number of data points contained in each of the
cells will be very close to the value NR/Nc, which is the average number of data
points in a cell and is calculated from the RF of this uniform region. Thus, in the
RF-tree the uniform region is used to summarize the cells contained in it by taking
the average value, NR/Nc, to approximate the number of data points in each cell.

To identify the uniform regions in the data space, we use an entropy-based
technique. The entropy is in essence a measure of the uncertainty of a random
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variable[2]. When the random variable follows the uniform distribution, we are
most uncertain about the outcome and the corresponding entropy is the highest. In
light of the entropy principle, a uniform region will typically has a higher entropy
than a non-uniform one. In the following, we first define the entropy of a region,
and then use it to identify a uniform region. Let the RF of a region be denoted as
(NR, Nc). Also, n(ci) denotes the number of data points contained in the cell ci.
Therefore the entropy of the region R, H(R), can be defined as follows:

Definition 3: (entropy of a region)

H(R) = −
Nc∑
i=1

n(ci)
NR

× log
n(ci)
NR

, if n(ci) = 0.

Consequently, we can judge whether a region R is a uniform region or not by
first calculating the maximal entropy of this region, Hmax(R), and then compar-
ing H(R) with Hmax(R). Note that the maximum entropy of a random variable
is proved to be the value, -log 1

|χ| , where |χ| denotes the number of possible
outcomes of this random variable [2]. Analogously, the maximum entropy of a
region R is defined as follows:

Definition 4 (maximum entropy of a region): As defined above, Nc is the num-
ber of cells contained in the region R. The maximum entropy of the region R is
defined as

Hmax(R) = − log
1
Nc

.

Then, with a given similarity threshold θ, a uniform region is defined as
follows:

Definition 5 (uniform region): A region R is a uniform region if

H(R)
Hmax(R)

≥ θ.

3.2 Algorithm for Constructing the RF-Tree

In this section we will introduce the RF-tree constructed for each time slot in the
offline maintaining phase. The RF-tree is a hierarchical structure constructed to
discover the uniform regions by summarizing the cells in the data space.

The process of constructing the RF-tree is a top-down and recursive approach.
Initially, the root of the RF-tree is set as the entire data space. Let the root be
at level 1 and its children at level 2, etc. Each node in the RF-tree represents
a region in the data space, and the node in level i corresponds to the union of
regions of its children at level i + 1. Each node in the RF-tree will be examined
whether it is a uniform region by applying the Definition 5 with the similarity
threshold θ. Thus, if it is examined as a uniform region, it will become a leaf
node; otherwise, it will be a nonleaf node and its children will be derived by
partitioning the region into a set of subregions, which are obtained by segmenting
the interval of each of the dimension of this region into two intervals.
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4 Online Query Processing Phase

The main task of the online query processing phase is to execute the query by
using the RF-trees. Note that the overall statistics of the data in the queried time
slots for dense region discovery can be derived by combining the RF-trees in the
queried time slots. Section 4.1 introduces an efficient algorithm for combining
the RF-trees in the queried time slots. Then, the dense region discovery will be
executed on the combined RF-tree, which is described in Section 4.2.

4.1 Algorithm for Combining the RF-Trees

In the following, algorithm COMB (combine RF-trees) outlined below is to
combine two RF-trees, and it can be easily extended to deal with more than
two RF-trees. Algorithm COMB is a top-down approach. Let the roots of the
two RF-trees be denoted as r1, and r2, and the root of the combined RF-tree
be denoted as rb. Initially in Step 3, rb is set as the entire data space. In Step 4
and Step 5, the RF (Region Feature) of rb is set up according to the RF of r1
and r2. Then in Step 6, procedure SC (Set up Children) is called to set up the
children of rb by taking r1, r2, and rb as its inputs n1, n1, and nb.

Procedure SC is to set up the children of input node nb by taking into
consideration of the three cases of n1, and n2: (1) n1 and n2 are both uniform
(Step 3 to Step 5); (2) n1 and n2 are both non-uniform (Step 6 to Step 25); (3)
only one of n1 and n2 is uniform (Step 26 to Step 38).

<Case 1>: n1 and n2 are both uniform. That is, the data points are uniformly
distributed in n1 and n2. It will be also uniform if all data points are taken
into consideration such that nb will be a uniform region. Thus, procedure SC
terminates.

<Case 2>: n1 and n2 are both non-uniform. Thus, n1 and n2 will both have
at most 2d children. In Step 7, the 2d children of nb are first generated by
partitioning the region of nb into 2d subregions. For each child C, in Step 10 and
Step 11, the node C1 and C2 which are child nodes of n1 and n2 with respect to
the same region of C are identified. Then, in Step 12 to Step 24, the RF of C
will be set up according to the RF of C1 and C2. Specifically, in Step 14, only C1

is identified such that the children of C will be just set up with respect to the
corresponding children of C1 by calling procedure AC (Assign Children), and
the descendants of C are set up recursively. Otherwise, in Step 24, the children
of C will be set up by calling procedure SC to recursively combine the identified
C1 and C2.

<Case 3>: only one of n1 and n2 is uniform. Without loss of generality, assume
that n1 is non-uniform and n2 is uniform such that n1 will have at most 2d

children. In Step 28, the 2d children of nb are first generated, and then for each
child C, the RF of C will be set up in Step 30 to Step 37. Specifically, in Step
31, for each child C, C.p denotes the average number of data derived from the
uniform node n2. Note that in Step 37 by calling procedure AC, the children of
C will be just set up with respect to the corresponding children of C1, and C.p
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will be further averaged to the children of C if C will have children set up in
procedure AC.

Note that procedure SC is applied recursively to combine the nodes in two
RF-trees. It will terminate if Case 1 is encountered as shown in Step 3, or n1

and n2 are cells as shown in Step 1.

Algorithm COMB: Combine RF-trees
Input: RF-tree1, RF-tree2
Output: the combined RF-tree
1. // r1 is the root of the RF-tree1, r2 is the root of the RF-tree2
2. // rb is the root of the combined RF-tree
3. rb = entire data space
4. rb.NR = r1.NR + r2.NR

5. rb.Nc = r1.Nc

6. SC(r1, r2, rb)
Procedure SC: Set up Children
Input: (node n1, node n2, node nb)
1. if (n1 is a cell & n2 is a cell)
2. return
3. if (n1 is uniform & n2 is uniform) { //Case 1
4. return
5. }
6. else if (n1 is non-uniform & n2 is non-uniform) { //Case 2
7. Generate 2d children of node nb

8. For each child node C
9. C.Nc = (nb.Nc)/2d

10. C1 = the child of n1 with respect to the same region of C
11. C2 = the child of n2 with respect to the same region of C
12. if (C1 == null && C2 == null)
13. remove the chid node C from nb

14. else if (C1! = null && C2 == null)
15. C.NR = C1.NR

16. C.p = 0
17. AC(C1, C)
18. else if (C1 == null && C2! = null)
19. C.NR = C2.NR

20. C.p = 0
21. AC(C2, C)
22. else
23. C.NR = C1.NR + C2.NR

24. SC(C1, C2, C)
25. }
26. else { // Case 3
27. // Suppose n1 is non-uniform, and n2 is uniform
28. Generate 2d children of node nb

29. For each child node C
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30. C.Nc = (nb.Nc)/2d

31. C.p = (n2.NR)/2d

32. C1 = find a child of n1 with respect to the same region of C
33. if (C1 == null)
34. C.NR = C.p
35. else if (C1! = null )
36. C.NR = C.p + C1.NR

37. AC(C1, C)
38 }
Procedure AC: Assign Children
Input: (node n1, node nb)
1. if (n1 has no children)
2. return
3. else
4. For each child node C1 of n1

5. Generate a child C with respect to the same region of C1

6. if (nb.p ! = 0)
7. C.p = (nb.p)/2d

8. else
9. C.p = 0
10. C.NR = C1.NR + C.p
11. C.Nc = C1.Nc

12. AC(C1, C)

4.2 Execute the Temporal Dense Region Query

After the combing process, the query will be executed on the combined RF-tree.
Initially all leaf nodes in the combined RF-tree are examined to discover the
dense cells in the data space, and then the leaf nodes containing dense cells will
be put into a queue for further dense region discovery. Note that the leaf nodes
will be of two cases : (1) a cell, and (2) a uniform region. For the case (1), if the
number of data points it contains exceeds the density threshold ρ, it is identified
as a dense cell and is put into the queue. For the case (2), the cells contained
in this uniform region will have the same average number of data points, i.e.
NR/Nc, calculated from its RF. Thus these cells will be identified as dense ones
if the value of NR/Nc exceeds the density threshold ρ, and then this uniform
region will be put into the queue.

After all leaf nodes are examined, the dense regions can be discovered by
grouping the connected ones in the queue. This can be executed by a breadth-
first search. Each time we take out a leaf node ni from the queue, and examine
the rest ones whether they are connected to ni. If no one is identified, output
the node ni to be a dense region. Otherwise, the identified nodes will be first
taken out from the queue, and then the rest nodes are recursively examined on
whether they are connected to the previous identified nodes. Finally, the leaf
nodes connected to ni will become a dense region.
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Fig. 1. Illustration of the quality of the RF-tree

5 Experiments

5.1 Quality of the RF-Tree

To evaluate the quality of the RF-tree, we generate a two dimensional data set
of 5000 data points, and δ is set to 16. The density threshold ρ is set to 1.1
times the expectation of data points in each cell under uniform distribution, i.e.
1.1 × (5000/162). The expected result is shown in Figure 1(a). Figure 1(b) is
the result of executing the query on the RF-tree constructed by setting θ to 0.9.
From Figure 1, it is seen that the RF-tree is able to successfully discover the
dense regions and the query result is very close to the expected one.

5.2 Performance of Combining RF-Trees

In this experiment the scalability of the QED on queries with different number of
time slots is studied. One real data set is used, which is the census-income data
of 25,0000 data points from the UCI KDD Archive [3] with three attributes,
i.e. age, income, weight. The total data points are partitioned into five time
slots W1 . . .W5 such that there are 50000 data points in each one. We test the
performance with queries with the number of queried time slots varying from
1 to 5. There are five queries with one time slot, i.e. W1,W2,W3,W4, and W5.
There are ten ones with two time slots, i.e., W1W2,W1W3,W1W4,...,etc. For each
query, the density threshold ρ is set to 1.1 times of the expectation of data points
in each cell under uniform distribution.

Figure 2(a) shows the relative execution time of STING and RF-tree on varied
number of time slots. The execution time for queries with the same number of
time slots is averaged. In this experiment, STING is extended to deal with the
temporal dense region queries with two steps: (1) constructing their proposed

 

Fig. 2. The performance of querying on the combined RF-tree

a) Expected result of the data set (b) Result of discovering from RF-treea) Expected result of the data set (b) Result of discovering from RF-tree
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index hierarchy on all data in the queried time slots, and (2) using the index
hierarchy to answer queries. As shown in Figure 2(a), QED outperforms the
extended STING algorithm about by very prominent margin. Note that with
the efficient combining procedure for the RF-trees, the execution time of QED
only slightly increases when the number of queried time slots increases.

In addition, in Figure 2(b) we use the metric of recall and precision to evaluate
the qualities of query result of the QED framework. Recall is defined as the
percentage of the expected dense cells identified by QED. Precision is defined
as the percentage of the dense cells identified in QED truly dense expectedly.
F-score is defined as the value of (2×recall×precision)/(recall+precision). As
shown in Figure 2(b), all of the expected dense cells are discovered by QED
because the recall are all ones. Very few cells are falsely identified as dense by
QED as expected, and the precisions are very close to 1. Moreover, QED is still
robust when the number of queried time slots increases since recall and precison
remain very close to 1 as shown in the figure. Therefore, as validated in these
experiments QED is effective and efficient for temporal dense region queries.

6 Conclusion

In this paper, the problem of temporal dense region query is explored to discover
dense regions in the queried time slots. We also propose the QED framework to
execute temporal dense region queries. QED is advantageous in that various
queries with different density thresholds and time slots can be efficiently sup-
ported by using the concept of time slot and proposed RF-tree. With the merit
of the efficiency of combining RF-trees, the QED framework scales well with
respect to varied number of time slots. As evaluated by the synthetic and real
data, QED is powerful in discovering the dense regions and outperforms prior
methods significantly.
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Abstract. In streaming time series the Clustering problem is more complex, 
since the dynamic nature of streaming data makes previous clustering methods 
inappropriate. In this paper, we propose firstly a new method to evaluate Clus-
tering in streaming time series databases. First, we introduce a novel multi-
resolution PAA (MPAA) transform to achieve our iterative clustering algo-
rithm. The method is based on the use of a multi-resolution piecewise aggregate 
approximation representation, which is used to extract features of time series. 
Then, we propose our iterative clustering approach for streaming time series. 
We take advantage of the multiresolution property of MPPA and equip a stop-
ping criteria based on Hoeffding bound in order to achieve fast response time. 
Our streaming time-series clustering algorithm also works by leveraging off the 
nearest neighbors of the incoming streaming time series datasets and fulfill in-
cremental clustering approach. The comprehensive experiments based on sev-
eral publicly available real data sets shows that significant performance im-
provement is achieved and produce high-quality clusters in comparison to the 
previous methods. 

1   Introduction 

Numerous clustering algorithms of time series have been proposed, the majority of 
them work in relatively static model, while many current and emerging applications 
require support for on-line analysis of rapidly changing streaming time series. In this 
paper, we present a new approach for cluster streaming time series datasets. 

Our work is motivated by the recent work by Jessica Lin and Eamonn Keogh on it-
erative incremental clustering of time series [1]. While we speed up clustering process 
by examining the time series at increasingly finer levels of approximation using 
multi-solution piecewise aggregate approximation (MPAA). We argue that MPAA 
has all the pruning power of Wavelet transform dimensionality reduction, but is also 
able to handle arbitrary length queries, is much faster to compute and can support a 
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more general distance measures. Although there has been a lot of work on more flexi-
ble distance measures using Wavelet [2, 3], none of these techniques are indexable. 
While time series databases are often extremely large, any dimensionality reduction 
technique should support index method. For the task of indexing MPAA has all the 
advantages of Wavelet with none of the drawbacks. 

Our work addresses four major challenges in applying their ideas for clustering 
time series in a streaming environment. Specifically, our work has fourfold main 
contribution: 

Clustering Time Series in Streaming Environment: Streaming time-series are 
common in many recent applications, e.g., stock quotes, e-commerce data, system 
logs, network traffic management, etc [4]. Compared with traditional datasets, stream-
ing time-series pose new challenges for query processing due to the streaming nature 
of data which constantly changes over time. Clustering is perhaps the most frequently 
used data mining algorithm. Surprisingly, clustering streaming time-series still have 
not explored thoroughly, to the best of our knowledge, no previous work has ad-
dressed this problem.   

MPAA-based Iterative Time Series Clustering: PAA (Piecewise Aggregate Ap-
proximation) [5] transformation produces a piecewise constant approximation of the 
original sequence. In this paper, we introduce a novel multi-resolution PAA (MPAA) 
transform to achieve our iterative clustering algorithm.  

Proposed stopping criteria for multi-level iterative clustering: We solve the diffi-
cult problem of deciding exactly how many levels are necessary at each node in itera-
tive clustering algorithm by using a statistical result known as the Hoeffding bound 
[6]. 

Time Series Clustering augmented Nearest Neighbor: Our proposed inline 
clustering algorithm exploits characteristic of a neighborhood and significantly reduce 
clustering construction time and improve clustering quality. 

The rest of the paper is organized as follows. In section 2, we develop enhanced it-
erative clustering and streaming clustering algorithm. Section 4 presents the experi-
mental evaluation of our proposed algorithms both in offline and online form. We 
conclude in Section 5 with some summary remarks and future research directions. 

2   Streaming Iterative Clustering Method 

2.1   MPAA -Based Dimensionality Reduction  

Our MPAA-based time series representation work is derived from the recent work by 
Eamonn Keogh [5] and Yi and Faloutsos [7] on segmenting time series representa-
tions of dimensionality reduction.  

The basic idea on which their work develops is as follows. Suppose, we denote the 

set of time series which constitute the database as X  = 1{ , , }nX X  . A time series 
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iX  of length n is represented in N space by a vector iX = 1, ,i iNx x  . The ith ele-

ment of iX  is calculated by the following equation: 
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= !                                               (1) 

Our MPPA method divides time series iX  of length n into a series of lower-

dimensional signal with different resolution N. where {1, , }N n∈ . Simply stated, 

in first level, the data is divided into N "frames", whose sizes need not be contiguous 
and equal. The mean value of the data falling within a frame is calculated and a vector 
of these values becomes the data reduced representation. Then Recursively applying 
the above pairwise averaging process on the lower-resolution array containing the 
averages, we get a multi-resolution representation of time series.  

We give a simple example to illustrate the MPAA decomposition procedure in  
Table 1. Suppose we are given a time series containing the following eight values A= 
[3, 5, 2, 6, 4, 8, 7, 1] and we initiate divide it into 4 segments. The MPPA transform 
of A can be computed as follows. We first average the values together pairwise to get 
a new “lower-resolution” representation of the data with the following average values 
[4, 4, 6, 4]. In other words, the average of the first two values (that is, 3 and 5) is 4 
and that of the next two values (that is, 6 and 4) is 5, and so on. Recursively applying 
the above pairwise averaging process on the lower-resolution array containing the 
averages, we get the following full decomposition: 

Table 1. A simple example to illustrate the MPAA decomposition procedure 

Resolution MPAA Values 
8 3,5,2,6,4,8,7,1 
4 4,4,6,4 
2 4,5 
1 4.5 

The MPAA approximation scheme has some desirable properties that allow incre-
mental computation of the solution. These properties are necessary in order for the 
algorithm to be able to operate efficiently on large datasets and streaming environment.  

2.2   Enhanced Iterative Clustering Methods  

Our iterative clustering method is similar to [1]. The algorithm works by leveraging 
off the multiresolution property of MPPA.  

Note that an open problem that arise with this sort of iterative models is the defini-
tion of a minimum number of observations, i.e., devising an objective functions that 
determine the quality of clustering results from the previous stages to eliminate the 
need to re-compute all the distances.  
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Due to us perform the k-Means clustering algorithm, starting at the second level 
and gradually progress to finer levels, in order to find the stopping resolutions as low 
as possible to complete a good k-means clustering, it may be sufficient to consider 
only a small subset of the multi-level clustering examples that pass through the level 
of decomposition tree. We solve the difficult problem of deciding exactly how many 
levels are necessary at each node by using a statistical result known as the Hoeffding 
bound or additive Chernoff bound [6], which have in fact be successfully used in 
online decision trees [8][9]. After n independent observations of a real-valued random 
variable r with range R, the Hoeffding bound ensures that, with confidence 1 δ−  , 
the true mean of r is at least r ε− , where r is the observed mean of the samples and  

                                            
2 (1 )

2

R In

n

δε =                                                          (2) 

This is true irrespective of the probability distribution that generated the observations. 

Table 2. The enhanced iterative clustering algorithms  

Algorithm SI-kMeans 
1 Decide on a value for k. 
2 Perform MPAA decomposition on raw data 
3 Initialize the k cluster centers (randomly, if necessary). 
4 Compute the hoeffding bound(ε ) 
5 Run the k-Means algorithm on the level i of MPAA representa-

tion of the data 
6 Use final centers from level i as initial centers for level i+1. 

This is achieved by projecting the k centers returned by k-

Means algorithm for the 2i  space in the 12i+  space. 
7 Compute the distance centerD  between initial centers of level i 

and initial centers for level i+1 
8 Compute respectively maximum values of  the sum of squared 

intra-cluster errors in jth iterative clustering  and (j+1)th iterative 

clustering, i.e. max( )iE  and max( 1)iE +  

9 If max( 1)iE + − max( )iE > ε , exit. 

10 If centerD > ε , goto 3. 

We call the new iterative clustering algorithm supporting stopping criteria SI-
kMeans, where S stands for “stopping criteria.”, and I stands for “interactive.” Table 2 
gives a skeleton of this idea. 

2.3   Proposed Streaming Clustering Algorithm  

A key challenging issue with streaming time series clustering algorithm is the high 
rate of input sequences insertion. 
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To illustrate our application, consider the following issue. Most streaming time se-
ries are related to previously arrived time series or future ones, hence, this strong 
temporal dependency between the streaming time series should not be ignored when 
clustering streaming data collection.  This issue can be addressed by considering the 
nearest neighbor. A simple distance metric between two new arriving time series and 
the clustering center will show how much they are related to each other. Hence, the 
nearest neighbor analysis allows us to automatically identify related cluster. 

Below, we give a more formally definition in order to depict our Streaming Clus-
tering algorithm. 

Definition 1. Similarity measure: To measure closeness between two sequences, we 
use correlation between time series as a similarity measure. Supposed that time-series 

iT  and jT  in a sliding window which length is w is represented respectively 

by 1 1{ , , , , }i i in inu t u t< > < > and 1 1{ , , , , }j j jn jnv t v t< > < >  The Similarity 

between two time series iT and jT  is defined by 

1

2 2 2 2

1 1

si ( , )

w

ik jkk
i j w w

ik ikk k

u v wu v
milarity T T

u wu v wv

=

= =

−
=

− −

!
! !

                     (3) 

Definition 2. Similar: If si ( , )i jmilarity T T ς≥ , then a time series iT  is referred 

to as similar to a time series jT  . 

Based on the definition of similar in Definition 1, we can define the ζ -

neighborhood ( )iN Tζ  as follows: 

Definition 3. ζ -neighborhood ( )iN Tζ :  ζ -neighborhood for a time series iT  is 

defined as a set of sequences{ : si ( , ) }j j iX milarity X T ζ≥ . 

Our proposed clustering algorithm exploits characteristic of a neighborhood. It is 
based on the observation that a property of a time-series would be influenced by its 
neighbors. Examples of such properties are the properties of the neighbors, or the 
percentage of neighbors that fulfill a certain constraint. The above idea can be trans-
lated into clustering perspective as follows: a cluster label of a time-series depends on 
the cluster labels of its neighbors. 

The intuition behind this algorithm originates from the observation that the cluster 
of time series sequences can often be approximately captured by performing nearest 
neighbor search. In what follows, our idea is explained in detail. 

Initially, we assume that only time series in now window is available. Thus, we 
implement SI-kMeans clustering on these sequences itself and form k clusters. Add-
ing new sequences to existing cluster structure proceeds in three phases: neighbor-
hood search, identification of an appropriate cluster for a new sequences, and re-
clustering based on local information. The proposed incremental clustering algorithm 
STSI-kMeans (streaming time series iterative K-means clustering algorithm) can be 
discribed as follow: 
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Step 1. Initialization. Get next new sequences { 1, , }c cT w T− + in now window. 

Step 2. Neighborhood search. Given a new incoming sequences{ cT w− 1+ ,  

, }cT and let 
jKC be the set of clusters containing any time series belonging to ( )jN Tζ  , 

obtain { ( 1), ( 2), , ( )}c c cN T w N T w N Tζ ζ ζ− + − +  by performing a neighbor-

hood search on { 1, , }c cT w T− + , and find the candidate cluster 
jKC which can host a 

new sequence jT ∈ { 1, , }c cT w T− + , that mean to identify
jKC ⊃ ( )jN Tζ . 

Step 3. Identifying an appropriate cluster. Cluster If there exists a cluster KC  that 

can host a sequence jT , and then add jT  to the cluster KC . Otherwise, create a new 

cluster newC  for jT . 

To identify a cluster KC  which can absorb the new time-series jT  from the set of 

candidate clusters
jKC , we employ a simple but effective approach, which measures 

the Euclidean distance between the center of candidate clusters and the new time-

series jT , the cluster which returns the minimum distance is selected as  a cluster KC  

which can absorb the new time-series jT . 

Step 4. Re-clustering over affected cluster. If jT  is assigned to KC or create a new 

cluster newC  for jT , then a merge operation needs to be triggered. This is based on a 

locality assumption [10]. Instead of re-clustering the whole dataset, we only need to 
focus on the clusters that are affected by the new time-series. That is, a new time-
series is placed in the cluster, and a sequence of cluster re-structuring processes is 
performed only in regions that have been affected by the new time-series, i.e., clusters 
that contain any time-series belonging to the neighborhood of a new time-series need 
to be considered. 

Note that based on SI-kMeans re-clustering, the number of clusters, k′  value De-
cide by the number of affected clusters k′′  by absorbing the new time-series. Where 
k′ = k′′ . 

Step 5. Repetition. Repeat Step 2-4 whenever new sequences available in the next 
window. 

3   Experimental Evaluation 

In this section, we implemented our algorithms SI-kMeans and STSI-kMeans, and 
conducted a series of experiments to evaluate their efficiency. We also implemented 
the I-kMeans algorithm, to compare against our techniques. When not explicitly men-
tioned, the results reported are averages over 100 tests. 
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3.1   Datasets  

The data using in our experiment is similar to [1]. We tested on two publicly avail-
able, real datasets: JPL datasets and heterogeneous datasets [11]. The dataset cardinal-
ities range from 1,000 to 8,000. The length of each time series has been set to 512 on 
one dataset, and 1024 on the other. Each time series is z-normalized to have mean 
value of 0 and standard deviation of 1. 

3.2   Offline Clustering Comparison 

To show that our SI-kMeans approach is superior to the I-kMeans algorithm for clus-
tering time series in offline form, in the first set of experiments, we performed a series 
of experiments on publicly available real datasets. After each execution, we compute 
the error and the execution time on the clustering results.  

 

Fig. 1. Comparison of the clustering approximation error between SI-kMeans and I-kMeans. 
(a) Error of SI-kMeans algorithm on the Heterogeneous dataset, presented as fraction of the 
error from the I-kMeans algorithm. (b) Objective functions of SI-kMeans algorithm on the JPL 
dataset, presented as fraction of error from the I-kMeans algorithm 

Figure 1 illustrates the results of clustering approximation error. As it can be seen, 
our algorithm achieves better clustering accuracy.  

Figure 2 shows Speedup of SI-kMeans against I-kMeans. the SI-kMeans algorithm 
finds the best result in relatively early stage and does not need to run through all levels.  

3.3   Online Clustering Comparison 

In the next set of experiments, we compare the inline performance of STSI-kMeans to 
I-kMeans, which is essentially a comparison between an online and the corresponding 
offline algorithm. Since original I-kMeans algorithm is not suitable for online cluster-
ing streaming time series, we revise it and adapt it to online clustering. 
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Fig. 2. Speedup of SI-kMeans against I-kMeans. (a) SI-kMeans vs. I-kMeans algorithms in 
terms of clustering error and running time for in the Heterogeneous dataset. (b) SI-kMeans vs. 
I-kMeans algorithms in terms of objective function and running time for JPL dataset 

We quantify firstly the differences in the performance of the two algorithms. We 
report the cumulative relative error over count-based or sequence-based windows, 
which measure the relative increase in the cumulative error when using STSI-kMeans 
and I-kMeans. 
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Where, q  is the number of elapsed windows.  In Figure 3, we depict CRE as a 

function of q  and k. In the experiment of Figure 5, the length of streaming time se-

ries 1000,2000,4000,8000 points, through, for increasing q  we observe a very slow 

build-up of the relative error. Our algorithm performs better as the number of q  in-
creases. 

 

Fig. 3. Comparison of the clustering approximation error between STSI-kMeans and I-kMeans 
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The second measure of interest is the speedup, which measures how many times 
faster STSI-kMeans is when compared to I-kMeans. 
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 Figure 4 shows the speedup that our algorithm achieves, which translates to one or 
two orders of magnitude faster execution than the offline I-kMeans algorithm (for the 
experiments we ran). The STSI-kMeans algorithm is 10-30 times faster than I-
kMeans. We observe that the speedup increases significantly for decreasing k. This is 
because the amount of work that STSI-kMeans does remains almost constant, while I-
kMeans requires lots of extra effort for smaller values of k. As expected, the speedup 
gets larger when we increase q.  

 

Fig. 4. Speedup of  STSI-kMeans against I-kMeans 

4   Conclusions  

In this paper, we have presented firstly an approach to perform incremental clustering 
of time-series at various resolutions using the multi-resolution piecewise aggregate 
transform. The algorithm equipping a stopping criteria based on Hoeffding bound 
stabilizes at very early stages, eliminating the needs to operate on high resolutions. 
This approach resolves the dilemma associated with the choices of initial centers for 
k-Means and at which stage terminate the program for I-kMeans. This allows our 
algorithm to terminate the program at early stage with quality guarantee, thus elimi-
nate the need to re-compute all the distances and significantly improves the execution 
time and clustering quality. We also expend our method to streaming time series 
environment. Our streaming time-series clustering algorithm works by leveraging off 
the nearest neighbors of the incoming streaming time series datasets and fulfill incre-
mental clustering approach. Our experimental results based on several publicly avail-
able real data sets shows that significant performance improvement is achieved and 
produce high-quality clusters in comparison to the previous methods.  
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Abstract. Finding motifs in time-series is proposed to make clustering
of time-series subsequences meaningful, because most existing algorithms
of clustering time-series subsequences are reported meaningless in recent
studies. The existing motif finding algorithms emphasize the efficiency
at the expense of quality, in terms of the number of time-series subse-
quences in a motif and the total number of motifs found. In this paper,
we formalize the problem as a continuous top-k motif balls problem in an
m-dimensional space, and propose heuristic approaches that can signifi-
cantly improve the quality of motifs with reasonable overhead, as shown
in our experimental studies.

1 Introduction

Data clustering is one of the primary data mining tasks [4]. In [6], Keogh et
al. made a surprising claim that clustering of time-series subsequences is mean-
ingless. Their claim is based on the fact that a data point at a certain time in
a time-series appears in m adjoining sliding windows where m is the window
size. The mean of all such time-series subsequences will be an approximately
constant vector, which makes any time-series subsequence clustering approaches
meaningless. Finding motifs is proposed as an effective solution for this problem
[2, 7, 8]. For finding motifs, a time-series subsequence of length m (or a time-
series subsequence in a sliding window of size m) is treated as a data point in
an m-dimensional space. Two time-series subsequences of length m are similar,
if the two corresponding m-dimensional data points are similar. The similar-
ity is controlled by their distances, and the similar time-series subsequences are
grouped as m-dimensional data points in a ball of radius r. A motif in a time-
series dataset is then a dense ball with most data points after removing trivial
matches in an m-dimensional space. Here, removing trivial matches is a process
of removing those meaningless time-series subsequences that should not con-
tribute to the density, and therefore is a solution to the meaningless time-series
subsequence clustering problem [6]. For example, let a time-series subsequence of
length m from a position l denoted as t[l] and assume that it is mapped into an
m-dimension data point sl. The data point si+1 is si’s trial match, if si and si+1

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 343–353, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Motifs in a real time-series data

are similar (within distance r). Therefore, si+1 should be removed, because the
two corresponding time-series subsequences t[i+1] and t[i] are almost the same,
and counting such trivial matches makes clustering of time-series subsequences
meaningless. Fig. 1 shows an example of a motif, which appears 3 times in a
time-series after trivial matches have been removed.

One problem of the existing motif finding approaches is that they may miss
motifs (dense balls) or report the density of balls that is less than it should
be, because they only consider existing data points as potential centers to
find their neighbors in radius of r [2, 7, 8]. In real time-series data, it is highly
possible that there exist most dense balls where no existing data points can be
their centers. In this paper, we formalize this problem as a problem of finding
top-k motif balls in a dataset S, in an m-dimensional space, Rm, where a
motif ball is a ball, with a user given radius r, that contains most data points
and is not contained in other balls. We do not limit the number of potential
centers of balls to |S|. In other words, the potential centers are countless,
because they can be anywhere in the region covered by the dataset S. That
makes it possible for us to find better and/or more motif balls and is challenging.

Contributions: The main contributions include the following.
– We formalized the problem of finding motifs as finding continuous top-k motif

balls by allowing non-existing data points in a dataset S as centers of balls of
radius r.

– We proposed effective heuristic approaches to find continuous top-k motif
balls. Our approach first identifies a set of candidate sets where each candidate
set is enclosed by a ball whose maximal radius is

√
1

1
m +1

√
2r for m-dimensions.

The set of candidate sets identified are minimized in order to reduce redundant
computation. Second, we approach two simple but effective heuristics to find
motif balls of radius r within each candidate set.

– We conducted extensive experimental studies and our results showed that our
approaches can significantly improve the quality of motifs found in time-series
datasets.

Organization: Section 2 gives the problem definition. The algorithms for find-
ing k-ball are given in Section 3. Experimental results are given in Section 4.
Finally, Section 5 concludes the paper.
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2 Problem Definition

Formally, given a time-series T = t1, t2, · · · , let the length of T be |T |. A subse-
quence of length m of T , ti, · · · , ti+m−1, is denoted by t[i], for 1 ≤ i ≤ |T |−m+1.
We say t[i] ! t[j] if i < j. Consider a subsequence t[i] as an m-dimensional
data point si. In other words, there exists a one-to-one mapping τ from t[i] to
si such as τ(t[i]) = si and τ−1(si) = t[i]. We call si ! sj if t[i] ! t[j]. Let
S = {s1, s2, · · · sn} ⊂ Rm where si = τ(t[i]) and n = |T | −m + 1.

A ball is a set of data points around a center c ∈ Rm, denoted as B, such as
{sj | d(c, sj) ≤ r∧sj ∈ S} where r is a user given radius for measuring similarity
between two data points, and d() is a distance function (for example, Euclidean
distance). Note: as a unique feature of this problem, a ball B is defined with a
center c which does not necessarily belong to S but Rm. In the following, we call
a ball whose center is in S a discrete ball, and a ball whose center is not in S a
continuous ball. A discrete ball is contained by some continuous ball when their
radii are the same. Below, otherwise stated, a ball is a continuous ball.

Let B be a ball, we use cent(B), rd(B) and sp(B) to denote its center c, its
radius and the set of points on the boundary of the ball, respectively. The density
of a ball is the total number of data points in B, denoted as |B|. In addition,
given a set of data points D, we use ball(D) to denote the smallest enclosing ball
that contains all data points in D. A ball function can be implemented using a
move-to-front strategy as the miniball function given in [9, 3]. Let ballr(D) be a
boolean function which returns true if the radius of ball(D) is less than or equal
to r (rd(ball(D)) ≤ r) and otherwise false. We simply say a set of data points,
D, is a r-ball if ballr(D) is true. A motif ball is a r-ball, B, after removing trivial
matches from r-ball. Here, a trivial match is defined as follows. Let si = τ(t[i]),
sj = τ(t[j]), and sk = τ(t[k]). sj is si’s trivial match if si and sj are in a r-ball
and there does not exist sk outside the r-ball such as t[i] ! t[k] ! t[j].

The problem of locating top-k motif balls, denoted by k-ball, is to find a
set of motif balls in a dataset S, {B1, · · · ,Bk}. Here, the top-1 motif ball B1 has
the highest density. Bi is the top-1 motif ball after the corresponding r-balls for
B1, · · · Bi−1 are removed from S.

o1

s1

s3

s2

s4

Fig. 2. Finding B’s for cent(B) �∈ S

Consider finding continuous k-ball (top-k continuous motif balls), in com-
parison with finding discrete k-ball. Figure 2 shows an example where S =
{s1, s2, s3, s4}. Assume that the distances, d(s1, s2), d(s2, s3), d(s3, s4) and
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d(s4, s1), are all equal to r + ε, for a very small ε > 0. There does not exist
a discrete ball Bi, where si = cent(Bi) and rd(Bi) ≤ r, that contains more than
one data point. In other words, all the discrete motif balls contain only a single
data point. But, in fact, the four data points belong to a continuous motif ball
whose center is o1 – the center of the four data points in S. Note o1 /∈ S and
d(o1, si) < r for si ∈ S. Such a ball B at center o1 is the motif ball to be found.

Let S be a dataset in an m-dimensional space, and n = |S|. In terms of
the number of times of calling the distance function d(), the time complexity of
discrete motif balls is O(n2), because it basically needs to find those data points
within a distance r for every data point in a dataset. Several efficient methods
were proposed in [2, 7]. The time complexity of finding continuous motif balls is
O(2n), in terms of the number of times of calling the function ball(), because it
needs to check if any subset of the dataset can be a motif ball. It is important to
note that the cost for continuous motif balls to check whether a set of data points
is a r-ball is the complexity of the ball function which is O((m + 1)!(m + 1)n)
in an m-dimensional space [3]. When the dimensions are less than 30, the ball
function [3] is efficient. When the dimensions are large, the ball function becomes
noticeably slow. Hence, effective heuristics are on demand to find better and more
motif balls with reasonable overhead, which is the focus of this paper.

3 Finding k-ball

Our k-ball algorithm is given in Algorithm 1, which takes three parameters: a
data set S, a radius r (> 0) and a positive number k > 0. First, it generates a
set of candidates (line 2). Second, it calls allBall() to find potential motif balls
which will be stored in a tree structure (lines 3-5). Third, it calls top-k-ball()
to report k-balls (line 6). Below, we discuss i) generating candidate sets (the
function gen), ii) finding motif balls, and iii) identifying k-balls.

Algorithm 1. k-ball (S, r, k)
Input: a set of data points, S, a radius r, and k.

Output: a set of motif balls.

1: Let T be a tree maintaining motif balls, which is set ∅;
2: C ← gen(S);
3: for each Ci ∈ C do
4: B ← allBall(Ci, r);
5: insert B into T ;
6: return top-k-ball(T );

3.1 Candidate Set Generation
We take a divide-and-conquer approach to divide the entire set of S into subsets,
C1, · · · , C|S|, and identify motif balls in each Ci such as the set of motif balls
is the union of motif balls found in every Ci. In doing so, for a given dataset
S, the complexity of the continuous motif balls changes from 2n to n · 2l, with
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the hope that l � n, where n = |S| and l is the maximum size of a subset Ci.
The similar approach was also taken in [2, 7]. Here, we call Ci a candidate set
and define it as Ci = {sj | d(si, sj) ≤ 2r}. In other words, a candidate set Ci

is enclosed in a smallest enclosing ball, ball(Ci), whose center is si ∈ S, and its
radius, rd(ball(Ci)), is less than or equal to 2r.

Lemma 1. Any motif ball, if it exists in S, then it exists in a candidate set Ci.

It is worth of noting that the number of data points in a candidate set Ci, in
a ball of radius 2r, can be large, and the number of motif balls of radius r in a
radius-2r ball can be considerably large. In this paper, we further divide Ci into
a set of subsets, Cij

, such as the distance of every two data points in Cij
is less

than or equal to 2r. We call such a Cij
as a min candidate set in a sense that

it may miss a motif ball if we further remove a data point from Cij
. There are

many such min candidate sets in Ci, we call a min candidate set, Cij
(⊆ Ci), as

a maxmin candidate set if there does not exist Cik
(⊆ Ci) such as Cij

⊆ Cik
.

Identifying a maxmin candidate set can significantly reduce computational cost,
because all motif balls found in Cij

can be identified in Cik
.

Lemma 2. Any motif ball B, if it exists in S, exists at least in a maxmin can-
didate set Cij

.

Following Lemma 2, the entire set of S is divided into a set of maxmin
candidate sets. The set of motif balls to be found is the union of all motif balls
found in all maxmin candidate sets.

Lemma 3. In an m-dimensional space, the maximum radius of the smallest en-
closing ball for a maxmin candidate set is

√
1

1
m +1

√
2r (> r). When m approaches

+∞, the maximum radius is
√

2r.1

Given two candidate sets Ci and Cj . Each will generate a set of maxmin
candidate sets: Ci = {Ci1 , Ci2 , · · ·Cil

} and Cj = {Cj1 , Cj2 , · · ·Cjk
}. Here, each

Clk is a maxmin candidate set in a candidate set Cl. It is possible that the same
maxmin candidate set may appear in different candidate sets, such as Cil

= Cjk

for i = j, or a Cil
in a candidate set Ci is a subset of Cjk

, because we use a
divide-and-conquer approach which first generates a set of candidate sets and
then generates a set of maxmin candidate sets from each candidate set. The
issue here is how to reduce such redundant computation. A naive solution is to
generate a set of all maxmin candidate sets first and then remove redundant and
obtain maxmin candidate sets. However, it requires a large memory space and
long CPU time. We propose a simple but effective pruning strategy to ensure
that a Cil

is only computed once if there Cil
= Cjk

, and Cil
will not be computed

if Cil
⊂ Cjk

. The strategy is given below. Recall Ci is a candidate set with a point
si as its center. Therefore, any maxmin candidate set Cil

of Ci must contain the
data point si.

1 Due to the space limitation, the details of the proof are omitted and the interested
readers may email the authors to get a full version of this paper.
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Remark 1. (Filtering maxmin candidate sets) Given Cil
, and let sk be the

first data point in Cil
following the order !. The strategy is: Cil

does not need
to be computed if sk = si where si is the center of Ci. It does not miss any
motif balls because there must exist a maxmin candidate set Ckj

in Ck such as
Cjk

= Cil
and the first data point in Ckj

is sk.

Based on Remark 1, we only need to process all Cil
whose first data point

is si following !. Suppose we filter maxmin candidate sets using Remark 1, we
further claim that there is no such Cil

⊂ Cjk
, where Cil

is a maxmin candidate
set in Ci whose center is si, and Cjk

is a maxmin candidate set in Cj whose
center is sj . We consider two cases, i) si ! sj and ii) sj ! si. There is no case
i), because if Cil

⊂ Cjk
then si ∈ Cil

must belong to Cjk
. But sj is the smallest

element which indicates that si cannot be in Cjk
, because of the filtering. There

is no case ii), because if Cil
⊂ Cjk

, then the distance between sj and any data
point in Cjk

is < 2r. So, Cil
is supposed to include sj . But, Cil

cannot contain sj

because, if so, there must exists C ′
il
⊃ Cil

so Cil
is removed, and C ′

il
is removed

because its first data point is sj but not si. It implies that Cil
does not exist.

Lemma 4. Based on filtering maxmin candidate sets (Remark 1), the union of
remaining maximin candidate sets {Ci1 , Ci2 , · · · } from all candidate sets Ci are
sufficient to answer continuous k-ball and the entire maxmin candidate sets
left are minimal such as there does not exist Cij

⊆ Ckl

The maxmin candidate sets can be found from a candidate set Ci, using the
A-priori property. The problem becomes to find all min candidate subsets that
are not included in any other candidate subsets using existing maximal frequent
itemsets mining approaches. Alternatively, the maxmin candidate sets can be
identified as finding cliques in an undirected graph, G(V,E), for every candidate
set Ci. Here, V = Ci (for a candidate set) and E ⊆ V ×V such that (vi, vj) ∈ E
if d(vi, vj) ≤ 2r. A clique in a graph is a maximal complete subgraph and a
maxmin candidate is such a clique.

The main concern is the cost for reducing the radius of a candidate set from 2r
to
√

1
1
m +1

√
2r. However, in handling our problem in a high dimensional space, it

can be processed efficiently for the following reasons. First, in a high dimensional
space, due to the curse of dimensionality [5], the data is sparse. Second the radius
r for measuring similarity is considerably small. Therefore, the number of data
points in a candidate set (within radius of 2r) is limited. Note: the complexity
of clique is linear with the number of nodes in a graph and is exponential with k
which is the maximal complete subgraph. The number of nodes is small in our
problem. The clique can be efficiently identified because possible maximum k
is small accordingly. We adapt the clique algorithm [1] which uses branch-and-
bound technique to cut off branches that cannot lead to a clique, and shows
efficiency for identifying maxmin candidate sets in our experimental studies.

3.2 Finding All Balls
Given a dataset S, we can obtain a set of maxmin candidate sets, C =
{C1, C2, · · · }. In this section we present two heuristic algorithms, as an alter-
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native of the implementation of allBall() in Algorithm 1, to find motif balls in
a maxmin candidate set Cl. The all motif balls found in S are the union of all
motif balls found in Cl.

– approx-Ball-1: Given a maxmin candidate set Cl, let P be the data points on
the boundary of the smallest enclosing ball of Cl. It assumes that the estimated
center of the smallest enclosing ball of Cl is the mean vector of the data points
in Cl, and removes a data point in P from Cl that is the furthest to the mean
vector until a r-ball is identified. The algorithm is given in Algorithm 2.

– approx-Ball-mean: Given a maxmin candidate set Cl, it also assumes that
the estimated center of the smallest enclosing ball of Cl is the mean vector
of the data points in Cl. In each iteration, it computes the mean vector of
data points and treats it as the center followed by removing those data points
that are not within the distance r of the center and adding those within the
distance r. The algorithm is given in Algorithm 3.

Algorithm 2. approx-Ball-1(Cl, r)
1: B ← ball(Cl);
2: r′ ← rd(B);
3: P ← sp(B);
4: while r′ > r do
5: let c be the mean vector of Cl;
6: remove p ∈ P , which is furthest from c, from Cl;
7: B ← ball(Cl);
8: r′ ← rd(B);
9: P ← sp(B);

10: return Cl;

Algorithm 3. approx-Ball-mean(Cl, r)
1: B′ ← Cl;
2: Let c be the mean vector of B′;
3: B ← {sk | d(sk, c) ≤ r, sk ∈ Cl};
4: while B′ �= B do
5: B′ ← B;
6: Let c be the mean vector of B;
7: B = {sk | d(sk, c) ≤ r, sk ∈ Cl};
8: return B;

3.3 CB-tree

In this section, we show how we maintain a set of motif balls for the final process
of identifying k-balls. A CB-tree is a tree that maintains all motif balls that
are not contained by any others. In a CB-tree, a node represents a data point,
a path from the root to a leaf represents a motif ball. The data structure for
a CB-tree consists of a header table and a tree structure. A node in the tree
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contains pointers to its children and a pointer to its parent. For each data point,
there is an entry in the header table that contains a list of pointers pointing to
the occurrences of the data points in different paths in the tree. The center and
radius of a ball are kept in the leaf node of the corresponding path. Let T be
a CB-tree, and B be a motif ball (a dataset). Several primitive operations are
defined on T : search(T , B) to search whether the superset of B (including itself)
exists in T as a path, insert(T , B) to insert B into T , subsets(T , B) to identify
a set of motif balls (paths) in T that are contained in B, delete(T , B) to delete
B from T , and condense(T ) to condense T . A tree T is not condensed if there
are some edges that can be removed to represent the same balls. For example,
consider two balls, {s1, s2, s3} and {s1, s3, s5}. The tree can be represented as
either two paths s1.s2.s3 and s1.s3.s5 where both paths only have s1 as their
common prefix, or two paths s1.s3.s2 and s1.s3.s5 where both paths have s1.s3

as their common prefix. The latter is condensed. The insertion of a motif ball
into T in Algorithm 1 (line 5) is implemented as follows. First, it checks if there
is a superset of B in T already by calling search(T , B). If there is such a path
representing a superset of B, then there is no need to do insertion. Otherwise,
it inserts B into T and at the same time removes all motif balls (paths) that
are contained in subsets(T , B). Finally, it calls condense(T ) to make the tree
condensed. We maintain a list of CB-trees where each CB-tree maintains a
set of motif balls for a candidate set Ci with a header and a tree.

3.4 Identifying Top k-balls

Identifying top k-balls can be implemented as operations on the list of CB-
trees. The longest path found in the list of CB-trees is the top-1 motif ball.
We remove edges from the leaf node of the longest paths if they are not shared
by others, and keep its center. Suppose that we have already identified l motif
balls where l < k. We can easily identify the next motif ball if it has longest
path after removing the nodes that are already in the former l motif balls. Trivial
matches will be removed in this step.

4 Performance Study

We implemented our continuous k-ball algorithm (Algorithm 1) with two
heuristic algorithms for allBll(), namely, approx-Ball-1 (Algorithm 2) and
approx-Ball-mean (Algorithm 3). Below we denote the two continuous k-ball
algorithms as Ball-1 and Ball-m, respectively. Also, based on [2, 7], we imple-
mented a discrete k-ball algorithm, denoted Ball-d, which first identifies a set
of motif balls for S where a motif ball Bi = {sj | d(si, sj) ≤ r} is at the cen-
ter si ∈ S, second, maintains the motif balls found in a CB-tree, and third
identifies k-ball using the same routine of top-k-ball() in Algorithm 1. All
algorithms use Euclidean distance function and were implemented using C++ in-
cluding some optimizing techniques in [2, 7]. All experiments were performed on
a Pentium IV 2.53GHz PC with 512MB memory, running Microsoft Windows
2000. We report our findings for the three algorithms Ball-1, Ball-m and Ball-d.
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We conducted extensive testing using a two year New York Stock Exchange
tick-by-tick real dataset (year 2001 and year 2002). We report our finding using
two representative stocks, A and B. The lengths of A and B are 12,802, as shown
in Fig. 3. Based on a time-series, T , of size |T |, we generate an m-dimensional
dataset S of size n = |T | −m + 1, where m is the sliding window size. Due to
space limit, we only report the results for m = 128. We normalized time-series
subsequences in every sliding window into the range [-1,1]. We show our testing
results using a radius r in the range of 0.8 and 1.15, because the similarity
between every two adjoining time-series subsequences in the two time-series, A
and B, forms a normal distribution where the peak value is 1.4 and majority
values are in the range of 0.7 and 2.3. And r = 0.8 is the smallest radius that
the density of motif balls is greater than 1.
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Fig. 3. Two Representative Stocks

In addition to the total number of motif balls, the density of motif balls, and
the CPU time, we measure the quality of a motif ball using a centric value. The
centric value takes two factors into consideration: the distance between the mean
of all data points in a motif ball and the center of the motif ball, and the density of
a motif ball. Here, all data points in a motif ball mean all remaining data points
after removing the trivial matches and the density of a motif ball is the density
of the remaining data points. Suppose B = {s1, s2, · · · , sn} is a motif ball, with
n m-dimensional data points. Let the mean of B be mean(B) = 1

n

∑n
i=1 si. The

centric of B is given below. The smaller the centric value is, the better quality
of B is centric(B) = d(mean(B),cent(B))

|B| .

4.1 The Total Number of Motif Balls and The CPU Time

Fig. 4 (a) and (b) show the total number of motif balls found for time-series A
and B. Both Ball-1 and Ball-m significantly outperform Ball-d. The curves of
Ball-1 and Ball-m decrease sometimes when r > 1.0 in Fig. 4 (a) and (b), because
when the radius r becomes larger, a motif ball can contain more data points.
The CPU time for Ball-1, Ball-m and Ball-d are shown in Fig. 4 (c) and (d). The
CPU time includes the time for generating candidate sets, finding motif balls and
inserting motif balls into CB-trees. The CPU time does not include the time
to report top-k balls from CB-trees, because it penalizes the algorithms that
find more and better motif balls. The CPU time for Ball-1 is higher than that



352 Z. Liu et al.

 0

 1500

 3000

 4500

 0.8  0.9  1  1.1  1.2

N
o.

 o
f B

al
ls

Radius r

Ball-1
Ball-m
Ball-d

(a) A

 0

 1500

 3000

 4500

 0.8  0.9  1  1.1  1.2

N
o.

 o
f B

al
ls

Radius r

Ball-1
Ball-m
Ball-d

(b) B

 5

 10

 15

 20

 0.8  0.9  1  1.1  1.2

T
im

e 
(s

ec
on

ds
)

Radius r

Ball-1
Ball-m
Ball-d

(c) A (CPU)

 6

 6.5

 7

 7.5

 8

 0.8  0.9  1  1.1  1.2

T
im

e 
(s

ec
on

ds
)

Radius r

Ball-1
Ball-m
Ball-d

(d) B (CPU)

Fig. 4. The Total Number of Motif Balls and The CPU Time

for Ball-m, because Ball-1 needs to call ball function repeatedly, in particular
when the radius of the smallest enclosing ball for a candidate set is large. The
time of computing cliques takes such little time that could be ignored, because
in a high-dimensional dataset, there are not many data points in a candidate set
Ci when the radius r is small, due to the curse of dimensionality [5].

4.2 Top-k Motif Balls

Fig. 5 (a) and (b) show the density of the top-1 motif ball for A and B separately,
while varying the radius r, where m = 128. In all cases, Ball-1 and Ball-m
outperform Ball-d, because both can report motif balls with more data points.
Fig. 5 (c) and (d) show the centric values. Also, Ball-1 and Ball-m outperform
Ball-d. Fig. 5 (c) and (d) suggest that the data points in the motif balls found
by Ball-1 and Ball-m are close to the center of the motif balls, whereas the data
points in the motif balls found by Ball-1 can be rather various. The centric value
of Ball-m in Fig. 5 (c) when r = 0.8 is close to one of Ball-d is because there is
only one remaining point in the top-1 motif ball after removing trivial matches
as we can refer to Fig. 5 (a) and the mean of all data points is itself.
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Fig. 5. Top-1 Motif Balls While Varying r

The results for top-k motif balls are shown in Fig. 6, where k is 15. Fig. 6 (a)
and (b) show the density, and Fig. 6 (c) and (d) show the centric values for the
top-15 motif balls for r = 1.1. The top-k motif balls found by Ball-d is inferior
to both Ball-1 and Ball-m, in terms of both the density and the centric values.
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Fig. 6. Top-15 Motif Balls When r = 1.1

5 Conclusion

In this paper, we formalized the problem of locating motifs as finding con-
tinuous top-k motif balls by allowing non-existing data points in a dataset S
as centers of balls of radius r, and proposed effective heuristic approaches to
find continuous top-k motif balls. First, our approach identifies a minimal set
of maxmin candidate sets where each maxmin candidate set is enclosed by a
ball whose max radius is

√
1

1
m +1

√
2r for m-dimensions. Second, in order to

compromise efficiency, we propose two heuristics to find motifs within each
maxmin candidate set. Our experimental results showed that our approaches
can significantly improve the quality of motifs found in time-series datasets.
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Abstract. Most graph-theoretical clustering algorithms require the com-
plete adjacency relation of the graph representing the examined data.
This is infeasible for very large graphs currently emerging in many ap-
plication areas. We propose a local approach that computes clusters in
graphs, one at a time, relying only on the neighborhoods of the vertices
included in the current cluster candidate. This enables implementing a
local and parameter-free algorithm. Approximate clusters may be iden-
tified quickly by heuristic methods. We report experimental results on
clustering graphs using simulated annealing.

1 Introduction

Many practical applications of information processing involve massive amounts
of data, much of which tends to be noise, and only a small fraction contains
semantically interesting information. In general, clustering is the process of or-
ganizing such data into meaningful groups in order to interpret properties of the
data. Some general clustering methods operate online [2, 9], but practically all
existing methods require some parameters in addition to a distance measure,
such as the number of clusters to produce. In graph clustering, the data consists
of a set of n vertices V connected by a set of m edges E. A cluster in a graph
G = (V,E) is considered to be a set of vertices that have relatively many con-
nections among themselves with respect to the graph structure on a global scale.
The existing methods are mostly global and rely on the full adjacency relation
of the graph or a derived measure, such as the graph’s eigenvalue spectrum [3].

2 Local Clustering

For many applications, only a small subset of vertices needs to be clustered
instead of the whole graph. These include locating documents or genes closely
related to a given “seed” data set. This motivates the use of a local approach for
finding a good cluster containing a specified vertex or a set of vertices by exam-
ining only a limited number of vertices at a time, proceeding in the “vicinity”
of the seed vertex. The scalability problem is avoided, as the graph as a whole
never needs to be processed and clusters for different seeds may be obtained by
parallel computation.

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 354–360, 2005.
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We adopt the following notation: in a graph G = (V,E), a cluster candidate
is a set of vertices C ⊆ V . The order of the cluster is the number of vertices
included in the cluster, denoted by |C|. Two vertices u and v are said to be
neighbors if (u, v) ∈ E. Following common criteria [3, 5, 8], we want the clusters
to be vertex sets that are connected in G by many internal connections and only
few connections outside. We define the internal degree of a cluster C to be the
number of edges connecting vertices in C to each other:

degint(C) = |{(u, v) ∈ E | u, v ∈ C}|. (1)

The local density1 of a cluster C is

δ�(C) =
degint(C)(|C|

2

) =
2degint

|C|(|C| − 1)
. (2)

Clearly, optimizing δ� ∈ [0, 1] alone makes small cliques superior to larger but
slightly sparser subgraphs, which is often impractical. For clusters to have only
a few connections to the rest of the graph, one may optimize the relative density
δr(C) (see [6] and the references therein); it is defined in terms of the internal
degree degint (Equation 1) and external degree of a cluster C,

degext(C) = |{(u, v) ∈ E | u ∈ C, v ∈ V \ C}|, (3)

as the ratio of the internal degree to the number of edges incident to the cluster,

δr(C) =
degint(C)

degint(C) + degext(C)
, (4)

which favors subgraphs with few connections to other parts of the graph. Possible
combinations of the above measures are numerous; in this paper we use the
product as a cluster quality measure:

f(C) = δ�(C) · δr(C) =
2 degint(C)2

|C| (|C| − 1)(degint(C) + degext(C))
. (5)

The complexity of optimizing Equation 5 can be studied through the decision
problem of whether a given graph G has a k-vertex subgraph C for which f(C) ≥
γ for some fixed k ∈ N and γ ∈ [0, 1]. Especially, we are interested to know
whether there is such a subgraph that contains a given vertex v. Both δ�(C) and
δr(C) alone correspond to NP-complete decision problems; the complexities of
these and other cluster fitness measures are discussed in a separate paper [11].

2.1 Computation by Local Search

Calculation of the proposed fitness measure only requires the adjacency lists of
the included vertices. Therefore, a good approximation of the optimal cluster

1 For |C| ∈ {0, 1}, we set δ�(C) = 0.
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for a given vertex can be obtained by local search. To locate a cluster containing
a given vertex v ∈ V from a graph G = (V,E), we stochastically examine
subsets of V containing v, and choose the candidate with maximal f as C(v).
The initial cluster C′(v) of a vertex v contains v itself and all vertices adjacent
to v. Each search step may either add a new vertex that is adjacent to an
already included vertex, or remove an included vertex. Upon the removal of
u ∈ C′(v), u = v, the connected component containing v becomes the next cluster
candidate. Redefining degext = |{〈u, v〉 ∈ E | u ∈ C, v ∈ V \ C}| allows clustering
directed graphs. Our clustering of a 32,148-vertex directed graph representing
the Chilean inter-domain link structure is discussed in [12].

The method is well-suited for memory-efficient implementation: if the graph is
stored as adjacency lists, 〈v : w1,w2, . . . ,wdeg(v)〉, only one such entry at a time
needs to be retrieved from memory. For n vertices, the entries can be organized
into a search tree with O(log n) access time. The search needs to maintain only
the following information:

(a) the list of currently included vertices C,
(b) the current internal degree degint(C) (Equation 1), and
(c) the current external degree degext(C) (Equation 3).

When a vertex v is considered for addition into the current cluster candidate
C, its adjacency list is retrieved and the degree counts for the new candidate
C′ = C ∪ {v} are calculated as follows:

degint(C′) = degint(C) + k, degext(C′) = degext(C)− k + 	, (6)

where k = |C ∩ Γ (v)| and 	 = deg(v)− k, Γ (v) denoting the set of neighbors of
vertex v. The removal of vertices from a cluster candidate is done analogously,
subtracting from the internal degree the lost connections and adding them to the
external degree. The memory consumption is determined by the local structure of
the graph. The order of the initial cluster is limited from above by the maximum
degree of the graph Δ plus one; in natural graphs, usually Δ� n and |C| � n.
Hence examining the adjacency lists of the vertices included in the final cluster
candidate takes O(Δ · |C|) operations. The extent to which the graph is traversed
depends on the local search method applied.

3 Experiments

We have conducted experiments on natural and generated nonuniform random
graphs. As natural data, in addition to the web graph discussed in Section 2,
we used collaboration graphs [7]. We guide the local search with simulated an-
nealing [4]. For generalized caveman graphs [13] consisting of a set of intercon-
nected dense subgraphs of varying order, the method correctly identifies any
dense “cave” regardless of the starting point; an example is shown in Figure 1.
For illustrations of collaboration graph clusterings, see [13]. In other work [14],
we also discuss the applicability of the clustering method in mobile ad hoc net-
works for improved routing.
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Fig. 1. On the left, an example caveman graph with 55 vertices and 217 edges; each

cave (encompassed by a dotted line) is correctly identified as a cluster by the local

method. On the right, the adjacency matrix of a caveman graph with 210 vertices

and 1,505 edges; the left one uses random vertex order, reflecting very little structure,

whereas the one on the right is sorted by the clusters found and reveals the graph

structure

As local search procedures are not prohibited from traversing further away
in the graph or revisiting parts of the graph, it is interesting to examine whether
the extent to which the search traverses the graph has a significant effect on the
clusters that the algorithm chooses. We clustered the largest connected compo-
nent of a scientific collaboration graph with 108,624 vertices and 333,546 edges.
We varied the number of independent restarts R ∈ {20, 40, . . . , 100} per search
vertex and the number of cluster modification steps S (from 200 to 1,000 in
increments of 100) taken after each restart for simulated annealing. The Fig-
ure 2 shows the ratio of the number of vertices visited during the search to
the final cluster order, averaged over 100 vertices selected uniformly at ran-
dom; the final orders are plotted for reference. Figure 2 plots the ratio of the
number of vertices visited and the final order of the selected cluster using R
restarts of S steps averaged over 50 randomly selected vertices. The extent to
which the graph is traversed grows much slower than the number of modifica-
tion steps taken, implying high locality of the search. As the iteration count is
increased, the relative difference gets smaller, which indicates that the number
of vertices visited practically stops growing if the increasing possibility for ran-
dom fluctuations is ignored. The distributions of the cluster orders over three
R/S-pairs of the same graph are shown on the right in Figure 2; the distribution
changes very little as the parameters are varied, indicating high stability of the
method.

We compared the clusterings obtained with the local method to the cluster-
ings of GMC (Geometric Minimum Spanning Tree Clustering) with additional
linear-time post-processing and ICC (Iterative Conductance Cutting) [1] for cave-
man graphs of different orders. For each graph, we compared the clusters of each
vertex obtained with the three methods by calculating what fraction (shown
in percentages) of the vertices of a cluster A determined by one method are
also included in the cluster B determined by another method. Table 1 shows
the results for a caveman graph with 1,533 vertices and 50,597 edges; the results
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Fig. 2. On the left, the ratio of the number of vertex visited (i.e., the visit count for

an (R, S)-pair) to that of the number of vertices selected in the final cluster (i.e., the

cluster order) averaged over 100 vertices selected uniformly at random and repeated 50

times per vertex. In the middle, the average final cluster orders of the same experiment

set. On the right, the distribution of the number of vertices per cluster for a large

collaboration graph (with 108,624 vertices and 333,546 edges) for three different R/S-

pairs, where R ∈ {10, 25, 50} and S = 10R

Table 1. Denote by A the cluster chosen by one method for vertex v, and by B
the cluster chosen for v by another method. If the two methods agree, the overlaps

a = |A ∩ B|/|B| and b = |A ∩ B|/|A| are high. For three clusterings of a caveman

graph, the percentages p of vertices for which the values a and b fall into a certain

range are shown. The values are to be interpreted as follows: if a = a1 and b = b1,

then a1 percent of cluster B (the method of the right column) is included in A (the

method of the left column) and b1 percent of cluster A is included in B. The figure

on the right shows a single cave in a 649-vertex graph; the small circles are neighbors

in other caves. The shape of the vertex indicates its cluster for the post-processed

GMC (with three clusters overlapping the cave) and the color indicates the clustering

of ICC (seven clusters overlap); the local method selects the entire cave for any start

vertex

Local GMC Local ICC GMC ICC

a b p a b p a b p
all all 74 all (11, 14) 45 all (5, 14) 71
all (74, 95) 14 all (22, 27) 12 all (22, 34) 10
all (2, 24) 4 all (5, 7) 36 all (40, 55) 2

(86, 97) all 5 all (46, 54) 6 (80, 91) (7, 31) 7
(3, 57) (5, 87) 3 [50, 67) (5, 20] 4

(71, 89) (45, 55) 3
(9, 46) (2, 100] 3

for the smaller graphs allow the same conclusions. ICC splits the caves into small
clusters, which is a sign that it fails to recognize the cave boundary on which
the density jump takes place. GMC and the local method agree in a majority
of cases exactly in cluster selection, and even when they differ, one is usually a
subset of the other. GMC and ICC agree poorly with each other.
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4 Conclusions

In this paper we have defined a local method for clustering. The method requires
no parameters to be determined by the user, nor does it estimate parameters
from the dataset; only the local search method being employed may require pa-
rameters. No knowledge of the structure of the graph as a whole is required,
and the implementation of the method can be done efficiently. The experiments
show that approximate clustering with our measure produces intuitively rea-
sonable clusters without extensive traversing of the graph. Employing a local
method in the presented way is likely to produce an approximation of some
global clustering method; we hope to determine as further work how our local
method relates to other methods, such as spectral clustering discussed in [3]. For
another local method, see our recent paper [10].
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Abstract. In this paper, we present a new clustering algorithm, NBC,
i.e., Neighborhood Based Clustering, which discovers clusters based on
the neighborhood characteristics of data. The NBC algorithm has the
following advantages: (1) NBC is effective in discovering clusters of ar-
bitrary shape and different densities; (2) NBC needs fewer input param-
eters than the existing clustering algorithms; (3) NBC can cluster both
large and high-dimensional databases efficiently.

1 Introduction

As one of the most important methods for knowledge discovery in databases
(KDD), clustering is very useful in many data analysis scenarios, including data
mining, document retrieval, image segmentation, and pattern classification [1].
Roughly speaking, the goal of a clustering algorithm is to group the objects of a
database into a set of meaningful clusters each of which contains objects as sim-
ilar as possible according to a certain criterion. Currently, mainly four types of
clustering algorithms have been developed, including hierarchical, partitioning,
density-based and grid-based algorithms.

With the fast development of data collection and data management technolo-
gies, the amount of data stored in various databases increases rapidly. Further-
more, more and more new types of data come into existence, such as image, CAD
data, geographic data, and molecular biology data. The hugeness of data size
and the variety of data types arise new and challenging requirements for cluster-
ing algorithms. Generally, a good clustering algorithm should be Effective(e.g.
be able to discover clusters of arbitrary shape and different distributions), Ef-
ficient(e.g. be able to handle either very large databases or high-dimensional
data-bases, and Easy to use(e.g. need no or few input parameters).

However, there are few current clustering algorithms can meet fully the 3-E
criteria above-mentioned. In this paper, we present a new clustering algorithm:

� This work is supported by the Natural Science Foundation of China under grant No.
60373019 and 60496325, and partially supported by IBM-HKU Visiting Scholars
Program.
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Neighborhood-Based Clustering algorithm (NBC in abbr.). The NBC algorithm
uses the neighborhood relationship among data objects to build a neighborhood
based clustering model to discover clusters. The core concept of NBC is the
Neighborhood Density Factor (NDF in abbr.). NDF is a measurement of relative
local density, which is quite different the absolute global density used in DB-
SCAN [2]. In this sense, NBC can still be classified into density based clustering
algorithms. However, comparing with DBSCAN(the pioneer and representative
of the existing density based clustering algorithms), NBC boasts of the following
advantages:

– NBC can automatically discover clusters of arbitrary distribution, it can also
recognize clusters of different local-densities and multi-granularities in one
dataset, while DBSCAN uses global parameters, it can not distinguish small,
close and dense clusters from large and sparse clusters. In this sense, NBC
is closer to the Effective criterion than DBSCAN.

To support this point, let us see a dataset sample shown in Fig. 4(a). In
this dataset, there are totally five clusters, in which three are dense and close
to each other (near the center of the figure) and the other two are much sparse
and locate far away (locating near the upper-right angle and the upper-left
angle of the figure respectively). Distance between any two of the three
dense clusters is not larger than the distance between any two points in the
two sparse clusters. With such a dataset, no matter what density threshold
is taken, DBSCAN can not detect all the five clusters. In fact, when the
density threshold is selected low, DBSCAN can find the two sparse clusters,
but the three dense clusters are merged into one cluster; In contrast, when
the threshold is set high, DBSCAN can find the three dense clusters, but all
data points in the two sparse clusters are labelled as noise. However, NBC
can easily find all the five clusters. We will give the clustering results in the
performance evaluation section.

– NBC needs only one input parameter(the k value), while DBSCAN requires
three input parameters(the k value, the radius of the neighborhood, and
the density threshold). That is, NBC needs fewer input parameters than
DBSCAN, so NBC is advantageous over DBSCAN in view of the Easy to
Use criterion.

– NBC uses cell-based structure and VA file [3] to organize the targeted data,
which makes it be efficient and scalable even for very large and high dimen-
sional databases.

With all these advantages, we do not intend to replace the existing algorithms
with NBC. Instead, we argue that NBC can be a good complement to the existing
clustering methods.

2 A Novel Algorithm for Data Clustering
2.1 Basic Concepts

The key idea of neighborhood-based clustering is that: for each object p in a
cluster, the number of objects whose k-nearest-neighborhood contains p should
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not less than the number of objects contained in p’s k-nearest-neighborhood. In
what follows, we give the formal definition of neighborhood-based cluster and
its related concepts.

Given a dataset D={d1, d2, . . . , dn}, p and q are two arbitrary objects in D.
We use Euclidean distance to evaluate the distance between p and q, denoted as
dist(p, q). We will first give the definitions of k-nearest neighbors set and reverse
k-nearest neighbors set. Although similar definitions were given in the literature,
we put them here to facilitate the readers to understand our new algorithm.

Definition 1 (k-Nearest Neighbors Set, or simply kNN). The k-nearest neigh-
bors set of p is the set of k (k > 0) nearest neighbors of p, denoted by kNN(p).
In other words, kNN(p) is a set of objects in D such that
(a) |kNN(p)| = k;
(b) p /∈ kNN(p);
(c) Let o and o’ be the k-th and the (k+1)-th nearest neighbors of p respectively,
then dist(p, o’) ≥ dist(p, o) holds.

Definition 2 (Reverse k-Nearest Neighbors Set, or simply R-kNN). The reverse
k-nearest-neighbors set of p is the set of objects whose kNN contains p, denoted
by R-kNN(p), which can be formally represented as

R−kNN(p) = {q ∈ D|p ∈ kNN(q) and p = q}. (1)

Note that in the literature, reverse kNN is usually abbreviated as RNN. Here
we use R-kNN rather than RNN because every RNN set is evaluated based on
a certain k value.

kNN(p) and R-kNN(p) expose the relationship between object p and its neigh-
bors in a two-way fashion. On one hand, kNN(p) describes who makes up of its
own neighbors; On the other hand, R-kNN(p) indicates whose neighborhood p
belongs to. This two-way description of the relationship between an arbitrary
object and its neighborhood gives a clearer and more precise picture of its posi-
tion in the dataset both locally and globally, which depends on the value of k,
than simply using only kNN. In what follows, we will give the definitions of an
object’s neighborhood.

Definition 3 (r-Neighborhood, or simply rNB). Given a positive real number
r, the neighborhood of p with regard to (abbreviated as w.r.t. in the rest part of
this paper) r, denoted by rNB(p), is the set of objects that lie within the circle
region with p as the center and r as the radius. That is,

rNB(p) = {q ∈ D|dist(q, p) ≤ r and q = p}. (2)

Definition 4 (k-Neighborhood, or simply kNB). For each object p in dataset
D, ∃o ∈ kNN(p), r’= dist(p, o) such that ∀o’ ∈ kNN(p), dist(p, o’) ≤ r’. The
k-neighborhood of p, written as kNB(p), is defined as r’NB(p), i.e., kNB(p)=
r’NB(p). We call kNB(p) as p’s k-neighborhood w.r.t. kNN(p).

Definition 3 and Definition 4 define two different forms of neighborhood for
a given object from two different angles: rNB(p) is defined by using an explicit
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radius; In contrast, kNB(p) is defined by using an implicit radius, which corre-
sponds to the circle region covered by kNN(p). It is evident that |kNB(p)| ≥ k
because there could be more than one object locating on the edge of the neighbor-
hood (the circle). Accordingly, we define the reverse k-Neighborhood as follows.

Definition 5 (Reverse k-Neighborhood, or simply R-kNB). The reverse k-
neighborhood of p is the set of objects whose kNB contains p, denoted by R-
kNB(p), which can be formally written as

R−kNB(p) = {q ∈ D|p ∈ kNB(q) and p = q}. (3)

Similarly, we have |R-kNB(p)| ≥ |R-kNN(p)|.
In a local sense, data points in a database can be exclusively classified into

three types: dense point, sparse point and even (distribution) point. Intuitively,
points within a cluster should be dense or even points; and points on the bound-
ary area of a cluster are mostly sparse points. Outliers and noise are also sparse
points. Currently, most density-based clustering algorithms (e.g. DBSCAN) use
an intuitive and straightforward way to measure density, i.e., a data object’s
density is the number of data objects contained in its neighborhood of a given
radius. Obviously, this is a kind of absolute and global density. Such a density
measurement makes DBSCAN unable to detect small, close and dense clusters
from large and sparse clusters. In this paper, we propose a new measurement
of density: Neighborhood based Density Factor (or simply NDF), which lays the
foundation of our new clustering algorithm NBC.

Definition 6 (Neighborhood-based Density Factor, or simply NDF). The NDF
of point p is evaluated as follows:

NDF (p) =
|R−kNB(p)|
|kNB(p)| . (4)

Then what is the implication of NDF? Let us check it. |kNB(p)| is the number
of objects contained in p’s k-nearest neighborhood. For most data objects, this
value is around k (According to Definition 4, it maybe a little greater, but not
less than k). |R-kNB(p)| is the number of objects contained in p’s reverse k-
nearest neighborhood, i.e., the number of objects taking p as a member of their
k-nearest neighborhoods. This value is quite discrepant for different data points.
Intuitively, the larger |R-kNB(p)| is, which implies that the more other objects
take p as a member of their k-nearest neighborhoods, that is, the denser p’s
neighborhood is, or the larger NDF(p) is. In such a situation, NDF(p) > 1. For
uniformly distributed points, if q is in kNB(p), then p is most possibly in kNB(q),
therefore, kNB(p) ≈ R-kNB(p), that is NDF(p) ≈ 1. Thus, NDF is actually a
measurement of the density of any data object’s neighborhood, or data object’s
local density in relative(not absolute) sense. Furthermore, such a measurement is
intuitive(easy understanding), simple(easy implementation) and effective(being
able to find some cluster structures that DBSCAN can not detect).

To demonstrate the capability of NDF as a measurement of local density, we
give an example in Fig. 1. Fig.1(a) is a dataset that contains two clusters C1,
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(a) Dataset (b) NDF values of data
points

Fig. 1. An illustration of NDF

C2. Data in C1 is uniformly distributed; and data in C2 conforms to Gaussian
distribution. Fig. 1(b) shows the NDF values of all data points in the dataset. As
we can see, data points locate within cluster C1 have NDF values approximately
equal to 1, while data points locating on boundary of C1 have smaller NDF
values. For cluster C2, the densest point is near the centroid of C2, which has
the largest NDF value, while other objects have smaller NDF values, and the
further the points locate from the centroid, the smaller their NDF values are.

With NDF, in what follows, we give the definitions of three types of data
points in local sense: local event points, local dense points and local sparse points.

Definition 7 (Local Dense Point, simply DP). Object p is a local dense point if
its NDF(p) is greater than 1, also we call p a dense point w.r.t. kNB(p), denoted
by DP w.r.t. kNB(p). The larger NDP(p) is, the denser p’s k-neighborhood is.

Definition 8 (Local Sparse Point, simply SP). Object p is a local sparse point
if its NDF(p) is less than 1, and we call p a sparse point w.r.t. kNB(p), denoted
by SP w.r.t. kNB(p). The smaller NDP(p) is, the sparser p’s k-neighborhood is.

Definition 9 (Local Even Point, simply EP). Object p is a local even point if
its NDF(p) is equal (or approximately equal) to 1. We call p an even point w.r.t.
kNB(p), denoted by EP w.r.t. kNB(p).

With the concepts defined above, in what follows, we introduce the concepts
of neighborhood-based cluster. Our definition follows the way of DBSCAN.

Definition 10 (Directly neighborhood-based density reachable). Given two ob-
jects p and q in dataset D, p is directly neighborhood-based density reachable
(directly ND-reachable in abbr.) from q w.r.t. k, if

(a) q is a DP or EP, and
(b) p ∈ kNB(q).

Definition 11 (Neighborhood-based density reachable). Given two objects p
and q in dataset D, p is neighborhood-based density reachable (ND-reachable in
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abbr.) from q w.r.t. k, if there is a chain of objects p1, · · · , pn, p1 = p, pn = q
such that pi is directly ND-reachable from pi+1 w.r.t. k.

According to Definition 11, if object p is directly ND-reachable from object
q, p is surely ND-reachable from q.

Definition 12 (Neighborhood-based density connected). Given two objects p
and q in a dataset D, p and q are neighborhood-based density connected (ND-
connected in abbr.) w.r.t. k, if p is ND-reachable from q w.r.t. k or q is ND-
reachable from p w.r.t. k or there is a third object o such that p and q are both
ND-reachable from o w.r.t. k.

With the concepts above, now we are able to define the neighborhood-based
cluster as follows.

Definition 13 (Neighborhood-based cluster). Given a dataset D, a cluster C
w.r.t. k is a non-empty subset of D such that

(a) for two objects p and q in C, p and q are ND-connected w.r.t. k, and
(b) if p ∈ C and q is ND-connected from p w.r.t. k, then q ∈ C.

The definition above guarantees that a cluster is the maximal set of ND-
connected objects w.r.t. k.

2.2 The NBC Algorithm

The NBC algorithm consists of two major phases:

– Evaluating NDF values. We search kNB and R-kNB for each object in the
target dataset, and then calculate its NDF.

– Clustering the dataset. Fetch an object p randomly, if p is a DP or EP
(NDF(p)≥1), then create a new cluster, denoted as p’s cluster, and continue
to find all other objects that are ND-reachable from p w.r.t. k, which involves
all objects belonging to p’s cluster. Otherwise, if p is a SP, then just put it
aside temporarily, and continue to retrieve the next point to process. This
work is recursively done until all clusters are discovered. More concretely,
given a DP or EP p from the database, first finding the objects that are
directly ND-reachable from p w.r.t. k. Objects in kNB are the first batch of
such objects, which will be moved into p’s cluster. Then finding the other
objects directly ND-reachable from each DP or EP in p’s cluster until there
is no more object can be added into p’s cluster. Second, from the rest of the
dataset, fetching another DP or EP to build another cluster. When there is
no more DP or EP to fetch to create clusters, the algorithm comes to an
end. Points belonging to none cluster are noise or outliers. Fig.2 outlines the
NBC algorithm in C pseudo-code.

Here, Dataset indicates the dataset clustered, k is the only input parameter
used in NBC to evaluate kNB and R-kNB. The value of k can be set by experts
on the database at the very beginning or by experiments. The determination
of parameter k will be discussed in next subsection. DPset keeps the DPs or
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EPs of the currently processed cluster. The objects in DPset are used to expand
the corresponding cluster. Once a DP or EP’s kNB is moved into the current
cluster, it is removed from DPset. A cluster is completely detected when there
is no object in DPset. When the NBC algorithm comes to stop, the unclassified
objects whose clst no property is NULL are regarded as noises or outliers.

The NBC algorithm starts with the CalcNDF function to calculate kNB,
R-kNB and NDF of each object in Dataset. Among the traditional index struc-
tures, R∗-Tree and X-tree are usually used to improve the efficiency of kNB
query processing over relatively low dimensional datasets. However, there is few
index structure works efficiently over high-dimensional datasets. To tackle this
problem, we employ a cell-based approach to support for kNB query process-
ing. The data space is cut into high-dimensional cells, and VA file [3] is used to
organize the cells. Due to space limitation, we neglect the detail here.

NBC(Dataset, k) {

for each object p in Dataset

p.clst_no=NULL; // initialize cluster number for each object

CalcNDF(Dataset, k); // calculate NDF

NoiseSet.empty(); // initialize the set for storing noise

Cluster_count = 0; // set the first cluster number to 0

for each object p in Dataset{ // scan dataset

if(p.clst_no!=NULL or p.ndf < 1) continue;

p.clst_no = cluster_count; // label a new cluster

DPSet.empty(); // initialize DPSet

for each object q in kNB(p){

q.clst_no = cluster_count;

if(q.ndf>=1) DPset.add(q)}

while (DPset is not empty){ // expanding the cluster

p = DPset.getFirstObject();

for each object q in kNB(p){

if(q.clst_no!=NULL)continue;

q.clst_no = cluster_count;

if(q.ndf>=1) DPset.add(q);}

DPset.remove(p);

}

cluster_count++;

}

for each object p in Dataset{ // label noise

if(p.clst_no=NULL) NoiseSet.add(p);}

}

Fig. 2. The NBC algorithm in C pseudo-code
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2.3 Algorithm Analysis

The Determination of k Value. The parameter k roughly determines the
size of the minimal cluster in a database. According to the neighborhood-based
notion of cluster and the process of the NBC algorithm, to find a cluster, we
must first find at least one DP or EP whose R-kNB is larger than or equal to its
kNB(i.e., the value of NDF not less than 1). Suppose C is the minimal cluster
w.r.t. k in database D, and p is the first DP or EP found to expand cluster C.
All objects in kNB(p) are naturally assigned to C. Considering p itself, therefore
the minimal size of C is k+1. So we can use the parameter k to limit the size of
the minimal cluster to be found.

A cluster is a set of data objects that show some similar and unique pattern.
If the size of a cluster is too small, its pattern is not easy to demonstrate. In
such a case, the data behaves more like outliers. In experiments, we usually set
k to 10, with which we can find most meaningful clusters in the databases.

Complexity. The procedure of the NBC algorithm can be separated into two
independent parts: calculating NDF and discovering clusters. The most time-
consuming work of calculating NDF is to evaluate kNB queries. Let N be the
size of the d-dimension dataset D. Mapping objects into appropriate cells takes
O(N) time. For a properly settled value of the cell length l, in average, cells of
3 layers are needed to search and each cell contains k objects. Therefore, the
time complex of evaluating kNB query is O(mN) where m = k ∗ 5d. For large
datasets, m� N , it turns to O(N). However, considering that m� 1, so time
complexity of CalcNDF is O(mN). The recursive procedure of discovering cluster
takes O(N). Therefore, the time complexity of the NBC algorithm is O(mN).

3 Performance Evaluation

In this section, we evaluate the performance of the NBC algorithm, and compare
it with DBSCAN. In the experiments, we take k=10. Considering that k value
mainly affect the minimal cluster to find, we do not give the clustering results
for different k values.

To test NBC’s capability of discovering clusters of arbitrary shape, we use
a synthetic dataset that is roughly similar to the database 3 in [2], but more
complicated. In our dataset, there are five clusters and the noise percentage is
5%. The original dataset and the clustering result of NBC are shown in Fig.3.
As is shown, NBC discovered all clusters and recognized the noise points.

To demonstrate NBC’s outstanding capability of discovering all clusters of
different densities in one dataset, we use the synthetic dataset sample shown
in Fig. 4(a). The clustering results by DBSCAN and NBC are shown in Fig.
4(b)(corresponding to a relatively low density threshold) and Fig. 4(c) respec-
tively. We can see that NBC discovered all the five clusters. As for DBSCAN,
no matter what density threshold we take, it can not detect all the five clusters.
When the density threshold is selected low, DBSCAN can find the two sparse
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(a) Original dataset (b) Clustering result by
NBC

Fig. 3. Discoverying clusters of arbitrary shape

(a) Dataset (b) DBSCAN’s result (c) NBC’s result

Fig. 4. Discoverying clusters of different densities(NBC vs. DBCSAN)

clusters(C1 and C2), but the three dense clusters are merged into one cluster
C3(See Fig. 4(b)); While the threshold is set high, DBSCAN can find the three
dense clusters(C3, C4 and C5), but all data points in the two sparse clusters are
labelled as noise(We do not illustrate the result here due to space limit).

To test the efficiency of NBC, we use the SEQUOIA 2000 benchmark databases
[4] to compare NBC with DBSCAN. The time costs of NBC and DBSCAN over
these datasets are shown in Fig. 5(a). As the size of dataset grows, time-cost
of NBC increases slowly, while the time-cost of DBSCAN climbs quite fast. In
Fig.5(b), we show the time cost of NBC on larger datasets (number of data points
varies form 10,000 to 60,000). Here, we give only NBC’s results because with the
size of dataset increases, the discrepancy of time cost between DBSCAN and
NBC is so large that their time costs cannot be shown properly in the drawing.
In stead, we show the speedup of NBC over DBSCAN in Fig. 5(c). The time
cost of NBC is linearly proportional to the size of dataset. And with the size of
dataset increase, NBC has larger and larger speedup over DBSCAN.
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Fig. 5. NBC clustering efficiency and scalability

To test the efficiency and scalability of NBC over high-dimensional datasets,
we use the UCI Machine Learning Databases [5]. The results are in Fig.5(d),
which show that the run-time of NBC on high-dimensional datasets is approxi-
mately linear with the size of database for middle high-dimensional data (d=10-
20). But as the number of dimensions increases, the curve turns steeper. The
reason is that higher dimensional data space will be divided into more cells,
which means more neighbor cells will be searched for evaluating kNB queries.

4 Conclusion

We present a new clustering algorithm, NBC, i.e., Neighborhood Based Clus-
tering, which discovers clusters based on the neighborhood relationship among
data. It can discover clusters of arbitrary shape and different densities. Exper-
iments show that NBC outperforms DBSCAN in both clustering effectiveness
and efficiency. More importantly, NBC needs fewer input parameter from the
users than the existing methods.
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Abstract. The Self-Splitting Competitive Learning (SSCL) is a power-
ful algorithm that solves the difficult problems of determining the number
of clusters and the sensitivity to prototype initialization in clustering.
The SSCL algorithm iteratively partitions the data space into natural
clusters without a prior information on the number of clusters. How-
ever, SSCL suffers from two major disadvantages: it does not have a
proven convergence and the speed of learning process is slow. We pro-
pose solutions for these two problems. Firstly, we introduce a new update
scheme and lead a proven convergence of Asymptotic Property Vector.
Secondly, we modify the split-validity to accelerate the learning process.
Experiments show these techniques make the algorithm faster than the
original one.

1 Introduction

Clustering is the unsupervised classification of patterns (observations, data items,
or feature vectors) into subgroups (clusters). It has important applications in
many problem domains, such as data mining, document retrieval, image segmen-
tation and pattern classification. One of the well-known methods is the k-means
algorithm [3], which iteratively reassigns each data point to the cluster whose
center is closest to the data point and then recomputes the cluster centers.

Several algorithms have been proposed previously to determine cluster num-
ber (called k) automatically. Bischof et al. [2] use a Minimum Description Length
(MDL) framework, where the description length is a measure of how well the
data are fit by the model optimized by the k-means algorithm. Pelleg and Moore
[4] proposed a regularization framework for learning k, which is called X-means.
The algorithm searches over many values of k and scores each clustering model.
X-means chooses the model with the best score on the data.

Recently, Zhang and Liu presented the SSCL algorithm [6] based on the One
Prototype Takes One Cluster (OPTOC) learning paradigm. The OPTOC-based
learning strategy has the following two main advantages: 1) it can find natural
clusters, and 2) the final partition of the data set is not sensitive to initialization.

Although promising results have been obtained in some applications [6], we
show in this study that the SSCL does not have a proven convergence and the
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learning speed is slow. This paper will improve the SSCL by giving a new update
scheme to make sure the convergence and increase the learning speed.

The remainder of this paper is organized as follows. In Section 2, the original
and the improved SSCL algorithms are introduced. Their performance in identi-
fying Gaussian clusters is compared in Section 3. Finally, Section 4 presents the
conclusions.

2 SSCL Algorithm and Its Improvement

2.1 Original SSCL

Clustering is an unsupervised learning process [1]. Given a data set of N dimen-
sions, the goal is to identify groups of data points that aggregate together in some
manner in an N -dimensional space. We call these groups “natural clusters.” In
the Euclidean space, these groups form dense clouds, delineated by regions with
sparse data points.

The OPTOC idea proposed in [6] allows one prototype to characterize only
one natural cluster in data set, regardless of the number of clusters in the data.
This is achieved by constructing a dynamic neighborhood using an online learn-
ing vector Ai, called the Asymptotic Property Vector (APV), for the prototype
Pi, such that patterns inside the neighborhood of Pi contribute more to its
learning than those outside. Let |XY | denote the Euclidean distance from X to
Y , and assume that Pi is the winning prototype for the input pattern X based
on the minimum-distance criterion. The APV Ai is updated by

A∗
i = Ai +

1
nAi

· δi · (X −Ai) ·Θ(P i,Ai,X) (1)

where Θ is a general function given by

Θ(μ,ν,ω) =
{

1 if |μν| ≥ |μω|,
0 otherwise, (2)

and δi, within the range 0 < δi ≤ 1, is defined as

δi =
(

|P iAi|
|P iX|+ |P iAi|

)2

. (3)

nAi
is the winning counter which is initialized to zero and is updated as follow:

nAi
= nAi

+ δi ·Θ(P i,Ai,X). (4)

The winning prototype Pi is then updated by

P ∗
i = P i + αi(X − P i), (5)

where,

αi =
(

|P iA
∗
i |

|P iX|+ |P iA∗
i |

)2

. (6)
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If the input pattern X is well outside the dynamic neighborhood of Pi, i.e.,
|PiX| � |PiAi|, it would have very little influence on the learning of Pi since
αi → 0. On the other hand, if |PiX| � |PiAi|, i.e., X is well inside the dy-
namic neighborhood of Pi, both Ai and Pi would shift toward X according to
Equations (1) and (5), and Pi would have a large learning rate αi according to
Equation (5). During learning, the neighborhood |PiAi| will decrease monoton-
ically. When |PiAi| is less than a small quantity ε, Pi would eventually settle
at the center of a natural cluster in the input pattern space.

When cluster splitting occurs, the new prototype is initialized at the position
specified by a Distant Property Vector (DPV) Ri associated with the mother
prototype Pi. The idea is to initialize the new prototype far away from its mother
prototype to avoid unnecessary competition between the two. Initially, the DPV
is set to be equal to the prototype to which it is associated with. Then each time
a new pattern X is presented, the Ri of the winning prototype Pi is updated
as follows:

R∗
i = Ri +

1
nRi

· ρi · (X −Ri) ·Θ(P i,X,Ri), (7)

where

ρi =
(

|P iX|
|P iX|+ |P iRi|

)2

, (8)

and nRi
is the number of patterns associated with the prototype Pi. Note that

unlike Ai, Ri always try to move away from Pi. After a successful split, the
property vectors (Ai, Ri) of every prototype Pi are reset and the OPTOC
learning loop is restarted.

2.2 Improved SSCL

According to Equation (1) and (5), when P i is changing, the statement that the
neighborhood |PiAi| will decrease monotonically [6] during learning is not true.
Suppose one input pattern X is outside the dynamic neighborhood of Pi, Ai

keeps unmoved and Pi may move away from Ai. This may also happen, even
when the input pattern is inside the dynamic neighborhood. Sometimes, this will
result in oscillation.

The oscillation can be eliminated by only updating prototype P i in the dy-
namic neighbor area of P i with radius |P iAi|. This will enhance the influence
of factor, αi in equation (5). Therefore, the new update scheme of prototype P i

is as follow,
P ∗

i = P i + αi(X − P i) ·Θ(P i,Ai,X), (9)

and Ai is updated by

A∗
i = Ai + αi(X −Ai) ·Θ(P i,Ai,X). (10)

With this learning scheme, we can see that Ai always shifts towards the patterns
located in the neighborhood of its associated prototype P i and gives up those
data points out of this area. In other words, Ai tries to move closer to P i
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Fig. 1. Update scheme of Ai and P i. Left is the old update scheme and right is the

new one

by recognizing those “inside” patterns that may help Ai to achieve its goal
while ignoring those “outside” patterns that are of little benefit. Suppose that
P 1

i ,P
2
i , . . . ,P

n
i and A1

i ,A
2
i , . . . ,A

n
i are the sequential locations of P i and Ai

respectively during the learning period. According to Equations (1) and (9), in
the learning progress, if P n−1

i and An−1
i are updated, vector P n

i An
i is always

parallel P n−1
i An−1

i , which means |P n
i An

i | < |P n−1
i An−1

i |. From the learning
rule described above, we have,

|P n
i An

i | ≤ |P n−1
i An−1

i | ≤ · · · ≤ |P 1
i A

1
i |.

It can be observed that in the finite input space, the APV Ai always tries to move
towards P i, i.e., Ai has the asymptotic property with respect to its associated
prototype P i. The geometry description of two different update algorithms are
illustrated in Fig. 1.

There are several possible strategies to incorporate the new update procedure
to the SSCL algorithm. The first idea is to replace the old update scheme with
the new one. However, only updating prototype when the presented pattern is
inside the dynamic neighbor area will bring a severe bias. The worst scene is
that when there are no patterns are inside the neighbor area of prototype P i

and |P iAi| is quite larger than convergence threshold, the prototype P i will
become a dead node. To avoid this problem, the second idea is to transfer to
new update procedure when |P iAi| is less than a small value γ, which is set 3 ·ε.
This algorithm is called M2 of improved SSCL (ISSCL-M2). The macro view of
the asymptotic trajectory of Ai in Fig. 2 shows the convergence of ISSCL-M2
compared with SSCL. The third idea is applying the new update procedure when
the distance |P iAi| is increasing in some runs and then switch back to normal
update scheme in SSCL. This algorithm is referred as M12 of improved SSCL
(ISSCL-M12). This will accelerate the speed of convergence and eliminate the
possible oscillation of prototypes.

Recall that after a successful split, the property vectors Ai of every prototype
Pi are reset randomly far from Pi. We only need reset the Ai+1 far from new
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(a) (b)

Fig. 2. The asymptotic trajectory of Ai: SSCL vs ISSCL-M2. (a) There are oscillation

phenomena of |P iAi| during the SSCL learning process; (b) The |P iAi| decreases

monotonically at the last stage of ISSCL-M2 learning

prototype Pi and reset other converged Ai a proper range outside of Pi. Here
this range λ is set as double splitting threshold, i.e. λ = 2ξ.

3 Experimental Results

We have conducted experiments on randomly-generated data, as described in
[5]. The synthetic experiments were conducted in the following manner. First,
a data-set was generated using 72 randomly-selected points (class centers). For
each data-point, a class was first selected at random. Then, the point coordinates
were chosen independently under a Gaussian distribution with mean at the class
center.

As far as speed is concerned, ISSCL scales much better than SSCL. One data
set generated as described above with 2 dimensions contained different number
of points, from 2000 to 100000, respectively drawn this way. The deviation δ
equals to 0.1 and each dimension data rage is (-10, 10). The SSCL, ISSCL-M2
and ISSCL-M12 are run on this data-set and measured for speed. The experiment
is repeated 30 times and averages are taken. Fig. 3 shows the run-times of ISSCL
and SSCL with convergence threshold ε set 0.025 and 0.05 respectively. It takes a
longer time for both ISSCL and SSCL to reach the smaller convergence threshold.
From the Fig. 3(a), SSCL runs faster with the number of samples increasing,
because SSCL converges fast on high density data set. But when the number of
samples reaches to a certain number, it will take SSCL more time to converge
with the number of samples increasing. Compared with SSCL, ISSCL-M12 and
ISSCL-M2 performs better especially when the convergence threshold is very
tiny.

Since new update scheme is used only in last stage of ISSCL-M2, ISSCL-M12
performs a bit better than ISSCL-M2, which is shown in Fig. 3.
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Fig. 3. Average run-times are shown for 2 dimensions and 20 classes with convergence

threshold (a) ε = 0.025; (b) ε = 0.050

4 Conclusion

In this paper, we show that the original SSCL has oscillation phenomena dur-
ing the learning process. We have presented an improved SSCL algorithm by
incorporating new update scheme to eliminate the oscillation in the SSCL and
achieved a stable convergence. We also modify the split-validity to accelerate
the learning process. Our experimental results on random generated data show
that both ISSCL-M2 and ISSCL-M12 perform faster than SSCL. ISSCL algo-
rithm performs even better when the convergence threshold is set to a very small
value.
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Abstract. In several contexts and domains, hierarchical agglomerative
clustering (HAC) offers best-quality results, but at the price of a high
complexity which reduces the size of datasets which can be handled. In
some contexts, in particular, computing distances between objects is the
most expensive task. In this paper we propose a pruning heuristics aimed
at improving performances in these cases, which is well integrated in all
the phases of the HAC process and can be applied to two HAC vari-
ants: single-linkage and complete-linkage. After describing the method,
we provide some theoretical evidence of its pruning power, followed by
an empirical study of its effectiveness over different data domains, with
a special focus on dimensionality issues.

1 Introduction

In several domains, hierarchical agglomerative clustering algorithms are able to
yield best-quality results. However, this class of algorithms is characterized by a
high complexity which reduces the size of datasets which can be handled. In the
most standard cases, such complexity is O(dN2+N2 log N), N being the number
of objects in the dataset and d the cost of computing the distance between
two objects, which is the result of O(N2) distance computations followed by
O(N2) selection steps, each having cost O(log N). In typical settings, d is either
a constant or very small w.r.t. log N , so that the algorithm complexity is usually
simplified to O(N2 log N).

In some contexts, however, computing distances can be a very expensive task,
such as in the case of high-dimensional data or complex comparison functions,
e.g., the edit distance between long strings. In these cases, the computation of all
object-to-object distances dominates the overall cost of the clustering process,
and so any attempt to improve performances should aim at saving a significant
portion of distance computations. To the best of our knowledge, this aspect
has not been explicitly studied in literature, yet, despite the fact that it has
been marginally mentioned in several works (e.g., most of those described in
Section 2.2).

In this work, we will consider two popular instances of the general hierarchical
agglomerative algorithms family, namely the single- and complete-linkage ver-
sions, and propose a simple pruning strategy that improves their performances

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 378–387, 2005.
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by reducing the number of object-to-object distances to compute without af-
fecting the results. A formal proof of its effectiveness under some assumptions
will also be given, together with an extensive experimental session to test it on
different contexts and conditions.

2 Background and Related Work

In this section we will provide a short description of the general hierarchical ag-
glomerative clustering schema, instantiating it to the two specific cases discussed
in this paper. Finally, a brief summary of related work will follow.

2.1 Hierarchical Agglomerative Clustering (HAC)

The objective of hierarchical clustering algorithms is to extract a multi-level
partitioning of data, i.e., a partitioning which groups data into a set of clus-
ters and then, recursively, partitions them into smaller sub-clusters, until some
stop criteria are satisfied [3]. Hierarchical algorithms can be divided in two main
categories: agglomerative and divisive. Agglomerative algorithms start with sev-
eral clusters containing only one object, and iteratively two clusters are chosen
and merged to form one larger cluster. The process is repeated until only one
large cluster is left, that contains all objects. Divisive algorithms work in the
symmetrical way. In this paper we will focus on the former class of algorithms.

Algorithm: Hierarchical Agglomerative Clustering
Input: a dataset D
Output: a tree structure T

1. C := {{o}| o ∈ D} and T = ∅;
2. while |C| > 1 do
3. Select best couple (a, b) s.t. a, b ∈ C;
4. Create a new cluster c = a ∪ b, and let a and b be children of c in T ;
5. C := C ∪ {c} \ {a, b};
6. foreach x ∈ C do
7. Compute the distance between x and c;
8. return T ;

Fig. 1. General schema for hierarchical agglomerative clustering algorithms

The general structure of an agglomerative clustering algorithm can be sum-
marized as in Figure 1. As we can notice, there are two key operations in the
general schema which still need to be instantiated: the choice of the best couple
of clusters, and the computation of the distances between the new cluster and
the existing ones. Each different instantiation of these two operations results
into a different agglomerative clustering algorithm. In this paper, the cluster
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selection in step 3 is performed by selecting the closest pair of clusters, while
the distance computation in step 7 is performed in two alternative ways: by
extracting the distance between the closest pair of objects (excluding couples
belonging to the same cluster), which yields a so called Single-linkage algorithm;
and by extracting the distance between the farthest pair of objects, which yields
a Complete-linkage algorithm. In particular, the complete-linkage algorithm in
general produces tightly bound or compact clusters, while the single-link algo-
rithm, on the contrary, suffers from a chaining effect, i.e., it has a tendency to
produce clusters that are straggly or elongated [3].

2.2 Related Work

Efficiency is a strong issue in hierarchical clustering, and it has been treated in
literature in many different ways. In the following we summarize some of the
main approaches to the problem.

Some approaches seek slight computational complexity improvements for the
HAC problem. For example, [2] introduces a data structure for dynamic clos-
est pair retrieval, which is directly applicable to hierarchical clustering, and
which is shown to reach a O(n2) complexity for simple aggregation operators
(e.g., maximum, minimum and average). For specific contexts, even faster solu-
tions have been proposed, such as a sub-quadratic single-linkage method for low-
dimensional data [4], and a O(n log n) complete-linkage solution for Rd spaces
(d ≥ 1) with L1 and L∞ metrics [5]. We remark that these approaches do not
take into account the (pragmatic) possibility of having very expensive distance
computations, which is exactly the context we will focus on in this paper. When
some degree of approximation in the hierarchical clustering structure can be tol-
erated, several approximation approaches can be followed, which mainly try to
reduce the size of data: from data simple sampling methods to data aggregation
solutions, such as (i) grid-based clustering solutions for vectorial datasets [3],
and (ii) the data bubbles approach [1], which extends the grid-based approach to
non-vectorial data.

3 HAC with Enhanced Distance Management

The basic assumption of our method is that our distance function is a metric.
Then, the key idea is that from the exact distances of a limited number of
couples it is possible to derive useful approximated values for all object-to-object
distances. Such approximations can be easily updated at each iteration of the
HAC algorithm, and can be used to effectively limit the number of exact distance
computations needed along the whole process.

3.1 Distance Approximations

As basic means for estimating unknown distances, we propose to use the tri-
angular inequality, a property satisfied by all metrics: ∀a, b, p ∈ D : d(a, b) ≤
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d(a, p)+d(p, c), where d is a metric defined over a domain D. With some simple
math and exploiting the symmetry property of metrics, we can rewrite it as

∀a, b, p ∈ D : |d(p, a)− d(p, c)| ≤ d(a, b) ≤ d(p, a) + d(p, c) (1)

Now, assuming to know all |D| distances d(p, a) for some fixed element p ∈ D,
which we will call pivot, the above formula can be directly used to provide a
bounding interval for the distance between any couple (a, b) of objects. Hence-
forth, we will refer to such bounding intervals as approximated distances or simply
approximations. In particular, we notice that if some object a is very close to the
pivot, the d(p, a) values in (1) will be very small, and therefore the approximation
of any distance d(a, b) from a will be very tight.

In our approach, the computation of all object-to-object distances, usually
performed at the beginning of HAC algorithms, is replaced by (i) the computa-
tion of the |D| exact distances relative to a randomly chosen pivot, and (ii) the
approximation of all other distances by following the method outlined above.

3.2 Enhanced Distance Management

The method shown in the previous section can be used to provide an initial
set of approximations aimed at replacing as much as possible the full matrix
of distances. In the following we will describe: (i) how such approximations can
be used to save exact distance computations in the couple selection phase (step
3 in Figure 1); (ii) how they can be composed to derive approximations for a
newly created cluster (steps 6–7); and (iii) how to exploit them also in the on
demand computation of exact distances between compound clusters, when they
are required in the couple selection phase.

Enhanced Couple Selection. Both the single- and complete-linkage algo-
rithms, at each iteration find the couple of clusters with minimal distance, and
merge them. A simple method for searching such couple exploiting the approxi-
mated distances, is the following:

1. Select the couple (a, b) which has the lowest-bounded approximation;
2. if the approximation is perfect
3. then return (a, b);
4. else compute the exact d(a, b) and return to step 1;

Essentially, a two-steps selection is performed: a first selection of the most
promising candidate couple is performed by means of the known approxima-
tions; if the best approximation is perfect, then all other couples certainly have
an equal or greater distance, and therefore we can safely choose the selected
couple for the merging phase; otherwise, another step is necessary, i.e., the exact
distance of the couple needs to be computed and checked to be still the best
candidate. The last test is implicitly performed by immediately repeating the
selection step.
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Deriving New Approximations. When two clusters are merged, all distances
from the resulting new cluster have to be computed, exact or approximated, so
that it can be considered in the next iterations of the selection-merging process.
Analogously to the case of exact distances, the approximations for the new clus-
ter can be derived by aggregating the already known approximations of the two
clusters it originated from. In particular, we exploit a simple property of the max
and min aggregation operators, that are used in the single- and complete-linkage
HAC algorithms1:

Proposition 1. Let x, y, l1,u1, l2,u2 ∈ R, x ∈ [l1,u1] and y ∈ [l2,u2]. Then:

min{x, y} ∈ [min{l1, l2},min{u1,u2}] (2)
max{x, y} ∈ [max{l1, l2},max{u1,u2}] (3)

In the single-linkage algorithm, the distance between two clusters c and c′ is
computed as the minimum of the object-to-object distances between elements
of the two clusters, i.e., d(c, c′) = mina∈c,b∈c′ d(a, b). If c is obtained by merg-
ing clusters c1 and c2, then we can write d(c, c′) = mina∈c1∪c2,b∈c′ d(a, b), and
therefore d(c, c′) = min{d(c1, c

′), d(c2, c
′)}. This property, together with (2),

provides a straightforward means for approximating all distances d(c, c′) from
c, given that we know an approximation for both its components c1 and c2.
A completely symmetrical reasoning can be repeated for the complete-linkage
algorithm, which makes use of inequality (3).

Enhanced Distance Computation. In the (enhanced) selection step it is of-
ten necessary to compute the exact distance between two clusters. That happens
whenever the best candidate couple found is associated with only an approxi-
mated distance. The trivial way to do it, consists in computing all distances
between each object in the first cluster and each object in the second one and
aggregating them with the proper operator (min or max). An obvious drawback
of this solution is that it easily leads to compute all |D|·(|D|−1)

2 object-to-object
distances, which is exactly what we wanted to avoid. A surprisingly effective
enhancement can be obtained by exploiting the following simple fact:

Proposition 2. Let c1, c2, c
′ be three distinct clusters and c = c1∪c2, d(c1, c

′) ∈
[l1,u1], d(c2, c

′) ∈ [l2,u2]. If u1 ≤ l2, then: (i) in the single-linkage algorithm it
holds that d(c, c′) = d(c1, c

′), and (ii) in the complete-linkage d(c, c′) = d(c2, c
′).

The basic idea is to compute the distance between compound clusters by
recursively analyzing their components (i.e., the two sub-clusters they originated
from), until we reach simple objects. At each step of the recursion, the above
property allows to prune unnecessary distance computations. The process for
single-linkage HAC can be summarized as in Figure 2. If the clusters to compare

1 Due to space limits, all the proofs are omitted here, and can be found in [8].
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Algorithm: EDC
Input: two clusters a and b
Output: the exact distance d(a, b)

1. if a and b contain only one object then Stop and return d(a, b);
2. if a contains only one object then Swap a and b;
3. Let a1, a2 be the clusters which compose a, i.e., a = a1 ∪ a2;
4. Let d(a1, b) ∈ [l1, u1] and d(a2, b) ∈ [l2, u2];
5. if l1 > l2 then Swap a1 and a2;
6. d1 := EDC(a1, b);
7. if d1 < l2 then Stop and return d1;
8. d2 := EDC(a2, b);
9. return min{d1, d2};

Fig. 2. Enhanced Distance Computation (EDC) for single-linkage HAC

contain single objects, then the algorithm simply computes their distance (step
1), otherwise it breaks down one of the compound clusters into its components
(steps 2–4), and recursively analyzes them. In the analysis of sub-components,
priority is given to the most promising one, i.e., that with the smaller lower bound
distance (step 5), to the purpose of maximizing the pruning opportunities offered
by Proposition 2. Step 7 implements that by avoiding to compute the distance
for the less promising component when it is not strictly necessary.

The complete-linkage version of the algorithm is essentially the same, and can
be obtained by just modifying the conditions of step 5 and 7 with, respectively,
(u1 < u2) and (d1 > u2), and by replacing min with max in step 9.

3.3 Selecting Pivots

As we noticed in Section 3.1, the approximations computed before the clustering
process can have variable tightness. In particular, the approximations for objects
close to the pivot will be tight, while the others will be looser. A natural extension
of the method consists in choosing more than one pivot, so that a larger number
of objects will have a pivot near to them, and therefore a larger quantity of
approximated distances will result tight. The expected consequence is that the
pruning strategies described in the previous sections will be more effective.

Choosing several pivots, we obtain several approximations for the same dis-
tance – one for each pivot – so they need to be composed together in some way.
The approximation computed by means of each pivot represents a constraint
that the real distance must satisfy. Therefore, the composition of approxima-
tions corresponds to the conjunction of the constraints they represent, which is
simply implemented by intersecting of the available approximations.

A more difficult problem is the choice of the pivots. While a simple, repeated
random choice would be a possible solution, it provides no guarantee on the
results. On the contrary, assuming that a dataset is really composed of a number
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Algorithm: Pivots Selection
Input: a dataset D and an integer n
Output: a set P of n pivots

1. Randomly select an object p0 ∈ D;
2. P := {p0};
3. while |P | < n do
4. p = arg maxo∈D{minp′∈P d(p′, o)};
5. P := P ∪ {p};
6. return P ;

Fig. 3. Algorithm for selecting the initial pivots

of clusters, an optimal choice for pivots would assign at least one pivot to each
cluster. The key idea of our pivot selection heuristics is the following: assuming
to have very well defined clusters in our data, each point is expected to be
far from the objects of other clusters, at least if compared with the distance
from other objects in the same cluster. Therefore, given a set of pivots, we can
reasonably search a new good pivot, i.e., a pivot which belongs to an uncovered
cluster, among those objects which are far from all existing pivots. These are
essentially the same ideas applied in [6], where a similar approach has been used
for approximated clustering. Figure 3 shows our pivot selection method.

The very first pivot is chosen randomly (steps 1–2), while the following ones
are chosen as mentioned above. In particular, the furthest object from the exist-
ing set of pivots is selected, i.e., the object which maximizes the distance from
the closest pivot (step 4). This simple algorithm seems to capture reasonably
well the cluster structure of data, at least for clean-cut clusters, as indicated by
the property proven below.

Definition 1 (δ-separateness). Given a set of objects D and a distance d(),
D is called δ-separated if it can be split into at least two clusters, such that the
following holds: ∀a, b, a′, b′ ∈ D : if a and b belong to the same cluster while a′

and b′ do not, then d(a′, b′) > δ · d(a, b).

Essentially, δ-separateness requires that the minimum distance between clus-
ters is at least δ times larger than the maximum diameter of clusters.

Proposition 3. Let D be a 1-separated dataset composed of n clusters, and
k ≥ n. Then, PivotsSelection(D,k) returns at least one object from each cluster.

4 Performance Evaluation

In this section we provide some experimental and theoretical evaluations of the
performances of the HAC algorithms with enhanced distance management de-
scribed in this work.
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4.1 Theoretical Evaluation

While any realistic context usually shows some kind of irregularity, such as noise
(i.e., objects that do not clearly belong to any cluster) and dispersion (i.e., largely
dispersed clusters, possibly without clear boundaries), it is useful to have some
theoretical estimation of performances also on ideal datasets: on one hand, it
provides at least a comparison reference for empirical studies; on the other hand,
it helps to understand where are the weak and strong points of the algorithm
analyzed. In this section, we provide one of such theoretical hints.

First of all, we introduce a slight variant of HAC algorithms:

Definition 2 (k-HAC). Given a HAC algorithm and a parameter k, we define
the corresponding k-HAC algorithm as its variant which stops the aggregation
process when k clusters are obtained. That corresponds to replace step 2 in the
general HAC algorithm (Figure 1) with the following: while |C| > k do.

In practice, such generalization is quite reasonable, since usually it is easy to
provide some a priori lower bound on the number of clusters we are interested
in – obviously at least 2, but often it is much larger.

Proposition 4. Given a 3-separated dataset D with n clusters, and a parameter
k ≥ n, the execution of an optimized k-HAC algorithm over D with k initial
pivots requires O(N2

1 + · · · + N2
k ) object-to-object distance computations, where

(Ni)i=1,...,k are the sizes of the k top level clusters returned by the algorithm.

In summary, when clusters are very compact our pruning strategy allows to
limit the distance computations just to couples within the same cluster. That
results in a considerable reduction factor, as stated by the following:

Corollary 1. Under the assumptions of Proposition 4, if k = n and the clus-
ters in D have balanced sizes (i.e., ∀i : Ni ∼ N/k), then the k-HAC algorithm
with enhanced distance computation requires a fraction O(1/k) of the distances
required by the simple HAC algorithm.

We notice that the above analysis does not take in consideration the prun-
ing capabilities of the Enhanced Distance Computation algorithm. As the next
section will show, in some cases this second component allows to obtain much
larger reduction factors.

4.2 Experimental Evaluation

In order to study the effectiveness of our pruning heuristics, and to understand
which factors can affect it, we performed several experiments over datasets of
different nature with corresponding distance functions:

– 2D points: the dataset contains points in the R2 space, and the standard
Euclidean distance is applied. Data were randomly generated into 10 spher-
ical, normally-distributed clusters with a 5% of random noise. Although Eu-
clidean metrics are not expensive, this kind of metric space provides a good
example of low-dimensional data, so it is useful to evaluate the pruning power
of our heuristics on it and to compare the results with the other data types.
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– Trajectories: each element describes the movement of an object in a bi-
dimensional space, and is represented as a sequence of points in space-time.
The distance between two objects is defined as the average Euclidean dis-
tance between them. Data were synthesized by means of a random generator,
which created 10 clusters of trajectories (see [7] for the details).

For each data domain, datasets of different sizes were generated (from 400
to 3200 objects) and the single- and complete-linkage versions of a 10-HAC
algorithm were applied, with a variable number of pivots (from 4 to 48). Figure 4
depicts the results of our experiments for single-linkage, which are evaluated by
means of the ratio between the total number of distance computations required
by the basic HAC algorithms and the number of distances computed by their
enhanced version. We will refer to such ratio as gain factor, and each value is
averaged over 16 runs. Due to space limitations, the results for the complete-
linkage algorithm are not reported here, since they are quite similar to the single-
linkage case. The interested reader can find them in [8], together with tests on
other datasets. We can summarize the results as it follows:

– For 2D data (Figure 4 left), a very high gain factor is obtained for all settings
of the parameters. In particular, the gain factor grows very quickly with the
size of the database, and the best results are obtained with the minimal
number of pivots. The latter fact essentially means that the pruning power
of the EDC procedure (Figure 2) is so high in this context, that only a very
small number of exact distances are needed to capture the structure of data,
and so the k|D| distances computed in the initialization phase (|D| for each
pivot) become a limitation to the performances.

– For trajectory data (Figure 4 right), the gain factor is moderately high, and
the enhanced HAC algorithms reduce the number of computed distances
of around an order of magnitude. In this contexts, we notice that the best
results are obtained with a number of pivots around 10–20, and both smaller
and higher values yield a decrease in performances.
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Fig. 4. Gain Factor of Single-linkage HAC on 2D and trajectory data
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Due to space limitations, no analysis of execution times is provided here.
We summarize our results as follows: with 2D data the gain in running times
is slightly negative, because the Euclidean metric is extremely cheap, and then,
even though the overhead of our heuristics results to be small, the distances
saved cannot compensate it; with other data, instead, the gain in running times
is almost identical to the gain factor, since the distances are more complex, and
saving even a few of them is enough to balance all the overhead.

5 Conclusions

In this paper we introduced an optimization technique for two popular hier-
archical clustering algorithms, and studied its potentialities and its limitations
by means of both theoretical and empirical means. Our optimization technique
tries to save as many distance computations as possible, which is particularly
important for contexts where distances are time-consuming, and we showed that
on reasonably dense datasets it is able to achieve good performances.

As future work, we plan (i) to perform a systematic study aimed at under-
standing more precisely which statistical properties of data influence the per-
formances of our pruning heuristics (as suggested in the previous section and
confirmed by additional tests in [8], dimensionality is one of them); (ii) to em-
pirically evaluate the pruning power of the heuristics over several real world
datasets, having different characteristics; and, finally, (iii) to extend the heuris-
tics to other variants of HAC and, if possible, to other clustering approaches.
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Abstract. Density-based clustering has the advantages for (i) allowing
arbitrary shape of cluster and (ii) not requiring the number of clusters as
input. However, when clusters touch each other, both the cluster centers
and cluster boundaries (as the peaks and valleys of the density distri-
bution) become fuzzy and difficult to determine. In higher dimension,
the boundaries become wiggly and over-fitting often occurs. We intro-
duce the notion of cluster intensity function (CIF) which captures the
important characteristics of clusters. When clusters are well-separated,
CIFs are similar to density functions. But as clusters touch each other,
CIFs still clearly reveal cluster centers, cluster boundaries, and, degree of
membership of each data point to the cluster that it belongs. Clustering
through bump hunting and valley seeking based on these functions are
more robust than that based on kernel density functions which are often
oscillatory or over-smoothed. These problems of kernel density estima-
tion are resolved using Level Set Methods and related techniques. Com-
parisons with two existing density-based methods, valley seeking and
DBSCAN, are presented to illustrate the advantages of our approach.

1 Introduction

Recent computer, internet and hardware advances produce massive data which
are accumulated rapidly. Applications include genomics, remote sensing, network
security and web analysis. Undoubtedly, knowledge acquisition and discovery
from such data become an important issue. One common technique to analyze
data is clustering which aims at grouping entities with similar characteristics
together so that main trends or unusual patterns may be discovered.
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Among various classes of clustering algorithms, density-based methods are of
special interest for their connections to statistical models which are very useful in
many applications. Density-based clustering has the advantages for (i) allowing
arbitrary shape of cluster and (ii) not requiring the number of clusters as input,
which is usually difficult to determine. Examples of density-based algorithms
can be found in [1, 2, 3].

There are several basic approaches for density-based clustering. (A1) A com-
mon approach is so-called bump-hunting: first find the density peaks or “hot
spots” and then expand the cluster boundaries outward until they meet some-
where, presumably in the valley regions (local minimums) of density contours.
The CLIQUE algorithm [3] adopted this methodology. (A2) Another direction
is to start from valley regions and gradually work uphill to connect data points
in low-density regions to clusters defined by density peaks. This approach has
been used in Valley Seeking [4] and DENCLUE [2]. (A3) A recent approach,
DBSCAN [1], is to compute reachability from some seed data and then connect
those “reachable” points to their corresponding seed. Here, a point p is reachable
from a point q with respect to M inPts and Eps and there is a chain of points
p1 = q, p2, . . . , pn = p such that, for each i, the Eps-neighborhood of pi contains
at least M inPts points and contains pi+1.

When clusters are well-separated, density-based methods work well because
the peak and valley regions are well-defined and easy to detect. When clusters
touch each other, which is often the case in real situations, both the cluster cen-
ters and cluster boundaries (as the peaks and valleys of the density distribution)
become fuzzy and difficult to determine. In higher dimension, the boundaries
become wiggly and over-fitting often occurs.

In this paper, we apply the framework of bump-hunting but with several
new ingredients adopted to overcome problems that many density-based algo-
rithms share. The major steps of our method are as follows: (i) obtain a density
function by Kernel Density Estimation (KDE); (ii) identify peak regions of the
density function using a surface evolution equation implemented by the Level Set
Methods (LSM); (iii) construct a distance-based function called Cluster Intensity
Function (CIF) based on which valley seeking is applied. In the followings, we
describe each of the above three notions. An efficient graph-based implementa-
tion of the valley seeking algorithm can be found in [4].

Kernel Density Estimation (KDE). In density-based approaches, a gen-
eral philosophy is that clusters are high density regions separated by low den-
sity regions. We particularly consider the use of KDE, a non-parametric tech-
nique to estimate the underlying probability density from samples. More pre-
cisely, given a set of data {xi}N

i=1 ⊂ Rp, the KDE is defined to be f(x) :=
1/(Nhp

N )
∑N

i=1 K((x − xi)/hN ) where K is a positive kernel and hN is a scale
parameter. Clusters may then be obtained according to the partition defined by
the valleys of f .

There are a number of important advantages of kernel density approach. Iden-
tifying high density regions is independent of the shape of the regions. Smoothing
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Fig. 1. (a) A mixture of three Gaussian distributions. (b) The KDE f using Gaussian

kernel with window size h = 1. In (b), peaks and valleys corresponding to the two

smaller large clusters are very vague that the performance of applying bump-hunting

and/or valley seeking algorithm based on the KDE is expected to be poor. Clusters

obtained from our method are shown in Fig. 2

effects of kernels make density estimations robust to noise. Kernels are localized
in space so that outliers do not affect the majority of the data. The number of
clusters is automatically determined from the estimated density function, but
one needs to adjust the scale parameter hN to obtain a good estimate.

Despite the numerous advantages of kernel density methods, there are some
fundamental drawbacks which deteriorate the quality of the resulting clusterings.
KDEs are very often oscillatory (uneven) since they are constructed by adding
many kernels together. Such oscillatory nature may lead to the problem of over-
fitting, for instance, when clusters touch each other, a smooth cluster boundary
between the clusters are usually preferred than an oscillatory one. Last but not
least, valleys and peaks of KDEs are often very vague especially when clusters
touch each other.

In Fig. 1, we show a dataset drawn from a mixture of three Gaussian com-
ponents and the KDE f . We observe that the valleys and peaks correspond to
the two smaller large clusters of the KDE are very vague or may even not exist.
Thus, the performance of KDE-based bump-hunting and/or valley seeking could
be poor when the clusters are overlapped.

Level Set Methods (LSM). We recognize that the key issue in density-based
approach is how to advance the boundary either from peak regions outward to-
wards valley regions, or the other way around. In this paper, we employ LSM,
which are effective tools for computing boundaries in motion, to resolve the
boundary advancing problem. LSM have well-established mathematical founda-
tions and have been successfully applied to solve a variety of problems in image
processing, computer vision, computational fluid dynamics and optimal design.
LSM use implicit functions to represent complicated boundaries conveniently.
While implicit representation of static surfaces has been widely used in com-
puter graphics, LSM move one step further allowing the surfaces to dynamically
evolve in an elegant and highly customizable way, see [5] for details.

Advantages of LSM include: (i) the boundaries in motion can be made smooth
conveniently and smoothness can be easily controlled by a parameter that
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characterizes surface tension; (ii) merging and splitting of boundaries can be eas-
ily done in a systematical way. Property (ii) is very important in data clustering
as clusters can be merged or split in an automatic fashion. Furthermore, the
advancing of boundaries is achieved naturally within the framework of partial
differential equation (PDE) which governs the dynamics of the boundaries.

Cluster Intensity Functions (CIF). We may use LSM strictly as an effective
mechanism for advancing boundaries. For example, in the above approach (A1),
once the density peaks are detected, we may advance cluster boundaries towards
low-density regions using LSM. However, it turns out that utilizing LSM we can
further develop a new and useful concept of cluster intensity function. A suitably
modified version of LSM becomes an effective mechanism to formulate CIFs in a
dynamic fashion. Therefore our approach goes beyond the approaches (A1)–(A3)
described earlier.

CIFs are effective to capture important characteristics of clusters. When clus-
ters are well-separated, CIFs become similar to density functions. But as clusters
touch each other, CIFs still clearly describe the cluster structure whereas density
functions and hence cluster structure become blurred. In this sense, CIFs are a
better representation of clusters than density functions.

CIFs resolve the problems of KDEs while advantages of KDEs are inherited.
Although CIFs are also built on the top of KDEs, they are cluster-oriented so
that only information contained in KDEs that is useful for clustering is kept
while other irrelevant information is filtered out. We have shown that such a
filtering process is very important in clustering especially when the clusters touch
each other. On the other hand, it is well-known that when the clusters are
well-separated, then valley seeking on KDEs results in very good clusterings.
Since the valleys of CIFs and KDEs are very similar, if not identical, when the
clusters are well-separated, clustering based on CIFs is as good as that based on
KDEs. However, advantages of CIFs over KDEs become very significant when
the clusters touch each other.

In our method, once the CIF is obtained, cluster labels can be easily as-
signed by applying the valley seeking algorithm [4] but with the density function
replaced the distance-based CIF.

2 Cluster Formation

In this section, we describe our methodology to construct clusters using LSM.
We start by introducing some terminologies. A cluster core contour (CCC) is
a closed surface surrounding the core part/density peak of a cluster at which
density is relatively high. A cluster boundary refers to the interface between two
clusters, i.e., a surface separating two clusters. A CCC is usually located near
a density peak while a cluster boundary is located at the valley regions of a
density distribution. Here, a point x is said to belong to a valley region of f if
there exists a direction along which f is a local minimum. The gradient and the
Laplacian of a function g are denoted by ∇g and Δg respectively.
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Our method consists of the following main steps which will be elaborated
in details in the next subsections: (i) initialize CCCs to surround high density
regions; (ii) advance the CCCs using LSM to find density peaks; (iii) apply valley
seeking algorithm on the CIF constructed from the final CCCs to obtain clusters.

2.1 Initialization of Cluster Core Contours (CCC)

We now describe how to construct an initial cluster core contours Γ0 effectively.
The basic idea is to locate the contours at which f has a relatively large (norm
of) gradient. In this way, regions inside Γ0 would contain most of the data points
— we refer these regions as cluster regions. Similarly, regions outside Γ0 would
contain no data point at all and we refer them as non-cluster regions. Such an
interface Γ0 is constructed as follows.

Definition 1. An initial set of CCCs Γ0 is the set of zero crossings of Δf , the
Laplacian of f . Here, a point x is a zero crossing if Δf(x) = 0 and within any
arbitrarily small neighborhood of x, there exist x+ and x− such that Δf(x+) > 0
and Δf(x−) < 0.

We note that Γ0 often contains several closed surfaces, denoted by {Γ0,i}.
The idea of using zero crossings of Δf is that it outlines the shape of datasets
very well and that for many commonly used kernels (e.g. Gaussian and cubic
B-spline) the sign of Δf(x) indicates whether x is inside or outside Γ0.

Complete reasons for using zero crossings of Δf to outline the shape of
datasets are several folds: (a) the solution is a set of surfaces at which ‖∇f‖
is relatively large; (b) the resulting Γ0 is a set of closed surfaces; (c) Γ0 well cap-
tures the shape of clusters; (d) the Laplacian operator is an isotropic operator
which does not bias towards certain directions; (e) the equation is simple and
easy to solve; (f) it coincides with the definition of edge in the case of image pro-
cessing. In fact, a particular application of zero crossings of Laplacian in image
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Fig. 2. Evolution of cluster core contours (CCC) using the bump hunting PDEs of Eq.

(2). The dataset is the one used in Fig. 1. (a) Initial CCC. (b) Final CCCs. (c) CIF

constructed from the contours in (b). Peaks corresponding to the three large clusters

are clearly seen. (d) Valleys of the CIF. We observe that the initial CCCs capture the

shape of the dataset and that the resulting boundaries capture the hot spots of the

dataset very well. In (d), the three cluster cores are well-discovered
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processing is to detect edges to outline objects;(g) the sign of Δf(x) indicate
whether x is inside (negative) or outside (positive) of a cluster region.

In Fig. 2(a), we show the initial CCCs juxtaposed with the dataset shown in
Fig. 1(a). We observe that the CCCs capture the shape of the dataset very well.

2.2 Advancing Cluster Core Contours

Next, we discuss how to advance the initial CCCs to obtain peak regions through
hill climbing in a smooth way. We found that this is a key issue in density-based
approaches and is also how ideas from LSM come into play. More precisely, we
employ PDE techniques to advance contours in an elegant way.

Since each initial CCC Γ0,i in Γ0 changes its shape as evolution goes on, we
parameterize such a family of CCCs by a time variable t, i.e., the i-th CCC at
time t is denoted by Γi(t). Moreover, Γ (0) ≡ Γ0.

In LSM, Γ (t) is represented by the zero level set of a Lipschitz function
φ = φ(x, t), i.e., Γ (t) = {x : φ(x, t) = 0}. The value of φ at non-zero level
sets can be arbitrary, but a common practice is to choose φ to be the signed
distance function ψΓ (t)(x) for numerical accuracy reasons [5]. In general, the
signed distance function with respect to a set of surfaces Γ is defined by

ψΓ (x) =

⎧⎨
⎩

min
y∈Γ

‖x− y‖ if x lies inside Γ

−min
y∈Γ

‖x− y‖ if x lies outside Γ
, (1)

To evolve Γ (t) (where Γ (0) is the initial data) with speed β = β(x, t), the
equation is given by ∂φ/∂t = β‖∇φ‖ which is known as the level set equation
[5]. Our PDE also takes this form.

Using a level set representation, the mean curvature κ = κ(x, t) (see [5]) of
Γ (t) at x is given by κ(x, t) = ∇ · (∇φ(x, t)/‖∇φ(x, t)‖).

Given the initial CCCs Γ (0) represented by the zero level set of φ(x, 0) (which
is chosen to be ψΓ (0)(x)), the time dependent PDE that we employ for hill
climbing on density functions is given by

∂φ

∂t
=
(

1
1 + ‖∇f‖ + ακ

)
‖∇φ‖, φ(x, 0) = ψΓ (0)(x). (2)

This equation is solved independently for each cluster region defined according
to Γ (t). During evolution, each contour and hence each cluster region may split
or merge. Evolution is stopped when no further splitting occurs.

The aim of the factor 1/(1 + ‖∇f‖) is to perform hill climbing to look for
density peaks. Moreover, the factor also adjusts the speed of each point on the
CCCs in such a way that the speed is lower if ‖∇f‖ is larger. Thus the CCCs
stay in steep regions of f where peak regions are defined better. In the limiting
case where f has a sharp jump (‖∇f‖ → ∞), the CCCs actually stop moving
at the jump. We remark that in traditional steepest descent methods for solving
minimization problems, the speed (step size) is usually higher if ‖∇f‖ if larger,
which is opposite to what we do. This is because our goal is to locate steep
regions of f rather than local minimums.
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The curvature κ exerts surface tension to smooth out the CCCs. In contrast,
without exerting surface tension, the CCCs could become wiggly which may lead
to the common problem of over-fitting of KDEs. Therefore, we employ the term
κ to resolve such a problem. In fact, if φ is kept to be a signed distance function
for all t, i.e., ‖∇φ‖ ≡ 1, then κ = Δφ so that φ is smoothed out by Gaussian
filtering. In the variational point of view, the curvature term exactly corresponds
to minimization of the length (surface area in general) of the CCCs.

The scalar α ≥ 0 controls the amount of tension added to the surface and
will be adjusted dynamically during the course of evolution. At the beginning
of evolution of each Γi(0), we set α = 0 in order to prevent smoothing out
of important features. After a CCC is split into pieces, tension is added and
is gradually decreased to 0. In this way, spurious oscillations can be removed
without destroying other useful features. Such a mechanism is similar to cooling
in simulated annealing.

In summary, the PDE simply (i) moves the initial CCCs uphill in order to
locate peak regions; (ii) adjusts the speed according to the slope of the KDE;
(iii) removes small oscillations of the CCCs by adding tension so that hill climb-
ing is more robust to the unevenness of the KDE (c.f. Examples 1 and 2 in §3).
In addition to these, the use of LSM allows the CCCs to be split and merged
easily.

In Fig. 2(a)–(b), we show the CCCs during the course of evolution governed
by Eq. (2). The two CCCs correspond to outliers are freezed quickly. We observe
that the contours are attracted to density peaks. When a contour is split into
several contours, the pieces are not very smooth near the splitting points. Since
tension is added in such cases, the contours are straighten out quickly.

2.3 Cluster Intensity Functions

In non-parametric modelling, one may obtain clusters by employing valley seek-
ing on KDEs. However, as mentioned above, such methods perform well only
when the clusters are well-separated and of approximately the same density in
which case peaks and valleys of the KDE are clearly defined. On the other hand,
even though we use the density peaks identified by our PDE Eq. (2) as a starting
point, if we expand the CCCs outward according to the KDE, we still have to
face the problems of the KDE; we may still get stuck in local optimum due to
its oscillatory nature.

In this subsection, we further explore cluster intensity functions which are a
better representation of clusters than that by KDEs. Due to the advantages of
CIFs, we propose to perform valley seeking on CIFs to construct clusters, rather
than on KDEs. Here, CIFs are constructed based on the final CCCs obtained
by solving the PDE Eq. (2).

CIFs capture the essential features of clusters and inherit advantages of KDEs
while information irrelevant to clustering contained in KDEs is filtered out.
Moreover, peaks and valleys of CIFs stand out clearly which is not the case for
KDEs. The principle behind is that clustering should not be done solely based
on density,‘ rather, it is better done based on density and distance. For example,
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it is well-known that the density-based algorithm DBSCAN [1] cannot separate
clusters that are closed together even though their densities are different.

CIFs, however, are constructed by calculating signed distance from CCCs
(which are constructed based on density). Thus, CIFs combine both density and
distance information about the dataset. This is a form of regularization to avoid
over-specification of density peaks.

The definition of a CIF is as follows. Given a set of closed hypersurfaces Γ
(zero crossings of Δf or its refined version), the CIF φ with respect to Γ is
defined to be the signed distance function (1), φ = ψΓ .

The value of a CIF at x is simply the distance between x and Γ with its
sign being positive if x lies inside Γ and negative if x lies outside Γ . Roughly
speaking, a large positive (respectively negative) value indicates that the point
is deep inside (respectively outside) Γ while a small absolute value indicates that
the point lies close to the interface Γ .

In Fig. 2(c), the CIF constructed from the CCCs in Fig. 2(b) is shown. The
peaks correspond to the three large clusters can be clearly seen which shows
that our PDE is able to find cluster cores effectively. Based on the CIF, valley
seeking (c.f. §1) can be easily done in a very robust way. In Fig. 2(d), we show
the valleys of the CIF juxtaposed with the dataset and the final CCCs.

We remark that the CCCs play a similar role as cluster centers in the k-
means algorithm. Thus, our method generalizes the k-means algorithm in the
sense that a “cluster center” may be of arbitrary shape instead of just a point.

Under LSM framework, valleys and peaks are easily obtained. The valleys are
just the singularities of the level set function (i.e. CIF) having negative values.
On the other hand, the singularities of the level set function having positive
values are the peaks or ridges of the CIF (also known as skeleton).

3 Experiments

In addition to the examples shown in Figs. 1–2, we give more examples to fur-
ther illustrate the usefulness of the concepts introduced. Comparisons with val-
ley seeking [4] and DBSCAN [1] algorithms (c.f. §1) are given in Examples 1
and 2. Clustering results of two real datasets are also presented. For visualiza-
tion of CIFs which is one dimension higher than the datasets, two dimensional
datasets are used while the theories presented above apply to any number of
dimensions.

When applying DBSCAN, the parameter M inPts is fixed at 4 as suggested
by the authors in [1].

Example 1. We illustrate how the problem of over-fitting (or under-fitting)
of KDEs is resolved using our method. In Fig. 3, we compare the clustering
results of valley seeking using the scale parameter h = 0.6, 0.7 and the DBSCAN
algorithm using Eps = 0.28, 0.29. The best result is observed in Fig. 3(a) but it
still contains several small clusters due to the spurious oscillations of the KDE.
For other cases, a mixture many small clusters and some over-sized clusters are
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Fig. 3. Clusters obtained from applying valley seeking and DBSCAN to the dataset in

Fig. 1. (a) Valley seeking with h = 0.6. (b) Valley seeking with h = 0.7. (c) DBSCAN

with Eps = 0.28. (d) DBSCAN with Eps = 0.29. In (a) and (c), many small clusters

are present due to unevenness of the density functions. These results are not as good

as the results using our method as shown in Fig. 2
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Fig. 4. Comparisons of our method with valley seeking and DBSCAN. (a) Dataset with

the zero crossing of Δf superimposed. (b) Final CCCs (the closed curves in red and

blue) and the valleys of the CIF (the line in black). (c) Valley seeking with h = 0.05.

(d) Valley seeking with h = 0.06. (e) DBSCAN with Eps = 0.010. (f) DBSCAN with

Eps = 0.011. The CCCs are able to capture the cluster shape while valley seeking and

DBSCAN seem to suffer from over-fitting and result in many small spurious clusters

present. In contrast, our method (shown in Fig. 2) resolves these problems by (i)
outlining the shape of the dataset well by keeping the CCCs smooth; (ii) using
curvature motion to smooth out oscillations due to unevenness of KDEs.

Example 2. A dataset with 4000 uniformly distributed points lying in two
touching circles is considered. The dataset together with the zero crossings of
Δf are shown in Fig. 4(a). The result of our method is in Fig. 4(b). We observe
that the final CCCs adapt to the size of the clusters suitably. The results of
valley seeking on KDEs (h = 0.05, 0.06) are shown in Fig. 4(c) and (d) where
the unevenness of the KDEs result in either 2 or 4 large clusters. The results
of DBSCAN with Eps = 0.010, 0.011 are in Fig. 4(e) and (f) which contain
many small clusters. In addition, this example also makes it clear that density
functions must be regularized which is done implicitly by adding surface tension
in our method.

Example 3. This example uses a dataset constructed from the co-expression
patterns of the genes in yeast during cell cycle. Clusters of the data are expected
to reflect functional modules. The results are shown in Fig. 5. We observe that
the valleys of the CIF are right on the low density regions and thus a reasonable
clustering is obtained.
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Fig. 5. (a) DNA gene expression dataset. (b) Zero crossings of Δf . (c) The final CCCs

and the valleys of the CIF. (d) The CIF. The cluster cores are well-retrived and the

valleys successfully separate the data into clusters of relatively high density
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Fig. 6. (a) A dataset of 3 internet newsgroups with 100 news items in each group

(news items in the same group are displayed with the same symbol). (b) The zero

crossings of Δf . (c) Clustering results (lines are valleys of the final CIF and closed

curves are the cluster cores). (d) The CIF

Example 4. Our next example uses a real dataset from text documents in three
newsgroups. For the ease of visualization, the dataset is first projected to a 2-D
space using principle component analysis. The results in Fig. 6 show that the
clustering results agree with the true clustering very well.

4 Concluding Remarks

In the paper, we introduced level set methods to identify density peaks and val-
leys in density landscape for data clustering. The method relies on advancing
contours to form cluster cores. One key point is that during contour advance-
ment, smoothness is enforced via LSM. Another point is that important features
of clusters are captured by cluster intensity functions which serve as a form of
regularization. The usual problem of roughness of density functions is overcome.
The method is shown to be much more robust and reliable than traditional
methods that perform bump hunting or valley seeking on density functions.

Our method can also identify outliers effectively. After the initial cluster
core contours are constructed, outliers are clearly revealed and can be easily
identified. In this method, different contours evolve independently. Thus outliers
do not affect normal cluster formation via contour advancing; This nice property



398 A.M. Yip, C. Ding, and T. Chan

does not hold for clustering algorithms such as the k-means where several outliers
could skew the clustering.

Our method for contour advancement Eq. (2) is based on the dynamics of
interface propagation in LSM. A more elegant approach is to recast the cluster
core formation as a minimization problem where the boundary advancement can
be derived from first principles which will be presented in a later paper.
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Abstract. The Self-Organizing Map is one of most prominent tools for
the analysis and visualization of high-dimensional data. We propose a
novel visualization technique for Self-Organizing Maps which can be dis-
played either as a vector field where arrows point to cluster centers, or as
a plot that stresses cluster borders. A parameter is provided that allows
for visualization of the cluster structure at different levels of detail. Fur-
thermore, we present a number of experimental results using standard
data mining benchmark data.

1 Introduction

The Self-Organizing Map (SOM) [1] is a valuable tool in data analysis. It is a
popular unsupervised neural network algorithm that has been used in a wide
range of scientific and industrial applications [3], like Text Mining [6], natural
language processing and monitoring of the condition of industrial plants and
processes. It provides several beneficial properties, such as vector quantization
and topology preserving mapping from a high-dimensional input space to a two-
dimensional output space. This projection can be visualized in numerous ways
in order to reveal the characteristics of the input data or to analyze the quality
of the obtained mapping.

Our method is based on the SOM codebook and the neighborhood kernel,
which induces a concept of proximity on the map. For each map unit, we compute
a vector pointing to the direction of the most similar region in output space.
We propose two methods of visualizing the results, a vector field plot, which
can be seen analogous to flow visualization and gradient visualization, and a
plot that emphasizes on the cluster structure of the map. The SOMs used for
demonstration and experiments are trained on Fisher’s well-known Iris data.

The rest of this paper is organized as follows. Section 2 describes several vi-
sualization techniques for SOMs and related work. Section 3 gives an overview
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of neighborhood kernel functions and their parametrization. In Section 4, our
visualization method is introduced, along with a description of its properties and
interpretations. Section 5 presents experimental results, where the the influence
of choices of neighborhood kernel, neighborhood radius and map size are inves-
tigated. Finally, Section 6 gives a short summary of the findings presented in
this paper.

2 Related Work

In this section, we briefly describe visualization concepts for SOMs related to
our novel method. The most common ones are component planes and the U-
Matrix. Both take only the prototype vectors and not the data vectors into
account. Component planes show projections of singled out dimensions of the
prototype vectors. If performed for each individual component, they are the
most precise and complete representation available. However, cluster borders
cannot be easily perceived, and high input space dimensions result in lots of
plots, a problem that many visualization methods in multivariate statistics, like
scatterplots, suffer from. The U-Matrix technique is a single plot that shows
cluster borders according to dissimilarities between neighboring units. The dis-
tance between each map unit and its neighbors is computed and visualized on
the map lattice, usually through color coding. Recently, an extension to the
U-Matrix has been proposed, the U*-Matrix [8], that relies on yet another vi-
sualization method, the P-Matrix [7]. Other than the original, it is computed
by taking both the prototype vectors and the data vectors into account and is
based on density of data around the model vectors. Interestingly, both the U*-
Matrix and our novel method, among other goals, aim at smoothing the fine-
structured clusters that make the U-Matrix visualization for these large SOMs
less comprehensible, although the techniques are conceptually totally different.
Other visualization techniques include hit histograms and Smoothed Data His-
tograms [4], which both take the distribution of data into account, and projec-
tions of the SOM codebook with concepts like PCA or Sammon’s Mapping, and
concepts that perform labeling of the SOM lattice [6]. For an in-depth discussion,
see [9].

In Figure 1, the hit histogram and U-Matrix visualizations are depicted for
SOMs trained on the Iris data set with 30×40 and 6×11 map units, respectively.
The feature dimensions have been normalized to unit variance. The U-Matrix
reveals that the upper third of the map is clearly separated from the rest of
the map. The hit histogram shows the projection of the data samples onto the
map lattice. It can be seen that this SOM is very sparsely populated, because
the number of map units is higher than the number of data samples. When the
two methods are compared, it can be observed that the fine cluster structures
in the U-Matrix occur exactly between the map units that are occupied by data
points. It is one of the goals of this work to create a representation that allows
a more global perspective on these kinds of maps and visualize it such that the
intended level of detail can be configured.
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(a) (b) (c) (d) (e)

Fig. 1. 30× 40 SOM: (a) U-Matrix, (b) Hit histogram, 6× 11 SOM: (c) U-Matrix, (d)

Hit histogram, (e) Vector Field with Gaussian kernel (σ = 2), see Section 5

To our best knowledge, the neighborhood kernel that is described in the
next section has not been used for visualization purposes. Apart from the SOM
training algorithm the neighborhood function is applied in the SOM Distortion
Measure [2], which is the energy function of the SOM with fixed radius, where the
neighborhood kernel is aggregated and serves as a weighting factor comparable
to the one we use in this paper.

3 SOM Neighborhood Kernels

A particularly important component of the Self-Organizing Map is the concept of
adjacency in output space, i.e. the topology of the map lattice, and its definition
of neighborhood that affects the training process. Our visualization technique
heavily depends on this neighborhood kernel as a weighting factor. The neigh-
borhood kernel is a parameterized function that takes the distance between two
map units on the lattice as input and returns a scaling factor that determines
by which amount the map unit is updated for each iteration. The parameter the
kernel depends on is the neighborhood radius σ(t), which is itself a monotoni-
cally decreasing function over time t. σ controls the width of the kernel function,
such that high values lead to kernels that are stretched out and low values result
in sharply peaked kernels. In this work, we will not consider the radius as a
function of time as the training process does, but rather as a parameter that has
to be specified before the visualization can be applied.

The kernel function hσ(dinput) has the property of decreasing monotonically
with increasing distance dinput. This distance will be formally defined in the
next section, but can be roughly envisioned as the number of units that lie
between two map units. Examples of neighborhood kernels are the Gaussian
kernel, the bubble function, and the inverse function. The Gaussian kernel is
the most frequently used kernel for the SOM. It has the well-known form of the
Gaussian Bell-Shaped Curve, formally

hG
σ (dinput) = exp

(
−

d2
input

2σ

)
(1)
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Fig. 2. Overview of different kernel functions: (a) Gaussian kernel, (b) cut-off Gaus-

sian kernel, (c) bubble function, (d) inverse function, (e) comparison of neighborhood

functions

Since the returned value is exponentially decreasing for higher values of dinput,
the effects on the training process are neglegible. Thus, the kernel is frequently
modified to cut off the function at input values greater than σ:

h
c/G
σ (dinput) =

{
hG

σ (dinput) if dinput ≤ σ
0 otherwise (2)

Another kernel is the bubble function, which exclusively relies on this prin-
ciple of cutting off at radius σ. It is a simple step function, formally

hB
σ (dinput) =

{
1 if dinput ≤ σ
0 otherwise (3)

Another option is the inverse proportional function:

hI
σ(dinput) =

{
1− d2

input

σ2 if dinput ≤ σ
0 otherwise

(4)

which shows a sharper decrease than the Gaussian kernel.
The different kernel functions are depicted in Figure 2, which shows the values

of the kernel for the map unit located in the center, indicated by a black dot.
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Figure 2(e) shows a plot of the kernels as function of the distance between the
units and fixed neighborhood radius. All the graphics use the same value of 6
for parameter σ.

4 A Vector Field Based Method for Visualization

In this section, we introduce our visualization technique for the SOM. Similar
to the U-Matrix, only the prototype vectors and their pairwise similarities are
investigated. In the U-Matrix, only the differences between direct neighbors are
considered. We aim to extend this concept to include the region around the
units according to the neighborhood kernel. Furthermore, we wish to obtain the
direction for each unit where the most similar units are located. The resulting
visualization is analogous to gradient vector fields where units are repelled from
or attracted to each other.

First, we have to make some formal definitions. The type of SOM that we
will consider has a two-dimensional lattice, consisting of a number M of map
units pi, where i is between 1 and M . Each of the map units is linked to a
model vector mi of input dimension N . Each of the mi is linked to the output
space by its position on the map. To distinguish between feature space and map
lattice, we explicitly write pi for the position vector of map unit that represents
prototype vector mi; the index i connects input and output space representation.
We denote the horizontal and vertical coordinates of the map unit as pu

i and pv
i ,

respectively. Thus, the distance between two prototype vectors mi and mj , or
pi and pj , can be determined both in input and output space:

dinput(mi,mj) = ||mi −mj ||input (5)

where ||.||input is a suitable distance metric and

doutput(pi, pj) =
√

(pu
i − pu

j )2 + (pv
i − pv

j )2 (6)

which is the Euclidean Distance.
The neighborhood kernel requires the distance between the model vectors’

positions on the map lattice doutput(pi, pj) as its input. This kernel function com-
putes how much the prototype vectors influence each other during the training
process. We will use it as a weighting function that allows us to compute the
similarity (in terms of input space distance) of map units that are close to each
other on the map.

Our technique plots arrows for each map unit like in gradient field visual-
izations. A unit’s arrow points to the region where the most similar prototype
vectors are located on the map. The length of this arrow shows the degree of how
much the area it is pointing to is more similar to it than the opposite direction.

Each arrow is computed for unit pi as a two-dimensional vector ai. It can
be decomposed in u and v coordinates, denoted as au

i and av
i . For each of the

two axes, we compute the amount of dissimilarity along positive and negative
directions. Our method determines these vectors in a two-step process: First, the
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computations for each map unit are performed separately for the positive and
negative directions of axes u and v, and finally, these components are aggregated
by a weighting scheme to calculate the coordinates of ai.

The angle α that identifies the direction of pj seen from pi on the map lattice
is defined in basic trigonometry as

α(pi, pj) = arctan(
pv

j − pv
i

pu
j − pu

i

) (7)

The influence of the neighborhood kernel projected onto the u and v axes is
computed as

wu(pi, pj) = cos(α(pi, pj)) · hσ(doutput(pi, pj)) (8)

wv(pi, pj) = sin(α(pi, pj)) · hσ(doutput(pi, pj)) (9)

Here, the influence of the neighborhood kernel is distributed among the two axes
according to the position of pi and pj on the map and serves as a weighting factor
in the following steps. The neighborhood kernel relies on the width parameter
σ, which determines the influence of far-away map units.

Then, we decompose the amount of dissimilarity in its positive and negative
direction for both axes for each pair of map units pi, pj :

conu
+(pi, pj) =

{
dinput(mi,mj) · wu(pi, pj) if wu(pi, pj) > 0
0 otherwise (10)

conu
−(pi, pj) =

{
−dinput(mi,mj) · wu(pi, pj) if wu(pi, pj) < 0
0 otherwise (11)

where conu
+ denotes the contribution of map unit pj ’s dissimilarity in positive

direction along u, and conu
− in negative direction. The definition of conv

+ and
conv

− follows analogously. For example, a map unit pj that lies to the lower right
of pi results in conu

−(pi, pj) = conv
+(pi, pj) = 0, and some positive values for

conu
+(pi, pj) and conv

−(pi, pj) according to the distance in output space, which is
weighted through the neighborhood kernel, and also its distance in input space,
which is directly measured by the factor dinput.

Next, the sum of contributions in both directions is computed for each pi

dissu
+(pi) =

∑
j=1...M,j �=i

conu
+(pi, pj) (12)

dissu
−(pi) =

∑
j=1...M,j �=i

conu
−(pi, pj) (13)

Again, dissv
+ and dissv

− are defined analogously. The variable dissu
+(pi) indi-

cates how much mi is dissimilar from its neighbors on the side in the positive u
direction. In a gradient field analogy, this value shows how much it is repelled
from the area on the right-hand side.
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Next, we aggregate both negative and positive components into the resulting
vector ai. Normalization has to be performed, because units at the borders of
the map lattice would have components pointing outside of the map equal to
zero, which is not intended. The sums of the neighborhood kernel weights wi

pointing in positive and negative directions are

wu
+(pi) =

∑
j=1...M,j �=i

{
wu(pi, pj) if wu(pi, pj) > 0
0 otherwise (14)

wu
−(pi) =

∑
j=1...M,j �=i

{
−wu(pi, pj) if wu(pi, pj) < 0
0 otherwise (15)

Finally, the u component of the gradient vector a is computed as

au
i =

dissu
−(pi) · wu

+(pi)− dissu
+(pi) · wu

−(pi)
dissu

+(pi) + dissu−(pi)
(16)

and likewise for the v direction. The weighting factor wu
+ is multiplied with

the component in the other direction to negate the effects of units close to the
border in which case the sum of the neighborhood kernel is greater on one side.
If this normalization would be omitted, the vector a would be biased towards
pointing to the side where units are missing. For map units in the center of the
map’s u-axis, where wu

+ and wu
− are approximately equal, Equation (16) can be

approximated by this simpler formula

au
i ≈ μ ·

dissu
−(pi)− dissu

+(pi)
dissu

+(pi) + dissu−(pi)
(17)

where μ is a constant factor equal to wu
++wu

−
2 and is approximately the same for

all units in the middle of an axis.
The results obtained for different ratios and proportions of diss+ and diss−

are briefly described:

– If negative and positive dissimilarities are roughly equal, the resulting com-
ponent of a will be close to zero.

– If the positive direction is higher than the negative one, a will point into the
negative direction, and vice versa. The reason for this is that the prototype
vectors on the negative side of the axis are more similar to the current map
unit than on the positive side.

– If one side dominates, but the second side still has a high absolute value, the
normalization performed in the denominator of Equation (16) decreases the
length of the vector.

In Figure 3(b), our visualization technique is shown for the 30 × 40 SOM
trained on the Iris data set with a Gaussian kernel with σ = 5. If compared to
the U-Matrix in Figure 1(a), it can be seen that the longest arrows are observed
near the cluster borders, pointing to the interior of their cluster and away from
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(a) (b) (c)

(d) (e) (f)

Fig. 3. 30 × 40 SOM trained on Iris data (a)-(c) Vector field representation with σ =

1, 5, 15, (d)-(f) Border representation with σ = 1, 5, 15

these borders. Adjacent units, for which the arrow points in different directions,
are clearly along a cluster border. The length of the arrows indicates how sharp
the border is. In the middle of these transitions, arrows are sometimes drawn
with almost no distinguishable length or direction. The corresponding prototype
vectors are likely to be very far away from either cluster, and are referred to
as interpolating units, since they do not represent any data vectors in a vec-
tor quantization sense, but are only a link connecting two distant data clouds.
Cluster centers also have small dot-like arrows pointing in no distinguishable
direction, but the difference is that the surrounding arrows are pointing in their
direction, and not away from them. Another property of this visualization is that
the units on the edges of the map never point outside of it, which is desired and
stems from the normalization performed in (16).

One interesting extension to our visualization method is that the results can
also be depicted to show the cluster borders themselves with a slight modification
in the representation by depicting not the direction of the gradient, but rather
the hyperplane obtained by rotation of 90 degrees in either direction. In our case
of a two-dimensional map lattice, the hyperplane is a one-dimensional line. We
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choose to depict this line with length proportional to the original arrow. The
result is visualized in Figure 3(e). The emphasis of this dual representation is
stressing cluster borders, while information on directions is omitted.

We have found that our method is most useful when applied in combina-
tion with other visualization techniques, such as hit histograms and component
planes. What can be learned from comparing the positions of the different Iris
species to our method is that the class membership of the data samples corre-
lates with the cluster structure in case of the Setosa species, while Versicolor
and Virginica do not show a distinguishable separation. This is of course a well-
known fact about the Iris data set, and application of our technique to more
complex data is subject to further research and is addressed in [5].

5 Experiments

In this section, we will investigate the empirical results of our method applied
to SOMs of different sizes, as well as how the choice of parameter σ influences
the visualization, and the effects of different kernel functions.

First, we examine the effect of the map size, i.e. the number of prototype
vectors. The data vectors remain the same for both maps. The smaller version
of the SOM consists of 6×11 units, and the larger one of 30×40 units. In the latter
case, the number of data vectors (150) is much lower than the number of map
units (1200). The visualization for the smaller version is depicted in Figure 1(e).
U-Matrix and vector field plots for the larger map are shown in Figures 1(a)
and 3, respectively. In the smaller SOM the gap between the upper third part
representing the well-separated Setosa species and the lower two-thirds of the
map can clearly be distinguished, as in the larger SOM. However, the larger
version of the SOM gives more insight into the structure of the data. Transitions
and gradual changes in directions and length can be distinguished more easily
at this higher granularity.

In the next experiment, we investigate the influence of the width parameter σ.
In Figure 3, the large Iris SOM is visualized with three different values of σ. Fig-
ures 3(a), (d) show the two methods for σ = 1. The visualization with this width
is the one most closely related to the U-Matrix technique, since only distances be-
tween direct neighbors are regarded, while the influence of slightly more distant
units is neglected. Of all the visualizations shown here, these two are chiseled
the most and are least smooth. The frequent changes in direction of neighboring
arrows is due to the very local nature of this kernel. In Figures 3(b), (e) the visu-
alization is shown for σ = 5, where the increased neighborhood radius produces
a smoothing effect over the vector field. Here, changes in direction between close
arrows can be better distinguished and result in a visually more comprehensible
picture. The set of arrows is perceived as a whole and as less chaotic. It gives
the impression of visualizing a somewhat more global structure. Finally, the vi-
sualization for σ = 15 is depicted in Figures 3(c), (f), where only big clusters
can be perceived. The effect of σ can be summarized as follows: For a value of 1,
the cluster representation is very similar to the U-Matrix, which is the method
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relying mostly on local differences. With higher values of σ, the kinds of per-
ceived cluster structures gradually shift from local to global. The choice of σ has
a deep impact on this visualization method and is dependant on the map size.
Further experiments have shown that good choices are close to one tenth of the
number of map units in the axis of the map lattice with fewer map units, but it
also depends on the desired level of granularity.

Finally, we investigate the influence of the type of neighborhood function
on the visualization. The examples in this paper so far are all performed with
Gaussian kernels. Surprisingly, the differences to the inverse function and cut-off
Gaussian kernel are so minimal that they are hardly distinguishable. The only
exception is the bubble function, which is actually a very unusual choice for a
neighborhood kernel during training. Since all the map units are treated equally
within the sphere of this radius, and nodes on the borders of this circle are not
weighted less than near the center, the visualization is harder to interpret than
the other kernels. During training, cluster structures are introduced that are not
present in the data set. We find that the bubble function is not appropriate for
this kind of visualization, and conclude that the neighborhood kernel should be
a continuous function.

6 Conclusion

In this paper, we have introduced a novel method of displaying the cluster struc-
ture of Self-Organizing Maps. Our method is distantly related to the U-Matrix.
It is based on the neighborhood kernel function and on aggregation of distances
in the proximity of each codebook vector. It requires a parameter σ that de-
termines the smoothness and the level of detail of the visualization. It can be
displayed either as a vector field as used in flow visualizations or as a plot that
highlights the cluster borders of the map. In the former case, the direction of the
most similar region is pointed to by an arrow. Our experiments have shown that
this method is especially useful for maps with high numbers of units and that the
choice of the neighborhood kernel is not important (as long as it is continuous),
while the neighborhood radius σ has a major impact on the outcome.
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Abstract. In this paper we introduce Self-Organizing Map-based tech-
niques that can reveal structural cluster changes in two related data sets
from different time periods in a way that can explain the new result in
relation to the previous one. These techniques are demonstrated using
a real-world data set from the World Development Indicators database
maintained by the World Bank. The results verify that the methods are
capable of revealing changes in cluster strucure and membership, corre-
sponding to known changes in economic fortunes of countries.

1 Introduction

In today’s fast-moving world, organizations need knowledge of change so that
they can quickly adapt their strategies. If an organization has devised marketing
strategies based on a clustering of the past year’s customer data, it is important
to know if the current year’s clustering differs from the last, in order to review,
and perhaps revise, those strategies. Knowing what has changed, particularly if
this has not been discovered by competitors, would be a major advantage [1].

Simply clustering a new data set does not, of itself, solve this problem:. The
user must be able to relate the new clustering result to the previous one. It
is difficult simply to compare cluster centroids obtained by a using a k-means
technique—particularly if the number of clusters has changed—or to compare
dendrograms obtained by hierarchical clustering algorithms. This is particularly
problematic if the organization has already implemented a strategy based on
an earlier clustering result. If users cannot relate new clustering results to older
ones, it is difficult to revise existing strategies. Therefore, methods that can
relate and contrast new clustering results with earlier ones are needed.

Here we consider various types of cluster changes, such as migration of indi-
viduals between clusters, the introduction of new clusters, and the disappearance
of clusters. We introduce Self-Organizing Map (SOM) based techniques that can
reveal structural cluster changes in two related data sets from different time
periods in a way that can explain the new result in relation to the previous one.
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2 Change Detection

Change mining, in general, can be categorized as change point detection, or
change mining via the comparison models obtained via data mining. In change
point detection, finding the time points at which something changed is more im-
portant than discovering the causes of the changes. Approaches to change point
detection include fitting segmented models [2], where change points are defined
as the points between consecutive segments. This has been applied to traffic
data. Another approach is to compare values estimated using a learned model
to actual observations [3], where large moving-average deviation is interpreted
as evidence of change. This has been applied successfully to stock market data.

Change detection via the comparison of learned models is more closely related
to the approach we presented. Since a data mining model is designed to capture
specific characteristics of the data set, changes in the underlying data sets can
be detected by comparing the models learned from the data sets [4]. In the field
of association rule discovery (ARD), “emerging patterns” have been defined as
rules the supports of which increase significantly from one data set to another [5].
Others have compared decision trees learned with two related data sets. Several
C4.5-based variants of this technique have been introduced [6].

Techniques to detect two kinds of change using SOMs have been introduced:
changes in map structure, and changes in the mapping of data vectors. A dis-
similarity measure for two maps has been proposed, based on the expected value
of distances between pairs of representative data points on both maps [7]. This
approach can determine how much two maps differ, but it cannot pinpoint the
differences. The similarity between two data sets in terms of a SOM can be shown
using data hit histograms [8], that show the frequency with which data vectors
are mapped to nodes. This can indicate changes in the data mapping, but it
is difficult to interpret these simply by comparing the data hit histograms. If a
vector is mapped into a dense area of the SOM, a small change in the data may
cause it to be mapped to a different node. In a spare area, however, the same
magnitude of change might not cause a different mapping. Another drawback is
that it cannot identify the origin of the ‘migrants’ in the previous map.

3 Self-organizing Maps

A SOM is an artificial neural network that performs unsupervised competitive
learning [9]. Importantly, SOMs allow the visualization and exploration of a high-
dimensional data space by non-linearly projecting it onto a lower-dimensional
manifold, most commonly a 2-D plane [10]. Artificial neurons are arranged on a
low-dimensional grid. Each neuron has an n-dimensional prototype vector, mi,
also known as a weight or codebook vector, where n is input data dimensionality.
Each neuron is connected to neighbouring neurons, determining the topology of
the map. In the map space, neighbours are equidistant.

SOMs are trained by presenting a series of data vectors to the map and
adjusting the prototype vectors accordingly. The prototype vectors are initialized
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to differing values, often randomly. The training vectors can be taken from the
data set in random order, or cyclically. At each training step t, the BMU (Best
Matching Unit) bi for training data vector xi, i.e. the prototype vector mj closest
to the training data vector xi, is selected from the map according to Equation 1:

∀j, ‖xi −mbi
(t)‖ ≤ ‖xi −mj(t)‖. (1)

The prototype vectors of bi and its neighbours are then moved closer to xi:

mj(t + 1) := mj(t) + α(t)hbij(t)[xi −mj(t)], (2)

where α(t) is the learning rate and hbij(t) is the neighbourhood function (often
Gaussian) centered on bi. Both α and the radius of hbij decrease after each step.
SOMs have been shown to cope with large, high-dimensional data sets.

The final orientation of the SOM is sensitive to the initial values of the
prototype vectors and the sequence of training vectors [10]. Various training runs
with the same data can produce rotated or inverted maps, since node indices are
not related to initial prototype vector values.

3.1 Clustering of SOMs

Clustering is often used to simplify dealing with the complexities of real, large
data sets. For example, it may be easier to devise marketing strategies based
on groupings of customers sharing similar characteristics because the number of
groupings/clusters can be small enough to make the task manageable.

Two kinds of clustering methods based on the SOM have been introduced:
direct clustering and two-level clustering (hybrid). In direct clustering, each map
unit is treated as a cluster, its members being the data vectors for which it is the
BMU. This approach has been applied to market segmentation [11]. A disadvan-
tage is that the map resolution must match the desired number of clusters, which
must be determined in advance. In contrast, in two-level clustering the units of
a trained SOM are treated as ‘proto-clusters’ serving as an abstraction of the
data set [12]. Their weight vectors are clustered using a traditional clustering
technique, such as k-means, to form the final clusters. Each data vector belongs
to the same cluster as its BMU. Adding an extra layer simplifies the clustering
task and reduces noise, but may yield higher distortion.

4 Visualizing Cluster Change Using SOMs

We now propose training and visualization techniques that allow cluster changes
such as migration of individuals between clusters, the introduction of new clus-
ters, and the disappearance of clusters to be detected and interpreted.

4.1 Training the Maps

We consider two data sets, the first containing data from period t and the second
data from period t+ 1. For maps trained using different data sets to be compa-
rable, their orientations must be the same. As seen in §3, this is sensitive to the

D.
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initial values of the prototype vectors and the sequence of training vectors. To
preserve the orientation of the map, some data points can be mapped onto fixed
coordinates in map space [10]. However, this can distort the map, so that it does
not follow the distribution of the data set. This approach thus cannot be used to
detect changes in cluster structure. Consequently, we propose a joint method to
preserve the orientations of the maps. First, a map trained with the first data set
is used as the initial map for the second. The orientation of the second map will
thus match that of the first. Secondly, batch, rather than sequential, training is
used: all training vectors are presented to the map and the prototype vectors are
updated ‘simultaneously’ using averages. There is thus no sequence of training
vectors that can change map orientation during training. In summary:

1. Normalize both data sets using the same techniques and parameters
2. Initialize a SOM for the first data set
3. Train the SOM using the first data set
4. Initialize a SOM for the second data set using the trained first SOM
5. Train the second SOM using the second data set
6. Map data vectors from each data set to the trained maps
7. Cluster both maps using the k-means clustering algorithm.

Since k-means is sensitive to the initial cluster centroids and can get trapped in
local minima, multiple runs of k-means are performed and the optimal result is
chosen for each number of clusters. The optimal clustering result for different
numbers of clusters is selected using the Davies-Bouldin index [13].

4.2 Visualizing Changes in the Maps

It is not possible to compare the prototype vectors of the maps based on unit
location in map space, since a given unit might be represent a different part of
the data space in each map. This can be caused by SOM sensitivity or a change
of data distribution. Other techniques are needed for linking the maps.

Linking the Maps Using Colours. The units of the second map can be
labelled in terms of the units in the first. The units of the first map are labelled
using indices from 1 to n, as shown in the left map in Figure 1. For each prototype
vector x in the second map, the BMU of x in the first map is found, and the
unit labelled using the index of the BMU, as shown in the right map in Figure 1.
The second map can thus be explained in terms of the first map.

It is difficult to interpret or detect changes from this visualization, but it
can be used as a basis for others. Rather than using the index of the BMU in
the first map, its colour can be used. For example, if the first map is coloured
using a different colour for each cluster, as shown in the top-left map in Fig-
ure 2, the second map, as shown in the top-right map, can be coloured using
this technique.

Visualizing Changes of Cluster Structure. Three map visualizations are
produced, as shown in Figure 2. The first (top left) illustrates the clustering result
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Fig. 1. The BMUs of the prototype vector of the second map

Fig. 2. The visualization of the clusters of maps

of the first map, acquired using two-level clustering. The second (top right) is
a visualization of the second map in terms of the first clustering result, i.e. the
second map coloured using the cluster borders of the first map in the data space.
The last (bottom right) is a visualization of the independent clustering result of
the second map.

This visualization can show the changes of data distribution in the clusters.
If the cluster area becomes larger in the second map, it means that more data is
assigned to that cluster in the second data set than in the first. For example, in
Figure 2, the light green cluster shrank, the blue cluster grew, and the magenta
cluster almost vanished in the second data set.

The independent clustering result of the second map can differ from the
clustering result of the second map visualized using of the clustering result of
the first. However, since both visualizations are based on the same map, the units
are linked by position. These maps are not linked by colours, as the independent
clustering result have a different number of clusters or different cluster colours.
In Figure 2, it can be seen that the second map has only three clusters: the
magenta cluster from the first data set has indeed vanished.

D.
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5 Experiments

Two types of data set were used in these experiments. Synthetic data sets were
used to evaluate the ability of the proposed technique to visualize known cluster
changes, such as migration of individuals between clusters, the introduction of
new clusters, and the disappearance of clusters. Experiments on these data sets
showed that the proposed approach can reveal changes of distribution, detect
new clusters, and indicate the disappearance of clusters. Full descriptions of
these experiments can be found in [14].

A data set from the World Development Indicators (WDI) database1 from the
World Bank was used to test the approach using real-world data. The WDI data
is multi-variate time-series data with 574 indicators covering 205 countries, from
1960 to 2003. This experiment clustered countries based on selected indicators
that reflect different aspects of development. Cluster changes from one period to
another period were then visualized.

Inspection of the WDI data revealed many missing values. First, almost all
indicators are not recorded for every year, since this would not be cost-effective.
Secondly, the same indicator might be recorded at different years for differ-
ent countries; therefore, comparing year-by-year is not possible. Moreover, some
countries started recording the indicators later than others. In fact, some coun-
tries did not record some indicators at all.

An initial set of indicators that reflect different aspects of development were
selected based on the work of Kaski and Kohonen [15] and the Millennium
Development Goal of the United Nations2. This set of indicators was then filtered
based on the availability of the indicators in terms of the missing values described
earlier. The resultant set of indicators is shown in Table 1.

Table 1. Selected Indicators

Age dependency ratio Mortality rate, infant Birth rate, crude

Mortality rate, under-5 Daily newspapers Physicians

Death rate, crude Population ages 0-14 Illiteracy rate, adult female

Population growth Illiteracy rate, adult total Pupil-teacher ratio, primary

Immunization, measles School enrollment, primary Inflation, consumer prices

School enrollment, primary, female Inflation, food prices School enrollment, secondary

School enrollment, secondary, female Labor force, children 10-14 Labor force, female

School enrollment, tertiary Labor force, total Televisions per 1,000 people

Life expectancy at birth

Although SOMs can handle some missing values, too many can affect the map
training, since it may disturb the ordering process [15]. Therefore, the several

1 http://www.worldbank.org/data/onlinedatabases/onlinedatabases.html
2 http://www.un.org/millenniumgoals/
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strategies were used to handle missing values. Yearly values were grouped for
10-year periods, and latest available value available used. Indicators with missing
values for more than 1/3 of the countries in the chosen periods were removed.
Since some countries start recording late, or did not record some indicators at
all, countries for which more than 1/3 of the values are missing in all periods
were removed from the training data set. Further details of this preprocessing
can be found in [14].

The 1980s and the 1990s were chosen for the experiments because they are
the most complete and recent data sets. Country names were replaced with
3-digit ISO 3166 country codes3 for visualization purposes. This research was
implemented using SOM Toolbox4 , MATLAB, and MS Access.

6 Results and Discussion

Figure 3 shows the mapping of 1980s data points onto the 1980s map. If countries
are mapped nearby, they have similar characteristics, in this case similar devel-
opment status. For example, the bottom-right corner consists of OECD (Orga-
nization for Economic Co-operation and Development) and developed countries,
such as the United States of America, Australia, and Japan.

The visualization of the 1990s map in terms of the clustering result of the
1980s map (Figure 4, top right), shows that the blue cluster in the bottom-left
corner of the 1980s map disappeared, while the magenta cluster grew.

The positions of these regions can be linked to the mapping in Figure 3. The
magenta region consists of the OECD countries. Since the magenta region grew
in the 1990s map, it can be said that more countries in the 1990s had similar
development status to that of OECD countries in the 1980s.

The missing blue cluster contains four South American countries: Brazil,
Argentina, Nicaragua, and Peru. Figure 5 shows the mapping of the countries
from the 1990s data set onto the first map. In this map, the new locations
of these countries can seen: all have moved towards OECD countries, except
Nicaragua that has moved towards African nations. In the 1980s, these countries
were suffering economic difficulties due to debt crisis—this period is known as
the “lost decade” for many South American countries. However, South America
was the world’s second fastest-growing region between 1990 and 1997 [16]. This
explains the missing cluster in the 1990s.

The proposed visualization methods have been tested with both synthetic
and real-world data sets. The results show that they can reveal lost clusters,
new clusters, and changes in the size of clusters. The methods can explain the
new clustering result in terms of the previous clustering results. If there is a new
cluster in the second data set, one can detect which cluster this new cluster came
from in the first data set.

3 http://www.niso.org/standards/resources/3166.html
4 MATLAB 5 library freely available from http://www.cis.hut.fi/projects/somtoolbox/
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Fig. 3. The mapping of the 1980s data set onto the 1980s map

Fig. 4. The visualization of the clusters of maps of the “Decades-80-90” data sets

The visualization of the second map using the cluster borders of the first map
can show changes in the data distribution in terms of the previous clustering. It
can indicate if clusters disappear, but cannot show new clusters.

Comparing the independent clustering of the second map with the clustering
of the first map is not easy, since they are not linked. However, the visualization
of the second map in terms of the clustering of the first map can be used to
relate the independent clustering of the second map with the clustering result
of the first map. This comparison can reveal new or missing clusters.
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Fig. 5. The mapping of the 1990s data set onto the 1980s map

The efficiency of two-level clustering allows for interactive data exploration:
one can experiment with any number of clusters, without having to recluster the
whole data set. Only the SOM prototype vectors need to be clustered.

7 Conclusion

The proposed SOM-based visualization methods are capable of revealing various
types of cluster changes in two related data sets from different time periods. They
are capable of explaining the clustering result of the second data set in terms of
the clustering result of the first data set, by using colour and positional linking.
They can show structural changes such changes in distributions, new clusters,
and missing clusters. Experiments using a real-world data set have shown that
the methods are capable of indicating actual changes such as the the change in
economic fortunes of South American countries between the 1980s and 1990s.

References

1. Fayyad, U.: Data mining grand challenges. In: Proceedings of the 8th Pacific-
Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD
2004). Number 3056 in Lecture Notes in Computer Science, Sydney, Australia,
Springer-Verlag (2004) 2 (keynote speech).

D.



Visualization of Cluster Changes by Comparing Self-organizing Maps 419

2. Guralnik, V., Srivastava, J.: Event detection from time series data. In: Proceedings
of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM Press (1999) 33–42

3. Yamanishi, K., Takeuchi, J.: A unifying framework for detecting outliers and
change points from non-stationary time series data. In: Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining,
ACM Press (2002) 676–681

4. Ganti, V., Gehrke, J., Ramakrishnan, R.: A framework for measuring changes in
data characteristics. In: Proceedings of the Eighteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, May 31 - June 2, 1999,
Philadelphia, Pennsylvania, ACM Press (1999) 126–137

5. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and
differences. In: Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM Press (1999) 43–52

6. Liu, B., Hsu, W., Han, H.S., Xia, Y.: Mining changes for real-life applications.
In Kambayashi, Y., Mohania, M.K., Tjoa, A.M., eds.: Data Warehousing and
Knowledge Discovery, Second International Conference, DaWaK 2000, London,
UK, September 4-6, 2000, Proceedings. Volume 1874 of Lecture Notes in Com-
puter Science., Springer (2000) 337–346

7. Kaski, S., Lagus, K.: Comparing Self-Organizing Maps. In von der Malsburg, C.,
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Abstract. The data stream model of computation is often used for an-
alyzing huge volumes of continuously arriving data. In this paper, we
present a novel algorithm called DUCstream for clustering data streams.
Our work is motivated by the needs to develop a single-pass algorithm
that is capable of detecting evolving clusters, and yet requires little
memory and computation time. To that end, we propose an incremental
clustering method based on dense units detection. Evolving clusters are
identified on the basis of the dense units, which contain relatively large
number of points. For efficiency reasons, a bitwise dense unit representa-
tion is introduced. Our experimental results demonstrate DUCstream’s
efficiency and efficacy.

1 Introduction

In recent years, data stream model is motivated by many applications that con-
tinuously generate huge amount of data at unprecedented rate [1]. In this paper,
we will focus on the stream clustering problem, which is a central task of data
stream mining.

Recently this problem has attracted much attention. O’Callaghan et. al. [2]
study the k-median problem over data streams. Aggarwal et. al. [3] present a
framework of clustering evolving data streams, which analyzes the clusters over
different portions of the stream. However this framework can not give online re-
sponse of queries of macro clusters. Nasrouni et. al. [7] design an immune system
learning model to find evolving clusters in data streams. But this algorithm is
not space and time efficient due to the use of AIS model.

In static data environment, many clustering algorithms have been designed
[4, 5, 6]among which grid-based clustering is an efficient method. This approach
partitions the data space into many units and perform clustering on these units
[6]. Recently, Park et.al. [8] propose a statistical grid-based method which iden-
tifies evolving clusters as a group of adjacent dense units in data stream environ-
ments. But their work is focusing on partitioning dense units and maintaining
their distributions.

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 420–425, 2005.
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In this paper, we propose an efficient data stream clustering algorithm DUC-
stream. We partition the data space into units and only keep those units which
contain relatively large number of points. An incremental clustering algorithm
is presented based on these dense units. The clustering results are represented
by bits to reduce the memory requirements. Extensive experiments indicate that
our framework can obtain high-quality clustering with little time and space.

2 Problem Statement

We begin by defining the stream clustering problem in a formal way.
Suppose S is a d-dimensional numerical space. For each dimension, we parti-

tion it into non-overlapping rectangular units. The density of a unit u is defined
as the number of points that belong to it, i.e. den(u) = |vi|vi ∈ u|. The relative
density of u is defined as follows: rel den(u) = den(u)/|D|, where den(u) is the
density and D is the data set we observe. If u’s relative density is greater than
the density threshold γ, then u is referred to as a dense unit.As defined in [6], a
cluster is a maximal set of connected dense units in d-dimensions.

A data stream is a set of points from data space S that continuously ar-
rives. We assume that data arrives in chunks X1,X2, . . . ,Xn, . . ., at time stamps
t1, t2, . . . , tn, . . .. Each of these chunks fits in main memory. Suppose that each
chunk contains m points, and the current time stamp is t. We use den(u) to
denote the overall density of u with respect to the t chunks that has been seen
so far. The density of u with respect to the i-th chunk is denoted as deni(u). The
relative density of a unit u is rel den(u) = den(u)/(mt). If u’s relative density is
greater than the density threshold γ, then u is referred to as a dense unit at time
t. At time t, the clustering result R is all the clusters found in the t chunks of
data visited so far. Our goal is to compute the clustering results when the data
stream continuously arrives, i.e. obtain R1, R2, . . . , Rn, . . ., where Ri represents
the result of clustering X1,X2, . . . ,Xi.

3 Algorithm Description

3.1 Basic Idea

In brief, we will find the dense units and cluster these units. First, we consider
what units should be maintained thus introduce the concept of local dense units.

Suppose that each chunk contains m points, and the current time stamp is
t. If unit u begins to be maintained at time i, the local relative density of u is
loc den(u) = den(u)/(m(t− i + 1)), where den(u) is the density of u. If u’s local
relative density is greater than the density threshold γ, then u is referred to as
a local dense unit at time t. The following proposition holds on.

Proposition 1. For any dense unit u at time t, it must be recorded as a local
dense unit at time i(1 ≤ i ≤ t).
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Proof. Suppose that a dense unit u is not recorded as a local dense unit at time
1, 2, . . . , t and each chunk contains m points. We recall that the number of points
that belong to u in the i-th chunk is deni(u). Then deni(u) < γm. Therefore at
time t, den(u) =

∑t
i=1 deni(u) < γmt. so u is not a dense unit at current time,

contrary to the hypothesis. The conclusion is accordingly established.

In other words, local dense units are candidate dense units, which may become
dense in the future. Therefore we maintain all the local dense units and pick
up dense units among them to do clustering. We call this process dense units
detection. The following proposition analyzes the error of our algorithm.

Proposition 2. Assume that a certain unit u’s density gradually increases so
that its density with respect to the i-th chunk is ipm where m is the number of
points belonging to each chunk, p is a constant from 0 to 1 that indicates the
amount of increase. At the time from (1 +

√
1 + 8γ/p)/2 to γ/p, this unit can

not be successfully detected as a dense unit.

Proof. According to the definition of local dense units, we will not keep unit
u as long as ipm < γm, i.e., i < γ/p. However, when its density reaches γm,
u becomes a dense unit at that time. Suppose at time k, u’s density is equal
to γm. Then

∑k
i=1 ipm = γm,i.e.,k(k−1)

2 p = γ. It can be derived that k =
(1 +

√
1 + 8γ/p)/2. Therefore the time range when error occurs is as stated.

Another issue is how to get the right results with little time and memory.
To lighten the computational and storage burden, we propose to represent the
clustering results in bits. Suppose that the dense units are sorted by their density
and each of them is assigned a unique id. The Clustering Bits (CB) of a cluster
r is a 0− 1 bit string an, . . . , a1, where ai is a bit and n is the number of dense
units. ai = 1 if and only if the i-th dense unit is in cluster r, otherwise ai = 0.
We can benefit from the use of Clustering Bits in both the time and space usage.

3.2 Stream Clustering Framework

Based on the above two points, we summarize our stream clustering algorithm in
Figure (1). We refer to this algorithm as DUCstream (Dense Units Clustering
for data stream). The data structures used in the algorithm include: L, the
local dense units table; Qa, the added dense units id list; Qd, the deleted dense
units id list; Ri, the clustering result {c1, . . . , cs} at time stamp i.

The important components in this framework entail:

1. map and maintain(Xi,L): This procedure maps each data point in Xi into
the corresponding unit. For one of these units u, if it is in L, update the
corresponding item, otherwise if u is a local dense unit, insert it into L.
After that, scan L once and decide Qa and Qd.

2. create clusters(Q): We use a depth-first search algorithm to create clusters
as described in [6]. They identify the clusters as the connected components of
the graph whose vertices represent dense units and whose edges correspond
to the common faces between two vertices.
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DUCstream Algorithm:
Input: Data chunks X1, X2, . . . , Xn, . . .
Output: Clustering results R1, R2, . . . , Rn, . . .
Method:
1. Create a new empty table L;
2. (L, Qa, Qd)=map and maintain(X1, L);
3. R1=create clusters(Qa);
4. i=2;
5.Repeat until the end of the data stream
5.1 (L, Qa, Qd)=map and maintain(Xi, L);
5.2 Ri=update clusters(Ri−1, Qa, Qd);
5.3 i = i + 1;

Fig. 1. SemiSOD algorithm framework

3. update clusters(Ri−1,Qa,Qd): We get the clustering result Ri in an incre-
mental manner stated as follows.

For each added dense unit u, one of following occurs: Creation: If u has no
common face with any old dense units, a new cluster is created containing u;
Absorption: There exits one old dense unit u′ such that u has common face
with u′, then absorb u into the cluster u′ is in; Mergence: There exist multiple
old dense units w1,w2, . . . ,wk(k > 1) that have common faces with u, then
merge the clusters these dense units belong to. Absorb u into the new cluster.

For each deleted dense unit u, suppose it is contained in cluster c, we can
distinguish the following cases: Removal: If there are no other dense units
in c, i.e. the cluster becomes empty after deleting u, we remove this cluster;
Reduction: All other dense units in c are connected to each other, then simply
delete u from c; Split: All other dense units in c are not connected to each other,
this leads to the split of cluster c.

After processing all the units in Qa,Qd, we can obtain the new clustering
result Ri.

4 Empirical Results

The data set is KDD’99 Intrusion Detection Data, which is partitioned into
chunks each consisting of 1K points. We first examine the time complexity of
DUCstream compared with the baseline methods STREAM [2] and CluStream
[3]. To make the comparison fair, we make the number of clusters all five in these
algorithms.Figure (2) shows that DUCstream is about four to six times faster
than STREAM and CluStream. This is attributed to our use of dense units
detection, Clustering Bits and good design of incremental update algorithm.

DUCstream maintains the local dense units and current clustering results in
main memory. Since the clustering results, represented by Clustering Bits, cost
very little space, we only keep track of the number of local dense units to monitor
the memory usage. Figure (3) demonstrates that after a certain time, a steady
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state is reached as for the number of local dense units. In general, the algorithm
only requires a negligible amount of memory even when the data stream size
becomes sufficiently large.

We then compare DUCstream with STREAM and CluStream using the mea-
surement SSQ, the sum of square distance. Figure (4) shows that the clustering
quality of DUCstream is always better than that of STREAM because we capture
the characteristics of clusters more precisely using the dense units compared with
only maintaining k centers. For CluStream, it performs better when the horizon
is small but the accuracy tends to be lower when the horizon becomes larger.
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5 Conclusion

In this paper, we propose an efficient data stream clustering algorithm based on
dense units detection. This is an incremental, one-pass density-based algorithm,
which finds high-quality clusters with considerably little time and memory in
the data stream environment. It discards noisy and obsolete units through dense
units detection. The clustering result is updated using the changed dense units.
We also introduce a bitwise clustering representation to update and store away
the clustering results efficiently. Empirical results prove that this algorithm has
good quality while cost surprisingly little time. The problem of finding arbitrary-
shaped clusters is an interesting future work.
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Abstract. Usual visualization techniques for multidimensional data sets, such 
as parallel coordinates and scatter-plot matrices, do not scale well to high num-
bers of dimensions. A common approach to solve this problem is dimensional-
ity selection. Existing dimensionality selection techniques usually select perti-
nent dimension subsets that are significant to the user without loose of informa-
tion. We present concrete cooperation between automatic algorithms, interac-
tive algorithms and visualization tools: the evolutionary algorithm is used to ob-
tain optimal dimension subsets which represent the original data set without 
loosing information for unsupervised mode (clustering or outlier detection). The 
last effective cooperation is a visualization tool used to present the user interac-
tive evolutionary algorithm results and let him actively participate in evolution-
ary algorithm searching with more efficiency resulting in a faster evolutionary 
algorithm convergence. We have implemented our approach and applied it to 
real data set to confirm this approach is effective for supporting the user in the 
exploration of high dimensional data sets. 

1   Introduction 

In most existing data mining tools, visualization is only used during two particular 
steps of the process: in one of the first steps to view the original data and in one of the 
last steps to view the final results. Some new methods called Visual data Mining have 
recently appeared [13], [15], trying to involve more significantly the user in the data 
mining process and using more intensively the visualization [1]. Usual visualization 
techniques for multidimensional data sets, such as parallel coordinates [7] or scatter-
plot matrices [4] do not scale well to high dimensional data sets. For example, Figure 
1 shows a subset of the Lung Cancer data set [8] with one hundred dimensions 
(among 12533 dimensions), the user cannot detect any pertinent information from the 
visualization. Even with low numbers of elements, high dimensionality is a serious 
challenge for current display techniques. 

To overcome this problem, one promising approach is dimensionality selection 
[10]. The basic idea is to select some pertinent dimensions without loosing too much 
information and then to treat the data set in this subspace. Most of these methods 
focus on supervised classification and evaluate potential solutions in terms of 
predictive accuracy. Few works [9], deal with unsupervised classification where we 
do not have prior information to evaluate potential solution. 



 Visual Interactive Evolutionary Algorithm for High Dimensional Data Clustering 427 

 

 

Fig. 1. One hundred dimensions of the lung cancer data set (12533 dimensions, 32 elements) 
with parallel coordinates 

We present a semi-interactive algorithm we have developed, integrating automatic 
algorithm, interactive evolutionary algorithm and visualization. First evolutionary 
algorithm generates pertinent dimension subsets, according to the user choice 
(clustering or outlier detection). The data are displayed in these dimension subsets 
using parallel coordinates. The user can interactively choose the visualization that 
seems significant and selected dimension subsets are then in input of the next 
evolutionary algorithm generation and so on until having optimal visualization. The 
originality of our approach is to combine evolutionary algorithm to obtain optimal 
dimension subsets which represent the original data set without loosing information 
for unsupervised mode (clustering or outlier detection) with a visualization tool to 
present the user interactive evaluation and let him actively participate in evolutionary 
algorithm searching with resulting in a faster evolutionary algorithm convergence. We 
present some results obtained with several high dimensional data sets.  

This paper is organized as follows. The next section describes some existing 
interactive evolutionary algorithms and a brief overview of dimensionality selection 
methods. We describe our evaluation functions for outlier detection and clustering 
and then we present some results obtained by our new interactive evolutionary 
algorithm in section 3 before the conclusion and future work. 

2   Interactive Evolutionary Algorithm for Dimension Selection 

Interactive Evolutionary Algorithm (IEA) can be defined [14] as an optimization 
method that adopts evolutionary algorithm (EA) based on subjective human 
evaluation. It is simply an EA technique whose fitness function is replaced by human. 
Evolutionary algorithms have attracted attention in the data mining and knowledge 
discovery processes. They are used for performing some pre-processing and post-
processing steps of the knowledge discovery process and then extract high-level 
knowledge from data. They focus on dimension selection and pruning of a set of 
classifiers used as black box fitness function. If the user is involved, he contributes to 
a faster evolutionary algorithm convergence.  

A wide number of approaches for dimension selection have been proposed [10].  
Dimension selection algorithms can broadly be classified into three categories 
according to the search strategy used: exhaustive search, heuristic search and 
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randomized search. Evolutionary algorithms [11] such as genetic algorithms [6] can 
also be used for dimension selection. We use genetic algorithm for dimension 
selection: the individual represents a small subset of dimensions. At first step, the 
initial population is ready; it is evaluated by a distance-based function for outlier 
detection and validity indexes for clustering and presented to the user for validation. 
The originality of our approach is to combine both user interactive validation and 
automatic validation (black box fitness function) for a fast algorithm convergence. 
The advantage is the proposed solutions are not biased by the user choice or 
automatic fitness function, but both are considered to generate next evolutionary 
algorithm generation. 

2.1   Clustering Fitness Function 

The goal of clustering is to partition a data set into subgroups such that objects in each 
particular group are similar and objects in different groups are dissimilar. With most 
of the algorithms, the user has first to choose the number of clusters. To determine 
number of clusters we usually use validity indexes [12] that are based on the 
minimization of the sum of squared distances within (SSW) the clusters and the 
maximization of the sum of squared distances between (SSB) the clusters. We use this 
technique first to find the optimal number of clusters. Then, we try to obtain (with K-
means [5]) the optimal validity index values in the dimension subsets that are 
generated by evolutionary algorithm to optimize clustering in this dimension subset 
[3]. Each individual evaluation is carried out with the best index according to [12]. 
We use the values obtained to classify the genetic algorithm individuals. Some 
individuals are then visualized with the parallel coordinates and presented to the user 
to determine and select the most significant ones for clustering.  

2.2   Outlier Detection Fitness Function 

An outlier is a data subset, an observation or a point that is considerably dissimilar, 
distinct or inconsistent with the remainder of data. The main problem is to define this 
dissimilarity between objects characterizing an outlier. Typically, it is estimated by a 
function computing the distance between objects, the next task is to determine the 
 

       

Fig. 2. Visualized generation and selected individuals 
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Fig. 3. Optimal solution visualization (parallel coordinates and scatter-plot matrices) 

objects farthest from the mass. We choose an Euclidean distance-based outlier detec-
tion procedure as evaluation of each evolutionary individual. The procedure output is 
the outlier point and the distance between this point and the remainder of data in the 
subset of attributes (selected dimensions). We use the obtained distance to classify the 
genetic algorithm individuals [2]. The farthest element will be considered as an outlier 
element, the whole data will be visualized in dimension subsets and presented to the 
user for validation and to consider them for the next generation. 

3   Some Results 

After the user has chosen the problem (outlier detection or clustering) and data set, we 
have the view shown in fig.2 with 9 visualization screens of evolutionary individuals. 
Randomly 9 individuals are presented to the user who chooses the visualizations that 
seem significant. In our example (outlier detection), we want to find visualizations 
where we can see element different from the whole data set. 

For example, visualization number 4 and 7 are selected because they contain 
element that has extreme values and can be outlier. The corresponding dimensions are 
in input of the next genetic algorithm generation. Once this step is performed we 
operate the standard genetic operators (crossover and mutation) to create new 
generations guided by user choice and so on, until we obtain optimal subset displayed 
using parallel coordinates and scatter-plot matrices in the final view (figure 3). 

3.1    Algorithm Parameters 

Our genetic algorithm starts with a population of 50 individuals (chromosomes), 
every individual is made of 4 genes (user-defined) because we want to allow visual 
interpretation. Once the whole population has been evaluated and sorted, we operate a 
crossover on two parents chosen randomly. Then, one of the children is muted with a 
probability of 0.1 and is substituted randomly for an individual in the second part of 
the population, under the median. We run our algorithm for 10000 generations and 
each 100 generations, we propose 9 randomly chosen individuals for user interactive 
evaluation. Our algorithm ends after a maximum number of iterations or after the user 
satisfaction. 
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Fig. 4. Convergence of the standard EA vs. Viz-IGA 

3.2   Evaluation of Convergence 

We evaluate how human involvement speeds up the convergence of the EA search. 
Since our approach deals with subjective fitness value combined with black box 
fitness depending on the application task (clustering or outlier detection), we compare 
convergence of the evolutionary algorithm described in [2] and Viz-IGA. The role of 
human in Viz-IGA is to select the best candidates in the 4-D visualization, while in the 
GA [2] user only validates the final result. We obtain the same results in some minutes 
with Viz-IGA (about ten times faster than automatic GA as shown in Figure 4). 

4   Conclusion and Future Work 

Traditional visualization techniques for multidimensional data sets do not scale well 
to high dimensional data sets, the user cannot detect any pertinent information. To 
overcome the problem of high dimensionality, one promising approach is 
dimensionality selection. We have proposed to use user perception to overcome 
drawbacks of dimension selection process, according his choice of the unsupervised 
learning problem. We have implemented semi-interactive algorithm, integrating 
automatic algorithm, interactive evolutionary algorithm and visualization. First 
evolutionary algorithm generates pertinent dimension subsets without loosing too 
much information. Some dimension subsets are visualized using parallel coordinates 
and the user interactively chooses the visualization that seems significant. The 
selected dimensions are in input of the next evolutionary algorithm generation and so 
on until having optimal visualization according to the unsupervised problem.  

The originality of our approach is to combine evolutionary algorithm to obtain 
optimal dimension subsets which represent the original data set without loosing 
information for unsupervised mode (clustering or outlier detection) with a 
visualization tool to propose the user interactive evaluation and let him actively 
participate in evolutionary algorithm searching with more efficiency resulting in a 
faster evolutionary algorithm convergence.  
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Of course, we have improved convergence of algorithm with the user interactive 
involvement, but we think that if we have other fitness function easier to compute 
than different black boxes fitness functions, we can optimize the algorithm. 
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One of the primary data mining tasks is clustering. Clustering aims at partitioning the
data set into distinct groups, called clusters, while maximizing the intra-cluster similar-
ity and minimizing the inter-cluster similarity [8]. Traditionally, the clustering algo-
rithms require full access to the data which is going to be analyzed. All data has to be
located at the site where it is processed. Nowadays, large amounts of heterogeneous,
complex data reside on different, independently working computers which are connect-
ed to each other via local or wide area networks. Examples comprise distributed mobile
networks, sensor networks or supermarket chains where check-out scanners, located at
different stores, gather data unremittingly. Furthermore, international companies such
as DaimlerChrysler have some data which are located in Europe and some data located
in the US and Asia. Those companies have various reasons why the data cannot be
transmitted to a central site, e.g. limited bandwidth or security aspects. 

Many of these real-world distributed data sets consist of objects modeled by high-di-
mensional feature vectors. For instance, a starting point for applying clustering algo-
rithms to distributed unstructured document collections is to create a vector space mod-
el, alternatively known as a bag-of-words model [13], where each document is
represented by a high-dimensional feature vector. Other examples for high-dimensional
feature vectors representing distributed complex objects can be found in the area of
image retrieval [12], and molecular biology [4]. 

The requirement to extract knowledge from distributed data, without a prior unifica-
tion of the data, created the rather new research area of Distributed Knowledge Discov-

Abstract. In many modern application ranges high-dimensional feature vectors 
are used to model complex real-world objects. Often these objects reside on 
different local sites. In this paper, we present a general approach for extracting 
knowledge out of distributed data sets without transmitting all data from the 
local clients to a server site. In order to keep the transmission cost low, we first 
determine suitable local feature vector approximations which are sent to the 
server. Thereby, we approximate each feature vector as precisely as possible 
with a specified number of bytes. In order to extract knowledge out of these 
approximations, we introduce a suitable distance function between the feature 
vector approximations. In a detailed experimental evaluation, we demonstrate 
the benefits of our new feature vector approximation technique for the 
important area of distributed clustering. Thereby, we show that the combination 
of standard clustering algorithms and our feature vector approximation 
technique outperform specialized approaches for distributed clustering when 
using high-dimensional feature vectors. 
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ery in Databases (DKDD). In this paper, we present a general approach which helps to
extract knowledge out of high-dimensional feature vectors spread over several sites. To
get specific, we demonstrate the benefits of our approach for distributed density-based
clustering. Our approach tries to describe local feature vectors as accurately as possible
with a certain number of granted bytes. These approximations are sent to a server site,
where the global server clustering is carried out based on a suitable distance function
measuring the similarity between the locally determined feature vector approximations. 

The remainder of the paper is organized as follows: In Section 2, we present the
related work in the area of distributed clustering. In Section 3, we explain how to form
the local approximations which are sent to a central server site. Then, in Section 4, a
meaningful similarity measure for the feature vector approximation is introduced. In
Section 5, we demonstrate the suitability of our feature vector approximation technique
and the corresponding distance function. In Section 6, we close this paper with a short
summary and a few remarks on future work.

In [5] the “collective hierarchical clustering algorithm” for vertically distributed data
sets was proposed which applies single link clustering. In contrast to this approach, we
concentrate in this paper on horizontally distributed data sets. 

In [14] the authors presented a technique for centroid-based hierarchical clustering
for high-dimensional, horizontally distributed data sets by merging clustering hierar-
chies generated locally. Unfortunately, this approach can only be applied for dis-
tance-based hierarchical distributed clustering approaches, whereas our aim is to intro-
duce a generally applicable approach.

In [6, 7], density-based distributed clustering algorithms were presented which are
based on the density-based partitioning clustering algorithm DBSCAN. The idea of
these approaches is to determine suitable local objects representing several other local
objects. Based on these representatives a global DBSCAN algorithm is carried out.
These approaches are tailor-made for the density-based distributed clustering algorithm
DBSCAN. 

The goal of this paper is to introduce an approach which is generally applicable to
DDM. To get specific, we demonstrate the benefits of our approach for distributed clus-
tering algorithms. In contrast to the above specific distributed clustering approaches, our
approach is not susceptible to an increasing number of local clients. It does only depend
on the overall allowed transmission cost, i.e. on the number of bytes we are allowed to
transmit from the local clients to a server. In order to keep these transmission cost low,
we introduce in the following section a suitable client-side approximation technique for
describing high-dimensional feature vectors.

Distributed Data Mining (DDM) is a dynamically growing area within the broader 
field of KDD. Generally, many algorithms for distributed data mining are based on 
algorithms which were originally developed for parallel data mining. In [10], some 
state-of-the-art research results related to DDM are summarized. Whereas there 
already exist algorithms for distributed classification and association rules, there is a 
lack of algorithms for distributed clustering. 

2 Related Work
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The  goal of this section  is  to find  a rough description of the complete data set by
means of some (flat) directory pages which conservatively approximate the complete
data space. The problem of finding these MBRs is related to clustering. We are not
mainly interested in the clusters themselves but rather in a partitioning of the data space
into rectangular cuboids. Similar, to directory pages in an index structure, these cuboids
should be formed as quadratic as possible for efficient query processing [3]. We can
achieve such cuboids with only a little variation of the lengths of the edges by applying
the k-means clustering algorithm [11]. Thereby the data set is approximated by k cen-
troids, and each vector is assigned to its closest centroid. All feature vectors which are
assigned to the same centroid form a cluster and are approximated by an MBR of all the
vectors of this cluster. As desired, the form of these MBRs tend to be quadratic as the
centroid of a cluster tends to be close to the middle of the MBR. Thus, the k-means
clustering algorithm indirectly also minimizes the average length of the space diagonals
of the k MBRs.

After having partitioned the local data space into k clusters represented by MBRs, we
express each feature vector v  w.r.t. to the lower left corner of its corresponding mini-
mum bounding rectangle MBRCluster(v). 

Definition 1 Feature Vector 
Each feature vi of a d-dimensional feature vector v = (v1,..., vd)t ∈ IRd is represented by
a sequence of bytes <bi,1,.., bi,m> where each byte consists of w bits. The feature value
vi is calculated by

vi = , where 

For clarity, we assume in this paper that each feature of a d-dimensional feature
vector is represented by a byte string of length m. We will describe each feature vector
by a conservative hierarchy of approximations where in each level we use some more
bytes to approximate the feature vector more closely. By traversing the complete ap-
proximation hierarchy, we can reconstruct the correct feature vector. 

The client first computes a byte ranking of all the bytes bi,j of v. Then the most
meaningful bytes are transmitted to the server along with positional information of the

val bi j,( )
j 1=

m

∑ val bi j,( ) bi j, 2
w m j–( )⋅=

The hybrid-approximation approach which we propose in this section is quite similar 
to the idea of the IQ-tree [2] which is an index structure especially suitable for man-
aging high-dimensional feature vectors. First, we divide the data set into a set of 
partitions represented by minimum bounding rectangles (MBRs) of the points located 
in the corresponding region in the data space. This kind of data set approximation is 
further elaborated in Section 3.1. In Section 3.2, we describe each single feature 
vector by an approximation hierarchy where in each level of the hierarchy K more 
bits are used to describe the feature vector more accurately. 

3 Client-Side Approximation

3.1 Data Set Approximation

3.2 Feature Vector Approximation
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Definition 2 Ranking and Approximation Function 
Let W be the set of all byte sequences of length . Let v = (v1 ,...,vd)t ∈ IRd  be a
feature vector where each feature vi is represented by a sequence of bytes <bi,1,.., bi,m>.
Then, we require a byte ranking function frank: IR

d → W and a feature vector approxima-
tion function fapp:  to have the following properties: 

  • frank (v)=< b1, ...,bm.d > where bl = bπ(i,j), for a bijective ranking function πrank:

  • fapp(frank (v), 0) = MBRCluster(v), fapp(frank (v), L1)  fapp(frank (v), L2) iff L1 L2,

and fapp(frank (v), )) = v

After having received a certain number of L bytes the server can compute the ap-
proximation area A = fapp(frank(v), L). In the following subsections, we present three
approximation techniques of high-dimensional feature vectors, i.e. the byte-oriented,
the dimension-oriented, and the combined approximation technique (cf. Figure 1). All
three approaches fulfill rather obviously the properties stated in Definition 2. Neverthe-
less, they differ in the way they actually define the ranking and approximation functions.
In the following, we assume that the cluster MBR of a feature vector v MBRCluster(v)=
[MBR_l1× MBR_u1] ×...× [MBR_ld× MBR_ud] has already been transmitted to the serv-
er. Furthermore, we assume that v is defined according to Definition 1. 

As  the first  bytes  of each feature contain  the most significant information, we rank
the bytes bi,j by means of the bijective function π:  ac-
cording to their j-positions, i.e. π(i,j) < π(i’,j’) iff (j < j’) or (j = j’ and i < i’). 

The server computes the approximation area a= fapp(frank (v), L)= [l1,u1]×...×[ld,ud]
as follows: 

m d⋅

W 0…m d⋅{ }× IR IR×[ ]d→

1…d{ } 1…m{ }× 1…m d⋅{ }→
⊆ ≥

m d⋅

v1
v2
v3
v4
v5
v6

bi,1bi,2 bi,3 bi,4

BOA DOA CA

Fig  1. Approximation techniques.  (L = 10  Bytes )

a) b) c)
bi,1 bi,2 bi,3 bi,4 bi,1 bi,2 bi,3 bi,4

1…d{ } 1…m{ }× 1…m d⋅{ }→

li MBR_li
val bi j,( ) , if π i j,( ) L≤( )

0 , else⎩
⎨
⎧

j 1=

m

∑+=

ui min MBR_ui MBR_l,
i

val bi j,( ) , if π i j,( ) L≤( )

2
w

1–( ) 2⋅
w m j–( )

, else⎩
⎪
⎨
⎪
⎧

j 1=

m

∑+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

.

 

bytes. By means of this additional positional information, the server can construct an
accurate server side approximation of v. 

In  the  above approach,  we considered the first bytes of each dimension to build the
approximation. In this approach, we select significant dimensions and then transmit all
 

3.2.1 Byte-Oriented Approximation (BOA)

3.2.2 Dimension-Oriented Approximation (DOA)
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rank the bytes bi,j by means of the bijective function π:
as follows: π(i,j) < π(i’,j’) iff (vi > vi’) or (vi = vi’ and i < i’) or (vi = vi’ and i = i’ and
j < j’). 

The big advantage of this technique is that it implies an upper bound for those dimen-
sions which have not been selected for transmission. Thus, we can shrink the approxi-
mation area also for those dimensions for which we have not received any bytes. This
shrinking is possible due to the ranking agreement between the clients and the server
that the value of the dimensions for which we have not received any bytes is equal or
smaller to the smallest value for which we have already received some bytes. Let i’ ∈
{1,.., d} now be the transmitted dimension with the smallest feature value of all
transmitted dimensions. 

Then, the server computes the approximation area a= fapp(frank (v), L)= [l1,u1]×...×
[ld,ud] as follows:

This  approach combines the  two previous approaches. According to Definition 1,
each byte bi,j of v can be assigned to a value val(bi,j) = bi,j · 2

w(m - j). Now, we can rank
the set of bytes {bi,j: i = 1, .., d; j = 1, .., m} according to their value val(bi,j), and transmit
the L bytes having the highest ranking values. Thus the bijective function π:

 is defined as follows: π(i,j) < π(i’,j’) iff
(val(bi,j) > val(bi’,j’)) or (val(bi,j) = val(bi’,j’) and i < i’) or (val(bi,j) = val(bi’,j’) and i = i’
and j < j’). 

Let now bi’,j’ be the byte with the L highest val(bi’,j’). Then, the server computes the
approximation area a= fapp(frank(v), L)= [l1,u1]×...×[ld,ud] as follows:

1…d{ } 1…m{ }× 1…m d⋅{ }→

li MBR_li
val bi j,( ) , if π i j,( ) L≤( )

0 , else⎩
⎨
⎧

j 1=

m

∑+=

ui min MBR_ui MBR_l,
i

val bi j,( ) , if π i j,( ) L≤( )

val bi ′ j,( ) , if π i j,( ) L>( ) π i’ j,( ) L≤( )∧

2
w

1–( ) 2⋅
w m j–( )

, else⎩
⎪
⎪
⎨
⎪
⎪
⎧

j 1=

m

∑+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

1…d{ } 1…m{ }× 1…m d⋅{ }→

li MBR_li
val bi j,( ) , if π i j,( ) L≤( )

0 , else⎩
⎨
⎧

j 1=

m

∑+=

ui min MBR_ui MBR_li offset+,( ), where =

offset

val bi j,( ) , if π i j,( ) L≤( )

0 , if π i j,( ) L>( ) j j′<( )∧
val bi′ j ′,( ) , if π i j,( ) L>( ) j=j′( )∧

2
w

1–( ) 2⋅
w m j–( )

, if π i j,( ) L>( ) j j′>( )∧
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

j 1=

m

∑=

bytes of the selected features to the server. The dimension oriented approximation ap-
proach (cf. Figure 1b) selects  dimensions i having the highest values vi. Thus, weL m⁄

The example presented in Figure 2 demonstrates the conservative approximation
areas for the three proposed approaches. The figure shows clearly that the combined

3.2.3 Combined Approximation (CA)
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In  this section,  we will  show how to compute the similarity between two feature
vector approximations. The most straightforward approach is to use the box center to
compute the distance between two box approximations. This center oriented box dis-
tance approximates the exact distance between the feature vectors rather accurate if the
boxes are rather small and do not overlap. 

On the other hand, imagine that we have two rather big boxes where the box centers
are identical. The center oriented distance would assign a zero distance to the approxi-
mated feature vectors, although the exact distance between the feature vectors might be
very high. Therefore, it is better to generally use the expectation value of the exact
distances between the feature vectors rather than the distances between the box centers.
This distance expectation value is based on the distance distribution function Pd: O × O
→ (IR0

+ → [0..1]), which assigns a probability value p to each possible distance τ (cf.
Figure 3a). The value p indicates the probability that the exact distance between the
feature vectors is smaller than τ. Figure 3b shows how we can compute Pd for two
feature vectors based on two arbitrary conservative approximations A = fapp(frank(v), L)
and A’ = fapp(frank(v’), L’). First, we measure those portions of the area A’ which are
overlapped by a sphere around x ∈ A with radius τ. Summing up all these values for all
x ∈ A yields the probability Pd(v,v’)(τ) that the distance d(v, v’) is smaller than τ. The
following lemma describes formally how to compute Pd for two approximated feature
vectors.

Lemma 1 Distance Distribution Function. Let A = fapp(frank(v), L) and A’ = fapp(frank(v’),
L’) ∈ [IR × IR]d be two arbitrary conservative approximations of the feature vectors v,
v’ ∈ IRd. Let R(x, τ) denote a sphere around the feature vector x ∈ IRd with radius
τ ∈ IR. Then the distance distribution function Pd: IRd × IRd → (IR0

+ → [0..1]) based
on the approximations A and A’ can be computed as follows.
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exact feature vector v

approximation area
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approximation area
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Fig. 2. Approximation areas (BOA, DOA, CA) 

 

approach leads to a smaller approximation area than the byte-oriented and the dimen-
sion-oriented approach. 

Pd v v’,( ) τ( )
A′ R x τ,( )∩

A
∫ xd

A A’⋅
------------------------------------------=

4 Approximated Clustering Based on Fuzzy Distance Functions
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represents the similarity between two box approximations in the best possible way by
one single value , where P’d(v, v’) denotes the
derivation of Pd(v, v’).

Practically, we can compute this distance expectation value between two approxi-
mated feature vectors by means of monte-carlo sampling. Thereby, we create randomly
feature vectors located in the boxes and compute the average distance of these randomly
created feature vectors to each other, Obviously, the higher the sample rate the more
accurate is the computation of the distance expectation value. Note, that the center ori-
ented distance can be regarded as a distance expectation value where only one sample
pair, i.e. the box centers, is used. 

In this  section, we evaluate the  performance of our approach with a special emphasis
on the overall transmission cost. The tests are based on an artificial dataset ART and two
real world data sets PLANE and PDB which were distributed to two clients:

ART dataset. The artificial dataset ART consists of 1000 feature vectors, equally
distributed in a 30-dimensional vector space. 

PLANE dataset. The PLANE dataset consists of 1000 high-resolution 3D CAD
objects provided by our industrial partner, an American airplane manufacturer. Each
object is represented by a 42-dimensional feature vector which is derived from the cover
sequence model as described in [9]. 

PDB dataset. This 3D protein structure dataset is derived from the Brookhaven
Protein Data Bank (PDB). The 1000 objects are represented by 3D shape histograms [1]
resulting in a 120-dimensional feature vector per object.

5.1 Quality of the Feature Vector Approximation Techniques

In a  first  experiment,  we  examined  the quality of the three approximation techniques
BOA, DOA and CA (cf. Section 3). For each feature vector, we transmitted once L bytes

Ed v v’,( ) P′d v v’,( ) x( ) xd⁄( ) x⋅( ) xd
∞–

∞∫=

τ

A = fapp(frank(v), L)

A’ = fapp(frank(v’), L’))R(x, τ)

x

Fig  3.  Computation  of  the distance distribution function Pd. a)  distance distribution
 function b)  computation of the probability Pd (v,v’)(τ)

1

dlower dupperτ

p=Pd(v,v’)(τ)

A’ ∩ R(x, τ)

a) b)

pr
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ab
il

it
y

distance

.

As already mentioned clustering algorithms can only handle unique distance values.
In order to put clustering methods into practice, we extract an aggregated value which
we call distance expectation value. The distance expectation value Ed: O × O → IR0

+

(measured in percent of all bytes of a feature vector) to the server which then constructs
the approximations based on the transmitted data. Figure 4 depicts how the approxima-

5 Experiments
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forms worst. Only for very small values of L it outperforms the BOA approach. Howev-
er, our CA approach yields to the best results, especially for low transmission cost.

Furthermore, we examined the CA approach for a varying parameter k used for the
k-means based pre-clustering of the client sites. Figure 4b shows that if we initially
transmit only the pre-clustering information of the feature vectors, i.e. the dataset ap-
proximations (cf. Section 3.1), the approximation quality increases slowly with increas-
ing k. Obviously, an increasing k parameter yields higher transfer cost. In contrast to the
dataset approximation approach, the quality increases more rapidly when we increase
the amount of transmitted data of the feature vector approximations (cf. Section 3.2).
Figure 4b shows that we achieve the best trade-off between accuracy and transfer over-
head when we set k = 10, especially for low transfer cost.

5.2 Distance Measures

In this  section, we  investigate the accuracy of the two distance measures, mid (A, A’)
and exp(A, A’). The distance function mid(A, A’) denotes the distance between the center
points of the approximations A and A’ and the distance function exp(A, A’) denotes the
expected distance of the feature vectors approximated by A and A’ (cf. Section 4). For
the computation of the expected distance exp(A, A’), we used monte-carlo sampling with
a sample rate s. For measuring the quality we summed up the quadratic distance error of
the examined distance measures exp(A, A’) and mid(A, A’) with respect to the exact
distance of the feature vectors. Figure 5 depicts the average quadratic distance error of
all feature vector approximations.

In the first experiment, we observed the behavior of exp(A, A’) for a varying sample
rate s. Figure 5a shows that the distance function exp(A, A’) reflects the exact distance

Fig  4. Average approximation error (ART dataset)  a) varying approximation  techniques 
(k = 1) b) varying k parameter (CA  approach )

.

tion error depends on the transmission cost. The error is measured by the average length
of the diagonal of the approximation areas.

Figure 4a shows that the average approximation error rapidly decreases for the BOA
approach as well as for the CA approach. For high values of L, the DOA approach per-

between the feature vectors much more accurately than the distance function mid(A, A’),
already for a sample rate s > 2. Figure 5b shows that the difference between the two
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5.3  Density-Based Clustering

In a last experiment, we compared a standard DBSCAN run based on the exp(A, A’)
measure to the distributed clustering approach introduced in [7]. We measured the qual-
ity of the approximated clustering result by the quality criterion used in [7]. Figure 6
shows clearly that for a certain amount of transferred information our approach per-
forms much better, i.e. our approach yields higher quality values than the approach pre-
sented in [7]. Note that the approach of [7] was especially designed for achieving
high-quality distributed clusterings based on little transmitted information. We would
like to point out that this experiment shows that our approximation technique for
high-dimensional feature vectors can beneficially be used as basic operation for distrib-
uted data mining algorithms.

6 Conclusion

In this paper, we presented a novel technique for approximating high-dimensional dis-
tributed feature vectors. In order to generate suitable approximations, we enhanced the

Fig 5. Evaluation  of  the D istance Measures  (ART dataset) a)  varying sampling rates s
 (5% transferred ) b)  varying approx imation accuracy ( s=50 )

Fig  6. Clustering quality ( s = 1 0, k = 10) a)  PLANE dataset b)  PDB  dataset

.

.

Therefore it is especially important to use the exp(A, A’) distance measure when only
small transfer cost are allowed.
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distance measures exp(A, A’) and mid(A, A’) increases with decreasing transfer cost.



the quality. We demonstrated the benefits of our technique for the important area of dis-
tributed clustering.

In our future work, we will show that also other distributed data mining algorithms
benefit from our high-dimensional feature vector approximation technique.
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Abstract. In reality, sequence databases are updated incrementally. The 
changes on the database may invalidate some existing sequential patterns and 
introduce new ones. Instead of recomputing the database each time, the incre-
mental mining algorithms target efficiently maintaining the sequential patterns 
in the dynamically changing database.  

Recently, a new incremental mining algorithm, called IncSpan was pro-
posed at the International Conference on Knowledge Discovery and Data Min-
ing (KDD’04). However, we find that in general, IncSpan fails to mine the com-
plete set of sequential patterns from an updated database. In this paper, we 
clarify this weakness by proving the incorrectness of the basic properties in the 
IncSpan algorithm. Also, we rectify the observed shortcomings by giving our 
solution. 

Keywords: Sequential patterns, Incremental mining, Algorithm. 

1   Introduction 

Discovering sequential patterns from databases is of great importance in many appli-
cation domains (e.g., fault detection in a network, web access pattern analysis, and 
plan failure identification, etc.). Since the research problem of discovering sequential 
patterns was first introduced by Argawal et al. in [2], many mining algorithms [3, 4, 
5, 6] have been proposed for efficiently finding frequent sequential patterns from the 
sequence databases. 

In reality, a database is often dynamic. With the evolution of databases, some exist-
ing sequential patterns would be invalid and some new sequential patterns might be 
introduced. Thus, maintaining sequential patterns (over a significantly long period) 
becomes essential for sequential pattern mining.  

Generally, the change on a sequential database can be categorized as 1) deleting 
records, 2) inserting new records, and 3) appending new items on the existing records. 
In this paper, discussions on the change of database only refer to the last two catego-
ries (i.e., we do not consider deleting records). Thus, the corresponding research prob-
lem of pattern maintenance can be described as follows. Given a sequence database D 
and the set FS of sequential patterns in D, when D evolves to D’ (with the updated 
part db known, i.e., inserting and appending part), how to efficiently find the set FS’ 
of sequential patterns in D’ ?  
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The naive approach to solve this problem is to apply a certain sequential mining 
algorithm A on D’ to re-compute the sequential patterns. Obviously, it wastes compu-
tational resources because the previous mining result is not utilized in this subsequent 
problem. Another alternative, which will be discussed in this paper, is to incremen-
tally update FS into FS’. The basic idea is to first investigate the new input data db 
while maximizing the use of a previous mining result FS. Various incremental update 
algorithms [7, 8, 9] have been designed to improve efficiency by reducing the number 
of scans on D’.  

In general, an incremental update algorithm A’ should satisfy the following two 
conditions.  

1. Correctness: The mining result of A’ should be identical to FS’, where FS’ is 
the set of frequent sequential patterns discovered by the traditional sequential 
mining algorithm A from the updated database D’. 

2. Efficiency: Generally, for maintaining sequential patterns in a dynamically 
changing database, the time of applying A’ is significantly less than that of re-
computing D’ by using A. 

Recently, Cheng et al. [1] proposed a new incremental update algorithm, called 
IncSpan. IncSpan is developed on the basis of the sequential mining algorithm Pre-
fixSpan. With the aims of improving performance, the redundant semi-frequent pat-
terns (i.e., patterns that are “almost frequent” in D) are introduced and maintained as 
candidates of newly appearing sequential patterns in the updated database D’. In addi-
tion, some optimization techniques are applied in the pattern matching and projected 
database generation. The experimental results in [1] show that IncSpan significantly 
outperforms the non-incremental sequential mining algorithm [3] and the previously 
proposed incremental algorithm [7].  

However, in this paper, we argue that in general, the algorithm IncSpan cannot find 
the complete set of frequent sequential patterns in the updated database D’, i.e., it 
violates the correctness condition. Particularly, we give counter examples to prove 
that the foundations of IncSpan, and its three key properties presented in [1], are in-
correct. The main purpose of this paper is to identify the weakness of IncSpan, and to 
propose a correct solution which can guarantee the completeness of the mining result. 

The remainder of the paper is organised as follows. Section 2 first gives the formal 
definition of the incremental update problem and then describes the algorithm Inc-
Span. In Section 3, we prove that IncSpan fails to find the complete set of sequential 
patterns in the updated database. Based on IncSpan, our solution is proposed in Sec-
tion 4. Finally, we conclude this paper in Section 5. 

2   Summary of IncSpan Approach 

For the completeness of this presentation and to establish our notation, we first for-
mally define the problem of incremental sequential patterns mining.  

2.1   Incremental Sequential Pattern Mining 

Let I = {i1, i2, …, ik} be a set of k distinct literals called items. A subset of I is called 
an itemset. A sequence s = < t1, t2, …, tm>  (ti ⊆  I) is an ordered list. Without loss of 
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generality, we assume that the items in each itemset are sorted in certain order such as 
alphabetic order (a, b, c …). Formally, a sequence  = <b1, b2, …, bn> is a subse-
quence of another sequence  = <a1, a2,…, am>, denoted  ⊆  , if and only if ∃  i1, i2, 
…, in such that 1  i1 < i2 < …<  in  m and b1 ⊆  ai1; b2 ⊆  ai2; …; bn ⊆  ain. In this case, 
we also call  is supersequence of  and  contains . 

A sequence database, D = {s1, s2, …, sn}, is a set of sequences. The support of a 
sequence  in D is the number of sequences in D which contain , denoted as supD( ) 

= |{s | s ∈  D and   ⊆ s }|. Given a support threshold, min_sup, a sequence is fre-
quent if its support is no less than min_sup. The set of frequent sequential patterns, 
denoted as FS, includes all the frequent sequences in D.  

The sequential pattern mining is to discover the complete set FS when the se-
quence database D and min_sup are given. 

The incremental sequential pattern mining is formalized as follows. Given the 
original database D, db is the incremental part which is added to D. As the result, the 
new database is created, denoted as D’ = D + db. There are two scenarios for this 
processing. 

 
 
 
 
 
 
 
 

  Fig. 2.1. Insert scenario                 Fig. 2.2. Append scenario 

The Insert scenario (Figure 2.1) means that the new sequences are inserted into the 
original database. These old sequences are still unchanged, but the total number of the 
sequences in D’ is increased. In the Append scenario (Figure 2.2), some old se-
quences are appended with new sequences. And the total number of the sequences in 
D’ is unchanged. If we consider Insert scenario is a special case of Append scenario 
(i.e., db is appended with the empty sequences), we can combine two scenarios and 
formulate the problem as follows. 

Given a sequence s = < t1, t2,…, tm>∈ D and another sequence sa = < t’1, t’2,…, 
t’n> ∈  db, if s concatenates with sa in D’, the new sequence s’ is called an appended 
sequence, denoted as s’= s + sa. Obviously, s’ is always not empty. If we assume that 
s is empty, then we can treat the Insert scenario as the Append scenario. We denote 
LDB = {s’ | s’ ∈  D’ and s’ is appended with items/itemsets}. We denote ODB = {s | 
s ∈  D and s is appended with items/itemsets in D’}, denote NDB = {s | s ∈  D and 
s is not appended with items/itemsets in D’}. The set of frequent sequences in D’ is 
denoted as FS’. As a result, we have the following formula.  

D’ = D + db = (ODB + NDB) + db = (ODB + db) + NDB = LDB + NDB.  

D 

db 

D

db 
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Example 2.1: A sample sequence database D and an appended part db are given to explain the 
notations defined above 

Table 2.1. A sample sequence database D and the appended part 

Seq ID Original Part Appended Part 
0 (a)(h) (c) 
1 (eg) (a)(bce) 
2 (a)(b)(d) (ck)(l) 
3 (b)(df)(a)(b) O/  
4 (a)(d) O/  
5 (be)(d) O/  

Given min_sup = 3, we have: 
ODB = {SeqID: 0-2 in D}; NDB = {SeqID:3-5 in D}; LDB = {SeqID: 0-2 in D’};  
FS={<(a)>:4, <(b)>:3, <(d)>:4, <(b)(d)>:3}; 

FS’={<(a)>:5, <(b)>:4, <(d)>:4, <(b)(d)>:3, <(c)>:3, <(a)(b)>:3, <(a)(c)>:3}; 

Problem statement: Given D, D’, min_sup, and FS, the incremental sequential pat-
tern mining is to mine the set FS’ in D’ based on FS , rather than to recompute D’ 
from scratch. 

2.2   IncSpan Approach 

In this part, we introduce IncSpan [1], the recently proposed approach for the incre-
mental sequential pattern mining. In [1], the authors present the idea of buffering 
semi-frequent patterns as the following description, study its properties, and design 
solutions of how to mine and maintain FS incrementally based on PrefixSpan  
approach.  

Buffering Semi-frequent Pattern: Given a factor   1, a sequence is semi-frequent 
if its support is less than min_sup but no less than  * min_sup; a sequence is infre-
quent if its support is less than  * min_sup. The set of semi-frequent sequential pat-
tern includes all the semi-frequent sequences in D and D’, denoted as SFS and SFS’ 
respectively. For example, given  = 0.6, according to Example 2.1, we have 
SFS={<(e)>:2, <(a)(b)>:2, <(a)(d)>:2}and SFS’={<(e)>:2, <(a)(d)>:2, <(be)>:2}. 

PrefixSpan Approach: PrefixSpan approach [3] is one of the most efficient methods 
for mining sequential patterns. It uses prefix sequence, suffix sequence and p-
projected database concepts to discover the complete set of sequential patterns when 
the sequence database D and min_sup are given, more detail can refer to [3]. The 
prototype of PrefixSpan algorithm which is used in the following sections is Prefix-
Span(p, D|p,  * min_sup, FS, SFS), where p is a sequence, D|p is p-projected data-
base of D. This routine is called recursively to mine the complete FS, SFS in D|p. 

It is assumed in [1] that the sequences in SFS are “almost frequent” in D, most of 
the frequent subsequences in the appended database (D’) will either come from SFS 



446 S.N. Nguyen, X. Sun, and M.E. Orlowska 

 

or they are already frequent in original database D. According to [1], the SFS’ and 
FS” in D’ are derived from the following cases: 

1. A pattern p which is frequent in D, is still frequent in D’ 
2. A pattern p which is semi-frequent in D, becomes frequent in D’ 
3. A pattern p which is semi-frequent in D, still semi-frequent in D’  
4. Appended data db brings new frequent / semi-frequent items 
5. A pattern p which is infrequent in D, becomes frequent in D’ 
6. A pattern p which is infrequent in D, becomes semi-frequent in D’ 

Case (1) - (3). There exsists information in FS and SFS, so one can update the support 
number and project D’ to find all frequent / semi-frequent sequences which are gener-
ated from FS and SFS. 

Case (4). Property 2.1: An item which does not appear in D and is brought by db has 
no information in FS and SFS. Solution 2.1: Scan LDB for single items. Then use the 
new frequent item as prefix to construct projected database and discover frequent 
sequences recursively by PrefixSpan approach. 

Case (5). Property 2.2: An infrequent sequence p’ in D becomes frequent in D’, all 
of its subsequences must also be frequent in D’. Then at least one of its prefix subse-
quences, p, is in FS. Solution 2.2: Start from its prefix p in FS and construct p-
projected database on D’, use PrefixSpan approach, IncSpan will discover p’.  

IncSpan provides the pruning technique based on the following theorem. 

Theorem 2.1. For a frequent pattern p, if its support in LDB supLDB(p) < (1 - ) * 
min_sup, then there is no sequence p’ having p as prefix changing from infrequent  in 
D to frequent in D’. 

This theorem provides an effective bound to decide whether it is necessary to pro-
ject the whole database D’, which can reduce the number of projections. 

Case (6). Property 2.3: An infrequent sequence p’ in D becomes semi-frequent in 
D’, all of its subsequences must also be semi-frequent in D’. Then at least one of its 
prefix subsequences, p, is in FS or SFS. Solution 2.3: Start from its frequent prefix p 
in FS or SFS, and construct p-projected database on D’, use PrefixSpan approach, 
IncSpan will discover p’. 

IncSpan Algorithm Outline: Given an original database D, an appended database 
D’, a threshold min_sup, a buffer ratio , a set of frequent sequences FS and a set of 
semi-frequent sequences SFS, IncSpan wants to discover only the set of frequent 
sequences FS’ in D’ [1]. The basic idea of algorithm are described as follows. 

Step 1: Scan LDB for single items, as show in case (4). 

Step 2: Check every pattern in FS and SFS in LDB to adjust the support. 

Step 2.1: If a pattern becomes frequent, add it to FS’. Then check whether it 
meets the projection condition according to Theorem 1. If so, use it as prefix 
to project database D’, as show in case (5). 

 Step 2.2: If a pattern is semi-frequent, add it to SFS’.  
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Algorithm Outline: IncSpan(D’, min_sup, , FS, SFS) 
Input: An appended database D’, min_sup, FS and  SFS in D 
Output: FS’ in D’ 
Method: 

1:  FS’ = O/ ; SFS’ = O/ ; 
2:  Scan the LDB for new single items 
3:  Add new frequent items into FS’ 
4:  Add new semi-frequent items into SFS’ 
5:  For each new item i in FS’ do 
6:  PrefixSpan(i, D’|i,  * min_sup, FS’, SFS’) 
7:  For every pattern p in FS or SFS do 
8:  Check sup(p) = supdb(p) 
9:  If supD’(p) =  supD(p) + sup(p)   min_sup 
10:   Insert(FS’, p) 
11:   If  supLDB(p)  (1 - ) * min_sup 
12:    PrefixSpan(p, D’|p,  * min_sup, FS’, SFS’) 
13:  Else 
14:   Insert(SFS’, p) 
15:  Return; 

3   Critical Observations 

After the IncSpan approach is reviewed in Section 2, in this section, we show that in 
general, IncSpan provides incomplete results. Particularly, we prove that the solutions 
in IncSpan for Case 4-6 are incorrect by giving counter examples.  

Claim 3.1 (Incorrectness of Solution 2.1 for Case (4)): Scanning LDB cannot find 
the complete set of new single frequent / semi-frequent items in D’. 

Proof: Generally, scanning LDB can only discover the new single frequent / semi-
frequent items in terms of LDB. Since the support is counted as number, for the single 
items that are infrequent ones in LDB and D but become frequent / semi-frequent in 
D’, Solution 2.1 fails to discover them. The following example illustrates the incom-
pleteness of frequent single items. The example for semi-frequent single items can be 
created by following the same idea. 

Counter example 3.1: This example is generated from Example 2.1 with small 
change in appended part: item (f) is appended in SeqID 0-1. Remember that min_sup 
is 3 and  is 0.6. If the IncSpan algorithm scans only LDB, the new frequent item (f) 
in D’ cannot be discovered. As a result, IncSpan loses all new frequent sequences 
which have (f) as a prefix. 

Claim 3.2 (Incorrectness of Property 2.2 for Case (5)): In IncSpan, if an infrequent 
sequence p’ in D becomes frequent in D’, it is possible that none of its prefix subse-
quence p is in FS. 

Proof: A counter example is illustrated as follows. 

Counter example 3.2: This example generates from Example 2.1 with a small 
change in original part (SeqID 3-5 are deleted). Given min_sup = 3;  = 0.6 
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In this example, <(a)(c)> is infrequent in D but becomes frequent in D’. However, 
its prefix subsequences, <(a)>, is not in FS, in this case, FS is a empty set.  

Claim 3.3 (Incorrectness of Property 2.3 for Case (6)): In IncSpan, if an infrequent 
sequence p’ in D becomes semi-frequent in D’, it is possible that none of its prefix 
subsequence p is in FS or SFS. 

Proof: A counter example is illustrated as follows. 

Counter example 3.3: This example generates from Example 2.1 with a small change 
in original part, and appended part. Given min_sup = 3;  = 0.6 

In this example, <(be)> is infrequent in D but becomes semi-frequent in D’. How-
ever, its prefix subsequences, <(b)>, is not in SFS. In this case, SFS = {<(a)>:2, 
<(e)>:2}.  

Table 3.1. A sample sequence database D and the new appended part 

Seq ID Original Part Appended Part 
0 (a)(h) (c)(f) 
1 (eg) (a)(bce)(f) 
2 (a)(b)(d) (ck)(l) 
3 (b)(df)(a)(b) O/  
4 (a)(d) O/  
5 (be)(d) O/  

Table 3.2. A deleted sequence database D and the appended part 

Seq ID Original Part Appended Part 
0 (a)(h) (c) 
1 (eg) (a)(bce) 
2 (a)(b)(d) (ck)(l) 

Table 3.3. A deleted sequence database D and the new appended part 

Seq ID Original Part Appended Part 
0 (a)(h) (c) 
1 (eg) (a)(bce) 
2 (a)(be)(d) (ck)(l) 

Claim 3.4 (Extension of Theorem 2.1): In order to apply the pruning technique 
based on Theorem 2.1 for any pattern p in FS or SFS. Theorem 2.1 can be extended as 
follows. The difference between the following theorem and Theorem 2.1 is that we 
can apply for not only frequent pattern p in D, but also any other pattern p in D.  

Theorem 3.1: For any pattern p in D, if its support in LDB supLDB(p) < (1 - ) * 
min_sup, then there is no sequence p’ having p as prefix changing from infrequent  in 
D to frequent in D’. 
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Proof: p’ was infrequent in D, so supD(p’) <  * min_sup                         (i) 
If  supLDB(p) < (1 - ) * min_sup  then  

supLDB(p’)  supLDB(p) < (1 - ) * min_sup because p ⊂  p’.  
Since supLDB(p’) = supODB(p’) + supdb(p’) because LDB = ODB + db, then  

supdb(p’)  supLDB(p’)  <  (1 - ) * min_sup                        (ii) 
Combining (i) and (ii), we have supD’(p’) = supD(p’) + supdb(p’) < min_sup. So p’ 

cannot be frequent in D’. 

4   Proposed the Complete Solution 

With all above observations in mind, we present the following algorithm for im-
provement of IncSpan, denoted as IncSpan+. 

Given an original database D, an appended database D’, a minimum support 
min_sup, a buffer ratio , a set of frequent sequences FS and a set of semi-frequent 
sequences SFS, we want to mine the set of frequent sequences FS’, and the set of 
semi-frequent sequences SFS’ in D’. 

Algorithm Outline: IncSpan+(D’, min_sup, , FS, SFS) 
Input: An appended database D’, min_sup, FS and  SFS in D 
Output: FS’, SFS’ in D’ 
Method: 

1:  FS’ = O/ ; SFS’ = O/ ; 
2:  Determine LDB; Total number of sequences in D’, adjust the min_sup if it is 

changed due to the increasing of total number of sequences in D’. 
3:  Scan the whole D’ for new single items 
4:  Add new frequent items into FS’ 
5:  Add new semi-frequent items into SFS’ 
6:  For each new item i in FS’ do 
7:  PrefixSpan(i, D’|i,  * min_sup, FS’, SFS’) 
8:  For each new item i in SFS’ do 
9:  PrefixSpan(i, D’|i,  * min_sup, FS’, SFS’) 
10:  For every pattern p in FS or SFS do 
11:  Check sup(p) = supdb(p) 
12:  If supD’(p) =  supD(p) + sup(p)   min_sup 
13:   Insert(FS’, p) 
14:   If  supLDB(p)  (1 - ) * min_sup 
15:    PrefixSpan(p, D’|p,  * min_sup, FS’, SFS’) 
16:  ElseIf supD’(p)    * min_sup 
17:   Insert(SFS’, p) 
18:   PrefixSpan(p, D’|p,  * min_sup, FS’, SFS’) 
19:  Return; 

This algorithm follows the same spirit as IncSpan, using PrefixSpan approach to 
maintain both FS’ and SFS’. However, new proposed algorithm ensures the correct-
ness of mining result in the updated database, as is proven in Claim 4.1. 
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Claim 4.1 (Correctness of IncSpan+): The IncSpan+ outputs the complete set of 
frequent pattern FS’ and the complete set of semi-frequent pattern SFS’ in the updated 
database D’. 

Proof: The complete FS’ and SFS’ sets come exactly from two sources:  

Case (4.1): From new frequent / semi-frequent single items and all of fre-
quent / semi-frequent supersequences which have these new single items as 
the prefix;  

Case (4.2):  From FS, SFS, and sequences that have the prefix in FS or SFS.  

As can be seen from the outline of IncSpan+, line from 3-9 will discover all fre-
quent sequences and semi-frequent sequences in D’ corresponding to case (4.1). That 
means all frequent sequences / semi-frequent sequences in D’, which have the first 
new frequent / semi-frequent item as the prefix, will be discovered. These new fre-
quent / semi-frequent items are not included in FS and SFS. 

Line 10-18 in IncSpan+ will discover all frequent / semi-frequent sequences which 
have their prefix in FS or SFS, and all of them correspond to case (4.2). 

Claim 4.1 proves the correctness of our proposed IncSpan+. Compared with the 
original approach, IncSpan+ has the following improvements: 

1. IncSpan+ can find the complete FS’, which guarantees the correctness of 
the mining result. 

2. IncSpan+ can find the complete SFS’, which is helpful in incrementally 
maintaining the frequent patterns for further database updates.   

5   Conclusion 

This paper clarified the weakness of the recent work [1] in the context of the incre-
mental mining sequential patterns. We proved that IncSpan, the incremental mining 
approach in [1], cannot find the complete set of sequential patterns in the updated 
database. The solution, IncSpan+ was proposed to rectify the observed shortcoming. 
IncSpan+ not only guarantees the correctness of the incremental mining result, but 
maintains the complete set of semi-frequent sequences for future updates. 
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Abstract. Sampling is an important preprocessing algorithm that is
used to mine large data efficiently. Although a simple random sample
often works fine for reasonable sample size, accuracy falls sharply with
reduced sample size. In kdd’03 we proposed ease that outputs a sample
based on its ‘closeness’ to the original sample. Reported results show
that ease outperforms simple random sampling (srs). In this paper we
propose easier that extends ease in two ways. 1) ease is a halving algo-
rithm, i.e., to achieve the required sample ratio it starts from a suitable
initial large sample and iteratively halves. easier, on the other hand,
does away with the repeated halving by directly obtaining the required
sample ratio in one iteration. 2) ease was shown to work on ibm quest
dataset which is a categorical count dataset. easier, in addition, is shown
to work on continuous data such as Color Structure Descriptor of images.
Two mining tasks, classification and association rule mining, are used to
validate the efficacy of easier samples vis-a-vis ease and srs samples.

Keywords: Sampling, frequency estimation, classification, association
rule mining, image processing.

1 Introduction

As the size of stored data is increasing day-by-day thanks to cheaper storage
devices and increasing number of information sources such as Internet, the need
for scalability is intensifying. Often sampling is used to reduce the data size while
remaining the underlying structure. Use of a simple random sample, however
may lead to unsatisfactory results. The problem is that such a sample may
not adequately represent the entire data set due to random fluctuations in the
sampling process. The difficulty is particularly apparent at small sample sizes.

In [1] we proposed ease (Epsilon Approximation Sampling Enabled) that
outputs a sample. It starts with a relatively large simple random sample of trans-
actions and deterministically trim the sample to create a final subsample whose
distance from the complete database is as small as possible. For reasons of com-
putational efficiency, it defines the subsample as close to the original database
if the high-level aggregates of the subsample normalized by the total number
of data points are close to the normalized aggregates in the database. These
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normalized aggregates typically correspond to 1-itemset or 2-itemset supports
in the association-rule setting or, in the setting of a contingency table, relative
marginal or cell frequencies. The key innovation of ease lies in the method by
which the final subsample is obtained. Unlike fast [2], which obtains the final
subsample by trimming away outliers in a process of quasi-greedy descent, ease
uses an approximation method to obtain the final subsample by repeated halv-
ing. Unlike fast, the ease provides a guaranteed upper bound on the distance
between the initial sample and final subsample. In addition, ease can process
transactions on the fly, i.e., a transaction is examined only once to determine
whether it belongs to the final subsample. Moreover, the average time needed
to process a transaction is proportional to the number of items in that transac-
tion. We showed that ease leads to much better estimation of frequencies than
srs. Experiments in the context of both association-rule mining and classical
contingency-table analysis indicated that ease outperforms both fast and srs.

However, ease has some limitations.

– Due to its halving nature, ease has certain granularity in sample ratio. In [1]
an ad-hoc solution was proposed where the size of the initial sample is so
chosen that by repeated halving of several rounds, one obtains the required
size. In this paper we propose a modified algorithm (easier) that outputs the
required sample size in just one iteration, thus saving both time and memory
(detailed analysis for time and memory are given in later sections). By doing
so, easier no longer guarantees an upper bound on the distance between the
initial sample and final subsample. However, experimental results in various
domains (including, transactional data, image data, and audio data) suggest
that easier attains the accuracy of ease or even better.

– ease was built especially for categorical count data, e.g., transactional data.
It was natural to extend it to continuous data. In this paper we show how
easier is used for image data that has continuous attribute values (Color
Structure Descriptor - CSD). The CSD values are discretized using a simple
discretization technique, and easier is successfully applied.1

We validate and compare the output samples of ease2, srs and easier by
performing two important data mining tasks: classification and association rule
mining. Support vector machine (svm) is used as the classifier to image data
due to its high classification accuracy and strong theoretical foundation [3]. svm
classifier results show that easier samples outperforms srs samples in accuracy
and ease samples in time. easier achieves the same or even better accuracy
than ease. Similar results are obtained for association rule mining. We also
report the association rule mining results for ibm quest data set [4] in order to
compare and contrast with the earlier reported results [1].

1 We have also applied to audio data successfully, but due to space constraint we will
not discuss it any further.

2 There exist a few variants of ease. Owning to time constraint and the goal of
generalization, we use ease for comparison.
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The rest of the paper is organized as follows. In Section 2, we briefly review the
ε-approximation method and ease algorithm. In Section 3 we introduce the new
easier algorithm and analyze the performance vis-a-vis ease. The application
of image processing is discussed in Section 4. In Section 5 experimental results
are presented. Conclusion and future work are given in Section 6.
Notation. Denote by D the database of interest, by S a simple random sample
drawn without replacement from D, and by I the set of all items that appear
in D. Let N = |D|, n = |S| and m = |I|. Also denote by I(D) the collection of
itemsets that appear in D; a set of items A is an element of I(D) if and only
if the items in A appear jointly in at least one transaction t ∈ D. If A contains
exactly k(≥ 1) elements, then A is sometimes called a k-itemset. In particular,
the 1-itemsets are simply the original items. The collection I(S) denotes the
itemsets that appear in S; of course, I(S) ⊆ I(D). For k ≥ 1 we denote by
Ik(D) and Ik(S) the collection of k-itemsets in D and S, respectively.

For an itemset A ⊆ I and a transactions set T , let n(A;T ) be the number
of transactions in T that contain A. The support of A in D and in S is given
by f(A;D) = n(A;D)/|D| and f(A;S) = n(A;S)/|S|, respectively. Given a
threshold s > 0, an item is frequent in D (resp., in S) if its support in D (resp.,
in S) is no less than s. We denote by L(D) and L(S) the frequent itemsets in
D and S, and Lk(D) and Lk(S) the collection of frequent k-itemsets in D and
S, respectively. Specifically, denote by Si the set of all transactions in S that
contains item Ai, and by ri and bi the number of red and blue transactions in
Si respectively. Red means the transactions will be kept in final subsample and
blue means the transactions will be deleted. Q is the penalty function of ri and
bi. fr denotes the ratio of red transactions, i.e., the sample ratio. Then the ratio
of blue transactions is given by fb = 1− fr.

2 Epsilon-Approximation Method and EASE Algorithm

In order to obtain a good representation of a huge database, ε-approximation
method is used to find a small subset so that the supports of 1-itemset are close
to those in the entire database. The sample S0 of S is an ε-approximation if
its discrepancy satisfies Dist(S0,S) ≤ ε. The discrepancy is computed as the
distance of 1-itemset frequencies between any subset S0 and the superset S:

Dist∞(S0,S) = max
A∈I1(S)

|f(A;S0)− f(A;S)|. (1)

Given an ε > 0, Epsilon Approximation Sampling Enabled (ease) algorithm is
proposed to efficiently obtain a sample set S0 which is an ε-approximation of S. S
is obtained from the entire dataset D by using srs. A repeated halving method
keeps about half of the transactions in each round. Each halving iteration of
ease works as follows:

1. In the beginning, uncolor all transactions.
2. Color each transaction in S as red or blue. Red means the transaction is

selected in sample S0 and blue means the transaction is rejected.
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Fig. 1. The penalty function for the halving method: penalty as a function of |ri − bi|

3. The coloring decision is based on a penalty function Qi for item Ai. Qi is low
when ri = bi approximately, otherwise Qi increases exponentially in |ri−bi|.
The shape of Qi is depicted in Figure 1. Qi for each item Ai is as follows:

Qi = Q
(j)
i = Q

(j)
i,1 + Q

(j)
i,2 (2)

Q
(j)
i,1 = (1 + δi)ri(1− δi)bi Q

(j)
i,2 = (1− δi)ri(1 + δi)bi (3)

where Q
(j)
i means the penalty of ith item in jth transaction and δi controls

the steepness the penalty plot. The initial values of Qi,1 and Qi,2 are both 1.

Suppose the (j + 1)-th transaction is colored as red (or blue), then the cor-
responding penalty function Q

(j||r)
i (or Q

(j||b)
i ) is:
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The penalty function of current transaction is the summation of penalties for
all items. If Q(j||b) =

∑
i Q

(j||b)
i is less than Q(j||r) =

∑
i Q

(j||r)
i , the (j + 1)-th

transaction will be colored blue and deleted. Otherwise, it will be colored red
and added to the sample. The initial value of δi is

√
1− exp (−ln(2m)/n) where

m is the number of items in original dataset and n is the initial sample size. The
details can be found in [1].

3 New and Modified EASE: EASIER

ease is a good sampling algorithm that outperforms srs, but it has some dis-
advantages. In this section we analyzed the problems of ease and proposed the
new algorithm easier to avoid these problems.

3.1 Without Halving

In ease the halving process has certain granularity. It can only compute a subset
approximately half the size of S. If a different sample ratio is wanted other than
half the size, we have to run the halving procedure several times with a proper
initial random sample set S of data set D. This will consume more time and
memory due to multiple halving iterations. In order to directly obtain a sample
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set of any sample ratio in one pass, the halving round is modified to select red
transactions with a probability which is proportional to the desired final sample
size. This will remove the need to store several levels of penalties. If we want
to obtain a sample set from S with sample ratio rs directly, the ratio of red
transactions is fr = rs and the ratio of blue transactions is fb = 1− rs. Then we
have ri = fr · |Si| and bi = fb · |Si|. So ri

fr
= bi

fb
= |Si|. As ri

fr
+ bi

fb
= 2|Si|, we use

ri

2fr
= bi

2fb
( ri

2fr
+ bi

2fb
= |Si|). As the objective of halving is to minimize |ri − bi|,

and ri + bi = |Si| for each item i, our new method will be modified to minimize∣∣∣ ri

2fr
− bi

2fb

∣∣∣ instead of |ri − bi|. The modified penalty Qi of j-th transaction is:

Qi = Q
(j)
i = Q

(j)
i,1 + Q

(j)
i,2 (5)

Q
(j)
i,1 = (1 + δi)

ri
2fr (1− δi)

bi
2fb Q

(j)
i,2 = (1− δi)

ri
2fr (1 + δi)

bi
2fb (6)

Suppose the (j + 1)-th transaction is colored as r (or b), the corresponding
penalty function Q

(j||r)
i (or Q

(j||b)
i ) in Equation 4 is changed to:

Q
(j||r)
i,1 = (1 + δi)

ri+1
2fr (1− δi)

bi
2fb = (1 + δi)

1
2fr (1 + δi)

ri
2fr (1− δi)

bi
2fb

= (1 + δi)
1

2fr Q
(j)
i,1

(7)

Q
(j||r)
i,2 = (1− δi)

1
2fr Q

(j)
i,2

Q
(j||b)
i,1 = (1− δi)

1
2fb Q

(j)
i,1 Q

(j||b)
i,2 = (1 + δi)

1
2fb Q

(j)
i,2

(8)

The computation process of Q(j||r)
i,1 is given in Equation 7. Other penalty functions

are computed with a similar procedure and the results are shown in Equation 8.
The overall penalty is calculated as described in section 2.

For Q(final)
i , we cannot guarantee Q

(final)
i ≤ 2m. As δi is a very small value,

(1+δi)
1

2fr and (1+δi)
1

2fb are both close to 1. So Q
(final)
i is close to 2m. According

to [1] the value of
∣∣∣ ri

2fr
− bi

2fb

∣∣∣ is close to:

ln(2m)
ln(1 + δi)

+
|Si| ln(1/(1− δ2

i ))
ln(1 + δi)

(9)

Therefore, the same δi, as in section 2, is used in easier. In algorithm 1 the
completed easier algorithm is given. The penalty for each item i of a transaction
is calculated only once. So it does not need to store the penalty for each halving
iteration, and thus results in a reduction of memory from O(mh) for ease to
O(m). The time for processing one transaction is bounded by O(Tmax) for easier
whereas ease requires O(hTmax) where Tmax denotes the maximal transaction
length in T . Thus, unlike ease, easier is independent of sample size.
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Algorithm 1. easier Sampling
Input: D, n, m, fr

Output: S0, the transactions in red color

1: for each item i in D do

2: δi =

√
1 − exp (− ln(2m)

n
);

3: Qi,1 = 1; Qi,2 = 1;
4: end for
5: for each transaction j in S do
6: color transaction j red;
7: Q(r) = 0; Q(b) = 0;
8: for each item i contained in j do

9: Q
(r)
i,1 = (1 + δi)

1
2fr Qi,1; Q

(r)
i,2 = (1 − δi)

1
2fr Qi,2;

10: Q
(b)
i,1 = (1 − δi)

1
2fb Qi,1; Q

(b)
i,2 = (1 + δi)

1
2fb Qi,2;

11: Q(r)+ = Q
(r)
i,1 + Q

(r)
i,2 ; Q(b)+ = Q

(b)
i,1 + Q

(b)
i,2 ;

12: end for
13: if Q(r) < Q(b) then
14: Qi,1 = Q

(r)
i,1 ; Qi,2 = Q

(r)
i,2 ;

15: else
16: color transaction j blue;
17: Qi,1 = Q

(b)
i,1 ; Qi,2 = Q

(b)
i,2 ;

18: end if
19: if transaction j is red then
20: set S0 = S0 + {j};
21: end if
22: end for

4 Image Processing Application

In [1] we showed the application of ease over association rule mining and clas-
sical contingency table analysis, and results showed that ease performs better
than srs. In this paper we include another important application, image pro-
cessing, mainly to show that ease and easier are applicable to continuous data.

With the availability of the Internet and the reduction in price of digital
cameras, we are experiencing a high increase in the amount of multimedia in-
formation. The need to analyze and manage the multimedia data efficiently is
essential. For applications like machine learning and classification of multime-
dia, the training data is important and the use of a good sampling set would
influence the final results significantly. easier is a suitable sampling algorithm
for such application. This fast and efficient process can select a representative
sample set from a large database based on a set of visual features dynamically.

4.1 Color Structure Descriptor

The tremendous growth of multimedia content is driving the need for more effi-
cient methods for storing, filtering and retrieving audiovisual data. MPEG-7 is
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Structuring Element

Pixels w/in  image having color cm

(a) Highly structured color plane

Structuring Element

Pixels w/in  image having color mc

(b) un-structured color plane

Fig. 2. Example of structured and un-structured color

a multimedia standard, which improves multimedia management by providing a
rich set of standardized descriptors and description schemas for describing mul-
timedia content. Based on one or several visual descriptors, users can efficiently
browse the image database or retrieve similar images. Color Structure Descriptor
(csd) is one such descriptor in MPEG-7. It is defined to represent images by
both the color distribution of the images (like a color histogram) and the local
spatial structure of the color. csd can distinguish the images which have similar
histograms and different color spatial distribution. Figure 2 [5] illustrates this
using a pair of images. Figure 2(a) is a highly structured color image and Figure
2(b) is a un-structured color image. As the number of foreground color pixels
is the same, they cannot be distinguished with the traditional color histograms.
But the csds of these two images are very different because the distributions of
color are different. Compared with other color descriptors, csd has the detailed
color information and can achieve better retrieval results [6]. The format of csd
is identical to a color histogram. It is a 1-D array of eight bit-quantized values
and can be 256-, 128-, 64- or 32-bin. In our experiments, 256-bins csd is used.

4.2 Application of EASIER

We apply easier to find the representative samples from huge image databases
according to csd. Because easier is based on the calculation of the frequency of
each item, the format of csd is changed. Each csd descriptor has 256 bins and
each bin has an 8-bits numerical value. To handle non-binary data, the numerical
value in a bin is converted into an indication on which bit position is set to one
in a string of 256 binary bits (allocated for each bin) which has been initialized
to zero. After mapping, there will be a total of 256 × 256 = 65536 (one-bit)
items. The positions of each non-zero bit in this 65536 items list is subsequently
converted into a vector and this vector is usually of a length of 100.

In order to reduce the number of items in the data set, the 8-bit bin value
of the original csd is re-quantized into a 4-bit quantized representation. The
re-quantization is non-uniform and the suggested csd amplitude quantization
table in MPEG-7 standard [5] is used. This effectively reduces the number to
16 × 256 = 4096 items for each csd descriptor. A smaller number of bits to
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represent the data will result in a loss of accuracy in the percentage of each
color representation but this action will result in a significant reduction in the
number of items for each csd descriptor. Experimental results have shown that
the retrieval accuracy of the quantized data is close to the original csd data.

5 Experimental Results

In this section we compare the performance of easier, ease and srs in the
context of classification and association rule mining. Both real-world data (csds
of image database) and synthetic data (ibm quest data) are used for testing.

Primary metrics used for the evaluation are accuracy, sampling time, execu-
tion time and memory requirement. Sampling time is the time taken to obtain
the final samples. Since association rule mining [4, 7] is focused on finding the fre-
quent itemsets, i.e., the itemsets satisfying the minimum support, we have used
a metric to measure the accuracy of our data reduction methods. In particular:

accuracy = 1− |L(D)− L(S)|+ |L(S)− L(D)|
|L(D)|+ |L(S)| (10)

where, as before, L(D) and L(S) denote the frequent itemsets from the database
D and the sample S, respectively. We used Apriori3 [4] to compare the three
algorithms in fair manner by computing the frequent item sets.

To verify the representativeness of the samples, a classification algorithm
is used to test the classification performance of different training sample sets.
For the choice of classification algorithm, svm is a good candidate for the image
classification applications [8]. The training set of svm is selected by ease, easier
and srs. Other remaining images are used for testing the svm.

5.1 Image Processing (CSD)

We use COIL-1004 as the image database. It has 7200 color images of 100 objects:
for each object there are 72 images where each image is taken at pose intervals
of 5 degrees. So the descriptor database includes 7200 csd descriptors. All three
algorithms, easier, ease and srs start from the whole dataset. As the halving
process has a certain granularity and ease cannot achieve the specific sample
ratio, in each iteration we first ran ease with a given number of halving times.
Then we use the actual sample ratio from the ease samples to generate easier
samples. As easier is probabilistic, it does not guarantee the exact sample size.
Hence, the actual easier sample size is used to generate srs sample. Note that
although ease and easier sample sizes are not exactly the same, the difference
is very little. For image classification, because ease is based on halving, the final
sample ratios of training sets are predetermined to be 0.5, 0.25, 0.125 and 0.0625.

3 http://fuzzy.cs.uni-magdeburg.de/˜borgelt/apriori.html
4 http://www1.cs.columbia.edu/CAVE/research/softlib/coil-100.html
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Fig. 3. Performance of original CSD data extracted from COIL image set

For association rule mining, we applied halving one to seven times, hence the
sample ratios are 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625 and 0.0078125.

Since results of easier and ease change with the input sequence of data, for
each sample ratio we run easier and ease for 50 times and in each iteration the
input descriptors are shuffled randomly. srs is also run 50 times over this shuffled
data. The association rule mining results of easier, ease and srs are computed
as an average over these 50 runs. The minimum support value for Apriori is set
to 0.77% and we evaluated only the 1-item frequent set for csd data. Otherwise
there are too many frequent itemsets. However, for ibm transaction data, we use
all frequent itemsets. The image classification results are average of 10 runs.

The results of original csd data (65536 items) are shown in Figure 3. Figure
3(a) and Figure 3(b) shows the correct rate of image classification and the accu-
racy of association rule mining respectively. easier achieves similar accuracy as
ease which is better than srs for both classification and association rule mining,
especially when the sample ratio is very small. For a sample ratio 0.0625, easier
achieves 83.5% classification rate, while ease achieves 82.3% and srs achieves
only 59.7%. Figure 3(c) shows the sampling time. EASIER outperforms EASE
for all sample ratios smaller than 0.5. It requires an almost fixed amount of time
whereas EASE requires more time as the sample ratio falls.

The results of re-quantized csd data (4096 items) are shown in Figure 4.
Accuracy of easier is similar to ease with less running time. For example, for
a sample ratio of 0.000785, easier achieves 85.7% accuracy of association rule
mining, while the accuracy of ease is 85.4% and srs achieves only 71.5%. The
sampling time of easier does not change with the sample ratio. As the number
of items is reduced, the running time of easier is reduced and closer to srs.

Memory consumption comparison: In ease, the memory required for storing
the penalty function increases with the halving times. For example, when we
applied seven halvings to csd data, the required memory for storing the penalty
of csd items is about 9MB. But for easier, the memory is only about 3MB.
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Fig. 5. Performance of IBM QUEST transaction data

5.2 IBM Transaction Data

In order to further compare the performance of the three algorithms, the ibm
quest data [1] is used to test the performance of association rule mining. The
dataset has total 98,040 transactions and the total number of items is 1000. The
average length of these transactions is 10, and the average length of potentially
frequent item sets is 4. The minimum support value is set to 0.77%. All three
algorithms start from a 20% simple random sample S of the original database.
One to five halvings are applied for ease. Thus the final sample ratios is 0.1,
0.05, 0.025, 0.0125 and 0.00625 of the whole dataset. The three algorithms gen-
erate samples using the described setting. All three algorithms run 50 times
for each sample and the results are the average over these 50 runs. For eas-
ier and ease, in each iteration a different random sample is used as the initial
sample.

Figure 5(a) shows that the accuracy of easier is better than ease in small
sample ratio. For ratio 0.00625, the accuracy of easier is about 86.2% while
ease has only 71.2% accuracy. The srs gives the worst accuracy of 41.2%. The
sampling time of the three methods are very similar as shown in Figure 5(b).
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6 Conclusion

In this paper we proposed a new sampling algorithm, easier. The algorithm
is similar to its predecessor ease but it reduces the requirements for time and
memory. In ease, the sampling time and memory are increased when the sam-
ple ratio is reduced. However, in easier the running time is almost fixed and
the memory is independent of the sample ratio. Another improvement is, due to
its halving nature, in ease we must change the size of initial sample to obtain
some specific ratios. But using easier, any sample ratio can be obtained directly
from the orginal set. We have evaluated the performance of easier using both
real-world and synthetic data. Experiments show that easier is a good approx-
imation algorithm which can obtain better sampling results with almost fixed
time and even better accuracy than ease.

In this paper we have applied easier to image applications with continuous
features. As easier can flexibly generate representative samples of huge image
database, it is used to select the training sets for an svm classifier in image do-
main. The performance shows that an easier sample represents the original data
much better than a simple random sample. easier is an online algorithm where
the incoming transactions are processed once and a decision is taken regarding
its participation in the final sample. This scheme is very conducive for stream
data processing. The idea is to maintain a sample for the stream data dynam-
ically. Just like reservoir sampling [9], each incoming transaction is processed
in a given amount of time. But unlike reservoir sampling where this decision is
made based solely on probability, easier makes informed decisions. The early
idea is to maintain a ranking among the selected transactions in the reservoir
sample. When a new streaming transaction arrives, its rank is determined by
calculating the change in distance of the reservoir sample from the actual data.
If its rank is higher than the lowest rank among the reservoir transactions, it is
selected.
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Abstract. In many data mining applications, cluster analysis is widely
used and its results are expected to be interpretable, comprehensible,
and usable. Rough set theory is one of the techniques to induce decision
rules and manage inconsistent and incomplete information. This paper
proposes a method to construct equivalence classes during the clustering
process, isolate outlier points and finally deduce a rough set model from
the clustering results. By the rough set model, attribute reduction and
decision rule induction can be implemented efficiently and effectively.
Experiments on real world data show that our method is useful and
robust in handling data with noise.

1 Introduction

Cluster analysis is an important task in data mining. It is widely used in a lot of
applications, including pattern recognition, data analysis, image processing, etc.
By clustering, one can discover overall pattern distributions and interesting cor-
relations among data attributes. Unlike classification, clustering does not rely on
predefined classes and class-labeled training examples. Conventional clustering
categorizes objects precisely into one of the clusters based on their attributes, in-
cluding partitioning methods such as k-means and k-medoids, hierarchical meth-
ods such as agglomerative and divisive algorithms, and density-based, grid-based
methods, etc[1]. However, based on the clustering results, it needs further gen-
erate descriptions for each class, induce conceptual interpretations or decision
rules.

Rough set theory, proposed by Pawlak[2], has been received considerable
attention in the field of data mining since it provides a tool to treat the roughness
of concepts mathematically[3]. To combine the clustering with rough set theory,
we proposes a new method to define the equivalent relation on objects according
to the closeness of their attributes in the initial stage of a bottom-up clustering.
So the objects are divided into cliques and outliers. A clique is a multielement set
of objects with compact density distribution, viz. its variance is below some given
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threshold. An outlier is an isolated object introduced by noise or incomplete
information. According to rough set theory, the cliques form the elementary
concepts of the given data set. Clustering results can be interpreted in the terms
of lower approximation and upper approximation of rough set theory. Rules are
inducted based on the elementary concepts to describe the clustering results.
Finally, clusters based on different groups of attributes are integrated in the same
rough set model, by means of a family of equivalent relations. Attribute reduction
and clustering results comparison can be implemented by the mathematical tools
of rough set.

The paper is organized as follows. Section 2 reviews some important cluster-
ing algorithms, and describes the agglomerative approach we choose to construct
the rough set. Section 3 introduces the rough set theory and its current appli-
cations to clustering. Then in section 4 we develop the new method to define
the equivalence classes in the initial stage of clustering and its applications to
analysis the clustering results. Experiments of artificial and real life data sets
are described in section 5. The conclusion is given in section 6.

2 Review of Clustering Algorithms

Assume that an object is represented by an N -dimensional feature vector. Each
component of the vector is an attribute of the object. Let V = {v1, . . . ,vQ},vi ∈
RN , be a set of objects. The prototype (or centroid) for each cluster Ck is rep-
resented by ck. The vectors are standardized independently in each component
to the N -cube [0, 1]N . This permits each attribute of the objects have the same
influence on the clustering.

K-means clustering and fuzzy c-means clustering are the most popular sta-
tistical clustering algorithms. The name K-means originates from the value K,
i.e. the number K of clusters. It is given in advance and K centroids of the clus-
ters are chosen randomly. Then each object vi is assigned to the cluster whose
centroid ck is the nearest one among the K clusters to vi. The new centroid
vectors of the clusters are calculated as follows:

ck =

∑
j∈Ck

vj

‖Ck‖
, k = 1, . . . ,K. (1)

The above process continues until all centroids of the clusters are invariant dur-
ing the iteration. K-means algorithms are very fast and are often used as the
initialization of many other clustering algorithms. But its disadvantages are ob-
vious: the number K is hard to be determined; the clusters formed may be very
different for different initially given centroids and for different input orders of
the objects; only unit spherical-shaped clusters can be found and discovering
clusters with arbitrary shapes is difficult.

In fuzzy C-means clustering, each object has various contributions to all clus-
ters. This is represented by the fuzzy membership values ujk so that each object
vj belongs to multiple clusters ck, k = 1, . . . , C in some degree. The feature vec-
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tors and membership values are chosen to minimize an objective function, the
weighting squared error, during the iteration process:

J(U, c) =
Q∑

j=1

C∑
k=1

um
jk‖vj − ck‖2, (2)

where U is a membership matrix, ujk is its element, c is a set of cluster prototype
vectors, c = {c1, . . . , cC}, and the exponent m of ujk is a severe constriction for
cluster overlap, usually assigned a value among 1.5 to 2.5. The convergence of
the membership matrix U does not assure the minimum of the objective function
J(U, c) defined in (2) due to the local minima and saddle points.

C.G. Looney [4] proposed a new agglomerative clustering algorithm to over-
come many perplexing problems in clustering, such as (i) determine the optimal
number K of clusters; (ii) prevent the selection of initial prototypes from af-
fecting the clustering results; (iii) prevent the order of the cluster merging from
affecting the clustering results; (iv) permit the clusters to form more natural
shapes rather than only unit spheres. This approach can be easily generalized
to fuzzy or non-fuzzy bottom-up clustering algorithms. Looney’s agglomerative
clustering algorithm is as follows:

Step 1: Standardize independently each component of the vectors to the N -
cube [0, 1]N .

Step 2: Determine a relatively large number K of prototypes uniformly and
randomly via an empirically-derived formula: K = max{6N + 12
log2(Q),Q}, avoiding the chosen prototype seeds affect the cluster-
ing.

Step 3: Thin the set of initial cluster prototypes out by successively finding
the two closest prototypes and deleting one if their distance is less
than the threshold τ = 1/(K)1/N .

Step 4: Assign vectors to a cluster by means of minimal distance to the pro-
totype of the cluster.

Step 5: Compute cluster prototypes, by means of non-fuzzy formula (1) or the
fuzzy C-means formula (2) or modified weighted fuzzy expected value
formula in [4].

Step 6: Main loop goto step 4, until clusters converge.
Step 7: Eliminate empty clusters and any other clusters with p or fewer vec-

tors. p = 1 works well on the first selection or p is selected by inter-
action. Reassigned the vectors of the eliminated clusters.

Step 8: Merge clusters that are too close together. The mean or modified
weighted fuzzy expected value of the set of all distances {d(r) : r =
1, . . . ,K(K − 1)/2} between all pairs of centroids is computed and
designated by D. A multiplier, β = 0.5, is suggested but the user
can change it interactively. Each pair of clusters having d(r) < βD is
merged.

Step 9: Interact with the user to gradually increase the parameters β and p,
goto step 7 to iterate the eliminating and merging clusters until the
clustering result is acceptable.
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We will present a new approach of constructing equivalence classes based on
the above Looney agglomerative clustering algorithm and analyze the clustering
results in section 4.

3 Rough Set Theory and Its Application to Clustering

Rough set theory has widely been used in data mining. This section briefly intro-
duces the preliminary of rough set theory and current application in clustering.

Let U be a universe (a finite non-empty set of objects, U = {v1, . . . ,v‖U‖})
and A = {a1, . . . , a‖A‖} be a finite non-empty set of attributes(features). Each
attribute a ∈ A defines an information function fa : U −→ Va, where Va =
{fa(vi)‖vi ∈ U} called the domain of attribute a. The two-tuples (U, A) can be
seen as an information system S (or an approximation space).If A = C ∪D, C ∩
D = ∅, information system (U, A) called a decision table, where the elements of
C are conditional attributes, the elements of D are decision attributes.

For any subset R ⊆ A, the equivalence relation ind(R) can be defined
as: {(vi,vj)|vi ∈ U,vj ∈ U,∀a(a ∈ R ⇒ fa(vi) = fa(vj))}. The equiva-
lence relation ind(R) partitions the set U into disjoint subsets, denoted by
U/ind(R) = E1, . . . ,Em, where Ei is an equivalence class of ind(R). Each Ei is
called elementary set in R because the elements in the same equivalence class
are indistinguishable under R.

An arbitrary set X ⊆ U can be represented by its lower and upper approx-
imations using the elementary sets of R.The lower approximation ind(R)X is
the union of all element sets which are subsets of X. The upper approximation
ind(R)X is the union of all element sets which intersect the X non-empty. The
pair (ind(R)X, ind(R)X) is the rough set of X.

Recently some attempts have been made to introduce rough set into the
clustering for managing imprecise concepts or induce cluster rules. Lingras and
West[5] propose a variation of the K-means clustering algorithm based on the
properties of rough sets. The proposed algorithm represents each cluster Cp as an
interval set by using the lower bound Cp and upper bound Cp. For each object
vt,let d(vt, ci) be the distance to the centroid of cluster Ci. Let d(vt, ci) =
min1≤s≤K d(vt, cs) and T = {j|d(vt, ci)− d(vt, cj) ≤ threshold and i = j}.

1. If T = ∅, vt ∈ Ci.
2. Otherwise, T = ∅,vt ∈ Ci and vt ∈ Cj ,∀j ∈ T . Furthermore, vt is not part

of any lower bound.

The above rough K-means algorithm can give unsupervised descriptions of im-
precise cluster concepts. Its computation is simpler than that of the cut-subset
method of fuzzy C-means clustering.

Huang et al.[6] propose a clustering method based the decision table. The
clustering uses the selected subset of condition attributes and is evaluated by
the decision attribute. The procedure starts from a small pre-specified number c
of clusters. If all the variances of the decision attribute of the cluster are below
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the given threshold, the clustering results are accepted. Otherwise, increase the
number c of clusters and the clustering algorithm continues. Then the attributes
are discretized into a few intervals and the decision rules are inducted accord-
ing to the rough data model(RDM). Actually, this can be done more effectively
by supervised learning, which assigns different weight values to conditional at-
tributes for computing the classification surface.

Hirano et al.[7] presente a new algorithm which directly uses the rough sets to
implement clustering. Each object vi forms an equivalence relation Ri by parti-
tioning all objects into two equivalence classes: {{vj |d(vi,vj) ≤ threshold},{vj |
d(vi,vj) > threshold}}, denoted by [vi]Ri

and [vi]Ri
respectively, where d(vi,vj)

is the distance between two objects. Then modify each equivalence relation Ri

by R′
i = {{vj | ‖[vi]Ri

∩ [vj ]Rj
‖+‖[vi]Ri

∩ [vj ]Rj
‖ ≥ ρ‖U‖}, {vj |others}}, where

ρ is another threshold. The intersection of all modified equivalence classes em-
bodies the clustering results. Obviously this approach can not form more natural
cluster rather than the sphere shape.

Expectation maximization (EM) clustering can only produce convex clusters
and is sensitive to initial conditions. P. Mitra and S.K. Pal et al.[9] suggest
initializing the parameters of EM algorithm by rough set. Each feature of an
object is represented in terms of the membership to three fuzzy linguistic sets
low, medium and high. Threshold the fuzzy membership values to obtain a high
dimensional binary feature vector for each object. This forms an attribute-value
table whose reducts and logic rules are generated by the discernibility function of
rough set theory. The initial paremeters of EM are estimated as follows: the num-
ber of component Gaussian density functions (K) is the number of the distinct
logic rules; the weights, means and diagonal covariance matrices of component
Gaussians can be computed from the construction of fuzzy sets and derivation
of logic rules.

4 Construction of the Rough Set Based on Clustering

In this section, we present an approach to construct the rough set during the
bottom-up clustering process. It is obvious that the data objects can be divided
into outlier points and the points distributed densely over some small spaces,
called cliques here. Each cluster usually consists of some cliques and outliers,
but the objects within the same clique may belong to different clusters due to the
different given number K of clusters or some clusters including fewer objects may
be deleted. Thus we can regard a clique as a part of a multielement equivalence
class and a outlier point as a singleton equivalence class.

Definition 1. Let the variance of a multielement set Ev of objects be σ2
v , if

σ2
v ≤ ρ, we called Ev a clique, where ρ is a threshold experimentally assigned.

If Ev is a maximum clique, i.e. Ev is not a proper subset of other cliques, Ev

forms a part of a multielement equivalence class.

Definition 2. A clique expansion is formed by merging two of existed cliques
or clique expansions that are close enough each other. The detail criterion of
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generating clique expansions is shown below. The maximums of clique expansions
are the multielement equivalence classes of objects.

Definition 3. An object vi not belonging to any clique or clique expansion is
called an outlier point. {vi} is a singleton equivalence class.

A direct attempt is that the distances of all pairs of objects are computed
and formed the distance matrix D = {dij}, where dij is the distance of two
objects vi and vj . The cliques and outlier points can be discovered by netting
clustering on the distance matrix. But this method can’t avoid the chaining effect
of spanning tree. Thus we will try another way to alter the Looney agglomerative
clustering algorithm to construct the maximal cliques and the outlier points in
the clustering process. Let the CliquesEx be the set of the intermediate results
of singletons, cliques and clique expansions during the clustering. For a set S of
objects, S and S are its upper approximation and lower approximation under the
equivalence classes CliquesEx. The key issues in the algorithm implementation
are described as follows:

Clique Initialization. For a cluster Ct as the intermediate result of clustering
process, compute the variance σ2

Ct
about its centroid. If the σ2

Ct
� ρ, the cluster

Ct is accepted as a clique and added to CliquesEx.

Clique Expansion. When two clusters Cs, Ct are merged in the clustering pro-
cess, compare all pair < Ei,Ej > ⊆ (CliquesEx×CliquesEx) for Ei ⊆ Cs and
Ej ⊆ Ct. Let cS be the centroid of the set S in a distance space. If the sphere
defined with radius (‖Ei‖σEi

+‖Ej‖σEj
)/(‖Ei‖+‖Ej‖) and center point cEi∪Ej

contains a certain percentage of the objects in the two cliques respectively, we
construct a clique expansion Ek = Ei∪Ej . Add Ek to CliquesEx and eliminate
Ei and Ej from CliquesEx.

Clique Elimination. For any Ei ∈ CliquesEx, if there exist Ej ∈ CliquesEx
and Ei ⊂ Ej , eliminate Ei from CliquesEx.

Our algorithm CRS (Cluster-based Rough Set construction) is described as
follows:

Step 1: Initialize the clustering, including step 1 to step 4 of Looney agglom-
erative clustering algorithm. Let the set CliquesEx be empty.

Step 2: Execute the conventional clustering algorithms, such as K-means or
fuzzy C-means, till the clusters converge.

Step 3(Clique Initialization): Compare the variance of each cluster with
the threshold ρ, add the clusters satisfied the criteria to the set
CliquesEx.

Step 4: Eliminate the clusters with p or fewer objects. Reassigned the vectors
of the eliminated clusters to the nearest clusters.

Step 5: Merge each possible pair < Cs, Ct > of the clusters according to the
distances of the pair of the centroids. Then merge all pairs < Ei,Ej >
that Ei,Ej ∈ CliquesEx, Ei ⊆ Cs,Ej ⊆ Ct and < Ei,Ej > satis-
fies the condition of clique expansion. Delete Ei and Ej from the set
CliquesEx after they are merged and add Ei ∪ Ej to CliquesEx.
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Step 6: Interact with the user to gradually increase the parameters β and p,
goto step 4 to iterate the eliminating and merging until the clustering
result is acceptable.

This algorithm only add the computational complexity on the step 5 than
the bottom-up clustering algorithms. It is obvious that algorithm CRS has the
similar efficiency with Looney’s agglomerative clustering algorithm. The algo-
rithm CRS is applicable to more natural cluster shapes, while several algorithms
in section 3 are only limited to the case of mixed Gaussian models. If objects
have decision attributes just like the Wisconsin breast cancer data, let M be
the number of all distinct decision attribute values. The algorithm CRS is iter-
ated when the current number of clusters is not less the M . We adopt the total
decision errors as the clustering validity measure:

V (j) =
Kj∑

m=1

DErrorm

where the Kj is the number of clusters in the j-th iteration of the step 6 of
CRS and DError defined in next section. If there is not a decision attribute,
the modified Xie-Beni (MXB) measure[4] can be used as the evaluation of
validity.

5 Experimental Results

The first experiment is a simple two-dimensional data set used by Looney[4] to
demonstrate the clique initialization and merge. We directly use the coordinate
values not standardized to [0, 1]2. Let the threshold ρ = 0.75. After the step
1-3 of algorithm CRS, all the elements of the CliquesEx are singletons. In the
step 5 clusters and the elements of CliquesEx are merged. Then we have the
result: three clusters, and five multielement equivalence classes and one singleton
equivalence classes (outlier point) in the CliquesEx, depicted in Figure 1.

The next data set is the Wisconsin breast cancer data[8] to diagnose breast
masses based on the digital images of the sections of Fine Needle Aspiration(FNA)
samples. Ten real-valued features are computed for each cell nucleus: radius, tex-
ture, perimeter, area, smoothness, compactness, concavity, concave points, sym-
metry and fractal dimension. The mean, standard error, and “worst” or largest
(mean of the three largest values) of these features were computed for each im-
age, resulting in 30 features. There are 569 instances in the data set, labeled for
two classes: benign with 357 instances and malignant with 212 instances.

Given the initial number K = 569 of clusters, assign the prototypes of the
clusters randomly and uniformly, then thin the set of clusters by deleting the
close ones, we get 325 cluster prototypes. After the initial K-means clustering
and delete all empty cluster, we get 33 clusters as the first stage of clustering
result presented in Table 1, where the column ‘count’ is the total elements of each
cluster, the column ‘decision value’ is the benign or malignant which the most
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Fig. 1. Experiment 1: get three clusters and one singleton and five multielement equiv-

alence classes

Table 1. Original Cliques and singletons

No. Count σ decision value DError No. Count σ decision value DError

1 1 0 M 0 18 7 0.567 B 0

2 67 0.308 B 0.045 19 1 0 M 0

3 4 0.459 M 0 20 5 0.335 M 0

4 3 0.370 M 0 21 3 0.437 M 0

5 13 0.39 M 0 22 45 0.405 B 0.067

6 7 0.545 B 0 23 41 0.419 B 0

7 27 0.415 M 0.148 24 20 0.402 M 0

8 1 0 M 0 25 12 0.388 M 0

9 12 0.394 M 0 26 11 0.449 M 0

10 67 0.396 B 0.045 27 1 0 M 0

11 18 0.450 M 0 28 1 0 M 0

12 73 0.322 B 0.014 29 43 0.414 B 0

13 7 0.414 M 0 30 3 0.728 B 0

14 33 0.358 M 0.152 31 4 0.605 M 0

15 1 0 M 0 32 4 0.603 M 0

16 1 0 M 0 33 25 0.351 M 0

17 8 0.445 M 0

elements of the cluster belong to, and the column ‘DError’ is the exception ratio
of the decision value of the cluster. Since the maximum standard deviation of
the clusters is 0.728, we choose the threshold ρ = 0.530, i.e. the square of 0.728.
Now each cluster satisfies the criteria to form cliques, CliquesEx is initialized
by these 33 sets.

Then in the step 4-6 of algorithm CRS, eliminations with p = 1, 3 and 7,
followed by merging clusters with β = 0.2, 0.25, 0.3, 0.5 and 0.66, respectively,



472 Qiang Li and Bo Zhang

Table 2. The final clique expansions

No. of clique expansion origins in the Table 1

1 2,12,17

2 10,29

3 5,14

4 7,24

5 9,33

brought K down to 16, 13, 10, 5 and 2, and total decision errors V down to
0.471, 0.413, 0.385, 0.302 and 0.226 respectively. The final cluster sizes are 316
and 253. And we get the clique expansions from the original CliquesEx pre-
sented in Table 2. And there are seven singletons as the outlier points of the
data set.

6 Conclusions

This paper proposes a new approach to construct rough sets during the bottom-
up clustering process. With the rough set theory, we can identify the outliers and
the concept granularities to interpret the constructions of clusters. Experiments
on the artificial and real life data show the algorithm effective and efficient. It
remains as a future work to investigate the attribute reduction and rule induction
based on rough set to compare and improve the clustering according to different
groups of attributes.
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Abstract. This paper describes a new data mining algorithm to learn Bayesian 
networks structures from incomplete data based on extended Evolutionary  
programming (EP) method and the Minimum Description Length (MDL) metric. 
This problem is characterized by a huge solution space with a highly multimodal 
landscape. The algorithm presents fitness function based on expectation, which 
converts incomplete data to complete data utilizing current best structure of evolu-
tionary process. Aiming at preventing and overcoming premature convergence, 
the algorithm combines the restart strategy into EP. The experimental results illus-
trate that our algorithm can learn a good structure from incomplete data. 

1   Introduction 

The Bayesian belief network is a powerful knowledge representation and reasoning 
tool under conditions of uncertainty. Recently, learning the Bayesian network from a 
database has drawn noticeable attention of researchers in the field of artificial intelli-
gence. To this end, researchers developed many algorithms to induct a Bayesian net-
work from a given database [1], [2], [3], [4], [5], [6]. 

Very recently, researchers have begun to tackle the problem of learning the network 
from incomplete data. A major stumbling block in this research is that when in closed 
form expressions do not exist for the scoring metric used to evaluate network struc-
tures. This has led many researchers down the path of estimating the score using pa-
rametric approaches such as the expectation-maximization (EM) algorithm [7]. How-
ever, it has been noted [7] that the search landscape is large and multimodal, and 
deterministic search algorithms find local optima. An obvious choice to combat the 
problem is to use a stochastic search method.  

This paper developed a new data mining algorithm to learn Bayesian networks 
structures from incomplete data based on extended Evolutionary Programming (EP) 
method and the Minimum Description Length (MDL) metric. The algorithm presents 
fitness function by using expectation, which converts incomplete data to complete 
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data utilizing current best structure of evolutionary process. Another important char-
acteristic of our algorithm is that, in order to preventing and overcoming premature 
convergence, we combine the restart technology [8] into EP. Furthermore, our algo-
rithm, like some previous work, does not need to impose the restriction of having a 
complete variable ordering as input.  

We’ll begin by briefly introducing Bayesian network and MDL metric. Next we 
will introduce the restart-EP method. In section 4, we will describe the algorithm 
based on the restart-EP method and the MDL metric. In the end, we will conduct a 
series of experiments to demonstrate the performance of our algorithm and sum up the 
whole paper in section 5 and 6, respectively.  

2   Bayesian Network and MDL Metric 

2.1   Bayesian Network 

A Bayesian network is a directed acyclic graph (DAG), nodes of which are labeled 
with variables and conditional probability tables of the node variable given its parents 
in the graph. The joint probability distribution (JPD) is then expressed by the formula: 

=

=
n

i
iin xxpxxp

1
1 ))(|(),...,( π  

(1) 

where )( ixπ is the configuration of iX ’s parent node set )( iXΠ . 

2.2   The MDL Metric  

The MDL metric [9] is derived from information theory. With the composition of the 
description length for network structure and the description length for data, the MDL 
metric tries to balance between model accuracy and complexity. Using the metric, a 
better network would have a smaller score. Similar to other metrics, the MDL score 
for a Bayesian network, S , is decomposable and could be written as in equation 2. 
The MDL score of the network is simply the summation of the MDL score of )( iXΠ  

of every node iX  in the network. 
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According to the resolvability of the MDL metric, equation 2 can be written when we 
learn Bayesian networks from complete data as follow: 
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3   Restart-EP 

Although EP was first proposed as an evolutionary algorithm to artificial intelligence, 
it has been recently applied to many numerical and combinatorial optimization prob-
lems successfully. 

One of EP's key features is its self-adaptation scheme. In EP, mutation is typically 
the only operator used to generate new offspring. The mutation is often implemented 
by adding a random number from a certain distribution to the parent. An important 
parameter of the Gaussian distribution is its standard deviation (or equivalently the 
variance). In the widely used self-adaptation scheme of EP, this parameter is 
evolved, rather than manually fixed, along with the objective variables. 

Premature convergence is a serious issue in evolutionary algorithms since it might 
significantly degrade the overall performance. EP is easy to fall into local optimums. 
When a point enters the absorption domain of the certain local optimum, the factors 
and of many individuals diminish rapidly because of self-adaptation scheme. 

We define a quantity which characterize the premature convergence. Suppose 

population { }m

iiii xpP 1),( === η  have arranged by the fitness. 1p  denotes the 

most excellent individual. 

= ≤≤
=

k
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Where [ ]mk ×= 3.0 , m  is population size, [ ]  denotes the integer function. 
The main process of restart strategy is as follows. The population variety is moni-

tored dynamicly in the evolutionary process. When the population variety decreases 
to a certain finitude, we consider that the trend of premature convergence appears. 
Then initialize afresh the population & comeback the population variety. So the evo-
lution can progress effectively. 

We combine the restart strategy into EP. When mean  is less than a positive num-

ber threshold  which is confirmed beforehand, we consider that the evolution has 
danger of premature convergence and initializes afresh the population. Based on pre-
vious analysis, we only initialize afresh the factors τ  and τ ′ . Moreover, the indi-
viduals can get rid of the absorption domain of a local optimum and prevent prema-
ture convergence. We do not initialize afresh the objective vectors, which can with-
hold the evolutionary information better. 

4   Learning Bayesian Network from Incomplete Data 

The algorithm we propose is shown below. 

1. Set to 0. 
2. Create an initial population, Pop(t), of PS random DAGs. The initial popula-

tion size is PS. 
3. Convert incomplete data to complete data utilizing a DAG of the initial popu-

lation randomly 
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4. Each DAG in the population Pop(t) is evaluated using the MDL metric. 
5. While t is smaller than the maximum number of generations G 

a) Each DAG in Pop(t) produces one offspring by performing mutation opera-
tions. If the offspring has cycles, delete the set of edges that violate the 
DAG condition. If choices of set of edges exist, we randomly pick one 
choice. 

b) The DAG in Pop(t) and all new offspring are stored in the intermediate 
population Pop’(t).The size of Pop’(t) is 2*PS.   

c) Conduct a number of pair-wise competitions over all DAGs in Pop’(t). Let 

iS  be the DAG being conditioned upon, q  opponents are selected ran-

domly from Pop’(t) with equal probability. Let ijS , qj ≤≤1 , be the 

randomly selected opponent DAGs. The iS  gets one more score if 

)()( ijiii SDSD ≤ , qj ≤≤1 . Thus, the maximum score of a DAG is 

q . 

d) Select PS DAGs with the highest scores from Pop’(t) and store them in the 
new population Pop(t+1). 

e) Compute mean  of Pop(t+1). Initialize afresh the factors τ  and τ ′ of 
every individual if thresholdmean < . 

f) Increase t by 1 

6. Return the DAG with lowest MDL metric found in any generation of a run as 
the result of the algorithm. 

5   Experimental Results and Analyses 

We have conducted a number of experiments to evaluate the performance of our algo-
rithm. The learning algorithms take the data set only as input. The data set is derived 
from ALARM network (http://www.norsys.com/netlib/alarm.htm).   

Firstly, we generate 5,000 cases from this structure and learn a Bayesian network 
from the data set ten times. Then we select the most perfect network structure as the 
final structure. We also compare our algorithm with a classical GA algorithm. The 
algorithms run without missing data. The MDL metric of the original network struc-
tures for the ALARM data sets of 5,000 cases is 81,219.74. 

The population size PS is 30 and the maximum number of generations is 5,000. We 
employ our learning algorithm to solve the ALARM problem. The value of q is set to 

be 5. We also implemented a classical GA to learning the ALARM network. The one-
point crossover and mutation operations of classical GA are used. The crossover 

probability cp  is 0.9 and the mutation probability mp  is 0.01. The MDL metric for 

our learning algorithm and the classical GA are delineated in Figure 1. 
From Figure 1, we see that the value of the average of the MDL metric for restart-

EP is 81362.1 and the value of the average of the MDL metric for the GA is 8,1789.4. 
We find our learning algorithm evolves good Bayesian network structures at an aver-
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age generation of 4210.2. The GA obtains the solutions at an average generation of 
4495.4. Thus, we can conclude that our learning algorithm finds better network struc-
tures at earlier generations than the GA does. Our algorithm can also prevent and 
overcome the premature convergence. 

 

Fig. 1. The MDL metric for the ALARM network 

Our algorithm generates 1000, 10000 cases from the original network for training 
and testing. The algorithm runs with 10%, 20%, 30%, and 40% missing data. The 
experiment runs ten times for each level of missing data. Using the best network from 
each run we calculate the log loss. The log loss is a commonly used metric appropri-
ate for probabilistic learning algorithms. Figure 2 shows the comparison of log loss 
between our algorithm and reference [10]. 

 

Fig. 2. The Comparison of log loss 

As can be seen from figure 2, the algorithm finds better predictive networks at 
10%, 20%, 30%, and 40% missing data than reference [10] does. 
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6   Conclusions 

In this paper we describe a novel evolutionary algorithm for learning Bayesian net-
works from incomplete data. This problem is extremely difficult for deterministic 
algorithms and is characterized by a large, multi-dimensional, multi-modal search 
space. The experimental results show that our learning algorithm can learn a good 
structure from incomplete data. 
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Abstract. Collaborative filtering is the most successful recommendation tech-
nique. In this paper, we apply the concept of time to collaborative filtering algo-
rithm. We propose dynamic fuzzy clustering algorithm and apply it to collabo-
rative filtering algorithm for dynamic recommendations. We add a time dimen-
sion to the original input data of collaborative filtering for finding the fuzzy 
cluster at different timeframes. We propose the dynamic degree of membership 
and determine the neighborhood for a given user based on the dynamic fuzzy 
cluster. The results of the evaluation experiment show the proposed model’s 
improvement in making recommendations.  

1   Introduction 

Recommender systems are used by e-commerce sites to suggest products and to pro-
vide consumers with information to help them decide which products to purchase. 
Due to an explosion of e-commerce, recommender systems are rapidly becoming a 
core tool for accelerating cross-selling and strengthening customer loyalty. Collabora-
tive filtering (CF) is the most successful recommendation technique, which has been 
used in a number of different applications such as recommending movies, articles, 
products, Web pages [5]. CF is a general approach to personalized information filter-
ing. CF systems work by collecting user feedback in the form of ratings for items in a 
given domain and exploit the similarities and differences among the profiles of sev-
eral users in determining how to recommend an item [3, 2]. 

Finding neighbors in traditional CF is crucial for accurate recommendations be-
cause recommendations are based on the ratings of an active user’s neighbors. But the 
current CF algorithms are not adaptive to these situations dynamically, which results 
in the false recommendations. Our research focuses on these situations.  

This paper presents a new approach to collaborative filtering based on dynamic 
fuzzy cluster. We add a time dimension to the original input data of collaborative 
filtering for finding the fuzzy cluster at different timeframes. We propose the dynamic 
degree of membership and determine the neighborhood for a given user based on the 
dynamic fuzzy cluster. The proposed model is expected to find the active user’s 
neighbors dynamically according to his or her changing pattern by using dynamic 
fuzzy cluster and improve recommendations. 
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2   Fuzzy Clustering 

The most widely used fuzzy clustering algorithm is the fuzzy c-means (FCM) algo-
rithm proposed by Bezdek [1,6]. FCM is a clustering method in which an object can 
be a member of different classes at the same time. FCM aims to determine cluster 
centers vi (i=1, 2,…,c) and the fuzzy partition matrix U by minimizing the objective 
function J defined as follows: 
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where n is the number of individuals to be clustered, c is the number of clusters and 

iju is degree of membership of individual j in cluster i. The exponent m is used to 

control the fuzziness of membership of each datum. 
ij vx −  is the Euclidean norm 

between jx  and iv . The FCM algorithm is as follows: 

Step 1. Initialize iju  by generating random numbers in the interval [0, 1] such that 
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Step 2. Compute the fuzzy cluster centroid iv  for I = 1, 2, …, c according to the fol-

lowing Eq. (3) 
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Step 3. Update the degree of membership iju  using 
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Step 4. If the improvement in );,( XVUJm
 is less than the given thresholdε , then 

stop. Otherwise go to step 2. 

In this paper, the FCM algorithm is used in order to cluster users. We modify the 
FCM algorithm and apply it to CF for dynamic recommendations. 

3   Dynamic Fuzzy Clustering for CF 

This paper suggests a dynamic fuzzy cluster based collaborative filtering which is 
adaptive to users’ changing patterns in order to improve recommendations. The pro-
cedure for the proposed model is as follows: 
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Step 1. Data Preparation: Add a time dimension to the original input data and reduce   
item dimension by using hierarchy information. 

Step 2. User Clustering: Apply the FCM algorithm to produce p partitions of users. 
This is used as a cluster base for finding time-variant fuzzy cluster. 

Step 3. Dynamic fuzzy cluster: Find fuzzy cluster at different timeframes for a given  
active user and compute the dynamic degree of membership. 

Step 4. Neighbor Selection: Determine the neighborhood for a given user based on 
the dynamic fuzzy cluster.  

Step 5. Recommendation: Predict the active users’ rating unanswered based on 
neighborhood ratings. 

Input data of a CF problem is usually a user-to-rating matrix. In order to detect the 
dynamic cluster change for an active user, we need to add a time dimension to the 
original input data. Table 1 shows item ratings for an active user at different time-
frames. As shown in Table 1, each row is too sparse. To solve this problem, input data 
reduction (item dimension reduction) methods are needed. In this paper, we use a 
hierarchy of items whose leaf nodes represent items and non-leaf nodes represent a 
higher-level category to reduce the dimension of input data space.  

Table 1. Time-to-Item Rating Matrix of an active user 

Timeframe Item1 Item2 Item3 Item4 . . . Item n 
T1 1     
T2  5 2   
T3    5 3 
. . . 

 
     

Tn     

 
 
 
 

. . . 
 

The rating for a category is defined as the average ratings for the items in that 
category as follows [7]. 
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Table 2. Time-to-Category Rating Matrix 

Category 1    Category n Timeframe   
Item 1 Item 4 Item 7    Item 2 Item i 

1  3   T1 
2  

  1 5  T2 
1  

 5   1 T3 
5 

 

1 
…         

In above equation, CRa,k is the derived rating of category k of user A, RNk is the 
number of rated items that belong to that category, and ra,i is the rating of item i of  



 Dynamic Fuzzy Clustering for Recommender Systems 483 

 

user A. These derived ratings of non-leaf level nodes are incorporated in computing the 
fuzzy cluster at different timeframes. Table 2 shows an example of category ratings. 

Customers with similar interests are clustered by the FCM algorithms and this out-
put is used as a base for detecting dynamic cluster change. In the FCM process, cate-
gory ratings, calculated using item hierarchy information, are used as input data in 
order to extend the FCM into the dynamic FCM. Fuzzy cluster, defined as the degree 

of membership iju , is computed in this step. Crisp cluster of a given user is also de-

termined. Crisp cluster of a given user j (CCj)  is defined as the cluster with the largest 
degree of membership for a given user as follows.  

CCa = k, if  }max{ ia
i

ka uu =  for user a                                       (6) 

Information on the crisp cluster of all users is used in neighbor selection step. Input 
data shown in Table 2 is used to find the fuzzy cluster at different timeframes for a 
given active user. One user may belong to the same fuzzy cluster at different time-
frames, but another user may belong to the different fuzzy cluster at different time-
frames. Different clusters at different timeframes means that the user may have a 
time-variant pattern. Sum of degree of membership (

ijsu ) is computed as follows. 
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where 
ijtu )( is the degree of membership of individual j in cluster i at timeframe t and 

w(t) is the weighting function which is used to weight 
ijtu )(  differently according to 

timeframe. Dynamic degree of membership of individual j in cluster i (
ijdu ) is de-

fined as follows.                                    
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We select neighbors among users in the cluster i where the dynamic degree of mem-
bership of active user (

iadu ) is larger than zero. Number of neighbors selected in each 

cluster is proportional to 
ijdu . Once the neighborhood is selected, traditional collabo-

rative filtering algorithm is used to generate recommendation from that.  

4   Experimental Evaluation 

We conducted experiments to evaluate the proposed model. For experiments we used 
the EachMovie database, provided by Compaq Systems Research Center 
(http://www.research.compaq.com/SRC/eachmovie). We assumed that the items are 
classified into a multi-level (hierarchical) category, and we used the category infor-
mation to compute the similarity between an active user’s ratings at different time-
frames. In this experiment we used genre data as category information. We used 
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MAE(Mean Absolute Error) as our choice of evaluation metric to report prediction 
experiments because it is commonly used and easy to interpret.. 

First we selected 1200 users with more than 100 rated items. We divided the data 
set into a training set and a test portion. To compare the performance of the proposed 
dynamic fuzzy cluster based CF (DFCF) algorithm we used the traditional CF (TCF) 
algorithm as the benchmark model. The traditional CF recommendation employs the 
Pearson nearest neighbor algorithm. We also experimented using both fuzzy CF 
(FCF) algorithm and crisp cluster based CF (CCF) algorithm. In CCF algorithm, crisp 
cluster is determined by using Eq.(6) and the degree of membership in the crisp clus-
ter is defined as 1 while the degree of membership in other clusters is zero. 

Table 3.  Performance Results (MAE) 

Model No. of clus-
ter FCF CCF DFCF TCF 
c=2 0.19919 0.19918 0.19918 
c=3 0.19924 0.19935 0.19915 
c=4 0.19926 0.19945 0.19908 
c=5 0.19926 0.19964 0.19883 
c=6 0.19927 0.19991 0.19859 
c=7 0.19926 0.20033 0.19856 
c=8 0.19927 0.20103 0.19864 
c=9 0.19927 0.20187 0.19861 

c=10 0.19927 0.20271 0.19873 
c=15 0.19943 0.20621 0.19899 
c=20 0.19985 0.22301 0.19918 
c=30 0.20021 0.24821 0.19927 

0.19917 

Table 4. Paired t-test 

  p-value 
DFCF        CCF          DFCF       TCF 

DFCF                  0.033**       0.029**      0.031** 

CCF                              .        0.335        0.463 

FCF                                              .          0.428 

TCF                                      . 

** Significant at the .05 level 

Table 3 presents the performance of the competing models according to the metric 
of MAE of recommendation. It can be observed that the proposed dynamic fuzzy 
cluster based CF algorithm outperforms the traditional CF algorithm. When the num-
ber of cluster is 7, the performance of the proposed model is best. When the number 
of clusters is 7, prediction quality of the FCF is worse than TCF but the difference is 
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small while prediction quality of CCF is worst. It can also be observed from the table 
that as the number of clusters increase the quality tends to be inferior in case of CCF. 
In addition, a set of pairwise t-tests in Table 4 indicates that the differences were 
statistically significant. DFCF reflects better user preference than other models at the 
5% significance level. These results show that the proposed DFCF algorithm is more 
accurate than the traditional CF algorithm. 

5   Conclusion 

Due to the explosion of e-commerce, recommender systems are rapidly becoming a 
core tool to accelerate cross-selling and strengthen customer loyalty. This study fo-
cused on improving the performance of recommender system by dynamic fuzzy clus-
tering. We modified the FCM algorithm and applied it to CF for dynamic recommen-
dations. We conducted an experiment to evaluate the proposed model on the Each-
Movie data set and compared them with the traditional CF algorithm. The results 
show the proposed model’s improvement in making recommendations. 

In this paper, we applied the concept of time to CF algorithm and proposed a new 
model which is adaptive to users' changing patterns. In our future work, we intend to 
evaluate our model using other data set. We would also like to develop a model con-
sidering the change in cluster structure. 

References 

1. Bezdek, J.C., (1981). Pattern Recognition with Fuzzy Objective Function Algorithm. Ple-
num, New Your. 

2. Breese, J.S., Heckerman, D., Kadie, C. (1998). Empirical Analysis of Predictive Al-
gorighms for Collaborative Filtering. Proceedings of the 14th Conference on Uncertainty in 
Artificial Intelligence (UAI-98), pp. 43-52. 

3. Herlocker, J.L., Konstan, J.A. and Riedl, J., (2000). Explaining collaborative filtering rec-
ommendations. Proceedings on the ACM 2000 Conference on Computer Supported Coop-
erative Work, (pp. 241–250). Philadelphia. 

4. Sarwar,B.M., Konstan,J.A., Borchers,A., Herlocker,J.L., Miller,B.N., Ried1,J. (1998). Us-
ing filtering agents to improve prediction quality in the grouplens research collaborative fil-
tering system. Proceedings of CSCW'98. Seattle, WA. 

5. Schafer, J.B., Konstan, J.A. and Riedl, J. (2001). Electronic Commerce Recommender Ap-
plications. Data Mining and Knowledge Discovery 5(1/2), pp. 115-153. 

6. Xie, X.L., Beni, G.A., (1991). Validity measure for fuzzy clustering. IEEE Trans. Pattern 
Anal. Machine Intell. 3(8), 841-846. 

7. Yu, K.A., et al. (2000). Improving the performance of collaborative recommendation by 
using muli-level similarity computation. IASTED Interenational Conference on Artificial 
Intelligence and Soft Computing, July 2000.  

8. http://www.research.compaq.com/SRC/eachmovie  



Improving Mining Quality by Exploiting
Data Dependency

Fang Chu, Yizhou Wang, Carlo Zaniolo, and D. Stott Parker

University of California, Los Angeles, CA 90095, USA
{fchu, wangyz, zaniolo, stott}@cs.ucla.edu

Abstract. The usefulness of the results produced by data mining methods can
be critically impaired by several factors such as (1) low quality of data, includ-
ing errors due to contamination, or incompleteness due to limited bandwidth for
data acquisition, and (2) inadequacy of the data model for capturing complex
probabilistic relationships in data. Fortunately, a wide spectrum of applications
exhibit strong dependencies between data samples. For example, the readings
of nearby sensors are generally correlated, and proteins interact with each other
when performing crucial functions. Therefore, dependencies among data can be
successfully exploited to remedy the problems mentioned above. In this paper,
we propose a unified approach to improving mining quality using Markov net-
works as the data model to exploit local dependencies. Belief propagation is used
to efficiently compute the marginal or maximum posterior probabilities, so as to
clean the data, to infer missing values, or to improve the mining results from a
model that ignores these dependencies. To illustrate the benefits and great gener-
ality of the technique, we present its application to three challenging problems:
(i) cost-efficient sensor probing, (ii) enhancing protein function predictions, and
(iii) sequence data denoising.

1 Introduction

The usefulness of knowledge models produced by data mining methods critically de-
pends on two issues. (1) Data quality: Data mining tasks expect to have accurate and
complete input data. But, the reality is that in many situations, data is contaminated,
or is incomplete due to limited bandwidth for acquisition. (2) Model adequacy: Many
data mining methods, for efficiency consideration or design limitation, use a model in-
capable of capturing rich relationships embedded in data. The mining results from an
inadequate data model will generally need to be improved.

Fortunately, a wide spectrum of applications exhibit strong dependencies between
data samples. For example, the readings of nearby sensors are correlated, and pro-
teins interact with each other when performing crucial functions. Data dependency
has not received sufficient attention in data mining research yet, but it can be ex-
ploited to remedy the problems mentioned above. We study this in several typical
scenarios.

Low Data Quality Issue. Many data mining methods are not designed to deal with
noise or missing values; they take the data “as is” and simply deliver the best results
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obtainable by mining such imperfect data. In order to get more useful mining results,
contaminated data needs to be cleaned, and missing values need to be inferred.

Data Contamination. An example of data contamination is encountered in optical
character recognition (OCR), a technique that translates pictures of characters into a
machine readable encoding scheme. Current OCR algorithms often translate two adja-
cent letters “ ff ” into a “# ” sign, or incur similar systematic errors.

In the OCR problem, the objective is not to ignore or discard noisy input, but to iden-
tify and correct the errors. This is doable because the errors are introduced according
to certain patterns. The error patterns in OCR may be related to the shape of individual
characters, the adjacency of characters, or illumination and positions. It is thus possible
to correct a substantial number of errors with the aid of neighboring characters.

Data Incompleteness. A typical scenario where data is incomplete is found in sensor
networks where probing has to be minimized due to power restrictions, and thus data is
incomplete or only partially up-to-date. Many queries ask for the minimum/maximum
values among all sensor readings. For that, we need a cost-efficient way to infer such
extrema while probing the sensors as little as possible.

The problem here is related to filling in missing attributes in data cleansing [5]. The
latter basically learns a predictive model using available data, then uses that model to
predict the missing values. The model training there does not consider data correla-
tion. In the sensor problem, however, we can leverage the neighborhood relationship,
as sensor readings are correlated if the sensors are geographically close. Even knowl-
edge of far-away sensors helps, because that knowledge can be propagated via sensors
deployed in between. By exploiting sensor correlation, unprobed sensors can be accu-
rately inferred, and thus data quality can be improved.

Inadequate Data Model Issue. Many well known mining tools are inadequate to model
complex data relationships. For example, most classification algorithms, such as Naive
Bayes and Decision Trees, approximate the posterior probability of hidden variables
(usually class labels) by investigating on individual data features. These discriminative
models fail to model the strong data dependencies or interactions.

Take protein function prediction as a concrete classification example. Proteins are
known to interact with some others to perform functions, and these interactions connect
genes to form a graph structure. If one choose to use Naive Bayes or Decision Trees
predict unknown protein functions, he is basically confined to a tabular data model, and
thus have lost rich information about interactions.

Markov networks, as a type of descriptive model, provide a convenient represen-
tation for structuring complex relationships, and thus a solution for handling proba-
bilistic data dependency. In addition, efficient techniques are available to do inference
on Markov networks, including the powerful Belief Propagation [15] algorithm. The
power in modeling data dependency, together with the availability of efficient inference
tools, makes Markov networks very useful data models. They have the potential to en-
hance mining results obtained from data whose data dependencies are underused.
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Our Contributions. The primary contribution of this paper is that we propose a unified
approach to improving mining quality by considering data dependency extensively in
data mining. We adopt Markov networks as the data model, and use belief propagation
for efficient inference. This paper may also contribute to data mining practice with our
investigations on some real-life applications.

Outline. We describe Markov networks in the next section. Also discussed there are
pairwise Markov networks, a special form of Markov network. Pairwise Markov net-
works not only model local dependency well, but also allow very efficient computation
by belief propagation. We then address the above-mentioned examples in sections 3 and
4.1 We conclude the paper with related work and discussion in Section 5.

2 Markov Networks

Markov networks have been successfully applied to many problems in different fields,
such as artificial intelligence [10], image analysis [13] and turbo decoding [7]. They
have the potential to become very useful tools of data mining.

2.1 Graphical Representation

The Markov network is naturally represented as an undirected graph G = (V,E), where
V is the vertex set having a one-to-one correspondence with the set of random variables
X = {xi} to be modeled, and E is the undirected edge set, defining the neighbor-
hood relationship among variables, indicating their local statistical dependencies. The
local statistical dependencies suggest that the joint probability distribution on the whole
graph can be factored into a product of local functions on cliques of the graph. A clique
is a completely connected subgraphs (including singletons), denoted as XC . This fac-
torization is actually the most favorable property of Markov networks.

Let C be a set of vertex indices of a clique, and let C be the set of all such C. A
potential function ψXC

(xC) is a function on the possible realization xC of the clique
XC . Potential functions can be interpreted as “constraints” among vertices in a clique.
They favor certain local configurations by assigning them a larger value.

The joint probability of a graph configuration p({x}) can be factored into

P({x}) =
1

Z

∏
C∈C

ψXC
(xC) (1)

where Z is a normalizing constant: Z =
∑

{x}
∏

C∈C ψXC
(xC)

2.2 Pairwise Markov Networks

Computing joint probabilities on cliques reduces computational complexity, but still,
the computation may be difficult when cliques are large. In a category of problems

1 Due to space limit, we only discuss two applications here: cost-efficient sensor probing and
enhancing protein function predictions. Please refer to our technical report [3] for another
application in sequence data denoising.
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where our interest involves only pairwise relationships among the variables, we can use
use pairwise Markov networks. A pairwise Markov network defines potentials functions
only on pairs of nodes that are connected by an edge.

In practical problems, we may observe some quantities of the underlying random
variables {xi}, denoted as {yi}. The {yi} are often called evidence of the random vari-
ables. In the text denoising example discussed in Section 1, for example, the underlying
segments of text are variables, while the segments in the noisy text we observe are evi-
dence. These observed external evidence will be used to make inferences about values
of the underlying variables. The statistical dependency between xi and yi is written as a
joint compatibility function φi(xi, yi), which can be interpreted as “external potential”
from the external field.

Another type of potential functions are defined between neighboring variables. The
compatibility function ψij(xi,xj) which captures the “internal binding” between two
neighboring nodes i and j. An example of pairwise Markov networks is illustrated in
Figure 1(a), where the white circles denote the random variables, and the shaded circles
denote the evidence. Figure 1(b) shows the potential functions φ() and ψ().

(a) (b)

Fig. 1. Example of a Pairwise Markov Network. In (a), the white circles denote the random vari-
ables, and the shaded circles denote the external evidence. In (b), the potential functions φ() and
ψ() are showed

Using the pairwise potentials defined above and incorporating the external evidence,
the overall joint probability of a graph configuration in Eq.(1) is approximated by

P({x}, {y}) =
1

Z

∏
(i,j)

ψij(xi, xj)
∏

i

φi(xi, yi) (2)

where Z is a normalization factor, and the product over (i, j) is over all compatible
neighbors.

2.3 Solving Markov Networks

Solving a Markov network involves two phases:

– The learning phase, a phase that builds up the graph structure of the Markov net-
work, and learns the two types of potential functions, φ()’s and ψ()’s, from the
training data.
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– The inference phase, a phase that estimates the marginal posterior probabilities or
the local maximum posterior probabilities for each random variable, such that the
joint posterior probability is maximized.

In general learning is an application-dependent statistics collection process. It de-
pends on specific applications to define the random variables, the neighborhood rela-
tionships and further the potential functions. We will look at the learning phase in detail
with concrete applications in Sections 3-4.

The inference phase can be solved using a number of methods: simulated annealing
[6], mean-field annealing [11], etc. These methods either take an unacceptably long time
to converge, or make oversimplified assumptions such as total independence between
variables. We choose to use the Belief Propagation method, which has a computation
complexity proportional to the number of nodes in the network, assumes only local
dependencies, and has proved to be effective on a broad range of Markov networks.

2.4 Inference by Belief Propagation

Belief propagation (BP) is a powerful inference tool on Markov networks. It was pi-
oneered by Judea Pearl [10] in belief networks without loops. For Markov chains and
Markov networks without loops, BP is an exact inference method. Even for loopy net-
works, BP has been successfully used in a wide range of applications[8]. We give a
short description of BP in this subsection.

The BP algorithm iteratively propagates “messages” in the network. Messages are
passed between neighboring nodes only, ensuring the local constraints, as shown in
Figure 2. The message from node i to node j is denoted as mij(xj), which intuitively
tells how likely node i thinks that node j is in state xj . The message mij(xj) is a vector
of the same dimensionality as xj .

Fig. 2. Message passing in a Markov network

There are two types of message passing rules:

– SUM-product rule, that computes the marginal posterior probability.
– MAX-product rule, that computes the maximum a posterior probability.
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For discrete variables, messages are updated using the SUM-product rule:

mt+1
ij (xj) =

∑
xi

φi(xi, yi)ψij(xi, xj)
∏

k∈N(i),k�=j

mt
ki(xi) (3)

or the MAX-product rule,

mt+1
ij (xj) = max

xi

φi(xi, yi)ψij(xi, xj)
∏

k∈N(i),k�=j

mt
ki(xi) (4)

where mt
ki(xi) is the message computed in the last iteration of BP, k runs over all

neighbor nodes of i except node j.
BP is an iterative algorithm. When messages converge, the final belief b(xi) is com-

puted. With the SUM-product rule, b(xi) approximates the marginal probability p(xi),
defined to be proportional to the product of the local compatibility at node i (φ(xi)),
and messages coming from all neighbors of node i:

bi(xi)SUM = xiφi(xi, yi)
∏

j∈N(i)

mji(xi) (5)

where N(i) is the neighboring nodes of i.
If using the MAX-product rule, b(xi) approximates the maximum a posterior prob-

ability:

bi(xi)MAX = arg max
xi

φi(xi, yi)
∏

j∈N(i)

mji(xi) (6)

3 Application I: Cost-Efficient Sensor Probing

In sensor networks, how to minimize communication is among the key research issues.
The challenging problem is how to probe a small number of sensors, yet to effectively
infer the unprobed sensors from the known. Cost-efficient sensor probing represents a
category of problems where complete data is not available, but has to be compensated
by inference.

Our approach here is to model a sensor network with a pairwise Markov network,
and use BP to do inference. Each sensor is represented by a random variable in the
Markov network. Sensor neighborhood relationships are determined by spatial posi-
tions. For example, one can specify a distance threshold so that sensors within the range
are neighbors. Neighbors are connected by edges in the network.

In the rest of this section, we study a rainfall sensornet distributed over Washington
and Oregon [9]. The sensor recordings were collected during 1949-1994. We use 167
sensor stations which have complete recordings during that period.

3.1 Problem Description and Data Representation

The sensor recordings were collected in past decades over two states along the Pacific
Northwest. Since rain is a seasonal phenomena, we split the data by week and build a
Markov network for each week.
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We need to design the potential functions φi(xi, yi) and ψij(xi,xj) in Eq. (2) in
order to use belief propagation. One can use Gaussian or its variants to compute the
potential functions. But, in the sensornet we study, we find that the sensor readings
are overwhelmed by zeroes, while non-zero values span a wide range. Clearly Gaus-
sian is not a good choice for modeling this very skewed data. Neither are mixtures of
gaussian, due to limited data. Instead, we prefer to use discrete sensor readings in the
computation. The way we discretize data is given in section 3.3.

The φ() functions should tell how likely we observe a reading yi for a given sensor
xi. It is natural to use the likelihood function:

φi(xi, yi) = P(yi|xi) (7)

The ψ() functions specify the dependence of sensor xj’s reading on its neighbor xi.

ψij(xi, xj) = P(xj|xi) (8)

3.2 Problem Formulation

A theoretical analysis of the problem will that the problem fits well into the maximum
a posterior (MAP) estimation on a Markov chain solvable by belief propagation.

Objective: MAP
Let X to be the collection of all underlying sensor readings, Y the collection of all
probed sensors. Using Bayes’ rule, the joint posterior probability of X given Y is:

P(X|Y) =
P(Y|X)P(X)

P(Y)
(9)

Since P (Y ) is a constant over all possible X , we can simplify this problem of
maximizing the posterior probability to be maximizing the joint probability

P(X,Y) = P(Y|X)P(X) (10)

Likelihood

In a Markov network, the likelihood of the readings Y depends only on those variables
they are directly connected to:

P(Y|X) =
m∏

i=1

P(yi|xi) (11)

where m is the number of probed sensors.

Prior

Priors shall be defined to capture the constraints between neighboring sensor readings.
By exploiting the Markov property of the sensors, we define the prior to involve only
the first order neighborhood. Thus, the prior of a sensor is proportional to the product
of the compatibility between all neighboring sensors:

P (X) ∝
∏
(i,j)

P (xj |xi) (12)
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Solvable by BP

By replacing Eqs.(11) and (12) into the objective Eq.(10), we have the joint probability
to be maximized:

P (X,Y ) =
1
Z

∏
(i,j)

P (xj |xi)
N∏

i=1

P (yi|xi) (13)

Looking back at the φ() and ψ() functions we defined in Eqs.(7) and (8), we see
that the objective function is of the form:

P (X,Y ) =
1
Z

∏
(i,j)

ψ(xi,xj)
N∏

i=1

φ(xi, yi) (14)

where Z is a normalizing constant.
This is exactly the form in Eq.(2), where the joint probability over the pairwise

Markov network is factorized into products of localized potential functions. Therefore,
it is clear that the problem can be solved by belief propagation.

3.3 Learning and Inference

The learning part is to find the φ() and ψ() functions for each sensor, as defined in
Eqs.(7) and (8). The learning is straight-forward. We discretize the sensor readings in
the past 46 years, use the first 30 years for training and the rest 16 years for testing.
In the discrete space, we simply count the frequency of each value a sensor could pos-
sibly take, which is the φ(), and the conditional frequencies of sensor values given its
neighbors, which is the ψ().

We use a simple discretization with a fixed number of bins, 11 bins in our case,
for each sensor. The first bin is dedicated to zeroes, which consistently counts for over
50% of the populations. The 11 bins are assigned in a way that give roughly balanced
number of readings in each bin. This very simple discretization method has been shown
to work well in the sensor experiments. More elaborated techniques can be used which
may further boost the performance, such as histogram equalization that gives balanced
bin population with adaptive bin numbers.

For inference, belief propagation does not guarantee to give the exact maximum a
posterior distribution, as there are loops in the Markov network. However, loopy belief
propagation still gives satisfactory results, as we will see shortly.

3.4 Experimental Results

We evaluate our approach using Top-K queries. A Top-K query asks for the K sensors
with the highest values. It is not only a popular aggregation query that the sensor com-
munity is interested in, but also a good metric for probing strategies as the exact answer
requires contacting all sensors.

We design a probing approach in which sensors are picked for probing based on their
local maximum a posterior probability computed by belief propagation, as follows.
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(a) BP-based probing. (b) naive probing.

Fig. 3. Top-K recall rates vs. probing ratios. (a): results obtained by our BP-based probing; (b) by
the naive probing. On average, BP-based approach probed 8% less, achieves 13.6% higher recall
rate for raw values, and 7.7% higher recall rate for discrete values

BP-based Probing:

1. Initialization: Compute the expected readings of sensors using the training data. As
the initialization, pick the top M to probe. (We set M = 20 in our experiments.)

2. Probe the selected sensors.
3. True values acquired in step 2 become external evidence in the Markov network.

Propagate beliefs with all evidence acquired so far.
4. Again, pick the top sensors with the highest expectations for further probing, but

this time use the updated distributions to compute expectations. When there are
ties, pick them all.

5. Iterate steps 2-4, until beliefs in the network converge.
6. Pick the top K with the highest expectations according to BP MAP estimation.

As a comparative baseline, we have also conducted experiments using a naive prob-
ing strategy as follows:

Naive Probing:

1. Compute the expectations of sensors. Pick the top 25% sensors.
2. Probe those selected sensors.
3. Pick the top K.

Performance of the two approaches is shown in Figure 3 (a) and (b), respectively.
On each diagram, the bottom curve shows the probing ratio, and the two curves on the
top show the recall rates for raw values and discrete values, respectively. We use the
standard formula to compute recall rate. Let S denotes the top-K sensor set returned,
and T the true top-K set. then:

Recall =
|S⋂T|
|T| (15)

Since the sensor readings are discretized in our experiments, we can compute S and
T using raw values, or discrete values. Discrete recall demonstrates the effectiveness of
BP, while raw recall may be of more interest for real application needs. As can be seen
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from Figure 3, raw recall is lower than discrete recall. This is due to error introduced
in the discretization step. We expect raw recall to be improved when a more elaborated
discretization technique is adopted.

It shows clearly in Figure 3 that BP-based approach outperforms the naive approach
in terms of both recall rates, while requiring less probing. On average, the BP-based
approach has a discrete recall of 88% and a raw recall of 78.2%, after probing only
17.5% sensors. The naive recall has a discrete recall of only 79.3%, a raw recall of only
64.6%, after probing 25% sensors.

The results shown in Figure 3 are obtained for K = 10. The relative performance
remains the same for other values K = 20, 30, 40.

In our technical report [3], we give a closer look on how sensor beliefs change over
iterations, and further discussions on how belief propagation works.

4 Application II: Enhancing Protein Function Predictions

Local data dependency can not only help infer missing values, as in the sensor example,
but can also be exploited to enhance mining results. Many data mining methods, for
efficiency consideration or design limitation, use a model incapable of capturing rich
relationships embedded in data. Most discriminative models like Naive Bayes and SVM
belong to this category. Predictions of these models can be improved, by exploiting local
data dependency using Markov networks. The predictions are used as the likelihood
proposal, and message passing between variables refines and reinforces the beliefs. Next
we show how to improve protein function predictions in this way.

4.1 Problem Description

Proteins tend to localize in various parts of cells and interact with one another, in order
to perform crucial functions. One task in the KDD Cup 2001 [2] is to predict protein
functions. The training set contains 862 proteins with known functions, and the test-
ing set includes 381 proteins. The interactions between proteins, including the testing
genes, are given. Other information provided specifies a number of properties of indi-
vidual proteins or genes that encodes the proteins. These include the chromosome on
which the gene appears, phenotype of organisms with differences in this gene, etc.

Since information about individual proteins or genes are fixed features, it becomes
crucial how to learn from interactions. According to the report of the cup organizers,
most competitors organized data in relational tables, and employed algorithms that deal
with tabular data. However, compared with tables, graphical models provide a much
more natural representation for interacting genes. With a Markov network model, inter-
actions can be modeled directly using edges, avoiding preparing a huge training table.
Interacting genes can pass messages to each other, thus getting their beliefs refined
together.

In the next of this section, we show a general way of enhancing a weak classifier
by simply leveraging local dependency. The classifier we use is Naive Bayes, which
is learned from the relational table. We build a Markov network, in which genes with
interactions are connected as neighbors. The φ() function prediction comes from Naive
Bayes, and the ψ() are learned from gene interactions.
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4.2 Learning Markov Network

We separate the learning of each function, as focusing on one function a time is easier.
There are 13 function categories, hence we build 13 Markov networks. To prepare the
initial beliefs for a network, we first learn a Naive Bayes classifier, which output a prob-
ability vector b0(), indicating how likely a gene will perform the function in question.

Each gene i maps to a binary variable xi in the Markov network. First we design
the φ() potentials for {xi}. One can set the Naive Bayes prediction b0() to be φ().
But this way the Naive Bayes classifier is over trusted, make it harder to correct the
misclassifications. Instead, we adopt a generalized logistic function, shown in Eq.(16),
to blur the margin between the belief on two classes, yet still keeping the prediction
decision. In the experiments, we set a = 0.75, b = 0.125, α = 6, and β = 0.5.

f =
a

1 + e−α(x−β)
+ b (16)

The ψ() potentials are learned from protein interactions. Interactions are measured
by the correlation between the expression levels of the two encoding genes. At first we
tried to related the functions of two genes in a simple way: a positive correlation indi-
cates that with a fixed probability both or neither genes perform the function, while a
negative correlation indicates that one and only one gene perform the function. This will
leads to a simple fixed ψ() function for all interacting genes. But, a close look at the in-
teraction tells that 25% of the time this assumption is not true. In reality, sometimes two
genes participating in the same function may be negatively correlated; a more influen-
tial phenomena is that genes may participate in several functions, hence the correlation
is a combined observation involving multiple functions.

We decided to learn the distribution of correlation values for three groups of in-
teractions, separately: (a)FF: a group for protein pairs that both perform the function,
(b)FNF: a group for pairs that one and only one performs the function, and (c)NFNF: a
group for protein pairs that neither performs the function. Thus, the potential function
ψi,j defines how likely to observe a correlation value given for genes xi and xj , under
different cases where xi and xj each has the function or not. In our technical report, we
plot the distributions of correlation values learned for two functions. The distribution
histograms show that correlation distributions differ among the three groups, and are
specific to functions as well.

4.3 Experiments

Naive Bayes does not perform well on this problem, because it does not model the gene
interactions sufficiently, and thus cannot fully utilize the rich interaction information.
Taking the average predictive accuracy of all classifiers, one per function, the overall
accuracy of Naive Bayes is 88%. Belief propagation improves this to 90%.

To exemplify how misclassifications get corrected due to message passing, we show
a subgraph of genes in Figure 4. The white circles represent genes(variables), and the
shaded circles represent external evidence. Only training genes have corresponding ex-
ternal evidence. The 1’s or 0’s in the circles tell whether a gene has the function in
question or not. For interested readers, we also put the gene ID below the circle. The
subgraph contains four training genes and five testing genes. All these testing genes
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Fig. 4. A subgraph in which testing genes got correct class labels due to message passing

were misclassified by Naive Bayes. After receiving strong beliefs from their neighbor-
ing genes, four out of five testing genes were correctly classified. The other test gene
‘G230291’ was misclassified by both, but Naive Bayes predicted 0% for it to have the
function (which is the truth), while belief propagation increased this belief to 25%.

We also evaluated our approach using the score function originally used in the 2001
KDD cup [2]. First we picked out all the functions we predicted for a gene. If more
functions are predicted than the true number (which is actually the number of duplicates
of that gene in the test table provided), we remove the ones with the smallest confidence.
The final score is the ratio of correct predictions, including both positive and negative
predictions. Our final score is 91.2%, close to the Cup winner’s 93.6%. Although the
winner scored reasonably high, they organized data in relational tables and didn’t fully
explore gene interactions. We expect that their method could perform better if integrated
with our approach to exploit local dependencies between genes.

The Cup winner organized data in relational tables, which is not designed at all for
complex relationships. To make up for this, they manually created new features, such as
computing “neighbors” within k (k > 1) hops following neighbor links. Even so, these
new features can only be treated the same as the other individual features. The rich
relationship information in the original graph structure was lost. Graphical models, on
the other hand, are natural models for complex relationships. Markov networks together
with belief propagation provides a general and powerful modeling and inference tool
on problems satisfying local constraints, such as protein function prediction.

5 Related Work and Discussions

Data dependency is present in a wide spectrum of applications. In this paper, we propose
a unified approach that exploits data dependency to improve mining results, and we
approach this goal from two directions: (1) improving quality of input data, such as
by correcting contaminated data and by inferring missing values, and (2) improving
mining results from a model that ignores data dependency.

Techniques for improving data quality proposed in the literature have addressed
a wide range of problems caused by noise and missing data. For better information
retrieval from text, data is usually filtered to remove noise defined by grammatical er-
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rors [12]. In data warehouses, there has been work on noisy class label and noisy at-
tribute detection based on classification rules [16] [14], as well as learning from both
labeled and unlabeled data by assigning pseudo-classes for the unlabeled data [1] using
boosting ensembles. All this previous work has its own niche concerning data qual-
ity. Our work is more general in that it exploits local data constraints using Markov
networks.

A pioneering work in sensor networks, the BBQ system [4] has studied the problem
of cost-efficient probing. However, their method relies on a global multivariate Gaussian
distribution. Global constraints are very strict assumptions, and are not appropriate in
many practical scenarios.

The primary contribution of this paper is to propose a unified approach to improving
mining quality by considering data dependency extensively in data mining. This paper
may also contribute to data mining practice with our investigations on several real-life
applications. By exploiting data dependency, clear improvements have been achieved
in data quality and the usefulness of mining results.
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Abstract. While feature selection is very difficult for high dimensional, 
unstructured data such as face image, it may be much easier to do if the data can 
be faithfully transformed into lower dimensional space. In this paper, a new 
method is proposed to transform the high dimensional face images into 
low-dimensional SOM topological space, and then identify important local 
features of face images for face recognition automatically using simple statistics 
computed from the class distribution of the face image data. The effectiveness of 
the proposed method are demonstrated by the experiments on AR face databases, 
which reveal that up to 80% local features can be pruned with only slightly loss 
of the classification accuracy.  

1   Introduction 

Face recognition has been an active research area of computer vision and pattern 
recognition for decades. Many classical face recognition methods have been proposed 
[1] to date and have obtained success. In most of the subspace-type face recognition 
method [1,2], each face is represented by a single vector formed by concatenating 
pixels of the face image in row scan way. Such a representation makes the 
dimensionality of the feature space very high. On the other hand, the number of 
available training samples is generally very limited. In some extreme case, only one 
image is available per person [3-7]. This makes it important to investigate feature 
selection to improve the generalization of the recognition system. 

This, however, can be a very difficult task for some complex data such as face image 
due to the sparseness nature of the high dimensional feature space. To circumvent that 
problem, we therefore propose to transform the high dimensional, unstructured face 
image data to lower dimensional space first, and then select features in the latter space. 
The task of feature selection may be much easier due to the simplification of the feature 
space. In previous work, we have found that the SOM (self-organizing maps, [8]) 
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topological space is suitable for face representation [6], and an SOM-based face 
representation model called “SOM-face” has been proposed. 

In this paper, we extended the work [6] in two aspects: (1) a novel method of 
automatically selecting important local features from the face image for recognition is 
proposed, and (2) investigate the problem of how much of the local features can be 
reduced without losing useful information in class prediction. The paper proceeds as 
follows. After briefly reviewing the SOM-face model in section 2, we described the 
proposed method in section 3. The experiments are reported in section 4. Finally, 
conclusions are drawn in section 5. 

2   The SOM-Face Model 

The essence of SOM-face [6] is to express each face image as a function of local 
information presented in the image. This is achieved by dividing the image into k 
different local sub-blocks at first, each of which potentially preserves some structure 
information of the image. Then, a self-organizing map (SOM) neural network is trained 
using the obtained sub-blocks. The reconstruction of a face in the SOM topological 
space is called SOM-face (see Fig.1). Note that any face localized in the same way 
above can be projected onto the quantized lower dimensional space to obtain its 
compact but robust representation. The main advantage of such a representation is that, 
in the SOM-face, the information contained in the face is distributed in an orderly way 
and represented by several neurons instead of only one neuron corresponding to a 
weight vector, so the common features of different classes can be easily identified.  

 

Fig. 1. Example of an original image, its projection and the reconstructed image a) Original face 
image. b) The distribution of image in the topological space. c) “SOM face” reconstructed 

3   Feature Selection in the SOM Topological Space  

SOM mapping makes it feasible for us to analyze the degrees of importance of different 
local areas based on simple statistics computed from the empirical distribution. Here, 
three criterions are proposed to measure the goodness of sub-blocks of each face, i.e., 
face frequency (FF), a 2 statistic (CHI) and neuron purity (NP). 

• Face frequency criterion (FF) 
Face frequency is derived from the concept of document frequency in automatic text 

analysis field [10]. Here it means the number of different faces a neuron attracts. Based 
on this simple statistics, two strategies can be applied to perform feature selection. The 
first strategy (FF-1) is based on the assumption that the rare neurons (i.e., the neurons 
with low FF value) may be either non-informative for recognition or not influential in 
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global performance. The degree of importance of a neuron can be calculated as a 
non-decreasing function of its FF value. 

On the other hand, the FF-value can be regarded as an indicator of the distribution of 
the sub-blocks of all the faces in SOM topological space. That is, big FF-values indicate 
much overlap among the distributions of different classes and hence inducing low 
discriminability, whereas small values indicate little overlap and hence high 
discriminability. In this sense, the degree of importance of a neuron can also be 
calculated as a non-increasing function of its FF value. This strategy is named FF-2. 

• 2 statistic (CHI) 
The 2 statistic tries to measure the dependence between class and term. Consider a 

two-way contingency table of a neuron t and a face c, where A is the number of times 
the t and c co-occur, B is the number of time the t occurs without c, C is the number of 
times the c occurs without t, and N is the total number of faces, then the 2 statistic 
between the t and c is defined to be: 

2
2 ( )
( , )

( ) ( ) ( ) ( )

N AD CB
t c

A C B D A B C D
χ × −=

+ × + × + × +
 (1) 

The 2 statistic is zero if t and c are independent. In this study, we computed the 
pairwise 2 statistic between each neuron and each training face, and then measured the 
final neuron-goodness score according to the maximal rule: 
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• Neuron purity (NP,[9]) 

Neuron purity is a measure to quantify the degree of separability of a neuron. Let the 

number of sub-blocks of class c attracted by neuron t be cλ , then the probability of 

class c in neuron t is given as ct
ct

ct
c C

p
λ

λ
∈

=  and the degree of separability (or the purity) 

of a neuron t is defined to be: 
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where Kt is number of classes attracted by neuron t. 

4   Experiments 

The AR face database [11] is used in the experiments, which contains over 4,000 color 
face images of 126 people's faces, among them, a subset of 400 images from 100 
different subjects was used. Some sample images are shown in Fig.2. 



Feature Selection for High Dimensional Face Image Using Self-organizing Maps 503 

 

 

Fig. 2. Sample images for one subject of the AR database [10] 

Before the recognition process, each image was cropped and resized to 120x165 
pixels and then converted to gray-level images, which were then processed by a 
histogram equalization algorithm. A sub-block size of 5x3 was used and only the 
neutral expressions images (Fig.2a) of the 100 individuals were used for training, while 
the other three were used for testing.  

We ranked the neurons according to the goodness value obtained with different 
criterions, and removed those neurons whose goodness values are below some 
predefined threshold. Since different faces have different set of neurons, the resulting 
neurons after pruning are also different face by face and only the left neurons would be 
used for classification. The relationship between the top 1 recognition rate and the total 
remaining local features of the probe set are displayed in Fig.3. 

 
 
 
 
 
 
 
 

                        (a)                                         (b)                                       (c) 

Fig. 3. Top 1 recognition rate vs. total remaining unique local feature count  (a)-(c) are 
corresponding to the smile, anger and scream images (Figs.3b, 3c, and 3d) 

It can be observed from Fig. 3 that on the first two probe sets, the four compared 
criterions (FF-1, FF-2, CHI and NP) have similar effect on the performance of the 
recognition system, and 80% or more of the sub-blocks can be safely eliminated with 
almost no loss in recognition accuracy. On more challenging probe sets (Fig.2d), two 
FF-type criterions perform much better than the other two (CHI and NP). This 
observation indicates that the criterions which make use of the class information do not 
necessarily lead to excellent performance. 

5   Conclusions 

In this paper, a novel feature selection method for high dimensional face images based 
on their SOM transformation is proposed. Experiments on AR database reveal that up 
to 80% sub-blocks of a face can be removed from the probe set without loss of the 
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classification accuracy. This could be particularly useful when a compact 
representation of face is needed, such as in the application of smart card, where the 
storage capability is very limited.  
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Abstract. We explore in this paper a progressive sampling algorithm,
called Sampling Error Estimation (SEE), which aims to identify an ap-
propriate sample size for mining association rules. SEE has two advan-
tages over previous works in the literature. First, SEE is highly efficient
because an appropriate sample size can be determined without the need
of executing association rules. Second, the identified sample size of SEE
is very accurate, meaning that association rules can be highly efficiently
executed on a sample of this size to obtain a sufficiently accurate result.
This is attributed to the merit of SEE for being able to significantly re-
duce the influence of randomness by examining several samples with the
same size in one database scan. As validated by experiments on various
real data and synthetic data, SEE can achieve very prominent improve-
ment in efficiency and also the resulting accuracy over previous works.

1 Introduction

As the growth of information explodes nowadays, reducing the computational
cost of data mining tasks has emerged as an important issue. Specifically, the
computational cost reduction for association rule mining is elaborated upon by
the research community [6]. Among research efforts to improve the efficiency of
mining association rules, sampling is an important technique due to its capability
of reducing the amount of analyzed data [2][5][7].

However, using sampling will inevitably result in the generation of incorrect
association rules, which are not valid with respect to the entire database. In such
situations, how to identify an appropriate sample size is key to the success of the
sampling technique. Progressive sampling is the well-known approach to deter-
mine the appropriate sample size in the literature. Progressive sampling methods
are based on the observation that when the sample size exceeds a size Ns, the
model accuracy λ obtained by mining on a sample will no longer be prominently
increased. The sample size Ns can therefore be suggested as the appropriate
sample size. In general, the sample size Ns can be identified from the ”model
accuracy curve”, which is in essence the model accuracy versus the sample size

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 505–515, 2005.
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Entire Database Size
Sample Size0

Model accuracy curve
Sampling error curve
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<b>

<a>

<a>
<b>

Knee of the model accuracy curve

Knee of the sampling error curve

<c>

<c>Example unstable curve

Knee of the curve

Fig. 1. The illustrated model accuracy curve and sampling error curve

[3]. Curve <a> in Figure 1 illustrates an example of the model accuracy curve
versus the sample size. It can be observed that the model accuracy will stay
in a plateau (the accuracy is no longer much improved) when the sample size
exceeds Ns. Thus, the goal of progressive sampling algorithms is to efficiently
estimate the model accuracy curve and then identify the point (Ns,λi) of this
curve, where λi is the corresponding model accuracy for the sample size Ns.

However,previous progressive sampling algorithms for association rules mainly
suffer from two problems. First, to measure the model accuracy of each sample
size, previous progressive sampling algorithms have to resort to the execution
of association rules either on samples [2] or on the entire database [3], which is,
however, very costly. Second, for efficiency reasons, previous algorithms usually
evaluate the model accuracy of a sample size by only executing association rules
on a sample with this size, and the phenomenon of randomness [4] is thus not
considered. Randomness refers to the phenomenon that mining on samples of
the same size may obtain different results. In fact, randomness will affect the
determination of the accuracy of obtained association rules for each sample size.
Thus previous works will generate an unstable curve, like curve <c> in Figure
1, to estimate the model accuracy curve, and the resulted sample size may not
be a proper choice.

To remedy these problems, we devise in this paper an innovative algorithm,
referred to as Sampling Error Estimation (abbreviated as SEE ), to identify the
appropriate sample size without the need of executing association rule mining
either on several samples or on the entire database, thus significantly improving
the execution efficiency. The fundamental concept of algorithm SEE is to esti-
mate the model accuracy curve by generating a curve of sampling errors versus
the sample size. Sampling errors stem from the phenomenon that the propor-
tion (also referred to as support in association rule research) of each item in the
sample will deviate from its population proportion, and sampling error is indeed
the reason for incurring incorrect association rules in the sample. In general, the
smaller the sampling error of the sample, the higher accuracy can be obtained
by mining on this sample. By calculating those sampling errors which will in-
fluence the obtained model accuracy, the shape of the sampling error curve can
reflect the shape of the model accuracy curve. Curve <b> in Figure 1 illustrates
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the sampling error curve. Moreover, SEE can greatly reduce the influence of
randomness and correctly measure sampling errors of each sample size. Thus
the sampling error curve can be employed to better estimate the model accuracy
curve. This is attributed to the merit that SEE can calculate sampling errors
of each sample size from a number of samples of this size in one database scan.
As validated by experiments on various real data and synthetic data, algorithm
SEE can achieve very prominent improvement in efficiency and also the resulting
accuracy over previous works.

2 Sampling Errors for Association Rules

2.1 Descriptions of Sampling Errors

Sampling errors, referring to the phenomenon that the support of each item in the
sample will deviate from its support in the entire data [4], will result in incorrectly
identifying whether an item is a frequent item. The inference can be made from
the following discussion. Suppose that we have 10,000 transactional records and
1,000 records of them contain the item {bread}. Hence the support of {bread} is
10%. In general, the phenomenon of sampling errors can be observed from the
distribution of the item support in samples. When we generate a lot of samples
of the same size, the sampling distribution, i.e., the support of one specified item
among these samples, will approximately follow a normal distribution with mean
equal to the support of this item in the entire database. Figure 2(a) shows an
example of the distribution of the support of the item {bread} in samples. The
support of {bread} in samples of the same size will follow a normal distribution
with mean 10% because {bread} occurs 10% in the entire database. Suppose that
the minimum support is specified as 8% and thus the item type of {bread} is
frequent because its support in the entire database is larger than 8%. As a result,
the shadow region in Figure 2(a) can represent the probability of incorrectly
identifying {bread} as a non-frequent item. Moreover, the larger the shadow
region, the larger probability we will obtain the incorrect item type.

Fig. 2. The phenomenon of sampling errors
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In practice, for one specified item, the probability of obtaining the incorrect
item type relies on the sample size. More specifically, the variance of the item
support in samples is inversely proportional to the square root of the sample
size [4], and thus the influence of sampling errors will decrease as the sample
size increases. As shown in Figure 2(b), the support of the item {bread} will
have a smaller variance in a sample of 3,000 records than in a sample of 1,000
records. We can observe that the sample of 3,000 records will have a smaller
error probability (the shadow region is smaller) of identifying {bread} as a non-
frequent item. Thus for each item, the error probability of identifying its item
type will decrease as the sample size increases.

In essence, mining association rules will generate a lot of itemsets. We know
that as the sample size decreases, all itemsets will have the larger probability of
incorrectly identifying their item types since sampling errors also increase as the
sample size decreases. Therefore, if sampling errors cannot be significantly de-
creased when the sample size is larger than a sample size sn, sn can be suggested
as the appropriate sample size for association rules.

In fact, such a size can be determined by generating a curve of sampling
errors versus the sample size. In addition, the corresponding sample size at the
convergence point of the curve will be suggested as the appropriate sample size.
In the following, we present the method to measure sampling errors of each size.

2.2 Measurement of Sampling Errors

Since sampling errors stem from the difference between the proportion of each
item in the sample and its population proportion, the sampling error of item in
in the sample S, can be defined as:

Definition 1: (Sampling error of item in in the sample S)

SE(in,S) = |Sup(in,S)− Sup(in,D)| ,

where Sup(in,S) and Sup(in,D) denote supports of item in in the sample S
and in the entire database D, respectively.

Furthermore, for evaluating the accuracy of association rules, sampling errors
of all itemsets are calculated because sampling errors of all itemsets will influence
the result of association rules. Hence, sampling errors of the sample S can be
defined as the root mean square sum of sampling errors of each occurred itemsets
in the entire database.

In practice, using this measurement to evaluate the model accuracy of asso-
ciation rules will suffer from two problems. The first problem is that examining
sampling errors of all itemsets is inefficient because the number of itemsets is
huge. The second problem is that calculating sampling errors of several itemsets
is indeed unnecessary. Consider the example shown in Figure 2(a). If the min-
imum support is specified as 20%, the error probability of identifying the item
type of the item {bread} will be close to zero. Thus sampling errors of this item
will not influence the accuracy of association rules.
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To remedy the first problem, we employ the solution that only sampling
errors of 1-itemsets will be calculated. Indeed, calculating sampling errors of
1-itemsets cannot completely response the model accuracy of association rules.
However, it will be generally sufficient for the following reason. The property
of association rules, i.e., downward closure property [6], shows that sampling
errors of 1-itemsets will influence the accuracy of 2-itemsets, 3-itemset, etc.
In other words, inaccurately identifying the item type of 1-itemsets will incur
the error identification of item types of 2-itemsets, 3-itemsets, an so on. It can
be expected that sampling errors of 1-itemsets will dominate the accuracy of
frequent itemsets. Thus the model accuracy will not significantly increase when
the sample size is larger than a size whose corresponding sampling errors of
1-itemsets will no longer significantly decrease. Therefore calculating sampling
errors of 1-itemsets will be a good pilot to determine whether a sample size is
sufficient for mining association rules.

Furthermore, to resolve the second problem, i.e., some itemsets will be irrel-
evant to the model accuracy if their supports are far away from the minimum
support, we take into account the relationship between sampling errors and the
minimum support. Suppose that p denotes the sample ratio, i.e. |S|

|D| , where |S|
and |D| are sizes of S and D, respectively. Since sampling may cause changes
of item supports, three distinct cases of the support change will be considered
when the range of item supports (0˜1) is divided into 3 intervals, i.e., <A>
[0, p ·M in Sup] , <B> [p ·M in Sup,M in Sup], and <C> [M in Sup, 1]. Case
(1) consists of those items whose supports change from <C> to <B> after sam-
pling. Those items are identified as frequent in D but non-frequent in S. Case (2)
consists of those items whose supports change from <B> to <C> after sampling.
Those items are identified as non-frequent in D but frequent in S. In addition,
case (3) consists of items identified as frequent in both D and S.

Note that the model accuracy is usually calculated as the combination of re-
call and precision [1]. In addition, F-score is a widely-used measurement which
combines recall and precision. F-score of the result obtained by mining on S, is
defined as (β2+1)·P ·R

β2·P+R
, where P and R are precision and recall, respectively. β is

a weighted value and it is usually set as 1 to fairly consider precision and recall.
Precision P (S) and recall R(S) of frequent itemsets obtained in the sample S
are defined as

P (S) = |FIa(S)|
|FIa(S)|+|FIb(S)| ;R(S) = |FIa(S)|

|FIa(S)|+|FIc(S)| ,

where FIa(S) consists of itemsets which belong to case (3). FIb(S) consists of
itemsets belonging to case (2) and FIc(S) consists of itemsets belonging to case
(1). |FIa(S)|, |FIb(S)| and |FIc(S)| are their corresponding sizes. The accuracy
of the set of frequent itemsets obtained by mining on the sample S is thus
formulated as F (S) = 2·P (S)·R(S)

P (S)+R(S) . In essence, we can observe that only those
itemsets belonging to FIa(S), FIb(S) and FIc(S) will affect the accuracy of
frequent itemsets whereas other itemsets will not. Consequently, the association
rules-related sampling errors of the sample S can be defined:
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Definition 2: (Association rules-related sampling errors of the sample S).
Suppose that there are M 1-itemsets, {a1,a2, ..., aM}, belonging to cases (1)/(2)/(3).
Sampling errors of the sample S which will influence the accuracy of association
rules, can be defined as:

A SE(S) =

√√√√
(

M∑
k=1

SE(ak,S)2
)

/M.

Furthermore, as mentioned previously, only mining on a sample is inadequate
to evaluate the correct mining accuracy of the corresponding sample size due to
the phenomenon of randomness. We use L samples of the same size to measure
sampling errors of this size. Definition 3 follows.

Definition 3: (Association rules-related sampling errors of sample size |S|).
Suppose that A SE(Sk) denotes association rules-related sampling errors of the
kth sample of the sample size |S|, where 1 ≤ k ≤ L. Association rules-related
sampling errors of the sample size |S| is defined as:

A SSE(|S|) =

(
L∑

k=1

A SE(Sk)

)
/L.

Therefore, we calculate A SSE(|S|) to measure sampling errors of each sam-
ple size which is given by a sampling schedule, and then the curve of A SSE(|S|)
versus the sample size can be used to estimate the curve of the model accuracy
versus the sample size.

3 Algorithm SEE

3.1 Pseudocode of Algorithm SEE

Algorithm SEE will generate a curve of sampling errors versus the sample size
immediately after one database scan, and then suggest the corresponding sam-
ple size at the convergence point of this curve as the appropriate sample size
for association rules. To measure sampling errors, frequencies (or said support
count) of each item in the entire database and in each sample will be required
in SEE. To efficiently acquire such information, SEE is devised as a two phases
algorithm: (1) the database scan phase, in which the database is scanned once
and simultaneously the frequency of each item in the entire database and in
each sample is stored. (2) The convergence detection phase, in which sampling
errors of each sample size are calculated, and then the appropriate sample size is
identified from the curve of sampling errors versus the sample size. The pseudo
code of SEE is outlined below:
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Algorithm SEE: SEE(D,L,R,minSup)

SEE[n][m] : store sampling errors of the mth sample of size sn.

//The database scan phase
01. while has next transaction td
02. for every item ik in td
03. IList[ik]→ freqD + +;

04. for n = 1 to P
05. for m = 1 to L
06. if (rv[n][m].next< sn

|D| )
07. for every item ik in td
08. IList[ik]→ freqS [n][m] + +;

//The convergence detection phase
01. for n = 1 to P
02. for m = 1 to L
03. e=0;count item=0;

04. for each item ik in IList {
05. if ik belongs to case (1)/(2)/(3)

06. e+=
(

IList[ik]→freqS [n][m]
sn

− IList[ik]→freqD

|D|
)2

;

07. count item++;

08. SEE[n][m] =
√

e
count item ;

09. A SSE(sn) =

L∑
j=1

SEE[n][j]

L ;
10. if (sn, A SSE(sn)) is the convergence point

11. report sn as the appropriate sample size; program terminated;

3.2 Complexity Analysis of Algorithm SEE

Time Complexity: Suppose that |I| is the number of distinct items in the
entire database D. The time complexity of SEE is O(|D|×P ×L+P ×L×|I|),
which is linear with respect to the entire database size |D|.

Space Complexity: The space complexity is O(L×P × |I|). The major space
requirement is used to store the frequency of each item in each sample, i.e.,
IList[ik]→ freqS [n][m].

4 Experimental Results

We assess the quality of algorithm SEE in Windows XP professional platform
with 512Mb memory and 1.7G P4-CPU. For comparison, the corresponding
results of algorithm RC-S [2] are also evaluated. In the literature, RC-S can
be deemed as the most efficient method to date. The utilized association rule
mining algorithm is Eclat [6]. Furthermore, in all experiments, the user-specified
parameter α of algorithm RC-S is set to one, which is the same as its default
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value addressed in [2]. All necessary codes are implemented by Java and complied
by Sun jdk1.4.

4.1 Methods for Comparison

To demonstrate that progressive sampling can improve the performance of min-
ing association rules, in all experiments, the execution time of each algorithm
will consist of two costs: (1) the time of executing progressive sampling algorithm
to determine the appropriate sample size; (2) the time of executing association
rules on a sample with the identified size. Moreover, since the scale of sampling
errors is different from the model accuracy and the self-similarity, all curves
shown in experimental results are normalized to [0,1] scale.

In our experiments, the curve ”Normalized Model Accuracy” denotes the
curve of the normalized model accuracy of frequent itemsets versus the sample
size. Note that the model accuracy of a sample size is calculated as the average
F-Scores from 20 runs with this size. In addition, the curve ”RC-S” denotes the
normalized self-similarity curve which is generated by algorithm RC-S. Note
that sampling errors will decrease as the sample size increases, and the model
accuracy will increase as the sample size increases. Thus the curve ”Inv NSEE”
shows the inverse sampling errors, i.e., 1-normalized A SSE(sn), of each sample
size sn. In addition, algorithms RC-S and SEE all aim to estimate curves ”Nor-
malized Model Accuracy”, and thus we can estimate the effectiveness of SEE
and RC-S by observing the difference between ”Inv NSEE”/”RC-S” and ”Nor-
malized Model Accuracy”. Note that the quantitative analysis of this difference

can be defined as the root mean square error,

√
1
P

P∑
i=1

[υ(si)− ϕ(si)]
2, where P

is the number of distinct sample sizes in the sampling schedule, and υ(si) de-
notes the normalized model accuracy of the sample size si and ϕ(si) denotes
the normalized score of the sample size si in the curve ”Inv NSEE”/”RC-S”.
The root mean square error will be shown as the value ”Curve Error” in each
experiment.

Furthermore, we use an arithmetic sampling schedule with R={0.05 × |D|,
0.1 × |D|, ..., 0.95 × |D|}. In addition, since curves ”Normalized Model Accu-
racy”, ”RC-S”, and ”Inv NSEE” are all monotonically increasing, the appropri-
ate sample size identified in each curve will be the smallest sample size whose
corresponding normalized score exceeds 0.8, meaning that we have up to 20%
improvement when the sample size is larger than the identified size.

4.2 Experiments on Real Data and Synthetic Data

Experiments on the Parameter Sensitivity. In this experiment, we observe
the parameter sensitivity of algorithm SEE, and the large real data set, POS is
utilized. First, Figure 3(a) shows the sensitivity analysis of the parameter L,
which is the number of samples used to evaluate the corresponding sampling er-
rors of a sample size. In Figure 3(a), the y-axis represents the score distance of
each sample size si, which is defined as |υ(si)− ϕ(si)|, where υ(si) denotes the
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Fig. 3. The sensitivity analysis of different parameters

normalized model accuracy of the sample size si and ϕ(si) denotes the normal-
ized score of si in the curve ”Inv NSEE”/”RC-S”. We can observe that curves
SEE with different L are all with smaller score distances than the correspond-
ing score distance of RC-S, meaning that SEE can more correctly estimate the
variation of the model accuracy curve. Moreover, L = 5 is sufficient to obtain an
accurate sampling error curve because the differences between L = 5, 10, and 20
are very small. Thus we can use acceptable memory to store frequencies of each
item in 5 samples of the same size, showing the practicability of algorithm SEE.
Furthermore, we observe the influence of the minimum support in Figure 3(b).
Results of two different minimum supports are shown. We can observe that al-
gorithm SEE has the smaller score distance than that of algorithm RC-S under
different minimum supports. Moreover, changing the minimum support will not
obviously influence the result of algorithm SEE, indicating that SEE is robust
under different parameters of association rules.

Experiments on Synthetic Data. The observations on various synthetic data
are shown in Figure 4. We generate four different synthetic data with different
”the average transaction length”, ”the average length of maximal patterns” and
”number of different items” (denoted as T, I, N in the name of the generated
data, respectively). The number of transactions is set to 50,000,000 in all gener-
ated data to mimic the large database.

We observe that SEE can save a lot of time and obtain a sufficiently correct
model result. On the other hand, RC-S may have a smaller execution time in
some cases but the obtained model accuracy will be not so acceptable, showing
the ability of SEE to balance the efficiency and the model accuracy.

Furthermore, the execution time of four synthetic data, which database sizes
vary from 5 × 107 to 2 × 108, are shown in Figure 5. In this experiment, ”the
average transaction length” is set to 15, and ”the average length of maximal
patterns” is set to 3. In addition, ”the number of different items” is set to
106. In this experiment, algorithms SEE and RC-S similarly suggest sample
ratios 40%˜45% as the appropriate sample ratios for association rules, which can
achieve a 96% model accuracy when we execute association rules on a sample
of the identified sample size. In practice, we observe that the execution time of
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Fig. 4. Experiments on various synthetic data

Fig. 5. The execution time on various database size

SEE is smaller than that of RC-S in all cases. When the database size increases,
algorithm RC-S cannot effectively reduce the execution time because it will suffer
from the need of considerable I/O operations (executing association rules on
several samples). On the other hand, algorithm SEE only requires I/O operations
of one database scan, showing high execution efficiency.

5 Conclusion

In this paper, we devise a progressive sampling algorithm, SEE, to identify an
appropriate sample size for mining association rules with two advantages over
previous works. First, SEE is highly efficient because the appropriate sample
size can be identified without the need of executing association rules on samples
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and on the entire database. Second, the identified sample size will be a proper
sample size since it is determined as the corresponding sample size at the con-
vergence point of the sampling error curve, which can effectively estimate the
model accuracy curve. As shown by experiments on various real data and syn-
thetic data, the efficiency and the effectiveness of SEE significantly outperform
previous works.
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Abstract. Feature subset selection (FSS) is one of the data pre-process-
ing techniques to identify a subset of the original features from a given
dataset before performing any data mining tasks. We propose a novel FSS
method for Multivariate Time Series (MTS) based on Common Principal
Components, termed CLeVer. It utilizes the properties of the principal
components to retain the correlation information among original features
while traditional FSS techniques, such as Recursive Feature Elimination
(RFE), may lose it. In order to evaluate the effectiveness of our selected
subset of features, classification is employed as the target data mining
task. Our experiments show that CLeVer outperforms RFE and Fisher
Criterion by up to a factor of two in terms of classification accuracy,
while requiring up to 2 orders of magnitude less processing time.

1 Introduction

Feature subset selection (FSS) is one of the techniques to pre-process the data
before we perform any data mining tasks, e.g., classification or clustering. FSS
is to identify a subset of original features from a given dataset while removing
irrelevant and/or redundant features [1]. The objectives of FSS are to improve
the prediction performance of the predictors, to provide faster and more cost-
effective predictors, and to provide a better understanding of the underlying
process that generated the data [2].

The FSS methods choose a subset of the original features to be used for
the subsequent processes. Hence, only the data generated from those features
need to be collected ignoring all the other features. This makes FSS different
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from feature extraction, where the correspondence information to the original
features are in general not maintained, so all the original variables are required
to be measured.

A time series is a series of observations, xi(t); [i = 1, · · · , n; t = 1, · · · ,m],
made sequentially through time where i indexes the measurements made at each
time point t [3]. It is called a univariate time series when n is equal to 1, and a
multivariate time series (MTS) when n is equal to, or greater than 2. An MTS
item is naturally represented in an m × n matrix, where m is the number of
observations and n is the number of variables, e.g., sensors. However, the state of
the art FSS techniques, such as Recursive Feature elimination (RFE) [2], require
each item to be represented in one row. Consequently, to utilize these techniques
on MTS datasets, each MTS item needs to be first transformed into one row or
column vector. However, since each of variables is considered separately during
this vectorization, the correlation information among the features might be lost
in the previous FSS method for MTS datasets [4].

In this paper, we propose a novel feature subset selection method for mul-
tivariate time series (MTS)1 named CLeVer (descriptive Common principal
component Loading based Variable subset selection method). CLeVer utilizes
the property of the principal components and common principal components to
retain the correlation information among the variables.

2 Proposed Method

CLeVer is a novel variable subset selection method for multivariate time series
(MTS) based on common principal component analysis (CPCA) [5, 6]. Figure 1
illustrates the entire process of CLeVer, which involves three phases: (1) prin-
cipal components (PCs) computation per MTS item, (2) descriptive common
principal components (DCPCs) computation per label2 and their concatenation,
and (3) variable subset selection using K-means clustering on DCPC loadings of
variables. Each of these phases is described in the subsequent sections. Table 1
lists the notations used in the remainder of this paper, if not specified otherwise.

2.1 PC and DCPC Computations

The first and second phases (except the concatenation) of CLeVer are incor-
porated into Algorithm 1. It obtains both PCs and then DCPCs consecutively.
The required input to Algorithm 1 is a set of MTS items with the same label.

Though there are n PCs for each item, only the first p(< n) PCs, which
are adequate for the purpose of representing each MTS item, are taken into
consideration. Algorithm 1 takes in the threshold (δ) to determine p. That is,

1 For multivariate time series, each variable is regarded as a feature [4]. Hence, the
terms feature and variable are interchangeably used throughout this paper, when
there is no ambiguity.

2 The MTS datasets considered in our analysis are composed of labeled MTS items.
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MTS Dataset

I. Principal Components Computation

II. Descriptive Common Principal Components Computation
and Concatenation

III. K-means Clustering on DCPC Loadings
and Variable Selection

Selected Variables (one per cluster)

Label A Label B

V1,  …  ,V n V1,  …  ,V n

DCPC 1
…

DCPC p
V1,  …  ,V n

PC1
…

PCp
…

PCn

…

K

…

K1 1… …

Fig. 1. The process of CLeVer

Table 1. Notations used in this paper

Symbol Definition

N number of MTS items in an MTS dataset

n number of variables in an MTS item

K number of clusters for K-means clustering

p number of PCs for each MTS item to be used for computing DCPCs

for each input MTS item, p is determined to be the minimum value such that the
ratio of the variances explained by its first p PCs to the total variance exceeds
the provided threshold δ for the first time (Lines 3∼10). Since the MTS items
can have different values for p, p is finally determined as their maximum value
(Line 11).

All MTS items are now described by their first p principal components. Let
them be denoted as Li (i = 1, . . . , N). Then, the DCPCs that agree most closely
with all N sets of p PCs are successively defined by the eigenvectors of the matrix
H =

∑N
i=1 L

T
i Li [5]. That is, SV D(H) = SV D(

∑N
i=1 L

T
i Li) = V ΛV T , where

rows of V T are eigenvectors of H and the first p of them define p DCPCs for N
MTS items. This computation of DCPC is captured by Lines 16∼17.
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Algorithm 1. ComputeDCPC: PC and DCPC Computations
Require: MTS data groups with N items and δ {a predefined threshold}
1: DCPC ← ø;
2: H[0] ← ø;
3: for i=1 to N do
4: X ← the ith MTS item;
5: [U, S, UT ] ← SVD(correlation matrix of X);
6: loading[i] ← UT ;
7: variance ← diag(S);
8: percentV ar ← 100 × (variance/

∑n
j=1 variancej);

9: pi ← number of the first p percentV ar elements whose cumulative sum ≥ δ;
10: end for
11: p ← max(p1, p2, . . . , pN );
12: for i=1 to N do
13: L[i] ← the first p rows of loading[i];
14: H[i] ← H[i − 1] + (L[i]T × L[i]);
15: end for
16: [V, S, V T ] ← SVD(H);
17: DCPC ← first p rows of V T ;

2.2 Variable Subset Selection

CLeVer utilizes a clustering method to group the similar variables together and
finally to select the least redundant variables. First, the DCPCs per label are
computed by Algorithm 1 and are concatenated column-wise if the MTS dataset
has more than one label. Subsequently, K-means clustering is performed on the
columns of the concatenated DCPC loadings, each column of which holds the
one-to-one correspondence to the original variables. Then, the column vectors
with the similar pattern of contributions to each of the DCPCs will be clustered
together.

The next step is the actual variable selection, which decides the representa-
tives of clusters. Once the clustering is done, one column vector closest to the
centroid vector of each cluster is chosen as the representative of that cluster.
The other columns within each cluster therefore can be eliminated. Finally, the
corresponding original variable to the selected column is identified, which will
form the selected subset of variables with the least redundant and possibly the
most related information for the given K. For details, please refer to [6].

3 Performance Evaluation

We evaluate the effectiveness of CLeVer in terms of classification performance
and processing time. We conducted several experiments on three real-world
datasets: HumanGait, BCAR, and BCI MPI. After obtaining a subset of vari-
ables using CLeVer, we performed classification using Support Vector Machine
(SVM) with linear kernel and leave-one-out cross validation for BCAR and 10
fold stratified cross validation for the other two datasets. Subsequently, we com-
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Fig. 2. (a) Classification Evaluation for HumanGait dataset (b) 22 markers for the

HumanGait dataset. The markers with a filled circle represent 16 markers from which

the 27 variables are selected by CLeVer, which yields the same performance accuracy

as using all the 66 variables. Classification Evaluations for (c) BCAR dataset and (d)

BCI MPI dataset

pared the performance of CLeVer with those of Recursive Feature Elimination
(RFE) [2], Fisher Criterion (FC), Exhaustive Search Selection (ESS), and using
all the available variables (ALL). The algorithm of CLeVer for the experiments
is implemented in MatlabTM . SVM classification is completed with LIBSVM [7].

Classification Performance. For the MTS dataset to be fed into SVM, each
MTS item is vectorized using the upper triangle of its correlation matrix for
CLeVer, Exhaustive Search Selection (ESS), and using all the variables (ALL).
For RFE and FC, we vectorized each MTS item as in [4]. That is, each variable
is represented as the autoregressive (AR) fit coefficients of order 3 using the
forward backward linear prediction [8].

Figure 2(a) presents the generalization performances on the HumanGait
dataset. The X axis is the number of selected subset of variables, i.e., the number
of clusters K, and the Y axis is the classification accuracy. It shows that a subset
of 27 variables selected by CLeVer out of 66 performs the same as the one using
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all the variables, which is 99.4% accuracy. The 27 variables selected by CLeVer
are from only 16 markers (marked with a filled circle in Figure 2(b)) out of 22,
which would mean that the values generated by the remaining 6 markers does
not contribute much to the identification of the person. The performances by
RFE and FC is much worse than the ones using CLeVer. Even when using all
the variables, the classification accuracy is around 55%. Figure 2(c) illustrates
CLeVer consistently outperforms RFE and FC when the number of selected
features is more than 4. The 7 variables selected by CLeVer produce about
100% classification accuracy, which is even better than using all the 11 variables
which is represented as a horizontal solid line. This implies that CLeVer never
eliminates useful information in its variable selection process. Figure 2(d) repre-
sents the performance comparison using the BCI MPI dataset3. It depicts that
when the number of selected variables is less than 10, RFE performs better than
CLeVer and FC technique. When the number of selected variables is greater
than 10, however, CLeVer performs far better than RFE. Using the 17 variables
selected by CLeVer, the classification accuracy is 72.85%, which is very close to
the performance of MIC 17, i,e., the known 17 motor imagery channels, whose
accuracy is 73.65%.

Processing Time. The processing time for CLeVer includes the time to per-
form Algorithm 1 and the average time to perform the clustering and obtain
the variable subsets while varying K from 2 to the number of all variables for
each dataset. The processing time for RFE and FC includes the time to obtain 3
autoregressive fit coefficients and perform the feature subset selection. Overall,
CLeVer takes up to 2 orders of magnitude less time than RFE, while performing
better than RFE up to about a factor of two. The detailed results are provided
in [6].
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Abstract. Covariances from categorical variables are defined using a
regular simplex expression for categories. The method follows the vari-
ance definition by Gini, and it gives the covariance as a solution of si-
multaneous equations using the Newton method. The calculated results
give reasonable values for test data. A method of principal component
analysis (RS-PCA) is also proposed using regular simplex expressions,
which allows easy interpretation of the principal components.

1 Introduction

There are large collections of categorical data in many applications, such as in-
formation retrieval, web browsing, telecommunications, and market basket anal-
ysis. While the dimensionality of such data sets can be large, the variables (or
attributes) are seldom completely independent. Rather, it is natural to assume
that the attributes are organized into topics, which may overlap, i.e., collections
of variables whose occurrences are somehow correlated to each other.

One method to find such relationships is to select appropriate variables and
to view the data using a method like Principle Components Analysis (PCA) [4].
This approach gives us a clear picture of the data using KL-plot of the PCA.
However, the method is not settled for the data including categorical data. Multi-
nomial PCA [2] is analogues to PCA for handling discrete or categorical data.
However, multinomial PCA is a method based on the parametric model and
it is difficult to construct a KL-plot for the estimated result. Multiple Corre-
spondence Analysis (MCA) [3] is analogous to PCA and can handle discrete
categorical data. MCA is also known as homogeneity analysis, dual scaling, or
reciprocal averaging. The basic premise of the technique is that complicated mul-
tivariate data can be made more accessible by displaying their main regularities
and patterns as plots (”KL-plot”) . MCA is not based on a parametric model
and can give a ”KL-plot” for the estimated result. In order to represent the
structure of the data, sometimes we need to ignore meaningless variables. How-
ever, MCA does not give covariances or correlation coefficients between a pair
of categorical variables. It is difficult to obtain criteria for selecting appropriate
categorical variables using MCA.

In this paper, we introduce the covariance between a pair of categorical vari-
ables using the regular simplex expression of categorical data. This can give a
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criterion for selecting appropriate categorical variables. We also propose a new
PCA method for categorical data.

2 Gini’s Definition of Variance and Its Extension

Let us consider the contingency table shown in Table 1, which is known as
Fisher’s data [5] on the colors of the eyes and hair of the inhabitants of Caithness,
Scotland. The table represents the joint population distribution of the categorical
variable for eye color xeye and the categorical variable for hair color xhair:

xhair ∈ { fair red medium dark black}
xeye ∈ { blue light medium dark}. (1)

Table 1. Fisher’s data

xhair

xeye

fair red medium dark black
blue 326 38 241 110 3
light 688 116 584 188 4

medium 343 84 909 412 26
dark 98 48 403 681 85

Before defining the covariances among such categorical variables, σhair,eye, let
us consider the variance of a categorical variable. Gini successfully defined the
variance for categorical data [6].

σii =
1

2N2

N∑
a=1

N∑
b=1

(xia − xib)2 (2)

where, σii is the variance of the i-th variable, xia is the value of xi for the a-th
instance, and N is the number of instances. The distance of a categorical variable
between instances is defined as xia − xib = 0 if their values are identical, and
= 1 otherwise. A simple extension of this definition to the covariance σij by
replacing (xia−xib)2 to (xia−xib)(xja−xjb) does not give reasonable values for
the covariance σij [8]. In order to avoid this difficulty, we extended the definition
based on scalar values, xia − xib, to a new definition using a vector expression
[8]. The vector expression for a categorical variable with three categories xi ∈
{ri

1, r
i
2, r

i
3} was defined by placing these three categories at the vertices of a

regular triangle.
A regular simplex can be used for a variable with more than four categories.

This is a straightforward extension of a regular triangle when the dimension of
space is greater than two. For example, a regular simplex in the 3-dimensional
space is a regular tetrahedron. Using a regular simplex, we can extend and
generalize the definition of covariance to
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� �
Definition 1. The covariance between a categorical variable xi ∈
{ri

1, r
i
2, ...r

i
ki
} with ki categories and a categorical variable xj ∈

{rj
1, r

j
2, ...r

j
kj
} with kj categories is defined as

σij = max
Lij

(
1

2N2∑
a=1...N

∑
b=1...N

(vki(xia)− vki(xib))Lij(vkj (xja)− vkj (xjb))t), (3)

where vn(rk) is the position of the k-th vertex of a regular (n − 1)-simplex
[1]. ri

k denotes the k-th element of the i-th categorical variable xi. Lij is a
unitary matrix expressing the rotation between the regular simplexes for xi

and xj.� �
Definition 1 includes a procedure to maximize the covariance. Using Lagrange

multipliers, this procedure can be converted into a simpler problem of simulta-
neous equations, which can be solved using the Newton method. The following
theorem enables this problem transformation.
� �

Theorem 1. The covariance between categorical variable xi with ki cate-
gories and categorical variable xj with kj categories is expressed by

σij = trace(AijLijt
), (4)

where Aij is (ki − 1)× (kj − 1) matrix :

Aij =
1

2N2

∑
a

∑
b

(vki(xia)− vki(xib))t(vkj (xja)− vkj (xjb)). (5)

Lij is given by the solution of the following simultaneous equations.

AijLijt
= (AijLijt

)t

LijLijt
= E (6)� �

Proof. Here, we consider the case where ki = kj for the sake of simplicity.
Definition 1 gives a conditional maximization problem :

σij = max
Lij

1
2N2

∑
a

∑
b

(vki(xia)− vki(xib))Lij(vkj (xja)− vkj (xjb))t

subject to LijLijt
= E (7)

The introduction of Lagrange multipliers Λ for the constraint LijLijt = E gives
the Lagrangian function:
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V = trace(AijLijt
)− trace(ΛtLijLijt −E),

where Λ is ki × ki matrix. A stationary point of the Lagrangian function V is a
solution of the simultaneous equations (6).

Instead of maximizing (3) with constraint LijLijt = E , we can get the
covariance by solving the equations (6), which can be solved easily using the
Newton method.

Application of this method to Table 1 gives

σhair,hair = 0.36409,σeye,hair = 0.081253,σeye,eye = 0.34985 (8)

We can derive a correlation coefficient using the covariance and variance values of
categorical variables in the usual way. The correlation coefficients for xeye,xhair

for Table 1 is 0.2277.

3 Principal Component Analysis

3.1 Principal Component Analysis of Categorical Data Using
Regular Simplex (RS-PCA)

Let us consider categorical variables x1,x2...xJ . For the a-th instance, xi takes
value xia. Here, we represent xia by the vector of vertex coordinates vki(xia).
Then, the values of all the categorical variables x1,x2...xJ for the a-th instance
can be represented by the concatenation of the vertex coordinate vectors of all
the categorical variables:

x(a) = (vk1(x1a),vk2(x2a), ...,vkJ (xJa)). (9)

Let us call this concatenated vector the List of Regular Simplex Vertices (LRSV).
The covariance matrix of LRSV can be written as

A =
1
N

N∑
a=1

(x(a)− x̄)t(x(a)− x̄) =

⎡
⎢⎢⎣

A11 A12 ... A1J

A21 A22 ... A2J

... ... ... ...
AJ1 AJ2 ... AJJ

⎤
⎥⎥⎦ . (10)

where x̄ = 1
N

∑N
a=1 x(a) is an averege of the LRSV. The equation (10) shows the

covariance matrix of LRSV. Since its eigenvalue decomposition can be regarded
as a kind of Principal Component Analysis (PCA) on LRSV, we call it the
Principal Component Analysis using the Regular Simplex for categorical data
(RS-PCA).

When we need to interpret an eigenvector from RS-PCA, it is useful to express
the eigenvector as a linear combination of the following vectors. The first basis
set, d, shows vectors from one vertex to another vertex in the regular simplex.
The other basis set, c, show vectors from the center of the regular simplex to
one of the veritices.
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dkj (a→ b) = vkj (b)− vkj (a) a, b = 1, 2...kj (11)

ckj (a) = vkj (a)−
∑kj

b=1 vkj (b)
kj

a = 1, 2...kj (12)

Eigenvectors defined in this way change their basis set depending on its direction
to the regular simplex, but this has the advantage of allowing us to grasp its
meaning easily. For example, the first two principal component vectors from the
data in Table 1 are expressed using the following linear combination.

vrs−pca
1 = −0.63 · deye(medium→ light)− 0.09 · ceye(blue)− 0.03 · ceye(dark)

−0.76 · dhair(medium→ fair) + 0.07 · dhair(dark → medium) (13)
vrs−pca

2 = 0.64 · deye(dark → light)− 0.13 · deye(medium→ light)
−0.68 · dhair(dark → medium) + 0.30 · chair(fair) (14)

This expression shows that the axis is mostly characterized by the difference
between xeye = light and xeye = medium values, and the difference between
xhair = medium and xhair = fair values. The KL-plot using these components
is shown in Figure 1 for Fisher’s data. In this figure, the lower side is mainly
occupied by data with values: xeye = medium or xhair = medium. The upper
side is mainly occupied by data with values xeye = light or xhair = fair.
Therefore, we can confirm that (deye(medium → light) + dhair(medium →
fair)) is the first principal component. In this way, we can easily interpret the
data distribution on the KL-plot when we use the RS-PCA method.

Multiple Correspondence Analysis (MCA) [7] provides a similar PCA method-
ology to that of RS-PCA. It uses the representation of categorical values as an
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indicator matrix (also known as a dummy matrix). MCA gives a similar KL-plot.
However, the explanation of its principal components is difficult, because their
basis vectors contain one redundant dimension compared to the regular simplex
expression. Therefore, a conclusion from MCA can only be drawn after making
a great effort to inspect the KL-plot of the data.

4 Conclusion

We studied the covariances between a pair of categorical variables based on
Gini’s definition of the variance for categorical data. The introduction of the
regular simplex expression for categorical values enabled a reasonable definition
of covariances, and an algorithm for computing the covariance was proposed.
The regular simplex expression was also shown to be useful in the PCA analysis.
We showed these merits through numerical experiments using Fisher’s data.

The proposed RS-PCA method is mathematically similar to the MCA method,
but it is much easier to interpret the KL-plot in RS-PCA than in MCA.
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Abstract. In many fields and applications, it is critical for users to make
decisions through OLAP queries. How to promote accuracy and efficiency
while answering multiple aggregate queries, e.g. COUNT, SUM, AVG,
MAX, MIN and MEDIAN? It has been the urgent problem in the fields
of OLAP and data summarization recently. There have been a few so-
lutions such as MRA-Tree and GENHIST for it. However, they could
only answer a certain aggregate query which was defined in a particular
data cube with some limited applications. In this paper, we develop a
novel framework ADenTS, i.e. Adaptive Density-based Tree Structure,
to answer various types of aggregate queries within a single data cube.
We represent the whole cube by building a coherent tree structure. Sev-
eral techniques for approximation are also proposed. The experimental
results show that our method outperforms others in effectiveness.

1 Introduction

Answering aggregate queries in data cubes approximately and efficiently is one
of the most essential techniques for data warehousing and data mining. Consider
a database of a charitable organization with 2 dimensions age and salary. Each
data point in the age-salary space corresponds to a donator and the attribute
value represents the amount of money the person donated. Moreover, consider
for instance in a 3-dimensional geographical database, geologists may be particu-
larly interested in a geological feature such as readings of snowfall or wind speed
at different locations. Typically, aggregate functions include COUNT, SUM, AV-
ERAGE, MAX, MIN, MEDIAN, etc.

Most developed algorithms could only adopt a certain defined aggregation in
the course of cube modelling. But real applications often call for methods that
can support different aggregations in a single cube. For example, for the database
of charitable organization mentioned above, we may have aggregate queries as
follows: what is the total number of people whose age is between 40 and 50, whose

� This research is supported in part by the Key Program of National Natural Science
Foundation of China (No. 69933010 and 60303008), China National 863 High-Tech
Projects (No. 2002AA4Z3430 and 2002AA231041).
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salary is above $10K, and whose donation is between $1K and $2K and please
give the average amount of money donated by people whose donation falls in the
range $5K − $10K and $15K − $20K.

The method we proposed in this paper aims at constructing an effective tree
structure by pre-computation of data cubes. Several techniques are presented
for efficient aggregate query approximation. Generally speaking, our method has
the following properties: (1) it is able to answer a variety of types of aggregate
queries within a single data cube; (2) while most traditional algorithms in this
category do not allow a user to specify a query range over the value dimension,
our algorithm does not have such constraint; (3) empirical evidence indicates
that our method leads to good accuracy in query processing.

The remainder of this paper is organized as follows. Section 2 describes
related work in this area. Section 3 and 4 include the algorithms for tree
construction and query approximation. Next we discuss in section 5 a heuris-
tic approach for the tree construction. Experimental results are presented in
Section 6.

2 Related Work

Existing algorithms for aggregate query approximation include quadtree struc-
ture [4], histogram techniques [2, 3], kernel density estimator [2, 5], clustering
techniques [5], and wavelet decomposition [1, 6].

Multi-Resolution aggregate tree (MRA-tree) [4] introduces a quadtree-like (or
R-tree like) multi-dimensional index structure that answers aggregate queries like
COUNT, SUM, MIN, MAX, AVG by selectively traversing the nodes of the tree
in a top-down fashion. Nodes at different levels of the tree correspond to space
partitioning in different granularities. An essential idea of the approach is that it
provides 100% intervals of confidence on the value of the aggregate. Furthermore,
the algorithm introduces a tree node traversal policy in order to reduce the
uncertainty of the aggregate value as fast as possible. However, this algorithm
sometimes cannot provide good aggregate estimation because the interval of
confidence is too wide and it suffers from information redundancy.

Another common approach to approximate aggregate queries is using prob-
ability density function or kernel density estimators to represent a data set. For
example, gaussian mixture model [5] is utilized for such representation. Given a
fixed gaussian model number k, the algorithm generates k clusters represented
by gaussian models based on the data set. A high compression ratio is achieved.
Nevertheless, the types of queries it can answer are limited and the quality of
the model is completely dependent upon the similarity between the actual prob-
ability distribution of the points and gaussian distribution.

The histogram technique GENHIST [2] is designed to approximate the den-
sity of multi-dimensional datasets, i.e. to answer COUNT queries. It creates
buckets of variable size and allows them to overlap. In order to make the data
points in a bucket uniformly distributed, the algorithm removes a proper num-
ber of points from the dense grids and therefore the density of the data point



ADenTS: An Adaptive Density-Based Tree Structure 531

in space becomes smoother. The method is able to achieve high accuracy while
storing comparatively small number of values.

3 Tree Structure for Aggregate Query Answering

To the best of our knowledge, our method, unlike all previous ones, addresses
the problem of answering multiple types of aggregate queries in a single data
cube by maintaining an effective index structure.

3.1 Basic Definitions and Notations

We denote a d-dimensional data set consisting of n data points to be D(n, d).
A data point < P0, P1, · · · , Pd−1 > in D(n, d) have the form of < loc, value >,
where < P0, P1, · · · , Pd−2 > is regarded as in the (d − 1)-dimensional loc space
Rloc. We also regard Pd−1 as in the Rvalue domain, representing the value at-
tribute associated with the point. Generally, users are interested in the value
attribute and therefore aggregate queries are performed over this dimension.

The proposed structure is a modified binary tree (Figure 1). For each node, we
maintain five fields: Area, Count, Max, Min, and Distrb. Given a tree node N ,
We have Area(N) corresponds to a (hyper-)rectangular area and Area(N) ⊆
Rloc. We denote PSet(N) as a set of data points associated with node N .
PSet(N) is a subset of the data points falling in Area(N). How PSet is calcu-
lated will be discussed in the following section. Formally, we have the followings:
(1) PSet(N) ⊆ {P |∀P ∈ D(n, d) ∧ P0P1 · · ·Pd−2 ∈ Area(N)}; (2) Count(N) =
||PSet(N)||; (3) Max(N) = max{Pd−1|∀P ∈ PSet(N)}, Min(N) = min{Pd−1|
∀P ∈ PSet(N)}; (4) ∀N1∀N2 ⇒ PSet(N1)∩PSet(N2) = Φ, D(n, d) = {P |∃N ⇒
P ∈ PSet(N)}. For a node N , we also maintain Distrb(N) in order to store the
probability distribution function over the value dimension Rvalue of PSet(N) .

Fig. 1. Adaptive Binary Tree
Fig. 2. High Bump Removal

3.2 Algorithm

The main algorithm for building up the tree structure can be divided into two
major steps. The first step is the adaptive construction of density binary tree,
which updates the Area field for every node. The second step is to iteratively
update all tree nodes with Count, Min, Max, and Distrb.
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Adaptive Construction of the Density Binary Tree. Two parameters h
and p are specified initially. Here h represents the maximum height of the tree
and p specifies a density threshold for the creation of a new node. The outline
of the step is shown in figure 3.

Input: dataset D(n, d), maximum tree height h, splitting density threshold p;
Output: density binary tree TR;
Method: ADTreeCons(D(n, d), h, p)
1: depth ← current tree depth;
2: IF depth ≥ h or n < p;
3: RETURN Null;
4: create a new node N and set Area(N) to the space corresponding to D(n, d);
5: k ← depth mod (d − 1);
6: divide D(n, d) half through the k-th dimension into two subspaces of D1 and D2;
7: N.LeftChild ← ADTreeCons(D1(n1, d), h, p);
8: N.RightChild ← ADTreeCons(D2(n2, d), h, p);
9: RETURN N ;

Fig. 3. Algorithm for Adaptive Construction of the Density Binary Tree

Input: density binary tree TR, dataset D(n, d), and maximum grid size S;
Output: updated tree TR;
Method: ADTreeUpdate(TR, D(n, d), S)
1: level ← bottom of the tree;
2: REPEAT
3: FOR each N in TR at current level
4: p ← density in Area(N);
5: q ← density in the neighborhood of Area(N);
6: IF p > q //high bump removal
7: PSet(N) ← random set of (p − q) points removed from Area(N);
8: Update Count(N), Max(N), Min(N), Distrb(N) from PSet(N);
9: level ← level − 1;
10: UNTIL (grid size at level > S OR level = 0);
11: update the level by removing the remained points;
12: RETURN TR;

Fig. 4. Algorithm for Bottom-Up Updating the Density Binary Tree

Bottom-Up Updating. Nodes at a same level have two properties: (1) they
have same shape (figure 1); (2) their density Count is greater than the threshold.
Thus for any node N , Area(N) can be regarded as one of the populated grids
picked up from a particular partitioning of the (d− 1)-dimensional space Rloc.



ADenTS: An Adaptive Density-Based Tree Structure 533

The detailed algorithm is described in figure 4. The bottom-up process can
be derived from GENHIST [2]. Given a populated grid N , we compare its den-
sity with their surrounding ones. If its density is higher than its neighbors, we
randomly remove a certain number of data points from Area(N) to make sure
that the density of the remaining points in Area(N) is equal to the average
density of the surrounding grids. We call this process as “High Bump Removal”
(figure 2). Intuitively, the dense areas become sparser and the density of the new
data set comes to be smoother in Rloc. After we obtain PSet for the node N ,
Count, Min, Max, and Distrb can be easily acquired according to the previ-
ous definitions. The distribution function can be specified either by users or by
implementing unbiased parameter estimation.

4 Aggregate Query Approximation

An aggregate query consists of three parts: (1) a query type identification specify-
ing the type of aggregate query over the value dimension, (2) a (d−1)-dimensional
user query region Q (⊆ Rloc), and (3) a specified range of the value dimension
denoted as T (⊆ Rvalue). For example, for the charitable organization database,
a query can be {COUNT, Q(40− 50, 10K+), T (1K − 2K) }.

4.1 COUNT

We traverse the tree from the root. Suppose that the i-th node visited is N (i).
There are four kinds of relation between Q and Area(N (i)) [4], as shown in
figure 5. For case (d), we simply return 0 and stop traversing. Otherwise, based
on the assumption that the data points in PSet(N (i)) are uniformly distributed
in the Rloc space, an estimated aggregate value E

(i)
count corresponding to the

node N (i) is calculated using the function E
(i)
count = Count(N (i))

∫
T

p(i)(ξ)dξ ×
||Area(N(i))∩Q||
||Area(N(i))|| , where p(i)(ξ) is the probability density distribution information

derived from Distrb(N (i)). If totally k nodes are visited, Ecount =
∑k

i=1 E
(i)
count

is returned as the approximation of the COUNT query.

Fig. 5. Relation of Node
Fig. 6. Example
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4.2 SUM and AVERAGE

The SUM and AVERAGE queries differ from the COUNT queries in that dif-
ferent estimated aggregate values are calculated. As for SUM, we have E

(i)
sum =∫

T
Count(N (i))ξp(i)(ξ)dξ × ||Area(N(i))∩Q||

||Area(N(i))|| and Esum =
∑k

i=1 E
(i)
sum. As for AV-

ERAGE, we have Eaverage = Esum

Ecount
.

4.3 MAX and MIN

Due to the continuous property of the value dimension, it is unnecessary to
specify a range T for MAX or MIN queries. Without loss of generality, we discuss
how MAX queries are answered.

Obviously we have E
(i)
max = Max(N (i)) for case (b) and E

(i)
max = −∞ for

case (d). Otherwise, when no correct answer can be guaranteed, the problem of
approximating E

(i)
max can be stated as follows. Given n = Count(N (i)) points

and we randomly pick up m = ||Area(N(i))∩Q||
||Area(N(i))|| × n (1 ≤ m ≤ n), what is the

expected maximum value among the m values? Assume that the n data points
have value V1, · · · , Vn and Vi ≤ Vi+1 (1 ≤ i ≤ n), then a straightforward solution

is E
(i)
max(m) =

∑n
i=m P (max = Vi) × Vi =

(m−1
m−1)×Vm+(m

m−1)×Vm−1+···+(n−1
m−1)×Vn

(m
n ) .

However, such computational cost is extremely high. Note that the E
(i)
max(m)

is a function that monotonically increases with respect to m, and E
(i)
max(1) =

E
(i)
max(max(V1)) = E

(i)
max(V1) = E(i)ξ, where E(i)ξ is the expectation of the func-

tion Distrb(N (i)). Also note that E
(i)
max(n) = Max(N (i)). Therefore, we come

up with a linear estimation: E
(i)
max(m) = E

(i)
max(1)+(m−1)× E(i)

max(n)−E(i)
max(1)

n =
1
n × Max(N (i)) + n−m+1

n × E(i)ξ. This estimation takes probability distribu-
tion information stored in each node into consideration and does not require
us to pre-compute V1, · · · , Vn. The final approximation for the MAX query is
Emax = max{E(i)

max, 1 ≤ i ≤ k}.

4.4 MEDIAN

Probability distribution information is very useful in the approximation of many
other types of aggregate queries. Typically, we discuss how MEDIAN queries
are approximated. For the i-th visited tree node N (i), we calculate the median
of PSet(N (i)) denoted as E

(i)
median by solving the equation

∫
ξ≤x∧ξ∈T

p(i)(ξ)dξ =∫
ξ>x∧ξ∈T

p(i)(ξ)dξ. The final approximation of the MEDIAN query is Emedian =∑k
i=1 Count(N(i))×E

(i)
median∑k

i=1 Count(N(i))
.

5 Heuristics for the Construction of Tree Structure

The goal of “high bump removal” process in algorithm ADTreeUpdate is to
improve the uniformity of the density of the whole data set. Nevertheless, if two
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children nodes with a same parent are denser than their neighboring grids, there
will be interference between the two corresponding adjacent high bumps. To
minimize the problem, we take the advantage of the binary tree structure and
update every pair of adjacent dense children simultaneously instead of updating
them one by one. This process is called “double-bump removal”, as shown in
figure 7.

Input: density binary tree TR, dataset D(n, d), and maximum grid size S;
Output: updated tree TR;
Method: ADTreeUpdate-Double(TR, D(n, d), S)
1: level ← bottom of the tree;
2: mark all nodes in TR as “single”;
3: REPEAT
4: FOR each pair of nodes N1 and N2 in TR at current level
5: p1 ← density in Area(N1);
6: p2 ← density in Area(N2);
7: q ← density in the neighborhood of Area(N1) ∪ Area(N2);
8: IF p1 > q AND p2 > q //double-bump removal
9: PSet(N1) ← random set of (p1 − q) points removed from Area(N);
10: Update Count(N1), Max(N1), Min(N1), Distrb(N1) from PSet(N1);
11: PSet(N2) ← random set of (p2 − q) points removed from Area(N);
12: Update Count(N2), Max(N2), Min(N2), Distrb(N2) from PSet(N2);
13: mark N1 and N2 as “double”;
14: FOR each node N marked as “single” in TR at current level
15: IF N is denser than its neighbors
16: Remove the High Bump and update N
17: level ← level − 1;
18: UNTIL (grid size in level > S OR level = 0);
19: update the level by removing the remained points;
20: RETURN TR;

Fig. 7. Improved Algorithm for Updating of the Density Binary Tree

For instance, suppose that there is a data set whose density distribution is
depicted in figure 6. Suppose that N1 and N2 are two nodes with the same parent.
The original algorithm will result in Count(N1) = 1000− 200×7+600

8 = 750 and
Count(N2) = 600 − 200×7+750

8 = 331. After the heuristic approach, the result
will be better with Count(N1) = 800 and Count(N2) = 400.

6 Experiments

6.1 Methodology

We applied ADenTS to real database obtained from the US Forest Cover Type
and synthesized query workloads. The implementation of our algorithm is on an
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IBM 1.5GHz CPU and 256MB of DDR main memory with Windows XP and
Microsoft Visual C++ 6.0.

Data sets with 3 to 5 dimensions are generated. For each projected data set
and each supported type of query, 1000 random queries are created with average
selectivity 1% to form a query workload. Queries with data point selectivity of
less than 0.1% are disregarded because small selectivity would seriously degen-
erates the effectiveness of all algorithms. The accuracy is measured by relative
error. Note that the relative error of MIN, MAX queries should be calculated by

RelativeError =
|CorrectAnswer −ApproximatedAnswer|

|RangeofV alueDimension| .

6.2 Comparison with MRA-Tree and GENHIST

Due to the apparent difference of the type of queries three algorithms can sup-
port, we categorize the experimental results into three groups according to: (1)
queries that can be only answered by ADenTS ; (2) queries that can be an-
swered by both ADenTS and MRA-Tree; and (3) queries that can be answered
by ADenTS and GENHIST.
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Fig. 8. Performance of ADenTS

In figure 8 and 9, we plot the relation of the tree size with query answering
accuracy for the 3- and 4-dimeniosnal datasets and all supported queries with
ADenTS, i.e. COUNT, SUM, AVG, MAX, MIN, MEDIAN. For case (2), it is
stated that MRA-Tree does not support queries with a specified value range and
that it does not support MEDIAN queries, either. Therefore, we generate four
types of queries with no specified range over the value dimension so that they can
be answered by MRA-Tree. In figure 11 we demonstrate that for COUNT, SUM,
AVG, and MAX queries, our method can produce results better than MRA-Tree
in 3 to 5 dimensional data sets. This is due to the fact that in ADenTS the
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uniform assumption can be better satisfied than in the simple grid partitioning
in MRA-Tree. Furthermore, unlike MRA-Tree, the data points related to the
nodes in ADenTS are disjoint and contains no information redundancy. In
case (3), GENHIST can answer only COUNT queries. The way our method
approximate COUNT queries is essentially similar to GENHIST with respect
to the bump removing procedure. However, because ADenTS introduces the
process of double-bump removal, it outperforms GENHIST slightly, as shown in
figure 9. We also present the relation of the number of tree nodes with respect
to the splitting density threshold ρ. The three curves drawn in figure 10 display
that, as the splitting density threshold is decreased, more and more nodes with
relatively less data points will be created.

7 Conclusion

In this paper, we presented ADenTS, an effective tree structure for aggregate
query answering in multi-dimensional data cubes. The main target of our method
is to support various types of aggregate queries without loss of accuracy. Briefly
speaking, The tree is built through an adaptive density-based approach in top-
down and bottom up fashion. Our method inherits the advantages of both the
Multi-Resolution Aggregate tree (MRA-Tree) structure and the histogram tech-
nique GENHIST. In addition, it outperforms them by answering more kinds of
queries within a single data structure and meanwhile achieving good accuracy,
which can be well demonstrated in the experimental evaluation.
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Abstract. Data mining on large relational databases has gained popu-
larity and its significance is well recognized. However, the performance
of SQL based data mining is known to fall behind specialized imple-
mentation. We investigate approaches based on SQL for the problem of
finding frequent patterns from a transaction table, including an algo-
rithm that we recently proposed, called Ppropad (Parallel PROjection
PAttern Discovery). Ppropad successively projects the transaction table
into frequent itemsets to avoid making multiple passes over the large
original transaction table and generating a huge sets of candidates. We
have built a parallel database system with DB2 and made performance
evaluation on it. We prove that data mining with SQL can achieve suf-
ficient performance by the utilization of database tuning.

1 Introduction

Mining frequent pattern in transaction databases has been studied popularly
in data mining research. Most of the algorithms used today typically employ
sophisticated in-memory data structures, where the data is stored into and re-
trieved from flat files. The integration of data mining with database systems is
an emergent trend in database research and development area. This is particu-
larly driven by explosion of the data amount stored in databases such as Data
Warehouses during recent years, and database systems provide powerful mecha-
nisms for accessing, filtering, and indexing data, as well as SQL parallelization.
In addition, SQL-aware data mining systems have ability to support ad-hoc min-
ing, ie. allowing to mine arbitrary query results from multiple abstract layers of
database systems or Data Warehouses.

However, from the performance perspective, data mining algorithms that are
implemented with the help of SQL are usually considered inferior to algorithms
that process data outside the database systems. On the other hand recently most
major database systems have included capabilities to support parallelization.
This fact motivated us to develop a new parallel SQL-based algorithm which
avoids making multiple passes over the large original input table and complex
joins between the tables, and to examine how efficiently SQL based frequent
itemset mining can be parallelized and speed up using parallel database system.
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The remainder of this paper is organized as follows. In section 2, we briefly
discuss frequent pattern mining algorithms that employ SQL queries. Ppropad
algorithm is explained in section 3. Section 4 presents several experiments that
assess the performance of the algorithms based on synthetic datasets. We con-
clude the paper in section 5 and give a brief outlook on future work.

2 Frequent Pattern Mining with SQL

2.1 The Problem of Frequent Pattern Mining

The frequent Pattern mining problem can be formally defined as follows. Let
I = {i1, i2, ..., im} be a set of items, and DB be a transaction database, where
each transaction T is a set of items and T ⊆ I. An unique identifer, called TID,
is assigned with each transaction. A transaction T contains a pattern P , a set of
items in I, if P ⊆ T . The support of a pattern P is the number of transactions
containing P in DB. We say that P is a frequent pattern if P ’s support is not
less than a predefined minimum support threshold ξ.

Most of the previous studies adopt an Apriori-like candidate set generation-
and-test approach [2, 4, 5], which is based on an anti-monotone Apriori heuristic:
if any length k pattern is not frequent in the database, its super-pattern of
length (k+1) can never be frequent. Recently, an FP-tree based frequent pattern
mining method [3], called FP-growth, developed by Han et al. achieves high
efficiency, compared with Apriori-like approach. Pramudiono et al. reported
parallel execution of FP -growth on shared nothing environment [6].

2.2 Frequent Pattern Mining Based on SQL

Before data can be mined with SQL, it has to be made available as relational
tables. Transaction data, as the input, is transformed into the first normal form
table T with two column attributes: transaction identifier (tid) and item iden-
tifier (item). The support counters of frequent items can be kept in a separate
table F (item, count).

Almost all frequent pattern mining algorithms with SQL consist of a sequence
of steps proceeding in a bottom-up manner. The result of the kth step is the set of
frequent itemsets, denoted as Fk. The first step computes frequent 1-itemsets F1.
The candidate generation phase computes a set of potential frequent k-itemsets
Ck from Fk−1. The support counting phase filters out those itemsets from Ck

that appear more frequently in the given set of transactions than the minimum
support and stores them in Fk.

3 Algorithm for Ppropad

We proposed a SQL-based algorithm, called PROjection PAttern Discovery, or
P ropad for short [7]. Like the FP-growth method it adopts the divide-and-
conquer strategy and successively transforms the original transaction table into
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Table 1. A transaction database DB and ξ = 3

TID Items Frequent Items

1 a, c, d, f, g, i, m, o a, c, f, m, o

2 a, b, c, f, l, m, n a, b, c, f, m

3 b, f, h, j, n b, f

4 b, c, k, o, b, c, o

5 a, c, e, f, l, m, o a, c, f, m, o

a set of frequent item-related projected tables. Then we separately mine each
one of the tables as soon as they are built. Let us give an example with five
transactions in Table 1. The support threshold is set to 3.

Before the algorithm is given, let us define the projected transaction table:

Definition 1. In order to avoid repetitiousness and to ensure each frequent item
is projected to at most one projected table, we suppose items in alphabetical or-
der. Let i be a frequent item. A i-related projected transaction table, is denoted
as PT i, that collects all frequent items (larger than i) in the transactions con-
taining i and the support of these items satisfies the minimum support threshold.

The mining process can be regarded as a process of frequent pattern growth,
which is facilitated by projecting transaction tables in a top-down fashion. In
our approach, we are trying to find all frequent patterns with the respect to one
frequent item, which is the base item of the tested projected table. For each
frequent item i we traverse the transaction table to find all frequent items that
occur with i. All items that are locally frequent with i will participate in building
the i projected table. To describe the process of projecting, let’s first examine
the example in Table 1 as follows.

– At the first level we simply gather the count of each item and items that
satisfy the minimum support are inserted into the transformed transaction
table TF that has the same schema as transaction table T . It means that
only frequent 1-items are included in the table TF .

– At the second level, for each frequent 1-item i (except the last one) in the ta-
ble TF we construct its respective projected transaction table PT i. This is
done by two phases. The first step finds all frequent items that co-occur with
i and are larger than i from TF . The second step finds the local frequent
items. Only those local frequent items are collected into the PT i. Frequent
1-items are regarded as the prefixes, frequent 2-patterns are gained by sim-
ply combining the prefixes and their local frequent itemsets. For instance,
we get the frequent 1-items {a, b, c, f,m, o} and their respective projected
transaction tables PT a, PT b, PT c, PT f , PT m. For the table PT a,
its local frequent item are {c, f,m} stored in F . The frequent 2-patterns are
{{a,c}, {a,f}, {a,m}}.

– At the next level, to each frequent item j in the projected transaction table
PT i we recursively construct its projected transaction table PT i j and gain
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its local frequent items. For example, c is the first frequent item in PT a. We
get the frequent 3-patterns are {{a,c,f}, {a,c,m}}. The similar procedure goes
on until one projected transaction table is filtered. A filtered projected table
is that each transaction in the table only maintains items that contribute to
the further construction of descendants. We construct TEMP and finally
filter it out due to only one frequent item in it. The item set {a,c,f,m} is
contained in the frequent 4-itemsets.

3.1 Parallel Propad Approach

The Parallel P ropad Approach, Ppropad for short, we proposed consists of two
main stages.

Stage one is the construction of the transformed transaction table TF that
includes all frequent 1-items. In order to enumerate the frequent items effi-
ciently, the transaction data is partitioned uniformly correspond to transaction
tid among the available processors. In a partitioned database, this can be done
automatically.

Stage two is the actually mining of the table by projecting. In the P ropad
approach, the projecting process is facilitated by depth first approach. Since the
processing of the projection of one frequent itemsets is independent from those of
others, it is natural to consider it as the execution unit for the parallel processing.
We divide the frequent items of the table TF among the available nodes in a
round-robin fashion. Each node is given an approximately equal number of items
to read and analyze. As a result, the items is spilt in p equal size. Each node
locally constructs the projected transaction tables associated with the items
in hand until the the search for frequent patterns associated with the items
terminates.

4 Performance Evaluation

In our experiment we built a parallel RDBMS: IBM DB2 UDB EEE version
8.1 on multiple nodes. We configure DB2 EEE to execute in a shared-nothing
architecture that each node has exclusive access to its own disk and memory. Four
nodes were employed in our experiments. Each node runs the Linux operation
system on Intel Xeon 2.80Ghz.

4.1 Datasets

We use synthetic transaction data generation with program described in Apriori
algorithm paper [1] for experiments. The nomenclature of these data sets is of
the form TxxIyyDzzzK, Where xx denotes the average number of items present
per transaction, yy denotes the average support of each item in the data set
and zzzK denotes the total number of transactions in K (1000’s). We report
experimental results on four data sets, they are respectively T25I20D100K that
are relatively dense, T10I4D100K that is very sparse. (Here we have chosen the
dataset T10I4D100K, because for this dataset, the experiment runs for 10 passes
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and we want to see how these approaches perform when mining long pattern.)
Transaction data is partitioned uniformly by hashing algorithm corresponds to
transaction ID among processing nodes.

4.2 Performance Comparison

In this subsection, we describe our algorithm performance compared with K-Way
join. Figure 1 (a) shows the execution time for T10I4D100 with the minimum
support of 0.1% and 0.06% on each degree of parallelization. We can drive that
P ropad is faster than K-Way join as the minimum support threshold decreases.
This is because for datasets with long patterns, joining k-copies of input table for
support counting at higher passes is quite significant though the cardinality of
the Ck decreases with the increase in the number of passes. The speedup ration is
shown in Figure 1 (b). Figure 1 (c) shows the execution time and speedup ration
for T25I20D100K with the minimum support of 0.2% and 0.1% on each degree
of parallelization. The speedup ratio shown in Figure 1 (d) seems to decrease
with 4 processing nodes. It might be caused by the communication overhead.

(a)

[

(b)

]

(c)

[

(d)

]

Fig. 1. Execution time (left) Speedup ration (right)



544 X. Shang and K.-U. Sattler

From the results we can see that the Ppropad approach has better paral-
lelization than K-Way join. This is because for K-Way join approach with many
large tables and a wide variety of tables and columns involved in joins, it can
be difficult or impossible to choose the table’s partitioning key such that all sig-
nificant queries can be executed without heavy inter-partition communication.
While, Ppropad approach avoids complex joins between tables.

5 Summary and Conclusion

In this paper, we implemented the parallelization of SQL based algorithm,
Ppropad, to mine frequent itemsets from databases. Rather than Apriori-like
method it adopts the divide-and-conquer strategy and projects the transaction
table into a set of frequent item-related projected tables. Experimental study
shows that the Ppropad algorithm can get better speedup ratio than K-Way
join based on Apriori-like on all data sets, that means it is parallelized well.

There remain lots of further investigations. Since the round robin fashion of
frequent items partition among the nodes, the load balancing is a problem when
the extreme skew exists in data. We would like to examine how to absorb such
skew. We also plan to check our parallel SQL based frequent pattern mining
approach on more nodes. In addition, we’d like to investigate the effect of intra
parallelism under SMP environment.
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Abstract. Conflicts may appear during knowledge processing, where some 
knowledge pieces are different but they refer to the same subject. Consensus 
methods are useful in processing inconsistent knowledge. However, for almost 
conflict situations consensus may be determined but it is not always sensible. In 
this paper we investigate the aspect of reasonableness of consensus. For this 
aim we define two notions: consensus susceptibility and consistency measure. 
Owing to them one may get to know when it is worth to determine a consensus 
for a conflict. We show the dependencies between consistency and the 
consensus susceptibility for conflict situations. Some results of the analysis are 
presented.  

1   Introduction 

In many practical situations in order to solve a problem one often has to gather 
knowledge from different resources for realizing the task. Nowadays owing to 
modern computer technologies gathering knowledge is not a hard task at all, but there 
may be two features of this knowledge, which often make the decision making 
process difficult. The first feature is related to the big amount of knowledge which on 
one hand contains many useful elements, but on the other hand it often contains also a 
lot of useless elements. For these problems many methods for information filtering or 
ordering have been proposed. The second feature refers to the consistency of the 
gathered knowledge. Some elements of this knowledge may refer to the same subject, 
but they are not coherent. Hunter [3] describes the resources of inconsistent 
knowledge as situations in which one obtains “too much” information. 

It is known that the consistency of knowledge bases is very important because 
inconsistent knowledge may provide inconsistent conclusions [6]. Inconsistent 
knowledge often leads to conflict uprising. For example in multiagent systems, where 
sources of knowledge are as various as methods for its acquisition, the inconsistency 
of knowledge often leads to conflicts among agents, for which the resolution is 
required. Consensus methods seem to be very useful in conflict solving [1],[7],[9]. 
Consensus methods are related to conflict models presented in [7],[13]. In this 
approach the body of conflict is a set of agents, the conflict subject consists of 
contentious issues and the conflict profile is a collection of tuples representing the 
participants' opinions referring to some issue. Information system tools seem to be 
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good for representing conflicts [14]. By a conflict profile (representing a conflict 
situation) we understand a set of knowledge versions representing different opinions 
on some matter, which are generated by different resources such as agents functioning 
in sites of a distributed system or experts of some field including this matter.  

In purpose to solve a conflict the management system should determine a proper 
version of knowledge for the common matter. This final knowledge version is called a 
consensus of the given conflict profile. The main subject of this paper consists of 
consideration of reasonableness of potential consensus. In other words, we consider 
two aspects of consensus reasonableness: the first is related to so called consensus 
susceptibility for conflict profiles and the second refers to measuring up the degree of 
knowledge consistency. In the first aspect we present some criteria which allow to 
state if for a given profile representing a conflict situation the chosen consensus is 
sensible or good enough. In the second aspect we present another approach for 
evaluating the possibility for effective conflict solving, which is based on measuring 
up the consistency degree representing the coherence level of the profile’ elements. 
How to understand the consistency notion? People use it very intuitively to describe 
some divergences in various occurrences. Researchers often use this term but they do 
not define what it means. The definition has been provided by Helpern & Moses [2] 
and Nieger [5]: Knowledge consistency is a property that a knowledge interpretation 
has with respect to a particular system. The need for measures of knowledge 
consistency has been announced earlier in the aspect of solving conflicts in distributed 
environments [9].  

The formal investigations on conflicts have been initiated by Pawlak [13]. In work 
[7] the author has proposed a conflict model which enables processing multi-value 
and multi-attribute conflicts. Conflicts have been also investigated by using non-
classical logics such as paraconsistent logics [3] or four-valued logics [4]. 

In this paper we present in short the consensus problem (Section 2). Next we 
define the notion of consensus susceptibility (Section 3) and show several consistency 
functions (Section 4). In Section 5 the relationships between consensus susceptibility 
and the consistency degree of conflict profiles are presented. Some conclusions and 
directions for future works are included in Section 6. 

2   Consensus Choice Problem 

In this section we present a brief overview of consensus choice problem. The wide 
description of this problem may be found in [8]. We assume that the subject of 
interests is a finite universe U of objects. Let Π(U) denote the set of subsets of U. By 

k∏̂ (U) we denote the set of k-element subsets (with repetitions) of set U for k∈N, 

and let ∏̂ (U) =
0>k

k∏̂ (U). Each element of set ∏̂ (U) is called a profile. The 

structure of this universe is a distance function  

                                              δ: U×U → ℜ+, 

which satisfies the following conditions: 
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Nonnegative:   (∀x,y∈U)[δ(x,y) ≥ 0], 

Reflexive:         (∀x,y∈U)[δ(x,y) = 0 iff x=y], 

Symmetrical:    (∀x,y∈U)[δ(x,y) = δ(y,x)]. 

Let us notice that the above conditions are only a part of metric conditions. Metric is a 
good measure of distance, but its conditions are too strong [8]. A space (U,δ) defined 
in this way does not need to be a metric space. Therefore we will call it a distance 
space. 

Let X, X1, X2∈ ∏̂ (U), x∈U, and  

δ(x,X) = Σy∈X δ(x,y), 

δn(x,X) = Σy∈X [δ(x,y)]n for n∈N, 

! ∈ δ−δ=δ Xy Xx
X

yxXx 2)],(
)(card

1
),([),( . 

Definition 1. By a consensus choice function in space (U,δ) we mean a function 

    c: ∏̂ (U) → Π(U). 

For X∈ ∏̂ (U), the set c(X) is called the representation of the profile X, where an 
element of c(X) is called a consensus (or a representative) of the profile X. Let Cs 
denote the set of all consensus choice functions in a space s = (U,δ). 

In the following definition symbol  denotes the sum operation on sets with 
repetitions, and symbol ∗ denotes the multiple occurrence of an element in a set with 
repetitions (that is a multiset). 

Definition 2. The consensus choice function c∈Cs satisfies the postulate of: 

1. Condorcet consistent (Cc), iff  
  (c(X1) ∩ c(X2) ≠ ∅)    (c(X1 X2) = c(X1) ∩ c(X2)) 

2. Faithful (Fa), iff 
  c({x}) = {x}  

3. Unanimous (Un), iff 
c({n ∗x}) = {x} 

4.  Reliability (Re) iff  
  c(X) ≠ ∅ 

5.  Consistency (Co) iff  
  (x ∈ c(X))    (x ∈ c(X {x}))  

6.  Quasi-unanimous (Qu) iff 
  (x ∉ c(X))    ((∃n∈N)(x ∈ c(X {n∗x})) 

7.  Proportion (Pr) iff  
  (X1⊆X2  ∧ x∈c(X1) ∧ y∈c(X2))    (δ(x,X1) ≤ δ(y,X2)) 

8.  1-Optimality (O1) iff 
  (x ∈ c(X))    (δ(x,X) = 

Uy∈
min δ(y,X)) 

∪

∪

∪

∪
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9.  2-Optimality (O2) iff  
(x ∈ c(X))    (δ2(x,X) = 

Uy∈
min δ2(y,X)). 

Below we present some results of postulates' analysis [8]. 
Let S be the set of all spaces s = (U, δ), where the set U is finite and the distance 

function δ is nonnegative, reflexive and symmetric. Each space s uniquely determines the 
set Cs of all consensus functions in this space. Then S should not be the model for the 
following formulas, in which the names of postulates are treated as atomic predicates: 

a) (∀c∈Cs)(C  C')  

where  C,C'∈{Re(c), Co(c), Qu(c), Pr(c), O1(c), O2(c)} and C≠C' 

b) (∃c∈Cs)(Re(c) ∧ Co(c) ∧ Qu(c) ∧ Pr(c) ∧ O1(c) ∧ O2(c)) 

c) (∃c∈Cs)(O1(c)  ∧ O2(c)) 

But S should be the model for the following formulas: 

d) (∃c∈Cs)(Re(c) ∧ Co(c) ∧ Qu(c) ∧ Pr(c) ∧ O1(c) ∧ Cc(c)) 

e) (∃c∈Cs)(Re(c) ∧ Co(c) ∧ Qu(c) ∧ O2(c) ∧ Cc(c)) 

f) (∀c∈Cs)((O1(c)  ∧ Re(c))  Co(c)) 

g) (∀c∈Cs)((O1(c)  ∧ Re(c)) ⇔ (Pr(c) ∧ Qu(c) ∧ Re(c))) 

h) (∀c∈Cs)((O1(c) ∧ Re(c)) ⇔ (Pr(c) ∧ Qu(c) ∧ Re(c) ∧ Co(c))) 

i) (∀c∈Cs)((Re(c) ∧ Pr(c) ∧ Qu(c))  (Fa(c) ∧ Un(c))) 

j) (∀c∈Cs)((O2(c)  ∧ Re(c))  (Co(c) ∧ Qu(c))) 

k) (∀c∈Cs)((O2(c)  ∧ Re(c))  (Fa(c) ∧ Un(c))). 

The above results show that 2 consensus functions, i.e. O1 and O2, play very 
important role. They satisfy a large number of postulates, such as Condorcet 
consistent, Faithful, Unanimous, Reliability, Consistency, Quasi-unanimous and 
Proportion. Therefore, these 2 choice criteria are the main subject in the consideration 
of consensus susceptibility in this paper. 

In this paper we do not deal with concrete structures of objects belonging to 
universe U. In consensus theory some object structures of have been investigated, for 
example, linear orders (rankings); n-trees; semillatices; partitions of sets etc.  

3   Susceptibility to Consensus 

In this section we present the definition, criteria and their analysis for profiles’ 
susceptibility to consensus. It often happens that in a distance space for each profile 
one may always determine its consensus (for example using consensus function O1 or 
O2). However, one should give the answer for the following question: Is the 
consensus sensible and may it be accepted as the solution of the conflict? In other 
words, is the profile susceptible to consensus? It seems, to the best of the author’s 
knowledge, that the notion “susceptibility” is a new one in the consensus theory and 
has not been investigated up to now.  

Below we present an example illustrating the above problem. 
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Example 1. [10] Let space (U,δ) be defined as follows: U={a,b} where a and b are 
objects of some type, and distance function ∂ is given as 

   δ(x,y) = 
#

%
≠
=

yx

yx

for      1

for     0
 

for x,y∈U. Let X be a profile, as a set with repetitions, where X = {50∗a, 50∗b}, that 
is each of objects a and b occurs 50 times in the profile. Assume that X represents the 
result of some voting, in which 100 voters take part, each of them gives one vote (for 
a or b). There are 50 votes for a and 50 votes for b. It is easy to note that for profile X 
the consensus should be equal to a or b. But it intuitively seems that none of them is a 
good consensus, because there is lack of a compromise in this conflict situation. Let 
us consider now another profile X' = {50∗a, 51∗b}. For this profile the only consensus 
should be b and it seems to be a good consensus, that means this profile is susceptible 
to consensus.  

The above example shows that although consensus may always be chosen for a 
conflict profile, it does not have to be a good one. We define below the notion of 
profile' susceptibility to consensus. 

For given distance space (U,δ), X∈ ∏̂ (U) and card(X)=k. We firstly define the 
following values: 

  
)1(

)),((  

    )(ˆ ,

+

δ

=δ
!

∈

kk

yx

X
Xyx

i

i   for i=1,2. 

  
k

yx

X
Xy

i

i
x

!
∈

δ

=δ

)),((  

    )(ˆ    for i=1,2. 

  )(ˆmin    )(ˆ
min XX i

x
Ux

i δ=δ
∈

      for i=1,2. 

  )(ˆmax    )(ˆ
max XX i

x
Ux

i δ=δ
∈

     for i=1,2. 

The interpretations of these values are the following: 

•   )(ˆ Xiδ  – This value serves to representing the average distance of all 
distances between elements of profile X. The sum of these distances is 
expressed by the numerator of the quotient. However, one can ask a 
question: Why in the denominator is not k2, but k(k+1)? The answer is: In 
the numerator each distance δ(x,y), where x≠y, occurs exactly twice, while 
each distance δ(x,y), where x=y, occurs exactly only one time. Because 
δ(x,y) = 0 for x = y, then adding such distance does not change the value of 
numerator, however, in determining the average each distance should be 
taken into account twice. Thus the denominator should be k(k+1), but not k2. 

•   )(ˆ Xi
xδ  – This value represents the average distance of all distances 

between object x and the elements of profile X.  
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•   )(ˆ
min Xiδ  – The minimal value of )(ˆ Xi

xδ  for x∈U. 

•   )(ˆ
max Xiδ  – The maximal value of )(ˆ Xi

xδ for x∈U. 

Definition 3. Let X∈ ∏̂ (U) be a profile. We say that profile X is susceptible to 
consensus in relation to postulate Oi for i=1,2 (or Oi-susceptible to consensus) if and 
only if the following inequality takes place: 

   )(ˆ Xiδ ≥ )(ˆ
min Xiδ . 

The idea of the above definition relies on such intuition that because value )(ˆ Xiδ  

represents the average distance in profile X, and )(ˆ
min Xiδ  represents the average 

distance from the consensus to the elements of the profile, then X is susceptible to 
consensus (i.e. is possible to determine a “good enough” consensus for X), if the 
second value is not greater then the first. Satisfying the above inequality means that 
the elements of profile X are “dense” enough for determining a good consensus. In 
other words, opinions represented by these elements are consistent enough for 
determining a good compromise.  

Henceforth if i = 1 then we will not write the index i. 
For the profile X from Example 1 the above defined values are calculated as 

follows:  

   )(ˆ Xδ  = 
101

50

101100

50502 =
×

××
  

and 

   )(ˆ
min Xδ  = 

2

1

100

50 = . 

Of course 
2

1

101

50 < , then profile X is not O1-susceptible to consensus. For profile 

X' we have the following: 

   )'(ˆ Xδ  = 
102101

51502

×
××

, 

and 

   )'(ˆ
min Xδ  = 

101

50
. 

Thus )'(ˆ Xδ  = )'(ˆ
min Xδ , it means that profile X' is O1-susceptible to consensus. 

Similarly we can state that profile X is not O2-susceptible to consensus, but profile X' 
is O2-susceptible to consensus. Definition 3 is then consistent with the intuition. 

Definition 4.  Let X∈ ∏̂ (U) be a profile. We say that X is i-regular for i = 1,2 if and 
only if for each pair of objects  x,y∈U the following equality takes place: 

   )(ˆ Xi
xδ  = )(ˆ Xi

yδ . 
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Notice that profile X defined in Example 1 is i-regular for i = 1,2, while profile X' 
is not i-regular (or i-irregular) for i = 1,2. 

Below we present some results of the analysis [10]. 

Theorem 1. Each i-regular profile X, where card(X) > 1, is not Oi-susceptible to 
consensus for i = 1,2.  

Theorem 1 implies that if a profile is regular, then it is not worth to determine the 
consensus.  

Theorem 2. Let X, X'∈ ∏̂ (U) be such profiles that  X' = X {x} for some x∈X and X 
is i-regular, then profile X' is  Oi-susceptible to  consensus for i = 1,2.  

Theorem 2 shows that if profile X is i-regular, then adding to it any its element 
should cause that the new profile is Oi-susceptible to consensus. The practical sense 
of this theorem is the following: if in given conflict situation any of the opinions does 
not dominate the others but in the additional voting one of them dominates the rest, 
then it is possible to determine a sensible consensus. 

Thus profile X can not be O1-susceptible to consensus. In Example 1 for profile X 
(the number of voters is equal to 100) one can note that it is neither O1-susceptible, 
nor O2-susceptible to consensus. 

Below we present the notion of susceptibility to consensus of a profile in the 
context of other profile.  

Definition 5. Profile X is susceptible to consensus in the context of profile Y if X⊂Y 

and )(ˆ
max Xδ  ≤ )(ˆ

min Yδ .  

The above definition serves in such situations when profile X is not susceptible to 
consensus but its context (profile Y) is more non-susceptible to consensus. In other 
words, the conflict encompassed by profile X is not meaningful in the relation to the 
conflict represented by profile Y. In this case the consensus determined for profile X 
could be acceptable. 

4   Consistency Functions for Conflict Profiles 

By symbol C we denote the consistency function of profiles. This function has the 
following signature: 

C: ∏̂ (U)  →  [0,1]. 

where [0,1] is the closed interval of real numbers between 0 and 1. 
The idea of this function is relied on measuring up the consistency degree of 

profile’s elements. The requirements for consistency are expressed and analysed in 
work [12]. 

In this section we present five consistency functions [12], which are defined as 
follows:  

Let X={x1, …, xM} be a profile. We assume that M>1 because if M=1 then the 
profile X is a homogeneous one. We introduce the following parameters: 

 

∪
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- The matrix of distances between the elements of profile X: 

- The vector of average distances between an element to the rest: 

         

- Diameters of sets X and U: 

                                    ( ) ( )yxXDiam
Xyx

,max
,

δ=
∈

, 

                                    ( ) ( ) 1,max
,

=δ=
∈

yxUDiam
Uyx

;  

- The maximal element of vector WX:  

                                    ( ) X
i

Mi

X wWDiam
≤≤

=
1
max  

representing this element of profile X, which generates the maximal sum of distances 
to other elements. 

- The average distance in profile X: 
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- The sum of distances between an element x of universe U and the elements of set X: 

!
∈

δ=δ
Xy

yxXx ),(),(  

- The maximal sum of distances from an element from profile X to other its 
elements: 

 δ max(X) = ,./
0
1δ

∈ M

Xx

Xx

),(
max  

These parameters are now applied for the defining the following consistency 
functions: 

( )XDiamXC −= 1)(1  

( )XWDiamXC −= 1)(2  

)(1)(3 XXC δ−=  

)(1)( min4 XXC δ−=  

)(1)( max5 XXC δ−=  
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Values of these functions reflect accordingly: 

• C1(X) – the maximal distance between two elements of profile X. 
• C2(X) – the maximal average distance between an element of profile X and 

other elements of this profile.  
• C3(X) – the average distance between elements of X.  
• C4(X) – the minimal average distance between an element of universe U and 

elements of X.  
• C5(X) – the maximal average distance between an element of profile X and 

elements of this profile. 

5   Consistency Versus Consensus Susceptibility 

In this section we present some dependencies between profile consistency and 
consensus susceptibility. These dependencies show that in general the two notions are 
coherent. The following properties are true: 

Proposition 1. For each j=1,...,5  if Cj(X) = 1 then profile X is susceptible to 
consensus in relation to postulate Oi for i=1,2. 

This property shows the coherence between consistency measures and consensus 
susceptibility: In case when a profile has maximal consistency then it is also 
susceptible to consensus. However, if a profile has minimal consistency then not 
necessarily it should not be susceptible to consensus. The following properties show 
that the intuition is true only for functions C2,..., C5 and false for function C1. 

Proposition 2. It is not true that if C1(X) = 0 then profile X is not susceptible to 
consensus in relation to postulate Oi for i=1,2. 

Proposition 3. For each j=2,...,5  if Cj(X) = 0 then profile X is not susceptible to 
consensus in relation to postulate Oi for i=1,2. 

The reason of the property included in Proposition 2 is that function C1 takes into 
account only these elements of the profile, for which the distance is maximal. The 
behavior of other elements are not interested for this measure. Nevertheless function 
C1 has many practical applications. 

Another aspect of the relationship between consistency measures and consensus 
susceptibility is based the investigation of the behavior of consistency in situations 
when a profile is susceptible to consensus. It turned out that the behaviors of defined 
consistency functions are not similar.  

Proposition 4. If a profile X is susceptible to consensus in relation to postulate O1 
then: 

a) C3(X) > 0.5, C4(X) > 0.5, and 
b) C2(X) > 0, C5(X) > 0. 

Presented above properties show the strong relationship between consensus 
susceptibility in relation to postulate O1 to consistency functions C3 and C4; weaker 
relationship to functions C2 and C5; and very weak relationship to functions C1. 

The proofs of the above propositions are given in the technical report [11]. 
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6   Conclusions 

In this paper we have presented a brief overview of consensus choice problem; the 
notions of consensus susceptibility and consistency measures for conflict profiles and 
some aspects of the relationships between them. We have shown that if a conflict 
profile is not susceptible to consensus then there is no need to determine it because 
the consistency value is too low. Owing to this in many practical situations one may 
avoid determining consensus since consensus choice algorithms are often complex. 
The future works should concern the deeper analysis of the dependencies between the 
two criteria for consensus reasonableness. 
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Abstract. Two main concerns exist for frequent pattern mining in the real 
world. First, each item has different importance so researchers have proposed 
weighted frequent pattern mining algorithms that reflect the importance of 
items. Second, patterns having only smaller items tend to be interesting if they 
have high support, while long patterns can still be interesting although their 
supports are relatively small. Weight and length decreasing support constraints 
are key factors, but no mining algorithms consider both the constraints. In this 
paper, we re-examine two basic but interesting constraints, a weight constraint 
and a length decreasing support constraint and propose weighted frequent pat-
tern mining with length decreasing constraints. Our main approach is to push 
weight constraints and length decreasing support constraints into the pattern 
growth algorithm. For pruning techniques, we propose the notion of Weighted 
Smallest Valid Extension (WSVE) with applying length decreasing support 
constraints in weight-based mining. The WSVE property is applied to transac-
tion and node pruning. WLPMiner generates more concise and important 
weighted frequent patterns with a length decreasing support constraint in large 
databases by applying the weighted smallest valid extension. 

1   Introduction 

To overcome problems of Apriori-based algorithms [1, 2], such as generation and test 
of all candidates and repeatedly scanning a large amount of the original database, 
pattern growth based approaches [10, 11, 12, 13, 14] were developed. FP-tree based 
methods mine the complete set of frequent patterns using a divide and conquer 
method to reduce the search space without generating all the candidates. An associa-
tion mining algorithm generates frequent patterns and then makes association rules 
satisfying a minimum support. Two main limitations of the traditional approach exist 
when mining frequent patterns.  

The first limitation is that all items are treated uniformly, but real items have dif-
ferent importance. For this reason, weighted frequent pattern mining algorithms [3, 4, 
5, 6] have been suggested. The items are given different weights in the transaction 
database. These algorithms focus on satisfying the downward closure property be-
cause this property is usually broken when different weights are applied to the items 
according to their significance. The second limitation is that most of the previous 
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mining algorithms use a constant support constraint irrespective of the length of the 
discovered patterns. The key observation here is that long patterns can be interesting 
although their support is low and short patterns can be interesting if they have high 
support. LPMiner [7] and Bamboo [8] have addressed these issues. As stated in [7, 8, 
9], the downward closure property can not be used with length decreasing support 
constraints. For this reason, the smallest valid extension (SVE) property was intro-
duced to prune the search space. The weight constraint and the length decreasing 
support constraint are key factors, but no mining algorithms consider both constraints. 

Table 1. Transaction database TDB 

TID Set of items 

100 a, c, d, f 

200 a, b, c, d 

300 b, c, f 

400 b, c, d, f 

500 b, c, d, g 

In this paper, we re-examine two basic but interesting constraints, a weight con-
straint and a length decreasing support constraint and propose weighted frequent pat-
tern mining with length decreasing support constraints. The simple way to use a 
length decreasing support constraint is to set min l>0 f(l) and remove patterns which do 
not satisfy the length decreasing constraints. However, it takes a lot of time to gener-
ate frequent patterns. WLPMiner takes into account two features, a weight constraint 
and a length decreasing support constraint in  real world instead of only resetting the 
minimum support. This allows WLPMiner to generate more meaningful patterns. For 
pruning techniques, we propose 1) the notion of Weighted Smallest Valid Extension 
(WSVE) to apply to both the length decreasing support constraints and weight con-
straints and 2) a weight range is used as a supplement to maintain the downward clo-
sure property.  

Our Contributions: The main contributions of this paper are: 1) incorporation of two 
key features for real datasets, a weight constraint and a length decreasing support 
constraint 2) introduction of the concept of the weighted smallest valid extension 
property, 3) description of pruning techniques, transaction pruning and node pruning, 
using the weighted smallest valid extension property, 4) implementation of our algo-
rithm, WLPMiner, and 5) execution of an extensive experimental study to compare 
the performance of our algorithm with BAMBOO [8] and WFIM [3].  

The remainder of the paper is organized as follows. In section 2, we describe the 
problem definition and related work. In Section 3, we present WLPMiner (Weighted 
Frequent Pattern Mining with Length decreasing support constraints). Section 4 
shows the extensive experimental study and results. Finally, conclusions are presented 
in section 5. 
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2   Problem Definition and Related Work  

2.1   Problem Definition  

Let I = {i1, i2..., in} be a unique set of items. A transaction database, TDB, is a set of 
transactions in which each transaction, denoted as a tuple <tid, X>, contains a unique 
tid and a set of items. A pattern is called a k-pattern if it contains k items. A pattern 
{x1, x2,…, xn} is also represented as x1, x2,..., xn. The support of a pattern is the num-
ber of transactions containing the pattern in the database. 

2.1.1 Weighted Frequent Itemset Mining 
In weighted frequent itemset mining, a weight of an item is a non-negative real num-
ber that shows the importance of the item. We can use the term, weighted itemset to 
represent a set of weighted items. A simple way to obtain a weighted itemset is to 
calculate the average value of the weights of the items in the itemset. The weight of 
each item is assigned to reflect the importance of each item in the transaction data-
base. A weight is given to an item within a weight range, Wmin  W  Wmax. We want 
to give a balance between the two measures of weight and support. Therefore, we use 
a minimum weight constraint (min_weight) like a minimum support (min_sup) in 
order to prune items which have lower weights.  

Table 2. Example of sets of items with different WRs 

Item a      b      c      d      f      g 

Support 2      4      5      3      3     1 

Weight (0.9  WR1  1.1) 1.1   1.0   0.8   1.0   0.7   0.9 

Weight (0.4  WR2  0.8) 0.5   0.8   0.6   0.4   0.7   0.6 

Weight (0.2  WR3  0.7) 0.6   0.3   0.5   0.7   0.5   0.2 

An itemset is a weighted infrequent itemset if, following pruning, condition 1 or 
condition 2 below is satisfied. If an itemset does not satisfy both of these, it is called a 
weighted frequent itemset. In the pruning conditions, a maximum weight (MaxW) is 
defined as the value of the maximum weight of items in a transaction database and a 
minimum weight (MinW) is defined as the value of the minimum weight of a condi-
tional pattern in a conditional database.  

Pruning Condition 1: (support < min_sup && weight < min_weight) 
The support of an itemset is less than a minimum support and the weight of an itemset 
is less than a minimum weight threshold.  

Pruning Condition 2: (support * MaxW (MinW) < min_sup)    
In a transaction database, the value of multiplying the support of an itemset with the 
maximum weight (MaxW) among items in the transaction database is less than a 
minimum support. In conditional databases, the value of multiplying the support of an 
itemset with the minimum weight (MinW) of a conditional pattern in the FP-trees is 
less than a minimum support. 
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Example 1: Table 1 shows the transaction database TDB. Table 2 shows example 
sets of items with different weights. The frequent list is <a:2, b:4, c:5, d:3, f:3, g:1>. 
The minimum support threshold (min_sup) is 2. The columns in Table 3 show the set 
of weighted frequent itemsets after pruning weighted infrequent itemsets using prun-
ing condition1 and pruning condition 2 by applying different WRs. 

2.1.2   Frequent Itemset Mining with a Length Decreasing Support Constraint 
The length decreasing support constraint was suggested from the observation that long 
patterns can be interesting although their support is low. Meanwhile, short patterns 
become interesting if they have high support. Given a transaction database TDB and its 
length decreasing support constraint function f(x) that satisfies 1  f (x+1)  f (x)  
|TDB| for any positive integer x, frequent itemset mining with length decreasing support 
constraint f (x) requires finding all frequent itemsets that satisfy support (Y)  f (|Y|).  

The itemsets found are called frequent itemsets with a length decreasing support 
constraint. However, the downward closure property can not be used to find a fre-
quent itemset with a length decreasing support constraint because an infrequent item-
set may become a frequent itemset in the next step using a length decreasing support 
constraint. In order to prune the search space, the Smallest Valid Extension (SVE) 
property was defined. Given an itemset P such that support (P) < f (|P|), then f -

1(support (P)) = min (l| f (l)  support (P)) is the minimum length that a super itemset 
of P must have before it can potentially satisfy the length deceasing support con-
straint. The SVE property can be used to prune the conditional FP trees.  

Example 2: We use the transaction database TDB in Table 1 and assume that a length 
decreasing support constraint function f (x) is f (x) = 4 (for x  1), f (x) = 3 (for 2  x 

 3), and f (x) = 2 (for x > 3). The frequent list is: frequent_list = <a:2, b:4, c:5, d:3, 
f:3, g:1>.  By using a constant minimum support threshold, the frequent itemsets are 
{ac:2, bc:2, bd3, bf:2, cd:3, cf:3, df:2, bcd:2, bcf:2}. We can easily show that the final 
frequent itemset using length support constraint f(x) is {bc:4, bd:3, cd:3 and cf:3}.    

Table 3. Weighted frequent itemsets with different WRs 

TID WFI list      
 (0.9  WR1  1.1) 
min_weight = 0.9 

WFI list      
 (0.4  WR2  0.8) 
min_weight = 0.4 

WFI list       
(0.2  WR3  0.6) 

min_weight = 0.2 
100 a, c, d, f c, d, f C 
200 a, b, c, d b, c, d b, c 
300 b, c, f b, c, f b, c 
400 b, c, d, f b, c, d, f b, c 
500 b, c, d b, c, d b, c 

2.2   Related Work 

No association rule mining algorithms exist that consider both a weight constraint and 
a length decreasing support constraint, both of which are characteristics of real data-
sets. Additionally, most of the weighted frequent itemset mining algorithms [4, 5, 6] 
suggested so far have used Apriori-like approaches. Therefore, previous algorithms 
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for weighted association rule mining generate many candidates and scans of the data-
base. Recently, we have suggested WFIM (Weighted Frequent Itemset Mining) 
algorithm [3]. WFIM is the first algorithm to use the pattern growth approach in 
weighted itemset mining. WFIM can push weight constraints into the pattern growth 
algorithm while maintaining the downward closure property. A minimum weight and 
a weight range are defined and items are given different weights within the weight 
range. However, the WFIM did not take into account a length decreasing support 
constraint. In WARM (Weighted Association Rule Mining) [4], the problem of 
breaking the downward closure property is solved by using a weighted support and 
developing a weighted downward closure property. However, this algorithm is still 
based on the Apriori algorithm which uses a candidate generation and test mecha-
nism. WAR (Weighted Association rules) [5] generates the frequent items without 
considering the weights and then does post-processing during the rule generation step. 
The WAR algorithm does not concern mining frequent itemsets, so this technique is a 
post-processing approach. LPMiner [7] is the first algorithm to find itemsets that 
satisfy a length decreasing support constraint. It defines and uses the Smallest Valid 
Extension (SVE) property. Assigning weights according to the importance of the 
items is one of the main considerations for real datasets. However, LPMiner dose not 
consider the importance of the items even thought it takes into account length de-
creasing support constraints. BAMBOO [8] pushed the length decreasing support 
constraint deeply into closed itemset mining in order to generate more concise item-
sets. While BAMBOO outperforms LPMiner, it is only concerned with the length 
decreasing support constraint. BAMBOO also does not consider different weights of 
items within patterns.  

In this paper, we propose an efficient weighted pattern growth algorithm with a 
length decreasing support constraint. We use a prefix tree structure to construct condi-
tional databases. Our algorithm adopts an ascending weight order method and a bot-
tom-up traversal strategy. 

3 Weighted Pattern Mining with a Length Decreasing Support 
Constraint  

In this section, we suggest an efficient weighted frequent pattern mining algorithm 
with a length decreasing support constraint, called WLPMiner. Our approach is to 
push a weight constraint and a length decreasing support constraint into the pattern 
growth algorithm. We introduce the weighted smallest valid extension (WSVE) prop-
erty to prune the search space. In addition, we show that the effect of combining a 
weight constraint and a length decreasing support constraint generates fewer but im-
portant patterns.  

3.1   Weighted Smallest Valid Extension (WSVE) Property and Pruning by 
the WSVE 

Definition 3.1. Weighted Smallest Valid Extension (WSVE) Property 
Given a conditional pattern P such that (support (P) * weight (P)) < f (|P|), then f -1

(support (P) * weight (P)) = min (l| f (l)  (support (P) * weight (P)))  is the minimum  
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length that a super pattern of P must have before it can potentially satisfy the length 
deceasing support constraint. 

Lemma 3.1. As the value, x, of multiplying the support with the weight of pattern P 
decreases, the value of the inverse function, f -1(x), of a length decreasing support 
constraint function increases. Meanwhile, as the value of x increases, the value of the 
inverse function of a length decreasing support constraint function, f -1(x) decreases.  

The WSVE property allows us to prune the search space. It considers not only a 
support measure but also a weight measure. From the WSVE property, if the pattern P 
is a weighted infrequent pattern, the length of any superset of the pattern P should 
have at least f -1(support (P) * weight (P)). If not, the superset is also a weighted in-
frequent pattern, so it can be pruned.   
 
Lemma 3.2 Given a conditional pattern, X, and a pattern in the conditional database, 
Y,    weight (X) is greater than or equal to a weight of a pattern, Y within a transac-
tion t in the conditional database.  
In the weighted smallest valid extension property, weight (X) is used as a weight 
parameter of the inverse function of a length decreasing support constraint. 
WLPMiner uses an ascending weight ordered prefix tree and the tree is traversed 
using a bottom-up strategy. Therefore, the weight of a conditional pattern, X, is al-
ways greater than or equal to the weight of an item, Y of a transaction, t, within a 
conditional database. 

Lemma 3.3. The following formula is always satisfied: f -1(support (X) * weight (X)) 
 f -1 (support (X) * weight (Y))  f -1(support (X+Y) * weight (Y)).  

As stated in lemma 3.2, weight (X) is always greater than or equal to weight (Y) 
and weight (X+Y) is always greater than or equal to weight (Y). From lemma 3.1, we 
know that f -1 (weight (X))  f -1(weight (X+Y))  f -1(weight (Y)). Finally, f -1(support 
(X) * weight (X)) is less than or equal to f -1(support (X) * weight (Y)) and f -

1(support (X) * weight (Y)) is less than or equal to f -1(support (X+Y) * weight (Y)). 
In lemma 3.3, we see that f -1 (support (X) * weight (X)) is the minimum length for a 
superset (X+Y) of a conditional pattern (X). Weighted frequent patterns with a length 
decreasing support constraint should satisfy the WSVE property, although other pat-
terns may also satisfy the WSVE property.  

Using the weighted smallest valid extension property, we suggest two pruning 
techniques, transaction pruning and node pruning. Transaction pruning is applied 
before constructing FP-tree, while node pruning is used after building FP-tree.  

Definition 3.2. Transaction Pruning by Weighted Smallest Valid Extension 
(WSVE) 
Given a length decreasing support constraint f(l), and a conditional database D` with 
regard to a conditional pattern X, a pattern Y  D` can be pruned from D` if ((support 
(X) * weight (X)) < f (|X| + |Y|)).   

The transaction pruning method is used to remove candidate transactions of a con-
ditional database. It uses the weighted smallest valid extension property. Separate 
local FP-trees are built for all patterns that contain the conditional pattern. From the 
WSVE property, any superset (X+Y) of a conditional pattern (X) must have a length 
of at least f -1(support (X) * weight (X)). We can remove any patterns (Y) with a 
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length of less than f -1(support (X) * weight (X)) - |X|. This formula can be rewritten 
as: |X| + |Y| < f -1(support (X) * weight (X)), which is the same as (support (X) * 
weight (X)) < f (|X| + |Y|).   

Definition 3.3. Node Pruning by Weighted Smallest Valid Extension (WSVE)  
Given a length decreasing support constraint f(l), a conditional pattern database D` 
with regard to a conditional pattern P, and the FP tree, T, built from D`, a node v in T 
can be pruned from T if h (v) + |P| < f -1 (support(I (v)) * weight (I (v))).  

The node pruning method reduces nodes of a conditional local FP-tree. Assume 
that I(v) is the item stored in this node and h(v) is the height of the longest path from 
the root to a leaf node in which path, the node v should be located. From the weighted 
smallest valid extension property, we can see that a node that contributes to a 
weighted frequent pattern, should adhere to the following formula: h(v) + |P|  f -1 

(support (I(v)) * weight (I(v))). Therefore, we can define node pruning by the 
weighted smallest valid extension in definition 3.1. This formula can be rewritten as: f 
(h(v) + |P|)  (support (I(v)) * weight (I(v))). We can remove a node if h (v) + |P| < f -1 

(support (I(v)) * weight (I(v))). Assume that the transactions of the conditional data-
base are sorted in decreasing transaction length and traverse each transaction in that 
order. Let t be a transaction and l (t) be its length. For practical considerations, we can 
use l (t) + |P| < f -1 (support (I (v)) * weight (I (v))) instead of h (v) + |P| < f -1 (support 
(I (v)) * weight (I (v))).  

Definition 3.4. Weighted Frequent Pattern with Length decreasing support  
A pattern is a weighted frequent pattern with length decreasing support constraints if 
all of the following pruning conditions are satisfied. If a pattern does not satisfy any-
one of them, the pattern is called a weighted infrequent pattern with length decreasing 
support constraints.  

Pruning condition 1: (support  f (maxLength) || weight  min_weight) 
Pruning condition 2: (support * MaxW (MinW)  f (maxLength) 
Pruning condition 3: Transaction pruning by the WSVE property 
Pruning condition 4: Node pruning by the WSVE property  

In a transaction database, the value of multiplying the support of a pattern with a 
maximum weight (MaxW) among items in the transaction database is less than f 
(|maxLength|). In conditional databases, the value of multiplying the support of a 
pattern with a minimum weight (MinW) of a conditional pattern in the conditional 
database is less than f (|maxLength|), a length decreasing minimum support.  

In WLPMiner, an ascending weight order method and a bottom-up traversal strat-
egy are used in mining weighted frequent patterns. WLPMiner defines weighted 
Smallest Valid Extension property and prunes transactions and nodes by the WSVE 
property. The performance of pruning conditions 1 and 2 may not be good since the 
minimum support for the longest pattern of the length decreasing support constraint 
must be used in order to keep downward closure property. However, performance can 
be improved by using these pruning conditions with the weighted smallest valid ex-
tension property and the weight range. The weighted smallest valid extension and the 
downward closure property are both used to prune the search space.  
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3.2 WLPMiner Algorithm  

The WLPMiner algorithm uses a weight range and a minimum weight. Items are 
given different weights within the weight range. We now the weighted frequent pat-
tern mining process and present the mining algorithm.  

 
WLPMiner algorithm: Mining weighted frequent patterns with a length decreasing 
support constraint 
 
Input: (1) A transaction database: TDB  
            (2) f(x): a length decreasing support constraint function 
            (3) weights of the items within weight range : wi 

            (4) minimum weight threshold : min_weight 

Output: (1) WFP: the complete set of Weighted Frequent Patterns that satisfy the 
length decreasing support constraint. 
Begin  

1. Let WFP be the set of weighted frequent patterns that satisfy the length decreasing 
support constraint. Initialize WFP  0;  
2. Scan TDB once to find the global weighted frequent items satisfying the following 
definition: A pattern is a Weighted Frequent Pattern (WFP) if the following pruning 
conditions 1 and 2 are not satisfied. 
Condition 2.1: (support < f(maxLength) && weight < min_weight) 
The support of a pattern is less than a minimum support and the weight of a pattern is 
less than a minimum weight constraint.  
Condition 2.2: (support * MaxW < f(maxLength)) 
In a transaction database, the value of multiplying the support of a pattern with a 
maximum weight (MaxW) of each item in the transaction database is less than a 
minimum support. 
3. Sort items of WFP in weight ascending order. The sorted weighted frequent item 
list forms the weighted frequent list. 
4. Scan the TDB again and build a global FP-tree using weight_order.  
5. Call WLPMiner (FP-tree, 0, WFP) 
 
 
 
Procedure WLPMiner (Tree, , WFP) 
 
1:  for each ai in the header of Tree do 
2:  set  =  U ai; 
3:   get a set I  of items to be included in  conditional database, CDB ;   
4:   for each item in I , compute its count in  conditional database;    
5:   for each bj in I  do  
6:    if (sub (  bj) < f(maxLength) && weight (  bj) < min_weight) delete bj from I ;                 
7:        if (sub (  bj) * MinW < f(maxLength)) delete bj from I ;                 
8:   end for 
9:    CDB   transaction_pruning_by_WSVE ( , CDB ); 
10:   Tree   FP_Tree_Construction (I , CDB ) 
11:   Tree   node_pruning_by_WSVE ( , Tree ); 
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12:   if Tree   0 then  
13:      call WLPMiner (Tree , , WFP) 
14:   end if 
15: end for    
 

 
In the WLPMiner algorithm, TDB is scanned once, weighted frequent items satis-

fying condition 2.1 and condition 2.2 are found and these items are sorted in weight 
ascending order. The WLPMiner algorithm then calls the recursive procedure 
WLPMiner (Tree, , WFP).  Lines 6 and 7 generate weighted frequent patterns with a 
length decreasing constraint. Line 9 conducts transaction pruning by the WSVE prop-
erty. If a pattern in a conditional database satisfies the transaction pruning, it is in-
serted into a local FP-tree. After a local FP-tree is constructed in line 10, node pruning 
by the WSVE property is carried out in line 11. WLPMiner algorithm adopts the bot-
tom-up divide and conquer paradigm to grow the current the prefix. If the local FP-
tree is not empty, the procedure WLPMiner (Tree , , WFP) is called recursively in 
line 13. 

Table 4. Characteristics of datasets 

Data sets Size #Trans #Items A.(M.) t. l. 

Connect 12.14M 67557 150 43 (43) 

T10I4D100K 5.06M 100K 1000 10 (31) 

T10I4Dx 10.12- 
50.6M 

200K-1000K 1000 10 (31) 

4 Experiments 

In this section, we present our performance study over various datasets. WLPMiner is 
the first weighted frequent pattern mining algorithm that considers both weight con-
straints and length decreasing support constraints which are characteristics of real 
datasets. We report our experimental results on the performance of WLPMiner in 
comparison with recently developed algorithms such as BAMBOO and WFIM. Our 
results show that WLPMiner not only generates more concise and important result 
sets, but also has much better performance than recently developed mining algorithms 
through incorporating a length decreasing support constraint into weighted frequent 
pattern mining. Moreover, WLPminer has good scalability of the number of transac-
tions. In our experiments, we compared WLPMiner with BAMBOO [8] which is a 
frequent pattern mining algorithm with a length decreasing support constraint. We 
also compared WLPMiner with WFIM [3] that is a weighted frequent pattern mining 
algorithm developed recently. We used one real dataset and one synthetic dataset that 
are popularly used in pervious experiments [3, 8, 11, 12, 13]. Table 4 shows the char-
acteristic of two datasets used for performance evaluation. The real dataset used is the  
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connect dataset available in the UCI machine learning repository [15]. The connect 
dataset is very dense and includes game state information. The synthetic dataset was 
generated from IBM dataset generator. We used T10I4D100k which is very sparse 
and contains 100,000 transactions. However, the synthetic datasets T10I4Dx contain 
200k to 1000k transactions. To test scalability, T10I4Dx datasets have been popularly 
used in the previous performance evaluations [3, 8, 12, 13]. WLPMiner was written in 
C++. Experiments were performed on a sparcv9 processor operating at 1062 MHz, 
with 2048MB of memory. All experiments were performed on a Unix machine. In our 
experiments, a random generation function generates weights for each item. When 
running WLPMiner, the minimum support was determined as the cut off value for the 
maximum pattern length under the corresponding length decreasing support con-
straint. 
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                Fig. 1. Support constraint (connect)         Fig. 2. Support constraint (T10I4DnK) 

Fig. 1 and Fig. 2 show various length decreasing support constraints used in the 
performance evaluation for different datasets. These length decreasing support con-
straints are the same as those used in BAMBOO [8]. LPMiner [7] and BAMBOO [8] 
are recently developed mining algorithms using length decreasing support constraints. 
Bamboo outperforms LPMiner in terms of runtime and the number of frequent pat-
terns. Therefore, we compared WLPMiner with BAMBOO. 
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       Fig. 5. Number of patterns (T10I4D100K)           Fig. 6. Runtime (T10I4D100K) 

Fig. 3 to Fig. 6 show the comparison results for datasets connect and T10I4D100K. 
In Fig. 3 and Fig 5, we can see WLPMiner generates smaller weighted frequent pat-
terns than that of BAMBOO. In Fig. 4 and Fig 6, the runtime for finding weighted 
frequent patterns is shown in the two datasets. From Fig. 4 and Fig. 6, we see that 
WLPMiner is much faster than BAMBOO. Although WLPMiner and BAMBOO 
algorithms use a length decreasing support constraint, WLPMiner outperforms 
BAMBOO because WLPMiner uses the Weighted Smallest Valid Extension property 
and incorporates weight constraints into length decreasing support constraints. 
WLPMiner and WFIM [3] are both weighted frequent pattern mining algorithms. We 
used several weight ranges to test the algorithms. Fig. 5 compares the number of 
weighted frequent patterns of WLPMiner with those of WFIM and BAMBOO. Fig. 6 
shows the runtime of the algorithms under the same weight range. In Fig. 5 and Fig. 
6, WLPMiner generates fewerr but important patterns. In addition, it can be several 
orders of magnitude faster than WFIM since the Weighted Smallest Valid Extension 
property for the length decreasing support constraint is effective and efficient in prun-
ing the result set in both the connect and T10I4D100K dataset. 
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Fig. 7. Runtime (T10I4Dx) (WR: 0.3 - 0.6) 

Scalability Test 
To test the scalability with the number of transactions, T10I4DxK datasets are used. 
WLPMiner scales much better than previous mining algorithms. In this scalability 
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test, WLPMiner is compared with BAMBOO. BAMBOO shows linear scalability 
with the number of transactions from 200k to 1000k. However, WLPMiner is much 
more scalable than BAMBOO. From Fig 7, the difference between the two algorithms 
becomes clear. We first tested the scalability in terms of base size from 200K tuples 
to 1000K tuples and different minimum support of 0.001% to 0.005%. From Fig. 7, 
we can see that WLPMiner has much better scalability in terms of base size. The 
slope ratio for each different minimum support is almost similar.  

5   Conclusion 

We developed the WLPMiner algorithm that integrates a weight constraint measure 
with a length decreasing support constraint measure for mining frequent patterns. The 
key insights achieved in this paper are the high performance of the WSVE property 
and the use of a weight range in the weight constraint. We show that combining a 
weight constraint with a length decreasing support constraint improves performance 
in terms of the number of patterns and runtime. The extensive performance analysis 
shows that WLPMiner is efficient and scalable in weighted frequent pattern mining. 
In future work, the WSVE property will be used with different pruning techniques 
suggested in other algorithms using length decreasing support constraints. 
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Abstract. Discriminative and generative methods provide two distinct  
approaches to machine learning classification. One advantage of generative  
approaches is that they naturally model the prior class distributions. In contrast, 
discriminative approaches directly model the conditional distribution of class 
given inputs, so the class priors are only implicitly obtained if the input density 
is known. In this paper, we propose a framework for incorporating class prior 
proportions into discriminative methods in order to improve their classification 
accuracy. The basic idea is to enforce that the distribution of class labels  
predicted on the test data by the discriminative model is consistent with the 
class priors. Therefore, the discriminative model has to not only fit the training 
data well but also predict class labels for the test data that are consistent with 
the class priors. Experiments on five different UCI datasets and one image  
database show that this framework is effective in improving the classification 
accuracy when the training data and the test data come from the same class  
proportions, even if the test data does not have exactly the same feature distri-
bution as the training data. 

1   Introduction 

Machine learning approaches to classification usually fall either into the discrimina-
tive (or conditional modeling) category, or the generative category. Discriminative 
classification directly attempts to model ( | )p y x  where x  is the vector of input fea-

tures and y  is the class label. Generative approaches model the joint distribution, 

split into the class prior and the class conditional density: ( , ) ( ) ( | )p y x p y p x y= . 

One difference between them is the conditional model usually only focuses on the 
relationship between the input features and the class label, while the generative model 
has to explain both how the inputs are generated and how the class label is associated 
with the input data. One usually finds that state-of-the-art conditional models perform 
better than generative models on classification problems. More detailed studies of the 
comparison of conditional models and generative models can be found in [8]. 

However, compared to discriminative approaches, generative approaches have the 
advantage in that they are able to explicitly make use of class priors for predicting 
class labels. Knowledge of the class priors or proportions can be very useful in several 
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contexts. Assume that the learning algorithm is provided with labeled training data 
and unlabeled test data. First, if the training data does not have the same proportions 
of points in each class as the test data, incorporating knowledge of class priors can 
help create a classifier that predict classes with the correct probabilities on the test 
data. Second, sometimes the class conditional probabilities ( | )p x y  are somewhat 

different from the training data to the test data. This is a situation which most learning 
algorithms are not designed for, but it occurs in practice due to the fact that the label-
ing process can be biased. Incorporating knowledge of the class priors can make a 
learning algorithm more robust to inaccuracies in the class conditional probabilities 
obtained from training data. In the extreme case, the inputs of the training data and the 
test data may be completely random numbers and only the class priors are consistent 
through the whole dataset.  The best strategy of predicting class labels for the test data 
would be to always predict the class label with the highest prior. Unfortunately, since 
discriminative models focus on learning the mapping from input data to class label, 

( | )p y x , without representing the input density ( )p x , most methods can’t directly 

model or take advantage of the marginal class distribution, ( )p y . 

In this paper, we propose a framework that is able to explicitly incorporate class 
prior information into discriminative learning. This framework is based on the as-
sumption that the class priors give a reasonably accurate description for the class 
distribution of the test data. Therefore, the discriminative model learned from the 
training data should not only explain the class labels for the training data well but also 
predict the class labels for the test data in such a way that the distribution of the pre-
dicted class labels for the test dataset is also coherent with the class priors. Clearly, 
this framework differs from the traditional approach for discriminative learning where 
the objective is to make the class labels predicted by the model consistent with the 
assigned class labels on the training dataset. Furthermore, our framework is able to 
utilize both training data and testing data in the construction of discriminative models, 
while traditional approaches for discriminative learning only take advantage of train-
ing data.  

This framework can be useful when the training data and the test data have the 
same class priors but do not have exactly the same feature distributions and therefore 
the model learned from the training data may not be appropriate for the test data. 
Differences between the training data and the test data can be caused by the fact that 
either the sampling for the training data is quite different from the sampling for the 
test data, or the amount of training data is too small to give a good representation for 
the whole dataset. The other interesting aspect of this framework is that it allows the 
discriminative model to use a mixture of training data and test data. Thus, this frame-
work is able to deal with learning problems in which only a small number of training 
examples are available and the majority of instances are unlabelled. Unlike previous 
works on the combination of labeled data and unlabeled data, which mainly focus on 
the generative model, the framework provides room for the discriminative model to 
take advantage of unlabeled data.  

The rest of this paper is arranged as follows: section 2 will discuss related work. 
The formal description of the framework is presented in Section 3. Section 4 de-
scribes the empirical study of this framework. Conclusions and future work are pre-
sented in Section 5. 
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2   Related Work 

As already discussed in the introduction, the main idea of this paper is to incorporate 
class prior information into discriminative learning. Therefore, it combines some 
aspects of learning both discriminative and generative models. There have been sev-
eral studies on the improvement of discriminative models using information from a 
generative model [6]. The motivation of that work is based on the observation that 
sometimes the generative model captures properties of the input distribution that are 
meaningful to the discrimination problem. Therefore, if we can influence the dis-
criminative model with a generative model that is specific to the problem, for exam-
ple choosing a discriminative function that is coherent with the generative density, we 
may be able to gain better performance than using a generic discriminative model. 
Approaches based on this idea, such as combining the support vector machine with 
fisher kernels derived from a generative model, have shown significant improvement 
in classification problems. Unlike that work, in our framework we don’t change the 
kernel function; instead, we only consider the class prior information as an extra hint 
to be used by the discriminative model. 

Since this framework is taking advantage of both the training data and the test data, 
it is strongly related to the work on learning from the mixture of labeled and unla-
beled data [9]. Many of works on this problem assume some form of generative 
model, which is used to explain both the labeled data (i.e. the inputs and the label) and 
the unlabeled data (i.e. just the inputs). In cases where only a small amount of data are 
labeled, a model learned from this data can be quite skewed and the incorporation of 
unlabeled data can help avoid idiosyncrasies of the labeled data to some extent. 
Unlike this work, our framework focuses on incorporating unlabeled data into dis-
criminative training. Other works on learning from the mixture of labeled and unla-
beled data have focused on using unlabeled data for model regularization and model 
selection. One example is the transductive SVM [7], where the classification margin 
is influenced both by the labeled and unlabeled data. Unlike their work, in this frame-
work, we refine the learned model by only examining the discrepancy between the 
class distribution of the predicted labels of unlabeled data and the ‘true’ class priors.  

3   Incorporating Class Priors into Discriminative Training 

The basic logic behind this framework can be simply understood as follows: consider 
the case when the test data has quite different patterns from the training data. This 
situation can happen if there is very little training data, or as in many real applica-
tions, if the training data and testing data come from different sources. Then, applying 
the discriminative model that is learned from the training data directly to label the test 
data will be problematic. If we have prior knowledge on the class distribution for the 
test data, we may be able to find out the fact that the test data are noisy by simply 
examining the difference between the class priors and the distribution of the class 
labels for the test data predicted by the discriminative model. If there is a significant 
discrepancy between these two distributions, we will suspect that the learned model 
may not be appropriate for the test data and needs to be adjusted. In order to refine the 
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discriminative model, we need to do two things: first, we can adjust the probability of 
classes for the test data computed from the original discriminative model in such a 
way that the averaged distribution of the predicted class labels for the test data is 
shifted toward the class priors. Then, the test data with the adjusted class probabilities 
will be included in the training data and a discriminative model will be retrained over 
the ‘enlarged training dataset’. The procedures of adjusting the class probabilities for 
test data using priors and retraining the discriminative model will be carried out itera-
tively until it reaches some local maximum. 

3.1   Model Description 

The essence of a discriminative model is the computation of the conditional probabil-
ity for a class label y given the input vector x , i.e. )|( xyp . The learning of a dis-

criminative model can be formalized as the search for a model that maximizes the 
log-likelihood of the training data, i.e. 

log ( | , )i i
i Train

L p y x
∈

= M  (1) 

where M  stands for a discriminative model, ix  is the ith training data point and yi 

stands for its class label. 
In order to incorporate class prior information into a model, a discriminative model 

will not only have to explain the training data well but also to predict class labels for 
the test data in such a way that the distribution of predicted class labels for the test 
data is consistent with class priors. Therefore, we need an extra term in Equation (1) 
that can account for the discrepancy between the two distributions. In the following 
sections, we will discuss three different approaches. To this end, for every instance in 
the test dataset, an unknown distribution over class labels is introduced. This repre-
sents the estimated distribution over classes, which will incorporate both the prior 
class constraints and the model predictions. Moreover, we will see that it considerably 
simplifies the computation in optimization. Let rk be this estimated class distribution 
for the kth data point in the test set, and value rk,y be the probability for the k

th test data 
point to be in class y. To enforce the consistency between class priors of training data 
and test data, we impose the following constraint on the estimated class probability 
rk,y, i.e., 

,

1
    k y y

k Testtest

y r p
N ∈

∀ =  (2) 

Now, the next step is to connect the estimated class probability rk,y to our objective 
function. Of course, we want the distribution of class labels predicted by model M , 
i.e., ( | , )kp y x M , to be consistent with the estimated class distribution rk,y. Therefore, 

the objective in (1) can be modified as: 

,
,

( | , )
' log ( | , ) log k

i i k y
i Train k Test y k y

p y x
L p y x r

r∈ ∈

= + M
M  (3) 
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In above, the KL divergence is introduced as the measurement of consistency between 
the estimated class distribution rk,y and the distribution of the predicted class labels 

( | , )kp y x M . By maximizing (3) under constraints (2), we ensure that the discrimina-

tive model is consistent with the estimated class distribution rk,y, which indirectly 
forces consistency between the class priors of test data and of training data. 

3.2   Finding the Optimal Solution 

As indicated in Equation (3), the objective function contains two different sets of 
parameters, namely the model parameters M and the estimated class distribution rk,y. 
Therefore, we can optimize the objective function in (3) by alternatively freezing one 
set of parameters. More specifically, we will first optimize the objective function in 
(3) using only the discriminative model parameters, and then search for the estimated 
class distributions that optimize (3) under the constraints in (2). It is not difficult to 
see that the strategy used in the optimization exactly corresponds to the intuition 
stated at the beginning of this section.  

In the first step of optimization, the ykr ,  are held fixed (as target distributions for 

the test data) so the constraint in (2) is not relevant. Thus, the discriminative model 
can be trained with almost no modification except that both the training data and the 
test data are fed into the learning module. Of course, any discriminative classifier that 
accepts distributions as targets can be used here. 

For the second step of optimization, we need to find the set of estimated class dis-
tributions that maximizes the objective function in (3) subject to the constraints in (2). 
Since parameters for the discriminative model are frozen, the objective function in (3) 
is simplified as: 

,
,

( | , )
'' log k

k y
i Test y k y

p y x M
L r

r∈

=  (3’) 

The problem of maximizing (3’) under the constraints in (2) is exactly the same prob-
lem as solved in maximum entropy (ME) models [1]. The original version of maxi-
mum entropy model is to find a set of probabilities that not only maximize the entropy 
function and but also satisfy a set of linear constraints. This can be extended to the 
case when the objective function is not an entropy function but a KL divergence be-
tween the distribution to be optimized and a set of given probabilities, i.e. a minimum 
relative entropy (MRE) problem, which is exactly our problem.  

4   Experiments 

In this experiment, we examined the effectiveness of our model in terms of using 
class priors to improve classification accuracy. More specifically, we would like to 
address two scenarios of application for this framework: 

1) A scenario of a small number of labeled examples. In this case, we will expose the 
system to a small number of labeled examples together with a large number of 
unlabeled examples. Under the assumption that a reliable estimation of class priors 
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are available, we can examine how well this model is able to improve the model 
by taking into count the large number of unlabeled data. 

2) A scenario of heterogeneous training and testing examples. In this case, we as-
sume that the training data are somehow different from testing data in some re-
spects. Therefore, a classification model learned from training data is not appro-
priate for the testing data. By inspecting the discrepancy between the class priors 
and the class distribution of the predicted labels of unlabeled data, we expect to 
adjust our model to the characteristics of the testing data.  

Table 1. UCI datasets used in our experiments 

Data Set Number of Feature Number of Class Number of Instance 

Ecoli 7 5 327 

Wine 13 3 178 

Pendigit 16 10 2000 

Iris 14 3 154 

Glass 10 5 204 

4.1   Experiment Design 

The discriminative model used for the experiment is the conditional exponential 
model [1], in which conditional probability )|( xyp is defined as 

( | ) exp( ) ( )yp y x x Z xλ= ⋅ , where yλ  is the weight vector for class y and )(xZ  is 

the normalization factor. A conjugate gradient [10] is used to find the appropriate 
weight vectors.  

To illustrate the effectiveness of our framework on the two different scenarios 
mentioned before, we tested the algorithm against two different groups of datasets. 
For the first scenario, we use five UCI datasets as the testbed. We use a small portion 
of each UCI dataset as training examples and leave majority of the dataset as testing 
examples. The detailed information about the five datasets is listed in Table 1. For the 
second scenario, we tested our algorithm on both the synthesized data that are gener-
ated from the above five UCI datasets and real image data. To simulate the difficult 
circumstance in which test data and training data have different feature distributions, 
for every feature, we uniformly randomly generate a weight factor ranging from 1 to 
1.5 and multiple it with the corresponding feature of the testing data. By this ‘corrup-
tion’ procedure, the weights of the exponential model learned from the training data 
will not be appropriate for the test data because the scale of the test are changed. By 
testing our algorithm against the synthesized datasets, we are able to see how effec-

tively our framework is able to adjust the model parameters yλ  according to the large 

number of unlabeled data.  
The other dataset that we used for the second scenario is the image dataset. We use 

the images downloaded from the image directory of Google as the training examples 
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and images from Corel image database as testing examples [3]. Six image categories 
are used in the experiment, i.e., category ‘food’, ‘building’, ‘bird’, ‘sky’, ‘fish’ and 
‘fruit & vegetable’. Each category contains 100 training images and 100 testing im-
ages. The training images are acquired by querying the image directory of Google 
with the name of categories as the query words. The top ranked 100 images from 
Google are used as the training examples. The testing images are collected by ran-
domly sampling 100 images out of the corresponding categories from Corel database. 
Apparently, images downloaded from Google image database will be considerably 
different from images from Corel database. The extended color co-occurrence matrix 
[5] is used for image representation, which have shown its effectiveness in image 
classification. For each image, totally 500 image features are extracted. More detailed 
discussion about image classification can be found in [2, 4, 11]. 

Table 2. Classification Errors for UCI datasets when 25% data are used for training 

Data Set No Prior Empirical 
Estimate 

Intermediate 
Estimate 

Optimal 
Estimate 

Ecoli 16.1% 20.6% 16.7% 16.0% 

Wine 15.1% 15.0% 9.1% 8.0% 

Pendigit 8.8% 12.4% 8.7% 8.0% 

Iris 5.6% 16.0% 4.5% 3.7% 

Glass 9.8% 14.2% 3.9% 2.7% 

Table 3. Classification Errors for UCI datasets when 10% data are used for training 

Data Set No Prior Empirical 
Estimate 

Intermediate 
Estimate 

Optimal 
Estimate 

Ecoli 32.4% 26.9% 21.2% 21.8% 

Wine 20.8% 26.0% 15.0% 15.1% 

Pendigit 11.8% 17.9% 11.8% 11.6% 

Iris 7.5% 23.6% 5.3% 4.4% 

Glass 5.7% 27.8% 2.2% 2.6% 

The key component in this framework is the knowledge of class priors. To examine 
the impact of class prior accuracy on classification performance, we introduce three 
different ways of estimating class priors: 

1) ‘Empirical Estimate’: Estimate the class priors only based on the training data. 
Since we use small portion of the data as training, this estimate of class prior can 
be quite inaccurate for the test data. 
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2) ‘Optimal Estimate’: Estimate the class priors based on the test data. Of course, this 
estimate gives the exact class distribution for the test data and is not realistic. 
However, the performance under this estimate gives a sense of an upper bound 
performance of our framework. 

3) ‘Intermediate Estimate’: Estimate the class priors based on all the data including 
the test data and training data. Definitely, this estimate will be better than the first 
case and worse than the second case. 

4.2   Scenario 1: A Small Number of Labeled Examples 

In this experiment, we set the training size to be 10% and 25% of the total dataset, 
respectively. The averaged classification errors based on cross validation for the pro-
posed algorithm are listed in Table 2 and 3. We also included the classification results 
when no class priors information is used. 

First, by comparing the performance listed in Table 2 to what listed in Table 3, it is 
clear that, by decreasing the amount of training examples from 25% to 10%, all learn-
ing methods on most UCI datasets suffers degradation in performance except the 
‘Glass’ dataset. Second, comparing the proposed framework using different estima-
tors of class priors, it is clear that the new framework with optimal estimator appears 
to have the best performance while the intermediate estimator gives the second best 
performance. The new framework with these two estimators of the class priors ap-
pears to substantially outperform the baseline model, i.e., the simple discriminative 
model without using class priors. This fact indicates that our algorithm is effective in 
improving the performance of discriminative classifier with reliable estimates of class 
priors. Third, the proposed algorithm with empirical estimates appears to perform 
significantly worse than the original discriminative model without using class priors. 
Since the empirical estimator bases its estimates on the empirical class distribution of 
training data and only small portion of training examples are available in the study, 
the empirical estimates usually gives poor estimation of class priors, which results in 
poor performance of the proposed algorithm. Based on this fact, we can see that, it is 
very important to our algorithm to have accurate estimates of class priors. 

4.3   Scenario 2: Heterogeneous Training Data and Testing Data 

In this subsection, we will test our algorithm against the case when the testing data 
have different feature distributions from the training data. This is a practically rele-
vant scenario, which is rarely studied in machine learning. First, we will test the pro-
pose algorithm on the synthesized datasets, which are generated from the five UCI 
datasets. The ‘corruption’ procedure has already been described in section 4.1. The 
results for the proposed algorithm with three different estimators of class priors to-
gether with the discriminative model without class priors are listed in Table 4 and 5. 

First, by comparing the results in Table 4 and 5 to the results in Table 2 and 3, it is 
clear that, by multiplying the testing data with a random weight factor, the perform-
ance of the discriminative model without using class priors suffers from a severe 
degradation. On the contrary, the proposed algorithm appears to suffer from much 
smaller degradation for all three different estimators. This fact indicates that, the pro-
posed algorithm is robust to the ‘corruption’ on the features. Second, it is clear that, 
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the proposed framework with all three different estimates is significantly better than 
the discriminative model without class priors. Unlike the results presented in previous 
scenario, where the empirical estimates gives rise to poor performance due to its inac-
curate estimation on class priors, for this scenario, even the empirical estimate is able 
to result in a better performance than the original discriminative model for most data-
sets. The fact that the proposed algorithm is able to outperform the discriminative 
model without class priors indicates that our algorithm is effective in dealing with the 
situation when the testing data are quite different from the training data. 

In addition to testing our algorithm against the synthesized dataset, we also exam-
ine our algorithm over the problem of image classification. The details of image da-
tabsets have already been described in the section 4.1. The downloaded 600 images 
are used as training examples and the 600 images from Corel database are used as 
testing instances. The classification error for the discriminative model without class 
priors is 66.9% and 60.9% for the proposed model assuming that the class priors 
equal to 1/6. Again, with accurate knowledge on class priors, we are able to decrease 
the classification error significantly. Notice that, the classification errors in this ex-
periment is quite high, over 60%, while some image classification works show ex-
tremely good performance over Corel datasets. We believe the main reason for that is 
because the images from Google do not resemble the images from Corel in many 
cases. Table 6 shows two images of category ‘bird’ from both Google and Corel data-
base. Apparently, the training examples are very different from testing images, either 
from the viewpoint of color or from the viewpoint of texture. We think that is the 
reason why this task is so hard and causes so large testing errors. 

5   Conclusions 

In this paper, we proposed a framework that is able to incorporate class prior informa-
tion into training a  discriminative model. This algorithm can also be thought as a 
machine learning algorithm which allows a discriminative model to use a mixture of 
labeled and unlabeled data. In the empirical study over five different UCI datasets and 
Corel image database, this algorithm is able to improve the performance of the condi-
tional exponential model significantly when the number of training examples is small 
and when the test data are heterogeneous from the training data. Therefore, we con-
clude that the new algorithm is able to help the performance even with inaccurate 
estimation for class priors and the improvement depends on the accuracy of the esti-
mation. Usually large improvements were found when accurate class priors were 
incorporated into training but these improvements vanished when the class priors had 
substantial inaccuracies. Thus, more research work is needed in order to study how to 
improve the classification accuracy in case of inaccurate class priors. 
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Abstract. The availability of microarray data has enabled several studies on the 
application of aggregated classifiers for molecular classification.  We present a 
combination of classifier aggregating and adaptive sampling techniques capable 
of increasing prediction accuracy of tumor samples for multiclass datasets.  Our 
aggregated classifier method is capable of improving the classification accuracy 
of predictor sets obtained from our maximal-antiredundancy-based feature se-
lection technique.  On the Global Cancer Map (GCM) dataset, an improvement 
over the highest accuracy reported has been achieved by the joint application of 
our feature selection technique and the modified aggregated classifier method.   

Keywords:  Arcing, microarray, tumor classification, boosting. 

1   Introduction 

Perturbed training sets, not unknown in the area of traditional machine learning, have 
been used to increase classification accuracy by combining or aggregating several clas-
sifiers. There are several types of classifier aggregation methods, such as bootstrapping, 
convex pseudo-data, boosting and arcing. Whilst the first two are simply different ver-
sions of pure bagging (bootstrap aggregating), the last two belong to the category of 
adaptive sampling techniques. Although various flavors of bootstrapping, convex 
pseudo-data and boosting have been applied independently for molecular classification 
[1−4], none have satisfactorily addressed the problems presented by truly multiclass 
datasets (>5 classes), namely, poor classification accuracy and large predictor sets.  Nor 
has an appropriate classifier-independent (filter-based) feature selection technique been 
applied prior to employing either aggregating or adaptive sampling methods. 

This paper demonstrates how a method combining pseudo-convex data and arcing, 
with the aid of a maximal-antiredundancy-based feature selection technique, can im-
prove the molecular classification accuracy of multiclass datasets.  Moreover, the im-
provement is achieved using a comparatively small predictor set size. 

2   Perturbation Methods 

The original training set T, upon which feature selection and perturbation methods are 
to be implemented, consists of N genes and M samples.  Prior to training set perturba-
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tion and/or classifier training, feature selection is employed to form a subset of genes, 
called the predictor set, S from the total of N genes.  The criterion for choosing the 
members of S is given in section 2.3. 

2.1   Existing Methods 

Convex Pseudo-Data (CPD).  Breiman [5] suggested the use of the convex pseudo-
data method to form B perturbed training sets.  Here, each of the perturbed training set 
is created as follows: 

1. Pick two samples x and x' randomly from the original training set T. 
2. Select a random number v from the interval [0, d], where 0 ≤ d ≤ 1. 
3. Generate a new pseudo-sample x" by linearly combining x and x'. 

( ) xxx ′+−=′′ vv1  (1) 

4. Repeat step 1 until step 3 given above M times. 

B is traditionally assigned values within the range [10, 200].   

Arcing. Breiman [6] has also established a technique for adaptive sampling, arc-x4, 
where B classifiers are produced as follows:  

1. Initialize the sampling probability, pj for training sample j to 1/M for j = 1, 2, …, M.  
2. Sample T with replacement based on the current sampling probabilities, pj for each 

sample in order to form a perturbed training set of the same size, T″. 
3. Train a base classifier employing features from the predictor set used, and informa-

tion from perturbed training set T″. 
4. Use classification results from step 3 to update the sampling probabilities, pj using 

the following equation. 
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where mj denotes the number of times sample j has been misclassified by the classi-
fier. 
5. Repeat step 2 until step 4 given above B times. 

Again, the range for B in case of arcing is the same as that of CPD.  Modifications 
have also been made to ensure that the class composition of T″ remains the same as 
that of T.  After B classifiers have been created this way, the test samples are pre-
dicted by unweighted voting of those B classifiers. 

2.2   Proposed Methods 

For the work reported in this paper, the following modifications to the existing per-
turbation methods are implemented to investigate their impact on classification accu-
racy and optimal predictor set size.  
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Fixed Mixing Parameter CPD (FMCPD).  In existing CPD, the value of v is picked 
randomly within the range [0, d]. We propose a modified version of CPD where the 
value of v is fixed to the upper limit of the interval, d in step 2 of the existing CPD 
method. We call this adaptation the fixed mixing parameter CPD (FMCPD). 

Combining CPD or FMCPD with Arcing. Our second proposed modification 
involves combining the CPD (or FMCPD) and arcing techniques in order to take 
advantage of both techniques.  B classifiers are formed as follows: 

1. Same as step 1 in Arcing. 
2. Sample T with replacement based on the current sampling probabilities, pj for each 

sample in order to form an intermediate perturbed training set of the same size, T′.  
Then, from T′, use either CPD or FMCPD to construct a final perturbed training set 
of the same size, T″. 

3. Same as step 3 in Arcing. 
4. Same as step 4 in Arcing. 
5. Repeat step 2 until step 4 given above B times. 

Finally, the test samples are predicted by unweighted voting of the B classifiers 
trained in the procedures above. 

2.3   Pre-aggregating Feature Selection 

Predictor sets used to train the classifiers are obtained through a maximal-antiredun dancy-
based feature selection technique proposed in [7].  In this technique, the antiredundancy-
based predictor set score is defined to measure the goodness of predictor set S. 

( ) ( ) αα −⋅= 1
, SSSAC UVW  (3) 

VS denotes the measure of relevance for S and is computed by averaging the 
BSS/WSS (between-class sum of squares/within-class sum of squares) ratios of the 
members of S. The BSS/WSS measure, first used in [1] for multiclass tumor classifi-
cation, is a modification of the F-ratio statistics for one-way ANOVA (Analysis of 
Variance). US  represents the measure of antiredundancy for S.  
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with R(i, j) being the Pearson product moment correlation coefficient between mem-
bers i and j of S.  As can be seen from equation (3),  α  and (1−α) represent the impor-
tance placed upon relevance and antiredundancy respectively in determining the 
membership of S. 

This predictor set scoring approach is employed to find the optimal predictor set of 
sizes P = 2, …, 150. 

3   Results 

Existing and proposed methods were tested on a 14-class oligonucleotide microarray 
(Affymetrix) dataset of 14 different primary tumor types (“Global Cancer Map”, or 
GCM) [8].  GCM contains N = 16063 features (genes), and is considered to be the 
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largest publicly available microarray dataset in terms of the total number of features 
and classes. 198 tumor samples of the GCM dataset were split into a training set of 
144 samples and a test set of 54 samples. 

A total of 9 optimal predictor sets are considered in the experiment, each predictor 
set being obtained based on the α values of 0.1, 0.2, …, 0.9 respectively.  In this pa-
per we use the split of training and test sets similar to the split used in the original 
studies on the dataset [8, 9]. Except for the runs employing pure arcing technique, B is 
set to 25 throughout the experiments.  A SVM-based multi-classifier, DAGSVM, is 
used as the base classifier.  This classifier uses substantially less training time com-
pared to either the standard algorithm or Max Wins, and has been shown to produce 
comparable accuracy to both of these algorithms [10]. 

3.1   Arcing  

First, we applied the arcing technique on the GCM dataset in order to investigate 
whether arcing by itself, without either CPD or FMCPD, is able to produce any sig-
nificant improvement over classification results of the original single classifier (SC).  
For this purpose, experiments were conducted using pure arcing technique with B = 
25 and B = 50.  For the particular dataset employed, identical sets of results are ob-
tained from pure arcing runs for both values of B and are shown in Tables 1 and 2. 

Table 1. Optimal classification accuracy (P ≤ 150) from pure arcing method (SC denotes single 
classifier) 

α 
  B 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

25 or 50 75.9 77.8 79.6 83.3 81.5 77.8 79.6 74.1 61.1 
SC 75.9 75.9 77.8 83.3 79.6 75.9 75.9 72.2 61.1 

Table 2. Corresponding optimal predictor set size (P ≤ 150) from pure arcing method 

α 
  B 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

25 or 50 46 135 75 85 118 144 125 145 150 
SC 51 92 75 85 109 144 125 145 150 

Arcing produced only a slight improvement of classification accuracy for 6 out of 
the 9 predictor sets with respect to the single classifier.  In terms of predictor size, in 
fact, there is no improvement with arcing except for a small decrease in the case of 
α =0.1. 

3.2   CPD-Arcing 

The CPD methods may or may not incorporate arcing for forming perturbed training 
sets.  The methods employing exclusively CPD are labeled as CNUd (Convex 
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pseudo-data, No arcing, Unfixed v), while the methods incorporating arcing are 
tagged as CRUd (Convex pseudo-data, aRcing, Unfixed v). 

The full set of results is presented here for only CRUd methods.  The values of d 
implemented in the experiments are 0.5, 0.625, 0.75 and 1.0.  The results for CPD 
methods demonstrate that at d=1.0 the CPD-Arcing method produces the classifica-
tion accuracy that are better than those of the single classifier except for the predictor 
set formed using α=0.4 (Tables 3 and 4). 

Table 3. Optimal classification accuracy (P ≤ 150) from CRUd methods  

α 
  d 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 77.8 81.5 83.3 81.5 83.3 79.6 75.9 75.9 68.5 
0.625 77.8 81.5 81.5 81.5 83.3 79.6 79.6 74.1 63.0 

0.75 77.8 81.5 83.3 83.3 83.3 79.6 79.6 75.9 64.8 
1.0 79.6 81.5 83.3 81.5 85.2 79.6 81.5 79.6 64.8 

SC 75.9 75.9 77.8 83.3 79.6 75.9 75.9 72.2 61.1 

Table 4. Corresponding optimal predictor set size (P ≤ 150) from CRUd methods  

α 
  d 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 73 102 75 102 108 139 125 143 150 
0.625 68 104 85 97 103 138 150 138 133 

0.75 73 105 80 85 128 122 145 142 130 
1.0 76 113 75 106 130 123 139 146 145 

SC 51 92 75 85 109 144 125 145 150 

In terms of the average of accuracies across different α values, CRU1.0 (i.e. d = 1.0) 
gives the best overall results. 

3.3   FMCPD-Arcing  

Like CPD, FMCPD methods may or may not incorporate arcing to construct per-
turbed training sets. The methods employing exclusively FMCPD are labeled as 
CNFv (Convex pseudo-data, No arcing, Fixed v), while the methods incorporating 
arcing are tagged as CRFv (Convex pseudo-data, aRcing, Fixed v). 

The full set of results is shown only for the CRFv methods. In the experiments, 
several values of v were used: 0.5, 0.625, and 0.75. The results from the FMCPD-
Arcing experiments show that at v=0.5 and 0.625, the classification accuracy are im-
proved (Table 5) with a minimal increase in predictor set size (Table 6) as compared 
to the accuracy achieved by single classifier (without any classifier aggregation) for 
the cases of α=0.3, 0.4, 0.5.  Whereas for α=0.6, the increase in accuracy is accompa-
nied by a slight decrease in corresponding predictor set size. 
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Table 5. Optimal classification accuracy (P ≤ 150) from CRFv methods 

α 
  v 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 79.6 81.5 79.6 85.2 85.2 81.5 79.6 79.6 64.8 
0.625 79.6 81.5 79.6 85.2 87 81.5 79.6 79.6 70.4 
0.75 72.2 66.7 70.4 77.8 77.8 74.1 77.8 75.9 70.4 

SC 75.9 75.9 77.8 83.3 79.6 75.9 75.9 72.2 61.1 

Table 6. Corresponding optimal predictor set size (P ≤ 150) from CRFv methods 

α 
  v 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 120 102 78 98 128 126 127 138 140 
0.625 108 109 78 105 126 134 111 150 80 
0.75 81 79 75 141 105 84 104 149 90 
SC 51 92 75 85 109 144 125 145 150 

By averaging the test accuracies across different α values, CRF0.625 (i.e. v = 
0.625) gives the best overall results.  The improvements attained by the FMCPD-
Arcing methods over the single classifier, either in terms of accuracy increase or pre-
dictor set size, are more impressive than those achieved by the CPD-Arcing methods.    

4   Discussion 

The results from the previous section show that while arcing improves the classifica-
tion accuracy of only 6 out of the 9 predictor sets with respect to the single classifier, 
the FMCPD-Arcing methods increase the accuracy for all 9 predictor sets.  Moreover, 
the increase in accuracy produced through arcing is of smaller magnitude than the im-
provement through the FMCPD-Arcing method.  We therefore conclude that arcing 
by itself, without either CPD or FMCPD, does not bring about any significant im-
provement over the results from the original single classifier.  It is the combination of 
FMCPD and arcing that is crucial for the vast improvement in classification accuracy.   

A further inspection of the results from the previous section leads us to the follow-
ing two questions:  

1. How much of the improvement in accuracy is the effect of fixing? 
2. How much additional improvement is due to combining arcing with the CPD or 

FMCPD technique?   

To answer the first question, a comparison between the FMCPD and the original 
CPD methods, with or without arcing is required and is presently given in Section 4.1.  
For the second question, a double contemplation of FMCPD-Arcing vs. FMCPD and 
CPD-Arcing vs. CPD is necessary and is presented subsequently in Section 4.2. 
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4.1   The Effects of Fixing the Mixing Parameters in CPD 

Two sets of comparison must be made to study the effect of fixing the mixing  
parameter v on classification accuracy. One is a comparison between CRFv and 
CRUd methods, while the other is a comparison between CNFv and CNUd methods.  
The value of v which gave the best overall results in accuracy for the FMCPD-Arcing 
methods, 0.625; and the value of d which produced the best average of accuracies for 
the CPD-Arcing methods, 1.0 are used in the comparisons.   

Table 7. Optimal classification accuracy (P ≤ 150) from the CRF0.625, CNF0.625, CRU1.0 
and CNU1.0 methods using predictor sets formed based on different values of α 

α 
Method 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

CRF0.625 79.6 81.5 79.6 85.2 87.0 81.5 79.6 79.6 70.4 
CNF0.625 79.6 79.6 77.8 85.2 85.2 81.5 79.6 81.5 66.7 
CRU1.0 79.6 81.5 83.3 81.5 85.2 79.6 81.5 79.6 64.8 
CNU1.0 77.8 83.3 81.5 85.2 85.2 81.5 79.6 77.8 70.4 

Table 8. Corresponding optimal predictor set size (P ≤ 150) from the CRF0.625, CNF0.625, 
CRU1.0 and CNU1.0 methods using predictor sets formed based on different values of α 

α 
 Method 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

CRF0.625 108 109 78 105 126 134 111 150 80 
CNF0.625 118 135 110 144 130 138 130 137 132 
CRU1.0 76 113 75 106 130 123 139 146 145 
CNU1.0 38 102 91 138 103 138 112 141 150 

These 4 methods (Tables 7 and 8) will be used to compare and contrast 

• the results from CRF0.625 with those from CRU1.0 to examine the effects of fix-
ing v in methods incorporating the arcing technique; and 

• the results from CNF0.625 with those from CNU1.0 to investigate the effects of 
fixing v in methods with no arcing. 

The comparison is carried out as follows.  In comparing method A to method B (A 
vs. B), if the accuracy from method A is greater than that from method B, then 
method A is said to be better than method B, and vice versa.  If, however, both meth-
ods give equal accuracy rate, then the method providing a smaller predictor set is con-
sidered to be superior. 

For methods integrating the arcing technique, fixing v does not create any consid-
erable effects, improving the accuracy in only those predictor sets which are based on 
α values of 0.2, 0.4, 0.5, 0.6 and 0.9.  On the other hand, for methods with no arcing, 
fixing v clearly deteriorates the classification accuracy for the majority of predictor 
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sets, with only those based on α values of 0.1 and 0.8 showing improved accuracy, 
while the 6 other predictor sets produce worse accuracy (Table 9, rows 1 and 2).  

Table 9. Comparison of different methods  using predictor sets formed based on different 
values of α.  ‘+’  means the first method performs better than the second method in the 
comparison first method vs. second method; ‘−’ indicates that the first method performs worse;  
‘=’ denotes equal performance from both methods 

α 
 Comparison 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

CRF0.625 vs. 
CRU1.0 − + − + + + − − + 

CNF0.625 vs. 
CNU1.0 

+ − − − − = − + − 

CRF0.625 vs. 
CNF0.625 

+ + + + + + + − + 

CRU1.0 vs. 
CNU1.0 

+ − + − − − + + − 

CRF0.625 vs. 
CNU1.0 

+ − − + + + + + + 

In short, from these comparisons it may be construed that fixing the mixing pa-
rameter v does not contribute to the improvement in accuracy for methods with arc-
ing, and in fact produces adverse effects for methods without arcing. 

4.2   The Effects of Incorporating Arcing in CPD and FMCPD 

As in case of the study on the effects of fixing v, two sets of comparison are necessary 
in order to investigate the effects of incorporating the arcing technique on classifica-
tion accuracy.  The first is a comparison between CRFv and CNFv methods, while the 
second is a comparison between CRUd and CNUd methods.  Again, the value of v 
which gave the best overall results in accuracy for the FMCPD-Arcing methods, 
0.625; and the value of d which produced the best average of accuracies for the CPD-
Arcing methods, 1.0 are used in the comparisons.  The same 4 methods (Tables 7 and 
8) used in the previous comparisons will be employed, in a different combination, to 
compare and contrast  

• the results from CRF0.625 with those from CNF0.625 to study the effects of 
incorporating the classifier arcing technique into FMCPD methods; and 

• the results from CRU1.0 with those from CNU1.0 to analyze the effects of incor-
porating the classifier arcing technique into original CPD methods. 

The first set of comparison indicates that FMCPD benefits greatly from the integra-
tion of arcing. CRF0.625 outperforms CNF0.625 in all but one (α=0.8) of the predic-
tor sets of varying α values.  The same, however, cannot be said for the second set of 
comparison.  Combining arcing with original CPD yields mixed results, with CRU1.0 
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giving a better accuracy in 4 predictor sets (α=0.1, 0.3, 0.7 and 0.8), and performing 
worse than CNU1.0 in the remaining 5 predictor sets (Table 9, rows 3 and 4). 

Incorporating arcing produces significant improvement in the classification accu-
racy only when v is fixed. In other words, either one of the modifications by itself 
(i.e. incorporating arcing or fixing v) is not useful in improving classification per-
formance. To prove this, another comparison is made between CRF0.625 and 
CNU1.0 to show the benefits of simultaneously combining arcing and fixing v (Table 
9, bottom-most row). The former is a combination of arcing and FMCPD at v=0.625, 
while the latter, a pure CPD method at d=1.0.  Recall that the values of v and d for 
each of the method respectively are values that have been empirically shown to yield 
the best overall performance in classification accuracy across different values of α 
from 0.1 to 0.9. 

CRF0.625 performs better than CNU1.0 in 7 of the predictor sets, either by produc-
ing better accuracy or similar accuracy but with a smaller predictor set in each case.  
In fact, CRF0.625 is able to achieve a test set classification accuracy of the GCM 
dataset that is higher than previously published [7−9, 11], 87.0%, with corresponding 
predictor set size of 126 genes. 

4.3   The Effects of Antiredundancy Factor (1−α) 

With CRF0.625, although the best accuracy of 87.0% is obtained at α=0.5, the predic-
tor set size required is an unwieldy 126 genes (Figure 1).  At α=0.4, an accuracy of 
85.2%, also higher than any previously reported, is achieved using only a considera-
bly smaller 105-gene predictor set.  In a previous study [7], we found an optimal point 
in the trade-off between accuracy (83.3%) and predictor set size (85 genes) at α=0.4.  
Although the results are not so clear-cut in case of the CRF0.625 method, from the 
plot in Figure 1 we can still say that the trend towards high accuracy and correspond-
ingly small predictor set points to the same α value of 0.4.   

70

90

110

130

150

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

P
re

d
ic

to
r 

S
et

 S
iz

e

60

65

70

75

80

85

90

T
es

t 
S

et
 A

cc
u

ra
cy

 (
%

)

Predictor Set Size
Accuracy (%)

 

Fig. 1. Plot of best accuracy and the corresponding predictor set size vs. α  for CRF0.625 

For a microarray dataset whose molecular classification was proclaimed to reach 
the maximum accuracy barrier of 77.8% using all of its 16000 genes in the predictor 
set [8, 9], an improvement of more than 7% in accuracy, employing only 105 of those 
16063 genes, is significant indeed.  This has been done with the aid of an appropriate 
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feature selection technique, and an astute modification of adaptive sampling and clas-
sifier aggregation methods. 

5   Conclusion 

A precise combination of a modified CPD and arcing methods implemented together 
with the maximal-antiredundancy-based feature selection technique has improved the 
classification accuracy of a highly complex and multiclass microarray dataset.  The 
increase in classification accuracy has been achieved along with a reasonably small 
predictor set.  The underlying factors (fixing v; the simultaneous incorporation of arc-
ing) behind the improved performance of the hybrid method of FMCPD-Arcing have 
also been elucidated.  Although the results presented are derived from one dataset, 
this dataset is so far considered to be the most ‘difficult’ microarray dataset (largest in 
term of the number of classes and among the largest in term of total number of fea-
tures).  Therefore the performance of our proposed methods is most likely reproduci-
ble in other multiclass datasets of less complexity. 
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Abstract. In this paper we present a novel and general framework based on con-
cepts of relational algebra for kernel-based learning over relational schema. We
exploit the notion of foreign keys to define a new attribute that we call instance-
set and we use this type of attribute to define a tree like structured representation
of the learning instances. We define kernel functions over relational schemata
which are instances of -Convolution kernels and use them as a basis for a rela-
tional instance-based learning algorithm. These kernels can be considered as be-
ing defined over typed and unordered trees where elementary kernels are used to
compute the graded similarity between nodes. We investigate their formal prop-
erties and evaluate the performance of the relational instance-based algorithm on
a number of relational datasets.

1 Introduction

Learning from structured data has recently attracted a great deal of attention within the
machine learning community ([1]). The reason for this is that it is in general hard to
represent most of real world data as a flat table. Recently it has been also realized that
one strength of the kernel-based learning paradigm is its ability to support input spaces
whose representation is more general than attribute-value ([2, 3, 4]). The latter is mainly
due to the fact that the proper definition of a kernel function enables the structured data
to be embedded in some linear feature space without the explicit computation of the
feature map. The main advantage of this approach is that any propositional algorithm
which is based on inner products can be applied on the structured data.

In this paper we bring kernel methods and learning from structured data together.
First we propose a novel database oriented approach and define our algorithms and op-
erations over relational schema where learning examples come in the form of intercon-
nected relational tables. There exists a single main relation each tuple of which gives
rise to a relational instance that spans through the relations of the relational schema.
Second we define a family of kernel functions over relational schemata which are gen-
erated in a “syntax-driven” manner in the sense that the input description specifies the
kernel’s operation. We show that the resulting kernels can be considered as kernels
defined on typed, unordered trees and analyze their formal properties. In this paper we
concentrate on the instance-based learning paradigm and we exploit these kernels to de-
fine a relational distance, however since the kernels are valid in terms of their mathemat-
ical properties any kernel-based algorithm could be used. Finally we report the results
of an instance-based learner on a number of standard relational benchmark datasets.

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 588–598, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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2 Description of the Relational Instance

Consider a general relational schema that consists of a set of relations R = {R}. Each
tuple, Ri , of a relation R represents a relationship between a set of values {Rij} of the
set of attributes {R j} related via R. The domain, D(R j), of attribute R j is the set
of values that the attribute assumes in relation R. An attribute R j is called a potential
key of relation R if it assumes a unique value for each instance of the relation. An
attribute X i of relation X is a foreign key if it references a potential key R j of relation
R and takes values in the domain D(R j) in which case we will also call the R j a
referenced key. The association between R j and X i models one-to-many relations, i.e.
one element of R can be associated with a set of elements of X . A link is a quadruple
of the form l(R,R k,X,X l) where either X l is a foreign key of X referencing a
potential key R k of R or vice versa. We will call the set of attributes of a relation R
that are not keys (i.e. referenced keys, foreign keys or attributes defined as keys but not
referenced) standard attributes and denote it with {S j}. The notion of links is critical
for our relational learner since it will provide the basis for the new type of attributes,
i.e. the instance-set type that lies in the core of our relational representation.

For a given referenced key R k of relation R we denote by L(R,R k) the set of
links l(R,R k,X,X fk

) in which R k is referenced as a foreign key by X fk
of X . We

will call the multiset of X relations, denoted as L(R,R k){1}, the directly dependent
relation of R for R k. By L(R, ) = ∪kL(R,R k) we note the list of all links in which
one of the potential keys of R is referenced as a foreign key by an attribute of another
relation. Similarly for a given foreign key R fk

of R, L−1(R,R fk
) will return the link

l(R,R fk
,X,X k) where X k is the potential key of X referenced by the foreign key

R fk
. We will call relation X the directly referenced relation of R for R fk

and denoted
it as L−1(R,R fk

){1}. If R has more than one foreign keys then by L−1(R, ) =
∪fk

L−1(R,R fk
) we denote the set of all links of R defined by the foreign keys of

R, and by L−1(R, ){1} the corresponding multiset of relations to which these foreign
keys refer.

To define a classification problem one of the relations in R should be defined as
the main relation, M . Then one of the attributes of this relation should be defined as
the class attribute, M c, i.e. the attribute that defines the classification problem. Each
instance, Mi , of the M relation will give rise to one relational instance, M+

i , i.e. an
instance that spans the different relations in R. To get the complete description of M+

i

one will have to traverse possibly the whole relational schema according to the associ-
ations defined in the schema. More precisely given instance Mi we create a relational
instance M+

i that will have the same set of standard attributes {S j} and the same
values for these attributes as Mi has. Furthermore each link l(M,M k, R,R fk

) ∈
L(M, ) ∪ L−1(M, ) adds in M+

i one attribute of type instance-set. The value of an
attribute of type instance-set is defined based on the link l and it will be the set of in-
stances (actually also relational instances) with which Mi is associated in relation R
when we follow the link l (these are retrieved directly by a simple SQL query). By re-
cursive application of this procedure at each level we obtain the complete description
of the relational instance M+

i .
We should note here that the relational instance M+

i can be seen as a tree like struc-
ture whose root contains Mi . Each node at the second level of the tree is an instance
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from some relations R ∈ R related via a link l(M,M k, R,R fk
) with instance Mi . In

the same way nodes at the d level of the tree are also instances from a given relation.
Each of these instances is related with one of the instances found in nodes of the d− 1
level. In other words M+

i is a tree where each node is one tuple from one of the relations
that are part of the description of the relational instance and the connections between
the nodes are determined by the foreign key associations defined within the relational
schema. This means that the resulting tree is typed (i.e. each node is of a given type
determined by one of the relations within the relational schema) and unordered (i.e. the
order of instances appearing as children of a given node is not important). To limit the
size of the resulting tree and to make the computation of our algorithms less expensive
we sometimes prune the tree to a specific depth d.

Traversing the relational schema in order to retrieve the complete description of a
given relational instance can easily produce self replicating loops. In order to avoid that
kind of situation we will have to keep track of all the instances of the different relations
that appear in a given path of the recursion; the moment an instance appears a second
time in the given recursion path the recursion terminates.

Having an adequate way to handle attributes of type instance-set is the heart of the
problem that should be tackled by any relational learning algorithm that could exploit
the relational structure that we have sketched thus far.

3 Kernels

A kernel is a symmetric function k : X ×X → R, where X is any set, such that for all
x, y ∈ X , k(x, y) =< φ(x),φ(y) > where φ is a mapping from X to a feature space Φ
embedded with an inner product, actually a pre-Hilbert space.

We should note here that the definition of kernels does not require that the input
space X be a vector space –it can be any kind of set which we can embed in the feature
space Φ via the kernel. This property allows us to define kernels on any kind of struc-
tures that will embed these structures in a linear space. The attractiveness of kernels lies
in the fact that one does not need to explicitly compute the mappings φ(x) in order to
compute the inner products in the feature space.

Examples of kernels defined on vector spaces are the polynomial kernel kPp,a
(x, y)

= (<x,y>+a)p√
(<x,x>+a)p

√
(<y,y>+a)p

where a ∈ R, p ∈ N+ and the Gaussian RBF kernel

kGγ
(x, y) = e−γ‖x−y‖2

where γ ∈ R. This two kernels are the ones we are going to
use in our experiments.

3.1 Kernels on Relational Instances

In order to define a kernel on the relational instances we will distinguish two parts,
Ris, Riset, in each relational instance Ri found in a relation R. Ris denote the vector of
standard attributes {S j} of R, let Ds = |{S j}|; Riset denotes the vector of attributes
that are of type instance-set and for a relation R are given by L(R, ) ∪ L−1(R, ), let
Dset = |L(R, ) ∪ L−1(R, )|.

Let Ri = (Ris, Riset) ∈ X = X{S j}×Xset where Xset = Xset1 ×Xset2 ,×...×
XsetDset

and Ris ∈ X{S j}, Riset ∈ Xset. Given this formalism we defined two re-
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lational kernels: direct sum kernel (kΣ(., .)) and the kernel which is derived by direct
application of the %-Convolution kernel ( [2]) on the set X (k�(., .)). Since these ker-
nels are defined over multi-relational instances they are computed following the same
recursion path as the retrieval of a multi-relational instance.

The direct sum kernel is obtained by exploiting the fact that the direct sum of kernels
is itself a kernel, [5], which would give the following kernel on the set X (if |{S j}| = 0)
kΣ(Ri , Rj ) = ks(Ris, Rjs) +

∑Dset

l=1 Kset(Risetl
, Rjsetl

) where ks(., .) can be any
type of elementary kernel defined on the set {S j} of the standard attributes of R and
Kset(., .) is a kernel between sets which will be defined in Section 3.2. If |{S j}| = 0
then the kernel defined over standard attributes vanishes and we obtain kΣ(Ri , Rj ) =∑Dset

l=1 Kset(Risetl
, Rjsetl

). It is obvious that the value of KΣ(., .) is affected by the
number of attributes that are of type instance-set since it contains a sum of kernels
defined on these attributes. In order to factor out that effect among different relations
we use a normalized version of kΣ (if |{S j}| = 0) defined as:

KΣ(Ri , Rj ) =
kΣ(Ri , Rj )

1 + Dset
(1)

If |{S j}| = 0 we have KΣ(Ri , Rj ) = kΣ(Ri ,Rj )
Dset

.
An alternative kernel is derived by the direct application of the%-Convolution kernel

as described in [2]. The main idea in the %-Convolution kernel is that composite objects
consist of simpler parts that are connected via a relation %. Kernels on the composite
objects can be computed by combining kernels defined on their constituent parts. Let
x ∈ X be a composite object and x = x1, ...,xD ∈ X1 × ... × XD its constituent
parts. Then we can represent the relation x are the parts of x by the relation % on
the set X1 × X2 × ... × XD × X where %(x,x) is true iff x are the parts of x. Let
%−1(x) = {x : %(x,x)}, a composite object can have more than one decomposing
possibilities. Then the %-Convolution kernel is defined as:

k�(x, y) =
∑

x∈�−1(x),y∈�−1(y)

D∏
d=1

Kd(xd, yd) (2)

Since we defined only one way to decompose a relational instance Ri the sum in the
equation 2 vanishes and we obtain the product of kernels defined over attributes of
type instance-set and the kernels defined on standard attributes (only if standard at-
tributes are present). In case |{S j}| = 0 the resulting %-Convolution kernel is de-
fined as k�(Ri , Rj ) = ks(Ris, Rjs)

∏Dset

l=1 Kset(Risetl
, Rjsetl

) otherwise we ob-
tain: k�(Ri , Rj ) =

∏Dset

l=1 Kset(Risetl
, Rjsetl

). Again it is obvious that the value
of k�(., .) is affected by the number of attributes that are of type instance-set so we
opted for the following normalization version of the kernel:

K�(Ri , Rj ) =
k�(Ri , Rj )√

k�(Ri , Ri )k�(Rj , Rj )
(3)

These two kernels, K�(., .),KΣ(., .), are the ones with which we are going to ex-
periment and on which we are going to base our distance computations. Having a kernel
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it is straightforward to compute the distance in the feature space Φ in which the kernel
computes the inner product as d(φ(x),φ(y)) =

√
K(x,x)− 2K(x, y) + K(y, y).

We already mentioned in the Section 2 that a relational instance can be considered
as a tree-like structure where each node is one tuple from one of the relations and con-
nections between nodes are determined by the foreign key associations. This makes the
relational kernel a kernel over trees. The input trees are typed which results in the defi-
nition of a graded similarity. The similarity of nodes of different type, i.e. nodes coming
from different relations, is zero. The similarity of nodes of the same type is determined
on the basis of the attributes found on the relation associated with the given type. At
the same time input trees are unordered which means that the order of comparison of
the descendants is not important, the only constraint being that only descendants of the
same type can be compared. In other words the subtree comparison is meaningful only
between subtrees that are rooted on nodes that come from the same relation.

3.2 Kernels on Sets

To complete the definition of the kernel on the relational structure we define here a
kernel over sets of instances by exploiting the %-Convolution kernel from equation 2
(we put % be x ∈ %−1(x)⇔ x ∈ x). Consequently we obtain the cross product kernel
Kset(X,Y ) =

∑
x∈X,y∈Y KΣ|�(x,y) where KΣ|�(., .) is either KΣ(., .) or K�(., .).

The computation of the final kernel is based on recursive alternating applications of
KΣ(., .) or K�(., .) and Kset(., .).

The procedure of computing the kernel on the variables of type instance-set is sensi-
ble to cardinality variations; sets with larger cardinality will dominate the solution. This
leads us to the issue of normalization of the cross product kernel, so that we obtain:

Knorm(X,Y ) =
Kset(X,Y )

fnorm(X)fnorm(Y )
(4)

where fnorm(x) is a normalization function which is nonnegative and takes non-zero
values. Different choices of fnorm(x) give rise to different normalization methods, [6].
By putting fnorm(X) = |X|we obtain the Averaging normalization method (kΣA

(., .)).
Defining fnorm(X) =

√
kset(X,X) we get the Normalization in the feature space

(kΣF S
(., .)). The obtained functions are valid kernels since the explicit representation

of the feature space can be constructed, Section 3.3.

3.3 Feature Space Induced by Relational Kernels

In order to get a new insight into the behavior of the relational kernels defined so
far we will specify the feature space associated with them. We start with the defini-
tion of the feature space induced by the cross product kernel defined in Section 3.2.
Lets assume ΦΣ|� (i.e. ΦΣ or Φ�) is an embedding function into a feature space
FΣ|� (FΣ or F� ) for the kernel KΣ|� (KΣ or K�) on the right hand of the defi-
nition of the cross product kernel so that KΣ|�(x,y) =< ΦΣ|�(x),ΦΣ|�(y) >. It
is easy to show that the feature space induced by this kernel is given by Φset(X) =∑

x∈X ΦΣ|�(x) ∈ FΣ|�, [7]. Similarly the feature space induced by kernel from equa-

tion 4 where fnorm(X) = |X| is given by Φset(X) =
∑

x∈X ΦΣ|�(x)

|X| . It is clear
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that this normalization method amounts to computing the inner product, in the fea-
ture space induced by the elementary kernels, between the two centroids of the cor-
responding sets. In case fnorm(X) =

√
Kset(X,X) the feature space is given by

Φset(X) =
∑

x∈X ΦΣ|�(x)

‖∑x∈X ΦΣ|�(x)‖ So this normalization method computes the cosine of the

angle between the two normalized resultants of the vectors of the two sets.
Now we define the feature space associated with the direct sum (KΣ) and the %-

Convolution (K�) kernels. Lets assume that ΦΣ (Φ�) is an embedding function into a
feature space FΣ (F�) for kernel KΣ (K�). Let also φs,φset1 , . . . ,φset|Dset| be embed-
ding functions into feature spaces Fs,Fset1 , . . . ,Fset|Dset| of the kernels ks, kset1 , . . . ,
kset|Dset| which constitute the KΣ and K� kernels, respectively. It is easy to show that
FΣ = Fs ⊕ Fset1 ⊕ · · · ⊕ Fset|Dset| and F� = Fs ⊗ Fset1 ⊗ · · · ⊗ Fset|Dset| where
⊕ denotes the direct sum and ⊗ denotes the tensor product of vector spaces. In other
words the F� is constructed by computing all the possible products of all the dimen-
sions of its constituent spaces, where each product becomes a new dimension of F�.
In contrast the FΣ is constructed by a simple concatenation of the dimensions of its
constituent spaces. It is obvious that dim(FΣ) = dim(Fs) +

∑|Dset|
i=1 dim(Fseti

) and

dim(F�) = dim(Fs)
∏|Dset|

i=1 dim(Fseti
). In order to get an explicit feature space rep-

resentation induced by the relational kernel one has to recursively combine the feature
spaces induced by the kernel on sets and the direct sum or the %-Convolution kernels.

An important result is that instance based learning in the feature space induced by
the %-Convolution kernel, F�, should be more difficult than in this induced by the
direct sum kernel, FΣ . This is because the dimensionality of F� is much higher than
FΣ (this holds if the elementary kernels induce a feature space of finite dimensionality,
otherwise they are both of infinite dimension). On the other hand the %-Convolution
kernel is more expressive since it accounts for feature interactions.

3.4 Time Complexity

Here we analyze the time complexity of the relational kernel defined above. Let T rI =
{T rI1,T rI2, . . . ,T rIn} be a set of tree representations of the relational instances in
a given relational schema. Let also T rR be a tree representation (with the depth d)
of the relational schema at the “relation” level where each node is a relation and the
connections between the nodes are again determined by the foreign key associations. In
case there are loops in the relational schema the depth is limited to an arbitrary value so
that a valid tree is constructed. It is worth noting that depths of each tree in T rI are at
most d. Having defined T rI and T rR let BFI be the maximal out-degree of all nodes in
all trees in the set T rI while BFR be the maximal out-degree of all nodes in the T rR. It
is easy to show the computation of the relational kernel between two tree representation
of relational instances is proportional to O((BFI

2)d−1) = O(BFI
2(d−1)) (here we

assume that the root of a tree is at level 1). The overall time complexity is proportional to
O(BFR

d−1BFI
2(d−1)). This complexity is dominated by BFI since BFR << BFI .

This is the pessimistic estimate of the time complexity and more accurate would be
acquired if the average branching factors were used.

An interesting analysis arises from the comparison of the computational complex-
ity of the cross product kernel with that of the inner product computed directly in
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the feature space. It is easy to show that the former complexity is proportional to

O(|A||B|(N +p)) whereas the latter is proportional to O(2(p+N−1
p )(|A|+ |B|)) where

A and B are two finite sets, the elementary kernel is polynomial elementary kernel with
the exponent p (without the bias towards lower order monomial) and input space is RN .
This means that for sets with high cardinality and for low values of N and p it is bet-
ter to explicitly map the instances to the feature space and compute the inner product
there.

4 Experiments

We will compare the selected kernel-based distance measures on a number of relational
problems: musk - version 1, diterpenes and mutagenesis. In the diterpene dataset [8] the
goal is to identify the type of diterpenoid compound skeletons given their 13C-NMR-
Spectrum. The musk dataset was described in [9]; here the goal is to predict the strength
of synthetic musk molecules. We worked with version 1 of the dataset.The Mutagenesis
dataset was introduced in [10]. The application task is the prediction of mutagenicity
of a set of 230 aromatic and heteroaromatic nitro-compounds. We worked with the
“regression friendly” version of the dataset. We defined two different versions of the
learning problem. In version 1 the examined compounds (in the main relation) consist
of atoms (in the atom relation) which constitute bonds (in the bound relation). The
recursion depth was limited to four. In version 2 the compounds consist of bonds while
bonds consists of atoms and the recursion level was limited to three. In both versions
the recursion depth was limited because of the time complexity of the algorithm. All
the results are given in table 1.

For diterpenes and musk datasets the computation of relational kernel can be simply
reduced to computing kernels on sets of vectors requiring thus no recursion. In these
cases the KΣ(., .) and K�(., .) relational kernels are equivalent (up to a normalization
term) so we report results only for the former. In the mutagenicity problem it will be
possible to move beyond a single level comparison of the instances and have many
levels of recursion. We report results for different set normalization schemes; the sub-
script A will denote averaging and the subscript FS feature space normalization. Here
we give results for p = {2, 3}, a = 1 (normalized polynomial kernel kPp,a

(., .)) and
for γ = {0.01, 0.001} (Gaussian RBF kGγ

(., .)). In the experiments we want to explore
the effect of different elementary kernels, the effect of different kernel set normaliza-
tions as well as the relative performance of the KΣ(., .) and K�(., .) kernels. We will
experiment with a single nearest neighbor.

We estimate accuracy using stratified ten-fold cross-validation and control for the
statistical significance of observed differences using McNemar’s test (sig. level=0.05).
We also establish a ranking schema of the different kernel-based distance measures,
based on their relative performance as determined by the results of the significance
tests, as follows: in a given dataset if kernel-based distance measure a is significantly
better than b then a is credited with one point and b with zero points; if there is no
significant difference then both are credited with half point.
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Table 1. Accuracy and rank results on the benchmark datasets

Elementary kernel DITERPENES MUSK MUTAGENESIS MUTAGENESIS

(VERSION 1) (VERSION 1) (VERSION 2)
Relational kernel KΣA KΣF S

kPp=2,a=1 91.22 (5.5) 85.87 (3.5) 84.04 (3.5) 81.91 (3.5)
kPp=3,a=1 91.75 (6) 88.04 (3.5) 83.51 (3.5) 84.57 (3.5)
kGγ=0.01 86.69 (2.5) 83.69 (3.5) 82.45 (3.5) 83.51 (3.5)
kGγ=0.001 83.30 (0.5) 81.52 (3.5) 81.91 (3.5) 84.04 (3.5)
Relational kernel KΣF S K�F S

kPp=2,a=1 90.82 (4.5) 85.87 (3.5) 82.98 (3.5) 85.11 (3.5)
kPp=3,a=1 91.68 (6) 88.04 (3.5) 82.45 (3.5) 84.04 (3.5)
kGγ=0.01 86.76 (2.5) 83.69 (3.5) 81.91 (3.5) 84.57 (3.5)
kGγ=0.001 83.03 (0.5) 81.52 (3.5) 79.79 (3.5) 84.57 (3.5)
Default Accuracy 29.81 51.09 66.49

5 Results

To compare the different elementary kernels we fix a dataset and average the ranks of
kP and kG, ignoring their parameter settings. There is an advantage of the polynomial
over the Gaussian RBF elementary kernel for diterpenes dataset - the average rank of
polynomial kernels is 5.5 (for Gaussian RBF 1.5). For both formulations of mutagenesis
and musk 1 the average rank of polynomial kernels is 3.5 (3.5).

The different normalization methods for kernels over sets also do not appear to have
an influence on the final results. For diterpenes Averaging had an average rank of 3.625
over the different elementary kernels and Feature space normalization an average rank
of 3.375. For musk 1 the corresponding figures were 3.5 and 3.5. One explanation for
this might be that the two denominators in the explicit feature space representations of
the normalized relational kernels from Section 3.3 are correlated, which makes sense
since sets of higher cardinality will have probably a higher ‖

∑
x∈X ΦΣ|�(x)‖, at least

for the datasets we examined.
The final dimension of comparison is the relative performance of KΣ(., .) and

K�(., .). Here again it did not have a big influence on the final results: for both for-
mulations of the mutagenesis problem KΣ(., .) and K�(., .) had an average rank of
3.5. This is rather surprising since as we have seen before instance-based learning in
the space induced by the R-Convolution kernel should be harder than in the space in-
duced by the direct sum kernel. However the R-Convolution kernel is more expressive
than the direct sum kernel because it accounts for feature interactions. The trade-off
between hardness of learning in space of higher dimensionality and the higher expres-
siveness might explain similar performance of the %-Convolution and the direct sum
kernel.

To situate the performance of our relational learner to other relational learning sys-
tems we give the best results reported in the literature on the same benchmark datasets.
All the results denote the accuracy and all have been estimated with ten fold cross-
validation. The best result for the musk 1 dataset is 92.40 % (IAPR algorihtm) and it
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was reported in [9]. In comparison our best kernel gave 88.04 % of accuracy. For the
diterpenes dataset the best accuracy was achieved using the DeS algorithm which comes
from [3]. The authors got 97.10 % whereas our best kernel gave 91.75 % of accuracy.
For the mutagenesis dataset we obtained 85.11 % of accuracy while the best result from
the literature was 90.4 % and was taken from [11].From the results reported above we
can see that our kernel-based learner compares favorably with the results achieved by
special-purpose algorithms applied to structured data.

6 Related Work

One of the first systems exploiting the concepts of relational algebra and foreign keys
was MIDOS, [12]. However [12] is focused on the KDD subgroup discovery task.

The most relevant kernel in our context is the %-Convolution kernel which was
mentioned in Section 3. To our best knowledge our kernel is the first time the original
%-Convolution kernel, [2], was applied to the type of relational structures we considered
here.

Gärtner et al. in [3] proposed a framework that allows the application of kernel meth-
ods to different types of structured data e.g. sets, trees, graphs, lists. The representation
formalism used was that of typed λ-calculus. The representation framework allows for
the modeling of arbitrary complex objects which however is not at all a trivial task.
Under this framework the authors explicitly defined kernels on sets and multisets. In [3]
elementary (atomic) kernels are defined for each attribute separately, while our kernel
assumes elementary kernels defined on the level of relations thus treating relations as
indivisible objects. Besides of this in [3] a kernel over tuples of objects is always de-
fined as a direct sum of its constituent parts whereas in our framework one is able to use
either the direct sum kernel or the %-Convolution, which have different representational
powers.

The kernels described in [4] and in [13] can be considered as specialized %- Convo-
lution kernels where instances are considered to be labeled ordered directed trees. The
idea of these kernels is based on the notion of a number of common subtrees in a tree
i.e. the kernel function is the inner product in the space which describes the number
of occurrences of all possible subtrees. The main difference between [4] and [13] is
that the former is applicable only to trees where no node shares its label with any of
its siblings. [13] overcomes this limitation by defining the substructures of a tree as a
tree such that there is a descendants order preserving mapping from vertices in the sub-
structure to vertices in the tree. There are two main differences between our kernel and
kernels defined in [13]. First the trees considered in [13] are labeled trees, i.e. each node
is characterized by a discrete label so two nodes are either the same or different, there is
no graded similarity. In our case however nodes are not labeled but typed which results
in the definition of a graded similarity. Second the trees in [13] are ordered whereas in
our case there is no order restriction, the only restriction imposed is that comparison is
performed only between subtrees rooted at nodes of the same type, i.e. same relation,
and only descendants of the same type can be compared.
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7 Discussion and Future Work

In this paper we proposed a kernel based relational instance based learner which, con-
trary to most of the previous relational approaches that rely on different forms of typed
logic, builds on notions from relational algebra. Thus we cover what we see as an im-
portant gap in the current work on multirelational learning bringing it closer to the
database community. We concentrated here on the instance-based learning paradigm
however our kernel can be plugged to any kernel-based classification algorithm.

Our kernel functions can be considered as instances of the %-Convolution kernel
in the sense that we define a kernel on a composite object by means of kernel on the
parts of objects. On the other hand our kernels could be also seen as being defined over
typed and unordered trees. Since in other areas of computational biology many prob-
lems can be described using similar structures we believe that our kernel could also
useful there.

Central to the whole approach was the definition of appropriate kernels on the new
type of attributes i.e. the instance-set type. We believe that there is still a lot to be gained
in classification performance if more refined kernels are used for this type of attributes.
We have followed a rather simple approach where the kernel between two sets was
simply the sum of all the pairwise kernels defined over all the pairs of elements of the
two sets. A more elaborate approach would take into account only the kernels computed
over specific pairs of elements based on some mapping relation of one set to the other
defined on the feature space.
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Abstract. We propose adaptive nonlinear auto-associative modeling (ANAM)
based on Locally Linear Embedding algorithm (LLE) for learning intrinsic prin-
cipal features of each concept separately and recognition thereby. Unlike tradi-
tional supervised manifold learning algorithm, the proposed ANAM algorithm
has several advantages: 1) it implicitly embodies discriminant information be-
cause the suboptimal parameters of ANAM are determined based on error rate of
the validation set. 2) it avoids the curse of dimensionality without loss accuracy
because recognition is completed in the original space. Experiments on character
and digit databases show that the advantages of the proposed ANAM algorithm.

1 Introduction

Much manifold learning literature has been published for discovering intrinsic infor-
mation embedded in the high-dimensional space[1]. Two major algorithms (LLE and
ISOMAP)[2, 3] are devoted to discover some intrinsic regularity underlying in the high-
dimensional data. Also some algorithms based on manifold learning are proposed for
supervised learning. However, most supervised manifold learning algorithms assume
that data can be projected into the same subspace and recognition without considering
the properties of concepts [4]. The disadvantage of the supervised manifold learning
approach is that the separability of data would be impaired because data from different
classes would be overlapped in the low-dimensional subspace [5]. Based on our obser-
vation, we assume that data are projected different subspaces are more suitable than
being projected a common subspace if data contain remarkably distinct concepts, for
example, character and digit.

Assuming that data manifold of each concept is generated by some intrinsic prin-
cipal features, we propose adaptive nonlinear auto associative modeling (ANAM) for
learning intrinsic features and recognition (Section 2). First, the low-dimensional sub-
space of each class are attained with LLE algorithm. Second, based on the error rates
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of validation set, the parameters of each ANAM are adaptively obtained by computing
minimum error rate of the validation set. Consequently, a ANAM-classifier is developed
without LLE algorithm. The proposed ANAM will not lead to the overlapped data in
the low-dimensional subspace and loss corresponding accuracy. Therefore, it partially
overcomes the curse of dimensionality. Experiments (Section 3) on several character
and digit databases show the advantages of the proposed ANAM algorithm.

2 Adaptive Nonlinear Auto- ssociative Modeling

To establish the mapping and inverse mapping relationship of ANAM between the
observed data and the corresponding low-dimensional one, locally linear embedding
(LLE) algorithm [2] is first used to form the corresponding low-dimensional one Y
(Y ⊂ Rd) of the training set X (X ⊂ RN , N � d) in the paper. Then the data set
(X,Y ) is used for modelling the subsequently ANAM.

The main principle of LLE algorithm is to preserve local neighborhood relation of
data in both the embedded Euclidean space and the intrinsic one. Each sample in the
observation space is a linearly weighted average of samples under neighbor constrain.
Thus, we obtain the corresponding low-dimensional one Y of the original data X in the
embedding space. And the completed set (X,Y ) is used for the subsequent model of
ANAMs.

While the mapping idea of unknown sample in the LLE framework can’t obtain the
optimal mapping solution based on our experiments, in addition, it is used to avoid to
calculate the parameters of inverse mapping matrices and mapping matrices of ANAM
simultaneously.

To construct ANAMs, the forward mapping and inverse mapping matrices need to
be estimated. In the proposed algorithm, we utilize mis-classified rate on the validation
set to adjust model parameter to obtain the suboptimal model.

First, validation set V ′ ∈ RN are mapped into the corresponding low-dimensional
one V ′

d ∈ Rd with LLE mapping idea for avoiding the simultaneous computation of
the mapping and inverse mapping matrices. After V ′

d is obtained, the reconstruction
procedure is then formulated with inverse mapping matrices of ANAM. On the basis
of weierstrass approximation theorem, the inverse mapping formula in the i-th ANAM
would be achieved with nonlinear polynomial function as follows:

v′x(i) =
ni∑

j=1

βj(i)krec(yj(i), v′y(i)) yj(i) ∈ Y (i), v′y(i) ∈ Rd, v′x(i) ∈ RN (1)

where v′x(i) is a reconstructed sample through the i-th ANAM, ni is the number of
samples used to construct the i-th ANAM, B(i) = {βj(i)} is the N × ni weighted
inverse mapping matrix or reconstruction matrix of the i-th ANAM, and v′y(i) is the
low-dimensional validation sample based on LLE algorithm. Without loss of generality,
let the reconstruction kernel function be Gaussian kernel as:

krec(yj(i), v′y(i)) = exp(− ‖ yj(i)− v′y(i) ‖ /2σ2
rec(i)) (2)

a
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For computational simplicity, parameters σ2
rec(i) of all concepts are set to the same

value in the proposed ANAM algorithm. Once the validation sample is auto-associated
through different ANAMs, the similarity measure can be used for recognition as
follows:

C(vx) = arg max
i

(exp(−‖vx − v′x(i)‖)) i = 1, · · · ,L (3)

WhereL denotes the number of concepts. The geometrical explanation on Formula (3)
is that sample is re-projected to the original space with the ANAM of same concept is
closer to the original sample than these reconstructed samples through the ANAMs of
different concepts.

Considering the geometrical property of Gaussian kernel, it is not difficult to see
that the suboptimal parameter σ2

optrec(i) can be adaptively obtained through searching
some value which is related to the minimum recognition error rate of validation set.

After the parameters of inverse mapping matrices are obtained, the mapping func-
tion of validation set can be formulated as:

v∗y(i) =
ni∑

j=1

αikmap(xj(i), vx(i)),xi ∈ X; vx(i) ∈ RN ; v∗y(i) ∈ Rd (4)

Where A = αi is a d × ni weighted mapping matrix, kmap(xj(i), vx(i)) denotes the
similarity metric of data vx(i) with sample xj(i) as follows:

kmap(xj(i), vx(i)) = exp(− ‖ xj(i)− vx(i) ‖ /2σ2
map(i)). (5)

And the reconstruction matrix is the same as Eq.(1). The only difference is that v′x(i),
v′y(i) is alternative with v∗x(i), v∗y(i) in Eq. (1) and Eq.(3), and the suboptimal parame-
ters σ2

optmap(i) of mapping matrices is adaptively computed based on the error rate of

validation set with fixed reconstruction parameters σ2
optrec(i).

It is worthy noting that given the completed data set (X,Y ), the computation of
the weighted mapping matrix A(i) and the weighted inverse mapping matrix B(i) are
calculated as follows:

A(i) = Y (i) · (kmap(xj(i),xk(i)))−1, j, k = 1, . . . , ni i = 1, . . . ,L (6)

B(i) = X(i) · (krec(yj(i), yk(i)))−1, i, j = 1, . . . , ni i = 1, . . . ,L (7)

Until then, test sample is projected into low-dimensional space and reconstructed the
corresponding set in the original space with ANAM, and recognition is completed based
on Eq. (3). Different from ANN Bourlard proposed[6], the proposed ANAN generalizes
the model into high-dimensional nonlinear data and avoids the problem of convergence
neural network often suffers.

3 Experiments

Experiments are carried out on four databases to evaluate the recognition ability of the
proposed ANAM approach. Two sets are UCI character database[7] and OCR (opti-
cal character recognition) database[8], and the other two sets are OPTDigits databases

a
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Table 1. Experimental Databases and Data Partitions

UCI OCR OPTDigits PENDigits
The number of Samples 20,000 16,280 5,620 10,992

Original Dimensions 16 26 64 16
ClassNum 26 26 10 10

Training Set 300*26 250*26 300*10 600*10
Validation Set 50*26 50*26 823 1,494

Test Set 10,900 8,480 1,797 3,498

Table 2. The Average Error Rates and Standard Deviations of several algorithms for ANAM,
K-nearest Neighbor (K-NN, K=3)

CLASSIFIER UCI % OCR % OPTDIGITS % PENDIGITS %
ANAM 6.99 ± 0.34 (10DIM) 10.79 ± 0.56 (10DIM) 1.28 (10 DIM) 4.26 (10 DIM)
K-NN 10.10 10.5 2.00 (K=1) 2.26 (K=1)
MLP 20.7 23.8 — —-

and PENDigits database from UCI repository[9, 10]. The details on the mentioned four
databases and data partitions are illustrated in Table 1. It is noticeable that each dimen-
sion in three datasets except OPTDigits Database was linearly scaled to [0,1] in this
experiments. The former two databases are randomly partitioned three disjointing sets,
that is, training set, validation set and test set. And the final results are the average of
10 repetitions. Meanwhile, the training set and validation set of the latter two databases
are randomly partitioned disjointing sets, and test set has been separated in the original
databases.

In our experiments, training sets from different concepts are used for building the
different low-dimensional subspaces with LLE algorithm separately, validation set is
used for searching the suboptimal parameters of ANAMs based on the error rate, and
test set is used for evaluating the generalization performance of the proposed ANAM
algorithm.

Moreover, several additional parameters need to be predefined. Without loss of
generality, the neighbor parameter K is set to 50 for all the four databases. The ranges of
mapping parameterσ2

map and reconstruction parameterσ2
rec are both set to [10−5, 1010],

and the size of each step is 100.5 so the optimal parameter can be adaptively searched.
The experimental results on these databases are reported as in Table 2. For comparing

the recognition performance between the proposed NAMs and other known state-of-
the-art algorithms, experimental results from [8] are cited.

By analyzing the above results, it is not difficult to see that the proposed ANAM
algorithm is comparable with other algorithm. For UCI letter and OPTDigits databases,
the error rates of the proposed algorithm is lowest when comparing with other algorithms.
For instances, in UCI character database, the error rates of NAMs is about 69.20% of
the K-NN, 33.76% of the MLP. Furthermore, our proposed NAMs for the four databases
using fewer features (10 dimensions) to model intrinsical feature spaces.
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Fig. 1. The Influence of Training Samples

Actually, we also investigate the influence of training sample with the fixed number
of validation set for the error rates of test set (The experimental results also are the
average of 10 runs). For example, the results in UCI and OCR database are illustrated as
Figure 1. It can be seen that the error rate gradually decreases as the number of training
sample increases. For example, when the number of training sample is equal to 400, the
error rate and deviation are 6.07%± 0.49% in the UCI Letter Database.

4 Discussions/Conclusions

In this paper, we propose ANAM for modeling different concepts and classifying samples
which belong to remarkably distinct concepts. Unlike the other supervised manifold
learning approaches, the advantages of the proposed ANAM is that it overcomes the curse
of dimensionality without loss accuracy. And the discriminant information is implicity
embodied because the parameters are determined based on the error rate of validation
set. In the further study, we will consider how to combine cluster algorithm with ANAM
for improving recognition rate.
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Abstract. One of the ways to lower generalization error of decision
tree ensemble is to maximize tree diversity. Building complete-random
trees forgoes strength obtained from a test selection criterion. However,
it achieves higher tree diversity. We provide a taxonomy of different ran-
domization methods and find that complete-random test selection pro-
duces diverse trees and other randomization methods such as bootstrap
sampling may impair tree growth and limit tree diversity. The well ac-
cepted practice in constructing decision trees is to apply bootstrap sam-
pling and voting. To challenge this practice, we explore eight variants of
complete-random trees using three parameters: ensemble methods, tree
height restriction and sample randomization. Surprisingly, the most ac-
curate variant is very simple and performs comparably to Bagging and
Random Forests. It achieves good results by maximizing tree diversity
and is called Max-diverse Ensemble.

1 Introduction

Random tree ensembles introduce different random elements to construct di-
versified decision trees. For classification problems, results from these trees are
combined by an ensemble method to produce the final prediction. Random De-
cision Trees [8] is one that is constructed without conventional test selection
criteria, which questions the utility of these heuristics that are widely employed
in many decision tree learning algorithms. The underlying argument is that they
are effective to compute accurate single trees but there is no guarantee on the
final accuracy of a tree ensemble.

As it stands, there is no creditable report known to us that extensively anal-
yses and compares complete-random trees with other decision tree ensembles.
This paper aims to explore complete-random trees and compare them with Bag-
ging [3] and Random Forests [5] which are widely accepted and use techniques
such as randomized feature selection, bootstrap sampling and voting. The fun-
damental objective of randomization in tree construction is to create diversity.
After all, there is no point in combining a forest of identical trees. Section 2 of
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this paper discusses how increasing tree diversity can lower the generalization
error of tree ensembles. Since there are many randomization methods, a system-
atic framework to characterize each method is necessary to guide the research
in this area. A taxonomy is provided in section 3 and the focus of our study is
sample randomization and complete-random test selection. Section 4 describes
the random tree learning process, section 5 provides the experimental settings
and results, and follows by conclusions in the last section.

2 Tree Diversity

In Breiman’s analysis [5] on strength and correlation, he gives an upper bound
on the generalization error PE∗ ≤ ρ (1−s2)

s2 , where s is the strength of the set of
trees and ρ is the mean correlation. The implication of this upper bound is that
no ensemble can do better than the boundary given its strength and correlation.
Generally, this upper bound is applicable to classifier based ensemble, including
complete-random trees the subject of this paper. Lowering PE∗ can be achieved
by either minimizing ρ or increasing s. Building complete-random trees forgoes
strength obtained from a test selection criterion. However, it helps to achieve
higher tree diversity.

3 Different Categories of Randomization

The taxonomy of tree randomizations is summarized as follows:

1. Randomization before model induction
(a) Sample randomization

e.g. Bootstrap sampling [3]
(b) Feature randomization

e.g. Randomized Trees [1] and Random Subspace [9]
(c) Data perturbation

e.g. Output Smearing and Output Flipping [4]
2. Randomization during model induction

(a) Partial-random test selection
e.g. Tree Randomization [6] and Random Forests [5]

(b) Complete-random test selection
e.g. Random Decision Trees [8]

This paper focuses on sub-categories (1a) sample randomization and (2b)
complete-random test selection to investigate whether complete-random test se-
lection produces good results.

4 Random Tree Ensemble

For the experiment, our implementation is based on C4.5 release 8 [10] with
modifications to cater for bootstrap sampling, multiple trees, complete-random
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test selection, tree height restriction, random split point selection for continuous
features and ensemble methods. The tree height restriction is originated from [8].
Let k be the total number of features, setting tree height to k

2 is called half height
tree. Alternatively, unrestricted tree growth is called full height tree. Consider
a rule or a branch in a tree, when selecting i features from k features, there are
Ck

i = k!
i!·(k−i)! unique feature combinations. To use only a single value of i, i = k

2

produces the largest number of combinations. Fan et. al. [8] uses this argument as
the basis to choose the tree height limit of k

2 , but allowing any value of i is more
desirable as it gives the maximum choice or diversity. Thus, the total number
of possible unique combinations to include any value of i is T (i) =

∑
i Ck

i .
Since T (k) > T (k

2 ) > Ck
k
2
, setting tree height to k produces maximum diversity.

For continuous feature split point selection, random split point is determined
by randomly selecting two different sample values and assigning it as the mid
point between the two. This increases the possible split points from l − 1 to∑l−1

i=0 i, l is the number of distinct feature values. Hence, it increases diversity.
Missing values for probability averaging are handled by: 1. growing missing value
branches; 2. classifying them with reduced weight w = wp

nmissing

ntotal
, where wp is

the classification weight from the parent node, nmissing is the number of missing
value samples and ntotal is node size. This avoids disruption of the usual weight
disseminating routine in handling missing values.

At classification phase, posterior probability estimation or class label is gen-
erated using these counts. To predict a class given a test case z, the predicted
class cp is obtained by:

1. Probability averaging, cp = argmaxc( 1
N

∑N
i=1 (wnhi,c

nhi
))

2. Voting, cp = argmaxc( 1
N

∑N
i=1 I(

nhic

nhi
)).

where N is the number of trees, I() is an indicator function. Relevant to z, nhi,c is
the count of class c for tree hi and nhi

is the leaf size for hi. Probability averaging
are reported to cause overfitting [7]. However, it is worth noting that none of the
empirical evaluations are conducted in the context of complete-random trees.

5 Experiments

There are three parameters in the experiments. The followings are the abbrevi-
ations used in the experiments:

Ensemble Methods Tree height restriction Sample randomization
Probability averaging Full height Original training samples

Voting Half height Bootstrap training samples

In total, there are eight possible variants from these three parameters. Each
variant is represented by three letters, for example “VFO” refers to a random
trees ensemble with parameters Voting, Full height tree and Original training
samples.
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Table 1. The average error results are listed with asterisk(s)* indicating best error
rate(s) among different methods

Data set size

P
F
O

P
F
B

P
H
O

P
H
B

V
F
O

V
F
B

V
H
O

V
H
B

Bagging
Random

Forests

abalone 4177 29.8 29.9 31.7 31.7 29.9 29.7 31.7 31.7 *29.1 *29.1
anneal 898 *0.9 1.7 2.6 2.9 1.0 1.8 3.7 3.9 3.2 14.8

audiology 226 19.5 *18.5 21.7 19.0 22.6 22.1 26.2 23.8 20.8 37.5
autos 690 24.3 22.9 24.4 22.4 26.7 22.0 25.3 22.9 *16.2 20.5

balance 205 13.8 13.6 13.9 13.8 13.6 *13.4 18.2 14.6 15.5 15.5
breast-w 625 *2.4 2.7 2.7 2.7 3.0 3.2 2.9 3.2 3.4 3.1
breast-y 699 25.5 25.5 *23.4 25.5 24.8 27.6 25.1 27.0 26.6 26.9

chess 286 *1.6 1.9 2.5 2.8 2.7 4.1 4.9 5.1 4.8 4.9
cleveland 20000 *41.3 41.9 43.9 44.3 42.6 43.6 43.6 44.2 43.6 42.2

coding 3196 *16.3 *16.3 *16.3 *16.3 18.7 23.9 19.2 23.8 33.5 27.5
credit-a 303 *12.3 12.6 12.9 13.5 13.3 15.1 14.1 14.2 13.2 13.6
credit-g 3186 25.3 25.7 27.1 27.3 27.3 29.2 29.0 29.3 *24.7 26.9

DNA 131 28.8 28.9 28.8 28.8 16.1 14.5 16.1 14.4 *7.1 12.9
echo 1066 32.9 34.3 *32.1 32.8 33.7 36.7 34.5 35.1 35.2 35.9
flare 1000 18.5 19.0 17.5 17.4 18.2 18.3 17.5 *17.1 17.5 17.6
glass 214 26.2 26.2 34.6 33.1 28.0 30.0 37.9 36.0 35.2 *21.9

hayes-roth 160 44.4 40.0 48.1 47.5 53.8 46.9 58.1 47.5 17.5 *17.5
hepatitis 155 15.3 15.7 16.0 15.7 17.3 *15.0 16.0 15.7 24.7 16.3

horse-colic 368 18.8 16.9 19.1 17.2 19.9 17.2 20.4 17.4 *14.2 16.3
hypothyroid 3163 2.2 2.4 4.7 4.7 2.3 2.4 4.7 4.7 *0.9 1.3
ionosphere 351 9.4 9.7 9.4 9.7 11.7 15.9 11.7 15.3 6.8 *5.7

iris 150 4.7 6.0 7.3 7.3 *4.0 5.3 11.3 11.3 6.7 6.0
led24 3200 *28.4 28.8 *28.4 29.0 36.8 37.4 36.5 36.5 28.5 29.8
liver 345 30.7 31.8 38.3 37.1 29.5 31.6 38.5 37.7 *28.1 29.2

lymph 148 15.5 15.4 15.5 *14.7 18.2 15.4 18.9 15.4 21.6 17.4
nursery 12960 *2.0 2.3 5.4 5.5 2.2 1.9 7.1 5.2 6.4 4.7

pima 768 24.7 23.6 28.6 28.1 24.3 25.4 29.4 29.5 24.7 *23.4
primary 339 56.1 55.2 *53.1 *53.1 54.6 55.8 55.5 55.2 55.5 *53.1
segment 2310 2.9 3.1 5.1 4.9 3.3 3.7 6.6 6.4 2.4 *2.3

sick 3163 7.6 7.8 9.3 9.3 8.1 8.0 9.3 9.3 2.1 3.7
solar 323 30.0 29.7 27.2 27.5 29.6 30.6 29.3 28.8 27.2 *24.7
sonar 208 *13.4 16.8 *13.4 16.8 23.5 26.9 23.5 26.9 20.1 19.6

soybean 683 6.0 5.7 5.7 5.6 5.6 6.0 6.0 5.7 6.2 *5.4
threeOf9 512 *0.2 0.8 11.3 11.1 8.2 2.7 13.1 12.9 3.3 2.2

tic-tac-toe 958 *9.4 10.4 24.6 23.8 18.8 27.5 27.5 26.2 29.4 26.4
vehicle 846 27.1 29.2 27.4 29.3 27.9 27.1 29.3 28.4 24.9 *25.2

vote 435 5.3 5.3 5.3 5.3 5.1 6.2 4.8 6.0 *4.6 4.8
waveform 5000 *14.1 14.2 14.8 14.9 14.3 14.6 14.2 14.1 16.3 14.7

wine 178 2.3 1.7 2.3 1.7 2.3 2.8 2.3 2.3 5.6 *1.1
zoo 101 *2.0 4.0 *2.0 3.0 3.0 3.0 3.0 3.9 6.9 7.9

Mean 17.3 17.5 19.0 18.9 18.7 19.1 20.7 20.2 17.4 17.8



Maximizing Tree Diversity by Building Complete-Random Decision Trees 609

Table 2. Summary of pairwise comparison(wins, losses, draws) reading from top to
left. The number of significant wins and losses is bold faced, based on a sign test of
95% confidence level

Max-diverse
Ensemble

PFO PFB PHO PHB VFO VFB VHO VHB Bagging

Random
Forests 21,19,0 20,19,1 17,23,0 17,23,0 14,26,0 11,29,0 11,29,0 11,29,0 19,20,1

Bagging 23,17,0 22,18,0 20,20,0 18,22,0 18,22,0 15,25,0 12,28,0 13,27,0
VHB 30,8,2 29,6,5 25,10,5 29,6,5 29,10,1 22,15,3 14,20,6
VHO 32,6,2 33,6,1 30,4,6 30,14,5 27,8,5 21,15,4
VFB 28,10,2 27,11,2 19,21,0 19,19,2 26,13,1
VFO 28,11,1 23,15,2 21,18,1 16,21,3
PHB 25,10,5 23,9,8 15,16,9
PHO 25,6,9 25,11,4
PFB 25,11,4

In this experiment, the main aim are to investigate : 1. the main contributing
factors among the eight possible variants; 2. if complete-random trees overfits. All
variants will be compared with the benchmarking Bagging and Random Forests.
The results are assessed by a sign test using 95% confidence level to determine
whether the wins are statistically significant. Forty data sets are selected from the
UCI repository [2]. Their data sizes range from one hundred to twenty thousand.
This experiment uses ten thousand trees for each ensemble to see if any variants
overfit. Tenfold cross-validation is conducted for each data set and the average
error rate is reported.

5.1 Results

The average error is shown in table 1 and a pairwise comparison summary is
presented in table 2. Comparing variants with the benchmark classifiers, we
summarize the results as follows:

– PFO, PFB and PHO perform comparable to Bagging.
– PFO and PFB perform comparable to Random Forests.
– PFO has the most wins against the two benchmark classifiers having 23 and

21 out of 40.
– PFO has thirteen data sets with the best error rates as marked with asterisks

in table 1 Random Forests has elevens and Bagging has eights.

For each of the three parameters, we summarize the results as follows:

– all probability averaging variants are significantly better than their voting
counterparts according to the sign test.

– full height tree performs better than half height tree.
– bootstrap sampling impairs accuracy as suggested earlier on in section 3.
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The results above suggest that the most accurate variant PFO is comparable to
the benchmark classifiers and the probability averaging is the main contributing
factor to complete-random decision trees. We call PFO “Max-diverse En-
semble”. Max-diverse Ensemble performs better against all variants and has
the lowest mean-error rate 17.3% as shown in table 1. Regarding overfitting,
none of the data sets suffers from overfitting in general. It dispels the concern of
using probability averaging with complete-random trees causes overfitting.

6 Conclusions

In this paper, we first discuss that maximizing tree diversity is a way to lower
generalization error. Then, we provide a taxonomy on tree randomization as a
systematic framework to characterize existing tree randomization methods. We
find that complete-random test selection produces diverse trees. Finally, we thor-
oughly investigate the complete-random decision trees by exploring eight possi-
ble variants. The most accurate variant Max-diverse Ensemble has the maximum
diversity according to our analysis and uses only simple probability averaging
without any feature selection criterion or other random elements. For future
work, it would be valuable to determine situations where Max-diverse Ensemble
would perform better than other methods and vice versa.
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Abstract. Self-training is a semi-supervised learning algorithm in which
a learner keeps on labeling unlabeled examples and retraining itself on
an enlarged labeled training set. Since the self-training process may erro-
neously label some unlabeled examples, sometimes the learned hypothe-
sis does not perform well. In this paper, a new algorithm named Setred
is proposed, which utilizes a specific data editing method to identify and
remove the mislabeled examples from the self-labeled data. In detail, in
each iteration of the self-training process, the local cut edge weight statis-
tic is used to help estimate whether a newly labeled example is reliable
or not, and only the reliable self-labeled examples are used to enlarge
the labeled training set. Experiments show that the introduction of data
editing is beneficial, and the learned hypotheses of Setred outperform
those learned by the standard self-training algorithm.

1 Introduction

In many practical machine learning applications, obtaining a fully labeled data
set is usually difficult. The requirement of lots of human expertise makes the
labeling process fairly expensive. A more feasible way is to label just a small
part of data set, leaving a huge amount of examples in data set unlabeled. The
learner itself should find a way to exploit the merit of unlabeled data.

Semi-supervised learning is to learn a hypothesis by combining information
in both labeled and unlabeled data. Self-training [10] is a well-known semi-
supervised algorithm. In self-training process, a base learner is firstly trained on
labeled set. Then, iteratively, it attempts to choose to label several examples
that it is most confident of in the unlabeled set. After that it enlarges its labeled
training set with these self-labeled examples. Since the labeled set is usually
insufficient for learning, misclassifying a certain amount of unlabeled data is
unavoidable. Thus, the enlarged labeled set for the learner to learn in the next
iteration could contain much noise. Once those noisy examples are added into the
learner’s training set, there is no chance for the self-trained learner to reconsider
the validity of those incorrect labels, and the mislabeled examples will keep on
affecting the learner in the following iterations. If the distribution the learner
has caught is badly distorted by those mislabeled examples, the generalization
ability degrades as the self-training process goes on. Therefore, it is obvious that

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 611–621, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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identifying and removing the mislabeled examples in each iteration might help
improve the generalization ability of the learned hypothesis.

In this paper, a new self-training style algorithm named Setred (SElf-
TRaining with EDiting) is proposed. Setred introduces a data editing technique
to the self-training process to filter out the noise in the self-labeled examples.
Specifically, after labeling some examples chosen from the unlabeled set, Se-
tred actively identifies the possibly mislabeled examples with the help of some
local information in a neighborhood graph, and keeps those mislabeled examples
from being added to the learner’s training set, hence a less noisy training set is
obtained. Actually, Setred could be considered as a semi-supervised algorithm
that utilizes an active-learning-like technique to improve its performance. Exper-
iments on ten UCI data sets show that Setred is more robust than the standard
self-training algorithm, and the generalization ability of its learned hypotheses
outperform those learned by standard self-training.

The rest of the paper is organized as follows. Section 2 briefly reviews some
works on learning from labeled and unlabeled data. Section 3 presents Setred.
Section 4 reports the experiment result. Finally, Section 5 concludes and issues
some future work.

2 Learning from Labeled and Unlabeled Data

An effective way to utilize unlabeled data in assistance of supervised learning
is known as semi-supervised learning [13], where an initial hypothesis is learned
from the labeled set and then refined through information derived from the
unlabeled set.

In some methods only one base learner is used, which uses the unlabeled
examples iteratively according its own knowledge. Such methods include using
Estimation-Maximization approach to estimate posterior parameters of a gen-
erative model, such as Naive Bayes, by assigning each unlabeled example a soft
label, i.e. a probability for each class [11]; using the unlabeled data to search
for a better structure of Bayesian Network [2]; using a transductive inference for
support vector machines on a special test set [4]. The self-training algorithm [10]
is of this kind, where in each iteration the learner converts the most confidently
predicted unlabeled example of each class into a labeled training example.

In some other methods, the unlabeled data is utilized with more learners. A
representative is the co-training paradigm proposed by Blum and Mitchell [1]. In
co-training, two base learners are trained within the multi-view framework, i.e.
two sets of independent attributes, each of which is sufficient for classification.
One base learner iteratively labels several examples which it is most confident
of from its point of view, and feeds them to the other learner. The co-training
paradigm has already been successfully applied to many areas such as nature
language processing [12].

Besides semi-supervised learning, there is another effective way to use the
unlabeled data, that is, active learning. Different from semi-supervised learning
choosing confident examples to label by itself, active learning actively chooses
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most problematic examples from the unlabeled set and asks a teacher for the
labels. Two major techniques in active learning are uncertainty-base sampling [5]
and committee-base sampling [14].

Since semi-supervised learning and active learning utilize unlabeled data in
different way, their merits can be combined through some specifically designs.
McCallum and Nigam [6] combined semi-supervised EM with committee-based
sampling in text classification. Muslea et al.[9] employed co-testing [8] to choose
unlabeled examples to query, and used co-EM [10] to boost the accuracy of the
hypotheses. Zhou et al. [16] combined co-training with co-testing in content-
based image retrieval.

3 SETRED

Let L and U denote the labeled and unlabeled set drawn from the same distri-
bution D(X,Y ), respectively, where X is a p-dimensional feature vector while Y
is a class label. In standard self-training process, a learner keeps on choosing to
label a small set of its most confident examples, say L′, from U and retraining it-
self on L∪L′. Self-training requires neither estimation and maximization of some
posterior probability nor a sufficient and conditional independent attributes, so
it is much easier to use than semi-supervised EM and standard co-training. How-
ever, due to the small size of L, the generalization ability of the initial hypothesis
may be poor. Consequently, L′ may contain much noise because the learner may
incorrectly assign labels to some unlabeled examples, and the generalization abil-
ity of the final hypothesis will be hurt by the accumulation of such noise in each
iteration of the training process. Therefore, it is obvious that if the mislabeled
examples in L′ could be identified in the self-training process, especially in the
early iterations, the learned hypothesis is expected to perform better.

Data editing is a technique which attempts to improve the quality of the
training set through identifying and eliminating the training examples wrongly
generated in the human labeling process. Some useful data editing methods have
been studied in [3][15]. In those works, another learner is used to improve the
quality of the training set before the wanted learner are trained. In a recent work,
Muhlenbach et al. [7] proposed a method based on a statistical method called
cut edge weight statistic [17] to identify mislabeled examples in the training set.
Here this data editing method is employed to identify the examples possibly
mislabeled by the learner in the self-training process.

In detail, Setred initiates the self-training process by firstly learning a hy-
pothesis form the labeled set. In each self-training iteration, the base learner
detects unlabeled examples on which it makes most confident prediction and
labels those examples according to the prediction. Then, for each possible label
yj (where j ranges from 1 to the number of possible labels), kj examples are
selected and added to L′ according to the prediction confidence of their labels,
keeping the class distribution in L′ similar to that in L. For instance, if there
are 4 positive and 16 negative examples in L, then L′ contains 1 positive and 4
negative examples.
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After L′ is formed, the identification of mislabeled examples are performed on
the learner’s potential training set L∪L′. Firstly, Setred constructs a neighbor-
hood graph [17] that expresses certain local information from all the examples
in L∪L′. A neighborhood graph is a graph in p-dimensional feature space where
a distance metric could be defined. Each example in the graph is a vertex and
there exists an edge between two vertices a and b if the distance between a and
b satisfies Eq. 1. An edge connecting two vertices that have different labels is
called cut edge.

Dist (a, b) ≤ max (Dist (a, c) ,Dist (b, c)) (1)

Then Setred identifies the mislabeled examples based on their neighborhood
in the graph. The neighborhood of an example is a set of examples it connected
to with edges in graph. Intuitively, most examples possess the same label in a
neighborhood. So if an example locates in a neighborhood with too many cut
edges, this example should be considered problematic. Thus, cut edge plays an
important role for identifying mislabeled examples. To explore the information
of cut edges, Setred associates every (xi, ŷi) in L′ with a local cut edge weight
statistic Ji defined in Eq. 2.

Ji =
∑

xj∈Ni

wijIij (2)

where Ni is the neighborhood of xi, wij is the weight on the edge between xi and
xj and Iij are i.i.d random variables according to the Bernouilli law of parameter
P (y = ŷi).

By definition, Ji describes the relationship between the adjacency of an xi and
other vertices in its neighborhood and the fact that they have the same label [17].
Similarly, a null hypothesis H0 that can be tested with Ji is defined as every
examples in L∪L′ is independently labeled according to the marginal distribution
D(Y ). H0 specifies a case that the label yi is assigned to each example xi without
considering any information from xi, i.e. for any example (xi, yi), the probability
of examples in its neighborhood possessing labels other than yi is expected to
be no more than 1 − P (y = ŷi) under H0. Hence, a good example will be
incompatible with H0. To test H0 with Ji, the distribution of Ji under H0 is
need. The distribution of Ji can be approximated to a normal distribution with
mean μi and variance σ2

i estimated by Eq. 3 and Eq. 4, if the size of neighborhood
is big and the weights are not too unbalanced, otherwise a simulation must be
proceed [7].

μi|H0 = (1− P (y = ŷi))
∑

xj∈Ni

wij (3)

σ2
i|H0

= P (y = ŷi) (1− P (y = ŷi))
∑

xj∈Ni

w2
ij (4)

Therefore, if the observation value of Ji that associates with an example
(xi, ŷi) in L′ locates in the left rejection region, then there are significantly less
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Table 1. Pseudo-code describing the Setred algorithm

Algorithm: Setred
Input: the labeled set L, the unlabeled set U ,

the left rejection threshold θ, the maximum number of iterations M
Output: the learned hypothesis h

Progress:
Create a pool U ′ by randomly selecting examples from U
h ← Learn(L)
Repeat for M iterations:

L′ ← φ
for each possible label yj do

h chooses kj most confident examples from U ′

Add the chosen examples to L′ after giving them the label yj

Build a neighborhood graph G with L ∪ L′

for each xi ∈ L′ do
Compute the observation value oi of Ji

Find the neighborhood Ni of xi in G
Compute the distribution function of Ji under H0

if oi locates in the left rejection region specified by θ
L′ ← L′ − {(xi, ŷi)}

h ← Learn(L ∪ L′)
Replenish U ′ by randomly selecting examples from U

End of Repeat

cut edges than expected under H0, hence it is a good example. In contrast, if
the observation value locates in places other than the left rejection region, then
lots of examples in the neighborhood disagree with its label, hence it could be
regarded as a mislabeled example. The left rejection region is specified by a
pre-set parameter θ.

Once the possibly mislabeled examples in L′ are identified, Setred simply
discards those examples, keeping the good ones intact. Consequently, a filtered
set L′′ is obtained. Note that Setred does not try to relabel the identified
mislabeled examples in order to avoid introducing new noise to the data set.
Finally, Setred finishes the current iteration by relearning a hypothesis on
L ∪ L′′. Setred stops self-training process after the pre-set maximum times of
iteration M is reached. The pseudo-code of Setred is shown in Table 1.

Note that a pool of unlabeled examples smaller than U is used in the algo-
rithm. Blum and Mitchell [1] suggested to choose examples from a smaller pool
in stead of the whole unlabeled set. For convenience, we adopt this strategy di-
rectly without verification. Furthermore, it is worth noticing that the Setred
could be regarded as a type of active semi-supervised learning algorithm that ac-
tively identify the bad examples from the self-labeled set. Absence of the teacher,
Setred just discards the problematic data after identification instead of asking
the teacher for labels as in the standard active learning scenario.
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4 Experiments

In order to test the performance of Setred, ten UCI data sets are used. Infor-
mation on these data sets are tabulated in Table 2.

Table 2. Data set summary

Data set Size Attribute Class Class distribution

australian 690 15 2 44.5%/55.5%
breast-w 699 9 2 65.5%/34.5%
colic 368 22 2 63.0%/37.0%
diabetes 768 9 2 65.1%/34.9%
german 1000 20 2 70.0%/30.0%
heart-statlog 227 13 2 55.5%/44.5%
hepatitis 155 19 2 20.6%/79.4%
ionosphere 351 34 2 35.9%/64.1%
vehicle 846 18 4 25.1%/25.7%/25.7%/23.5%
wine 178 13 3 33.1%/39.9%/27.0%

For each data set, 25% data are kept aside to evaluate the performance of
learned hypothesis, while the remaining 75% data are partitioned into labeled
set and unlabeled set under the unlabel rate 90%, i.e. just 10% (of the 75%)
data are used as labeled examples while the remaining 90% (of the 75%) data
are used as unlabeled examples. Note that the class distributions in these splits
are similar to that in the original data set.

Since Setred exploits local information to identify mislabeled examples,
the learner that utilizes local information is expected to benefit a lot from this
method. Therefore in the experiments, the Nearest Neighbor classifier is used as
the base learner. Unlike those probabilistic model such as Naive Bayes, whose
confidence for an example belonging to a certain class can be measured by the
output probability in prediction, the Nearest Neighbor classifier has no explicitly
measured confidence for an example. Here for a Nearest Neighbor classifier, the
most confidently predicted unlabeled example with label yj is defined as the
unlabeled example which is the nearest to labeled examples with label yj while
far away from those with labels other than yj . The pre-set parameter θ that
specifies the left rejection region of the distribution of Ji is fixed on 0.1, the
same as that in [7]. The self-training process stops when either there are no
unlabeled examples available or 40 iterations have been done.

For comparison, the standard self-training, namely Self-training, is run on the
same labeled/unlabeled/test splits as those used for evaluating Setred. Same
as Setred, the maximum iteration is also 40. Moreover, two base lines, denoted
by NN-L and NN-A respectively, are used for comparison. One is a Nearest
Neighbor trained only from the labeled set L, and the other is the one that
trained from L ∪ U provided the true label of all the examples in U . Note that
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Table 3. Average error rate on the experimental data sets (50 runs)

Data set NN-A NN-L Setred Self-training Setred-imprv. Self-imprv.

australian .185 .188 .167 .170 11.3% 9.4%
breast-w .046 .046 .038 .038 17.9% 16.9%
colic .194 .237 .191 .209 19.3% 11.8%
diabetes .298 .330 .320 .335 3.1% -1.6%
german .185 .339 .349 .357 -2.8% -5.2%
heart-statlog .237 .248 .209 .226 15.8% 8.7%
hepatitis .161 .186 .208 .157 -11.9% 15.7%
ionosphere .143 .228 .197 .254 13.6% -11.4%
vehicle .298 .412 .399 .413 2.9% -0.3%
wine .048 .090 .066 .079 26.6% 12.8%

NN-L is the initial state of both Setred and Self-training before they utilize
any information from the unlabeled examples. NN-A is the ideal state of Setred
and Self-training since every examples chosen in self-training process are given
the correct label and all the examples available in the unlabeled set are used.

Experiments are carried out on each data set for 50 runs. In each run, all
the four learners are trained and evaluated on the randomly partitioned la-
beled/unlabeled/test splits. In Table 3, the first four columns are the average
error rates of NN-A, NN-L, Setred and Self-training respectively over 50 runs
on each data set. The last two columns denoted by “Setred-imprv.” and “Self-
imprv.” respectively show the performance improvements of Setred and Self-
training over NN-L, which is computed by the error rate of learned hypothesis of
Setred and Self-training over the error rate of the learned hypothesis of NN-L.

Table 3 shows that Setred benefits much from the unlabeled examples since
the performance improvements are evident in 8 data sets, except that it goes
worse on german and hepatitis. The two-tailed paired t-test under the significant
level of 95% shows that all the improvement of performance are significant. Note
that on 4 data sets Setred performs even better than NN-A which is able
to access all the information of the unlabeled examples. In contrast, although
the performance of the learned hypothesis of Self-training improves on 6 data
sets, only on five the improvements are significant, including australian,breast-w,
colic, heart-statlog and hepatitis. Furthermore, Table 3 also shows that Setred
outperforms Self-training on 9 data sets, among which significance is evident
in 6 data sets under a two-tailed pair-wise t-test with the significance level of
95%. This evidence supports our claim that Setred is robust to noise in the
self-labled examples hence achieves better performance than Self-training.

Interestingly, Self-training does benefit from the unlabeled exmaples on hep-
atitis, while the performance of Setred degrades. One possible explanation is
that Setred suffers imbalance of the data set. In hepatitis data set, there are
only 32 positive examples out of 155 examples in all, which is only 20.6% of the
total. Recall the method we used for identifying mislabeled examples, one can
only be regarded as a good example only if there exists a significantly large num-
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Fig. 1. Median performance on experimental data

ber of examples having the same label in its neighborhood. Since the data set is
unbalanced, a correctly labeled positive examples could be easily mis-identified
as mislabeled examples and rejected to be added to the labeled set for further
training, due to the lack of neighbors possessing the same label. The percentage
of the negative examples in the labeled set increases as the self-training process
goes on, hence less chance for a correctly labeled positive examples available
for further training. The more the distribution of the training set is distorted,
the easier for the learner to be misled. Consequently, the performance degrades.
Similarly, the error rate of hypothesis learned via Setred climbs up to 0.349
from the initial error rate of 0.339 on german, in which the negative examples are
only 30%. The imbalance of this data set might also account for the performance
degradation of Setred.

For further evaluation, one run out of 50 with a median performance on each
data set is investigated carefully. Fig. 1 gives plot of error rate versus number
of iterations of the median performance on each data set respectively. Note
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that Setred and Self-training stop before the maximum number of iterations
is reached on several data set such as heart-statlog and hepatitis, due to no
more unlabeled examples available for further training. In most cases except for
german and hepatitis, Setred outperforms Self-training, and the error rates of
the learned hypothesis by Setred usually go lower than or converge to the error
rates of NN-A. These are consistent with the average performance of the 50 runs
on the experimental data sets.

In Fig. 1(g), the error rate curve of Setred climes up to a high level after
a few iterations and remains unchanged. By contrast, the curve of Self-training
drops when many unlabeled examples have been self-labeled and used for further
training. This supports the explanation above for the Setred’s failure that
Setred suffers the imbalance data. Once the correctly labeled positive examples
are rejected by Setred, the misclassified positive examples in the test set, which
are probably be correctly classified after more positive examples are learned, will
remain being misclassified in the following iterations.

In summary, the experiments show that Setred can benefit from the unla-
beled examples. Setred is robust to the noise introduced in self-labeling process
and its learned hypothesis outperforms that learned via standard self-training.

5 Conclusion

In this paper, a novel self-training style algorithm named Setred, which incor-
porates data editing technique to learn actively from the self-labeled examples,
is proposed. In detail, Setred firstly learns from labeled examples and then it-
eratively chooses to label a few unlabeled examples, on which the learner is most
confident in prediction, and adds those self-labeled examples to its labeled set
for further training. In each iteration, Setred does not completely accept all the
self-labeled examples that might be highly noisy. Instead, it actively identifies
the possibly mislabeled examples from those self-labeled examples by testing a
predefined null hypothesis with the local cut edge weight statistic associated with
each self-labeled example. If the test indicates a left rejection, the example is
regarded as a good example, otherwise it is a possible mislabeled example which
should be kept from adding to the learner’s training set. The experiment results
on 10 UCI data sets show that Setred is able to benefit from the information
provided by unlabeled examples, and it is robust to the noise introduced in the
self-labeling process hence the generalization ability of its learned hypothesis is
better than that learned via standard self-training, which is easily affected a lot
by those noise. Since Setred is sensitive to imbalance data, exploring a way to
solve this problem will be done in future. Since Setred uses a Nearest Neighbor
as base learner, extending this idea to other base leaners will also be future work.

It is noteworthy that the Setred algorithm is not only a robust self-training
style algorithm but shedding a light on a possible way to handle the noise intro-
duced in the learning process by incorporating an active-learning-like technique
to refine the self-labeled examples in semi-supervised learning scenario, hence
obtaining better performance of the learned hypothesis. Different from others,
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the work is done when the teacher to assign labels to the problematic examples is
absent. In the future work, theoretical verification of this method will be done,
which might help to understand the functionality of this method. Moreover,
extending this method to classic semi-supervised learning algorithms, such as
co-training [1], or searching for more suitable active learning methods for those
algorithms to improve their performance will also be the future work.
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Abstract. Mixture models, such as Gaussian Mixture Model, have been widely 
used in many applications for modeling data. Gaussian mixture model (GMM) 
assumes that  data points are generated from a set of Gaussian models with the 
same set of mixture weights. A natural extension of GMM is the probabilistic 
latent semantic analysis (PLSA) model, which assigns different mixture weights 
for each data point. Thus, PLSA is more flexible than the GMM method. How-
ever, as a tradeoff, PLSA usually suffers from the overfitting problem. In this 
paper, we propose a regularized probabilistic latent semantic analysis model 
(RPLSA), which can properly adjust the amount of model flexibility so that not 
only the training data can be fit well but also the model is robust to avoid the 
overfitting problem. We conduct empirical study for the application of speaker 
identification to show the effectiveness of the new model. The experiment re-
sults on the NIST speaker recognition dataset indicate that the RPLSA model 
outperforms both the GMM and PLSA models substantially. The principle of 
RPLSA of appropriately adjusting model flexibility can be naturally extended 
to other applications and other types of mixture models.  

1   Introduction 

Mixture models, such as Gaussian Mixture Model, have been widely used throughout 
the applications of data mining and machine learning. For example, Gaussian Mixture 
model (GMM) has been applied for time series classification [8], image texture detec-
tion [7] and speaker identification [9]. In these tasks, the GMM model assumes that 
data points from a specific object or class (e.g., a speaker in speaker identification) are 
generated from a pool of Gaussian models with fixed mixture weights; it estimates 
mixture models from the training data using a maximum likelihood method; it pre-
dicts test data with the classes that generate the test data with the largest probabilities. 

One general problem of modeling data with GMM is that GMM uses the same set 
of mixture weights for all the data points of a particular class, which limits the power 
of the mixture model in fitting the training data accurately. In contrast, a probabilistic 
latent semantic analysis (PLSA) [5][6] model allows each data point to choose its own 
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mixture weights. Apparently, PLSA model is more flexible than GMM model in that a 
different set of mixture weights is introduced for each data point. However, as a trade-
off, PLSA has a substantially larger parameter space than the GMM model; the exces-
sive freedom of assigning data point dependant mixture weights invites the PLSA model 
to the potential overfitting problem given the limited amount of training data. 

In this paper, we propose a regularized probabilistic latent semantic analysis 
(RPLSA) model that addresses the overfitting problem in PLSA by regularizing the 
mixture weights. In particular, a regularization term is introduced in RPLSA, which 
punishes the objective function in RPLSA when different data points of the same class 
choose mixture weights that are far away from each other. It is an intermediate model 
between GMM and PLSA: different mixture weights are allowed for data points; but 
similar mixture weights are favored for different data points in the same class. 

Empirical study for the application of speaker identification was conducted to 
show the effectiveness of the new RPLSA model. The NIST 1999 speaker recognition 
evaluation dataset with 539 speakers were used and the experiment results indicate 
that the RPLSA model achieves better results than both the GMM and PLSA. Fur-
thermore, careful analysis shows that the advantage of RPLSA comes from the power 
of properly adjusting model flexibility. 

2   Previous Research of Mixture Model  

In this section, we only survey the most related research of mixture model.  

2.1   Gaussian Mixture Model 

GMM is one of the most widely used mixture modeling techniques [4][7][8][9]. It is a 
simple model and is reasonably accurate when data are generated from a set of Gaus-

sian distributions. Let { ,1 }i i
tX x t T= ≤ ≤  denote the feature vectors for data points 

from the ith class (e.g., a particular speaker). They are modeled by a total number of J 
Gaussians as follows: 
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( | ) ( ) ( | , )
i

j

T J
i i

GMM j z t j j
jt

P X P z P x uθ
==

= Σ∏  (1) 

where i
GMMθ  includes all the model parameters, i.e., { ( ),jP z , ,j ju Σ 1 j J≤ ≤ }. 

( | , )
jz t j jP x u Σ  is the Gaussian distribution for the j-th class, with a mean vector 

ju and a covariance matrix jΣ  as: 
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where D is the dimension of the feature vector tx . Usually jΣ  is set to be a diagonal 

matrix as 2{ :1 }jddiag d Dσ ≤ ≤  in order to reduce the size of the parameter space [4]. 

It can be seen from Equation (1) that the data points of a specific class are gener-
ated from multiple Gaussian models with an identical set of mixture weights 
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(i.e., ( )jP z ). This constraint may not be valid in the data modeling process. For ex-

ample, in speaker identification, mixture weights for a vowel can be significantly differ-
ent from the mixture weights for a consonant. Therefore, it is important to incorporate 
data point dependent mixture weights into the framework of mixture models. 

2.2   Probabilistic Latent Semantic Analysis 

Unlike the Gaussian Mixture Model, the probabilistic latent semantic analysis model 
(PLSA) allows for data point specific mixture weights. Formally, the likelihood of 
training data for the ith class is written as: 

11

( | ) ( | ) ( | , )
i

j

T J
i i

PLSA j t z t j j
jt

P X P z d P x uθ
==

= Σ∏  (3) 

where i
PLSAθ  includes { , ,j ju Σ 1 ;j J≤ ≤ ( | ),j tP z d  1 ,j J≤ ≤  1 it T≤ ≤ }. Note that a 

dummy variable td  is introduced for every data point, and therefore the mixture 

weights ( | )j tP z d  are data point dependent. The PLSA model was originally pro-

posed for the probabilistic semantic indexing (PLSI) technique of information re-
trieval [5][6]. Both PLSI and PLSA allow data point specific mixture weights, but the 
PLSI model is based on multinomial distributions to model documents while the 
PLSA model is used here for modeling continuous data with Gaussian distributions. 
Note that the PLSA model shares the same idea with the tied-mixture model tech-
nique [1], which assumes that speech data is generated from a common pool of Gaus-
sian models and each data point can choose its own mixture weights independently.  

Because the mixture weights are data point dependent, PLSA is capable to fit train-
ing data better than GMM. However, a potential problem with PLSA is that it has a 
significantly larger parameter space than GMM, thus is prone to overfitting training 
data. To alleviate this problem, a maximum posterior (MAP) smoothing technique can 
be used for estimating PLSA. In particular, priors are introduced for parameters in the 
Gaussian models, and the parameters are estimated by maximizing the posterior of 
training data: 
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 (4) 

The first item on the right hand side is the likelihood of training data. The next two 
items are the conjugate priors for the means and variances in the Gaussian models. A 
and B are two constants that adjust the weights of priors. 0 0( | , )jP u u Σ is a Gaussian 

distribution with mean 0u and variance 0Σ  as a diagonal matrix 2
0{ }ddiag σ ; 

2
0 0( | , )jd d dP aσ β  is an inverse gamma distribution with parameters 0 0,d da β  as: 
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Although maximum posterior smoothing can alleviate the overfitting problem in 
some extent, the PLSA model still suffers from the excessive freedom of assigning 
totally independent data point specific mixture weights. To further address this prob-
lem, a novel method of regularizing mixture weights is proposed in this paper. 

2.3   Latent Dirichlet Allocation 

Latent Dirichlet Allocation (LDA) [2] is a generative model for collections of discrete 
data such as text. In LDA, each item (document) of a class (text collection) is mod-
eled as a finite mixture over a set of topics (mixture models). LDA shares a common 
feature with the new research in this paper in that both of them choose moderate 
amount of model flexibility. LDA assumes that the mixture weights of items in a class 
are generated from a common Dirichlet distribution so that the weights for different 
data points in the same class are coupled instead of being chosen independently. 

However, LDA model requires sophiscated variational methods to calculate the 
model parameters both in training and testing phrases, which is time consuming and 
thus limits the application of LDA in practical work. Furthermore, LDA model does 
not work well when each item contains a very small number of data points (like 
documents contain small number of words by average, or in speaker identification 
each item of a speaker utterance is a single vector of acoustic features in multi-
dimensional space). Specifically consider the extreme case when each item only con-

tains a single data point. LDA models a class iX with single data point items as: 

,
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Where ( | )P u α  is the Dirichlet distribution that generates the mixture weights for all 

data points. By switching the order of integration and summation and integrating out 
the parameter u , Equation (6) becomes: 
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This is essentially a GMM model if we set '
'

/j j
j

aα as the mixture weight ( )jP z in 

the GMM model. 

3   Regularized Probabilistic Latent Semantic Analysis Model 

From the above research, we find that both GMM and PLSA are two extreme cases of 
the mixture model family: GMM uses the same set of mixture weights for all data 
points of the same class, thus lacking flexibility; PLSA model allows each data point 
to choose its own mixture weights and therefore is prone to overfitting training data. 
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A better idea is to develop an algorithm that can properly adjust the amount of model 
flexibility so that not only the training data can be fit well but also the model is robust 
to overfitting problems. This is the motivation of the regularized probabilistic latent 
semantic analysis model (RPLSA). 

3.1   Model Description 

Similar to the PLSA model, RPLSA allows each data point to choose its own mixture 
weights. At the meantime, it requires mixture weights from different data points to be 
similar in order to avoid overfitting. This is realized by assuming that there is a com-
mon set of mixture weights and mixture weights for different training data points 
should be close to the common set of mixture weights, formally as: 
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Compared to the PLSA model in Equation (4), the above equation introduces a new 

regularization term, i.e., 
1 1

( | )
( ) log

( )

iT J j t
c jt j

c j

P z d
C P z

P z= =
, into the objective function. It 

is a weighted sum of the Kullback-Leibler (KL) divergence between the common 
mixture weights (i.e., ( )c jP z ) and the mixture weights that are specific to each data 

point (i.e., ( | )j tP z d ). C is the regularization constant that controls the amount of 

model flexibility. 
The role of the regularization term is to enforce mixture weights for different data 

points to be close to each other. In general, the closer the data-dependent mixture 
weights are to the common set of mixture weights, the smaller the KL divergence will 
be. Thus, by adjusting the constant C, we are able to adjust the flexibility of the 
RPLSA model: A small C will lead to a large freedom in assigning different mixture 
weights to different data points, thus exhibiting a behavior similar to the PLSA 
model; A large C will strongly enforce different data points to choose similar mixture 
weights, thus close to the behavior of the GMM method. Therefore, the RPLSA 
model connects the spectrum of mixture models between GMM and PLSA.  

3.2   Parameter Estimation 

The Expectation-Maximization (EM) algorithm [1] is used to estimate the model 
parameters of the RPLSA model. In the E step, the posterior probability of which 
mixture model each data point belongs to is calculated as follows: 
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In the M step, the ( | )new
j tP z d , new

ju  and newΣ parameters are updated using Equa-

tions (10), (11) and (12) separately. 
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where jdu  and jdσ  are the dth element of the mean and variance respectively for the 

jth mixture, and tdx  is the dth element of the feature vector tx . 

Finally, the common set of mixture weights is updated as follows: 

'
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( ) exp{1/ log( ( | ))}
iT

New i
c j j t

t

P z T P z d
=

∝ ∗  (13) 

which is essentially the geometric mean of the corresponding mixture weights that are 
attached to each data point. Note that choice of adaptively adjusting the common set 
of mixture weights in Equation (13) is different from the method that simply selecting 
a prior distribution of the mixture weights and estimating the model with maximum 
posterior smoothing. It can be imagined that the same set of prior of mixture weights 
(e.g., the Dirichlet prior distribution with uniform parameter values of the mixture 
weights) does not fit data with different characteristics. The adaptive estimation of the 
common set of mixture weights in RPLSA is a more reasonable choice.  

The parameter estimation procedure for PLSA is a simplified version of that for 
RPLSA. In the expectation step, the posterior probability is calculated by a similar 
formula as Equation  (9) without the factor of the regularization item. In the maximi-

zation step, the new parameters ( | )new
j tP z d , new

ju  and newΣ of PLSA are updated  in 

a similar way as the Equations (10), (11) and (12). 

3.3   Identification 

The RPLSA model is different from the GMM model in that some parameters 
( | )j tP z d  need to be estimated for the test data in the identification phase. A plug-in 

EM procedure is used to accomplish this. Specifically, the EM algorithm described in 
Section 3.2 is rerun to estimate ( | )j tP z d  for each test data point while all the other 

parameters are fixed. With the estimated new mixture weights, we can identify the 
test item (e.g., a vector of acoustic features) for a particular class (e.g., a speaker in 
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the training set) whose model has the largest generation probabilities of test item 
testX  as: 

_ ( ) arg max ( | )test test i
RPLSA

i
ID Rst X P X θ=  (14) 

The identification process of PLSA is almost the same as the procedure of RPLSA, 
which is not described due to space limit.  

4   Experimental Results  

This section shows empirical study that demonstrates the advantage of the new regu-
larized probabilistic latent semantic model (RPLSA). Specifically, three models of 
GMM, PLSA and RPLSA are compared for the application of speaker identification.  

4.1   Experiment Methodology 

The experiments were conducted on the NIST 1999 speaker recognition evaluation 
dataset1. There are a total of 309 female speakers and 230 male speakers. The speech 
signal was pre-emphasized using a coefficient of 0.95. Each frame was windowed 
with a Hamming window and set to 30ms long with 50% frame overlap. 10 mel fre-
quency cepstral coefficients were extracted from each speech frame. Both the training 
data and the test data come from the same channel. The training data consists of 
speech data of 7.5 seconds for each training speaker. 

We present experiment results to address two issues: 1) Will the proposed RPLSA 
be more effective than the GMM and the PLSA models? 2) What is the power of the 
RPLSA model? What is the behavior of the RPLSA model with different amount of 
model flexibility by choosing different values for the regularization parameter C?  

4.2   Experiment Results of Different Algorithms 

The first set of experiments was conducted to study the effectiveness of the three 
mixture models. The numbers of mixture models were chosen by cross-validation for 
the three models. Specifically, 30 mixtures for GMM model, 50 for both PLSA and 
RPLSA. The smoothing prior parameters of PLSA and RPLSA were set as follows: 

0u  is the mean value of the training data; 0Σ is identity matrix; 0da is 1 and 0dβ  is 

twice the variance of the dth value of the training data. The smoothing constants in 
Equations (4) and (8) were set as: A is /(10* )iT J  and B is /iT J (where •  indi-

cates the number of items within a class). The regularization constant C of RPLSA 
was set to be 20 by cross-validation.  

To compare the algorithms in a wide range we tried various lengths of test data. 
The results are shown in Table1. Clearly, both PLSA and RPLSA are more effective 
than the GMM in all cases. This can be attributed to the fact that both PLSA and 
RPLSA relax the constraint on mixture weights imposed by GMM. Furthermore, the 
RPLSA model outperforms the PLSA model. This is consistent with the motivation of 

                                                           
1 http://www.nist.gov/speech/tests/spk/ 
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the RPLSA model as it automatically adjusts the model flexibility for better recogni-
tion accuracy.  

Table 1. Speaker identification errors for the Gaussian mixture model (GMM), the probabilistic 
latent semantic analysis model (PLSA) and the regularized probabilistic latent semantic analy-
sis model (RPLSA) 

Test Data 
Length GMM PLSA RPLSA 

2 Sec 37.8% 33.9% 31.2% 
3 Sec 31.5% 24.7% 21.8% 
5 Sec 27.3% 22.5% 20.1% 

Table 2. Speaker identification errors for the smoothed Gaussian mixture model (GMM), the 
probabilistic latent semantic analysis model (PLSA) with uniform Dirichlet prior ( 100α = ) 
and the RPLSA model 

Test Data 
Length 

GMM 
(Smoothed ) 

PLSA 
(Dirichlet Prior) 

RPLSA 

2 Sec 36.1% 33.2% 31.2% 
3 Sec 30.2% 24.3% 21.8% 
5 Sec 26.0% 22.3% 20.1% 

To further confirm the hypothesis that RPLSA model has advantage than both the 
GMM and PLSA methods, two more sets of experiments were conducted. The first 
set of extended experiments was to train a GMM model with smoothed Gaussian 
model parameters like that used for PLSA (Two smoothed items of Gaussian model 
parameters like that of Equation (4) were introduced into the GMM objective function 
with A and B roughly tuned to be five times smaller than that of the RPLSA setting). 
The second set of extended experiments was to regularize the mixture weights in  
 

 

Fig. 1. Behavior of RPLSA Model with Different Values of Regularization Const 
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PLSA using a Dirichlet prior as described in Section 3.2. It is different from the regu-
larization scheme of Equation (9) in that a Dirichlet prior uses a fixed set of common 
mixture weights (uniform) that is unable to adapt to the training data. The modified 
PLSA is trained with a new likelihood function of Equation (4) with an additional 
item of a Dirichlet prior with the parameter values of 100 (roughly tuned).  

It can be seen from Table 2 that the new versions of GMM and PLSA give very 
small improvement of the original algorithms. The behavior of GMM model can be 
explained as that GMM has a much smaller parameter space than PLSA and RPLSA, 
smoothing does not give too much help. The results of the PLSA model with uniform 
Dirichlet prior indicates that the simple method of smoothing the mixture weights 
with a single prior does not successfully solve the overfitting problem.  

4.3   Study the Behavior of the RPLSA Method 

The new proposed RPLSA is an intermediate model between GMM and PLSA: dif-
ferent mixture weights are allowed for each data point; but similar mixture weights 
for different data points are encouraged. The RPLSA is the bridge to connect a spectrum 
of mixture models with two extreme cases of GMM and RPLSA models. Therefore, it is 
very interesting to investigate the behavior of the RPLSA method with different amount 
of model flexibly and its relationship with the GMM and RPLSA models. 

Specifically, different values of parameter C in the RPLSA model of Equation (8) 
were investigated. 3 seconds’ test data was used in this set of experiments. The de-
tailed results are shown in Figure 1. 

According to previous analysis in Section 3.1, we know that a smaller C value 
gives more freedom to the data points in choosing their own mixture weights, which 
leads to a behavior closer to that of the PLSA model. This is consistent with the ob-
servation from Figure 1. When C is as small as 10, RPLSA acquires a similar recogni-
tion accuracy with that of PLSA. On the other hand, a larger value for C makes 
RPLSA behave more like GMM. As indicated in Figure 1, a larger C leads to worse 
recognition accuracy.  

For the middle part of the curve, with C ranging from 15 to 40, RPLSA acquires 
the best recognition accuracy; this suggests that RPLSA with reasonable amount of 
model flexibility reaches a better trade-off between enough model flexibility and 
model robustness. 

The experiments in this section show the behavior of the new RPLSA model with 
different amount of model flexibility. It is consistent with our theoretical analysis that 
RPLSA has advantage than the GMM model and the RPLSA model in its better abil-
ity to adjust the appropriate amount of model flexibility. 

5   Conclusion 

Mixture models such as Gaussian mixture model (GMM) are very important tools for 
data mining and machine learning applications. However, classic mixture models like 
GMM have limitations in their modeling abilities as all data points of an object are 
required to be generated from a pool of mixtures with the same set of mixture 
weights. Previous research such as the probabilistic latent semantic analysis (PLSA) 
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model has been proposed to release this constraint. PLSA allows totally independent 
data point specific mixture weights. But the excessive model flexibility makes PLSA 
tend to suffer from the overfitting problem. 

This paper proposes a new regularized PLSA (RPLSA) model: On one hand, it is 
similar to the original PLSA model in that a different set of mixture weights is used 
for different data points; on the other hand, it is similar to GMM in that mixture 
weights for different data points are required to be similar to each other. In particular, 
the new model has the ability in adjusting the model flexibility of the mixture weights 
through the regularization term. Experiment results for speaker identification applica-
tion have shown that the new RPLSA model outperforms both the GMM and the 
PLSA models substantially. Choosing the appropriate amount of modeling flexibility 
is a general problem for all mixture modeling techniques. The new research in this 
paper can be naturally incorporated with other types of mixture models than the 
GMM model and be applied for other applications. 
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Abstract. Hard margin support vector machines (HM-SVMs) have a risk of get-
ting overfitting in the presence of the noise. Soft margin SVMs deal with this 
problem by the introduction of the capacity control term and obtain the state of 
the art performance. However, this disposal leads to a relatively high computa-
tional cost. In this paper, an alternative method, greedy stagewise algorithm, 
named GS-SVMs is presented to deal with the overfitting of HM-SVMs without 
the introduction of capacity control term. The most attractive property of GS-
SVMs is that its computational complexity scales quadratically with the size of 
training samples in the worst case. Extensive empirical comparisons confirm the 
feasibility and validity GS-SVMs. 

1   Introduction 

Hard margin support vector machines have a risk of getting overfitting in the presence 
of the noise [1]. To deal with this problem, soft margin SVMs [2] introduce the capac-
ity control parameter that allows a little training error to obtain the large margin. This 
is a highly effective mechanism for avoiding overfitting, which leads to good gener-
alization performance. Though very successful, we can identify some shortages of 
soft margin SVMs: 

 The training procedure of soft margin SVMs amounts to solving a constrained 
quadratic programming. Although the training problem is, in principle, solvable, 
in practice it is intractable by the classical optimization techniques, e.g. interior 
point method because their computational complexity usually scales cubically 
with the size of training samples.

 Capacity control parameter depends on the task at hand; hence there is no fool-
proof method for determining it before training. Usually, we have to resort to a 
cross validation procedure, which is wasteful in computation [3]. 

In the past few years, a lot of fast iterative algorithms were presented for tackling 
the problem . Probably, the most famous method among them is sequential minimi-
zation optimization algorithm (SMO), which is proposed by Platt [4] and further im-
proved by Keerthi [5]. Some other examples include SVMlight [6], SimpleSVM [7], 
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SVMTorch [8], and so on. These algorithms proved to be effective and boosted the 
development of SVMs. 

In this paper, an alternative method, greedy stagewise algorithm, named GS-
SVMs is presented to deal with the overfitting of HM-SVMs. Instead of employing 
the capacity control term, GS-SVMs attempts to control the capacity of hypothesis 
space by algorithm itself. In summary, the proposed algorithms possess the following 
two attractive properties:  

 The computational complexity of GS-SVMs is ( )O nl , where l  and n  are the 

size of training samples and support vectors, respectively. Even in the worst 
situation that all the training samples are the support vectors, the computational 

complexity of GS-SVMs is only ( )2O l . 

 No extra capacity control parameter is required. 

2   Greedy Stagewise Algorithm for SVMs 

The Wolfe dual of hard margin SVMs 

( )
, 1 1

1
min ,

2

. . 0 1, , ,

l l

i j i j i j i
i j i

i

y y K

s t i l

α α α

α
= =

−

≤ =

x x

L

   (1) 

can be regarded as a loss function induced by reproducing kernel Hilbert space norm. 
This allows us to approximate it using greedy algorithm. Due to the room limitation, 
the detailed interpretation is ignored and the interested reader can refer to [9]. Though 
HM-SVM is, in principle, solvable by the classical optimization technique, in practice 
it suffers from two serious problems: (1) their computational complexity usually 
scales cubically with the size of training samples; (2) there often is a risk of getting 
overfitting due to no capacity control term. Here, we will deal with the two problems 
by greedy stagewise algorithm, which attempts to approximate (1) quickly while 
avoids the overfitting. Greedy stagewise algorithm [10] can be described as the  
following. 
For 1,2,m l= L , 

( ) ( ) ( )( )1,
1

, arg min , ,

. . 1,2, 1

l
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β β
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≠ = −
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  (2) 

and then 

( )1 ,
mm m mf f w K β−= + x x .    (3) 

where ( )L �  denotes loss function, 0 0f ≡  and the constraint terms guarantee that 

each basis function is used once at most.  
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For SVMs, w  takes the form , 0yβα α ≥ . Using the loss function (1) we have 
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Note that the first two terms of (4) can be ignored. Define the gradient vector 
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We can reformulate (4) as 

( ) ( )2 1

,

1
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(6) can be solved in two steps. In the first step, we fix β  and compute the minimal 

value 1mhβ
−  of (6) with respect to α . In the second step, we compute mβ  by minimiz-

ing 1mhβ
−  with respect to β , and then compute mα  in terms of mβ . Fixing β , we 

have the subproblem 

( )2 11
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. . 0

mK
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β β βα
α α

α
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≥

x x g
   (7) 

Since (7) is a single variable quadratic programming, we can give its analytical  
solution, i.e. 

1 1

1
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According to the positive definite property of kernel function, we have 

( ), 0K β β >x x . Thus (8) can be further simplified as 
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 Training Support Vector Machines Using Greedy Stagewise Algorithm 635 

 

Combining (7) and (9), we get 

( ) ( ) ( )21 1
1 2 1

0 1
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β β β β
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g
.   (10) 

In GS-SVMs, each basis function corresponds to a specified training sample and vice 

versa. Hence, if the basis function ( ),K βx x  does not appear in mf , we say its corre-

sponding training sample βx  unused. From (10), we can derive that if the gradients of 

all the unused training samples are larger than zero, the loss function (1) will stop 
decreasing. Hence we will terminate the algorithm if the above condition is satisfied. 

Considering (9) and (10), we can obtain the parameter pairs ( ),m mα β  by the fol-

lowing equations 

( )1arg min m
m

Q
hββ

β −

∈
= .    (11) 

( )1 ,
m m m

m
m Kβ β βα −= −g x x .   (12) 

Thus the greedy stagewise algorithm for SVMs (GS-SVMs) can be described as 

Algorithm 1: GS-SVMs 

1. Set 0 ( ) 0f =x ,α = 0 , 0 = −g 1 , 0 = −h 1 , {1, 2, }Q l= L , P = ∅ ; 

2. For 1m =  to l , do: 

3.    If ( )1min 0m

Q
gββ

−

∈
≥ , stop; 

4.   ( )1arg min m
m

Q
hββ

β −

∈
= , ( )1 ,

m m m

m
m Kβ β βα −= −g x x ; 

5.   { }mP P β= ∪ , { }mQ Q β= − ; 

6.   ( )1 , ,
m m

m m
m y y K Qβ β β β β ββ β−= + ∈g g x x ; 

7. Update 1,mh Qβ β− ∈  according to (4.9); 

8.     ( )1( ) ( ) ,
m mm m mf f y Kβ βα−= +x x x x ; 

9. End For 
10. End Algorithm 

Fig. 1. Pseudo code of GS-SVMs 

Updating ,k Qβ β ∈g  is an operation of cost ( )O l  and successive n  update incurs a 

computational cost of ( )O nl , where n  is the size of support vector. Besides that, the 

memory requirement of GS-SVMs is only ( )O l . 
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3   Empirical Comparison 

In all the experiments, the kernel matrix is constructed by Gaussian kernel 

( ) ( )2
, expi j i jK θ= − −x x x x . Following [4], we compare the number of kernel 

evaluations of GS-SVMs and SMO, which is an effective measure of the algorithm’s 
speed. For the sake of fair comparison, we use the same data sets and kernel parame-
ter as in [4]. Note that the number of kernel evaluations of SMO in Table 1. denotes 
the average number under the different capacity control parameters.  

Table 1. Number of kernel evaluations of GS-SVMs and SMO. Each unit corresponds to 610  
kernel evaluations. SMO-1 and SMO-2 correspond to SMO-Modification 1 and SMO-
Modification 2 in [5] 

Problems Size θ  Dim SMO-1 SMO-2 GS-SVMs 
Adult-1 1605 0.05 123 29.518 17.375 0.845 
Adult-4 4781 0.05 123 344.977 231.349 6.791 
Adult-7 16100 0.05 123 856.212 698.864 73.014 
Web-1 2477 0.05 300 11.543 11.187 0.439 
Web-4 7366 0.05 300 79.415 79.008 3.224 
Web-7 24692 0.05 300 691.419 703.495 31.981 

From Table 1, we can see that GS-SVMs obtain the speedup range from 10 to 30 
on the different data sets. In order to validate the performance of GS-SVMs, we 
compare it with hard magin and Soft margin SVMs on the fifteen benchmark data 
sets that are from UCI machine learning repository [11]. One-against-one method is 
used to extend binary classifiers to multi-class classifiers. 

On each data set, ten-fold cross validation is run. The average accuracy of ten-fold 
cross validation is reported in Table 2. For each training-test pair, ten-fold cross vali-
dation is performed on training set for tuning free parameters. The detailed experi-
ment setup is the following: 

(a) For soft margin SVMs, Kernel width and capacity control parameter are chosen 
from intervals ( )log 2 [ 8, 7, ,7,8]θ = − − L  and ( )log 2 [ 1,0,1, 8,9,10]C = − L . 

This range is enough for our problems. The number of trainings on each train-
ing-test pair needed by this method is 10 17 12 2040× × = . 

(b) For GS-SVMs and HM-SVMs, Kernel width is chosen from inter-
val ( )log 2 [ 8, 7, ,7,8]θ = − − L . The number of trainings on each training-test pair 

needed by this method is 10 17 170× = . 

The two-tailed t-tests also indicate that GS-SVMs are significantly better than 
SVMs on Glass and worse than SVMs on Liver. As for the remaining data sets, GS-
SVMs and SVMs obtain the similar performance. Hence we have the conclusion that 
GS-SVMs are significantly better in speed than SMO and comparable in performance 
with SMO.  
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Tabel 2. Accuracy of GS-SVMs, HM-SVMs and SVMs 

Problems Size Dim Class GS-SVMs HM-SVMs SVMs 
Australian 690 15 2 84.93 78.55 84.49 
German 1000 20 2 74.20 69.30 75.40 

Glass 214 9 6 71.54 68.66 66.81 
Heart 270 13 2 83.70 76.67 83.23 

Ionosphere 351 34 2 94.00 94.00 94.02 
Iris 150 4 3 95.33 92.00 96.00 

Liver 345 6 2 66.03 61.69 71.29 
Page 5473 10 4 96.45 96.50 96.93 

Diabetes 768 8 2 77.21 70.55 77.08 
Segment 2310 18 7 97.32 96.84 97.01 

Splice 3175 60 3 96.72 96.31 96.25 
Vowel 528 10 11 98.29 99.05 99.05 
WDBC 569 30 2 97.72 96.49 97.54 
Wine 178 13 3 98.89 96.64 98.89 
Zoo 101 10 7 97.09 96.09 96.09 

Mean / / / 88.63 85.96 88.67 

4   Conclusion 

This paper proposes a greedy stagewise algorithm, named GS-SVMs to deal with the 
overfitting of HM-SVMs. Empirical comparisons confirm the feasibility and validity 
of GS-SVMs. 
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Abstract. Graph-Based Induction (GBI) is a machine learning tech-
nique developed for the purpose of extracting typical patterns from
graph-structured data by stepwise pair expansion (pair-wise chunking).
GBI is very efficient because of its greedy search strategy, however, it
suffers from the problem of overlapping subgraphs. As a result, some of
typical patterns cannot be discovered by GBI though a beam search has
been incorporated in an improved version of GBI called Beam-wise GBI
(B-GBI). In this paper, improvement is made on the search capability by
using a new search strategy, where frequent pairs are never chunked but
used as pseudo nodes in the subsequent steps, thus allowing extraction of
overlapping subgraphs. This new algorithm, called Cl-GBI (Chunking-
less GBI), was tested against two datasets, the promoter dataset from
UCI repository and the hepatitis dataset provided by Chiba University,
and shown successful in extracting more typical patterns than B-GBI.

1 Introduction

In recent years, discovering frequent patterns of graph-structured data, i.e., fre-
quent subgraph mining or simply graph mining, has attracted much research
interest because of its broad application areas such as bioinformatics [2, 12],
cheminformatics [8, 10, 15], etc. Moreover, since these patterns can be used as
input to other data mining tasks (e.g., clustering and classification [6]), the graph
mining algorithms play an important role in further expanding the use of data
mining techniques to graph-based datasets.

AGM [8] and a number of other methods (AcGM [9], FSG [10], gSpan [15],
FFSM [7], etc.) have been developed for the purpose of enumerating all frequent
subgraphs of a graph database. However, the computation time increases ex-
ponentially with input graph size and minimum support. This is because the
kernel of frequent subgraph mining is subgraph isomorphism, which is known to
be NP-complete [5].

On the other hand, existing heuristic algorithms, which are not guaranteed
to find the complete set of frequent subgraphs, such as SUBDUE [4] and GBI
(Graph-Based Induction) [16], tend to find an extremely small number of pat-
terns. Both the two methods use greedy search to avoid high complexity of
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the subgraph isomorphism problem. GBI extracts typical patterns from graph-
structured data by recursively chunking two adjoining nodes. Later an improved
version called B-GBI (Beam-wise Graph-Based Induction) [12] adopting the
beam search was proposed to increase the search space, thus extracting more
discriminative patterns while keeping the computational complexity within a
tolerant level.

Since the search in GBI is greedy and no backtracking is made, which patterns
are extracted by GBI depends on which pairs are selected for chunking. There
can be many patterns which are not extracted by GBI. B-GBI can help alleviate
this problem, but cannot solve it completely because the chunking process is still
involved.

In this paper we propose a novel algorithm for extracting typical patterns
from graph-structured data, which does not employ the pair-wise chunking strat-
egy. Instead, the most frequent pairs are regarded as new nodes and given new
node labels in the subsequent steps but none of them is chunked. In other words,
they are used as pseudo nodes, thus allowing extraction of overlapping subgraphs.
This algorithm, now called Chunkingless Graph-Based Induction (or Cl-GBI for
short), was evaluated on two datasets, the promoter dataset from UCI repos-
itory [1] and the hepatitis dataset provided by Chiba University, and shown
successful in extracting more typical substructures compared to the B-GBI al-
gorithm.

2 Graph-Based Induction Revisited

2.1 Principle of GBI

GBI employs the idea of extracting typical patterns by stepwise pair expansion as
shown in Fig. 1. In the original GBI, an assumption is made that typical patterns
represent some concepts/substructures and “typicality” is characterized by the
pattern’s frequency or the value of some evaluation function of its frequency.
We can use statistical indices as an evaluation function, such as frequency itself,
Information Gain [13], Gain Ratio [14] and Gini Index [3], all of which are based
on frequency. In Fig. 1 the shaded pattern consisting of nodes 1, 2, and 3 is
thought typical because it occurs three times in the graph. GBI first finds the
1→3 pairs based on its frequency, chunks them into a new node 10, then in
the next iteration finds the 2→10 pairs, chunks them into a new node 11. The
resulting node represents the shaded pattern.

It is possible to extract typical patterns of various sizes by repeating the
above three steps. Note that the search is greedy and no backtracking is made.
This means that in enumerating pairs no pattern which has been chunked into
one node is restored to the original pattern. Because of this, all the “typical
patterns” that exist in the input graph are not necessarily extracted. The prob-
lem of extracting all the isomorphic subgraphs is known to be NP-complete.
Thus, GBI aims at extracting only meaningful typical patterns of a certain size.
Its objective is not finding all the typical patterns nor finding all the frequent
patterns.
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Fig. 1. Principle of GBI

As described earlier, GBI can use any criterion that is based on the fre-
quency of paired nodes. However, for finding a pattern that is of interest any of
its subpatterns must be of interest because of the nature of repeated chunking.
In Fig. 1 the pattern 1→3 must be typical for the pattern 2→10 to be typical.
Said differently, unless pattern 1→3 is chunked, there is no way of finding the
pattern 2→10. Frequency measure satisfies this monotonicity. However, if the
criterion chosen does not satisfy this monotonicity, repeated chunking may not
find good patterns even though the best pair based on the criterion is selected
at each iteration. To resolve this issue GBI was improved to use two criteria, one
for frequency measure for chunking and the other for finding discriminative pat-
terns after chunking. The latter criterion does not necessarily hold monotonicity
property. Any function that is discriminative can be used, such as Information
Gain [13], Gain Ratio [14] and Gini Index [3], and some others.

2.2 Beam-Wise Graph-Based Induction (B-GBI)

Since the search in GBI is greedy and no backtracking is made, which patterns
(subgraphs) are extracted by GBI depends on which pair is selected for chunking.
There can be many patterns which are not extracted by GBI. In Fig. 2, if the
pair B–C is selected for chunking beforehand, there is no way to extract the
substructure A–B–D even if it is a typical pattern.

A beam search is incorporated into GBI in B-GBI [12] within the framework
of greedy search in order to relax this problem, increase the search space, and
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B D
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A

B D

(a) (b)

Fig. 2. Missing patterns due to
chunking order

A

A

A A

A

A

Fig. 3. Two different pairs repre-
senting identical patterns
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extract more discriminative patterns while still keeping the computational com-
plexity within a tolerant level. A certain number of pairs ranked from the top
are selected to be chunked individually. To prevent each branch from growing
exponentially, the total number of pairs to be chunked (the beam width) is fixed
at every time of chunking. Thus, at any iteration step, there is always a fixed
number of chunking performed in parallel.

Another improvement made in conjunction with B-GBI is canonical labeling.
GBI assigns a new label to each newly chunked pair. Because it recursively
chunks pairs, it happens that the new pairs that have different labels happen to
be the same pattern. A simple example is shown in Fig. 3. They represent the
same pattern but the way they are constructed is different. To identify if two
pairs represent the same pattern, each pair is represented by canonical label [5]
and they are regarded identical only when the label is the same.

3 Problem Caused by Chunking in B-GBI

As described in Section 2.2, B-GBI increases the search space by running GBI
in parallel. As a result, B-GBI can help alleviate the problem of overlapping
subgraphs, but cannot solve it completely because the chunking process is still
involved. It happens that some of the overlapping patterns are not discovered by
B-GBI. For example, suppose in Fig. 2 the pair B–C is most frequent, followed by
the pair A–B. When b = 1, there is no way that the pattern A–B–D is discovered
because the pair B–C is chunked first, but by setting b = 2, the pair A–B can be
chunked in the second beam and if the substructure A–B–D is frequent enough,
there is a chance that the pair (A–B)–D is chunked at next iteration. However,
setting b very large is prohibitive from the computational point of view.

Any subgraph that B-GBI can find is along the way in the chunking process.
Thus, it happens that a pattern found in one input graph is unable to be found in
the other input graph even if it does exist in the graph. An example is shown in
Fig. 4, where even if the pair A – B is selected for chunking and the substructure
D – A – B – C exists in the input graphs, we may not find that substructure
because an unexpected pair A – B is chunked (see Fig. 4(b)). This causes a
serious problem in counting the frequency of a pattern.
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C D

A B
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Fig. 4. A pattern is found in one
input graph but not in the other
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Fig. 5. An example of frequency
counting
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Complete graph mining algorithms such as AGM [8], AcGM [9], FSG [10],
gSpan[15], FFSM [7], etc. do not face the problem of overlapping subgraphs
since they can find all frequent patterns in a graph database. However, these
methods are designed to find existence or non-existence of a certain pattern in
one transaction and not to count how many times a certain pattern appear in one
transaction. They also cannot give information on the positions of each pattern
in any transaction of the graph database which is required by domain experts.

Heuristic algorithms for graph mining such as SUBDUE [4], GBI [16] and
GREW [11], on the other hand, are designed for the purpose of enumerating
typical patterns in a single large graph. Specially, B-GBI [12] can find (not all)
typical patterns in either a single large graph or a graph database. However,
all of them are not designed to detect the positions of patterns in any graph
transaction. In Section 4, we will introduce a novel algorithm that can overcome
the problem of overlapping subgraphs imposed on both GBI and B-GBI. The
proposed algorithm, called Cl-GBI (Chunkingless Graph-Based Induction), em-
ploys a “chunkingless chunking” strategy, where frequent pairs are never chunked
but used as pseudo nodes in the subsequent steps, thus allowing extraction of
overlapping subgraphs. It can also give the positions of patterns present in each
graph transaction as well as be applied to find frequent patterns in either a single
large graph or a graph database.

4 Chunkingless Graph-Based Induction (Cl-GBI)

4.1 Approach

The basic ideas of Cl-GBI are described as follows. Those pairs that connect two
adjoining nodes in the graphs are counted and a certain fixed number of pairs
(the beam width) ranked from the top are selected. In B-GBI, each of the selected
pairs is registered as one node and this node is assigned a new label. Then, the
graphs in the respective state are rewritten by replacing all the occurrences of
the selected pair with a node with the newly assigned label (pair-wise chunking).

In Cl-GBI, we also register the selected pairs as new nodes and assign new
labels to them. But those pairs are never chunked and the graphs are not “com-
pressed” nor copied into respective states as in B-GBI. In the presence of the
pseudo nodes (i.e., newly assigned-label nodes), we count the frequencies of pairs
consisting of at least one new pseudo node. The other is either one of pseudo
nodes including those already created in the previous steps or an original one. In
other words, the other is one of the existing nodes. Among the remaining pairs
(after selecting the most frequent pairs) and the new pairs which have just been
counted, we select the most frequent pairs, with the number equal to the beam
width specified in advance, again and so on.

These steps are repeated in a predetermined number of times, each of which
is referred to as a level. Those pairs that satisfy a typicality criterion (e.g., pairs
whose information gain exceeds a given threshold) among all the extracted pairs
are the output of the algorithm.
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A frequency threshold is used to reduce the number of pairs being consid-
ered to be typical patterns. Another possible method to reduce the number of
pairs is to eliminate those pairs whose typicality measure is low even if their
frequency count is above the frequency threshold. The two parameters, beam
width and number of levels, control the search space. Frequency threshold is
another important parameter.

As in B-GBI, the Cl-GBI approach can handle both directed and undirected
graphs as well as both general and induced subgraphs. It can also extract typical
patterns in either a single large graph or a graph database.

4.2 Algorithm of Cl-GBI

Given a graph database, two natural numbers b (beam width) and Ne (number
of levels), and a frequency threshold θ, the new “chunkingless chunking” strategy
repeats the following three steps.

Step 1. Extract all the pairs consisting of two connected nodes in the graphs,
register their positions using node id (identifier) sets, and count their
frequencies. From the 2nd level on, extract all the pairs consisting of
two connected nodes with at least one node being a new pseudo node.

Step 2. Select the b most frequent pairs from among the pairs extracted at
Step 1 (from the 2nd level on, from among the unselected pairs in the
previous levels and the newly extracted pairs). Each of the b selected
pairs is registered as a new node. If either or both nodes of the selected
pair are not original nodes but pseudo nodes, they are restored to the
original patterns before registration.

Step 3. Assign a new label to each pair selected at Step 2 but do not rewrite
the graphs. Go back to Step 1.

These steps are repeated Ne times (Ne levels). All the pairs extracted at
Step 1 in all the levels (i.e. level 1 to level Ne), including those that are not used
as pseudo nodes, are ranked based on a typicality criterion using a discriminative
function such as Information Gain, Gain Ratio or Gini Index. It is worth noting
that those pairs that have frequency count below a frequency threshold θ are
eliminated, which means that there are three parameters b, Ne, θ to control the
search in Cl-GBI.

The output of Cl-GBI algorithm is a set of ranked typical patterns, each of
which comes together with the positions of every occurrence of the pattern in
each transaction of the graph database (given by the node id sets) as well as the
number of occurrences.

4.3 Implementation Issues of Cl-GBI

The first issue concerns with frequency counting. To count the number of oc-
currences of a pattern in a graph transaction, the canonical labeling employed
in [12] is adopted. However, only canonical labeling cannot solve the problem
completely as shown in Fig. 5. Suppose that the pair A → B is registered as a
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pseudo node N in the graph shown in Fig. 5(a). How many times the pair N →
B should be counted here? If only the canonical label is considered, the answer
is 2 because there are two pseudo nodes N1 and N2 as shown in Fig. 5(b), and
both N1 → B and N2 → B are counted separately. However, the pair N → B
should be counted once. Our solution is to incorporate the canonical label with
the node id set. If both the canonical label and the node id set are identical for
two subgraphs, we regard that they are the same and count once.

The second issue regards the relations between a pseudo node and those nodes
which are embedded inside. Think of the pseudo node C and two embedded
nodes A, B in Fig. 6(a). What are the relations between C and A or C and B?
In the case of enumerating frequent induced subgraphs, there is not any relation
between C and A nor C and B. This is because a pair in this case must consist
of two nodes and all links between them. However, in the case of extracting
frequent general subgraphs, there is still a link between C and A as well as a
link between C and B. To differentiate between the graphs shown in Fig. 6(a)
and Fig. 6(b), a flag indicating whether it is a self-loop or not is required.

In summary, a pair consists of 6 elements: labels of two nodes and label of
the link between them, information of which two nodes inside the pair the link
is connected to, and a self-loop flag. In the case of enumerating frequent induced
subgraphs, all links between two nodes should be considered.

4.4 Unsolved Problem of Cl-GBI

We found that there is still a problem in frequency counting that the use of
both the canonical label and the node id set cannot solve. Think of the graph
in Fig. 7(a). The three subgraphs A–A–A illustrated in Figs. 7 (b), (c), and (d)
share the same canonical label and the same node id set. Our current Cl-GBI
cannot distinguish between these three. However, this problem arises only when
extracting general subgraphs. It causes no problem in the case of enumerating
frequent induced subgraphs.
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5 Experiments

To assess the performance of the Cl-GBI approach, we conducted some experi-
ments on both synthetic and real-world graph-structred datasets. The proposed
Cl-GBI algorithm was implemented in C++. Since the current implementation
is very naive, we did not evaluate the computation time. It should be noted that
all graphs/subgraphs reported here are connected ones.

In the first experiment, we verified that Cl-GBI is capable of finding all
frequent patterns in a single graph that other graph mining algorithms cannot.
An example of such a single graph is shown in Fig. 8(a). Suppose that the
problem here is to find frequent induced subgraphs that occur at least 3 times
in the graph. Fig. 8(c) shows an example of frequent induced subgraph which
has the support of 3.

The current algorithms that are designed for extracting frequent patterns
in a single graph such as GBI [16], B-GBI [12], SUBDUE [4], or GREW [11],
etc. cannot discover the pattern shown in Fig. 8(c) because three occurrences of
this pattern are not disjoint, but overlapping. Meanwhile, the complete graph
mining algorithms like AcGM [9], FSG [10], gSpan [15], FFSM [7], etc., in case
that they are adapted to find frequent patterns in a single graph, also cannot
find that pattern because of the monotonic nature. Since the pattern shown in
Fig. 8(b) occurs only once in the graph and thus cannot be extracted, the pattern
shown in Fig. 8(c) which is one of its super-graph is also unable to be found. The
proposed Cl-GBI algorithm, on the other hand, can find all 36 frequent induced
subgraphs, including the one shown in Fig. 8(c), with b = 3, Ne = 5.
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Fig. 8. An example of finding frequent patterns in a single graph

In the second experiment, we evaluated the performance of Cl-GBI on the
promoter dataset from UCI repository [1] and the hepatitis dataset provided by
Chiba University. Since only the number of frequent induced subgraphs discov-
ered by Cl-GBI is evaluated in this experiment, it is not required to use the
whole datasets. Therefore, we used only positive instances of the two datasets,
i.e., “promoter sequences” in the case of promoter dataset and “patients who
have response to interferon therapy” in the case of hepatitis dataset. These pro-
moter and hepatitis datasets were converted to undirected and directed graph
database, respectively. The former contains 53 undirected graphs having the
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Table 1. Number of frequent induced subgraphs obtained from the promoter dataset

Algorithm Number of discovered patterns Parameters

Cl-GBI 1888 b =5,Ne = 5
Cl-GBI 4638 b =6, Ne = 20
B-GBI 580 b = 5
AcGM 4638 N/A

same size of 57, while the latter has 56 directed graphs having the average size
of 75.4. It should be noted that the promoter dataset is usually converted to
directed graphs [12] since information on the order of nucleotides is important.
We compared the number of frequent induced subgraphs discovered by Cl-GBI
with B-GBI [12] and AcGM [9] given the frequency threshold of 50%. B-GBI
is an improved version of GBI, while AcGM can extract all frequent induced
subgraphs.

Table 1 shows some experimental results obtained from the promoter dataset.
It is shown that Cl-GBI can find more frequent patterns than B-GBI given the
same beam width. Also, as is easily predicted, this algorithm can find all the
frequent patterns by setting b and Ne large enough. One of the nice aspects of
B-GBI is that the size of the input graph keeps reducing progressively as the
chunking proceeds, and thus the number of pairs to be considered also progres-
sively decreases accordingly. In the case of Cl-GBI, the number of pairs to be
considered keeps increasing because the number of pseudo nodes keeps increas-
ing as the search proceeds. Thus, it is important to select appropriate values for
b and Ne.

For the directed graph database representing the hepatitis dataset, Cl-GBI
extracts 4439 frequent patterns with b = 5, Ne = 10 and B-GBI finds 870
frequent patterns with b = 5. Meanwhile, since the current version of AcGM [9]
has not been implemented to handle directed graphs, we cannot use it to find
frequent patterns in this graph dataset. However, even if we consider the graphs
in this dataset as undirected graphs, AcGM cannot give the results due to the
large graph size and the large number of links.

In the third experiment, we modified Cl-GBI to simulate B-GBI in the fol-
lowing way. The frequency threshold θ is used for selecting b (the beam width)
most frequent pairs only and those pairs that have frequency count below θ are
now not eliminated. The promoter dataset (both promoter and non-promoter
sequences) were converted to directed graphs as in [12] and we obtained 106
directed graphs having the same size of 57 which were classified equally into 2
classes: positive class and negative class.

We set θ = 50% and b=5. Suppose that a pattern is called typical if its in-
formation gain [13] is greater than or equal to 0.01, i.e., the typicality measure
is information gain and the typicality threshold is set as 0.01. Cl-GBI finds 3269
typical patterns in 5 levels, including 8 patterns having information gain greater
than 0.19. Meanwhile, the number of typical patterns discovered by B-GBI is
3045 in 18 levels, however, and only 4 patterns among them have information
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gain greater than 0.19. Within 10 levels, Cl-GBI finds 13407 typical patterns
which include 35 patterns having information gain greater than 0.19. This jus-
tifies the fact that Cl-GBI can find more typical patterns than B-GBI.

6 Conclusion

A novel algorithm, Chunkingless Graph-Based Induction (Cl-GBI), was intro-
duced for the purpose of discovering typical patterns in either a single large graph
or a graph database. The proposed method employs a “chunkingless chunking”
strategy which helps overcome the problem of overlapping subgraphs. Also, Cl-
GBI can give the correct number of occurrences of a pattern as well as their
positions in each transaction of the graph database. Experiments conducted on
both synthetic and real-world graph-structured data confirm its effectiveness.
For future work we plan to employ some heuristics to speed up the Cl-GBI al-
gorithm in order to extract larger typical subgraphs and apply the method to
some application domains.
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Abstract. Bayesian spam filters, in general, compute probability esti-
mations for tokens either without considering the email areas of occur-
rences except the body or treating the same token occurred in different
areas as different tokens. However, in reality the same token occurring in
different areas are inter-related and the relation too could play role in the
classification. In this paper we incorporated this novel idea, co-relating
multi-area information by co-weighting them and obtaining more effec-
tive combined integrated probability estimations for tokens. The new ap-
proach is compared with individual area-wise estimations and traditional
separate estimations in all areas, and the experimental results with three
public corpora showed significant improvement, stability, robustness and
consistency in the spam filtering with the proposed estimation.

1 Introduction

Spam, also known as junk, is one of the greatest challenges to the email world
these days. Spam not only wastes the time, but also wastes bandwidth, server
space and some contents like pornographic contents are even harmful to under-
aged recipients. Many anti-spam filtering techniques are being already proposed
and in use to fight with ever growing spams. However, the new non-stop clever
tricks of spammers necessitates further improvement in the filtering approaches.
Among many machine learning based spam filters, Bayesian filters are the most
popular and widely used because of efficient training, quick classification, easy
extensibility, adaptive learning and fewer false positives.

Sahami [1] first employed the Naive Bayes algorithm to classify messages as
spam or legitimate. In the series of papers, Androutsopoulos [2, 3, 4] extended
Naive Bayes filter by investigating the effect of different features and training-set
sizes on the filter’s performance. Paul Graham in [5, 6] defined various tokeniza-
tion rules, treating tokens in different parts of emails separately, and computed
token probabilities and combined spam probability based on Bayes rule, but in a
different way. Gary Robinson, in [7] suggested enhancements to Paul’s approach
by proposing Bayesian approach of handling rare words and in [8] further rec-
ommended to use Fisher’s inverse chi-square function for combining probability
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estimations. This paper presents a new and novel approach which, on the top
of all evolutions and enhancements in Bayesian approach, takes into account of
the relation between the same tokens occurred in different areas of the email.

The rest of the paper is organized as follows. In Sect. 2, we review popular
evolutions and variants of statistical spam filtering algorithms. Sect. 3 presents
the main idea of this paper. Sect. 4 describes the experiments and analysis.
Finally, Sect. 5 presents the conclusion of the paper and possible future work.

2 Statistical Bayesian Filtering Algorithms

2.1 Naive Bayes (NB) Algorithm

Naive Bayes algorithm is the simplified version of Bayes theorem with the as-
sumption of feature independence. It computes the probability of a Class ∈
{Spam, Legitimate} given an Email as:

P (Class|Email) = P (Class)
∏

i

P (ti|Class) (1)

Where P (Class) is the prior probability for the Class. P (ti|Class) is the
conditional probability of the token ti given the Class, which is calculated as
in [9] using the following formula.

1 + no(t, Class)∑
i no(ti, Class) + |V | (2)

Where no(t, Class) is the number of occurrences of the token t in the Class,∑
i no(ti, Class) is the total number of occurrences of all the tokens in the

Class and |V | is the size of the vocabulary. The filter classifies an email as
Spam or Legitimate according to whether the P (Spam|Email) is greater than
P (Legitimate|Email) or not. Many implementations have shown that the al-
gorithm is fairly robust and powerful in filtering spams and outperforms many
other knowledge base filters [4, 10].

2.2 Paul Graham’s (PB) Algorithm

Paul Graham [5] calculated the probability estimates for a given email being
spam and legitimate, given a token appears in that using the formulas:

p(t) = P (Spam|t) =
tbad
nbad

tbad
nbad + 2∗tgood

ngood

, P (Legitimate|t) = 1− P (Spam|t) (3)

Where tbad and tgood are the number of times the token t occurred in all the
spam and legitimate emails respectively, and nbad and ngood are the number of
spam and legitimate emails respectively. tgood is multiplied by 2 to bias towards
legitimate emails. The combined probability for spam is obtained using Bayesian
approach using the formula:
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P (Spam|Email) =
∏

i P (Spam|ti)∏
i P (Spam|ti) +

∏
i P (Legitimate|ti)

(4)

Paul used only 15 most interesting tokens in computing the combined prob-
ability for spam. A test email is classified as spam if the combined probability is
greater than a defined threshold value of 0.9.

2.3 Gary Robinson’s (GR) Algorithm

Gary in [7] pointed out several drawbacks with Paul’s algorithm and suggested
several improvements:

• Gary proposed consistent and smooth way of dealing rare words by using the
Bayesian approach to compute the token probability guesstimate, termed as
degree of belief :

f(t) =
s ∗ x + n ∗ p(t)

s + n
(5)

Where p(t) is the Paul’s probability estimation (3) for the token t, s is the
strength to be given to background information, x is the assumed probability
for an unknown token and n is the number of emails containing the token t.

• In [8], Gary further suggested to use Fisher’s inverse chi-square function to
compute combined probabilities using the formulas:

H = C−1(−2 ln
∏

i

f(t), 2n), and S = C−1(−2 ln
∏

i

(1− f(t)), 2n) (6)

C−1() is the Fisher’s inverse chi-square function used with 2n degrees of
freedom. The combined indicator of spamminess or hamminess for the email
as a whole is then obtained using the formula:

I =
1 + H − S

2
(7)

The email is classified as spam if the indicator value I is above some threshold
value otherwise as legitimate.

3 Bayesian Spam Filtering Based on Co-weighted
Multi-area Information

In this section, we present our new approach of co-weighted multi-area informa-
tion along with preprocessing and feature extraction techniques.

3.1 Preprocessing

Due to the prevalence of headers, html and binary attachments in modern emails,
pre-processing is required on email messages to allow effective feature extraction.
We use following preprocessing steps:
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• The whole email structure is divided into 4 areas: (1.) Normal header com-
prising of ‘From’, ‘Reply to’, ‘Return-path’, ‘To’, ‘Cc’, (2.) Subject, (3.)
Body, and (4.) Html tags comprising of <FONT>, <A> and <IMG> tags.

• All other headers and html tags (except those mentioned above) are ignored
and hence removed from the email text.

• All binary attachments, if any, are ignored and so removed.

3.2 Feature Extraction or Tokenization

Our approach considers tokens as the sole features for the spam filtering. The
remaining text after preprocessing is tokenized using the following tokenizer
rules:

• All terms constituting alphanumeric characters, dash(-), underscore( ), apos-
trophe(’), Exclamation(!), asterisk(*) and currency signs(like $,£etc.) are
considered valid tokens and tokens are case-sensitive.

• IP addresses, domain names, money values (numbers separated by comma
and/or with currency symbols) are considered valid tokens. Pure numbers
are ignored.

• For domain name, it is broken into sub-terms (like www.hnu.net is broken
into www.hnu.net, www.hnu, hnu.net, www, hnu and net) and the sub-terms
are also considered valid tokens.

• Spammer’s one of newest tricks of non-HTML text, interspersed with HTML
tags like “You can b<!–x–>uy val<!–abc–>ium <b>here!<b>” is handled
and obtains the text as “You can buy valium here ” and tokenize it normally.

3.3 Main Idea and Algorithm Description

The main idea in our approach lies in the fact that the same token occurred in
different areas of an email are inter-related. So treating the token occurred in one
area separately from that occurring in other areas like in all previous algorithms
described in Sect.2 wouldn’t reflect the realistic estimation. In this paper, we
relate the individual area-wise token probability estimations by co-weighting and
obtain the combined integrated estimate for the token. The estimation steps are
described in details below.

Let ns(t, a) and nl(t, a) be the number of occurrences of token t in the area
a of spam and legitimate emails respectively, Ns and Nl be the number of spam
and legitimate emails respectively. Then the probability estimation for spam
given the token t and the area a is computed as:

p(t, a) =
ns(t,a)

Ns
ns(t,a)

Ns + nl(t,a)
Nl

(8)

This estimation corresponds to PG’s probability estimation (3), but with-
out bias factor. Next, the GR’s degree of belief estimation f(t, a) is computed
using (5), replacing p(t) with p(t, a) and using n = ns(t, a) + nl(t, a). s and x
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are, like in GR’s algorithm, the belief factor and the assumed probability for an
unknown token whose values are determined while tuning the filter for optimal
performance. Then the combined probability estimation for the token is calcu-
lated by co-weighting the individual estimations corresponding to different areas:

f(t) =
∑

i

ω(t, ai) ∗ f(t, ai) (9)

Where ω(t, ai) is the weight factor for the token t in the area ai. The weight
factor for the token t corresponding to area a is computed by the ratio of the
number of occurrences of the token in that area and total number of occurrences
of the token in all areas in all spam emails:

w(t, a) =
ns(t, a)∑
i ns(t, ai)

,
∑

i

w(t, ai) = 1. (10)

Since the combined estimate f(t) co-relates the area-wise estimations ac-
cording to token occurrences, it represents better and more realistic estimation.
Moreover, since fixed number of interesting tokens as suggested in PG’s algo-
rithm is unrealistic and unreasonable, we consider all tokens whose probability
values are above and below certain offset value PROB OFFSET from the neu-
tral 0.5 as interesting. If it gives less than predefined MIN INTTOKENS of
tokens, the range is extended to that number. Now values for those interesting
tokens are used to obtain the final indicator I of spamminess and hamminess
using (7), whereby H and S are calculated by Fisher’s inverse chi-square func-
tions (6). Finally the email is classified as spam if I is greater than certain
threshold value, SPAM THRESHOLD, otherwise classified as legitimate.

4 Experiments and Analysis

First we will introduce the corpora collection and performance measures used
for performance comparisons and then discuss the experiments and analysis.

4.1 Corpora Collection

This paper used three publicly available corpora and from each corpus, training
and test datasets are prepared by randomly picking two-thirds of the total corpus
data as training dataset and the rest one-third as test dataset. The corpora are:

1. Ling Spam corpus which was made available by Ion Androutsopoulos [2] and
has been used in a considerable number of publications. It is composed of
481 spams, and 2,412 legitimate emails.

2. Spam Assassin corpus used to optimize the open source SpamAssassin filter.
It contains 1,897 spam and 4,150 legitimate emails.

3. Annexia/Xpert corpus, synthesis of 10,025 spam emails from Annexia spam
archives and 22,813 legitimate emails from X-Free project’s Xpert mailing
list. We randomly picked 7,500 spam and 7,500 legitimate emails from this
corpus.
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4.2 Performance Measures

Let NS and NL be the total number of spam and legitimate email messages
to be classified by the filter respectively, and NX→Y the number of messages
belonging to class X that the filter classified as belonging to class Y (X,Y ∈
{Spam(S), Legitimate(L)}). Then the seven performance measures are calcu-
lated as shown below in four categories:

1. Weighted Accuracy (WAcc) and Weighted Error (WErr):

WAcc =
NS→S + λNL→L

NS + λNL
, WErr =

NS→L + λNL→S
NS + λNL

(11)

The measures are calculated in our experiments with two reasonable values
of λ: 9 and 99 [2].

2. Total Cost Ratio (TCR):

TCR =
WErrb

WErr
=

NS
λNL→S + NS→L

(12)

The weighted accuracy and error rates of the baseline are calculated as:

WAccb =
λNL

λNL + NS
, WErrb =

NS
λNL + NS

(13)

3. Spam Recall (SR) and Spam Precision (SP ):

SR =
NS→S

NS
, SP =

NS→S
NS→S + NL→S

(14)

4. False Positive Rate (FPR) and False Negative Rate (FNR):

FPR =
NL→S

NL
, FNR =

NS→L
NS

(15)

4.3 Experiments and Analysis

We have performed experiments on the filter application we developed in Java.
All experiments are carried out five times for all three datasets by randomly
picking training and test datasets as described above in Sect. 4.1 and the average
results are reported. Our experiments consist of two parts:

1. First, thorough and exhaustive tests on the filter are performed with all three
corpora datasets in order to determine optimal values of the filter parame-
ters. The performance varies widely on varying the parameter combinations.
Because of the different type and nature of contents, different datasets be-
haves differently in some parameter combinations. So we searched for param-
eter combination that gives compromised result with reduced false positive,
high accuracy, and stable and consistent result for all three corpora dataset
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and we found the values 0.9, 19, 0.42, 0.6 and 0.35 for SPAM THRESHOLD,
MIN INTTOKENS, PROB OFFSET , s and x respectively. As false
positives are much worse than false negatives, SPAM THRESHOLD of
0.9 reasonably biases towards legitimates. The MIN INTTOKENS = 19
and PROB OFFSET = 0.42 combination provides the effective number of
interesting tokens for optimal performances. The assumed probability value
for unknown token x = 0.35 also slightly biases towards legitimates with 0.6
belief factor. we use the parameter combination in the second experiment.

2. In the second part of the experiment, the filter is tested with four individual
email areas: normal headers only, subject only, body only and html tags only,
then with all areas but treating same tokens occurred in different areas as
different tokens and finally with our new approach of co-weighted multi-area
information. All those tests are carried out with the same parameter combi-
nation we obtained in the first part of the experiment above and performance

Table 1. Test results (SR, SP , FPR and FNR) with individual area-wise and co-

weighted multi-area based estimations

Areas Measures Ling Spam Spam Assassin Annexia/Xpert

Normal SR 0.00000 0.62180 0.76680
Headers SP NA 0.98500 1.00000
Only FPR 0.00000 0.00430 0.00000

FNR 1.00000 0.37820 0.23320

SR 0.43750 0.40510 0.60040
Subject SP 1.00000 0.99220 1.00000
Only FPR 0.00000 0.00140 0.00000

FNR 0.56250 0.59490 0.39960

SR 0.81880 0.84340 0.92880
Body SP 1.00000 0.98890 0.99610
Only FPR 0.00000 0.00430 0.00360

FNR 0.18120 0.15660 0.07120

Html SR 0.00000 0.42090 0.22280
Tags SP NA 0.97440 0.97720
Only FPR 0.00000 0.00510 0.00520

FNR 1.00000 0.57910 0.77720

All but SR 0.83120 0.88290 0.96920
Separate SP 1.00000 0.99470 1.00000
Areas FPR 0.00000 0.00220 0.00000

FNR 0.16880 0.11710 0.03080

SR 0.83750 0.88610 0.97240
Co-weighted SP 1.00000 0.99640 1.00000
Multi-areas FPR 0.00000 0.00140 0.00000

FNR 0.16250 0.11390 0.02760
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Table 2. Weighted accuracy rates, error rates and total cost ratios with individual

area-wise and co-weighted multi-area based estimations

λ = 9 λ = 99

Areas Measures Ling Spam Annexia Ling Spam Annexia
Spam Assassin Xpert Spam Assassin Xpert

WAccb 0.97837 0.95168 0.90000 0.99799 0.99541 0.99000

WErrb 0.02163 0.04832 0.10000 0.00201 0.00459 0.01000

Normal WAcc 0.97837 0.97760 0.97668 0.99799 0.99394 0.99767
Headers WErr 0.02163 0.02240 0.02332 0.00201 0.00606 0.00233
Only TCR 1.00000 2.15700 4.28816 1.00000 0.75870 4.28816

Subject WAcc 0.98783 0.96988 0.96004 0.99887 0.99583 0.99600
Only WErr 0.01217 0.03012 0.03996 0.00113 0.00417 0.00400

TCR 1.77778 1.60406 2.50250 1.77778 1.10105 2.50250

Body WAcc 0.99608 0.98830 0.98964 0.99964 0.99496 0.99572
Only WErr 0.00392 0.01170 0.01036 0.00036 0.00504 0.00428

TCR 5.51724 4.13072 9.65251 5.51724 0.91198 2.33863

Html WAcc 0.97837 0.96720 0.91760 0.99799 0.99230 0.98708
Tags WErr 0.02163 0.03280 0.08240 0.00201 0.00770 0.01292
Only TCR 1.00000 1.47319 1.21359 1.00000 0.59679 0.77399

All but WAcc 0.99635 0.99228 0.99692 0.99966 0.99730 0.99969
Separate WErr 0.00365 0.00772 0.00308 0.00034 0.00270 0.00031
Areas TCR 5.92593 6.25743 32.46753 5.92593 1.70350 32.46753

Co-weighted WAcc 0.99648 0.99312 0.99724 0.99967 0.99804 0.99972
Multi-areas WErr 0.00352 0.00688 0.00276 0.00033 0.00196 0.00028

TCR 6.15385 7.02222 36.23188 6.15385 2.34074 36.23188

measures are reported for two values of λ: 9 and 99. Test results are given
in the Tables 1 and 2. Performance measures independent of λ (SR, SP ,
FPR and FNR) are given in Table 1 and λ dependent measures (WAccb,
WErrb, WAcc, WErr and TCR) are given separately in Table 2 for both
values of λ. The comparative results based on weighted accuracy and total
cost ratio are shown graphically in Figs. 1 and 2.
On analyzing the experiments and results, we observed the followings:

• With individual area-wise estimations:
∗ Filtering based on individual area-wise estimations with datasets having

no data in that area, like headers and tags in Ling Spam, is meaningless.
∗ Even with Spam Assassin and Annexia/Xpert datasets, the filter clas-

sifies all those emails without html tags as legitimates resulting much
higher false negatives. The penalty for these errors are high with λ = 99
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(a) (b)

Fig. 1. Classification accuracies with individual area-wise and co-weighted multi-area

based estimations, for (a) λ = 9 and (b) λ = 99

(a) (b)

Fig. 2. Total cost ratios with individual area-wise and co-weighted multi-area based

estimations, for (a) λ = 9 and (b) λ = 99

resulting TCR < 1 for both datasets indicating html only test ineffective.
However with λ = 9, TCR values are slightly greater than 1.

∗ For Ling Spam, body only test resulted better performance than subject
only test with higher accuracies, SR, and TCR, lower FNR, zero FPR
and 100% SP . The presence of less spammy tokens in subjects of spam
emails leads to higher number of false negatives with subject only test.

∗ For Spam Assassin, normal headers, body, and html tags only tests re-
sulted higher false positives because of heavy presence of spammy tokens
in those areas especially in hard hams. This causes heavy penalties in
their accuracies with λ = 99, while even with higher FNR and lower
SR, subject only test resulted higher accuracy and TCR because of
fewer false positives. With lesser penalty with λ = 9, the accuracies and
TCRs for body only is higher because of relatively fewer false negatives.

∗ For Annexia/Xpert, normal headers and subject only tests resulted zero
false positives, however with high false negatives because of relatively
low presence of spammy tokens in spam emails. Html only test resulted
high false positives because of presence of spammy tokens in html tags of
legitimate emails, and at the same time very high false negatives because
of miss-classifying spam emails without html tags as legitimates. With
lower value of λ = 9, better accuracy and TCR values are resulted with
body only test, then with normal headers only, subject only and html
tags only in the descending order. But with λ = 99, the order goes:
normal headers only, subject only, body only and html tags only tests.
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• With all areas but treating same tokens in different areas as different tokens,
the test resulted better performance than individual area-wise estimation for
both values of λ, in terms of all performance measures in all three datasets
due to the combined positive effect of all areas.

• With our new approach, the performance is further improved with even lesser
false positives as well as lesser false negatives in all three datasets, resulting
better performance values of WAcc, SR, SP , FPR, FNR and TCR for
both values of λ. TCR value is almost the same with Ling Spam and An-
nexia/Xpert datasets for both values of λ, however the value is three times
higher for λ = 9 than for λ = 99. This is because of higher penalty on false
positives with higher λ value.

Thus the experiments showed the proposed approach of incorporating the
co-relation between tokens in different areas results significant improvement in
the performance of the filter, and at the same time exhibit more stable, robust
and consistent performances with all three corpora.

5 Conclusion

In this paper we present the new approach to statistical Bayesian filter based
on co-weighted multi-area information. This new algorithm co-relates the area-
wise token probability estimations using weight coefficients, which are computed
according to the number of occurrences of the token in those areas. Experimental
results showed significant improvement in the performance of spam filtering than
using individual area-wise as well as using separate estimations for all areas.
Moreover, the performances are much more stable and consistent with all three
datasets.

Future developments may include integrating our approach with phrase-based
and/or other lexical analyzers and with rich feature extraction methods which
can be expected to achieve even better performance.
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Abstract. Constraint-based mining is an active field of research which
is a key point to get interactive and successful KDD processes. Neverthe-
less, usual solvers are limited to particular kinds of constraints because
they rely on properties to prune the search space which are incompatible
together. In this paper, we provide a general framework dedicated to a
large set of constraints described by SQL-like and syntactic primitives.
This set of constraints covers the usual classes and introduces new tough
and flexible constraints. We define a pruning operator which prunes the
search space by automatically taking into account the characteristics of
the constraint at hand. Finally, we propose an algorithm which efficiently
makes use of this framework. Experimental results highlight that usual
and new complex constraints can be mined in large datasets.

1 Introduction

Mining patterns under various kinds of constraints is a key point to get inter-
active and successful KDD processes. There is a large collection of constraints
which are useful for the user and the latter needs an independent tool to tackle
various and flexible queries. The outstandingly useful constraint of frequency
is often used in practice. Furthermore, we have efficient algorithms to extract
patterns satisfying it. Nevertheless, in the context of constraint-based mining,
supplementary constraints like interestingness measures or syntactic constraints
have to be added to achieve relevant and desired patterns. The number of ele-
mentary constraints and their combinations is too important to build a particular
solver dedicated to each constraint. These observations are sound motivations to
design and implement a general solver which is able to mine, in a flexible way,
patterns checking various and meaningful constraints.

Let us recall that constraint-based mining remains a challenge due to the
huge size of the search space which has to be explored (it exponentially increases
according to the number of features of the data). Classical algorithms are based
on pruning properties in order to reduce the search space. But, unfortunately,
these properties are deeply linked to the constraints and many constraints (e.g.,
average [13], variance [10], growth rate [6]) have been studied individually [1].
Section 2.2 overviews the main classes of constraints and recalls that efficient
algorithms are devoted to some of these classes. Several approaches [16, 2] are

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 661–671, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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based on condensed representations of frequent patterns which are easier to
mine. We will see that our work uses this approach but without limitation to the
classical classes of constraints. The paradigm of inductive databases [8] proposes
to handle constraints by reusing existing algorithms (for instance, a complex
constraint is decomposed into several constraints having suitable properties like
monotonicity). However, the decomposition and the optimization of constraints
remain non-trivial tasks [5]. To the best of our knowledge, there is no existing
framework presenting at the same time flexibility and effective computation.

In this paper, we present a new general framework to soundly and completely
mine patterns under a constraint specified by the user as a simple parameter. We
think that this framework brings three meaningful contributions. First, it allows
a large set of constraints: the constraints are described by combinations of SQL-
like aggregate primitives and syntactic primitives (see Section 3.1). This formal-
ism deals with the most usual constraints (e.g., monotonous, anti-monotonous
and convertible ones) and allows to define more original new constraints (e.g.,
the area constraint which is on the core of our running example). Furthermore,
this formalism also enables to combine constraints with boolean operators. Sec-
ond, thanks to an automatic process to compute lower and upper bounds of a
constraint on an interval and a general pruning operator, the constraint is pushed
in the extraction step. Finally, we provide an algorithm called Music (Mining
with a User-SpecifIed Constraint) which allows the practical use of this frame-
work. Music guarantees an efficient pruning to offer short run-time answers and
facilitate the iterative process of KDD. We developed a prototype to implement
this algorithm.

This paper is organized in the following way. Section 2 introduces the ba-
sic notations and related work. A running example (i.e., the area constraint)
shows the common difficulties of constraint-based mining and the key ideas of
our framework. Section 3 depicts the set of constraints that we address, details
the theoretical framework and defines the pruning operator. Section 4 indicates
how to use it by providing the Music algorithm. Finally, Section 5 presents
experimental results showing the efficiency of Music on various constraints.

2 Context and Motivations

2.1 Notation

Let us first introduce the basic notations. A transactional dataset D is a triplet
(A,O, R) where A is a set of attributes, O is a set of objects and R ⊆ A × O
is a binary relation between the attributes and the objects. (a, o) ∈ R expresses
that the object o has the attribute a (see for instance Table 1 where A, . . . ,F
denote the attributes and o1, . . . , o6 denote the objects). A pattern X is a subset
of attributes.

The aim of constrained patterns mining is to extract all patterns present in
D and checking a predicate q. The minimal frequency constraint is likely the
most usual one (the frequency of a pattern X is the number of objects in D that
contain X, i.e. count(X) ≥ γ where γ is a threshold). Many algorithms since [1]
efficiently mine this constraint by using closure or free (or key) patterns [3, 14].
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Table 1. Example of a transactional data set

D
Objects Attributes

o1 A B E F
o2 A E
o3 A B C D
o4 A B C D E
o5 D E
o6 C F

2.2 Related Work

Many works have been done with various complex constraints (e.g., average
[13], variance [10], growth rate [6]) providing particular approaches. More gen-
erally, we can distinguish several classes of constraints. A well-known class of
constraints is based on monotonicity. A constraint q is anti-monotone (resp.
monotone) according to the specialization of the attributes if whenever X ⊆ Y
then q(Y ) ⇒ q(X) (resp. q(X) ⇒ q(Y )). For instance, the minimal frequency
constraint is anti-monotonous. In this case, the search space can be efficiently
pruned by a general level-wise algorithm [12]. Another class is the convertible
constraints. Such a constraint uses an ordering relation on the attributes in order
to obtain properties of monotonicity on the prefixes [15] (typically, the minimal
average constraint q8 is convertible, see Section 3.1 for its exact definition). Let
us note that Wang et al. introduce in [18] a method dedicated to the aggregate
constraints (e.g. the minimal frequency constraint or the average q8).

There are specific algorithms devoted to these different classes of constraints.
Unfortunately, the combination of constraints may require again a particular
algorithm. For example, a conjunction of two convertible constraints may lead
to a no convertible constraint, and a particular algorithm has to been developed.
So, several approaches attempt to overcome these difficulties. The inductive
databases framework [8] proposes to decompose complex constraints into several
constraints having good properties like monotonicity. This approach needs to
apply non-trivial reformulations and optimizations of constraints [5]. Introduced
in [10], the concept of witness provides properties to simultaneously prune pat-
terns under different kinds of constraints. Nevertheless, this approach does not
propose a method to automatically obtain witnesses. Thus, instead of building a
particular algorithm to mine patterns, a particular algorithm to find witnesses is
needed. By exploiting equivalence classes (i.e., a set of patterns having the same
outcome with respect to the constraint), condensed representations [4] enable
powerful pruning criteria during the extraction which greatly improve the effi-
ciency of algorithms [3, 14]. But only few works exploit the equivalence classes
with monotonous and anti-monotonous classes [2] or other constraints [9, 16].
Our work follows this approach but it addresses a much more general set of
constraints (see Section 3.1).
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2.3 Problem Statement and Key Idea of Our Framework

Let us come back on the example given by Table 1. Assume that we are interested
in all subsets of A having an area greater than 4 i.e. count(X)× length(X) ≥ 4
(where length is the cardinality of the pattern). Recently, [7] have dedicated
efficient approaches to only mine the closed patterns that check this constraint.
The constraint of area is difficult because it is neither monotone (area(A) ≥ 4
but area(ABF ) < 4), nor anti-monotone (area(B) < 4 but area(AB) ≥ 4), nor
convertible (no ordering relation exists). None decomposition of this constraint
benefits from the properties of these classes of constraints. Thus, the practical
approach is to mine all patterns with their own frequency and then to post-
process them by checking the constraint on each pattern. Unfortunately, this
method fails with large datasets due to a too much number of candidate patterns.

From this running example, we now indicate how to take into account the
characteristics of the constraint to present our pruning strategy of the search
space. The main idea is based on the definition of lower and upper bounds
of the constraint on an interval, the latter after allows the pruning. We can
notice that if X ⊆ Z ⊆ Y , the area of the pattern Z can be bounded by
count(Y )×length(X) ≤ count(Z)×length(Z) ≤ count(X)×length(Y ). We note
that if count(Y )×length(X) ≥ 4, the area of the pattern Z is larger than 4 and Z
checks the constraint. In this example, with X = AB and Y = ABCD, the area
of count(ABCD)× length(AB) is equal to 4 and the patterns AB, ABC, ABD,
ABCD have an area larger than 4. Thus, it is not necessary to check the con-
straint for these four patterns. Similarly, when count(X)× length(Y ) is strictly
smaller than 4, the area of the pattern Z (X ⊆ Z ⊆ Y ) is inevitably smaller than
4. In these two cases, the interval [X,Y ] can be pruned for this constraint. Also,
the patterns AB, ABC, ABD and ABCD, which are included between AB and
ABCD, satisfy the constraint. Instead of outputting these four patterns, it is
more judicious to only output the corresponding interval [AB, ABCD]. This one
can be seen as a condensed representation of the patterns with respect to the
constraint. This idea - mining a representation of the constrained patterns - is
generalized in the next section to a large set of constraints.

3 Pruning the Search Space by Pruning an Interval

3.1 The Set of Constraints

Our work deals with the set of constraints Q recursively defined by Table 2.
Examples of constraints of Q are given at the end of this section. We claim that
Q defines a very large set of constraints.
LA (resp. LO) denotes the language associated with the attributes A (resp.

the objectsO) i.e. the powerset 2A (resp. the powerset 2O). The set of constraints
Q is based on three spaces: the booleans B (i.e., true or false), the positive reals
%+ and the patterns of L = LA ∪ LO. In addition to the classical operators of
these domains, the function count denotes the frequency of a pattern, and length
its cardinality. Given a function val : A ∪ O → %+, we extend it to a pattern
X and note X.val the set {val(a)|a ∈ X}. This kind of function is used with
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Table 2. Set of constraints Q

Constraint q ∈ Q Operator(s) Operand(s)

q1θq2 θ ∈ {∧,∨} (q1, q2) ∈ Q2

θq1 θ ∈ {¬} q1 ∈ Q
e1θe2 θ ∈ {<,≤, =, �=,≥, >} (e1, e2) ∈ E2

s1θs2 θ ∈ {⊂,⊆, =, �=,⊇,⊃} (s1, s2) ∈ S2

constant b ∈ B - -

Aggregate expression e ∈ E Operator(s) Operand(s)

e1θe2 θ ∈ {+,−,×, /} (e1, e2) ∈ E2

θ(s) θ ∈ {count, length} s ∈ S
θ(s.val) θ ∈ {sum, max, min} s ∈ S

constant r ∈ + - -

Syntactic expression s ∈ S Operator(s) Operand(s)

s1θs2 θ ∈ {∪,∩, \} (s1, s2) ∈ S2

θ(s1) θ ∈ {f, g} s1 ∈ S
variable X ∈ LA - -

constant l ∈ L = LA ∪ LO - -

the usual SQL-like primitives sum, min and max. For instance, sum(X.val)
is the sum of val of each attribute of X. Finally, f is the intensive function
i.e. f(O) = {a ∈ A|∀o ∈ O, (a, o) ∈ R}, and g is the extensive function i.e.
g(A) = {o ∈ O|∀a ∈ A, (a, o) ∈ R}. We give now some examples of constraints
belonging to Q and highlighting the generality of our framework.

q1 ≡ count(X) ≥ γ × |D| q8 ≡ sum(X.val)/length(X) ≥ 50
q2 ≡ count(X) × length(X) ≥ 2500 q9 ≡ min(X.val) ≥ 30 ∧ max(X.val) ≤ 90
q3 ≡ X ⊆ A q10 ≡ max(X.val) − min(X.val) ≤ 2 × length(X)
q4 ≡ X ⊇ A q11 ≡ length(X\A) > length(X ∩ A)
q5 ≡ length(X) ≥ 10 q12 ≡ q2 ∧ q3

q6 ≡ sum(X.val) ≥ 500 q13 ≡ q6 ∨ ¬q5

q7 ≡ max(X.val) < 50 q14 ≡ q5 ∧ q7

Starting from a constraint of Q, the following sections explain how to get
sufficient conditions to prune the search space.

3.2 Bounding a Constraint on an Interval

This section indicates how to automatically compute lower and upper bounds of
a constraint of Q on an interval without enumerating each pattern included in
the interval. These bounds will be used by the pruning operator (see Section 3.3).

Let X and Y be two patterns. The interval between these patterns (de-
noted [X,Y ]) corresponds to the set {Z ∈ LA|X ⊆ Z ⊆ Y }. In our run-
ning example dealing with the area constraint, Section 2.3 has shown that
count(Y )× length(X) and count(X)× length(Y ) are respectively a lower bound
and an upper bound of the constraint for the patterns included in the inter-
val [X,Y ]. At a higher level, one can also notice that ∀Z ∈ [X,Y ], we have
(count(Y )× length(X) ≥ 4) ≤ q(Z) ≤ (count(X)× length(Y ) ≥ 4) with respect
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Table 3. The definitions of ��� and ���

e ∈ Ei Operator(s) �e�〈X, Y 〉 �e�〈X, Y 〉
e1θe2 θ ∈ {∧,∨, +,×,∪,∩} �e1�〈X, Y 〉θ�e2�〈X, Y 〉 �e1�〈X, Y 〉θ�e2�〈X, Y 〉
e1θe2 θ ∈ {>,≥,⊃,⊇,−, /, \} �e1�〈X, Y 〉θ�e2�〈X, Y 〉 �e1�〈X, Y 〉θ�e2�〈X, Y 〉
θe1 θ ∈ {¬, count, f, g} θ�e1�〈X, Y 〉 θ�e1�〈X, Y 〉

θ(e1.val) θ ∈ {min} θ(�e1�〈X, Y 〉.val) θ(�e1�〈X, Y 〉.val)
θ(e1) θ ∈ {length} θ�e1�〈X, Y 〉 θ�e1�〈X, Y 〉

θ(e1.val) θ ∈ {sum, max} θ(�e1�〈X, Y 〉.val) θ(�e1�〈X, Y 〉.val)
c ∈ Ei - c c

X ∈ LA - X Y

to false < true. Thus, the area constraint is bounded on the interval. Those
bounds only depend on the patterns X and Y and their definitions are the same
for any interval [X,Y ].

Let us generalize this approach for any constraint q of Q. For that, we define
two operators denoted (�) and ��� (see Table 3). Starting from q and [X,Y ], the
recursive application of these operators leads to compute one boolean with (�)
(noted (q)〈X,Y 〉) and one boolean with ��� (noted �q�〈X,Y 〉). Property 1 will
show that (q)〈X,Y 〉 (resp. �q�〈X,Y 〉) is a lower bound (resp. an upper bound) of
the interval [X,Y ] for q. In other words, these operators enable to automatically
compute lower and upper bounds of [X,Y ] for q. This result stems from the
properties of increasing and decreasing functions. In Table 3, the general notation
Ei designates one space among B, %+ or L and Ei the associated expressions
(for instance, the set of constraints Q for the booleans B). Several operators
given in Table 2 must be split into several operators of Table 3. For instance,
the equality e1 = e2 is decomposed to (e1 ≤ e2) ∧ (e1 ≥ e2). In Table 3, the
functions are grouped by monotonous properties according to their variables.
For instance, the operators −, / and \ are increasing functions according to the
first variable and decreasing functions according to the second variable.

Let us illustrate (�) and ��� on the area constraint: (count(X)× length(X) ≥
4)〈X,Y 〉 = (count(X)× length(X))〈X,Y 〉 ≥ �4�〈X,Y 〉 = (count(X))〈X,Y 〉 ×
(length(X))〈X,Y 〉 ≥ 4 = count(�X�〈X,Y 〉) × length((X)〈X,Y 〉) ≥ 4 =
count(Y ) × length(X) ≥ 4. Symmetrically, �count(X)× length(X) ≥ 4�〈X,Y 〉
is equal to count(X)× length(Y ) ≥ 4.

Property 1 shows that (q) and �q� are bounds of the constraint q.

Property 1 (bounds of an interval). Let q be a constraint, (q) and �q� are
respectively a lower bound and an upper bound of q i.e. given an interval [X,Y ]
and a pattern Z included in it, we have (q)〈X,Y 〉 ≤ q(Z) ≤ �q�〈X,Y 〉.

This property justifies that (�) and ��� are respectively named the lower and
upper bounding operators (due to space limitation the proof is not given here,
see [17]). Contrary to most frameworks, these top-level operators allow us to
directly use constraints containing conjunctions or disjunctions of other con-
straints. Besides, they compute quite accurate bounds. In the particular case of
monotonous constraints, these bounds are even exact. They have other mean-
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ingful properties (linearity or duality) which are not developed here (details
in [17]).

3.3 Pruning Operator

In this section, we define an operator, starting from a constraint q, which provides
a condition to safely prune or not an interval. As for the area constraint, there
are two different strategies to prune an interval [X,Y ] by using the bounds of
q. If a lower bound of q on [X,Y ] is equal to true (i.e., the lower bound checks
q), all the patterns included in [X,Y ] check q because they are all greater than
true. We say that we positively prune the patterns of [X,Y ]. Conversely, we can
negatively prune [X,Y ] when an upper bound is false because all the patterns
of [X,Y ] do not check q. Note that witnesses [10] already exploit these two kinds
of pruning. We define now the pruning condition for q and the pruning operator.

Definition 1 (pruning operator). Let q be a constraint, the pruning condition
for q, denoted by [q], is equal to (q) ∨ ¬�q�. [�] is called the pruning operator.

This definition is linked to the two ways of pruning: (q) is associated with
the positive pruning, and ¬�q� to the negative one. For instance, the pruning
condition for the area constraint on an interval [X,Y ] is (count(Y )×length(X) ≥
4)∧ (count(X)× length(Y ) < 4). This conjunction corresponds to the two cases
allowing us to prune intervals (see Section 2.3).

The following key theorem will be used extensively.

Theorem 1. Let q be a constraint and [X,Y ] an interval, if [q]〈X,Y 〉 is true,
then all the patterns included in [X,Y ] have the same value for q.

Due to space limitation, the proof is not proposed here (see [17]).
Whenever the pruning condition is true on an interval [X,Y ], we know the

value of any pattern of [X,Y ] by checking only one pattern. Thereby, [X,Y ] can
be pruned without having to check the constraint on whole patterns of [X,Y ].
Section 4 details how to prune the search space with the pruning condition.

Let us note that the converse of Theorem 1 is false because (�) (resp. ���) does
not give the greatest lower (resp. the least upper) bound. However, in practice,
the pruning operator often provides powerful pruning (see Section 5).

4 Music: A Constraint-Based Mining Algorithm

Music (Mining with a User-SpecifIed Constraint) is a level-wise algorithm
which takes advantage of the pruning operator to efficiently mine constrained
patterns and get a representation of these patterns. It takes one constraint q
belonging to Q as input and one additional anti-monotonous constraint qAM

to benefit from the usual pruning of level-wise algorithm [1] (line 4). The com-
pleteness with respect to q is ensured by sticking true for qAM . Music returns
in output all the intervals containing the patterns checking q ∧ qAM . Music
is based on tree key steps: the creating of the generators similar to one used
in [1] (line 14), the evaluation of candidates by scanning the dataset in order
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to compute the extension of patterns (line 3), and finally the testing candidates
(lines 7-12). Its main originality is that the “tested candidates” are different from
generators and they are intervals instead of patterns.

Music (a constraint q ∈ Q, an anti-monotonous constraint qAM , a dataset D)

1. Cand1 := {a ∈ A|qAM (a) = true} ; Res := ∅ ; ACand1 := ∅ ; k := 1
2. while Candk ∪ ACandk �= ∅ do
3. for each X ∈ Candk do X.extension := {o ∈ O|X ⊆ f(o)}
4. Genk := {X ∈ Candk|qAM (X) = true and X is free}
5. ACandk+1 := ∅
6. for each X ∈ Genk ∪ ACandk do
7. if [q]〈X, f(X.extension)〉 = true then
8. if q(X) = true then Res := Res ∪ {[X, f(X.extension)]}
9. else do

10. if q(X) = true then Res := Res ∪ {[X, X]}
11. ACandk+1 := ACandk+1 ∪ {X ∪ {a}|a ∈ h(X)\X}
12. od
13. od
14. Candk+1 :=Apriori-gen(Genk)
15. k := k + 1
16. od
17. return Res

Music uses intervals already proposed in [11], where the left bound is a gen-
erator (i.e., a free pattern or an additionnal candidate) and the right one, its
closure (i.e., a closed pattern). The closed patterns are exactly the fixed points
of the closure operator h = f ◦ g. An important property on the extension stems
from the closure: g(X) = g(h(X)). Moreover, as the closure operator is exten-
sive, any pattern is a subset of its closure and the interval [X, h(X)] has always
a sense. The pruning condition is pushed into the core of the mining by applying
it on the intervals defined above. Such an approach enables a powerful pruning
criterion during the extraction thanks to the use of an anti-monotonous con-
straint based on the freeness [3] (line 4). If an interval [X, h(X)] satisfies the
pruning condition, all the patterns in [X, h(X)] are definitively pruned. Other-
wise, some patterns of [X, h(X)] are added as additional candidates to repeat
the same process on shorter intervals (line 11). The computation of the ex-
tension for each pattern (line 3) is sufficient to deduce the values of all the
primitives given by Table 2 even if they depend on the dataset like g or count.
In particular, the frequency of a pattern X is length(g(X)) and the closure
of X is computed with f(g(X)). Note that the additionnal candidates have
a low cost because they belong to [X, h(X)] and their extension is equal to
g(h(X)).

Due to the lack of place, we provide here only an intuitive proof of the
correction of Music (see [17] for a formal proof). All the patterns are comprise
between a free pattern and its closure. As Music covers all the free patterns, all
the intervals [X, h(X)] are checked by the pruning condition. There are two cases.
First, if the pruning condition is true, all the patterns included in [X, h(X)] are
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checked. Otherwise, the patterns included in [X, h(X)] are enumerated level by
level until that the interval between it and its closure can be pruned (that always
arises because [q]〈X,X〉 = true). Thus, the whole search space is covered.

5 Experimental Results

The aim of our experiments is to measure the run-time benefit brought by our
framework on various constraints (i.e., constraints q1, . . . , q14 defined in Sec-
tion 3.1). All the tests were performed on a 700 GHz Pentium III processor with
Linux and 1Go of RAM memory. The used dataset is the version of mushroom
coming from the FIMI repository1. The constraints using numeric values were
applied on attribute values (noted val) randomly generated within the range
[1,100]. We compare our algorithm with an Apriori-like approach (i.e., mining
all patterns according to qAM and using a filter to select patterns checking q).
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Fig. 1. Mining patterns with various constraints on mushroom dataset

Figure 1 plots the comparison between Music and Apriori run-times accord-
ing to q1, . . . , q14. With the constraint q1, Music has no additional candidates
and its behavior is similar than [3]. That shows the abilities of Music towards
usual constraints. The best performances are achieved by the constraints q3, q4,
q7, q9 and q10 because the number of additional candidates in these cases is very
low. On the other hand, the three worst performances (i.e., q2, q5 and q8) are
obtained with the constraints including length. It is interesting to observe that
the run-time performances are independent of the complexity of the constraint
(i.e., the number of combinations). For instance, a very complex constraint such
as q10 is quickly mined and a conjunction of constraint such as q2 ∧ q3 has bet-
ter results than q2 alone. This fact can be explained with the improvement of
the selectivity of the constraint. Additional results are given in [17]. The good

1 http://fimi.cs.helsinki.fi/data/
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behavior of Music with complex constraints allows the user to ask a broad
set of queries and to mine constrained patterns which were intractable until
now.

6 Conclusion

In this paper, we have proposed a new and general framework to efficiently
mine patterns under constraints based on SQL-like and syntactic primitives. This
framework deals with boolean combinations of the usual constraints and allows
to define new complex constraints. The efficiency of the approach relies on the
pruning of the search space on intervals which are took into account by a general
pruning operator. Starting from this approach, Music algorithm mines soundly
and completely patterns under a primitive-based constraint given by the user
as a simple parameter. The experimental results show that Music clearly out-
performs Apriori with all constraints. New tough constraints can be mined in
large datasets. We think that our algebraisation is an important step towards
the integration of the constraint-based mining in database systems.

Further work addresses optimization of specific primitives like length. About
the generality of our framework, we would like also to know if other primi-
tives used to define constraints should be useful to achieve successful KDD pro-
cesses from real world data set. We think that our ongoing work on geographical
datasets is a good way to test new expressive queries specified by a geographer
expert and the usefulness of the primitives.
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Abstract. The discovery of frequent patterns has attracted a lot of attention in 
the data mining community. While an extensive research has been carried out 
for discovering positive patterns, little has been offered for discovering patterns 
with negation. An amount of frequent patterns with negation is usually huge 
and exceeds the number of frequent positive patterns by orders of magnitude. 
The problem can be significantly alleviated by applying the generalized 
disjunction-free literal sets representation, which is a concise lossless 
representation of all frequent patterns, both with and without negation. In this 
paper, we offer new efficient algorithm GDFLR-SO-Apriori for discovering this 
representation and evaluate it against the GDFLR-Apriori algorithm. 

1   Introduction 

Discovering of frequent patterns in large databases is an important data mining 
problem. The problem was introduced in [1] for a sales transaction database. Frequent 
patterns were defined there as sets of items that are purchased together frequently. 
Frequent patterns are commonly used for building association rules. For example, an 
association rule may state that 80% of customers who buy fish also buy white wine. 
This rule is derivable from the fact that fish occurs in 5% of sales transactions and set 
{fish, white wine} occurs in 4% of transactions. Patterns and association rules can be 
generalized by admitting negation. A sample rule with negation could state that 75% 
of customers who buy coke also buy chips and neither beer nor milk. Admitting 
negation usually results in abundance of mined patterns, which makes analysis of the 
discovered knowledge infeasible. It is thus preferable to discover and store a possibly 
small fraction of patterns from which one can derive all other significant patterns 
when required. This problem was addressed in [3-4], where a generalized disjunction-
free literal sets representation (GDFLR) was offered as a lossless representation of all 
frequent patterns, both with and without negation. GDFLR is by orders of magnitude 
more concise than all frequent patterns [3]. To the best of our knowledge, no other 
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lossless representation of frequent patterns with negation was proposed. In this paper, 
we offer new algorithm GDFLR-SO-Apriori for discovering the GDFLR represent 
tation and evaluate it against the GDFLR-Apriori algorithm proposed in [3]. 

The layout of the paper is as follows: Section 2 recalls basic notions of frequent 
positive patterns and patterns with negation, as well as methods of inferring 
frequencies (or supports) of patterns from frequencies of other patterns. Section 3 
recalls the GDFLR representation and the GDFLR-Apriori algorithm. Our main 
theoretical contribution is presented in Section 4, where we first propose an 
ordering for groups of patterns with negation, then examine the properties of 
patterns following this ordering, and finally use these properties to construct the 
GDFLR-SO-Apriori algorithm. The performance of the GDFLR-SO-Apriori and 
GDFLR-Apriori algorithms is evaluated in Section 5. Section 6 concludes the 
obtained results. 

2   Basic Notions 

2.1   Frequent Patterns 

Let us analyze sample transactional database D presented in Table 1, which we will 
use throughout the paper. Each row in this database reports items that were purchased 
by a customer during a single visit to a supermarket. 

As follows from Table 1, items a and b were 
purchased together in four transactions. The number 
of transactions in which set of items {x1, ..., xn} occurs 
is called its support and is denoted by sup({x1, ..., xn}). 
A set of items is called a frequent pattern if its support 
exceeds a user-specified threshold (minSup). 
Otherwise, it is called infrequent. Clearly, the support 
of a pattern never exceeds the supports of its subsets. 
Thus, subsets of a frequent pattern are also frequent, 
and supersets of an infrequent pattern are infrequent. 

2.2   Positive Pattern, Pattern with Negation, Variations of a Pattern 

Aside from searching for statistically significant sets of items, one may be 
interested in identifying frequent cases when purchase of some items excludes 
purchase of other items. A pattern consisting of items x1, …, xm and negations of 
items xm+1, …, xn will be denoted by {x1, …, xm, −xm+1, …, −xn}. The support of 
pattern {x1, …, xm, −xm+1, …, −xn} is defined as the number of transactions in which 
all  items in  set {x1, …, xm}  occur  and  no  item  in  set {xm+1, …, xn} occurs. E.g., 
{a(–b)(–e)}  is supported by two transactions in D. A pattern X is called positive, 
if  it does  not contain any  negated  item.  Otherwise,  X  is  called a pattern with

 negation. A pattern obtained from X by negating any number of items in X is 
called a variation  of X. E.g., {ab} has four  distinct  variations  (including  itself):

 {ab}, {a(–b)}, {(–a)b}, {(–a)(–b)}. 

Table 1. Sample database D 

Id Transaction 
T1 {abce} 
T2 {abcef} 
T3 {abch} 
T4 {abe} 
T5 {acfh} 
T6 {bef} 
T7 {h} 
T8 {af} 
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2.3   Calculating Supports of Patterns with Negation 

One can note that for a pattern X and an item x, the number of transactions in which 
X occurs is the sum of the number of transactions in which X occurs with x and the 
number of transactions in which X occurs without x. Hence sup(X∪{(–x)}) = sup(X) 
– sup(X∪{x}) [6]. Multiple usage of this property enables calculation of the 
supports of patterns with any number of negated items from the supports of positive 
patterns [7]: 

sup({x1,…,xm} ∪ {−xm+1,…,−xn}) = ΣZ⊆{xm+1, …, xn} (–1)|Z| × sup({x1,…,xm}∪Z) (Eq. 1) 

Nevertheless, the knowledge of the supports of only frequent positive patterns may 
be insufficient to derive the supports of all frequent patterns with negation [6-7]. 

2.4   Reasoning About Positive Patterns with Generalized Disjunctive Rules 

A generalized disjunctive rule based on a positive pattern X = {x1, …, xn} is defined 
as an expression of the form x1 … xm → xm+1 ∨ … ∨ xn, where {x1, …, xm} ∩ 
{xm+1, …, xn} = ∅ and {xm+1, …, xn} ≠ ∅. Please note that one can build 2|X| − 1 
generalized disjunctive rules from pattern X. We will say that a transaction supports 
rule r: x1 … xm → xm+1 ∨ … ∨ xn if it contains all items in {x1, …, xm} and at least one 
item in {xm+1, …, xn}. We will say that a transaction violates rule r if it contains all 
items in {x1, …, xm} and no item in {xm+1, …, xn}. The number of transactions 
violating rule r will be called its error and will be denoted by err(r). It was shown in 
[3] that err(r) is determinable from the supports of subsets of {x1, …, xm, xm+1, …, xn}: 

err(x1 … xm → xm+1 ∨ … ∨ xn) = ΣZ⊆{xm+1, …, xn} (–1)|Z| × sup({x1, …, xm}∪Z)   (Eq. 2) 

The following equation follows immediately from Eq. 1 and Eq. 2:  

err(x1 … xm → xm+1 ∨ … ∨ xn) = sup({x1, …, xm} ∪ {−xm+1, …, −xn})        (Eq. 3) 

Hence, the error of a generalized disjunctive rule based on a positive pattern X 
equals the support of X’s particular (exactly one) variation with negation. 

Rule x1 … xm → xm+1 ∨ … ∨ xn is an implication (x1 … xm  xm+1 ∨ … ∨ xn) if 
err(x1 … xm → xm+1 ∨ … ∨ xn) = 0. Clearly, if x1 … xm → xm+1 ∨ … ∨ xn is an 
implication, then x1 … xm z → xm+1 ∨ … ∨ xn and x1 … xm → xm+1 ∨ … ∨ xn ∨ z, which 
are based on a superset of {x1, …, xn}, are also implications.  

The knowledge of such implications can be used for calculating the supports of 
patterns on which they are based. For example, ac  b ∨ f implies that the number of 
transactions in which {ac} occurs equals the number of transactions in which {ac} 
occurs with b plus the number of transactions in which {ac} occurs with f minus the 
number of transactions in which {ac} occurs both with b and f. Hence, sup({abcf}) = 
sup({abc}) + sup({acf}) – sup({ac}), which means that the support of pattern {abcf} 
is determinable from the supports of its proper subsets. In general, if there is an 
implication based on a positive pattern, then the support of this pattern is derivable 
from the supports of its proper subsets [5]. Each such pattern is called a generalized 
disjunctive set. Otherwise, it is called a generalized disjunction-free set.  
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3   Representing Frequent Patterns with Negation 

3.1   Generalized Disjunction-Free Literal Representation GDFLR 

A generalized disjunction-free literal representation (GDFLR) was introduced in [3] 
as a concise representation of all frequent patterns, both with and without negation. 

GDFLR consists of the following components: 

• the main component (Main) containing each positive pattern (stored with its 
support) that has at least one frequent variation and is neither generalized 
disjunctive nor has support equal 0; 

• the infrequent border (IBd –) containing each positive pattern all variations of 
which are infrequent and all proper subsets of which belong to Main; 

• the generalized disjunctive border (DBd –) containing each positive pattern (stored 
with its support and/or implication) that is either generalized disjunctive or has 
support equal 0, has at least one frequent variation, and all its proper subsets 
belong to Main.  

GDFLR is a lossless representation of all frequent patterns. A formal presentation 
of this model and its properties can be found in [3]. In particular, it has been proved 
there that each element in GDFLR has all its proper subsets in the main component. 
Another important property of GDFLR is that its elements are guaranteed to contain 
no more than log2(|D| − minSup)  + 1 items [3]. 

3.2   Sample Usage of the GDFLR Representation  

Fig. 1 depicts the GDFLR representation discovered in D for minSup = 1. We will 
illustrate how to use this representation to evaluate unknown patterns. Let us consider 
pattern {a(–c)(–e)f}. We note that {acef}, which is a positive variation of the 
evaluated pattern, has subset {cef} in the infrequent border. This means that all 
supersets of {cef} and all their variations, including {acef} and {a(–c)(–e)f}, are  
 

 
Fig. 1. The GDFLR representation of frequent patterns with negation (minSup = 1) 

{ab}[4]  {ae}[3]  {af}[3]  {ah}[2]  {bc}[3]  {bf}[2]  {bh}[1]  {ce}[2]  {cf}[2]  {ch}[2]  {ef}[2]  {fh}[1] 
{a}[6]  {b}[5]  {c}[4]  {e}[4]  {f}[4]  {h}[3] 

∅[8] 

{bcf}[1, c  b ∨ f]  {bch}[1, bh  c]  {bfh}[0]  {cfh}[1, fh  c] 

{abf}[1, f  a ∨ b]  {abh}[1, bh  a]  {aef}[1, f  a ∨ e]  {afh}[1, fh  a] 

{ac}[4, c  a]  {be}[4, e  b] {eh}[0] 

{cef}

Generalized disjunctive border: 

Main component: 

Infrequent border: 
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infrequent. Now, we will consider pattern {bef(–h)}. The positive variation {befh} of 
{bef(–h)} does not have any subset in the infrequent border, so {bef(–h)} has a chance 
to be frequent. Since, sup({bef(–h)}) = sup({bef}) – sup({befh}), we need to 
determine the supports of two positive patterns {bef} and {befh}. {bef} has subset 
{be} in the generalized disjunctive border, the implication of which is e  b. Hence, 
ef  b is an implication for {bef}. Thus, sup(bef) = sup(ef) = 2 (please, see the main 
component for pattern {ef}). Pattern {befh} also has a subset, e.g. {eh}, in the 
generalized disjunctive border. Since sup({eh}) = 0, then sup({befh}) equals 0 too. 
Summarizing, sup({bef(–h)}) = 2 – 0 = 2, and thus {bef(–h)} is a frequent pattern. 

3.3   Discovering the GDFLR Representation with the GDFLR-Apriori Algorithm 

In this section, we recall the GDFLR-Apriori algorithm [3], which discovers GDFLR. 
Creation of candidate elements and calculation of their supports in GDFLR-Apriori 
are assumed to be carried out as in the Apriori-like algorithms [2] that discover all 
frequent positive patterns. GDFLR-Apriori, however, differs from such algorithms by 
introducing additional tests classifying candidates to the Main, IBd – or DBd – 
components, respectively. In the algorithm, we apply the following notation: 

Notation for GDFLR-Apriori 

• Xk – candidate k item positive patterns; 
• X.sup – the support field of pattern X; 

 
 

Algorithm GDFLR-Apriori(support threshold minSup); 

Main = {}; DBd – = {}; IBd – = {∅};     // initialize GDFLR 
if |D| > minSup then begin 
 ∅.sup = |D|;  move ∅ from IBd – to Main0;  X1 = {1 item patterns}; 
 for (k = 1; Xk ≠ ∅; k++) do begin 
  calculate the supports of patterns in Xk within one scan of database D; 
  forall candidates X∈Xk do begin 
   /* calculate the errors of all generalized disjunctive rules based on X (by Eq. 2) */ 
   Errs = Errors-of-rules(X, Main); 
   if max({X.sup}∪Errs) ≤ minSup then    // all variations of X are infrequent (by Eq. 3) 
    add X to IBd –

k 
   elseif min({X.sup}∪Errs) = 0 then        // there is a generalized disjunctive variation of X 
    add X to DBd –

k 
   else add X to Maink  endif 
  endfor; 
  /* create new (k+1)-candidates by merging k item patterns in Main */ 
  Xk+1 = {X⊆I| ∃Y,Z ∈Maink (|Y∩Z| = k−1 ∧ X = Y∪Z)}; 
  /* remain only those candidates that have all k item subsets in Main */ 
  Xk+1 = Xk+1 \ {X∈Xk+1| ∃Y⊆X (|Y| = k ∧ Y∉Maink} 
 endfor 
endif; 
return <∪k Maink, ∪k DBd –

k, ∪k IBd –
k>; 
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After initializing the GDFLR components, the GDFLR-Apriori algorithm checks 
whether the number of transactions in database D is greater than minSup. If so, then ∅ 
is frequent. Hence, ∅, which is a generalized disjunction-free set, is inserted into 
Main0. Next, all items are stored as candidates in X1. Now, the following steps are 
performed level-wise for all k item candidates, for k ≥ 1: 

• Supports of all candidates in Xk are determined during a pass over the database. 
• For each candidate X in Xk, the errors Errs of all generalized disjunctive rules 

based on X are calculated from the supports of X’s subsets in accordance with 
Eq. 2. Since {X.sup}∪Errs equals the set of the supports of all variations of X (by 
Eq. 3), the condition max({X.sup}∪Errs) ≤ minSup checks if all variations of X are 
infrequent. If so, X is found an element of the infrequent border IBd –. Otherwise, at 
least one variation of X is frequent. Then, the condition min({X.sup}∪Errs) = 0 
checks if X generalized disjunctive or its support equals 0. If so, X is found an 
element of the border DBd –. Otherwise, it is found an element of Main. 

• After all candidates in Xk were classified to respective components of GDFLR, 
candidates Xk+1 longer by one item are created. Since all proper subsets of each 
element in GDFLR must belong to the Main component, the creation of k+1 item 
candidates is restricted to merging of pairs of k item patterns in Main. In addition, 
the newly created candidates that have missing k item subsets in Main are found 
not valid GDFLR elements, and thus are discarded from Xk+1. 
The algorithm ends when there are no more candidates to evaluate. 

Please note that the most critical operation in the GDFLR-Apriori algorithm is 
the calculation of errors of a given candidate pattern X. As follows from Eq. 2, the 
error of rule x1 … xm → xm+1 ∨ … ∨ xn built from X, which has n items in 
consequent, requires the knowledge of the supports of X and its 2n − 1 proper 

subsets. Taking into account that one can built 
n

X ||  distinct rules from X that have 

n items in their consequents, the calculation of the errors of all rules based on X that 

may have 1 to |X| items in their consequents requires Σn=1..|X| n

X || (2n − 1) accesses to 

proper subsets of X. 

4   New Approach to Computing the GDFLR Representation 

Our goal is to speed up the discovery of GDFLR by efficient re-use of the 
information of the supports of subsets when calculating the errors of rules built 
from a candidate pattern. Since, the calculation of the errors of rules built from 
pattern X is equivalent to the determination of the supports of X’s variations with 
negation, we will focus only on the latter task. First we will propose an ordering of 
X’s variations. Based on this ordering, we will propose a new method of calculating 
the support of each variation from the supports of two patterns. Eventually, we will 
offer new GDFLR-SO-Apriori algorithm, which will apply this method for fast 
discovery of GDFLR. 
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4.1   Enumerating, Clustering and Calculating Supports of Pattern Variations 

In this paper, we define the following ordering of the variations of pattern X: 

Let 0 ≤ n < 2|X|. nth variation of pattern X (Vn(X)) is defined as this variation of X 
that differs from X on all and only bit positions with value 1 in the binary 
representation of n. For variation Vn(X), n is called its (absolute) ordering number. 

Let 0 ≤ i < |X|. ith cluster (Ci(X)) for pattern X is defined as the set of all variations 
of X such that i is the leftmost bit position with value 1 in the binary representation of 
their ordering numbers. Please note that X, which is 0th variation of X, does not belong 
to any cluster Ci(X), 0 ≤ i < |X|, since the binary representation of its ordering number 
does not contain any bit position with value 1. 

Let X = {abc}. V5(X) = V22+20(X) = V(101)2(X) = {(−a)b(−c)}; that is, 5th variation of 
X differs from X on positions 2 and 0. Table 2 enumerates all variations of X. The 
variations of X that are different from X can be split to |X| = 3 clusters: C0(X) = 
{V(001)2(X)}; C1(X) = {V(010)2(X), V(011)2(X)}; C2(X) = {V(100)2(X), V(101)2(X), V(110)2(X), 

V(111)2(X)}. Note that the ordering numbers of variations in cluster Ci(X), i ∈ {0, …, 

|X|-1}, can be expressed as 2i + j, where j ∈ {0, …, 2i − 1} (see Table 2). 
Let 0 ≤ i < |X| and j ∈ {0, …, 2i − 1}. jth variation of pattern X in cluster Ci(X) is 

defined as V2i + j(X). For variation V2i + j(X), j is called its ordering number in cluster 
Ci(X) (or relative ordering number). 

Table 2. Absolute and relative ordering of variations of pattern X = {abc} 

variation V of 
pattern X 

ordering 
number n of 
variation V 

|X| bit binary 
representation 

of n 

cluster Ci(X) 
including 

variation V 

j - ordering 
number of 
variation V 

in Ci(X) 

binary 
representation 

of j 

absolute 
versus rel. 
ordering of 
variation V 

{(  a)(  b)(  c)} 0 − − − 
{(  a)(  b)(−c)} 1 (001)2 C0(X) 0 (000)2 1 = 20 + 0 
{(  a)(−b)(  c)} 2 (010)2 C1(X) 0 (000)2 2 = 21 + 0 
{(  a)(−b)(−c)} 3 (011)2 C1(X) 1 (001)2 3 = 21 + 1 
{(−a)(  b)(  c)} 4 (100)2 C2(X) 0 (000)2 4 = 22 + 0 
{(−a)(  b)(−c)} 5 (101)2 C2(X) 1 (001)2 5 = 22 + 1 
{(−a)(−b)(  c)} 6 (110)2 C2(X) 2 (010)2 6 = 22 + 2 
{(−a)(−b)(−c)} 7 (111)2 C2(X) 3 (011)2 7 = 22 + 3 

Corollary 1. Let X be a pattern. The set of all variations of X consists of X and all 
variations in the clusters Ci(X), where i ∈ {0, …, |X| − 1}: 

V(X) = {X} ∪ ∪i = 0..|X|−1 Ci(X) = {X} ∪ ∪i = 0..|X|−1, j = 0..2i−1 {V2i + j(X)}. 

Note that two distinct variations Vj(X) and V2i + j(X), j ∈ {0, …, 2i−1}, of a non-
empty pattern X differ only on position i; namely, the item on ith position in V2i + j(X) is 

negation of the item on ith position in Vj(X). In addition, Vj(X) and V2i + j(X) do not 
differ from X on positions greater than i. These observations imply Theorem 1. 

− −



Support Oriented Discovery of Generalized Disjunction-Free Representation 679 

 

Theorem 1. Let X be a non-empty pattern, i ∈ {0, …, |X| − 1} and j ∈ {0, …, 2i−1}. 
Then: sup(V2i + j(X)) = sup(Vj(X \ {X[i]})) − sup(Vj(X)). 

Table 3. Calculation of supports of consecutive variations of X = {abc} 

i – 
X’s 

cluster 
no. 

X \ 
{X[i]} 

j – rel. ordering 
number of X’s 

variation in Ci(X) 

support calculation for jth variation of X in cluster Ci(X) 

(that is, for variation V2i + j(X)) 

0 {ab} 0 sup(V20 + 0(X)) = sup(V0(X \ X[0])) - sup(V0(X)) 
/* sup({ab(–c)}) = sup({ab}) – sup({abc}) */ 

1 {ac} 0 sup(V21 + 0(X)) = sup(V0(X \ X[1])) - sup(V0(X)) 
/* sup({a(–b)c}) = sup({ac}) – sup({abc}) */ 

  1 sup(V21 + 1(X)) = sup(V1(X \ X[1])) - sup(V1(X)) 
/* sup({a(–b)(–c)}) = sup({a(–c)}) – sup({ab(–c)}) */ 

2 {bc} 0 sup(V22 + 0(X)) = sup(V0(X \ X[2])) - sup(V0(X)) 
/* sup({(–a)bc}) = sup({bc}) – sup({abc}) */ 

  1 sup(V22 + 1(X)) = sup(V1(X \ X[2])) - sup(V1(X)) 
/* sup({(–a)b(–c)}) = sup({b(–c)}) – sup({ab(–c)}) */ 

  2 sup(V22 + 2(X)) = sup(V2(X \ X[2])) - sup(V2(X)) 
/* sup({(–a)(–b)c}) = sup({(–b)c}) – sup({a(–b)c}) */ 

  3 sup(V22 + 3(X)) = sup(V3(X \ X[2])) - sup(V3(X)) 
/* sup({(–a)(–b)(–c)}) = sup({(–b)(–c)}) – sup({a(–b)(–c)}) */ 

Corollary 2. Let X be a non-empty pattern and i ∈ {0, …, |X| − 1}. The support of 
each variation in Ci(X) is determinable from the support of a variation of X \ {X[i]} 
and the support of either X or a variation of X belonging to a cluster Cl(X), where 
 l < i. 

Table 3 illustrates a systematic way of calculating the supports of consecutive 
variations of a pattern X based on Theorem 1 and Corollary 2. Please note that the 
knowledge of the support of X and the supports of all variations of all proper |X|−1 
item subsets of X suffices to calculate the supports of all variations of X in this way. 

4.2   Algorithm GDFLR-SO-Apriori 

In this section, we offer new GDFLR-SO-Apriori algorithm for discovering 
GDFLR. It differs from GDFLR-Apriori only in that it determines and uses the 
supports of variations instead of the errors of rules built from candidate patterns. 
The differences between GDFLR-SO-Apriori and GDFLR-Apriori are highlighted 
in the code below. 

Additional notation for GDFLR-SO-Apriori 

• X.Sup – table storing supports of all variations of pattern X; note: |X.Sup| = 2|X|. 
Example: Let X = {ab}, then: 

 X.Sup[0] = X.Sup[(00)2] = sup({(  a)(  b)});     X.Sup[1] = X.Sup[(01)2] = sup({(  a)(–b)}); 
 X.Sup[2] = X.Sup[(10)2] = sup({(–a)(  b)});     X.Sup[3] = X.Sup[(11)2] = sup({(–a)(–b)}). 
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Algorithm GDFLR-SO-Apriori(support threshold minSup); 

Main = {}; DBd– = {}; IBd – = {∅}; // initialize GDFLR 
if |D| > minSup then begin 
 ∅.Sup[0] = |D|;  move ∅ from IBd– to Main0;  X1 = {1 item patterns}; 
 for (k = 1; Xk ≠ ∅; k++) do begin 
  calculate supports of patterns in Xk within one scan of D 
  forall candidates X∈Xk do 
   Calculate-supports-of-variations(X, Maink–1); 
   if max({X.Sup[i]| i = 0..2k–1}) ≤ minSup then add X to IBd –

k 
   elseif min({X.Sup[i]| i = 0..2k–1}) = 0 then add X to DBd–

k 
   else add X to Maink endif 
  endfor; 
  /* create new (k+1)-candidates by merging k item patterns in Main */ 
  Xk+1 = {X⊆I| ∃Y,Z ∈Maink (|Y∩Z| = k−1 ∧ X = Y∪Z)}; 
  /* remain only those candidates that have all k item subsets in Main */ 
  Xk+1 = Xk+1 \ {X∈Xk+1| ∃Y⊆X (|Y| = k ∧ Y∉Maink} 
 endfor 
endif; 
return <∪k Maink, ∪k DBd–

k, ∪k IBd–
k>; 

In particular, the Errors-of-rules function was replaced by the Calculate-supports-
of-variations procedure. Calculate-supports-of-variations determines the supports of 
variations of candidate pattern X in two loops. The external loop iterates over clusters 
of variations of X, the internal loop iterates over variations within a current cluster. 
The supports of variations are determined in accordance with Theorem 1. As follows 
from the code, the Calculate-supports-of-variations procedure requires only |X| 
accesses to the proper subsets of a given candidate pattern X instead of 

Σn=1..|X| n

X || (2n − 1) accesses, which would be carried out by the equivalent Errors-of-

rules function in the GDFLR-Apriori algorithm. 

procedure Calculate-supports-of-variations(k-pattern X, Maink–1); 
/* assert 1: X.Sup[0] stores support of pattern X              */ 
/* assert 2: all k–1 item subsets of X are in Maink–1 and */ 
/*               supports of all their variations are known    */ 
for (i = 0; i < k; i++) do begin        // focus on cluster Ci(X) 
 Y = X \ {X[i]};  find Y in Maink–1;      // Y⊂X is accessed once per cluster 
 for (j = 0; j < 2i; j++) do 
  X.Sup[2i + j] = Y.Sup[j] – X.Sup[j];     // calculate support of jth variation in cluster 

Ci(X) 
 endfor; 
return; 

5   Experimental Results 

The GDFLR-SO-Apriori and GDFLR-Apriori algorithms were implemented in C++. 
The experiments were carried out on the benchmark mushroom and connect-4 data 
sets. mushroom contains 8124 transactions; each of which consists of 23 items; the 
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total number of distinct items in this data set is 119. connect-4 contains 67557 
transactions of length 43 items; the total number of distinct items is 129. The runtime 
results for both algorithms are presented graphically in Fig. 2 in logarithmic scale. 

We observe that GDFLR-SO-Apriori performs faster than GDFLR-Apriori on these 
data sets, especially for low support threshold values. In particular, in the case of 
mushroom, GDFLR-SO-Apriori performs faster than GDFLR-Apriori by two orders 
of magnitude for minSup = 10%, while in the case of connect-4, GDFLR-SO-Apriori 
performs faster than GDFLR-Apriori by an order of magnitude for minSup = 40%. 
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Fig. 2. Duration of GDFLR-SO-Apriori and GDFLR-Apriori (log. scale) 
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Fig. 3. Duration of particular phases of GDFLR-SO-Apriori and GDFLR-Apriori (log. scale) 

Fig. 3 shows the duration of particular phases of the algorithms in logarithmic 
scale. The common phases in both algorithms are: calculating supports of positive 
patterns (PPS), merging (M) and pruning (P). In addition, the GDFLR-SO-Apriori 
algorithm performs the phase of calculating supports of variations (VS), while 
GDFLR-Apriori carries out the analogous phase that calculates errors of rules (E). As 
follows from Fig. 3, for low support threshold values (less than 50% for mushroom, 
and less than 60% for connect-4, respectively), phase (E) is most time consuming; 
phase (P) is longer than phase (VS), and (VS) is longer than phase (M); phase (PPS) 
is least time consuming for both algorithms. Concluding, for low threshold values, the 
performance of GDFLR-Apriori depends mainly on the performance of phase (E), 
which is longer than phase (P), while the performance of GDFLR-SO-Apriori depends 
mainly on the performance of phase (P), which is longer than analogous to (E) phase 
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(VS). For high threshold values, the runtime of phase (PPS) strongly dominates the 
runtimes of all other phases. Hence, for high threshold values, GDFLR-SO-Apriori is 
faster than GDFLR-Apriori in lower degree than in the case of low threshold values. 

6   Conclusions 

We have offered new GDFLR-SO-Apriori algorithm for discovering the GDFLR 
representation of all frequent patterns. The experiments prove that GDFLR-SO-
Apriori is faster than the GDFLR-Apriori algorithm by up to two orders of magnitude 
for low support threshold values. The speed-up was obtained by replacing time-
consuming operation of calculating the errors of rules built from candidate patterns 
with efficient operation of calculating the supports of variations of candidate patterns. 
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Nominal and Continuous Features
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Abstract. Wrapper and filter are two commonly used feature selection
schemes. Because of its computational efficiency, the filter method is
often the first choice when dealing with large dataset. However, most
of filter methods reported in the literature are developed for continuous
feature selection. In this paper, we proposed a filter method for mixed
data with both continuous and nominal features. The new algorithm
includes a novel criterion for mixed feature evaluation, and a novel search
algorithm for mixed feature subset generation. The proposed method is
tested using a few benchmark real-world problems.

1 Introduction

In many real world problems such as in medical and business, the data obtained
is mixed, containing both continuous and nominal features. When employing
feature selection algorithm for such mixed data, the common practice is to re-
gard nominal features as numeric, ignoring the difference between them. Another
common practice is to preprocess the mixed features into single type, e.g. cor-
relation based feature selection (CFS) [6]. A well-known filter method Relief
algorithm [4] deals with this problem by using Hamming distance for nominal
features while Euclidean distance distance is used for continuous features. [1]
employed a generalized Mahalanobis distance for mixed feature evaluation. This
method linearly combines the contributions from continuous and nominal fea-
ture subsets, ignoring the association between features of different types and is
unsuitable in some applications.

In this paper, we proposed an error probability based measure for mixed
feature evaluation. For a mixed feature subset, the entire feature space is first
divided into a set of homogeneous subspaces based on nominal features. The
merit of the mixed feature subset is then measured based on sample distributions
in the homogeneous subspaces spanned by continuous features. The strength of
this method is that it avoids transformation of feature types, and takes the
association between both types of features into consideration.

Besides feature evaluation criterion, the search algorithm also needs to be
carefully designed for mixed data. Here, we proposed a mixed forward selection
(MFS) search algorithm. MFS applies SFS as an embedded selecting scheme.

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 683–688, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



684 W. Tang and K. Mao

The basic idea of MFS to select features from one type of features, while fixing
the other type of features as starting set of SFS. MFS selects both types of
features in parallel to complete one iteration. By selectively shrinking fixed sets
iteratively, MFS makes an in-depth search into the mixed feature space.

This paper is organized as follows. The proposed mixed feature evaluation
method are introduced in Section 2. Section 3 introduces a new search proce-
dure for mixed feature space, Mixed Forward Selection (MFS). Section 4 tests
proposed method using a few benchmark real-world mixed datasets. Some con-
cluding remarks are given in Section 5.

2 Proposed Evaluation Method for Mixed Data

2.1 The Basic Idea

Consider mixed feature subset, which is mixture of continuous features X with p
features and nominal features Z with q features [X,Z] = [x1, · · · ,xp, z1, · · · , zq].
The joint error probability for mixed features, denoted as Pe(X,Z), is given as
Eq.(1).

Pe(X,Z) =
∑
Z

∫
X

[
1−max

j
P (yj |X,Z)

]
p(X,Z)dX (1)

Rearranging Eq.(1) yields:

Pe(X,Z) = 1−
∑
Z

∫
X

max
j

p(yj ,X,Z)dX (2)

=
∑
Z

P (Z)−
∑
Z

∫
X

max
j

p(yj ,X|Z)P (Z)dX

=
∑
Z

P (Z)
∫
X

[
1−max

j
P (yj |X,Z)

]
p(X)dX

=
∑
Z

P (Z)Pe(X|Z)

Eq.(2) shows that the error probability of entire mixed feature set is the
weighted sum of conditional error probability of continuous features given nom-
inal features. For ease of representation, we first define a multi-nominal variable
z to replace nominal feature subset Z. The multi-nominal variable z contains
N possible distinct values with frequencies ni, i = 1, 2, · · · , N and each distinct
value represents a distinct combination of nominal feature subset Z. Thus, Eq.(2)
can be rewritten as:

Pe(X,Z) =
N∑

i=1

P (z = i)Pe(X|z = i) (3)

Eq.(3) now gives a very simple expression for the mixed feature evaluation
criterion. To obtain Pe(X,Z), we can first decompose the mixed feature space
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into a set of homogeneous feature subspaces based on z, and the conditional
error probability of each subspace, Pe(X|z = i) is measured based on continuous
features X.

2.2 Error Probability Estimation

Error Probability Estimation Based on k Nearest Neighbor (KNN).
Consider a sample set Di corresponding to z = i has ni training pairs [x(j), c(j)],
j = 1, 2, · · · , ni. Error probability of set Di estimated by KNN is given as:

PKNN
e (X|z = i) =

1
ni

ni∑
j=1

Pe(x(j)) (4)

where Pe(x(j)), the error probability of sample x(j), is estimated using the pro-
portion of neighbor(s) having inconsistent class label with x(j) in the k nearest
neighbors’ vicinity:

Pe(x(j)) = 1− P (c(j)|x(j)) = 1−
kc(j)

k
(5)

where kc(j) is number of neighbor(s) having the same class labels with x(j) in
its k nearest neighbors’ vicinity.

Error Probability Estimation Based on Mahalanobis Distance. Maha-
lanobis distance, denoted as d, can be constructed as global characterizations
for the overlap of random samples drawn from two different distributions [2].

Considering sample set Di corresponding to z = i, error probability of Di

in continuous feature space X estimated by Mahalanobis distance, denoted as
PMaha

e (X|z = i), is normalized into [0, 1] as given in Eq.(6).

PMaha
e (X|z = i) = e−α·d(i)

(6)

where d(i) is Mahalanobis distance between two classes based on sample set Di

in continuous feature space X; α is a parameter. If error probability is plotted
against Mahalanobis distance, the curve will have a bigger curvature with a
larger α. We choose a default value of α as 0.25, which produces a satisfactory
performance in the experimental study.

3 MFS for Mixed Feature Selection

In this section, we propose a new search procedure, Mixed Forward Selection
(MFS). MFS applies SFS as an embedded selecting scheme. In order to deal
with the scaling problem, MFS always selects features from a single typed feature
subset, while fixing the other types of features as the initial feature subset of the
forward selection procedure. Some notations need to be declared here. At the first
step of SFS, the non-empty initial feature subset, called fixed set, is denoted as



686 W. Tang and K. Mao

Xfixed and Zfixed for continuous and nominal feature set respectively, while the
corresponding ranking results are denoted as Zranked and Xranked respectively.

MFS selects nominal and continuous feature separately but simultaneously.
Although MFS selects two types of features separately, selections of both types of
features are linked via fixed sets,which are updated based on the ranking results
of SFSs in the current iteration. By selectively shrinking fixed sets iteratively,
MFS makes an in-depth search into the mixed feature space. MFS algorithm is
summarized as follow.

1. Initialize: fixed sets Xfixed = X, Zfixed = Z; searching depthes lp = lq = 1
for continuous and nominal features respectively.

2. Rank each type of features using SFS in parallel.
SFS ranks X with nonempty SFS ranks Z with nonempty

beginning set Zfixed beginning set Xfixed

(1) Input: X, Pe (1) Input: Z , Pe

(2) Initialize: S = Zfixed (2) Initialize: S = Xfixed

(3) For i = 1 to p (3) For i = 1 to q
xi = arg min

j
Pe(S ∪ xj) zi = arg min

j
Pe(S ∪ zj)

S = S ∪ xi S = S ∪ zi

X = X− xi Z = Z− zi

End End
(4) Store: X(lp)

ranked = S (4) Store: Z(lq)
ranked = S

3. Update fixed feature sets
Update Xfixed Update Zfixed

If lp < p If lq < q

Xfixed = X(lp)
ranked

[
1 . . . p− lp

]
Zfixed = Z(lq)

ranked

[
1 . . . q − lq

]

lp = lp + 1 lq = lq + 1
End End

Repeat 2.

Unlike SFS which produce only one step-optimum feature subset, MFS out-
puts a number of step-optimum feature subsets at each step. To select the best
feature subset, classification results are employed. Note that, error estimation
method (cross-validation in our experiments) can only be based on the training
set. It means that the training part of the whole dataset is further divided into
training set and testing set to evaluate the classification accuracy of the induc-
tion algorithm. Although this wrapper-like scheme induces extra computations
compared with the filter method, the computations involved are far fewer than
that of that of the wrapper method because of the limited number of candidate
feature subsets in evaluation.

The stopping criterion in MFS algorithm is either a predefined feature subset
size or cross-validation error rate. Details will be discussed in the experimental
study.
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4 Experimental Study

The performances of proposed method: MFS with criteria for mixed feature
evaluation are evaluated on two benchmark real-world mixed datasets: crx and
bridges (multi-class problem) [9].

We use cross-validation as the accuracy estimation method in this experi-
mental study for the ease of comparison. The rule of thumb is to keep at least
30 samples in each fold (see [11], chapter 5). Hence, 5-fold cross-validation are
employed in our experiment. The average error rate over 10 trials are reported
in graphes. For the sample classification, naive Bayes (nB) is used as the clas-
sifier, where the probabilities for nominal features are estimated using counts,
and those for continuous features are estimated using Parzen window density
estimation [3].

4.1 Australian Credit Screening Dataset

Australian credit screening Dataset (crx) is downloaded from UCI Machine
Learning Repository [9]. The task is to determine whether a credit card should
be given to an applicant.

To assess the performance of our methods for crx and compare our methods
with Relief algorithm [10] and Generalized Mahalanobis distance based forward
selection algorithm [1], again, 5-fold cross validation is used to evaluate the clas-
sification error rates. The experimental results presented in Fig.1 show that MFS
based methods achieve better results than the other two methods mentioned.

4.2 Pittsburgh Bridges Dataset

In order to further assess the performance of our method for the multi-class prob-
lem, we choose Pittsburgh bridges dataset (bridges) from UCI Machine Learning
Repository [9].
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Fig. 1. 5-fold cross validation error rate for mixed datasets: (a) crx, (b) bridge
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The experimental results of our methods and other methods including Re-
lief algorithm [10] and Generalization Mahalanobis distance [1] based forward
selection algorithm are shown in Fig.1. This graph shows that the average CV
error rates of our methods decrease faster than other two methods. Moreover,
the lowest the average CV error rates of our methods are 37.0% and 37.6% when
the selected feature size are 8 and 11 features respectively, while the lowest av-
erage error rate of Generalization Mahalanobis distance based forward selection
algorithm is 38.3% when 7 features are selected. This experiment shows good
performance of MFS for mixed feature selection.

5 Conclusion

In this paper we have presented a filter method for mixed feature selection.
The performances of our method were tested on a few benchmark real world
mixed datasets. The experimental results showed that the our method was more
suitable for mixed feature selection problems than some other well-known filter
methods including Relief algorithm and Generalized Mahalanobis distance based
sequential forward selection.
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Abstract. Traditional association rules mining cannot meet the demands arising 
from some real applications. By considering the different values of individual 
items as utilities, utility mining focuses on identifying the itemsets with high 
utilities. In this paper, we present a Two-Phase algorithm to efficiently prune 
down the number of candidates and precisely obtain the complete set of high 
utility itemsets. It performs very efficiently in terms of speed and memory cost 
both on synthetic and real databases, even on large databases that are difficult 
for existing algorithms to handle. 

1   Introduction 

Traditional Association rules mining (ARM) [1] model treat all the items in the data-
base equally by only considering if an item is present in a transaction or not. Frequent 
itemsets identified by ARM may only contribute a small portion of the overall profit, 
whereas non-frequent itemsets may contribute a large portion of the profit. In reality, 
a retail business may be interested in identifying its most valuable customers (cus-
tomers who contribute a major fraction of the profits to the company). These are the 
customers, who may buy full priced items, high margin items, or gourmet items, 
which may be absent from a large number of transactions because most customers do 
not buy these items. In a traditional frequency oriented ARM, these transactions rep-
resenting highly profitable customers may be left out. Utility mining is likely to be 
useful in a wide range of practical applications. 

Recently, a utility mining model was defined [2]. Utility is a measure of how “use-
ful” an itemset is. The goal of utility mining is to identify high utility itemsets that 
drive a large portion of the total utility. Traditional ARM problem is a special case of 
utility mining, where the utility of each item is always 1 and the sales quantity is ei-
ther 0 or 1. 

There is no efficient strategy to find all the high utility itemsets due to the non-
existence of “downward closure property” (anti-monotone property) in the utility 
mining model. A heuristics [2] is used to predict whether an itemset should be added 
to the candidate set. We refer this algorithm as MEU (Mining using Expected Utility) 
for the rest of this paper. However, the prediction usually overestimates, especially at 
the beginning stages, where the number of candidates approaches the number of           
all the combinations of items. Such requirements can easily  overwhelm  the  available  
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memory space and computation power of most of the machines. In addition, MEU 
may miss some high utility itements when the variance of the itemset supports is 
large. 

The challenge of utility mining is in restricting the size of the candidate set and 
simplifying the computation for calculating the utility. In order to tackle this chal-
lenge, we propose a Two-Phase algorithm to efficiently mine high utility itemsets. A 
performance study has been conducted on real and synthetic data, obtaining signifi-
cant improvement in terms of speed and accuracy over the best existing algorithm [2]. 
Our algorithm easily handles very large databases that existing algorithms cannot 
handle. 

The rest of this paper is organized as follows. Section 2 overviews the related 
work. In Section 3, we propose the Two-Phase algorithm. Section 4 presents our ex-
perimental results and we summarize our work in section 5. 

2   Related Work 

Researches that assign different weights to items have been proposed in [3, 4, 5, 6]. 
These weighted ARM models are special cases of utility mining. 

A concept, itemset share, is proposed in [7]. It can be regarded as a utility because 
it reflects the impact of the sales quantities of items on the cost or profit of an itemset. 
Several heuristics have been proposed. 

A utility mining algorithm is proposed in [8], where the concept of “useful” is de-
fined as an itemset that supports a specific objective that people want to achieve. The 
definition of utility and the goal of his algorithm are different from those in our work. 

3   Two-Phase Algorithm 

We start with the definition of a set of terms that leads to the formal definition of 
utility mining problem. The same terms are given in [2].  

Table 1. A transaction database 

(a) Transaction table. Each row is a 
transaction. The columns represent the 
number of items in a particular transac-
tion. TID is the transaction identification 
number 

(b) The utility table. The right 
column displays the profit of each 
item per unit in dollars 

ITEM PROFIT ($) (per unit) 
A 3 
B 10 
C 1 
D 6 
E 5 

        ITEM 
TID 

A B C D E 

T1 0 0 18 0 1 
T2 0 6 0 1 1 
T3 2 0 1 0 1 
T4 1 0 0 1 1 
T5 0 0 4 0 2 
T6 1 1 0 0 0 
T7 0 10 0 1 1 
T8 3 0 25 3 1 
T9 1 1 0 0 0 
T10 0 6 2 0 2 

(c) Transaction utility (TU) of the 
transaction database

TID TU TID TU 
T1 23 T6 13 
T2 71 T7 111 
T3 12 T8 57 
T4 14 T9 13 
T5 14 T10 72 
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• I  =  {i1, i2, …, im} is a set of items.  
• D = {T1, T2, …, Tn} be a transaction database where each transaction Ti ∈ D is a 

subset of I. 
• o(ip, Tq), local transaction utility value, represents the quantity of item ip in trans-

action Tq. For example, o(A, T8) = 3, in Table 1(a). 
• s(ip), external utility, is the value associated with item ip in the Utility Table. This 

value reflects the importance of an item, which is independent of transactions. 
For example, in Table 1(b), the external utility of item A, s(A), is 3. 

• u(ip, Tq), utility, the quantitative measure of utility for item ip in transaction Tq, is 
defined as ).(),( pqp isTio ×  For example, u(A, T8) = 3 × 3 = 9, in Table 1 

• u(X, Tq), utility of an itemset X in transaction Tq, is defined as 
∈Xi

qp

p

Tiu ),( , where 

X = {i1, i2, …, ik} is a k-itemset, X ⊆ Tq and 1≤ k≤ m. 

• u(X), utility of an itemset X, is defined as 
⊆∧∈ qq TXDT

qTXu ),( .      (3.1) 

Utility mining is to find all the itemsets whose utility values are beyond a user 
specified threshold. An itemset X is a high utility itemset if u(X)  ε, where X ⊆ I and 
ε is the minimum utility threshold, otherwise, it is a low utility itemset. For example, 
in Table 1, u({A, D, E}) = u({A, D, E}, T4) + u({A, D, E}, T8) = 14 + 32 = 46. If ε = 
120, {A, D, E} is a low utility itemset. 

To address the drawbacks in MEU, we propose a novel Two-Phase algorithm. In 
Phase I, we define transaction-weighted utilization and propose a model  transac-
tion-weighted utilization mining. This model maintains a Transaction-weighted 
Downward Closure Property. Thus, only the combinations of high transaction-
weighted utilization itemsets are added into the candidate set at each level during the 
level-wise search. Phase I may overestimate some low utility itemsets, but it never 
underestimates any itemsets. In phase II, only one extra database scan is performed to 
filter the overestimated itemsets. 

3.1   Phase I 

Definition 1. (Transaction Utility) The transaction utility of transaction Tq, denoted 

as tu(Tq), is the sum of the utilities of all the items in Tq: 
∈

=
qp Ti

qpq TiuTtu ),()( . Table 1 

(c) gives the transaction utility for each transaction in Table 1. 

Definition 2. (Transaction-weighted Utilization) The transaction-weighted utiliza-
tion of an itemset X, denoted as twu(X), is the sum of the transaction utilities of all the 

transactions containing X: 
∈⊆

=
DTX

q

q

TtuXtwu )()( . (3.2) 

For the example in Table 1, twu(AD) = tu(T4) + tu(T8) = 14 + 57 = 71. 

Definition 3. (High Transaction-weighted Utilization Itemset) For a given itemset 
X, X is a high transaction-weighted utilization itemset if twu(X) ≥ ε’, where ε’ is the 
user specified threshold. 
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Theorem 1. (Transaction-weighted Downward Closure Property) Let Ik be a k-
itemset and Ik-1 be a (k-1)-itemset such that Ik-1 ⊂ Ik. If Ik is a high transaction-
weighted utilization itemset, Ik-1 is a high transaction-weighted utilization itemset. 

Proof: Let kI
T be the collection of the transactions containing Ik and 1−kI

T be the 

collection containing Ik-1. Since Ik-1 ⊂ Ik, 1−kI
T is a superset of kI

T . According to Defi-

nition 2,  ')()()()(
1

1 ε≥=≥=
∈⊆∈⊆

−

− DTI

k
p

DTI

q
k

p
k

q
k

ItwuTtuTtuItwu  ❏ 

The Transaction-weighted Downward Closure Property indicates that any superset of 
a low transaction-weighted utilization itemset is low in transaction-weighted utiliza-
tion. That is, only the combinations of high transaction-weighted utilization (k-1)-
itemsets could be added into the candidate set Ck at each level. 

Theorem 2. Let HTWU be the collection of all high transaction-weighted utilization 
itemsets in a transaction database D, and HU be the collection of high utility itemsets 
in D. If ε’= ε, then HU ⊆ HTWU. 

Proof: ∀X ∈ HU, if X is a high utility itemset, then 

)()(),(),(),()(' XtwuTtuTiuTiuTXuXu

qq qpq pq TX

qq

TX Ti

p

TX Xi

qp

TX

q ==≤==≤=
⊆⊆ ∈⊆ ∈⊆

εε  

Thus, X is a high transaction-weighted utilization itemset and X ∈HTWU.  ❏ 

According to Theorem 2, we can utilize the Transaction-weighted Downward Clo-
sure Property in our transaction-weighted utilization mining in Phase I by assuming 
ε’ = ε and prune those overestimated itemsets in Phase II.  

Figure 1 shows the search space of Phase I. The level-wise search stops at the third 
level, one level less than MEU. (For larger databases, the savings should be more 
evident.) Transaction-weighted utilization mining model outperforms MEU in several 
aspects: 

1) Less candidates  When ε’ is large, the search space can be significantly re-
duced at the second level and higher levels. As shown in Figure 1, four out of 10 
itemsets are pruned because they all contain item A. However, in MEU, the pre-
diction hardly prunes any itemset at the beginning stages.  

2) Accuracy  Based on Theorem 2, if we let ε’=ε, the complete set of high utility 
itemsets is a subset of the high transaction-weighted utilization itemsets discov-
ered by our transaction-weighted utilization mining model. However, MEU may 
miss some high utility itemsets when the variation of itemset supports is large.  

3) Arithmetic complexity  One of the kernel operations in the Two-Phase algo-
rithm is the calculation for each itemset’s transaction-weighted utilization as in 
equation 3.2, which only incurs add operations rather than a number of multipli-
cations in MEU. Thus, the overall computation is much less complex. 

3.2   Phase II 

In Phase II, one database scan is performed to filter the high utility itemsets from high 
transaction-weighted utilization itemsets identified in Phase I. The number of high  
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Fig. 1. Itemsets lattice related to the example in Table 1. ε’ = 120. Itemsets in circles (solid and 
dashed) are the high transaction-weighted utilization itemsets in transaction-weighted utiliza-
tion mining model. Gray-shaded boxes denote the search space. Itemsets in solid circles are 
high utility itemsets. Numbers in each box are transaction-weighted utilization / number of 
occurrence 

transaction-weighted utilization itemsets is small when ε’ is high. Hence, the time 
saved in Phase I may compensate for the cost incurred by the extra scan in Phase II.  

In Figure 1, the high utility itemsets ({B}, {B, D}, {B, E} and {B, D, E}) are cov-
ered by the high transaction-weighted utilization itemsets. One database scan is per-
formed in Phase II to prune 5 of the 9 itemsets since they are not high utility itemsets. 

4   Experimental Evaluation and Performance Study 

We run all our experiments on a 700-MHz Xeon 8-way shared memory parallel ma-
chine with a 4 Gbytes memory. 

4.1   Synthetic Data from IBM Quest Data Generator 

We use a synthetic database [9], T20.I6.D1000K. However, the IBM Quest data gen-
erator only generates the quantity of 0 or 1 for each item in a transaction. We ran-
domly generate the quantity of each item in each transaction, ranging from 1 to 5. 
Utility tables are also synthetically created by assigning a utility value to each item 
randomly, ranging from 0.01 to 10.00. Observed from real world databases that most 
items are in the low profit range, we generate the utility values using a log normal 
distribution.  

In Table 2, the number of candidate itemsets generated by Phase I at the first data-
base scan decreases dramatically as the threshold goes up. However, the number of 
candidates generated by MEU is always 499500. We don’t provide the exact numbers 
for MEU because it actually takes an inordinate amount of time (longer than 10 
hours) to complete the second scan. Observed from Table 2, the Transaction-weighted 
Downward Closure Property in transaction-weighted utilization mining model can 
help prune candidates very effectively. 
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Table 2. The number of candidate 
itemsets generated by Phase I of 
Two-Phase algorithm vs. MEU 

 
T20.I6.D1000K              Databases 

Threshold Phase I MEU 
1st scan 315615 499500 0.5% 
2nd scan 18653 - 
1st scan 203841 499500 1% 
2nd scan 183 - 
1st scan 135460 499500 1.5% 
2nd scan 8 - 
1st scan 84666 499500 2% 
2nd scan 1 - 

4.2   Real-World Market Data 

We also evaluated the Two-Phase algorithm using a real world data from a major gro-
cery chain store. There are 1,112,949 transactions and 46,086 items in the database. 
Each transaction consists of the products and the sales volume of each product pur-
chased by a customer at a time point. The utility table describes the profit of each item. 

We evaluate the scalability of our algorithm by varying the threshold. As shown in 
Table 3, it is fast and scales well. MEU doesn’t work with this dataset because the num-
ber of 2-itemset candidates is so large (over 2 billion) that it overwhelms the memory 
available to us. Actually, very few machines can afford such a huge memory cost. 

5   Conclusions 

This paper proposed a Two-Phase algorithm that discovers high utility itemsets highly 
efficiently. The transaction-weighted utilization mining we proposed not only restricts 
the search space, but also covers all the high utility itemsets. Only one extra database 
scan is needed to filter the overestimated itemsets. Our algorithm requires fewer data-
base scans, less memory space and less computational cost compared to the best exist-
ing utility mining algorithm. It can easily handle very large databases for which other 
existing algorithms are infeasible. 
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Abstract. Traditional multiple query optimization methods focus on identifying 
common subexpressions in sets of relational queries and on constructing their 
global execution plans. In this paper we consider the problem of optimizing sets 
of data mining queries submitted to a Knowledge Discovery Management 
System. We describe the problem of data mining query scheduling and we 
introduce a new algorithm called CCAgglomerative to schedule data mining 
queries for frequent itemset discovery. 

1   Introduction 

Multiple Query Optimization (MQO) [10] is a database research area which focuses 
on optimizing a set of queries together by executing their common subexpressions 
once in order to save execution time. The main tasks in MQO are common subexpres-
sion identification and global execution plan construction. When common subexpres-
sions have been identified, they can be executed just once and materialized for all the 
queries, instead of being executed once for each query. A specific type of a query is a 
Data Mining Query (DMQ) [7], describing a data mining task. It defines constraints 
on the data to be mined and constraints on the patterns to be discovered. DMQs are 
submitted for execution to a Knowledge Discovery Management System KDDMS 
[7], which is a DBMS extended with data mining functions. Traditional KDDMSs 
execute DMQs serially and do not try to share any common subexpressions. 

DMQs are often processed in batches of 10-100 queries. Such queries may show 
many similarities about data or pattern constraints. If they are executed serially, it is 
likely that many I/O operations are wasted because the same database blocks may be 
required by multiple DMQs. If I/O steps of different DMQs were integrated and per-
formed once, then we would be able to decrease the overall execution cost of the 
whole batch. Traditional MQO methods are not applicable to DMQs. DMQs perform 
huge database scans, which cannot and should not be materialized. Moreover, DMQs 
usually have high memory requirements that make it difficult to dynamically 
materialize intermediate results. One of the methods we proposed to process batches 
of DMQs is Apriori Common Counting (ACC), focused on frequent itemset discovery 

                                                           
* This work was partially supported by the grant no. 4T11C01923 from the State Committee 

for Scientific Research (KBN), Poland. 



 On Multiple Query Optimization in Data Mining 697 

 

queries [1]. ACC is based on Apriori algorithm [2], it integrates the phases of support 
counting for candidate itemsets – candidate hash trees for multiple DMQs are loaded 
into memory together and then the database is scanned once. Basic ACC [11] assumes 
that all DMQs fit in memory, which is not the common case, at least for initial Apriori 
iterations. If the memory can hold only a subset of all DMQs, then it is necessary to 
schedule the DMQs into subsets, called phases [12]. The way such scheduling is done 
determines the overall cost of batched DMQs execution. To solve the scheduling 
problem, in [12] we proposed an “initial” heuristic algorithm, called CCRecursive.  

2   Related Work 

To the best of our knowledge, apart from the ACC method discussed in this paper, the 
only other multiple query processing scheme for frequent pattern discovery is Mine 
Merge, presented in one of our previous papers [13]. In contrast to ACC, Mine Merge 
is independent of a particular frequent itemset mining algorithm. However, it was 
proven very sensitive to data distribution and less predictable than ACC. A MQO 
technique based on similar ideas as ACC has been proposed in the context of induc-
tive logic programming, where similar queries were combined into query packs [4]. 

Somewhat related to the problem of multiple data mining query optimization is re-
using results of previous queries to answer a new query, which can be interpreted as 
optimizing processing of a sequence of queries independently submitted to the sys-
tem. Methods falling into that category are: incremental mining [5], caching interme-
diate query results [9], and reusing materialized results of previous queries provided 
that syntactic differences between the queries satisfy certain conditions [3] [8].  

3   Preliminaries and Problem Statement 

Data mining query. A data mining query is a tuple DMQ = (R, a, Σ, Φ, β), where R 
is a relation, a is an attribute of R, Σ is a condition involving the attributes of R, Φ is a 
condition involving discovered patterns, β is the min. support threshold. The result of 
the DMQ is a set of patterns discovered in πaσΣ, satisfying Φ, and having support  β. 

Problem statement. Given a set of data mining queries DMQ = {dmq1, dmq2, ..., 
dmqn}, where dmqi = (R, a, Σi, Φi, βi), Σi has the form “(li

1min < a < li
1max) ∨ (li

2min < a < 
li

2max) ∨..∨ (li
kmin < a < li

kmax)”, li
* ∈ dom(a) and there exist at least two data mining 

queries dmqi = (R, a, Σi, Φi, βi) and dmqj = (R, a, Σj, Φj, βj) such that σΣiR  ∩ 
∩ σΣjR ≠ ∅. The problem of multiple query optimization of DMQ consists in gener-
ating such an algorithm to execute DMQ which has the lowest I/O cost. 

Data sharing graph. Let S = {s1 , s2 ,..., sk} be a set of distinct data selection 
formulas for DMQ, i.e., a set of selection formulas on the attribute a of the relation R 
such that for each i,j we have σsiR  ∩ σsjR  = ∅, and for each i there exist integers a, 
b, ..., m, such that σΣiR  = σsaR  ∪ σsbR  ∪...∪ σsmR. We refer to the graph DSG = 
(V,E) as to a data sharing graph for the set of data mining queries DMQ if and only if 
V = DMQ ∪ S, E = {(dmqi,sj) | dmqj ∈ DMQ, sj ∈ S, σΣiR  ∩ σsjR ≠ ∅}. 
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Example. Consider the following example of a data sharing graph. Given a database 
relation R1 = (attr1, attr2) and three data mining queries: dmq1 = (R1, “attr2”, “5 < attr1 

< 20”, ∅, 3), dmq2 = (R1, “attr2”, “10 < attr1 < 30”, ∅, 5), dmq3 = (R1, “attr2”, “15 < 
attr1 < 40”, ∅, 4). The set of distinct data selection formulas is: S = {s1 = “5 < attr1 < 
10”, s2 = “10 < attr1 < 15”, s3 = “15 < attr1 < 20”, s4 = “20 < attr1 < 30”, s5 = “30 < attr1 

< 40”}. The data sharing graph for {dmq1, dmq2, dmq3} is shown in Fig. 1. Ovals 
represent DMQs and boxes represent distinct selection formulas. 

 

dmq1 

dmq2

dmq3

5<attr1<10 

10<attr1<15 20<attr1<30

30<attr1<40

15<attr1<20 

 

Fig. 1. Sample data sharing graph for a set of data mining queries 

Apriori Common Counting (Fig. 2). ACC executes a set of data mining queries by 
integrating their I/O operations. First, for each data mining query we build a separate 
hash tree for 1-candidates. Next, for each distinct data selection formula we scan its 
corresponding database partition and we count candidates for all the data mining 
queries that contain the formula. Such a step is performed for 2-candidates, 3-
candidates, etc. Notice that if a given distinct data selection formula is shared by  
many data mining queries, then its corresponding database partition is read only once.  

for (i=1; i<=n; i++)   /* n = number of data mining queries */ 
  C1

i = {all 1-itemsets from σs1∪s2∪..∪skR, ∀sj∈S: (dmqi,sj)∈E}    /* generate 1-candidates */ 
for (k=1; Ck

1 ∪ Ck
2 ∪..∪ Ck

n ≠ ∅; k++) do begin 
   for each sj∈S do begin       
      CC= Ck

l: (dmql,sj)∈E; /* select the candidates to count now */ 

      if CC≠ ∅ then count(CC, σsjR);  end 
   for (i=1; i<=n; i++) do begin 
     Fk

i = {C ∈ Ck
i | C.count ≥ minsupi};  /* identify frequent itemsets */ 

     Ck+1
i = generate_candidates(Fk

i); end 
end 
for (i=1; i<=n; i++) do   Answeri = UkFk

i;  /* generate responses */ 

Fig. 2. Apriori Common Counting 

4   Data Mining Query Scheduling 

The basic ACC algorithm assumes that memory is unlimited and therefore the candi-
date hash trees for all DMQs can completely fit in memory. If, however, the memory 
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is limited, ACC execution must be partitioned into multiple phases, so that in each 
phase only a subset of DMQs is processed. In such a case, the key question to answer 
is: which data mining queries from the set should be executed together in one phase 
and which data mining queries can be executed in different phases? We will refer to 
the task of data mining queries partitioning as to data mining query scheduling. 

There are several issues to be addressed when scheduling data mining queries. First 
of all, it is obvious that the number of data mining queries which can be included in 
the same phase is restricted by the actual memory size. Memory requirements of  
individual data mining queries are determined by sizes of their candidate hash trees, 
which in turn are dependent on underlying data characteristics and on candidate sizes. 
Since the sizes of candidate hash trees change between Apriori iterations, the 
scheduling should be performed at the beginning of every iteration, not only before 
data mining query set execution starts. 

Another observation concerns the nature of ACC. Scheduling of DMQs should be 
based on inter-query similarities. Queries which operate on separate database 
partitions should be performed in separate phases, while queries which operate on 
significantly overlapping database partitions could benefit from being executed in the 
same phase. To measure the level of “overlapping” we can use cost estimation 
features of existing cost-based query optimizers. 

A scheduling algorithm requires that sizes of candidate hash trees are known in 
advance. They can be estimated in two ways. We can find an upper bound for the 
number of candidates knowing the number of frequent itemsets from the previous 
Apriori iteration. Unfortunately, typical upper bounds are far from actual sizes of the 
candidate hash trees. Another approach is to first generate all the candidate hash trees, 
measure their sizes, save them to disk, schedule the data mining queries, and then load 
the required trees from disk. This method introduces the cost of materialization. 

5   CCAgglomerative Scheduling Algorithm 

The CCAgglomerative algorithm first transforms the data sharing graph into a gain 
graph, which contains (1) vertices being the original data mining queries and (2) two-
vertex edges whose weights describe gains that can be reached by executing the con-
nected queries in the same phase. Due to the restricted size of this paper we skip the 
algorithm of gain graph generation. A sample gain graph for the earlier discussed set 
of data mining queries is shown in Fig. 3. For example, putting the data mining 
queries dmq1 and dmq2 in the same phase will allow us to save 9000 I/O cost units.  

 

e2 
(9000)

e3 
(4000)

dmq1 

dmq2

dmq3e1 
(2000)

 

Fig. 3. Sample gain graph 
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An initial schedule is created by putting each data mining query into a separate 
phase. Next, the algorithm processes the edges sorted with respect to the decreasing 
weights. For each edge, the algorithm tries to combine phases containing the 
connected data mining queries into one phase. If the total size of all the data mining 
queries in such phase does not exceed the memory size, the original phases are 
replaced with the new one. Otherwise the algorithm simply ignores the edge and 
continues. The CCAgglomerative algorithm is shown on Fig. 4. 

CCAgglomerative(G=(V,E), E contains 2-node edges only): 
begin 
  Phases ← ∅  
  for each v in V do Phases ← Phases ∪ {{v}}  
  sort E = {ei , e2 ,..., ek} in desc. order with respect to ei.gain, ignore edges with zero gains 
  for each ei = (v1, v2) in E do begin 
       phase1 ← p ∈ Phases such that v1 ∈ p 
       phase2 ← p ∈ Phases such that v2 ∈ p 
       if treesize(phase1 ∪ phase2) ≤ MEMSIZE then 
         Phases ← Phases – {phase1}  
         Phases ← Phases – {phase2}  
         Phases ← Phases ∪ {phase1 ∪ phase2} 
       end if 
   end 
   return Phases 

      end 

Fig. 4. CCAgglomerative Algorithm 
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Fig. 5. Accuracy of data mining query 
scheduling algorithms 
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Fig. 6. Execution time of data mining query 
scheduling algorithms 

6   Experimental Evaluation 

We performed several experiments using the MSWeb dataset from the UCI KDD 
Archive [6]. The experiments were conducted on a PC AMD Duron 1.2 GHz with 
256 MB of RAM. The datasets resided in flat files on a local disk. Memory was 
intentionally restricted to 10kB-50kB. Each experiment was repeated 100 times. 

Fig.5 shows disk I/O costs of schedules generated by the optimal scheduling algo-
rithm, by the CCAgglomerative algorithm, by the CCRecursive algorithm, and by a 
random algorithm (which randomly builds phases from queries). CCAgglomerative 



 On Multiple Query Optimization in Data Mining 701 

 

has outperformed the other heuristic approach and achieved a very good accuracy. For 
example, for the set of 10 data mining queries, the CCAgglomerative algorithm 
misses the optimal solution by only 1.5%. Fig. 6 presents execution times for the 
optimal scheduling algorithm, CCRecursive, and CCAgglomerative (the execution 
time for CCAgglomerative includes the time required to build the gain graph). Notice 
that the optimal algorithm needed ca. 1000s to schedule 12 data mining queries, 
CCRecursive showed exponential execution time, while CCAgglomerative (polyno-
mial wrt. the number of queries) still needed just about 0.0001s even for 15 queries. 

7   Conclusions 

The paper addressed the problem of optimizing sets of multiple data mining queries. 
We showed that in order to apply Apriori Common Counting in a restricted memory 
system, it is required to schedule data mining queries into separate phases. The way 
such scheduling is performed influences the overall cost of executing the set of data 
mining queries. We presented the new heuristic scheduling algorithm, called CCAg-
glomerative which significantly outperforms the other existing approach, CCRecur-
sive, yet it provides a very good accuracy.  
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Abstract. Most intrusion detection techniques suffer from either an in-
ability to detect unknown intrusions, or unacceptably high false alarm
rates. However, there lacks a general basis to analyze and find solutions
to these problems. In this paper, we propose such a theoretical basis
for intrusion detection, which makes it possible to systematically express
and analyze the detection performance metrics such as the detection rate
and false alarm rate in a quantified manner. Most importantly, the in-
sights gained from the basis lead to the proposal for a new intrusion
detection technique – USAID. USAID attempts to exploit the advan-
tages of both techniques, and overcome their respective shortcomings.
The experimental results show that USAID can achieve uniform level of
efficiency to detect both known (99.78%) and new intrusions (98.18%),
with a significantly reduced false alarm rate (1.45%). Most significantly,
the performance of USAID is superior to all the participants in KDD’99
if the anomalies detected by USAID can be categorized correctly.

1 Introduction

In general, there exist two approaches for intrusion detection: signature-based
(a.k.a. misuse detection) and anomaly-based intrusion detection. In principle,
signature-based intrusion detection (SID) works reliably on well-known intru-
sions, but it is incapable of detecting new intrusions. In addition, it is also limited
by several practical problems: signature updating bottleneck, intrusion variation
detection (Rubin et al.[11]), and too many false alarms (Julisch[5]).

Consequently, anomaly-based intrusion detection (AID) has become the re-
search focus as it is a useful alternative to SID, being capable of detecting novel
intrusions. Besides that it can not identify intrusions, AID suffers from higher
false alarm rate, the difficulty in determining whether the anomalies are caused
by intrusions (Li et al.[8]), concept drifting problem, and mimicry attacks (Wag-
ner et al.[12]). Most importantly, the computational cost of intrusion detection
must be reduced considerably before it can be usefully employed in practical sys-
tems. This is more so as the size of the audit trails keep on growing.

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 702–712, 2005.
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In this paper, we try to find solutions to these problems. One possible solu-
tion may lie in the fact that only partial knowledge is used in each approach of
intrusion detection. For example, SID only uses the knowledge about well-known
intrusions (e.g., Snort[10]). For AID, it is the knowledge about the normal be-
haviors of the computing resources (e.g., LERAD[9], MADAM ID[7]). In our
research, we try to use all the available knowledge about the behaviors (intru-
sive and normal) in the historical data to detect intrusions.

Our main contributions in this paper are two-fold. First, we propose a theo-
retical basis for intrusion detection. The basis then allows us to systematically
analyze the detection performance to identify root causes for the problems in
SID and AID. Secondly, the insights gained from the analysis naturally leads us
to a new technique, named as USAID, which Unifies SID and AID.

The remaining parts are organized as follows. the nomenclature is introduced
in section 2. Then, the existing intrusion detection approaches are analyzed
systematically in section 3. Section 4 describes USAID. Experimental results
showing the effectiveness of USAID and related work are presented in section 5
and section 6 respectively. Lastly, we conclude the paper and layout the future
work.

2 Theoretical Basis for Intrusion Detection

In our theoretical basis for intrusion detection, we build behavior models like
SID and AID, which use a feature vector FV = {F1,F2, . . . ,Fm}, where Fi is a
feature in the feature set. In general, a feature Fi can be categorized into nominal,
discrete or continuous one. For example, ‘name’ is nominal, ‘TCP port number’
is discrete and ‘SYN rate within 2 seconds’ is continuous. A feature vector can
contain any number of nominal, discrete, and/or continuous features. Besides
that, we assume that there are training audit trails, which are constituted with
labeled normal audit trails and intrusive audit trails.

2.1 Definitions

For any feature F , there is a meaningful domain Dom(F ) called the feature
space. Any value occurring in the audit trails is a feature value vF . With respect
to the training audit tails, a feature value vF will be labeled as normal, suspicious
or anomalous. Specifically, if it only occurs in the normal audit trails, it is normal.
If it only occurs in the anomalous audit trails, for example, in the intrusion
signatures, it is anomalous. Otherwise, it is labeled as ‘suspicious’. We will refer
to ‘normal’, ‘suspicious’, or ‘anomalous’ as the NSA label of the feature value
vF , denoted as L(vF ) ∈ {‘N ′, ‘S′, ‘A′} using the first letter of the label.

Feature Ranges. For any discrete/continuous feature F , the interval between
v1

F and v2
F is defined as a feature range RF = [v1

F , v2
F ]. For the sake of uniformity,

each nominal feature value is also referred to as a feature range. Thus, RF ⊆
Dom(F ). The concept of NSA labels can be extended to the feature range:
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L(RF ) = ‘N ′ ⇔ ∀vF (vF ∈ RF ∧ L(vF ) = ‘N ′)
L(RF ) = ‘A′ ⇔ ∀vF (vF ∈ RF ∧ L(vF ) = ‘A′)
L(RF ) = ‘S′ ⇔ ∃v1

F∃v2
F (v1

F ∈ RF ∧ v2
F ∈ RF ∧ L(v1

F ) = ‘N ′ ∧ L(v2
F ) = ‘A′)

Where, all the feature values occur in the training audit trails.
Next, for the feature F , we can collect a series of feature ranges from Dom(F ):

{R1
F , R2

F , . . . , Rm
F }, such that Ri

F = Rj
F and L(Rj

F ) = L(Rj+1
F ) (1 ≤ i, j ≤ m,

and i = j). Furthermore, using the following rules, we can partition the feature
space Dom(F ) into three feature subspaces: N(F ), S(F ) and A(F ).

N(F ) = {Rj
F | 1 ≤ j ≤ m, L(Rj

F ) = ‘N ′}
S(F ) = {Rj

F | 1 ≤ j ≤ m, L(Rj
F ) = ‘S′}

A(F ) = {Rj
F | 1 ≤ j ≤ m, L(Rj

F ) = ‘A′}

We also define Ω(F ) = N(F ) ∪ S(F ) ∪ A(F ) so that Ω(F ) is the collection of
all feature ranges found in the audit trails.

Definition 1 (compound feature). A compound feature F12 is an ordered
pair {F1,F2}, and Ω(F12) is a subset of the cartesian product of Ω(F1) and
Ω(F2), such that each element in Ω(F12) actually represents at least one element
in the audit trails. For the sake of expression, F12 = F1 × F2.

Intuitively, similar to its component features, a feature range of F12 has an
NSA label with respect to its representive feature instance(s), and the com-
pound feature space can also be partitioned into three feature subspaces, i.e.,
Ω(F12) = N(F12) ∪ S(F12) ∪ A(F12). Note that the suspicious compound fea-
ture ranges can potentially shrink with respect to component feature ranges as
the combinations of two ‘suspicious’ feature ranges may be ‘normal’ or ‘anoma-
lous’.

In summary, the compound feature built from two atomic features shows
similar behaviours as any of its component atomic features. Therefore, we can
treat the compound feature as an atomic one to build higher order compound
features. Using this recursive procedure, the feature vector FV for intrusion
detection can be converted into an equivalent n-order compound feature F1...n.
In USAID, each compound feature range of F1...n is defined as a behavior
signature in the behavior models for intrusion detection.

2.2 An Illustrative Example

Let us assume that FV = {F1,F2,F3}. The example instances of the feature
vector are listed below in Table 1. The feature ranges for every feature are listed
as follows. For saving space, we will often use ’N’ and ’I’ respectively to denote
the statuses ’normal’ and ’intrusion’.
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Table 1. The instances of the feature vector

index F1 F2 F3 status

1 TCP 1 0.01 normal
2 ICMP 2 0.04 normal
3 NETBIOS 6 0.10 intrusion3
4 TCP 4 0.08 intrusion1
5 UDP 5 0.06 intrusion2
6 UDP 8 0.14 intrusion4
7 NETBIOS 6 0.10 normal
8 UDP 7 0.02 normal
9 UDP 8 0.14 intrusion2

– For F1,
R1

F1
= TCP, N&I1 ⇒ ‘S′

R2
F1

= ICMP, N ⇒ ‘N ′

R3
F1

= UDP, N&I2&I4 ⇒ ‘S′

R4
F1

= NETBIOS, N&I3 ⇒ ‘S′
– For F2,

R1
F2

= [1, 2], N ⇒ ‘N ′;
R2

F2
= [3, 5], I1&I2 ⇒ ‘A′;

R3
F2

= [6, 6], N&I3 ⇒ ‘S′;
R4

F2
= [7, 7], N ⇒ ‘N ′;

R5
F2

= [8, 8], I2&I4 ⇒ ‘A′;
– For F3,

R1
F3

= [0.01, 0.05], N ⇒ ‘N ′;
R2

F3
= (0.05, 0.09], I1&I2 ⇒ ‘A′;

R3
F3

= (0.09, 0.14], N&I3&I4 ⇒ ‘S′;

– F23 = F2 × F3
R1

F23
= R1

F2
× R1

F3
, N ⇒ ‘N ′;

R2
F23

= R2
F2

× R2
F3

, I1&I2 ⇒ ‘A′;
R3

F23
= R3

F2
× R3

F3
, N&I3 ⇒ ‘S′;

R4
F23

= R4
F2

× R1
F3

, N ⇒ ‘N ′;
R5

F23
= R5

F2
× R3

F3
, I2&I4 ⇒ ‘A′;

– F123 = F1 × F23
R1

F123
= R1

F1
× R1

F23
, N ⇒ ‘N ′;

R2
F123

= R2
F1

× R1
F23

, N ⇒ ‘N ′;
R3

F123
= R1

F1
× R2

F23
, I1 ⇒ ‘A′;

R4
F123

= R3
F1

× R2
F23

, I2 ⇒ ‘A′;
R5

F123
= R4

F1
× R3

F23
, N&I3 ⇒ ‘S′;

R6
F123

= R3
F1

× R4
F23

, N ⇒ ‘N ′;
R7

F123
= R3

F1
× R5

F23
, I2&I4 ⇒ ‘A′;

The feature subspaces are: N(F123) = {R1
F123

, R2
F123

, R6
F123
}, S(F123) = {R5

F123
},

and A(F123) = {R3
F123

, R4
F123

, R7
F123
}.

3 Theoretical Analysis

In our analysis, we will focus on a compound feature F since the feature vector for
intrusion detection can be compounded into a higher-order compound feature.
In the ideal scenario, which assumes hypothetical complete knowledge, the three
feature subspaces are determined without any misclassification: Ni(F ), Ai(F )
and Si(F ). Similarly, in the real scenario where we possess only partial knowledge
of them, three feature subspaces are Nr(F ), Ar(F ) and Sr(F ).

Due to the quality of the training audit trails (i.e., incompleteness and incor-
rect labels), there are two defects in the behavior model: (1) model inaccuracy
and (2) model incompleteness. We use the following subsets of feature ranges
to quantify the inaccuracy: NA1(F ), NS1(F ), SN1(F ), SA1(F ), AN1(F ) and
AS1(F ). Every subset name is defined as: the first letter is the real feature sub-
space, the second letter represents the ideal one, and the subscript ‘1’ indicates
that it is caused by ‘model inaccuracy’. As the behavior model is incomplete,
there are some unknown feature ranges: Nf (F ), Af (F ) and Sf (F ). The influence
of incompleteness in the behavior model is quantified as: NS2(F ) and AS2(F ),
where the subscript ‘2’ indcates that is it caused by ‘model inaccuracy’. Then,
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Nr(F )−NS(F ) + Nf (F )−NA(F ) + AN(F ) = Na(F )
Ar(F )−AS(F ) + Af (F )−AN(F ) + NA(F ) = Aa(F )

Sr(F ) + NS(F ) + AS(F ) + Sf (F ) = Sa(F )

where, ’+’ and ’-’ denote set union and difference operations respectively.

3.1 Performance Analysis

In this subsection, we quantify and analyze the detection performance based on
the detection results and the principles laid out so far. The detection performance
is mainly represented by the detection rate and false alarm rate in the detection
phase. In our discussion, we will assume that a fraction α of the feature ranges
labeled as ‘suspicious’ will be detected as ‘anomalous’.

Signature-Based Intrusion Detection. In SID, only Ar(F ) is known (a.k.a.
the intrusion signature base). The behaviors which do not match Ar(F ) are
regarded as ‘normal’ behaviors. Therefore, its detection performance is,

DR =
|Ar(F )| − |AS1(F ) + AS2(F )| ∗ (1− α)− |AN1(F )|

|Ai(F )|+ |AS1(F ) + AS2(F )| ∗ α− |NA1(F )|+ |Sf (F )| ∗ α

FAR =
|AS1(F ) + AS2(F )| ∗ (1− α) + |AN1(F )|

|Ar(F )|

Where, | . . . | represents the size of a set of feature ranges.
Considering that Aa(F ) includes all the intrusions and their variations, the

incapability to detect new intrusions as well as intrusion variations and the
signature updating problem are due to the limited size and quality of Ar(F ).
AS1(F ), AN1(F ) and AS2(F ) lead to too many false alarms in practice.

Anomaly-Based Intrusion Detection. In AID, Nr(Fi) is known beforehand
in the normal run of a process, and the behaviors that violate Nr(Fi) are regarded
as ‘anomalous’, Sr(Fi) = Φ. Therefore, its detection performance is,

DR =
|Ai(F )|+ |Sf (F )| ∗ α

|Ai(F )|+ |Sf (F )| ∗ α + |NS1(F ) + NS2(F )| ∗ α + |NA1(F )|

FAR =
|Nf (F )|+ |Sf (F )| ∗ (1− α)
|Ai(F )|+ |Nf (F )|+ |Sf (F )|

Obviously, the higher false alarm rate is largely rooted in Nf (F ) and Sf (F ).
Mimicry attacks try to utilized NS1(F ) and NS2(F ). Concept drifting prob-
lem is to enlarge NS1(F ), NS2(F ) and NA1(F ). Conversely, anomaly context
identification tries to shrink the above sets as well as Sf (F ).

Conclusively, the quality issue in the behavior models leads to the problems in
SID and AID. In our research, we try to utilized all available knowledege instead
of the partial knowledge used in SID (i.e., Ar(F )) and AID (i.e., Nr(F )).

Unifying Signature-Based and Anomaly-Based Intrusion Detection.
In USAID, all three real feature subspaces are known in advance: Nr(F ), Sr(F )
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and Ar(F ). Except the known feature ranges in all three feature subspaces, other
feature ranges are detected as ‘suspicious’ in USAID. As before, we can deduce
the detection performance of USAID as follows.

DR = 1 − |NS1(F ) + NS2(F )| ∗ α + |NA1(F )| + |SA1(F )| ∗ (1 − α)

|Ai(F )| + |Si(F )| ∗ α

FAR =
|Nf (F )| + |Sf (F ) + AS1(F ) + AS2(F )| ∗ (1 − α) + |SN1(F )| ∗ α + |AN1(F )|

|Nf (F )| + |Ar(F )| + |Af (F )| + |Sf (F )| + |Sr(F )| ∗ α

It is clear that USAID will achieve similar detection rate as AID. Like AID, if the
behavior model is accurate and complete, DR = 100% and FAR = 0. On the
other hand, other than detecting anomalies, USAID can identify the intrusions
in Ar(F ) as in SID. In summary, even though it is still limited by the quality
issue of the behavior model, USAID provides advantages of both SID and AID.

4 A Novel Intrusion Detection Technique: USAID

In this section, we apply USAID for intrusion detection. The architecture of
USAID consists of three modules as indicated in Figure 1. The first module
extracts the three feature subspaces of every feature. Module 2 is to construct
the signature base. The last module incorporates the detection mechanism.

Feature Subspaces 
Extraction

1
μ Normal, Suspicious 

and Anomalous 
Subspaces Nr(...), 
Sr(...) and Ar(..) .

Feature Subspaces 
Extraction

n
μ Normal, Suspicious 

and Anomalous 
Subspaces Nr(...), 
Sr(...) and Ar(..) .

Signature 
base 

Building

Detection 
Mechanisms

Detection results

Module 1 Module 2 Module 3

NSA 
Signatures

Fig. 1. A general framework for USAID

4.1 Feature Subspaces Extraction

Step 1: Feature Value Collection. In the labeled training audit trails, the
feature values are collected for every feature. The statuses (normal and/or in-
trusions) of every feature value are also collected into its status list. Based on
its status list, every feature value is assigned an NSA label. Note that this step
is applied to nominal, discrete and continuous features, but the following two
steps are only applicable to discrete and continuous features.

Step 2: Feature Value Clustering. The objective of this step is to form
initial feature ranges for every feature by clustering the neighboring feature
values. For a discrete feature, two feature values x1 and x2 are neighboring if
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|x1 − x2| = 11. For a continuous feature, two feature values x1 and x2 are
neighboring if |x1 − x2| ≤ δ. If several neighboring feature values have the same
NSA label, they will be combined to form an initial feature range. As a special
case, if, for a feature value, its neighbors have different NSA labels from itself,
it forms an initial feature range itself. Every initial feature range thus formed
inherits the NSA label of the feature values falling within it.

Step 3: Feature Range Generalization. Under most scenarios, the initial
feature ranges will not cover all of the feature space. Any outside feature subspace
is named as an uncovered subspace. Comparing to the neighboring definition of
feature values, two feature ranges are neighboring if there is no other feature
range(s) between them. Then, an uncovered subspace between two neighboring
feature ranges is processed as follows: if the two feature ranges have the same
NSA label, a new feature range will be formed to cover the two feature ranges
as well as the uncovered subspace; otherwise, the uncovered space is divided
equally and allocated to these two defined feature ranges. The NSA labels of
the initial feature ranges will be inherited by the newly extended or combined
feature ranges. Ultimately, all the known feature space of every feature will be
covered by well-defined feature ranges.

4.2 Building Behavior Signatures

Initially, the NSA signature base (i.e., the behavior models) is empty. The fol-
lowing procedures are performed resursively on each feature instance. First, we
construct a signature by replacing the feature values in the instance with respec-
tive feature ranges. Then, the signature is inserted into the NSA signature base
with the status of the feature instance. Finally, based on the accumulated status
list, every signature is assigned an NSA label.

4.3 Detection Mechanisms Via Signatures

We first extract a feature instance from the test audit trails at a time, and
the feature value of every feature is replaced by its corresponding feature range
to construct a temporary signature. We then try to search for the temporary
signature in the NSA signature base, and if found, the current instance is assigned
the same status list as that of the stored signature. Otherwise, the detection
result is ‘anomaly’.

5 Experiments on USAID

We have chosen a typical dataset from KDD CUP 1999 contest, in which every
record is an instance of a specific feature vector (Table 2). The dataset meets
the requirements of USAID: labeled audit trails and a feature vector. The sizes

1 If the distance is larger than 1, there is an uncovered space |x1 − x2 − 1|.
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Table 2. Features in the connection records

Types (41) Features

nominal (9) protocol type, service, flag, land, logged in, root shell, su attempted, is hot login,
is guest login

discrete (15) duration, src bytes, dst bytes, wrong fragments, urgent, hot, num failed logins,
num compromised, num root, num file creations, num shells, num access files,
num outbound cmds, count, srv count

continuous (17) serror rate, srv serror rate, rerror rate, srv rerror rate, same srv rate, diff srv rate,
srv diff host rate, dst host count, dst host srv count, dst host same srv rate,
dst host diff srv rate, dst host same src port rate, dst host srv diff host rate,
dst host serror rate, dst host srv serror rate, dst host rerror rate, dst host srv rerror rate

of the dataset are as follows: training dataset: 4898431 instances, test dataset:
311029 instances. For a detailed description of the datasets, please refer to [1].
In addition, as the precision for continuous features in our experimental datasets
is 0.01, we set the neighboring threshold δ = 0.01.

5.1 Experimental Results

First, let us talk about the dataset quality. In the training dataset, there are
several illegal records (e.g. instance 4817100). In the test dataset, we found
several instances (whose indices are 136489 and 136497) with illegal combination
between ‘TCP’ protocol type and ‘ICMP’ service. Therefore, they are discarded
in our experiments. Moreover, there is an intrusion ‘spy’ that is not documented
properly (in instances 1381226, 1381227).

Feature Ranges of Every Feature. In our experiments, the average numbers
of normal, suspicious and anomalous feature ranges of all features in the feature
vector are N : S : A = 23 : 18 : 12. Given the relatively large number of
‘suspicious’ feature ranges, it is clear that only one feature from our selected
feature vector is not enough for intrusion detection.

The NSA Signature Base. In it, the numbers of the normal, suspicious and
anomalous signatures are N : S : A = 60371 : 58 : 2779. Even though some sus-
picious signatures still exist, the detection capability has been improved much in
comparison to any single feature. The existence of suspicious signatures indicates
that the features in our experiments are not enough to detect all known intru-
sions. Note that the high ratio of N and A, namely N : A = 60371 : 2779 ≈ 21.7
is quite significant since it indicates that the detection speed of SID will be
faster. In addition, the total of possible signatures due to feature ranges of all
41 features are 8.38 × 1033. In contrast, our signature base is compact enough.
We further sense that searching future intrusion signatures via negative selection
algorithm [4] from 8.38× 1033 signatures is a mission impossible.

Signature Variations of a Behavior. At the same time, we observed that most in-
trusions cause more than one signature. For example, for portsweep, the number
of signatures is 941; ipsweep, 72; satan, 389. The observation indicates that the
intrusion variations do exist to a significant extent. In the NSA signature base,
some signatures are shared by several intrusions, such as portsweep and nep-
tune. Even though the number of shared signatures is small (Figure 2.(A)), this
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Normal probe DOS U2R R2L
normal
probe
DOS
U2R
R2L

--- 47 16 8 0
47 33 10 2 0
16 10 0 0 0
8 2 0 0 0
0 0 0 0 0

0 1 2 3 4 A
0
1
2
3
4

57101 423 53 0 0 3015
2 2341 7 0 4 1818

5143 14 215142 0 0 11167
8 0 0 0 0 69

7817 2 0 0 0 6939

(A) Statistics of Shared Signatures. (B) Detection Results of USAID.

Fig. 2. Statistics of Shared Signatures and Detection Results

phenomenon shows that, under some scenarios (e.g., inadequate no. of features),
it is difficult to identify some intrusions correctly. If the response strategies for
the intrusions with overlapped signatures are much different, then generating
responses to such intrusions may lead to disastrous results.

Shared Signatures among Behaviors. Also in Figure 2.(A), we enumerate the
numbers of signatures shared between different intrusion categories. The normal
category will share many signatures with other intrusion categories. This is the
main source of false alarms or false negatives in intrusion detection. In this table,
the signatures of R2L intrusions are not shared with other intrusion categories,
whereas only ‘probe’ intrusions have shared signatures with each other category.
One possible reason for this phenomenon lies in the proportions of signatures
in every category, that is, normal : probe : DOS : U2R : R2L = 60432 :
1661 : 1255 : 65 : 42. In addition, the major principles of ‘probe’ intrusions are
similar to each other [6], that’s why the shared ‘probe’ signatures are significant
in Figure 2.(A). The strategies behind probe and DOS are similar, but it is
different from the one behind U2R and R2L. Therefore, probe and DOS can be
classified in one class, and U2R and R2L in another class [6]. The differences
between these two classes explain why there are few signatures shared by them.

Detection Results from the Test Dataset. We eliminate two new intru-
sions, namely, snmpgetattack and mailbomb, from the detection results. This is
because the information in the feature vector is not enough to detect these two
intrusions.

Detection Performance. Quantitatively, the false alarm rate is 1.45%, the detec-
tion rate for known intrusions 99.78%, the detection rate for most new intrusions
98.18%. We also evaluate the USAID performance in comparison with the par-
ticipants of KDD’99 Classifier Learning Contest[1], in which every entry will be
assigned a detection cost, and an average cost per entry is calculated for com-
parison. The lower the average cost per entry is, the higher rank the classifier.

The detection results of USAID are summarized in Figure 2.(B), in which
the first 5 columns constitute the confusion matrix, and the last column in-
cludes the numbers of detected anomalies. Its horizontal dimension is the pre-
dicted class of every test example, and the vertical dimension is its actual class.
In the performance comparisons, the detected anomalies will be processed in
two ways. First, these anomalies are classified correctly to their actual intrusion
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categories. For example, the number of correctly predicated entries of ‘probe’
is 2341+1818=4159. In such case, the performance of USAID is scored 0.1355,
which is much better than the 1st rank of KDD’99, 0.2331. Secondly, under
the worst scenario, these anomalies are classified incorrectly into the intru-
sion categories with highest cost. For instance, as cost(R2L,probe)=4 is high-
est in row ‘R2L’, the anomalies detected from actual ‘R2L’ will be detected
as category ‘normal’. The performance in the worst scenario is scored 0.3283,
which is ranked 19th among all the participants. Note that almost half of the
R2L intrusions, which are detected poorly in KDD’99, are detected as anoma-
lies in USAID. In summary, USAID is expected to achieve better performance
than all the participants of KDD’99 if the detected anomalies are categorized
correctly.

6 Related Work

In USAID, two intrusion detection approaches are unified and their respective
problems can be solved partially. The research work in [2] also shows the ef-
fectiveness of this combination, in which an algorithm (similar to the negative
selection algorithm in[4]) is proposed to generate the artificial anomalies. An in-
trusion detection system is then built on the synthetic datasets. Actually, it only
relies on the partial knowledge as well, and it lacks flexibility to fine-tune the
model online. Other obvious advantages of USAID over [2] are the mechanisms
for intrusion identification and anomaly context identification

Since the output of an intrusion detection technique can be considered to be
a compound feature in our general feature vector, USAID is a multiple classifier
ensembler [3]. In this aspect, USAID is similar to the research work in [3], in
which one classifier is used to detect known intrusions, and another classifier
tries to classify the new intrusions. However, [3] depends on the assumption that
the first classifier can detect known intrusions accurately. That’s not true since
there are significant intrusion variations as shown in our experiments.

7 Conclusions and Future Work

In this paper, we proposed a theoretical basis for intrusion detection, in which
we unified signature-based and anomaly-based intrusion detection and system-
atically analyzed the hard problems faced by the researchers on intrusion detec-
tion. Our experimental results have also shown that the detection performance
of USAID are encouraging. Specifically, most new and known intrusions are de-
tected in USAID, and the false alarm rate is 1.451%. In our future work, we will
continue research on our theoretical basis for intrusion detection.
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Abstract. In this paper, we present a group pattern mining approach to derive 
the grouping information of mobile device users based on a trajectory model. 
Group patterns of users are determined by distance threshold and minimum 
time duration. A trajectory model of user movement is adopted to save storage 
space and to cope with untracked or disconnected location data. To discover 
group patterns, we propose ATGP algorithm and TVG-growth that are derived 
from the Apriori and VG-growth algorithms respectively.  

1   Introduction 

Behavior research on sociology show that peer pressure and group conformity can 
affect the buying behaviors of individuals [1]. With a good knowledge of groups a 
customer belongs to, one can derive common buying interests among customers, and 
develop group-specific pricing models or marketing strategies for personalized 
services. There are many ways one can determine the groups a person belongs to, for 
example, by the set of product items s/he purchased, his/her occupation or income,  
and/or the places s/he visited. As implied by the loads of research in spatial-temporal 
databases [7], the information about users’ locations over time can play a crucial role 
in determining the groups. As mobile phones and other similar devices become 
widely used, users’ locations of errors usually less than 1km can be gathered by 
mobile communication operators using the existing communication infrastructure.  
With more accurate positioning technologies, the errors can be reduced even further. 

In this research, we are interested in discovering groups of users such that users in 
the same group are geographically close to one another for significant amounts of 
time. Finding such grouping information of mobile users, based on the spatio-
temporal distances among them, is known as “Group patterns mining”, originally 
proposed by Wang et al. [9, 10]. Previous research represents the movement data of 
an object as a synchronous time series of locations. This representation, however, has 
the following three pitfalls: 

1. To maintain accurate location tracking, the frequency of sampling users’ locations 
must be high. As a result, the movement database can be become huge.  

2. Moving objects may be disconnected from time to time voluntarily or involun 
arily. It is therefore not realistic to assume that the location information is present 
for each time point. 
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3. Lastly, it is almost impossible to have perfectly synchronized sampling of users’ 
locations in reality due to clock differences of base stations conducting the 
sampling and the locations of moving objects. 

To deal with the first and the third problems, a trajectory-based model to represent 
object movements can be adopted instead [4, 5, 6, 8]. A trajectory is a function that 
maps time to locations. To represent object movement, a trajectory can be 
decomposed into a set of linear functions, one for each disjoint time interval. The 
derivative of each linear function yields the direction and speed in the associated time 
interval. Various approaches have been proposed to accurately induce the trajectory 
of an object from its location update data while saving storage space using dead-
reckoning policies [11] or regression techniques [2]. In this paper, we use trajectories 
for modeling moving objects and develop efficient algorithms for discovering mobile 
group patterns from trajectory data. Furthermore, we address the second problem by 
allowing the trajectory of each object not to cover the entire location tracking period.  

The rest of the paper is organized as follows. In Section 2, we formally define the 
mobile group pattern discovery problem in the context of using trajectories to 
represent moving objects. In Section 3, we describe the algorithms for discovering 
mobile group patterns. Finally, we conclude in Section 4. 

2   Problem Definition 

A trajectory is a set of piecewise linear functions, each of which maps from a disjoint 
time interval to an n-dimensional space. That is, one can perceive a piece of a 
trajectory as a set of n linear functions of the time variable t, one for each dimension, 
and the trajectory may change speed and direction at finitely many time instants. Each 
linear piece can be represented as a conjunction of linear constraints using the time 
variable and coordinate variables. A trajectory is a disjunction of all its linear pieces. 
For example, a trajectory of the user moving on a 2-D space may consist of 3 linear 
pieces as shown below: 

)]210()23()402[( <≤∧+−=∧−= ttytx  

)]2221()23()2[( <≤∧+−=∧=∨ ttyx  

)]3022()1()95.0[( ≤≤∧=∧−=∨ tytx  

An object movement database D consists of a set of trajectories, one for each 

object. That is, i
M
i TD 1== Υ , where M is the number of moving objects. Each linear 

piece in a trajectory Ti is a set of 4-tuples: (reference_point, velocity, start_time, 
end_time), denoting the location function pointreferencetvelocitytf _)( +×=  

during time interval [start_time, end_time). Table 1 shows the trajectories of three 
example objects in a 2-dimensional space. Note that the trajectory of each object may 
become untraceable at some time points, resulting in a sequence of non-continuous 
linear pieces.  As shown in Table 1, moving object o1 is disconnected in time [5, 6) 
and [9, 10), object o2 is disconnected in time [5, 6), and object o3 is untraceable during 
time interval [8, 10). 
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Table 1. An example object movement database 

 
reference_point 

velocit
y 

start_time end_time 

(1,1) (3,1) 0 3 
(7,-11) (1,5) 3 5 o1 
(10,-3) (4,3) 6 9 

(2,2) (2,1) 0 3 
(2,-13) (2,6) 3 5 o2 

(-4,5) (3,2) 6 10 
(2,4) (3,1) 0 3 

(17.-5) (-2,4) 3 5 
o3 

(12,35) (-1,-4) 5 8 

Definition 1. Given a group of objects G and a maximum distance threshold max_dis, 
we say objects in G are geographically close at a time point t if every pair of objects 
in G are no farther than max_dis apart, and geographically far at t if there exists one 
pair of objects in G whose distance is larger than max_dis. We also say objects in G is 
geographically decided if they are either close or far, and geographically undecided 
otherwise. 

Definition 2. Given a group of objects G and a minimal time duration threshold 
min_dur, a time interval [t,t+k] is called a close interval of G if 

1. objects in G are geographically close at any time point in [t, t+k], 
2. objects in G are not geographically close at time t−ε , where ε  is an arbitrarily 

small positive number, 
3. objects in G are not geographically close at time t+k+ε , where ε  is an arbitrarily 

small positive number, and 
4. k min_dur. 

A far interval can be similarly defined. 

A group of objects G, max_dis, and min_dur are said to form to a group pattern, 
denoted P=(G, max_dis, min_dur) [9]. Given an object movement database, a group 
pattern may have multiple close intervals and multiple far intervals, within which the 
geographical property associated with G can be decided. For the time points not 
covered by any close or far intervals, aggregated as the undecided intervals, the 
geographical property associated with G is not clear. We quantify the significance of 
a group pattern by the proportion of the total length of close intervals and estimated 
close subintervals of the undecided intervals. 

Definition 3. Let P be a group pattern with n close intervals c1, c2, …, cn, m far 
intervals f1, f2, …, fm, and k undecided intervals u1, u2, …uk. The weight of P is 
defined as: 
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The weight represents the proportion of the time when users of P (are expected to) 
stay close. Thus, the larger is the weight, the more significant is the group pattern. 

Definition 4. Given a threshold min_wei, a group pattern P= <G, max_dis, min_dur >, 
is valid if the weight of P exceeds the threshold min_wei. 

The problem is how to identify all valid group patterns given a trajectory-based 
object movement database and the thresholds max_dis, min_dur, and min_wei. 

3   The Algorithms 

The geographical property of a mobile group (i.e., close or far) is determined by the 
distances between all pairs of objects at any time point. Here, the distance function of 
o1 and o2 for each corresponding linear piece (i.e., with the same time interval) can be 
easily computed. For example, suppose the location functions of objects o1 and o2 
between time 0 and 3 are as follows: 

Location of object o1 at time t: (1 + 3t, 1 + t) 
Location of object o2 at time t: (2 + 2t, 2 + t)  

The Euclidean distance between o1 and o2 when 0≤t<3 is 2)1()1( 2 +− t  

A complete distance function between o1 and o2 whose location data listed in Table 
1 is the following: 

30,1)1()( 22
, 21

<≤+−= tttdistance oo  

53,)2()5( 22 <≤+−++− ttt  

65, <≤ tundecided  

96,)8()14( 22 <≤−+−− ttt  

109, ≤≤ tundecided  

Given a distance function dist(t) of two objects o1 and o2 within an interval I, we 
would like to identify the subintervals I’ in I such that dist(t) ≤ max_dis, t∈I’. This 
can be done by computing the roots of the equation dist(t) = max_dis. In case of 
Euclidean distance, there will be two roots, denoted ta and tb, where ta ≤ tb.  When both 

ta and tb are real numbers, we have ba tttdistdist ≤≤∀≤ ,max_)( . Obviously, 

within the time interval ],[ ba ttI ∩ , the distance between o1 and o2 is no more than 

max_dis, and at any time in ],[ ba ttI − , the distance between o1 and o2 is greater than 
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max_dis. The weight of a mobile group can be subsequently decided by looking at 
each pair of objects in the group, and the function for computing the weight of a 
group ck is named Group-Weight(ck). Group-Weight(ck) starts with synchronizing the 
linear pieces of the trajectory in each trajectory of ck such that each trajectory has the 
same set of time segments, followed by computing the close and far intervals in each 
time segment. The pseudo-code of Group-Weight(ck) is omitted due to space 
limitation. 

Given two group patterns, P = <G, max_dis, min_dur > and P’ = <G’, max_dis, 
min_dur >, P’ is called a sub-group pattern of P if GG ⊆' . The Apriori property 
within the context of mobile group pattern mining states that any sub-group pattern of 
a valid group patterns must also be valid. In [9], both AGP and VG-growth algorithms 
are based on this Apriori property. To re-use both algorithms, we must ensure that 
Apriori property still holds for trajectory-based movement data.  

Theorem 1. [Apriori property for group patterns] Given a database D and thresholds 
max_dis, min_dur, and min_wei, if a group pattern is valid, all of its subgroup patterns 
will also be valid. 

Based on the AGP algorithm [9], we develop an algorithm called Apriori 
Trajectory-based Group Pattern Mining, abbreviated ATGP, whose pseudo-code is 
shown in Fig. 1. In the algorithm, we use Ck to denote the set of candidate k-groups, 
and Gk to denote the set of valid k-groups. From G1, the set of all distinct objects, the 
algorithm first computes C2, the pair set of objects in G1.  This algorithm performs 
join operation to generate candidate k groups Ck from Gk-1 
(Ck=Generate_Candidate_Groups(Gk-1)), and the generated candidates are verified by 
computing their weights. 

Input: D, max_dis, min_dur, and min_wei 
Output: all valid groups G 
01    G=∅; G1=all distinct objects; 
02    for (k = 2; Gk-1≠Ø; k++) 
03        Ck = Generate_Candidate_Groups(Gk-1); Gk=∅; 
04         for each candidate k-group ck ∈  Ck 
05            ck.weight = Group-Weight(ck, max_dis, min_dur); 
06            if (ck.weight >= min_wei } Gk=Gk∪ck; 
07         G = G Υ Gk; 
08    return G; 

Fig. 1. Algorithm ATGP 

In [WL03], Wang et al. proposed a data structure VG-graph whose edges represent 
all valid 2-groups and an algorithm VG-growth that traverses VG-graph to identify all 
valid groups. We adapt VG-graph to work for trajectory-based object movement 
database and call the resultant data structure TVG-graph, and the traversal algorithm 
TVG-growth. Similar to VG-graph, the edges of TVG-graph are determined by the set 
of valid 2-groups. However, since each object may have some untraceable periods, 
every edge in TVG-graph is associated with a set of close intervals as well as another 
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set of far intervals. The group mining procedure of TVG-growth remains the same as 
that of VG-growth, however, the set of close and far intervals associated with each 
edge has to be updated as the recursive mining procedure proceeds [3].  

4   Conclusion 

In this paper, we reported a novel approach that discovers moving object group 
patterns from a database comprising trajectories of moving objects. Furthermore, our 
research allows non-continuous trajectories which model the disconnected behavior of 
moving objects.  

In this work, the location of an object at a time point was assumed to be either 
accurately determined or completely unknown. In some applications, location data of 
an object may incur different degrees of uncertainties over time. Our future work 
includes mining mobile group patterns by considering the inherent uncertainty of 
location data. 
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Abstract. A co-location pattern is a set of spatial features whose ob-
jects are frequently located in spatial proximity. Spatial co-location pat-
terns resemble frequent patterns in many aspects. Since its introduc-
tion, the paradigm of mining frequent patterns has undergone a shift
from a generate-and-test based frequent pattern mining to a projection
based frequent pattern mining. However for spatial datasets, the lack
of a transaction concept, which is critical in frequent pattern definition
and its mining algorithms, makes the similar shift of paradigm in spatial
co-location mining very difficult. We investigate a projection based co-
location mining paradigm. In particular, we propose a projection based
co-location mining framework and an algorithm called FP-CM, for FP-
growth Based Co-location Miner. This algorithm only requires a
small constant number of database scans. It out-performs the generate-
and-test algorithm by an order of magnitude as shown by our preliminary
experiment results.

1 Introduction

We focus on a recent spatial data mining problem: finding spatial features that
tend to be located in spatial proximity. This problem is also referred to as spatial
co-lcoation patterns mining [7, 4, 2, 10, 9]. Let F = {f1, f2, . . . , fl} be a set of
spatial features. consider a number of l spatial datasets {SD1,SD2, . . . ,SDl},
such that SDi, i ∈ [1, l] contains all and only the objects that have the spatial
feature fi, Let R be a given spatial neighbor relation (e.g. distance less than
1.5 miles). A set of spatial features X ⊆ F is a co-location if its value im(X)
of an interesting measure, is above a threshold min im. The problem of finding
the complete set of co-location patterns is called the co-location mining problem.
Mining spatial co-location patterns is an important spatial data mining task with
broad applications.

Spatial co-location patterns resemble frequent patterns [5], a more general
problem of mining association rules [1] in many aspects. Since its introduction,
the problem of mining frequent patterns from large databases, has been subject

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 719–725, 2005.
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of numerous studies. The paradigm of frequent pattern mining algorithms has
undergone a fundamental shift from generate-and-test approaches [1] to projec-
tion based approaches [5]. Projection based approaches have major advantages
over generate-and-test approaches and avoids multiple database scans by com-
pressing transactional data into compact structures. However, the lack of pre-
materialized transactions becomes a major obstacle in adopting projection based
algorithms in spatial co-location pattern mining. A natural question to ask is:
can we push the same paradigm shift for mining spatial co-location patterns?

Many algorithms for co-location mining proposed in literature [7, 4, 10, 9, 3]
employ an generate-and-test co-location mining paradigm, which utilizes the
anti-monotone property of interestingness measures. In a clustering-based map
overlay approach[4, 3], every spatial feature is treated as a map layer and point-
data in each layer are clustered into regions. In a reference feature based approach
[7], transactions are created according to different algorithms, then a level wise
algorithm is applied . Under this model, a frequent pattern based algorithm can
be applied straightforwardly due to the fact that the interestingness measure is
defined based on the generated transactions. In distance based approaches [9, 10],
the number of instances for each spatial feature set is used to define the interest-
ingness measure. In an event centric model [10], a participation index was defined
as the interestingness measure. The participation index of a pattern is defined
as the minimal participation ratio of the objects of each feature in the pattern.

The contribution of this work is to study how to use a projection based
paradigm for event based spatial co-location pattern mining (CM). We proposed
a projection based framework for CM, which can incorporate any fast frequent
pattern mining algorithm. In particular, we developed an FP-growth based algo-
rithm for spatial co-location mining(FP-CM) based on the proposed framework.
We provide preliminary experiment results to show that the FP-CM is an order
of magnitude faster than the generate-and-test algorithm Co-location Miner.

Paper Outline: Section 2 recalls important concepts of co-location and frequent
pattern mining. Section 3 proposes our projection based FP-CM framework and
a FP-growth based co-location mining algorithm. We present the preliminary
experimental results in section 4 and summarize our work and present future
work in section 5.

2 Background

We review basic concepts of co-location patterns, a traditional generate-and-test
co-location mining algorithm, and a projection based frequent pattern mining
algorithm in this section.

In an event centric model [10], a participation index was defined as the in-
terestingness measure. For a set of spatial features X ⊆ F , a set of objects
{o1, o2, . . . , ok} is an instance of X iff (∀i, i ∈ [1, k], oi ∈ SDi) and (∀i∀j, 0 < i <
j ≤ k, (oi, oj) ∈ R). The participation ratio pr(f,X) of a feature f in a pattern
X is defined as:
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pr(f,X) =
number of objects of f that participate in any instance ofX

total number of objects of f

The participation index of a pattern X is defined as: pi(X) = min∀f∈X{pr(f,X)}.
Because of the downward closure property of the participation index [10], a
generate-and-test mining paradigm was employed by previous algorithms, e.g.
Co-location Miner. This approach generates the candidate size k+ 1 co-location
set based on the size k co-location set. The candidate size k + 1 co-location set
includes all and only those size k+ 1 spatial feature set whose size k subsets are
all co-locations. Then it uses spatial joins on the instances of size k co-locations
to generate the instances of the size k + 1 candidates and calculate the par-
ticipation indexes for them. It prunes false candidates before starting the next
iteration.

Projection based frequent pattern mining utilizes a highly condensed prefix-
tree structure to compress frequent patterns and employs a pattern fragment
growth method for mining the complete set of frequent patterns from the prefix-
tree. Due to the reduced number of database scans, this algorithm is very fast
compared with traditional generate-and-test algorithms [5]. (We refer readers to
[5] for the details of the FP-growth algorithm). However, a FP-growth based
algorithm can not be used directly in spatial co-location mining due to the
lack of transactions in spatial datasets. Transactionizing spatial datasets and
establishing the relationship between support and participation index to develop
a complete and correct projection based co-location mining algorithm is non-
trivial.

3 A Projection Based Co-location Mining Framework

Our proposed framework is shown in Figure 3. A transactional database TDi is
created for each spatial feature fi. Any fast maximal frequent pattern mining
algorithm may be applied to each transactional database TDi to find maximal
frequent patterns MFPs = ∪i=1...KMFPi using a support threshold min sup =
min pi. The mined maximal frequent patterns MFPi are combined by a pattern
combining component to generate a superset of all the co-location patterns.
Finally, a pattern filtering component filters out the false candidate co-locations.

Based on the projection based framework, we develop an algorithm called
FP-CM, for FP-growth Based Co-location Miner. This algorithm con-
sists of four components: transactionization, maximal frequent pattern mining,
combining patterns, and pattern filtering.

1. Transactionization (step 2)
For each spatial feature f , we create a transactional database TDf as follows.
For each object o of f , a transaction containing all other spatial features
whose object(s) is(are) within neighbor R of o is created.

2. Maximal Frequent Pattern Mining (step 3)
For each transactional database TDf , we find all maximal frequent patterns
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Fig. 1. Projection Based Co-location Pattern Mining Framework

Algorithm 1. FP-CM
1: for i = 1 to K do
2: TD[i] ← transactionize(SD[1], SD[2], . . . , SD[K]);
3: MFP [i] ← FP − growth(TD[i], min pi);
4: end for
5: i ← 1;
6: C[1] ← {1, 2, . . . , K};
7: while C[i] �= ø do
8: C[i + 1] ← apriori gen(C[i]) /*refer to [1]*/;
9: C[i + 1] ← prune(C[i + 1], MFP [1], MFP [2], . . . , MFP [K]);

10: i ← i + 1;
11: C ← C ∪ C[i];
12: end while
13: P ← multi − way − spatial − join − prune(C, min pi);
14: return P ;

based on the FP-growth frequent pattern mining algorithm using a support
threshold min supf = min pi in this step.

3. Combining Patterns (step 5-12)
The basic structure of the combining pattern step is the level-wise structure
of CM [10]. However, it does not require expensive spatial joins to calculate
participation indexes. Instead, it consults the MFPs to prune the majority
of the false candidate patterns. This step will produce a superset of the true
co-location patterns to feed to the next pattern filtering step.
The prune step (step 9) works as follows. For each candidate pattern C,
∀f ∈ C, if MFPf does not contain a superset of (C − f), then C is pruned.
This will not falsely delete any true patterns since pr(f,X) ≥ min pi implies
(C − f) is frequent and should have a superset in MFPf .

4. Pattern Filtering (step 13)
Once we reduce the total number of candidate co-location patterns from
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2#features to a small superset of the true co-location patterns, we can use
hash-based spatial join techniques [6] and multi-way spatial joins [8] to filter
the patterns. We hash spatial datasets into buckets using a grid [6] and then
use a multi-way spatial join which is based on a backtracking search heuristic
[8] to find all the maximal cliques. We keep the list of all the candidate
co-location patterns from the previous step and register the cliques to their
corresponding candidate co-location patterns. Finally we calculate the actual
participation indexes for each candidate co-location pattern and return the
set of all co-location patterns found.

The FP-CM algorithm requires a small number of database scans. One database
scan is required to transactionize the spatial data, then FP-growth based maxi-
mal pattern mining requires two or a few database scans depending on the aver-
age size of the FP-trees. Combining patterns involves only spatial features and
the maximal frequent pattern sets and usually is a memory based step. Finally,
the pattern filtering step using gridding and multi-way spatial joins requires two
more database scans. So the total number of database scans of FP-CM algorithm
is bounded by a small constant.

4 Experiment Results

We implemented both the co-location miner (CM) and FP-growth based co-
location miner (FP-CM) using C++ and all the experiments are carried out on
a Pentium IV 2.4GHz machine with 1GB memory, running the Debian linux
operating system. Our experiments are extensive and the results are consistent.
Limited by space, we only report representative results for various parameters.
Our dataset generator is similar to [1].

We use a notation like |P |50.PS5.|F |100.|I|24k.min pi0.4 to denote an ex-
periment with 50 pre-generated patterns whose average size is 5 and the number
of features participating in a pattern is 100, 24k spatial objects, and minimum
participation index threshold is 0.4. Since the time for computing size 2 co-
locations are the same (one database scan) for both algorithms, we only report
the time for calculating size 3 or more co-location patterns.

1. Effect of thresholds:
As Figure 2 (a) shows, FP-CM is much faster than CM for all the threshold
range in [0.5,0.2]. The advantage of FP-CM over CM increases when the
participation threshold decreases due to the increased number of candidate
patterns and associated spatial joins CM has to perform. FP-CM is an order
of magnitude faster than CM when the participation index threshold is low.

2. Effect of total number of Objects:
We compare the scalability of the two algorithms when the total number of
objects increase from 5k to 50k. As shown in Figure 2 (b), FP-CM is 5 to 40
times faster than CM and the running time of the FP-CM algorithms remains
almost the same while the running time of the CM increases dramatically.
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Fig. 2. Performance Comparison of CM and FP-CM

3. Effect of Average Maximal Pattern Size:
Figure 2 (c) shows the result when the size of the pattern ranges from 3 to
10. FP-CM is 3 to 18 times faster than CM. The running time of FP-CM is
stable as the size of the patterns increases while the the running time of CM
highly correlates with the total number of co-locations found.

4. Effect of Number of Patterns:
We range the number of non-noise spatial features from 50 to 250 as shown
in Figure 2 (d). FP-CM is up-to 12 times faster than CM when the number
of non-noise spatial features increases.

5 Conclusion and Future Work

In this paper we proposed a projection based framework for mining spatial co-
locations, which is flexible in incorporating any fast maximal frequent pattern
mining algorithm developed in literature to help spatial co-location mining. In
particular, we developed a complete and correct FP-tree based algorithm for
spatial co-location mining. It combines the salient features of FP-tree based
maximal frequent pattern mining [5] and fast multi-way spatial joins [8] to reduce
the total number of database scans into a small constant. Our experiment results
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showed that the FP-CM is an order of magnitude faster than a generate-and-test
algorithm Co-location Miner.

The proposed projection based co-location mining framework could be treated
as a new data-driver partitioning of spatial datasets according to the objects of
each spatial features. Compared with traditional spatial partition approaches
[11], this approach does not have the problem of combinatorial explosion of tem-
porary candidate patterns needed to be maintained by the algorithm before all
the partitions are processed as acknowledged by the authors in [11]. In future
work, comparing various partition based co-location mining algorithms would
be an interesting and imperative research direction.
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Abstract. This paper presents a compression method, PatZip, to improve the 
efficiency of spatial pattern mining methods. PatZip can avoid overcompression 
and stop automatically before pattern is destroyed. Compared with existing 
compression methods, PatZip is deterministic and its result is reproducible, and 
original data can be easily recovered. The compression process is data-driven 
and parameter-free, and requires only O(nlogn) time for n data points. 

1   Introduction 

Spatial data mining presents new challenges due to the large size and the complex 
structure of spatial data. A common approach to such challenges is to perform some 
form of compression on the initial databases and then process the compressed data 
[7]. General requirements for a quality compression include: 

• Minimal information loss. Information needed by the mining methods should be 
preserved in the compressed data while the size of the data is significantly reduced. 
To minimize the information loss, there should be a mapping between the 
compressed data and the original data so that the original data can be recovered 
when necessary.  

• Efficient. For data mining purposes, a compression becomes worthwhile only if it 
can make the mining process more efficient. In most cases, compression methods 
cannot be slower than mining methods. Otherwise, the efficiency of the whole 
process is decreased. 

• Data-driven. In many cases there is no prior knowledge about the given data. A 
general compression method should not make assumptions on data features but let 
the data speak for themselves. 

This paper addresses spatial data compression problem from the above 
perspectives and presents a compression method called PatZip that meets all above 
requirements. PatZip extends the idea of GraphZip [14] that merges closest data 
iteratively based on a nearest neighbor graph by adding an automatic termination 
scheme. In PatZip, the compression process stops when the distortion caused by the 
merging grows out of proportion. While most existing compression methods require 
user-specified parameters on the size of compressed data, PatZip can detect when 
compression should stop so that overcompression or undercompression caused by 
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wrong inputs can be avoided. The termination detection is based on a comparison 
between predicted distortion and actual distortion as the compression continues. Since 
the predicted distortion is computed by assuming that merging happens only inside 
patterns, if the actual distortion is greater than the predicted value, some patterns have 
been wrongly merged together and compression stops before such a merging happens. 
This paper studies and discovers the properties of PatZip with comprehensive 
experimental studies. The discovered properties imply that PatZip can be used to 
compress source data for pattern mining. PatZip has been applied to assist FAÇADE 
[13], a clustering method, to discover spatial patterns effectively.   

The rest of this paper is organized as follows. Section 2 reviews related work. The 
process of PatZip is described in Section 3. Section 4 studies the properties of PatZip 
through experiments. Section 5 concludes the paper. 

2   Related Work 

There are two general approaches to spatial data compression: summary construction 
and sampling [4]. The representative summary construction methods include micro-
clustering and vector quantization. K-means [11] and Birch [16] are two representative 
micro-clustering methods while LBG algorithm [10] and PNN algorithm [5] are two 
classic vector quantization methods. Sampling approaches include random sampling 
(also called uniform sampling) and biased sampling. There have been some improved 
versions [1, 6, 9, 12] of these methods proposed in recent years.  

2.1   Sampling 

Random sampling may be the most popular size reduction method used in data 
mining. Its idea is straightforward: given an integer k and a data set with n data points, 
choose k data points randomly as the substitution for the original n points. Random 
sampling has advantages on efficiency and generality. Its disadvantages, however, are 
apparent: the inaccuracy introduced by sampling variance, the missing of small 
clusters, and the inability of reproducing or repeat the execution process. Random 
sampling does not provide a mapping between the compressed data and the original 
data, so the original data are usually recovered with a nearest neighbor classification, 
which is computational expensive when the sample is big. 

Palmer and Faloutsos [12] propose a density-biased sampling method to solve the 
small-cluster-missing problem caused by random/uniform sampling. The heart of their 
method is the use of group size to bias the sample. Kollios et al. [9] point out that 
density-biased sampling is more accurate for cluster detection than uniform sampling, 
especially when noise exists. Their approach can detect either clusters or outliers 
efficiently through setting different density thresholds, which, however, is not a 
guided process when lacking knowledge about the given data. 

2.2   Micro-clustering 

Theoretically speaking, all efficient data clustering methods can be used as micro-
clustering to reduce data size. The two most widely used methods are: k-means [11] 



728 Y. Qian, K. Zhang, and D.T. Huynh 

 

and Birch [16]. The disadvantages of k-means include: low efficiency when k is big, 
results relying on the initial point selection, and an input, i.e., k, from the user about 
the size of the compressed data, which is usually difficult to set. Bradley et al. [1] 
propose an approach to perform k-means clustering more effectively by finding good 
initial points for it. Bradley’s approach, however, introduces more parameters and is 
still not efficient when k is big.  

BIRCH [16] is an efficient clustering algorithm for large databases, which is 
sensitive to data input order. Several concepts like radius, diameter, and centroid are 
used in Birch to describe the distance properties of a cluster, which leads to inaccurate 
compression for non-sphere regions. GraphZip [14] is a recently published graph-
based micro-clustering method. PatZip and GraphZip use a similar way generating 
representative points of the original data. PatZip, however, can detect the termination 
point of the compression automatically while GraphZip fixes the size of compressed 
data in the algorithm. To our knowledge, PatZip is the first compression algorithm 
that does not require user input on size of compressed data. 

2.3   Vector Quantization 

The idea of vector quantization is to identify a set of possible vectors which are 
representative of the information/data to be encoded. The set of the representative 
vectors is called codebook. Aiming at minimizing the distortion between the 
codebook and the original data, the codebook generation method decides the quality 
of compression.  

The most popular code book generation method is the LBG algorithm [10]. Its 
idea on representative point generation is exactly the same as that of k-means while 
their usages are different. While k-means is for unsupervised learning, LBG is 
supervised. Grouping in LBG will be used to encode future data and the original 
grouping will remain unchanged. This is also the main difference between micro-
clustering and vector quantization methods. PNN (Pairwise Nearest Neighbor) 
algorithm [5] is another well-known codebook generation method for vector 
quantization. In each step of PNN, two closest vectors are merged and the process is 
repeated until the desired size of the codebook is reached. To minimize the average 
distortion, PNN requires O(n3) time for n data points to complete the generation of 
the codebook [6].  

PatZip is distinguished from the aforementioned approaches for several desirable 
properties. First of all, PatZip is data-driven and completely automatic. Both summary 
construction and sampling approaches require users to provide the size of 
summary/sample. As a result, one has to guess how many points can represent the 
patterns, which not only increases burden on users but also causes overcompression or 
undercompression. Summary construction methods usually contain additional 
parameters for the models they use, which are also hard to set without prior 
knowledge. Secondly, PatZip is fast. Its requires only O(nlogn) time for n data points. 
Thirdly, PatZip is deterministic. Its result is reproducible and original data can be 
recovered from compressed data.  
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3   PatZip 

PatZip is a recursive process and contains multiple running cycles. It represents the 
original data set with a 1-neareset neighbor graph and takes the graph as the input of 
the first running cycle. In each running cycle, new data points will be generated by 
substituting the points produced in the previous running cycle. Each running cycle is 
called a compression stage and the new points generated are called representative 
points of the substituted points. The iterative process ends when the size of the data 
drops to 1 or a termination condition is satisfied. Section 3.1 will introduce how the 
representative points are generated through adapting GraphZip [14] and Section 3.2 
will explain the automatic termination of compression, which is the major 
contribution of this paper. 

3.1   Compression 

Before presenting the process 
of PatZip, let us first introduce 
the concept of k-nearest 
neighbor graph briefly. 
Generally, each vertex of a k-
nearest neighborhood graph 
represents a data item. For 
each pair of data items, if 
either of them is among the k-
most similar data items of the 
other, there exists an edge 
between the two 
corresponding vertices. In a 
spatial database, the data 
items are the points in a metric/dimensional space and the similarity of two data 
points is usually measured by the Euclidean distance between them.  

As shown in Fig. 3.1, PatZip is an iterative process, which accepts the output of the 
previous running cycle as the input and replaces each connected component with its 
centroid point. When the number of points of the original data set, n, is decreased to 1, 
i.e., the final representative point, the iteration stops. The point p in Fig. 3.1 is called the 
representative point of C, and the element points of C are called member points of p.  

The time complexity of PatZip can be decided in a similar way to that of GraphZip 
[14]. It depends on the time to construct the 1-nearest neighbor graph and find the 
connected components. Constructing a 1-nearest neighbor graph can be considered as 
the problem of constructing all-nearest-neighbors, i.e., given a set S of n points in ℜd, 
we want to compute for each point p of S another point of S that is closest to p. There 
have been many literatures on efficiently finding all-nearest neighbors. The first 
O(nlogn) time algorithm for the all-nearest-neighbors problem for an arbitrarily fixed 
dimension d was given by Clarkson [3], using randomization. Vaidya [15] solves the 
problem deterministically, in O(nlogn) time. Vaidya’s algorithm can be implemented 
in the algebraic computation tree model and is, therefore, optimal. To find the 
connected components in an undirected graph with n vertices and m edges requires 

Algorithm PatZip (Data Set D) 
begin 
Construct 1-nearest neighbor graph G for D; 
Create an empty data set D’; 
For each connected-component C of G: 

Generate a point p that is located at the center of C; 
  Add p to D’ and update the mapping file; 
if |D’|=1 return D’; 
else PatZip(D’);    
end 

Fig. 3.1. The PatZip algorithm without termination 
condition 
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O(n+m) when using a DFS or BFS tree. Since m ≤ kn in a k-nearest neighbor graph 
while k=1 in PatZip, i.e., m ≤ n, the time complexity of the first iteration of PatZip is 
O(nlogn)+O(n+n)=O(nlogn). Now let us analyze how many iterations PatZip needs 
to run before reaching the final representative point. 

Theorem 3.1. PatZip requires O(log(n)) iterations to compress the size of a given data 
set from n to 1. 

Proof. Assume that after the first iteration, there are X1 connected components in the 
1-nearest graph of the given data set. According to the definition of k-nearest neighbor 
graph, every node has at least k edges connected. Since k≥1, there is no isolated node 
in a k-nearest neighbor graph. In other words, each connected-component in the 1-
nearest neighbor graph has at least two nodes, i.e., X1 ≤ n/2. Generally, let Xi denote 
the number of connected components after i iterations and X0=n, we have Xi ≤ Xi-1 /2. 
Solving the formula X t=1, i.e., n(1/2)t=1 based on the recursive expression for 
variable t leads to t≤ log(n).                

Theorem 3.1 indicates that the total time complexity of PatZip is the sum of all of 
the log(n) iteration steps: 

O(nlogn+(n/2)log(n/2)+…+O(1)) 
<O(nlogn+(n/2)log(n)+…+log(n)) 

                                         =O((n+n/2+…+1)log(n)) 
                                         =O(2nlogn)=O(nlogn). 

The algorithm depicted in Fig. 3.1 can be easily extended to accept a user input to 
specify the termination condition when necessary. The condition could be a lower 
bound of the size of the compressed data or a maximum allowable compression ratio. 
By judging if the compressed data set satisfies the user-specified constraint, PatZip 
can terminate under user’s control. The better way, however, is to let PatZip terminate 
automatically through estimating the compression distortion, as described in the 
following section.  

3.2   Termination Condition 

The process of PatZip is data-driven. The original data points will be recursively 
merged until the size of the data reaches 1, i.e., the final representative point. In most 
pattern mining applications, however, it is desirable to stop before reaching the final 
representative point so that spatial patterns can be preserved. For example, spatial 
clustering methods should be applied to a set of compressed data that still contains the 
cluster information. This section will show how PatZip can detect the termination 
condition of a compression before losing spatial patterns. 

The basic idea of detecting the termination condition is to judge the distortion 
caused by compression. The distortion definition used in this paper is the popular 
square sum used by many previous approaches [5, 6, 16]: let G denote a set of n data 
points: X1, X2,…, Xn, and their corresponding representative points C(X1), C(X2), …, 
C(Xn), where C(Xi) is a function that returns the representative point of Xi, and dist(Xi, 
C(Xi)) is the Euclidean distance between Xi and C(Xi). Distortion is defined as the 
radius r of G: 
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We compute a distortion value at every compression stage and check the value 
increment. If the value increases out of proportion, then we think one or more spatial 
patterns have been destroyed, compression should stop. To justify this method, let us 
see first why the distortion value would increase out of proportion when spatial 
patterns are destroyed in continuous compressions. According to the definition, 
distortion is the average distance from member points to their representative point. 
Since inter-cluster distances are significantly larger than intra-cluster distances, a 
representative point that represents the data points from different clusters would have 
a much bigger distortion than a point that represents the data points within the same 
cluster. The more data points from different clusters are mixed up, the faster the 
distortion value increases. The increase will not be gradual but sharp when patterns 
are destroyed. At the beginning of the compression, the nearest neighbor of a data 
point is in the same cluster and merging happens only inside the cluster. As 
compression continues, two representative points belonging to different clusters may 
be merged. There are two possibilities in this case. First, the whole cluster has been 
merged into one point A which will be merged with point B belonging to another 
cluster if the compression continues. Second, due to various shapes of clusters, as the 
compression continues, a point representing part of cluster A may be nearer to a point 
representing part of cluster B than to other representative points of cluster A. In either 
case, points A and B have accumulated some member points from previous 
compression stages. Merging A and B would cause the distortion value increase 
substantially so that this “illegal” merging can be detected and avoided. This rule 
holds for clusters of different shapes, densities, and sizes, with the only assumption 
that inter-cluster distances must be bigger than intra-cluster distances. That is, when 
two sets of points are merged together and distortion value does not increase sharply, 
the two sets must belong to the same cluster, or neither of them represents a 
significant number of data points, implying a merge between outliers and thus not 
affecting the true patterns. In summary, a compression stage whose distortion values 
increase disproportionally is considered a termination stage before which compression 
should stop. 

Then let us quantify what is a 
“disproportional increase” when 
distortion value increases as 
compression continues. A naive idea 
is to estimate the distortion increase 
with a fixed threshold. When the 
increasing ratio of distortion exceeds 
the threshold, compression terminates. 
Setting a rea sonable threshold, 
however, is difficult. By observing the 
relation between the increase of the 
distortion and the decrease of the data 
size, we devise a more accurate data-
driven solution without using any 

Fig. 3.2. The approximation of distortion
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threshold: predicting the distortion value of each compression stage with the reducing 
number of data points at the stage. The predicted value is computed by assuming that 
merges happen only inside clusters so that when a merge cross different clusters 
occurs, the distortion would be greater than the predicted value. That is, when the 
actual distortion is bigger than the predicted value, compression stops. According to 
its definition, distortion is the average distance between member points and 
representative point, which can be approximated as the radius of the representative 
point’s scope1. Because the area of the whole spatial data set is fixed, when the 
number of representative points decreases, the average scope of each representative 
point increases, which causes the radius, i.e., the distortion, increases. The 
approximation process is presented formally as follows. Given a d-dimensional data 
set and two sequential compression stages Ai-1, and Ai, let Si-1 denote the size of the 
data set at stage Ai-1, Si the size at stage Ai, Ri-1 the average area of the representative 
point at stage Ai-1, and Ri the average area at stage Ai, we have Ri-1Si-1=RiSi because the 
total area is fixed. Then we have 

d
1-i

d
i1-iii1-i /rr/RR/SS ==                                             (2) 

where ri-1 and ri are the radii of the average areas of the representative points at stages 
Ai-1, and Ai, respectively. Let Di-1 denote the actual distortion at stage Ai-1, and Pi the 
predicted distortion at stage Ai, ri-1=Di-1 in a continuous space. For the discrete space 
of the spatial data set, however, we need to consider the interval between the data 
points, i.e.:  

ri-1=Di-1+ , ri=Pi+                                          (3) 

where  is the half of the average interval between two neighbor points of the original 
data set, as shown in Fig. 3.2. Based on Formulas (2) and (3), we obtain the 
approximate definition of predicted distortion as follows. 

Definition 3.1. (Predicted Distortion) 
The predicted distortion at compression stage Ai is:  

Pi = (Di-1 + ) (Si-1 / Si)
1/d –                                           (4) 

Similarly, we can approximate  with D1 because D1 is the distortion of the first 
compression stage and  is the radius of the area of this stage. Finally, we have: 

Pi = (Di-1 + D1) (Si-1 / Si)
1/d –D1  ∀i>1                                   (5) 

Definition 3.2. (Termination Stage, Termination Condition) 
A compression stage At is the termination stage of compression when the following 
termination condition satisfies: ∀ i<t, Di  Pi and Dt > Pt.   

Definition 3.2 can be easily justified as follows. Because Pi is computed as the 
average distortion with uniformly distributed data points, at the beginning of 
compression, say, at stage Ai, the value of Di is mainly affected by intra-cluster 
distance and smaller than the average, i.e., Pi. When patterns are mixed up at stage At, 
Dt will be mainly affected by inter-cluster distances, which are typically much larger 
than the average, i.e., Pt. 

                                                           
1

  Scope of a representative point covers the area occupied by all the member points of the 
representative point. 
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In summary, compression 
will terminate before the stage 
whose actual distortion is 
bigger than the predicted value. 
The self-terminated version of 
PatZip is described in Fig. 3.3. 
The effect of the approximation 
will be evaluated in Section 4. 

4   Properties of PatZip 

This section will investigate the 
properties of PatZip. Section 
4.1 will demonstrate the 
compression results while 
Section 4.2 will evaluate the 
termination scheme.   

4.1   Experimental Results 

Three different testing data sets have been collected for our experiments and 
visualized in Fig. 4.1 (a). DS1 is a benchmark data set of Birch [16], containing  
 

 

Fig. 4.1. (a) The 6 testing data sets; (b) The 6 compressed results after applying PatZip 
(compression ratio: 50) 

 

Algorithm PatZip (Data Set D) 
begin 
Construct 1-nearest neighbor graph G for D; 
Create an empty data set D’; 
For each connected-component C of G: 

Generate a point p that is located at the center of C; 
Compute distortion of p using C and mapping file; 

Add p to D’ 
Add distortion of p to ad, i.e., the actual distortion; 
Compute the predicted distortion pd with Formula (5); 
if (pd<ad) or |D|=1 return D; 
else 
update the mapping file; 
PatZip(D’); 
end 

Fig. 3.3. The self-terminated PatZip algorithm 
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100,000 points. DS2 is a benchmark used by CHAMELEON [8], which contains 
clusters of different shapes and 10,000 data points. DS3 is our synthetic data set that 
simulates the data set used by DataBubble [2]. DS3 contain clusters of different 
densities and 1 million data points. 

The compressed results for the 3 data sets after applying PatZip are shown in Fig. 
4.1 (b). To make the visual examination easier, the results shown in Fig. 4.1(b) should 
not contain too few points, so we stop PatZip at compression ratio of about 50 before 
reaching the termination stage. Fig. 4.1(b) shows that the shape and density of the 
patterns are preserved while their sizes are significantly reduced, and no natural 
clusters are mixed. We believe that this result is general enough to be applicable to 
different spatial pattern mining algorithms for improving efficiency. 

4.2   Accurate Termination 

This section will evaluate the 
termination condition described in 
Section 3.2. Fig. 4.2 compares the 
predicted distortion and the actual 
distortion for DS1~3 at different 
compression stages. It clearly shows 
the termination stage when the actual 
distortion exceeds the predicted 
distortion. Table 4.1 lists the sizes of the remaining data when compression stops and 
the actual number of clusters in the corresponding data sets. We expect each 
compressed data set to have a size close to but not smaller than the actual number of 
clusters, because the closer they are, the higher efficiency will be achieved for later 
pattern mining methods. If the approximation is correct, compression will stop at the 
stage before patterns are mixed up. As mentioned in Section 3.2, two conditions can 
cause compression stop: first, a whole cluster has been merged into only one point. If 
the compression continues, this cluster has to be merged with others according to the 
process of PatZip. For example, the compressed version of DS1 has 117 data points 
while its actual number of clusters is 100. Most of these clusters have been each 
represented by only one point. If the compression continues, the 117 points will be 
merged into 26 points, i.e., 74 clusters will be merged into others. This would cause a 
sharp increase in distortion and compression will stop. The second possibility is: even 
if every cluster has more than 1 representative point, if compression continues, the 
representative points of different clusters could still be merged together due to various 
shapes of the clusters. For example, the compressed version of DS2 has 55 points 
while it has only 9 clusters. Each cluster may have more than 1 representative point 
but the compression cannot proceed. This is because for non-spherical clusters, points 
of different clusters could be nearest to each other. PatZip should not merge such 
points and should stop. Generally, the closeness between the actual number of clusters 
and the size of the remaining data depends on the discrepancy of cluster sizes and 
shapes of the original data. For a data set containing clusters of similar sizes and 
spherical shapes, the distortion increment at the termination point would be more 
remarkable, compared with those with clusters of various shapes and sizes. In such 

Table 4.1. Comparison between actual number 
of clusters and size of compressed data 

Data Set 
Size after 

compression 
Actual number 

of clusters 
DS1 117 100 
DS2 55 9 
DS3 37 15 
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cases, the size of the remaining data, i.e., the approximated number of clusters, would 
be closer to the actual number of clusters. 

 

Fig. 4.2. The comparison between the predicted distortion and actual distortion 

5   Conclusion 

This paper presents a simple but effective data compression method, called PatZip, to 
produce a compact representation of the data to scale up the spatial pattern mining 
process. PatZip has a series of desirable properties: a deterministic result with high 
cohesiveness, a fast compression speed, and a data-driven process without requiring 
any prior knowledge about the data. The compression can terminate automatically 
before breaking the spatial patterns. These properties and the corresponding 
experimental studies make us believe that PatZip should appeal to a large collection 
of pattern discovery methods. In the future we will investigate the impact of different 
data on prediction of termination stages and how to optimize PatZip for more pattern 
mining algorithms. 
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Similarity Between the Fourier Transform of

Time Series
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Abstract. Fast Fourier Transforms (FFTs) have been a popular trans-
formation and compression technique in time series data mining since
first being proposed for use in this context in [1]. The Euclidean distance
between coefficients has been the most commonly used distance metric
with FFTs. However, on many problems it is not the best measure of
similarity available. In this paper we describe an alternative distance
measure based on the likelihood ratio statistic to test the hypothesis of
difference between series. We compare the new distance measure to Eu-
clidean distance on five types of data with varying levels of compression.
We show that the likelihood ratio measure is better at discriminating
between series from different models and grouping series from the same
model1.

1 Introduction

The growth in size and number of longitudinal databases has lead to an increase
in interest in time series data mining (TSDM) [6]. Two fundamental issues in
any TSDM task are how to measure the similarity between time series and how
to represent the data compactly without discarding important information. A
common approach to the compression problem is to transform the data series
so that the majority of the variation in the series can be captured in a small
number of terms. In this paper we concentrate on fast fourier transforms (FFTs),
probably the most popular transformation used in time series data mining (for
example, see [1, 3, 7, 9, 10]). The basic method is to take the FFT of each se-
ries, retain a fixed number of coefficients, then measure similarity between series
as the Euclidean distance between the retained parameters. The objectives of
this paper are to introduce an alternative distance measure based on the likeli-
hood ratio statistic for testing the significance of differences between series and
to demonstrate that this measure produces better results on types of data for
which an FFT approach should be appropriate. We maintain that, if the prob-
lem is complex enough to merit the use FFTs, then the likelihood ratio statistic
will tend to give better results than Euclidean distance. Informally, this is be-
cause the likelihood ratio is better able to detect consistent differences between

1 This work is supported by an EPSRC CASE award with Masterfoods Europe.

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 737–743, 2005.
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small coefficients that may be undetected with Euclidean distance because of
fluctuations in the larger fourier terms.

2 FFT in Time Series Data Mining

For a real valued time series y, defined over discrete intervals y(t), t = 1, · · · , n,
the fourier transform represents y as a linear combination of sinusodal functions.
After transformation a series is commonly compressed by retaining only the
first of the FFT coefficients [1]. The Euclidean distance between the first fc

coefficients of series x and y with coefficients (p, q) and (r, s) is then

dE(xf , yf ) = 2 ·
fc∑

i=1

(pi − ri)2 + (qi − si)2 (1)

For complex mining problems where the use of FFT is justified, Euclidean dis-
tance can give too much preference to small variations in the largest coeffi-
cients, masking more complex differences in the wider spectrum. To overcome
this problem we define a new distance measure, based on a test statistic for
a hypothesis test of whether two series are significantly different, derived from
the periodogram of a series. If series y has fourier coefficients (pi, qi) then the
periodogram of y is the sequence ai = p2

i + q2
i . If the data is stationary, each ai

can be thought of as an observation of an independent random variable Ai with
exponential density

g(a) =
1

2αi
exp

(
− a

2αi

)
i = 2, 3, · · · , n− 1.

Since we have independence, the likelihood of our series is

L(a) =
n−1∏
i=1

1
2αi

exp
(
− ai

2αi

)
.

We can use the likelihood function to determine the similarity of two series by
constructing a likelihood ratio hypothesis test. Assume for simplicity that the
two series are the same length and have periodograms ai and bi. Assuming only
the first fc coefficients are retained, the likelihood ratio statistic can be simplified
to

dL(xf , yf ) = 4
fc∑

i=1

{2 log(ai + bi)− log ai − log bi} (2)

The major benefit of basing the distance on the likelihood ratio statistic is that
it asymptotically follows a known distribution, and so could be used to not
only measure the distance between series, but also test whether that distance is
significant. dL can also be better at discriminating between series for problems
where an FFT approach would seem to be appropriate: it is less influenced by
small fluctuations in the larger coefficients, and better at detecting consistent
variation in the smaller coefficients. A more complete description of the distance
measure and the experimentation is provided in [4].
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3 Experimentation

Experiments with simulated data are designed to test two things over a class of
model, M. Firstly, we test whether the likelihood ratio distance metric is better
at discriminating between data from models in M. Secondly, we test whether
any detected difference in discrimination effects the clustering and classification
accuracy. To measure how well each distance metric discriminates, for each pair
of models we measure the percentage difference, D, in the average distance of
series from the same cluster to the average distance between series from different
clusters. 100 random model pairs are generated to create 100 within and between
distance estimates for dE and dL for different coefficient sizes. To estimate how
well each measure would classify series, we form a correctness function C which
is 1 if the distances between series from the same model are less than all the
differences from series of different models, and 0 otherwise.

3.1 Sinusoidal and AR(1) Data
We demonstrate the benefits of using dL on data from stationary order one
auto-regressive models (AR(1) models), which take the form

x(t) = φx(t− 1) + ε (3)

where ε is a random variable with a standard normal distribution and φ ∈
(−1, 1). AR(1) models have been used extensively in TSDM research [2, 5] and
are a good basis for testing how well a distance metric measures similarity based
on change. For each run, two random AR(1) models X and Y were selected with
φ ∈ (−1, 1). Figure 1 shows boxplots for the average (over 100 observations)
within and between distance when the first 4 coefficients are retained. The left
hand figure shows that, when using dE , although the median for within distance
is lower than the median between distance, there is a large amount of overlap
between the distributions. In contrast, when using dL, the largest difference in
the between distance is lower than the median of the within distances, and there
is clearly much greater discrimination than with Euclidean distance. The results
presented in Table 1 show that dL provides a better means of discriminating
between series than dE . The difference is significant at all levels. It is also inter-
esting to note that the discriminatory power of dE actually decreases with the
number of coefficients retained. This is caused by the fact it gives too great a
weight to small fluctuations in the larger parameters, and the more coefficients
retained the greater the chance of this resulting in an incorrect grouping. We
also consider a class of model where an autoregressive structure discriminates
the models, but where a common cyclical trend may cause a distance metric to
be unable to detect differences. Let

x(t) =
r∑

j=1

aj(sin(bj + cj · t)) + ε, (4)

where ε is a random variable with a standard normal distribution. The pa-
rameters a, b and c control the amplitude, offset and frequency of the curves
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Fig. 1. Distribution of the average difference between different and within the same

models for (a) Euclidean distance and (b) Likelihood ratio distance

Table 1. Percentage difference between within and between cluster series, D, and

number of correct classifications, C, for AR(1) and combination series of length 1024.

Low values of D indicate better discrimination

AR(1) Data AR(1)+sinusoidal Data

D C D C

Coefficients dE dL dE dL dE dL dE dL

2 93.43% 66.99% 1302 3090 96.20% 82.55% 1223 2152
4 93.34% 66.40% 873 3925 96.19% 82.27% 936 3925
16 93.32% 65.74% 298 5622 95.88% 81.68% 539 5622
64 93.86% 67.95% 202 6661 96.57% 83.98% 347 4079
128 94.87% 72.99% 180 6858 97.54% 87.63% 280 4262
256 96.72% 81.42% 161 6727 98.64% 92.37% 275 3894
512 99.07% 81.07% 281 7131 99.54% 91.61% 325 5221

respectively. Suppose y(t) is an AR process as defined in Equation 3. Let the
class of Sinusoidal and AR(1) models be z(t) = x(t) + y(t). Our objective is to
detect whether the distance metrics can detect the difference in autocorellation
structure even when series have the same sine wave series. Hence for a particular
experiment involving two models we randomly generate a single sine model of
the form given in Equation 4 and combine it with two separate AR(1) models.
Table 1 shows the the average observed value of statistics C and D for both dE

and dL. Although the extra cyclical trend of the sine data reduces the power
of both distance metrics, dL is still better at detecting the difference between
series. The following clustering experiments also show the benefit of using dL. k
models are randomly selected and l series are generated from each model. Clus-
ters are found using k-means and partitioning around the medoid (PAM) (both
restarted 100 times at random initial data points) and the accuracy is measured
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Table 2. Clustering accuracy averaged over 100 runs for two clusters of combination

series

PAA dE dL

Coefficients k Means PAM k Means PAM k Means PAM

512 59.40% 56.90% 59.75% 56.20% 68.00% 72.05%
256 60.15% 57.05% 59.55% 57.55% 67.30% 69.55%
128 61.25% 57.10% 61.55% 57.25% 73.80% 78.25%

against the known true clustering. The process is repeated 100 times to estimate
the average clustering accuracy for compression ratios (i.e. different numbers of
retained coefficients). Table 2 shows the clustering results for Piecewise Aggre-
gate Approximation (PAA) (with Euclidean distance), dE and dL. Given that
the difference between series is in the autocorellation structure, PAA is not a
suitable transformation and hence the clusters found should simply reflect the
differences in the common sinusoidal component. The results shown in Table 2
demonstrate that although there are differences in performance of the cluster-
ing algorithms, the clusters formed with dL are consistently more like the true
clusters than those formed using dE .

3.2 ECG Data

ECG data has commonly been used in TSDM [2, 5, 6] and has the characteristic
that it has a underlying cyclical trend that is not the true cause in the differences
between series from different clusters. To show how dL can produce better clus-
ters than dE we cluster an ECG data set first used in [5]. The data consists of 70
series of ECG measurements of patients with malignant ventricular arrhythmia
(V), normal (N) or superventricular arrhythmia (S). Table 3 shows the clustering
accuracy results with both dL and dE distance measures. In each cell of Table 3
the first number is the k-means accuracy and the second that achieved with
PAM. The results are comparable to those reported in [5] for PAM with FFT
and Euclidean distance. Although there is variation in performance of the clus-
tering algorithms, in all but two cases (were the performance was equal) using
dL rather than dE gave a higher accuracy. From the dendrograms (not shown
because of space restrictions, see [4])the level three clusters formed with nearest
neighbour linkage demonstrate the superiority of the dL distance measure. The
clusters formed by dE are (N,V,N,V,S,S,S), (V,V,S) and (V,V,S,N,C,V,N). The
clusters formed by dL, (V,V,S,V,V,S,V), (N,N,N,N,S) and (S,N,S,S) are much
closer to the correct classification.

3.3 Motor Current Data

The simulated motor current data set used in [8] consists of 420 series of length
1500. We repeatedly randomly selected two pairs of series from different classes
and measured the statistics D and C described in Section 3. The average D
value (percentage difference of within class and between class distance) for dL
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Table 3. Clustering accuracy on ECG Data for three different experiments with k-

means and PAM

Retained Three clusters Two Clusters, N and V Two Clusters, N and S

Coefficents dE dL dE dL dE dL

256 39%\44% 53%\61% 58%\69% 69%\69% 60%\60% 68%\88%
128 39%\44% 47%\64% 60%\69% 71%\69% 58%\60% 65%\88%
64 46%\49% 49%\63% 63%\58% 71%\71% 58%\60% 53%\63%
32 46%\41% 43%\44% 65%\54% 64%\71% 55%\63% 63%\65%

was 82.83%, whereas with dE the average within distance was actually higher
than the between difference (D=104.43%, averaged over 5000 repetitions). The
number correct, C, was also higher for dL (C=850) than with dE (C= 507). The
superiority of dL is also evident when accuracy is measured with a 1-nearest
neighbour classifier on the first 16 coefficients. dE gave a classification accuracy
of 14%, whereas dL achieved only 9.8%. These accuracies are better than those
reported for a time delay neural network in [8].

4 Conclusion

In this paper we have described an alternative distance metric for use with FFTs
in time series data mining. The metric, dL, is based on the likelihood ratio for
testing the null hypothesis that the series are from the same process. It has the
desirable property of asymptotically following a known distribution and of not
being overwhelmed by small variations in the larger coefficients. We have shown
this is true for simulated and real world data.
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Abstract. We present the Temporal Investigation Method for Enregistered 
Record Sequences II (TIMERS II), which can be used to classify the 
relationship between a decision attribute and a number of condition attributes as 
instantaneous, causal, or acausal. In this paper we consider it possible to refer to 
both previous and next values of attributes in temporal rules, and thus enhance 
the definition of acausality. We also present a new algorithm for distinguishing 
between causality and acausality. 

1   Introduction 

In this paper we present the Temporal Investigation Method for Enregistered Record 
Sequences II (TIMERS II), which can be used to classify the relationship between a 
decision attribute and a number of condition attributes as instantaneous, causal, or 
acausal.  

Instantaneous rules are normal decision rules. An example rule is: if {(Outlookt = 
sunny) AND (Temperaturet > 20)} then (Playt = yes), where t indicates the time step 
of observing the attribute’s value. For causality and acausality, the results are 
temporal decision rules. For the causal case, the decision attribute's value is causally 
determined by the condition attributes, whose values all appear in the past relative to 
the decision attribute. An example is: If {(outlookt-1 = sunny) then (outlookt = sunny). 
The index t-1 indicates that the attribute’s value is seen in the previous time step. 

For an acausal relationship, values at time steps bigger than t are used in the 
process of predicting the decision attribute at time t. In TIMERS II it is also possible 
for some condition attributes to have happened in the past. An example acausal rule 
is: if {(outlookt-1 = overcast) AND (outlookt+1 = rainy) then (outlookt = rainy). In an 
acausal relation, the decision attribute's value is not caused by the condition attributes, 
but just happens to be seen together over time. In this case there may have been 
hidden common causes that affected all the attributes in the same rule. The same 
method can be used for linear spatial data, where “back” and “forward” can be used to 
indicate the relative position of an attribute’s observation. 

The formal definitions of instantaneous and causal sets of rules are given in [2]. In 
TIMERS II a set of rules is acasual if the current value of the decision attribute relies 
on the future value of at least one condition attribute [3]. 
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The rest of this paper is organised as follows. Section 2 introduces the TIMERS II 
algorithm. Section 3 presents a number of experimental results obtained from 
TIMERS II. Section 4 concludes the paper. 

2   The TIMERS II Algorithm 

We consider there to be an order of conceptual simplicity among the three types of the 
relations, with instantaneous being the simplest type of relationship, followed by 
acausality, and then causality being the most complex. Hence, instantaneous <simplicity 
acausal <simplicity causal. The intuition behind this ordering is that as we move from 
instantaneous to acausal and then to causal, more claims are being made about the 
relationship. As a principle, we try to explain a relationship with the simplest possible 
type. As we will see in Section 3, this ordering is used to choose a winning relations 
type when the results of the three tests are close. 

Temporalisation was introduced in [2]. TIMERS II introduces the sliding position 
temporalisation as explained in [3]. The temporalisation operator Temporalise(w, pos, 
D, d) takes as input a window size w, the position of the decision attribute within the 
window pos, the input records D, and the decision attribute d, and outputs 
temporalised records. The TIMERS II algorithm is shown in Figure 1. 

Input: A sequence of sequentially ordered data records D, minimum and maximum temporalisation 
window sizes α and β, where 0 < α ≤ β, a minimum accuracy threshold acth,  a decision attribute d, and 
a confidence level cl.  The attribute d can be set to any of the observable attributes in the system, or the 
algorithm can be tried on all attributes in turn. Preference determines whether the user prefers higher 
accuracy or a simpler method.  
Output: A set of accuracy values and a verdict as to the nature of the relationship among the decision 
attribute and the condition attributes. It could be spontaneous, causal, or acausal.  
RuleGenerator() is a function that receives input records, generates decision trees, rules, or any other 
representation for predicting the decision attribute, and returns the training or predictive accuracy, as 
well as the size of the generated rules. 

 
TIMERS II(D, α , β, Acth, d, cl, preference) { 
   aci = RuleGenerator(D, d);  // instantaneous accuracy;  window size = 1 
   for  (win = α  to β) 
           for (pos = 1 to win) 
                (acw,pos , ruleSizew,pos) = RuleGenerator(Temporalise(win, pos, D, d), d)  
   acc = max(acα,α, …, acβ,β)  // best causal result 
   aca = max(acα,pos1, …, acβ,pos2),  ∀ acx,pos, 1 ≤ pos < x  // best acausal result 
   if (max(aci, acc, aca) < acth) then stop.     // Maybe there is not enough related information? 
   Verdict = "for attribute " + d + ", " 
   Relation = RelationType(cl, (aci, ruleSizei), (aca, ruleSizea), (acc, ruleSizec), preference) 
   Case relation of  
          INSTANTANEOUS: verdict += "the relation is instantaneous" 
          ACAUSAL: verdict += "the relation is acausal"  // an element from the future is present 
          CAUSAL: verdict += "the relation is causal" // all condition attributes are from the past 
   end case 
   return verdict. 
} 

Fig. 1. TIMERS II algorithm for discovering the nature of a relationship 
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TIMERS II has been implemented in an application programme called TimeSleuth 
[1]. TIMERS II first performs the instantaneous test. Since it may not be obvious 
which window size is most appropriate for a particular dataset, TIMERS II tries a 
range of window sizes. The resulting temporalised data are fed to a rule generator 
which comes up with decision rules, and returns the accuracy and also the complexity 
of the rules. These measures are used to decide on a relation type. For an analysis of 
the time and space requirements of TIMERS II, see [3].  

We use the accuracy and complexity of the rules obtained from each method to 
choose the best relation type that applies to the data. Normally the method with the 
highest accuracy value would be selected. However, it may happen that the accuracy 
values are close to each other.  In such cases we choose the simpler relationship 
because the gains from choosing another relationship type may not be worth the extra 
complexity. Users can employ their discretion in making this decision. However, 
TIMERS II includes a statistical method. The RelationType() routine uses accuracy 
intervals to make a judgment about the type of the relationship. Using the confidence 
level provided by the user in the cl parameter, and assuming normal distribution, it 
constructs a confidence interval for the accuracy [4]. Then it checks to see if the 
corresponding intervals overlap. If they do, the method with the simpler type of 
relationship will be chosen provided it has simpler rules. The intuition is that even if 
the simpler method has resulted in less accuracy, it could have potentially produced 
better or the same results. After selecting a winner between the first two methods, the 
winning relation type is tested against the third relation type using similar comparison 
of intervals, to determine the final winner.  

As an example, suppose with a confidence level of 90%, we have: the 
instantaneous accuracy aci = 32.5%, intervalaci= [31%, 34%], the acausal accuracy aca 
= 35%, intervalaca = [33%, 37%], and the causal accuracy acc = 37%, intervalacc = 
[35%, 39%]. For simplicity of the example we assume all methods have the same size 
of rules. Because the confidence intervals of the instantaneous method and the acausal 
methods intersect, instantaneous is chosen because it is considered simpler. Since the 
intervals of the instantaneous and causal methods do not overlap, the causal method is 
chosen as the final verdict because of its higher accuracy value.  This example also 
shows the special case when the every two intervals are overlapping. In this case, 
starting with the first two or the last two methods give different results. In the first 
case, as shown above, we choose the method with the highest accuracy. But when 
starting from right to left (higher accuracy value to lower values) we choose the 
simplest method. We leave the decision about which direction to follow to the user. In 
the TimeSleuth programme the user can choose between "Prefer simpler method" 
(right to left) and "Prefer higher accuracy" (left to right) options. See [3] for more 
details.  

Here is how the algorithm to choose a method works. To determine which 
method/relation type to choose, we sort the accuracy values in either ascending order 
(preferring higher accuracy), or descending order (preferring simpler method). This 
different ordering simplifies the algorithm, because we do not need to worry about the 
direction after this point. Starting with the two methods with the lowest (or highest) 
accuracy values, we test to see if there is an overlap among their confidence intervals. 
If so, then we choose the simpler method. The choice of the simpler method depends 
on both the conceptual complexity of the relation as defined above, and also the size 
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of the rules that are needed to express the relationship. In our method the more space 
needed for the rules, the more complex that relationship. We use the number of 
conjuncts in the rules to measure their size, as in the Minimum Description Length 
(MDL) principle. We make the decision as to which method to choose the following 
way: If a conceptually simpler method overlaps with a conceptually more complex 
method, but at the same time requires more space to represent the rules, then priority 
is given to the more complex rule. In other words, for a simpler method to over-ride a 
more complex method, not only should there be an overlap between their accuracy 
intervals, but the simpler method should result in fewer or shorter rules. While our 
assumed order of complexity is subjective, including the size of rules adds an 
objective element to the complexity measure. If there is no overlap in the accuracy 
intervals, we choose the method with the better accuracy value. A winner is thus 
selected among the first two methods. This winning relation type is then compared 
with the third method to determine the final method. Figure 2 shows how the best 
method is selected. 

Input: A confidence level cl, three accuracy values corresponding to the instantaneous, acausal, and 
causal methods: aci, aca, acc, and their corresponding size of rules: ruleSizei, ruleSizea, ruleSizec, a  
preference p for higher accuracy vs. a simpler method. 
Output: A verdict as to the best relationship type. 
//info[].method contains one of INSTANTANEOUS, CAUSAL, or ACSUAL. info[]. Accuracy is the 
best 
//accuracy value. info[].interval contains the interval of the accuracy value, computed using a 
confidence value 

 
Function RelationType(cl, (aci, ruleSizei), (aca, ruleSizea), (acc, ruleSizec), p) { 
    // initialise the info[] structure 
    forEach (method = INSTANTANEOUS, ACAUSAL, CAUSAL) 
        info[method] = (method , accuracymethod,  ruleSizemethod, Intervalmethod =  
                                                                                                        
ComputeAccuracyInterval(accuracymethod)) 
    // if preference is given to higher accuracy, then start the search from lower accuracy values 
    if (p == HIGHER_ACCURACY)  
       sort_Ascending(info[]); // sort in ascending order of accuracy. 
    else   // SIMPLER_METHOD 
       sort_Descending(info[]) 
       winner = 1 
       for (count = 2 to 3) 
          if  (overlap(info[winner].interval, info[count].interval)) {// if overlap, then choose the simpler 
method 
            if (info[count].method <simplicity info[winner].method and 
                info[count].ruleSize ≤ info[winner].ruleSize) then 
               winner = count 
        }  
        else { // if no overlap, choose the method with higher accuracy 
            if (info[count].accuracy  > info[winner].accuracy) then 
                winner = count 
        } 
    return info[winner].method   //one of  INSTANTANEOUS, ACAUSAL, or CAUSAL 
 } 

Fig. 2. Selecting the best relationship 
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If needed, this algorithm can also select the best window size based on a number of 
accuracy values obtained in either the acausal or casual case. The order of simplicity 
is then determined by the window size, with bigger window sizes considered less 
simple. In the TIMERS II algorithm in Figure 1, we use the window size that gives 
the maximum accuracy. 

3   Experimental Results 

We report on experiments using two temporal datasets. The first one is generated by 
an artificial life programme called URAL, and involves an artificial robot moving left, 
right, up and down on an 8 × 8 board. The goal is for us to discover the effects of 
moving the robot. The position is expressed by a x and y pair. We used 2500 records 
for training, and 500 for testing the rules (to compute the predictive accuracy). This 
data comes from a controlled environment with no exceptions.  

Each record in the robot dataset contains x and y position values at any given time 
and the direction of movement at that time. We set the decision attribute to be the 
current value of x, and the other three attributes are set as the condition attributes. 
There is no relationship between the current value of x on one hand, and the current 
values of y, direction of the movement, or the presence of food on the other hand. So 
we predict that an instantaneous test (window size of 1) will give poor results. From 
our understanding of the domain we know that the current value of x depends on the 
previous value of x, and the previous direction of movement. We expect the method 
to classify the relationship as a causal one. The acausal hypothesis says that you can 
tell where you were before if you know where you are now, and which direction you 
are will be going next. This hypothesis is clearly wrong, as we could have ended at 
the current position from a different number of previous positions. Hence we do not 
expect to get good results with our acausality test. The results are shown in Table 1. 
Even though an acausal method may have been used, the output rules may not have 
any references to attributes that appear after the decision attribute. In this case the 
rules are considered to be causal, seen in under “Actual rules.”  

Considering the result with a window size of 2, we declare the relation to be 
causal. With any position bigger than 1, the previous record which contains the 
relevant information for accurate prediction of current x value, is included in the 
temporalised data. The method discovers the correct temporal relation between the 
current value of x and the previous x and movement direction, with results having 
100% accuracy with sliding positions of 2 or more. In other words, even with an 
acausal test, the rules are all causal, because they only contain attributes from the 
previous time step. 

The second series of experiments concerns a real-world dataset from weather 
observations in Louisiana [5], and hence interpreting the dependencies and 
relationships is harder. It includes 343 training records, each containing the air 
temperature, the soil temperature, humidity, wind speed and direction, and solar 
radiation, gathered hourly. 38 other records were used for testing the rules and 
estimating predictive accuracy. We set the soil temperature to be the decision 
attribute. The results are shown in Table 1. 
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The relationship is not instantaneous, as observed by relatively poor results with a 
window size of 1 (instantaneous test). The accuracy goes up after temporalisation, 
implying that there is a temporal relationship at work. This relation is not causal, and 
the current value of the soil temperature just happens to change relative to its past 
values. Since the accuracy values in causal and acausal tests are not much different, 
TimeSleuth declares the relationship between the soil temperature and other attributes 
to be acausal.  

Table 1. TIMERS II's accuracy result with the robot and weather data 

 Robot Data Weather Data 
Win Position Type  

of test 
Training 
Accuracy 

Predictive
Accuracy 

Actual  
Rules 

Training  
Accuracy 

Predictive 
Accuracy 

Actual  
Rules 

1 1 Instant 19.7% 20.4% Instant 27.7% 23.7% Instant 
2 1 Acausal 56.2 55.7% Acausal 75.1% 59.5% Acausal 
2 2 Causal 100%   100% Causal 82.7%   67.6% Causal 
3 1 Acausal 57.6% 55.6% Acausal 85.3% 75.0% Acausal 
3 2 Acausal 100% 100% Causal 82.4% 72.7% Acausal 
3 3 Causal 100% 100% Causal 86.8% 77.8% Causal 
4 1 Acausal 58.4% 58.1% Acausal 85.3% 74.3% Acausal 
4 2 Acausal 100% 100% Causal 85.9% 74.3% Acausal 
4 3 Acausal 100% 100% Causal 83.2% 74.3% Acausal 
4 4 Causal 100% 100% Causal 84.4% 71.4% Causal 

4   Concluding Remarks 

TIMERS II provides a method to discover and distinguish between instantaneous, 
causal, and acausal relationships between a decision attribute and a set of condition 
attributes. Our method is based on the passage of time between causes and effects.  
We generalised the ability to refer to attribute values from other time steps so that a 
rule can refer to condition attribute’ values that appear before and after the decision 
attribute. This ability results in an enhancement to the definition of an acausal 
relationship. We also provided an algorithmic method of distinguished between 
instantaneous, causal, and acausal relations.  

One can apply the same temporal considerations to associations, so the values of a 
number of attributes from different time steps can be associated together. However, in 
an association we do not have a distinguished decision attribute, observed at a 
reference time (the current time). So defining the future and the past may not be 
straightforward. 

TimeSleuth is available from http://www.cs.uregina.ca/~karimi/downloads.html. 
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Abstract. There are many techniques developed for tackling time se-
ries and most of them consider every part of a sequence equally. In many
applications, however, recent data can often be much more interesting
and significant than old data. This paper defines new recent-biased mea-
sures for distance and energy, and proposes a recent-biased technique
based on DWT for time series in which more recent data are considered
more significant. With such a recent-biased technique, the dimension of
time series can be reduced while effectively preserving the recent-biased
energy. Our experiments have demonstrated the effectiveness of the pro-
posed approach for handling time series.

1 Introduction

Analyzing time series is a challenging topic in the field of data modelling and
mining. In many applications, such as stock market, one concerns more about
the recent data than what happened long ago. Besides the global trend, the
recent data are very important to judge the similarity between time series and
more significant to predict and make decisions than the detail of old data. For
example, for a stockbroker, the long-term (say, six years) trend of stock price
and the detailed variances in the last month of a stock are important, but the
variance in a certain month four years ago is of little significance. In such kind of
scenarios, a mechanism which favors the recent is called for. Nevertheless, most
of the techniques for time series give equal significance to all data in the series.
In this paper, we design a recent-biased technique to tackle the above problem.
With our method, recent data are given more significance and kept with finer
resolution, while old data with coarser resolution. Weights for DWT coefficients
are derived from a decaying function, and then the coefficients with the largest
k weights are chosen as the representation of the time series. Our technique
is different from SWAT [1] in that the largest k coefficients are kept with our
method while only a single coefficient is maintained at each level with SWAT.
Our technique is also different from the traditional method of keeping the largest
k coefficients and the RAM-DS algorithm [8], because with our technique the
largest k coefficients are obtained from the weights only and has nothing to do
with specific time series. However, the subsets of largest coefficients are different
for different time series with both the tradition method and RAM-DS. The same

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 751–757, 2005.
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subset of coefficients for all time series is used in [6], but the subset of coefficients
are obtained from all time series without weighting.

2 Related Work

In this section, related work on similarity measures, dimension reduction and
recent-biased techniques for time series data will be introduced. Euclidian Dis-
tance and other Lp-norms are popular to measure the distance between time
series. Another measure, DTW (Dynamic Time Warpping), is designed to han-
dle time series with some time shifts.

Because time series is usually of very high dimension, the dimension has to
be reduced to improve the efficiency of computation. Popular techniques include
PCA, DFT (Discrete Fourier Transform), DWT (Discrete Wavelet Transform)
[6], Landmark [7], major minima and maxima [4], PIP [3], PAA [5], etc. With
DWT, a time series can be represented by a rough sketch by keeping only the first
coefficients. Some researchers propose to use the largest coefficients to preserve
the optimal amount of energy, or to choose the same subset of the coefficients
for all time series for the ease of computing similarity [6].

As to recent-biased techniques, Bulut et al designed a structure named SWAT
[1] to process queries over data streams that are biased towards the more recent
values. A time weighting function is defined in [8] so that the old data values
are with lower weights, and then more resources can be utilized to explore more
recent data with finer granularities. Cohen et al uses decay functions to maintain
time-decaying stream aggregates [2].

3 A Recent-Biased Technique for Dimension Reduction

Fig. 1. An Example of Time

Series

Our idea comes from the observation that recent
data are usually more important than ancient data.
Considering the time series shown in Figure 1, which
pair of S1S2 and S1S3 is more similar? In many
applications, we care more about recent data than
ancient data, then S1 and S3 is more similar than
S1 and S2, since the difference between S1 and S3

happened long ago. However, the Lp-norm distance
between S1 and S2 is 1 , while that between S1

and S3 is also 1. So the two pairs are of the same
similarity according to Lp-norm distance. If using
( 1
8 , 2

8 , 3
8 , 4

8 , 5
8 , 6

8 , 7
8 , 1), as the weights, the distance between S1 and S2 is 0.75,

while that between S1 and S3 is 0.25. Therefore, S1 is more similar to S3 than
to S2 when a biased distance measure is used.

Since old data become less significant as time goes by, a bias can be given
to recent data. A simple idea is to give larger weights to more recent data.
Actually, decaying functions are used widely for processing time series data.
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For example, exponential decaying functions are used for time series to find
recent frequent itemsets adaptively, and to explore temporal and support count
granularities in data streams [8]. In addition to exponential functions, polynomial
and ployexponential decaying functions are also considered to maintain time-
decaying stream aggregates [2]. Similarly, we define a recent-biased function as
follows to help keep more recent data at finer scales. Recent-biased function B =
b(t), t ≥ 0 is a monotonously decreasing function with b(0) = 1 and b(+∞) = 0,
where t is the time elapsed till now.

The most common used decay function is exponential function, bt = dt, where
t is the time elapsed, and d is the decay factor, 0 < d < 1, α > 0. Linear decay
can be get with linear function bt = n−t

n , where 0 ≤ t ≤ n and n is the length
of time series. Based on the above recent-biased function, the recent-biased Lp-
norm distance with bias on recent is defined in the following.

Definition 1 (Recent-Biased Distance & Energy). The recent-biased dis-
tance between time series S and S′ is defined as

Dist(S,S′) =
‖(S− S′) •B‖

‖B‖ (1)

where ′•′ stands for the operator of inner product, ′‖ · ‖′ denotes Lp-norm, and
B is a recent-biased vector. If L2-norm is used, the recent-biased energy of S is
defined as

E(S) =
‖S •B‖2
‖B‖2 (2)

3.1 Recent-Biased Dimension Reduction

In this paper, Haar wavelet transform is used because it is very simple and
widely used and is of linear time complexity. For Discrete Wavelet Transform,
there are two different ways for choosing coefficients, the first k or the largest k
coefficients. If the first k coefficients are selected, the global trend and variation
can be preserved. With the largest coefficients kept, the parts of large energy are
preserved and the energy is better kept, which is better for compressing a single
signal. Nevertheless, when dealing with multiple time series, more storage space
is required to keep the positions of coefficients and the distance computations is
more complex. To keep more detail for recent data and preserve the recent-biased
energy, a recent-biased technique based on DWT is designed in the following.
Instead of keeping the largest or the first coefficients, the largest recent-biased
coefficients are kept, which are computed from the weights only.

Fig. 2. Coefficients of DWT

The DWT coefficients for a time series with 8
values are shown in Figure 1. We can make the
average to be zero by normalizing the time series,
so the average C0 is zero and is not considered
here. Suppose that the time series are normalized
that the average is zero. The original time series is
S=(−C11−C21−C31, −C11−C21 +C31, −C11 +
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C21 − C32, −C11 + C21 + C32 C11 − C22 − C33,
C11−C22 +C33, C11 +C22−C34, C11 +C22 +C34)
from recent data to old data. Assume that B = b(t), t ≥ 0 is the bias function,
so the recent-biased energy of S is

E(S) = ‖B • S‖2/‖B‖2
= 1

‖B‖2 ((−C11 − C21 − C31)2b20 + (−C11 − C21 + C31)2b21
+(−C11 + C21 − C32)2b22 + (−C11 + C21 + C32)2b23
+(C11 − C22 − C33)2b24 + (C11 − C22 + C33)2b25
+(C11 + C22 − C34)2b26 + (C11 + C22 + C34)2b27)

= 1
‖B‖2 (C2

11

∑7
i=0 b

2
i + C2

21

∑3
i=0 b

2
i + C2

22

∑7
i=4 b

2
i

+C2
31

∑1
i=0 b

2
i + C2

32

∑3
i=2 b

2
i + C2

33

∑5
i=4 b

2
i + C2

34

∑7
i=6 b

2
i

+2C11C21(b20 + b21 − b22 − b23) + 2C11C22(−b24 − b25 + b26 + b27)
+2C21C31(b20 − b21) + 2C21C32(−b22 + b23)
+2C22C33(b24 − b25) + 2C22C34(−b26 + b27))

(3)

In order to preserve the energy as large as possible, the coefficients with largest
weights will be kept, and other coefficients are set to zero. It is difficult to
tell which Cij is of the greatest importance from Formula (3). To make it
easy, we only consider C2

ij while ignoring those Ci1j1Ci2j2 , where i1 = i2 or
j1 = j2. Then, the question becomes to choose Ci with the largest coefficients
in C2

11

∑7
k=0 b

2
k + C2

21

∑3
k=0 b

2
k + C2

22

∑7
k=4 b

2
k + C2

31

∑1
k=0 b

2
k + C2

32

∑3
k=2 b

2
k +

C2
33

∑5
k=4 b

2
k + C2

34

∑7
k=6 b

2
k. The weight of Cij is

wij =
∑

j·2L−i+1−1
k=(j−1)·2L−i+1b

2
k, 1 ≤ i ≤ L, 1 ≤ j ≤ 2i,L = �log2 n� (4)

where n is the length of time series. Since bi is a recent-biased function, it is
monotonously decreasing with the increase of i. Therefore, C11 is of the largest
coefficient,

∑7
k=0 b

2
k, and it is the first one to choose. The second one is C21, whose

weight is
∑3

k=0 b
2
k. The third one will be C22 (or C31) if

∑7
k=4 b

2
k is greater (or

less) than
∑1

k=0 b
2
k. Different bias functions will probably lead to different sets

of the largest k coefficients. Given the specific bias function, the weight of DWT
coefficients can be calculated immediately with Formula (4) and ready for use
for all time series. With our method, only the weighted function is used to decide
which coefficients to keep, so the same subset of coefficients are chosen for all
time series, which is different from the traditional method of keeping different
subsets of the largest coefficients for different time series.

The Euclidean distance between the extracted k coefficients is used as the
similarity between time series and the recent-biased Euclidean distance and en-
ergy are calculated with the following formulae.

Dist(S,S′) ≈
(
∑

ij wij(Cij − C ′
ij)

2)
1
2

(
∑

ij wij)
1
2

(5)

E(S) ≈
∑

ij wijC
2
ij∑

ij wij
(6)
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where Cij is in the first k coefficients. If the bias function is set to bi = 1, i ≥ 0,
that is, there is no bias, then the weights for those coefficients in Figure 1 are 8,
4, 4, 2, 2, 2, 2 from top to bottom. So those coefficients at higher level will be
chosen first, which is the same as traditional DWT with the first coefficients.

3.2 Complexity Analysis

Assume the length of time series is n, and there are m time series. The time
complexity for computing weights from bias function are O(n) and the time
complexity for getting the largest k weights is O(kn). The time complexity of
DWT for a time series is O(n). Therefore, the total time complexity for pro-
cessing m time series is O(n + kn + mn), i.e., O((m + k + 1)n). As to space
complexity, the space requirement for keeping the positions of the largest k co-
efficients is O(k), and there are k coefficients for each time series, so the total
space complexity is O(k + mk), i.e., O((m + 1)k).

4 Experimental Results

Effectiveness of our algorithm for capturing recent details is shown in Figure 3.
The original time series (see Figure 3a) is “leleccum” from Matlab, and the first
4096 values are kept. Linear bias function b(t) = n−t

n is used, where n=4096. The
reconstructed times series after keeping the recent-biased largest k coefficients
are shown in Figure 3b-h. These figures show clearly that the more recent data
are preserved with more details while the older data kept with a coarser scale.

The Nasdaq indices from “Yahoo! Finance” (http://finance.yahoo.com/) is
used to test the accuracy of our technique in experiments. The close prices of
indices from Jun 1988 to Oct 2004 are chosen and each time series is composed of
4096 points. To evaluate the effectiveness of our technique, we design a criterion
to measure the precision of approximation after dimension reduction. Assume
that S and S′ are respectively the original and reconstructed time series. The er-
ror of approximation between S′ and S is defined as Err(S′,S) = E(S′−S)

E(S) , where
E(S) is the recent-biased energy of S defined in Formula (2). The experimental
result for accuracy is shown in Figure 4. The horizontal axis stands for k, the
number of coefficients kept, and the vertical axis stands for the error rate. The
solid line denotes the error rate of recent-biased DWT, while the dotted denotes
that of traditional DWT with the first coefficients. It is clear that the accuracy
gets improved as more coefficients are kept. Exponential bias functions are used,
and the decay factor is d = 1− 1

1+10α . From Figure 4a to 4d, the decay function
becomes less biased on recent with the increase of α. When the bias is large,
higher accuracy can be achieved with our method than with traditional DWT
with the first coefficients. When the bias is tiny (see Figure 4d), our method
becomes nearly the same as traditional DWT with the first coefficients.
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Fig. 3. Effectiveness. The original time series is shown in (a), and the reconstructed

times series by keeping the recent-biased largest k coefficients are shown in (b)-(h)
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Fig. 4. Accuracy. The horizontal axis stands for the number of coefficients, and the

vertical axis stands for the accuracy. The solid line denotes the error rate of recent-

biased DWT, while the dotted denotes that of DWT with the first coefficients

5 Conclusions

We have designed a recent-biased technique for time series, which gives greater
weights to more recent data and also preserves more details of recent data. Our
experiment shows that the recent-biased technique is very efficient and effective
to handle time series. Our future work includes combining our recent-biased idea
with DFT, PIP, PAA and other dimension reduction techniques for time series
data, and extending dynamic time warpping to a recent-biased measure.

References

1. A. Bulut and A. K. Singh: SWAT: Hierarchical Stream Summarization in Large
Networks. Proc. of the 19th Int. Conf. on Data Engineering, Bangalore, India, 2003.

2. E. Cohen and M. Strauss: Maintaining time-decaying stream aggregates. Proc. of
the 22nd ACM Symposium on Principles of Database Systems, 2003.



A Recent-Biased Dimension Reduction Technique for Time Series Data 757

3. T. Fu, F. Chung, V. Ng and R. Luk: Pattern Discovery from Stock Time Series Using
Self-Organizing Maps. Workshop Notes of KDD’01 . San Francisco, CA, USA, 2001.

4. E. Fink, K. B. Pratt, and H. S. Gandhi: Indexing of Time Series by Major Minima
and Maxima. Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics, 2003.

5. E. Keogh, K. Chakrabarti, et al: Dimensionality Reduction for Fast Similarity Search
in Large Time Series Databases. Knowledge and Information Systems 3(3), 2000.
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Abstract. This paper proposes a novel temporal data segmentation ap-
proach based on a graph partition model. To find the optimal segmen-
tation, which maintains maximal connectivity within the same segment
while keeping minimum association between different ones, we adopt
the min-max cut as an objective function. For temporal data, a linear
time algorithm is designed by importing the temporal constraints. With
multi-pair comparison strategy, the proposed method is more robust than
the existing pair-wise comparison ones. The experiments on TRECVID
benchmarking platform demonstrate the effectiveness of our approach.

1 Introduction

Temporal data mining is a rapidly evolving area of research. Similar to other
application fields, data segmentation is the fundamental task to temporal data
mining. Only after the segmentation, can the subsequent analysis of temporal
data, such as clustering, classification and association rules mining, be carried
out. Conventionally, temporal data are modelled as time series. To the day, nu-
merous approaches for segmenting time series have been proposed [1]. However,
with pair-wise comparison strategy, most of them are sensitive to noises. To over-
come the drawbacks, this paper proposes a novel temporal data segmentation
method based on graph partition model. In the method, multi-pair comparison
is performed. Meanwhile, a linear time algorithm is designed by importing the
temporal constraints. The experiments show that the proposed approach is more
robust than existing ones but less efficient.

The rest of this paper is organized as follows. In the next section, the graph
partition model with temporal constraints is introduced. In Section 3, we propose
a temporal segmentation algorithm based on the above model. In Section 4, the
proposed algorithm is evaluated on the TRECVID benchmarking platform and
compared to existing approaches. Finally, the conclusion is made in Section 5.
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2 Graph Partition Model

Clustering based on graph partition model has attracted a great interest recently
[2]. Although so far there has been no good algorithms of polynomial time for
the general graph partition problem, linear time algorithm exists for the one
with the temporal constraints.

2.1 Computing Segmentation with Graph Cuts

Given an undirected, weighted graph G=G(V,E) with a set of nodes V , a set
of edges E. Assume |V | = N , namely, there are N nodes in graph G. Let wij

denote the weight of edge e(i, j) ∈ E, i.e., the similarity between nodes i and j.
The larger the wij , the more similar between nodes i and j. To introduce the
graph partition model more clearly, we first present some graph terminologies.
A graph with 14 nodes and the related terminologies are depicted in Figure 1.

ijwi
j

assoc(A) cut(A,B)

cut(A,B) assoc(B)

Fig. 1. Left : A graph with 14 nodes. Right : The visualization of similarity matrix of

the left graph. wij is defined as the reciprocal of Euclidean distance of the nodes i and

j. The stronger the connectivity between i and j, the brighter the entry (i, j) is

Definition 1. The similarity matrix W is a N×N symmetric matrix, in which
entry wij represents the similarity of nodes i and j.

Definition 2. The cut which divides graph G into subgraphs A and B is defined
as: cut(A,B) =

∑
i∈A,j∈B wij .

Definition 3. The association of subgraph A is defined as: assoc(A) =∑
i,j∈A wij .

Given a data set, a graph can be constructed by treating each sample as a
node and linking an edge between each pair of the nodes. By defining the weight
of the edge as the similarity of the samples, clustering can be formulated as a
graph partition problem. In this way, the graph partition model helps to define
more appropriate criteria. Initially, minimum cut is proposed to be a partition
objective function. To avoid skewed cut, other objectives such as ratio cut, nor-
malized cut and min-max cut are proposed successively [2]. From the point of
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view of clustering, min-max cut, defined by Equation 1, which tries to mini-
mize the association between the two subgraphs while maximize the association
within each subgraph, gives the best criterion:

Mcut(A,B) =
cut(A,B)
assoc(A)

+
cut(A,B)
assoc(B)

. (1)

Unfortunately, this problem is NP-complete because of its combinatoric nature.
An approximate optimal solution can be yielded by spectral graph theory[2].
However, it still is not able to deal with a huge amount of data because of the
large calculation during the process of matrix spectral decomposition.

1 2 43

Fig. 2. A full graph with 4 nodes. The broken line indicates the positions of the feasible

cuts. With temporal constraints, the size of feasible set is 3, otherwise, 10

2.2 Cuts with Temporal Constraints

When applied to temporal data, clustering based on graph partition model must
satisfy some temporal constraints. For example, in temporal data segmentation,
the method should guarantee the temporal continuity of each cluster. More pri-
cisely, once two unadjacent samples belong to a cluster, any one between them
must be grouped into the same cluster. By importing this temporal constraints,
a feasible cut can only occur at one of the N−1 possible positions between any
two adjacent samples. Thus, the size of feasible set is reduced from exponential
to N−1, as illustrated in Figure 2. To get the optimal solution, we just need to
compute the N−1 possible values, and then select the minimum one through a
linear search. Formally, we define score(i) as the objective function of the i-th
feasible cut:

score(i) = Mcut({1, 2, · · · , i}, {i + 1, i + 2, · · · , N}). (2)

Then the cut with minimal score is the optimal solution.

3 Temporal Segmentation Algorithm

In Section 2, we only introduce the problem of partitioning a graph into two
subgraphs. To segment data into more than two segments, we can partition the
data recursively. In summary, the segmentation algorithm of the temporal data
consists of the following steps:
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Fig. 3. Left : The full graph of a temporal sequence, in which the third sample is affected

by noises. Right : The similarity matrix of the right graph

Step 1. Given a data set, construct a weighted graph G = G(V,E). Treat each
sample as a node and link each other by an edge.

Step 2. Compute wij , the weight of each edge, to obtain similarity matrix W.
Step 3. Calculate scores of the N−1 feasible cuts according to Equation 2. The

cut with minimum score is the optimal partition.
Step 4. Recursively partition the segmented sequences if necessary.

Similar to the spectral clustering algorithms, the weight wij is usually defined
as [2]:

wij = sim(i, j)×
{
e

−‖i−j‖2
2

σ2 if |i− j| < r
2

0 otherwise
(3)

where r is the size of the active weight matrix, outside of which the entries
contribute little to objective function. Meanwhile, it is not necessary to involve
all the entries while computing each score. Different from Equation 2, we redefine
score(i) = Mcut({i − r

2 , · · · , i}, {i + 1, · · · , i + r
2}), and thus the computation

is constrained in a matrix of size r× r. With a temporal sequence of length
N , considering the overlap of two successive active matrices, the overall time
complexity is O(Nr). Compared with spectral clustering methods, it is much
more efficient.

Another prominent advantage of the approach is the robustness, since it
makes decisions via multi-pair comparison strategy. As shown in Figure 3, the
third sample is affected by noises and varies greatly from the second one. The
methods based on pairwise comparison may consider it the boundary of two
different segments and thus cause an over-segmentation. While with the proposed
approach, the strong connectivity among the samples before and after the third
one makes it unlikely to separate the sequence to two parts. Noises disturb the
segmentation little.

4 Experiments

In this section, the proposed approach is implemented to perform video temporal
segmentation and evaluated on the TRECVID benchmarking platform [3]. The
2003 test collections for shot boundary detection task is used for training, and
the 2004 collection for testing. F1 measure is adopted to rank the performance of
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Fig. 4. Performance comparison of the four different approaches over 12 videos

the different algorithms [6]. Two graph-based methods and two non-graph ones
are implemented for comparison, and they are:

1. Fixed Threshold: Directly compare content variation with an appropriate
threshold ε2. If the variation is below ε1, a shot boundary is declared.

2. Sliding Window: Employ a window of width 2w + 1 to slide along the
temporal axis, and takes λ times of the average variation within the window
as ε1. The other procedure is the same as the 1-st method [5].

3. Graph+Fixed Threshold: Directly compare the score with an appropri-
ate threshold ε2. If the score is below ε, a shot boundary is declared.

4. Graph+SVM: Firstly, the 3-rd approach with a low enough ε2 is employed
to select the boundary candidates. Then extract the score features around
the candidates and train a support vector machine to distinguish boundaries
and non-boundaries(abbreviated for the page limitation, see details in [7]).

Totally 10928, including 3048 positive and 7880 negative, 11-dimension sam-
ples are used to train SVM of a Gauss kernel function. The training process
spends about 481 seconds and 1308 support vectors left. After the training
on 2003 data set, the best parameter settings for each method are as follows:
ε1 =0.85 for Fixed Threshold, w=4 and λ=3.0 for Sliding Window, r =10 for
both the graph based methods, ε2 = 0.18 for Graph+Fixed Threshold, for the
SVM method,the standard deviation std = 1.0. Their performance on the 2004
data set is depicted in Figure 4 and the elapsed time is in Table 1. Of the 12
videos, the fifth and the seventh video have more abrupt illumination changes
and more great object or camera movement. As Figure 4 shows, non-graph based
methods suffer evident drops of performance over these difficult videos. Both the
graph-based methods perform excellently and robustly. In Graph+Fixed Thresh-
old, even employing a single global threshold ε2, the performance is comparable



Graph Partition Model for Robust Temporal Data Segmentation 763

Table 1. Elapsed time of the four algorithms (Unit: second). They are all evaluated on

an Intel Pentium 1.51GHz machine with 256M memory. The 12 testing videos consist

of total 583,623 frames

Fixed Threshold Sliding Window Graph+FH Graph+SVM

25.6 26.0 74.3 100.3

to that of Sliding Window. Graph+SVM method performs best on all the videos
but spends about three times of time more than non-graph based ones.

5 Conclusions and Discussions

In this paper, we propose a novel robust temporal data segmentation algorithm
based on graph partition model. The method segments temporal sequence via
multi-pair comparison strategy, and therefore is more robust to various noises
than the existing pairwise comparison ones. By importing temporal constraints,
linear time algorithm is designed to seek the optimal graph partition. The ex-
periments on the TRECVID benchmarking platform show that the proposed
approach is more robust. However, this paper has only focused on detecting
abrupt transitions. To deal with gradual transitions, incorporating multi-scale
strategy may be a promising direction.

References

1. E. Keogh, et al, Segmenting time series: a survey and novel approach, Data Mining
in Time Series Databases, World Scientific Publishing Company, 2003

2. C. Ding, et al, A min-max cut algorithm for graph partitioning and data clustering.
Proc. IEEE Int’l Conf. Data Mining, pp.107-114, 2001

3. A. F. Smeaton, et al, TRECVID: Evaluating the effectiveness of information re-
trieval tasks on digital video. In Proceedings of the ACM MM’04,pp. 652-655,2004

4. M.R. Naphade,et al, A high-performance shot boundary detection algorithm using
multiple cues, International Conference on Image Processing, vol.3, 1998

5. Boon-Lock Yeo and Bede Liu, Rapid scene analysis on compressed video, IEEE
Transactions on Circuits and Systems for Video Technology, vol.5, pp.533-544, 1995

6. C. J. van Rijsbergen. Information Retireval. Butterworths, London, 1979
7. Jinhui Yuan, et al, A robust temporal data segmentation method base on graph par-

tition model, Technical Report, Department of Computer Science and Technology,
Tsinghua University, 2004



Accurate Symbolization of Time Series

Xinqiang Zuo and Xiaoming Jin

School of Software,
Tsinghua University, Beijing, China
zuoxq04@mails.tsinghua.edu.cn

xmjin@tsinghua.edu.cn

Abstract. Symbolization is a useful method for mining time series. As
our experimental results demonstrated, the previous methods are not
accurate enough due to their limitations in handling a prevalent kind of
time series in which similar movements are often with different lengths.
This paper considers the accuracy issue of symbolization of time series.
We propose a novel approach that emphasizes the meaning of each move-
ment in the time series, regardless of the length or shift of it. To make
the proposed approach more practicable, we also provide a semiauto-
matic method for setting the parameters. The nature of the problem
and the performance of our approach had been analyzed on both real
data and synthetic data. Experimental results justified the superiority
of our approach over the previous one and gave some useful empirical
conclusions.

1 Introduction

Recently, there has been a renewed interest in managing and mining time series
[1, 2, 3]. Symbolization of time series is a very useful tool in this field, and had
been extensively studied for various data mining tasks [2, 3, 4, 5, 6, 7]. Firstly, it
is very important in analyzing time series on the high level. Secondly, it provides
a tie between the task of mining time series and most techniques that were
originally designed for handling symbolic sequence.

Briefly, symbolization can be viewed as a process that classifies each individ-
ual subseries into a typical subseries. Obviously, its performance can be evaluated
by its capability in accurately retrieving and representing the subjective notion
on the movements in time series. A simple solution is to choose the typical sub-
series manually based on the domain expert’s analysis and explanation, and then
use this domain knowledge in symbolizing time series. However, manual extrac-
tion of the typical subseries is usually a very difficult, or even impossible task in
many applications. Another well known method is to automatically discover the
typical subseries by clustering all the subseries in a sliding window with fixed size
[2]. Such method can symbolize time series in the unsupervised way. However, an
implicit assumption that all the similar movements are with the same length is
essential for the development of this kind of methods. Intuitively, this is not the
case for most real-world applications where there are many movements in time
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series that are similar but with different lengths. Therefore, as we demonstrated,
the methods that considering sliding windows with fixed size cannot symbolize
time series accurately. Moveover, selection of the window size is a very difficult
task, especially when little about it can be known apriori. Our experiments show
that when the window size is not correctly set, the performance will reduce to
the results of random selection.

In this paper, we propose a novel approach to solve the problem above. The
key idea of our approach is to adjust the window size dynamically according to
the data. This strategy enables us to focus on each individual subseries with
relatively “optimal” length rather than a fixed one, whereupon similarity mea-
surement that allows an elastic shifting of the time axis can be applied. The
performance of our approach was evaluated on both synthetic and real data.
The experimental results justified the superiority of our approach.

2 Problem Descriptions

A time series T = T (1),T (2), ...,T (N) is a sequence of real values in which each
value corresponds to a time point. T (n) stands for the value at n-th sampling
time. The value might be of various dimensions. |T | = N denotes the length of T .
The subseries from time s to time e is defined as T [s, e] = T (s),T (s+1), ...,T (e).

Symbolization of time series can be formally described as: Given a time series
T , symbolization is to convert T into a symbolic sequence S = S(1),S(2), ...,S(M),
where each S(i)(1 ≤ i ≤ M) coming from a predefined alphabet Σ represents
the movement (or content) of one subseries.

Since we focus on the accuracy of symbolization of time series, we apply
the standard F1 model as the measurement of it. Given the resulting symbolic
sequence of symbolization Sg and the “true” symbolic sequence corresponding to
the time series St, the F1 measure combines recall(r) and precision(p) with an
equal weight in the following form: F1(r, p) = 2rp/(r+p) where r is defined to be
the ratio of the “true” symbols in Sg by the total number of symbols in St, i.e.
r = LCS(Sg,St)/|St|, and p is the ratio of the “true” symbols in Sg by the total
number of symbols in Sg, i.e. p = LCS(Sg,St)/|Sg|. LCS is the longest common
subsequence of the two sequences defined as follows: Given two sequences A and
B, and a parameter ε,

LCSε(A,B) =

⎧⎨
⎩

0 A = φ ∨B = φ
1 + LCSε(H(A),H(B)) (A(|A|)−B(|B|)) < ε

max{LCSε(H(A),B),LCSε(A,H(B))} otherwise

3 Symbolization Approach

Our approach is to expand a subseries tentatively, and determine whether the
current subseries should be classified into a category, or a new category contains
it should be formed, according to the distances between it and each category. In
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1. S = φ, s = 1, e = Wmin //S is the symbolic sequence.

//s and e is the start and end of the tentative subseries.

2. while(e ≤ |T |) //If T has not been processed completely.

3. Tc=the normalization result of (T [s, e])
4. mindist=davg(Tc,the nearest category C)
5. if(mindist ≤ dc)

6. classify T [s, e] into C
7. S=S+Σi //Σi is the symbol corresponding to C.

8. else

9. if(mindist ≥ dc or |e − s + 1| ≥ Wmax)

10. generate a new category Cn that contains T [s, e]
11. S=S+Σn //Σn is the symbol appointed to Cn.

12. else

13. e = e+ΔL //the tentative subseries is expanded ΔL steps.

14. if(classifying or generating subprocess has been operated)

15. s = e e = s + Wmin − 1 //re-initialize the tentative subseries.

Fig. 1. Symbolization algorithm

order to accommodate the subseries that are similar but out of phase, we adopt
dynamic time warping (DTW), which allows an elastic shifting of the time axis,
as the measurement method. Given two subseries A and B, formally, D(A,B)
for A and B is defined as follows:

D(A,B) = d(A(|A|),B(|B|)) + min{D(H(A),H(B)),D(H(A),B),D(A,H(B))}

where d(A(|A|),B(|B|)) is the L1 distance between two points A(|A|) and B(|B|)
(i.e. d(A(|A|),B(|B|)) = |A(|A|)−B(|B|)|). The parameters used in our approach
are dc, dg, Wmin, Wmax, ΔL and Σ. dc and dg are the thresholds classifying
subseries into the category and generating a new category respectively. Wmin

and Wmax are used to restrict the length of subseries, and ΔL is the sliding
step of the subseries at each time. Σ is the alphabet containing symbols used to
represent the subseries. The overall approach is illustrated in detail as follows
and formally in Fig 1.

From the beginning of the time series, we initialize the tentative subseries
T [s, e] with the length Wmin. Then our approach finds the nearest category C of
T [s, e] such that davg(T [s, e], C) = 1

|C|
∑

pεC D(T [s, e], p) is minimum (|C| is the
number of the subseries belong to C, and p is a subseries). If davg(T [s, e], C) ≤
dc then T [s, e] will be classified into C, and the symbol representing C will
be appended to the symbolic sequence S which begins with empty one. When
davg(T [s, e], C) ≥ dn or |T [s, e]| ≥Wmax, a new category Cn contains T [s, e] will
be formed, then a symbol from Σ will be appointed to Cn, and similarly, this
symbol will be appended to S. If any of the previous two conditions is satisfied,
T [s, e] will be re-initialized. Otherwise, T [s, e] will be expanded ΔL steps, i.e.
T [s, e] is expanded to T [s, e+ΔL]. When the time series is processed completely,
the whole symbolic sequence S has been generated.
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The normalization step shown in symbolization algorithm removes the im-
pacts of baseline and scaling factor by going beyond the absolute value and em-
phasizing the trend or shape. There are many normalization methods which have
been proposed, e.g. normalize time series T to T ′(i) = (T (i)−min(T ))/(max(T )−
min(T )) where min(T ) and max(T ) are the minimum and maximum of T .

To make the proposed approach more practicable, we propose a semiauto-
matic method to set the parameters by sketching: Manually appointing similar
subseries T [s1, s2],T [s3, s4] and dissimilar subseries T [d1, d2],T [d3, d4] in the
time series, then dc and dn can be estimated as follows:dc=D(T [s1, s2],T [s3, s4])·
ce1, dn = D(T [d1, d2],T [d3, d4]) · ce2 where ce1 and ce2 are the coefficients that
revise dc and dn respectively to remove the influence of randomization of selec-
tions, e.g. ce1 and ce2 could take values within the ranges [1,1.2] and [0.8,1].
Wmin and Wmax can be taken by estimating the range of the length of subseries
in time series. Consider ΔL, greater ΔL will result in improvement in time per-
formance, whereas decrease in accuracy of the algorithm. Generally it can be
set, e.g. 1 to 5, based on the length of the time series and the accuracy required.

Since the symbolization method is an unsupervised process, the meaning of
each typical subseries cannot be known apriori. Then Σ is selected to be a group
of simple identifiers without meaning, e.g. “a”...“z”, before symbolization. And
then a post-processing procedure can convert the resulting symbolic sequence by
rewriting each symbol to a more meaningful one provided by domain expert’s
explanations on the resulting typical subseries.

4 Experimental Evaluation

In this section we first compare the performance of our approach with the fixed-
window method. The synthetic data set was used so that we could control the
“true” symbolic sequence. The data set was generated as follows: It totally con-
sisted of 100 time series. Each time series was connected by 100 subseries. Each
subseries was randomly selected from the three basic shapes including Sine, Co-
sine and Straight line and then extended or contracted in the time axis and
y-axis respectively. Finally Gaussian noise was added to the whole time series.

In this experiment, hierarchical clustering was used as the clustering method
in the fixed-window method. And for an exhaustive comparison, each time series
was symbolized for 2125 times by the fixed-window method with the various
parameters including window width from 6 to 30, clustering number from 2 to
6 and start position from 1 to w− 1 where w is the window width and one time
by our approach. So 100× (2125 + 1) = 212600 times symbolizations were done
by us. The parameters in our approach were set using the method described
in Sect. 3 as follows: dc = 1.45; dn = 5.5;Wmin = 6;Wmax = 30;ΔL = 1.
F1 measure proposed in Sect. 2 was used to evaluate the accuracy of the two
methods.

The results of the symbolizations were modified in order to utilize F1 measure.
The “true” symbolic sequence St could be obtained during the process generating
the synthetic time series. Sg was generated as follows: For the typical subseries
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(a) Window Width and
Start Position

(b) Window Width and
Clustering Number

(c) Start Position and
Clustering Number

Fig. 2. The comparison from three aspects, the histograms display the results of the

fixed-window method, and the plane above is the results of our approach. Each his-

togram presents results at two dimensions, maximized in another dimension
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Fig. 3. Real data (a), the reconstructed time series(b), the typical subseries(c), and the

table shows the resulting symbolic sequence, together with the lengths of the subseries

in the original time series corresponding to each symbol

T [s, e] of each category Ci generated, we found the nearest shape Bj from the the
three basic shapes such that D(T [s, e],Bj) in minimum. If D(T [s, e],Bj) ≤ dc,
all the appearances of the symbol representing Ci in symbolic sequence S were
replaced by the symbol of Bj , otherwise replaced by ’$’ which was not one of
the symbols representing the three basic shapes.

Then we give the results of comparison between two methods. The averages
of the results of 100 time series described in Fig. 2 show that our approach can
yield substantially greater accuracy than the fixed-window method. There were
none of the results whose accuracies were greater than our approach. We also
made the comparison with the best results of the fixed-window method. We got
the result that the inferiorities of our approach comparing with the best results
of the method existed only at only 33 in 100 time series. Furthermore, selection
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of the appropriate window size to obtain the best result is a very difficult task,
e.g. in this experiment. We do not display the figure to save space.

Finally, in order to gain an intuition about the effectiveness of our approach
in real-world applications, we used stock price data series, which corresponded
to the opening prices of the stocks from Nov. 25th in 2002 to Nov. 24th in 2003,
as an instance to explain the effectiveness. Each time series consisted of 252 real
numbers. Due to space limitation, we only show one group of results in Fig. 3.

The table in Fig. 3 lists the resulting symbolic sequence and the length of
subseries corresponding to each symbol. Replacing each subseries partitioned
with the typical subseries of the category which contained it, we could obtain a
reconstructed time series shown in Fig. 3(b). The accuracy of our method can
be empirically justified through the visual analysis of the similarity between the
original series in Fig. 3(a) and the reconstructed version in Fig. 3(b).

5 Conclusions

In this paper, we consider the accuracy issue of symbolization of time series. And
then a novel approach is proposed, together with a semiautomatic method for
setting the parameters used. The experimental results justified the superiority
of our approach over the fixed-window method. Finally, stock price data was
used to illustrate the effectiveness of our approach in real-world applications.
Our approach can be expanded in the following directions: multidimensional
space, other similarity measurement, and incremental approach for streaming
data. Though our approach decides the boundaries of subseries only locally, it
is simple comparing with the difficulty in the global criterion, moveover, it can
obtain the acceptable results demonstrated in our experiments. In the future we
plan to explore a more effective method by considering the global criterion.
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Abstract. Because time series are a ubiquitous and increasingly prevalent type 
of data, there has been much research effort devoted to time series data mining 
recently. As with all data mining problems, the key to effective and scalable al-
gorithms is choosing the right representation of the data. Many high level repre-
sentations of time series have been proposed for data mining. In this work, we 
introduce a new technique based on a bit level approximation of the data. The 
representation has several important advantages over existing techniques. One 
unique advantage is that it allows raw data to be directly compared to the re-
duced representation, while still guaranteeing lower bounds to Euclidean dis-
tance. This fact can be exploited to produce faster exact algorithms for similarly 
search. In addition, we demonstrate that our new representation allows time se-
ries clustering to scale to much larger datasets. 

1   Introduction 

Time series are a ubiquitous and increasingly prevalent type of data. Because of this 
fact, there has been much research effort devoted to time series data mining in the last 
decade [1],[2],[3],[4]. As with all data mining problems, the key to effective and scal-
able algorithms is choosing a suitable representation of the data. Many high level 
representations of time series have been proposed for data mining. In this work, we 
introduce a novel technique based on a bit level approximation of the data. As we will 
show, our clipped representation has several important advantages over existing tech-
niques. The proposed approach is not only a new representation; it is a new type of 
representation.  For data adaptive, non-data adaptive, and model-based approaches, 
the user has a choice (implicit or explicit) of the compression ratio.  This allows the 
user to fine tune the parameters to achieve the ideal compression/ fidelity tradeoff for 
their particular application. 

In contrast, with the clipped representation, the data itself dictates the compression 
ratio; the user has no choice to make. This may be seen as somewhat of a disadvan-
tage (although removing parameters from a data mining task is often a good thing 
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[5]).  However, this lack of flexibility is counterbalanced by another unique property 
of the clipped representation.  For all other dimensionality reduction approaches, we 
must transform the query into the same representation as the dimensionality reduced 
database, i.e. having a loss of fidelity for the candidate matches stored in the index 
and a loss of fidelity for the query. This in turn produces weak lower bounds, and thus 
weak pruning power. In contrast, the clipped representation is unique in that the origi-
nal raw query can be compared directly to the clipped candidate sequences, thus pro-
ducing tighter lower bounds, greater pruning power and faster query by content. 

2   The Clipped Representation 

Our proposed representation works by replacing each real valued data point with a 
single bit. gives the visual intuition. 
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Fig. 1. A time series, C, of length 64, is converted to the clipped representation, c, by observing 
each element of C; if its value is strictly above zero, the corresponding bit is set to 1, and to 0 
otherwise 

More formally, we can define c, the clipped representation of C as: 

>
=

otherwise

iCif
ic

0

)(1
)(

μ  (1) 

where μ  is the mean of C.  Since the importance of normalizing the data before at-
tempting any clustering, classification or indexing [3] is well-established, we can 
simply assume μ  = 0, without loss of generality for the rest of this work. Note that this 
representation has been considered before in the statistical community [6], but its 
utility for data mining, namely, the ability to lower bound distance functions, is first 
documented here. 

2.1   Lower Bounding Euclidean Distance  

Suppose we have 2 time series, a query Q = Q1,Q2,…,Qi,…,Qn, and a candidate match 
C =  C1,C2,…,Cj,…,Cn. The Euclidean Distance can simply be used to compare the 
two time series.  However, if we have a clipped time series c, and a raw time series Q, 
we can also lower bound the squared Euclidean distance between C and Q, using 
equation 2) below.  Due to space limitations, the proof of this LB_clipped is omitted 
and can be found in [7].  However, gives its visual intuition. 
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Fig. 2. The distance returned by both LB_clipped(Q, c) and D(Q,C) is the sum of squared 
lengths of the gray hatch lines.  Because every hatch line for LB_clipped(Q,c) is matched with 
corresponding line in D(Q,c) which is at least as long, we must have LB_clipped(Q,c) ≤ D(Q,c) 

2.2   Run Length Encoding 

Consider the clipped sequence c, which we have been using as a running example.  Its 
value is Note 
that we could write this as 22#0, 11#1, 2#0, 1#1, 3#0, 24#1, which we can interpret as 
22 zeros followed by 12 ones, etc.  The shorter format allows us to fit more data in 
main memory. In fact, we can be even terser; because we always toggle from zero to 
one or vice versa, so we only need to record the parity of the first bit, giving us 22#0, 
11,2,1,3,24. This classic lossless compression technique is known as Run Length 
Encoding (RLE).  To make the representation even shorter, we can represent the par-
ity bits of 0 and 1 with two special characters, e.g. “@” and “!,” respectively; our run 
length encoding now can be represented as @22,11,2,1,3,24.  We can use this to 
further reduce the clipped representation of the data.  Note that while the example 
above illustrates the idea with ASCII characters, we actually do RLE at the bit level. 

2.3   Numerosity Reduction 

Even though the run length-encoding scheme itself gives an impressive compression 
ratio, we can improve it by numerosity reduction on sliding windows.  This step is 
motivated by observing that while applying a sliding window on the streaming data, 
time series in consecutive sliding windows are very often identical in the clipped 
representation, except for the first and the last values that are omitted and added, 
respectively.  If the time series in each sliding window has this property, we can ex-
ploit this fact and just record the maximum amount of time this property has consecu-
tively been observed, along with a special character, $, that represents this reduction. 
Consider the run length encoding from our example in the previous section and let the 
encoding of the next five sliding windows be: 

@22,11,2,1,3,24@21,11,2,1,3,25@20,11,2,1,3,26@19,11,2,1,3,27@18,22,2,1,3,27,1@17,22,2,1,3,2
7,2.  

We can readily see that the first four windows are very similar and can be reduced 
to one since the only values differ from each other are the first and the last (italicized 
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for clarity).  However, the 5th window cannot be combined with the previous one 
since the last bit has changed from 1 to 0, but it can be combined with its next win-
dow.  As a result, the final encoding with numerosity reduction becomes 
@22,11,2,1,3,24$3@18,22,2,1,3,27,1$1. 

As before, although we demonstrate the idea with ASCII text, we actually encode 
everything at the bit level. With the Power Demand dataset of size 10,000 data points, 
numerosity reduction together with Huffman coding yields a huge compression ratio 
of 1057:1. Note that while the factor of 32 to 1 achieved by clipping is lossy, the re-
maining factor of approximately 33 to 1 is lossless with respect to the clipped data. 

3   Empirical Evaluations 

In this section, we will provide an extensive empirical comparison among the raw and 
various representations of compressed data in two major data mining tasks, time se-
ries indexing and clustering.  Twelve datasets were used in our indexing experiments, 
and two were used for clustering experiments (only subsets of results are shown here 
due to space limitations).  We also tested on a wide range of both real and synthetic 
datasets. The datasets range from 66 Kilobytes to 2 Gigabytes in size (see [7] for 
complete details). 

3.1   Experimental Methodology 

For indexing, we will demonstrate the superiority of our clipped representation in 
terms of number of disk accesses. We compare our proposed method with the classic 
Piecewise Aggregate Approximation (PAA) and Discrete Fourier Transform (DFT), 
all preserving similar compression ratio.  We then demonstrate that clipped series can 
produce clusters similar to those obtained with the raw data when clustering a very 
large real world database introduced in section 3.3. We show that clipping performs 
favorably when compared to clustering with unclipped data since clustering can be 
done faster and with much less memory requirement. 

For similarity search, we performed all experiments over a range of query lengths.  
Since we want to include PAA in our experiments, the query length is somewhat 
limited. We therefore consider query lengths of 256 and 512 data points.  We tested 
our approach on a variety of twelve datasets with various properties within the data, 
obtained from the UCR Time Series Data Mining Archive [8].  The sizes of the data-
sets range from 6,875 data points to 198,400 data points. Leaving-one-out cross vali-
dation is used; on each run, we randomly pick a query from a database, create a run-
length encoding with numerosity reduction for the rest of the data, and determine the 
resultant compression ratio.  We then create PAA and DFT on the same data and with 
the same compression ratio (or with smaller compression ratio, in favor of PAA and 
DFT) then measure the number of random disk accesses for the nearest neighbor 
queries of all methods.  To determine the number of dimensionality reduction (m) in 
PAA and DFT in these cases, we assume that each value in PAA and DFT can be 
represented by only two bytes (instead of 4 or 8 bytes) to demonstrate that our results 
are still competitive among all the approaches. In addition, to avoid any possibility of 
implementation bias, the number of I/O disk accesses of each method is measured 
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instead of recording the actual running time.  This is done by first computing the 
lower bound distances using LB_clipped and Euclidean distance, between a query and 
all the sequences in the dataset.  Then to retrieve the nearest neighbor, each sequence 
is visited in the order according to the lower bound values.  We count the number of 
times the real disk accesses must be made.  These numbers also indicates the tightness 
of the lower bounds for each representation.  The results are averaged over 100 sepa-
rate runs for each dataset.  For simplicity, we only report results for one-nearest 
neighbor queries. 

3.2   Indexing Results 

As noted above, the amount of compression is dictated by the data itself. For the 
twelve datasets considered the compression ratios range between 60.2:1 to 1,089.5:1. 
We compare different representations in terms of I/O random disk accesses during the 
process of the 1-nearest neighbor retrieval of a query time series.  In particular, in 
each run, we reduce the dimensionality of the data from n to m using Clipped, PAA, 
and DFT representations, and build their indices on the reduced spaces based on their 
lower bounds between each subsection (sliding window) of the time series and the 
query. To allow a visual comparison, we normalize each experiment on each dataset 
by the worst performing algorithm; the raw numbers are available in [7]. Fig. 3 shows 
the number of disk accesses with lower bounding the Euclidean distance, using the 
three dimensionality-reduction techniques over the range of query lengths of 256 and 
512 data points. In general, the results show that the clipped representation greatly 
outperforms or at least is comparable to the other approaches, expressing the superior-
ity in its tightness of the lower bounds. Again, we would like to emphasize that our 
results here are obtained by conservatively assuming only two-byte requirement to 
represent each number in PAA and DFT.  If we assume 4 or 8 bytes or without the 
parameter m adjusted, the results will be much improved. 
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Fig. 3. Number of disk accesses with lower bounding of Euclidean distance, normalized by the 
worst performing approach, using the 3 representations for query lengths of 256 and 512 points 

3.3   General Compression-Based Clustering  

We examine a class of problems where a DFT approach should produce good results, 
and show that clipping is better than the most commonly used DFT approach de-
scribed in [2]. 
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To demonstrate how clipping can help with a real world large dataset, we cluster 

optical recording data from a bee's olfactory system [9]. The data consists of 980 
images, each image containing of 688x520 measurements. If we consider each posi-
tion in the image as a time series, the data consists of 357,760 time series of length 
980. Preliminary analysis has shown that clustering the series based on similarity in 
time produces results that have a sensible physiological interpretation [9]. We cluster 
with k-means (with k set to 16) restarted 50 times from random initial centroids, and 
take as the best clustering the one with the lowest within-cluster variation.  
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Fig. 4. A) 16 clusters produced using all 2GB of raw data. B) Clusters formed using the clipped 
data with 32:1 compression ratio. The spatial cluster co-occurrences between this plot and A) 
shows its effectiveness in the clipped data reduction technique. C) Clusters formed using PAA 
with 59 coefficients, giving 20:1 compression ratio. D) Clusters formed using first 17 DFT 
coefficients, giving 29.7:1 compression ratio 

4   Conclusions 

In this paper, we have shown that a simple dimensionality reduction technique, i.e. the 
clipped representation, can outperform more sophisticated techniques by a few orders of 
magnitude. We have shown that our proposed clipped representation can improve the 
compression ratio by a wide margin, while being able to maintain or increase the tight-
ness of its lower bound, which allows even faster nearest neighbor queries, especially in 
ones that require Dynamic Time Warping distance measure. Other than producing faster 
exact algorithms for similarity search, we have also demonstrated that our clipped repre-
sentation approach can support clustering and scale to much larger datasets.  
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Abstract. A major task of traditional temporal event sequence mining
is to predict the occurrences of a special type of event (called target
event) in a long temporal sequence. Our previous work has defined a
new type of pattern, called event-oriented pattern, which can poten-
tially predict the target event within a certain period of time. However,
in the event-oriented pattern discovery, because the size of interval for
prediction is pre-defined, the mining results could be inaccurate and
carry misleading information. In this paper, we introduce a new con-
cept, called temporal feature, to rectify this shortcoming. Generally, for
any event-oriented pattern discovered under the pre-given size of inter-
val, the temporal feature is the minimal size of interval that makes the
pattern interesting. Thus, by further investigating the temporal features
of discovered event-oriented patterns, we can refine the knowledge for
the target event prediction.

1 Introduction

An important task of temporal event sequence mining is to predict the occur-
rences of a special type of event, called target event, in a long sequence. Sub-
stantial work [1–4] has been done for target event prediction in a long temporal
event sequence. Particularly, in our previous work [3], we have defined a new
type of pattern, called event oriented pattern, to address this research problem.
In general, the discovered event-oriented pattern P is represented as the predic-
tion rule r =

{
P

T=⇒ e
}

, where e is target event type and T is the temporal
constraint indicating the time period for target event prediction. The prediction
rule r can be interpreted as: if pattern P occurs, the target event is likely to
occur within a T -sized interval.

The temporal constraint T plays an important role in the target event pre-
diction because it is closely related to the sensibility of the prediction rule. So,
in our event-oriented pattern discovery problem, T is pre-defined by domain ex-
perts to ensure that all prediction rules discovered under the parameter T are
sensible in the given application domain. However, in the event-oriented pattern
discovery, an important observation (as will be explained later) is that if a rule
P

T1=⇒ e is interesting in term of the interestingness measures, for any T2 > T1,

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 778–784, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the rule P
T2=⇒ e is interesting as well. Thus, pre-defining T may cause the

side-effect on the accuracy of prediction.
Let us consider the following example in the application of telecommunication

network fault analysis. Assume that an event-oriented pattern P can lead to
the trouble report (TR) within 12 hours. However, in the process of pattern
discovery, domain experts set the temporal constraint T as 24 hours (which is
believed sensible to the application domain). According to the observation, P is
discovered to be interesting and a corresponding rule r is in the form of P 24hrs=⇒ e.
Compared with the fact P

12hrs=⇒ e, the rule r is lack of accuracy in term of the
size of interval for prediction. Such inaccurate prediction rules sometimes carry
misleading information. For example, if domain experts take 24 hours as the
interval in which P will lead to TRs, they may underestimate the emergency
that TRs will occur and therefore, fail to take corresponding precautions in
time.

In this paper, we introduce a novel concept, called temporal feature, to ad-
dress the above problem. Given an event-oriented pattern P, the temporal feature
of P , denoted as T (P ), is defined as the minimal size of interval that makes P
interesting in terms of the interestingness measures. Based on this new concept,
we can solve the problem in two steps. First, as done in our previous work, a
set of event-oriented patterns are discovered under a given size of interval T ,
where T is believed as the maximal sensible size of interval for prediction in
the application domain. Then, we further analyze the mining result, i.e., for
each interesting pattern P (discovered under the parameter T ), we try to find
its temporal feature T (P ). In this case, the corresponding prediction rule of P

is refined from P
T=⇒ e to P

T (P )

=⇒ e, which carries more accurate temporal
information for the target event predication.

The rest of this paper is organized as follows. Section 2 gives the background
of mining event-oriented patterns. In Section 3, the problem of discovering tem-
poral features is formulated and further discussed. In Section 4, we propose
approaches to find temporal features of event-oriented patterns. Section 5 shows
the experiment results. Finally, we conclude this paper in Section 6.

2 Background

In this section, we review some key concepts of discovering event-oriented pat-
terns in a long temporal sequence.

Let us consider a finite set E of event types. An event is a pair (a, t) where
a ∈ E and t is a timestamp. We define one special event type e as the tar-
get event type. Any event of type e is called a target event. A temporal event
sequence, or sequence in short, is a list of events totally ordered by their times-
tamps.

Let a window w be [ts, te), where ts and te are the start time and the end
time of w respectively. The window size of w is defined as te − ts. A sequence
fragment f (S,w) is the part of sequence S determined by w.
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A pattern P is defined as either a set or a list of event types. A sequence
fragment f (S,w) is called to contain a pattern P if there exist events in f (S,w)
that can match P . Given a pattern P and a sequence S, the approach in [1] can
identify all the occurrences, called minimal occurrences (OWs), of P in S.

A prediction rule is in the form of r =
{
P

T=⇒ e
}

, where e is the target
event type, P is a event-oriented pattern, and T is the size of interval. Generally,
a prediction rule can be interpreted as: the occurrence of P is likely to lead to
the target event in a T -sized interval.

To evaluate the significance of prediction rules, we use support and confidence.
Before giving the definition of support and confidence, we first formally define
the dataset prior to target events.

Given a sequence S, for each target event (e, ti) in S, we establish a T -sized
window wi = [ti − T, ti] and get the sequence fragment fi = f (S,wi). The set
of these sequence fragments D = {f1, f2, . . . , fm} is called the local dataset of
target event type e.

Definition 2.1 (Support). Given a sequence S and a prediction rule r ={
P

T=⇒ e
}

, the support of r is defined as Supp (r) = |{fi∈D|fi contains P}|
|D| ,

where D is the local dataset of e.

Definition 2.2 (Confidence). Given a sequence S and a prediction rule r ={
P

T=⇒ e
}

, the confidence of r is defined as Conf (r) =
∑

i # MO in fi

# MO in S , where
fi is the sequence fragment in the local dataset D.

The formal definition of finding event-oriented pattern is presented as follows:
given a sequence S, a target event type e, a window size T , two thresholds s0

and c0, to find any event-oriented pattern in the form of r =
{
P

T=⇒ e
}

such
that Supp(r) ≥ s0 and Conf(r) ≥ c0.

3 Temporal Features

In this section, we first give the formal definition of the temporal feature. Then,
we prove that the temporal feature exists for any interesting event-oriented pat-
tern. Finally, we formulate the problem of finding temporal features.

Definition 3.1 (Temporal feature). Given an interesting event-oriented pat-
tern P (discovered from the sequence S under a window size T and threshold
s0 and c0), the temporal feature of P , denoted as T (P ), is the minimal win-

dow size that makes P interesting, i.e., 1) both Supp(P T (P )

=⇒ e) ≥ s0 and

Conf(P T (P )

=⇒ e) ≥ c0 hold, and 2) there does not exist T (P )′ < T (P ), satisfying

Supp(P T (P )′
=⇒ e) ≥ s0 and Conf(P T (P )′

=⇒ e) ≥ c0.
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To prove the existence of temporal feature, we first give the following prop-
erty of support and confidence.

Claim 3.1 (Monotony of support and confidence with window size T).
Given a pattern P , for any two window sizes T1 and T2 with T1 ≥ T2, we have
Supp(P T1=⇒ e) ≥ Supp(P T2=⇒ e) and Conf(P T1=⇒ e) ≥ Conf(P T2=⇒ e).

Proof. The proof is straightforward according to Definitions 2.1 and 2.2. �

Claim 3.2 (Existence of temporal feature). For any interesting pattern P
(discovered from the sequence S under a window size T and threshold s0 and
c0), the temporal feature T (P ) exists.

Proof. First, for a given pattern P , we define the temporal feature w.r.t sup-
port as the minimal window size that makes the pattern P interesting in terms
of support (i.e., the support of P is no less than the given support threshold).
Similarly, the temporal feature w.r.t. confidence is defined as the minimal win-
dow size that makes P interesting in terms of confidence. Thanks to Claim 3.1,
for any interesting pattern P discovered under the window size T, there exist
the temporal feature w.r.t support and the temporal feature w.r.t confidence,
denoted as T

(P )
Supp and T

(P )
Conf respectively. According to Definition 3.1, the tem-

poral feature of P is Max{T (P )
Supp,T

(P )
Conf}. �

Problem Definition. The problem of finding temporal features can be formu-
lated as: given a set PS of interesting pattern event-oriented patterns (discovered
from the sequence S under a window size T and threshold s0 and c0), for any
pattern P ∈ PS, to refine the corresponding prediction rule P

T=⇒ e to a new

rule P
T (P )

=⇒ e, where T (P ) is the temporal feature of P.

4 Finding Temporal Features

In this section, we discuss how to find the temporal feature of a single interesting
pattern P . According to the proof of Claim 3.2, our task is naturally decomposed
into two sub-tasks, i.e., finding temporal feature w.r.t. support and finding tem-
poral feature w.r.t. confidence.

Finding Temporal Feature w.r.t. Support. Suppose that the total number
of target events is m. For each target event vi = (e, ti) where i is from 1 to
m, we first find a window size Ti such that Ti is the minimal window size that
makes the sequence fragment in [ti − Ti, ti) contain P . We call Ti the initial
window size of the target event vi in terms of the pattern P . In this case, for
all target events from v1 to vm, we can create a vector of initial window size
(in terms of P ), denoted as V S(P ). Then, we could sort V S(P ) on the ascending
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order, and by definition, the temporal feature w.r.t. support T (P )
Supp should be the

([s0 ∗m] + 1)-th element of V S(P ), where s0 is the support threshold.

Finding Temporal Feature w.r.t. Confidence. Suppose the total number of
occurrences of a pattern P in S is N . Let us consider one target event vi = (e, ti).
Suppose that P occurs k times in the interval [ti−T, ti), where is T the pre-given
window size for discovering P. We can find k special window sizes (T1,T2...Tk)
such that for each Tj (j = 1 · · · k), 1) P occurs j times in the sequence fragment
in [ti−Tj , ti) and 2) Tj is the minimal window size that holding condition 1). For
all target events, we can create a vector V C(P ) which consists of all such special
window sizes in terms of pattern P . After sorting V C(P ) on the ascending order
and T

(P )
Conf should be the ([c0 ∗ N ] + 1)-th element of V C(P ), where c0 is the

confidence threshold.

Improvement. Suppose that the temporal feature w.r.t. support of P , T (P )
Supp,

has been found. According to Definition 3.1, the temporal feature T (P ) should
be a value in the interval [T (P )

Supp,T ], where T is the pre-given window size. Based
on this observation, we do the improvement as follows. Let NSupp be the number
of occurrences of P in the T

(P )
Supp-sized windows before target events. During the

reverse scan for creating the vector V C(P ), for any special window with size
Ti <= T

(P )
Supp, we increase NSupp by 1 but do not record Ti in the V C(P ). After

the scan, if NSupp is no less than [c0 ∗N ]+1, there is no need to compute T
(P )
Conf

as we already find the temporal feature T (P ) = T
(P )
Supp. Otherwise, let N� be

[c0 ∗N ] + 1−NSupp. Then the N�-th smallest element in V C(P ) is T
(P )
Conf (note

that it is also the temporal feature T (P )).

5 Empirical Results

In this section, we the show experiment results of the application of telecommu-
nication network fault analysis. The telecommunication event database contains
120,312 events, covering 190 event types. The population of target events is 2,317.
In the experiment, all patterns to be further investigated are discovered under
the conditions T = 12hrs, s0 = 5%, and c0 = 20%. The experiment results show
that the temporal features of those event-oriented patterns are ranged from 40%
to 97% as large as T . Table 1 gives some samples of our mining results, illustrat-
ing that how the temporal features improve the accuracy of prediction rules.

Let us take the first pattern {A1,E2} as an example. The initial prediction
rule {A1,E2} 12hrs=⇒ e with support 24.46% and confidence 40.04%. However, with
the thresholds s0 = 5% and c0 = 20%, a window size of 4.83 hrs can already
makes {A1,E2} interesting. That is, the rule {A1,E2} 4.83hrs=⇒ e is believed to
be significant enough for predicting the target events. Compared with the initial
predicting rule, the size of prediction interval is only 40.25% as large as T. So,
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Table 1. Examples of temporal features

P T (hrs) Supp(P
T

=⇒ e) Conf(P
T

=⇒ e) TP (hrs) TP
T

{A1, E2} 12 24.46% 40.04% 4.83 40.25%

{E1, F1} 12 7.32% 25.56% 6.32 52.67%

{A2, F1, F2} 12 5.03% 22.17% 8.15 67.92%

Fig. 1. Performance evaluation

the new prediction rule is more accurate and sensible in term of the size of
interval for prediction. Another observation is that for some prediction rules
whose interestingness measures are close to the thresholds (e.g., the prediction
rule of pattern {A2,F1,F2}), finding temporal features could also considerably
reduce the size of prediction interval, with marginal decrease on the values of
interestingness measures.

For the efficiency study, we report the response time for finding the temporal
features from sequences with different length. Figure 1 shows such a result under
the condition T = 12hrs, s0 = 5%, and c0 = 20%. We could see our approach is
not linearly scalable in terms of the length of sequence.

6 Conclusions

As an extension of our previous work, this paper aims to improve the accuracy
of the prediction rule in terms of the temporal constraint. We defined a new
concept called temporal feature, and formulated the research problem of finding
temporal features. Approaches was proposed to solve the identified problem. We
also reported the experiment results of a real dataset.

The significance of this work is summarized as two points. First, rather than
taking the pre-given window size for granted, we improve the accuracy of the
prediction rules by minimizing the size of the prediction interval. It is also in-
teresting to extend such a concept to other type of knowledge for perdition.
A question could be: does there exist the minimal window size to make the
knowledge interesting? Secondly, the identified problem can be utilized in the
post-analysis of event-oriented mining results. For a discovered pattern which
domain experts are specially interested in, we can borrow the idea of tempo-
ral feature to find the minimal window sizes that make this pattern interesting
for different thresholds of interestingness measures. Such analysis could provide
detailed information of the relevance between the pattern and the target event.
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Abstract. This paper proposes a novel anomaly detection system for
spacecrafts based on data mining techniques. It constructs a nonlinear
probabilistic model w.r.t. behavior of a spacecraft by applying the rel-
evance vector regression and autoregression to massive telemetry data,
and then monitors the on-line telemetry data using the model and de-
tects anomalies. A major advantage over conventional anomaly detection
methods is that this approach requires little a priori knowledge on the
system.

1 Introduction

Anomaly detection is a key issue in the development of recent advanced space-
craft. The space environment is very harsh for spacecraft due to a variety of
factors such as direct radiation, great temperature difference, and so on. In ad-
dition, the space is so distant from the earth that it is extremely difficult to
directly inspect and repair a damaged component. Therefore, early detection of
anomalous symptoms is important to avoid disastrous situations such as loss
of control. Although several anomaly detection/diagnosis methods using mod-
ern reasoning techniques have been developed, they have difficulties in acquiring
accurate and complete models and knowledge of the spacecraft systems and in
monitoring the system behavior exhaustively and efficiently.

In this paper, we propose a new anomaly detection method for spacecraft
based on data mining technique, autoregressive model and the relevance vector
regression, and constructs a predictive model for each time series in the telemetry
data. Then, it monitors online telemetry data and detect anomalies by checking
the probability density of the observation.

2 Conventional Approaches to Anomaly Detection for
Spacecraft

Limit-checking checks whether the value is within the pre-defined upper and
lower limits. Though the limit-checking can be applied to any types of spacecraft,
it lacks flexibility and expressiveness and suffers from false alarm problem.

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 785–790, 2005.
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In the model-based fault detection and diagnosis method, system models
are utilized to simulate the spacecraft behavior and examine the validity of the
actual telemetry data. This approach would provide an ideal performance if an
accurate and complete model and infinite computational power were available.
In practice, however, both of them are not available.

Expert systems also have been developed for this purpose. The knowledge
is generally represented in the form of ”if-then” production rules. Though the
expert systems are powerful and flexible, it has a difficulty in preparing a set of
accurate and complete knowledge on the spacecraft.

In summary, the above methods have a common problem that they are too
dependent on the knowledge of human experts.

A reasonable approach to this problem is the application of data mining and
machine learning techniques to the telemetry data. Actually, some researchers
have developed anomaly detection methods for spacecraft using regression tree
learning[7], temporal pattern clustering[8], association rule mining[9].

3 Proposed Anomaly Detection System

3.1 Autoregressive Model

Autoregressive (AR) model is the most basic data mining technique for time-
series data[3][10][11]. For the purpose of applying AR model to anomaly detec-
tion problems for spacecraft, we define AR model as

τ j
ARk = Θjxk (1)

where j = {1, · · · , s} represents the jth series of telemetry data, Θj = (Θj
0,Θ

j
1,k−1,

. . . ,Θj
1,k−p, . . . ,Θ

j
s,k−1, . . . ,Θ

j
s,k−p) is a row vector of AR coefficients, xk =

(1, τ1
k−1, . . . , τ

1
k−p, . . . , τ

s
k−1, . . . , τ

s
k−p) is the data vector of all p previous time

series, and the notation AR represent that the target value τ is based on AR
model. This modified AR model implies that the value of a target time-series
depends not only on the past values of itself but also on those of other series.
The capability of modeling the relationships among some series is a great advan-
tage. Fig.1 is the concept of this model. We made use of the framework of the
relevance vector learning to extend this model to nonlinear and probabilistic.

3.2 Relevance Vector Regression

The relevance vector regression (RVR) originally proposed by Tipping[5] is a
state of the art kernel-based nonlinear regression learning method[1][2][4][6].

We write a sample of N training pairs as {xn, tn}N
n=1 for the jth teleme-

try series, corresponding xk and τ j
k . Hereinafter, we deal with the jth series of

telemetry data and omit the notation j for simplification.
The RVR model assumes that the targets are samples from a distribution

model with additive independent zero-mean Gaussian noise, with variance σ2,

t = y + ε = Φw + ε (2)
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Fig. 1. Concept of our AR model

where t = (t1, . . . , tN ), y, Φ = (φ1, . . . ,φM ), w = (w0, . . . ,wM )T , φm(x) =
K(x,xm) and ε = (ε1, . . . , εn)T represent the target vector, the vector of the
predicted value, the N ×M design matrix, the weights, the kernel function, and
an error vector, respectively.

To achieve the sparsity, M independent hyperparameters, α = (α1, . . . ,αM )T

over w are indroduced. Then, after maximizing logarithm likelihood w.r.t. α and
σ2, we obtain a conditional distribution model for a new datum x∗ as

p(t∗|t,αMP ,σ2
MP ) = N (t∗|y∗,σ2

∗) (3)

where y∗ is the predict value of the new target t∗ and σ2
∗ is the variance of the

prediction. See [1][4][6] for more details of the sparse Bayesian learning.

3.3 Anomaly Detection System

The anomaly detection system based on the proposed method operates as fol-
lows,

1. (Learning) Learn the relevance vector autoregressive model using a set of
validated normal telemetry data.

2. (Prediction) Compute the next probable range of the target series.
3. (Monitoring) Obtain and check the (pseudo-)telemetry data.
4. (Alarming) Give an alarm if the data is out of the predicted range.
5. Repeat steps 2-4

The system is supposed to give many false alarms if we directly apply the
redefined AR model Eq.(1) and the RVR Eq.(3). The reasons are,

1. The AR model completely cannot be modeled as the complicate spacecraft
system,

t∗(x∗) = tAR∗(x∗) = tTRUE∗(x∗)+ εAR = y∗(x∗)+ ε∗(x∗) p(ε∗) = N (0,σ2
∗)

(4)
where εAR is the modeling error of the AR model.

2. The RVR adopts the relevance vector for the prototypes of the model formed
as Eq.(2)1.

1 This is a great advantage of the RVR for the execution speed of anomaly detection.
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As the result, some training data can be mistaken as anomaly though all training
data are normal because these data have relatively so large εAR that the system
regards them as the data which is far from the prototype data.

We evaluated the variance of the difference between another data set {xi, ti}N2
i=1

and corresponding prediction values, y∗(xi).

σ̂2
AR =

1
N2

N2∑
i

(ti − y∗(xi))2,
N2∑
i

ε(xi) −→ 0 (5)

If the AR model completely describes the system behavior, (5) must be zero in
theory. Therefore, we extended (3) as

p(t∗|t,αMP ,σ2
MP ) = N (y∗,σ2

∗ + σ̂2
AR). (6)

4 Experiment and Discussion

We performed an experiment with telemetry data obtained from an orbital ren-
dezvous simulation. This telemetry consists of 27 time-series variables in total,
13 of which are from position and attitude control subsystem, and the rest are
from propulsion subsystem. In more detail, the former group consists of 12 nu-
merical observation time-series variables regarding the position and attitude of
the vehicle and one command sequence. The latter group consists of 14 discrete-
valued time-series variables, each of which indicates the command input to each
of the 14 thruster engines.

In this experiment, we assumed a scenario where the power of fourth thruster
engine used for the pitch control falls to zero at time 250 [sec]. With this scenario,
we performed following two scenarios.

Comparison of Proposed Method with normal RV Autoregressive Model First,
we have compared the proposed method with the normal relevance vector au-
toregressive model.

Fig.2 , Fig.3 show the results of anomaly detection in the series which repre-
sents the pitch angle. The solid line in the upper figure shows the pitch angle and
the dotted line shows the predicted range, and the solid line in the lower figure
shows the probability density of the observation. The system gives the alarm
when the probability became lower than the computed limit2. We can see that
the normal model gives many false alarms. On the other hand, the proposed
method correctly gives alarms after a little time delay. The proposed method
also succeeded in detecting anomalies in the series representing the pitch rate as
shown in Fig.4.

2 In this experiment, we adopted the probability density value of
√

σ2∗ + σ2
AR as limit.



An Anomaly Detection Method for Spacecraft 789

Fig. 2. Result of anomaly detection by
normal RV AR model. The upper graph
shows the confidence of target series in
the telemetry data

Fig. 3. Result of anomaly detection by
the proposed method. The lower graph
shows the probability density

Fig. 4. Comparison of the proposed method with conventional limit-checking. The
solid line represents the pitch rate and the dotted lines represent the upper and lower
bounds given by each method

Comparison with Conventional Limit-Checking. We compared the proposed method
with the conventional limit-checking. We set the limit on the standard deviation
for the proposed method and on the maximum absolute value in the normal phase
for the limit-checking. Fig.4 shows the result. The conventional limit-checking
fails to detect slight anomalies like this case. On the other hand, the proposed
method is capable of detecting this anomaly because it can dynamically estimate
proper range of the target series.

We only showed the results with respect to the series which included the
anomalies due to limitations of space, though we have ran the experiments
against all series.

5 Conclusion

This paper proposed a new anomaly detection method based on the relevance
vector regression and autoregressive model.

First, we extended the traditional AR model (3.1) and adopted the relevance
vector frameworks for learning this model. In addition, we extended this RV AR
model for the purpose of removing false alarm (3.3).

Compared with the conventional anomaly detection method, this method
has great advantages. First, the proposed method requires little a priori knowl-
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edge on the spacecraft system. Therefore, it can be applied to various kinds of
spacecraft.

We performed an experiment with telemetry data obtained from an orbital
rendezvous simulation and confirmed the efficiency of the propos4ed method.
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Fraunhofer Institute for Autonomous Intelligent Systems,
Schloß Birlinghoven, D-53754 Sankt Augustin, Germany

tamas.horvath@ais.fraunhofer.de

Abstract. The cyclic pattern kernel (CPK) is a powerful graph kernel based on
patterns formed by simple cycles of labeled graphs. In a recent work, we proposed
a method for computing CPK which is restricted to graphs containing polynomial
number of simple cycles. In this work, we present two approaches relaxing this
limitation. We first show that for graphs of bounded treewidth, CPK can be com-
puted in time polynomial in the number of cyclic patterns, which in turn can be
exponentially smaller than that of simple cycles. We then propose an alterna-
tive CPK based on the set of relevant cycles which is known to be enumerable
with polynomial delay and its cardinality is typically only cubic in the number of
vertices. Empirical results on the NCI-HIV dataset indicate that there is no signif-
icant difference in predictive performance between CPK based on simple cycles
and that based on relevant cycles.

1 Introduction

Recently, there is an increasing interest in supervised concept learning problems, where
instances are labeled undirected graphs. This problem is motivated by various practi-
cal problems e.g. in computational chemistry. Besides rule-based learning algorithms,
kernel methods (see, e.g., [17]), in particular, support vector machines [20], have be-
come a popular approach for this task. The crucial step of graph kernel approaches is
to design some effectively computable positive definite function k : G × G → IR, called
kernel, where G is the set of labeled graphs representing the instances of the underlying
learning problem. Many recent graph kernels rely on embedding G into a feature space
defined by the set of frequent subgraphs occurring in G (see, e.g., [5]).

Graph kernels based on frequent patterns involve, however, the problem of finding
an optimal trade-off between predictive power and runtime, as both these conflicting
requirements depend on the choice of the frequency threshold. Therefore, as an alterna-
tive to graph kernels based on frequent subgraphs, a new graph kernel, called the cyclic
pattern kernel (CPK), has been proposed recently in [10]. CPK is based on embed-
ding the graphs into a Boolean feature space made up of cyclic patterns independent
of their frequencies, where cyclic patterns are strings formed by the labels of simple
cycles. On the NCI-HIV1 biochemical domain, CPK turned out to outperform frequent
subgraph-based approaches in accuracy measured by the area under the ROC curve [4].

1 http://cactus.nci.nih.gov/

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 791–801, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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In [10] we show that CPK cannot be computed efficiently (neither by a closed form
nor by any other algorithm). For a restricted graph class, we propose an algorithm based
on explicitly embedding the graphs into the feature space. Although the features are
only the patterns of simple cycles, they are computed by enumerating all simple cycles
of the graphs. The reason is that, in contrast to simple cycles [15], cyclic patterns cannot
be enumerated in output-polynomial time [10], i.e. in time polynomial in the combined
size of the input and output. Since graphs may have exponentially many simple cycles,
the method in [10] is restricted to graphs with a polynomial number of simple cycles.
This limitation is rather severe because even graphs with small number of cyclic pat-
terns may contain exponentially many simple cycles. Furthermore, to decide whether
a graph meets the above requirement, one has to count its simple cycles which is #P-
complete [19].

In this paper, we present two approaches relaxing the above limitation. We first show
that cyclic patterns for graphs of bounded treewidth can be enumerated with polynomial
delay. Hence, CPK can be computed in time polynomial in the number of cyclic patterns
for this class of graphs. Treewidth [16] is a measure of tree-likeness of graphs. The class
of bounded treewidth graphs includes many practically relevant graph classes (see, e.g.,
[3] for an overview). To show our result, we use the positive result [1] on the regular-
language-constrained simple path problem for bounded treewidth graphs.

We then propose an alternative CPK based on the set of relevant cycles [14]. A cycle
is relevant if it belongs to a minimum basis of the graph’s cycle space. Although in worst
case, the number of relevant cycles of a graph can be exponential in the number n of its
vertices, relevant cycles have important advantages over simple cycles; (i) They can be
counted in time polynomial in n and are enumerable with polynomial delay [21], and
(ii) their number is typically only cubic in n [9]. We present empirical results which
indicate that there is no significant difference in predictive performance between CPK
defined by simple cycles and that defined by relevant cycles. Hence, utilizing the above
nice properties of relevant cycles, a more robust CPK can be obtained.

The paper is organized as follows. In Section 2, we recall some basic notions and
the definition of CPK. In Section 3, we show that for graphs of bounded treewidth, CPK
can be computed in time polynomial in the number of cyclic patterns. In Section 4, we
define CPK based on relevant cycles and evaluate it empirically. Finally, in Section 5,
we conclude and list some problems for future work. Due to space limitations, proofs
are only sketched or even omitted in this version.

2 Graphs, Kernels, and the Cyclic Pattern Kernel

In this section we recall some necessary notions. For further details, the reader is re-
ferred to [6, 10, 17].

Graphs. For a set S, [S]k denotes the family of k-subsets of S, i.e., [S]k = {S′ ⊆
S : |S′| = k}. A labeled undirected graph is a quadruple G = (V,E,Σ,λ), where
V is a finite set of vertices, E ⊆ [V ]2 is a set of edges, Σ is a finite set of labels, and
λ : V ∪E → Σ is a function assigning a label to each element of V ∪E. |V | and |E| are
denoted by n and m, respectively. Two vertices of G are adjacent if they are connected
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by an edge. The degree of a vertex v ∈ V is the number of vertices adjacent to v. Unless
otherwise stated, in this paper by graphs we always mean labeled undirected graphs. A
graph database G is a set of disjoint graphs, and |G| denotes the number of graphs in G.

Let G = (V,E,Σ,λ) be a graph. A graph G′ = (V ′,E′,Σ,λ′) is a subgraph
of G, if V ′ ⊆ V , E′ ⊆ E, and λ′(x) = λ(x) for every x ∈ V ′ ∪ E′. A sequence
w = {v0, v1}, {v1, v2}, . . . , {vk−1, vk} of edges of G forms a simple path if the vi’s
are all distinct. G is connected if there is a (simple) path between any pair of its vertices.
A connected component of G is a maximal subgraph of G that is connected. A vertex
v ∈ V is an articulation (also called cut) vertex, if its removal increases the number of
connected components of G. G is biconnected if it contains no articulation vertex. A
biconnected component (or block) of G is a maximal subgraph that is biconnected.

Let G be a graph. A subgraph C of G forms a cycle if each of its vertices has even
degree. If, furthermore, C is connected and each of its vertices has degree 2 then C is a
simple cycle of G. We denote by S(G) the set of simple cycles of G. Two simple cycles
C and C ′ of G are considered to be the same iff C or its reverse is a cyclic permutation
of C ′. We note that the number of simple cycles can grow faster than 2n.

It holds that the biconnected components of a graph G are pairwise edge disjoint
and form thus a partition on the set of G’s edges. This partition, in turn, corresponds to
the following equivalence relation on the set of edges: two edges are equivalent iff they
belong to a common simple cycle. This property of biconnected components implies
that an edge of a graph belongs to a simple cycle iff its biconnected component con-
tains more than one edge. Edges not belonging to simple cycles are called bridges. The
subgraph of a graph G formed by its bridges is denoted by B(G). Clearly, each bridge
of a graph is a singleton biconnected component, and B(G) is a forest.

The graphs G1 = (V1,E1,Σ,λ1) and G2 = (V2,E2,Σ,λ2) are isomorphic if
there is a bijection ϕ : V1 → V2 such that (i) for every u, v ∈ V1, {u, v} ∈ E1 iff
{ϕ(u),ϕ(v)} ∈ E2, (ii) λ1(u) = λ2(ϕ(u)) for every u ∈ V1, and (iii) λ1({u, v}) =
λ2({ϕ(u),ϕ(v)}) for every {u, v} ∈ E1.

Kernel Methods. Kernel methods (see, e.g., [17]) are a theoretically well-founded
class of statistical learning algorithms that have received considerable attention recently
also in the data mining community. Algorithms in this broad class (e.g., support vector
machines, Gaussian processes, etc.) have proved to be powerful tools in various real-
world data mining applications. Since kernel methods are not restricted to the attribute-
value representation used by most data mining algorithms, many of these applications
involve datasets given in some non-vectorial representation formalism such as graphs
(see, e.g., [8, 17]). In general, kernel methods are composed of two components:

(i) A domain specific function Φ embedding the underlying instance space X into
a high (possibly infinite) dimensional inner product feature space F (usually a
Hilbert-space) and

(ii) a domain independent algorithm aimed at discovering patterns (e.g., classification,
clustering, etc.) in the embedded data, where patterns are restricted to linear func-
tions defined in terms of inner products between the points of the embedded input
data.
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One of the attractive computational properties of kernel methods is that in many cases,
patterns can be computed in time independent of the dimension of F . In such cases,
the inner product of the feature vectors can be calculated by a kernel without explicitly
performing or even knowing the embedding function, where a kernel is a function of
the form κ : X ×X → IR satisfying κ(x, y) = 〈Φ(x),Φ(y)〉 for every x, y ∈ X .

To simplify the description, we define a function that will be used many times in
what follows. Let U be a set and κ∩ : 2U × 2U → IN be the function defined by

κ∩ : (S1,S2) +→ |S1 ∩ S2| (1)

for every S1,S2 ⊆ U . The proof of the following proposition follows directly from the
definitions.

Proposition 1. κ∩ is a kernel.

The function defined in (1) is called the intersection kernel2.

The Cyclic Pattern Kernel. Finally, we recall the definition of the cyclic pattern
kernel (CPK) introduced in [10]. Let Σ,Γ be alphabets, and π be a mapping from the
set of simple cycles and trees labeled by Σ to Γ ∗ such that (i) π maps two graphs to the
same string iff they are isomorphic and (ii) π can be computed in polynomial time. We
note that such Γ and π always exist and can easily be constructed (see, e.g., [10, 22]).
Using π, the set of cyclic and tree patterns of G is defined by

PS(G) = {π(C) : C ∈ S(G)} (2)

PT (G) = {π(T ) : T is a maximal tree of B(G)} , (3)

respectively. The cyclic pattern kernel for a graph database G is then defined by

κS(G1,G2) = κ∩(PS(G1),PS(G2)) + κ∩(PT (G1),PT (G2)) (4)

for every G1,G2 ∈ G. Since PS(G) and PT (G) are disjoint for every G, κS is a kernel
by Proposition 1.

Unfortunately, unless P = NP, κS cannot be computed in polynomial time [10]. In
fact, one can show that computing κS is at least as hard as counting simple cycles of
length k in a graph. This problem is #W[1]-complete [7], and is therefore unlikely to be
fixed-parameter tractable.

Because of the high complexity, CPK is computed in [10] by (i) explicitly perform-
ing the embedding into the feature space for every graph, and then by (ii) calculating
the inner product of the obtained feature vectors. To perform the embedding for a graph
G, PS(G) is computed by enumerating all elements of S(G). The reason is that while
S(G) can be enumerated with linear delay [15], PS(G) cannot be enumerated in output-
polynomial time (unless P = NP) [10]. Thus, the algorithm computing CPK in [10] is
polynomial just in |S(G)| rather than in |PS(G)|. Since |S(G)| can be exponential in n,
the method in [10] is restricted to graphs with polynomial number of simple cycles. To
decide whether the graphs in the database satisfy this condition, one has to count their
simple cycles which is #P-complete in general [19].

2 We note that intersection kernels are often defined in a more general way (see, e.g., [17]).
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3 Graphs of Bounded Treewidth

Restricting CPK to graphs of polynomial number of simple cycles is rather severe;
graphs containing exponentially many simple cycles may have polynomially or even
constant many cyclic patterns. Below we give an example of such graphs.

Example 1. Let G = (V,E, {a},λ) with V = {u1, . . . ,un, v1, . . . , vn,w1, . . . ,wn}
and

E =
⋃

i=1,...,n

{{vi,ui}, {ui, v(i mod n)+1}, {vi,wi}, {wi, v(i mod n)+1}} .

G contains 2n + n simple cycles, which in turn form only two different cyclic patterns.

This, as well as other examples from real-world datasets motivate us to deal with the
problem of listing cyclic patterns of a graph without enumerating the possibly exponen-
tially large set of all its simple cycles. More precisely, we consider the problem whether
cyclic patterns can be enumerated with polynomial delay. The following proposition
states that, in contrast to simple cycles, this problem is most likely intractable.

Proposition 2 ([10]). Unless P = NP, cyclic patterns cannot be enumerated in output-
polynomial time.

The proof of the above proposition is based on a polynomial-time reduction from
the NP-complete Hamiltonian cycle problem. This and many other NP-hard compu-
tational problems become, however, polynomially solvable when restricted to graphs of
bounded treewidth (see, e.g., [2] for an overview). Treewidth [16] is a measure of tree-
likeness of graphs. More precisely, a tree decomposition of a graph G = (V,E,Σ,λ)
is a tree T = (V ′,E′, 2V ,μ) such that (i)

⋃
v∈V ′ μ(v) = V , (ii) for every e ∈ E there

is a vertex v ∈ V ′ satisfying e ⊆ μ(v), and (iii) for every u, v,w ∈ V ′ it holds that
μ(u) ∩ μ(v) ⊆ μ(w) whenever w is a vertex on the simple path between u and v. The
width of T is maxv∈V ′ |μ(v)| − 1, and the treewidth of G is the width of a tree de-
composition of G with the smallest width. Clearly, the treewidth of a tree is 1, and the
treewidth of a simple cycle of length at least 3 is 2.

Treewidth proved to be a useful tool in the design of graph algorithms. It has wide
algorithmic applications because many problems that are hard on arbitrary graphs be-
come easy for graphs of bounded treewidth. The class of bounded treewidth graphs
includes many practically relevant graph classes (see, e.g., [3] for an overview).

We note that even graphs with small treewidth may have exponentially many simple
cycles. For instance, one can easily see that the treewidth of the graph in Example 1 is
2 for every n > 1.

Using the positive result in [1] on the regular-language-constrained simple path
problem for graphs of bounded treewidth, in this section we show that CPK for graphs
of bounded treewidth can be computed in time polynomial in the number of cyclic pat-
terns. To prove this result, by (2) and (4) it is sufficient to show that cyclic patterns can
be enumerated with polynomial delay for graphs of bounded treewidth. We start with
the definition of the regular-language-constrained simple path problem ([1, 13]).
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Algorithm 1. ENUMERATING CYCLIC PATTERNS

Require: bounded treewidth graph G = (V, E, Σ, λ) with λ : E → Σ and integer N > 0
Ensure: set P of cyclic patterns of G such that |P | = min{N, |PS(G)|} and for every p, q ∈ P

it holds that p is neither a cyclic permutation of q nor that of q−1

1: k := 0, P := ∅
2: while k < N and |E| > 2 do
3: let Mk = (Sk, Σ, δk, s, Fk) be a DFA such that

L(Mk) =

{
∅ if k = 0

{p ∈ Σ∗ : ∃q ∈ P s.t. p is a cyclic permutation of q or q−1} otherwise
4: let e = {u, v} be some arbitrary edge of G
5: let M ′

k = (S′
k, Σ, δ′k, s, {f}) be the NFA such that

- S′
k = Sk ∪ {f} for some new state f /∈ Sk,

- δ′k = δk ∪ {(a, x, f) : ∃b ∈ Sk, x ∈ Σ s.t. δk(a, x) = b and δk(b, λ(e)) ∈ Sk \ Fk}
6: p := REG SIP(G \ {e}, M ′

k, u, v)
7: if p is the empty path then remove e from G
8: else
9: P := P ∪ {w · λ(e)}, where w is the string corresponding to p

10: k := k + 1
11: endif
12: endwhile
13: return P

Given (i) an edge-labeled graph G = (V,E,Σ,λ), i.e., λ is a function mapping E
to Σ, (ii) a source and a target vertex s, t ∈ V , respectively, and (iii) a regular language3

L ⊆ Σ∗, find a simple path p = e1, e2, . . . , en from s to t such that λ(e1) · . . . ·λ(en) ∈
L, or print ’NO’ if such a path does not exist. While this problem is NP-complete in
general, for graphs of bounded treewidth the following positive result holds.

Theorem 1 ([1]). The regular-language-constrained simple path problem can be solved
in polynomial time for graphs of bounded treewidth.

Using this result, we can state the following theorem.

Theorem 2. Let Gi = (Vi,Ei,Σ,λi) be bounded treewidth graphs for i = 1, 2. Then
κS(G1,G2) can be computed in time polynomial in

max{|V1|, |V2|, |PS(G1)|, |PS(G2)|} .

Proof sketch. By (4), it is sufficient to show that cyclic patterns can be enumerated with
polynomial delay because PT (Gi) (i = 1, 2) is bounded by |Vi| and can be computed
efficiently [18].

In order to apply the result provided by Theorem 1, we first note that each graph G
with treewidth tw can be transformed into an edge labeled graph G′ with treewidth tw
such that there is a bijection between the sets of cyclic patterns of G and G′. 4 Thus, we
may assume wlog that G1 and G2 are edge labeled graphs of bounded treewidth.

3 For basic notions of formal languages and finite automata, the reader is referred, e.g., to [12].
4 We note that we do not need to know cyclic patterns in order to compute CPK.
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The algorithm enumerating N cyclic patterns of a graph of bounded treewidth is
given in Algorithm 1. In each iteration of the loop (step 2), we compute a deterministic
finite automaton (DFA) Mk = (Sk,Σ, δk, s,Fk) that accepts the patterns computed so
far in P , as well as each cyclic permutation of q and q−1 for every q ∈ P , where q−1

denotes the reverse of q. Sk, Σ, δk, s, and Fk denote the set of states, the input alphabet,
the transition function, the initial state, and the set of final states of Mk, respectively.
Both the size of Mk and the time required to construct Mk is bounded by O (nk). In
step 4 we select an arbitrary edge e = {u, v} of G, and then, in step 5, construct a
nondeterministic finite automaton (NFA) M ′

k recognizing the language Lk = {w ∈
Σ∗ : w ·λ(e) ∈ Σ∗ \L(Mk)}. In step 6, we call the subroutine given in [1] that decides
in polynomial time whether or not there is a simple path between u and v such that
the string defined by this path belongs to Lk. If such a simple path does not exist, we
remove e from G, as in this case there is no simple cycle containing e that defines a new
cyclic pattern. Otherwise, we add the new cyclic pattern to P (step 9), and repeat the
loop. If N cyclic patterns have been found or G contains at most two edges, we stop the
algorithm and return P containing min{N, |PS(G)|} cyclic patterns. ,-

4 CPK Based on Relevant Cycles

Consider again the graph G in Example 1, but now with Σ = {a, 0, 1} and with λ
labeling the ui’s by 0, the wi’s by 1, and each other vertex and edge by a. One can see
that G has exponentially many cyclic patterns. In this section we empirically investigate
whether another, possibly smaller set of cyclic structures can also be applied without
significant loss of predictive performance. In particular, we consider cyclic patterns
based on the relevant cycles [14] of a graph.

In order to recall the definition of relevant cycles, we start with some basic notions
from algebraic graph theory. Let G = (V,E,Σ,λ) be a graph and consider the set of
cycles of G. Since cycles are subgraphs of G (such that every vertex has even degree),
each cycle C = (V ′,E′,Σ,λ′) of G can be represented by the incidence vector �C of its
edges. That is, the components of �C are indexed by E, and for every e ∈ E, �Ce = 1 if
e ∈ E′ and it is 0 otherwise. It holds that the set of vectors corresponding to the cycles
of G forms a vector space, called the cycle (vector) space, over the field GF(2).5 Thus,
vector addition in the cycle space corresponds to the symmetric difference of the sets
of edges of the cycles represented by the vectors. The dimension of the cycle space of
G is its cyclomatic number ν(G) = m − n + c(G), where c(G) denotes the number
of connected components of G. To represent the cycle space of G, one can consider
one of its bases, which has minimum length. The length of a basis is the sum of the
number of edges of the cycles represented by the vectors belonging to the basis. Since
the minimum basis of a graph’s cycle space is not unique, the cyclic structure of a graph
is described by the union of all minimum bases of its cycle space [14]. This canonical
set of cycles is called the set of relevant cycles. In [21], it is shown that relevant cycles

5 GF(2) is the binary field with the elements 0 and 1. Addition is defined by 0⊕0 = 0, 0⊕1 = 1,
and 1 ⊕ 1 = 0. Multiplication is given by 0 ⊗ 0 = 0, 0 ⊗ 1 = 0, and 1 ⊗ 1 = 1.
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can be enumerated with polynomial delay and counted in time polynomial in the order
of G. Although the set of relevant cycles of a graph can be exponential in the number
of its vertices in worst case, its cardinality is typically only cubic in n [9].

To measure the predictive performance of CPK based on relevant cycles, in our ex-
periments we used monotone increasing subsets of simple cycles that can be generated
by relevant cycles. More precisely, for a graph G and integer k ≥ 1, let Rk(G) denote
the set

Rk(G) =

{
the set of relevant cycles of G if k = 1
{C ⊕ C ′ ∈ S(G) : C ∈ Rk−1(G) and C ′ ∈ R1(G)} otherwise .

Since R1(G) ⊆ S(G), it holds that R1(G) ⊆ R2(G) ⊆ . . . ⊆ Rν(G)(G) = S(G).
We note that the set of relevant cycles of a graph is the union of the relevant cycles of
its biconnected components. Since biconnected components of a graph are enumerable
with linear delay [18], and relevant cycles of a biconnected graph are enumerable with
polynomial delay [21],Rk(G) can be computed in time polynomial in |Rk(G)| for any
arbitrary graph G and k > 0.

For a graph database G and integer k ≥ 1, the CPK based onRk(G), denoted κRk
,

is then defined by

κRk
(G1,G2) = κ∩(PRk

(G1),PRk
(G2)) + κ∩(PT (G1),PT (G2))

for every G1,G2 ∈ G, where PRk
(G) = {π(C) : C ∈ Rk(G)} and PT (G) is defined

by (3) for every G ∈ G. The remarks above along with Proposition 1 imply that κRk
is a

kernel that can be computed in time polynomial in max{n1, |Rk(G1)|, n2, |Rk(G2)|},
where n1 and n2 denote the number of vertices of G1 and G2, respectively.

4.1 Empirical Evaluation

To evaluate the predictive performance of CPK based on relevant cycles, we used the
same NCI–HIV dataset and evaluation method as in [10]. We briefly describe both the
dataset and the method, and refer the reader to [10] for further details.

Each compound in the NCI-HIV dataset is described by its molecular graph and by
its activity against HIV, which is one of the categories confirmed inactive (CI), moder-
ately active (CM), and active (CA). The NCI-HIV dataset contains 42689 molecules,
423 of which are active, 1081 are moderately active, and 41185 are inactive. The total
number of vertices and edges in this dataset is 1951154 and 2036712, respectively. Ta-
ble 1 shows the total number of cycles of different types in this graph database, as well
as the total number of patterns defined by them.

Table 1. Number of cycles and cyclic patterns of different type in the NCI-HIV domain

R1 PR1 R2 PR2 R3 PR3 S PS

132559 998 181367 2274 205829 3713 376125 6204
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Table 2. AUC for different tasks and costs. •X (resp. ◦X ) denotes a significant win at a 5% (resp.
10%) level wrt. X

cost κR1 κR2 κR3 κS

CA/CM problem

1.0 0.801(± 0.045) 0.815(± 0.031) •κR1
0.814(± 0.032) 0.813(± 0.033)

2.5 0.821(± 0.046) 0.830(± 0.041) •κR1
0.829(± 0.039) 0.827(± 0.042)

CACM/CI problem

1.0 0.754(± 0.022) 0.771(± 0.023) •κR1
0.778(± 0.018) •κR1

0.778(± 0.019) •κR1

35.0 0.795(± 0.028) 0.800(± 0.027) 0.804(± 0.024) •κR1
0.805(± 0.025) •κR1

•κR2

CA/CMCI problem

1.0 0.892(± 0.032) 0.907(± 0.025) •κR1
0.908(± 0.027) •κR1

0.908(± 0.027) •κR1

100.0 0.929(± 0.026) 0.929(± 0.032) ◦κS 0.926(± 0.029) •κS 0.922(± 0.030)

CA/CI problem

1.0 0.911(± 0.034) 0.925(± 0.029) •κR1
0.925(± 0.027) •κR1

0.926(± 0.028) •κR1

100.0 0.937(± 0.024) 0.939(± 0.019) 0.936(± 0.018) 0.934(± 0.020)

In order to evaluate the predictive performance of CPK based on relevant cycles, we
compared κR1 ,κR2 ,κR3 , and κS with each other on the following classification prob-
lems: distinguish CA from CM (CA/CM), CA and CM from CI (CACM/CI), CA from
CM and CI (CA/CMCI), and CA from CI (CA/CI). We used a modified version of the
SVM-light [11] support vector machine with the same misclassification cost parameters
as used in [5, 10]. For each problem and for each misclassification cost, we performed
a 5-fold cross-validation and measured the predictive performance using the mean of
the areas under the ROC curve (AUC) [4]. We used 5% and 10% significance levels in
the comparisons (see [10] for the details). The results are given in Table 2. They indi-
cate that κR2 can be used in most of the cases without a significant loss of predictive
performance wrt. κS , and that κR3 was never outperformed significantly by κS . Hence,
the alternative definition of CPK allows one to apply it to graph databases containing
graphs even with exponentially many simple cycles.

5 Conclusion and Future Work

In this paper, we have presented two approaches relaxing the complexity limitation of
computing CPK based on the set of simple cycles. We have shown that for graphs of
bounded treewidth, CPK can be computed in time polynomial in the number of cyclic
patterns. We then proposed an alternative CPK based on the smaller set of relevant
cycles and compared its predictive performance with that based on simple cycles. Em-
pirical results on the NCI-HIV dataset indicate that there is no significant difference
between the two CPK’s. Since the number of relevant cycles of a graph is typically only
cubic in its order, the CPK proposed in this work can be applied even to graphs with ex-
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ponentially many simple cycles. In addition, relevant cycles can be counted efficiently
in contrast to simple cycles. This allows one to decide in polynomial time whether the
graphs in a database contain polynomial number of relevant cycles. Hence, utilizing the
above nice properties of relevant cycles, we have presented a more robust CPK.

For future work, we are going to perform experiments with other real-world graph
databases. Furthermore, since Rk(G) is usually significantly larger than PRk

(G) (see,
e.g., Table 1), we are going to investigate, whether κRk

(G1,G2) can be computed in
time polynomial in |PRk

(G1)| and |PRk
(G2)| for every G1 and G2.
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Abstract. This paper presents a new method to solve the problem of
clustering large and complex text data. The method is based on a new
subspace clustering algorithm that automatically calculates the feature
weights in the k-means clustering process. In clustering sparse text data
the feature weights are used to discover clusters from subspaces of the
document vector space and identify key words that represent the seman-
tics of the clusters. We present a modification of the published algorithm
to solve the sparsity problem that occurs in text clustering. Experimental
results on real-world text data have shown that the new method outper-
formed the Standard KMeans and Bisection-KMeans algorithms, while
still maintaining efficiency of the k-means clustering process.

Keywords: Subspace Clustering, Text Mining, High Dimensional Data,
Feature Weighting, Cluster Interpretation.

1 Introduction

Clustering text documents into different category groups is an important step in
indexing, retrieval, management and mining of abundant text data on the Web
or in corporate information systems. Among others, the challenging problems of
text clustering are big volume, high dimensionality and complex semantics. In
this paper we are interested in solutions to the first two problems while use of
ontology provides promising solutions to the third problem [1].

In text document clustering, a document is often transferred to a vector
< t1, t2, · · · , tn >. A set of documents are represented as a matrix where each
row indicates a document and each column represents a term or word in the
vocabulary of the document set. In this model, clustering algorithms such as
the Standard KMeans [2] and its varieties [3, 4], as well as the hierarchical clus-
tering methods [5, 6], are used to cluster text data. In many real applications,
the vocabulary and the number of documents are very large, which results in a
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very large matrix. On the other hand, the clusters in a document set are catego-
rized by different subsets of terms, which makes the matrix sparse. The sparsity
is dependent of the differences of semantics of the clusters in the document
set.

To effectively cluster large and sparse text data requires the clustering algo-
rithms to be efficient, scalable and able to discover clusters from subspaces of
the vector space model (VSM). Scalable subspace clustering methods are made
good candidates for text clustering [7], while other clustering algorithms often
fail to produce satisfactory clustering results.

In this paper, we present a study of using the feature weighting k-means
algorithm, denoted as FW-KMeans, to cluster text data [8, 9]. FW-KMeans is
a subspace clustering algorithm that identifies clusters from subspaces by au-
tomatically assigning large weights to the variables that form the subspaces in
which the clusters are formed. The new algorithm is based on the extensions to
the standard k-means algorithm so it is efficient and scalable to large data set.
We propose a modification to the original FW-KMeans to handle highly sparse
text data where many words do not appear in documents of certain categories.
This situation makes the original FW-KMeans unsolvable because the weights
for these terms turn to infinite. By introducing a constant σ to the distance
function, the problem is solved, the convergence of the algorithm is guaranteed,
and its efficiency is preserved.

We propose a method to calculate σ from the distribution of the data set
because σ can affect the significance of the feature weights of the modified FW-
KMeans . We have used different data sets from the 20-Newsgroups to test the
clustering performance of the new algorithm, and compared our results with
those of the Standard KMeans and Bisection KMeans algorithms. The experi-
mental results from different data sets have shown that our new algorithm out-
performed the others. Beyond the clustering performance, the other advantage
of the new algorithm is able to identify a subset of key words in each clus-
ter. We present analysis of these key words and show how they can be used
to present the semantics of clusters which can help understand the discovered
clusters.

A similar work was reported in [10], which used a different feature weighting
k-means algorithm in [8] to cluster text documents, while the sparsity problem
was not discussed. The concept vector approach [11] is similar to the subset
of features identified with weights in our proposed method. However, the con-
cept vector for each cluster was obtained by associating with a word cluster
that was separately generated. This process potentially affects the running time
and complexity. Besides, the clustering algorithm used is the Standard Spherical
KMeans .

The rest of the paper is organized as follows. Section 2 discusses subspace
clustering with the feature weighting k -means algorithm and presents a modifica-
tion to handle the sparsity problem in text clustering. Section 3 defines clustering
evaluation methods that are used in experiments. The comparison studies and
feature analysis are presented in Section 4. Finally, we draw some conclusions
and point out future work in Section 5.
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2 Subspace Clustering with Feature Weighting k-Means

In the VSM , a set of documents are represented as a set of vectors X =
{X1,X2, . . . ,Xn}. Each vector Xj is characterized by a set of m terms or words,
(t1, t2, . . . , tm). Here, the terms can be considered as the features of the vector
space and m as the number of dimensions representing the total number of terms
in the vocabulary. Assume that several categories exist in X, each category of
documents is characterized by a subset of terms in the vocabulary that corre-
sponds to a subset of features in the vector space. In this sense, we say that a
cluster of documents is situated in a subspace of the vector space.

To discover clusters of documents from different subspaces, it is important
that the clustering algorithm has the capability of subspace clustering. The fea-
ture weighting k-means algorithm that we have recently developed [9] and also
reported by others [8] is able to cluster data in a subspace by automatically
weighting features in the k -means clustering process. Using the k -means cluster-
ing process, the new algorithm clusters n objects into k clusters by minimizing
the following objective function:

F (W,Z,Λ) =
k∑

l=1

n∑
j=1

m∑
i=1

wl,jλ
β
l,id(zl,i,xj,i) (1)

where d(zl,i,xj,i) is a dissimilarity measure between object Xj and cluster center
Zl in feature i; wl,j = 1 indicates that object j is assigned to cluster l and
otherwise wl,j = 0; λl,i is the weight to feature i in cluster l; and β > 1 is a
given parameter.

The unknowns W and Z are solved in the same way as the Standard KMeans
algorithm. Each feature weight λ is solved by:

λl,i =
1

∑m
t=1

[∑n
j=1 w̃l,jd(z̃l,i,xj,i)∑n
j=1 w̃l,jd(z̃l,t,xj,t)

]1/(β−1)
(2)

where w̃l,j and z̃l,i are the known values obtained from the previous iterative
steps. (refer to [8, 9] for details of the clustering algorithm.)

There are totally m × k weights produced by the algorithm. In each cluster
m weights are assigned to m features and the weight of a feature is inversely
proportional to the dispersion of values of that feature. The larger the dispersion,
the smaller the weight. This indicates that the values of a good feature in a cluster
are very close to the value of the cluster center in that feature. In text clustering,
this implies that a good term or word appears in the majority of the documents
of a cluster with similar frequency. Therefore, a large weight identifies a key term
in a cluster.

However, two special situations cause zero dispersion, which makes λ infinite.
One is that a word does not occur in any document in that cluster and the other
is that the word appears in each document with the same frequency. Table 1
shows examples of the two cases where the term t4 appears in each document
of the first cluster two times and the term t3 does not appear in any document
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in the first cluster. To calculate the weights for these two terms, their weights λ
become infinite so the objective function (1) cannot be minimized properly.

Table 1. An example of a data set in VSM : feature-object; the entry value is feature

frequency

t0 t1 t2 t3 t4
x0 1 2 3 0 2

C0
x1 2 3 1 0 2

x2 0 0 1 3 2
C1

x3 0 0 2 1 3

To solve this problem, we modify the objective function by introducing a
constant σ to the dissimilarity measure as below:

F1(W,Z,Λ) =
k∑

l=1

n∑
j=1

m∑
i=1

wl,jλ
β
l,i[d(zl,i,xj,i) + σ] (3)

Fixing W̃ and Z̃ and using the Lagrange multiplier technique to minimize F1

with respect to Λ, we obtain

λl,i =
1

∑m
t=1

[∑n
j=1 w̃l,j [d(z̃l,i,xj,i)+σ]∑n
j=1 w̃l,j [d(z̃l,t,xj,t)+σ]

]1/(β−1)
(4)

We can easily verify that
∑m

i=1 λl,i = 1 and 1 ≤ l ≤ k.
With the introduction of σ, the dispersion of a feature in a cluster can never

be zero so all λl,i can be calculated in (4). The features with zero dispersion will
have the maximal weight in the cluster, while the weights of other features will
be smaller, depending on the value of the dispersion. For example in Table 1, the
features t3 and t4 will have the largest weight in the first cluster. To identify the
cluster, term t4 is apparently more important than term t3. The two different
terms can be easily separated in post-processing. When extracting important
features to represent different clusters, we remove t3 type features but retain t4
type features.

The value of the parameter β has been discussed in [9] and [8]. Here, we
discuss how to choose σ because it will affect the values of weights. From (4),
we can see that if σ is too larger than d(z̃l,i,xj,i), the weights will be dominated
by σ and λl,i will approach to 1

m . This will make the clustering process back to
the standard k-means. If σ is too small, then the gap of the weights between
the zero dispersion features and other important features will be big, therefore,
undermining the importance of other features.

To balance we calculate σ based on the average dispersion of the entire data
set for all features as follows:

σ =

∑n̂
j=1

∑m
i=1 d(xj,i, oi)
n̂ ·m (5)
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where oi is the mean feature value of the entire data set. In practice we use
a sample instead of the entire data set to calculate σ. (5% sample is used ac-
cording to the sampling theory [12].) Experimental results have shown that this
selection of σ is reasonable to produce satisfactory clustering results and identify
important features of clusters.

From the above description, we can summarize that this subspace clustering
method has the following two major advantages:

1. It is efficient and scalable to cluster large and sparse text data in subspaces.
2. From the weights, the subset of key words in each cluster can be identified,

which helps the interpretation of the clustering results.

3 Clustering Evaluation

In this work we use four different external cluster validation methods to evaluate
the clustering performance of our approach in clustering real world text data
and compare our results with the results of other clustering methods. They are
accuracy , entropy , F1 score (FScore) [6], and normalized mutual information
(NMI ) [13] which are defined as follows.

Given a data set with k classes Ch, we use a clustering algorithm to cluster
it into k clusters Sl, where 1 ≤ l, h ≤ k. Let nh, nl be the numbers of documents
in class Ch and in cluster Sl respectively, nh,l be the number of documents
appearing in both class Ch and cluster Sl, n be the total number of documents
in the data set, and k is the number of clusters equal to the number of classes.
Table 2 shows the four evaluation functions used in this paper:

Table 2. Evaluation functions

Accuracy
∑k

l=1 nll
n

Entropy
∑k

l=1
nl
n

(
− 1

log k

∑k
h=1

nh,l
nl

· log nh,l
nl

)

NMI

∑
h,l nh,llog

(
n·nh,l
nhnl

)
√

(
∑

h nhlog
nh
n

)(
∑

l nllog
nl
n

)

FScore
∑k

h=1
nh
n · max1≤l≤k

{
2·nhl/nh·nhl/nl
nhl/nh+nhl/nl

}

4 Experiment Results and Discussion

4.1 Text Datasets

To demonstrate the effectiveness of the FW-KMeans on different structured
text data, we built 6 datasets from the 20-Newsgroups collection1 with different
characteristics in sparsity, dimensionality and class distribution.

1 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.
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Table 3 lists the 6 datasets. The source column gives the class categories of
each dataset and nd indicates the number of documents in each class. Data sets
A2 and A4 contain categories with very different topics while datasets B2 and
B4 consist of categories in similar topics. Sparsity of the former datasets is bigger
than that of the later datasets because there are more overlapping words in the
later datasets to describe the similar topics. Datasets A4-U and B4-U contain
unbalanced classes.

Table 3. Summary of text datasets

DataSet Source nd DataSet Source nd

alt.atheism 100 talk.politics.mideast 100A2
comp.graphics 100

B2
talk.politics.misc 100

comp.graphics 100 comp.graphics 100
rec.sport.baseball 100 comp.os.ms-windows 100
sci.space 100 rec.autos 100A4
talk.politics.mideast 100

B4
sci.electronics 100

comp.graphics 120 comp.graphics 120
rec.sport.baseball 100 comp.os.ms-windows 100
sci.space 59 rec.autos 59A4-U
talk.politics.mideast 20

B4-U
sci.electronics 20

The raw data were preprocessed using the Bow toolkit [14]. The preprocessing
steps include removing the headers, the stop words, and the words that occur in
less than three documents or greater than the average number of documents in
each class, as well as stemming the left words with the Porter stemming function.
The standard tf · idf term weighting was used to represent the document vector.

4.2 Cluster Analysis

We used three k-means type algorithms, FW-KMeans, Bisection-KMeans and
Standard KMeans to cluster the 6 datasets. Table 4 shows the clustering results
evaluated in the 4 evaluation measures defined in Section 3. Since the k -means
type algorithms are known to be sensitive to the choice of an initial partition, for
sparse and high-dimensional text data, randomly selecting initial cluster centers
usually does not lead to a good clustering. In these experiments, we first ran-
domly sampled 5% of documents from a data set and used the farthest k points
between two classes in the sample data as the initial center for each cluster [15].
Experimental results have shown that this initialization strategy performed well.

Table 4 gives the comparisons of three clustering algorithms on the 6 text
datasets. The 4 figures in each cell represent the values of Accuracy, Entropy,
Fscore and NMI respectively. We can see that FW-KMeans performed the best
in most cases. For the balanced datasets, Standard KMeans was worst. The
Bisection-KMeans performed slightly better than the FW-KMeans on A2 and
A4 which are less overlap because the classes in them are separate with each
other, therefore sharing the small set of similar words. For the datasets B2 and
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Table 4. Comparisons of FW-KMeans with Standard KMeans and Bisection-

KMeans.(Bold-face shows the best performance in the three methods)

A2 B2 A4 B4 A4-U B4-U

0.96 0.905 0.8975 0.8621 0.9591 0.9197
0.2057 0.4014 0.2509 0.3574 0.1513 0.2314
0.9599 0.9043 0.9003 0.8631 0.9591 0.9205FW-KMeans
0.7961 0.6050 0.7554 0.6467 0.8480 0.7385
0.965 0.88 0.9375 0.7017 0.8954 0.6087
0.2146 0.5294 0.1919 0.6195 0.2830 0.5357
0.9650 0.8800 0.9376 0.7049 0.8961 0.6586Bisection-KMeans
0.7857 0.4706 0.8083 0.3822 0.7126 0.3793
0.895 0.735 0.6 0.5689 0.95 0.8729
0.4028 0.7121 0.6375 0.7492 0.1721 0.3459
0.8938 0.7150 0.6146 0.5564 0.9498 0.8707Standard KMeans
0.6070 0.3246 0.4180 0.2721 0.8292 0.6346

B4, the FW-KMeans performed much better because of its capability of subspace
clustering by feature weighting.

For the unbalanced A4-U and B4-U, both FW-KMeans and Standard KMeans
performed reasonably well while the performance of Bisection-KMeans clearly
deteriorated. This was because the Bisection-KMeans needs to choose a branch
to split at each step, and usually, the largest cluster is chosen. This resulted
in artificial division of some inherent large classes in the early stage so the
mistake could not be corrected in the later stage. This can be shown by the
following two confusion matrices from dataset B4-U. The large classes C0 and
C1 were divided into separate clusters by the Bisection-KMeans. However, the
FW-KMeans algorithm recovered them accurately.

S0 S1 S2 S3
C0 21 2 70 27
C1 30 0 11 59
C2 1 53 1 4
C3 0 10 4 6

S0 S1 S2 S3
C0 109 9 0 2
C1 3 95 1 1
C2 0 3 54 2
C3 2 1 0 17

Confusion Matrix produced by
Bisection-KMeans on B4

Confusion Matrix produced by
FW-KMeans on B4

4.3 Feature Analysis

Equation (4) in Section 2 shows that λl,i is inversely related to the ratio of the
dispersion along feature i to the total dispersion of all features in cluster l. The
more compact (smaller dispersion) the cluster is along feature i, the bigger the
weight of feature i. This implies that the term or word of feature i appears evenly
in all documents of the cluster. Therefore, this word is an important identifier
for this cluster.

We can use the weights produced by the FW-KMeans algorithm to identify
the important terms or words in each cluster. However, because of the special
case of zero dispersion in certain features, the largest weights may identify some
words which do not occur in the documents of the cluster. In this case we ignored
these words. In fact, in sparse text data, many of such words can be identified.
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For example, after preprocessing we got 1322 features for dataset B4. In the 4
clusters generated by the FW-KMeans algorithm, 381 words do not appear in
the first cluster and 363, 318 and 301 features do not appear in the documents of
other 3 clusters respectively. The percentage is a little less than 30%. Although
the weights for these features are large, they do not represent the semantics of
the cluster.

Word weights are divided
into five intervals:

weight intervals word number

0˜1: (0,1e-08] 8
1˜2: (1e-08,1e-07] 280
2˜3: (1e-07,1e-06] 433
3˜4: (1e-06,1e-05] 188
4˜5: (1e-05,1) 32
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Fig. 1. Word distribution according to word weights

After removing the words that do not appear in the corresponding clusters, we
divided the rest words into groups according to the intervals of the weights. The
left table of Figure 1 shows the number of words in each interval and the right
figure plots the distribution of words in category comp.graphics of dataset B4.
Most words have relatively small weights (over 75%). Given a weight threshold
we identified 220 words that we considered important. This is less than 17% of
the total words. These are the words which contributed most to the semantics
of the cluster so we can use these words to interpret the cluster.

We plotted the weights of these words in different clusters as shown in Figure
2. The horizontal axis is the index of the 220 words and the vertical lines indicate
the values of the weights. It is clear that each cluster has its own subset of
key words because the lines do not have big overlapping in different clusters.
Category groups comp.graphics and comp.os.ms-windows have some overlapping
because the two topics are close to each other. So do the topics rec.autos and
sci.electronics. However, we can still distinguish them easily.

On the right side of Figure 2, ten words are listed for each cluster. These
words have larger weights and are noun. They are strongly related to the topic
of each cluster. They were identified based on the weights and the word functions
in sentences. In fact, they can also be manually identified interactively from the
left side graph. It is clear that each set of words is essentially correlated to
only one of the four topics: comp.graphics, comp.os.ms-windows, rec.autos and
sci.electronics. However, some high-weight words can be related to more than
one topic if the topics are close to each other. For example, word ’request’ has
higher weight in two clusters but the topics of the two clusters are closely related
(Graphics and Windows). We remark that the words identified by the weights
and function analysis can improve the interpretability of the clustering results.
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gui 2.20811e − 06

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

word index

w
or

d 
w

ei
gh

t

b:    comp.os.ms−windows
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win
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win 6.13444e − 05
intel 2.14806e − 05
patch 1.90001e − 05
logic 1.15958e − 05
pc 9.37718e − 06
buffer 9.37718e − 06
demo 8.34777e − 06
function 5.32089e − 06
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vehicle 1.8565e − 05
motor 1.18095e − 05
driver 9.01719e − 06
park 8.57334e − 06
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door 3.23471e − 06
show 3.21888e − 06
manufacture 1.94154e − 06
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d:    sci.electronics

electronic
circuit

signal

electronic 2.89103e − 05
circuit 2.49422e − 05
signal 2.10053e − 05
chip 1.33768e − 05
volume 9.80421e − 06
thread 6.51865e − 06
charge 3.67175e − 06
raster 2.6509e − 06
science 2.2915e − 06
technology 1.91447e − 06

Fig. 2. The four concept vectors corresponding to a clustering of the B4 dataset into

4 clusters. For each concept vector, the top ten words with the corresponding weights

are shown on the right
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We further studied whether the important words extracted is reasonable by
scoring each feature with the foil gain function [16] and retaining only the top-
scoring features for every cluster. Then, we compared them with the features
identified by high weights. The result is shown in Table 6. The first line shows
the precision of each cluster after performing the FW-KMeans algorithm. Here,
C is the set of the important words extracted by FW-KMeans. A is the first |C|
words with higher foil-gain scores obtained by the original class label. B is the
first |C| words with higher foil-gain scores obtained by the cluster. The entry
terms show the percentage of A ∩ B and A ∩ C. From the table 5 we can see
that most of the words with higher weights also have higher foil-gain scores. This
further verifies that the words identified by high weights are important.

Table 5. Compare the foil-gain scores and weights of the important words for each

cluster in the B4 dataset

C0 C1 C2 C3

Precision (%) 75.78 83.02 97.59 95.12
A ∩ B (%) 90.45 92.96 94.64 89.94
A ∩ C (%) 60.91 61.3 63.69 62.26

5 Conclusions and Future Work

In this paper we have discussed the method to use the FW-KMeans algorithm
to cluster text data in high dimensionality and sparsity. We have presented the
modification to the original FW-KMeans to solve the sparsity problem that
occurs in text data where different sets of words appear in different clusters.
The capability of subspace clustering of the FW-KMeans algorithm has a clear
advantage in clustering such text data. The experiment results have shown that
the subspace clustering method was superior to the standard k-means and the
Bisection-KMeans that cluster data on the entire space.

In the next step we will conduct a scalability benchmark test of our method
on very large text data. We also plan to integrate ontology as background knowl-
edge to enhance our method in text clustering and mining. The ontology will
sever several purposes in the clustering process, including data preprocessing,
selection of initial cluster centers, determination of the number of clusters k,
and interpretation of clustering results.
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Abstract. The similarity measure is a crucial step in many machine
learning problems. The traditional cosine similarity suffers from its in-
ability to represent the semantic relationship of terms. This paper ex-
plores the kernel-based similarity measure by using term clustering. An
affinity matrix of terms is constructed via the co-occurrence of the terms
in both unsupervised and supervised ways. Normalized cut is employed
to do the clustering to cut off the noisy edges. Diffusion kernel is adopted
to measure the kernel-like similarity of the terms in the same cluster. Ex-
periments demonstrate our methods can give satisfactory results, even
when the training set is small.

1 Introduction

The performance of many machine learning algorithms depends on a good metric
that reflects the relationship between the data in the input space. In the classical
Vector Space Model (VSM), each text document is represented as vector of
terms. These vectors define an input space where each distinct term represents
an axis of the space. The cosine similarity defined in this space can give an
effective approximation of similarities between text documents. However, cosine
similarity fails to discover the semantic relationship of terms such as synonymy
and polysemy.

In [1], Ferrer et al. used co-occurrence analysis where a semantic relation is
assumed between terms whose occurrence patterns in the documents of corpus
are correlated. In this paper, we extend the similar idea as [1], and try to get a
more semantic kernel K, so that xTKy can better than xT y through the analysis
of the term co-occurrences. Considering that when the training set is small, we
introduce a supervised method to adjust the weight between the terms to improve
the construction of term affinity matrix, called Supervised Affinity Construction.
However, the affinity matrix will still have noises. We apply clustering to the
term affinity matrix to decrease the noise and get semantic “small worlds” [1],
which may discover semantic relationships. The final similarity matrix of terms is
gained through diffusion kernels [3]. Experiments results show that the proposed
method is better than the cosine similarity with either Nearest Neighbor classifier

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 813–819, 2005.
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or SVM classifier, and both the clustering and supervised affinity construction
contribute to the improvement.

2 Term Affinity Matrix

Humans write articles using terms, so terms can be regarded as the basic element
of text documents.

Fig. 1. An example to explain that the co-occurrence will be useful

In the traditional VSM model, the “house” and “building”will have no rela-
tionship with each other, and based on the cosine similarity, the inner product
of “house” and “building” will lead to zero, even though they really have the
similar meaning. In figure 1, this relationship can be represented by a linked
graph and how to measure this relationship is introduced in section 3.

2.1 Unsupervised Term Affinity Matrix Construction via
Co-occurrence

Given a collection of text documents D, dj ∈ D, 1 ≤ j ≤ n, |D| = n and a word
vocabulary T, ti ∈ T, 1 ≤ i ≤ m, |T | = m, a text document can be represented
as dj = [wij ]T1≤i≤m based on a Boolean model [5], where wij = 1 or 0 means
whether the term ti occurs in the text document dj or not. The term-document
matrix is defined as B = [dj ]1≤j≤n. As we can see, a text document dj will
contribute to a part of the term affinity matrix G as Gj = djd

T
j . So G is gained

by formulation 1

G =
n∑

j=1

Gj =
n∑

j=1

djd
T
j = BBT (1)

Apparently, G is a symmetric matrix.

2.2 Supervised Term Affinity Matrix Construction

Until now, the term affinity matrix construction process is still an unsuper-
vised technique. When the training set is small, the statistical characteristic of
co-occurrence information may be lost. In order to incorporate the supervised
information, we have treated the document in the same class as a “huge” doc-
ument. So, there will be only |C| ”huge” text document in our problem (|C|
is the number of classes). Another view is that the class label can be treated
as “cement” in Figure 1, and it connects the two terms together. In order to
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add more discriminative information, we modify the weight of each pair in the
“huge” documents the like follows. The assumption here is that the fewer classes
the term pair (ti, tj) occurs together in, the more weight it will get in the affinity
matrix. Based on G obtained by formulation 1, its element gij can be modified
as follows

gij ← gij + α(1− kij/|C|)Iij (2)

where kij is the number of classes in which the term pair (ti, tj) occurs together,
and Iij is the indicating function to represent whether kij is above zero or not.
This leads to our supervised affinity matrix construction. In this formulation,
α controls the amounts to which the supervised information should be incorpo-
rated. Typically, α = 0 will lead to the original unsupervised method.

3 Clustering and Diffusion Kernels

3.1 Clustering as a Denoising Process

Since some term pairs happen to be in the same document without any re-
lationship, a clustering step is needed to eliminate noises. Those terms highly
connected will probably fall into the same cluster, and the noisy links will be
cut off. It is easy to transform the term affinity matrix into a graph (V,E) by
taking the each term as a node and connecting each pair of terms by an edge.
The weight on that edge should reflect the likelihood that two terms belong to
one cluster. Based on the term affinity matrix G in section 2, we can define the
graph edge weight connecting two nodes i and j as (W = [wij ]i×j )

y =
{

1 if i = j
gij

gm+β otherwise (3)

where gm = max(gij)i�=j , and β > 0.
It is difficult to apply k-means clustering on W . So, the normalized cut (Ncut)

algorithm [6] proposed for image segmentation by solving an eigenvalue problem
is adopted. A recursive two-way partition will partition the graph into more
pieces or clusters. After the clustering, some elements of W will become zero to
indicate that there is no link among the corresponding clusters.

3.2 Term Similarity Measure Through Diffusion Kernels

Diffusion kernel is a method to generate valid kernel on graphs [3]. Suppose the
K is the kernel matrix, the inner product of two documents becomes

k(x,y) = xTKy = (Lx)TLy (4)

where K = LTL. The diffusion kernel can be generated like follows(H = [hij ]i×j)

hij =
{
wij if i = j
−
∑

k,k �=i wik otherwise (5)
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H is called the Laplacian matrix. First diagonalize H = PTDP , which is always
possible because H is symmetric. Then compute

K = LTL = eγH = PT eγDP (6)

where γ is a positive decay factor. L = eγD/2P gives us the diffusion kernel
representation. Another advantage of clustering is that the computation of for-
mulation 7 is reduced. Thus, let y = Lx, the similarity of two documents in the
feature space becomes

cos θ̃ij =
< yi,yj >

‖ yi ‖ · ‖ yj ‖
(7)

4 Experiments

4.1 Experiment Settings

Two well-known data sets Reuters-215781 (Reuters) and 20 Newsgroups2

are used in our experiments. For Reuters-21578, we only chose the most frequent
25 topics, about 9,000 documents and for 20 Newsgroups, we chose the five classes
about computer, about 5,000 documents as our experiment data set. Stop words
and punctuation were removed from the documents and the Porter stemmer
was applied to the terms. The terms in the documents were weighted according
to the widely used tfidf scheme. Two classifiers, nearest neighbor and support
vector machine, are used in our experiments. We use F1 measure [4] to evaluate
the results.

4.2 Experiment Results

We present results pertaining to two experiments. In the first experiments, we
compare the term-clustering based (unsupervised) methods against traditional
inner product under classifier Nearest Neighbor and SVM. In the second exper-
iment, we compare supervised term affinity method against unsupervised term
affinity and traditional methods when the size of training data varies.

In the first experiment, we randomly selected 70% of text document for the
training and the rest for testing. The number of the term clusters varies from
1 to more than 2000. Figure 2 and 3 show the results under Nearest Neighbor
and SVM, respectively and the axis of the number of clusters is represented as a
logarithmic scale. We use TIP and TCB to refer to T raditional I nner Product
method and our Term C lustering Based method, respectively. (Note: TIP has
no relationship with the number of clusters, just for the ease of comparison).
For SVM, the baseline is the result using the linear kernel. This experiment
was conducted on Retuers-21578 data set. From the figure 2, we see that our
TCB outperforms the TIP most of the time under classifiers: Nearest Neighbor

1 http://www.daviddlewis.com/resources/testcollections
2 http://www-2.cs.cmu.edu/ TextLearning/datasts.html
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Fig. 2. Comparison of Micro-F1 and Macro-F1 between TIP and TCB on Retuers-

21578 data set. (a)Nearest Neighbor. (b)Support Vector Machine, linear kernel in TIP

Fig. 3. Effect of size of training data set on Micro-F1 and Macro-F1. Classifier: Nearest

Neighbor, Retuers-21578 data set

and SVM, and the best improvement is above 4%. We find that clustering is
an importance step for our approach; when the number of cluster is too small,
the performance is worse than the TIP because of the noisy edges in the graph.
Typically, when the number of clusters is only 1 (no clustering), the performance
has been reduced about 2%∼3%. The experiments result of Nearest Neighbor is
not sensitive to the number of clusters in a large range, since the most of the
noisy edges in the graph are cut off at the beginning. TCB Macro-F1 of SVM
is a little sensitive. One of the reasons may be that the choice of parameters of
SVM in our experiment is not very appropriate.

In the second experiment, we studied the effectiveness of the supervised term
affinity construction. We use STCB to represent Supervised Term affinity con-
struction combined C lustering Based method. The number of term clusters and
the parameter α in formulation 2 were both well tuned in our experiment. We
selected the Nearest Neighbor as the classifier. This experiment was conducted
on both Retuers-21578 and 20 Newsgroups data sets. Figure 3 shows the results
on Retuers-21578 and Figure 4 on 20 Newsgroup (we present the results of 20
Newsgroup separately because the curves of Micro-F1 and Macro-F1 overlap too
much).

From the figure 3 and 4, we see that when the training data set is small,
STCB performs better than TCB and TCB performs better than TIP, and the
best improvement is about 5%. The supervised information does help giving pos-

(a) (b)
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(a) (b)

Fig. 4. Effect of size of training data set on (a)Macro-F1, (b)Macro-F1. Classifier:

Nearest Neighbor, 20 Newsgroup data set

itive results in this situation. When the training data set is large (>60%∼70%),
STCB performs equally to TCB, both better than TIP. Actually, the parameter
α in formulation 2 is zero now, so STCB has become TCB. The supervised infor-
mation does little help when the training data is enough. In this case, the train-
ing data can already give reasonable statistical characteristic of co-occurrence
information.

5 Conclusions

In this paper, we introduce a term clustering based kernel to enhance the per-
formance of text classification. The term affinity matrix is constructed via the
co-occurrence of the terms in both unsupervised and supervised ways. Normal-
ized cut is used to cluster the terms by cutting off the noisy edges. The final
kernel is generated through the exponential matrix operation of diffusion ker-
nel. Experiment result shows our proposed method can explore the semantic
relationship between terms effectively.
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Abstract. In business or technology planning, it is strongly required to
grasp the overall technology trends and predict what will happen in the
near future. In this paper, we propose the method where we can detect
and analyze the technology trends from the Internet resources.

1 Introduction

Many attempts have been made to organize and present the relationships be-
tween technical concepts for advanced use of the Internet content and academic
papers [1, 2, 3, 4, 5, 6, 7, 8]. Based on these researches, we need further enhance-
ment of the methods to grasp not only the current relationships between concepts
but also the near future trends of the specified technology field. In this paper,
we propose some metrics as leading indicators of changes over time, by which
we can analyze the current situation and the future trends. The architecture of
our system is shown in Figure 1.

Internet

Resource Analysis

Resource Files
       (HTML)

                Keyword Database

Pattern Definition Files

GUI/Graph Visualization
Keyword Importance/
Influence Calculation

Keyword Relativity/
Superiority Calculation

Keyword Extraction

 

User

Term-Document Matrix

Fig. 1. The Architecture of the System
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2 Technical Trend Maps and Trend Indicators

2.1 Keyword Extraction

This module extracts keywords from resources using pattern matching, includ-
ing regular expressions, and stores the keywords together with their phases in a
keyword database. The patterns depend on the resource type and are defined by
the user. This module extracts keywords for nine different phases: organization,
technical term, system, protocol, business service, person, hardware, social phe-
nomenon/trend, and business term. By considering indicators that are discussed
later, in terms of individual phases, it is possible to recognize the target field
from a global perspective (for example, organizationally driven, technologically
driven, standards-centered, etc.).

2.2 Resource Analysis

This module determines whether or not the keywords in the dictionary appear in
each resource and generates a term-document matrix. If we consider n documents
with m keywords, the size of the matrix is m×n. Each element fij is 1 if keyword
i is included in document j and 0 if not. In addition, ti = (fi1, · · · , fij , · · · , fin)
is the term vector relating to keyword i, and dj = (f1j , · · · , fij , · · · , fmj) is the
document vector relating to document j.

2.3 Keyword Relativity and Superiority

The relativity and superiority are defined between two keywords in a group of
specified resources.

Relativity. The relativity R(i, j) of keywords i and j is defined by the similarity
of the group of documents in which they appear. R(i, j) is defined by the well-
known metrics, that is, the cosine of the term vectors ti and tj , as shown below.

R(i, j) =
ti · tj

‖ti‖ · ‖tj‖

Superiority. The objective of superiority is to extract a hierarchical relation-
ship between two keywords in the group of defined resources. In order to define
superiority, the complementary concept ic for keyword i is defined. The com-
plementary concept ic is a hypothetical concept that bears no similarity (no
relationship) to i, that is, tic = (1 − fi1, · · · , 1 − fij , · · · , 1 − fin). For two key-
words i and j, assume i is a superior concept to j, then in accordance with the
relativity between i and the complementary concept of j would be higher than
the relativity between j and the complementary concept of i. Accordingly, we
define the superiority P (i, j) of i with respect to j as follows:

P (i, j) = arccos(R(i, jc))− arccos(R(ic, j))

where −π
2 ≤ P (i, j) ≤ π

2 . If P (i, j) < 0, i is called to be superior to j.
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2.4 Keyword Importance and Influence

The importance and influence indicators show the status or positioning of key-
words within a specified resource.

Importance. Importance is an indicator of relative importance within a spec-
ified resource and uses the well-known indicators tf and idf. The importance
indicator WR(i) of keyword i in a resource group R (with n documents) is de-
fined as follows:

WR(i) = tfR(i) ·
(

log
n

dfR(i)
+ 1
)

where tfR(i) is a total number of appearances of i in R and dfR(i) is a number
of documents in R that include i.

Influence. Suppose a keyword group A has been defined for a resource group
R. The influence IA(i) of keyword i ∈ A with respect to A indicates the degree
of influence of i for other keywords in A. The evaluation considers the degree to
which the appearance of i in the documents reduces the entropy with respect to
the other keywords in A, namely (A \ {i}).

First, the entropy relating to appearance of a keyword in a certain keyword
group S is indicated by H(S) as follows:

H(S) = −p(S) log p(S)− p(S̄) log p(S̄)

where p(S) (p(S̄)) is a probability of any of the keywords in S being (not being)
included in the document.

In addition, H(S | i) is the entropy relating to the appearance of S under
the condition that the appearance of keyword i is known. H(S | i) is defined as
follows:

H(S | i) = −
∑

x=S,S̄

∑
y=i,̄i

p(x, y) log p(x | y)

where p(x, y) is a joint probability of x and y, and p(x | y) is a conditional
probability of x based on y.

In this situation, the influence IA(i) of i ∈ A with respect to a keyword group
A is defined as follows:

IA(i) =
H(A \ {i})−H(A \ {i} | i)

H(A \ {i})
IA(i) indicates the proportion of reduction of the entropy for A \ {i} as a

result of knowing i. The greater IA(i) is, the greater the influence of i on the
appearance of the other keywords of A. We consider that a highly influential
keyword could induce structural changes in the target field after a certain time.
In other words, influence is one of the leading indicators of time change. The
nature of the change cannot be determined uniformly, but typically, there is an
increase or decrease in the importance of the highly influential keyword itself or
in a different keyword that has a high degree of relativity or superiority with the
highly influential keyword.
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2.5 Trend Analysis as Time Series

By continuously calculating the indicators discussed in section 2.3 and 2.4 for
the specified set of keywords that characterize the field in a time series, it is
possible to obtain data on past trends and future developments in that field. We
consider the changes on the average values for importance, influence, relativity
and superiority of keywords in the target field or phase as indicators for time
series analysis, as well as the changes of importance and influence for the specified
keyword.

3 Experiments and Evaluation

This section describes experiments using actual Internet resources, ITmedia1

news articles (2001 - 2003), targeting the categories of broadband and mobile
communications. To identify time series trends in fields and phases, significant or
representative keywords in that field are extracted according to their importance
values. We consider that the trends of that field can be revealed by analyzing
the trends of that group of keywords.

Analysis of Overall Trends in the Broadband Field. We have selected
19 keywords according to their importance values. Figure 2 shows the overall
trends of indicators in time-series from period 1 (2001/07 - 2001/12) to period
13 (2003/07 - 2003/12).

Fig. 2. Overall Trends of the Broadband Field

The average influence showed high peaks in periods 3 and 4. Many keywords
with a high degree of influence appeared during these periods. As if in response,
the average importance increased through period 6 and subsequently stabilized.
Based on the meanings for the indicators shown in section 2.3, 2.4 and 2.5, this
can be interpreted as the high influence of this trend, which first appeared in
periods 3 and 4 and became a leading indicator of the broadband ”boom” that
followed. In actuality, the media began reporting widely on the potential for

1 One of the most famous IT news site in Japan (http://www.itmedia.co.jp).
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new platforms and services at that time, such as WiFi hot spots, IPv6, MPEG-4
video transmission, etc. Moreover, the fact that the average superiority gradually
increased indicates that some kind of hierarchic structure had developed between
the important keywords.

Detailed Analysis of the Broadband Field. Figure 3 shows the trends in
importance and influence for each keyword. Noteworthy in the broadband field
is the conspicuous growth in the importance of wireless LAN. Wireless LAN
was followed in importance by DSL, mobile phones, IP telephoning, all of which
showed steady increases in importance, which matched the situation at the time.
The rapid growth of wireless LAN can be predicted from the influence value.
Both the absolute value and the influence of IEEE 802.11i and WiFi hot spots
increased rapidly up through period 4, following which the importance of wireless
LAN increased.

Fig. 3. Trends of Importance/Influence of the Broadband Field

As for the the relationships of the keywords to one another during the spec-
ified period, we found that wireless LAN has the highest relativity value and a
high superiority value with respect to IEEE and WiFi hot spots. In this sense
as well, the hypothesis noted in the definition of influence is supported.

Comparison with Human Experts’ Estimation. In order to reinforce the
performance of this method, we surveyed the estimations of 10 researchers who
are particularly interested in and have minimum 10 years’ working experience
in these fields so that we can compare the results of this method with human
experts’ opinions.

First evaluation is about the importance and the influence. Keywords can be
relatively characterized in terms of the importance and the influence. For ex-
ample, if a keyword has high importance and influence, then it can be classified
as an important and noteworthy concept. We evaluated this method by com-
paring the system’s and human experts’ answers about the classification of each
keyword. Table 1 shows the results for this comparison. Although the value of
concordance rate are not extremely high in themselves, taking into consideration
that the answers by human experts hardly agreed with each other, we conclude
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that our system makes good performance and has ability to judge the status
of each technology concept properly. Second evaluation is for the superiority.
We surveyed human experts’ opinions about the structural configuration of the
organizations, at the time of 2001 and 2003. While the results of the system say
that higher hierarchization with respect to organizations achieved at the end of
2003 rather than at 2001 in the broadband field, eight of ten experts agreed with
this trend.

Table 1. The concordance rate of the system and human experts

Case 1 Case 2

Broadband 53% 61%

Mobile 50% 57%

Case 1: Concordance rate of the method’s quadrant and hu-
man experts’ quadrants regarding all keywords. Case 2: Con-
cordance rate of the method’s quadrant and human experts’
quadrants regarding major keywords (over 60% of human
experts’ answers agreed)

4 Summary

In this paper, we proposed the methods to characterize technology concepts and
technology trends based on the Internet news resources, introducing some new
metrics to grasp time series trends for technology fields or phases.

Some experimental results including comparison with human experts proved
the validity of this method and the use of indicators for technology trend analysis.
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Abstract. Given the popularity of Web news services, we focus our attention 
on mining hierarchical topic from Web news stream data. To address this prob-
lem, we present a Divisive-Agglomerative clustering method to find hierarchi-
cal topic from Web news stream. The novelty of the proposed algorithm is the 
ability to identify meaningful news topics while reducing the amount of compu-
tations by maintaining cluster structure incrementally. Our streaming news clus-
tering algorithm also works by leveraging off the nearest neighbors of the in-
coming streaming news datasets and has ability of identifying the different 
shapes and different densities of clusters. Experimental results demonstrate that 
the proposed clustering algorithm produces high-quality topic discovery. 

1   Introduction 

On most Web pages, vast amounts of useful knowledge are embedded into text. Given 
such large sizes of text datasets, mining tools, which organize the text datasets into 
structured knowledge, would enhance efficient document access. Given that the Web 
has become a vehicle for the distribution of information, many news organizations are 
providing newswire services through the Internet. Given this popularity of the Web 
news services, we have focused our attention on mining topic from news streams.  

In this paper, we propose a mining algorithm that supports the identification of 
meaningful topics from news stream data. We introduce the algorithm that works in a 
single-pass manner, where the documents are processed sequentially, one at a time. 
The algorithm explore dynamically divisive and agglomerative characteristic in whole 
document clustering process.  

Conventional divisive clustering algorithm such as K-means and K-medoid algo-
rithms is much faster than the hierarchical technique but not as accurate, while con-
ventional agglomerative clustering algorithm is completely accurate but is very CPU 
intensive when the data set has a large number of data points. Our method which 
                                                           
1 This work was sponsored by the National Science Foundation of China (NSFC) under the 

grant No.60273085 and the state High-tech Research and Development project (863) under 
the grant No.2002AA4Z3430. 
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combines the strengths of each method attempts to remedy this problem by first 
performing the dynamic divisive clustering and then dynamic agglomerative 
clustering as the new incoming documents arrive, and both clustering phases equip a 
stopping criteria based on Hoeffding bound[1], thereby achieving a reasonable run 
time without sacrificing accurate acquirement. The system tests existing clusters by 
descending order of diameters, looking for a possible binary split. If no cluster 
deserves division, then the system searches for possible aggregation of clusters. 

The main problem, then, with both of these methods is that their inability of identi-
fying the different shapes and different densities of clusters. Our streaming news 
clustering algorithm is further able to work by leveraging off the nearest neighbors of 
the incoming streaming news datasets and has ability of identifying the different 
shapes and different densities of clusters.  

Main features of our algorithm include the use of similarity as distance measure, a 
splitting criteria supported by the Hoefding bound, a stopping criteria based on the 
divisive coefficient and an agglomerative phase which decreases the number of un-
needed clusters. 

The rest of this paper is organized as follows. In Section 2, we introduce our prob-
lem definition. In Section 3 we represent our proposed method, In Section 4 we pro-
vide experimental results. In Section 5 we summarize our works. 

2   Problem Definition 

The following section is terminology and definitions.  These  are  necessary  to  con-
cretely  define  the problem  at hand,  and  to  explain our proposed  solution.  

Definition 1. i ( , )i jS milarity d d And ( , )i jDissimilarity d d : To measure close-

ness between two documents, we use the Cosine metric, which measures the similar-
ity of two vectors according to the angle between them. The cosine of the angles be-

tween two n-dimensional document vectors ( id and jd ) is defined by 

                         1

2 2

si ( , )

n

i ji
i j

i j

x x
milarity d d

x x
==

�

�
                                              (1) 

the dissimilarity between two documents is represented as  

                         ( , )i jDissimilarity d d =1 − 1

2 2

n

i ji

i j

x x

x x
=

�

�
                                    (2) 

                              (4) 
 

Definition 2. Similar: If ( , )i jsimilarity d d ε> , then a document id  is referred to 

as similar to a document jd . 
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Definition 3. ζ -Neighborhood ( )iN dζ :  ζ -neighborhood for a document id  is 

defined as a set of documents{ : ( , ) }ix similarity x d ζ≥ . 

3   Proposed Mining Algorithms 

3.1   Streaming News Model  

According to different application requirements, the scope of news streams can be 
categorized into two different alternatives. The landmark window identifies certain 
starting landmark in the stream and incorporates sequences since that point until the 
present. The sliding window is featured with a fixed length time-span of news the 
sequences. In this paper, we use logical-based landmark windows [2], also known as 
count-based or sequence-based landmark windows. The length of window is defined 
in terms of the number of news sequences. 

3.2   Dynamic Divisive-Agglomerative Document Clustering 

Over all different clustering techniques of hierarchical models known in literature, 
Agnes [3] proceeds by a series of fusions, and Diana [3] is a hierarchical clustering 
technique that constructs the hierarchy from the top (large cluster) to bottom (several 
clusters). 

Agglomerative Nesting (Agnes). Agnes proceeds by a series of fusions. Initially, all 
objects are apart–each object forms a small cluster by itself. At the first step, two 
closest or minimally dissimilar objects are merged to form a cluster. Then the algo-
rithm finds a pair of objects with minimal dissimilarity. If there are several pairs with 
minimal dissimilarity, the algorithm picks a pair of objects at random. 

Divisive Analysis (Diana). Diana [3] is a hierarchical clustering technique, but its 
main difference with the agglomerative method (Agnes) is that it constructs the hierar-
chy in the inverse order. Initially, there is one large cluster consisting of all n objects. At 
each subsequent step, the largest available cluster is split into two clusters until finally 
all clusters, comprise of single objects. Thus, the hierarchy is built in n-1 steps. 

One problem that usually arises with these sorts of models is the definition of a 
minimum number of observations that are necessary to assure convergence. Tech-
niques based on the Hoeffding bound [1] can be applied to solve this problem, and 
have in fact be successfully used in online decision trees [8] [9]. 

Divisive-Agglomerative clustering algorithm use a statistical result known as 
Hoeffding bounds or additive Chernoff  bounds. After n independent observations of 
a real-valued random variable r with range R, the Hoeffding bound ensures that, with 
confidence 1 δ−  , the true mean of r is at least r ε− , where r is the observed 
mean of the samples and  

                                            
2 (1 )

2

R In

n

δε =                                                     (3) 

This is true irrespective of the probability distribution that generated the observations. 
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Figure 1 shows our proposed dynamic divisive-agglomerative clustering algorithm. 
We use count-based landmark window model supposed in 3.1. Initially, we assume 

that only news documents 1 2{ , , , }
ti

wd d dL in now window is available. Thus, this news 

documents itself forms a singleton cluster. Adding a new document to existing cluster 
structure proceeds in three phases: neighborhood search, dynamic divisive phase and 
dynamic agglomerative phase. 

Fig. 1. Divisive-Agglomerative Clustering Algorithm 

4   Experiment Results 

In this section, we list some experimental results for the proposed Web document 
clustering algorithm.  

For the experiments we present here we selected 3000 web pages in four broad 
categories: business and finance, electronic communication and networking, sport, 
and manufacturing. These pages were downloaded, labeled, and archived. The word 
lists from all documents were filtered with a stop-list and "stemmed" using Porter's 
suffix-stripping algorithm [4] as implemented by [5]. 

Input: A set of streaming news document,  is the length of the landmark window.  

1. Get next news documents{ } in now window 

2. Neighborhood search: Given a new incoming document{ }, obtain 

1 2{ ( ), ( ), , ( )}
ti

wN d N d N dζ ζ ζ  by performing a neighborhood search, and find 

the cluster NC which can host a new document id ∈ 1 2{ , , , }
ti

wd d d , that mean to iden-

tify NC ⊃ ( )iN dζ . Then add id  to the cluster KC  

3. Choose next cluster in descendant order of diameters or sum of pairwise distances 

within each cluster (initially, next news document 1 2{ , , , }
ti

wd d d in now window is clus-

ter which have a largest diameter) 

4. Call Check-slitting () in cluster KC  

5. If we find a split point, goto 11 with a new cluster 

6. If still exists a cluster  not yet tested for splitting goto 4 

7. Choose next cluster  in ascendant order of diameters or or sum of pairwise distances 

within each cluster 

8. Call Check-aggregate () in cluster KC  

9. If we found an aggregation then goto 11 with new cluster 

10. If still exists a cluster  not yet tested for aggregation goto 8 

11. If not end of data goto 1 

it
w

1 2, , ,
ti

wd d dh

1 2, , ,
ti

wd d dh

h

h

kC ψ

h

iC ψ

KC ψ
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The quality of a generated cluster hierarchy was determined by two metrics, preci-
sion and recall. 

In our experiment, we find the best clustering result when the ζ  value, which 

measure neighborhood for a document id , varies between 0.2 and 0.25, i.e., the algo-

rithm guessed the exact number of clusters. If the value of ζ  was too small, then the 

algorithm found a few large-size clusters. In contrast, many small-size clusters were 
identified if the valueζ  is too large. 

For the purpose of comparison, we decided to use spherical K-means clustering al-
gorithm [6] and DC-tree clustering algorithm [7]. We compare the results of the vari-
ous experiments across algorithms and represent in bellow Table1. 

Table 1. Precision and recall comprison of our proposed algorithm, spherical K-means 
clustering algorithm and DC-tree clustering algorithm 

Cluster 
Topic 

Precision 
(our algo-

rithm) 

Recall 
(our algo-
rithm) 

Preci-
sion (K-
means ) 

Recall 
(K-

means)  

Precision 
(DC-tree) 

Recall 
(DC-tree)  

congestion 
control 

91.4 90.2 81.4 81.2 81.7 80.9 

intrusion 
detection 

89.4 88.1 79.5 80.7 68.7 71.4 

Internet 
game 

84.8 86.4 78.3 81.2 69.4 67.8 

Credit 
fraud 

92.3 89.6 76.8 79.9 72.3 75.4 

Job oppor-
tunity 

88.1 91.4 79.5 78.9 75.4 78.6 

soccer 87.8 90.4 79.0 82.3 74.6 76.1 
film 87.9 86.6 78.8 78.9 79.4 80.2 
TV 84.9 88.7 80.3 79.6 69.8 73.4 

Since the sizes of clusters can be of arbitrary numbers, clustering algorithms must 
be able to identify the clusters with wide variance in size. To test the ability of identi-
fying clusters with different densities, we organized datasets where each dataset con-
sists of document clusters with diverse densities. Then we perform clustering algo-
rithm on this datasets. Table 2 shows the average values of precision and recall for all 
topics. As shown in Table 2, when the density of each cluster is not uniform, the accu-
racy of the modified K-means clustering algorithm degraded. In contrast, the accuracy 
of our algorithm remains similar. Then we can conclude that the proposed algorithm 
outperforms the modified K-means algorithm in terms of precision and recall. This is 
because the proposed algorithm measures similarity between a cluster and a 
neighborhood of a document while spherical K-means [6] and DC-tree [7] clustering 
measures similarity between a cluster and a document.  
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Table 2. Precision and recall of DC-tree clustering algorithm 

Cluster Topic Precision Recall 
Our algorithm 86.8 88.5 

K-means 65.7 61.4 
DC-tree 67.4 64.8 

5   Conclusion 

This work presents a divisive-agglomerative clustering algorithm that works online. 
The divisive-agglomerative clustering system hierarchically builds clusters of news 
document topic, using a single scan over the data. The experimental results suggest 
that the system exhibit dynamic behavior, adapting to changes in news document 
stream data. It also has ability of identifying the different shapes and different densi-
ties of clusters. 
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Abstract. Constructing a base set consisting of topic-related web pages
is a preliminary step for those web mining algorithms which use the link
structure analysis technique based on HITS. However, except checking
the anchor text of links and the content of pages, there has been few of
research addressing other possibilities to improve topic relevance while
collecting the base set. In this paper, we propose a potential hub and
authority first (PHA-first) approach utilizing the concept of hub and au-
thority to filter web pages. We investigate the satisfaction of dozens of
users about the pages recommended by our method and HITS on differ-
ent topics. The results indicate that our method is superior to HITS in
most cases. In addition, we also evaluate the recall and precision mea-
sures of our method. The results show that our method is with relative
high precision and low recall for all topics.

Keywords: Web mining, link structure analysis, hub and authority.

1 Introduction

PageRank [1], HITS [2] and SALSA [3] are three of the most popular link-
structure based algorithms for web mining. No matter which method is used, a
graph consisting of web pages and their hyperlinks will be constructed for fur-
ther processing. Consequently, different graph analysis algorithms or traversing
strategies are applied in order to measure the importance of each web page.
Borodin and colleagues [4] further differentiated between these algorithms ac-
cording to the scope of their derived target graph. In their opinion, PageRank
is query independent because it operates on the whole web. On the other hand,
both HITS and SALSA are query dependent since a base set consisting of web
pages relevant to a given topic must be constructed from a query on the topic.
Using filtering strategies is needed to construct such a base set since the amounts
of irrelevant pages examined during construction are enormous. Whether the fil-
tering strategies are good enough for excluding topic irrelevant pages as far as
possible will significantly influence the recommendation results. However, elim-
inating navigational links is the only effort to filter irrelevant pages for most
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of the HITS based algorithms. In this paper, we will address the quality issue
of the base set. The definition of quality used here is how relevance of the rec-
ommendation results to the given topic. We will measure the relevance by two
different ways. The first is to calculate the precision and recall rates suggested by
Vaughan [5]. The second is to investigate the quality of recommendation results
via a user satisfaction survey.

In order to filter irrelevant web pages as far as possible, we propose a novel
approach called potential hubs and authorities first (PHA-first) approach to con-
struct a base set for further hub and authority analysis. Our PHA-first approach
examines the outgoing and incoming links of the root set as usual. Instead of
including all pages pointing to or pointed by the root set, we apply several inclu-
sion rules, including co-citation, recommendation and relay to both the outgoing
and incoming link sets.

The remainder of this paper is organized as follows. Section 2 introduces our
PHA-first approach and the derived algorithm. Section 3 is our experimental
results and discussion. And then, we draw a conclusion and describe the future
work in the last section.

2 The Potential Hubs and Authorities First Approach

The hypertext-induced topic selection (HITS) algorithm proposed by Klein-
berg is a very popular and effective algorithm to rank documents. However, the
method still suffers from the problem of topic drift [6]. To reduce the impact of
topic drift, various schemes have been proposed [6][7][8]. Although, these meth-
ods improved the performance of the original HITS, the underlying methods of
base set construction were nearly the same.

According to [3], Lempel and Moran claimed that the quality of base set is
an elementary requirement for any HITS-base algorithms. That motivated us
to explore the possibility to improve the recommendation results by control-
ling the ”quality” of the base set. The concept is actually not unusual. Chau
et.al., [9] have proposed a priority first approach to collect topic relevant web
pages, although the method was not HITS-based. Inspired by Chau’s research,
we try to develop a priority first approach based on the framework of HITS
algorithm.

Reconsidering the definition of hub and authority, a good hub is a web page
recommending many good quality pages and a good authority is a web page cited
by many good quality pages. If we have constructed a root set of good quality
web pages, then we can iteratively apply some inclusion rules which choose the
pages in accordance with recommendation or co-citation to construct the base
set. Based on the motivation, we come up with a novel base set construction
method. Instead of filtering the candidate pages randomly[2][3] or by examining
anchor text [7][9], our method applies three inclusion rules further utilizing the
definition of hub and authority. Provided that a root set with good quality, such
as a set consisting of the top dozens query results of a content-based search
engine on a keyword, our inclusion rules will select potential hubs or authorities
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Fig. 1. Potential hubs, potential authorities and immediate nodes (relays)

into the base set as far as possible. Therefore, our method is named as potential
hubs and authorities first (PHA-first) approach.

Assume B denotes the current base set, B(pi) as the set of all pages pointing
to pi and F (pi) as the set pages pointed by pi. The three rules in our PHA-first
approach are:

1. The co-citation rule. As shown in left side of Figure 1, every page pa not
belonging to B , which is pointed by at least two pages in B, will be added
to B.

2. The recommendation rule. As shown in right side of Figure 1, every page
ph not belonging to B, which points to at least two pages in B, will also be
added to B.

3. The relay rule. Two preceding rules aim at including pages with the stronger
relevance to B. However, as shown in the lower part of the Figure 1, some
pages are immediate nodes between two pages in B. We call these pages as
relays. More formally, a relay is a page pr not belonging to B, but pointing
to only one page in B and pointed by one page in B at the same time. Such
pages will be added to B.

Based on these three rules, our PHA-first approach works as shown in Fig-
ure 2. In Figure 2, ph, pa, prelay are potential hubs, authorities and relays relative
to the current base set Sq respectively. After adding these pages and deleting
all irrelevant pages, the current iteration ends. Depending on how many links
away from the root set we want to explore, we can decide the number of iter-
ations. The default value for iterations is 3, which is larger than the setting of
the CLEVER [7] algorithm by 1.

The rest of details on dealing with pages are listed as follows:

1. Choice of the root set. Because of iterative nature, our PHA-first approach
can start from a small root set. In our opinion, we can easily control the
quality of the root set if the number of pages in the root set is small enough.

2. Deletion of irrelevant pages. The main purpose of deleting irrelevant pages
is to eliminate the navigational links. In addition, we count the number of
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Input: a query string q; two integers t,w; Rq,the top t results of content-
based search engines on q
Output: a set of web pages Sq extended from Rq

PHA-first(q,t,w,Rq)
Sq ← Rq

Let B(pi) denotes the set of all pages pointing to pi

Let F (pi) denotes the set of all pages pi points to
while the number of iterations is less than w do

Add ph to Sq, where ph ∈ B(pi) ∩ B(pj);∀ph /∈ Sq; pi, pj ∈ Sq, i �= j.
Add pa to Sq, where pa ∈ F (pi) ∩ F (pj); ∀pa /∈ Sq; pi, pj ∈ Sq, i �= j.
Add prelay to Sq, where prelay = {pr|pr ∈ F (pi) ∧ pr ∈ B(pj), ∀pr /∈
Sq, pi, pj ∈ Sq, i �= j}.
Delete all irrelevant pages from Sq.
The iteration count is added by one.

end while
Return Sq

Fig. 2. The PHA-first (potential hub and authority first) approach

out-going links for each page. Once the number is larger than a threshold
value, we drop the page because it is very likely to be a portal.

After the base set B is constructed, the hub and authority values of each page
can be calculated. The calculation is identical to the original HIT algorithm.

3 Experimental Results and Discussion

We have implemented two versions of PHA-first based algorithms. In the first
version, we used 10 pages generated from three search engines (Yahoo!, Lycos
and Teoma) as the root set. We call this version as PHAsr (”sr” stands for a
small root set). In the other version, the root set consisted of 200 pages found
by searching from Yahoo!. We call this version as PHA200. In addition, we have
implemented the HITS algorithm for comparison.

We used 12 keywords in our experiments. The keywords are listed in Ta-
ble 1. Instead of comparing the performance by using the traditional recall and
precision rates, we use a web-version recall and precision rates proposed in [5].
Table 1 shows the recall and precision rates of three different algorithms.

In Table 1, the average number of web pages collected by PHAsr is only
96. Comparing with the number of pages collected by HITS, it is about only
4% on average. Even so, both the recall as well as precision rates of PHAsr

are significantly superior to the ones of HITS. The higher recall rates mean
that PHAsr do not miss any important pages, which are capable of being found
by HITS, even the initial root set is very small. More importantly, the higher
precision rates mean that the linkage structure inside the base set still accurately
reflects the relative importance of topic relevant pages.
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Table 1. The recall and precision rates of three different algorithms

PHAsr PHA200 HITS
Keywords nodes recall precision nodes recall precision nodes recall precision

cheese 129 15% 0.1697 682 11% 0.2969 1757 11% -0.1515
basketball 145 11% 0.2363 856 17% 0.9898 1613 0% -0.1030
motorcycle 64 10% 0.2232 924 5.5% 0.5576 2252 26% -0.2485
Harrypotter 110 19% 0.4421 657 13% 0.3333 1359 0% -0.4362

Movies 53 21% 0.2481 808 0% 0.5454 3685 7% 0.1151
Search engine 220 13% 0.8112 3367 19% 0.7752 3765 19% 0.7879

Coffee 66 11% 0.4788 618 11% 0.5091 1869 5% -0.2424
Blue 14 19% 0.2606 605 0% 0.8181 4249 0% 0.1393

Weather 77 8% 0.2242 1549 3% 0.4909 3005 15% 0.2969
Travel 92 4% 0.2848 1060 1% 0.3515 3410 9% -0.0061

Cell phone 63 14% -0.1090 751 0% -0.2484 1853 0% -0.8424
Notebook 113 0% 0.5151 829 0% 0.1878 1843 3% -0.1151

Average 96 12.08% 0.32 1059 6.71% 0.47 2555 7.92% -0.07

Fig. 3. Satisfaction investigation about PHA and HITS

Meanwhile, comparing with HITS, the number of web pages collected by
PHA200 is about 40%. However, PHA200 got unusual high precision and terrible
low recall. That is, the recommendation ranks match the expectation of respon-
dents very well. But the recommendation pages are not good enough, at least
not matching the best results collected from the commercial search engines. If
we refer the moderate satisfaction (to be proposed later) of PHA200, it is clear
that our PHA-first approach is more suitable for a small root set. Since the
satisfaction scores of PHAsr is better in most cases.

It is surprised that almost all of the precision rates of HITS are negative.
That implies the ranks recommended by HITS algorithm are very opposite to
the expectation of respondents. In other words, it is possible to improve the
results generated by HITS algorithm.
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We also investigate satisfaction with three algorithms. There are a dozen
of respondents to grade the top 5 hubs and authorities recommended by these
three algorithms on a score from 0 to 4 (the highest score). Figure 3 shows the
satisfaction scores of these three algorithms on those 12 keywords.

First of all, the average scores of PHAsr, PHA200 and HITS are 2.0, 1.67 and
1.49 respectively. PHAsr obtains better scores than the other two, and hence
is more able to satisfy the requirement of respondents on average. Actually, in
Figure 3, 8 of 12 scores are the highest for PHAsr. Moreover, 3 to 4 of these 8
cases have statistically significant better scores.

4 Conclusion and the Future Work

In this paper, we propose a novel approach to construct a good quality base set
for HITS based link structure analysis. We were motivated by the fact that the
quality of base set will influence the final results of hub and authority analysis.
Three inclusion rules to ensure the quality of base set have been presented. The
rules are co-citation, recommendation, and relay. According to the experimen-
tal results, our method performs well on the measure of precision. In addition,
the satisfaction investigation is also promising. However, comparing with com-
mercial search engines, the diversity of pages recommended by our method is
insufficient. We will try to increase the iterations performed by our method and
to see whether the recall rate will be improved.
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Abstract. This paper proposes a new algorithm, called TAM-WAP(the short-
hand for Top-down Algorithm for Mining Web Access Patterns), to mine inter-
esting WAP from Web logs. TAM-WAP searches the P-tree database in the 
top-down manner to mine WAP. By selectively building intermediate data ac-
cording to the features of current area to be mined, it can avoid stubbornly 
building intermediate data for each step of mining process. The experiments for 
both real data and artificial data show that our algorithm outperforms conven-
tional methods. 

Keywords: Sequential Mining, Web Mining, Web Usage Mining, Web Access 
Pattern, P-tree Database. 

1   Introduction 

Web usage mining is the application of data mining techniques to discover usage 
patterns from Web usage data, aiming at better understanding Web-based applica-
tions[1] (e.g., site structure simplification) and better serving their needs. Web usage 
data is the secondary data derived from the Web surfers’ interactions with the Web, 
such as Web logs collected at different locations, business transactions, registration 
data and cookies.   

WAP, first introduced in [2], is a sequence of events. By viewing each event (item) 
as a singleton set, we can regard WAP as a special instance of the conventional 
sequential pattern, originally introduced by Agrawal and Srikant in [3], whose 
elements are item-sets.  

Therefore, the conventional algorithms, such as GSP[4] and PrefixSpan[5], can be 
used to mine WAP from Web logs. Unfortunately, GSP will suffer strongly from 
multiple database-scans when the length of sequential pattern grows long and Prefix-
Span will generate many projected databases or false projected databases. 

In order to solve those problems, a new algorithm WAP-mine[2] was specially de-
signed. It first scans the database twice, transforming disk-resident database into a 
data tree, called WAP-tree, and then mines it in a bottom-up manner by recursively 
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building the intermediate conditional bases and trees. The experimental results re-
ported in [2] show that WAP-mine is in general an order of magnitude faster than 
GSP. However, the bottom-up tree traversal strategy obliges this algorithm to build 
intermediate data at each step of mining process. As support threshold goes low (the 
WAP-tree becomes large) such efforts will have negative impact on the performance. 
    In this paper, we develop a new algorithm, called TAM-WAP, for mining WAP. 
Instead of stubbornly building intermediate data for each step of mining process, 
TAM-WAP selectively builds intermediate data according to the features of current 
area by a prediction method. The outline of the paper is as follows. In Section 2, we 
propose our top-down mining algorithm TAM-WAP. Section 3 reports our experi-
mental results. Section 4 is the conclusion. 

2   TAM-WAP: Mining WAP from Web Logs 

2.1   Definitions  

We suppose that the necessary data preparation tasks have been applied to the original 
Web logs (the reader is referred to [7,8] for the details of such tasks) and the ultimate 
result of these tasks is a set of access sequences, called (Web) access database.  

T2T1

a,3v1

a,2v2
b,1v6

b,1v3 a,1v7

d,1v4

e,1v5

f,1v8
c,1v9
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c,1v11

d,1v12

e,1v13

f,1v14

 

Fig. 1. a P-tree database 

Definition 1 (P-tree and P-tree database): A pattern tree (P-tree) is defined to be a 
directed rooted tree T= <V(T), E(T) >, where V(T) is a node-set, where each node is 
associated with an event and its count, written as v.event and v.count respectively. 
E(T) ⊂ V(T) × V(T) is a set of edges. Furthermore, T must be supposed to the follow-

ing constraint: For any node v∈V(T), v.count ≥
∈ )(

.
vchildrenc i

i

countc . A set of P-tree 

is called a P-tree database. The node set consisting of all roots of P-trees is called the 
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root set of D, denoted by R(D). Figure 1 depicts a small P-tree database composed of 
two P-trees T1 and T2. The label beside each node is the node identifier and the letter 
and number (separated by comma) inside each node are the event and count respec-
tively. 

Let p=<v1,v2 ,…, vm> be a path in a P-tree database D. we use seq(p) to denote the 
access sequence s=<e1,e2,…,em> ( ei=vi.event, 1≤ i ≤m ). If p is a rooted path in D, we 
also denote s as seq(vm|D). 

Definition 2 (Counting node, projected tree and database): Let α be an access 
sequence and D a P-tree database. Let v be a node in V(D). If α ⊆ seq(v|D) and there 
is no ancestor v’ of v such that α ⊆ seq(v’|D), then (1) v is called a counting node of 
α , or α-node for short, (2) v.count is called the count of α recorded in v, (3)a sub-tree 
rooted at a child of v is called an α-projected tree of D. All α-projected trees consti-
tute a P-tree database, called α-projected database of D, denoted as D|α.  

A projected database is exactly a part of the original P-tree database. This is the key 
feature exploited by our mining algorithm for reducing the cost of building intermedi-
ate data. 

Defintion 3 (ξ-pattern and frequent event of P-tree database): Let α be an access 
sequence and D a P-tree database. Nα denotes the set of all α-nodes in D. The support 

of α in D is defined to be supportD (α)=
∈ αNv i

i

countv . . Given a positive integer ξ as 

support threshold, if supportD (α) ≥ ξ, then α is called a ξ-pattern or simply access 
pattern of D. Let e be an event. If < e > is an access pattern of D, then e is called a 
frequent event of D.  

2.2   Compact Database and Prediction Method 

Definition 4 (Compact database): Let D be a P-tree database. If (1) there exits at 
least one pair of nodes x and y (x ≠ y) satisfying the following conditions:  

(a) x.event = y.event, and  
(b) they have the same parent or x, y∈R(D), 

or (2) there exists at least one node whose event is not frequent, then we say D is 
compressible. If not, we say D is incompressible or compact. 
The appropriate condition for building compact database is that the time saved by 
mining compact database must be greater than the time wasted in building the com-
pact database. Based on various experiments and analysis, we found a practical 
method defined as the following subroutine.  

Subroutine1: CheckCompact(TFN, TN, NTV, pcr) 
1 if (TFN/TN ≥ 0.75) then 
2     return true 
3 else begin 
4        P=TFN×7×pcr; 
5        if ((NTV-TN-P) ≤ 0) then 
6          return true 
7        else 
8          return false 
9      end  
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If CheckCompact returns true, that means it is not worthwhile to build the compact 
database. Otherwise, it is better to build a compact one.  

2.3   TAM-WAP Algorithm 

Now, we give TAM-WAP algorithm for mining all access patterns in P-tree database 
(To discover all access patterns of a P-tree database, call this algorithm with α =< >). 

Algorithm 1: TAM-WAP (Hα, ξ, α, occ_list, pcr) 
Input: Hα, the header table of current projected data-

base, the support threshold ξ, an access-pattern 
prefix α, an event occurrence list occ_list. 

Output: all ξ-pattern having prefix α. 
Method: 

  1  for each element ak in Hα do begin 
2  if (ak.support ≥ξ ) then 
3    begin 
4      output β=α ∪ ak.event and ak.support; 
5      if ((CheckCompact(TFN,TN,NTV, pcr)==false) then 
6      begin 
7        build the compact database Dβ; 
8        call TAM-WAP(Hβ , ξ ,α ,occ_list , r); 
9      end 
10     else 
12       call TAM-WAP(Hβ , ξ ,α ,occ_list , pcr); 
13   end 
14  end 

3   Experiments 

3.1   Experimental Setup 

We used VC++6.0 to implement these algorithms. All experiments were conducted on 
an 800MHZ Celeron PC machine with 512MB of main memory, running Microsoft 
Windows 2000 professional. All datasets were stored in flat text files of NTFS on 
hard disk. 

3.2   Performance 

The result is shown in Figure 2. We can see the performance of TAM-WAP is better 
than WAP-mine.  

3.3   Scale-Up Experiments 

Figure 3 shows that when the support threshold is fixed as a percentage TAM-WAP 
has better scalability than WAP.  
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Fig. 2. TAM-WAP >WAP-Mine: Execution Time 

 

Fig. 3. Scale-up with support thresholds as percentages: 5% 

4   Conclusion 

In this paper, we propose a new mining algorithm, which visits the data tree in a top-
down manner and selectively builds intermediate data according to the features of 
current area.  

In addition, the results of our study are useful for association rule mining area. To 
solve the same problem for the well-known algorithm FP-growth[10], Two top-down 
algorithms have been proposed in [11,12]. They discover frequent patterns without 
building intermediate data and the experiments were conducted only on a few artifi-
cial datasets. Hence, our study implies there exists potential improvements for these 
top-down algorithms. 
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Abstract. Kernel principal component analysis (PCA) has recently been pro-
posed as a nonlinear extension of PCA. The basic idea is to first map the input 
space into a feature space via a nonlinear map and then compute the principal 
components in that feature space. This paper illustrates the potential of kernel 
PCA for dimensionality reduction and feature extraction in content-based image 
retrieval. By the use of Gaussian kernels, the principal components were com-
puted in the feature space of an image data set and they are used as new dimen-
sions to approximate images. Extensive experimental results show that kernel 
PCA performs better than linear PCA in content-based image retrievals. 

1   Introduction 

Content-based image retrieval (CBIR) supports image searches based on visual fea-
tures such as color, texture, and shape. In a CBIR system, these features are extracted 
and stored as feature vectors. During the retrieval process, the feature vector of the 
query image is computed and matched against those in the database. The returned 
images should be similar to the query image. This similarity (or nearest neighbor) 
indexing/retrieval problem can be solved efficiently when the feature vectors have 
low or medium dimensionalities (e.g., less than 10) by the use of existing indexing 
methods such as the R*-tree [1] and the HG-tree [2]. So far, however, there has been 
no efficient solution to this problem when the feature vectors have high dimensional-
ities, say over 100 [3]. So the issue is to overcome the curse of dimensionality. 
Motivated by this phenomenon, the approach to reduce the dimensinoality of image 
feature vectors has been attempted by the use of some dimensionality reduction 
techniques such as principal component analysis [4, 7]. 

Principal component analysis (PCA) [5] has been widely used for re-expressing 
multidimensional data. It allows researchers to reorient the data so that the first few 
dimensions account for as much of the available information as possible. If there is 
substantial redundancy present in the data set, then it may be possible to account for 
most of the information in the original data set with a relatively small number of di-
mensions. In other words, PCA finds out for the original data set the new structure 
given by the linear combination of the original variables. However, one cannot assert 
that linear PCA will always detect all structure in a given data set. By the use of suit-
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able nonlinear features, one can extract more information. In this paper, we investi-
gate the potential of a nonlinear form of PCA for dimensionality reduction and feature 
extraction in content-based image retrieval. 

2   Kernel PCA 

PCA is an orthogonal basis transformation. The new basis is found by diagonalizing 
the covariance matrix C of a centered data set {xi ∈ RN | i = 1, …, m}, defined by  
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The coordinates in the Eigenvector basis are called principal components. The principal 
components are given by the linear combination of the original variables. The size of an 
Eigenvalue λ corresponding to an Eigenvector v of C equals the amount of variance in 
the direction of v. Furthermore, the directions of the first n Eigenvectors corresponding 
to the biggest n Eigenvalues cover as much variance as possible by n orthogonal direc-
tions. In many applications, they contain the most interesting information.  

Clearly, one cannot assert that linear PCA will always detect all structure in a given 
data set. Moreover, it can be very sensitive to “wild” data (“outliers”). By the use of 
suitable nonlinear features, one can extract more information. Kernel PCA is very 
well suited to extract interesting nonlinear structures in the data [13].  

The purpose of our work is therefore to consider the potential of kernel PCA for 
dimensionality reduction and feature extraction in CBIR. Kernel PCA first maps data 
into some feature space F via a (usually nonlinear) function Φ and then performs 
linear PCA on the mapped data. As the feature space F might be very high dimen-
sional, kernel PCA employs Mercer kernels instead of carrying out the mapping Φ 
explicitly. A Mercer kernel is a function k(x, y) which for all data sets {xi} gives rise 
to a positive matrix Kij = k(xi, yj) [11]. Using function k instead of a dot product in 
input space corresponds to mapping the data with some Φ to a feature space F, i.e., 
k(x, y) = (Φ(x)⋅ Φ(y)).  

To perform PCA in feature space F, we need to find Eigenvalues λ > 0 and Eigen-
vectors v ∈ F−{0} satisfying λv = C′ v with the covariance matrix C′ in F, defined as 
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Substituting C′ into the Eigenvector equation, we note that all solutions v must lie in 
the span of Φ-images of the sample data. This implies that we can consider the 
equivalent equation 

 vCxvx jj ))(())(( ′⋅Φ=⋅Φ  for all j = 1, …, m                     (1) 

and that there exist coefficients α1, …, αm such that 
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Substituting C′ and (2) into (1), and defining m × m Gram matrix Kij = k(Φ(xi), Φ(yj)) 
= k(xi, yj), we arrive at a problem which is cast in terms of dot product. Solve 

mλα = Kα 

for nonzero Eigenvalues λ and Eigenvectors α = (α1, …, αm)t subject to normalization 
condition λk(αk ⋅ αk) = 1. To extract nonlinear principal components for the Φ-image 
of a test point x, we compute the projection onto the k-th component by  
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3   Performance Measures  

In this section, we consider the measures to assess the performance of kernel PCA. In 
our work, we use the Gaussian kernel k(x, x′) = exp(-(||x−x′||2/2σ2)) because it is 
widely used in content-based image retrieval and pattern recognition [9, 14]. In tradi-
tional (document) information retrieval, performance is often measured by using pre-
cision and recall [10, 12]. Recall measures the ability of the system to retrieve useful 
items, while precision measures its ability to reject useless items. For a given query, 
let T the total number of relevant items available, Rr the number of relevant items 
retrieved, and Tr the total number of retrieved items. Then precision is defined as Rr / 
Tr, and recall as Rr / T.  

Precision and recall can also be applied to image retrieval. In IBM QBIC that per-
forms similarity retrieval as opposed to exact match, normalized precision and recall 
have been suggested [6]. These reflect the positions in which the set of relevant items 
appear in the retrieval sequence (ordered by some similarity measure). If there are T 
relevant images in the database, then for an ideal retrieval, all T relevant items occur 
in the first T retrievals (in any order). Faloutsos et al [6] define this as IAVRR, the 
ideal AVRR (average rank of all relevant, retrieved images). It is the maximum when 
all relevant images are retrieved on the top: IAVRR = (0 + 1 + … + (T−1)) / T (where 
the first position is the 0-th). The ratio of AVRR to IAVRR gives a measure of the 
effectiveness of the retrieval. In an ideal case of retrieval, this ratio would be 1. 

For example, if the relevant images for the query image A are defined as: 

A46, A18, A101, A52, A35, A102 

so that T = 6, and a CBIR system returns, in order: 

A102, A109, A50, A18, A74, A46, A52, A57, A17, A35, A63, A16, A58, A101 
then relevant items appear at 0, 3, 5, 6, 9 and 13. The AVRR for this is therefore (0 + 
3 + 5 + 6 + 9 + 13)/6 = 6. The IAVRR would be (0 + 1 + 2 + 3 + 4 + 5)/6 =2.5. Thus 
AVRR / IAVRR is 2.4.  

If the order of retrieval matters, Kendall’s tau can be used to provide measures of 
association between two sets of data [8]. Kendall’s tau can be viewed as a coefficient 
of disorder. For example, consider the following two rankings, where both have se-
lected the same four images, but have placed them in a different order: 
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1  2  3  4 
2  1  4  3 

Tau is calculated as 
(no. of pairs in order − no. of pairs out of order) / (total no. of possible pairs) 

For this example, 2 in the bottom row is followed by 1, 4, and 3, 2-1 is out of order, 
scoring -1, and 2-4, 2-3 are in order, scoring +1 each. Similarly, 1 is followed by 4 
and 3. Both are in order, scoring +1 each. Finally, 4 is followed by 3, scoring -1. The 
number of in-order pairs is four, and out-of-order pairs is two, therefore the total is 
+2, divided by the maximum number of in-order pairs, N(N-1)/2, which here is 6, 
since N = 4. The value of tau is therefore 2/6, or 0.3333. This gives a measure of the 
“disarray” or difference in ranking, between the two. It ranges from -1, which repre-
sents complete disagreement, through 0, to +1, complete agreement.  

For each experiment in our work, we report the average of the above measures over 
100 k nearest neighbor (k-NN) queries. For k-NN queries, precision and recall are the 
same because T = Tr, i.e., the total number of relevant items and the total number of 
retrieved items are the same. There we compute only the precision measure as a 
representative. The ratio of AVRR to IAVRR gives a measure that how much the 
results are close to the top. Kendall’s tau provides a measure of the order for the k-NN 
search results. 

4   Experimental Results 

To demonstrate the effectiveness of kernel PCA, we performed an extensive experi-
mental evaluation for kernel PCA and compared it to linear PCA. For our experiments 
we used 13,724 256-color images of U.S. stamps and photos. To obtain feature vec-
tors for experiments, we used four MPEG-7 visual features: (1) color structure de-
scriptor (256 dimensions), (2) homogeneous texture descriptor (30 dimensions), (3) 
edge histogram descriptor (80 dimensions), and (4) region-based shape descriptor (35 
dimensions). These descriptors are general descriptors that can be used in CBIR.  

We applied kernel PCA and linear PCA to those four data sets consisting of 
MPEG-7 visual descriptors, respectively, in order to reduce their dimensionality. We 
posed k nearest neighbor queries to 3 kinds of data sets, i.e., (1) the original data set, 
(2) the data set whose dimensionality is reduced by kernel PCA, and (3) the data set 
whose dimensionality is reduced by linear PCA. In all experiments, the numbers of 
nearest neighbors to find were 20, 40, 60, 80 and 100 and we averaged their results. 
100 random k-NN queries were processed and the results were averaged. 

Tables 1 – 4 show that the experimental results for four MPEG-7 visual features. 
The first column of each table represents the dimensionality of the original data and 
the dimensionalities of the transformed data after the dimensionality reduction. In 
addition, the percentages of the variance in each original variable we retain are also 
provided in the first column of each table. The performance of kernel PCA is better 
than that of linear PCA with respect to all three performance parameters, i.e., preci-
sion, the ratio of AVRR to IAVRR, and Kendall’s tau. In terms of precision and 
AVRR/IAVRR, kernel PCA is 10% – 20% better than linear PCA. With respect to 
Kendall’s tau, kernel PCA is better than linear PCA more than 50%. These experi-
mental results indicate that kernel PCA can be successfully employed as a generalized 
nonlinear extension of linear PCA. 
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Table 1. Color structure experiments 

Linear PCA Kernel PCA original 
dim = 256 Precision AVRR/IAVRR Tau Precision AVRR/IAVRR Tau 

95% (dim = 164) 0.62 3.45 0.42 0.73 3.05 0.70 
90%(dim = 113) 0.59 3.65 0.37 0.67 3.17 0.62 
85%(dim = 77) 0.53 3.70 0.38 0.64 3.25 0.63 

Table 2. Homogeneous texture experiments 

Linear PCA Kernel PCA original 
dim = 30 Precision AVRR/IAVRR Tau Precision AVRR/IAVRR Tau 

95% (dim = 14) 0.60 3.50 0.41 0.71 3.15 0.69 
90% (dim = 10) 0.56 3.75 0.37 0.66 3.30 0.64 
85% (dim = 9) 0.51 3.80 0.36 0.62 3.45 0.61 

Table 3. Edge histogram experiments 

Linear PCA Kernel PCA original 
dim = 80 Precision AVRR/IAVRR Tau Precision AVRR/IAVRR Tau 

95% (dim = 30) 0.59 3.48 0.45 0.69 3.27 0.61 
90% (dim = 25) 0.54 3.45 0.42 0.64 3.27 0.60 
85% (dim = 22) 0.50 3.68 0.39 0.61 3.35 0.58 

Table 4. Region-based shape experiments 

Linear PCA Kernel PCA original 
dim = 35 Precision AVRR/IAVRR Tau Precision AVRR/IAVRR Tau 

95% (dim = 15) 0.57 3.63 0.42 0.68 3.35 0.62 
90% (dim = 11) 0.51 3.73 0.40 0.62 3.47 0.60 
85% (dim = 10) 0.50 3.85 0.37 0.61 3.45 0.59 

5   Conclusion 

In this paper, we described the potential of kernel PCA for dimensionality reduction 
and feature extraction in content-based image retrieval. Through the use of Gaussian 
kernel, a kernel PCA was able to work effectively within the feature space of image 
data sets, thereby producing a good performance. Compared with linear PCA, kernel 
PCA showed better performance with respect to the retrieval quality as well as the 
retrieval precision in content-based image retrieval. Therefore, we can conclude that 
kernel PCA can be successfully employed as a generalized nonlinear extension of 
linear PCA. 
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Abstract. In this paper, we propose an efficient algorithm enumerating
all frequent subtrees containing all special nodes that are guaranteed
to be included in all trees belonging to a given data. Our algorithm is a
modification of TreeMiner algorithm [10] so as to efficiently generate only
candidate subtrees satisfying our constraints. We report mining results
obtained by applying our algorithm to the problem of finding frequent
structures containing the name and reputation of given restaurants in
Web pages collected by a search engine.

1 Introduction

Frequent structure mining is one of the most popular way of data mining because
of understandability of its analyzed results. The idea of finding frequent patterns
is simple and easy, but for massive databases efficient algorithms to do this task
are necessary, and it is not trivial to develop such algorithms. After Agrawal
and Srikant developed efficient algorithm Apriori, various efficient algorithms
have been developed for frequent itemsets [1], subsequences [2], subtrees [3, 10],
subgraphs [6] and so on.

People sometimes have a certain point of view from which they want to ana-
lyze data. In such cases, they want to find frequent structures that satisfy certain
constraints. This can be done by selecting structures satisfying the constraints
after enumerating all frequent ones, but it is not efficient when a lot of more fre-
quent other structures exist. In order to efficiently find the frequent structures
satisfying constraints without enumerating unnecessary frequent ones, some al-
gorithms have been also developed for itemsets [9] and subsequences [5].

In this paper, we consider a kind of constrained problem for frequent subtrees.
Data we mine is a set of labeled rooted ordered trees, each of which contains just
d special nodes labeled a different label belonging to a set of d special labels.
Our mining problem is to find all frequent embedded subtrees [10] containing all
d special nodes.

This research is motivated by wrapper induction [8, 4]. A wrapper is a pro-
gram that extracts information necessary for some purpose from Web pages.
Most wrappers extract necessary information by pattern matching around the

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 850–860, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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information. Wrapper induction, automatic wrapper construction from train-
ing data, can be done by finding common patterns around the information in
the data. Most Web pages are HTML documents of which tag structures can
be represented by DOM-trees, so finding frequent subtrees of DOM-trees con-
taining all nodes with necessary information can be used as a kind of wrapper
induction methods, though some additional information like contents of the in-
formation and distance between nodes are necessary to construct high-precision
wrappers [7].

In this paper, we propose an efficient algorithm enumerating all frequent sub-
trees containing all special nodes. Our algorithm is an extension of TreeMiner
algorithm proposed by Zaki [10]. We modified TreeMiner algorithm so as to
efficiently generate only candidate subtrees satisfying our constraints. We also
report mining results obtained by using our algorithm for the problem of find-
ing frequent structures containing the name and its reputation of given Ramen
(lamian, Chinese noodles in Soup) shops in Web pages collected by a search
engine.

2 Problem Statement

2.1 Notions and Notations

In this paper, all trees we deal with are labeled ordered trees defined as follows.
A rooted tree T = (N,B) is a connected acyclic graph with a set N of vertices
and a set B of directed edges (u, v) ∈ N×N that represent parent-child relation,
which satisfies the condition that every vertex but just one vertex (root) has just
one parent vertex. For a tree, a vertex and an edge are called a node and a
branch, respectively. An ordered tree T = (N,B,!) is a rooted tree (N,B) with
partial order ! on N representing a sibling relation, where the order is defined
just for all the pairs of children having the same parent. Let L be the set of
labels. A labeled ordered tree T = (N,B,!, l) is an ordered tree (N,B,!) of
which nodes are labeled by the label function l : N → L.

An id of a node of a tree T = (N,B,!, l) is its position in a preorder traversal
of the tree, where the passing order of children of the same parent follows order!.
Note that, in our notation, any node with subscript i represents the node of id i.

The parent-child relation, which is defined by set B of branches, induces an-
other partial order ≤, an ancestor-descendant relation, by extending the relation
so as to satisfy reflexivity and transitivity. If nodes ti and tj are not comparable
in order ≤, tj is said to be a left-collateral of ti when i > j and a right-collateral
of ti when i < j.

A scope of a node t is defined as [l, r] using the minimum id l and the maxi-
mum id r among the ids of t’s descendant nodes. Note that l is always t’s id.

A string encoding of a tree T is a sequence of labels in L ∪ {−1} generated
by starting with null string, appending the label of the node at its first visit,
and appending -1 when we backtrack from a child in a depth-first traversal. For
example, tree S2 in Fig. 1 is encoded as
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a b 1 -1 -1 2 -1.

We abuse notation and use the same symbol to represent both a tree and its
string encoding.

Size of a tree T is the number of nodes in T . A size-k prefix of a tree is the
subtree composed of the nodes of which id is less than k.

An embedded subtree considered by [10] is defined as follows.

Definition 1. Let T = (NT ,BT ,!T , lT ) and S = (NS ,BS ,!S , lS) be labeled
ordered trees. Assume that NT and NS are represented as {t0, t1, ..., tn−1} and
{s0, s1, ..., sm−1}, respectively. If there is an one-to-one mapping i : j +→ ij from
{0, 1, ...,m− 1} to {0, 1, ..., n− 1} satisfying the following conditions, S is called
an embedded subtree of T and i is called an embedding mapping.

1. (Label preserving)
lS(sj) = lT (tij

) for j ∈ {0, ...,m− 1}.
2. (Ancestor-descendant relation preserving)

(sj , sk) ∈ B ⇒ tij
≤ tik

for j, k ∈ {0, 1, ...,m− 1}.
3. (Sibling relation preserving)

j ≤ k ⇔ ij ≤ ik for j, k ∈ {0, 1, ...,m− 1}.

Let D denote a set of labeled ordered trees. For given D and a minimum
support 0 < σ ≤ 1 , a subtree S is frequent if the rate of trees in D that have S
as an embedded subtree is at least σ.

Zaki [10] considered the problem of enumerating all frequent subtrees and
developed an efficient algorithm for this problem.

2.2 Trees with Special Nodes

In this paper, we assume that there are d different special labels which are not
members of L, and that every tree in D has just d special nodes labeled different
special labels.

The notions of size and size-k prefix defined above are extended as follows.
Size of a tree is the number of non-special nodes. For example, the size of tree T
in Fig. 1 is 4. A size-k prefix of a tree is the subtree composed of k non-special
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Fig. 1. Left 3 trees: Example of trees with special nodes, which are denoted by squares.

The size of tree T is 4, and trees S1 and S2 are its size-3 and size-2 prefixes, respectively.

Rightmost tree: Prefix equivalence class for tree S2
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nodes with k smallest ids and all special nodes. For example, trees S1 and S2 in
Fig. 1 are the size-3 and size-2 prefixes of tree T , respectively.

We consider the following problem.

Problem 1 (Constrained tree mining problem). For given D and a minimum sup-
port σ, enumerate all frequent subtrees that have all special nodes.

3 Candidate Subtree Generation

Since all embedded subtrees of a frequent subtree are also frequent, enumerating
frequent subtrees in size-increasing order reduces candidates, and as a result it
is efficient. Zaki’s efficient method [10] for enumerating frequent subtrees in size-
increasing order is based on a notion of prefix equivalence class. We first describe
his method in the next subsection, then propose modified version of the method
for the constrained problem.

3.1 Method for the Problem Without Constraints

A prefix equivalence class for a size-(k − 1) tree P in a size-k tree set G, that
is denoted by [P ]G, is the set of size-k trees in G of which size-(k − 1) prefix
is P . We let [G]pre denote the set of all prefix equivalence classes. Every tree
T ∈ [P ]G is distinguished from other trees in [P ]G by its last node, the node
with the maximum id. The last node of T can be uniquely represented in [P ]G
by a pair (x, i) of its label x and id i of its parent node in P , because the node
must be the last child of its parent node in order to preserve tree’s prefix.

Since two size-k subtrees of a size-(k + 1) frequent subtree T created by
removing1 one of the last two nodes of T are also frequent, and the size-(k − 1)
prefixes of the two nodes coincides with each other, all size-(k + 1) frequent
subtrees can be enumerated by joining two size-k frequent subtrees that belong
to the same prefix equivalence class. The relation between the last two nodes of
size-(k+1) tree is parent-child relation or not, thus join operator must generate
trees of the both relations if possible.

When P1 and P2 are different size-(k − 1) trees, trees generated by join
operator from [P1]G and [P2]G are trivially different because their size-(k − 1)
prefixes are preserved. Thus, by applying join operator to every pair of frequent
size-k trees in each prefix equivalence class, we can enumerate all size-(k + 1)
candidates of frequent trees without duplication.

3.2 Method for the Constrained Problem

Our method for the constrained tree mining problem is based on the same idea
as Zaki’s method mentioned above. Only part we have to consider is how to deal
with special nodes.

1 Note that, when the removed node has child nodes, the new parent of those child
nodes is the parent of the removed node.
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A prefix equivalence class [P ]G in a size-k tree set G for a size-(k − 1) tree
P , and the set [G]pre of all prefix equivalence classes in G are defined similarly,
though the definition of a size-(k − 1) prefix is different. The prefix equivalence
class for tree S2 in Fig. 1 is the rightmost tree shown in the same figure, which
indicates that there are 8 positions for the last node of a tree in the class. The
difference from the case without constraints is that the position of the last node
of a tree in each class cannot be uniquely determined by its parent node. For
example, there are three positions for the last node with its parent node labeled
a in the prefix equivalence class for tree S2.

To overcome this problem, we specify the position of the last node by its
inserted position in the string encoding of its prefix. For example, in the above
case, when the last node is between the nodes labeled a and 2, the tree is encoded
as “a b 1 -1 -1 x 2 -1 -1” and the prefix of its last node is encoded as “a b 1 -1 -1
2 -1”. In this case, the position of the last node is specified as (4, 6), which means
that the label x is inserted right after the 4th character and -1 is inserted right
after the 6th character, where a string begins with the 0th character. Therefore,
three positions for the last node with its parent node labeled a is specified as
(4, 4), (4, 6) and (6, 6).

Let a tree be represented by a pair (P, (x, (i1, j1))) of its prefix P and last
node (x, (i1, j1)), where x is its label and (i1, j1) is its inserted position in the
string encoding of P . We define join operators ⊗in and ⊗out on two trees in the
same prefix equivalence class as follows.

Definition 2. Let (P, (x, (i1, j1))) and (P, (y, (i2, j2))) be two trees in the same
prefix equivalence class.

(P, (x, (i1, j1)))⊗in (P, (y, (i2, j2)))
def
= ((P, (x, (i1, j1))), (y, (i2 + 1, j2 + 1)))

(P, (x, (i1, j1)))⊗out (P, (y, (i2, j2)))
def
= ((P, (x, (i1, j1))), (y, (i2 + 2, j2 + 2)))

Proposition 1. Let T be a size-(k+1) tree (k ≥ 2) and let (P, (x, (i1, j1))) and
(P, (y, (i2, j2))) be the trees generated by removing the second last and the last
non-special nodes, respectively. Then just one of the following cases holds.

Case I (P, (x, (i1, j1)))⊗in (P, (y, (i2, j2))) = T and i1 ≤ i2, j2 ≤ j1
Case II (P, (x, (i1, j1)))⊗out (P, (y, (i2, j2))) = T and j1 ≤ i2

Proof. Omitted due to space limitation. ,-
Examples of size-4 trees of case I and case II are shown in Fig. 2.
The next proposition says that all size-(k + 1) candidate subtrees can be

enumerated by generating T1⊗in T2 for all (T1,T2) ∈ Pin and T1⊗out T2 for all
(T1,T2) ∈ Pout without duplication, where each of Pin and Pout consists of a
pair of size-k frequent subtrees belonging to the same prefix equivalence class.

Proposition 2. Let Fk denote the set of all size-k frequent subtrees for k ≥ 2.
Let

Pin = {((P, (x, (i1, j1))), (Q, (y, (i2, j2)))) ∈ Fk × Fk : P = Q, i1 ≤ i2, j2 ≤ j1},
Pout = {((P, (x, (i1, j1))), (Q, (y, (i2, j2)))) ∈ Fk × Fk : P = Q, j1 ≤ i2}.
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Fig. 2. Operation examples for two join operators

Define

Ck+1 =
⋃

(T1,T2)∈Pin

{T1 ⊗in T2} ∪
⋃

(T1,T2)∈Pout

{T1 ⊗out T2}

Then, Fk+1 ⊆ Ck+1 and |Ck+1| = |Pin|+ |Pout|.

Proof. Omitted due to space limitation. ,-

4 ConstrainedTreeMiner Algorithm

4.1 Algorithm

ConstrainedTreeMiner algorithm in Fig. 3 enumerates all frequent embedded
subtrees containing all special nodes efficiently. Its algorithmic structure is the
same as TreeMiner algorithm [10], but its data structure and join operations are
different as mentioned in the previous section.

The basic algorithmic structure is as follows. First, by executing procedure
Enumerate-F2 described in the next subsection, the algorithm creates the set
F2 of size-2 frequent subtrees and divides it into the set [F2]pre of its pre-
fix equivalence classes while creating the scope-list2 L(S) of S ∈ F2. For each
[P ] ∈ [F2]pre, all larger frequent trees having prefix P can be created from
[P ] and {L(S) : S ∈ [P ]} by recursively applying Enumerate-Frequent-Subtrees
procedure. In Enumerate-Frequent-Subtrees procedure, one size larger candi-
date subtree is created by joining two subtrees S1 and S2 with the same prefix
P using operators ⊗in and ⊗out, and frequency counting for the candidate is
done by joining elements in L(S1) and L(S2) similarly as the original TreeMiner
algorithm does.

Here, we assume that the least common ancestor of all special nodes in any
tree in D is a non-special node for the sake of simplicity. Note that slight mod-
ification is necessary to deal with the case that the least common ancestor is a
special node.
2 An element (t, m, s) of scope-list L(S) of size-k tree S represents one S-embeddable

position in some tree T belonging to D, where t is the id of T , m is a sequence of ids
of the non-special nodes in T in which the size-(k− 1) prefix of S can be embedded,
and s is the scope of the last non-special node in the S-embeddable position.
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ConstrainedTreeMiner(D,minsup)
begin

Enumerate-F2(D,minsup)
for all [P ] ∈ [F2]pre do
Enumerate-Frequent-Subtrees([P ], {L(S) : S ∈ [P ]},minsup)

enddo
end

Enumerate-Frequent-Subtrees([P ], {L(S) : S ∈ [P ]},minsup)
begin
for all (P, (x, (i1, j1))) ∈ [P ] do
S1 = (P, (x, (i1, j1)))
[S1] = ∅
for all (P, (y, (i2, j2))) ∈ [P ] do
S2 = (P, (y, (i2, j2)))
if i1 ≤ i2 ≤ j2 ≤ j1 then
Create L(S1 ⊗in S2)
if S1 ⊗in S2 is frequent then [S1] ← [S1]∪{(S1, (y, (i2 +1, i2 +1)))}

if j1 ≤ i2 then
Create L(S1 ⊗out S2)
if S1⊗outS2 is frequent then [S1] ← [S1]∪{(S1, (y, (i2 +2, i2 +2)))}

enddo
Enumerate-Frequent-Subtrees([S1], {L(S) : S ∈ [S1]},minsup)

enddo
end

Fig. 3. ConstrainedTreeMiner algorithm

4.2 Procedure Enumerate-F2

Procedure Enumerate-F2, which creates the set F2 of size-2 frequent subtrees
and scope-lists for its elements, is the following process for each tree T in D.
(See Fig. 4 for examples of each step.) After the execution of this process, [F2]pre
is constructed by selecting all prefix equivalence classes for frequent size-2 trees.
Note that F1 is also constructed by selecting all prefixes for which the prefix
equivalence classes have at least ‘minsup’ different trees.

Step 0 Obtain the paths pi from the root node to each special node labeled i
in T . (In many cases, the paths are given.)

Step 1 Create a subtree U composed of all the paths p1, p2, ..., pd. Let a one-
to-one mapping i : j +→ ij denote the embedding mapping from the set
{0, 1, ..,m− 1} of node ids of U to the set of node ids of T . Let ul, the node
in U with id l, denote the least common ancestor of all special nodes.

Step 2 Create an embedded subtree S of U composed of the root node and all
special nodes.

Step 3 Attach insertable position (su, eu) for S to each node u of U . Insertable
positions are calculated as follows. Set v to 0 initially. Starting from the root
node, do a depth-first traversal. For each node u, set su to the value of v at
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Step 4

7t (b,(0,2)) [P ], 
add

a
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P (=P )

a1-12-1

0

d

1 2

P

d1-12-1

1

Case1:

(p,0,[7,9]),(p,5,[7,9])

(id p)

0

add

3t (c,(0,0)) [P ]
addCase2:

(p,0,[3,3])

0

L((P ,(c,(0,0)))
add

0

10t (b,(2,2)) [P ],
addCase3:

(p,0,[10,10]),(p,5,[10,10])

0

add

L((P ,(b,(0,2)))0

L((P ,(b,(2,2)))0

2

(b,(0,2)) [P ] add
1

(p,4,[7,9])
add

L((P ,(b,(0,2)))1

(b,(2,2)) [P ]add
1

(p,4,[10,10]) add L((P ,(b,(2,2)))1

Fig. 4. Example of each steps of the procedure enumerating all size-2 frequent subtrees

and creating its scope-list

the first visit, and set eu to the value of v at the last visit. When visiting a
special node at the first and last times, add 1 to v before setting su and eu.

Step 4 For all node th in T , do the followings. Let tik
be the least ancestor of th

among all nodes in {ti0 , ti1 , ..., tim−1}. Let C = {j : ij < h,uj is a child of uk}.
Let l′ = min{l, k}. Let Pj denote a tree that is created from S by replacing
the root node label with uj for j ∈ {0, 1, ..., l}. Let b denote the tree id of T ,
and let x and s denote the label and the scope of node th, respectively.
Case 1 ik = h

Add (x, (suk
, euk

)) to [Pj ] and add (b, ij , s) to L((Pj , (x, (suk
, euk

)))) for
all j ∈ {0, 1, ..., l′} but j = k.

Case 2 ik = h and C = ∅
Add (x, (suk

, suk
)) to [Pj ] and add (b, ij , s) to L((Pj , (x, (suk

, suk
)))) for

all j ∈ {0, 1, ..., l′}.
Case 3 ik = h and C = ∅

Let j∗ = max C. Add (x, (euj∗ , euj∗ )) to [Pj ] and add (b, ij , s) to
L((Pj , (x, (euj∗ , euj∗ )))) for all j ∈ {0, 1, ..., l′}.

5 Application to DOM-Tree Analysis

We conducted an experiment of extracting common structures from DOM-trees
of HTML documents. The HTML documents we used in our experiment are
Web pages containing the information about a given Ramen (lamian, Chinese
noodles in Soup) Shop. Among the most popular 100 Ramen-shops introduced
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# Pattern σ

30 body #text(1) -1 #text(2) -1 1.0
27 body #text(1) -1 #text(2) -1 a -1 br -1 0.9
25 body #text(1) -1 #text(2) -1 br -1 br -1 br -1 br -1 br -1 br -1 0.8
24 body #text(1) -1 #text(2) -1 br -1 br -1 br -1 a -1 br -1 0.8
24 body #text(1) -1 br -1 #text(2) -1 br -1 a -1 0.8
24 body #text(1) -1 br -1 #text(2) -1 br -1 br -1 0.8
24 body #text(1) -1 br -1 #text(2) -1 a -1 br -1 0.8
24 body br -1 #text(1) -1 br -1 #text(2) -1 br -1 0.8
24 body #text(1) -1 #text(2) -1 hr -1 br -1 0.8
24 body #text(1) -1 #text(2) -1 a -1 a -1 0.8
24 body #text(1) -1 #text(2) -1 br -1 hr -1 0.8
20 table tr #text(1) -1 -1 tr td #text(2) -1 -1 -1 1.0
18 table tr td #text(1) -1 -1 -1 tr td #text(2) -1 -1 -1 0.9,0.8
18 table td #text(1) -1 -1 td -1 #text(2) -1 0.9
18 table #text(1) -1 td -1 td #text(2) -1 -1 0.9
17 table tr td #text(1) -1 -1 -1 td -1 td #text(2) -1 -1 0.8
16 table img -1 #text(1) -1 tr td #text(2) -1 -1 -1 0.8
19 td #text(1) -1 br -1 #text(2) -1 1.0,0.9,0.8
19 tr td #text(1) -1 -1 td #text(2) -1 -1 1.0,0.9
17 tr td #text(1) -1 -1 td -1 td #text(2) -1 -1 0.8
18 tr td #text(1) -1 -1 td(2) -1 1.0,0.9,0.8
16 html head meta -1 title #text(1) -1 -1 -1 body #text(2) -1 -1 1.0
15 html head meta -1 title #text(1) -1 -1 -1 body img -1 #text(2) -1 -1 0.9
15 html head meta -1 title #text(1) -1 -1 -1 body #text(2) -1 a -1 -1 0.9
14 html head meta -1 title #text(1) -1 -1 -1 body img -1 tr td -1 -1 #text(2) -1 img -1 -1 0.8
14 html head meta -1 title #text(1) -1 -1 -1 body strong -1 img -1 #text(2) -1 img -1 -1 0.8
14 html head meta -1 title #text(1) -1 -1 -1 body table tr td #text(2) -1 -1 -1 -1 -1 0.8
14 html head meta -1 title #text(1) -1 -1 -1 body table td img -1 -1 #text(2) -1 -1 -1 0.8
14 html head meta -1 title #text(1) -1 -1 -1 body td -1 td -1 #text(2) -1 img -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body img -1 tr td -1 -1 #text(2) -1 tr td -1 -1 a -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body strong -1 img -1 #text(2) -1 tr td -1 -1 a -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body td -1 td -1 #text(2) -1 tr td -1 -1 a -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body img -1 img -1 #text(2) -1 tr td -1 -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body img -1 strong -1 #text(2) -1 tr td -1 -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body td -1 strong -1 #text(2) -1 tr td -1 -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body td -1 strong -1 #text(2) -1 img -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body img -1 strong -1 #text(2) -1 img -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body img -1 img -1 #text(2) -1 img -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body img -1 #text(2) -1 br -1 -1 0.8
13 html head meta -1 title #text(1) -1 -1 -1 body tr img -1 -1 #text(2) -1 -1 0.8
13 table tr td #text(1) -1 -1 -1 tr td(2) -1 -1 1.0,0.9,0.8
11 tbody tr td #text(1) -1 -1 -1 tr td(2) -1 -1 1.0
10 tbody tr td #text(1) -1 -1 -1 tr td(2) -1 -1 tr -1 tr td -1 -1 0.9,0.8
10 tbody td -1 td #text(1) -1 -1 tr td(2) -1 -1 td -1 td -1 td -1 0.9
10 tbody td -1 td #text(1) -1 -1 tr td(2) -1 -1 tr -1 tr td -1 -1 0.9,0.8
10 tbody tr td #text(1) -1 -1 -1 tr td(2) -1 -1 td -1 td -1 td -1 0.9
9 tbody td -1 td #text(1) -1 -1 tr td(2) -1 -1 td -1 td -1 td -1 td -1 0.8
9 tbody tr td #text(1) -1 -1 -1 tr td(2) -1 -1 td -1 td -1 tr td -1 -1 0.8
9 tbody tr td #text(1) -1 -1 -1 tr td(2) -1 -1 td -1 td -1 td -1 td -1 0.8
9 tbody td -1 td #text(1) -1 -1 tr td(2) -1 -1 td -1 td -1 tr td -1 -1 0.8
9 tbody br -1 td #text(1) -1 -1 tr td(2) -1 -1 tr -1 tr td -1 -1 0.8
9 tbody br -1 td #text(1) -1 -1 tr td(2) -1 -1 td -1 td -1 td -1 0.8
9 tbody td br -1 -1 #text(1) -1 td(2) -1 0.8

10 p #text(1) -1 #text(2) -1 1.0
9 p #text(1) -1 #text(2) -1 br -1 0.9
9 p #text(1) -1 br -1 #text(2) -1 0.9
8 p br -1 br -1 #text(1) -1 #text(2) -1 br -1 0.8
8 p #text(1) -1 br -1 #text(2) -1 br -1 0.8

Fig. 5. Maximal subtrees enumerated for σ = 1.0, 0.9, 0.8 and their frequencies

in a popular local town information magazine3, we selected the most popular 10
Ramen shops with more than 15 Web pages retrieved by keyword search4 using
a shop name and its telephone number. Totally 301 pages were retrieved and we
used 189 pages of them that contain the reputation about a target shop. For each
DOM-tree of these 189 pages, we set a name node to the text node containing a
target shop name and set a reputation node to the least common ancestor node5

3 Hokkaido Walker 2002 NO.3.
4 Google(www.google.co.jp) was used in the search.
5 If the subtree rooted by the least common ancestor node contains reputations of

other restaurants, the most informative one text node is selected as a representative
instead of the least common ancestor node.
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of the text nodes whose text contains the target reputation. We extracted one
tree for one name node, so more than one trees might be extracted from one
page. A tree in our experimental data is the subtree of which root is the least
common ancestor (LCA) of two special nodes, a name node and a reputation
node. The reason why we did not use the whole tree is that we did not want
to extract trivial frequent structures like “html title -1 body · · · -1” that are
common to all HTML documents. For each HTML-tag pair of a root node and
a reputation node that appears at least 10 times, we applied our algorithm to
enumerating all frequent subtrees containing all special nodes.

All maximal frequent subtrees for minimum support σ = 1.0, 0.9, 0.8 are
shown in Fig. 5. Note that a maximal frequent subtree is a subtree such that
its any super-tree is not frequent. Nodes corresponding to the tags with suffixes
“(1)” and “(2)” are a name node and a reputation node, respectively. When
the LCA tag of special nodes is ‘table’, ‘tr’ or ‘tbody’, trivial patterns were
enumerated except ‘table img -1 #text(1) -1 tr td #text(2) -1 -1 -1’, a pattern
that matches DOM-trees of pages using a small image at the beginning of each
item. When the LCA tag of special nodes is ‘body’, ‘td’ or ‘p’, most pages contain
‘br’ tag between a shop name and its reputation. When the LCA tag of special
nodes is ‘html’, the pages contain information of only one shop, and from an
enumerated pattern ‘html head meta -1 title #text(1) -1 -1 -1 body table td img
-1 -1 #text(2) -1 -1 -1’, we know that most reputations are placed in a table
with a image.

6 Concluding Remarks

Structures found in our experiment appear to be too general to specify the
place of necessary information. To construct a wrapper, other features of HTML
documents like contents of the information and distance between nodes should
be additionally used. We have developed such combined method using simpler
patterns (path sequences) and text classification [7], which is able to extract nec-
essary information from arbitrary Web pages retrieved by a search engine, while
most conventional wrappers can do only from the pages in the same site as the
training pages. Patterns extracted by ConstrainedTreeMiner possibly improve
performance of the combined method in some cases.

References

1. R. Agrawal and R. Srikant. First algorithms for mining association rules. In Proc.
20th Int’l Conf. on VLDB, pages 487–499, 1994.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 11th Int’l Conf.
on Data Eng., pages 3–14, 1995.

3. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa. Efficient
substructure discovery from large semi-structured data. In Proc. 2nd SIAM Int’l
Conf. on Data Mining, pages 158–174, 2002.



860 A. Nakamura and M. Kudo

4. W. W. Cohen, M. Hurst, and L. S. Jensen. A flexible learning system for wrapping
tables and lists in html documents. In Proc. 11th Int’l World Wide Web Conf.,
pages 232–241, 2002.

5. M. Garofalakis, R. Rastogi, and K. Shim. Mining sequential patterns with regular
expression constraints. IEEE Transactions on Knowledge and Data Engineering,
14(3):530–552, 2002.

6. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In Proc. PKDD 2000, pages 13–23, 2000.

7. H. Hasegawa, M. Kudo and A. Nakamura. Reputation Extraction Using Both
Structural and Content Information. Technical Report TCS-TR-A-05-2, 2005,
http://www-alg.ist.hokudai.ac.jp/tra.html.

8. N. Kushmerick. Wrapper induction:efficiency and expressiveness. Artificial Intel-
ligence, (118):15–68, 2000.

9. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints.
In Proc. 3rd Int’l Conf. on Knowledge Discovery and Data Mining, pages 67–73,
1997.

10. M. J. Zaki. Efficiently mining frequent trees in a forest. In Proc. SIGKDD’02,
pages 71–80, 2002.



Author Index 

 
Allen, Robert B.     173 
Antonie, Maria-Luiza     240 
Araki, Kenji     32 
Ashrafi, Mafruz Zaman     125 

Bac, Le Hoai     226 
Bagnall, Anthony J.     737, 771 
Bo, Liefeng     632 
Bonchi, Francesco     114 
Boudjeloud, Lydia     426 

Cao, Tru H.     290 
Cha, Guang-Ho     844 
Chan, Tony F.     388 
Chawla, Sanjay     155 
Chen, Jianer     43 
Chen, Ming-Syan     323, 505 
Chen, Songcan     500 
Chen, Zun-Ping     838 
Chetty, Madhu     578 
Chi, Nguyen Cam     21 
Chia, Liang-Tien     452 
Chiu, Jeng-Kuen     713 
Choudhary, Alok     689 
Chu, Fang     486 
Chu, Jian     61 
Chu, Yi-Hong     323 
Chuang, Kun-Ta     323, 505 
Church, W. Bret     155 
Cicho , Katarzyna     672 
Coenen, Frans     216 
Crémilleux, Bruno     661 

Das, Amitabha     702 
Dash, Manoranjan     107, 452 
De Veaux, Richard     186 
Deng, Zhi-Hong     150 
Deng, Xu-bin     838 

Ding, Chris     388 
Dittenbach, Michael     399 
Dung, Tran A.     290 

Echizen-ya, Hiroshi     32 

Fan, Wei     605 
Feng, Boqin     280 
Fujimaki, Ryohei     785 

Gao, Jing     420 
Gasmi, Gh.     81 
Ge, Weiping     256 
Guan, Jihong     361 
Gunopulos, Dimitrios     333 
Guo, Jian-Kui     838 

Hamilton, Howard J.     744 
Han, Ingoo     480 
Harao, Masateru     50 
He, Xiangdong     474 
Hilario, Melanie     588 
Hirata, Kouichi     50 
Hiyane, Kazuo     820 
Hoa, Nguyen Sinh     312 
Hoáng, Thu     186 
Horváth, Tamás     791 
Hu, Xiaohua     173 
Huang, Joshua     361 
Huang, Joshua Zhexue     802 
Huang, Shiying     71 
Huang, Yan     719 
Huh, Unna     15 
Huo, Hua     280 
Huynh, D. T.     726 
Hwang, San-Yih     713 

Inujima, Hiroshi     820 



Author Index 862

Janacek, Gareth J.     737 
Janssens, Gerrit K.     234 
Ji, Cong-Rui     150 
Jia, Tao     61 
Jiao, Licheng     632 
Jin, Rong     568, 622 
Jin, Xiaoming     764 
Jing, Liping     802 

Kalousis, Alexandros     588 
Kao, Ben     143 
Karimi, Kamran     744 
Keogh, Eamonn     333, 771 
Kim, Dae-Won     180 
Kim, Sang-Wook     162, 203 
Kim, Woo-Cheol     162 
Kobayashi, Shin-ichi     820 
Koh, Yun Sing     97 
Kolippakkam, Deepak     107 
Kriegel, Hans-Peter     432 
Kryszkiewicz, Marzena     672 
Kudo, Mineichi     850 
Kumeno, Fumihiro     820 
Kunath, Peter     432 

Lavra , Nada     2 
Le, Cuong Anh     262 
Le, Jia-Jin     333, 826 
Lee, Doheon     180 
Lee, Tong-Wen     832 
Leggett, John J.     555 
Leng, Paul     216 
Li, Jianzhong     420 
Li, Ming     611 
Li, Qiang     464 
Li, Stan Z.     599 
Li, Xiaolin     474 
Li, Xiaorong     256 
Li, Xue     778 
Li, Zhuowei     702 
Liao, Wei-keng     689 
Lim, Ee-Peng     713 
Lim, Jong-Tae     180 
Limère, Arthur     234 
Lin, Fuzong     758 

Lin, Jessica     333 
Lin, Xuemin     343 
Lin, Yaping     650 
Liu, Fei Tony     605 
Liu, Jian-We     333 
Liu, Jian-Wei     826 
Liu, Jun     372 
Liu, Yi     568 
Liu, Ying     689 
Liu, Ying-Han     713 
Liu, Zheng     343 
Lonardi, Stefano     771 
Loo, K. K.     143 
Lu, Hongjun     343 
Lucchese, Claudio     114 
Lukov, Lior     155 

Machida, Kazuo     785 
Malowiecki, Michal     545 
Mao, Kezhi     683 
Matsumoto, Shotaro     301 
Mayo, Michael     192 
Meengen, Asavin     249 
Min, Sung-Hwan     480 
Minh, Hoang Ngoc     21 
Mitchell, Tom     1 
Mornouchi, Yoshio     32 
Motoda, Hiroshi     639 

Nakamura, Atsuyoshi     850 
Nam-Huynh, Van     262 
Nanni, Mirco     378 
Ng, Michael K.     802 
Nguifo, E. Mephu     81 
Nguyen, Cao D.     290 
Nguyen, Ngoc Thanh     545 
Nguyen, Phu Chien     639 
Nguyen, Son N.     442 
Niitsuma, Hirotaka     523 
Ning, Shang     838 

Ohara, Kouzou     639 
Okada, Takashi     523 
Okumura, Manabu     269, 301 
Ooi, Chia Huey     578 
Orlowska, Maria E.     442, 778 



Author Index 
 

863 

Park, Sanghyun     203, 162 
Parker, D.Stott     486 
Pfeifle, Martin     432 
Pölzlbauer, Georg     399 
Poulet, François     426 
Powell, Michael     737 

Qian, Yu     726 

Rak, Rafal     240 
Ramamohanarao, Kotagiri     372 
Ratanamahatana, Chotirat     771 
Rauber, Andreas     399 
Renz, Matthias     432 
Rezgui, Jihen     91 
Rountree, Nathan     97 
Ruan, Bei-jun     838 

Sattler, Kai-Uwe     539 
Schaeffer, Satu Elisa     354 
Shahabi, Cyrus     516 
Shang, Xuequn     539 
Shekhar, Shashi     136 
Shi, Baile     256, 529 
Shima, Yoshikazu     50 
Shimazu, Akira     262 
Shirai, Yasuyuki     820 
Shrestha, Raju    650 
Si, Luo     622 
Slimani, Y.     81, 91 
Smith, Kate     125 
Son, Nguyen Hung     312 
Song, Min     173 
Song, Il-Yeol     173 
Sörensen, Kenneth     234 
Soulet, Arnaud     661 
Squire, David McG.     410 
Squire, Denny McG.     410 
Stach, Wojciech     240 
Su, Fang-Zhong     838 
Su, HongYe     61 
Sun, Xingzhi     442, 778 

Takahashi, Kazuko     269 
Takamura, Hiroya     269, 301 

Tan, Pang-Ning     420 
Tan, Xiaoyang     500 
Tang, Shi-Wei     150 
Tang, Wenyin     683 
Taniar, David     125 
Thammano, Arit     249 
Ting, Kai Ming     605 
Tong, Ivy     143 
Trang, Tran     21 
Tuan, Nguyen Anh     226 
Tung, Thai Quang     180 

Vanhoof, Koen     234 
Vlachos, Michai     333 

Wang, Chen     529 
Wang, Chong     813 
Wang, Leuo-Hong     832 
Wang, Ling     632 
Wang, Surong     452 
Wang, Wei     256, 343, 529 
Wang, Wenyuan     813 
Wang, Ya-qin     838 
Wang, Yizhou     486 
Washio, Takashi     639 
Webb, Geoffrey I.     71 
Wojciechowski, Marek    696 
Won, Jung-Im     162, 203 
Wo nica, Adam588 
Wu, Tao     38 
Wu, Tianyi     529 

Xu, Jian     529 
Xu, Jun     802 

Yahia, S. Ben     91, 81 
Yairi, Takehisa     785 
Yamauchi, Noriyoshi     820 
Yang, Kiyoung     516 
Yang, Wen-Chieh     505 
Yoo, Jin Soung     136 
Yoon, Hyunjin     516 
Yoon, Jee-Hee     162, 203 
Yu, Jeffrey Xu     343 
Yu, Ping     719 
Yu, Shou-Jian     333, 826 



Author Index 864

Yuan, Jinhui     758 
Yuan, Senmiao     474 
Yun, Unil     555 

Zaïane, Osmar R.     240 
Zakrzewicz, Maciej     696 
Zaniolo, Carlo     486 
Zhang, Bo     464, 758 
Zhang, Chengqi     751 
Zhang, Fuyan     500 
Zhang, Junping     599 
Zhang, Kang     726 
Zhang, Ling     38 
Zhang, Liqin     719 
Zhang, Lu     216 
 

Zhang, Ming     150 
Zhang, Nan     43 
Zhang, Pusheng     136 
Zhang, Shichao     751 
Zhang, Yanping     38 
Zhang, Ying     61 
Zhang, Zhaogong     420 
Zhao, Wei     43 
Zhao, Yue     361 
Zhao,Yanchang     751 
Zhou, Jianying    702 
Zhou, Shuigeng     361 
Zhou, Zhi-Hua     500, 611 
Zhu, Yang-Yong     838 
Zuo, Xinqiang     764 

 


	Frontmatter
	Keynote Speech and Invited Talks
	Machine Learning for Analyzing Human Brain Function
	Subgroup Discovery Techniques and Applications
	IT Development in the 21<Superscript>st</Superscript> Century and Its Implications

	Theoretic Foundations
	Data Mining of Gene Expression Microarray via Weighted Prefix Trees
	Automatic Extraction of Low Frequency Bilingual Word Pairs from Parallel Corpora with Various Languages
	A Kernel Function Method in Clustering
	Performance Measurements for Privacy Preserving Data Mining
	Extraction of Frequent Few-Overlapped Monotone DNF Formulas with Depth-First Pruning

	Association Rules
	Rule Extraction from Trained Support Vector Machines
	Pruning Derivative Partial Rules During Impact Rule Discovery
	$\mathcal{IGB}$: A New Informative Generic Base of Association Rules
	A Divide and Conquer Approach for Deriving Partially Ordered Sub-structures
	Finding Sporadic Rules Using Apriori-Inverse
	Automatic View Selection: An Application to Image Mining
	Pushing Tougher Constraints in Frequent Pattern Mining
	An Efficient Compression Technique for Frequent Itemset Generation in Association Rule Mining
	Mining Time-Profiled Associations: An Extended Abstract
	Online Algorithms for Mining Inter-stream Associations from Large Sensor Networks
	Mining Frequent Ordered Patterns

	Biomedical Domains
	Conditional Random Fields for Transmembrane Helix Prediction
	A DNA Index Structure Using Frequency and Position Information of Genetic Alphabet
	An Automatic Unsupervised Querying Algorithm for Efficient Information Extraction in Biomedical Domain
	Voting Fuzzy k-NN to Predict Protein Subcellular Localization from Normalized Amino Acid Pair Compositions
	Comparison of Tree Based Methods on Mammography Data
	Bayesian Sequence Learning for Predicting Protein Cleavage Points
	A Novel Indexing Method for Efficient Sequence Matching in Large DNA Database Environment

	Classification and Ranking
	Threshold Tuning for Improved Classification Association Rule Mining
	Using Rough Set in Feature Selection and Reduction in Face Recognition Problem
	Analysis of Company Growth Data Using Genetic Algorithms on Binary Trees
	Considering Re-occurring Features in Associative Classifiers
	A New Evolutionary Neural Network Classifier
	A Privacy-Preserving Classification Mining Algorithm
	Combining Classifiers with Multi-representation of Context in Word Sense Disambiguation
	Automatic Occupation Coding with Combination of Machine Learning and Hand-Crafted Rules
	Retrieval Based on Language Model with Relative Entropy and Feedback
	Text Classification for DAG-Structured Categories
	Sentiment Classification Using Word Sub-sequences and Dependency Sub-trees
	Improving Rough Classifiers Using Concept Ontology
	QED: An Efficient Framework for Temporal Region Query Processing

	Clustering
	A MPAA-Based Iterative Clustering Algorithm Augmented by Nearest Neighbors Search for Time-Series Data Streams
	Locating Motifs in Time-Series Data
	Stochastic Local Clustering for Massive Graphs
	A Neighborhood-Based Clustering Algorithm
	Improved Self-splitting Competitive Learning Algorithm
	Speeding-Up Hierarchical Agglomerative Clustering in Presence of Expensive Metrics
	Dynamic Cluster Formation Using Level Set Methods
	A Vector Field Visualization Technique for Self-organizing Maps
	Visualization of Cluster Changes by Comparing Self-organizing Maps
	An Incremental Data Stream Clustering Algorithm Based on Dense Units Detection
	Visual Interactive Evolutionary Algorithm for High Dimensional Data Clustering and Outlier Detection
	Approximated Clustering of Distributed High-Dimensional Data

	Dynamic Data Mining
	Improvements of IncSpan: Incremental Mining of Sequential Patterns in Large Database
	Efficient Sampling: Application to Image Data
	Cluster-Based Rough Set Construction

	Graphic Model Discovery
	Learning Bayesian Networks Structures from Incomplete Data: An Efficient Approach Based on Extended Evolutionary Programming
	Dynamic Fuzzy Clustering for Recommender Systems
	Improving Mining Quality by Exploiting Data Dependency

	High Dimensional Data
	Feature Selection for High Dimensional Face Image Using Self-organizing Maps
	Progressive Sampling for Association Rules Based on Sampling Error Estimation
	{\itshape CLe}{\itshape Ver}: A Feature Subset Selection Technique for Multivariate Time Series
	Covariance and PCA for Categorical Variables

	Integration of Data Warehousing
	ADenTS: An Adaptive Density-Based Tree Structure for Approximating Aggregate Queries over Real Attributes
	Frequent Itemset Mining with Parallel RDBMS

	Knowledge Management
	Using Consensus Susceptibility and Consistency Measures for Inconsistent Knowledge Management
	WLPMiner: Weighted Frequent Pattern Mining with Length-Decreasing Support Constraints

	Machine Learning Methods
	A Framework for Incorporating Class Priors into Discriminative Classification
	Increasing Classification Accuracy by Combining Adaptive Sampling and Convex Pseudo-Data
	Kernels over Relational Algebra Structures
	Adaptive Nonlinear Auto-Associative Modeling Through Manifold Learning
	Maximizing Tree Diversity by Building Complete-Random Decision Trees
	SETRED: Self-training with Editing
	Adjusting Mixture Weights of Gaussian Mixture Model via Regularized Probabilistic Latent Semantic Analysis
	Training Support Vector Machines Using Greedy Stagewise Algorithm
	Cl-GBI: A Novel Approach for Extracting Typical Patterns from Graph-Structured Data
	Improved Bayesian Spam Filtering Based on Co-weighted Multi-area Information

	Novel Algorithms
	An Efficient Framework for Mining Flexible Constraints
	Support Oriented Discovery of Generalized Disjunction-Free Representation of Frequent Patterns with Negation
	Feature Selection Algorithm for Data with Both Nominal and Continuous Features
	A Two-Phase Algorithm for Fast Discovery of High Utility Itemsets
	On Multiple Query Optimization in Data Mining
	USAID: Unifying Signature-Based and Anomaly-Based Intrusion Detection

	Spatial Data
	Mining Mobile Group Patterns: A Trajectory-Based Approach
	Can We Apply Projection Based Frequent Pattern Mining Paradigm to Spatial Co-location Mining?
	PatZip: Pattern-Preserved Spatial Data Compression

	Temporal Data
	A Likelihood Ratio Distance Measure for the Similarity Between the Fourier Transform of Time Series
	The TIMERS II Algorithm for the Discovery of Causality
	A Recent-Biased Dimension Reduction Technique for Time Series Data
	Graph Partition Model for Robust Temporal Data Segmentation
	Accurate Symbolization of Time Series
	A Novel Bit Level Time Series Representation with Implication of Similarity Search and Clustering
	Finding Temporal Features of Event-Oriented Patterns
	An Anomaly Detection Method for Spacecraft Using Relevance Vector Learning
	Cyclic Pattern Kernels Revisited

	Text and Web Data Mining
	Subspace Clustering of Text Documents with Feature Weighting {\itshape K}-Means Algorithm
	Using Term Clustering and Supervised Term Affinity Construction to Boost Text Classification
	Technology Trends Analysis from the Internet Resources
	Dynamic Mining Hierarchical Topic from Web News Stream Data Using Divisive-Agglomerative Clustering Method
	Collecting Topic-Related Web Pages for Link Structure Analysis by Using a Potential Hub and Authority First Approach
	A Top Down Algorithm for Mining Web Access Patterns from Web Logs
	Kernel Principal Component Analysis for Content Based Image Retrieval
	Mining Frequent Trees with Node-Inclusion Constraints

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




