

Lecture Notes in Computer Science 3502
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ferhat Khendek Rachida Dssouli (Eds.)

Testing
of Communicating
Systems

17th IFIP TC6/WG 6.1 International Conference
TestCom 2005
Montreal, Canada, May 31 – June 2, 2005
Proceedings

13

Volume Editors

Ferhat Khendek
Concordia University, Department of Electrical and Computer Engineering
1455, de Maisonneuve W., Montréal, Canada H3G 1M8
E-mail: khendek@ece.concordia.ca

Rachida Dssouli
Concordia University, Concordia Institute for Information Systems Engineering
1455, de Maisonneuve W., Montréal, Canada H3G 1M8
E-mail: dssouli@ciise.concordia.ca

Library of Congress Control Number: 2005925777

CR Subject Classification (1998): D.2.5, D.2, C.2

ISSN 0302-9743
ISBN-10 3-540-26054-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26054-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© 2005 IFIP International Federation for Information Processing, Hofstrasse 3, 2361 Laxenburg, Austria
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11430230 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 17th IFIP TC6/WG6.1 Interna-
tional Conference on Testing of Communicating Systems (TestCom 2005). The
conference was held at Concordia University, Montréal, Canada, from May 31
to June 2, 2005. TestCom 2005 was organized by Concordia University and was
sponsored by IFIP.

Following the trends initiated at the 16th edition of the conference held in
Oxford, UK, the first call for papers issued in summer 2004 called for contribu-
tions from the general software testing community. The goal of the conference
this year was to continue the broadening of the subject. The theme of the confer-
ence this year is “Meeting Software Testing.” In response to the call for papers,
we received 62 abstracts. Out of these abstracts, 53 turned into paper submis-
sions. Each of these submissions was evaluated by at least 3 reviewers from the
Technical Programme Committee, with the help of additional co-reviewers when
needed. The Programme Committee meeting was held online from January 18
to January 30, 2005. Out of the 53 submitted papers, the Programme Com-
mittee selected 24 papers covering the traditional topics of TestCom, such as
EFSM/FSM model-based testing, and also papers on general software testing
reflecting the new trends in the conference.

We are very grateful to the keynote speaker, Prof. Tom Maibaum, from
McMaster University, Hamilton, Canada. Prof. Maibaum addressed TestCom
2005 on this year’s theme. He kindly provided an extended abstract, which is
also included in this volume.

We are very grateful to the people who contributed to TestCom 2005 in one
way or another. We would like to thank the authors of all submitted papers
and the members of the Technical Programme Committee for their hard work
during the evaluation of the papers and during the selection process. We are
thankful to all the co-reviewers who are indispensable for any peer-reviewed
volume. We are grateful to the members of the Steering Committee for their
advice. Special thanks go Prof.Guy Leduc,Université de Liège, Belgium, chair-
man of the Steering Committee, for his support since day one of the organization
of TestCom 2005. We would like to thank also the members of the Organizing
Committee for their devotion to the conference, and Dean Nabil Esmail from the
Faculty of Engineering and Computer Science at Concordia University for his
support. All the individuals who contributed to TestCom 2005 are listed in the
following pages.

March 2005 Ferhat Khendek
Rachida Dssouli

to

Conferences Committees

Conference Chairs

R. Dssouli, CIISE, Concordia University, Canada
F. Khendek, ECE, Concordia University, Canada

Steering Committee

A.R. Cavalli, INT, France
R. Groz, LSR-IMAG, France
G. Leduc, Chairman, Université de Liège, Belgium
A. Petrenko, CRIM, Canada

Technical Programme Committee

G. von Bochmann, University of Ottawa, Canada
S. Dibuz, Ericsson, Sweden
P.G. Frankl, Polytechnic University, NY, USA
J. Grabowski, University of Göttingen, Germany
R.M. Hierons, Brunel University, UK
T. Higashino, Osaka University, Japan
D. Hogrefe, University of Göttingen, Germany
T. Jeron, IRISA, France
M. Kim, ICU University, Korea
D. Lee, Ohio State University, USA
G. Maggiore, TIM, Italy
M. Núñez, Universidad Complutense de Madrid, Spain
I. Schieferdecker, Fraunhofer FOKUS, Germany
K. Suzuki, Kennisbron Ltd., Japan
M. Toeroe, Ericsson, Canada
A. Ulrich, Siemens, Germany
H. Ural, University of Ottawa, Canada
M.U. Uyar, City University of New York, USA
J. Wu, Tsinghua University, China
N. Yevtushenko, Tomsk State University, Russia
H. Zhu, Oxford Brookes, UK

VIII Organization

Additional Reviewers

Baptiste Alcalde
Gábor Bátori
Sergiy Boroday
Jiapeng Cai
Dongluo Chen
Ning Chen
John Clark
Michael Ebner
David de Frutos-Escrig
Xiaoming Fu
Mohammed Ghriga
Arnaud Gotlieb
Hesham Hallal
Toru Hasegawa
Hyoung Seok Hong
Cihui Huang

Jiale Huo
Akira Idoue
Lifa Jin
Sungwon Kang
Davy Khuu
Keqin Li
Tian Li
Luis Llana
Yan Liu
Natalia López
Stephane Maag
Helmut Neukirchen
Tomohiko Ogishi
Svetlana Prokopenko
Ismael Rodrguez
Fernando Rubio

Soonuk Seol
Xingang Shi
Guoqiang Shu
Tibor Szabo
Beihang Tian
Vadim Trennkaev
Dario Vieira
Elisangela R. Vieira
Dong Wang
Zhiliang Wang
Constantin Werner
Edith Werner
Xia Yin
Xing Yu
Gábor Ziegler

Local Organization Committee

S. Anderson, CIISE, Concordia University
R. Karunamurthy, E E, Concordia University
S. Tablan, CIISE, Concordia University

Sponsors

Concordia University, Canada
IFIP
Springer, Germany

C

Table of Contents

The Epistemology of Validation and Verification Testing
T.S.E. Maibaum . 1

Passive Testing - A Constrained Invariant Checking Approach
Behrouz Tork Ladani, Baptiste Alcalde, Ana Cavalli 9

Dependence Testing: Extending Data Flow Testing with Control
Dependence

Hyoung Seok Hong, Hasan Ural . 23

Comparing Bug Finding Tools with Reviews and Tests
Stefan Wagner, Jan Jürjens, Claudia Koller, Peter Trischberger 40

Cross-Language Functional Testing for Middleware
Arno Puder, Limei Wang . 56

Using Anti-Ant-like Agents to Generate Test Threads from the UML
Diagrams

Huaizhong Li, C. Peng Lam . 69

Action Refinement in Conformance Testing
Machiel van der Bijl, Arend Rensink, Jan Tretmans 81

Multiplexing of Partially Ordered Events
Colin Campbell, Margus Veanes, Jiale Huo,
Alexandre Petrenko . 97

Testing Communicating Systems: a Model, a Methodology, and a Tool
Ismäıl Berrada, Richard Castanet, Patrick Félix 111

Coping with Nondeterminism in Network Protocol Testing
Ray Miller, Dongluo Chen, David Lee, Ruibing Hao 129

Eliminating Redundant Tests in a Checking Sequence
Jessica Chen, Robert M. Hierons, Hasan Ural, Husnu Yenigun 146

On FSM-based Fault Diagnosis
Zoltán Pap, Gyula Csopaki, Sarolta Dibuz . 159

State Identification Problems for Timed Automata
Moez Krichen, Stavros Tripakis . 175

X Table of Contents

Timing Fault Models for Systems with Multiple Timers
M. Ümit Uyar, Yu Wang, Samrat S. Batth, Adriana Wise,
Mariusz A. Fecko . 192

An Expressive and Implementable Formal Framework for Testing
Real-Time Systems

Moez Krichen, Stavros Tripakis . 209

Firewall Conformance Testing
Diana Senn, David Basin, Germano Caronni . 226

Test Generation for Interaction Detection in Feature-Rich
Communication Systems

Caixia Chi, Ruibing Hao . 242

Fault Detection of Hierarchical Networks with Probabilistic Testing
Algorithms

Keqin Li, David Lee . 258

Detecting Trapdoors in Smart Cards Using Timing and Power Analysis
Jung Youp Lee, Seok Won Jung, Jongin Lim . 275

From U2TP Models to Executable Tests with TTCN-3 -An Approach
to Model Driven Testing-

Justyna Zander, Zhen Ru Dai, Ina Schieferdecker, George Din 289

Using TTCN-3 for Testing Platform Independent Models
Gabor Batori, Domonkos Asztalos . 304

Some Lessons from an Experiment Using TTCN-3 for the RIPng Testing
Annie Floch, Frédéric Roudaut, Ariel Sabiguero, César Viho 318

A Model-Based Approach for Robustness Testing
Jean-Claude Fernandez, Laurent Mounier, Cyril Pachon 333

Content-Level Conformance Testing: An Information Mapping Case
Study

Boonserm Kulvatunyou, Nenad Ivezic, Albert T. Jones 349

Quiescence Management Improves Interoperability Testing
Alexandra Desmoulin, César Viho . 365

Author Index . 381

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 1 – 8, 2005.
© IFIP 2005

The Epistemology of Validation and Verification Testing

T.S.E. Maibaum

Department of Computing and Software
McMaster University
tom@maibaum.org

Abstract. We wish to be able to give formal definitions (in the sense of science
or engineering) for concepts like requirements validation and for the
relationship between a requirements specification and an abstract design of the
intended system. Ditto validation of designs and the final executable
application with respect to the original "application concept", on the one hand,
and the requirement specification, on the other. We have been developing a
framework based on the work of the logical empiricists and other analytic
philosophers over the last 80 years to support our understanding of software
engineering concepts. Recent developments (dating from the 80s)in the area of
"confirmation" (of a hypothesis concerning a theory by some (experimental)
evidence) promises to illuminate some of these problematic concepts. In this
talk we address the problem of establishing the very relation between
requirement specifications and scenarios, as used, for example, in UML. The
same framework can also be applied to the problem of testing implementations
against designs, so called verification testing.

1 Introduction

Requirements engineering (RE) is a black art! We are forever confronted by the
assertion that, whilst requirements specifications may be a formal entity, analysable
even in a mathematical sense, it is informally related to an informal “entity”, the so-
called application concept. If we cannot define precisely (and meaningfully) the
statement “this scenario confirms (or discomfirms) this behaviour specification”, then
how can we pretend we know what a behaviour specification (and therefore a
requirements specification) specifies? Suppose further that we are interested in
questions such as the following: Is requirements language X better than Language Y
for defining the requirements of applications of class W? On what basis can we justify
the fact that we like the work reported in [21,32,,22,23] and that it says something
important about requirements engineering?

On what basis can we answer these questions so that the answers can be justified on
a “scientific” or “engineering” basis? If we cannot answer the first question, how
can we begin to address the others? If some entities and relationships are informal,
what is there left aside from anecdote to support requirements “meta-analysis”? The

 Original version co-authored with the late AM Haeberer and with the assistance of

MV Cengarle, then of Institut für Informatik, Ludwig-Maximilians-Universität München.

2 T.S.E. Maibaum

 purpose of this talk is to demonstrate that a framework can be defined, turning the
“informal” entities and relationships of the above discussion into well defined
concepts that are amenable to formal analysis.

2 Gedanken Experiments, Requirement Specifications and
Confirmation

In former papers [16,17, 6,7, 8] we have endeavoured to lay the basis for the
epistemological analysis of software engineering. In [17], we analyse superficially the
relationships among the various objects in a metamodel of the software process we
posited (called W) and which is reproduced in Figure 1.

Fig. 1.

 The Epistemology of Validation and Verification Testing 3

At the leftmost lower corner of this figure we see the factual1 relation HPS+CTXP
 RSP, where HPS is what we called the hypothetical posit of the intended software

artifact EA in [17], CTXP its context, and RSP the requirements specification for EA.
In [17] we claim that the relation , whose analysis is the purpose of this talk, is
what we called there a quasi merotic explanation.

To be able to study formally the leftmost lower hollow arrow in Figure 1, which is
nothing but the notorious process of ab initio requirements elicitation, we need a
framework in which we can reason about the nature of this process, about the objects
HPS, CTXP, and RSP, and about the relation . It is the purpose oft his talk to
analyse the nature of this relation and, in order to do that, to establish an adequate
framework for reasoning about it and the objects involved. It is very important to bear
in mind that, in its present state, the Ω meta-model is idealised in various ways; one
of them is that we are considering ab initio development, meaning that we are not
considering legacy artifacts. This means that we consider requirement specifications
as being elicited from (hypothetical) scenarios in which there are no legacy software
artifacts or systems, and therefore, this eliciation process does not involve design
recovery. Moreover, we will assume that there is no existing software artifact or
system from which we can glean a single clue about decomposition; thus, merotic
explanations2 are inhabitants of our post-requirements world.

The process we have in mind for devising a new engineering artifact is as follows.
See the figure at the end of this extended abstract. We have a somewhat vague
requirement (called protoRSP) for a new artifact to be, EA, which at this point is
merely a hypothetical posit HPS. This vague requirement protoRSP is actually a set of
properties we know (or we desire) the artifact to be (represented here by the
hypothetical posit) should exhibit. These properties are of two kinds, i.e., abstract
(theoretical) ones, such as, for instance, behaviours, and their observable counterparts,
i.e., sets of observable instances of them, which we will call evidence E (e.g.,
scenarios). In our engineering setting, evidence is produced both by the operation of
an engineering artifact EA (after its construction!), or by the operation of an
hypothetical posit HPS, as in a gedanken experiment. The sets of such evidence are
part of what we are calling here the context CTXA of the engineering artifact EA, or
the context CTXP of the hypothetical posit, respectively. Then, we construct an
extension of the language belonging to our underlying science/technology and to the
already existing engineering discipline with the necessary symbols, etc., to enable us
to state precisely the requirements specification RSP, and to show how evidence
produced by the operation of the hypothetical posit HPS confirms RSP, and that (if the
status of our current technology makes its construction viable) the resulting engi-
neering artifact EA will be in a certain relation with HPS that enables us to expect that

1 We classify the relationships among the objects in the Ω meta-model into factual and logical,

as we have done in [H&M00]. We give an exact definition of these clasificatory terms below.
2 An exact definition of what a merotic explanation is can be found in [17]. Informally

speaking, we can consider that the structure of the resulting software artifact EA in a software
process satisfying the Ω meta-model (or any of the series of increasingly reified design
specifications SPi) provides an explanation of why the requirements specification predicts
(and retrodicts) correctly its operation. Since this explanation is composed from parts
following EA’s (or SPi’s) structure, it was called “merotic”.

4 T.S.E. Maibaum

EA will also produce evidence that confirms RSP. (As we argue in [17], this relation is
a positive analogy, i.e., HPS EA. See the figure.) Then, we construct EA, through a
process of design and reification, which adds design and realisation detail to the
above extension.

If, on the one hand, protoRSP is a description in everyday language, or in a
previous stage in the development of our scientific/technological language, of the
evidence produced by HPS and, on the other hand, RSP is the exact description of the
behaviour confirmed by evidence produced by HPS or EA, then we may be tempted to
characterise protoRSP as what Carnap [4] calls an explicandum and the corresponding
requirement specification RSP as its explicatum, both related by an explication3. As
Carnap stated [4] “the task of explication consists in transforming a given more or
less inexact concept into an exact one or, rather, in replacing the first by the second.
We call the given concept (or the term used for it) the explicandum, and the exact
concept proposed to take the place of the first (or the term proposed for it) the
explicatum.”

The analysis of the reason why we said that this is a simplistic viewpoint will
introduce the core points of this talk. Notice that we had distinguished between, on
the one hand, evidence, which is observable (perhaps with the aid of certain apparata),
such as scenarios, and, on the other hand, certain abstract (mathematical) objects,
such as behaviours. These abstract properties are of a very dangerous kind, because if
we become overenthusiastic in their introduction, we can obtain a complete zoo of
scientifically useless abstractions, such as, for instance, phlogiston, vital force, or
entelechy. (Software engineering, as all the novel disciplines whose corpus is not well
defined, is especially prone to accept such useless abstractions.) However, mass in
physics is one of these concepts (as is force); mass is needed to state Newton’s
principle for relating force with acceleration. Otherwise, Newtonian mechanics
cannot be developed, or even stated. If we look to current scientific language, even
that familiar to laymen, we find many abstract terms denoting abstract objects or
properties, such as, for instance, gene, electron, magnetic field, preservation of the
angular momentum, or esprit de corps. For instance, some of Kepler’s laws can be
stated in a language the designata of whose nouns would be accepted by everyone as
observables. However, this is not the case with Newtoninan Dynamics; terms such as
angular momentum, gravitational field, and universal gravitational constant have non
observable designata. Notwithstanding, nobody will say that these terms are useless;
without them Newtonian Mechanics is unthinkable. The difference between Kepler’s
laws and Newtonian mechanics is the difference between empirical generalisations
and scientific theories. This difference resides in their respective predictive powers;
from Kepler’s laws we can infer the movements and positions of the planets, whilst
from Newtonian Mechanics we can infer the same but also particular laws, such as
Kepler’s laws. Unfortunately, it seems that the existence of such terms (nouns) with
non-observable designata, is a must if we want an expressive scientific theory, or a
statement belonging to a scientific theory, and not an empirical generalisation.

3 Notice that in this context (i.e., that of the Philosophy of Science) explication and explanation

are not synonymous; we are using explication in the particular sense we are discussing, and
explanation in the sense of scientific explanation.

 The Epistemology of Validation and Verification Testing 5

However, an exaggerated use of theoretical terms leads us down the path to
metaphysics, so Occam’s razor comes into play. In our case, we have evidence, as for
instance the collection of behavioural data hypothetically generated by an
hypothetical posit, which can be stated in a language the designata of whose nouns are
observable, and we have abstract objects, such as behaviours, which do not designate
observable things, but from which we can infer hypotheses potentially confirmable by
evidence (e.g., scenarios in UML). Thus, the vocabulary of the language whose nouns
designate observable things and properties is smaller than the vocabulary of the
language whose nouns designate representatives of these observable things plus
abstract things and properties. Furthermore, the restriction of observability4 of the
former language makes wider the difference between the two languages, for it is
obvious that universal quantifiers in the former must be finite, i.e., equivalent to
generalised finite conjunctions (neither our senses nor any physical instrument
enables us to observe a whole from infinitely many parts), whilst those of the latter
language can be, and are usually, infinite. Moreover, we can have in the latter
language modalities, such as permission and obligation, and temporal quantifiers,
such as forever, once, and sometime in the future.

The principal problem is, in Clark Glymour’s words [12], “How can evidence
stated in one language confirm hypotheses stated in a language that outstrips the first?
How can one make an inference from statements in the narrower language to
statements in the broader language? The hypotheses of the broader language cannot
be confirmed by their instances, for the evidence, if framed in the narrower tongue,
provides none. Consistency with the evidence is insufficient, for an infinity of
incompatible hypotheses may obviously be consistent with the evidence, and the same
is true if it is required that the hypotheses logically entail the evidence. The structure
of the problem is: what relations between [...] observation statements, on the one
hand, and statements [...] about unobservable things or unobservable properties, on
the other hand, permit statements of the former kind to confirm statements of the
latter kind?”.

From what we have said above, it seems plausible to say that the relation is one
of confirmation between the evidence produced by HPS, on the one hand, and RSP,
on the other. As a first approximation we can state the following:

Definition. Evidence E confirms RSP iff we can use some hypotheses deduced from
RSP to deduce from E other hypotheses deducible from RSP.

This idea about the mechanism by which we can decide if a theory agrees or
disagrees with a piece of evidence (observable) was first conceived by Carnap [5] and
later explored and developed by Clark Glymour [12]. Let us call the former
hypotheses in the above definition, bootstrap hypotheses; thus, our definition can be
re-stated as: evidence E confirms RSP iff we can deduce from RSP a set of bootstrap

4 We are using observable, observability, and abstract, without giving a precise definition of

what we are referring to. We will give precise definitions for them, actually for their exact
counterparts, which will have the same spelling but which will actually be different terms
with exact meanings, i.e., designata.

6 T.S.E. Maibaum

subtheories of RSP which enable the deduction from E of other hypotheses deducible
from RSP. It is exactly in the conditions established for the deduction of bootstrap
subtheories where, for instance, the necessary application of Occam’s razor we had
talked about above must be embedded. Such requirements are the source of the
complexity of the confirmation procedure (the so-called bootstrap strategy of
confirmation) we introduce below in the talk.

In discussing confirmation, we must here make something very clear. We need to
separate carefully two different issues. The frst is the mechanism by means of which
we can decide that a certain piece of evidence “agrees” or “disagrees” with a given
theory. We will talk below of two of them: one is that succinctly presented in the
discussion that led to the definition above and the other is the notorious and flawed
hypothetico-deductive method (of Newton and others). The second is the criterion of
confirmation. We can informally explain this issue by contrasting some of the
proposed criteria. One, which we will call Popperian falsifiability (also used in the
hypothetico-deductive method), is: if the evidence disagrees with the theory (we need
some mechanism for deciding this, i.e., the first issue), then the theory should be
discarded; conversely, if the evidence agrees with the theory, then we do not have any
new information about the appropriateness of the theory for describing the phenom-
enon producing the evidence. Another criterion, advanced by Lakatos, says that a
theory is something resulting from a difficult and expensive process and, therefore,
nobody is willing to discard it because of a mere disagreement with a piece of
evidence; so an auxilliary hypothesis is created to explain the disagreement. Finally,
the Carnapian logical measure function [4] presents a criterion of confirmation based
on degrees of confirmation: if the evidence disagrees with the theory, one can blame
the theory or certain auxilliary hypotheses about the experimental method producing
the evidence, the measurement instruments, etc. But actually, as in the Popperian
case, we blame something, often the theory itself. The main difference between the
Carnapian criterion of confirmation and Popperian falsifiability is about what we do
when the theory agrees with the evidence. Here, instead of saying that we do not have
more information about the appropriateness of the theory, we will say that the degree
of confirmation of this theory is greater than the degree of confirmation of a theory
not agreeing with this piece of evidence. Carnap associates with this degree of
confirmation a logical function (which he calls Logical Probability [4]). This logical
function is strongly related with Carnap’s inductive logic (and today with theories
about belief revision).

In this talk we will deal only with the first issue, i.e., how we can decide that a
requirements specification RSP agrees or disagrees with a piece of evidence
hypothetically produced by the hypothetical posit HPS. The second issue will be
treated in a forthcoming paper, since if we adopt the Carnapian logical measure
function, we should inspect also Carnap’s inductive logic and his “continuum of
inductive methods”, which will bring us closer to the issue of requirements elicitation,
and, therefore, to the leftmost lower hollow arrow in Figure 1. However, to be able to
produce an effective setting for this talk, we need to append to the so-called bootstrap
mechanism, which deals with the first issue above, some kind of confirmation crite-
rion. We will use a not very complicated one, which is a modification of one put
forward by Hempel.

 The Epistemology of Validation and Verification Testing 7

References

1. Rudolf Carnap, On Inductive Logic. Philosophy of Science, Vol. 12, 72-97. 1945.
2. Rudolf Carnap, Continuum of Inductive Methods. Univ. of Chicago Press. 1952
3. Rudolf Carnap, Meaning and Necessity. Supplement A, Empiricism, Semantics, and

Ontology. Midway Reprint Edition. 1988.
4. Rudolf Carnap, Logical Foundations of Probability. The University of Chicago Press.

Second Edition. 1962.
5. Rudolf Carnap, An Introduction to the Philosophy of Science (re-edited from Philosophical

Foundations of Physics, Basic Books, 1966). Ed. Martin Gardner, Dover Publications, Inc.
1995.

6. Maria V. Cengarle and Armando Haeberer, Towards an epistemology-based methodology
for verification and validation testing. See http://www. informatik.uni-muenchen.de under
M.V. Cengarle. 1999.

7. María V. Cengarle and Armando M. Haeberer, Specifications, programs, and
confirmation. Proceedings of the Workshop on Requirements, Design, Correct
Construction, And Verification: Mind The Gaps! F.A.S.T. Gesellschaft für angewandte
Softwaretechnologie mbH- Munich April 2000. http://www.fast.de

8. Cengarle, M V., Haeberer, A. M.. A formal approach to specification-based black-box
testing. Proceedings of the Workshop on Modelling Software System Structures in a fastly
moving scenario. June 13-16, 2000. Santa Margherita Ligure, Italia.
www.disi.unige.it/person/FerrandoE/MSSSworkshop.

9. David Christensen, Glymour on evidential relevance, Philosophy of Science. Vol 50. 471-
481, 1983.

10. John Earman and Clark Glymour, What Revisions does Bootstrap Testing Need? A Reply.
Philosophy of Science. Vol. 55. 261-264, 1988.

11. Clark Glymour, Hypothetico-deductivism is Hopeless. Philosophy of Science. Vol. 47.
322-325, 1980.

12. Clark Glymour, Theory and Evidence. Princeton Univ. Press. 1980.
13. Clark Glymour, On testing and evidence. In John Earman ed. Testing Scientific Theories,

Minnesota Studies in the Philosophy of Science, Vol. X. Univesity of Minnesota Press.
1983.

14. Clark Glymour, Revisions of bootstrap testing, Philosophy of Science. Vol 50. 626-629,
1983.

15. Carl G. Hempel, International Encyclopedia of Unified Science, Vol. 2, No. 7:
Fundamentals of Concept Formation in Empirical Science. University of Chicago Press.
23-38, 1952.

16. Armando M. Haeberer and Tom S. E. Maibaum, The very idea of software development
environments: a conceptual architecture for the arts environment. In B. Nuseibeh and D.
Redmiles, eds. Proc. of 13th IEEE Int. Conf. on Automated Software Engineering (ASE-
98), IEEE CS Press, 260–269. 1998.

17. Armando M. Haeberer and Tom S. E. Maibaum, Scientific rigour, an answer to a
pragmatic question: a linguistic framework for software engineering, to appear in Proc. of
ICSE2001, 23rd Int. Conf. on Software Engineering. Toronto 2001.

18. Mary Hesse. The Structure of Scientific Inference. University of California Press. 1974.
19. Jako Hintikka, Towards a Theory of Inductive Generalization. In Y. Bar-Hillel, Proc. of

the 1964 Congress for Logic, Methodology, and the Philosophy of Science. 274-288.
Stanford University Press. 1962.

8 T.S.E. Maibaum

20. Michael Jackson, Formal Methods and Traditional Engineering. Journal of Systems and
Software special issue on Formal Methods Technology Transfer. Vol. 40. 191-194. 1998.

21. Michael A. Jackson and Pamela Zave, Deriving Specifications from requirements: an
Example. Proc. ICSE’95 - 17th International Conference on SE. IEEE Computer Society
Press, 15-24. 1995.

22. Axel van Lamsweerde and Emmanuel Letier, Handling Obstacles in Goal-driven
Requirements Engineering. IEEE Transactions on SE, Vol. 26, September 2000.

23. Axel van Lamsweerde and L. Willemet, Inferring Declarative Requirements Specifications
from Operational Scenarios. IEEE Transactions on SE, Vol. 24, No. 12, 1089-1114.
December 1998.

24. Tom S.E. Maibaum, Mathematical Foundations of Software Engineering: a roadmap. In
Eds. A. Finkelstein and J. Kramer, Future of Software Engineering, ICSE 2000. IEEE C.S.
Press. 2000.

25. 25.E. Nagel, The Structure of Science. Harcourt, Brace. 1961.
26. Bryan G. Norton, Linguistic Frameworks and Ontology: A Re-Examination of Carnap's

Metaphilosophy. Mouton Publishers. 1977.
27. Karl R Popper, The Logic of Scientific Discovery. Hutchinson, London 1968.
28. Herbert Simon, The axiomatization of physical theories. Philosophy of Science. Vol 37.

16-26, 1970.
29. Wlad M. Turski, An Essay on Software Engineering at the Turn of Century. In Ed. Tom

Maibaum, Proc.of Fundamental Approaches to Software Engineering 2000, LNCS 1783,
Springer. 2000.

30. Wlad M. Turski and Tom S.E. Maibaum, The Specification of Computer Programs.
Addison-Wesley, 1987.

31. Walter G. Vincenti, What Engineers Know and How They Know It : Analytical Studies
from Aeronautical History. Johns Hopkins U. Press. 1993.

32. Pamela Zave and Michael A. Jackson, Four Dark Corners of Requirements Engineering.
ACM Tansactions on SE and Methodology, Vol. 6, No. 1. 1-30. 1997.

33. Jan M. Zytkow, What revisions does bootstrap testing need?. Philosophy of Science. Vol
53. 101-109, 1986.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 9 – 22, 2005.
© IFIP 2005

Passive Testing - A Constrained Invariant
Checking Approach

Behrouz Tork Ladani1, Baptiste Alcalde2, and Ana Cavalli2

1 Department of Computer Engineering, University of Isfahan, Isfahan, Iran
ladani@eng.ui.ac.ir

2 Institute National des Telecommunications GET-INT, Evry, France
{ana.cavalli, baptiste.alcalde}@int-evry.fr

Abstract. Passive testing of a network protocol is the process of detecting faults
in the protocol implementation by passively observing its input/output behav-
iors (execution trace) without interrupting the normal network operations. In
observing the trace, we can focus on the most expected relevant properties of
the protocol specification by defining some invariants on the specification and
checking them on the trace. While intuitive extraction of the invariants from the
protocol requirements with respect to the control portion of the protocol system
is relatively simple, taking the data portion into account is difficult. In this pa-
per we propose algorithms for checking the correctness of given invariants on
the specification and extracting the required constraints on the variables (data
portion). Once we generate the constraints for a given invariant, we can check if
the execution trace is confirmed by the specification with respect to the invari-
ant and its constraints. We show the applicability of the algorithm on a case
study: the simple connection protocol (SCP).

Keywords: passive testing, invariants, invariant checking, constraint solving,
SCP.

1 Introduction

Testing network protocol implementations, to assure that they work as their specifica-
tion, is of high importance. Instead of conventional active testing, there are proposi-
tions to use passive testing for network protocol systems, which means observing the
input/output behavior of the implementation (i.e. execution trace) without interfering
its normal behavior ([1], [2]). The naive approach to passive testing is to record the
execution trace and try to find its faults by comparing it with the specification ([3],
[4], [5]). Other approaches try to extract the critical properties of the specification in
the form of some invariants and then try to observe them on the implementation
([6], [7]).
 Most of passive testing methods are focused on the control parts of the system under
test without considering the data parts, so it is sufficient for them to use finite state ma-
chines (FSMs) as the specification method. To take the data part of the protocols into
account, extended finite state machines (EFSMs) are used to specify the system. EFSM
uses parameterized input/output signals including variable parameters to encode data as

10 B.T. Ladani, B. Alcalde, and A. Cavalli

well as predicates and actions to control the firing of the transitions by manipulating the
relevant data. There are some methods proposed to perform passive testing using EFSM
([5], [8], [9]). These methods are based on exploring constraints of the variables and
comparing the whole specification with the implementation regarding the constraints in
a backward or forward manner (i.e. the naive approach).
 In this paper we represent a method to perform passive testing based on the invari-
ants on the EFSM. In our approach, first we have to extract the invariants intuitively
from the protocol specification requirements regarding only the control portion of the
protocols. After that, to take the data portion into account, we consider the invariant
parameters as some variables. We present two algorithms for finding the correspond-
ing constraints over the variables of the invariants automatically. The algorithms use
the unification method [10] for checking the correctness of the given invariants over
the EFSM and finding the constraints over its variables. Having the invariants and
their corresponding constraints in hand, we can check the execution trace with the in-
variants using pattern matching methods.
 It should be noted that finding suitable control-driven invariants, especially with
the help of an expert is relatively simple; also there are some methods to extract a lim-
ited set of invariants from an EFSM automatically [7]. We use the notion of invariant
introduced in [11] with little changes in the definitions to extract the control driven
invariants intuitively.
 The rest of the paper is organized as follows: in section 2 some preliminary con-
cepts needed in the rest of the paper are described. In section 3 the notions of forward
and backward invariants are described. In section 4, our algorithms for checking
invariants on a given EFSM and extracting corresponding constraints are presented.
Section 5 reports some experiments of the algorithms on the Simple Connection Pro-
tocol (SCP) to show the applicability of the method in detecting subtle errors in some
given traces of the protocol. In section 6 we conclude the paper.

2 Preliminaries

2.1 Extended Finite State Machine

We use Extended Finite State Machines (EFSMs) to specify the network protocols.

Definition 1. An Extended Finite State Machine (EFSM) M is a 6-tuple M=(S, I, O, x,
T, s0) where S is a finite set of states, I and O are the finite sets of input and output pa-
rametric symbols respectively, x is a vector denoting a finite set of variables, T is the
finite set of transitions, and s0 is the initial state.
 Each transition t ∈ T is a tuple (s, s , i, o, P, A) where s, s ∈ S are the initial and fi-
nal states of the transition respectively, i ∈ I, o ∈ O are the input and output symbols
(possibly with parameters) respectively, P is the predicate (a Boolean expression), and
A is the sequence of actions.
Definition 2. Let M=(S, I, O, x, T, s0) be an EFSM, the sequence i1/o1, … in/on is a
path in M if for any 1 ≤ j ≤ n , ij ∈ I , oj ∈ O, and there exist n transitions t1 … tn ∈ T
and n+1 states s,s1, …, sn-1,s ∈ S such that t1 = (s,s1,i1, o1), tn = (sn-1,s ,in, on) and for
any 1<j<n we have tj = (sj-1,sj,ij, oj).

 Passive Testing - A Constrained Invariant Checking Approach 11

2.2 Substitution and Unification

Our algorithms use the unification method, so we borrow some definitions from the
context of logic programming.

Definition 3. A substitution θ is a set of bindings, each of the form V/T, such that V
is a distinct variable and T is a term. θ is called a renaming if it maps each variable to
a new fresh variable.
 Applying a binding V/T to an expression E, replaces each free occurrence of V in E
by T. Applying a substitution θ on an expression E denoted by Eθ applies all the bind-
ings in θ to E simultaneously and independently.
Definition 4. Let θ = {V1/T1,...., Vm/Tm } and = {U1/S1 ,...., Un/Sn } be substitutions.
The composition of θ and , denoted by θo is defined as:

θo = {V1 / T1 ,...., Vm / Tm } U {Uk / Sk | Uk ∉ {V1 , … , Vm}}
Definition 5. A unifier of two simple expressions E and F is a substitution θ such that
Eθ = Fθ. If two simple expressions have a unifier, they are said to be unifiable; we also
say that E is unified with F by the unifier θ. A most general unifier, abbreviated as mgu,
of two simple expressions E and F is a unifier θ that is more general than any unifier of
E and F. As an example two expressions P(X,f(X)) and P(b,f(a)) are not unifiable, while
the most general unifier of the expressions P(X,f(a)) and P(b, f(Y)) is {X/b, Y/a}.

2.3 Normalizing Action Sequences

We need in our algorithms to track the changes in the variable values made by the action
sequences in each transition, so we define a special normal action sequence and present an
algorithm to normalize a given action sequence. In normalizing an action sequence of a
transition, a special renaming substitution is produced which we name the normalizer sub-
stitution of that action. The normalizer substitution is then used to propagate the changes
of the variable values in a transition to predicates and actions of the successive transitions.

Definition 6. Let x be the set of variables in an EFSM, also let A=(l1:=r1, … ln:=rn) be
an action sequence of size n in a transition in the EFSM, in which li∈x and ri is an ex-
pression for 1≤i≤n. Also suppose that Rk={V∈x |V is used in expressions r1,r2, … ,rk}
for 1≤k≤n. A is a normal action sequence if lj∉Rj for 1≤j≤ n.
 The algorithm depicted in figure 1 change a given action sequence to a normalized one
and returns its corresponding normalizer substitution. The algorithm renames the new ap-
pearances of the variables whose values are changed in an action sequence. The normal-
izer substitution of the action is in fact the set of variable renaming substitutions performed
in the above process.

3 The Notion of Invariants

In this section we represent the notion of invariants on EFSM as introduced in [11] with little
changes in the definitions. An invariant represents a specific property (which should be al-
ways true) on an EFSM which is in fact a statement about causal relationships between in-
put/output pairs in the EFSM.

12 B.T. Ladani, B. Alcalde, and A. Cavalli

Fig. 1. Normalizing an action sequence

 Regarding the way of expressing the temporal relationships of the input/outputs in an
EFSM, two types of invariants are introduced. We call them forward and backward invari-
ants. Note that to define the invariants we only consider the control parts of the protocol so
we do not speak about the values of the variables in input or output parameters. In the next
section we represent algorithms to find corresponding constraints on the variables of a given
invariant that makes it correct on the EFSM.

3.1 Forward Invariants

A forward invariant is used to express properties in the EFSM such as “each time the im-
plementation performs a specific execution trace like i1/o1, …, in-1/on-1 , in , the next ob-
served output belongs to a specific set of output symbols”. Based on this definition, we
can assume that a forward invariant contains three elements: A preamble I/O sequence, a
preamble input and a test output set. Intuitively a forward invariant is correct if for all
paths in the EFSM matching with the preamble I/O sequence, and followed by an I/O pair
containing an input equal to the preamble input, then the corresponding output essentially
belongs to the test output set.

Definition 7. Let M=(S, I, O, x, Tr, sin) be an EFSM. We say that the F(PIO, PI,
TOS) is a forward invariant for M if the following conditions are respected :

1. PIO is the preamble I/O sequence which is defined according to the following EBNF:
PIO ::= a/z, PIO | *,PIO | ε

 In which a ∈ I ∪ {?}, z ∈ O ∪ {?}and ε is the null sequence.
2. PI ∈ I is the preamble input and TOS ⊆ O is the test output set.
3. Each time that the sequence PIO is matched with any path in the EFSM, and it is fol-

lowed by any transition with input PI, then we get essentially an output belonging to
TOS.

INPUT: An action sequence A=(l1 := r1, … ln := rn) in the EFSM
 M= M=(S, I, O, x, Tr, sin)

OUTPUT: A normalizer substitution θ
SIDE EFFECT: Action sequence A is changed to a normal one
Begin
 θ := ∅;
 for i:=1 to n do begin
 R := { V∈ x | V is used in expressions r1, … , ri }
 if li ∈ R then begin
 l′i := new V; /* a new variable name */
 θ := θ ∪ { li/ l′i};
 li := l′i;
 for j :=i+1 to n do begin
 lj := lj θ; rj := rj θ;
 end;
 end;
 end;
End;

 Passive Testing - A Constrained Invariant Checking Approach 13

 Note that we deal with the wildcard ? as the standard one in pattern matching,
while modify the usual meaning of the symbol *. The symbol * replaces any sequence
of input/outputs not containing any pair with input equal to PI.

3.2 Backward Invariants

Using a backward invariant we can express more subtle properties such as “each time
a specific output is produced by the implementation, then we must have that a specific
trace had been produced before”. So a backward invariant contains three elements: A
preamble output set, a test input and a test I/O sequence. Intuitively a backward in-
variant is correct if any transition in the EFSM in which its output symbol belongs to
the preamble output set, have an input equal to test input and essentially preceded by
a path matching with the test I/O sequence.

Definition 8. Let M=(S, I, O, x, Tr, sin) be an EFSM. We say that the B(TIO, TI,
POS) is a backward invariant for M if the following conditions are respected :

1. TIO is the test I/O sequence which is defined according to the following EBNF:
TIO ::= a/z, TIO | *,TIO | ε

in which a ∈ I ∪ {?}, z ∈ O ∪ {?} and ε is the null sequence.
2. TI ∈ I ∪ {?} is the test input and POS ⊆ O is the test output set.
3. All transitions of M with an output symbol belonging to POS must essentially have an

input symbol equal to TI and proceed by a path matching with TIO.

 Let us remark that, in contrast with forward invariants (for the case of preamble input sym-
bol), we do not force the test input symbol here to be an input action (it can be also the wild-
card character “?”). Furthermore, our matching method is modified such that the symbol *
replaces any sequence of input/outputs not containing any pair with input equal to TI.

4 Extracting Invariant Constraints

To use an invariant for passive testing, it is needed to assure at first about the correctness
of the invariant on the specification. While checking invariants on a FSM simply returns a
Boolean value showing the correctness or fail of the invariant, checking an invariant on an
EFSM either returns simply a false Boolean value showing that the invariant is incorrect
on the EFSM or returns a set of constraints on the variables of the invariant showing
that the correctness of the invariant depends on the set of constraints. For passively
testing the implementation, it is sufficient to match the execution trace with the in-
variant while its constraints regarding the value of the variables in the trace don’t con-
flict. In this section we represent algorithms for checking forward and backward in-
variants on an EFSM and extracting their corresponding constraint set. The constraint
extraction process is done once and off-line.

4.1 Forward Invariant Constraints

To check a given forward invariant on an EFSM, first we have to find the paths in the
EFSM which are unifiable with the preamble part of the invariant. After that we should
check if the invariant test set is reachable using all the unified paths or not, and if it is

14 B.T. Ladani, B. Alcalde, and A. Cavalli

reachable, then what is the constraint set to make it true. The constraint set is in fact
constructed during the unification of the preamble part with the paths in the EFSM.

Definition 9. Let ρ = i1/o1,…,in/on be an input sequence of size n and M=(S, I, O, x, Tr,
sin) be an EFSM, we define Un as the set of forward matchers of ρ containing quadru-
ples (s,θ,C,δ) in which s is a state belongs to S, θ and δ are substitutions and C is a set of
constraints (conjoined predicates) which is constructed inductively as follows:

− The initial forward matcher set is equal to U0=S×{∅}×{∅}×{∅}
− If t=(s,s’,a,z,P,A)∈Tr is a transition in M, and Uj-1 contains a forward matcher quadru-

ple (s,θ,C,δ) such that (a/z)δ is unifiable with (i/o), then Uj contains quadruples
(s’,θ’,C’,δ’) in which θ’= θomgu((a/z)δ, (i/o)) , C’=C∪(P∧normalized (A))δ, and δ’ is
the normalizer of A.

 Using the above definition we can describe our algorithm for checking the correct-
ness of a given forward invariant on an EFSM and extracting its necessary constraints.
 Let F(PIO, PI, TOS) be a forward invariant in which PIO is of size n. Suppose that
Un is the forward matcher set of PIO. If Un is empty then the invariant is incorrect,
else we check that for any transition labeled by the input PI , we receive an output
unifiable with one of the items in the TOS. If there is no possible transitions, then the
invariant is incorrect, else for each forward matcher quadruple (s,θ,C,δ) in Un , if C is
empty then the invariant is true, else the invariant is true constraint to Cθ. The set of
constraints Cθ can be simplified using the existing constraint simplification algo-
rithms. The algorithm is depicted more formally and detailed in figure 2.
 The algorithm deals with invariants containing the wildcard character *. Also we con-
sider that both i=? and o=? hold. We have used some auxiliary functions: head(I) re-
turns the first i/o couple of the sequence I and tail(I) removes the first i/o couple from I.
 The Boolean function path(s, s’, i) returns true if there exist a path a1/z1, … ar/zr from s to
s’ and for any 1 ≤ j ≤ r we have aj ≠ i. Also the function simplified(C) returns the simplified
version of the constraint set C. In fact this function solves the constraints such that the most
constraining predicates on a single variable are remained. We don’t enter in the details of this
function. There are some well known methods to do this in the literature [12].

4.2 Backward Invariant Constraints

To check a given backward invariant on an EFSM, first we have to find the set of
transitions in the EFSM which have outputs unifiable with elements of the preamble
output set in the invariant. After that, we should check whether the paths in the EFSM
which are ended by the discussed outputs are unifiable with the test input and test I/O
sequence in the invariant or not. And, if they are unifiable, what are the constraints on
the variables of the invariant. The constraint set is in fact constructed during the unifi-
cation of the test I/O sequence with the paths in the EFSM. We traverse the paths in
the EFSM in a backward fashion to do the unification and extract the constraints.

Definition 10. Let ρ = i1/o1,…,in/on be an input sequence of size n and M=(S, I, O, x, Tr,
sin) be an EFSM, we define V0 as the set of backward matchers of ρ containing quadru-
ples (s,θ,C,δ) in which s is a state belongs to S, θ and δ are substitutions and C is a set of
constraints (conjoined predicates) which is constructed inductively as follows:

 Passive Testing - A Constrained Invariant Checking Approach 15

Fig. 2. Algorithm for checking forward invariants and finding its corresponding constraints

− The initial backward matcher set is equal to Vn=S×{∅}×{∅}×{∅}
− If t=(s, s’, a, z, P, A)∈Tr is a transition in M, and Vj+1 contains a backward matcher

quadruple q=(s’,θ,C,δ) such that (a/z)δ is unifiable with (ij/oj), then Vj contains quadru-
ples q’=(s,θ’,C’,δ’) in which θ’= θomgu((a/z)δ, (ij/oj)), δ’ is the normalizer of A and
C’ = Cδ' ∪ (P ∧ normalized (A)). Delete the quadruple q from Vj+1.

Input: M=(S, I, O, x, Tr, sin), I=F(PIO,PI,OTS)
Output: true/false or a set of constraints. Satisfaction of each constraint is sufficient to sat-
isfy the invariant.

Begin

 /* PIO Matching: Finding the paths in the EFSM which are unifiable with the PIO */
 I' :=PIO; U :=S ×{∅}×{∅}×{∅};
 while I'≠ and U≠∅ do begin
 first = head(I'); I'=tail(I');
 if first ≠ * then begin /* first = i/o */
 T:=Tr; U':= ∅;
 while T≠ ∅ do begin
 choose t∈ T; /* t=(s,s',a,z,P,A) */
 T:=T-{t};
 if (s,θ,C,δ) ∈ U and unifiable((a/z)δ , i/o) then begin
 θ’:=θomgu((a/z)δ, i/o); C’:=C ∪ (P∧ normalized(A))δ;
 δ’:=normalizer(A); U' := U'∪ {(s’,θ’, C’,δ’)};
 end
 end
 U=U’;
 end
 else begin /* first= * */
 while head(I')=* do I':=tail(I');
 first:= head(I'); /* first=i/o */
 U := { (s,θ,C,δ)) | s∈ S, ∃ (s,θ,C,δ) ∈ U, p=path(s',s,i) };
 end
 end

 /* TOS checking: Checking if TOS is reachable using the unified path or not and if so
 what is its constraints*/
 if U=∅ then return(false);
 else begin

tf := false; T:= Tr; CS:= ∅ ;
 while T≠ ∅ do begin
 choose t∈ T; T := T-{t}; /* t=(s,s',a,z) */
 if (s,θ,C,δ) ∈ U and unifiable(aδ, in) then begin
 θ’ := θomgu(aδ, in);
 if o∈ O • (zδ)θ’ = oθ’ then return(false);
 tf:=true; CS :=CS ∪ simplified(C ∪ (P∧ normalized(A))δ);
 end
 end
 end
 if not tf then return false;
 if CS = ∅ then return true else return (CS);
End

O

16 B.T. Ladani, B. Alcalde, and A. Cavalli

Fig. 3. Algorithm for checking backward invariants and finding its corresponding constraints

 Using the above definition we can describe our algorithm for checking the correct-
ness of a given backward invariant on an EFSM and extracting its necessary
constraints.

Input: M=(S, I, O, x, Tr, sin), I=B(TIO,TI,POS)
Output: true/false or a set of constraints. Satisfaction of each constraint is sufficient to
 satisfy the invariant.
Begin
 /* POS Matching: Finding states in the EFSM which are unifiable with elements of the POS */
 T :=Tr; V :=S ×{∅}×{∅}×{∅}; error:=false;
 while T≠ ∅ and not error do begin
 choose t∈ T; /* t=(s,s',a,z,P,A) */
 T:=T-{t};
 if ∃ o∈POS • unifiable((a/z)δ , (TI/o)) then begin
 θ:=mgu(a/z, PI/o); δ:=normalizer(A);

C:=P∧ normalized(A); V := V∪ {(s,θ, C,δ)};
 end else error :=true;
 end;
 if V=∅ then error :=true;

 /* TIO matching: Checking if the TIO is matched with all paths ending to the states found in
 previous step or not and if so what is the constraint set */
 I’ := reverse(TIO);
 while not empty(I’) and not error do begin
 V’ := ∅; first :=head(I’); I’:=tail(I’);
 if first ≠ * then begin /* first = i/o */
 T:=Tr;
 while T ≠ ∅ do begin
 choose t∈ T; /* t=(s,s',a,z,P,A) */
 T:=T-{t};
 if (s’,θ,C,δ) ∈ V and unifiable((a/z)δ , i/o) then begin
 θ’:=θomgu((a/z)δ, (i/o)); δ’:=normalizer(A);

 C’:=Cδ’ ∪ (P∧ normalized(A)); V' := V'∪ {(s,θ’, C’,δ’)};
 V=V-{(s’,θ,C,δ)};

 end else error := True;
 end
 end else begin /* first =* */
 while head(I') = * do I' := tail'(I'); /* skip a seq. of *'s */
 first := head(I'); /* first = i/o */
 V’:={ (s,θ,C,δ) | s∈S, ∀ (s’,θ,C,δ)∈ V • path(s, s', o)};
 end
 if V≠ ∅ then error:= true else V:= V’;
 end;
 if error then return (false);
 CS:= ∅;
 while V ≠ ∅ do begin
 choose v∈ V; /* v= (s,θ,C,δ) */
 V:=V-{v}; CS:= CS ∪ simplify(C);
 end;
 if CS=∅ then return(true) else return(CS);
End;

 Passive Testing - A Constrained Invariant Checking Approach 17

 Let B(TIO, TI, POS) be a backward invariant. For all elements om∈POS (1≤m≤
|POS| in which |POS| is the cardinality of POS) we concatenate the pair TI/om to the
TIO to generate a set of input/output sequences like ρm = "TIO, TI/om". Let the size of
ρm be n. For each ρm (1≤ m ≤ |POS|) we try to find its backward matcher set. If after
constructing Vj (0< j ≤ n) in each iteration, Vj is empty or Vj+1 is not empty, then the
invariant is incorrect, else for each quadruple of the V0, if C is empty, then the invari-
ant is true without any condition, else the invariant is true constraint to simplified Cθ.
The algorithm is depicted more formally and detailed in figure 3. Auxiliary functions
used are the same as described for the forward invariant checking algorithm.

5 An Example: SCP Protocol

In this section we present the processing of the method we discussed in this paper for
passively testing an implementation of the Simple Connection Protocol (SCP) to show
the applicability of the method. SCP has the advantage of including most difficulties
of passive testing in a protocol specification, and then is able to figure out the appli-
cability of the algorithm on bigger protocols.

5.1 The Simple Connection Protocol

SCP allows us to connect an entity called upper layer to an entity called lower layer.
The upper layer performs a dialogue with SCP to fix the quality of service desirable
for the future connection. Once the negotiation is finished, SCP dialogues with the
lower layer to ask for the establishment of a connection satisfying the previously ne-
gotiated quality of service. The lower layer accepts or refuses this connection request.
If it accepts the connection, SCP informs the upper layer that connection was estab-
lished and the upper layer can start to transit data towards the lower layer via SCP.

Once the transmission of the data finished, the upper layer sends a message to close
the connection. On the other hand, if the lower layer refuses the connection, the sys-
tem allows SCP to make three requests before informing the upper layer that the con-
nection attempts all failed. If the upper layer wishes again to be connected to the
lower layer, it is necessary to restart the QoS negotiation with SCP from beginning.
Figure 4 shows the interactions of the SCP with its upper and lower layers.

5.2 Defining Invariants

Let consider the EFSM specification of the Simple Connection Protocol depicted in
figure 5. We suppose that the values of TryCount, ReqQos, FinQos, CONreq.qos, and
accept.qos are defined in the interval [0;3]. Suppose that we want to passively test an
implementation of the SCP regarding the following properties of the specification
which are described using the invariants:

• I1 = B (< refuse/connect(x) > , (refuse) , { CONcnf(-) }), means that SCP fail to
connect the two layers (CONcnf(-)) only if the lower layer refused the connection
twice before (refuse/connect(x), refuse/).

• I2 = F (< CONreq(x)/connect(y) > , (accept(w)) , { CONcnf(+,z) }) , means that if
SCP accepts to connect with the upper layer at his requested QoS (CON-

18 B.T. Ladani, B. Alcalde, and A. Cavalli

req(x)/connect(y)) and the lower layer accept it at a given QoS, then a connection
must be realized between the two layers.

• I3 = F (<> , (accept(x)) , { CONcnf(+,y) }) , means that if the lower layer accept the
connection (accept(x)), this connection must be realized (CONcnf(+,y)).

• I4 = B (<> , (accept(x)) , { CONcnf(+,y) }) , means that a connection is realized
(CONcnf(+,x)), only if the lower layer accepted it before (accept(y)).

Note that I1 and I4 are forward invariants while I2 and I3 are backward invariants. In defini-
tion of the above invariants we have used a control driven approach i.e. in this stage, pa-
rameters of the signals are not important so we have used some variables instead
of them.

Fig. 4. Interactions of the SCP with its upper and lower layers

5.3 Finding Invariant Constraints

Now, we apply our method on the invariants to find their corresponding constraints. Table 1
shows the trace of the algorithms. For each forward (backward) invariant, the value of the in-
termediate forward (backward) matcher set i.e. U (i.e. V) and the ultimate constraint sets CS
over the variables of the invariants have been shown. (See the algorithms in figures 2 and 3).
 Applying the algorithms reveal that all the invariants are correct regarding the control part of
the specification, but regarding the data part of the specification the invariants are true condition
to some constraints which have been produced by the algorithms. For invariant I1, there is no
constraint over the variable of the invariant, so it should be matched by execution traces with
any value for the variable x. For the other invariants, only such execution traces are matched
with the invariants that the value of their input/output parameters does not cause any conflict
with the corresponding constraints of the intended invariant.

5.4 Passive Testing Using the Constrained Invariants

Now suppose that the following execution traces are generated by a faulty implemen-
tation of the SCP:

• Trace1 = CONreq(1) / connect(1) , refuse / CONcnf(-)
• Trace2 = CONreq(1) / connect(0) , accept(1) / CONcnf(+, 0).

Upper layer

Simple Connection Protocol

Lower Layer

abort

Reset DataCONcnf(+,FinQos)
or CONcnf(-)

NONsupport(ReqQos) CONreq(qos)

data(FinQos) accept(qos)
or refuse

connect(ReqQos)

 Passive Testing - A Constrained Invariant Checking Approach 19

Fig. 5. EFSM specification of SCP

 We know that a transition error has occurred in the first trace because the specifica-
tion forces two loops on state s3 before eventual transition to s1, corresponding to the
three requests SCP must do before failing the connection. In this trace, the connection
is said to be failed on first try. For the second trace, there is an output error because
the first I/O couple should be CONreq(1)/connect(1). We can imagine that the trace
comes from an implementation in which the action on the transition from s2 to s3 is
ReqQos:=CONreq.qos –1 and then such a trace is produced. This error has for conse-
quence to connect the upper and lower layers with a QoS equals to 0 when it could be
(normally) equal to 1.

Tables 2 and 3 show the invariants used in the checking of the first and the second
trace respectively. We try to identify the constraints with the values of the variables
extracted from the traces:

• Trace1: Since the analysis found CONcnf(-) in the trace and failed looking for the
couple refuse/connect(x), then the trace is erroneous regarding the invariant I1.
Note that the found error is control driven, so it is not needed to look at the con-
straints at all.

• Trace2: There are three invariants which are candidate for this trace. Matching the
trace with the invariants shows that there is not any control driven error, so we use
constraints and the value of the variables in the trace to decide about the possibility
of data driven errors:

S1

S2

S3

S4

TryCount := 0
ReqQos := 0
FinQos := 0

I/O : CONreq(qos) / NONsupport(ReqQos)
P: CONreq.qos >1
A: ReqQos := CONreq.qos

I/O : CONreq(qos) / connect(ReqQos)
P: CONreq.qos <=1
A: ReqQos := CONreq.qos

I/O : refuse / connect(ReqQos)
P: TryCount != 2
A: TryCount := TryCount + 1

I/O : accept(qos) / CONcnf (+, FinQos)
P: -
A: FinQos := min(accept.qos, ReqQos)

I/O : Data / data (FinQos)
P: -
A: -

I/O : refuse/CONcnf(-)
P: TryCount = 2
A: -

I/O : Reset/abort
P: -
A: -

20 B.T. Ladani, B. Alcalde, and A. Cavalli

Table 1. Using algorithms to extract required constraints for the example invariants

Invariant U1(or V1) U2 (orV2) Constraint set
(CS)

I1

(Back-
ward)

V1 = { (s3, θ1, C1, δ1) }
θ1 = ∅
C1 = { TryCount = 2 }
δ1 = ∅

V2 = { (s3, θ2, C2, δ2) }
θ2 = { ReqQos/x }
δ2 = { TryCount/y }
C2=C1δ2∪
{TryCount!=2,y=TryCount +1}=
{y=2,TryCount!=2,y=TryCount +1}
 = { TryCount =1}

CS_I1= C2θ2=
{TryCount=2}

I2

(For-
ward)

U1 = { (s3, θ1, C1, δ1) }
θ1 = { CONreq.qos/x, ReqQos/y }
C1 = { CONreq.qos <=1,
 ReqQos = CONreq.qos }
δ1 = ∅

U2 = { (s4, θ2, C2, δ2) }
θ2=θ1o{accept.qos/w, FinQos/z }
 ={CONreq.qos/x, ReqQos/y,
 accept.qos/w, FinQos/z }
C2=C1∪{CONreq.qos=
 min(accept.qos, ReqQos) }δ1
 ={CONreq.qos <=1,
 ReqQos=CONreq.qos,
 FinQos=min(accept.qos,
 ReqQos)}
δ2 = ∅

CS_I2=C2θ2=
{x<=1, y=x,
 z=min(w, y)}

I3

(For-
ward)

U1 = { (s3, θ1, C1, δ1) }
θ1 = { accept.qos/x, FinQos/y }
C1 = { y=min(x, ReqQos) }
δ1 = ∅

 CS_I3=C1θ1=
{y=min(x,
ReqQos)}

I4

(Back-
ward)

V1 = { (s4, θ1, C1, δ1) }
θ1 = { accept.qos/x, FinQos/y }
C1 = { y=min(x, ReqQos) }
δ1 = ∅

 CS_I4=C1θ1=
{y=min(x,
ReqQos)}

CS-I2 ∪ {x=1, y=0, w=1, z=0}={x<=1, y=x, z=min(w, y)} ∪ { x=1, y=0, w=1, z=0 }

= { 1=<1, 0=1, 0=min(1, 0) }
1=<1 is true, 0=1 is false and 0=min(1, 0) is true, so the invariant I2 is false on Trace2.
 CS-I3 ∪ {x=1, y=0}={y=min(x, ReqQos)}∪{x=1, y=0} = { 0=min(1, ReqQos) }
 0 is the minimum of 1 and ReqQos only if ReqQos is equal to 0, so the invariant I3
is true on the trace Trace2 if ReqQos=0.
 CS-I4 ∪{x=1, y=0}={y=min(x, ReqQos)} ∪ { x=1, y=0 } = { 0=min(1, ReqQos) }
 0 is the minimum of 1 and ReqQos only if ReqQos is equal to 0 so the invariant I4
is true on the trace Trace2 if ReqQos=0.
 As we found an inconsistency in the checking of the invariant I2 with the trace
Trace2 we conclude that the trace T2 is false. Checking the other invariants on the
trace is not necessary but figure here as an example of variable simplification.

Table 2. Using invariant I1 to check the execution trace Trace1

 Trace1 CONreq(1) connect(1) Refuse CONcnf(-)
I1 Refuse connect(x) Refuse CONcnf(-)

 Passive Testing - A Constrained Invariant Checking Approach 21

Table 3. Using invariants I2, I3 and I4 to check the execution trace Trace2

Trace2 CONreq(1) connect(0) Accept(1) CONcnf(+,0)
I2 CONreq(x) connect(y) Accept(w) CONcnf(+,z)
I3 Accept(x) CONcnf(+,y)
I4 Accept(x) CONcnf(+,y)

6 Conclusion

Passive testing methods for network protocols can be classified into naïve and invari-
ant based approaches. In the naïve approach the implementation trace which is re-
corded during the execution of the protocol under test is compared with total of the
specification in a forward or backward manner. This is where, in the invariant based
approach only critical properties of the specification (i.e. invariants) which are ex-
tracted by an expert are compared with the implementation trace. By using invariant
based approach, not only a lot of extra processing is reduced, but also we can focus on
the critical properties of the program under test.
 Passive testing methods can be compared from another aspect. Some methods are
limited to testing only control driven aspects of the implementation, i.e. the order of
occurrences of the input/output signals, while other methods are capable of testing
both control driven and data driven aspects of the implementation i.e. the values of
the signal's parameters. For testing control driven aspects it is sufficient to use FSM
for specification, while for data driven aspects it is needed to use EFSM.
 In this paper we presented a new method for passive testing of both control driven
and data driven aspects of the network protocols using an invariant based approach.
The intended properties of the specification are expressed using some control driven
invariants given by an expert. After that, using the given algorithms, the invariants are
checked on the specification off-line. Also to take the data driven aspects into ac-
count, for the correct invariants, some constraints over the variables of the invariants
are extracted. For passively testing the implementation traces, it is sufficient to com-
pare, on-line, the trace with the invariants regarding the constraints using pattern
matching. A trace is correct while it is matched with the invariant and the invariant's
constraints are not conflicting regarding the values of the signal's parameters.
 To show the applicability of the presented method, passive testing of the Simple
Connection Protocol (SCP) using the presented method was illustrated.

References

1. R. Lai, “A survey of communication protocol testing”, Journal of Systems and Software
62(1): 21-46 (2002).

2. D. Lee, and M. Yannakakis, “Principles and methods of testing finite state machines---
A survey”, Proc. IEEE 84, 8, (1996), 1089--1123.

3. D. Lee, A. N. Netravali, K. Sabnani, B. Sugla, A. John, “Passive testing and
applications to network management”, IEEE International Conference on Network
protocols, ICNP’97, pages 113-122. IEEE Computer Society Press, 1997

22 B.T. Ladani, B. Alcalde, and A. Cavalli

4. R. E. Miller and K. A. Arisha, "On Fault Location in Networks by Passive Testing",
IPCCC 2000, Pheonix, AZ, Feb. 2000.

5. M. Tabourier and A. Cavalli, “Passive Testing and application to the GSM-MAP
Protocol”, in Journal of Information and Software Technology 41(11) (15 Sept. 1999),
Pages 813-821, Elsevier, 1999.

6. J. A. Arnedo, A. Cavalli and M. Nunez, “Fast Testing of Critical Properties through
Passive Testing”, LNCS, vol. 2644/2003, Pages 295-310, Springer, 2003.

7. A. Cavalli, C. Gervy and S. Prokopenko, “New Approaches for Passive Testing Using
an Extended Finite State Machine Specification”, in Journal of Information and
Software Technology, 45:837-852, Elsevier, 2003.

8. D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin, "A Formal Approach for
Passive Testing of Protocol Data Portions", Proc. ICNP'2002.

9. B. Alcalde, A. Cavalli, D. Khuu, D. Chen, D. Lee, “Network Protocol System Passive
Testing for Fault Management - a Backward Checking Approach”, in the Proceedings
of the 24th IFIP WG 6.1, International Conference on Formal Techniques for Net-
worked and Distributed Systems, FORTE 2004, 27-30 September, 2004, Madrid, Spain.

10. F. Baader, W. Snyder, “Unification Theory, Handbook of Automated Reasoning”, Alan
Robinson, Andrei Voronkov, eds., Vol. 1, Chapter 8, 446–533.

11. E.Bayse, A. Cavalli, M. Nunez and F. Zaidi, “A Passive Testing Approach based on
Invariants: Application to the WAP”, To be published in journal of Computer Network,
2004.

12. K. Marriott and P. J. Stuckey, “Programming with Constraints: An Introduction”, Book,
The MIT Press, 1998.

Dependence Testing: Extending Data Flow
Testing with Control Dependence

Hyoung Seok Hong1 and Hasan Ural2

1 Concordia Institute for Information Systems Engineering,
Concordia University

hshong@ciise.concordia.ca
2 School of Information Technology and Engineering,

University of Ottawa
ural@site.uottawa.ca

Abstract. This paper presents a new approach to structural testing,
called dependence testing. First we propose dependence oriented cover-
age criteria that extend conventional data flow oriented coverage criteria
with control dependence. This allows one to capture the full dependence
information of a program or specification systematically. We then de-
scribe a model checking-based approach to test generation for depen-
dence testing. It is shown that dependence oriented coverage criteria can
be characterized in the temporal logics LTL and CTL. This enables one
to use any LTL and CTL model checkers as test generators. Finally, we
show that the temporal logic-based characterization can also be used for
reducing the cost of dependence testing.

1 Introduction

In structural testing, we are given a coverage criterion defining a set of entities in
the structure of a program or specification and we generate a test suite satisfying
the coverage criterion. A test suite is a set of test sequences and is said to
satisfy a coverage criterion if for every entity defined by the coverage criterion,
there is a test sequence in the test suite exercising the entity. There are two
main types of structural testing. Control flow testing calls for exercising single
entities such as statements, branches, decisions, and conditions. Data flow testing
calls for exercising associations between definitions and uses of variables such as
definition-use pairs and definition-use chains. These associations capture the
dependence information of a program or specification mainly in terms of data
dependence. Data flow testing has been widely used for program testing[34]
and protocol conformance testing with formal specifications written in SDL and
Estelle whose underlying model is extended finite state machine[11].

This paper presents a new approach to structural testing, called dependence
testing. The main contributions of the paper are three-fold. First, we propose
dependence oriented coverage criteria that extend conventional data flow ori-
ented coverage criteria with control dependence. Our new coverage criteria are

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 23–39, 2005.
c© IFIP 2005

24 H.S. Hong and H. Ural

motivated by the work of Podgurski and Clarke[30] which evaluates data flow
oriented coverage criteria in terms of program dependence. In [30], it is shown
that both data dependence and control dependence are necessary to detect the
propagation of erroneous values caused by faults. It is also shown that although
data flow oriented coverage criteria incorporate limited forms of control depen-
dence, they are not powerful enough to detect the propagation of all of erroneous
values. However, the question of how to extend data flow oriented coverage crite-
ria has remained unanswered. In this paper, we show that the data flow oriented
coverage criteria in [17, 28, 27, 32] can be naturally extended with control depen-
dence. This allows one to capture the dependence information of a program or
specification systematically based on both data dependence and control depen-
dence.

Second, we discuss test generation for dependence testing. Recently there
have been several proposals of model checking-based approaches to test gen-
eration for control flow testing[3, 7, 12, 14, 16, 29] and data flow testing[20, 21].
Model checking[9] is a formal verification technique for determining whether a
system model satisfies a property written in temporal logic and model checkers
such as SMV[26] and SPIN[18] are already used on a regular basis for the verifi-
cation of real-world applications. In addition to being automatic, an important
feature of model checking is the ability of explaining the success or failure of a
temporal logic formula in terms of witnesses or counterexamples, respectively.
The main idea of model checking-based test generation[3, 7, 12, 14, 16, 20, 21, 29]
is to characterize test coverage in temporal logic in such a way that the prob-
lem of test generation is reduced to the problem of finding a set of witnesses or
counterexamples for a set of temporal logic formulas. The capability of model
checkers to construct witnesses and counterexamples enables efficient and scal-
able test generation. In this paper, we extend the model checking-based approach
in [20, 21] for dependence testing. We show that dependence oriented coverage
criteria can be characterized in the temporal logics LTL and CTL so that any
LTL and CTL model checkers can be used as test generators for dependence
testing.

Finally, we show that the temporal logic-based characterization of dependence
oriented coverage criteria can also be used for reducing the cost of dependence
testing. There have been several proposals of approaches to reducing the cost of
control flow testing[1, 4, 5, 6, 8] and data flow testing[15, 24, 25]. The main idea of
these approaches is to construct a subset of entities for a given coverage criterion
such that exercising every entity in the subset guarantees exercising every entity
defined by the coverage criterion. That is, if a test suite covers every entity in the
subset, the test suite satisfies the coverage criterion. Following the terminology
of [24, 25], we call such a subset a spanning set for the coverage criteria. Recently
in [22], the authors show that the problem of finding a minimum spanning set
for a family of data flow oriented coverage criteria can be reduced to the model
checking problem of LTL. In this paper, we extend the results of [22] and show
how LTL model checking can be used for reducing the cost of dependence testing.

Dependence Testing: Extending Data Flow Testing with Control Dependence 25

The remainder of the paper is organized as follows. After introducing pre-
liminary definitions in Section 2, we investigate test coverage, generation, and
reduction for dependence testing in Section 3, 4, 5, respectively. We conclude
the paper with a discussion of future work in Section 6.

2 Preliminaries

This section recalls the basics of LTL and flow graph, which are the logic and
model employed in our approach, respectively.

2.1 Logics: LTL and CTL

In this paper we will make use of both LTL and CTL. We give a brief introduction
to LTL here and refer the interested readers to [9] for the syntax and semantics
of CTL. A formula f in LTL is built from a set AP of atomic propositions, the
standard boolean operators, and the temporal operators X (next time) and U
(until) according to the following grammar: f := p | ¬f | f ∧f | Xf | fUf where
p ∈ AP . We also use the temporal operators F (eventually) and G (always)
defined by Ff ≡ trueUf and Gf ≡ ¬F¬f .

The semantics of LTL is defined with respect to an infinite path π = σ0σ1...
where for every i ≥ 0, σi is a subset of AP . For a position i, π(i) is the i-th
element of π and πi is the suffix σiσi+1... of π. We write π |= f to indicate that
π satisfies f .

– π |= p iff p ∈ σ0;
– π |= ¬f iff π �|= f ;
– π |= f1 ∧ f2 iff π |= f1 and π |= f2;
– π |= Xf iff π1 |= f ;
– π |= f1Uf2 iff there exists i ≥ 0 such that πi |= f2 and πj |= f1 for every

0 ≤ j < i.

We also interpret LTL over a Kripke structure (Q, qinit, L,R) where Q is a set of
states, qinit ∈ Q is the initial state, L : Q → 2AP labels each state with atomic
propositions, and R ⊆ Q × Q is the total transition relation. We write M |= f
to indicate that for every infinite path π of M such that π(0) = qinit, π |= f .
The model checking problem of LTL is to decide if for given M and f , it holds
that M |= f .

2.2 Model: Flow Graph

Flow graphs are the standard model of programs in conventional program anal-
ysis and testing[2]. Flow graphs have also been used in analyzing and testing
specification languages whose underlying model is extended finite state machine
such as Estelle[32], SDL[33], and statecharts[19] as well as process algebra such
as LOTOS[31].

26 H.S. Hong and H. Ural

A flow graph is a directed graph G = (V, vs, vf , A) where V is a set of nodes,
vs ∈ V is the start node, vf ∈ V is the final node, and A ⊆ V ×V is a set of arcs.
The start node vs and final node vf represent the single entry and single exit
point, respectively. A node represents a simple statement (such as assignment,
input, and output) or the predicate of a conditional or repetitive statement (such
as if and while). An arc represents possible flow of control between statements.
Each variable occurrence is classified as a definition or use. For a variable x
and a node v, x is defined at v, denoted by d(x, v), if x is assigned a value at
v. x is used at v, denoted by u(x, v), if v is referenced at v. A use u(x, v) is a
computation-use (c-use) if v represents a statement and is a predicate-use (p-use)
if v represents a predicate. A path v1...vn is complete if v1 = vs and vn = vf . A
test sequence is a complete path and a test suite is a finite set of test sequences.
Figure 1 shows a simple program and its flow graph where v1 is the start node
and v9 is the final node.

v1: input(num);
v2: if (num > 0) {
v3: plus = true;
v4: sign = ′+′;

}
else {

v5: plus = false;
v6: if (num == 0)
v7: sign = ′0′;

else
v8: sign = ′−′;

}
v9: output(plus, sign);

����
v9 u(plus, v9), u(sign, v9)

����
����
v8 d(sign, v8)����

v7d(sign, v7)

����
v6 u(num, v6)

����

����
v5 d(plus, v5)

�
����
v3d(plus, v3)

�

����
v4d(sign, v4)

�

����
v2 u(num, v2)

�� ��

����
v1 d(num, v1)

�

Fig. 1. A program and its flow graph

There are two types of program dependence. For two nodes v and v′, we say
that v directly data-affects v′ through variable x (or equivalently, v′ is directly
data-dependent on v through variable x), denoted by v

x→ v′, if x is defined at
v, x is used at v′, and there is a path vv1...vnv′ such that x is not defined vi

for every 1 ≤ i ≤ n. In this case, v1...vn is a definition-clear path with respect
to x. A test sequence exercises v

x→ v′ if vv1...vnv′ is a subpath of the test
sequence where v1...vn is a definition-clear path with respect to x. We say that
v′ postdominates v if every path from v to vf contains v′ and that v directly
control-affects v′ (or equivalently, v′ is directly control-dependent on v), denoted
by v

c→ v′, if v has two successors v1 and v2 such that v′ postdominates v1 but
v′ does not postdominate v2. A test sequence exercises v

c→ v′ if vv1...vnv′ is a
subpath of the test sequence.

Dependence Testing: Extending Data Flow Testing with Control Dependence 27

3 Test Coverage

Let v1, v2, ..., vn be nodes. We say that v1 → v2 → ... → vn is a dependence-
chain if for every 1 ≤ i < n, vi → vi+1 is either a direct data dependence vi

x→
vi+1 or direct control dependence vi

c→ vi+1. Obviously the strongest coverage
criterion based on the dependence information, which we call all-dependence-
chains coverage criterion, is to require that every dependence-chain be exercised.
However, this is in general impossible to achieve since the number of dependence-
chains in a program may be large or even infinite in the presence of loops. In this
section we investigate the data flow oriented coverage criteria in [17, 28, 27, 32],
which capture the dependence information mainly in terms of data dependence,
and extend them with control dependence. This allows one to generate test suites
consisting of a finite and reasonable number of test sequences based on both data
dependence and control dependence.

3.1 Direct Dependences

All-Dependence-Pairs Coverage Criterion. A pair (d(x, v), u(x, v′)) is a
definition-use pair (du-pair) if there is a path vv1...vnv′ such that v1...vn is a
definition-clear path with respect to x. A test suite Π satisfies reach coverage
criterion[17] if every du-pair (d(x, v), u(x, v′)) is exercised by some test sequence
in Π.

It is straightforward to rephrase reach coverage criterion in terms of program
dependence: A test suite Π satisfies reach coverage criterion if every direct data
dependence v

x→ v′ is exercised by some test sequence in Π.
We extend reach coverage criterion with direct control dependence as follows:

A test suite Π satisfies all-dependence-pairs coverage criterion if Π satisfies reach
coverage criterion and every direct control dependence v

c→ v′ is exercised by
some test sequence in Π. In Figure 1, all-dependence-pairs coverage criterion
requires that the following direct data and control dependences be exercised.

– direct data dependences: v1
num−→ v2, v1

num−→ v6, v3
plus−→ v9, v5

plus−→ v9, v4
sign−→ v9,

v7
sign−→ v9, v8

sign−→ v9

– direct control dependences: v2
c−→ v3, v2

c−→ v4, v2
c−→ v5, v2

c−→ v6, v6
c−→ v7,

v6
c−→ v8

All-Dependence-Pairs-with-Puses Coverage Criterion. Rapps and
Weyuker’s criteria[28] extend reach coverage criterion by distinguishing between
c-uses and p-uses. A du-pair (d(x, v), u(x, v′)) is a definition-cuse pair (dcu-
pair) if u(x, v′) is a c-use. Otherwise, it is a definition-puse pair (dpu-pair). Let
(d(x, v), u(x, v′)) be a dpu-pair and v′′ be a successor of v′. A test sequence exer-
cises (d(x, v), u(x, v′), v′′) if vv1...vnv′v′′ is a subpath of the test sequence where
v1...vn is a definition-clear path with respect to x. A test suite Π satisfies all-uses
coverage criterion[28] if for every dcu-pair (d(x, v), u(x, v′)), the dcu-pair is ex-
ercised by some test sequence in Π and for every dpu-pair (d(x, v), u(x, v′)) and
every successor v′′ of v′, (d(x, v), u(x, v′), v′′) is exercised by some test sequence
in Π.

28 H.S. Hong and H. Ural

In all-uses coverage criterion, a test sequence exercising (d(x, v), u(x, v′)) re-
flects the direct data dependence v

x→ v′, whereas a test sequence exercising
(d(x, v), u(x, v′), v′′) reflects the dependence-chain v

x→ v′ c→ v′′, that is, the
direct data dependence v

x→ v′ and direct control dependence v′ c→ v′′ at the
same time.

We extend all-uses coverage criterion with direct control dependence as fol-
lows: A test suite Π satisfies all-dependence-pairs-with-puses coverage criterion
if Π satisfies all-uses coverage criterion and every direct control dependence
v

c→ v′ is exercised by some test sequence in Π. In Figure 1, all-dependence-
pairs-with-puses coverage criterion requires that the following dependences be
exercised.

– dcu-pairs: v3
plus−→ v9, v5

plus−→ v9, v4
sign−→ v9, v7

sign−→ v9, v8
sign−→ v9

– dpu-pairs: v1
num−→ v2

c−→ v3, v1
num−→ v2

c−→ v5, v1
num−→ v6

c−→ v7, v1
num−→ v6

c−→ v8

– direct control dependences: v2
c−→ v3, v2

c−→ v4, v2
c−→ v5, v2

c−→ v6, v6
c−→ v7,

v6
c−→ v8

3.2 Indirect Dependences

All-k-Dependence-Chains Coverage Criterion. While reach coverage cri-
terion and all-uses coverage criterion focus on definitions and uses of the same
variable, Ntafos’ criteria[27] emphasize interactions among different variables.
These interactions are captured in terms of sequences of du-pairs. A sequence
[(d(x1, v1), u(x1, v

′
1)) ... (d(xn, vn), u(xn, v′

n))] of du-pairs is a data flow chain (df-
chain)[32] if for every 1 ≤ i < n, v′

i = vi+1, that is, u(xi, v
′
i) and d(xi+1, vi+1)

occur at the same node and hence xi+1 is defined in terms of xi. A path
v1π1v2...vnπnv′

n is an interaction path of a df-chain if for every 1 ≤ i ≤ n, πi is
a definition-clear path with respect to xi. A test sequence exercises a df-chain
if an interaction path of the df-chain is a subpath of the test sequence. A test
suite Π satisfies required k-tuples coverage criterion if every df-chain consisting
of k′ du-pairs, 1 ≤ k′ < k, is exercised by some test sequence in Π.

We rephrase required k-tuples coverage criterion in terms of program de-
pendence: A test suite Π satisfies required k-tuples coverage criterion if every
dependence-chain consisting of k′ direct data dependences, 1 ≤ k′ < k, is ex-
ercised by some test sequence in Π. Since required k-tuples coverage criterion
is based on data dependence, it can only partially capture the dependence in-
formation. For example, consider the nodes v1 and v3 in Figure 1. Although
there is a dependence-chain v1

num−→ v2
c−→ v3 from v1 to v3, required k-tuples

coverage criterion fails to capture this dependence-chain since it contains control
dependence.

We extend required k-tuples coverage criterion with control dependence as
follows: A test suite Π satisfies all-k-dependence-chains coverage criterion if
every dependence-chain consisting of k′ direct dependences, 1 ≤ k′ < k, is
exercised by some test sequence in Π. We note that required 2-tuples coverage
criterion (resp. all-2-dependence-chains coverage criterion) is equivalent to reach
coverage criterion (resp. all-dependence-pairs coverage criterion). In Figure 1, all-

Dependence Testing: Extending Data Flow Testing with Control Dependence 29

3-dependence-chains coverage criterion requires that the following dependence-
chains be exercised1.

v1
num−→ v2

c−→ v3, v1
num−→ v2

c−→ v4, v1
num−→ v2

c−→ v5, v1
num−→ v2

c−→ v6,
v1

num−→ v6
c−→ v7, v1

num−→ v6
c−→ v8,

v2
c−→ v3

plus−→ v9, v2
c−→ v4

sign−→ v9, v2
c−→ v5

plus−→ v9, v2
c−→ v6

c−→ v7,
v2

c−→ v6
c−→ v8,

v6
c−→ v7

sign−→ v9, v6
c−→ v8

sign−→ v9

Let [(d(x1, v1), u(x1, v
′
1)) ... (d(xn, vn), u(xn, v′

n))] be a df-chain. We have that
u(xi, v

′
i) is a c-use for every 1 ≤ i < n and the last use u(xn, v′

n) may be either
a c-use or p-use. By distinguishing between c-uses and p-uses, all-k-dependence-
chains-with-puses coverage criterion may be defined. Due to space limit this
coverage criterion will not be pursued in this paper.

All-IO-Dependence-Chains Coverage Criterion. Ural et al.’s coverage
criteria[32, 33] also emphasize interactions among different variables. While re-
quired k-tuples coverage criterion considers df-chains consisting of a fixed num-
ber of du-pairs, all-IO-df-chains coverage criterion in [32, 33] considers df-chains
consisting of an arbitrary (but finite) number of du-pairs which start with inputs
and end with outputs. In this paper, we define an input as a definition occurring
at an input statement and output as a use occurring at an output statement. For
example, in Figure 1, there are one input d(num, v1) and two outputs u(plus, v9)
and u(sign, v9). The rationale here is to capture the functionality of a module
in terms of the interactions with its environment by identifying the effects of
inputs accepted from the environment on outputs offered to the environment.
Since the number of df-chains from an input to an output may be infinite, we
consider only simple df-chains that are allowed to have at most one occurrence
of each du-pair. A test suite Π satisfies all-IO-df-chains coverage criterion if for
every input i, every output o, and every simple df-chain from i to o, the df-chain
is exercised by some test sequence in Π.

As is done by required k-tuples coverage criterion, all-IO-df-chains coverage
criterion also partially captures the dependence information in terms of only data
dependence. For example, consider the input d(v1, num) and output u(v9, plus)
in Figure 1. There are several dependence chains from v1 to v9, say v1

num−→
v2

c−→ v3
plus−→ v9, but all-IO-df-chains coverage criterion fails to capture those

dependence-chains since they contain control dependence.
We extend all-IO-df-chains coverage criterion with control dependence as

follows: A test suite Π satisfies all-IO-dependence-chains coverage criterion if
for every input i, every output o, and every simple dependence-chain from i to
o, the dependence-chain is exercised by some test sequence in Π. In Figure 1, all-
IO-dependence-chains coverage criterion requires that the following dependence-
chains be exercised.

v1
num−→ v2

c−→ v3
plus−→ v9, v1

num−→ v2
c−→ v4

sign−→ v9, v1
num−→ v2

c−→ v5
plus−→ v9,

1 Dependence-chains consisting of one direct dependence are not shown.

30 H.S. Hong and H. Ural

v1
num−→ v2

c−→ v6
c−→ v7

sign−→ v9, v1
num−→ v2

c−→ v6
c−→ v8

sign−→ v9,

v1
num−→ v6

c−→ v7
sign−→ v9, v1

num−→ v6
c−→ v8

sign−→ v9

3.3 The Relationships Among Coverage Criteria

For two coverage criteria C1 and C2, C1 subsumes C2 if every test suite satisfy-
ing C1 also satisfies C2[28]. By definition, the four data flow oriented coverage
criteria considered in this section are subsumed by their dependence oriented
counterparts. For the other direction, the data flow oriented coverage criteria
except all-uses coverage criterion do not subsume their counterparts.

It is interesting to investigate the relationship between all-uses coverage cri-
terion and all-dependence-pairs-with-puses coverage criterion. Let AP be the set
of arcs starting from a node representing a predicate and AC be the set of arcs
(v, v′) such that v directly control-affects v′. For example, in Figure 1,

AP = {(v2, v3), (v2, v5), (v6, v7), (v6, v8)} and
AC = {(v2, v3), (v2, v4), (v2, v5), (v2, v6), (v6, v7), (v6, v8)}.

It is not hard to see that a test suite exercises every arc in AP if and only if
the test suite exercises every arc in AC . Hence it follows that all-uses coverage
criterion and all-dependence-pairs-with-puses coverage criterion subsume each
other and hence they are equivalent with respect to the subsume relation.

One of the limitations of the subsume relation is that it does not always
guarantee a better fault-detecting ability, that is, C1 subsumes C2 but there
are test suites that satisfy C2 that expose faults while test suites that satisfy
C1 do not expose any faults. The cover and properly cover relations in [13]
address this limitation. For a coverage criterion C, let SD(C) be the multiset
of subdomains such that C requires the selection of one or more input values
from each subdomain in SD(C). C1 covers C2 if for every subdomain D ∈
SD(C2), there is a collection {D1, ...,Dn} in SD(C1) such that D1 ∪ ... ∪ Dn =
D. Roughly speaking, C1 properly covers C2 if C1 covers C2 and, in addition,
the number of times a subdomain D1 in SD(C1) is used to characterize the
subdomains in SD(C2) is at most the number of times D1 appears in SD(C1).
It is not hard to see that if SD(C1) is a superset of SD(C2), then C1 covers
C2 and C1 properly covers C2. We have that the multisets of subdomains for
the dependence oriented coverage criteria defined in this section are supersets of
those for their data flow oriented counterparts. Hence the dependence oriented
coverage criteria cover and properly cover their data flow oriented counterparts
but not vice versa.

4 Test Generation

This section shows how test generation for dependence testing can be formulated
in the temporal logics LTL and CTL. We restrict ourselves to a fragment of LTL
consisting of guarantee formulas. An LTL formula is a guarantee formula if there
is a finite path π such that for every infinite path π′, π · π′ satisfies the formula.

Dependence Testing: Extending Data Flow Testing with Control Dependence 31

The finite prefix π is called a witness of the formula. Intuitively, it is sufficient to
use a finite path to explain the success of a guarantee formula while we need an
infinite path for a general LTL formula. For a set F of guarantee formulas and a
set Π of finite paths, we say that Π is a witness-set of F if for every formula f
in F , there is a finite path in Π that is a witness of f . In the following sections,
we show that test generation for dependence oriented coverage criteria can be
reduced to the problem of finding a witness-set of guarantee formulas.

4.1 Direct Dependences

All-Dependence-Pairs Coverage Criterion. Let def (x) be the disjunction
of nodes at which x is defined. For example, in Figure 1, def (num) ::= v1,
def (plus) ::= v3∨v5, and def (sign) ::= v4∨v7∨v8. For a direct data dependence
v

x→ v′, we associate an LTL formula defined by

ltl(v x→ v′) = F(v ∧ X[¬def (x)U(v′ ∧ Fvf)])

with the property that a finite path π is a test sequence exercising v
x→ v′ if

and only if there are 0 ≤ i < j ≤ k such that π(i) |= v, π(l) |= ¬def (x) for
i < l < j, π(j) |= v′, and π(k) |= vf if and only if π is a witness of ltl(v x→ v′).
For example, consider the direct data dependence v1

num−→ v6 in Figure 1. A test
sequence exercising v1

num−→ v6 is shown in Figure 2, which is also a witness of
F(v1 ∧ X[¬def (num)U(v6 ∧ Fv9)]).

����
v1

d(num, v1)

�����
v2

¬def (num)

�����
v5

¬def (num)

�����
v6

u(num, v6)

�����
v7 �����

v9

v9

Fig. 2. A test sequence exercising v1
num−→ v6

For a direct control dependence v
c→ v′, we associate an LTL formula defined

by

ltl(v c→ v′) = F(v ∧ XF(v′ ∧ Fvf))

with the property that a finite path π is a test sequence exercising v
c→ v′ if and

only if there are 0 ≤ i < j ≤ k such that π(i) |= v, π(j) |= v′, and π(k) |= vf if
and only if π is a witness of the LTL formula ltl(v c→ v′). For example, consider
the direct control dependence v2

c−→ v6 in Figure 1. A test sequence exercising
v2

c−→ v6 is shown in Figure 3, which is also a witness of F(v2 ∧XF(v6 ∧Fv9)).
We characterize all-dependence-pairs coverage criterion in terms of witness-

sets. A test suite Π satisfies all-dependence-pairs coverage criterion if and only
if Π is a witness-set of

⋃

v
x→v′

ltl(v x→ v′) ∪
⋃

v
c→v′

ltl(v c→ v′).

32 H.S. Hong and H. Ural

����
v1 �����

v2

v2

�����
v5 �����

v6

v6

�����
v7 �����

v9

v9

Fig. 3. A test sequence exercising v2
c−→ v6

CTL can also be used in the characterization of dependence oriented coverage
criteria. A finite path is a witness of ltl(v x→ v′) if and only if the finite path is
a witness of the CTL formula defined by

ctl(v x→ v′) = EF(v ∧ EX[¬def (x)U(v′ ∧ EFvf)]).

A finite path is a witness of ltl(v c→ v′) if and only if the finite path is a
witness of the CTL formula defined by

ctl(v c→ v′) = EF(v ∧ EXEF(v′ ∧ EFvf)).

All-Dependence-Pairs-with-Puses Coverage Criterion. For a dependence
chain v

x→ v′ c→ v′′, we associate an LTL formula defined by

ltl(v x→ v′ c→ v′′) = F(v ∧ X[¬def (x)U(v′ ∧ XF(v′′ ∧ Fvf))])

and a CTL formula defined by

ctl(v x→ v′ c→ v′′) = EF(v ∧ EX[¬def (x)U(v′ ∧ EXEF(v′′ ∧ EFvf))]).

A test suite Π satisfies all-dependence-pairs-with-puses coverage criterion if
and only if Π is a witness-set of

⋃

v
x→v′

ltl(v x→ v′) ∪
⋃

v
x→v′ c→v′′

ltl(v x→ v′ c→ v′′) ∪
⋃

v
c→v′

ltl(v c→ v′).

4.2 Indirect Dependences

All-k-Dependence-Chains Coverage Criterion. For a dependence-chain κ,
we associate an LTL formula defined by

– ltl(κ) = Fltl(κ),
– if κ is v

x→ v′, then ltl(κ) = (v ∧ X[¬def (x)U(v′ ∧ Fvf)]),
– if κ is v

c→ v′, then ltl(κ) = (v ∧ XF(v′ ∧ Fvf)),
– if κ is v

x→ v′ · κ′, then ltl(κ) = (v ∧ X[¬def (x)Ultl(κ′)]),
– if κ is v

c→ v′ · κ′, then ltl(κ) = (v ∧ XF(v′ ∧ Fltl(κ′))).

The CTL formula ctl(κ) is defined in a similar way.

– ctl(κ) = EFctl(κ),
– if κ is v

x→ v′, then ctl(κ) = (v ∧ EX[¬def (x)U(v′ ∧ EFvf)]),
– if κ is v

c→ v′, then ctl(κ) = (v ∧ EXEF(v′ ∧ EFvf)),

Dependence Testing: Extending Data Flow Testing with Control Dependence 33

– if κ is v
x→ v′ · κ′, then ctl(κ) = (v ∧ EX[¬def (x)Uctl(κ′)]),

– if κ is v
c→ v′ · κ′, then ctl(κ) = (v ∧ EXEF(v′ ∧ EFctl(κ′))).

By induction on the number of du-pairs in κ, it can be shown that a finite path
is a test sequence exercising a df-chain κ if and only if the finite path is a witness
of ltl(κ) if and only if the finite path is a witness of ctl(κ).

A test suite Π satisfies all-k-dependence-chains coverage criterion if and only
if Π is a witness-set of

⋃

κ∈DC(1)∪...∪DC(k−1)

ltl(κ)

where DC(n) is a set of dependence-chains consisting of n direct dependences.

All-IO-Dependence-Chains Coverage Criterion. A test suite Π satisfies
all-IO-dependence-chains coverage criterion if Π is a witness-set of

⋃

i

⋃

o

⋃

κ∈SDC(i,o)

ltl(κ)

where SDC(i, o) is a set of simple dependence-chains from input i to output o.

5 Test Reduction

This section shows how the problem of test reduction for dependence testing can
be formulated as the LTL model checking problem.

5.1 Subsumption Graph

For a flow graph G and a coverage criterion C, E(G,C) is the set of entities of G
required to be exercised by C. A subset of E(G,C) is a spanning set if exercising
every entity in the subset guarantees exercising every entity in E(G,C). Hence
a test suite exercises every entity in a spanning set if and only if the test suite
satisfies the coverage criterion. A minimum spanning set is a spanning set S such
that |S| ≤ |S′| for every spanning set S′. The central notion used in constructing
a minimum spanning set is subsumption relation. An entity subsumes another
entity if a test sequence exercising the former also exercises the latter. Once
we have a test sequence exercising an entity, we do not need to generate test
sequences exercising the entities subsumed by the entity. In addition, if an entity
is not subsumed by any other entities, a test sequence exercising the entity should
be generated.

We construct a minimum spanning set using subsumption graph and reduced
subsumption graph. For a flow graph G and a coverage criterion C, the subsump-
tion graph is (E(G,C), SR) where SR is the subsumption relation between the
entities in E(G,C). Note that the subsumption relation SR is not a partial or-
der and hence subsumption graphs may have strongly connected components. A

34 H.S. Hong and H. Ural

reduced subsumption graph is a directed acyclic graph obtained by collapsing
each strongly connected component of a subsumption graph into one node. Let
v1, ..., vn be the nodes of the reduced subsumption graph that have no incoming
arcs, that is, the nodes that are not subsumed by any other nodes. Let V1, ..., Vn

be the strongly connected components corresponding to v1, ..., vn, respectively.
A minimum spanning set is {v′

1, ..., v
′
n} such that v′

i ∈ Vi for every 1 ≤ i ≤ n.
Figure 4 shows an algorithm for finding a subsumption graph in a generic

fashion without being specific about any coverage criteria. For every pair (e, e′)
of entities, we determine whether e subsumes e′ by model-checking the LTL
formula ltl(e) → ltl(e′) against the flow graph G, where ltl(e) and ltl(e′) are
the LTL formulas associated with e and e′, respectively. The correctness of the
algorithm can be understood as follows. Let e, e′ ∈ E(G,C). e subsumes e′ if and
only if for every finite path π, π is a test sequence exercising e implies π is a test
sequence exercising e′ if and only if for every finite path π, π is a witness of ltl(e)
implies π is a witness of ltl(e′) if and only if for every finite path π, π is a witness
of ltl(e) → ltl(e′) if and only if for every infinite path π, π |= ltl(e) → ltl(e′) if
and only if G |= ltl(e) → ltl(e′).

Input: a flow graph G and a coverage criterion C
Output: the subsumption graph (E(G, C), SR)

1: construct the set E(G, C) of entities of G required by C;
2: SR := ∅;
3: for every pair (e, e′), e, e′ ∈ E(G, C), e �= e do
4: model check ltl(e) → ltl(e′) against G;
5: if G |= ltl(e) → ltl(e′) then /* e subsumes e′ */
6: SR := SR ∪ {(e, e′)};
7: return (E(G, C), SR);

Fig. 4. An algorithm for constructing a subsumption graph

For example, consider all-dependence-pairs coverage criterion in Figure 1.
The set of entities required to be covered are shown in Figure 5.(a). By model-
checking the formula ltl(e) → ltl(e′) for every pair (e, e′) of entities, we con-
struct the subsumption graph. We then construct the reduced subsumption
graph by collapsing each strongly connected component in the subsumption
graph into one node. Figure 5.(b) shows the reduced subsumption graph. Fi-
nally we construct a minimum spanning set by selecting one entity from each of
the strongly connected components {v3

plus−→ v9, v4
sign−→ v9, v2

c−→ v3, v2
c−→ v4},

{v7
sign−→ v9, v6

c−→ v7}, and {v8
sign−→ v9, v6

c−→ v8} that have no incoming arcs.

5.2 Subsumption Forest

In the above algorithm, the total number of model checking performed is
O(|E(G,C)|2) both in the best case and worst case. Note that the subsump-
tion graph is used to identify all possible minimum spanning sets. If we are only

Dependence Testing: Extending Data Flow Testing with Control Dependence 35

v1
num−→ v2

v1
num−→ v6

v3
plus−→ v9

v5
plus−→ v9

v4
sign−→ v9

v7
sign−→ v9

v8
sign−→ v9

v2
c−→ v3

v2
c−→ v4

v2
c−→ v5

v2
c−→ v6

v6
c−→ v7

v6
c−→ v8

�� ��v1
num−→ v2

�� ��

�
�

�
	

v3
plus−→ v9, v4

sign−→ v9,

v2
c−→ v3, v2

c−→ v4

�
�

�
	

v1
num−→ v6, v5

plus−→ v9,

v2
c−→ v5, v2

c−→ v6

�� ��

�
�

�
	

v7
sign−→ v9,

v6
c−→ v7

�
�

�
	

v8
sign−→ v9,

v6
c−→ v8

(a) E(G, C) (b) reduced subsumption graph

Fig. 5. The reduced subsumption graph for Figure 1 and all-dependence-pairs coverage

criterion

interested in one minimum spanning set rather than all possible ones, we can
significantly reduce the total number of model checking to O(|E(G,C)|) in the
best case using the new algorithm shown in Figure 6. The intuition behind the
algorithm is that if ei subsumes ej (Line 10) then we do not consider ej any
more between Lines 5 and 12, which reduces the number of model checking that
needs to be performed. It is not hard to see that the result of the new algorithm
is a spanning forest of the subsumption graph (E(G,C), SR). Moreover, the root
nodes of the spanning forest comprise a minimum spanning set.

Figure 7 shows a subsumption forest for Figure 1 and all-dependence-pairs
coverage criterion. We construct a minimum spanning set by finding the root
nodes of the subsumption forest: {v3

plus−→ v9, v7
sign−→ v9, v8

sign−→ v9}.

Input: a flow graph G and a coverage criterion C
Output: a spanning forest (E(G, C), SF)

1: let E(G, C) be {e1, ..., en};
2: SF := ∅;
3: for i := 1 to n do
4: marked[i] := false;
5: for i := 1 to n do
6: if marked[i] = false then
7: for j := 1 to n, j �= i do
8: if marked[j] = false then
9: model check ltl(ei) → ltl(ej) against G;
10: if G |= ltl(ei) → ltl(ej) then /* ei subsumes ej */
11: SF := SF ∪ {(ei, ej)};
12: marked[j] := true;
13: return (E(G, C), SF);

Fig. 6. An algorithm for constructing a spanning forest

36 H.S. Hong and H. Ural

�� ��v1
num−→ v2

� �

�� ��v3
plus−→ v9

����	

��� ��v4

sign−→ v9

�� ��v2
c−→ v3

�� ��v2
c−→ v4

�� ��v1
num−→ v6

����	

��� ��v5

plus−→ v9

�� ��v2
c−→ v5

�� ��v2
c−→ v6

� �

�� ��v7
sign−→ v9

��� ��v6
c−→ v7

�� ��v8
sign−→ v9

��� ��v6
c−→ v8

Fig. 7. The subsumption forest for Figure 1 and all-dependence-pairs coverage criterion

6 Conclusions and Future Work

We have presented an approach to structural testing, called dependence test-
ing. For test coverage, we have extended data flow oriented coverage criteria
with control dependence in order to capture the dependence information of a
program or specification in terms of both data dependence and control depen-
dence. For test generation, we have showed that dependence oriented coverage
criteria can be characterized in temporal logic in such a way that test gen-
eration can be reduced to the problem of finding witnesses for LTL or CTL
formulas. For test reduction, we have showed that the LTL-based characteri-
zation can also be used for reducing the cost of dependence testing. It will be
interesting to empirically study the extent to which dependence testing actu-
ally provides tests which are more effective at identifying errors, provides bet-
ter reliability for programs under test, or exhibits a better cost ratio for test
development.

Our approach can be applied to more accurate models of programs. Tradi-
tionally, test generation has been performed upon flow graphs. Since a flow graph
preserves only the control flow and ignores the values of data variables, it is often
the case that the size of state space is not a concern. However, test generation
is increasingly performed upon more accurate models that respect the values of
data variables such as reachability graphs and abstract state graphs obtained
by abstract interpretation. In this case, the size of state space is the primary
concern and model checking has been proven to be effective for controlling the
state explosion problem. We plan to conduct case studies to see how large and
complex programs can be handled by our approach when reachability graphs or
abstract state graphs are used.

Our approach can also be applied to requirements specifications written in
state-based specification languages such as extended finite state machines, stat-
echarts, and SDL. Test generation for such specifications is very different from
that for programs since the specification languages typically provide a rich set

Dependence Testing: Extending Data Flow Testing with Control Dependence 37

of language constructs for modeling hierarchy, concurrency, and communica-
tions. Our approach is language-independent in the sense that the temporal
logic formulas employed in the approach can be immediately used for vari-
ous specification languages. In fact, the differences among specification lan-
guages (for example, synchronous computational model in statecharts versus
asynchronous computational model in SDL and communications through event
broadcasting in statecharts versus communications through message queues in
SDL) only affect the rules for translating specifications into input to model
checkers.

Acknowledgments

This research is supported in part by Natural Sciences and Engineering Research
Council (NSERC) of Canada under grant RGPIN 976.

References

1. H. Agrawal, “Dominators, Super Blocks, and Program Coverage,” Proceedings of
the 21st ACM Symposium on Principles of Programming Languages, pp. 25-34,
1994.

2. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers, Principles, Techniques, and
Tools, Addision-Wesley, 1986.

3. P. Ammann, P. Black, and W. Majurski, “Using Model Checking to Generate Tests
from Specifications,” in Proceedings of the 2nd IEEE International Conference on
Formal Engineering Methods, pp. 46-54, 1998.

4. A. Bertolino, “Unconstrained Edges and Their Application to Branch Analysis and
Testing of Programs,” The Journal of Systems and Software, 20(2):125-133, Feb.
1993.

5. A. Bertolino and M. Marré, “Automatic Generation of Path Covers Based on the
Control Flow Analysis of Computer Programs,” IEEE Transactions on Software
Engineering, 20(12):885-899, Dec. 1994.

6. A. Bertolino and M. Marré, “How Many Paths are Needed for Branch Testing?”
The Journal of Systems and Software, 35(2):95-106, Nov. 1996.

7. D. Beyer, A.J. Chlipala, T.A. Henzinger, R. Jhala, and R. Majumdar, “Generating
Tests from Counterexamples,” Proceedings of the 26th International Conference on
Software Engineering, pp. 326-335, 2004.

8. T. Chusho, “Test Data Selection and Quality Estimation Based on the Concept of
Essential Branches for Path Testing,” IEEE Transactions on Software Engineering,
13(5):509-517, May 1987.

9. E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking, The MIT Press, 1999.

10. L.A. Clarke, A. Podgurski, D.J. Richardson, and S.J. Zeil, “A Formal Evaluation of
Data Flow Path Selection Criteria,” IEEE Transactions on Software Engineering,
15(11):1318-1332, Nov. 1989.

11. R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, and C. Bourhfir, “Test Devel-
opment for Communication Protocols: towards Automation,” Computer Networks,
31(7):1835-1872, June 1999.

38 H.S. Hong and H. Ural

12. A. Engels, L. Feijs, and S. Mauw, “Test Generation for Intelligent Networks Using
Model Checking,” in TACAS ’97, Vol. 1217 of LNCS, pp. 384-398, Springer-Verlag,
1997.

13. P.G. Frankl and E.J. Weyuker, “A Formal Analysis of the Fault-Detecting Ability
of Testing Methods,” IEEE Transactions on Software Engineering, 19(3):202-213,
Mar. 1993.

14. A. Gargantini and C. Heitmeyer, “Using Model Checking to Generate Tests from
Requirements Specifications,” in Proceedings of ESEC/FSE ’99 pp. 146-162, 1999.

15. R. Gupta and M.L. Soffa, “Employing Static Information in the Generation of Test
Cases,” Software Testing, Verification and Reliability, 3(1):29-48, 1993.

16. M.P. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and J. Gao, “Auto-
Generating Test Sequences Using Model Checkers: A Case Study,” Proceedings
of the 3th International Workshop on Formal Approaches to Testing of Software,
Vol. 2931 of LNCS, pp. 44-62, Springer, 2003.

17. P.M. Herman, “A Data Flow Approach to Program Testing,” Australian Computer
Journal, 8(3):92-96, Nov. 1976.

18. G.J. Holzmann, “The Model Checker SPIN,” IEEE Transactions on Software En-
gineering, Vol. 23, No. 5, pp. 279-295, May 1997.

19. H.S. Hong, Y.G. Kim, S.D. Cha, D.H. Bae, and H. Ural, “A Test Sequence Selection
Method for Statecharts,” Journal of Software Testing, Verification, and Reliability,
10(4):203-227, Dec. 2000.

20. H.S. Hong, I. Lee, O. Sokolsky, and H. Ural, “A Temporal Logic Based Theory
of Test Coverage and Generation,” TACAS ’02, Vol. 2280 of LNCS, pp. 327-341,
Springer, 2002.

21. H.S. Hong, S.D. Cha, I. Lee, O. Sokolsky, and H. Ural, “Data Flow Testing as
Model Checking,” Proceedings of the 25th International Conference on Software
Engineering, pp. 232-242, 2003.

22. H.S. Hong and H. Ural, “Using Model Checking for Reducing the Cost of Test
Generation,” Proceedings of the 4th International Workshop on Formal Approaches
to Testing of Software, LNCS, Springer, 2004.

23. J.W. Laski and B. Korel, “A Data Flow Oriented Program Testing Strategy,” IEEE
Transactions on Software Engineering, 9(5):347-354, May 1983.

24. M. Marré and A. Bertolino, “Unconstrained Duas and Their Use in Achieving All-
uses Coverage,” Proceedings of the International Symposium on Software Testing
and Analysis, pp. 147-157, 1996.

25. M. Marré and A. Bertolino, “Reducing and Estimating the Cost of Test Coverage
Criteria,” Proceedings of the 18th International Conference on Software Engineer-
ing, pp. 486-494, 1996.

26. K.L. McMillan, Symbolic Model Checking − an Approach to the State Explosion
Problem, Kluwer Academic Publishers, 1993.

27. S.C. Ntafos, “On Required Element Testing,” IEEE Transactions on Software En-
gineering, 10(11):795-803, Nov. 1984.

28. S. Rapps and E.J. Weyuker, “Selecting Software Test Data Using Data Flow Infor-
mation,” IEEE Transactions on Software Engineering, 11(4):367-375, Apr. 1985.

29. S. Rayadurgam and M.P. Heimdahl, “Coverage Based Test Generation Using
Model Checkers,” Proceedings of the 8th Annual IEEE International Conference
on the Engineering of Computer Based Systems, pp. 83-91, 2001.

30. A. Podgurski and L.A. Clarke, “A Formal Model of Program Dependences and Its
Implications for Software Testing, Debugging, and Maintenance,” IEEE Transac-
tions on Software Engineering, 16(9):965-979, Sept. 1990.

Dependence Testing: Extending Data Flow Testing with Control Dependence 39

31. H. van der Schoot and H. Ural, “Data Flow Oriented Test selection for LOTOS,”
Computer Networks, 27(7):1111-1136, 1995.

32. H. Ural and B. Yang, “A Test Sequence Generation Method for Protocol Testing,”
IEEE Transactions on Communications, 39(4):514-523, Apr. 1991.

33. H. Ural, K. Saleh, and A. Williams, “Test Generation Based on Control and Data
Dependencies within System Specifications in SDL,” Computer Communications,
23(7):609-627, Mar. 2000.

34. H. Zhu, P.A. Hall, and J.H.R. May, “Software Unit Test Coverage and Adequacy,”
ACM Computing Surveys, 29(4):366-427, Dec. 1997.

Comparing Bug Finding Tools with Reviews and
Tests�

Stefan Wagner1, Jan Jürjens1, Claudia Koller1, and Peter Trischberger2

1 Institut für Informatik,
Technische Universität München,

Boltzmannstr. 3, D-85748 Garching, Germany
2 O2 Germany, Georg-Brauchle-Ring 23-25,

D-80992 Munich, Germany

Abstract. Bug finding tools can find defects in software source code us-
ing an automated static analysis. This automation may be able to reduce
the time spent for other testing and review activities. For this we need to
have a clear understanding of how the defects found by bug finding tools
relate to the defects found by other techniques. This paper describes a
case study using several projects mainly from an industrial environment
that were used to analyse the interrelationships. The main finding is that
the bug finding tools predominantly find different defects than testing
but a subset of defects found by reviews. However, the types that can
be detected are analysed more thoroughly. Therefore, a combination is
most advisable if the high number of false positives of the tools can be
tolerated.

1 Introduction

Software failures can have enormous consequences in terms of threatening peo-
ples lives as well as economic loss because various critical systems rely on soft-
ware. Furthermore, software becomes increasingly complex, which makes the
prevention of failures even more difficult. However, software quality assurance
accounts already for around 50% of the development time [13]. Therefore it is
important to improve defect-detection techniques as well as reduce their costs.
Automation can be an option in that direction. For example, automated test-case
generation based on executable models is also under investigation as a possibility
to make testing more efficient [16].

Extensive research has been done on finding defects in code by automated
static analysis using tools called bug finding tools, e.g. [1, 7, 8]. Although the
topic is subject of ongoing investigations, there are only few studies about how
these tools relate among themselves and to other established defect-detection
techniques such as testing or reviews.

� This research was supported in part by the Deutsche Forschungsgemeinschaft (DFG)
within the project InTime.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 40–55, 2005.
c© IFIP 2005

Comparing Bug Finding Tools with Reviews and Tests 41

We will now discuss the problem situation in more detail. We briefly define
the terms we use in the following: Failures are a perceived deviation of the output
values from the expected values whereas faults are the cause of failures in code
or other documents. Both are also referred to as defects. We mainly use defect
in our analyses also if there are no failures involved as with defects related to
maintenance only.

Problem. We address the question of how automated static analysis using bug
finding tools relates to other types of defect-detection techniques and if it is
thereby possible to reduce the effort for defect-detection using such tools. In
detail, this amounts to three questions.

1. Which types and classes of defects are found by different techniques?
2. Is there any overlap of the found defects?
3. How large is the ratio of false positives from the tools?

Results. The main findings are summarised in the following.

1. Bug finding tools detect a subset of the defect types that can be found by a
review.

2. The types of defects that can be found by the tools can be analysed more
thoroughly, that is, the tools are better regarding the bug patterns they are
programmed for.

3. Dynamic tests find completely different defects than bug finding tools.
4. Bug finding tools have a significant ratio of false positives.
5. The bug finding tools show very different results in different projects.

Consequences. The results have four major implications.

1. Dynamic tests or reviews cannot be substituted by bug finding tools because
they find significantly more and different defect types.

2. Bug finding tools can be a good pre-stage to a review because some of the
defects do not have to be manually detected. A possibility would be to mark
problematic code so that it cannot be overlooked in the review.

3. Bug finding tools can only provide a significant reduction in the effort neces-
sary for defect-detection if their false positives ratios can be reduced. From
our case studies, we find the current ratios to be not yet completely accept-
able.

4. The tools have to be more tolerant regarding the programming style and
design to provide more uniform results in different projects.

Experimental Setup. Five industrial projects and one development project from
a university environment were selected which are either already in use or in the
final testing phase. We evaluated several bug finding tools and chose three repre-
sentatives that were usable for the distributed web systems under consideration.
The bug finding tools and dynamic tests were used on all projects. A review was
only possible for a single project. The warnings issued from the tools were anal-
ysed with experienced developers to classify them as true and false positives. All
defects that were found were classified regarding their severity and defect types.
The comparison was done based on this classification.

42 S. Wagner et al.

Contribution. We are not aware of studies that compare the defects found by
bug finding tools with the defects found by other techniques, in particular not
of any based on several, mainly industrial, projects. A main contribution is also
a thorough analysis of the ratio of false positives of the bug finding tools as this
is a significant factor in the usability of these tools.

Organisation. Sec. 2 gives an overview of bug finding tools in general (Sec. 2.1)
and the three tools that were used in the projects (Sec. 2.2). The projects are de-
scribed in Sec. 3 with general characteristics in Sec. 3.1 and specific descriptions
in Sec. 3.2. The approach for the comparison of the techniques can be found in
Sec. 4 with a general discussion in Sec. 4.1, the defect classification in Sec. 4.2,
and the introduction of the defect types in Sec. 4.3. The analysis of the study is
described in Sec. 5 with the comparison among the bug finding tools in Sec. 5.1,
bug finding tools versus reviews in Sec. 5.2, bug finding tools versus testing in
Sec. 5.3, and the defect removal efficiensies in Sec. 5.4. We discuss our findings
in Sec. 6 and describe related work in Sec. 7. Finally, we conclude in Sec. 8 and
sketch intended future work in Sec. 9.

2 Bug Finding Tools

This section provides an introduction to bug finding tools in general and de-
scribes briefly the three tools that were used in the case study.

2.1 Basics

Bug finding tools are a class of programs that aim to find defects in code by
static analysis similarly to a compiler. The results of such a tool are, however,
not always real defects but can be seen as a warning that a piece of code is critical
in some way. There are various techniques to identify such critical code pieces.
The most common one is to define typical bug patterns that are derived from
experience and published common pitfalls in a certain programming language.
Furthermore, coding guidelines and standards can be checked to allow a better
readability. Also, more sophisticated analysis techniques based on the dataflow
and controlflow are used. Finally, additional annotations in the code are intro-
duced by some tools [7] to allow an extended static checking and a combination
with model checking.

2.2 Analysed Tools

The three bug finding tools that we used for the comparison are described in
the following. We only take tools into account that analyse Java programs be-
cause the projects we investigated, as described below, are all written in that
language. All three tools are published under an open source license. We used
these three tools as representatives for tools that mainly use bug patterns, coding
standards, and dataflow analysis, respectively. We deliberately ignored tools that
need annotations in the code because they have quite different characteristics.

Comparing Bug Finding Tools with Reviews and Tests 43

FindBugs. The tool FindBugs was developed at the University of Maryland and
can detect potentially problematic code fragments by using a list of bug patterns.
It can find faults such as dereferencing null-pointers or unused variables. To some
extent, it also uses dataflow analysis for this. It analyses the software using the
bytecode in contrast to the tools described in the following. The tool is described
in detail in [8]. We used the Version 0.8.1 in our study.

PMD. This tool [15] concentrates on the source code and is therefore especially
suitable to enforce coding standards. It finds, for example, empty try/catch
blocks, overly complex expressions, and classes with high cyclomatic complexity.
It can be customised by using XPath expressions on the parser tree. The version
1.8 was used.

QJ Pro. The third tool used is described in [17] and analyses also the source
code. It supports over 200 rules including ignored return values, too long variable
names, or a disproportion between code and commentary lines. It is also possible
to define additional rules. Furthermore, checks based on code metrics can be
used. The possibility to use various filters is especially helpful in this tool. We
evaluated version 2.1 in this study.

3 Projects

We want to give a quick overview of the five projects we analysed to evaluate
and compare bug finding tools with other defect-detection techniques.

3.1 General

All but one of the projects chosen are development projects from the telecommu-
nications company O2 Germany for backend systems with various development
efforts and sizes. One project was done by students at the Technische Universität
München. All these projects have in common that they were developed using the
Java programming language and have an interface to a relational database sys-
tem. The O2 projects furthermore can be classified as web information systems
as they all use HTML and web browsers as their user interface.

3.2 Analysed Projects

The projects are described in more detail in [12]. For confidentiality reasons, we
use the symbolic names A through D for the industrial projects.

Project A. This is an online shop that can be used by customers to buy products
and also make mobile phone contracts. It includes complex workflows depending
on the various options in such contracts. The software has been in use for six
months. It consists of 1066 Java classes that consist of over 58 KLOC (kilo lines
of code).

44 S. Wagner et al.

Project B. The software allows the user to pay goods bought over the Internet
using a mobile phone. The payment is added to the mobile bill. For this, the
client sends the mobile number to the shop and receives a transaction number
(TAN) via short message service (SMS). This TAN is used to authenticate the
user and authorises the shop to bill the user. The software has not been put into
operation at the time of the study. Software B has 215 Java classes with over 24
KLOC in total.

Project C. This is a web-based frontend for managing a system that is used to
convert protocol files between different formats. The tool analysed only interacts
with a database that holds administration information for that system. The
software was three months in use at the time it was analysed. It consists of over
3 KLOC Java and JSP code.

Project D. The client data of O2 is managed in the system we call D. It is a
J2EE application with 572 classes, over 34 KLOC and interfaces to various other
systems of O2.

EstA. The only non-industrial software that we used in this case study is EstA.
It is an editor for structuring textual requirements developed during a practical
course at the Technische Universität München. It is a Java-based software using
a relational database management system. The tool has not been extensively
used so far. It has 28 Java classes with over 4 KLOC.

4 Approach

In this section, the approach of the case study is described. We start with the
general description and explain the defect classification and defect types that
are used in the analysis.

4.1 General

We use the software of the five projects introduced in Sec. 3 to analyse the
interrelations between the defects found by bug finding tools, reviews, and tests.
For this, we applied each of these techniques to each software as far as possible.
While a review was only made on project C, black-box as well as white-box tests
were done on all projects. We ran the bug finding tools with special care to be
able to compare the tools as well. To have a better possibility for comparison
with the other techniques, we also checked each warning from the bug finding
tools if it is a real defect in the code or not. This was done by an inspection of
the corresponding code parts together with experienced developers. The usage of
the techniques was completely independent, that is, the testing and the review
was not guided by results from the bug finding tools.

The external validity is limited in this case study. Although we mostly con-
sidered commercially developed software that is in actual use, we only analysed

Comparing Bug Finding Tools with Reviews and Tests 45

five systems. For better results more experiments are necessary. Furthermore,
the tests on the more mature systems, i.e. the ones that are already in use, did
not reveal many faults. This can also limit the validity. Moreover, the data from
only one review is not representative but can only give a first indication. Finally,
we only analysed three bug finding tools, and these are still under development.
The results might be different if other tools would have been used.

In the following we call all the warnings that are generated by the bug finding
tools positives. True positives are warnings that are actually confirmed as defects
in the code, false positives are wrong identifications of problems.

4.2 Defect Categorisation

For the comparison, we use a five step categorisation of the defects using their
severity. Hence, the categorisation is based on the effects of the defects rather
than their cause or type of occurrence in the code. We use a standard categori-
sation for severity that is slightly adapted to the defects found in the projects.
Defects in category 1 are the severest, the ones in category 5 have the lowest
severity. The categories are:

1. Defects that lead to a crash of the application. These are the most severe
defects that stop the whole application from reacting to any user input.

2. Defects that cause a logical failure. This category consists of all defects that
cause a logical failure of the application but do not crash it, for example a
wrong result value.

3. Defects with insufficient error handling. Defects in this category are only
minor and do not crash the application or result in logical failures, but are
not handled properly.

4. Defects that violate the principles of structured programming. These are de-
fects that normally do not impact the software but could result in perfor-
mance bottlenecks etc.

5. Defects that reduce the maintainability of the code. This category contains
all defects that only affect the readability or changeability of the software.

This classification helps us (1) to compare the various defect-detection tech-
niques based on the severity of the defects they find and (2) analyse the types
of defects that they find.

4.3 Defect Types

Additionally to the defect classification we use defect types. That means that
the same or very similar defects are grouped together for an easier analysis. This
is not based on any standard types such as [2, 4, 9] but was defined specifically
for the applications.

The defect types that we use for the bug finding tools can be seen as a
unification of the warning types that the tools are able to generate. Examples
for defect types are “Stream is not closed” or “Input is not checked for special
characters”.

46 S. Wagner et al.

5 Analysis

This section presents the results of the case study and possible interpretations.
At first, the bug finding tools are compared among each other, then the tools
are compared with reviews, and finally with dynamic tests.

5.1 Bug Finding Tools

We want to start with comparing the three bug finding tools described in Sec. 2
among themselves. The tools were used with each system described above.

Data. Tab. 1 shows the defect types with their categories and the corresponding
positives found by each tool over all systems analysed. The number before the
slash denotes the number of true positives, the number after the slash the number
of all positives.

Observations and Interpretations. Most of the true positives can be as-
signed to the category Maintainability of the code. It is noticeable that the dif-
ferent tools predominantly find different positives. Only a single defect type was
found from all tools, four types from two tools each.

Considering the categories, FindBugs finds in the different systems positives
from all categories and PMD only from the categories Failure of the application,

Table 1. Summary of the defect types found by the bug finding tools

Defect Type Category FindBugs PMD QJ Pro

Database connection is not closed 1 8/54 8/8 0/0
Return value of function ignored 2 4/4 0/0 4/693
Exception caught but not handled 3 4/45 29/217 30/212
Null-pointer exception not handled 3 8/108 0/0 0/0
Returning null instead of array 3 2/2 0/0 0/0
Stream is not closed 4 12/13 0/0 0/0
Concatenating string with + in loop 4 20/20 0/0 0/0
Used “==” instead of “equals” 4 0/1 0/0 0/29
Variable initialised but not read 5 103/103 0/0 0/0
Variable initialised but not used 5 7/7 152/152 0/0
Needless if-clause 5 0/0 16/16 0/0
Multiple functions with same name 5 22/22 0/0 0/0
Needless semicolon 5 0/0 10/10 0/0
Local variable not used 5 0/0 144/144 0/0
Parameter not used 5 0/0 32/32 0/0
Private method not used 5 17/17 17/17 0/0
Empty finally block 5 0/0 1/1 0/0
Needless comparison with null 5 1/1 0/0 0/0
Uninitialised variable in constructor 5 1/1 0/0 0/0
For- instead of simple while loop 5 0/0 2/2 0/0

Comparing Bug Finding Tools with Reviews and Tests 47

0
10

0
20

0
30

0
40

0
50

0

PMD

FindBugs

QJ Pro

Total

1 32 4 5

N
um

be
r

of
 T

ru
e

Po
si

tiv
es

Defect Category

Fig. 1. A graphical comparison of the number of true positives found by each tool and

in total

Insufficient error handling, and Maintainability of the code. QJ Pro only reveals
positives from the categories Logical failure of the application, Insufficient error
handling, and Violation of structured programming. The number of faults found
in each category from each tool is graphically illustrated in Fig. 1. Also the
number of types of defects varies from tool to tool. FindBugs detects defects of
13 different types, PMD of 10 types, and QJ Pro only of 4 types.

The accuracy of the tools is also diverse. We use the defect type “Exception
is caught but not handled” that can be found by all three tools as an example.
While FindBugs only finds 4 true positives, PMD reveals 29 and QJ Pro even
30. For this, the result from QJ Pro contains the true positives from PMD
which in turn contain the ones from FindBugs. A reason for this is that QJ Pro
is also able to recognize a single semicolon as an non-existent error handling,
whereas the other two interpret that as a proper handling. This defect type is
also representative in the way that FindBugs finds the least true positives. This
may be the case because it uses the compiled class-files while PMD and QJ Pro
analyse the source code.

A further difference between the tools is the ratio of true positives to all
positives. PMD and FindBugs have a higher accuracy in indicating real defects
than QJ Pro. Tab. 2 lists the average ratios of false positives for each tool and
in total. It shows that on average, half of the positives from FindBugs are false
and still nearly a third from PMD. QJ Pro has the worst result with only 4%
of the positives being true positives. This leads to an overall average ratio of
0.66, which means that two thirds of the positives lead to unnecessary work.
However, we have to notice that FindBugs and PMD are significantly better
than that average.

48 S. Wagner et al.

Table 2. Average ratios of false positives for each tool and in total

FindBugs PMD QJ Pro Total

0.47 0.31 0.96 0.66

An illustrative example is the defect type “Return value of function is ig-
nored”. FindBugs only shows 4 warnings that all are true positives, whereas QJ
Pro provides 689 further warnings that actually are not relevant. Because all the
warnings have to be looked at, FindBugs is in this case much more efficient than
the other two tools.

The efficiency of the tools varied over the projects. For the projects B and
D, the detection of the defect type “Database connection not closed” shows only
warnings for true positives with FindBugs. For project A, it issued 46 warnings
for which the database connection is actually closed. Similarly, the detection rate
of true positives decreases for the projects D and A for the other two tools, with
the exception of the well recognised positives from the maintainability category
by PMD. This suggests that the efficiency of the defect detection depends on
the design and the individual programming style, i.e. the implicit assumptions
of the tool developers about how “good” code has to look like.

A recommendation of usage of the tools is difficult because of the issues
described above. However, it suggests that QJ Pro, although it finds sometimes
more defects than the other tools, has the highest noise ratio and therefore is the
least efficient. FindBugs and PMD should be used in combination because the
former finds many different defect types and the latter provides very accurate
results in the maintainability category. Finally, PMD as well as QJ Pro can be
used to enforce internal coding standards, which was ignored in our analysis
above.

5.2 Bug Finding Tools Versus Review

An informal review was performed only on project C. The review team consisted
of three developers, including the author of the code. The reviewers did not
prepare specifically for the review but inspected the code at the review meeting.

Data. The review revealed 19 different types of defects which are summarised
in Tab. 3 with their categories and number of occurrences.

Observations and Interpretations. All defects found by bug finding tools
were also found by the review. However, the tools found 7 defects of type “Vari-
able initialised but not used” in contrast to one defect revealed by the review. On
the other hand, the review detected 8 defects of type “Unnecessary if-clause”,
whereas the tools only found one. The cause is that only in the one defect that
was found by both there was no further computation after the if-clause. The
redundancy of the others could only be found out by investigating the logics of
the program.

Comparing Bug Finding Tools with Reviews and Tests 49

Table 3. Summary of the defect types and defects found by the review

Defect Type Category Occurrences

Database connection is not closed 1 1
Error message as return value 1 12
Further logical case ignored 2 1
Wrong result 2 3
Incomplete data on error 2 3
Wrong error handling 2 6
ResultSet is not closed 4 1
Statement is not closed 4 1
Difficult error handling 4 10
Database connection inside loop opened and closed 4 1
String concatenated inside loop with “+” 4 1
Unnecessary parameter on call 5 51
Unnecessary parameter on return 5 21
Complex for loop 5 2
Array initialised from 1 5 21
Unnecessary if clauses 5 8
Variable initialised but not used 5 1
Complex variable increment 5 1
Complex type conversion 5 7

Apart from the two above, 17 additional types of defects were found, some
of which could have been found by tools. For example, the concatenation of a
string with “+” inside a loop is sometimes not shown by FindBugs although
it is generally able to detect this defect type. Also, the defect that a database
connection is not closed was not found, because this was done in different func-
tions. Furthermore it was not discovered by the tools that the ResultSet and the
corresponding Statement was never closed.

Other defect types such as logical faults or a wrong result from a function
cannot be detected by bug finding tools. These defects, however, can be found
during a review by following test cases through the code.

In summary, the review is more successful than bug finding tools, because
it is able to detect far more defect types. However, it seems to be beneficial
to first use a bug finding tool before inspecting the code, so that the defects
that are found by both are already removed. This is because the automation
makes it cheaper and more thorough than a manual review. However, we also
notice a high number of false positives from all tools. This results in significant
non-productive work for the developers that could in some cases exceed the
improvement achieved by the automation.

5.3 Bug Finding Tools Versus Testing

We used black box as well as white box tests for system testing the software
but also some unit tests were done. The black box tests were based on the
textual specifications and the experience of the testers. Standard techniques

50 S. Wagner et al.

Table 4. Summary of the defect types and defects found by the tests

Defect Type Category Occurrences

Data range not checked 1 9
Input not checked for special characters 1 6
Logical error on deletion 1 1
Consistency of input not checked 2 3
Leading zeros are not ignored 2 1
Incomplete deletion 2 2
Incomprehensible error message 3 7
Other logical errors 2 3

such as equivalence and boundary testing were used. The white box tests were
developed using the source code and path testing. Overall several hundred test
cases were developed and executed. A coverage tool has also been used to check
the quality of the test suites. However, there were no stress tests which might
have changed the results significantly. Only for the projects EStA and C, defects
could be found. The other projects are probably too mature to be able to find
further defects by normal system testing.

Data. The detected defect types together with their categories and the number
of occurrences are summarised in Tab. 4. We also give some information on
the coverage data that was reached by the tests. We measured class, method,
and line coverage. The coverage was high apart from project C. In all the other
projects, class coverage was nearly 100%, method coverage was also in that area
and line coverage lay between 60 and 93%. The low coverage values for project
C might be explained by the fact that we invested the least amount of effort in
testing this project.

Observations and Interpretations. The defects found by testing are in the
categories Failure of the application, Logical failure, and Insufficient error han-
dling. The analysis above of the defects showed that the bug finding tools pre-
dominantly find defects from the category Maintainability of the code. Therefore
the dynamic test techniques find completely different defects.

For the software systems for which defects were revealed, there were no iden-
tical defects found with testing as well as the bug finding tools. Furthermore,
the tools revealed several defects also in the systems for which the tests were not
able to find one. These are defects that can only be found by extensive stress
tests, such as database connections that are not closed. This can only result in
performance problems or even a failure of the application, if the system is under
a high usage rate and there is a huge amount of database connections that are
not closed. The most defects, however, are really concerning maintainability and
are therefore not detectable by dynamic testing.

In summary, the dynamic tests and the bug finding tools detect different
defects. Dynamic testing is good at finding logical defects that are best visible

Comparing Bug Finding Tools with Reviews and Tests 51

Table 5. The defect removal efficiencies per defect-detection technique

Technique Number of Defects Efficiency

Bug Finding Tools 585 76%
Review 152 20%
Tests 32 4%

Total 769 100%

Table 6. The defect removal efficiencies for each category

Category Bug Finding Tools Reviews Tests Total

1 22% (8) 35% (13) 43% (16) 100% (37)
2 15% (4) 50% (13) 35% (9) 100% (26)
3 85% (40) 0% (0) 15% (7) 100% (47)
4 70% (32) 30% (14) 0% (0) 100% (46)
5 82% (501) 18% (112) 0% (0) 100% (613)

when executing the software, bug finding tools have their strength at finding
defects related to maintainability. Therefore, we again recommend using both
techniques in a project.

5.4 Defect Removal Efficiency

The defect removal efficiency is as proposed by Jones in [11] the fraction of all
defects that were detected by a specific defect-detection technique. The main
problem with this metric is that the total number of defects cannot be known.
In our case study we use the sum of all different defects detected by all techniques
under consideration as an estimate for this number. The results are shown in
Tab. 5. The metric suggests that the tools are the most efficient techniques
whereas the tests where the least efficient.

However, we also have to take the defect categorisation into account because
this changes the picture significantly. The Tab. 6 shows the efficiencies for each
techniques and category with the number of defects in brackets. It makes obvious
that tests and reviews are far more efficient in finding defects of the categories
1 and 2 than the bug finding tools which are the most severe defects.

6 Discussion

The result that bug finding tools mainly detect defects that are related to the
maintainability of the code complies with the expectation an experienced devel-
oper would have. Static analysis only allows to look for certain patterns in the
code and simple dataflow and controlflow properties. Therefore only reviews or
tests are able to verify the logic of the software (as long as the static analysis
is not linked with model checking techniques). The tools do not “understand”

52 S. Wagner et al.

the code in that sense. The prime example for this is the varying efficiency over
the projects. In many cases, the tools were not capable to realise that certain
database connections are not closed in the same Java method but a different
one. They only search for a certain pattern. Therefore, the limitation of static
analysis tools lies in what is expressible by bug patterns, or in how good and
generic the patterns can be.

However, it still is surprising that there is not a single overlapping defect de-
tected by bug finding tools and dynamic tests. On the positive side, this implies
that the two techniques are perfectly complementary and can be used together
with great benefit. The negative side is that by using the automated static anal-
ysis techniques we considered, it may not be possible to reduce costly testing
efforts. That there is only little overlapping follows from the observation above
that the tools mainly find maintenance-related defects. However, one would ex-
pect to see at least some defects that the tests found also detected by the tools,
especially concerning dataflow and controlflow. The negative results in this study
can be explained with the fact that most of the projects analysed are quite ma-
ture, and some of them are already in operation. This resulted in only a small
number of defects that were found during testing which in turn could be a reason
for the lack of overlapping.

A rather disillusioning result is the high ratio of false positives that are issued
by the tools. The expected benefit of the automation using such tools lies in
the hope that less human intervention is necessary to detect defects. However,
as on average two thirds of the warnings are false positives, the human effort
could be even higher when using bug finding tools because each warning has to
be checked to decide on the relevance of the warning. Nevertheless, there are
significant differences between the tools so that choosing the best combination
of tools could still pay off.

Bug finding tools that use additional annotations in the code for defect-
detection could be beneficial considering the overlap of defects with other tech-
niques as well as the false positives ratio. The annotations allow the tool to
understand the code to a certain extent and therefore permits some checks of
the logic. This deeper knowledge of the code might reduce the false positives
ratio. However, to make the annotations requires additional effort by the devel-
opers. It needs to be analysed if this effort is lucrative.

The effort and corresponding costs of the determination of defects using the
tools (including checking the false positives) was not determined in this study.
This is however necessary to find out if the use of bug finding tools is beneficial
at all.

7 Related Work

There are only few studies about how bug finding tools relate among themselves
and to other established defect-detection techniques such as testing or reviews.

In [18] among others PMD and FindBugs are compared based on their warn-
ings which were not all checked for false positives. The findings are that although

Comparing Bug Finding Tools with Reviews and Tests 53

there is some overlap the warnings generated by the tools are mostly distinct.
We can support this result with our data.

Engler and Musuvathi discuss in [6] the comparison of their bug finding tool
with model checking techniques. They argument that static analysis is able to
check larger amounts of code and find more defects but model checking can check
the implications of the code not just properties that are on the surface.

In [10] a static analysis tools for C code is discussed. The authors state that
sophisticated analysis of, for example, pointers leads to far less false positives
than simple syntactical checks.

An interesting combination of static analysis tools and testing in described
in [5]. It is proposed to use static analysis to find potential problems and au-
tomatically generate test cases to verify if there is a real defect. However, the
approach obviously does not work with maintenance-related defects.

Bush et al. report in [3] on a static analyser for C and C++ code which is
able to find several more dynamic programming errors. However, a comparison
with tests was not done. Nevertheless, our observation that the defect-finding
capabilities depend strongly on the coding styles of different programmers is
supported in this paper.

In [22] an evaluation of static analysis tools for C code regarding buffer over-
flows is described. The defects were injected and the fraction of buffer overflows
found by each technique was measured. It is also noted that the rates of false
positives or false alarms are unacceptably high.

Palsberg describes in [14] some bug finding tools that use type-based anal-
ysis. He shows that they are able to detect race conditions or memory leaks in
programs.

8 Conclusion

The work presented is not a comprehensive empirical study but a case study
using a series of projects mainly from an industrial environment giving first
indications of how the defects found by bug finding tools relate to other defect-
detection techniques.

The main findings are that the bug finding tools revealed completely different
defects than the dynamic tests but a subset of the types of the review. The defect
types that are detected by the tools are analysed more thoroughly than with
reviews. The effectiveness of the tools seems to strongly depend on the personal
programming style and the design of the software as the results differed strongly
from project to project. Finally, a combination of the usage of bug finding tools
together with reviews and tests would be most advisable if the number of false
positives were lower. It probably costs more time to resolve the false positives
than is saved by the automation using the tools.

Therefore, the main conclusion is that bug finding tools can save costs when
used together with other defect-detection techniques, if the tool developers are
able to improve the tools in terms of the false positives ratio and tolerance of
different programming styles.

54 S. Wagner et al.

9 Future Work

This study is only a first indication and needs further empirical validation to be
able to derive solid conclusions. For this, we plan to repeat this study on different
subjects and also taking other tools into account, e.g. commercial tools or tools
that use additional annotations in the source code. Also, the investigation of
other types of software is important, since we only considered web applications
in this study.

How the proper combination of the different techniques can be found is also
subject to further research. As a first step more reliability-oriented measures,
such as the failure intensity efficiency [19, 20] can be used to compare the bug
finding tools with other techniques. This can give more clues in terms of the effect
on the reliability of the usage of bug finding tools. However, a comprehensive
treatment of the subject needs to incorporate the false positives ratio into a cost
model based on [21] to be able to determine the economically best alternatives.

Acknowledgments

We want to thank the authors of the tools FindBugs, PMD, QJ Pro for investing
such an amount of work in the tools and making them available to the public.

References

1. T. Ball and S.K. Rajamani. The SLAM Project: Debugging System Software via
Static Analysis. In Proc. 29th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2002.

2. B. Beizer. Software Testing Techniques. Thomson Learning, 2nd edition, 1990.
3. W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for finding dynamic

programming errors. Softw. Pract. Exper., 30:775–802, 2000.
4. R. Chillarege. Orthogonal Defect Classification. In Michael R. Lyu, editor, Hand-

book of Software Reliability Engineering, chapter 9. IEEE Computer Society Press
and McGraw-Hill, 1996.

5. C. Csallner and Y. Smaragdakis. CnC: Combining Static Checking and Testing.
In Proc. 27th International Conference on Software Engineering (ICSE’05), 2005.
To appear.

6. D. Engler and M. Musuvathi. Static Analysis versus Model Checking for Bug
Finding. In Proc. Verification, Model Checking and Abstract Interpretation (VM-
CAI’04), volume 2937 of LNCS, pages 191–210. Springer, 2002.

7. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.
Extended Static Checking for Java. In Proc. 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2002.

8. D. Hovemeyer and W. Pugh. Finding Bugs is Easy. SIGPLAN Notices, 39(12),
2004. To appear.

9. IEEE. IEEE Standard Classification for Software Anomalies, 1993. IEEE Std
1044-1993.

10. R. Johnson and D. Wagner. Finding User/Kernel Pointer Bugs With Type Infer-
ence. In Proc. 13th USENIX Security Symposium, 2004.

Comparing Bug Finding Tools with Reviews and Tests 55

11. C. Jones. Applied Software Measurement: Assuring Productivity and Quality.
McGraw-Hill, 1991.

12. C. Koller. Vergleich verschiedener Methoden zur analytischen Qualitätssicherung.
Diploma Thesis, Technische Universität München, 2004. In German.

13. G.J. Myers. The Art of Software Testing. John Wiley & Sons, 1979.
14. J. Palsberg. Type-Based Analysis and Applications. In Proc. 2001 ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering (PASTE’01), pages 20–27. ACM Press, 2001.

15. PMD. http://pmd.sourceforge.net (February 2005).
16. A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner, B. Sostawa,

R. Zölch, and T. Stauner. One Evaluation of Model-Based Testing and its Automa-
tion. In Proc. 27th International Conference on Software Engineering (ICSE’05),
2005. To appear.

17. QJ Pro. http://qjpro.sourceforge.net (February 2005).
18. N. Rutar, C.B. Almazan, and J.S. Foster. A Comparison of Bug Finding Tools

for Java. In Proc. 15th IEEE International Symposium on Software Reliability
Engineering (ISSRE’04), pages 245–256, 2004.

19. S. Wagner. Efficiency Analysis of Defect-Detection Techniques. Technical Report
TUMI-0413, Institut für Informatik, Technische Universität München, 2004.

20. S. Wagner. Reliability Efficiency of Defect-Detection Techniques: A Field Study.
In Suppl. Proc. 15th IEEE International Symposium on Software Reliability Engi-
neering (ISSRE’04), pages 294–301, 2004.

21. S. Wagner. Towards Software Quality Economics for Defect-Detection Techniques.
In Proc. 29th Annual IEEE/NASA Software Engineering Workshop, 2005. To
appear.

22. M. Zitser, R. Lippmann, and T .Leek. Testing Static Analysis Tools using
Exploitable Buffer Overflows from Open Source Code. In Proc. 12th ACM
SIGSOFT International Symposium on Foundations of Software Engineering
(SIGSOFT’04/FSE-12), pages 97–106. ACM Press, 2004.

Cross-Language Functional Testing for
Middleware

A. Puder1 and L. Wang2

1 San Francisco State University, Computer Science Department,
1600 Holloway Avenue, San Francisco, CA 94132

arno@sfsu.edu
2 Computer Science Department, University of Southern California,

941 W. 37th Place, Los Angeles, CA 90089-0781
limeiwan@usc.edu

Abstract. Middleware is at the heart of any distributed application
and its correctness therefore requires rigorous testing. Since middleware
technologies typically support heterogeneous environments, its API is
available for different programming languages. Functional tests written
to test the functionality of a middleware platform therefore have to be re-
written for all those programming languages. The framework introduced
in this paper shows how functional tests written in Java can automati-
cally be translated to other programming languages such as C++. This
is achieved by using the XML-based programming language XMLVM.
XMLVM can automatically be created from Java class files. The cross-
language translations are accomplished by using XSL-transformations of
XMLVM programs.

1 Motivation

Middleware allows the development of cross-platform, language-independent,
distributed applications. Middleware is used in different contexts such as eCom-
merce applications or system-to-system integration, which places high demand
on the correctness of middleware platforms. Several activities have created tens
of thousands of test cases to ensure the correct behavior of a middleware tech-
nology. Among those efforts are CORVAL, COST, and WS-I (see [2], [15], and
[4] respectively). One of the challenges of middleware functional testing is that
by definition a middleware platform supports multiple programming languages.
The implication of this heterogeneity is that functional tests have to be written
in every language that is supported by a middleware technology, which leads to
redundant and error-prone work.

Of the 100,000 lines of functional tests that were contributed as part of the
COST (CORBA Open Source Testing, see [15]) effort, roughly half of the code
tests C++ API whereas the other half tests the Java API of CORBA imple-
mentations. Every test therefore exists in two different implementations: C++
and Java. While these tests are functionally identical, they have to be re-written

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 56–68, 2005.
c© IFIP 2005

Cross-Language Functional Testing for Middleware 57

because of different language mappings for C++ and Java. The framework in-
troduced in this paper allows a functional test to be written in Java and then
to automatically derive the same test for other programming languages. This
reduces manual work as well as potential for errors. We achieve this goal by
making use of some advanced XML technologies. At the core of our framework
is an XML-based programming language that allows cross-language translation
of functional tests written in Java.

The paper is structured as follows: Section 2 introduces the problems related
to writing functional tests for two different middleware technologies: CORBA
and Web Services. Section 3 describes our framework. We present our XML-
based programming language XMLVM and show how functional tests written in
Java can automatically be translated to C++. Section 4 provides a conclusion
and outlook.

2 Functional Testing of Middleware

This section highlights two real-life examples of functional testing for two differ-
ent middleware technologies: CORBA and Web Services. In both cases it will be-
come evident that a lot of testing code has to be virtually replicated in every pro-
gramming language that is supported by the respective middleware technology.

2.1 Use Case 1: CORBA Functional Testing

CORBA (Common Object Request Broker Architecture) defines an architecture
for a platform independent middleware for object-oriented applications (see [1]).
The core specification of CORBA, as standardized by the OMG, consists of over
1000 pages with hundreds of API functions. A functional test written for any of
those functions would need to be translated into all languages that are being sup-
ported by CORBA. The following example illustrates this problem. The Java code
excerpt demonstrates a functional test for a Dynamic Any using JUnit (see [9]):

J1: // Java

J2: public class DynAnyBaseTest extends junit.framework.TestCase {

J3:

J4: private org.omg.CORBA.ORB orb = null;

J5: private org.omg.DynamicAny.DynAnyFactory dynany_factory = null;

J6:

J7: // ...

J8:

J9: public void testAccessBasicValue ()

J10: {

J11: int longVal1;

J12: int longVal2;

J13: org.omg.CORBA.TypeCode tc = null;

J14: org.omg.DynamicAny.DynAny dynAny = null;

J15:

58 A. Puder and L. Wang

J16: longVal1 = 700;

J17: longVal2 = 0;

J18: tc = orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_long);

J19: dynAny = dynany_factory.create_dyn_any_from_type_code (tc);

J20: dynAny.insert_long (longVal1);

J21: longVal2 = dynAny.get_long ();

J22: assertEquals ("DynamicAny error", longVal1, longVal2);

J23: }

J24: }

The code above was taken from an actual functional test from the COST
project. A Dynamic Any is a generic container for one data item. The type of
the data item that can be contained in the Dynamic Any is determined when
the Dynamic Any is created (lines J18 and J19). The Dynamic Any supports
all types of the CORBA-IDL. The example above shows a simple functional
test that first writes a long with value 700 into a Dynamic Any (line J20),
extracts the value contained in the Dynamic Any (line J21) and then compares
the two values to make sure that they are identical (line J22). Below is the same
functional test, but now written in C++ using CPPUnit (see [8]):

C1: // C++

C2: class DynAnyBaseTest : public CppUnit::TestCase {

C3: private:

C4: CORBA::ORB_ptr orb;

C5: DynamicAny::DynAnyFactory_ptr dynany_factory;

C6:

C7: // ...

C8:

C9: public:

C10: void testAccessBasicValue()

C11: {

C12: CORBA::Long longVal1;

C13: CORBA::Long longVal2;

C14: CORBA::TypeCode_var tc;

C15: DynamicAny::DynAny_var dynAny;

C16:

C17: longVal1 = 700;

C18: longVal2 = 0;

C19: tc = CORBA::TypeCode::_duplicate (CORBA::_tc_long);

C20: dynAny = dynany_factory->create_dyn_any_from_type_code (tc);

C21: dynAny->insert_long (longVal1);

C22: longVal2 = dynAny->get_long ();

C23: CPPUNIT_ASSERT_EQUAL_MESSAGE ("DynamicAny error",

C24: longVal1, longVal2);

C25: }

C26: };

Conceptually the functional test above is doing exactly the same as the Java
version, except that the CORBA’s C++ API and CPPUnit are used in this case.

Cross-Language Functional Testing for Middleware 59

Despite the similarities there are some differences. E.g., the way the TypeCode is
created (J18 vs. C19) or how to use the assert-API in JUnit and CPPUnit (J22
vs. C23).

2.2 Use Case 2: Web Services

Web Services are an emerging technology that have made a lot of head-waves
over the past few years. Conceptually identical to CORBA, it has gained certain
prominence because of Microsoft’s commitment to support Web Services. XML
is used extensively as the underlying foundation of many of the Web Services
standards. The WS-I (Web Services Interoperability) organization issues the set
of standards (called basic profile) that define the scope of Web Services (see
[4]). It is interesting to note that Web Services do not support the concept
of portability. I.e., the API for a certain programming language might differ
significantly between different Web Services products.

The following code excerpt illustrates this problem:

// Java using Sun’s WS Developer Kit

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface AccountIF extends Remote {

public void deposit (int amount) throws RemoteException;

public void withdraw (int amount) throws RemoteException;

public int balance () throws RemoteException;

}

The code excerpt above shows the server-side mapping of a simple bank
account interface using Sun’s Web Services SDK. In Sun’s implementation of the
Web Services standards, the server-side implementation must implement a Java
interface that extends the Remote interface. Furthermore, every method that
belongs to the interface must throw the exception RemoteException. Below is a
code excerpt that shows the same bank account interface using BEA’s WebLogic
Server:

// Java using BEA’s Web Logic Server

public class Account implements com.bea.jws.WebService

{

static final long serialVersionUID = 1L;

/**

* @common:operation

*/

public void deposit (int amount);

{

...

As can be seen, BEA implements the bank account interface through a
Java class that is derived from com.bea.jws.WebService. All remote meth-
ods are marked through a special JavaDoc comment @common:operation. It

60 A. Puder and L. Wang

is apparent that functional testing for Web Services pose even greater chal-
lenges than for CORBA. Due to lack of portability, the functional tests have
to be re-written for each Web Service product, even though Java is used in all
instances.

3 Framework

This section introduces our framework. The goal is to write a functional test
only once, and create the functional test for different languages automatically.
In Section 3.1 we briefly discuss a non-solution. Section 3.2 gives an overview
of Java’s virtual machine. Based on those explanations, we introduce our XML-
based programming language called XMLVM in Section 3.3. Section 3.4 finally
describes how we use XMLVM to solve the problem of cross-language functional
testing.

3.1 Non-solution

Before we present our solution to cross-language functional testing, we want
to briefly discuss a non-solution. Initially we took the approach of defining a
new programming language based on XML. Flow control statements (such as if
and while) and other elements of an object-oriented programming language are
represented by appropriate XML-tags. There are numerous projects that have
created such XML-based programming languages (see [5, 12, 13, 7, 11]). Once a
test case has been written in this language, it is relatively easy to translate it to
another high-level programming language such as Java or C++. This can easily
be accomplished by using XSL-transformations (see Figure 1).

However once we started to pursue this idea, we quickly realized that there
were several disadvantages over using an XML-based programming language in
this way. First and foremost programmers have to learn a new programming lan-
guage. Someone using this approach would need to master a new programming
language for which no tools (such as smart editors or syntax checkers) exist.
Another problem resulted in the fact that XML tends to be very “verbose”.
By this we mean that it takes on the average more lines of code to express an

Fig. 1. Non-solution: Mapping XML to C++ and Java

Cross-Language Functional Testing for Middleware 61

algorithm in XML compared to other high-level languages. This is because of
the rigid syntax that XML imposes on the structure of a document. For these
reasons we took a different approach.

3.2 Java’s Virtual Machine

As outlined in the previous section, it is not practical to expose a program-
mer to an XML-based programming language. Yet XML has much to offer
due to the availability of rich tool sets. In order to exploit the benefits of
XML, but make it transparent to programmers, we created a low-level XML-
based programming language that is not intended for human readers. In order
to use standards as much as possible, we decided to use the byte code exe-
cuted by a Java virtual machine as a model for our XML-based programming
language.

Before we explain our approach, we provide a few details on the Java Vir-
tual Machine concept (for more details see [10]). A Java compiler translates
the Java source code to hardware independent byte code that is stored in a
class file. The byte code resembles the machine code of other hardware archi-
tectures. The Java virtual machine implements a simple stack based machine
(see Figure 2).

The Java VM maintains an instruction pointer to the class file that points
to the next instruction to be executed. Upon entering a method, a new frame
consisting of a stack and local variables is created. This frame will be deleted
upon exiting the method. The Java VM maintains a pointer to the current
frame (which represents the most nested method call). A method has only ac-
cess to its own stack and local variables. The actual parameters of a method
are automatically stored in the local variables. Besides the stack frames, the
Java VM maintains a garbage collected heap where a program can allocate new
objects.

Fig. 2. Java VM

62 A. Puder and L. Wang

The Java byte code features a mix of low-level and high-level virtual machine
instructions. On the one hand side one finds simple instructions such as iadd that
pops two integers off the stack and pushes the sum back onto the stack. On the
other side there exist high-level instructions such as new (for instantiating new
objects) and invokevirtual (invoke a virtual method). These instructions go
beyond the capabilities of normal machine languages and explain the difficulties
in creating a real CPU that can execute Java byte code natively.

3.3 XMLVM

The Java byte code resembles the machine code of other hardware architectures.
It is interesting to note that Sun Microsystems as the inventor of Java never
standardized an assembly language of their own byte code. Several assemblers
were developed, but they had to invent their own syntax. The most commonly
used assembly syntax stems from the Jasmin project (see [14]).

The first step in creating a cross-language functional testing framework con-
sist in defining an XML-based programming language that is based on the Java
byte code. This effectively defines an assembly language for the Java virtual ma-
chine whose syntax is based on XML. Since we mimic the syntax very closely
to the Java byte code instructions, there is a direct bi-directional mapping be-
tween Java class files and our XML-based programming language. Since the
XML-based programming language is closely related to the byte code of the
Java virtual machine, we call our language XMLVM.

In practice, programs are not directly written in XMLVM, but rather created
automatically from class files. The programmer is thus not exposed to the details
of XMLVM, but can implement his or her programs in Java. The following
XML follows the XMLVM schema and demonstrates the translation of the Java
functional test for Dynamic Any presented in Section 2.1:

X1: <?xml version="1.0" encoding="UTF-8"?>

X2: <xmlvm>

X3: <class name="DynAnyBaseTest" isPublic="true"

X4: isSynchronized="true" extends="junit.framework.TestCase">

X5: <field isPrivate="true" name="orb"

X6: type="org.omg.CORBA.ORB" />

X7: <!-- ... -->

X8: <method name="testAccessBasicValue"

X9: isPublic="true" stack="3" locals="5">

X10: <signature>

X11: <return type="void" />

X12: </signature>

X13: <code>

X14: <!-- ... -->

X15: <getfield class-type="DynAnyBaseTest"

X16: type="org.omg.CORBA.ORB" field="orb" />

X17: <getstatic class-type="org.omg.CORBA.TCKind"

X18: type="org.omg.CORBA.TCKind" field="tk_long" />

X19: <invokevirtual class-type="org.omg.CORBA.ORB"

Cross-Language Functional Testing for Middleware 63

X20: method="get_primitive_tc">

X21: <signature>

X22: <return type="org.omg.CORBA.TypeCode" />

X23: <parameter type="org.omg.CORBA.TCKind" />

X24: </signature>

X25: </invokevirtual>

X26: <astore type="java.lang.Object" index="3" />

X27: <!-- ... -->

X28: </code>

X29: </method>

X30: </class>

X31: </xmlvm>

The above XML was automatically created using our tool. The complete
XML is much longer and cannot be reproduced here. A few details are worth
mentioning. We will relate the XMLVM output with the original Java functional
test from Section 2.1. Line X3 contains the class declaration (line J2). Line X5
contains the instance member orb (line J4). Line X8 contains the declaration of
method testAccessBasicValue() (line J9). The stack and locals attributes
in line X9 state how big the stack and how many local variables are needed for
this method. Note that the Java compiler computes this information by doing
a flow analysis. Lines X10 to X12 show the signature, and lines X13 to X28 the
implementation of method testAccessBasicValue().

Lines X15 through X26 show an excerpt of the byte code generated by the
Java compiler. Those lines represent the compiled version of Java source code at
line J18. There are basically four byte code instructions: <getfield> (line X15)
pushes the value of instance member orb onto the stack and <getstatic> (line
X17) pushes the value of static variable org.omg.CORBA.TCKind.tk long onto
the stack. <invokevirtual> (line X19) calls the virtual method
get primitive tc(). This instruction assumes that the object reference to the
target object as well as the actual parameters are on the top of the stack (which
was done by the previous two instructions). Once the call to get primitive tc()
returns, the result is on the top of the stack. <astore> (line X26) pops this
result off the stack and saves it in a local variable.

3.4 Mapping XMLVM to Other Languages

The XML presented in the previous section was automatically generated and it
represents an intermediate artifact not intended to be inspected by programmers.
The principal idea of our framework is to translate XMLVM to other high-level
programming languages. The translation is done using XSL-translations (see [3]).
Figure 3 shows the overall translation process.

API Transformation: As shown in the figure, the source program is first trans-
lated to XMLVM by a tool. The resulting XMLVM then undergoes an API trans-
formation. The purpose of the API transformation is to adapt the API from the
source to the target language. The original test case was written using specific

64 A. Puder and L. Wang

Fig. 3. XMLVM transformation process

APIs such as Java-CORBA and JUnit. If the test case is to be translated to
C++, this API has to be adapted to the appropriate API available for the tar-
get language. For each API exist a XSL-stylesheet that adapts the API. The
following list gives some examples of API transformations if the target language
is C++:

– JUnit to CPPUnit:
• Base class junit.framework.TestCase (J2) changes to
CppUnit.TestCase (C2)

• assertEquals() (J22) changes to CPPUNIT ASSERT EQUAL MESSAGE()
(C23)

– CORBA for Java to C++:
• Namespace prefix omg.org.CORBA (J4) changes to CORBA (C4)
• Method get primitive tc() (J18) changes to duplicate() (C19)

Note that the output of API transformation is still an XMLVM program (re-
ferred to as XMLVMAPI in Figure 3) and consequently uses XMLVM notation,
such as “.” for the scope operator. The examples given above are mostly simple
renaming operations that can easily be achieved by appropriate XSL-stylesheets.
The more complex example is the creation of a TypeCode (J18). This situation
can be handled by a more complex XSL-stylesheet. This XSL-template basi-
cally looks for a call to get primitive tc() and then transforms the API to a
semantically equivalent version to be used for C++.

Each API transformation is handled by its own XSL-stylesheet and depending
on how many different libraries (e.g., JUnit, CORBA, etc) are used, multiple
stylesheets may be applied. The result of the API transformation is again an
XMLVM program. The excerpt below demonstrates the resulting XMLVM after
the applying the XSL-stylesheets for API transformation:

Cross-Language Functional Testing for Middleware 65

A1: <getstatic class-type="CORBA"

A2: type="CORBA.TypeCode" field="_tc_long" />

A3: <invokestatic class-type="CORBA.TypeCode"

A4: method="_duplicate">

A5: <signature>

A6: <return type="CORBA.TypeCode" />

A7: <parameter type="CORBA.TypeCode" />

A8: </signature>

A9: </invokestatic>

A10: <astore type="CORBA.Object" index="3" />

The excerpt above shows the result of translating the original XMLVM code
for creating a TypeCode (lines X15 to X26 in Section 3.3). Instead of using the
ORB-singleton to create a TypeCode via get primitive tc(), the TypeCode is
now created by duplicating the constant tc long that all CORBA conformant
C++ ORBs are required to have.

Language Transformation: The result of the API transformation is another
XMLVM program. The final step in this translation process consists in gen-
erating code for the target language. This translation is done by yet another
XSL-stylesheet. The idea for this last step of our framework is to map XMLVM-
instructions one-to-one to the target language, without attempting to reverse
engineer (or de-compile) the original Java program. Since the Java VM is based
on a simple stack-based machine, we simply mimic a stack-machine in the target
language. An example helps to illustrate this approach. The XMLVM instruction
<astore> pops an object reference off the stack and saves it to a local variable.
Here is the XSL-template that creates C++ code for this instruction:

<xsl:template match="astore">

<xsl:text>

locals[</xsl:text>

<xsl:value-of select="@index"/>

<xsl:text>] = stack.pop();</xsl:text>

</xsl:template>

As an example, the <astore> instruction in line A10 would translate to the
following C++ code:

locals[3] = stack.pop();

This C++ code makes reference to variables locals and stack. Those vari-
ables are declared for every method and it is with the help of those variables that
we mimic the VM’s stack-machine. The code below represents the C++ version
of the XMLVM program shown in lines A1 to A10 of the previous section:

T1: // C++

T2: class DynAnyBaseTest

T3: : public virtual CppUnit::TestCase

T4: {

66 A. Puder and L. Wang

T5: CORBA::ORB_ptr orb;

T6: DynamicAny::DynAnyFactory_ptr dynany_factory;

T7:

T8: // ...

T9:

T10: void testAccessBasicValue()

T11: {

T12: XMLVM::Locals locals(5);

T13: XMLVM::Stack stack(3);

T14: XMLVM::Object op1;

T15: XMLVM::Object op2;

T16: locals[0] = this;

T17:

T18: // ...

T19: stack.push(CORBA::_tc_long);

T20: op1 = CORBA::TypeCode::_duplicate((CORBA::TypeCode_ptr)

T21: stack.top(0));

T22: stack.remove(1);

T23: stack.push(op1);

T24: locals[3] = stack.pop();

T25: // ...

T26: }

T27: }

As can be seen from the code excerpt, there is a natural mapping from XM-
LVM to C++. The intention is not to generate readable code, but correct code
that uses the API of the target language. The above code is automatically cre-
ated by the XSL-language transformation and is not meant to be inspected by
programmers. We mimic Java’s VM via the two classes XMLVM::Locals and
XMLVM::Stack (lines T12 and T13). Those two C++ classes are part of the XM-
LVM library for C++. Class XMLVM::Stack features common stack-operations
such as push and pop. Both of these classes implement the garbage collection
that is normally done by Java’s VM. Variables op1 and op2 (lines T14 and T15)
are used as temporary variables needed by some XMLVM-instructions.

4 Conclusions and Outlook

Functional testing for middleware requires individual tests to be re-written in all
programming languages that are supported by that middleware. The framework
introduced in this paper proposes a novel way to automate this manual and
error prone task. In our framework functional tests are written once in Java.
The class file that contains the compiled version of the functional test is then
translated to XMLVM; an XML-based programming language. Then various
XSL-transformations can be applied to first transform the API and then to
translate the functional test to another high level language.

It is important to emphasize the fact that we effectively translate functional
tests written in Java to other programming languages. This works well for APIs

Cross-Language Functional Testing for Middleware 67

(such as Dynamic Any) that exists in all different languages, but there are lim-
itations for language specific APIs. E.g., the CORBA C++ language mapping
defines various helper types for C++ pointers that can be recognized by the
suffix ptr and var. These helper types do not exist in Java, simply because
C++ pointers are much more complex than Java object references. Functional
tests that specifically test the correctness of these helper types would need to be
written manually in C++.

XMLVM is at the core of our framework. We have implemented it based on
the Byte Code Engineering Library (BCEL) which is part of Apache’s Jakarta
project (see [6]). We are currently investigating other uses of XMLVM in different
contexts. One possible use could be in a code migration framework for web-based
applications based on previous work (see [16]). Another potential use of XMLVM
could be byte code instrumentation using XSL-transformation.

References

1. Common object request broker architecture (corba/iiop). Object Management
Group. http://www.omg.org/technology/documents.

2. Vsorb test suite specification, release 1.0.0. Open Group, 1997. http://
www.opengroup.org/corval/vsorbts.pdf.

3. Xsl transformations. World Wide Web Consortium (W3C), 1999. http://
www.w3.org/TR/1999/REC-xslt-19991116.

4. Web Services Interoperability Organization, 2004. http://www.ws-i.org.

5. G.J. Badros. A markup language for java source code. May 2000. http://
www.cs.washington.edu/research/constraints/web/badros-javaml-www9.pdf.

6. Markus Dahm. Byte code engineering. Java Informations Tage, pages 267–277,
1999.

7. W. Emmerich, C. Mascolo, and A. Finkelstein. Implementing incremental code mi-
gration with xml. pages 397–406. In M. Jazayeri and A. Wolf, editors, Proc. 22nd
Int. Conf. on Software Engineering (ICSE2000) Limerick, Ireland, ACM Press.,
June 2000. http://www.cs.ucl.ac.uk/staff/W.Emmerich/publications/ICSE2000/
MobXML/mobxml.pdf.

8. Paul Hamill. Unit Test Frameworks. O’Reilly; 1 edition, October 2004.

9. Andy Hunt and Dave Tomas. Pragmatic Unit Testing in Java With JUnit. The
Pragmatic Programmers; 1 edition, September 2003.

10. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley Pub Co, second edition, April 1999.

11. Jonathan I. Maletic, Michael L. Collard, and Andrian Marcus. Source code
files as structured documents. pages 289–292, June 2002. http://www.sdml.info/
papers/iwpc02.pdf.

12. E. Mamas and K. Kontogiannis. Towards portable source code representation using
xml. pages 172–182. Proceedings of the Seventh Working Conference on Reverse
Engineering, IEEE Computer Society Press, Brisbane Australia, November 2000.

13. G. McArthur, J. Mylopoulos, and S.K.K. Ng. An extensible tool for source code
representation using xml. pages 199–208. Proceedings of the Ninth Working Confer-
ence on Reverse Engineering, IEEE Computer Society, Richmond, Virginia, USA,
October 2002.

68 A. Puder and L. Wang

14. Jonathan Meyer. An assembler for the java virtual machine. 1996.
http://jasmin.sourceforge.net/.

15. Arno Puder. Corba open source testing. OMG in Motion, Needham, 2001.
16. Arno Puder. Extending desktop applications to the web. Second Workshop on Dis-

tributed Objects Research, Experiences and Applications (DOREA 2004), pages
8–11, Dublin, July 2004. Computer Science Press.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 69 – 80, 2005.
© IFIP 2005

Using Anti-Ant-like Agents to Generate Test Threads
from the UML Diagrams

Huaizhong Li and C. Peng Lam

School of Computer and Information Science, Edith Cowan University,
Mt. Lawley, WA 6050, Australia

{h.li,c.lam}@ecu.edu.au

Abstract. The problem of generating the test cases is one of the most important
issues in the software testing research and practice. Test threads, especially the
thin-threads which are the usage scenarios in a software system, are frequently
used to generate test cases for the scenario-based software testing. However, the
derivation of the test threads is usually a manual and labor-intensive task. In
this paper, we propose an automated approach using anti-ant-like agents to di-
rectly generate test threads from the UML artifacts. The generated test threads
can then be used to generate and to prioritize the test cases for scenario-based
software testing.

1 Introduction

Recently, great amount of attentions have been given to effectively using UML,
which is the industrial de-facto standard for modeling object-oriented software sys-
tems, in software testing (see, for example, [9] and the references therein). One of the
focused research topics is using UML artifacts for scenario based testing. Scenarios
represent the sequences of executions in a software system. There are two important
problems which are generally associated with the scenario-based testing techniques,
namely the generation of the test scenarios [1, 3], and the prioritization of the testing
scenarios [1, 4].

Properly generated test scenarios are essential for the scenario-based software test-
ing to achieve the test adequacy and to guarantee the software quality. Test thread
derivation, especially thin-thread derivation is a frequently used approach for the
generation of the test scenarios [1, 3, 5, 15]. Thin-threads, in the forms of thin-thread
trees and associated condition trees, can be derived from the scenarios-based business
model [1, 5] or directly from the UML artifacts [3], and then test scenarios can be
generated from the thin-threads. The generated test threads can also be used to priori-
tize the test cases for scenario-based software testing [4]. Additional data object tree
can be generated to assist in analyzing the content-dependencies which may lead to
couplings between the test scenarios [3]. One main problem with the generation of
thin-threads is that the generation procedures are either manual/labor-intensive [1, 5],
or can not be fully automated [3].

It is well-known that the development of techniques which support the automation
of software testing will result in significant cost savings. Recently, the application of
Artificial Intelligence (AI) techniques in Software Engineering (SE) emerges as an

70 H. Li and C.P. Lam

area of research that brings about the cross-fertilization of ideas across two domains
[8]. It has been identified that one of the SE areas with a more prolific use of AI tech-
niques is software testing [18]. The focus of these techniques involves the applica-
tions of genetic algorithms (GAs), for examples [19] and [21]. Recently, efforts have
been made to apply Ant Colony Optimization (ACO) algorithms to software testing
[11, 20, 21]. However, none of the reported investigations using ACO approaches
addresses the generation of test threads from the UML artifacts for scenario-based
software testing.

ACO simulates the behavior of real ants. The first ACO technique is known as Ant
System [12] and it was applied to the traveling salesman problem. Since then, many
variants of this technique have been produced. ACO can be applied to generate solu-
tions for combinatorial optimization problems. The artificial ants in the algorithm
represent the stochastic solution construction procedures which make use of (1) the
dynamic evolution of the pheromone trails that reflect the ants' acquired search ex-
perience; and (2) the heuristic information related to the problem in hand, in order to
construct solutions.

Using AI techniques, especially using ant-like agents, provides a potential avenue
to automate the generation of test threads for scenario-based software testing. How-
ever, the original ACO algorithms as presented in [12] and [13] can not be directly
used to tackle the problem of generating test threads from the UML artifacts, as the
standard ACO ants are not designed to tackle the graphs which can be converted from
the UML diagrams.

In this paper, we propose to use anti-ant-like agents to automatically generate test
threads directly from the existing UML activity diagrams. The details of our approach
are presented in the next section.

2 Generating Test Threads from the UML Activity Diagrams

Before presenting the details of our approach, we briefly review the principles under-
lying the representation of the thin-thread tree, the condition tree, and the data-object
tree, as well their relationship with the UML activity diagrams.

2.1 The Three Trees

The UML use cases are the good sources for the derivation of the software testing
requirements, because they represent high level functionalities provided by the system
to the end-users. The use cases are usually not independent. They may have the Ex-
tend and the Include dependencies, and the sequential dependencies [7, 10] which
stem from the logic of the supported business workflows. The sequential dependen-
cies between use cases can be represented by activity diagrams for all the actors in the
system. As the activity diagrams are relatively easy to be interpreted, such a represen-
tation facilitates the identification and visualization of these dependencies viewed by
the application domain experts. Thin threads can be extracted from the system level
activity diagrams.

 Using Anti-Ant-like Agents to Generate Test Threads from the UML Diagrams 71

A thin thread and a use case serve similar functionality, i.e., they both describe
system scenarios. However, a thin thread contains more information than a use case,
and thin threads for an application are organized into a tree style which is suitable
for various analyses such as dependency analysis, risk analysis, traceability analy-
sis, coverage analysis, completeness and consistency checking, and test sce-
nario/test case generation [1]. Thin-threads that share certain commonalities can be
grouped together to form a thin-thread group. Such grouping can be recursive, i.e., a
collection of lower level thin-thread groups that share some commonalities can be
further grouped to form a higher level thin-thread group. All thin-threads and thin-
thread groups can be arranged hierarchically to form a thin-thread tree. Further-
more, conditions are generally associated with each thin thread or each thin thread
group to identify their activation constraints [1]. A thin-thread can only be activated
if its affiliated conditions are satisfied. The conditions can also be grouped and
organized into a tree style.

On the other hand, the UML activity diagrams can contain data storage objects
which can be read and/or updated by sub-scenarios. These data objects can affect or
be affected by the associated conditions. For example, a multi-processing system or
an interactive system may experience the racing problem in which the execution
result is affected by the execution sequencing of the sub-scenarios, if two or more
sub-scenarios update the same data objects in certain situations. Similar to the con-
ditions, the data storage objects can also be classified and organized into a tree
style. However, there is a difference between the classification of the data objects
and that of the conditions, namely the hierarchy of the data objects closely resem-
bles a normal data storage structure in a relational database. The top level of a data
object hierarchy contains the data objects, and a leaf node only contains part of a
data object since different sub-scenarios may operate on the different parts of the
same data object. The operation attributes, namely reading or updating, are as-
signed to the leaf nodes to help identifying the data dependencies between the thin-
threads. The data object tree was not part of the standard thin-thread based ap-
proaches reported in literature [1, 5, 22]. It was proposed in [3] to extend the thin-
threads to capture the important content-dependent coupling relationships between
the thin-threads.

Consequently, thin-threads, conditions and data objects can all be arranged hierar-
chically to form the thin-thread tree, the condition tree and the data-object tree, re-
spectively. There are complex relationships amongst the three trees. A thin thread is
composed of a group of sequential sub-scenarios, with each sub-scenario associated
with one or more conditions in the condition-tree and one or more data object in the
data-object tree. The thin-threads may share common sub-scenarios, conditions and
data-objects.

Next we present the details of the proposed approach which aims at automating the
generation of the trees.

2.2 Using Anti-Ant-like Agents to Build the Three Trees

A directed graph is defined as G = (V, E) where V is a set of vertices of the graph and
E a set of edges of the graph. A UML activity diagram can be viewed as a directed
graph where the vertices are the activity nodes, the object nodes, the branch nodes, the

72 H. Li and C.P. Lam

fork nodes, the join nodes, and the initial node, while the edges are the activity edges
in the activity diagram. An extended activity diagram, namely an ATM machine, is
shown in Figure 1. This activity diagram contains a data object Account which can be
accessed by various activity nodes.

Input Pin 1

[Pin Error]

[Times <3]

[Times =3]

[Pin OK]

Session 2

[Session = Withdrawl]

Input Number 3

CheckBalance 4

[No]

 [Yes][Times=3]

[Times<3]

Inquity Operation 6

[Session = Inquity]

[Session = Deposit]

Input Number 7

Print Reciept 8 Deposit Operation 9

Withdrawl Operation 5

Select Print
Receipt 10

[Yes]

Print Receipt 11

[No]

[Session = Cancel]

[Press Cancel Button]

CardID&Pin:
Account

Balance:
Account

Fig. 1. An ATM Activity Diagram

An activity graph is a directed, dynamic graph in which the activity edges may only
become accessible after the evaluation of their guards. It is difficult to apply the origi-
nal ACO algorithms directly to this type of dynamic graphs to generate test threads.

 Using Anti-Ant-like Agents to Generate Test Threads from the UML Diagrams 73

Inspired by ACO algorithms, we consider the problem of sending a group of ant-
like agents to cooperatively search a directed graph G. The objective of the ant explo-
ration is to build the three trees as discussed in the previous sub-section.

The behavior of an artificial ant in our approach is governed by a state machine
diagram illustrated in Figure 2. An artificial ant at a node in our paradigm can sense
the pheromone trails on the edges emanating from the current vertex, and leave
pheromone trails over the edges when it moves between the nodes.

Node Status

Condition Reporting Data Object Reporting

Dead

Teminated

Thread Reporting
Found Poison

Out of Energy

Found Condition

Access Data

Direction

Found Fork

Building Fork-Join Bridge

Next Node

O
ther

Report

SelectNext[is Not Fork-join
Bridge]/Move;P=P+1;En = En -1

SelectNext[is Fork-join Bridge]/
Move;P=P+1/n!;En = En -1

Fig. 2. Behavior of an Artificial Ant - The State Machine Diagram

Unlike the approach in [3], it is not necessary for the current framework to convert
a UML activity diagram into an activity hypergraph first and then process the convert
hypergraph which were two steps that could not be fully automated in [3]. The UML
activity diagrams, in the form of XMI files exported from common UML tools can be
directly used to generate the trees in the proposed approach. Graph conversion from
the activity diagram, if necessary, is done on the fly instead.

There are two special sets of nodes in the activity diagram which need to pay
special attention:

• The final nodes in an activity diagram are considered as the poisoned food
sources for the artificial ants. An artificial ant is killed if it finds the poi-
soned food.

• A fork node and its associated join node are considered as the two banks of a
river, every path between the fork-join nodes is considered as a pontoon. An
artificial ant can not cross the river without building a pontoon bridge1 over
the river first. Every pair of fork/join nodes and all the nodes between the
pair will be converted on the fly to execution sequences, called Fork-Join

1 A type of temporary bridge which is quickly built using floating pontoons for the passage of

troops.

74 H. Li and C.P. Lam

Bridges, by the artificial ants. The details of Fork-Join Bridges will be dis-
cussed late.

In our framework, an artificial ant is powered by limited energy. An ant is termi-
nated if it runs out of energy. The main purpose for the introduction of power con-
sumption for the artificial ants is to avoid the situations in which an artificial ant runs
into a cyclic loop, or in which an ant is stalled in a part of the activity diagram.

We now present the algorithm for the proposed ant exploration approach:

Algorithm

The pseudo codes of the proposed algorithm are illustrated as following:

/* Initialization */
for every edge (i,j) do
 P

ij
 = 0; /*Set 0 pheromone level to every edge*/

endfor;

/* Exploration of a group of m ants */
for k = 1 to m do
 EN

k
 = Energy; /*Charge every ant with default energy*/

 i = 0; /*Every ant starts from the initial node*/

 while (EN

k
 > 0) do

/*Thread reporting*/
Report threads to the thread tree;

 Evaluate status at node i;

 if (Found Poison) do
 Kill ant;
 Break;
 endif;

/*Condition reporting*/
if (Found Condition) do
 Report conditions to the condition tree;
endif;

/*Data Reporting*/
if (Access Data) do
 Report data access to the data object tree;
endif;

/*If arrives at a fork node*/
if (Found Fork) do

 Building Fork-Join Bridge;
endif;

/*Not every edge is freely accessible*/
Get access conditions for emanating edges from vertex i;

 Evaluate pheromone levels on all emanating edges;

 Using Anti-Ant-like Agents to Generate Test Threads from the UML Diagrams 75

 /*Find the destine node d which has the minimum pheromone
level, random selection if multiple*/

Find min P
id
;

Take access conditions on edge (i,d);

/*Move to the destine node*/
i = d;

/*Each move consumes energy*/
EN

k
 = EN

k
 – 1;

/*Update pheromone over the traversed edge*/
if (is Fork-join Bridge) do
 P

id
 = P

id
 +1/n!; /*n pontoons*/

else
 P

id
 = P

id
 + 1;

endif;

 endwhile;

 if P

ij
 >= 1 for every edge (i,j) do

Stop; /*Every edge has been traversed*/
endif;

endfor;

The above pseudo codes are derived from the state machine diagram in Figure 2 to

reflect an artificial ant’s behavior in exploring the activity graphs. Similar to ACO,
pheromone trails on edges are used to guide an artificial ant in selecting its direction
for next move. However, unlike ACO and the real ants, our artificial ants exhibit
repulsive behavior as pheromone trails in our approach are used in such a way that an
ant will favor the unexplored or less-explored edges. This results in effective explora-
tion of the activity diagrams, as the addressed problem here is the generation of vari-
ous test threads which requires effective coverage of all activity edges instead of an
optimal path achieved by original ACO algorithms.

Since the artificial ants in our framework exhibit repulsive behavior which is con-
trary to that of the real ants, we may better name our artificial ants as anti-ants. How-
ever, for simplicity, we will still use the name “ants” to call our artificial agents which
actually exhibit anti-ant behavior.

The pseudo codes are straightforward to be followed. However, two segments of
the pseudo codes, namely Building Fork-Join Bridge and Reporting need to be further
explained.

Building Fork-Join Bridge

When an artificial ant arrives at a fork river bank, it has to utilize the pontoons be-
tween the two river banks to build a pontoon bridge over the river in order to cross the
river. Assume that there are n pontoons, and then the procedure to build a fork-join
bridge for an ant is:

76 H. Li and C.P. Lam

1. Set k = 1;
2. From the remaining pontoons, find the k-th pontoon which has the minimum

pheromone level on the first edge; randomly select a pontoon if there are mul-
tiple candidates with same minimum pheromone level;

3. Deposit pheromone level 1/k to the first edge of the k-th pontoon;
4. If k = n, sequentially connect all pontoons in the respective order to form a

pontoon bridge; otherwise set k = k + 1 and go to step 2;
5. Temporarily replace all the inclusive nodes between the fork node and the join

node in the activity diagram with the fork-join bridge constructed by the cur-
rent ant.

For example, for the fork-join river in the ATM example shown in Figure 1, two

consecutive ant explorations build two fork-join bridges as illustrated in Figure 3.
Note that an ant deposits 1/n! pheromone level over each edge which it traverses on
the fork-join bridge.

Input Number 7

Deposit Operation 9

Print Receipt 8

Input Number 7

Print Receipt 8

Deposit Operation 9

Fork-Join Bridge 1

Fork-Join Bridge 2

Input Number 7

Print Receipt 8 Deposit Operation 9

0 0

Input Number 7

Print Receipt 8 Deposit Operation 9

3/2 1

1/2 1/2

Fig. 3. Building a Fork-Join Bridge

The bridge building procedure ensures that every possible execution sequence
combination of the paths between the fork node and the join node will be exercised by
the proposed algorithm, and all corresponding traces will be recorded in the three
trees. However, the bridge building procedure alone can not guarantee that every
activity edge in a path between the fork and the join nodes will be visited by at least
one ant. Therefore, the 1/n! pheromone level deposition is introduced which ensures

 Using Anti-Ant-like Agents to Generate Test Threads from the UML Diagrams 77

that if there is an unexplored activity edge between the fork and the join nodes, the
proposed ant exploration algorithm will not stop. Further exploration of other ants
over the paths between the fork and join nodes will favor those edges which have not
been fully explored. The number of ants m in the proposed algorithm can be increased
to allow more exhaustive exploration. Eventually all activity edges between the fork
and the join nodes will be visited at least once which serves as one of the necessary
conditions for the termination of the ant exploration algorithm.

Reporting

For simplicity, we only discuss thread reporting here. Condition reporting and data
reporting can be tackled in similar ways.

In the exploration of a UML activity diagram, an ant frequently reports its trace to
a thin-thread tree. The completed trace of an ant, which is an execution thread, is
represented as a branch in the thin-thread tree, as illustrated in Figure 4. When next
ant enters and explores the activity diagram, its trace is also reported to the same thin-
thread tree. However, for compactness, the part of the new ant’s trace which overlaps
an existing trace is merged with the existing trace to form the trunk, while the differ-
ent part is allowed to branch away from the trunk, as shown in the right hand side
of Figure 4.

In put Pi n 1

[P in E rro r]

[T im es <3]

[T im es =3]

[P in OK]

Se ssi on 2

[S es si on = Wi thdr aw l]

I nput Nu mb er 3

Ch ec kB al ance 4

[N o]

 [Y es] [T im es =3]

[T im es <3]

I nqui ty Op er ati on 6

[S es si on = I nqui ty]

[S es si on = De pos it]

I nput Nu mb er 7

Pr in t Re ci ep t 8 De pos it Op er at io n 9

Wi t hdr aw l Op er at io n 5

Se le ct Pr in t
Re ce ip t 10

[Y es]

Pr in t Re ce ip t 11

[N o]

[S es si on = Ca nc el]

[Pre ss Ca nc el Bu tt on]

C a rd I D & Pi n :
A c co u n t

Ba la n c e:
A c co u n t

TT: ATM (Thin-thread tree)

 TT1:Pin error one time then Eject card (T1)

TT2:CardID and Pin ok

 TT2.1:Eject Card

 TT2.2withdrawl

 TT2.3: Deposit

 TT2.4: Inquiry
.....................

TT2.4.1: Request print a balance reciept
TT2.4.2: Don't Request print a balance reciept

TT3: CardID and Pin ok after one failed Pin

 TT3.1:Eject Card

T T3.2withdrawl

 TT3.3Deposit

 TT3.4: Inquiry

.....................

.....................

TT3.4.1: Request print a balance reciept (T5)

TT3.4.2: Don't Request print a balance reciept

TT4: CardID and Pin Error three times then Card is retained

 TT2.2.1 No enough balance and cancel

 TT2.2.2 No enough balance and enter dollar amount again

 TT2.2.3 balance
TT2.2.3.1: Withdrawal successfully
 and request print a balance reciept
TT2.2.3.2: Withdrawal successfully and
 don't Request print a balance reciept

.....................

 TT3.2.3 balance
TT3.2.3.1: Withdrawal successfully
 and request print a balance reciept

TT3.2.3.2: Withdrawal successfully
 and don't Request print a balance reciept

(T2)

(T4)

(T3)

Thin-Thread Tree

Reporting

Ant 1:

Ant 2:

Fig. 4. Thread Reporting

78 H. Li and C.P. Lam

Exploration a UML activity diagram using multiple ant-like agents will result in
the automatic generation of three tree type structures, namely the thin-thread tree, the
associated condition tree, and the associated data object tree. For the ATM example in
Figure 1, application of the proposed approach results in the three trees which are
partly shown in Figure 5. The three trees are accordant with the ones reported in [3].

C: ATM (Condition tree)

C1: Data condition

C1.1: Data from User interface

C1.1.1: Data from Function of Verify Pin

C1.1.1.1: CardID

C1.1.1.2: Pin

C1.1.2: Data from operation menu

..

C1.1.2.1: Withdrawal (A3)

 C1.1.2.2: Inqurity (A4)

 C1.1.2.3: Deposit

 C1.1.2.4: Cancel

C1.1.3: Data from Withdrawal: dollar amount (A5)

............

C1.1.10: Data from Select print receipt

C1.1.10.1: Yes (Need a print receipt) (A6)

C1.1.10.2: No (Don't need a print receipt)

C2: Operation condition

C2.1: Operation condition from customer's keyboard

C2.1.1: Press "Enter" button (A10)

C2.1.2: Press "Cancel" button (A11)

..

............

............

C1.2: Data from DataBase

C1.1.4: Data from Deposit: dollar amount

..

C1.2.1: Data of customer's personal message for account

............

C1.2.2: Data of balance for account

C1.1.1.1.1: CardID in correct style (A1)

C1.1.1.1.2: CardID in wrong style

C1.1.1.2.1: Pin in correct style (A2)

C1.1.1.2.2: Pin in wrong style

C1.2.1.1: Valid CardID and Pin (A7`)

C1.2.1.2: Invalid CardID and Pin (A8`)

C1.2.2.1: Sufficient account balance (A9`)
C1.2.2.2: Insufficient account balanceDO: ATM (Data-object tree)

DO1: Account

DO1.1: CardID and Pin of account

DO1.1.1: CardID and Pin of one account

DO1.1.1.1: CardID and Pin of one account (Reading operation) (D1)

DO1.1.1.2: CardID and Pin of one account (Updating operation for Pin)

DO1.1.2: Multi CardID of one account (Main Card and Associted Card)

DO1.1.2.1: CardID and Pin of one account for each card (Reading operation) (D2)
..

..

..

DO1.2: Balance of account

DO1.2.1: Balance of the account (Reading operation) (D3)

DO1.2.2: Balance of the account (Updating operation) (D4)

..

..

TT: ATM (Thin-thread tree)

 TT1:Pin error one time then Eject card (T1)

TT2:CardID and Pin ok

 TT2.1:Eject Card

 TT2.2withdrawl

 TT2.3: Deposit

 TT2.4: Inquiry
.....................

TT2.4.1: Request print a balance reciept
TT2.4.2: Don't Request print a balance reciept

TT3: CardID and Pin ok after one failed Pin

 TT3.1:Eject Card

T T3.2withdrawl

 TT3.3Deposit

 TT3.4: Inquiry

.....................

.....................

TT3.4.1: Request print a balance reciept (T5)

TT3.4.2: Don't Request print a balance reciept

TT4: CardID and Pin Error three times then Card is retained

 TT2.2.1 No enough balance and cancel

 TT2.2.2 No enough balance and enter dollar amount again

 TT2.2.3 balance
TT2.2.3.1: Withdrawal successfully
 and request print a balance reciept
TT2.2.3.2: Withdrawal successfully and
 don't Request print a balance reciept

.....................

 TT3.2.3 balance
TT3.2.3.1: Withdrawal successfully
 and request print a balance reciept

TT3.2.3.2: Withdrawal successfully
 and don't Request print a balance reciept

(T2)

(T4)

(T3)

Fig. 5. The Three Trees for the ATM Example

It is possible that some variations may be adopted for the proposed algorithm:

 Use more sophisticated and complicated pheromone updating rules, or use
evaporating pheromone deposit.

However, unlike the original ACO algorithms where convergence to an optimal
path is desired, the proposed algorithm doesn’t encourage cyclic exploration for the
artificial ants. In contrary to the original ACO algorithms, the pheromone trails in our
approach is used to discourage an artificial ants from exploring an edge which has
already been well explored. We believe that the simple pheromone updating rules
should serve our purpose well. Adoption of more sophisticated pheromone updating

 Using Anti-Ant-like Agents to Generate Test Threads from the UML Diagrams 79

rules, or using evaporating pheromone deposit may complicate the algorithm without
significant improvement. However, further research is required and is being carried
out to verify this claim.

 Use goal-oriented approach to guide the ants to effectively explore these un-
explored edges.

A goal-oriented evolutionary approach has been proposed in [18] for optimization
of state-based test suites for software systems. In the current framework, the artificial
ants used to explore the activity diagrams are simple memoryless creatures, they can
not pre-fetch the future pheromone trails, and are unable to back-trace. Further re-
search will be demanded to exploit the possibility of using ant-like simple agents in
goal-oriented approach for the generation of test threads.

 Deploy ants to randomly assigned initial nodes to start exploration.

While ants can be deployed to random locations to start their exploration, the traces
they create may not be meaningful in the sense of test threads. Thus the details of this
variation will not be discussed further in this paper.

While the proposed algorithm works well for the exploration of UML activity dia-
grams of the ATM example scale, further experiments will be performed to verify the
efficiency of the proposed algorithm for large scale activity diagrams. Results will be
reported in sequential reports.

3 Conclusion

This paper extends the previous work in generation of test threads for software test-
ing. In this paper, we propose to use anti-ant-like agents to automatically generate the
thin-threads from the UML artifacts. Our approach has the following advantages: 1)
the process to generate the thin-threads is simplified because the UML artifacts are
directly used; 2) the generation process is fully automated; 3) redundant exploration
for the test threads is avoided due to the use of the anti-ant-like ants.

References

1. Assistant Secretary of Defense for Command, Control, Communications, and Intelligence
(ASD C3I), End-to-End Integration Test Guidebook, 2000.

2. F. Basanieri, A. Bertolino, and E. Marchetti, “CoWTeSt: A Cost Weighed Test Strategy”,
Proc. Escom-Scope 2001, London, 2001.

3. X. Bai, C. P. Lam, and H. Li, “An Approach to generate the Thin-threads from the UML
Diagrams”, Proc. COMPSAC 2004, Hong Kong, 2004.

4. X. Bai, H. Li, and C. P. Lam, “A Risk Analysis Approach to Prioritize UML-Based Soft-
ware Testing”, Proc. SNPD 2004, Beijing, 2004.

5. X. Bai, W. T. Tsai, R. Paul, K. Feng, and L. Yu, “Scenario-Based Business Modeling”,
IEEE Proc. of APAQS, 2001.

6. S. Bennett, S. McRobb and R. Farmer, Object-Oriented Systems Analysis and Design Us-
ing UML (Second Edition), McGraw-Hill Education, 2002.

80 H. Li and C.P. Lam

7. R. V. Binder, Testing Object-Oriented Systems - Models, Patterns, and Tools, Addison-
Wesley, 1999.

8. L. Briand, “On the many ways Software Engineering can benefit from Knowledge Engi-
neering”, Proc. 14th SEKE, Italy, 2002.

9. L. Briand and Y. Labiche, “A UML-Based Approach to System Testing”, Software and
Systems Modeling, 1(1), 2002.

10. A. Cockburn, “Structuring use cases with goals”, http://alistair.cockburn.us/.
11. K. Doerner and W. J. Gutjahr, “Extracting Test Sequences from a Markov Software Usage

Model by ACO”, LNCS, Vol. 2724, pp. 2465-2476, Springer Verlag, 2003.
12. M. Dorigo, V. Maniezzo, and A. Colorni, “Positive Feedback as a Search Strategy”, Tech-

nical Report No. 91-016, Politecnico di Milano, Italy, 1991.
13. M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimization by a Colony of

Cooperating Agents”, IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26(1),
1996.

14. J. Heumann, “Introduction to Business Modeling Using the Unified Modeling Language
(UML)”, http://www.therationaledge.com/content/mar_01/m_uml_jh.html.

15. J. Horgan, S. London, and M. Lyu, “Achieving Software Quality with Testing Coverage
Measures”, IEEE Computer, 27(9), 1994.

16. C. Kaner, J. Falk, and H. Q. Nguyen, Testing computer software, 2nd Edition, John Wiley
& Sons, 1999.

17. Y. Kim and C. R. Carlson, “Scenario Based Integration Testing for Object-Oriented Soft-
ware Development”, Proceedings of the Eighth Asian Test Symposium, Shanghai, 1999.

18. C. P. Lam, M. C. Robey and H. Li, "Application of AI for Automation of Software Test-
ing", Proc. SNPD03, Germany, 2003.

19. H. Li and C. P. Lam, “Optimization of State-based Test Suites for Software Systems: An
Evolutionary Approach”, International Journal of Computer and Information Science,
5(3), 2004.

20. H. Li and C. P. Lam, “Software Test Data Generation using Ant Colony Optimization”, to
appear in Proc. ICCI 2004, 2004.

21. P. McMinn and M. Holcombe, “The State Problem for Evolutionary Testing”, Proc.
GECCO 2003, 2003.

22. W. T. Tsai, X. Bai, R. Paul, W. Shao, and V. Agarwal, “End-To-End Integration Testing
Design”, Proc. COMPSAC'01, Chicago, 2001.

23. E. J. Weyuker, “Testing Component-Based Software: A cautionary Tale”, IEEE Software,
15(5), 1998.

Action Refinement in Conformance Testing

Machiel van der Bijl1 �, Arend Rensink1, and Jan Tretmans2

1 Software Engineering, Department of Computer Science, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands,

{vdbijl, rensink}@cs.utwente.nl
2 Informatics for Technical Applications,

Nijmegen Institute for Computing and Information Sciences (NIII),
Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands,

tretmans@cs.ru.nl

Abstract. In model based testing test cases are derived from a model
(the specification) of the system we want to test. In general the model
is more abstract than the implementation. This may result in test cases
that are not executable, because their actions are too abstract; the im-
plementation does not understand them. The standard approach is to
rewrite the model by hand to the required level of detail and regenerate
the test cases. This is error-prone and time consuming.

In this paper we present an approach to automatically obtain test cases
at the required level of detail by means of action refinement. Action re-
finement is a way to add information to the abstract model. It relates
actions from the abstract model to concrete actions of the system un-
der test. We apply this approach to a simple case of action refinement,
so-called atomic linear input-inputs refinement. In order to reason about
correctness between an abstract model and a concrete implementation
we introduce a new implementation relation. We show that this rela-
tion is equivalent with the uioco implementation relation on the refined
model. Furthermore we show under which conditions the refinement of
a complete abstract test suite is again complete.

1 Introduction

A problem in model based testing is that the generated test cases may not have
the required level of detail, and hence are not executable against the implemen-
tation under test. The test cases are generated from the model (the specification)
and in general, the model is more abstract than the implementation. The usual
solution is to add the required level of detail to the model by hand. This has
some obvious drawbacks; it is time consuming and error-prone.

In this paper we use action refinement to automatically obtain test cases at
the required level of detail. Action refinement has been studied extensively; see
Gorrieri and Rensink for an overview [2]. Action refinement adds extra informa-
tion to the model by relating an action of the model to more detailed behavior.
� This research was supported by the dutch research program PROGRESS under

project: TES5417: Atomyste – ATOm splitting in eMbedded sYStems TEsting.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. – , 2005.
c© 2005

8 961

,

IFIP

abstract
system

specification

refined
system

specification

system
implementation

(iut)
executable
test suite

verdict

test suite
refined

test suite
abstract

conformance

concrete world

test case
refinement

test
implementation

test

test
derivation

test
derivation

system
implementation

system
refinement

application

formal world

relation

Fig. 1. Action refinement approach

Wherever we read the action in the model we replace it with the more detailed
behavior. For example, suppose that the model specifies to input two euros and
the implementation also allows the insertion of two one euro pieces. With ac-
tion refinement we can define that wherever we read two euros we can also read
the more detailed behavior one euro followed by one euro. Action refinement in
model based testing has not been studied at all. This is surprising, because it is
a well known problem in practice and occurs often.

Figure 1 shows our general approach for action refinement in testing. We see
six objects in the figure. The objects on the left hand side denote models and
the objects on the right hand side denote test suites. System implementation
is the system that we want to test, also known as iut (Implementation Under
Test); a real system in the physical world. Abstract system specification
is a (formal) model of the system implementation. It is called abstract because
it does not have the required level of detail with respect to the system imple-
mentation. Refined system specification is the refined model of the system
implementation with the required level of abstraction with respect to the system
implementation. Abstract test suite is the test suite that is derived from the
abstract system specification. As with the abstract system specification, it is
too abstract with respect to the system implementation. Refined test suite
is a test suite with the required level of abstraction with respect to the system
implementation. There are two ways to derive such a test suite. One way is to
refine the abstract test suite, another way is to derive test cases from the refined
system specification. We do both and proof both approaches to be equivalent
under certain restrictions. Executable test suite is a test suite in the physical

82 M. van der Bijl, A. Rensink, and J. Tretmans

world that we can execute against the system implementation. This results in
a verdict whether or not the implementation is correct with respect to the re-
fined (or abstract) system specification. This notion of correctness is defined in a
so-called implementation relation between the system specification (abstract or
refined) and the system implementation. The conformance relation is depicted
on the left side of the Figure.

This paper is a first step in our effort towards action refinement in model
based testing and we use a simple, though non-trivial case of action refinement:
atomic linear input-inputs refinement.

In this paper we show how to refine traces, transition systems and test cases.
In order to reason about correctness between an abstract specification and a
concrete implementation we introduce the implementation relation uiocor and
we show that it is equivalent with uioco between the refined specification and
the same implementation (uioco is a further evolution of ioco; see [4] and [6]).
We show under which conditions the refinement of a complete abstract test suite
results in a complete refined test suite.

The main contribution of this paper is that refinement of a complete test suite
results in a complete refined test suite (under certain restrictions). Furthermore
we argue that our approach for atomic linear input-inputs refinement can be
extended to more general types of action refinement. This extension is the next
step in our research. One of the surprising (theoretic) consequences of this paper
is that specification equivalence is not preserved by action refinement.

We start with summarizing some results and notations that we will use
throughout the paper in Section 2. In Section 3 we introduce atomic linear input-
inputs refinement. We present trace refinement in Section 4 and the refinement
of labeled transition systems in Section 5. In Section 6 we present the imple-
mentation relation uiocor , followed by the refinement of test cases in Section 7.
Conclusions can be found in Section 8.

2 Formal reliminaries

This section recalls some aspects of the theory behind uioco that are used in
this paper; see [6] and [4] for a more detailed exposition.

Labeled Transition Systems. A labeled transition system (LTS) description
is defined in terms of states and labeled transitions between states, where the
labels indicate what happens during the transition. Labels are taken from a
global set L. We use a special label τ /∈ L to denote an internal action. For
arbitrary L ⊆ L, we use Lτ as a shorthand for L ∪ {τ}. We partition the label
set of an LTS in an input and output set; a deviation from the standard definition
of labeled transition systems.

Definition 1. A labeled transition system is a 5-tuple 〈Q, I, U, T, q0〉 where Q
is a non-empty countable set of states; I ⊆ L is the countable set of input labels;
U ⊆ L is the countable set of output labels, I ∩ U = ∅; T ⊆ Q×(I∪U∪{τ})×Q
is a set of triples, the transition relation; q0 ∈ Q is the initial state.

Action Refinement in Conformance Testing 83

P

We use L as shorthand for the entire label set (L = I ∪ U); furthermore,
we use Qp, Ip etc. to denote the components of an LTS p. We commonly write
q μ−→ q′ for (q, μ, q′) ∈ T . We use a question mark before a label to denote that
it is input and an exclamation mark to denote that it is output. We denote the
class of all labeled transition systems over I and U by LTS(I, U). We represent a
labeled transition system in the standard way, by a directed, edge-labeled graph
where nodes represent states and edges represent transitions.

A state that cannot do an internal action is called stable. A stable state from
which no output action is possible is called quiescent. We use the symbol δ (
∈ Lτ)
to represent quiescence: p δ−→ p stands for the absence of any transition p μ−→ p′

with μ ∈ Uτ . For an arbitrary L ⊆ L, we use Lδ as a shorthand for L ∪ {δ}. We
use the label μ, respectively λ to range over Lτ , respectively Lτδ.

An LTS is strongly responsive if it always eventually enters a quiescent state;
in other words, if it does not have any infinite Uτ -labeled paths. The ioco theory
is restricted to strongly responsive systems, hence we also use this restriction.

A trace is a sequence of observable actions. The set of all traces over L (⊆ L)
is denoted by L∗, ranged over by σ, with ε denoting the empty sequence. If
σ1, σ2 ∈ L∗, then σ1·σ2 is the concatenation of σ1 and σ2. Concatenation is
extended in the standard way to sets of traces and also to Σ·a where Σ is a
set of traces and a an action. We use the standard notation with single and
double arrows for traces: q λ1···λn−−−−−→ q denotes q λ1−−→ · · · λn−−→ q′, q

ε=⇒ q′ denotes
q τ ···τ−−−→ q′ and q

λ1···λn=====⇒ q denotes q
ε=⇒ λ1−−→ ε=⇒ · · · λn−−→ ε=⇒ q′. We will use Σ

to denote a set of traces. If σ = λ1 · · ·λn then σ|i = λi where 1 ≤ i ≤ |σ| = n,
and L(σ) = {λ1, · · · , λn}. We use the symbol to denote trace prefix and the
symbol ↓ to denote prefix closure, as follows: σ1 σ ⇔ ∃σ2 : σ1·σ2 = σ, ↓σ =
{σ′ | σ′ σ}, ↓Σ =

⋃{↓σ | σ ∈ Σ}
We will not always distinguish between a labeled transition system and its

initial state. We will identify the process p = 〈Q, I, U, T, q0〉 with its initial state
q0, and we write, for example, p

σ=⇒ q1 instead of q0
σ=⇒ q1.

Input-output transition systems. We call a labeled transition system that is
completely specified for input actions an input-output transition system (IOTS).
This means that all states can do all input actions from the label set, if nec-
essary by first doing one or more internal actions. The class of input-output
transition systems with input actions in I and output actions in U is denoted
by IOTS(I, U) (⊆ LTS(I, U)).

Definition 2. An input-output transition system p = 〈Q, I, U, T, q0〉 is a labeled
transition system for which all inputs are enabled in all states: ∀q ∈ Q, a ∈ I :
q

a=⇒ (weak input enabledness).

Conformance. The testing scenario on which uioco is based wants to establish
a notion of conformance between a specification and an implementation [4]. The
specification is an LTS, specifying the required behavior. Since the testing ap-
proach is black box testing, we do not know anything about the implementation;

84 M. van der Bijl, A. Rensink, and J. Tretmans

however, we assume that it is possible to model it as an IOTS. This assumption
is referred to as the test hypothesis [1].

Given a specification s and an (assumed) model of the implementation i, the
relation i iocoF s expresses that i conforms to s based on a set of traces F . This
is formalized as follows: Let s ∈ LTS(I, U), i ∈ IOTS(I, U), S ⊆ Qs be a set of
states in s, σ ∈ L∗

δ and F ⊆ L∗
δ .

s after σ =def {s′ | s σ=⇒ s′} (1)

out(s) =def {x ∈ U | s x−→} ∪ {δ | s δ−→} (2)

out(S) =def

⋃
{out(s) | s ∈ S} (3)

Straces(s) =def {σ ∈ L∗
δ | s σ=⇒} (4)

Utraces(s) =def {σ ∈ Straces(s) | ∀q, (σ1·a) σ :
(a ∈ I ∧ s

σ1==⇒ q) implies q
a=⇒} (5)

i iocoF s =def ∀σ ∈ F : out(i after σ) ⊆ out(s after σ) (6)

For F = Straces(s) we abbreviate iocoF to ioco and for F = Utraces(s)
to uioco. In other words ioco is based on suspension traces (Straces: traces in
L∗

δ) whereas uioco is based on a subset of suspension traces: universal traces.
All states that a universal trace leads to can do the same set of input actions.
This is a necessary prerequisite to make uioco a pre-congruence for parallel
composition and hiding.

Test cases. A test case is the specification of a tester in an experiment with
the system under test. It is modeled as a special labeled transition system with
pass and fail predicates on states to decide about the success of a test. It is a
special LTS because it has the following restrictions:

Definition 3. A test case t = 〈Q, S, R, T, t0,pass, fail〉 over a set of stimuli S
and a set of responses R is an acyclic labeled transition system such that:
◦ t is deterministic and has finite behavior.
◦ pass ⊆ Q, fail ⊆ Q. pass and fail states do not have outgoing transitions.
◦ A state in Q that is no pass or fail state has either one outgoing transition
with a stimulus label, or has outgoing transitions for all labels in R.

The class of test cases over S and R is denoted as TEST (S, R). A test suite
T is a set of test cases: T ⊆ TEST (S, R). An implementation i ∈ IOTS(I, U)
passes a test case t ∈ TEST (I, Uδ) if there is no suspension trace of i that leads
to a fail state in t. Note that a stimulus of the test case is an input of the
implementation and vice versa for the responses.

Definition 4. Let s ∈ LTS(I, U) be a specification and T ⊆ TEST (I, Uδ) a test
suite; then for the implementation relation uioco:

T is complete =def ∀i ∈ IOTS(I, U) : i uioco s ⇔ i passes T
T is sound =def ∀i ∈ IOTS(I, U) : i uioco s ⇒ i passes T
T is exhaustive =def ∀i ∈ IOTS(I, U) : i uioco s⇐ i passes T

Action Refinement in Conformance Testing 85

3 Atomic nput- nputs ction efinement

As stated in the introduction we treat the problem that test cases derived from
a specification may not be executable on the system under test. Example 1
illustrates this problem (we use this as our running example).

Example 1. In Figure 2 we see a specification (left) and a refined specification
(right) of a simple data entry application (forget the state labels for now). The
specification tells us that we can enter address data, push the store button after
which the system either stores the address data (ok) or returns nok. Suppose that
our specification is too abstract, because an address is entered in three steps:
street, city and postal code, like the refined specification on the right.

The left hand side of Figure 3 shows a test case generated from the abstract
specification. On the right we see two test cases with the required level of detail
to test the actual system. We can read the abstract test case as follows: enter
the address data, press the store button and then observe the response of the
iut. The iut passes the test if we observe ok or nok, but fails when we observe
quiescence. Note that the direction of inputs and outputs in the test case are
reversed with respect to the specification.

Of course the data entry example is very simple, because of its educational
purposes. This may give the illusion that refinement of transition systems and
test cases is straightforward. The more extended technical report of this paper
shows that simple refinements may quickly result in a complex system [7].

There are several types of action refinement [5]. In this paper we treat atomic
linear input-inputs refinement. Atomic means that no actions are allowed to
interfere with the refinement; we treat the behavior of the refinement as atomic.
Linear means that we allow no branching behavior in the refinement and input-
inputs means that we only refine an input action with one or more other input
actions. The refinement in Figure 2 is an example of such a refinement. It is

86 M. van der Bijl, A. Rensink, and J. Tretmans

I I A R

q0

q1

q2

q2

q1

t,1

q0

refined specificationspecification

t,2 !ok

!nok

?address

?store

?street

?city

?postalcode

?store

!ok!nok

Fig. 2. Abstract and refined specification of data entry system

pass fail pass

δ

!store

!city

!street

!postalcode

refined test case 2

fail

pass fail pass

?ok, nok

!street

!city

δ

!postalcode

!store

δ ?ok

refined test case 1

!store

?ok

!address

abstract test case

pass fail pass

?nok δ

?nok ?ok

?nok

Fig. 3. Abstract and refined test cases for data entry example

our goal to extend this action refinement approach in the future to more general
cases of action refinement. We believe that this can be done in a similar way as
the atomic linear input-inputs refinement case that we treat in this paper, as we
discuss in the concluding section.

In this paper we show what correctness means in terms of a conformance
relation between the abstract system specification and the system implementa-
tion. Furthermore we show two ways to obtain a refined test suite as shown in
Figure 1. One is to refine the abstract system specification and derive a refined
test suite and the other is to refine the abstract test suite directly. We show that
both approaches are equivalent under some restrictions.

Sometimes we use the terms abstract and concrete as synonyms for unrefined
and refined, respectively .

4 Trace efinement

We define refinement as a pair r = (ar , σr) with respect to an input label set I
and an output label set U . ar is the refinement label, i.e., the abstract label that
we want to refine and σr is the refinement trace, i.e., the trace that we want to
replace the refinement label with. There are the following restrictions: ar ∈ I,
L(σr) ∩ Lδ = ∅ (the labels in σr are fresh) and σr
= ε.

In cases where there may be confusion about label sets we use the subscript
r to tag the label set after refinement, for example: Ir = (I\{ar}) ∪ L(σr).

The goal of trace refinement is to refine a trace from an abstract specifica-
tion such that it becomes a trace of the refined system. In a refined trace all
occurrences of the refinement label have been replaced with its refinement.

Action Refinement in Conformance Testing 87

R

Input-inputs refinement allows quiescence within a refinement. To get all pos-
sible suspension traces within the refinement trace, we saturate the refinement
trace with δ’s (this technicality is explained in Example 2).

Definition 5 (δ-saturation). Let σ = a1 · · · an then �σ� = a1·δ∗·a2 · · · δ∗·an

The refinement of a trace results in a set of traces. All labels except the
refinement label ar are unchanged. The refinement label is substituted with
every trace in �σr�. Formally this is expressed as follows.

Definition 6 (Trace refinement). Let σ ∈ L∗
δ then σ[r] denotes the refine-

ment of a trace in the following way.

σ[r] =

⎧
⎨

⎩

1) {ε} if σ = ε
2) {σ2·λ | σ2 ∈ σ1[r]} if σ = σ1·λ∧λ ∈ Lδ\{ar}
3) {σ2·σ′ | σ2 ∈ σ1[r]∧σ′ ∈ �σr�} if σ = σ1·ar

Likewise we define refinement on sets of traces by refining all traces in the set.
An important concept in this paper is the concept of an r-complete trace.

This is a trace that does not end in the middle of a refinement; or in other
words, a trace σ is r-complete when σ ∈ L∗

δ [r].
Trace contraction is the opposite of trace refinement. The goal of trace con-

traction is to transform a concrete trace to a trace of the abstract system.

Definition 7 (Trace contraction). Let r = (ar , σr), σ ∈ ↓(L∗
δ [r]).

σ〈r〉 =

⎧
⎪⎪⎨

⎪⎪⎩

1) ε if σ = ε
2) σ1〈r〉·ar if σ = σ1·σ2 ∧σ2 ∈ �σr�
3) σ1〈r〉 if σ = σ1·σ2 ∧σ2 ∈ ↓�σr�\(�σr� ∪ {ε})
4) σ1〈r〉·λ if σ = σ1·λ and none of the above holds

Likewise we define contraction on sets of traces by contracting traces in the set.

Example 2. Let us illustrate trace refinement and trace contraction with our run-
ning example in Figure 2. We refine the action address into street followed by city
followed by postalcode: the refinement pair is r = (address, street·city·postalcode).
Suppose we want to refine the trace address·store·ok. This results in the following
set of traces of the refined specification.

(address·store·ok)[r] = (address·store)[r]·ok (rule 2)
= address[r]·store·ok (rule 2)
= street·δ∗·city·δ∗·postalcode·store·ok (rule 3)

To contract street·δ·city·postalcode·store·ok·street·δ, we obtain the following:
(street·δ·city·postalcode·store·ok·street·δ)〈r〉

= (street·δ·city·postalcode·store·ok)〈r〉 (rule 3)
= (street·δ·city·postalcode·store)〈r〉·ok (rule 4)
= (street·δ·city·postalcode)〈r〉·store·ok (rule 4)
= address·store·ok (rule 2)

88 M. van der Bijl, A. Rensink, and J. Tretmans

5 Atomic efinement of ransition ystems

In this section we present a way to refine transition systems. The crux of this
refinement is that we make a transition system from our refinement trace and
insert this into the abstract transition system at the place where there is a
transition with the abstract refinement label. A formal definition is given in
Definition 8, it is illustrated in Example 3.

Definition 8 (Atomic transition system refinement). Let r = (ar , σr)
be the refinement pair and let p = 〈Q, I, U, T, q0〉 be an LTS. We define the
refinement of p as p[r] = 〈Qr , Ir , Ur , Tr , q0〉. For a transition t = (q, ar , q

′), we
use (t, 0) = q and (t, n) = q′ for n = |σr |.
Qr = Q ∪ {(t, i) | ∃q, q′ ∈ Q : t = (q, ar , q

′) ∈ T, 1 ≤ i < n = |σr |}
Ir = I\{ar} ∪ I(σr)
T ′ = {((t, i), σr |i+1, (t, i + 1)) | ∃q, q′ ∈ Q : t = (q, ar , q

′) ∈ T, 0 ≤ i ≤ |σr | − 1}
Tr = {(q, a, q′) ∈ T | a
= ar} ∪ T ′

To prevent confusion between transitions in the abstract and refined transi-
tion system we add the subscript ‘r ’ to the transition arrow for refined systems:
q

σ=⇒
r
q′. Likewise we use the subscript for the set of states, transitions, etc., as

shown in the definition.

Example 3. We use our running example in Figure 2 to explain Definition 8
(the states are numbered according to this definition). For the abstract tran-
sition t = (q0, address, q1) we add the states (t, 1) and (t, 2) to Qr ((t, 0) and
(t, 3) correspond to states q0 and q1 respectively). T ′ consists of the transi-
tions: ((t, 0), street, (t, 1)), ((t, 1), city, (t, 2)) and ((t, 2), postalcode, (t, 3)). In Tr

we delete the address transition from the set of abstract transitions and we add
T ′. We add all labels from the refinement trace: {street, city, postalcode} to Ir
and delete the refinement label “address” (the output label set stays the same).

Lemma 1 states that the prefix closure of the refined Utraces of the abstract
specification equals the set of Utraces of the refined specification. This result
holds because we defined trace refinement in such a way that the refinement of
a trace results in a trace from the refined system. To include traces that end in
the middle of the refinement, we apply the prefix closure.

Lemma 1. ↓(Utraces(s)[r]) = Utraces(s[r])

Lemma 2 states that for completely refined Utraces the set of outputs after
such a trace in the refined system equals the set of outputs in the abstract
system after the contracted trace. This holds because r -complete traces end in
states that come from the abstract system (old states). Because atomic linear
input-inputs refinement does not add outputs to the refined system, the output
behavior of the old states is not altered by the refinement.

Lemma 2. ∀σ ∈ Utraces(s)[r] : out(s[r] after σ) = out(s after σ〈r〉)

Action Refinement in Conformance Testing 89

R T S

For not completely refined Utraces (traces in ↓(Utraces(s)[r])\Utraces(s)[r]))
Lemma 3 states that the only output of the refined specification after such a
trace is quiescence. This holds because not r -complete utraces end inside the
refinement (in new states). Because our refinement does not add outputs, the
only allowed output inside the refinement is quiescence.

Lemma 3. ∀σ ∈ ↓(Utraces(s)[r])\Utraces(s)[r] : out(s[r] after σ) = {δ}

6 iocor for esting efined ystems

We introduce the implementation relation uiocor that express correctness of the
concrete implementation in terms of the abstract specification and the refinement
pair. We show that uiocor is equivalent to uioco for refined specifications.

Definition 9 (uiocor). Let s ∈ LTS(I1, U), i ∈ IOTS(I2, U), r = (ar , σr),
I2 = I1\{ar} ∪ I(σr).
i uiocor s =def ∀σ ∈ ↓(Utraces(s)[r]) :

if σ ∈ Utraces(s)[r] then out(i after σ) ⊆ out(s after σ〈r〉)
else out(i after σ) ⊆ {δ}

For completely refined Utraces the allowed output behavior of the implemen-
tation is restricted to the output behavior of the abstract specification after the
contracted trace (see Lemma 2). For not completely refined Utraces the allowed
output behavior of the implementation is restricted to quiescence (see Lemma 3).
Because of Lemma 1 we know that we have covered all possible traces of the
refined specification. Theorem 1 states the equality between uiocor and uioco.

Theorem 1. Let s ∈ LTS(I1, U), i ∈ IOTS(I2, U), r = (ar , σr), and I2 =
I1\{ar} ∪ I(σr)

i uiocor s⇔ i uioco s[r]

Example 4. We look again at the abstract and refined specification in Figure 2,
to illustrate Definition 9 and Theorem 1. We use the following two traces:
street·city·postalcode·store is a complete refinement of address·store and street·city
a not complete refinement. Both traces are in the set of Utraces of the refined
specification, as stated in Lemma 1. The trace address·store leads to state q2 in
the abstract specification and the trace street·city·postalcode·store leads to state
q2 in the refined specification; the set of outputs is in both states the same, con-
form to Lemma 2. The not r -complete trace street·city leads to state (t, 2) in the
refined specification. This state is quiescent, as stated in Lemma 3. When we put
these results together, it illustrates that the uiocor definition for the abstract
specification is equal to the uioco definition for the refined specification.

7 Test ase efinement

In the previous sections we have shown how to obtain a refined test suite by refin-
ing the specification; from this refined specification we can generate a complete

90 M. van der Bijl, A. Rensink, and J. Tretmans

RU T S

RC

test suite. In this section we show how to refine existing abstract test cases, like
the test cases shown in Figure 3. Furthermore, we show under what conditions
the refinement of a complete abstract test suite results in a complete refined test
suite with respect to uiocor .

To test inside the refinement we need several test cases (we can make several
observations). Therefore we generate a set of mini test cases that test the entire
behavior of the refined action. We replace transitions with the refinement label
in the abstract test case with these mini test cases.

7.1 Generation of ini est ases

We present an algorithm to generate mini test cases that test the entire behavior
inside the refinement. The algorithm is closely related to the test generation
algorithm of Tretmans [4]. There are some minor differences:

1. The only pass state is at the end of a mini test case. A possible error can
be anywhere within the refinement, so it is no use to stop testing before the
end of the refinement.

2. There are no observations at the start and the end state of the mini test.
Because atomic linear input-inputs refinement does not add or change output
actions we use the observations of the abstract system in these states.

Definition 10 (Generation of mini tests). MT ⊆ TEST (I(σr), Uδ), a set
of mini tests, is obtained from σr (with respect to an input label set I and and
output label set U) in the following way. The stimulus and response step are
executed in a non-deterministic manner. Let n = |σr | and 1 ≤ i < n.

Stimulus step ti := σr |i; ti+1

Response step ti := σr |i; (Σ{x; fail | x ∈ U}�δ; ti+1)
Pass step tn := σr |n;pass

The set of mini test is built with the process algebraic operators action prefix
(;) and choice (� and Σ) in the same style as Tretman’s algorithm. For readers
that are unfamiliar with this notation,formally we write this as follows:

Let ti be test cases for i = 1, 2 and μ ∈ Lδ

; (μ; t1)
μ−→ t1

� if t1
μ−→ t′1 then t1�t2

μ−→ t′1 and t2�t1
μ−→ t′1

Σ if ti
μ−→ t′i for i ∈ I then Σ{ti | i ∈ I} μ−→ t′i

7.2 Test ase efinement

Test case refinement is similar to LTS refinement. The main difference is that
test case refinement results in a set of refined test cases, where LTS refinement
results in one transition system. The definition is explained in Example 5.

Definition 11. Given a test case t = 〈Qt, It, Ut, Tt, t0,passt, failt〉 and a re-
finement pair (ar , σr) we define test case refinement as follows. Let MT be the
set of mini tests generated with the algorithm from Definition 10. Let f be a

Action Refinement in Conformance Testing 91

M T C

C R

!address

fail

!street

!postalcode

q4

q0

q1

!store
q2

δ

q3 q4

?ok, nok
r1

r2

r3

r0

(q1, r1)
?ok, nok

(q1, fail)

(q1, r3)

q1

q2
δ

q3

q0
!street

?δ
(q1, r2)
!city

!postalcode

!store

?ok, nok

!postalcode

!city

?δ

!street

?ok, nok

abstract test case mini test refined test case

passfail pass

dashed parts (red) are added
dotted parts (blue) are deleted

fail pass

Fig. 4. Example of test case refinement

function from Qt to MT. For better readability we denote a mini test obtained
from f for a state q as f(q) = 〈Qq, Iq, Uq, Tq, startq,passq, failq〉. We assume
all states to be unique.
t[r] = {t[f] | f : Qt → MT} where t[f] = 〈Qf , If , Ut, Tf , t0,passt, failf 〉 is
defined as follows.
Qf = Qt ∪ {(q2, q) | ∃q1 ∈ Qt : (q1, ar , q2) ∈ Tt ∧ q ∈ Qq2\(passq2

∪ {startq2)})}
Tf = {(q1, λ, (q2, q)) | (q1, ar , q2) ∈ Tt ∧ (startq2 , λ, q) ∈ Tq2}
∪ {((q2, q), λ, q2) | ∃q1 ∈ Qt : (q1, ar , q2) ∈ Tt ∧∃q3 ∈ passq2

: (q, λ, q3) ∈ Tq2}
∪ Tt\{(q1, ar , q2) ∈ Tt | q1, q2 ∈ Qt}

If = It\{ar} ∪ I(σr)
passf = passt

failf = failt ∪ {(q1, q2) ∈ Qf | q1 ∈ Qt ∧ q2 ∈ failq1}
We apply a little mathematical trick with our function f . The function maps

the states of the abstract test case to the set of mini tests. For every refinement
label transition (q1, ar , q2) we get a mini test f(q2). We replace the refinement
label transition with this mini test. t[f] results in one refined test case and when
we combine all possible refinements with f we get a set of refined test cases in
which ar transitions are replaced with all possible mini tests. We illustrate test
case refinement in the following example.

Example 5. In Figure 4 we show an abstract test case on the left, a mini test
in the middle and the resulting refined test case on the right. We use different
types of lines: dashed parts are added, dotted parts are deleted and solid parts
remain unchanged.

We delete the refinement label transition, (q0, address, q1) from the abstract
test case (dotted transition) and all other transitions are added to Tf . All states
are copied to Qf .

92 M. van der Bijl, A. Rensink, and J. Tretmans

From the mini test we delete the start and pass states. All other states are
added to Qf as a pair with q1. We delete the transitions from the start state
and transitions leading to pass states and add all other transitions to Tf .

To finalize the test case refinement we let the first transition in the mini test
start in q0, the start state of the refinement transition: the striped transition
labeled with street between q0 and r1. In a similar way we redirect the postalcode
transition to the pass state to q1. When we reorganize the dashed parts and the
black solid parts we obtain the refined test case on the right.

7.3 Completeness of est ase efinement

The test suite derived from the refined specification is complete with respect to
uioco and s[r] and thus with respect to uiocor and s. If we can show that the
refinement of a complete test suite results in a complete refined test suite with
respect to uiocor and s, we know that both test suites are equivalent under
completeness.

As usual we divide completeness in soundness and exhaustiveness [4]. A test
case is sound when it does not end in a fail state when executed against a correct
implementation. If every incorrect implementation is detected by the test suite,
we call a test suite exhaustive.

Test case refinement is defined in such a way that the refinement of a sound
test case with respect to uioco and s leads to a sound refined test case with
respect to uiocor and s.

Theorem 2 (Soundness of the refined test suite).
(t is sound w.r.t. uioco and s) ⇒ (t[r] is sound w.r.t. uiocor and s)

Intuitively this theorem can be explained as follows. Like with LTS refinement
we have the property that completely refined Utraces of s end in states of the
abstract test case, where the output behavior is completely determined by the
abstract system (see Lemma 2). Soundness is guaranteed by the soundness of
the abstract test case. Not completely refined Utraces test the behavior of the
refinement, where the output behavior is limited to quiescence (see Lemma 3).
Not completely refined traces lead to states from the mini tests. It can be easily
seen that mini tests generated with the algorithm in Definition 10 only lead to
fail if the observed output is not quiescent.

It turns out that exhaustiveness of the refined test suite does not necessarily
follow from exhaustiveness of the abstract test suite. When the abstract test suite
fulfills the following property, exhaustiveness of the refined test suite holds.

Definition 12. Let s ∈ LTS(I, U) and r = (ar , σr)
r-cov(T, s) =def ∀(σ·ar) ∈ Utraces(s) : (∃t ∈ T : t σ·ar−−−→)

The property states that a test suite T covers a specification s with respect
to r if for every utrace of s ending in ar , there is a test case in T that can
perform this trace.

Action Refinement in Conformance Testing 93

RT C

Theorem 3 (Exhaustiveness of the refined test suite). Let s ∈ LTS(I, U)
and r = (ar , σr) and let r-cov(T, s) then
(T is exhaustive w.r.t. uioco and s) ⇒ (T [r] is exhaustive w.r.t. uiocor

and s)

For exhaustiveness we follow the same line of thought as in the explanation
of soundness. If the implementation is not uiocor correct there can be an error
in the abstract behavior (from the abstract specification) or in the behavior of
the refinement. In case of an error in the abstract behavior, we know that there
is a test case that reveals the failure because the abstract test suite is exhaustive.

In case of incorrectness in the refined part of the specification, we run into a
problem. It may be that there is an error inside the refinement, but no abstract
test case that leads to the refinement. The reason for this is that a complete test
suite remains complete when deleting test cases that always lead to pass. The
deleted test case may just be the test case that we need to obtain exhaustiveness.
We can illustrate this as follows. Suppose that we have a specification that allows
all behavior. A test suite with one test case that only consists of a pass state
is complete. Refinement of this test suite results in the same test suite. Suppose
that we have an implementation that can only perform the first refinement action
and after that is not quiescent. This implementation is not uiocor correct, but
the refined test suite does not have a test case to detect this.

For r -cov test suites exhaustiveness holds, because there always is an abstract
test case that leads us to the refinement. Within the refinement only quiescence
is allowed as output and because the implementation is not uiocor correct, we
know that it is not quiescent. In the mini test generation algorithm we can easily
see that such behavior leads to a fail verdict. We illustrate the soundness and
exhaustiveness results with an example.

Example 6. Figure 5 shows an abstract test case (left), a refined test case and
two implementations (right) for our data entry system. Both implementations
have an error. Implementation 1 is quiescent in state i3 and implementation 2
allows the output ok in state j2.

For soundness we want to know if an error detected by a refined test case
is indeed an error in the implementation. For implementation 1 we observe qui-
escence after street, city and postalcode. Our test case leads to fail because it
expects ok or nok as observation. Because the fail state is a state from the ab-
stract test case and because we know that the abstract test case is sound, we
also know that our refined test case is sound.

For implementation 2, the execution of the refined test case leads to a fail
verdict after observing ok after street followed by city. This is a failure within
the refinement ((q2, fail) is a new state). Our observation within the refinement
is ok and we know that the only allowed output within a refinement is δ. This
means that the fail verdict is correct and that the test case is sound.

For exhaustiveness we can follow the same line of thought. Suppose the im-
plementation is not uioco correct, like implementations 1 and 2, do we have a

94 M. van der Bijl, A. Rensink, and J. Tretmans

refined test case impl 1 impl 2

?street, city, postalcode

passfail

passfail

abstract test case

?δ
(q2, fail)(q2, r2)

?ok, nok
(q2, r1)

q1

q0

?δ
q2

q3 q4

i3

i2

i1

i0 j0

j1

j2

j3

?street

?city

?postalcode

?city

?street!street

!city

?δ

!postalcode

?ok, nok

?ok, nok

!store

!address
q0

q1

q2

q4q3

!ok
?postalcode

Fig. 5. Figure to illustrate soundness and completeness properties

test case that detects the error? For implementation 1 this is clear: the error is in
the abstract part of the system and because the abstract test suite is complete,
there is a test case that tests the specific abstract state of the specification.
Because this abstract test case is present, we know that the refined test case
will detect the error. For an error inside a refinement, like in implementation 2
we have a problem, because it requires that there is an abstract test case that
starts with address. As explained earlier, the existence of such a test case is not
guaranteed by completeness.

It may be unclear if the r -cov requirement for exhaustiveness can be met.
The test case generation algorithm of Tretmans [4] fulfills this requirement (as
it does not optimize test suites by deleting test cases).

Corollary 1. The refinement of a complete test suite generated with Tretmans
algorithm for test case generation, is complete with respect to uiocor and the
abstract specification.

8 Conclusion

In this paper we have filled in the parts of our action refinement approach in
Figure 1 for atomic linear input-inputs refinement. For this special case of action
refinement we showed how to refine traces, transition systems and test cases. This
enables us to obtain test cases with the required level of detail in an automated
way. Furthermore we introduced the implementation relation uiocor that relates
the abstract specification to the concrete implementation by using the refinement
information in the form of the refinement pair. We showed that a complete test
suite can be derived from the refined specification and under which conditions
this test suite is equivalent to the refinement of a complete abstract test suite.

Action Refinement in Conformance Testing 95

Related work In the light of conformance testing, the problem addressed by
this paper is well known in practice. However, no research has been carried out
in the field of conformance testing nor in the field of action refinement.

In the context of action refinement, the results of Section 7 have an un-
expected consequence. The vast majority of research in action refinement has
concentrated on the so-called coarsest congruence question (given two equiva-
lent specifications, are they still equivalent after refinement?). In this paper we
are not primarily interested in equivalences at all: the core issue is the confor-
mance relation, embodied in uioco. Still, an obvious derived equivalence is that
of specification strength — two specifications are equivalent if they are satisfied
by the same set of systems. Surprisingly, this equivalence is not preserved even
under atomic action refinement, as a side-effect of the fact that test case refine-
ment does not always preserve completeness. This is in contrast to previously
studied equivalences; see [2].

Future work This paper is only a first step; it treats a non-trivial though rather
simple form of atomic action refinement. Future research focuses on arbitrary
atomic refinement. This means that no actions are allowed to interfere with the
refinement, but we drop the linearity and input-inputs constraints. As a result
we allow branching (including looping) behavior with a mix of input and output
actions. Arbitrary atomic refinement is the next research step.

Some research has been done in comparing Finite State Machine (FSM)
testing with LTS based testing [3]. With atomic action refinement we can refine
the atomic input output pair from an FSM into two sequential actions. This
might give an interesting basis for comparison.

References

1. G. Bernot, M. G. Gaudel, and B. Marre. Software testing based on formal specifi-
cations: a theory and a tool. Software Engineering Journal, (November), 1991.

2. R. Gorrieri and A. Rensink. Action refinement. In Handbook of Process Algebra,
chapter 16, pages 1047–1147. Elsevier, 2001.

3. A. Petrenko, G. v. Bochmann, and R. Dssouli. Conformance relations and test
derivation. In IWPTSVI, pages 157–178. North-Holland, 1994.

4. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103–120, 1996.

5. M. van der Bijl, A. Rensink, and J. Tretmans. Action refinement roadmap. Technical
report, University of Twente, 2004. URL: http://www.cs.utwente.nl/˜vdbijl/papers.

6. M. van der Bijl, A. Rensink, and J. Tretmans. Compositional testing with ioco. In
FATES 2003, volume 2931 of LNCS, pages 86–100. Springer, 2004.

7. M. van der Bijl, A. Rensink, and J. Tretmans. Action refinement in con-
formance testing. Technical report, University of Twente, 2005. URL:
http://www.cs.utwente.nl/˜vdbijl/papers.

.

.

96 M. van der Bijl, A. Rensink, and J. Tretmans

Multiplexing of Partially Ordered Events

Colin Campbell1, Margus Veanes1, Jiale Huo2,�, and Alexandre Petrenko3

1 Microsoft Research, Redmond, WA, USA
{colin, margus}@microsoft.com

2 McGill University, Montreal, Quebec, Canada
jiale.huo@mail.mcgill.ca

3 Centre de Recherche Informatique de Montreal, Quebec, Canada
petrenko@crim.ca

Abstract. This paper introduces a method to correctly order events in model-
based testing for concurrent systems, in particular multi-threaded programs,
whose events are only partially ordered. For a sequential, centralized tester, we
need to merge (local) traces of each component into a (global) trace of a sys-
tem in such a way that the ordering constraints are observed. To this end, we
instrument a multi-threaded program under test so that the order of lock events is
visible. This additional information helps a so-called multiplexer to reconstruct a
fully serial trace consistent with the partial order. We describe programs and the
multiplexer as labeled transition systems and give pseudo-code of the algorithm
implementing the latter. The implementation of the algorithm presented is used
in an industrial context.

1 Introduction

Model-based conformance testing checks whether an implementation is behaviorally
consistent with its specification. Formally, this check is performed with respect to a
correctness criterion called conformance relation. Such testing is carried out by a tester
or a testing tool. An industrial software test engineer usually writes a test harness to
provide an interface (API) between the tester and the implementation under test (IUT),
so that the two entities can interact with each other. The interface is symmetric in the
sense that it specifies the methods that the tester can use to influence the IUT and the
methods that the IUT can use to pass information back to the tester.

The tester uses a model or specification as a reference of the IUT’s behavior. The
verdict of a particular test run depends on whether the observed behavior conforms to
the specified behavior or not. For sequential systems, such as single-threaded programs,
events can be observed in the order they occur. In concurrent systems, such as multi-
threaded programs and distributed systems, events of individual agents (an agent being a
thread or, in distributed systems, a process) can still be observed in the order they occur,
but there are typically many possible ways in which events of different agents can be

� Part of the work was carried out during the author’s internship at Microsoft Research, Red-
mond.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 97–110, 2005.
c© IFIP 2005

98 C. Campbell et al.

T1

a b c

T2

d e f

Fig. 1. Example of partially ordered events of a concurrent system

interleaved. In this paper, we consider the problem that a sequential, centralizaed tester
is used to test concurrent systems. Due to its sequential nature, the tester requires a
linearized view of all the events of all agents. Other approaches consider using several
distributed testers to test concurrent systems, see e.g. [5].

A problem with the single tester scenario is that, even if all the events of all agents
are totally ordered according to a timeline with sufficiently fine precision, the order in
which the events are observed by the tester may still differ from the actual one due to
buffering and communication delays. If the agents in the IUT interact and this inter-
action is important to the conformance relation, observing the events out of order may
result in false positives (a correct IUT failing a test) or false negatives (a wrong IUT
passing a test), rendering the conformance checking unsound. (On the other hand, if the
agents do not interact, they can be tested independently or concurrently by independent
testers, and the need to observe the events in the corret order does not arise in the first
place.) Inter-agent communication usually imposes a partial order of events defined by
constraints on message communication, e.g. send-events happen before corresponding
receive-events. In multi-threaded programs, a partial order of events is defined by the
access of shared resources. For example, a lock has to be released by a thread before
it can be acquired by another thread. In general, an event of one agent may depend on
an event of another agent and therefore cannot occur before the latter. The sequence of
events observed by the tester must not violate the dependency among the events.

Figure 1 illustrates events of a concurrent system with two agents using a space-
time diagram [15]. The events of each agent are depicted as dots located on a per-agent
timeline, on which an event x of the agent is drawn to the left of an event y of the agent
if and only if x occurs before y, i.e. y depends locally on x. Inter-agent dependencies
are indicated by arrows. In this system, event f of agent T2 depends on event b of agent
T1, and therefore b must precede f . In this case the trace daebfc is consistent with the
dependencies whereas the trace daefbc is not. In general, a trace is consistent with the
partial order if and only if the trace represents an outcome of topological sorting, called
a linearization, of the partial order.

In a system where all agents and all events are observed, it is straightforward to
produce a linearization of the partial order of the events. For example, this is the case in
a distributed system where each process is instrumented to produce unique send-events
and receive-events of messages exchanged between the processes [11]. By using time
stamps [14] all processes need not be observed but all communication relations must be
augmented with a vector time stamps. When dealing with multi-threaded programs such
instrumentations are often either impossible or undesirable. Threads do not directly
communicate with each other, but synchronize through shared resourses, such as locks.
Lock events are not normally observable to the tester because they are internal to the

Multiplexing of Partially Ordered Events 99

implementation. The abstraction level at which they occur is lower than that of the
model; as a consequence, lock events are not even mentioned in the model.

A naive attempt to reorder events in multi-threaded programs could be achieved by
assigning a time stamp to each observable event with respect to a global clock and then
sorting the events using the time stamps. However, modern computer hardware archi-
tectures may render the time stamping approach infeasible. For example, consider a
program written for a multi-processor hardware architecture in which memory writes
are local to each processor until an explicit memory-serialization operation occurs. Be-
tween two memory-serialization operations, the system never arrives in a single global
state that can be seen uniformly by all processors. Hence, it seems impossible to use
time stamps of a global clock to serialize the events occurring between two memory-
serialization operations. Moreover, using a global clock may substantially alter the be-
havior being tested by introducing unwanted synchronization when the clock itself is a
shared resource.

Another attempt to reconstruct a linearization from the observations would be to keep
a centralized log of events [16]. In this scheme, each agent reports its events to a cen-
tral, serialized log. Unfortunately, such a log introduces additional synchronization in
multi-threaded programs because the very operation of writing into the log by each thread
requires locking and unlocking the log. This additional synchronization could affect the
possible behavior of the system and could eliminate certain errors. In other words, the in-
strumentation of the system would itself prevent some invalid behaviors from occurring.
Undetected errors would occur once the system is no longer in “testing mode”.

Our solution relies on additional assumptions about the implementation and instru-
ments the implementation in such a way that the order in which locks are used becomes
observable. We use a program called multiplexer that takes as its input sequences of
events (with lock events included) of each agent and merges the event sequences into a
single sequence that preserves the order of lock events. We show that if all the shared
resources in the implementation are protected by locks then the merged event sequence
is a valid linearization.

In 1978, Lamport described the inadequacy of using fully sequential time as a way
to understand the runs of distributed systems [15]. His formulation of partially ordered
distributed runs is consistent with the view presented in this paper, and like Lamport we
use incrementing counters as a way to encode ordering constraints. However, the algo-
rithm he presented focuses more on runtime synchronization (for example, as a way to
solve the mutual exclusion problem), whereas our algorithm assumes proper synchro-
nization in the concurrent system under test and validates its behavior with respect to a
serial model of evolving system state.

The rest of the paper is organized as follows. Preliminaries are provided in Section
2. In Section 3, we formalize threads, shared resources and locks. Then, we describe
the multiplexer formally in Section 4. The instrumentation of lock events is realized
by extending the events with usage counts that indicate the order in which a lock is
used by agents. We show that by using the multiplexer, the behavior of a multi-threaded
program can be given a consistent serial interpretation. In Section 5, we outline the algo-
rithm underlying the multiplexer and mention its application in Section 6. Conclusions
and discussions of future work are provided in Section 7.

100 C. Campbell et al.

2 Preliminaries

We use labeled transition systems (LTS) to describe the behavior of multi-threaded
programs. A labeled transition system L has the following components: a nonempty set
S of states; a nonempty subset Sinit of S called initial states; a set Σ of external actions;
a set ΣH of internal actions, ΣH ∩Σ = ∅; a transition relation δ ⊆ S× (Σ ∪ΣH)×S.
L is denoted by the tuple (S, Sinit, δ, Σ,ΣH). We sometimes index a component by
L, unless L is clear from the context. Note that the sets of states and actions may be
infinite. Given a transition e = (s, a, t) ∈ δ; s is the source of e, t is the target of e, and
a is the label of e; if a ∈ ΣH then e is an internal transition. The set of actions enabled
or defined in a state s, denoted by En(s), is the set of all labels of transitions whose
source is s:

En(s) = {a ∈ Σ ∪ΣH|(∃t ∈ S)(s, a, t) ∈ δ}.
A nonempty sequence α of external actions is called a trace of L in state s1 if there

exist actions a1, . . . , ak ∈ Σ∪ΣH and states s1, . . . , sk+1 ∈ S such that (si, ai, si+1) ∈
δ for 1 ≤ i ≤ k and α is the projection of a1 · · · ak onto the set Σ. We write Tr(s) to
denote the set of all traces of L in state s; given X ⊆ S we write Tr(X) to denote⋃

s∈X Tr(s), and we write Tr(L) for Tr(Sinit).
An LTS is deterministic if it has a single initial state, it has no internal transitions,

and it has no transitions with the same source and label but distinct targets. If an LTS
L is deterministic, it is convenient to view the transition relation as a partial function so
that, given an action a that is enabled in a state s, δL(s, a) denotes the target of the tran-
sition in L whose source is s and label is a. For any LTS L there exists a deterministic
LTS Det(L) such that Tr(L) = Tr(Det(L)).

Example 1. The state machines in Figure 2 are deterministic LTSs. They model compo-
nents of a multi-threaded program that adds and deletes elements from a shared bag R1.
For simplicity, the maximum capacity of the bag is restricted to a single element here
but can easily be generalized to any number of elements. The bag is empty in the initial

T1
Add

Lock(T1)

AddOK

AddFail

Unlock(T1)

T2
Delete

Lock(T2)

DeleteOK

Unlock(T2)

R1

AddOK

DeleteOK

DeleteOK AddFail

K1

Lock(T1)

Unlock(T1)

Lock(T2)
Unlock(T2)

Fig. 2. Components of a system with two threads adding and deleting elements from a bag

Multiplexing of Partially Ordered Events 101

state and full in the other state. When empty, an element can be added to the bag, that
is denoted by the action AddOK. Intuitively this action represents a successful attempt
(method invocation) to add an element to the bag. The other action AddFail represents
a failing attempt to add an element to the bag. Deleting an element from the bag always
succeeds, even if there is nothing to delete. K1 models a lock that protects the bag;
it can be acquired (locked) and released (unlocked) by the two threads T1 and T2. T1

models a thread executing a function Add. After Add is called, the thread acquires the
lock K1. It then either successfully adds an element or fails to add an element to the
bag. This nondeterminism is resolved by the state of the bag (whether it is full or not).
Finally, the lock is released and the behavior is repeated. T2 models a thread that deletes
elements from the bag.

Parallel composition of LTSs formalizes the interaction of several systems. In a
composition of two LTSs the two systems will synchronize on shared external actions,
and asynchronously interleave all other actions. Let L1 = (S1, S

init
1 , δ1, Σ1, Σ

H
1) and

L2 = (S2, S
init
2 , δ2, Σ2, Σ

H
2) be two LTSs such that ΣH

i ∩ Σj = ∅, The (parallel)
composition of L1 and L2 is an LTS L1 ‖ L2 = (S, Sinit, δ, Σ,ΣH) where

– Sinit = Sinit
1 × Sinit

2 ,
– Σ = Σ1 ∪Σ2, ΣH = ΣH

1 ∪ΣH
2 ,

and S is the smallest set of states and δ the smallest transition relation such that

– S init ⊆ S ⊆ S1 × S2,
– a ∈ Σ1 ∩Σ2, 〈s1, s2〉 ∈ S, (s1, a, t1) ∈ δ1, (s2, a, t2) ∈ δ2 ⇒
〈t1, t2〉 ∈ S, (〈s1, s2〉, a, 〈t1, t2〉) ∈ δ,

– a ∈ ΣH
1 ∪ (Σ1−Σ2), 〈s, u〉 ∈ S, (s, a, t) ∈ δ1 ⇒ 〈t, u〉 ∈ S, (〈s, u〉, a, 〈t, u〉) ∈ δ,

– a ∈ ΣH
2 ∪ (Σ2−Σ1), 〈u, s〉 ∈ S, (s, a, t) ∈ δ2 ⇒ 〈u, t〉 ∈ S, (〈u, s〉, a, 〈u, t〉) ∈ δ.

Let L = (S, Sinit, δ, Σ,ΣH) be an LTS. Let B ⊆ Σ. The LTS obtained by internaliz-
ing or hiding all the actions in B is the LTS Hide[B](L) = (S, Sinit, δ, Σ−B,ΣH∪B).
It is often convenient to assume, without loss of generality, that there is a single internal
action τ , i.e., ΣH

L = {τ}, since the distinction of internal actions is unimportant in the
definition of traces. We use DH[B](L) as a shorthand for Det(Hide[B](L)).

Example 2. Consider the LTSs in Figure 2. DH[ΣK1](T1 ‖ T2 ‖ R1 ‖ K1) is shown
in Figure 3, where ΣK1 = {LockK1(T1), UnlockK1(T1), LockK1(T2), UnlockK1(T2)}.
Usually lock events are considered to be internal, so they are hidden in the composition.

Delete

Add AddOK Add

AddFail

DeleteDelete

AddFail

AddAddOKAdd

Delete

Fig. 3. The composition of the LTSs in Figure 2. Gray unlabeled arrows correspond to DeleteOK-
transitions

102 C. Campbell et al.

Similar to [12], we use a renaming operator ‘′’ for the purpose of reusing the external
actions of an LTS. The renaming operator is a bijection on actions. We lift the operator
to sets of actions: for an action set A, A′ = {a′|a ∈ A}. Given an LTS L we write L′

for the LTS where are all actions in L have been renamed.

3 System Modeling

We use LTSs to model multi-threaded programs. A thread is a sequential process mod-
eled as an LTS. Two threads are disjoint if they do not share any actions. We consider a
fixed collection Threads of n pairwise disjoint threads Ti for 1 ≤ i ≤ n.

A shared resource is an LTS that models a state variable whose value is updated or
read by threads. We consider a fixed collection Resources of m pairwise disjoint shared
resources Ri, such that ΣRi

⊆ ⋃
T∈Threads ΣT , for 1 ≤ i ≤ m.

Threads can communicate with each other through shared resources, but shared re-
sources do not communicate with each other. For example, R1 in Figure 2 is a shared
resource.

A lock is a special type of shared resource that protects access to other shared re-
sources. We model a lock K as a resource shared among the threads as follows.

SK = ({lockedK} × Threads) ∪ {unlockedK},
Sinit

K = {unlockedK},
ΣK = {LockK(T)|T ∈ Threads} ∪ {UnlockK(T)|T ∈ Threads},
δK = {(unlockedK , LockK(T), 〈lockedK , T 〉)|T ∈ Threads} ∪

{(〈lockedK , T 〉, UnlockK(T), unlockedK)|T ∈ Threads}.
We consider a fixed collection Locks of l pairwise disjoint locks Ki for 1 ≤ i ≤ l. For
example, K1 in Figure 2 is a lock.

This notion of locks does not allow a lock being acquired more than once without
being released first. In some programming languages, such as C#, a thread can acquire
a lock more than once, but it has to release the lock for the same number of times before
the lock can be acquired by other threads. The locks as defined above are adequate for
the purposes of this paper.

In the following, we use thread to refer to any program thread Ti above and we use
shared resource only to refer to a shared resource that is not a lock.

Program threads, shared resources, and locks constitute a (multi-threaded) pro-
gram P = (Threads, Resources, Locks). The behavior of P is described by the com-
position of the components denoted by B(P). We hide Lock and Unlock actions in the
composition, because they occur usually below the level of abstraction that is desired
when viewing the composition, i.e. the lock events are not considered in the model.

B(P) def= DH[∪l
i=1ΣKi

](‖n
i=1 Ti ‖m

i=1 Ri ‖l
i=1 Ki).

Example 3. Consider the components in Figure 2 and let P1 = ({T1, T2}, {R1}, {K1}).
Figure 3 shows Det(B(P1)). A practical concern when observing the behavior of such

Multiplexing of Partially Ordered Events 103

a system is to guarantee that the causal order of events is preserved. Since two threads
are executing independently, it may happen for example that AddFail is observed af-
ter DeleteOK, resulting in an observed sequence Add, AddOK, Add, Delete, DeleteOK,
AddFail that is not a trace of P1, while in reality the trace Add, AddOK, Add, Delete,
AddFail, DeleteOK happened.

The situation described in Example 3 can be formalized with the help of queues.
Since threads are sequential processes, events from the same thread can be observed
by a tester in the order they occur. Events from different threads could, however, have
races. An event occurring earlier in one thread can be observed after an event occurring
later in another thread. Recording of events can be formalized as buffering of events in
thread-wise queues. Events are consumed in a random order from the queues by a tester.
One can define queues similarly to those in [13], to model the effect of communication
delay between the thread and the tester.

An event queue for a thread records events in the order produced by the thread and
makes those events readable in FIFO order. Formally, given a thread T ∈ Threads, QT

is the following LTS:

Sinit
QT

= {ε},
SQT

= (ΣT)∗,
ΣQT

= ΣT ∪ (ΣT)′,
δQT

= {(α, a′, αa)|α, αa ∈ SQT
} ∪ {(αa, a, α)|α, αa ∈ SQT

}.

Intuitively, a transition whose label is the renamed action a′ corresponds to recording
the event a in the queue, and a transition whose label is a corresponds to removing the
recorded event a from the queue. Figure 4 illustrates an event queue of a thread with a
single event a.

The queued behavior of a thread T can be described by composing T ′ with QT ,
hiding the shared actions, and making the result deterministic, i.e. the queued behavior
is DH[Σ′

T](T ′ ‖ QT). Unsurprisingly, Tr(T) = Tr(DH[Σ′
T](T ′ ‖ QT)) because events

from the same thread are observed in the order they occur.
Let T, R, K and Q denote the parallel compositions of threads, resources, locks,

and queues respectively. For the program P as above, the external behavior of P com-
posed with queues gives rise to the queued behavior Q(P) of P ,

Q(P) def= DH[Σ′
T](B(P)′ ‖ Q) = DH[Σ′

T](DH[ΣK](T ‖ R ‖ K)′ ‖ Q).

The set of traces of Q(P) corresponds to the set of traces that may be observed by
a tester. The set Tr(Q(P)) is a superset of Tr(B(P)), so a tester might observe some
traces not in the original behavior of the program.

· · ·
a′ a′ a′

aaa

Fig. 4. An event queue for a thread with a single event a

104 C. Campbell et al.

Example 4. In Figure 3, Add AddOK Add Delete AddFail DeleteOK is a trace of B(P1)
for the program P1 = ({T1, T2}, {R1}, {K1}) in Figure 2. This trace, however, could
correspond to the following trace in Q(P1): Add AddOK Add Delete DeleteOK AddFail
which is not in B(P1), as pointed out in Example 3.

4 Multiplexer

As described above, in order to avoid possible discrepancies between the observed and
the actual behavior of a multi-threaded program, we use a multiplexer to create a lin-
earization of the observed events. To this end, we instrument threads and locks to keep
track of lock events with lock-wise counts, called usage counts. The usage count of
a lock indicates the number of times the lock has been used. When the multiplexer
reads events that have been logged in the queues, it keeps track of the usage counts
and does not read a lock entry from a queue unless that entry has the expected usage
count.

A lock K with a usage count is unlocked when the usage count is an even number;
it is locked otherwise. Initially the usage count is 0 and K is unlocked. We model a lock
K with a usage count as the following LTS:

SK = ({unlockedK} × Neven) ∪ ({lockedK} × Threads× Nodd),
Sinit

K = {〈unlockedK , 0〉},
ΣK = {LockK(T, i)|T ∈ Threads, i ∈ Neven} ∪

{UnlockK(T, i)|T ∈ Threads, i ∈ Nodd},
δK = {(〈unlockedK , i〉, LockK(T, i), 〈lockedK , T, i + 1〉)|T ∈ Threads, i ∈ Neven} ∪

{(〈lockedK , T, i〉, UnlockK(T, i), 〈unlockedK , i + 1〉)|T ∈ Threads, i ∈ Nodd}.
In order to observe the usage counts in traces, the usage counts are made an explicit
part of the lock transition labels.

Example 5. Figure 5 shows the two threads T1 and T2 and the lock K1 from Figure 2
extended with usage counts.

Given P , T, R, K and Q as above, the queued behavior of the program with lock
events visible is described by the LTS S(P),

S(P) def= DH[Σ′
T]((T ‖ R ‖ K)′ ‖ Q)

The multiplexer communicates with S(P) by reading events from the queues. Lock
events are used to create a linearization of all the other events from different queues
that respects the causal order of the events. If the first event in an event queue is a lock
event, then the multiplexer checks whether its usage count is the expected one. If yes,
then it deletes this event from the queue and increases the expected usage count of the
lock; otherwise, it leaves the queue intact. If the first event in an event queue is not a
lock event, which means that the event can be executed without violating the ordering

Multiplexing of Partially Ordered Events 105

T1
Add

... Lock(T1, i)
(i ∈ N

even)

AddOK

AddFail

...Unlock(T1, i)

(i ∈ N
odd)

T2
Delete

... Lock(T2, i)
(i ∈ N

even)

DeleteOK

...Unlock(T2, i)

(i ∈ N
odd)

K1

.

.

.

Lock(T2, 0)

Unlock(T2, 1)

Lock(T1, 0)

Unlock(T1, 1)

Lock(T2, 2)Lock(T1, 2)

Unlock(T2, 3)Unlock(T1, 3)

Fig. 5. Threads T1 and T2 and the lock K1 from Figure 2 extended with usage counts

constraint, the multiplexer can simply remove the event from the queue and puts it in
the output queue read by the tester.

Formally, the multiplexer M is an LTS obtained from the composition K of locks
with usage counts by adding self-loops for all non-locking actions:

Sinit
M = Sinit

K ,

SM = SK,

ΣM = ΣT,

δM = δK ∪ {(s, a, s)|a ∈ ΣM −ΣK, s ∈ SM},

The multiplexed behavior M(P) of P is the composition of the queued behavior of P
with the multiplexer where locking actions are hidden,

M(P) def= DH[ΣK](S(P) ‖ M).

With the help of the multiplexer, we want to ensure that the multiplexed behavior
M(P) is the same as the behavior of P , i.e., Tr(B(P)) = Tr(M(P)). In general, this
is only true if shared resources are properly protected by locks.

Example 6. Assume for a moment that the threads T1 and T2 in Figure 2 do not use
locks. In Figure 6, we show the threads without lock events as threads T3 and T4, re-
spectively. The behavior B(P2) of the program P2 = ({T3, T4}, {R1}, {K1}) with R1

T3
Add

AddOK

AddFail

T4

Delete

DeleteOK

Fig. 6. Threads T1 and T2 from Figure 2 after removal of lock events

106 C. Campbell et al.

as in Figure 2 and K1 as in Figure 5, happens to be the same as the LTS in Figure 3.
It is easy to see that Tr(B(P2))
= Tr(M(P2)) because the shared resource R1 is not
protected by a lock.

One can see that if an event a of one thread, say T1, must precede an event b of
another thread, say T2, in B(P), then there must be lock events between a and b that
effectively enforce this order. Since a lock has to be released by a thread before it can
be acquired by another, if there are lock events between a and b in that order, there
must be an Unlock event from T1 before a Lock event from T2. It is intuitively clear
that we only need to protect events of shared resources (e.g. thread-local events need no
protection).

Let P be as above. We say that P is lock-protected, if every shared resource R
is associated with a lock KR and for every trace αaβ ∈ Tr(P) and thread T , where
a ∈ ΣT ∩ ΣR, there is a Lock event LockKR

(T, k) in α and a corresponding Unlock
event UnlockKR

(T, k + 1) in β for some k. In other words, P is lock-protected if there
is a lock for each shared resource that assures exclusive access to that resource one
thread at a time.

The following theorem shows that multiplexing does not affect the traces of lock-
protected programs.

Theorem 1. Given P as above. If P is lock-protected then Tr(B(P)) = Tr(M(P)).

Proof (outline). We show first that Tr(S(P) ‖ M) ⊆ Tr(T ‖ R ‖ K). Consider a trace
α of S(P) ‖ M . From the construction of S(P) it follows that all events of a given
thread appear in the correct order in α as renamed events. The events from queues are
merged arbitrarily in S(P) so causal ordering constraints between events from different
threads is not preserved. However, composition with M and the assumption of P being
lock-protected excludes illegal interleavings of the queues so that α is again a possible
trace of Tr(T ‖ R ‖ K).

To see that Tr(T ‖ R ‖ K) ⊆ Tr(S(P) ‖ M) consider a trace u = b1b2 · · · ∈
Tr(T ‖ R ‖ K). There is the particular trace b′1b1b

′
2b2 · · · ∈ Tr((T ‖ R ‖ K)′ ‖ Q)

corresponding to the special case when an event is removed from a queue immediately
after it has been added to the queue, and thus u ∈ Tr(S(P)). Moreover, since the lock
event ordering is not violated in u, u ∈ Tr(S(P) ‖ M).

From Tr(S(P) ‖ M) = Tr(T ‖ R ‖ K) follows that

Tr(B(P)) = Tr(Hide[ΣK](T ‖ R ‖ K))
= Tr(Hide[ΣK](S(P) ‖ M)) = Tr(M(P)). ��

5 Multiplexing Algorithm

In this section we describe the multiplexing algorithm that underlies a multiplexer. To
make the description precise, we use the modeling language AsmL [2] as pseudo-code
to describe the algorithm.

The multiplexer reads events from input queues. Each queue is associated with a
particular thread. The multiplexer merges the events into a possible linearization and
stores the merged sequence in a designated output queue.

Multiplexing of Partially Ordered Events 107

type Queue
var inQueues as Set of Queue
var outQueue as Queue

The elements in the queues are lock events and other observable events, called update
events. Each lock event is associated with a given lock and a usage count for that lock.
(Each lock event is further classified as either acquiring or releasing of the lock, but this
distinction is irrelevant for the purposes of this description.) The thread operating on the
lock is implied by the input queue from which the multiplexer reads the lock event.

type Lock
structure Event
case LockEvent

lock as Lock
count as Integer

case UpdateEvent

We assume that one can perform the following operations on a queue: add a new
event at the end of the queue by invoking Enqueue; remove the first event by invoking
Dequeue; check if the queue is empty by invoking IsEmpty; and get the first event
from the queue by invoking Head.

class Queue
IsEmpty() as Boolean
Enqueue(event as Event)
Dequeue()
Head() as Event

The multiplexer keeps a map from locks to expected usage counts. Initially, the map
is empty, so the expected usage count of each lock is set to 0.

locks as Map of Lock to Integer = {->}
GetLockCount(lock as Lock) as Integer
if lock notin locks then return 0
else return locks(lock)

IncrementLockCount(lock as Lock)
if lock notin locks then locks(lock) := 1
else locks(lock) := locks(lock) + 1

The main part of the algorithm is described by the following while loop. A nonempty
input queue of events is chosen randomly. If the first event is a lock event with a matching
expected usage count then the event is removed from the queue and the expected usage
count is incremented. If the event is an update event it is removed from the input queue
and appended at the end of the output queue. From the point of view of external behavior,
lock events are internal and are therefore not added to the output queue but are used solely
for the purposes of ordering the update events.

while true
choose queue in inQueues where not queue.IsEmpty()

108 C. Campbell et al.

let e = queue.Head()
if e is LockEvent then
if e.count = GetLockCount(e.lock) then

queue.Dequeue()
IncrementLockCount(e)

else
skip

else
queue.Dequeue()
outQueue.Enqueue(e)

This description of the algorithm is simplified. The actual implementation of the
multiplexer is itself multi-threaded, where the input queues may be updated while the
multiplexer is running. Moreover, the number of input queues may grow or shrink dy-
namically as the number of threads changes.

Example 7. Figure 7 shows a possible run of the system in Figure 1. The event se-
quence of thread T1 is (a, LockK(T1, 0), b, UnlockK(T1, 1), c), and the event se-
quence of thread T2 is (d, e, LockK(T2, 2), f, UnlockK(T2, 3)). The partial order of
update events in the runs of the two threads depends on the total order of lock events
associated with lock K. The solid arrow indicates that UnlockK(T1, 1) happens before
LockK(T2, 2). Consequently, event b must precede event f , as indicated with the dashed
arrow. A possible event sequence produced by the multiplexer is daebfc. Notice that
with the multiplexer, a tester always observes event b before event f since the order of
update events is restrained by the order of lock events.

T1

a LockK(T1, 0) b UnlockK(T1, 1) c

T2

d e LockK(T2, 2) f UnlockK(T2, 3)

Fig. 7. Sample run of the threads in Figure 1

6 Application

The multiplexer is used together with the Spec Explorer tool for system-level confor-
mance testing of multi-threaded and distributed systems. It is used by several Microsoft
product groups that test highly concurrent subsystems of the forthcoming version of the
Windows operating system. The Spec Explorer tool is briefly described in [8]. The tool
is available from [1]. The threads or processes of the system under test produce thread-
based event logs. These logs are serialized by the multiplexer into a single event trace.
The trace is fed into a conformance checking engine that checks whether the observed
trace is valid with respect to a given specification or model. The model is described by
a model program written in AsmL [9] or Spec# [3]. The use of a model program as a
behavioral specification is explained in [4, 17]. The formal conformance relation that

Multiplexing of Partially Ordered Events 109

is checked between the model and the system under test is a variation of alternating
refinement of interface automata [6, 7]. An event trace is viewed as a particular run of a
game between two players: a tester (or testing tool) and a system under test. In this set-
ting, the role of the multiplexer is to produce a serial view of the moves of the system,
viewed as a single player, as a response to a move of the tester.

7 Conclusion

In this paper we considered model-based testing of multi-threaded programs with a
single, sequential tester. Such a tester requires a linearized view of all the events that
occurred in a given test run. We proposed a method for reordering of events from mul-
tiple threads so that partial order constraints concerning locks are not violated.

Our method requires some instrumentation of the program so that the partial order
of lock events is used to help to reorder other events. We do not assume the existence
of a globally visible clock, and our approach does not create additional synchronization
between threads. In this sense, our method tries to avoid major impact on the system per-
formance. We validated our approach, by modeling multi-threaded programs in terms
of LTS, and formulated a sufficient condition in terms of lock usage.

Based on the assumption of lock-protection, our method ensures the soundness of
a tester using the multiplexer. If a correct implementation is lock-protected, which is
usually the case, the multiplexer can correctly reconstruct the events from the imple-
mentation, and the latter does not fail a test case derived from the model. On the other
hand, if an implementation is correct but not lock-protected, possibly due to perfor-
mance considerations, then the multiplexer can still produce some traces not belonging
to the system. In this case, the correct implementation might fail a test.

The multiplexer is used together with the Spec Explorer tool for system-level con-
formance testing of multi-threaded and distributed systems. It is used by several Mi-
crosoft product groups that test highly concurrent subsystems of the forthcoming ver-
sion of the Windows operating system.

As to the future work, we would like to extend our method to other applications
where events have partial order constraints. For example, in communicating systems, a
send event precedes the corresponding receive event and a request precedes the corre-
sponding acknowledgment.

Also, the lock-protection condition looks a little too stringent. It could be relaxed
by requiring lock-protection only when two events of a shared resources executed by
different threads are totally ordered.

Moreover, the multiplexer could be extended to detect potential deficiencies of mul-
tithreaded programs, such as anti-patterns related to synchronization abuse and dead-
lock [10].

References

1. Spec Explorer. URL:http://research.microsoft.com/specexplorer, released January 2005.
2. AsmL. URL: http://research.microsoft.com/fse/AsmL/.

110 C. Campbell et al.

3. M. Barnett, R. Leino, and W. Schulte. The Spec# programming system: An overview. In
M. Huisman, editor, Construction and Analysis of Safe, Secure, and Interoperable Smart De-
vices: International Workshop, CASSIS 2004, volume 3362 of LNCS, pages 49–69. Springer,
2005.

4. A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. Technical Report MSR-
TR-2005-04, Microsoft Research, January 2005. Extended version of a paper submitted to
CAV’05.

5. L. Cacciari and O. Rafiq. Controllability and observability in distributed testing. Inform.
Software Technology, 41:767–780, 1999.

6. L. de Alfaro. Game models for open systems. In N. Dershowitz, editor, Verification: Theory
and Practice: Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday,
volume 2772 of LNCS, pages 269 – 289. Springer, 2004.

7. L. de Alfaro and T. Henzinger. Interface automata. In Proceedings of the 8th European
Software Engineering Conference held jointly with 9th ACM SIGSOFT international sym-
posium on Foundations of Software Engineering, volume 26(5) of ACM SIGSOFT Software
Engineering Notes, pages 109 – 120. ACM Press, 2001.

8. W. Grieskamp, N. Tillmann, and M. Veanes. Instrumenting scenarios in a model-driven
development environment. Information and Software Technology, 46(15):1027–1036, De-
cember 2004.

9. Y. Gurevich, B. Rossman, and W. Schulte. Semantic essence of AsmL. In Formal Methods
for Components and Objects, Second International Symposium, FMCO 2003, volume 3188
of LNCS, pages 240–259. Springer, 2004. Extended version to appear in special issue of The-
oretical Computer Science, preliminary version available as Microsoft Research Technical
Report MSR-TR-2004-27.

10. H. Hallal, E. Alikacem, P. Tunney, S. Boroday, and A. Petrenko. Antipattern-based detection
of defficiencies in java multithreaded software. In Proceedings of the Fourth International
Conference on Quality Software (QSIC2004), Braunschweig, Germany, September 2004.

11. H. Hallal, S. Boroday, A. Ulrich, and A. Petrenko. An automata-based approach to property
testing in event traces. In Proceedings of the IFIP TC6/WG6.1 XV International Conference
on Testing of Communicating Systems (TestCom 2003), volume 2644 of LNCS, pages 180–
196. Springer, 2003.

12. J. Huo, R. Negulescu, and A. Petrenko. A study of robustness and delay-insensitivity of dis-
crete action systems. Technical Report CRIM-03/04-02, Centre de Recherche Informatique
de Montréal, Montreal, Quebec, Canada, 2003.

13. J. Huo and A. Petrenko. On testing partially specified IOTS through lossless queues. In Pro-
ceedings of the 16th IFIP International Conference, TestCom 2004, volume 2978 of LNCS,
pages 76 – 94. Springer, 2004.

14. C. Jard. How to observe interoperability at the service level of protocols. In 7th IFIP WG6.1
International Workshop on Protocol Test Systems (IWPTS’94), Tokyo, Japan, November
1994.

15. L. Lamport. Time, clocks, and the orderings of events in a distributed system. Communica-
tions of the ACM, 21(7):558–565, 1978.

16. S. Tasiran and S. Qadeer. Runtime refinement checking of concurrent data structures. Elec-
tronic Notes in Theoretical Computer Science, 113:163–179, January 2005. Proceedings of
the Fourth Workshop on Runtime Verification (RV 2004).

17. M. Veanes, C. Campbell, W. Schulte, and P. Kohli. On-the-fly testing of reactive systems.
Technical Report MSR-TR-2005-05, Microsoft Research, January 2005.

Testing Communicating Systems: a Model,
a Methodology, and a Tool�

Ismäıl Berrada, Richard Castanet, and Patrick Félix

LaBRI - CNRS - UMR 5800 Universit Bordeaux 1,
33405 Talence cedex, France

{berrada, castanet, felix}@labri.fr

Abstract. This paper follows two main lines of research. The first line is
related to the study of models for the description of systems. For this line,
we introduce the model of Communicating Systems (CS), which defines
a set of common resources, a set of entities, and a topology of commu-
nication. The second line focuses on testing methodologies adapted to
protocol testing. For this line, we give a formal definition of a generic
generation algorithm (GGA). We demonstrate that the CS model with a
GGA supports various 1) test architectures, 2) test types: conformance,
interoperability, embedded, component testing, and 3) test approaches:
passive and active testing. The paper presents also the main character-
istics of the TGSE tool (Test Generation, Simulation, and Emulation).
TGSE is made-up of a test case generator, based on the CS model and
implementing a GGA, a graphic simulator of the execution of a sequence
generated by TGSE, and a real-time emulator of communicating speci-
fications. In its current version, TGSE supports the passive and active
testing of one or several components with data and temporal constraints.

1 Introduction

Protocol specifications are used to develop products and services. To ensure
correctness of such products (implementations), testing, the process of checking
that a system possesses a set of desired properties and/or behaviors, is one of
the most used validation techniques.

Testing process is a hard work that is long, repetitive and which represents a
potential source of errors. The use of formal specifications provides support for
automating this process. Different models (FSM, EFSM, CEFSM, LTS, IOLTS,
TIOA,...) and languages (SDL, Lotos, IF, UML,...) have been proposed to de-
scribe protocols and the desired behaviors about them in a formal way. Due to
the nature of protocols/functions being tested, various test types are required.
For example, in conformance testing, a single implementation is compared to
relevant standards. In interoperability testing, two or more implementations are

� This research has been supported by the French RNTL project Avérroes and the
Marie Curie RTN TAROT (MCRTN 505121).

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 111–128, 2005.
c© IFIP 2005

112 I. Berrada, R. Castanet, and P. Félix

tested directly against each other, with the standard used primarily as a refer-
ence to adjudicate problems and incompatibilities, and secondarily as a guide
to the functions to be tested. Embedded testing considers an implementation
communicating through its environment. The ways to test communicating sys-
tems can be classified into two basic groups. The most natural way, namely the
active testing approach [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], consists
in carrying out the test derivation starting from specifications. Another possi-
bility is the passive testing approach [21]. The absence of observations allows
only the validation of traces, and thus this approach checks that a trace of an
implementation is a valid execution of the specification.

From our point of view, this diversity of types, models and approaches points
only to the specificity of requirements. Indeed, the different types of test are a
consequence of the composition of the systems to be tested : conformance testing
considers only one entity while interoperability and embedded testing consider
several communicating components interacting according to a test architecture.
The considered model is justified by needs of system description: systems have
behaviors and can handle data and temporal constraints. With either the passive
testing or the active testing, we are confronted with the same problem: the
accessibility problem of states or transitions.

Thus, the aim of this paper is not to introduce a new test generation tech-
nique, but rather to show that it is possible to treat the different types (con-
formance, interoperability, embedded, component) and approaches (passive and
active) of testing in a unified manner. Our main contributions are the following:

First, we introduce the model of communicating systems (CS). This model
defines (i) a set of communicating entities (components), (ii) a set of common re-
sources (variables and parameters) shared by these entities, and (iii) a topology
of communication, inspired by [19, 20], which specifies the different possible syn-
chronizations in a global state of the system. We have chosen to model entities
by extended timed automata but other models may be used.

Second, we demonstrate that the CS model is a generic model for testing in
the sense that (i) it offers mechanisms for modeling different types of communica-
tions and test architectures, and (ii) it allows the possibility of applying the same
generic generation algorithm (GGA) with different test types and approaches.
As we will see, these results have a consequence on the classical test activities
in the sense that the specification modeling and the use of a test approach and
a test architecture are not two separate steps.

Finally, by presenting the TGSE tool (Test Generation, Simulation and Em-
ulation), we show that our framework is usable in practical tools. TGSE imple-
ments an on-the-fly GGA, and supports the passive and active testing (with test
purpose) of one or several components with data and temporal constraints.

The paper is organized as follows. Section 2 introduces the CS model. The
generic character of this model and its suitability for protocol testing are dis-
cussed in section 3. Section 4 gives some elements of the implementation of
the test generator tool TGSE. Section 5 reports our experimental results on

Testing Communicating Systems: a Model, a Methodology, and a Tool 113

CSMA/CD protocol. Finally, we conclude and draw some perspectives in
section 6.

2 Model and Methodology

The behavior of a communication protocol can be described by means of formal
models such as communicating systems (CS). In this paper, IR will denote the
set of reals, and IR+ will denote the set of positive reals.

2.1 Preliminaries

Clocks and Constraints. A clock is a variable that allows to record the pas-
sage of time. It can be set to a certain value and inspected at any moment to see
how much time has passed. In the Alur-Dill model [18], clocks increase at the
same rate, they are ranged over IR+, and the only assignments allowed are clock
resets of the form x := 0. For a set C of clocks, a set P of parameters, and a set
V of variables, the set of clock constraints Φ(C,P, V) is defined by the grammar:

φ := φ1 |φ2| φ1 ∧ φ2, φ1 := x ≤ f(P, V), φ2 := f(P, V) ≤ x

where x is a clock of C, and f(P, V) is a linear expression of P and V . For two
sets L1 and L2, L1\L2 will denote the set L1\L2 = {a | a ∈ L1 ∧ a
∈ L2}.
Definition 1 (ETIOA). An extended timed input/output automaton (ETIOA)
is a 10-tuple M = (S,L,C, P, V, V0, P red,Ass, s0,→) where :

– S is a finite set of states.
– s0 is the initial state.
– L is a finite alphabet of actions, L = Li ∪ Lo ∪ I.
– C is a finite set of clocks.
– P is a finite set of parameters.
– V is a finite set of variables.
– V0 is a finite set of the initial values for variables of V .
– Pred = Φ(C,P, V)∪ P̃ [P, V], where P̃ [P, V] is a set of linear inequalities on

V and P .
– Ass = {x := 0 |x ∈ C} ∪ {v := f(P, V) | v ∈ V } is a set of updates on clocks

and variables.
– →⊆ S × L× Pred×Ass× S is a set of transitions.

The alphabet L is partitioned into three sets: Li (resp. Lo) is the input (resp. out-
put) alphabet, and I is the alphabet of internal actions. t = (s, a, pred, ass, s′) ∈→
represents an edge from state s to state s′ on symbol a. pred ⊆ Pred is a set of
constraints, and ass ⊆ Ass is a set of updates.

Example 1. Fig. 1 illustrates an example of an ETIOA.

– S = {s0, s1, s2, s3} and s0 the initial state.
– L = {!a, ?b, !c, ?d}, C = {x, y}, P = {β, λ}, V = {v1} and V0 = {β}.
– The variable v1 has the initial value β.

114 I. Berrada, R. Castanet, and P. Félix

s0
!c

s3
?b

s1 s2
!a

y ≥ λ

v1 ≤ 4 x ≤ 1
x := 0

?d

y := 0
v1 := v1 + 1

Fig. 1. ETIOA

– Pred = {y ≥ λ, x ≤ 1, v1 ≤ 4}, Ass = {x := 0, y := 0, v1 := v1 + 1}.
– The transition t from s2 to s3 is: t = (s2, !c, {x ≤ 1}, {v1 := v1 + 1}, s3).

Remark 1. For an ETIOA M = (S,L,C, P, V, V0, P red,Ass, s0,→):

– When P = ∅ and V = ∅, then we find the usual definition of a timed i/o
automaton (TIOA). In this case, M will be simply noted (S,L,C, s0,→).

– When C = ∅, P = ∅ and V = ∅, then we find the usual definition of an i/o
automaton (IOA). In this case, M will be simply noted M = (S,L, s0,→).

2.2 Topologies of Communication and Communicating Systems

A topology of communication Top of a set of processes is a synchronization
model of the different processes. It describes the dynamic configurations of pro-
cesses, and the possible synchronizations in a given configuration. The definition
of Top is inspired by [19, 20]. It defines a set of global actions, a set of sets of
actions, and a Transducer (this terminology is borrowed from [20]) modeled by
an automaton.

Definition 2 (Topology). The topology of communication Top of a set of
n processes is a 3-tuple (G, I, Tr), with G a finite set of global actions, I =
{Ii}1≤i≤n a finite set of sets, and Tr = (Str, Ltr, s0tr,→tr) an automaton such
that the events of Ltr are vectors −→v of n + 1 elements, and ∀−→v ∈ Ltr, −→v =<
ag, a1, ..., an > with ag ∈ G and ∀i ∈ [1, n], ai ∈ Ii ∪ {idle}.
A vector −→v =< ag, a1, ..., an > of Ltr describes the action ai that the process
i, i ∈ [1, n], has to perform. The synchronization of the actions (ai)i∈[1,n] gives
place to the global action ag. When a vector −→v =< ag, idle, ..., ai, ..., idle >
defines only one action, the process i executes lonely ai, and changes its state.
For a topology Top = (G, I, Tr), when the number of states of Tr is equal to 1
then Top is called a static topology.

A topology offers the possibility of modeling communications between one,
two or several processes: unicast, multicast, and broadcast. It can be used, in cer-
tain cases, as a kind of controller on actions allowed by processes in a given con-
figuration of the global system. Note that, in order to describe inter-component
communications, a process algebra can be more expressive than the topology,
however, this latter offers suitable modeling mechanisms and algorithms usable
in practical tools.

Testing Communicating Systems: a Model, a Methodology, and a Tool 115

<!a,!a,?a>!a/v:=2

SV: v
SP: p

?a
v>1/!b/v1:=p

Shared resources

Entity 1 Entity 2
Topology

Fig. 2. CS model

Definition 3 (Communicating System). A communicating system CS is a
5-tuple (SP, SV, SV0, (Mi)1≤i≤n, T op) where:

– SP is a set of shared parameters.
– SV is a set of shared variables.
– SV0 is a set of the initial values for variables of SV .
– Top = (G, {Ii}1≤i≤n, T r) is a topology.
– Mi = (Si, Li, Ci, Pi, Vi, V0i, P redi, Assi, s0i,→i) is an ETIOA such that Ii ⊆

Li, ∀i ∈ [1, n].

Fig. 2 illustrates an example of a CS. Entities represent processes. They are mod-
eled by ETIOAs. The topology of communication describes the different possible
synchronizations between the entities. We assumed in the definition of entities
that ∀i ∈ [1, n], Ii ⊆ Li. This enables the definition of partial topologies in which
only allowed synchronizations are reported (in the next section, we will give some
examples of such topologies). The common resources represent the shared data
of the CS. We will restrict the shared data to variables and parameters. The
parameters (resp. variables) can be read (resp. read and modified) by the CS
entities 1. The semantics of a CS is defined by an ETIOA. To simplify, we will
assume that the names of parameters and variables of entities are different, and
different from those of the CS.

Definition 4 (Semantics). The semantics of a communicating system S =
(SP, SV, SV0, (Mi)1≤i≤n, T op), with Mi = (Si, Li, Ci, Pi, Vi, V0i, P redi, Assi, s0i,
→i) and Top = (G, I, (Str, Ltr, s0tr,→tr)), is defined by the ETIOA ζ(S) =
(S,L,C, P, V, V0, P red,Ass, s0,→) such that :

1 Shared parameters and variables can appear in the definition of a transition of an
entity.

116 I. Berrada, R. Castanet, and P. Félix

– S = {s = (str, s1, ..., sn) | str ∈ Str,∀i ∈ [1, n], si ∈ Si}
– s0 = (sotr, s01, ..., s0n).
– L = G, C = C1 ∪ ... ∪ Cn, P = SP ∪ P1 ∪ ... ∪ Pn.
– V = V P ∪ V1 ∪ ... ∪ Vn, V0 = V P0 ∪ V01 ∪ ... ∪ V0n.
– Pred = Pred1 ∪ ... ∪ Predn, Ass = Ass1 ∪ ... ∪Assn.

– →= {(str, s1, ..., sn)
a,pred,ass−−−−−−−→ (s′tr, s

′
1, ..., s

′
n) | ∃−→v =<a, a1, ..., an>∈ Ltr, str−→v−→tr s′tr,∀i ∈ [1, n], (((ai = idle)∧ (si = s′i)) ‖ ((ai
= idle)∧ (si

ai,predi,assi−−−−−−−−→i

s′i))), pred = pred1 ∧ ... ∧ predn, ass = ass1 ∧ ... ∧ assn}.

The alphabet L of ζ(S) is the set G of global actions of Top. A state of ζ(S) con-
sists of a state of Top and states of (Mi)i∈[1,n]. A transition (str, s1, ..., sn)

a,pred,ass−−−−−−−→
(s′tr, s

′
1, ..., s

′
n) of ζ(S) is conditioned by the existence of a transition of Top from

str to s′tr on a vector having the global action a.
Thus, the semantics of a CS allows the possibility of the synchronization with

other CSs, which gives a hierarchical definition for CSs. A possible extension of
the CS model consists in the definition of extended topologies: the transducer
modeled by an ETIOA (could be useful for modeling network latencies). Note
that, the size (number of transitions) of the semantics automaton is linear in the
size of entities times the size of the topology. In practice, however, this size is
orders of magnitude less. For example, the size of a CS, such that its topology
is a tree, is linear in the size of its topology.

2.3 Methodology of Generic Generation Algorithms

The majority of test generation algorithms are based on a depth-first search of a
target state or transition in the accessibility graph. It is then possible to define
generic generation algorithms for various test types. In this part, we show how
to define such algorithms.

Definition 5. A communicating system under test (CSUT) is a communicating
system S = (SP, SV, SV0, (Mi)1≤i≤n, T op), such that there is at least one entity
Mi, i ∈ [1, n], defining one or several states labeled by ACCEPT .

States labeled by ACCEPT define the behaviors to be tested. Our definition of
CSUT considers only states labeled by ACCEPT , but it is possible to define
transitions labeled by ACCEPT . This last case is not treated in this paper, but
the approach remains the same. Let us note by CSUT , the set of all CSUTs.

Definition 6. For a S ∈ CSUT , a state s = (str, s1, ..., sn) of ζ(S) and ρ =
t0...tn a sequence of transitions in ζ(S) from the initial state:

– s is an accepting state of ζ(S) if there exists i ∈ [1, n] such that si is a state
labeled by ACCEPT .

– ρ is an accepting path of ζ(S), if
1. ρ is an executable path.
2. The target state of the last transition tn is an accepting state of ζ(S).

Testing Communicating Systems: a Model, a Methodology, and a Tool 117

A state s of the ETIOA ζ(S), the semantics of S, is an accepting state of ζ(S),
if one of the states that compose it, is a state labeled by ACCEPT . A path
ρ = t0...tn of ζ(S) from the initial state is an accepting path of ζ(S) if 1) the
state sn of the last transition tn = (sn−1, a, pred, ass, sn) is an accepting state
of ζ(S) and 2) ρ is an executable (feasible) path, i.e, the different constraints on
the transitions are all satisfied. The executability of a path is treated in [21, 22].

Definition 7. A generic generation algorithm (GGA) for CSUT is an algorithm
that computes, for all S ∈ CSUT , all accepting paths of ζ(S).

An algorithm gga is a GGA, if gga applied to ζ(S) returns a set PATH(S)
containing all accepting paths of ζ(S). Examples of GGA can be found in [21,
23, 22]. Note that the Hit-or-Jump algorithm [23] does not deal with the temporal
aspect of systems and considers ACCEPT transitions.

Finally, an algorithm gga does not depend on a CSUT. It can be applied
to any ETIOA and it is exhaustive in the sense that all accepting paths are
returned by gga. Its complexity depends on the size of entities and the size of
the topology used. We have chosen the state coverage criterion for defining gga
but the transition (or other) coverage criterion can also be chosen [22].

3 CS: A Generic Model for Testing

In this section we present the expressivity and the generic character of CSs
for describing and testing protocols. Modeling specifications is presented in 3.1.
Testing with different types and approaches is presented in 3.2.

In the remainder of this section, we will consider two specifications SA and
SB , sharing the set of parameters SP , and the set of variables SV , such that
SV0 is a finite set of the initial values for variables of SV . We model SA (resp.
SB) by the ETIOA A = (SA, LA, CA, PA, VA, V0, P redA, AssA, s0,→A) (resp. B =

(SB , LB , CB , PB , VB , V ′
0 , P redB , AssB , s′0,→B)). LAB (resp. LBA) will denote the

set of events of LA (resp LB) which synchronize with an event of LB (resp.
LA). For example, if LA = {?a1, ?a2, !a3} and LB = {!a2, ?a3, !a4} then LAB =
{?a2, !a3}, LBA = {!a2, ?a3}, and ?a2 (resp. !a3) synchronizes with !a2 (resp.
?a3). To simplify, we will assume that ∀a ∈ LAB , there is a unique b ∈ LBA such
that a synchronizes with b.

3.1 CS as a Specification Model

Observable events. Suppose that S is the specification made up of specifica-
tions SA and SB . A CS modeling of S is : CS1 = (SP, SV, SV0, (A,B), T opS),
with TopS the automaton of Fig. 3 (a). TopS is a static topology. Vector <
G,LAB , LBA > denotes the vectors < gab, a, b > such that a ∈ LAB synchro-
nizes with b ∈ LBA, and their synchronization gives place to an observable
action gab. An example of gab can be a (resp. b) if a (resp. b) is an emis-
sion (the visible action of an emission and a reception is an emission). In the
same way, < GA, LA\LAB , idle > denotes the vectors < ga, a, idle > such that

118 I. Berrada, R. Castanet, and P. Félix

(a) Topology TopS

¡G,LAB ,LBA¿

¡GA,LA\LAB ,idle¿
¡GB ,idle,LB\LBA¿

(b) Topology TopS’

¡τ ,LAB ,LBA¿

¡GA,LA\LAB ,idle¿
¡GB ,idle,LB\LBA¿

Fig. 3. Different topologies

a ∈ LA\LAB . In < ga, a, idle >, the ETIOA A performs the action a giving
place to the observable action ga, and the ETIOA B remains in the same state
(idle). The set GA corresponds, in general, to the set LA\LAB . Finally, TopS
allows the application of each vector (if it is possible) in a global state of S.

Non-observable events. Now, suppose that the synchronizations of LAB events
with LBA events are non-observable (as it is the case of the black-box test ar-
chitecture), then modeling S in CS is: CS2 = (SP, SV, SV0, (A,B), T opS′), with
TopS′ the automaton of Fig. 3 (b). In < τ, a, b > of < τ,LAB , LBA >, the syn-
chronization of a with b gives place to an internal action τ . Generally, we can
describe the synchronization on internal actions only for a part of the synchro-
nization events as it is the case of a test architecture.

Thus, from a testing standpoint, the CS model is not only a formal model
allowing the description of inter-component communications, but also a model
that is able to incorporate the test architectures.

3.2 CS as a Test Generation Model

Two major approaches were used for protocol testing: Active Testing and Passive
Testing. In active testing, the derivation is made from specifications. The deriva-
tion can consider only a part of the specification with the aim of limiting the
state space explosion which occurs during the system composition and analysis.
This approach is known as the test purpose technique. Active testing can deal
with one or several communicating entities [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17]. On the other hand, passive testing considers execution traces of an
implementation, which can contain values of variables and clocks, and checks the
validity of these traces with respect to the specification. In the works relating to
passive testing [21], the authors consider only one untimed specification.

To simplify, let us call one-component testing the test of one specification
(conformance testing) and several-component testing the test of several spec-
ifications (interoperability, embedded, component testing). In the rest of this
section, we consider that gga is a GGA. This section shows that the test activi-
ties amount to a CS modeling, by deferring the different characteristics of a test
to the topology of communication, and the application of the algorithm gga to
validate a trace (passive testing) or to generate traces (active testing).

Passive testing. Suppose that I is an implementation of the specification SA,
and the trace modeled by the ETIOA of Fig. 4 (a) is a trace of I. This trace

Testing Communicating Systems: a Model, a Methodology, and a Tool 119

h=3/a/− h=5,v=4/b/−
ACCEPT

(a) PTrace

<a,a,a> <b,b,b>

(b) PTop

Fig. 4. Passive testing

reports that I has executed a ∈ LA (we recall that A is the ETIOA of SA)
at moment 3, followed by b ∈ LA at moment 5 such that the shared variable
v ∈ SV is equal to 4. Checking the validity of this trace consists in modeling a
CS CS3 = (SP, SV, SV0, (A,PTrace), PTop), with PTrace the ETIOA of Fig. 4
(a) and PTop the automaton of Fig. 4 (b).

The topology Ptop is partial, i.e, it defines only the synchronizations on
PTrace events. < a, a, a > (resp. < b, b, b >) considers that A and PTrace syn-
chronize on a (resp. b), and the visible action will be a (resp. b). We have labeled
the state reached by the action b in PTrace by ACCEPT in order to make CS3 a
CSUT and to be able to apply gga. Consequently, gga allows to decide if PTrace
is a valid trace of A: if gga returns an empty set (PATH(CS3) = ∅) then PTrace
is not a valid trace of A (we recall that gga is applied to the semantics of CS3).

Remark 2. -Generally, the construction of PTop depends strongly on PTrace.
It should define only synchronizations on PTrace events and in the same order.

-The trace PTrace is considered as an entity of CS3 without any distinction
compared to the other entities. This allows to enlarge the form of the considered
traces to any traces modeled by an ETIOA defining some accepting states.
-The example of the passive testing of the specification SA is one-component
testing, but the approach remains the same in the case of several-component
testing. In this setting, the difficulty is to reorder various traces from the different
components to construct only one trace. We think that the stamp mechanisms,
and especially the stamp process presented in [24], could be used. This subject
goes beyond the framework of this paper and needs more investigation.

Active testing. For a CSUT S, the paths PATH(ζ(S)) generated by gga can
be used to derive test cases that cover, for example, all S states. This amounts
to define all S states as being accepting states (gga could be an adaptation of
the TT/UIO/Wp methods for untimed systems). Thus, we consider here only
the test purpose technique.

Definition 8. A test purpose (TP) is an ETIOA (S,L,C, P, V, V0, P red,Ass, s0,
→) having two sets of states ACCEPT and REJECT characterizing the behav-
iors to be tested.

A TP is a property that one would like to check on implementation behavior.
TP1 of Fig. 5 (a) illustrates an example of a TP for the specification SA. TP1
tests that an implementation I of SA can execute a followed by b at an instant
between [2, Sig] according to the clock h (Sig ∈ SP is a shared parameter of SA).
The label ’*’ denotes the alphabet LA of A. We assume here that a, b, c ∈ LA.

120 I. Berrada, R. Castanet, and P. Félix

* *
−/a/− h[2,Sig]/b/−

ACCEPT

(a) Purpose TP1

<a,a,a><b,b,b>

(b) Topology PTop1

¡LA\{a, b},LA\{a, b},idle¿

* *

n

(c) Topology TPop1’

Fig. 5. Active testing: one-component testing (1)

One-component testing.
Suppose that TP1 is a TP for specification SA. A modeling of this test in CS is:
CS4 = (SP, SV, SV0, (A, TP1), TPop1), with TPop1 the topology of Fig. 5 (b).
The vectors < LA\{a, b}, LA\{a, b}, idle > denote free evolutions of specification
A on events other than a and b. CS4 is a CSUT and thus gga will generate paths
checking TP1.

Note that for the same TP, several CS modelings can be formulated, con-
sidering different topologies. In fact, the definition of the topology gives more
expressivity to the behaviors awaited by a TP. A typical example of this ex-
pressivity is as follows: since paths generated by gga for CS4 are of arbitrary
lengths (the number of transitions), one can wish to generate only paths of
lengths less than n ∈ IN. This wish cannot be expressed by a TP (there is
no mechanism to count the event occurrences). Now, let us consider the CS
CS5 = (SP, SV, SV0, (A, TP1), TPop1′), with TPop1′ the topology of Fig. 5
(c). The label ’*’ in TPop1′ denotes vectors < a, a, a >, < b, b, b >, and <
LA\{a, b}, LA\{a, b}, idle > (a transition ’*’ is then the set of transitions on
these vectors). With TPop1′ the semantics of CS5 is a tree of depth less than n
and thus the lengths of paths generated by gga are less than n.

To close the part of one-component testing, let us take the TP TP2 of Fig. 6
(a). TP2 tests the same functionalities as TP1, but prohibits the appearance
of c in the two first states of TP2. The label ’other’ in TP2 denotes the events
LA\{c}. Note that the definition of REJECT states is only a manner of pro-
hibiting synchronizations on a set of events. This prohibition can be formulated
in the topology instead of the test purpose. In this case, we can use TP1 instead
of TP2. Indeed, the active testing of SA with test purpose TP2 can be modeled

<b,b,b>

<a,a,a>

<c,c,c>

(b) Topology PTop2

¡LA\{a, b, c},LA\{a, b, c},idle¿

Fig. 6. Active testing: one-component testing (2)

Testing Communicating Systems: a Model, a Methodology, and a Tool 121

* *

−/a/− h[2,Sig]/b/−

ACCEPT

(a) Purpose TP1 (b) Topology Top

¡G,LAB\{b},LBA\{b},idle¿

¡GB ,idle,LB\LBA,idle¿

¡b,b,b,b¿

¡a,a,idle,a¿

¡GA,LA\{LAB ∪ {a}},idle,idle¿

Fig. 7. Active testing: several-component testing

by the CS CS6 = (SP, SV, SV0, (A, TP1), TPop2), with TPop2 the topology of
Fig. 6 (b). In TPop2, when a synchronization on c occurs, the communicating
system evolves/moves to a blocking/deadlock state and thus during the applica-
tion of gga to CS6, gga is forced to dequeue this synchronization. Finally, note
that we have used TP1 in CS6 to test TP2, and therefore a test purpose can
contain only ACCEPT states.

Several-component testing.
Suppose that S is the specification made up of specifications SA and SB , and
TP1 (Fig. 7 (a)) is a TP for S. To simplify, we assume here that a ∈ LA, a
∈ LAB

(a is not a synchronization event), and b ∈ LAB∩LBA. A modeling of this test in
CS is as follows: CS7 = (SP, SV, SV0, (A,B, TP1), T op), with Top the topology
of Fig. 7 (b). The vector < b, b, b, b > considers that A, B and TP1 synchronize
on b. The vector < a, a, idle, a > considers that only A and TP1 synchronize on
a. Again, the application of gga allows generating paths checking TP1.

To summarize this section, Fig. 8 presents the test activities (without the
implementations). Three main steps are identified. Firstly, from (i) an informal
specification(s), (ii) a test approach (passive or active testing), and (iii) a test
architecture, a description S in the CS model is elaborated. Secondly, a GGA
algorithm (with a coverage criterion) is applied to ζ(S) to generate a set of exe-
cutable paths PATH(ζ(S)). Finally, this set is interpreted according to the test

Specification(s)

Test Architecture

Generation(GAG)

Interpretation

Modeling (CS)

Test Approach

Fig. 8. Test activities

122 I. Berrada, R. Castanet, and P. Félix

approach: for passive testing, if PATH(ζ(S)) = ∅ then the implementation(s)
is (are) incorrect. For active testing, test cases are generated from this set. In
the opposite, the classical test activities involve the specification, the generation
algorithm and the test architecture in three separate steps and thus looses the
generic character of our framework.

Thus, there is no reason to make distinction between these types and ap-
proaches of protocol testing.

4 TGSE: A Generic Test Generation Tool

The automation of the test generation becomes a need faced with the growth
of the complexity of the protocols being tested. This section describes the main
characteristics of the implementation of the TGSE tool (Test Generation, Sim-
ulation and Emulation) based on the CS model. Due to space restrictions,
we present only the test case generator. The interested readers are referred
to [22].

TGSE Interfaces. The French RNRT project Calife and its successor Averroès
are an academic and industrial projects gathering France Telecom R&D, CRIL
Technology, LaBRI, LSV, Loria, LRI. The goal of this project is to define a
generic platform (Open Source) able to interface verification and test generation
tools. The Calife platform [25] comprises an editor and a simulator. The editor
provides a pleasant and easy-to-handle graphical user interface of various types
of automata (timed, hybrids, and extended automata). The simulator allows the
graphical execution of automata.

The input of TGSE is the description of a CS following a simple syntax.
Each ETIOA of a CS is defined in a separate file. A system file describes the
access paths to each component, as well as the shared data and the topology of
communication. The output of TGSE is an XML (eXtensible Markup Language)
file according to a Calife DTD defining a test sequence.

TGSE can also be used in a graphical mode through Calife. In this case,
the description of a specification is done through the Calife editor that allows
the automatic generation of the synchronization vectors. Many synchronization
modes are offered: rendez-vous, broadcast, identical labels and the Uppaal bi-
nary synchronization. The call to TGSE is done through the editor that gen-
erates the input files of TGSE. TGSE produces a test case to be simulated in
Calife.

Generation Techniques. TGSE implements an on-the-fly algorithm gga. It
is based on a depth-first traversal of the CS semantics. The traversal is pa-
rameterized by the maximum number allowed for a transition to appear in the
generated sequence. The choice of a transition, a synchronization vector and
the automaton that performs an action is parameterized (RANDOM or FIFO
access). The algorithm gga computes an accepting path for a given CS. During
the traversal, several computations are performed:

Testing Communicating Systems: a Model, a Methodology, and a Tool 123

Step 1: Successor Computation. From the current state s of the semantics
automaton, the synchronization vectors are evaluated in a parameterized way to
compute a successor state s′. The API SymbolicTrace() is then called.

Step 2: Symbolic Trace. SymbolicTrace() calculates the symbolic trace of the
new fired transitions and updates the predicates and the context (assignments
and resets of the new transitions,see annex).

Step 3: Constraint Resolution. Once the symbolic trace is calculated, the
API feasible() is called. In the case of a parameterized trace, feasible() calls
checkParams(). This latter interacts with the linear programming tool lp solve
v4 for instancing parameters. In the opposite case, checkClocks() is carried out
for computing the fastest/slowest timed executions [11, 22].

Step 4: Test Case Computation. If during the traversal an accepting state is
met, the search ends by a call to the writeTrace() to decorate the path obtained
by the different verdicts. The output is an XML file according to a Calife DTD.

The algorithm gga is explained in more detail in the annex and in [22]. Its
complexity is linear in the size of the CS times the complexity for solving linear
programming problems. Finally, if no accepting state is met, gga is automati-
cally started for a new attempt (the launching is parametrized). Moreover, it is
possible to generate a test case that has the minimal number of transitions for a
given number of attempts. We point out that TGSE is based on a conformance
relation (traces inclusion) taking into account data and clocks [22].

5 Case Study: CSMA/CD Protocol

The CSMA/CD Protocol (Fig. 9) is made up of a bus (medium of communica-
tion) and one or more senders (transmitting stations). We do not model here
the receivers. When two or several senders transmit simultaneously data on the
bus (!begin), a collision event (!CD) is sent by the bus to all senders. These

Idle

−/?begin/y:=0

y<Sig/?begin/y:=0−/!CD/−

Collision

Active

y>=Sig/!busy/−

(a) Bus

−/?end/y:=0 Retry

Transmit

Finish

−/!begin/x:=0

x<=2*Sig/!begin/x:=0

x<Sig/?CD/x:=0

x<2*Sig/?CD/x:=0

−/−/x:=0

x<=2*Sig/?busy/x:=0

−/?busy/x:=0

−/?busy/−

(b) Sender

x=lambda/!end/−

−/?CD/x:=0

Init

Fig. 9. CSMA/CD specifications

124 I. Berrada, R. Castanet, and P. Félix

latter have to retransmit later. Thereafter, Senders (resp. Bus) will denote the
ETIOA representing the specification of the sender (resp. bus) (Fig. 9).

The next table reports the experimental results of applying TGSE to CSMA/

CD with one bus, several senders and the TP: 1
−/!begin/−−−−−−−−→ 2

h=5/!CD/−−−−−−−−−→ 3.
TP checks that a sender sends data (!begin), and the bus detects a collision at
instant 5 (!CD). A test case generated by TGSE for this test appears bellow. In
this case, Sender 1 transmits at 0, Sender 2 transmits at 0 and the Bus detects
a collision at 5.

h=0/!begin(1) h=0/!begin(2) h=5/!CD

Sig=Lambda=6

PASS

(b) PTop

The experience is run on a INTEL P4 DELL INSPIRON 5100 PC, with
256Mo of RAM running Mandrake 10.0. Each input of the table was launched
2000 times. Lock represents the number of times that a transition can appear in
a path, Size TC the average size of a test case, Nb Sender the number of senders
considered and CPU Time the average generation time. The reader can notice
that the generation with Lock equal to 1 takes more time. In fact, with Lock
equal to 1, gga moves to locked states and thus dequeues several times.

Lock Nb Sender TC Size CPUs Time (s)

1 5 3 0.303

1 10 3 0.621

1 20 3 0.914

103 5 55 0.098

103 10 79 0.234

103 20 130 0.793

Although the CSMA/CD protocol is of a reduced size, the use of several
senders increases its complexity. The obtained results are encouraging and im-
provements are at hand.

6 Conclusion

The aim of this paper is to show that different types (conformance, interoper-
ability, embedded, component) and approaches (passive and active) of proto-
col testing can be treated in a unified manner. To achieve this aim, we have
presented a testing framework based on the generic model of communicating
systems (CS) and the methodology of generic generation algorithms (GGA).
The CS model defines a set of communicating entities (components) modeled
by extended timed input/output timed automata (ETIOAs), a set of common
resources (variables and parameters) shared by these entities, and a topology

Testing Communicating Systems: a Model, a Methodology, and a Tool 125

of communication specifying the different synchronizations allowed in a system
configuration. We showed that the test activities consist then in modeling a CS
and applying an algorithm GGA. To our knowledge, this is the first framework
that can fully handle various test types and approaches. Our framework was
implemented in TGSE tool (Test Generation, Simulation and Emulation). The
current version of TGSE can be used both for passive and active testing of one or
several components but supports only deterministic ETIOAs and the definition
of a test purpose.

Regarding future work, our intention is to study the impact of a coverage cri-
terion on the definition of GGA, and to realize a realistic performance evaluations
of TGSE on complex protocols. Finally, until very recently, research had been
carried out with almost no interactions between the software and protocol test-
ing communities. So, our framework might bring the two communities together,
since object-oriented programming languages and component-based approaches
(code testing) are now widely used in software development, and these lead to
the need of state-based test techniques.

Acknowledgments

We would like to thank the members of the specific action AS 32 carried out by
Ana Cavalli for their fruitful remarks. We would like also to thank the ENSEIRB
students Dimitri Kandassamy, Jamel Semeh, David Dogoh and Carine Beduz for
their participations in the realization of TGSE.

References

1. Jan Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence,
Software - Concepts and Tools 17(3): 103-120 (1996).

2. Laura Brandn and Ed Brinksma. A test generation framework for quiescent real-
time systems. FATES2004, Linz, Austria September 21 2004.

3. S. Seol, M. Kim, S. Kang, J. Ryu. Fully automated interoperability test suite
derivation for communication protocols, Computer Networks Volume 43, Pages
735 - 759, December 2003.

4. Rachel Cardell-Oliver. Conformance Testing of Real-Time Systems with Timed
Automata Specifications, Formal Aspects of Computing, 12(5):350-371,2000.

5. Duncan Clarke and Insup Lee. Automatic Test Generation for the Analysis of a
Real-Time System: Case Study. In 3rd IEEE RTSS, 1997.

6. A. En-Nouaary, R. Dssouli, F. Khenedek, and A. Elqortobi. Timed test cases gen-
eration based on state characterization technique, In 19th IEEE RTSS, Madrid,
Spain, 1998.

7. T. Higashino, A. Nakata, K. Taniguchi, and A. Cavalli. Generating Test Cases for
a Timed I/O Automaton model, TESTCOM99, Budapest, Hungary, September
1999.

8. A. Koumsi, M. Akalay, R. Dssouli, A. En-Nouaary, L. Granger. An approach for
testing real time protocols, TESTCOM, Ottawa, Canada, 2000.

126 I. Berrada, R. Castanet, and P. Félix

9. Dino Mandrioli, Sandro Morasca, and Angelo Morzenti. Generating Test Cases for
Real-Time Systems from Logic Specifications, ACM Transactions on Computer
Systems, 13(4):365-398, 1995.

10. Jan Springintveld, Frits Vaandrager, Pedro R. D’Argenio. Testing Timed Au-
tomata. Theoretical Computer Science, 252(1-2):225-257, March 2001.

11. I. Berrada, R. Castanet, P. Félix. From the Feasibility Analysis to Real-Time Test
Generation, Studia Informatica Universalis Volume 3 (2) pp.203-230 2004.

12. K. Larsen, M. Mikucionis, and B. Nielsenn. Real-time system testing on-the-fly. In
the 15th Nordic Workshop on Programming Theory (NWPT), 2003.

13. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In SPIN 2004 (2004), Spring-Verlag Heidelberg, pp. 109-126.

14. Abdeslam En-Nouaary, Rachida Dssouli: A Guided Method for Testing Timed
Input Output Automata. TestCom 2003: 211-225

15. Ahmed Khoumsi, Thierry JTron, HervT Marchand. Test Cases Generation for
Nondeterministic Real-Time Systems. FATES 2003: 131-146

16. K. El-Fakih and N. Yevtushenko. Fault Propagation by Equation Solving. Proceed-
ing of FORTE, Madrid, Spain. LNCS 3235, September 2004.

17. S. Boroday, A. Petrenko, R. Groz and Y.M. Quemener. Test Generation for CEFSM
Combining Specification and Fault Coverage. TESTCOM02, Berlin, Germany,
March 2002.

18. R. Alur and D. Dill. A theory of timed automata, Theoretical Computer Science,
126:183-235, 1994.

19. AndrT Arnold et M. Nivat. Comportements de processus. In Colloque AFCET
“Les mathTmatiques de l’Informatique”, pages 35-68, 1982.

20. Toms Barros, RabTa Boulifa and Eric Madelaine. Parameterized Models for Dis-
tributed java Objects. FORTE, Madrid, Spain. LNCS 3235, September 2004.

21. Baptiste Alcalde, Ana Cavalli, Dongluo Chen, Davy Khuu, and David Lee. Network
Protocol System Passive Testing for Fault Management: A Backward Checking
Approach. Proceeding of FORTE, Madrid, Spain. LNCS 3235, September 2004.

22. Ismail Berrada, Richard Castanet and Patrick FTlix. Techinques de Test
d’InteropTrabilitT. Fourniture Calife, 2005.

23. Ana Cavalli, David Lee, Christian Rinderknecht and Fatiha Zandi. Hit-or-
Jump: An algorithm for embedded testing with applications to IN services.
FORTE/PSTV’99, Beijing, China. October 1999.

24. Claude Jard, Thierry JTron, LTnanck Tanguy and CTsar Viho. Remote testing
can be as powerful as local testing. FORTE/PSTV’99, Beijing, China. October
1999.

25. http://www.cril-technology.fr.

Annex

Description. The generation algorithm gga applied to a CS S performs a depth-first
traversal of ζ(S). During the traversal, gga computes the symbolic trace and checks the
feasibility of the new fired transitions. When an accepting state is met (the function
AcceptStates()), a backtracking in the synchronization path is performed to decorate
this latter with verdicts (function writeTrace()). Due to the space limit, we will present
only the gga() and SymbolicTrace() functions.

Data Structure.
States: a n+1-tuple (str, s1, ..., sn).
Context: records the values of variables and last resets for clocks.

Testing Communicating Systems: a Model, a Methodology, and a Tool 127

Transition: a n+1-table of pointers on the current transitions.
Element is a structure composed of a States, a Context and a Transitions.
Path: a stack of Elements. It managed by the operations “push”, “top” and “pop”.

Other functions.
SynchronizationOnEvents(): chooses a synchronization vector from the current state
and returns a structures Element composed of the new transitions and states reached.
getSuccessors(): returns a successor state of the current state.
getInitStates: returns the initial state of ζ(S).

Function gga():
1. Begin
2. States:= getInitialStates(), Element := NULL, Path := ∅;
3. Do
4. Element := SynchronizationOnEvents(States);
5. If (Element �= NULL) then
6. push(Element,Path);
7. SymbolicTrace(Path);
8. If(!feasible(Path)) then
9. pop(Element,Path);
10. States := getSuccessors(Element);
11. Else
12. pop(Path); States := getSuccessors(top(Path)) ;
13. If(AcceptStates(States))
14. writeTrace(Path);
15. While(Path �= ∅);
16. End

Symbolic Trace. Let us assume that M = (S, L, C, P, V, V0, P red, Ass, s0, T) is an
ETIOA such that C = {c1, ..., ck}, V = {v1, ..., vm}, V0 = {v01, ..., v0m} and ρ = t1...tn

is a suite of transitions of M from the initial state. The symbolic trace of ρ is ρ such
that ∀ ti = (si−1, a, pred, ass, si) of ρ, and ∀v ∈ V , v is replaced in pred by its last
value before ti (see [22]). SymbolicTrace() uses two vectors: V 1 contains the current
values of variables (may depend on P parameters). V 2 is a vector of natural numbers.
V 2[q] stocks the index of transition where the clock xq ∈ C was last reseted.

Function SymbolicTrace():
1. Input/output: ρ = t1...tn, with ti = (si−1, a, predi, assi, si),
2. Temporary Data Two vectors: V 1 of size m and V 2 of size k.
3. Begin

/*Initialization */
4. For i := 1 to m Do V 1[i] ← v0i;
5. For i := 1 to k Do V 2[i] ← 0;

/*Updating */
6. For i := 1 to n Do
7. predi ← updatePredicates(predi, V 1, V 2, i);
8. updateContext(assi, V 1, V 2, i);
9. End

The function UpdatePredicates replaces the variables with their current values from
V 1. For clocks, if cp is last reseted in the tj and i is the index of the current step then
ck is replaced by hi − hj = hi − hV 2[p] (line 4).

128 I. Berrada, R. Castanet, and P. Félix

Function UpdatePredicates():
1. Input: A predicate pred, an index i, and two vectors V 1 and V 2.
2. Output: A predicate predUpdated.
3. Begin
4. predUpdate ← pred[hi − hV 2[1], ..., hi − hV 2[k], V 1[1], ..., V [m], P];
5. End

The function UpadateContext updates 1) the current values of variables in V 1 from
the new assignments (lines 4 and 5), and 2) the clock resets V 2 by assigning the index
of the current step (lines 6 et 7).

Function UpdateContext():
1. Input: An assignment ass, and an index i.
2. Input/Output: Two vectors V 1 and V 2.
3. Begin
4. For j := 1 to m Do
5. If vj := f(v1, .., vm, P) ∈ ass then V 1[j] := f(V [1], .., V [m], P);
6. For j := 1 to m Do
7. If cj := 0 ∈ ass then V 2[j] := i;
8. End

Coping with Nondeterminism in Network
Protocol Testing

R.E. Miller1, D.-L. Chen2, D. Lee3, and R. Hao4

1 Department of Computer Science, University of Maryland
2 Department of Computer Science, Tsinghua University, China

3 Department of Computer Science and Engineering, Ohio State University
4 Bell Labs Research China, Lucent Technologies

Abstract. Given a nondeterministic protocol specification, we want to
determine the deterministic implementation under test with a confor-
mance of trace inclusion in the specification. We identify them using
both active and passive testing. Four cases are studied with experiments
on Internet protocols. In the first two cases, the implementation ma-
chine is a derived machine of the specification. In the third case, the
implementation machine is a derived machine of the k-way expansion of
the specification machine. The fourth case deals with the general case of
nondeterministic machines.

1 Introduction

Network protocols are often partially specified, the unspecified inputs may be
ignored, or cause an error message [1]. The choices depend on the design of an
implementation. Often network protocols contain optional requirements, which
are specified by “MAY” statements in many RFCs. These two cases can be re-
garded as options in network protocol specifications, providing certain flexibility
to protocol implementations. Due to the options, a protocol cannot be modelled
by a deterministic finite state machine (DFSM). The common approach is to
use a non-deterministic finite state machine (NFSM) to model these protocols
instead. This situation has complicated the protocol testing operations. There
are several studies on testing NFSMs, both active testing [2], [3], [4], [5] and
passive testing [6].

When a vendor implements a protocol, it may implement some of the options
and discard the others, or implement all the options with configuration param-
eters and let the user make the decision. Hence, given a protocol, there may be
different deterministic implementations that conform to the specification. Of-
ten we need to identify the deterministic implementation of the object system.
For example, there are several TCP variants deployed on the Internet. [7] pro-
vided test scenarios to examine these deployments. In general, it is a machine
identification problem, however, it is rather complex.

In this paper, we assume the specification machine A is an NFSM and the
implementation machine B which conforms to A is a DFSM. We study the

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 129–145, 2005.
c© IFIP 2005

130 R.E. Miller et al.

problem of identifying the DFSM implementation, given its NFSM specification.
The specification machine is assumed to have n states, p inputs and q outputs.
For such a machine, there are totally (qn)pn/n! candidate machines. The problem
of identifying B is difficult, because the distinguishing sequences for a NFSM
may not exist, when there is a distinguishing sequence, it can be of exponential
length [8]. Due to the difficulty in the general case, some work [3], [5] focus on
the special case of Observable NFSM (ONFSM).

Our approach is different from the exist works in several aspects. First we
provide both passive testing and active testing algorithms for this machine iden-
tification problem. Passive testing/monitoring [6], [9] has been a important area
in network analysis. Our passive testing algorithm can be used to identify new
features of the protocols, like routing protocols, HTTP and TCP. Second we
study the cases of both ONFSM and general NFSM. According to the NFSM is
observable or not and the implementation is a subautomaton or not, there are
four cases. We study the complexity of each case and provide algorithms when
it is feasible. We propose the concept derived machines to study the relation-
ship between implementation and specification in the first three cases. Third we
study the nondeterminism in Internet protocols and propose algorithms to solve
the identification problem. Third we use simulation to show the efficiencies of
the algorithms.

In Section 2 we provide the basic concepts for NFSM. We propose the defini-
tion of derived machines when a DFSM is a subautomaton of an NFSM specifi-
cation. Section 3, 4, 5 and 6 study the four cases, respectively. We discuss both
active and passive testing approaches with experiments on Internet protocols.
Conclusion is drawn on Section 7.

2 Preliminaries

The following definitions and properties about NFSMs are based on [8].

Definition 1. A nondeterministic finite state machine (NFSM) M is a 4-tuple
M = (I,O, S, h) where I is a finite set of input symbols, O is a finite set of output
symbols, S is a finite set of states, h is the transition function: S×I → P(S×O),
where P denotes the power set operator.

Definition 2. The transition function f is defined for s, s′ ∈ S, x ∈ I, y ∈ O as
follows:

f(s, x) def= {s′ |∃y [s′, y] ∈ h(s, x)}.
The conditional transition function hy is defined for s, s′ ∈ S, x ∈ I, y ∈ O

as follows:
hy(s, x) def= {s′ | [s′, y] ∈ h(s, x)}.

Definition 3. A NFSM is observable if for all s ∈ S, x ∈ I, y ∈ O, we have
Card(hy(s, x)) ≤ 1, where Card(Z) denotes the cardinal number of the set Z.

Coping with Nondeterminism in Network Protocol Testing 131

derived
machines

conformance

Fig. 1. Derived Machine and Conformance

In this paper, the specification is assumed to be reduced[8]. Our conformance
relation is defined by trace inclusion [10]. Let sA, sB be the initial states of
machine A,B respectively. The trace of machine M from its initial state sM is
denoted by T (M, sM).

Definition 4. An implementation machine (B, sB) conforms to a specification
machine (A, sA) if and only if T (B, sB) ⊆ T (A, sA).

We use derived machine when an implementation machine is a subautomaton
of the specification machine. A derived machine is required to be connected and
deterministic.

Definition 5. Given a NFSM A = (I,O, S, h), an implementation machine
B = (I ′, O′, S′, h′) is called a derived machine of A if B is deterministic, con-
nected, and a subautomaton of A.

Since a derived machine B is a subautomaton of the specification machine
A, its trace is included in the trace of A; hence it conforms to A. Note when B
conforms to A, B is not required to be a derived machine of A, which is discussed
in Section 5. There relationship is shown in Figure 1.

We now proceed to investigate four different cases of determining the imple-
mentations from active and passive testing.

3 Case 1: Derived Machine of Observable NFSM

Network protocol specifications may allow different responses according to an
input. This kind of nondeterminism is observable and can be judged by the
appearance of the output.

3.1 Active Testing Approach

Usually network protocol systems have reset capability, an input symbol, denoted
by r, leading the machine back to its initial state, and it can be realized by a
restart of the device. Obviously, taking an i/o pair as a symbol, ONFSM can
be regarded as a deterministic finite automaton. To identify the implementation
machine, we have to traverse the transitions with the same input from a state.
The following procedure will construct the implementation machine.

132 R.E. Miller et al.

begin
1. B = (I,O, S = {s0}, h = {r}); /* s0: initial state, r: reset */
2. while (∃si ∈ S, a ∈ I, h(si, a) not specified in B)
3. trap B in si; /* usually with a sequence started by r */
4. send input a to B, assume output b;
5. find the unique transition h(si, a) = (sj , b) in the transition table of A;
6. add h(si, a) = (sj , b) to h;
7. if (sj
∈ S) /* a new state explored in B */
8. add sj to S;
end

In step 5, there is a unique transition h(si, a) = (sj , b) in the transition table
of A because A is observable and B conforms to A. If we use a breadth-first search
(BFS) strategy to explore the transitions from the states, the ith explored state
is reachable in i steps with prefix r. Assume the ith state has ki undecided inputs,
ki ≤ p . The complexity of the construction is C ≤ ∑n

i=1 i ∗ ki = O(p
∑n

i=1 i) =
O(pn2) .

Theorem 1. If A is an ONFSM and B is a derived machine of A, the con-
struction procedure takes time O(pn2) to build the derived machine .

3.2 Passive Testing Approach

The passive testing approach is divided into a homing phase and an identification
phase, similar to [6]. The procedure traces the current states of the specification
NFSM A using the observed I/O sequence from the implementation machine B.
A passive testing map records the possible states and their related transitions
during a passive testing.

Definition 6. A passive testing map is a directed graph G = (V,E). For an
observed sequence e1, e2, . . . , ek, V = L0 ∪ L1 ∪ . . . ∪ Lk, where Lj records the
possible states after event ej, a node vij = (si, j) ∈ Lj if si is a possible state
after event ej. E = tr(0, 1)∪ tr(1, 2)∪ . . .∪ tr(k−1, k), where tr(j, j +1) records
the possible transitions from Lj to Lj+1. If (si, j) ∈ Lj, and there is a transition
si

ej→ sv in the specification, then (sv, j + 1) ∈ Lj+1 and {(si, j)
ej→ (sv, j + 1)} ∈

tr(j, j + 1).

Figure 2 gives an example of passive testing map. We use the following no-
tations in our passive testing algorithms:

L−, L+ - the level before and after level L in state tracing
eL = xL/yL - the input/output pair at level L
C - the current state set (C− is the level before the current level)

If a state in the specification can trigger multiple transitions upon an input, it
is a branching state for this input. A derived machine selects from the candidate
transitions.

Coping with Nondeterminism in Network Protocol Testing 133

ON-LINE CHECKING - ALGORITHM I
input: ONFSM A and observed sequence
output: fault detected or machine B

begin
1. B :=A; /*B is derived from A by deleting transitions from the branching states */
2. C := {s0, s1, ..., sn−1}; /* the initial possible state set */
3. while (|C| > 1 & next(x/y)) /* the homing phase */
4. C := hy(C, x); /* state tracing */
5. record the transitions from C− to C in tr(C−, C); /* for backtracking */
6. L := C−; /* the current level C is a singleton */
7. do /* the backtracking phase */
8. remove states from L with no outgoing transition in tr(L, L+);
9. remove transitions leading to the removed states from tr(L−, L) ;
10. if (|L| ≡ 1)
11. remove transitions {(s, s′, xL/y′)|s ∈ C, y′ �= yL } from B;
12. while (|L| ≡ 1); /* backtrack to decide the past before C */
13. while (|C| ≡ 1 & next(x/y)) /* the forward phase */
14. if (f(C, x) > 1) /* branching state for x */
15. remove transitions {(s, s′, x/y′)|s ∈ C, y′ �= y } from B;
16. if (B becomes deterministic) /* all the branchings are decided */
17. return B;
18. C := hy(C, x); /* state tracing */
19. if (|C| ≡ 0) /* fault detected */
20. return fault detected;
21. if (next(x/y) ≡ null) /* passive testing ends */
22. return B; /* B is not decided yet */
end

The algorithm is mainly composed of three phases, a homing phase (line
2-5), a backward tracking phase (line 6-12), and a forward tracking phase
(line 13-18).

We use an example in Figure 2 to illustrate these phases. Assume the current
state set is {s1, s2} when a sequence a/x b/y c/z is observed. Homing is reached
at the observation of b/y and the current state set is {s6}. Backtracking removes

{s5, s2} from the levels. The transition s1
a/y→ s4 is removed from B. The forward

checking of c/z removes s6
c/y→ s9 from B.

In Algorithm I, since back-tracking is triggered by homing, a node in the
passive testing map can be back-tracked at most once. Hence the time com-
plexity of this algorithm is O(L), where L is the length of the test sequence.
Because the passive testing map is recorded for backtracking, it has at most
n ∗ L nodes.

Theorem 2. If A is an ONFSM and B is a derived machine of A, Algorithm
I is correct. Its time complexity is O(L) and its space complexity is O(n ∗ L),
where L is the length of the test sequence.

134 R.E. Miller et al.

Fig. 2. The passive testing map

3.3 An Example from RIP

In the Routing Information Protocol (RIP) [11], “split horizon” is a scheme for
avoiding problems caused by including routes in updates sent to the gateway
from which they were learned. There are two types of split horizon. The “sim-
ple split horizon” scheme omits routes learned from one neighbor in updates
sent to that neighbor. While “split horizon with poisoned reverse” includes such
routes in updates, but sets their metrics to infinity. In Fig.3, the transition
from S1 to S2 represents “simple split horizon” and the transition from S1 to
S3 represents “split horizon with poisoned reverse”. The two transitions are
exclusive.

To identify the implementation machine, in active testing, the test sequence
is r.a. In passive testing, the derived machine can be decided at the observed
output b1 or b2. We have tried both active testing and passive testing to identify
the RIP implementation. Most vendors set “simple split horizon” as the default
configuration; but Cisco (with IOS version 12) only supports “split horizon with
poisoned reverse”.

S1

S2

S3

/b1

/b2

a/b1

a/b2

timeout

timeout

start

Fig. 3. Split horizon in RIP

s1 s2

s3 s4 s5

s6 s7

s8 s9

a/x
a/y

—1

——-1

a/x—2

——-2

——-2

b/y b/x—1

——-1

c/z
c/y×3

——- 3

level i

level i + 1

level i + 2

level i + 3

1 2 3

process 1 : homing phase
process 2 : backward tracking phase
process 3 : forward tracking phase
– j : this transition(state) is removed in process j from the passive testing map
×j : this transition is removed in process j from the implementation machine

Coping with Nondeterminism in Network Protocol Testing 135

4 Case 2: Derived Machine of NFSM

In this section we study the case when the specification A is a general NFSM
(including non-observable transitions) and the implementation B is a derived
machine of A. In active testing, two approaches, machine enumeration and ma-
chine construction, are proposed to solve the machine identification problem. In
passive testing, backtracking is used to eliminate the unselected transitions.

4.1 Active Testing Approaches

In this case, it is NP-hard to determine the implementation machines:

Theorem 3. Given NFSM A, B is a derived machine of A, the problem of
deciding B is NP-hard.

Deciding Hamiltonian Path can be reduced to deciding B out of A, thus the
algorithm is NP-hard. The proof is given in [12] . ��

Two methods are proposed here to identify the derived machine under test.
The first method is on-line machine enumeration. Candidate machines are enu-
merated on-line and then use cross verification to separate the candidate ma-
chines. The second method is on-line machine construction using distinguishing
sequences. We want to reduce the number of candidate machines by eliminating
the inconsistent transitions with distinguishing sequences. The first method is
“generate then distinguish”, while the second is “distinguish when generating”.
We will compare their efficiencies by simulation experiment.

4.1.1 On-line Machine Enumeration
Commonly the number of derived machines is quite large with nondeterminis-
tic transitions. On-line machine enumeration dose not generate all the derived
machines. Instead it constructs machines on-the-fly. It removes inconsistent tran-
sitions according to the output of machine B.

On-line Machine Enumeration

queue Q contains machines to explore
begin
1. Insert A into Q; /*initialization */
2. while Q �≡ φ
3. take a machine M from Q;
4. for each unexplored state s in M ;
5. for each input i
6. get the last y from machine B with input prefix(s).i;
7. remove transitions s × i/y′ → s′ (y′ �= y) from M ;
8. if there is no transition with output y from s × i
9. goto 2; /*for another candidate machine*/
10. if there exists multiple transitions with output y from s × i
11. for each transition t = s × i/y → s′

12. M ′ clones M , M selects t and removes others transitions with s×i;

136 R.E. Miller et al.

13 Insert M ′ to Q;
14. goto 3; /*for another candidate machine*/
15. mark state s as explored;
16. print M ; /* M is a derived machine */
17. apply cross verification to identify the derived machine;
end

On-line enumeration generates a set of candidate deterministic machines.
Cross verification [13] is applied to rule out the wrong ones(line 17).

If the specification has l nonobservable branching points of degree r1, r2, ..., rl,
there is at most K =

∏l
i=1 ri candidate machines generated from the enumera-

tion. At each branching point, a sequence with length less than n is applied to
machine B to get the corresponding output. It is known that the minimization
of an DFSM is O(pn log n) [14], where p is the number of input symbols. The
standardization takes time O(pn) [15]. It takes O(pn) to determine if two ma-
chines are isomorphic or not. If the two machines are not isomorphic, it takes
O(pn) to find a distinguishing sequence with length not greater than 2n − 1
which can separate the two machines. The confirmation experiment takes time
O(pn3) [13].

Theorem 4. The on-line enumeration algorithm takes O(Kpn log n+pn3) steps
to identify the derived machine B, where K is the product of all the branching
degrees in the specification machine.

4.1.2 On-line Machine Construction
The second method constructs the machine using pairwise distinguishing se-
quences. The on-line enumeration method generates many candidate machines
when the number of nonobservable transitions increases. If pairwise distinguish-
ing sequences [16] exist, the end states of nonobservable transitions can be de-
cided, reducing the number of candidate machines.

On-line Machine Construction

queue Q contains machines to explore
begin
1. Insert A into Q; /*initialization */
2. while Q �≡ φ
3. take a machine M from Q;
4. while M is not decided
5. explore the visited states in M ;
6. for each state with nonobservable transitions
7. generate pairwise distinguishing sequences;
8. if pairwise distinguishing sequence ds exists
9. use ds to remove inconsistent transitions;
10. if only one candidate state s left
11. marked s as visited;
12. else /*the end states are not distinguishable now*/
13. generate multiple copies according to the nonobervable transitions;
14. add the copies to Q;

Coping with Nondeterminism in Network Protocol Testing 137

15. if M is decided
16. print M ;
17. if there are multiple candidate machines
18. apply cross verification to identify the derived machine;
end

This is an adaptive strategy. The construction procedure approximates the
object derived machine by iterations. When more states are decided, the possi-
bilities of pairwise distinguishing sequences increase and their lengths decrease.

For an NFSM, a distinguishing sequence of two state si and sj may not exist.
If it does, in the worst case, its length is up to (2n− 2)[12]. But in practice they
do exist and are not long.1

4.1.3 Experiments
Table 1 gives the experimental results of our simulations. In a simulation, a
NFSM specification is generated according to four parameters: number of states,
input/output alphabet, branching rate, where branching rate indicates the possi-

Table 1. Experiments

of # of # of branching average time(msec)
states inputs outputs rate on-line enu-

meration
on-line con-
struction

4 2 2 0.2 115 70

4 2 2 0.4 121 42

4 3 3 0.2 335 27

4 3 3 0.4 50 18

8 2 2 0.2 55 16

8 2 2 0.4 66 14

8 3 3 0.2 38 20

8 3 3 0.4 387 34

10 2 2 0.2 63 25

20 2 2 0.2 104 22

bility of having multiple transitions for an input. Then on-line enumeration and
on-line construction are applied to the NFSM. Each simulation was done 4 times
with the same parameters and calculates the average cost2. From Table 1 we can
tell that in most cases, on-line construction takes less time to identify the object
machine than on-line enumeration.

1 Note that even pairwise distinguishing sequence does not exist, the algorithm still
works by generating multiple copies and then using cross verification.

2 The simulations are carried out on a Pentium 1.2GHz PC. Note that the absolute
time is not important here. Different simulations should not be compared because
the complexity of a NFSM is not merely decided by its parameters.

138 R.E. Miller et al.

Table 2. Experiment Results on Active Testing

1 2 3 4 5

of requests for DS 19296 240 64 16 532

DS not exist 0 0 0 2 200

len = 1 17376 162 32 12 266
DS exist len = 2 1920 78 32 2 57

len = 3 0 0 0 0 9

When multiple copies are generated in on-line enumeration, further splitting
has to be done for each copy. Also a state distinguishing may have to be repeated
on these copies. That is the reason that on-line enumeration takes more time.

For NFSMs with {8 states, 3 inputs, 3 output, branching rate=0.2}, we use
on-line construction to identify the derived machines and study the distribu-
tion of distinguishing sequences, as shown in Table 2. In most cases, pairwise
distinguishing sequences exist and their length is less than 3. This explains the
advantage of the on-line construction method.

4.2 Passive Testing Approach

4.2.1 Algorithm
The passive testing procedure for identifying derived machines from NFSM
with non-observable transitions is different from ALGORITHM I. The current
state set may not converge even after it reaches a singleton state. To identify B,
backtracking is used to rule out the unselected transitions from A.

ON-LINE CHECKING - ALGORITHM II
input: ONFSM A and observed sequence
output: fault detected or machine B

begin

1. B :=A; /* B is derived from A by deleting transitions from the branching states */
2. C := {s0, s1, ..., sn−1}; /* the initial possible state set */
3. while (|C| > 0 & next(x/y))
4. if (|C| ≡ 1) /* singleton */
5. remove the transitions {(s, s′, x/y′)|s ∈ C, y′ �= y } from B;
6. C := hy(C, x); /* state tracing */
7. record the transitions from C− to C in tr(C−, C);
8. if (∃s ∈ C−, hy(s, x) ≡ 0) /* discrepancies from the current state set */
9. L := C−, level changed := true; /* the backtracking start level */
10. while (level changed) /* backtrack until the current level unchanged */
11. if (∃s ∈ L with no outgoing transitions)
12. foreach (s ∈ L with no outgoing transitions)
13. delete transitions leading to s in tr(L−, L);
14. delete s from L; /* s is not in the current path */
15. L := L−; /* set L to a upper level */
16. else /* the current level unchanged */
17. level changed := false; /* backtracking ends */

Coping with Nondeterminism in Network Protocol Testing 139

18. while (L<C) /* go fromthe unchanged level to the end of the explored levels */
19. if (|L| ≡ 1) /* the current level is a singleton */
20. remove{t|s∈L,t= (s, s′, xL/?), t �∈ tr(L, L+)} fromB; /*?meansdon’t care*/
21. if (B becomes deterministic) /* all the branchings are decided */
22. return B;
23. L := L+; /* set L to the next level */
24. if (|C| ≡ 0) /* fault detected */
25. return fault detected;
26. if (next(x/y) ≡ null) /* passive testing ends */
27. return B; /* B is not decided yet */
end

Algorithm II is different from Algorithm I. Since the current state set is not
monotonously decreased, the backward checking and forward checking are com-
bined together. Whenever a discrepancy in outputs is observed in the current
state set, backward checking is triggered to remove the invalid paths in the past.
Then forward checking is used to select transitions from singletons.

We use an example specified in Figure 4 to illustrate the procedure. Assume
the current level is {s1} and a sequence a/x b/y c/z is observed. Backward
checking starts at the third level when s5, s7 cannot fire any transitions with
c/z. Backtracking removes s3, s5 from the levels. Hence the upper levels become
singletons. Then forward checking removes the following three transitions from

B: s1
a/x→ s3, s2

b/y→ s5, s2
b/z→ s6.

Backtracking stops when the level L stays unchanged in this tracking. We
call a level L visited in backtracking if one or more states are removed in this
backtracking. A level is at most visited n times in backtracking during the
whole procedure, where n is the number of states in A. The forward checking is
similar.

Fig. 4. The passive test map

s1

s2 s3

s4 s5 s6 s7

s8 s9 s10

a/x a/x

—

b/y
b/y

—

b/z

—
b/y—

c/z c/y—

——

c/x—

——

×

× ×

— : this transition(state) is removed from the passive testing map
× : this transition is removed from the implementation machine

140 R.E. Miller et al.

In Algorithm II, the state tracing levels are required to be stored for back-
tracking. Note that when a level becomes a singleton, backtracking will not
overcome it and the level information before it can be discarded.

Theorem 5. If A is a NFSM and B is a derived machine of A, Algorithm II is
correct and takes time O(n ∗ L) and space O(nl) for checking where L the test
sequence length, and l < L is the maximum length of a backtracking.

4.2.2 Experiments
In a passive testing simulation, a NFSM and its derived machines are gener-
ated at first; then for each derived machine, multiple observed sequences are
generated; after that the passive testing algorithm is applied to check if the
derived machine can be identified. In Table 3 , the 4 columns in the left are
parameters of the NFSMs; the length of a random generated sequence is n ∗ p.
A set of observed sequences are generated from the derived machine. If there
exists 22 derived machines, 14 are identified by the current set of sequences, it
is denoted as 14/22. The other 8 derived machines are not identified by the ob-
served sequences. It is clear that the observed behavior increases the possibility
of machine identification.

Table 3. The effect of multiple observed sequences

of # of # of branching length of # of observed sequences
states inputs outputs rate a sequence 0.5*n n 4n 8n

4 2 2 0.1 n*p 5/5 5/5 5/5 5/5

4 2 2 0.2 n*p 10/22 11/22 14/22 14/22

8 2 2 0.2 n*p 11/22 17/22 22/22 22/22

Also some observed sequences should be long enough to reach the all the
states in the machine. Table 4 shows long observed sequences increase the pos-
sibility of machine identification by passive testing.

Table 4. The effect of lengths of observed sequences

of # of # of branching # of length of observed i/o sequence
states inputs outputs rate sequences 0.5 n*p n*p 2n*p 10n*p

4 2 2 0.1 n 5/5 5/5 5/5 5/5

4 2 2 0.2 n 4/22 11/22 13/22 14/22

8 2 2 0.2 n 6/22 14/22 22/22 22/22

4.3 TCP Congestion Control

Congestion control is required in TCP implementations. Several algorithms have
been proposed and standardized [17] in the network community. In RFC2581

Coping with Nondeterminism in Network Protocol Testing 141

[17], Slow Start and Congestion Avoidance are mandatory , while Fast Retrans-
mit and Fast Recovery (FR/FR) are recommended. Figure 5 shows the difference
between them. The FR/FR algorithm has one more state, FR/FR, than the
basic requirement. When duplicate ACKs (dupAck) are observed, the FR/FR
algorithm counts its number and fires the transition to state FR/FR when there
are 3 dupAcks. The transitions about dupAck are non-observable.

FR/FR
Slow
Start

Congestion
Advoidance

Lost

New

Old

start

[cwnd < ssthreash]
cwnd + +

[cwnd ssthreash]
cwnd := cwnd + 1/cwnd

3-dupAck
cwnd := cwnd/2
ssthread := cwnd

T imeOut
ssthreash := cwnd/2
cwnd := 1

dupAck

dupAck

retransmitted

T imeOut
ssthreash := cwnd/2
cwnd := 1

[cwnd ssthreash]
cwnd := cwnd + 1/cwnd3 dupAck

cwnd := cwnd/2
ssthread := cwnd

T imeOut
ssthreash := cwnd/2
cwnd := 1

dupAck
retransmitted

Fig. 5. TCP Congestion Control Algorithms

Different congestion control algorithms are deployed in the Internet. It is a
job to study their deployment and their influence on TCP performance. In [7],
the authors designed test scenarios to identify what algorithm is used in the
remote web server. It is an active testing approach.

5 Case 3: Conformance Relation in Observable NFSM

The specification machine A is observable but the implementation machine B is
not restricted to a derived machine of A. Fig.6 gives an example that B conforms
to A but B is not equivalent to any derived machine of A.

We will prove that B is a derived machine of the k-way expansion of A, where
k is the upper bound of the state number of B.

Definition 7. Given a NFSM A = (I,O, S, h), a k-way expansion of A is a
machine A = (I,O, S′, h′) that
∀si ∈ S, sm

i ∈ S′, 1 ≤ m ≤ k;
∀[sj , y] ∈ h(si, x), [sm

j , y] ∈ h′(sl
i, x), 1 ≤ m ≤ k, 1 ≤ l ≤ k ��

We can see that A has k times the number of states in A and k2 transitions
for each transition in A. Our idea is that each state in B may be constructed by
a set of states in A. Intuitively each state in B may be constructed from a copy

142 R.E. Miller et al.

S1

S2

1/1

0/0

0/1

0/11/1

(a) A

S1

S2

1/1

0/1

0/01/1

(b) B

Fig. 6. Machine A, B, T (B, S1) ⊆ T (A, S1)

of A, by selecting the features it needed. If each state in B can be simulated by
one copy of A, then B may be constructed in the k-way expansion of A.

Theorem 6. Suppose A is a minimal ONFSM specification and B is a minimal
DFSM that conforms to A that has k states. Then B is equivalent to some derived
machine of the k-way expansion of A.

The proof is given in [12]. ��
Fig.7(b) is a derived machine of the 2-way expansion of machine A in Fig.6.

It is equivalent to machine B in Fig.6.
We show in [12] that B may not be a derived machine of (k−1)-way expansion

of A. k − way expansion is the upper bound and the bound is tight.
There are totally kknp/(k!)n derived machines from the k-way expansion of

A. See [12] for an explanation of the calculation.
For this case we only consider the active testing approach. Enumerating the

derived machines can only be applied when k, n, p are very small numbers. We

S1

S2

S1′

S2′

1/1

0/0

0/1

0/11/1

1/1

0/0

0/1

0/11/1

0/0

1/1

0/1

1/1

0/1

0/0

1/1

0/1

1/1

0/1

(a) 2-way expansion of A in 6(a)

S1 S1′

S2′

1/1

0/1

0/1

0/0

1/1

1/1

(b) a derived machine of A

Fig. 7. 2-way expansion and its derived machine

Coping with Nondeterminism in Network Protocol Testing 143

Opened

Ack-Rcvd Closed

RAR+/SAA

RAR-/SAN
RAR-/SAN

RAR+ receive a good Authenticate-Request
RAR- receive a bad Authenticate-Request
SAA send Authenticate-Ack
SAN send Authenticate-Nak

Fig. 8. PAP Authentication with retries

examine the topological structure of the graph of the machine, take into con-
sideration of the strongly connected components(SCC) and the branching to
them, and apply heuristics to reduce the candidate derived machines. We use
the following PPP Authentication to illustrate.

The Password Authentication Protocol (PAP) is used as a PPP authentica-
tion protocol [18]. The dial-in system sends its PAP authentication information
(username, password) in an Authenticate-Request to the server. The server sends
an Authenticate-Ack to indicate the success of authentication. If authentication
fails, the server sends an Authenticate-Nak. It should also attempt to terminate
the link to frustrate a would-be system cracker, although a small number of at-
tempts are often permitted. Most dial-up systems permit users to retry several
times. We take state Ack-Rcvd and its neighbor states from the state machine.
{RAR+, RAR- } are valid inputs for Ack-Rcvd. Another input RAA is for the
PAP server and is ignored in Ack-Rcvd, since Ack-Rcvd is a state for the PAP
client. The SCC containing Ack-Rcvd and its outgoing transitions are shown in
Fig 8.

Assume that the retries number is not greater than 3, we can generate the
derived machines from 3-way expansion of state Ack-Rcvd. The derived machines
can be easily classified into 4 equivalent classes [19]. Since RAR+/SAA is a
distinguishing sequence for state Ack-Rcvd and Closed. We can use it to judge
which derived machine is the implementation machine.

6 Case 4: General NFSM

The specification machine A is a general NFSM and the implementation machine
B is not restricted - may not be a derived machine of A. It can be shown [19] that
B can not be constructed from k-way expansion of A, no matter how large k is
[12]. Obviously, we can disregard the specification A and apply a test to identify
B [16] with an exponential cost. Can we take advantage of the information in the
specification machine and identify the implementation machine more efficiently?
As a pathological case, the given NDFS A may not contain any information, eg,
upon each input/output, there is a transition from each state to all other states.

144 R.E. Miller et al.

It remains to be investigated that how to explore the structure and available
information of A to derive B efficiently or that how to characterize A such that
B can be constructed in polynomial time.

7 Conclusion

We have studied the problem of identifying the deterministic implementation
from nondeterministic specification using active or passive testing. From ex-
periences in real network protocol system implementations, we introduce the
concept of derived machines, developed efficient algorithms for determining the
implementation machines, and analyzed the complexity of various cases with
different assumptions on the specifications and implementations. The results are
summarized in Table 5.

Table 5. Derived Machine and Conformance

Case complexity active testing passive testing

derived machine of ONFSM O(pn2)
√ √

derived machine of NFSM NP-hard on-line exploration back-tracking

conformance of ONFSM k-way expansion expand SCC ?

conformance of NFSM exponential ?

We only explored limited structures of the nondeterministic specifications,
i.e., their observability and k-way expansions. In practice, the nondeterminism
is more restricted, as seen from the case studies of PPP, RIP and TCP. It remains
to be studied how to further explore and classify the nondeterministic structure
so that the implementations can be determined more efficiently.

References

1. Yannakakis, M., Lee, D.: Testing finite state machines: Fault detection. J. Com-
puter Science and Systems 50 (1995) 209–227

2. Luo, G., v. Bochmann, G., Petrenko, A.F.: Test selection based on communicat-
ing nondeterministic finite state machines using a generalized wp-method. IEEE
Transactions on Software Engineering 20 (1994) 149–162

3. Petrenko, A., Yevtushenko, N., Bochmann, G.: Testing deterministic implementa-
tions from nondeterministic fsm specifications. In: Proc. of the 9th Intern Workshop
on Protocol Test Systems. (1996)

4. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondetermin-
istic and probabilistic machines. In: Symposium on Theory of Computer Science,
1995, ACM. (1995) 363–372

5. Hierons, R.: Generating candidates when testing a deterministic implementation
against a non-deterministic finite-state machine. The Computer Journal 46 (2003)
307–318

Coping with Nondeterminism in Network Protocol Testing 145

6. Lee, D., N.Netravali, A., Sabnani, K.K., Sugla, B., John, A.: Passive testing and
applications to network management. In: Proceedings of IEEE International Con-
ference on Network Protocols. (1997)

7. Padhye, J., Floyd, S.: On inferring TCP behavior. In: ACM SIGCOMM. (2001)
287–298

8. Starke, P.H.: Abstract Automata. American Elsevier Publishing Company, Inc
(1972)

9. Lee, D., Chen, D., Hao, R., Miller, R.E., Wu, J., Yin, X.: A formal approach for
passive testing of protocol data portions. In: International Conference on Network
Protocols. (2002) 122–131

10. Milner, R.: Communication and Concurrency. Prentice Hall International (1989)
11. Malkin, G.: RIP version 2 - carrying additional information. RFC 1723 (1994)
12. Miller, R.E., Chen, D., Lee, D., Hao, R.: Coping with nondeterminism in network

protocol testin, full version. (2005)
13. Lee, D., Sabnani, K.: Reverse-engineering of communication protocols. In: Inter-

national Conference on Network Protocols. (1993) 208–216
14. Hopcroft, J.: An nlogn algorithm for minimizing states in a finite automaton. The

Theory of Machines and Computations (1971) 189–196
15. Kohavi, Z.: Switching and Finite Automata Theory. second edition edn. McGraw-

Hill, Inc., New York (1978)
16. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -

a survey. Proceedings of The IEEE 84 (1996) 1090–1123
17. Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control. RFC 2581 (1999)
18. Carlson, J.D. In: PPP Design, Implementation, and Debugging. 2nd edition edn.

Addison Wesley Professional (2000) 99
19. Lee, D., Miller, R.: Passive testing of network protocols specified by nondetermin-

istic finite state machines, draft document. (1999)

Eliminating Redundant Tests in a Checking
Sequence

Jessica Chen1, Robert M. Hierons2,
Hasan Ural3, and Husnu Yenigun4

1 School of Computer Science,
University of Windsor, Windsor,

Ontario, N9B 3P4, Canada
2 Department of Information Systems and Computing,

Brunel University, Uxbridge,
Middlesex, UB8 3PH, UK

3 School of Information Technology and Engineering,
University of Ottawa, Ottawa,
Ontario, K1N 6N5, Canada

4 Faculty of Engineering and Natural Sciences,
Sabanci University, Tuzla 34956, Istanbul, Turkey

Abstract. Under certain well–defined conditions, determining the cor-
rectness of a system under test (SUT) is based on a checking sequence
generated from a finite state machine (FSM) specification of the SUT.
When there is a distinguishing sequence for the FSM, an efficient check-
ing sequence may be produced from the elements of a set Eα′ of α′-
sequences that verify subsets of states and the elements of a set EC of
subsequences that test the individual transitions. An optimization algo-
rithm may be used in order to produce a shortest checking sequence by
connecting the elements of Eα′ and EC using transitions drawn from
an acyclic set. Previous work did not consider whether some transition
tests may be omitted from EC . This paper investigates the problem of
eliminating subsequences from EC for those transitions that correspond
to the last transitions traversed when a distinguishing sequence is ap-
plied in an α′–sequence to obtain a further reduction in the length of a
checking sequence.

1 Introduction

Finite state machines (FSMs) can be used to model many types of systems in-
cluding communication protocols [1] and control circuits [2]. A number of specifi-
cation languages such as SDL, Estelle, X-machines and Statecharts are based on
extensions of FSMs. FSM based test techniques can often be applied to systems
specified using such languages [3, 4, 5, 6, 7, 8].

Given a formal model or specification of the required behaviour of the system
under test (SUT) I it is normal to assume that I behaves like some unknown
model that can be described using some particular formalism [9]. Given an FSM

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 146–158, 2005.
c© IFIP 2005

Eliminating Redundant Tests in a Checking Sequence 147

M , that models the required behaviour of SUT I, it is normal to assume that I
behaves like some (unknown) FSM MI with the same input and output alphabets
as M . A common further assumption is that MI has no more states than M .

Suppose M has n states. Let the set of deterministic FSMs with the same
input and output alphabets as M and no more than n states be denoted Φ(M).
A finite set of input sequences is a checking experiment for M if, between them,
they distinguish M from every element of Φ(M) which is not equivalent to M .
Given FSM M , there is some checking experiment [10]. A checking sequence is
an input sequence that forms a checking experiment.

The problem of generating a checking sequence for an FSM M is simplified
if M has a distinguishing sequence: an input sequence D̄ with the property that
the output sequence produced by M in response to D̄ is different for the different
states of M . There has been much interest in the generation of short checking
sequences from an FSM M when a distinguishing sequence is known [11,12,13,
14]. Hierons and Ural [13] showed that an efficient checking sequence may be
produced by combining the elements in some predefined set Eα′ of α′–sequences
that verify subsets of states and the elements of a set EC of subsequences that
test individual transitions using an acyclic set E′′ of transitions from M . An
optimization algorithm is then used in order to produce a shortest checking
sequence by connecting the elements of Eα′ and EC using transitions drawn
from E′′. Their work did not consider whether some transition tests may be
omitted from EC .

In this paper, we show that the length of the checking sequences can be
reduced even further, since not every element in EC needs to be included in
a checking sequence. Specifically, we eliminate subsequences from EC for each
transition that corresponds to the last transition traversed when a distinguishing
sequence is applied in an α′–sequence to obtain further reductions in the length of
a checking sequence. The reason we can eliminate the tests for such transitions is
that, the existence of α′–sequences and the existence of the other transition tests
in the checking sequence, already guarantee the correctness of the transitions for
which the test segments are eliminated.

The shortest prefix of a distinguishing sequence D̄ that distinguishes a state
in M can actually be used as a special distinguishing sequence for that state [15].
Based on this observation, we use prefixes of distinguishing sequences as well, in
order to further reduce the length of checking sequences.

The remaining of this paper is structured as follows. Section 2 introduces
the basic concepts and notations used in this paper. Elements of an existing
checking sequence construction method [13] which will be utilized in the proposed
approach are also summarized here for completeness. Section 3 gives the details of
the proposed approach to elimination of redundant transition tests in a checking
sequence. A running example is used to illustrate the proposed approach and
to compare the length of the resulting checking sequence to the one constructed
by [13]. Conclusions are drawn in Section 4.

148 J. Chen et al

2 Preliminaries

2.1 Finite State Machines

A deterministic FSM M is defined by a tuple (S, s1, X, Y, δ, λ) in which S is a
finite set of states, s1 ∈ S is the initial state, X is the finite input alphabet, Y is
the finite output alphabet, δ is the next state function and λ is the output function.
The functions δ and λ can be extended to input sequences in a straightforward
manner. The number of states of M is denoted n and the states of M are
enumerated, giving S = {s1, . . . , sn}. An FSM is completely specified if the
functions λ and δ are total. If an FSM M is not completely specified, it is
possible to make M completely specified by either adding an error state or, for
each si ∈ S, a ∈ X such that (si, a) /∈ dom δ, adding the transition (si, si, a/null)
where null represents no output being produced.

A transition τ is defined by a tuple (si, sj , x/y) in which si is the starting
state, x is the input, sj = δ(si, x) is the ending state, and y = λ(si, x) is the
output.

Two states si and sj of M are equivalent if, for every input sequence x̄,
λ(si, x̄) = λ(sj , x̄). If λ(si, x̄)
= λ(sj , x̄) then x̄ distinguishes between si and sj .
An FSM M is minimal if no FSM with fewer states than M is equivalent to M .
A sufficient condition for M to be minimal is that every state can be reached
from the initial state of M and no two states of M are equivalent. Through-
out this paper M = (S, s1, X, Y, δ, λ) will denote a deterministic, minimal, and
completely specified FSM that describes the required behaviour of the SUT I.

An FSM, that will be denoted M0 throughout this paper, is described in
Figure 1. Here, S = {s1, s2, s3, s4, s5}, X = {a, b} and Y = {0, 1}.

Two FSMs M1 and M2 are equivalent if and only if for every state of M1

there is an equivalent state of M2 and vice versa. An input sequence distin-
guishes between two FSMs if its application leads to different output sequences
for these FSMs. An input sequence x̄ is a checking sequence for M if and only
if x̄ distinguishes between M and all elements of Φ(M) that are not equivalent
to M .

Given FSM M , a distinguishing sequence is an input sequence D̄ whose out-
put distinguishes all the states of M . More formally, for all si, sj ∈ S if si
= sj

then λ(si, D̄)
= λ(sj , D̄). Thus, for example, M0 has distinguishing sequence aba.

s2 s3

s5

s1 s4

b/1 a/0

a/0

a/1 b/0

a/1

b/0

b/1

b/1 a/0

Fig. 1. The FSM M0

Eliminating Redundant Tests in a Checking Sequence 149

We will use the notation D̄i to denote the prefixes of distinguishing sequences
that is sufficient to distinguish the states. Formally, given a distinguishing se-
quence D̄ and a state si, D̄i is the shortest prefix of D̄ such that for any state
sj , if si
= sj then λ(si, D̄i)
= λ(sj , D̄i).

While not every minimal FSM has a distinguishing sequence and determining
whether a minimal FSM has a distinguishing sequence is PSPACE-Complete [16],
there has been interest in the problem of generating a checking sequence in the
presence of a distinguishing sequence [12, 13, 17, 14]. This paper considers the
problem of generating an efficient checking sequence from a deterministic, mini-
mal, and completely specified FSM M with a known distinguishing sequence D̄.

2.2 Directed Graphs

A directed graph (digraph) G is defined by a tuple (V,E) in which V is a set of
vertices and E is a set of directed edges between the vertices. Each edge may
have a label. An edge e from vertex vi to vertex vj with label l will be represented
by (vi, vj , l). Edge e leaves vi and enters vj . For a vertex v ∈ V , indegreeE(v)
denotes the number of edges from E that enter v and outdegreeE(v) denotes the
number of edges from E that leave v.

Given an FSM, it is possible to produce a corresponding digraph in which
each state is represented by a vertex and each transition is represented by an
edge. Throughout this paper G = (V,E) (V = {v1, . . . , vn}) will be a digraph,
that represents M , in which state si is represented by vertex vi. A transition
from state si to state sj with input x and output y is represented by edge
e = (vi, vj , x/y) from E.

A sequence P̄ = (n1, n2, x1/y1), . . . , (nr−1, nr, xr−1/yr−1) of pairwise adja-
cent edges from G forms a walk in which each node ni represents a vertex from
V and thus, ultimately, a state from S. Here initial(P̄) denotes n1, which is the
initial node of P̄ , and final(P̄) denotes nr, which is the final node of P̄ . The
sequence T̄ = (x1/y1), . . . , (xr−1/yr−1) is the label of P̄ and is denoted label(P̄).
In this case, T̄ is said to label the walk P̄ . T̄ is said to be a transfer sequence
from n1 to nr. The walk P̄ can be represented by the tuple (n1, nr, T̄) or by
the tuple (n1, nr, x̄/ȳ) in which x̄ = x1, . . . , xr−1 is the input portion of T̄ and
ȳ = y1, . . . , yr−1 is the output portion of T̄ .

A tour is a walk whose initial and final nodes are the same. Given a tour
Γ̄ = e1, . . . , ek, ei = (ni, ni+1, li), (1 ≤ i ≤ k) then ej , . . . , ek, e1, . . . , ej−1 is
a walk formed by starting Γ̄ with edge ej , and hence by ending Γ̄ with edge
ej−1. An Euler Tour is a tour that contains each edge exactly once. If the set of
vertices represented by the nodes of walk P̄ are distinct, P̄ is said to be a path.
A sequence of edges e1, . . . , ek, ei = (ni, ni+1, li), (1 ≤ i ≤ k) forms a cycle if
e1, . . . , ek−1 is a path and n1 and nk+1 represent the same vertex. A set E′ of
edges from G is acyclic if no subset of E′ forms a cycle.

A digraph is strongly connected if for any ordered pair of vertices (vi, vj)
there is a walk from vi to vj . An FSM is strongly connected if the digraph that
represents it is strongly connected. It will be assumed that any FSM considered
in this paper is strongly connected.

150 J. Chen et al

2.3 Recognizing States and Verifying Edges

The algorithms of Ural et al. [14] and Hierons and Ural [13] use the notion of
recognizing a node, corresponding to the state reached by a given input/output
sequence, and verifying an edge of E. These notions, which are defined in terms of
a given distinguishing sequence D̄, are defined below. The key point is that, since
the SUT I has no more states than M , if we observe the n possible responses of
M to D̄ when applied to I, then D̄ must also be a distinguishing sequence for
I. Once this has been demonstrated, we can use D̄ to investigate the structure
of I and thus to determine whether it is equivalent to M .

Consider a walk P̄ and the nodes within it. Let Q̄ = label(P̄).

Definition 1. 1. A node ni of P̄ is d–recognized in Q̄ as state s of M if ni

is the initial node of a subpath of P̄ whose label is input/output sequence
D̄/λ(s, D̄).

2. Suppose that (nq, ni, T̄) and (nj , nk, T̄) are subpaths of P̄ and D̄/λ(s, D̄) is
a prefix to T̄ (and thus nq and nj are d–recognized in Q̄ as state s of M).
Suppose also that node nk is d–recognized in Q̄ as state s′ of M . Then ni is
t–recognized in Q̄ as s′.

3. Suppose that (nq, ni, T̄) and (nj , nk, T̄) are subpaths of P̄ such that nq and nj

are either d-recognized or t–recognized in Q̄ as state s of M and nk is either
d–recognized or t–recognized in Q̄ as state s′ of M . Then ni is t–recognized
in Q̄ as s′.

4. If node ni of P̄ is either d–recognized or t–recognized in Q̄ as state s then ni

is recognized in Q̄ as state s.
5. Edge e = (va, vb, x/y) is verified in Q̄ if there is a subpath (ni, ni+1, xi/yi)

of P̄ such that ni is recognized as sa in Q̄, ni+1 is recognized as sb in Q̄,
xi = x and yi = y.

The first rule says that a node is d–recognized as a state s if it is followed by
the input/output sequence D̄/λ(s, D̄). This is essentially saying that D̄ defines a
one–to–one correspondence between the states of the SUT and the states of M :
this must be the case if the n different responses to D̄ are observed in the SUT.
The second and third rules say that if an input/output sequence is observed
from two different nodes n and n′ that are both recognized (d–recognized or
t–recognized) as the same state then their final nodes should correspond to the
same state of M .

The fifth rule is related to a transition test that is defined as follows: The
transition test for a transition τ = (si, sj , x/y) is x/yD̄/λ(sj , D̄)T̄j for some
transfer sequence T̄j . The following result, that provides a sufficient condition
for an input sequence to be a checking sequence, may now be stated.

Theorem 1. (Theorem 1, [14]) Let P̄ be a walk from G representing M that
starts at v1 and Q̄ = label(P̄). If every edge (vi, vj , x/y) of G is verified in Q̄,
then the input portion of Q̄ is a checking sequence of M .

In this paper checking sequence generation is based on this result.

Eliminating Redundant Tests in a Checking Sequence 151

2.4 Defining α′–Sequences

Suppose that an input/output sequence x̄/ȳ, that labels a walk from the initial
state of M , contains the n subsequences of the form D̄i/λ(si, D̄i) (1 ≤ i ≤ n).
If x̄/ȳ labels a walk from the initial state of the SUT then, since the SUT has
at most n states, D̄ must be a distinguishing sequence for the SUT. Further,
the response to D̄ defines a bijection between the states of M and the states
of the SUT. This observation lies at the heart of algorithms for generating a
checking sequence on the basis of a distinguishing sequence and motivates the
use of α′–sequences. We now adapt α′–sequences [13], so that they use prefixes
of D̄, and then explain their role in the construction of a checking sequence.

The first step is to choose a set V1, . . . , Vq, q ≥ 1, of non-empty subsets
of V whose union is V . We then order the elements of each Vk, 1 ≤ k ≤ q,
to give Vk = {vk

1 , . . . , vk
mk
}. Each vk

i represents a state sf(i,k) of M (defining
a function f). For each vk

i , we produce a sequence D̄f(i,k)/λ(sf(i,k), D̄f(i,k))T̄ k
i

that is the result of applying D̄f(i,k) in state sf(i,k) followed by a (possibly
empty) transfer sequence T̄ k

i = (x̄k
i /ȳk

i) whose final state corresponds to vk
i+1,

1 ≤ i ≤ mk, (vk
mk+1 can be any vj

w, 1 ≤ j ≤ q, 1 ≤ w ≤ mj). Each Vk

thus defines a walk P̄k whose starting state is sf(1,k) and whose label is the
α′–sequence ᾱ′

k = D̄f(1,k)/λ(sf(1,k), D̄f(1,k))T̄ k
1 D̄f(2,k)/λ(sf(2,k), D̄f(2,k))T̄ k

2 . . .

D̄f(mk,k)/λ(sf(mk,k), D̄f(mk,k))T̄ k
mk

D̄f(w,j)/λ(sf(w,j), D̄f(w,j))T̄ j
w (1 ≤ j ≤ q,1 ≤

w ≤ mj). The set A = {ᾱ′
1, . . . , ᾱ

′
q} is called an α′–set. Given ᾱ′

i ∈ A, ᾱ′
i is

called an α′–sequence from A. Where A is clear, its members are simply called
α′–sequences.

The α′–sequences play the following roles in checking sequence generation.

1. They verify that D̄ is a distinguishing sequence for the SUT since they
contain the n different D̄i/λ(si, D̄i).

2. For each si ∈ S they d–recognize the final state of the walk from si with
label D̄i/λ(si, D̄i)T̄ k

i . This is achieved by the subsequence D̄i/λ(si, D̄i)T̄ k
i

followed by the sequence D̄j/λ(sj , D̄j) for some 1 ≤ j ≤ n. Thus, if the
subsequence D̄i/λ(si, D̄i)T̄ k

i is seen elsewhere in the label of a walk, then
the final node of this is t–recognized as the state sj reached from si by a
walk with label D̄i/λ(si, D̄i)T̄ k

i .
3. An α′–sequence with starting state si starts with D̄i/λ(si, D̄i) and thus its

initial node is recognized.
4. If the label of a walk P̄ contains every α′–sequence from α′–set A then the

final node of each P̄k is t–recognized.

2.5 Checking Sequence Construction: An Existing Approach

The proposed reduction of the length of a checking sequence is an enhance-
ment of the checking sequence generation approach given in [13] where first a
digraph G′ = (V ′, E′) is obtained by augmenting the given digraph G = (V,E),
representing an FSM as follows:

Let the labels ᾱ′
1, . . . , ᾱ

′
q of walks P̄1, . . . , P̄q form an α′–set A. Then, from

the elements of A, a set of transfer sequences, called T–set, is formed as a set

152 J. Chen et al

of labels of subpaths R̄1, . . . , R̄p of walks P̄1, . . . , P̄q, such that each element
T̄i of T–set is label(R̄i) where {R̄i : i = 1, 2, . . . , p} = {(vk

j , δ(vk
j , D̄f(j,k)x̄

k
j),

D̄f(j,k)/λ(vk
j , D̄f(j,k))T̄ k

j : 1 ≤ k ≤ q and 1 ≤ j ≤ mk}. Thus, the starting state
of R̄i is recognized in some ᾱ′

k because D̄f(j,k) is applied to the starting state
of R̄i and the ending state of R̄i is recognized in some ᾱ′

k because the ending
state of R̄i is δ(vk

j , D̄f(j,k)x̄
k
j) to which D̄f(j+1,k) is applied. The set of walks

P̄1, . . . , P̄q and the set of subpaths R̄1, . . . , R̄p are included in G′ as edges in
Eα′ ⊂ E′ and in ET ⊂ E′, respectively, in order to facilitate the recognition of
vertices in the label Q̄ of the solution P̄ . Moreover, a transition test for each
edge of G is induced in G′ as edges in EC ⊂ E′ in order to verify every transition
of M in label(P̄) = Q̄. Furthermore, a set of edges from E are included in G′ as
edges in E′′ ⊂ E′ to increase the connectivity of the vertices in G′.

Formally, G′ = (V ′, E′) is obtained from G = (V,E) as follows:
V ′ = V ∪U ′ where U ′ = {v′

i : for every vi ∈ V } and E′ = Eα′ ∪EC ∪ET ∪E′′,
Eα′ = {((starting state of P̄k), (ending state of P̄k)′, ᾱ′

k) : 1 ≤ k ≤ q},
EC = {(v′

i, vj , x/y) : (vi, vj , x/y) ∈ E},
ET = {((starting state of R̄i), (ending state of R̄i)′, T̄i) : 1 ≤ i ≤ p},
E′′ is a subset of {(v′

i, v
′
j , x/y) : (vi, vj , x/y) ∈ E} such that G′′ = (U ′, E′′) has

no tour and G′ is strongly connected.
Once G′ is formed, a minimal symmetric augmentation G∗ of the graph in-

duced by the edges in Eα′ ∪EC , that may be produced by adding edges from E′,
is found. If G∗, with its isolated vertices removed, is connected, G∗ has an Euler
tour. Otherwise, a heuristic is applied to make G∗ connected and an Euler tour is
formed. This Euler tour Γ̄ of G∗ contains all edges in Eα′∪EC . Let τ be a transi-
tion with ending state s1 which is represented by an edge e = (v′

i, v1, x/y) ∈ EC

in Γ̄ . Let P̄ be a walk of G′ that is formed by ending Γ̄ with edge e. Then, the
input portion of Q̄ = label(P̄)D̄1/λ(s1, D̄1) is a checking sequence of M that
starts at v1, in accordance with Theorem 1.

3 Producing Checking Sequences

This section explains how, given an α′–set A, we can produce a checking sequence
without considering some of the edges in EC which represent test segments for
a subset L of E. Thus, L is a set of edges which stand for transitions whose
transition tests are redundant and can be eliminated. In this paper, we use pre-
fixes of distinguishing sequences wherever it applies, and we use empty transfer
sequences in the formation of α′-sequences. In the following, we first define L,
and then explain the algorithm to generate the checking sequence.

3.1 Transition Test Exemption

Similar to showing an edge being verified as given in Definition 1, in order to
show a sequence of edges being verified we first introduce the notion of a sequence
of edges being traced.

Eliminating Redundant Tests in a Checking Sequence 153

Definition 2. Let ρ̄ = e1e2 . . . eh be a sequence of edges in G, where em =
(vim

, vim+1 , xm/ym) for 1 ≤ m ≤ h. ρ̄ is traced in Q̄= label(P̄) of a walk P̄
in G if there exists a subpath (n1, nh+1, x

′
1x

′
2 . . . x′

h/y′
1y

′
2 . . . y′

h) in P̄ such that
n1 is recognized as vi1 , nh+1 is recognized as vih+1 , and xm/ym = x′

m/y′
m for

1 ≤ m ≤ h.

Lemma 1. Let ρ̄ = e1e2 . . . eh (h ≥ 1) be a sequence of edges in G, where
em = (vim

, vim+1 , xm/ym) for 1 ≤ m ≤ h, and Q̄ = label(P̄) be the label of a
walk P̄ in G. Assume that ρ̄ is traced in Q̄. Further assume that e1, e2, . . . , eh−1

(all the edges in ρ̄ except the last one) are all verified in Q̄. Then, eh is also
verified in Q̄.

Proof. The proof is by induction on h. When h = 1 the lemma holds trivially,
since ρ̄ has only one edge, hence Definition 1 applies.

For the induction step, since e1 is verified in Q̄, there must exist a sub-
path P̄1 = (nj , nk, x′

1/y′
1) in P̄ where nj is recognized as vi1 , nk is recognized

as vi2 , and x′
1/y′

1 = x1/y1. Since ρ̄ is traced Q̄, there must exist a subpath
P̄2 = (nq, ns, x

′′
1x′′

2 . . . x′′
h/y′′

1 y′′
2 . . . y′′

h) in P̄ where nq is recognized as vi1 , ns is
recognized as vih+1 , and x′′

m/y′′
m = xm/ym for 1 ≤ m ≤ h. Let us divide the path

P̄2 into two as P̄21 = (nq, ni, x1/y1) and P̄22 = (ni, ns, x2x3 . . . xh/y2y3 . . . yh).
According to Definition 1, the paths P̄1 and P̄21 recognize ni as vi2 . Then, the
existence of P̄22 in P̄ implies that ρ̄′ = e2e3 . . . eh is traced in Q̄. This concludes
the proof since the length of ρ̄′ is h−1, ρ̄′ is traced in Q̄ and em (for 2 ≤ m < h)
is verified in Q̄. ��

Lemma 1 suggests that if there is a sequence of edges which is traced in the
label Q̄ of a path, then Q̄ already includes what it takes to verify the last edge
in the sequence, provided that all the other edges in the sequence are verified in
Q̄. In fact, inclusion of α′–sequences in the checking sequences guarantee that
there are some sequences of edges which are traced.

For each si ∈ S, there exists an α′-sequence in the α′-set that can d-recognize
the final state of the walk from si with label D̄i/λ(si, D̄i), as the subsequence
D̄i/λ(si, D̄i) is followed by D̄j for some 1 ≤ j ≤ n. This is due to the fact
that we use empty transfer sequences between the applications of D̄i and D̄j in
α′–sequences. Formally, we have the following result.

Lemma 2. Let A be an α′–set, and Q̄ = label(P̄) be the label of a walk P̄ in G.
If Q̄ includes all the α′–sequences in A, then for all si ∈ S, ρ̄i = ej1ej2 . . . ej|Di|

,
where label(ρ̄i) = Di/λ(si, Di), ρ̄i is traced in Q̄.

Proof. Note that ρ̄i corresponds to the application of D̄i at state si. Consider the
occurrence of D̄i/λ(si, D̄i) in Q̄ which is immediately followed by an occurrence
of D̄j/λ(sj , D̄j), for some 1 ≤ j ≤ n, which is guaranteed since all α′–sequences
are included in Q̄. initial(ρ̄i) will be recognized as state si. Since there exists
an application of some D̄j after D̄i, final(ρ̄i) will be recognized as state sj =
δ(si, D̄i). ��

154 J. Chen et al

Lemma 3. Let A be an α′–set, and Q̄ = label(P̄) be the label of a walk P̄ in
G such that Q̄ includes all the α′–sequences in A. Let ρ̄i = ej1ej2 . . . ej|Di|

, be
a sequence of edges where label(ρ̄i) = Di/λ(si, Di) for some state si ∈ S. If all
the edges ej1ej2 . . . ej|Di|−1 are verified in Q̄, then ej|Di|

is also verified in Q̄.

Proof. The result follows from Lemma 1 and Lemma 2. ��
Suppose Figure 2 shows a subgraph of G where D̄1 = D̄2 = x1x2x2. Suppose

also that Q̄ contains α′-sequences with

– x1/y1 x2/y2 x2/y3 D̄3/λ(s3, D̄3) and
– x1/y4 x2/y3 x2/y2 D̄4/λ(s4, D̄4)

as subsequences. Then using the above lemma, we know that

– if edges (n1, n3, x1/y1), (n3, n4, x2/y2) are verified in Q̄, then (n4, n3, x2/y3)
is verified in Q̄;

– if edges (n2, n4, x1/y4), (n4, n3, x2/y3) are verified in Q̄, then (n3, n4, x2/y2)
is verified in Q̄.

Of course, we cannot draw conclusion in this case that if edges (n1, n3, x1/y1)
and (n2, n4, x1/y4) are verified in Q̄, then (n3, n4, x2/y2) and (n4, n3, x2/y3) are
verified in Q̄.

The following procedure shows a possible way to calculate a set of edges that
can be excluded from the transition tests.

Let PS = {ρ̄i | ∀si ∈ S, ρ̄i is a sequence of edges such that label(ρ̄i) =
D̄i/λ(si, D̄i) }. For any ρ̄ ∈ PS , the last edge of ρ̄, denoted as last(ρ̄), is verified
in Q̄ provided that all other edges in ρ̄ are verified in Q̄ as proposed by Lemma 3.

Let L0 = {e | e = last(ρ̄), ρ̄ ∈ PS}. Obviously, we want to have as many
edges in L0 as possible to be excluded from being considered for transition test.

First note that, for an α′–sequence ᾱ′
k with starting state si, if we do not

test any of the incoming transitions of si, then ᾱ′
k will not be included in the

n3

n4

n1

n2

x1/y1

x2/y2

x2/y3

x1/y4

Fig. 2. An example to illustrate the edges that can be excluded from the transition

tests

Eliminating Redundant Tests in a Checking Sequence 155

generated checking sequence, since each α′–sequence is used to test the end
state of a transition. Similarly, since we want to generate a checking sequence
that starts from s1, the initial state of M , at least one incoming transition of s1

must be tested, so that the tour generated passes over v1. Therefore let L1 be
a maximal subset of L0 such that, indegreeL1(vi) < indegreeE(vi) for each vi

corresponding to a state si which is s1 or a starting state of an α′–sequence.
Further note that according to Lemma 1, the test for a transition can be

exempted only if some other transitions are tested. Therefore, we need to make
sure that there is no cyclic dependency between the transitions that are exempted
from transition tests. The following algorithm can be used for this purpose:

Construct a digraph GS = (VS , ES) where VS contains one node for each
e ∈ L1. (v1, v2) ∈ ES if and only if v1
= v2, and for some ρ̄ ∈ PS , v2 corresponds
to e2 = last(ρ̄), and v1 corresponds to some e which appears in ρ̄. Now, if GS is
cyclic, remove the minimal number of nodes from GS so that it becomes acyclic.
For each removed node, also remove its corresponding edge in L1. This is an
instance of Feedback Vertex Set problem [18], which is NP–complete. However
certain heuristic approaches exist for this problem [19,20].

The remaining edges in L1 then represent transitions for which we do not
need a transition test. We use L below to denote this set of edges. Since there
can be at most n edges in L0, there can be at most n transition tests that can
be removed from the checking sequence.

3.2 Checking Sequence Construction

Now using L, we can improve on the algorithm in [13] for the checking sequence
generation, by reducing the set of edges that must be included in the checking
sequence. This is summarized below. Recall that we use prefixes of a distin-
guishing sequence and empty transfer sequences. The digraph G′ = (V ′, E′) is
obtained from G = (V,E) as follows

– V ′ = V ∪U ′ where U ′ = {v′
i : for every vi ∈ V }, and E′ = Eα′∪EC∪ET ∪E′′,

– Eα′ = {((starting state of P̄k), (ending state of P̄k)′, ᾱ′
k) : 1 ≤ k ≤ q},

– EC = {(v′
i, vj , x/y) : (vi, vj , x/y) ∈ E},

– ET = {(vi, (δ(vi, D̄i))′, D̄i/λ(vi, D̄i)): for every vi ∈ V s.t. there exists an
edge in EC ending at vi},

– E′′ is a subset of {(v′
i, v

′
j , x/y) : (vi, vj , x/y) ∈ E} such that G′′ = (U ′, E′′)

has no tour and, excluding isolated nodes in G′, G′ is strongly connected.

E′′ can be constructed similarly as discussed in [14]. However, we obtain an
additional issue in the proposed algorithm; since we are using empty transfer
sequences in the α′-sequences, such a set E′′ might not exist. Where this is the
case it is necessary to use non-empty transfer sequences, along the lines of [14,13].
It is straightforward both to extend the approach given in this paper to the case
where non-empty transfer sequences are used and to show how a set of transfer
sequences can be chosen in order to ensure the existence of E′′.

Theorem 2. Let E′
C be defined as E′

C = {(v′
i, vj , x/y) : (vi, vj , x/y) ∈ E − L}.

Let Γ̄ be a tour of G′ that contains all edges in Eα′ ∪ E′
C which is found in

156 J. Chen et al

the same manner as in [13]. Let τ be a transition with ending state s1 which is
represented by an edge e = (v′

i, v1, x/y) ∈ E′
C in Γ̄ . Let P̄ be a walk of G′ that is

formed by ending Γ̄ with edge e, and Q̄ = label(P̄)D̄1/λ(s1, D̄1). Then the input
portion of Q̄ is a checking sequence of M .

Proof. All edges in E − L are verified in Q̄ = label(P̄)D̄1/λ(s1, D̄1). According
to Lemma 3 and the way L is constructed, if all edges in E − L are verified in
Q̄, then all edges in L are verified in Q̄. Thus, all edges of G are verified in Q̄,
and by Theorem 1, the input portion of Q̄ is a checking sequence of M . ��

3.3 Application

Let us consider FSM M0 given in Figure 1. A distinguishing sequence for M0 is
D̄ = aba. The shortest prefixes of D̄ that are sufficient to distinguish each state
are: D̄1 = aba, D̄2 = aba, D̄3 = ab, D̄4 = ab, and D̄5 = ab. Using these D̄i’s, the
α′–set for M0 is {ᾱ′

1}, where ᾱ′
1, the label of P̄1 = (v3, v1, ᾱ

′
1), is

D̄3D̄5D̄1D̄2D̄4D̄5/λ(v3, D̄3D̄5D̄1D̄2D̄4D̄5)

The set L0 consists of the edges corresponding to the last transition of D̄i

when applied at si, 1 ≤ i ≤ 5, hence L0 = {(v1, v2, a/0), (v3, v4, a/1), (v4, v5, b/0),
(v1, v1, b/1)}. The starting state of the only α′–sequence is s3 and we have at
least one incoming edge of v3 (e.g. (v5, v3, b/1)) which is not included in L0.
Similarly, we have at least one incoming edge of v1 (e.g. (v2, v1, b/1)) which is
not in L0. Therefore L1 = L0. The graph GS for L1 can shown to be acyclic,
hence we also have L = L1.

ET = {T̄1, T̄2, T̄3, T̄4, T̄5} where T̄i = D̄i/λ(si, D̄i). The graph G′ = (V ′, E′)
is given in Figure 3.

v1 v2 v3 v4 v5

v′
1 v′

2 v′
3 v′

4 v′
5

a/0
a/0 b/1

a/1

T̄ 1

T̄2 T̄3

T̄ 4

T̄5

ᾱ′
1

b/
1

a/0

b/1

a
/
0

a
/
1

b/
0

a/0 b/0

a
/
1

b/1

Fig. 3. G′ = (V ′, E′) for M0. The nodes in V and U ′ are at the bottom, and at the

top respectively. The dashed lines are the edges in ET , and the dotted lines are the

edges in E′′. The edges in Eα′ ∪ EC are given in solid lines. The bold solid lines are

the edges in Eα′ ∪ E′
C , and the remaining solid lines are the edges in L

Eliminating Redundant Tests in a Checking Sequence 157

A tour Γ̄ over G′ that contains all the edges in Eα′ ∪ E′
C is

(v1, v
′
2, T̄1), (v′

2, v
′
5, a/0), (v′

5, v
′
3, b/1), (v′

3, v
′
4, a/1), (v′

4, v4, a/0), (v4, v
′
5, T̄4),

(v′
5, v

′
3, b/1), (v′

3, v5, b/0), (v5, v
′
1, T̄5), (v′

1, v
′
2, a/0), (v′

2, v1, b/1), (v1, v
′
2, T̄1),

(v′
2, v5, a/0), (v5, v

′
1, T̄5), (v′

1, v
′
2, a/0), (v′

2, v
′
5, a/0), (v′

5, v3, b/1), (v3, v
′
1, ᾱ

′
1),

(v′
1, v

′
2, a/0), (v′

2, v
′
5, a/0), (v′

5, v1, a/1)

Note that Γ̄ already starts at v1. Hence when we consider the the walk P̄
corresponding to Γ̄ given above, the input portion of Q̄ = label(P̄)D̄1/λ(s1, D̄1)
forms a checking sequence of length 44, which is a shorter checking sequence
than the one given in [13], which was reported as 64.

4 Conclusion

We have shown that, when α′–sequences are used in constructing a checking se-
quence, some transitions tests can be identified as redundant. Such tests are then
eliminated by the optimization algorithm used to construct a shorter checking
sequence, and hence a further reduction is obtained in the length of a resulting
checking sequence.

The approach proposed in this paper starts with a given set of α′–sequences
where empty transfer sequences are used after the application of each distin-
guishing sequence or its prefix at a state. We believe that selecting α′–sequences
judiciously will result in further reductions in the length of a checking sequence.
A recent study by Hierons and Ural [21] show how α′–sequences can be chosen so
that their use minimizes the sum of the lengths of the subsequences to be com-
bined in checking sequence generation. The related checking sequence generation
algorithm then produces the set of connecting transitions during the optimiza-
tion phase. Our proposed approach can also be incorporated to the method given
in [21].

Acknowledgment

This work was supported in part by “Natural Sciences and Engineering Research
Council of Canada under grant RGPIN 976”, “Leverhulme Trust grant number
F/00275/D, Testing State Based Systems”, and “Engineering and Physical Sci-
ences Research Council grant number GR/R43150, Formal Methods and Testing
(FORTEST)”.

References

1. Tanenbaum, A.S.: Computer Networks. 3rd edition edn. Prentice Hall International
Editions, Prentice Hall (1996)

2. Pomeranz, I., Reddy, S.M.: Test generation for multiple state–table faults in finite–
state machines. IEEE Transactions on Computers 46 (1997) 783–794

158 J. Chen et al

3. Hierons, R.M., Harman, M.: Testing conformance to a quasi–non–determinstic
stream X–machine. Formal Aspects of Computing 12 (2000) 423–442

4. Holcombe, M., Ipate, F.: Correct Systems: Building a Business Process Solution.
Springer–Verlag (1998)

5. Luo, G., Das, A., v. Bochmann, G.: Generating tests for control portion of SDL
specifications. In: Proceedings of Protocol Test Systems VI, Elsevier (North-
Holland) (1994) 51–66

6. Tan, Q.M., Petrenko, A., v. Bochmann, G.: Modeling basic lotos by fsms for
conformance testing. In: IFIP Protocol Specification, Testing, and Verification
XV. (1995) 137–152

7. Ural, H., Saleh, K., Williams, A.: Test generation based on control and data
dependencies within system specifications in SDL. Computer Communications 23
(2000) 609–627

8. v. Bochmann, G., Petrenko, A., Bellal, O., Maguiraga, S.: Automating the process
of test derivation from SDL specifications. In: SDL Forum’97, Paris, France (1997)

9. International Telecommunications Union Geneva, Switzerland: Recommendation
Z.500 Framework on formal methods in conformance testing. (1997)

10. Moore, E.P.: Gedanken-experiments. In Shannon, C., McCarthy, J., eds.: Au-
tomata Studies. Princeton University Press (1956)

11. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans-
actions on Computers 19 (1970) 551–558

12. Hennie, F.C.: Fault–detecting experiments for sequential circuits. In: Proceed-
ings of Fifth Annual Symposium on Switching Circuit Theory and Logical Design,
Princeton, New Jersey (1964) 95–110

13. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Transactions
on Computers 51 (2002) 1111–1117

14. Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences.
IEEE Transactions on Computers 46 (1997) 93–99

15. Lee, D., Yannakakis, M.: Principles and methods of testing finite–state machines
– a survey. Proceedings of the IEEE 84 (1996) 1089–1123

16. Lee, D., Yannakakis, M.: Testing finite state machines: state identification and
verification. IEEE Trans. Computers 43 (1994) 306–320

17. Kohavi, I., Kohavi, Z.: Variable-length distinguishing sequences and their applica-
tion to the design of fault–detection experiments. IEEE Transactions on Computers
(1968) 792–795

18. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Company, New York (1979)

19. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.: Approximation algorithms for
the vertex feedback set problem with applications to constraint satisfaction and
bayesian inference. In: Proceedings of Fifth ACM-SIAM Symposium on Discrete
Algorithms. (1994) 344–354

20. Fujito, T.: A note on approximation of the vertex cover and feedback vertex set
problems. Information Processing Letters 59 (1996) 59–63

21. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. (submitted)

On FSM-Based Fault Diagnosis

Zoltán Pap1, Gyula Csopaki1 and Sarolta Dibuz2

1 Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics,��

Magyar tudósok körútja 2, H-1117, Budapest, Hungary
{pap, csopaki}@tmit.bme.hu,

2 Ericsson, Armborstvägen 14., P.O.B. 1505,
125 25 Älvsjö, Stockholm

sarolta.dibuz@ericsson.com

Abstract. We study the problem of fault diagnosis, i.e., localization of
difference(s) between an implementation and a specification in systems
modelled by finite state machines. We show that even considering only
a single fault in a finite state machine there are some situations when
the exact diagnosis of the fault cannot be assured. We give an algorithm
for fault diagnosis. If it is possible the procedure exactly locates a single
fault, and in case exact localization is unfeasible it provides the set of all
potential differences between the implementation and the specification.

Keywords: Finite state machine, fault diagnosis, fault localization, out-
put fault, transfer fault

1 Introduction

Conformance testing provides the means to check whether a system behaves ac-
cording to its specification. Given an implementation, which is a black
box – i.e., we can only observe its input/output behavior – and the specification
of the system, we test if the implementation conforms to the specification. In case
the specification is given as a finite state machine we want to determine whether
there are difference(s) between the behavior function of the specification and the
implementation machines.

Fault diagnosis – in contrast – addresses the more complex problem of locat-
ing the difference(s) between the protocol specification and an implementation
if they are found to be different. A solution to this problem has various ap-
plications [1]. One of the most important being the correction of a protocol
implementation so that it conforms to its specification.

Much research has been done concerning fault diagnosis for different for-
malisms [2] [3], and using different restrictions on the cardinality of faults . All
papers on fault diagnosis in FSMs are considering a fault model with two types
of changes between the implementation and the specification: output faults and

�� This research is supported by Inter-University Centre for Telecommunications and
Informatics (ETIK).

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 159–174, 2005.
c© IFIP 2005

160 Z. Pap, G. Csopaki, and S. Dibuz

transition faults. A number of papers are using the assumption, that the imple-
mentation contains only one – transition or output – fault. There are heuristic
procedures presented for diagnosis of single faults in FSMs (finite state ma-
chines) [4], and in CFSMs (communicating finite state machines) [5] [6]. An
exact fault localization procedure is reported by D. Lee and K. Sabnani capable
of locating a single fault in a finite state machine [7]. Limiting the number of
differences between the specification and the implementation to a single fault,
all of these papers claim to guarantee the precise localization of the difference.

Other contributions consider the case of multiple faults. Procedures for di-
agnosing multiple faults in FSMs and CFSMs were also reported [8] [9]. These
algorithms are not always able to locate the multiple faults of the implemen-
tation [9]. The multiple fault diagnosis method for FSMs only guarantees the
correct diagnosis of certain configurations of faults in an implementation, which
are characterized by a certain type of independence of the different faults [8].

In this paper we concentrate on the case of a single transition or output fault
in an FSM. We show that reduced implementation machines with different single
faults may have the same observable behavior, and consequently – contrary to
the statements found in the literature ([4] [7]) – it is in general not possible to
guarantee the precise localization of a single fault in a finite state machine.

We determine a set of sufficient conditions for the guaranteed exact localiza-
tion of a single output or transfer fault. Based on the analytical results we give
an algorithm, a modified version of Lee’s procedure [7], for the fault diagnosis
problem. If it is possible, the method exactly locates the difference between the
implementation and the specification, and in case exact localization is unfeasible
it provides the set of all potential single faults.

The rest of the paper is organized as follows. Section 2 provides the definitions
of basic terms and notations used in the paper. In Section 3 we show that in
some cases fault diagnosis fails to exactly locate a single fault in a finite state
machine. In Section 4 we investigate the conditions for guaranteed the exact
localization of a single fault in an FSM. In Section 5 we give an algorithm for
fault diagnosis, and finally summarize our work in Section 6.

2 Preliminaries

A finite state machine can be used to model a software system. Many specifi-
cation languages, such as SDL [10] and ESTELLE [11], are extensions of the
FSM formalism. Specifications in such languages may be converted into FSMs
from which tests can be generated [12]. Finite state systems produce outputs
on their state transitions after receiving inputs. A finite state machine A is a
4-tuple (I,O, S, h) where

– I is the finite set of input symbols,
– O is the finite set of output symbols,
– S is the finite set of states,
– h: D → 2O×S \∅ is a behavior function where D ⊆ S× I is the specification

domain and 2O×S is the set of all subsets of the set S ×O.

On FSM-Based Fault Diagnosis 161

In case the specification domain D = S × I, the behavior function is defined
for all state-input combinations and the FSM A is said to be completely specified
(or completely defined) what we assume for the rest of the paper.

If for each pair (s, i) ∈ D it holds that |h(s, i)| = 1 then FSM A is said to be
deterministic. In case of a deterministic FSM instead of behavior function h we
use two functions, the transition function δ: S × I → S and the output function
λ: S × I → O.

For the rest of the paper, we will focus on completely specified and determin-
istic machines.

FSM A is said to be strongly connected, if for each pair of states (sj , sl),
there exists an input sequence which takes A from sj to sl.

An FSM can be represented by a state transition diagram, a directed graph
whose vertices correspond to the states of the machine and whose edges corre-
spond to the state transitions. Each edge is labeled with the input and output
associated with the transition. Supposing that the machine is currently in state
s3 and upon input c the machine moves to state s2 and outputs 1. This transition

can be written in a form s3
c/1−−−−−→ s2.

We extend the transition function δ and output function λ from input sym-
bols to finite input sequences (strings) I∗ as follows: For a state s1, an input se-
quence x = i1, ..., ik takes the machine successively to states sj+1 = δ(sj , ij), j =
1, ..., k with the final state δ(s1, x) = sk+1, and produces an output sequence
λ(s1, x) = o1, ..., ok, where oj = λ(sj , ij), j = 1, ..., k. The input/output se-
quence i1o1i2o2...ikok is then called a trace of M . Note that since the FSMs in
our model are deterministic all their traces are deterministic, because there are
no transitions with different next states and/or outputs for the same state-input
combination.

Finite state machines may contain redundant states. State minimization is a
transformation into an equivalent state machine to remove redundant states.

Two states are equivalent written sj
∼= sl if and only if for every input se-

quence the machine will produce the same output sequence regardless of whether
sj or sl is the starting state. In other words, for all input sequences x ∈ I∗,
λ(sj , x) = λ(sl, x). (Note that their succeeding states for a particular input
sequence are also pairwise equivalent).

Two states sj and sl are distinguishable (inequivalent) if there exists a finite
input sequence x which when applied to FSM M causes different output se-
quences starting in either state. In other words ∃x ∈ I∗, λ(sj , x)
= λ(sl, x). Such
an input sequence is called a separating sequence of the two inequivalent states.
If the shortest such sequence is of length k then (sj , sl) are k-distinguishable.
A FSM M is reduced (minimized), if no two states are equivalent, that is, each
pair of states (sj , sl) are distinguishable.

Machine equivalence is an equivalence relation on all FSMs with the same
input and output sets.

Completely specified deterministic FSMs M1 = (I,O, S, δ, λ) and M2 =
(I,O, S′, δ′, λ′) are equivalent written M1

∼= M2 if their sets of traces coincide.

162 Z. Pap, G. Csopaki, and S. Dibuz

From an other point of view two machines M1 and M2 are equivalent if and
only if for every state in M1 there is at least one corresponding equivalent state
in M2, and vice versa.

A homomorphism from M1 to M2 is a mapping φ from S to S′ such that for
every state s ∈ S and for every input symbol i ∈ I, it holds that δ′(φ(s), i) =
φ(δ(s, i)) and λ′(φ(s), i) = λ(s, i) [13]. If φ is a bijection, then it is called an
isomorphism. In this case M1 and M2 must have the same number of states,
and they are identical except for a renaming of states. Two machines are called
isomorphic if there is an isomorphism from one to the other. Two isomorphic
FSMs are equivalent, but the converse is not true in general.

In each equivalence class there is a reduced machine with the minimal number
of states. In an equivalence class, any two reduced machines have the same
number of states, furthermore, there is a one-to-one correspondence between
equivalent states, which gives an isomorphism between the two machines. That
is, the reduced machine in an equivalence class is unique up to isomorphism.

Note that there is a number of equivalence relations of states of machines.
They are, however, all the same for completely specified and deterministic ma-
chines, and they are only different in case of more general machines like nonde-
terministic machines.

We say that machine M has a reset capability if there is an initial state s0 ∈ S
and an input symbol r ∈ I that takes the machine from any state back to s0.
That is, δ(sj , r) = s0 for all states sj ∈ S. The reset is reliable if it is guaranteed
to work properly in any implementation machine M ′, i.e., δ′(s′j , r) = s′0 for all
states s′j ∈ S′, otherwise it is unreliable. Note that reset r is also an input
symbol. Thus, if M has reset then M is considered to be strongly connected if
all the other states can be reached from the initial state s0.

According to the previous works on fault diagnosis, we are considering a
fault model with two types of faults: the output and the transition fault. We say
that a transition has an output fault if, for the corresponding state and received
input, the implementation provides an output different from the one specified
by the output function. We say that a transition has a transition fault if, for the
corresponding state and received input, the implementation enters a different
state than specified by the transition function. An implementation has a single
output (transition) fault if one and only one of its transitions has an output
(transition) fault.

3 Failure of Exact Fault Diagnosis in FSMs

We show that even in the most ’simple’ case it is not always possible to solve
the fault localization problem. That is, even when considering the strictest as-
sumptions – a single fault in a finite state machine (investigated by Ghedamsi et
al. [4] and Lee at al. [7]) – there are some situations where the exact localization
of the fault cannot be assured.

For the rest of the paper we will consider a specification finite state machine
Spec = (I,O, S, δ, λ). We denote the number of states, inputs, and outputs by

On FSM-Based Fault Diagnosis 163

n = |S|, p = |I|, and q = |O|, respectively. We also consider implementation
machines Impla = (I,O, S′, δ′, λ′), Implb = (I,O, S′′, δ′′, λ′′) and so on with the
same input and output sets, and the same number of equally labeled states. We
use the term ”same states” written s′j = s′′j for states that are labeled alike in
different machines. Of course, these states are not necessary equivalent written
s′j ∼= s′′j .

Obviously, without any assumptions conformance testing and fault diagnosis
are impossible problems; for any test sequence we can easily construct a machine
M2, which is not equivalent to M1 but produces the same outputs as M1 for the
given test sequence. There is a number of natural assumptions that are usually
made in the literature in order for the test to be at all possible [1]:

– The specification FSM Spec is deterministic, completely specified, strongly
connected and reduced.

– Implementation machines do not change during the experiment, and have
the same input I and output O alphabet as Spec.

Furthermore we concentrate on systems with reliable reset capability, and
we assume that there is only one difference – an output or a transition fault –
between an implementation and the specification machine.

All previous works on the diagnosis of a single fault in a FSM ([4] [7]) used
the same assumptions, and they claim to provide methods to precisely locate
the single fault.

We show that – contrary to the statements found in the literature – it is in
general not possible to guarantee the precise localization of a single fault in a
finite state machine, not even considering the assumptions above: Take speci-
fication machine Spec and two implementation machines: Impla differing from
Spec by a single fault Faulta, and Implb differing from the specification by a
single fault Faultb. Faulta and Faultb are different faults. Evidently, neither
Impla nor Implb can be equivalent to Spec, since Spec is deterministic, com-
pletely specified, strongly connected and reduced. Interestingly, however, Impla
and Implb might be equivalent to each other even though the faults they con-
tain differ. In this case it is impossible to decide between the faults, i.e., it is
impossible to exactly locate the fault. The next simple example demonstrates
the situation.

Example 1. Take specification machine Spec shown on Figure 1. The set of input
symbols is I = {a, r}, where r is the reset input, the set of output symbols
is O = {1, 2} and the set of states is S = {s0, s1, s2} where s0 is the initial
state. Specification machine Spec is deterministic, completely specified, strongly
connected and reduced. Note that the (reliable) reset transitions are omitted
on the figure for the sake of perspicuity. Let us consider two implementation
machines Impla on Figure 2(a) and Implb on Figure 2(b) with the same input
and output alphabet as Spec.

The difference between Impla and Spec is a a single transition fault at state
s0, Faulta : δ′(s′0, a) = s′0 instead of s′1. In case of Implb the difference is a single
output fault at s2, Faultb : λ′′(s′′2 , a) = 1 instead of 2.

164 Z. Pap, G. Csopaki, and S. Dibuz

s0

s1

s2

a/1 a/1

a/2

Fig. 1. Specification machine Spec

s0

s1

s2

a/1 a/1

a/2

(a) Impla

s0

s1

s2

a/1 a/1

a/1

(b) Implb

Fig. 2. Faulty implementation machines: (a) Impla contains a single transition fault

at state s0, (b) Implb contains an output fault at s2

The two implementation machines are equivalent, as they both produce the
same trace for every input string. Thus, it is impossible to distinguish between
them and therefore between the two faults. Or, to formulate more precisely, is it is
impossible to distinguish among any faulty implementation machines belonging
to the same equivalence class, and therefore among the faults that they contain.

4 Conditions for Guaranteed Fault Diagnosis

We determine a set of sufficient conditions for the guaranteed exact localization
of a single output or transfer fault. That is, we analyze when two (or more) imple-
mentation machines, each differing from the specification by a single dissimilar
fault, cannot be equivalent. Note that we still consider the assumptions made
in the previous section, therefore the specification FSM Spec is deterministic,
completely specified, strongly connected and reduced with reliable reset.

First we show that it is always possible to distinguish two different output
faults if the specification machine has reliable reset capability.

Lemma 1. Suppose that the specification machine under consideration is deter-
ministic, completely specified, strongly connected and reduced with reliable reset
capability. Two implementation machines, each differing from the specification
by a single and dissimilar output fault, cannot be equivalent, thus any two output
faults can be distinguished.

Proof. Let us consider two implementation machines Impla and Implb, both
differing from the specification Spec by a single dissimilar output fault. We reset

On FSM-Based Fault Diagnosis 165

the machines and start to explore the state-space of the two implementations
and the specification in parallel. Clearly, until we reach a faulty transition in
one of the machines, for any input string x, the traversed states – and the
output sequences – are the same in the two implementations and the specifi-
cation: δ′(s′0, x) = δ′′(s′′0 , x) = δ(s0, x), and λ′(s′0, x) = λ′′(s′′0 , x) = λ(s0, x).
When we traverse a faulty transition in one of the implementations (let’s say
Impla) with an input string y, we find an inconsistency between Impla and
Spec: λ′(s′0, y)
= λ(s0, y). However, since Faulta
= Faultb the output of Implb
at the given transition also cannot be equivalent to the output of Impla. There-
fore, λ′(s′0, y)
= λ′′(s′′0 , y), i.e., Impla and Implb are inequivalent, and input
sequence y can distinguish them.

Note that the statement made in Lemma 1 only holds if the specification machine
has reliable reset capability. We demonstrate a counter-example of Lemma 1 in
case the specification machine does not have reliable reset capability.

Example 2. Take specification machine Spec shown on Figure 3.
The set of input symbols is I = {a}, the set of output symbols is O = {1, 2}

the set of states is S = {s1, s2, s3, s4}.
Specification machine Spec is deterministic, completely specified, strongly

connected and reduced. Take two implementation machines Impla on Figure
4(a) and Implb on Figure 4(b) with the same input and output alphabet as
Spec.

s1

s2 s3

s4

a/1

a/1

a/1

a/2

Fig. 3. Specification machine Spec without reliable reset capability

s1

s2 s3

s4

a/1

a/1

a/2

a/2

(a) Impla

s1

s2 s3

s4

a/2

a/1

a/1

a/2

(b) Implb

Fig. 4. Faulty implementation machines: (a) Impla contains a single output fault at

state s3, (b) Implb contains an output fault at s1

166 Z. Pap, G. Csopaki, and S. Dibuz

The difference between Impla and Spec is a a single output fault at state s3,
Faulta : λ′(s′3, a) = 2 instead of 1. In case of Implb the difference is a single
output fault at s1, Faultb : λ′′(s′′1 , a) = 2 instead of 1. The two implementation
machines are clearly equivalent.

Next we show that it is always possible to distinguish a single output and a
single transition fault if the faulty machines are reduced.

Lemma 2. Suppose that the specification machine under consideration is deter-
ministic, completely specified, strongly connected and reduced with reliable reset
capability. Two implementation machines, one differing from the specification by
a single output fault, the other by a single transition fault cannot be equivalent
if the implementation machines are reduced.

Proof. Let us consider two implementations Impla and Implb. One of the imple-
mentations (let’s say Impla) contains a transition, the other (Implb) an output
fault. The two implementation machines are reduced therefore they must be iso-
morphic to be equivalent. That is, there has to be a one-to-one mapping φ from
S′ to S′′ such that for every state s′ in S′ and for every input symbol i in I,
δ′′(φ(s′), i) = φ(δ′(s′, i)) and λ′′(φ(s′), i) = λ′(s′, i) should hold.

Let’s say the output fault in Implb is at s′′x. Since the output of one of
its transitions has changed s′′x has to map to an other state (say s′y) of Impla
where λ′′(s′′x, i) = λ′(s′y, i), ∀i ∈ I. However, this mapping cannot be one-to-one,
as there is no output fault in Impla, and therefore Impla has one less states
with the same output characteristic as s′′x. Thus, there is clearly no one-to-one
mapping φ fulfilling λ′′(φ(s′), i) = λ′(s′, i), ∀s′ ∈ S′, ∀i ∈ I.

Finally we show that it is always possible to distinguish two different single
transition faults if the faulty machines are reduced.

Lemma 3. Suppose that the specification machine under consideration is deter-
ministic, completely specified, strongly connected and reduced with reliable reset
capability. Two implementation machines, each differing from the specification
by a single and dissimilar transition fault, cannot be equivalent if the implemen-
tation machines are reduced.

Proof. Let us assume the following situation:

Faulta in Impla: (sc
il/of−−−−−→ sd) ⇒ (s′c

il/of−−−−−→ s′e)

Faultb in Implb: (su
im/og−−−−−→ sv) ⇒ (s′′u

im/og−−−−−→ s′′w)
First, take the special case when the two faults are applied to the same transition
in the two implementations, i.e., c = u and l = m. In this case the outputs are
also the same (f = g) but the next states are not (e
= w) because Faulta and
Faultb are dissimilar. In this case there is only one difference between Impla
and Implb, and therefore, if the implementation machines are reduced (s′e � s′w)
we can certainly find an input sequence distinguishing them for example using
Chow’s method [14]: Let y be a separating sequence distinguishing states s′e and
s′w. We apply an input sequence (say x) corresponding to the path of the tree

On FSM-Based Fault Diagnosis 167

from the initial state to s′c, input il and then apply y. This input sequence x · il ·
y certainly distinguishes Impla and Implb, thus the implementation machines
cannot be equivalent.

Now take the general case when the two faults are applied to different tran-
sitions. Let’s reset the machines and start to explore the state-space of the two
implementations and the specification in parallel. Until we reach a faulty tran-
sition in one of the machines for any input string the traversed states – and the
output sequences – are the same in the two implementations and the specifica-
tion. Let’s say we first encounter Faulta in Impla with an input string x, i.e.,
with x we reach the state s′c in Impla , s′′c in Implb and sc in Spec. If we input
il after x, Impla will transit to s′e, Spec to sd and Implb to s′′d . Let Y be the set
of all separating sequences distinguishing states se and sd. Any input sequence
x ·il ·yj where yj ∈ Y will clearly distinguish Impla and Spec. Any of these input
sequences will also distinguish Impla and Implb, except if all yj ∈ Y starting
from s′′d in Implb traverse Faultb making λ(s′0, x · il · yj) and λ(s′′0 , x · il · yj)
consistent for all yj ∈ Y . For that, also in Spec all separating sequences dis-
tinguishing states se and sd starting from sd traverse transition (su, im); and if
δ(su, im) = sv then se and sd are separable, if δ(su, im) = sw then they are not
separable. From that it follows that s′′e and s′′d in Implb are not separable. Thus,
the implementation machines cannot be minimal.

Theorem 1. Suppose that the specification machine under consideration is de-
terministic, completely specified, strongly connected and reduced with reliable re-
set capability. Two implementation machines, each differing from the specifica-
tion by a single and dissimilar fault, cannot be equivalent if the implementation
machines are reduced.

Proof. The proof follows from Lemmas 1, 2 and 3.

The theorem shows that if there is only one difference between an implemen-
tation and a specification and the implementation is minimal then it is unique,
no other fault can induce the same change in behavior. Thus it is possible to
identify the given fault.

5 Exact Algorithm for Fault Diagnosis

We give an algorithm – a modification of Lee’s method [7] – for the localization
of single transfer or output faults in finite state machines. We incorporate the
analytical results of Section 4. to quickly verify if the first fault candidate the
algorithm identifies is certainly the only possible one. If it is we conclude that
the difference between the implementation and the specification can be exactly
located, otherwise the algorithm moves on and provides the set of all potential
single faults.

Let us consider a specification finite state machine Spec and an implementa-
tion Impl to be diagnosed. The algorithm is made up of two steps:

168 Z. Pap, G. Csopaki, and S. Dibuz

Step 1 Conformance testing is used to determine if there is difference between
the specification and the diagnosed implementation.

Step 2 Localization of the fault.

5.1 Step 1: Detection of the Fault

For Step 1 of the algorithm a checking sequence needs to be constructed.

Definition 1. Let M be a finite state machine with n states and initial state
s0. A checking sequence for M is an input sequence x that distinguishes M from
all other machines with n states. That is, any machine with at most n states not
equivalent to M produces a different output than M on input x starting from the
initial state.

There are a number of conformance testing methods developed for finite state
machines constructing checking sequences. These include the transition tour
[15], the Unique Input Output (UIO) method [16], the Distinguishing Sequence
method [17], the ”W-method” [14] and the Wp method [18]. In our algorithm
we create the checking sequence using the W-method proposed by Chow for
machines with reliable reset. It consists of no more than pn2 test sequences of
length less than 2n interposed with reset. We apply the checking sequence to
the specification and to the diagnosed implementation. If we do not find an in-
consistency of the observed outputs then we conclude that the implementation
machine is equivalent to the specification, thus there is either no fault in the
implementation or there are more than one, and end of the algorithm. If we find
a difference we move on to Step 2.

5.2 Step 2: Localization of the Fault

During conformance testing an inconsistency was found between the specification
and the diagnosed implementation. Thus, there is at least one of the pn2 test
sequences (say x) detecting the fault, i.e. λ(s0, x)
= λ′(s′0, x). Let us assume
that the earliest inconsistency between λ(s0, x) and λ′(s′0, x) is at the kth output
symbol where 1 ≤ k ≤ 2n. Let’s say that the first k elements (inputs) of x carry
the specification machine from s0 to s1, s2, ..., sk, where these k + 1 states may
or may not be different.

We assume Impl has only a single output or transition fault. In case the
diagnosed implementation machine contains an output fault, x has to traverse
the fault at the kth transition. If Impl contains a transition fault, then x has to
traverse the fault during the first k − 1 transitions.

Note that if there are more than one test sequences detecting the fault, we
may use either of them for the localization of the fault (for practical reasons we
should choose the shortest sequence). If multiple test cases detect the fault, we
might also check if the set of possibly faulty transitions can be narrowed: For
each test sequence detecting the fault we determine the transitions it traverses
in the specification machine prior to the first inconsistency. Trivially, in Step 2,
we only have to consider the intersection of these traversed transitions.

On FSM-Based Fault Diagnosis 169

In the algorithm we consider two cases. First we presume that the fault in
Impl is an output fault and verify if it’s a potential candidate. If the verification
succeeds, then we try to confirm whether it is the only potential candidate. If it
is the only one, then we located the fault and end of algorithm. Otherwise we
move on and presume that the fault could be a transition fault, and similarly
analyze each possibilities. If at the end we don’t find any potential candidates
we conclude that there are more than one fault in Impl.

Output Fault. We assume that the fault in Impl is an output fault, i.e.,
λ(sk−1, xk)
= λ′(s′k−1, xk) where xk is the kth input of x. For the verification we
modify Spec according to the supposed fault: we change the output symbol at
state sk−1 upon input xk to the faulty output symbol λ′(s′k−1, xk). We denote
the modified specification C1. We conduct a checking experiment (conformance
testing) on Impl with respect to C1.

C1, however, is not necessarily minimal. To use Chow’s method for checking
sequence generation, we first have to minimize machine C1 and get C1 reduced.
Let m be the number of states of reduced machine C1 reduced. If m < n, that is,
if the reduced conjectured machine has less states than the specification, then
according to Chow we have to use a Z set instead of a W set for test sequence
generation. A Z set can be created by extending the W set the following way [14]:

Z : W U I ·W U . . . U In−m ·W

Where ”U” is the union operator, ”·” is the string concatenation operator and I
is the input alphabet. The checking sequence is then created by the concatenation
of the sets of sequences P and Z.

If we find that Impl conforms to C1, we conclude that C1 is a potential
candidate. Then we try to confirm if it is the only possible candidate. For that
we simply have to check if the reduced machine C1 reduced has equivalent number
of states to the specification. If it has, we conclude that C1 is certainly the only
potential candidate, and therefore we exactly located the fault in Impl, end of
algorithm.

If Impl conforms to C1, but the reduced machine has less states than the
specification, we conclude that C1 is a potential candidate, store it in the set of
potential candidate machines PC, and proceed to the following step.

If Impl does not conform to C1 we proceed to the following step.

Transition Fault. A transition fault can occur in one of the first k − 1 transi-
tions, i.e., δ(sj , xj+1)
= δ′(s′j , xj+1) where j = 0, ..., (k−2). We assume, that the
fault occurs in the jth transition and verify each assumption in turn. On input
xj+1 at state sj the implementation machine is supposed to transit to sj+1. But
instead Impl transits to sr, where sr can be any of the n− 1 states except the
right state sj+1. We verify each possibilities in turn.

In each turn we modify Spec according to the supposed fault: we create
candidate machine Cl+1 where l is the cardinality of the set PC, by changing
the next-state symbol of the given transition to the supposed wrong state sr.

170 Z. Pap, G. Csopaki, and S. Dibuz

We minimize the candidate machine and conduct a checking experiment on Impl
with respect to Cl+1 reduced.

If we find that Impl conforms to Cl+1 reduced, we conclude that Cl+1 is a
potential candidate. If PC is not empty (l ≥ 1), we store Cl+1 in PC, conclude
that the exact localization of the fault is not possible and move on to the next
turn.

If l = 0 then we try to confirm if it is the only possible candidate. We simply
check if the reduced machine Cl+1 reduced has equivalent number of states to the
specification. If it has, we conclude that Cl+1 is certainly the only candidate,
and therefore we exactly located the fault in Impl, end of algorithm.

If l = 0 and Impl conforms to Cl+1, but the reduced machine has less states
than the specification, we conclude that Cl+1 is a potential candidate, store it
in set PC, and proceed to the next turn.

If Impl does not conform to Cl+1 we move on to the next turn.
For each assumed transition there are n− 1 possible next states. Thus, there

are no more than 2n2 turns. At the end of the last turn there are three possibil-
ities:

– If l = 0, we conclude that there are more than one faults in Impl, end of
algorithm.

– If l = 1, there is only one potential candidate, therefore we exactly located
the fault in Impl, end of algorithm.

– If l > 1, we conclude that the exact localization of the fault is not possible,
and PC is the set of all potential candidates i.e., we determined the set of
all potential single faults, end of algorithm.

Example 3. We use an example to demonstrate the algorithm given above. Take
the specification machine Spec shown on Figure 5(a) The set of input symbols is
I = {a, b, r}, where r is the reset input, the set of output symbols is O = {1, 2}
and the set of states is S = {s0, s1, s2, s3} where s0 is the initial state. Reset
transitions are again omitted on the figure. Implementation machine on Figure
5(b) contains a single transition fault at state s2. This transition fault is to be
located using the algorithm.

For the detection of the fault (step 1 of the algorithm) we need to construct a
checking sequence. Since our emphasis is not on checking experiments, we omit
the details. A P -set of Spec can be constructed based on a testing tree.

P : {r, ra, raa, rab, rb, rba, rbb, rbaa, rbab}

The characterizing set (W -set) of Spec is:

W : {ab, b}

By concatenating P and the characterizing set we get a basic test set of the
checking sequence, interposed with reset. Obviously, if a prefix of a sequence can
detect a fault then the whole sequence also can. Thus, we can remove all the

On FSM-Based Fault Diagnosis 171

s0

s1

s2

s3

a/2 b/1

a/1

a/1a/1

b/2 b/1

b/1

(a) Specification machine Spec

s0

s1

s2

s3

a/2 b/1

a/1

a/1

a/1

b/2 b/1

b/1

(b) Implementation machine Impl

Fig. 5. Faulty implementation machine Impl contains a single transition fault at state

s2

sequences that are prefix of other sequences. As a result we get the following
test set:

{raaab, raab, rabab, rabb, rbaaab, rbaab∗, rbabab∗, rbabb, rbbab, rbbb}
We execute the test set on Impl. The test sequences marked with * detect the
fault. We use the shortest sequence – rbaab – for the rest of the algorithm. Note
that we can not narrow the set of possibly faulty transitions, because in Spec
sequence rbabab traverses all transitions that rbaab does.

If applied to Spec rbaab produces the output sequence 1112, and if applied
to Impl we get 1111. That is, the fourth outputs are different (k = 4). First
we presume that the fault in Impl is an output fault (occurring at the fourth

s0

s1

s2

s3

a/2 b/1

a/1

a/1a/1

b/1 b/1

b/1

(a) C1

s0

s1s2s3

a/2 b/1

a/1 b/1

(b) C1 reduced

Fig. 6. Conjectured machine C1 with an output fault at state s1 (a), and C1 after

minimization (b)

172 Z. Pap, G. Csopaki, and S. Dibuz

transition). Since the sequence rbaab carries Spec from s0 to s3, s2, s1, s1, we
change the output at state s1 input b from 2 to 1. We get the machine C1

on Figure 6(a) reduce C1 and get the machine C1 reduced on Figure 6(b) We
conduct a checking experiment (conformance testing) on Impl with respect to
C1 reduced. We find that the two machines are not equivalent (for example rab
finds the difference), therefore, we move on and presume that the fault is a
transition fault occurring in one of the first three (k − 1) transitions.

We first conjecture that the first transition goes to a different state than
specified. We have three possibilities: at state s0, on input b the machine goes
to s0, s1 or s2 instead of s3. We build the according conjectured machines and
verify them in turn. Omitting the details, we find that none of the machines
conform to Impl (rba, rbb and rbab rule out the possibilities respectively).

We move on and conjecture that the fault is at the second transition: at state
s1, on input a the machine goes to s0, s1 or s3 instead of s2. After building
the machines and conducting the checking experiments we rule out the first two
possibilities with sequences rbaa and rbab respectively. We also find that the
third conjectured machine (C1 on Figure 7(a)) conforms to Impl. Since the set
of potential candidate machines PC is empty, we try to confirm if it is the only
possible candidate. We find that after minimization C1 has less states than the
specification. Thus, we conclude that C1 is a potential candidate, store it in set
PC, and proceed to the next turn. We conjecture that the fault is at the third
transition: at state s2, on input a the machine goes to s0, s2 or s3 instead of
s1. The sequence rbaaa rules out the first possibility, but the other two conjec-
tured machines – C2 (Figure 7(b)), and C3 (Figure 5(b)) – conform to Impl.
Since PC is not empty, we know that the exact localization of the fault is not
possible and store both machines in PC. As k = 4, transition fault may only
occur at the first three transitions, therefore, we have reached the end of the
algorithm.

s0

s1

s2

s3

a/2 b/1

a/1

a/1a/1

b/2 b/1

b/1

(a) C1

s0

s1

s2

s3

a/2 b/1

a/1

a/1
a/1

b/2 b/1

b/1

(b) C2

Fig. 7. Conjectured machines C1 and C2

On FSM-Based Fault Diagnosis 173

As a result we conclude that the exact localization of the fault is not possible.
PC is the set of possible faulty machines C1, C2 and C3 including all potential
single faults.

6 Conclusion

We study the problem of fault diagnosis. The scope of fault diagnosis is beyond
the scope of the fault detection (or conformance testing) problem. While the lat-
ter is concerned with determining if there are difference(s) between the behavior
of the specification and the implementation machines, the former also tries to
identify and locate the difference(s).

We concentrate on the diagnosis of a single transition or output fault in an
FSM. Clearly, the problem cannot be exactly solved if there are two or more
equivalent implementation machines, each differing from the specification ma-
chine by a single dissimilar fault. We show that implementation machines with
different single faults may have the same observable behavior and thus in general
it is not possible to guarantee the exact localization of a single fault in a finite
state machine.

We analyze under what circumstances the exact localization of a single out-
put or transfer fault can be guaranteed. That is, we determine a set of sufficient
conditions when two (or more) implementation machines, each differing from the
specification by a single dissimilar fault, cannot be equivalent. We incorporate
the analytical results into an algorithm for the fault diagnosis problem. In case
it is possible, the algorithm exactly locates the difference between the implemen-
tation and the specification, and when the exact localization is not possible, it
provides the set of all potential single faults.

References

1. Lee, D., Yiannakakis, M.: Principles and methods of testing finite state machines
– a survey. Proc. IEEE 43 (1996) 1090–1123

2. El-Fakih, K., Prokopenko, S., Yevtushenko, N., Bochmann, G.V.: Fault diagnosis
in extended finite state machines. Testing of Communicating Systems - Proceedings
of 15th IFIP International Conference, TestCom 2003 (2003)

3. Ghedamsi, A., Dssouli, R., Bochmann, G.V.: Diagnostic tests for single transi-
tion faults in non-deterministic finite state machines. Proceedings of the IFIP
TC6/WG6.1 Fifth International Workshop on Protocol Test Systems V (1992)

4. Ghedamsi, A., v. Bochmann, G.: Test result analysis and diagnostics for finite
state machines. Proc. 12th Int. Conf. on Distributed Systems (1992)

5. Ghedamsi, A., Bochmann, G., Dssouli, R.: Diagnosis for single transition faults
in communicating finite state machines. IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’93), Pittsburgh, USA (1993)

6. Ghedamsi, A., Dssouli, R., Bochmann, G.: Diagnosing distributed systems modeled
by communicating finite state machines. Revue Reseaux et Informatique Repartie
3 (1993) 343–363

7. Lee, D., Sabnani, K.: Reverse-engineering of communication protocols. Proc. of the
IEEE International Conference on Network Protocols, California (1993) 208–216

174 Z. Pap, G. Csopaki, and S. Dibuz

8. Ghedamsi, A., Bochmann, G., Dssouli, R.: Multiple fault diagnostics for finite
state machines. IEEE INFOCOM’93 (1993)

9. El-Fakih, K., Yevtushenko, N., von Bochmann, G.: Diagnosing multiple faults in
communicating finite state machines. Formal Techniques for Networked and Dis-
tributed Systems, FORTE 2001, IFIP TC6/WG6.1 - 21st International Conference
on Formal Techniques for Networked and Distributed Systems (2001) 85–100

10. ITU-T: Recommendation z.100: Specification and description language (2000)
11. TC97/SC21, I.: Estelle – a formal description technique based on an extended

state transition model. international standard 9074 (1988)
12. Luo, G., Das, A., Bochmann, G.V.: Generating tests for control portion of sdl

specifications. Proceedings of the IFIP TC6/WG6.1 Sixth International Workshop
on Protocol Test systems VI (1993)

13. Moore, E.F.: Gedanken-experiments on sequential machines. In: Automata Stud-
ies. Princeton University Press, Princeton, N.J. (1956) 129–153

14. Chow, T.: Testing software design modelled by finite-state machines. IEEE Trans.
Software Eng. 4 (1978)

15. Naito, S., Tsunoyama, M.: Fault detection for sequential machines by transition
tours. Proc. of FTCS (Fault Tolerant Computing Systems (1981) 238–243

16. Sabnani, K., Dahbura, A.: A protocol testing procedure. Computer Networks and
ISDN Systems 15 (1988) 285–297

17. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans.
Computer C-19 (1970) 551–558

18. Fujiwara, S., Bochmann, G.V., Khendec, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state model. IEEE Trans. Softrw. Eng. 17 (1991) 591–603

State Identification Problems
for Timed Automata�

Moez Krichen and Stavros Tripakis

Verimag Centre Equation,
2, avenue de Vignate, 38610 Gières, France

{krichen, tripakis}@imag.fr

Abstract. A well-established theory exists for testing finite state ma-
chines. One fundamental class of problems handled by this theory is state
identification: we are given a machine with known state space and tran-
sition relation, but unknown initial state, and we are asked to find tests
which identify the initial or final state of the machine. In this paper, we
study state identification in the context of timed automata which con-
trary to, say, Mealy or Moore machines, is a suitable model for real-time
systems. We are interested in digital-clock tests which have a finite clock
precision and are thus implementable. We develop a general technique,
based on time-abstracting bisimulation, which reduces the problem to
the case of non-deterministic finite-state Mealy machines. We illustrate
our technique on a toy example.

1 Introduction

Testing is a fundamental step in any development process. It consists in applying
a set of experiments to a system, with multiple aims, from obtaining some piece of
unknown information to checking correctness or measuring performance. These
different aims give rise to different classes of testing problems, for instance,
conformance testing or performance testing.

A particularly interesting class of testing problems, pioneered in the sem-
inal 1956 paper of Moore [9], is state identification. We are given a machine
with known state-transition diagram but unknown initial state. We are asked to
perform an experiment in order to, either find the unknown initial state (distin-
guishing experiments), or verify that the machine is indeed in an assumed-to-be
state (state-verification experiments), or identify the final state, reached at the
end of the experiment (homing experiments), or lead the machine to a given
state (synchronizing experiments), etc.

An extensive theory is available on state identification problems for finite-
state machine models such as Mealy or Moore machines (see [8] for an excellent
survey). These models are well-suited for some applications (e.g., synchronous

� Work partially supported by CNRS STIC project “CORTOS” and by IST Network
of Excellence “ARTIST2”.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 175–191, 2005.
c© IFIP 2005

176 M. Krichen and S. Tripakis

circuits) but not for others. In particular, the assumption that inputs and out-
puts are synchronous makes these models unsuitable when modeling real-time
systems, where outputs are produced with variable delays governed by complex
timing constraints.

In this paper, we study state identification (in particular, distinguishing and
homing) problems in the context of timed automata [2]. The latter have been
recognized as a useful model for real-time systems. Although some work has been
done for this model on problems of conformance testing (e.g., see references in [7])
we are not aware of any previous work on problems of state identification in a
real-time setting.

Since timed automata (TA) are based on a dense-time semantics, the first
choice to make when dealing with testing on such a model is to define the
observation capabilities of the tester, in particular in what concerns time. Two
types of testers can thus be defined: analog-clock testers which can observe real-
time precisely; digital-clock testers which can only observe the “ticks” of a digital
clock (i.e., a counter). Caring about the implementability of our approach, we
consider digital-clock testers in this paper. Indeed, analog-clock testers rely on
an infinite-precision clock thus are difficult, if not impossible, to implement.

Assuming digital-clock testers has an additional benefit. It opens up the pos-
sibility for reducing the problem from the timed to the untimed case. However,
carrying out this idea is less obvious than one may think. We summarize the
main steps of the procedure in the sequel. The details are given in the main
body of the paper.

The first thing to do is to compute the product A||Tick of the TA under test
A with Tick, which is a TA modeling the digital clock of the tester. Tick emits
the special output tick and does not synchronize with A except in time. Since the
tester does not have access to any other timing information except the number
of ticks, it becomes an “untimed controller” of the product TA, call it A||Tick.

Thus, in principle, it seems possible at this point to reduce the problem to
a problem of “untimed” testing by working on some kind of time-abstracting
graph of A||Tick. One choice is the region graph [2] but this is obviously to be
avoided if we want our method to be tractable. An alternative is to use the
forward reachability graph used in TA model-checking tools such as Kronos [4].
Unfortunately, this graph does not have the necessary properties for testing
purposes. In particular, it is not pre-stable, that is, if S1

a→ S2 is a transition in
the abstract graph then there might be (concrete) states in the abstract state S1

which have no a-transition in some state in S2. To see why this is problematic,
suppose a is an input: if the tester issues a in the abstract state S1 then the
abstract system will move to S2; however, the concrete system is not guaranteed
to do so. Our choice is, then, to use the time-abstracting bisimulation (TAB)
quotient graph [11]. This graph has the same properties as the region graph (in
particular, pre-stability) and is typically much smaller than the latter. Thus, it
presents a good compromise between property preservation and size.

Once we have generated the TAB quotient graph of A||Tick, call it G, we have
a finite-state model which can be treated algorithmically. However, G is not a

State Identification Problems for Timed Automata 177

Mealy machine: it is a labeled transition system (LTS) the transitions of which
are labeled with input or output actions, ticks, or τ labels. The latter correspond
to either unobservable actions of A or time-elapsing transitions abstracted by the
bisimulation. Notice that we make no assumption on A (or Tick), in particular, it
can be non-deterministic and partially observable. The reason is that we have to
confront non-determinism anyway, even if A is deterministic: two distinct output
sequences may appear the same to the tester because of its digital clock.

The last step consists in transforming G into a non-deterministic Mealy ma-
chine M , on which state-identification problems can be solved using existing
techniques [1]. This is an original, to our knowledge, transformation technique
which is general enough to be used for any finite LTS provided it satisfies some
properties on boundedness of number of outputs (see below). Thus, the tech-
nique can be useful in an “untimed” context to reduce testing problems from
asynchronous LTS models to synchronous Mealy machines.

In a nutshell, the transformation is as follows. For every pair of nodes v1, v2

of G, we compute the language Lv1,v2 of vertebrae linking v1 and v2. A vertebra
is a finite word ending with a tick symbol and containing a single tick. Lv1,v2

is a regular language. We then compute LO
v1,v2

, the projection of Lv1,v2 into
output vertebrae, that is, vertebrae containing only outputs and tick. Using the
hypothesis that A is bounded output (i.e., can only emit a bounded number
of outputs in a bounded amount of time) we can show that LO

v1,v2
is a finite

language. For each σ ∈ LO
v1,v2

, we compute LI
v1,v2,σ, the projected language

of input vertebrae corresponding to σ. Finally, for each such σ, we construct

a transition in M of the form v1
L/σ−→ v2, where L is an appropriate regular

language derived from LI
v1,v2,σ.

Intuitively, an input vertebra like a · b · tick corresponds to a basic command
of the tester which is to issue input a followed by b and then wait until the
next tick before it proceeds. An output vertebra like c · tick corresponds to what
the tester observes after executing the input vertebra. Notice that the lengths
of the two need not be the same, although both end with a unique tick, since,
according to the interpretation above, tick can be seen both as an input and

output. v1
L/σ−→ v2 can be seen as a symbolic transition: L is the input symbol

and σ is the output symbol. To exercise this transition, a tester chooses some
input vertebra in L and then may observe the output vertebra σ. Notice that
M is non-deterministic, thus, the same input can also result to another out-
put σ′. The correctness of the method lies on the fact that input and output
vertebrae end with their unique tick symbols. Thus, there is no danger that
concatenating vertebrae may result in ambiguity for the tester. In particular,
if σ1, σ2 are two vertebrae such that σ1
= σ2 then for any vertebrae σ′

1, σ
′
2,

σ1 · σ′
1
= σ2 · σ′

2.
The rest of this paper is organized as follows. In Section 2 we recall our

model of timed automata with input, output and unobservable actions. In Sec-
tion 3 we define the various state-identification problems. In Section 4 we recall
the time-abstracting quotient graph and identify its properties of interest for
our purposes. In Section 5 we show how to transform this graph to a non-

178 M. Krichen and S. Tripakis

deterministic Mealy machine and reduce the problems from the timed to the
untimed case. Section 6 summarizes the paper and gives some directions for
future work.

2 The Model

The basic model is timed automata with inputs and outputs (TAIO) as de-
fined in [7]. These are timed automata with deadlines to capture urgency [10, 3]
and edges labeled by an input action in a finite set Actin = {a, b, · · ·}, an
output action in a finite set Actout = {v, w, · · ·} or an unobservable action
τ
∈ Actin ∪ Actout.

Let R be the set of non-negative reals. Given a finite set of actions Act, the
set (Act∪ R)∗ of all finite real-time sequences over Act will be denoted RT(Act).
The length of a sequence ρ is denoted |ρ|. ε ∈ RT(Act) is the empty sequence.
Given Act′ ⊆ Act and ρ ∈ RT(Act), PAct′(ρ) denotes the projection of ρ to Act′,
obtained by “erasing” from ρ all actions not in Act′ and all delays. For example,
if Act = {a, b}, Act′ = {a} and ρ = a 1 b 2 a 3, then PAct′(ρ) = a a. PAct′∪R(ρ)
denotes the projection of ρ to Act′ ∪R, obtained by “erasing” from ρ all actions
not in Act′ (but not delays). For example, PAct′∪R(ρ) = a 3 a 3. The time spent
in a sequence ρ, denoted time(ρ) is the sum of all delays in ρ, for example,
time(ε) = 0 and time(a 1 b 0.5) = 1.5.

A timed automaton over Act is a tuple (Q,X,Act,E) where Q is a finite set
of locations; X is a finite set of clocks; E is a finite set of edges. Each edge is a
tuple (q, q′, ψ, r , d , a), where q, q′ ∈ Q are the source and destination locations;
ψ is the guard, a conjunction of constraints of the form x#c, where x ∈ X, c
is an integer constant and # ∈ {<,≤,=,≥, >}; r ⊆ X is the set of clocks to
be reset; d ∈ {lazy, delayable, eager} is the deadline; and a ∈ Act is the action.
Intuitively, a lazy deadline imposes no urgency on the transition; delayable means
the transition, once enabled, must be taken before it becomes disabled; eager
means the transition must be taken as soon as it becomes enabled. We will not
allow eager edges with guards of the form x > c.

A TA A defines an infinite labeled transition system (LTS) the states of which
are pairs s = (q, v) ∈ Q × RX , where q ∈ Q is a location and v : X → R is a
clock valuation. Given state s = (q, v) and clock x, we write x(s) to denote the
value of x at s, i.e., v(x). 0 is the valuation assigning 0 to every clock of A. SA

is the set of all states. There are two types of transitions, discrete and timed.
Discrete transitions are of the form s = (q, v) a→ s′ = (q′, v′), where a ∈ Act
and there is an edge e = (q, q′, ψ, r , d , a), such that v satisfies ψ and v′ is ob-
tained by resetting to zero all clocks in r and leaving the others unchanged.
We say that e is enabled at s and write s |= e (or s |= ψ). Timed transitions
are of the form (q, v) t→ (q, v + t), where t ∈ R, t > 0 and there is no edge
(q, q′′, ψ, r , d , a), such that: either d = delayable and there exist 0 ≤ t1 < t2 ≤ t
such that v + t1 |= ψ and v + t2
|= ψ; or d = eager and there exists 0 ≤ t1 < t

such that v+ t1 |= ψ. We use notation such as s
a→, s
 a→, ..., to denote that there

exists s′ such that s
a→ s′, there is no such s′, and so on. This notation naturally

State Identification Problems for Timed Automata 179

extends to timed sequences. For example, s
a1b−→ s′ if there exist s1, s2 such that

s
a→ s1

1→ s2
b→ s′.

A timed automaton with inputs and outputs (TAIO) is a timed automaton
over Actτ = Act∪{τ}. A TAIO is called observable if none of its edges is labeled
by τ . A TAIO A is called input-complete if it can accept any input at any state:
∀s ∈ SA .∀a ∈ Actin . s

a→. It is called deterministic if ∀s, s′, s′′ ∈ SA .∀a ∈
Actτ . s

a→ s′ ∧ s
a→ s′′ ⇒ s′ = s′′. It is called non-blocking if

∀s ∈ SA .∀t ∈ R .∃ρ ∈ RT(Actout ∪ {τ}) . time(ρ) = t ∧ s
ρ→ . (1)

The non-blocking property states that at any state, A can let time pass forever,
even if it does not receive any input. This is a sanity property which ensures
that a TAIO does not “force” its environment to provide an input by blocking
time.

A is called output-bounded if there is a bound on the number of outputs A
can produce in a bounded amount of time (say, one time unit). Formally:

∃n .∀s ∈ SA .∀ρ ∈ RT(Actτ) . (s
ρ→ ∧ time(ρ) = 1)⇒ |PActout(ρ)| ≤ n. (2)

An example of a TAIO is shown in Figure 1. This TAIO has three locations
(q1, q2 and q3), one input (click), two outputs (simple and double) and one clock
(x). It models a mouse which produces a double-click when the button is pressed
twice (or more) in one time unit, a simple-click otherwise. We will use this
automaton as a running example in the rest of the paper. We annotate actions
with ? and ! to denote inputs and outputs, respectively. Unless otherwise noted,
deadlines are lazy.

Fig. 1. An example of a TAIO: the simple- and double-click mouse

�����

� �
��

�

�
� q2

simple!

x = 1

x := 0

eager

click?
x := 0

x = 1
eager

double!
x := 0

q1

q3

click?
x < 1

click?
x < 1

180 M. Krichen and S. Tripakis

3 State-Identification Problems on Timed Automata

We consider a TAIO A which is non-blocking and output-bounded (but possibly
non-deterministic, partially-observable or non input-complete) and the current
state of which is unknown. We wish to perform an input/output experiment
from which we can deduce either the initial state (the state A was occupying at
the beginning of the experiment − the distinguishing problem) or the final state
(the state A is occupying at the end of the experiment − the homing problem).

An input/output experiment consists in applying inputs on A and observing
the generated outputs. The experiment may be preset or adaptive [5].1 In a preset
experiment the input sequence the tester applies is totally known in advance
(before the experiment starts). In an adaptive experiment the tester is allowed to
decide which inputs to apply depending on the outputs observed so far. Clearly,
adaptive experiments are more general. While a preset experiment can simply
be modeled as an input sequence, an adaptive experiment needs to be modeled
as a decision tree (e.g., see Figure 3).2

In our case, the tester is “timed”: it observes not only the outputs of the
machine under test but also the time when these outputs occur. In practice,
it is not possible to observe time in an infinitely-precise way, due to the fact
that the tester has access only to a digital clock (i.e., a discrete counter updated
by some physical process). In this paper, we make the assumption that the
clock of the tester can be modeled by a timed automaton called Tick. Examples
of Tick automata are given in Figure 2. Tick is a TAIO with a single action
tick
∈ Actin ∪ Actout ∪ {τ} and no inputs. Tick must be non-blocking and ensure
that tick always eventually occurs. Our method works for any such Tick model.

Fig. 2. Possible tester clock models

The initial uncertainty of the tester is modeled by a set of states S0 ⊆ SA.
In other words, we assume that A is initially in some state in S0. Notice that

1 Adaptive experiments are called branching experiments in [9].
2 In the literature a distinction is made between simple and multiple experiments [9, 5].

A multiple experiment can be executed multiple times and the assumption is that
the machine is always at the same state at the beginning of each execution: this
essentially means there is a special “reset” button which brings the machine back
to the same (unknown) initial state at the beginning of each experiment. We only
consider simple experiments in this paper, since they assume less power on the tester
side.

� � �� �
�� ��

�� ��
�

Tick with jitter

tick!

perfectly periodic Tick

tick!

Tick with skew

eager
y = 1

delayable
y := 0

eager

tick!

tick!

eager

9 ≤ y ≤ 109 ≤ y ≤ 11

y := 0

y = 10, y := 0

y = 10, y := 0
0 < y ≤ 1

State Identification Problems for Timed Automata 181

S0 may equal SA, which means we have no knowledge of the initial state. We
are also given m pairwise disjoint subsets of SA, C1, ..., Cm. In the case of the
distinguishing problem, C1, ..., Cm form a partition of S0 (thus, S0 =

⋃
i Ci).

This partition models our requirements from the tester: we want the tester to
tell us, at the end of the experiment, in which of the m subsets A was at the
beginning of the experiment. In the case of the homing problem, C1, ..., Cm form
a partition of SA (thus, SA =

⋃
i Ci). Here, we want the tester to tell us in

which of the m subsets A is at the end of the experiment. For example, we
might associate one set Ci with each location qi of A, meaning we want to know
the final location.

A vertebra is an element of Vert = (Actin ∪Actout)∗ · {tick}. An input-vertebra
(respectively, output-vertebra) is an element of Vertin = (Actin)∗ · {tick} (respec-
tively, Vertout = (Actout)∗ · {tick}). At each vertebra corresponds a unique input-
vertebra and a unique output-vertebra which can be obtained by projection. For
instance, a? · v! · b? · v! ·w! · tick is a vertebra with corresponding input-vertebra
a? · b? · tick and output-vertebra v! · v! · w! · tick.

A digital preset experiment (PX for short) is a finite sequence π ∈ (Vertin)∗,
for example

π = a · tick · b · c · tick.

This experiment is to be interpreted as follows:

Issue input a; wait until the next clock tick occurs; issue input b, then
input c; wait until the next clock tick occurs; collect the observed output.

This interpretation assumes that the tester has enough time to issue the entire
sequence of input actions appearing between two successive ticks before the next
tick is received. However, this is not a restrictive assumption: as we make no
assumption on input-completeness on A, assumptions on A’s environment can
be modeled directly within A. In particular, timing constraints on the tester, such
as how much time it takes to issue an input can be modeled this way. As we shall
see later, the tester is not allowed to issue an input which may not be accepted
by A, thus, must obey the modeled timing restrictions.

A digital adaptive experiment (AX for short) is defined as a finite decision
tree like the ones shown in Figure 3. Each internal node of the tree is labeled
with an input-vertebra. Each edge is labeled with an output-vertebra: the labels
of two edges emanating from the same internal node must be distinct. Each leaf
is labeled with an element from {C1, ..., Cm}. The AX to the left of the figure is
to be interpreted as follows:

Issue input a, issue input b, wait until the next tick and collect the
observed output sequence. If the latter equals v · w · tick then stop the
experiment and declare that the result of the experiment is C2. Otherwise
(i.e., v · tick is observed), issue input a twice, wait until the next tick and
collect the observed output sequence. If the latter equals v · tick then the

182 M. Krichen and S. Tripakis

Fig. 3. Two digital experiments: adaptive (left) and preset (right)

result of the experiment is C2. Otherwise (i.e., v · v · tick is observed) the
result is C1.3

Notice that we allow decisions to be taken in an AX only after ticks. Indeed,
this is the only choice that makes sense implementation-wise, because this is
the point where the inputs and outputs of the tester synchronize. Suppose we
allowed the AX to make a decision after every input it issues. This would give
a tree where an internal node could be labeled, say, by a ∈ Actin. How would
such an experiment be interpreted? It is not legal to interpret it as: “Issue input
a and observe the output. If the latter is b then ... else ...”. This is because the
output cannot always be observed immediately after an input is given, but only
after some time. Indeed, for some inputs, there might be no output at all until
the next tick. Thus, it is natural to interpret the above experiment as: “Issue
input a and wait for the next output. If the latter is ...”. But waiting for the next
output is equivalent to waiting for the next tick and then observing the output,
since the tester does not know how much it has to wait. This is precisely the
same as labeling the internal node by a · tick, which brings us to our case where
nodes are labeled with input-vertebrae.

Another thing to point out on AX is the fact that the branches from an
internal node do not cover all possible outputs. Indeed, they cannot, since the
AX needs to be finite and the number of output-vertebrae is infinite. However,
as we shall see, for an output-bounded TAIO, the above number turns out to be
finite. We shall use this hypothesis in the following sections. In terms of execution
of an AX, if the tester observes an output sequence which is not in the set of
possible outputs in the current node of the decision tree, then the tester declares
the system under test or the tester’s clock as non-conforming to their respective
models.

Notice that a PX is a special type of an AX, where the inputs given do not
depend on the outputs observed during the experiment. Thus, an AX T is a PX
if all leaves of T are at the same depth and all internal nodes of T which are at
the same depth are labeled with the same input-vertebra. For example, the AX
to the right of Figure 3 is preset.

3 Depending on whether we are dealing with the distinguishing problem or the homing
problem, the result of the experiment is interpreted differently, see below.

a · b · tick

v · tick v · w · tick

C2

v · tick

C2 C1

a · a · tick

v · v · tick

a · b · tick

v · tick v · w · tick

v · tick

C2 C1

a · a · tick

v · v · tick

a · a · tick

v · tick

C3

State Identification Problems for Timed Automata 183

Before giving the definitions of distinguishing and homing sequences, we need
to make the link between the possible observable input- and output-vertebrae
and the real-time traces of the model. For that, we consider Atick = A||Tick the
product of A and Tick. A timed-vertebra is an element of VertRT = RT(Act) ·
{tick}, for example, ρ = a · 0.4 · v · τ · 0.6 · tick. Let Acttickin = Actin ∪ {tick} and
Acttickout = Actout ∪ {tick}. To each ρ ∈ (VertRT)∗ correspond the unique sequences
π = PActtick

in
(ρ) ∈ (Vertin)∗ and σ = PActtickout

(ρ) ∈ (Vertout)∗. For example, ρ given
above matches π = a · tick and σ = v · tick. Intuitively, if ρ matches π and σ then
ρ is a possible behavior of Atick for which the latter can produce σ when “fed”
with π.

For some set of states S ⊆ SA and an input-vertebra sequence π ∈ (Vertin)∗

we say that π is accepted by S if ∀s ∈ S · ∃ρ ∈ (VertRT)∗ · s ρ→ ∧π = PActtick
in

(ρ).
The set of output-vertebra sequences that can be observed starting from some
state in S, due to the execution of π is outputs(S, π) = {σ ∈ (Vertout)∗ | ∃s ∈
S ·∃ρ ∈ VertRT ·s ρ→ ∧π = PActtick

in
(ρ)∧σ = PActtickout

(ρ)}. Moreover for some output-
vertebra sequence σ ∈ (Vertout)∗, we introduce the two following sets of states
init(S, π, σ) = {s ∈ S | ∃ρ ∈ VertRT · s ρ→ ∧π = PActtick

in
(ρ) ∧ σ = PActtickout

(ρ)} and

succ(S, π, σ) = {s′ ∈ SA | ∃s ∈ S · ∃ρ ∈ VertRT · s ρ→ s′ ∧ π = PActtick
in

(ρ) ∧ σ =
PActtickout

(ρ)}. Intuitively, init(S, π, σ) corresponds to the subset of states of S from
which it is possible to observe σ after applying π and succ(S, π, σ) the subset of
states of SA to which it is possible to move after applying π and observing σ.

Definition 1 (Valid experiments). Let T be an AX, A a TAIO and S0 ⊆ SA.
T is said to be valid w.r.t. A and S0 if for each node u of T it is possible to assign
a set of states Su ⊆ SA such that the following hold:

– for r, the root of T , we have Sr = S0;
– for each internal node u of T , if π is the input-vertebra label of u, then:

• π is accepted by Su;
• for each σ ∈ outputs(Su, π), there exists an outgoing edge from u labeled

with σ; furthermore, u has as many outgoing edges as the number of
elements of outputs(Su, π);

• if u
σ→ u′ is an edge of T then Su′ = succ(Su, π, σ). ��

Validity guarantees that, at each step of its execution, the input provided by
the experiment is accepted by the current state of the machine, no matter what
this state is. Validity also ensures that any output the machine may produce is
taken into account in the experiment.

Let T be an AX. For each leaf u of T , πu denotes the unique sequence of
input-vertebrae obtained by concatenating the labels of the internal nodes on
the path from the root of T to u. Similarly, σu denotes the unique sequence of
output-vertebrae obtained by concatenating the labels of the edges on this path.
Finally, Cu denotes the label of u (i.e., Cu ∈ {C1, ..., Cm}).
Definition 2 (Distinguishing and homing experiments). An experiment
T is distinguishing (respectively, homing) for A w.r.t. Tick, S0 and {C1, ..., Cm}

184 M. Krichen and S. Tripakis

iff T is valid w.r.t. A and S0 and for any leaf u of T we have: succ(S0, πu, σu) ⊆
Cu (respectively, init(S0, πu, σu) ⊆ Cu). ��

We use abbreviations DAX, DPX, HAX and HPX for distinguishing or hom-
ing, adaptive or preset experiments.

The objective of this paper is to develop algorithms which, given A, Tick, S0

and {C1, ..., Cm}, check whether there exists a DPX, HPX, DAX, or HAX and
if so construct one. It can be easily shown that for any type of experiment, a
solution does not always exist. This is no surprise, since A is generally partially
observable and non-deterministic. But also because the tester only has limited
observation capabilities regarding time (i.e., a digital-clock). Notice that even
in the case of finite Mealy machines, non-determinism implies that solutions
do not always exist for any of these experiments [1]. On the other hand, in
the case of deterministic Mealy machines, a homing (preset) experiment always
exists, whereas distinguishing experiments may or may not exist [9, 8]. Also note
that there are cases where an adaptive experiment exists whereas no preset
experiment exists.

4 The Time-Abstracting Bisimulation Quotient Graph

The first step toward solving the state-identification problems defined in the
previous section is to generate the quotient graph G of the product Atick with
respect to the time-abstracting bisimulation (TAB). Due to space limitations, we
will not define what a TAB is, nor show how to construct G. These topics are
presented in detail in [11]. Here, we only recall the basic properties of G which
are relevant for the purposes of this paper. Readers not familiar with TABs may
think of G as the region graph of Atick. Indeed, the latter is in fact a TAB quotient
graph, but not the coarsest possible in general.

G is a finite graph. The edges of G are labeled either with some a ∈ Actin ∪
Actout ∪ {tick, τ} (corresponding to the discrete transitions of Atick), or with ε
(corresponding to the passage of time). For our purposes, both τ and ε transitions
model events which are unobservable to the tester. Thus, we rename all ε transi-
tions into τ transitions. From now on, we assume that G has been transformed
in that way. That is, the set of labels of G is Σ = Actin ∪ Actout ∪ {tick, τ}.

Every node v of G corresponds to a set of states of Atick and consequently to
a set of states of A, Sv. We assume that G respects all sets S0, C1, ..., Cm. This
means that either Sv ⊆ S0 or Sv∩S0 = ∅ and similarly for every Ci. Constructing
G in order to respect such subsets of the state space is not a problem (see [11]
for details).

Finite paths of G define sequences of symbols which are in Σ∗. In particular,
a discrete-vertebra is an element of Vertdisc = (Σ\{tick})∗ ·{tick}. As in the TAIO
case, we make the link between these discrete-vertebrae and the corresponding
observable input- and output-vertebrae. For ρ ∈ (Vertdisc)∗, π ∈ (Vertin)∗ and
σ ∈ (Vertout)∗, we say that ρ matches π (resp. σ) if the projection of ρ to Acttickin

(resp. Acttickout) equals π (resp. σ).

State Identification Problems for Timed Automata 185

The sanity properties of A and Tick induce similar properties on G. G is
non-blocking in the sense that for any node v of G there exists a node v′ of
G and a sequence ρ ∈ Vertdisc such that v

ρ→ v′ is a possible path in G and
ρ matches the input-vertebrae tick (i.e., if no input is given, time will elapse).
An equally important property is that G is also output-bounded in the sense
that the output-vertebrae that G can produce are of bounded length. In other
words, there exists n such that for any discrete-vertebra ρ of G, the length of
the output-vertebra corresponding to ρ is at most n.

Fig. 4. A time-abstracting bisimulation quotient graph

The graph G shown in Figure 4 is the TAB quotient graph of the product
of the TAIO of Figure 1 and the left-most Tick automaton of Figure 2. 4 The
nodes of G are numbered from 1 to 23. G is made up of three subblocks:

– The cycle made by nodes 1, 2 and 3 models the behavior of the system
when no stimuli are received from the external environment (i.e., only time
elapses).

4 Notice that since the automaton of Figure 1 is not input-complete, click? actions are
not allowed at every node of the quotient graph.

τ

τ

τ

tick

τ

τ

τ

τ

τ

tick

τ

simple!simple!

τ

click?

click?

τ

tick

tick

τ

τ click?

τ

17

1

2 3

4 5

6 7 8 9

10 11 12 13

14 15 16

18 19 20

21 22

23

click?

click?

τ

τ

τ

τ

τ

tick τ

τ

click?

q1, x = 0 ∧ y = 1

q1, x = y = 0

q2, x = y = 0

q2, 0 < x < y < 1

q3, 0 < x < y < 1q2, x = y = 1q3, 0 < x = y < 1

q3, x = y = 1 q2, x = 1 ∧ y = 0

q3, x = 1 ∧ y = 0 q2, 0 < y < x < 1

q3, 0 < y < x < 1

q2, 0 < x = y < 1q3, x = y = 0

click?

click? click?

click?

click?

q1,

x = 0 ∧ 0 < y < 1

q2,

x = 0 ∧ 0 < y < 1

q3,

x = 0 ∧ 0 < y < 1

q2,

0 < x < 1 ∧ y = 1

q2,

0 < x < 1 ∧ y = 0
q3,

0 < x < 1 ∧ y = 1

q3,

0 < x < 1 ∧ y = 0

q3,

x = 1 ∧ 0 < y < 1

q2,

x = 1 ∧ 0 < y < 1

double!
double!

186 M. Krichen and S. Tripakis

– The subgraph of G induced by nodes 2, 4, 6, 7, 10, 11, 14, 15 and 18 models
the behavior of the system when a first click and the tick actions happen
simultaneously.

– The second subgraph of G induced by the rest of the nodes models the
behavior of the system when the first click and the tick actions happen at
different times.

G is not a Mealy machine, thus, existing methods for solving state identifi-
cation problems [8] do not apply. Indeed, in Mealy machines inputs and outputs
are synchronous whereas in G they are inherently asynchronous: an input may
result in some output later in time, or even not at all; an output may be emitted
without any explicit input but simply with the passage of time; a single input
may produce more than one outputs or more than one inputs may be neces-
sary to produce an output; and so on. This motivates the next section, which
proposes a transformation of G to a Mealy machine M capturing all necessary
information in order to solve the problems of the previous section. Notice that
M is a non-deterministic machine, that is, a given input may result in more
that one outputs and/or lead to more that one states. This is to be expected, as
mentioned above. Still, input and output symbols in M are synchronous, which
allows us to use existing methods on non-deterministic such machines [1].

5 Transformation to a Non-deterministic Mealy Machine
and Reduction

As explained in Section 4 the main objective of the transformation is to remove
the asynchronism between inputs and outputs in G. To do this, we observe
that the basic external stimuli in G are input-vertebrae. Thus, it should suffice
to consider the way in which G behaves w.r.t. elements in Vertin. For this we
need to identify the response of G w.r.t. any possible input-vertebra which is
“accepted” by the current considered node. An input-vertebra π is accepted by
node v if there exists a discrete-vertebra ρ such that v

ρ→ and ρ matches π.
Consequently, a first idea is to transform G into a Mealy machine M with

the same set of nodes as G and label the edges of M with pairs (π, σ) ∈ Vertin×
Vertout. Formalizing this, we get that for any two nodes v, v′ of G and any pair

(π, σ) ∈ Vertin×Vertout, we add an edge v
π/σ→ v′ in M iff there exists ρ ∈ Vertdisc

such that

v
ρ→ v′ is a path of G and ρ matches both π and σ.

For instance, the Mealy machine deduced from the graph shown in Figure 4 has
an edge from node 2 to node 18 labeled with click · click · tick/tick and another
edge from 2 to 15 labeled with click · tick/tick.

The problem with the above definition is that some nodes of M may have
an infinite number of outgoing edges, since the number of paths v

ρ→ v′ is a-
priori unbounded. For instance, in the preceding example, we need to draw an

State Identification Problems for Timed Automata 187

edge from node 2 to node 18 for each input-vertebrae which is in click · click ·
click∗ · tick. Observe, however, that any of these input-vertebrae produces the
same output-vertebra, namely, tick. Thus, we can remedy the above problem by
grouping all input-vertebrae together and representing them symbolically in a

single transition. More precisely, we will only add a single edge 2
L/tick→ 18, where

L is the regular language click · click · click∗ · tick.
The method we propose consists of the following steps:

Step 1 We identify the nodes of G with an incoming edge labeled with tick.
These nodes are called tick-nodes. The latter are these nodes which can
be reached by an input-vertebra. In Figure 4, the tick-nodes are drawn
with double rectangles.

Step 2 For every node v and every tick-node vtick of G, we compute the language
Lv,vtick

containing all ρ ∈ Vertdisc such that v
ρ→ vtick. Lv,vtick

is a regular
language since it is induced by a subgraph of G.

Step 3 For each v and vtick, we compute LO
v,vtick

= {PActtickout
(ρ) | ρ ∈ Lv,vtick

}, the
projection of Lv,vtick

to the set of outputs and tick actions. LO
v,vtick

is a set
of output-vertebrae. Since G is output-bounded, LO

v,vtick
is a finite set.

Step 4 For each σ ∈ LO
v,vtick

, we compute LI
v,vtick,σ

= {π | ∃ρ ∈ Lv,vtick
such that ρ

matches both π and σ}, the set of input-vertebrae the execution of which
may generate σ. LI

v,vtick,σ
can be defined equivalently as

LI
v,vtick,σ

= PActtick
in

(P−1(σ) ∩ Lv,vtick
)

where P−1(·) denotes the inverse projection function. Since all the op-
erations in the right-hand side of the above formula preserve regular
languages, LI

v,vtick,σ
is a regular language.

After computing LI
v,vtick,σ

, we add in M a new edge from v to vtick labeled
with LI

v,vtick,σ
/σ.

At this point, we have obtained a finite, non-deterministic Mealy machine
which has the same nodes as G and the edges of which are labeled with pairs
(L, σ) where L is a regular language of input-vertebrae (called the language-
symbol of the edge) and σ is an output-vertebra. Unfortunately, we are still not
done. The problem is that language-symbols must be disjoint across the entire
set of edges of M . Only if this holds we have the right to consider two different
(and disjoint) language-symbols L1 and L2 as different input symbols in M .5

The example shown in Figure 5 illustrates the problem. If we consider L1 and
L2 as different input symbols then we do not find a homing preset experiment
for this machine: L1 is not a HPX because L1 is not accepted at state 2; similarly
for L2. However, a HPX exists, namely, a · a · tick. In order to be able to detect
this, we need to “split” L1 into L′

1 and L′
2 and to update the edges as shown in

the figure.

5 Notice that for the output symbols of M there is no such issue: two output symbols
σ1 and σ2 are the same iff the output-vertebrae σ1 and σ2 are identical.

188 M. Krichen and S. Tripakis

In the general case, this transformation is done as follows:

Step 5 We collect the language-symbols that appear on the edges of the machine
M so far constructed. Let L1, ..., LN be the list of these language-symbols.
Then we compute L′

1, ..., L
′
N ′ , the coarsest partition of L1 ∪L2 ∪ ...∪LN

which respects each Li. Thus, L′
k are pairwise disjoint and each Li is

“split” into a number of L′
k, namely:

Li = L′
j1 ∪ · · · ∪ L′

ji
.

Then, we replace each edge v
Li/σ→ v′ by the edges v

L′
j1

/σ→ v′, ..., v
L′

ji
/σ→ v′.

Fig. 5. A time-abstracting bisimulation quotient graph

Step 5 completes the transformation. Figure 6 shows the result of the trans-
formation technique applied up to Step 4 to our running example (Step 5 is
omitted because it results in a graph too complex to be readable). In the figure,
the tick-nodes are drawn with double circles. The rest of the nodes are drawn
with rectangles. In order not to overload the figure, we group together some
nodes which are equivalent in the sense that no input sequence can distinguish
them (nodes 19 and 21 for example). We also duplicate the nodes 15 and 18. The
list of (non-disjoint) input language-symbols for this machine are: A = tick, B =
click · tick, C = click · click∗ · tick, D = click · click · click∗ · tick, E = click∗ · tick.
The corresponding disjoint input language-symbols are: A′ = tick (= A), B′ =
click · tick (= B), C ′ = click · click · click∗ · tick (= D). The output symbols are:
X = tick, Y = simple · tick, Z = double · tick.

Once we have transformed G into M we can reduce the problem of finding a
digital-clock experiment for A to the problem of finding the corresponding (un-
timed) experiment for M . We omit the definitions of untimed preset/adaptive
homing/distinguishing experiments for non-deterministic Mealy machines, as
they can be found in [1].6 The following proposition gives the main result of
this work.

6 There are slight differences in the framework considered in the above paper, namely,
the machines considered there are input-complete and homing experiments are not
studied. However, extending the definitions and algorithms to cover these cases is
straightforward.

1 212

(L1 = {a∗ · tick})/v · tick
(L′

1 = {a∗ · tick} \ {a · a · tick})/v · tick

L′
2/v · tick

(L′
2 = L2 = {a · a · tick})/w · tick(L2 = {a · a · tick})/w · tick

State Identification Problems for Timed Automata 189

Fig. 6. A time-abstracting bisimulation quotient graph

Proposition 1. A has a DPX (resp., HPX, DAX, HAX) iff M has a DPX
(resp., HPX, DAX, HAX).

Checking whether M has a given type of experiment can be done using the
algorithms of [1]. These algorithms permit not only to check existence but also
to construct an experiment in case it exists. The algorithms are based on the
synthesis of strategies in games with incomplete information. The game is played
between the tester who provides the inputs and the system under test who
provides the outputs. The strategy of the system corresponds to resolving its
non-determinism. The strategy of the tester corresponds to choosing the inputs.
The tester has incomplete information because it only observes the output, not
the current state of the game. Finding preset experiments corresponds to finding
a blindfold strategy for the tester, that is, a strategy which is totally defined in
advance. Finding preset and adaptive experiments is shown in the above paper
to be PSPACE-complete and EXPTIME-complete problems, respectively.

It remains to show how to construct an experiment for A given an experiment
for M . We explain this in the case of preset homing experiments. The idea
carries to other types of experiments as well. A HPX for M is a finite sequence

18

2015

2

16

3

1

18

15

22 , 23

9 , 13

14

17

6 , 104 , 7

11

19 , 21

12

5 , 8

D
/
Y

B
/X

A
/Z

D
/X

A
/Z

D
/X

B
/
Z

C
/
X

A
/X

B
/
Y

D
/Z

A
/X

A
/
XB

/X

A
/X

E
/X

C
/
X

A
/
X

A
/
X

B
/
Z

D
/
Y

B
/

Y

D/Y

E
/X

D/Z

D
/
Z

A
/

Y

A
/Y

A
/X

B/Z

B/Y

190 M. Krichen and S. Tripakis

of language-symbols L1 · L2 · ... · Lm, where each Li is a regular language of
input-vertebrae. For each i we choose arbitrarily an input-vertebra πi ∈ Li (e.g.,
we may choose a πi of minimal length). We claim that π = π1 · · ·πm is a HPX
for A. This is based on the following. First, the fact that different language-
symbols in M are disjoint. Thus, when issuing a certain input-vertebra πi, there
is no ambiguity as to which language-symbol in M this πi corresponds to. In
our example above, it will be the language-symbol Li. Second, the fact that all
output-vertebrae end with a tick symbol. This ensures that when concatenating
output-vertebrae to form the final output sequence given to the tester, the latter
will have no ambiguity in interpreting the result. In particular, if σ1, σ2 are two
vertebrae such that σ1
= σ2 then for any vertebrae σ′

1, σ
′
2, σ1 ·σ′

1
= σ2 ·σ′
2. Thus,

if the output sequences are different at the level of M they will also differ at the
level of A.

6 Summary and Future Work

We presented a method for solving state-identification problems for timed au-
tomata by generating their time-abstracting bisimulation quotient graph and
then transforming the latter into a non-deterministic Mealy machine on which
the same problems can be solved. Although we only studied distinguishing and
homing experiments in this paper, the method should adapt easily to state-
verification and synchronizing experiments as well. In the short term, we plan
to identify upper and lower complexity bounds on the problems studied in this
paper and experiment with a prototype implementation. One direction for fu-
ture work is to consider analog-clock experiments. Apart from their theoretical
interest, such experiments could also be useful in limiting state-explosion, in
particular in cases where the constants involved in the Tick automaton are sig-
nificantly smaller than those in the automaton under test. Still, a solid theory for
implementation of analog-clock devices is lacking, thus should also be topic of
future research. Another direction would be to remove, if possible, the bounded-
output hypothesis used in this paper. Since most realistic systems meet this
hypothesis, removing it is probably only of theoretical interest. However, it gives
rise to an interesting question, namely, studying testing problems in the context
of generalized Mealy machines or sequential transducers. Finally, another inter-
esting direction is to consider related problems such as machine identification
and learning. Some work in this direction has recently been reported in [6].

References

1. R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for nonde-
terministic and probabilistic machines. In 27th ACM Symposium on Theory of
Computing (STOC’95), pages 363–372, 1995.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

State Identification Problems for Timed Automata 191

3. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In
Compositionality, volume 1536 of LNCS. Springer, 1998.

4. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Hybrid Sys-
tems III, Verification and Control, volume 1066 of LNCS, pages 208–219. Springer-
Verlag, 1996.

5. A. Gill. State-identification experiments in finite automata. Information and Con-
trol, 4:132–154, 1961.

6. O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording au-
tomata. In Joint conference on Formal Modelling and Analysis of Timed Sys-
tems and Formal Techniques in Real-Time and Fault Tolerant System (FORMATS-
FTRTFT’04), volume 3253 of LNCS. Springer, 2004.

7. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In 11th International SPIN Workshop on Model Checking of Software (SPIN’04),
volume 2989 of LNCS. Springer, 2004.

8. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
- A survey. Proceedings of the IEEE, 84:1090–1126, 1996.

9. E.F. Moore. Gedanken-experiments on sequential machines. In Automata Studies,
number 34. Princeton University Press, 1956.

10. J. Sifakis and S. Yovine. Compositional specification of timed systems. In 13th An-
nual Symposium on Theoretical Aspects of Computer Science, STACS’96, volume
1046 of LNCS. Spinger-Verlag, 1996.

11. S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisim-
ulations. Formal Methods in System Design, 18(1):25–68, January 2001.

Timing Fault Models for Systems with Multiple
Timers

M. Ümit Uyar1, Yu Wang1, Samrat S. Batth1, Adriana Wise2, and M.A. Fecko3

1 The City College of the City University of New York, New York, USA
2 Department of Computer Science, Graduate Center, CUNY, New York, USA

3 Applied Research Area, Telcordia Technologies Inc., New Jersey, USA

Abstract. Multiple timing faults, although detectable individually,
can hide each other’s faulty behavior making the faulty system indis-
tinguishable from a non-faulty one. A set of graph augmentations are
introduced for single timing faults. The fault detection capability of
the augmentations is analyzed in the presence of multiple timing faults
and shown that multiple occurrences of a class of timing faults can be
detected.

Keywords: Conformance Testing; Timer Constraints; Multiple Faults;
Fault Modeling; Timed Automata

1 Introduction

This paper analyzes the fault detection capability of the timed FSM model
introduced in Ref. [7] in the presence of multiple timing faults. It is shown
here that multiple timing faults, although detectable individually, can hide each
other’s faulty behavior thereby making the faulty system indistinguishable from
a non-faulty one. A set of graph augmentations are introduced for single timing
faults. It is shown that the augmentations for single faults can also detect the
presence of multiple faults occurring simultaneously.

Fault coverage has been studied mostly with respect to transfer/output faults
for FSMs [1, 9, 11, 15]. Petrenko et al. [9] investigate fundamental underlying con-
cepts of fault coverage analysis, whose primary focus is protocol conformance
testing. The detection of such faults, which is not part of the timing-fault analy-
sis, depends on the adopted conformance relation, the underlying fault models,
and the state verification method [4, 8, 10, 13]. If a timing fault results in a trans-
fer/output fault, we assume that it is detected with high probability under the
widely accepted assumption that the faults do not increase the number of states
in an implementation under test (IUT).

The related work on testing systems with timing dependencies focuses on
testing Timed Automata (TA) [2], with a theoretical framework in Ref. [12]
achieving a provably complete test coverage at the expense of a prohibitively
large number of test cases. Dssouli et al. [5, 6] introduce a method based on the
state characterization technique using a timed extension of the Wp-method [8].

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 192–208, 2005.
c© IFIP 2005

Timing Fault Models for Systems with Multiple Timers 193

The technique formulates fault models for timed systems by considering time
specific one-clock and multi-clock timing faults in addition to FSM-like trans-
fer/output faults. The aim of a complete test coverage is relaxed—by choosing
a proper granularity, a “good” fault coverage is achieved with reasonably long
test sequences. Dssouli et al. are the first to present a classification of timing
faults [6], and formally prove that their technique detects all single faults of a
given type [5]. None of the above techniques are shown to have the ability to
detect multiple simultaneous timing faults. A major contribution of this paper is
a formal analysis of such a fault detection capability for the testing methodology
introduced in Ref. [7].

Section 2 of this paper gives the basic definitions. The simplified version of
the timed FSM model of [7] is given in Section 3. Single and multiple timing
faults are discussed in Sections 4 and 5, respectively.

2 Definitions

A communicating protocol can be modeled as a Finite State Machine (FSM)
represented by a directed graph G(V,E). Vertex set V and edge set E represent
the states and transitions triggered by events of a system, respectively. For time-
related FSM, FSM can be extended to consider of a set of timers T that may
be arbitrarily started or stopped.

Timed FSM is a tuple M = (V,A,O, T , E, v0) where V is a finite set of states,
v0 ∈ V is the initial state, A is a finite set of inputs, O is a finite set of outputs,
T is a finite set of timers, and E ⊆ V × (A× T ×O)× V is a set of transitions
V ×A× T −→ O × V .

In the presence of timers, an FSM becomes an Extended Finite State Machine
(EFSM). Timer-related variables will appear in addition to the variables from the
tuple above, in the form of conditions 〈tj〉 on the timer variables and of actions
{tj}on variable values. A tuple ei = (vp, vq, ai, oi, 〈tj〉 , {tj}) is a transition ei ∈
E, where vp is a current state, vq is a next state, ai is the input defined in current
state vp or in current transition vp

ei→ vq, oi is the output from current transition
vp

ei→ vq, tj is a vector of timer variables, 〈tj〉 are the conditions on time-related
variables, and {tj} are the actions which update time-related variables.

A timer Tj ∈ T can be defined with a timer vector tj = (Tj , Dj , fj , Lp) where
Tj ∈ {0, 1} is a timer running status variable denoted by a boolean variable,
Dj ∈ R◦+ is a time-characteristic variable that indicates the length of timer Tj ,
fj ∈ R∞ is a time-keeping variable that indicates the time elapsed since timer Tj

started, and Lp ∈ {0, 1} is a flow enforcing variable that forces the test sequence
to traverse the augmented graph according to model specific rules. Timer Tj ∈ T
is expired iff 〈(Tj == 1) ∧ (fj � Dj)〉 and is running iff 〈(Tj == 1) ∧ (fj < Dj)〉.

Tj == 1 (depicted as Tj henceforth) denotes a timer is running and Tj ==
0 (depicted as ¬Tj henceforth) denotes a timer is not running (i.e., stopped,
expired or not started yet). Dj is the length for Tj and ∀ fj ∈ Z∞ is the time
elapsed since its start. When Tj has just started, fj := 0, and fj := −∞ if Tj is
not running. Over an edge ei the value of fj is increased by the cost ci of ei as

194 M.Ü. Uyar et al.

fj := fj + ci. Once fj becomes (fj � Dj), Tj is said to be expired or timed-out.
The difference of (Dj −fj) represents the remaining time until Tj ’s expiry. Lp is
a flow enforcing variable where Lp = 0 implies that no transition can leave the
current state vp and Lp = 1 means that all transitions are allowed to leave vp.

For hk = (vk, vk+1, ak, ok, 〈tj〉 , {tj}) (∀hk ∈ E,∀vk ∈ V , ∀k ∈ Z+), a finite
transition sequence is represented as ρ = h1, · · ·hk, hk+1, · · ·hn in the graph G
associated with M . For any ∀k ∈ [1, n− 1], hk was progressed before hk+1.

Assume that there are K running timers: {T1, T2, · · ·Tj , · · ·TK} ⊂ T . Then
edge cost ci ∈ R◦+ is the amount of time required to completely traverse the
current edge ei. Timeout transition ei = (vp, vq, ai, oi, 〈tj〉 , {tj}) is triggered by
Tj expiry and it becomes feasible if at least one of the running timers Tj expires,
∀Tk
= Tj , which can be described as follows:

〈tj〉 : 〈Tj ∧ (fj � Dj) ∧ Tk ∧ (fk < Dk) ∧ (Dj − fj < Dk − fk)〉
{tj} : {Tj := 0; fj := −∞; Tk := Tk; fk := fk + ci} k ∈ {1, 2, · · ·K,∀k
= j}

A transition in which timer Tj , ∀j ∈ [1,K], does not expire is defined as a
non-timeout transition. A timer can be started in an action as follows:

〈tj〉 : 〈¬Tj ∧ Tk ∧ (fk < Dk)〉
{tj} : {Tj := 1; fj := 0; Tk := Tk; fk := fk + ci} k ∈ {1, 2, · · ·K},∀k
= j.

A timer can be stopped as follows:

〈tj〉 : 〈Tj ∧ (fj < Dj) ∧ Tk ∧ (fk < Dk)〉
{tj} : {Tj := 0; fj := −∞; Tk := Tk; fk := fk + ci} k ∈ {1, 2, · · ·K},∀k
= j.

3 Modeling Timed FSM

To simplify the test generation from timed FSM models (which are essentially
EFSMs due to the timing variables as described in Section 2), we introduce a
graph augmentation for conversion of G to G′ as follows:

Step (i): All the self loops in G are represented as ordinary (i.e., state-to-
state) edges in G′;

Step (ii): For every state vp in G, an additional state called v′
p is introduced

in G′, which becomes the ending state for all of self-loops defined in vp;
Step (iii): For self-loops of vp in G, the return from v′

p to vp is ensured by
the introduction of an additional edge called return edge eret

p in G′:

ep,k = (vp, v
′
p) (self-loop converted as state-to-state edge)

eret
p = (v′

p, vp) (return edge from replica state v′
p)

Step (iv): A new observer state is appended to vp in G′, namely v′′
p . This

state can be reached from and to vp via additional edges ep,obs, ep,wait and eret
p,obs,

respectively:

Timing Fault Models for Systems with Multiple Timers 195

Fig. 1. Self-loops and traversal enforcement rules for vp in G into vp, v′
p and v′′

p in G′

ep,obs = (vp, v
′′
p) (observer edge)

ep,wait = (vp, v
′′
p) (wait edge)

eret
p,obs = (v′′

p , vp) (return edge from observer state)

In this model, the new states in G′ are introduced to convert the self-loop
transitions as state-to-state transitions. The role of the observer state is to “con-
sume” pending timeouts and enable outgoing edges by setting Lp to 1. Figure 1
shows, for state vp, an example conversion of self-loops to state-to-state transi-
tions and the introduction of observer states/edges by our model. Augmented
graph G′ will contain two types of transitions, as defined below:

Type 1 Timeout transition ej
i defined as the transition triggered by the expiry

of timer Tj. (Note that in the original graph G, ej
i corresponds to either a state-

to-state edge or a self-loop).

Type 2 Non-timeout transition ei, which may start/stop a timer, may be a
regular, non-timeout, state-to-state transition or may have been converted from
a non-timeout self-loop transition.

3.1 Edge Conditions and Actions for New Model

The original edge conditions and the actions of G are modified by appending
timer-related conditions and actions, as described below.

Edge conditions that need to be satisfied before an edge can be traversed are
formulated using the three variable types described in Section (2): timer status
variables (Tj—on or off), time-keeping variables (Dj—timer length, fj—time
elapsed) and flow-enforcing variables (Lp—edge traversal control). Below are
the edge conditions used by our model:

A Type 1 (timeout) transition is feasible if all of the following conditions are
true during the traversal:

• at least one of the running timers expires (for any two running timers, Tj and
Tk, either Tj or Tk expires, and thus enables the timeout edge):

(
(Tj ∧¬Tk)∨

(¬Tj ∧ Tk)
) ∀Tj
= Tk

196 M.Ü. Uyar et al.

• the timer that expired was the timer with the least remaining time (i.e., if
some Tk was also running, and if Tj ’s remaining time was less, then it was Tj

that expired): Tj ∧
(¬Tk ∨

(
Tk ∧ (Dj − fj < Dk − fk)

)) ∀Tj
= Tk

• the flow-enforcing variable is set as follows:

Lp ==
{

0, if the edge was a timeout self loop edge in G
1, if the edge was a timeout state-to-state edge in G

These three components of a Type 1 edge condition can be, therefore, com-
bined and formalized as:

• for a converted edge in G′ (i.e., a self-loop edge in G):
〈
Tj ∧ (fj � Dj)∧ Tk ∧

(fk < Dk) ∧ (Dj − fj < Dk − fk) ∧ (Lp == 0)
〉

• for an original edge in G′ (i.e., a state-to-state edge in G):
〈
Tj ∧ (fj � Dj) ∧

Tk ∧ (fk < Dk) ∧ (Dj − fj < Dk − fk) ∧ (Lp == 1)
〉

The above equations imply that before a timeout transition, Tj should be
still running, remaining time should be the least among all other running timers
and the flow-enforcing variable is appropriately set for either a converted or
an original edge in G′. Any nondeterminism due to multiple timeouts can be
detected during test-sequence generation, e.g., if tmj and tmk are to expire
simultaneously, then (Dj−fj = Dk−fk) and their conditions cannot be satisfied.

Similarly, during the traversal, a Type 2 (non-timeout) transition becomes
feasible if both of the following conditions are true:

• either there is no running timer started in a previous transition (there may
be a timer started on the current transition): 〈¬Tj〉; or, if there is, it did not
expire over a previous transition (time variable fj of running timer Tj is less
than timer’s length Dj): 〈Tj ∧ (fj < Dj)〉

• the flow-enforcing variable is set as:

Lp ==
{

0, if the edge was a non-timeout self-loop in G
1, if the edge was a non-timeout state-to-state edge in G

Therefore, the time conditions for Type 2 edges can be formalized as follows:

• for a converted edge in G′ (i.e., a self-loop edge in G):
〈(¬Tj ∨ (fj < Dj)

) ∧
(Lp == 0)

〉

• for an original edge in G′ (i.e., a state-to-state edge in G):
〈(¬Tj ∨ (fj <

Dj)
) ∧ (Lp == 1)

〉

The time condition for the wait edge ep,wait and observer edge ep,obs, from
the original state vp to the observer state v′′

p is formulated as:
〈
Lp == 0

〉
.

The return edges (i.e., eret
p and eret

p,obs) added by the graph augmentation to
G′ are no-cost edges with time condition as true:

〈
1
〉
.

Action list can be executed by an edge whose traversal was determined by
its time condition being satisfied. Such an edge may proceed and update all
variables that changed during the current transition accordingly:

Timing Fault Models for Systems with Multiple Timers 197

• If a timer expires, the timeout edge will reset the status variable Tj to 0 and
the time-keeping variable to −∞:

{
Tj := 0; fj := −∞}

• If a timer started on a previous transition is still running, the current edge
ei will update its value with its cost ci (which may bring fj � Dj , and thus
timeout Tj and trigger a timeout transition):

{
fj := fj + ci

}

• If a timer is started on the current transition, the current action list will
initialize the timer state Tj to 1 and the time-keeping variable fj to 0:

{
Tj :=

1; fj := 0
}

• The flow-enforcing variable Lp is also set by every edge according to its type:

Lp :=
{

1, set by observer edge to allow traversal of state-to-state edges
0, set by either Type 1 or Type 2 edges

Each edge type will perform a subset of the above listed actions, according
to its specifics, as follows:

• Type 1 (timeout) edge: {Tj := 0; fj := −∞; Tk := Tk; fk := fk +ci; Lp :=
0}

• Type 2 (non-timeout) edge:
{
fk := fk + ci; Lp := 0

}
if the edge starts no

timers;
{
Tj := 1; fj := 0; Tk := Tk; fk := fk + ci; Lp := 0

}
if the edge

starts timer Tj

• Wait (artificial) edge:
{
fj := fj +1

}
or

{
fj := fj +(Dj − fj)

}
where Dj − fj

is the remaining time of timer Tj to timeout
• Observer (artificial) edge:

{
Lp := 1

}

• Return (artificial) edge:
{ }

(i.e., there is no actions for this edge)

Since both edge types, namely Type 1 and Type 2, disable outgoing transitions
by setting Lp := 0 the only edges whose actions will enable these transitions are
the artificially-created observer edges.

4 Modeling Timing Faults

In general, timing faults in an IUT can be classified into: (i) 1-clock interval
faults, (ii) n-clock interval faults (introduced by Dssouli et al. [5, 6]), and (iii)
incorrect settings of timer lengths. The goal is to detect such faults during test-
ing through special-purpose timers and graph augmentations that force a test
sequence to take a different path for a faulty IUT than for the conformant one.

In our model during the testing of transition ei = (vp, vq, ai, oi, 〈tj〉 , {tj}),
after input ai is applied, the expected output oi should be generated no later than
θ time units, θ ∈ R+. If there is no output observed in θ time units (represented
as ¬oi) or output oi is observed after θ time units, a fault occurs. The θ time
units is part of a test harness rather than the IUT.

4.1 1-Clock Interval Faults

1-Clock Interval Faults are related to timing conflicts due to one clock/timer
regardless of other concurrent clocks/timers. Unacceptable input timing (i.e., an

198 M.Ü. Uyar et al.

input may be ’rushed’ or ’delayed’) results either in an unacceptable output value
for a transition or unexpected output timing (i.e., an output may be ’rushed’ or
’delayed’). 1-clock interval faults occur either when at least one input interval
boundary is violated in the IUT or no interval boundary is modified but no
output is observed.

Timing Requirement: Transition ei = (vp, vq, ai, oi, 〈tj〉 , {tj}) can correctly
trigger only if applied input ai is within the required time interval [α, β] measured
from the traversal of hk—an edge prior to ei in a test sequence.

Based on this requirement, two faults, namely Timing Faults I and II, can
be defined as follows:

Timing Fault I: Input ai is applied either too early (δ′ < α) or too late (δ′ > β),
but output oi may still be observed and state vq be verified in no later than θ
time units from the instance input ai is applied.

Timing Fault II: Input ai is applied within the required time interval [α, β],
but either the output is not observed (i.e., ¬oi) or state vq cannot be verified in
less than δ + θ time units. The detection of Fault II has not been included in
the analysis presented in this paper since it has been handled by transfer fault
detection models reported in literature [9].
Graph Augmentation to Detect Timing Fault I: The modeling of 1-clock
timing requirement for an edge ei = (vp, vq, ai, oi, 〈tj〉 , {tj}), is accomplished by
using two special purpose timers and creating the so-called observer states/edges.
The special purpose timers are called Tα and Tβ with lengths Dα = α and
Dβ = β time units, respectively, where α < β. Note that timers Tα and Tβ are
not the part of the IUT, but maintained by the test harness run by the tester.

The edge ei triggers only after input ai is applied within time interval [α, β]
(i.e., after timer Tα but before timer Tβ expires), and in its action stops timer Tβ .
Therefore, in our augmentation, the modified timing conditions for hk (which
starts Tα and Tβ timers) and ei are as follows:

hk :
〈¬Tα ∧ ¬Tβ

〉 {
Tα := 1; fα := 0; Tβ := 1;

fβ := 0
}

ei :
〈¬Tα ∧ Tβ ∧ (fβ ∈ [α, β]) ∧ (Lp == 1)

〉 {
Tβ := 0; fβ := −∞; Lp := 0

}

Additionally, vp (starting state of ei) is replaced by two new states, vp,1 and
vp,2, connected by a new edge ep,1,2 from vp,1 to vp,2; the original incoming
and outgoing edges of vp are connected to vp,1 and vp,2, respectively. The time
condition for ep,1,2 is the expiry of Tα with the cost of zero:

ep,1,2 :
〈
Tα ∧ (fα � α) ∧ Tβ ∧ (Lp == 1)

〉 {
Tα := 0; fα := −∞; Lp := 0

}

Two new observer states, namely v′
p,1 and v′

p,2, with their associated observer
edges, ep,1,obs and ep,2,obs, are appended to vp,1 and vp,2, respectively. The new
wait edges ep,1,wait from vp,1 to v′

p,1 (with cost cp,1,wait = 1 time unit) and
ep,2,wait from vp,2 to v′

p,2 (with cost cp,2,wait = 1 time unit), and their return
edges, namely eret

p,1 and eret
p,2 (both with zero cost), are created:

Timing Fault Models for Systems with Multiple Timers 199

Fig. 2. Augmenting state vp for Timing Fault I detection

ep,1,wait :
〈
Tα ∧ (fα < α) ∧ Tβ ∧ (fβ < α) ∧ (Lp == 0)

〉 {
fα := fα + cp,1,wait;

fβ := fβ + cp,1,wait

}

ep,1,obs :
〈
Tα ∧ (fα � α) ∧ Tβ ∧ (Lp == 0)

〉 {
Lp := 1

}

ep,2,wait :
〈¬Tα ∧ Tβ ∧ (fβ < β) ∧ (Lp == 0)

〉 {
fβ := fβ + cp,2,wait

}

ep,2,obs :
〈¬Tα ∧ Tβ ∧ (fβ ∈ [α, β]) ∧ (Lp == 0)

〉 {
Lp := 1

}

Finally, two new fault edges, named ep,1,fault and ep,2,fault, from vp,1 and
vp,2 to a new fault state called SF−I , respectively, are introduced. The edge
conditions and actions of ep,1,fault and ep,2,fault are formulated such that if
the input is applied before Tα’s expiry (i.e., the lower boundary of [α, β]) and
after Tβ ’s expiry (i.e., the upper boundary of [α, β]), respectively, the sequence
is forced to move into state SF−I . In other words, when input ai is applied, if
the following timing conditions are true, the IUT will be assumed to be in state
SF−I , where the test will be declared as failed:

ep,1,fault :
〈
Tα ∧ (fα < α) ∧ Tβ ∧ (fβ < α) ∧ (Lp == 0)

〉 {
Tα := 0; fα := −∞;

Tβ := 0; fβ := −∞}

ep,2,fault :
〈¬Tα ∧ Tβ ∧ (fβ > β) ∧ (Lp == 0)

〉 {
Tβ := 0; fβ := −∞}

Therefore, ei triggers only when ai is applied after Tα’s and before Tβ ’s expiry.
But if the input interval condition is not satisfied, G′ forces the traversal of either
ep,1,fault, or ep,2,fault, making the tester declare the IUT in the fault state of
SF−I (Figure 2).

4.2 n-Clock Interval Fault

Timing conflicts due to n-clock interval faults are concerned with n clocks/timers
running concurrently. In a faulty IUT, this fault may result in an altered traversal

200 M.Ü. Uyar et al.

sequence which can go unnoticed during testing. n-clock interval fault occurs
when at least one edge is traversed out of the required testing sequence.

Timing Requirement: Edge ei = (vp, vq, ai, oi, 〈tj〉 , {tj}), can be only tra-
versed after a sequence of transitions ρ = h1, hk, hk+1· · ·hn, such that hk was
executed before hk+1 (∀k ∈ [2, n] ⊂ Z+).

Timing Fault III: The required order of edges is not respected and the relation
between them does not hold true (i.e., for at least one edge ∃k ∈ [2, n], hk+1 was
executed before hk). As a result, for a test sequence, the final state v′

q
= vq is
verified and the final output o′i
= oi is observed.

The graph augmentation for this case has been skipped due to space con-
straints, but an extensive study can be found in Refs. [3, 14].

4.3 Incorrect Timer Setting Faults

Timing conflicts which arise due to faulty timer length settings in an IUT are
called incorrect timer setting faults where the timer length is incorrectly set
either too short or too long (i.e., the timer expires too early or too late).

Timing Requirement: In a test sequence, edge hk starts timer Tj and is
traversed before ei. Timeout transition ei = (vp, vq, ai, oi, 〈tj〉 , {tj}) triggers
exactly in Dj time units, where Dj is the timer length.

Timing Fault IV: Timeout transition ei triggers in D′
j time units and output

oi is observed and state vq is verified in shorter than the expected time (i.e.,
D′

j < Dj).

Timing Fault V: Timeout transition ei triggers in D′
j time units and output

oi is observed and state vq is verified in longer than the expected time (i.e.,
D′

j > Dj).

Graph Augmentation to Detect Timing Fault IV: Let us consider timer
Tj with length Dj defined by the specification to be started by the actions of
edge hk and to be expired at edge ei (reachable from hk). To detect if the length
for Tj is set to D′

j which is shorter than Dj , we introduce a special purpose
timer Ts where Ds is the correct timer length as defined by the specification.
Timer Ts will be started by edge hk, which also starts Tj . Therefore, after the
augmentation, the time-related conditions and actions for hk are modeled as:

hk :
〈
1
〉 {

Tj := 1; fj := 0; Ts := 1; fs := 0
}

An observer state v′
p is appended to state vp via a new observer edge ep,obs,

wait edge ep,wait and return edge eret
p (with cost cp,wait := 1 time unit and

cret
p := 0, respectively).

ep,obs :
〈
Ts ∧ (fs � Ds) ∧ (Tj timeout) ∧ (Lp == 0)

〉 {
Lp := 1

}

ep,wait :
〈
Ts ∧ (fs < Ds) ∧ (¬Tj timeout) ∧ (Lp == 0)

〉 {
fs := fs + 1

}

Timing Fault Models for Systems with Multiple Timers 201

Fig. 3. Graph augmentation of state vp for detecting Timing Fault IV (a similar aug-

mentation is also applicable to Timing Fault V)

Finally, a new fault state SF−IV is created which is connected to vp via
ep,fault. The edge condition of ep,fault is modified such that if timer Tj expires
earlier than expected, the sequence is forced to move to state SF−IV where the
tester declares the verdict of the test as failure:

ep,fault :
〈
Ts ∧ (fs < Ds) ∧ (Tj timeout) ∧ (Lp == 0)

〉 {
Ts := 0; fs := −∞}

The edge condition of ei is also modified such that it traverses only when
fs � Ds and Tj expires as shown in Figure 3:

ei :
〈
Ts ∧ (fs � Ds) ∧ (Tj timeout) ∧ (Lp == 1)

〉 {
Ts := 0; fs := −∞;

Lp := 0
}

Graph Augmentation to Detect Timing Fault V: Graph augmentation for
Fault V is similar to that of Fault IV (Figure 3), except that the edge conditions
are formulated differently:

hk :
〈
1
〉 {

Tj := 1; fj := 0;

Ts := 1; fs := 0
}

ep,obs :
〈
Ts ∧ (fs � Ds) ∧ (Tj timeout) ∧ (Lp == 0)

〉 {
Lp := 1

}

ep,wait :
〈
Ts ∧ (¬Tj timeout) ∧ (Lp == 0)

〉 {
fs := fs + 1

}

ep,fault :
〈
Ts ∧ (fs � Ds) ∧ (¬Tj timeout) ∧ (Lp == 0)

〉 {
Ts := 0; fs := −∞}

ei :
〈
Ts ∧ (fs � Ds) ∧ (Tj timeout) ∧ (Lp == 1)

〉 {
Ts := 0; fs := −∞;

Lp := 0
}

5 Multiple Faults

It is possible that, for a given test sequence, a single timing fault, occurring
simultaneously with a fault of different type, can exhibit a behavior indistin-

202 M.Ü. Uyar et al.

Fig. 4. Generalization of timer specification where Faults I and V hide each other

guishable from an IUT without any faults. We prove in this section that the
graph augmentations introduced for single timing faults in Section 4 are capable
of detecting such multiple faults. Due to space constraints, only the pairwise
combinations of Timing Faults I, IV and V are presented in detail. The other
combinations with Timing Fault III are available in [3, 14].

5.1 Multiple Faults of I and V

It is possible that a single Fault I and a single Fault V can hide each other such
that the observable behavior of a faulty system is not distinguishable from a
non-faulty system.

Lemma 1: Graph augmentation for Fault I (Section 4.1) and Fault V (Section
4.3) can detect simultaneous presence of a single Fault I and a single Fault V
in an IUT, irrespective of the order they occur in an edge sequence.

Proof: It is possible to construct an edge sequence such that an input applied
too early violating a timing interval requirement of a specification (i.e., Fault I)
followed by a timer expiring too late (i.e., Fault V) can generate an output as if
the IUT is non-faulty. For the general case, consider a test sequence containing
· · · , hx, · · · , ei, · · · , ej , · · · , ek, · · · (Figure 4) where:

• Edge ei has a timing interval requirement that input ai be applied within
the interval of [α, β] (i.e. δ ∈ [α, β], where δ is the instant at which input is
applied, measured from edge hx).

• Edge ej from state vj to state vj+1 starts timer Tz with length Dz. ej :〈¬Tz

〉{
Tz := 1; fz = 0

}

• Tz timeout triggers edge ek which generates an observable output ok in δ +
ci + c(i+1−→j+1) + Dz + ck time units from hx, where c(i+1−→j+1) is the total
cost of all edges used in the sequence between states vi+1 and vj+1.

If input ai is applied too early (i.e., Fault I where δ′ < α) and, at the same
time, Dz is incorrectly implemented as too long (i.e., Fault V where D′

z > Dz)
such that δ − δ′ ≡ D′

z − Dz, the time at which the output ok is generated
remains the same for both the faulty and non-faulty IUTs. The output ok is
generated in δ + ci + c(i+1−→j+1) + Dz + ck time units for non-faulty IUT and
in δ′ + ci + c(i+1−→j+1) + D′

z + ck time units for faulty IUT after hx. Since
δ − δ′ ≡ D′

z −Dz, Faults I and V can hide each other.
To detect the simultaneous existence of a single Fault I and a single Fault V,

the original graph (Figure 4) is augmented (Figure 5) to include new wait and
fault states with their associated edges (as in Sections 4.1 and 4.3, respectively).

Timing Fault Models for Systems with Multiple Timers 203

Fig. 5. Graph augmentation for a single occurrence of Faults I and V

For the above generalized sequence, our graph augmentation introduces special
timers Tx and Ty in the test harness with lengths Dx and Dy, respectively, to
test the requirement of applying input ai in the interval [α, β], where α = Dx

and β = Dy. Augmentation in Section 4.1 state that both special timers to be
started at edge hx:

hx :
〈¬Tx ∧ ¬Ty

〉 {
Tx := 1; fx := 0; Ty := 1; fy := 0

}

Edge ei triggers after applying input ai within time interval δ ∈ [Dx, Dy] and
stops Ty in its actions:

ei :
〈¬Tx ∧ Ty ∧ (fy ∈ [Dx, Dy]) ∧ (Lp == 1)

〉 {
Ty := 0; fy := −∞; Lp := 0

}

Similarly, a special purpose timer Ts at the test harness with length Ds is
introduced to define the correct timer length for Tz. Therefore, edge ej starts
both Tz and Ts:

ej :
〈¬Tz ∧ ¬Ts

〉 {
Tz := 1; fz := 0; Ts := 1; fs := 0

}

For Fault I augmentation, vi (starting state of ei) is replaced by two new
states, vi,1 and vi,2, connected via ei,1,2. SF−I and its incoming edges (ei,1,fault

and ei,2,fault) are created for states vi,1 and vi,2, respectively. Then, an observer
state v′

i,1 with its associated edges ei,1,wait, ei,1,obs and eret
i,1 to the vi,1 are intro-

duced. Similarly, v′
i,2, ei,2,wait, ei,2,obs and eret

i,2 are created for Tβ (Section 4.1).
For Fault V, state v′

k with edges ek,wait, ek,obs and eret
k are attached to vk whose

outgoing edge is the Tj timeout edge ek. also state SF−V and edge ek,fault are
added to the graph:

ek,obs :
〈
Ts ∧ (fs � Ds) ∧ (Tz timeout) ∧ (Lp == 0)

〉 {
Lp := 1

}

ek,wait :
〈
Ts ∧ (¬Tz timeout) ∧ (Lp == 0)

〉 {
fs := fs + 1

}

ek,fault :
〈
Ts ∧ (fs � Ds) ∧ (¬Tz timeout) ∧ (Lp == 0)

〉 {
Tz := 0; fz := −∞;

Ts := 0; fs := −∞}

ek :
〈
Ts ∧ (fs � Ds) ∧ (Tz timeout) ∧ (Lp == 1)

〉 {
Tz := 0; fz := −∞;
Ts := 0; fs := −∞;

Lp := 0
}

204 M.Ü. Uyar et al.

Fig. 6. Timed FSM: T3 is started by applying i10 within time interval [6, 15]

After augmentation for both Faults I and V, a correct edge traversal sequence
for a non-faulty IUT can be given as: · · · , hx, · · · , ei,1,wait, eret

i,1 , ei,1,obs, eret
i,1 ,

ei,1,2, ei,2,wait, eret
i,2 , ei,2,obs, eret

i,2 , ei, · · · , ej , · · · , ek,wait, eret
k , ek,obs, eret

k , ek, · · · .
A faulty IUT with Faults I and V, where Fault I is traversed before Fault V,
will not follow this traversal, but, instead, will end up at state SF−I . Similarly,
it can be shown that a sequence where a single Fault V is traversed before a
single Fault I will end up at state SF−V . Therefore, a single Fault I and a single
Fault V, irrespective of the order of their occurrences, can be detected by our
augmentations as indicated in Sections 4.1 and 4.3. �

An example test sequence of containing · · · , e8, e9, e10, e11, e12, · · · is given
for the FSM of Figure 6. Suppose the FSM specification defines that, for e10,
the input i10 should be applied within time interval of [6, 15] seconds (measured
from e8) and that e10 starts T3 with length D3 = 4 seconds. Edge e12 is a
timeout transition for T3, and for edges e9, e10, e11, and e12 the costs are c9 = 4,
c10 = 1, c11 = 4, and c12 = 2 seconds, respectively. In a correct implementation,
i10 is applied 6 seconds after e8 and timer T3 expires in 4 seconds (i.e. D3 = c11=
4 seconds). Hence, the output o12 generated by e12 is observed in 13 seconds
after e8 traversal (i.e., δ + c10 + D3 + c12= 6 + 1 + 4 + 2 seconds). Now
suppose input i10 is applied too early at 5 seconds after e8, and T3 is incorrectly
implemented too long as D′

3 = 5 seconds. In this scenario, output o12 is also
observed in 13 seconds (i.e., δ′ + c10 + D′

3 + c12 = 5 + 1 + 5 + 2 seconds).
Therefore, without the augmentations, this single occurrences of Faults I and
V cannot be detected. However, in the augmented graph G′, the sequence will
detect single Fault I by forcing the traversal to state SF−I as proven by Lemma 1.

Corollary 1: The multiple occurrences of Faults I and V, irrespective of their
occurrence order, are detectable after the graph is augmented for single Faults I
and V as in Sections 4.1 and 4.3.

5.2 Multiple Faults of I and IV

Lemma 2: Graph augmentation for Fault I (Section 4.1) and Fault IV (Sec-
tion 4.3) can detect simultaneous presence of a single Fault I and a single Fault
IV, irrespective of the order they occur in an edge sequence (proof analogous to
that for Lemma 1).

Corollary 2: Multiple occurrences of Faults I and V, irrespective of their oc-
currence order, are detectable after the graph is augmented for single Faults I
and IV as in Sections 4.1 and 4.3.

Timing Fault Models for Systems with Multiple Timers 205

Fig. 7. Generalization of timer specification where Faults IV and V hide each other

5.3 Multiple Faults of IV and V

Lemma 3: Graph augmentations for Fault IV and Fault V (Section 4.3) can de-
tect simultaneous presence of a single Fault IV and a single Fault V, irrespective
of the order they occurren an edge sequence.

Proof: Let us first prove that timing faults can hide each other such that the
observable behavior for an IUT with Faults IV and V, and a non-faulty IUT are
identical. Consider an edge sequence over which two timers, namely Tx and Ty,
are started and expired. For the general case, such a sequence can be defined as
· · · , hx, · · · , ei, · · · , ej , · · · , ek, · · · (Figure 7) where:

• Edge hx from state vx to vx+1 starts timer Tx with length Dx. hx :
〈
1
〉{

Tx :=
1; fx := 0

}

• Expiry of Tx triggers edge ei, for which no observable output is generated.
ei :

〈
Tx ∧ (fx � Dx)

〉{
Tx := 0; fx := −∞}

• Reachable from ei, an edge ej , from state vj to vj+1, starts timer Ty with
length Dy. ej :

〈¬Tx

〉{
Ty := 1; fy := 0

}

• Expiry of Ty triggers edge ek such that output ok is observed in (Dx +
c(i−→j+1) + Dy + ck) time units after hx is traversed, where c(i−→j+1) is the
cost of all the edges between states vi and vj+1. ek :

〈
Ty ∧ (fy � Dy)

〉{
Ty :=

0; fy := −∞}

• The inputs for the edges between ei and ek do not have input interval require-
ments (i.e., input timing requirements pertaining to Fault I, which would have
been detected by Corollary 2).

Let us suppose now that Tx is implemented too short (i.e., Fault IV with
D′

x < Dx) and Ty is implemented too long (i.e., Fault V with D′
y > Dy) such

Fig. 8. Graph augmentation for a single occurrence of Faults IV and V

206 M.Ü. Uyar et al.

that Dx−D′
x ≡ D′

y−Dy. For a non-faulty IUT, the output ok will be generated
in (Dx + c(i−→j+1) + Dy + ck) time units after the traversal of hx. For an IUT
with Faults IV and V, it will take (D′

x + c(i−→j+1) + D′
y + ck) time units to

generate the output ok. Therefore, since Dx−D′
x ≡ D′

y −Dy, it is possible that
Timing Faults IV and V can hide each other.

Applying the graph augmentation methods described in Section 4.3, the gen-
eralized case of Figure 7 can be modified to include the new wait and fault states
with their associated edges. As shown in Figure 8, our graph augmentation intro-
duces special purpose timers Tsx and Tsy with lengths Dsx and Dsy, respectively,
to define the correct timer lengths for timer Tx and Ty, where Dsx ≡ Dx and
Dsy ≡ Dy time units. In the augmented graph, hx starts both Tx and Tsx, and
ej starts both Ty and Tsy:

hx :
〈¬Tx ∧ ¬Tsx

〉 {
Tx := 1; fx := 0; Tsx := 1; fsx := 0

}

ej :
〈¬Ty ∧ ¬Tsy

〉 {
Ty := 1; fy := 0; Tsy := 1; fsy := 0

}

For Fault IV augmentation, a wait state v′
i with its associated edges ei,wait,

ei,obs and eret
i are attached to vi whose outgoing edge is the timeout edge ei. A

new state SF−IV and its edge ei,fault is added to state vi:

ei,obs :
〈
Tsx ∧ (fsx � Dsx) ∧ (Tx timeout) ∧ (Lp == 0)

〉 {
Lp := 1

}

ei,wait :
〈
Tsx ∧ (fsx < Dsx) ∧ (¬Tx timeout) ∧ (Lp == 0)

〉 {
fsx := fsx + 1

}

ei,fault :
〈
Tsx ∧ (fsx < Dsx) ∧ (Tx timeout) ∧ (Lp == 0)

〉 {
Tsx := 0;

fsx := −∞}

ei :
〈
Tsx ∧ (fsx � Dsx) ∧ (Tx timeout) ∧ (Lp == 1)

〉 {
Tsx := 0;

fsx :=−∞;Lp :=0
}

Similarly, for Fault V augmentation, an observer state v′
k with its associated

edges ek,wait, ek,obs and eret
k are attached to vk whose outgoing edge is the

timeout edge ek. A new state SF−V and its associated edge ek,fault is added to
state vk:

ek,obs :
〈
Tsy ∧ (fsy � Dsy) ∧ (Ty timeout) ∧ (Lp == 0)

〉 {
Lp := 1

}

ek,wait :
〈
Tsy ∧ (¬Ty timeout) ∧ (Lp == 0)

〉 {
fsy := fsy + 1

}

ek,fault :
〈
Tsy ∧ (fsy � Dsy) ∧ (¬Ty timeout) ∧ (Lp == 0)

〉 {
Tsy := 0;

fsy := −∞}

ek :
〈
Tsy ∧ (fsy � Dsy) ∧ (Ty timeout) ∧ (Lp == 1)

〉 {
Tsy := 0;

fsy :=−∞;Lp :=0
}

After these augmentations, a test sequence for a non-faulty IUT is hx, · · · ,
ei,wait, eret

i , ei,obs, eret
i , ei, · · · , ej , · · · , ek,wait, eret

k , ek,obs, eret
k , ek. For a faulty

IUT where Fault IV is reached before Fault V, the test sequence will end up in
state SF−IV (i.e., the edge ei,fault will be traversed instead of ei), and hence
will detect Fault IV.

Timing Fault Models for Systems with Multiple Timers 207

Fig. 9. Timed FSM: T2 is started by T1 expiry

Similarly, it can be shown that a test sequence can be constructed such that,
if a single Fault V is traversed before a single Fault IV, the test sequence will
be forced to state SF−V . Therefore, a single Fault IV and a single Fault V,
irrespective of the order of their occurrence, can be detected by augmentations
given in Section 4.3. �

Let us illustrate the simultaneous occurrence of Faults IV and V with an
example. In Figure 9, the FSM specification defines that edges e21 and e23 start
timers T1 (expires in e23 with D1 = 5 seconds) and T2 (expires in e25 with
D2 = 4 seconds), respectively. The costs for the edges e22, e23, e24 and e25 are
given as c22 = 5, c23 = 2, c24 = 4 and c25 = 3 seconds, respectively.

The test sequence for a non-faulty IUT can be constructed as e21, e22,
e23, e24, e25 such that timer T1 expires in 5 seconds and T2 in 4 seconds.
Therefore, using this test sequence, a non-faulty IUT will generate o25 by e25

14 seconds after e21 traversal (i.e., D1 + c23 + D2 + c25 = 5 + 2 + 4 + 3
seconds). Now suppose T1 is incorrectly implemented as D′

1 = 4 seconds and
T2 as D′

2 = 5 seconds. This faulty IUT would also generate o25 in 14 seconds
after e21 is traversed (i.e., D′

1 + c23 + D′
2 + c25 = 4 + 2 + 5 + 3 seconds). This

example illustrates that, without our augmentations, simultaneous occurrence
of single Faults IV and V may be indistinguishable from the non-faulty IUT for
certain test cases. However, after graph augmentations, the sequence will detect
single occurrences of Fault IV and V by forcing the faulty IUT into state SF−IV .

Corollary 3: The multiple occurrences of Faults IV and V, irrespective of their
occurrence order, are detectable after the graph is augmented for single Faults
IV and V as in Section 4.3.

6 Concluding Remarks

A number of individually detectable timing faults can hide each other’s faulty
behavior, making the faulty system indistinguishable from a non-faulty one. A set
of augmentations for the timed FSM model introduced in Ref. [7] is presented
for single timing faults. The augmentations for the single faults are shown to
be capable of detecting multiple occurrences of pairwise combinations of these
timing faults. Fault detection capabilities of existing timed automata models
and the model studied in this paper will be compared as an extension of this
work.

208 M.Ü. Uyar et al.

References

[1] J. Alilovic-Curgus and S.T. Vuong. A metric-based theory of test selection
and coverage. In Proc. IFIP Protocol Specif. Test. Verif. (PSTV), Liege, Belgium,
1993.

[2] R. Alur and D.L. Dill. A theory of timed automata. [Elsevier] Theoret. Com-
put. Sci. 126, pp. 183–235, 1994.

[3] S.S. Batth. Fault Models for Timed EFSMs. MS thesis, The City College of
CUNY, New York, NY, 2004.

[4] W.Y.L. Chan and S.T. Vuong. The UIOv—method for protocol test sequence
generation. In Proc. IFIP Int’l Wksp Protocol Test Syst. (IWPTS), Berlin, Ger-
many, 1989.

[5] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed Wp-method: Testing
real-time systems. IEEE Trans. Softw. Eng. 28(11), pp. 1023–1038, 2002.

[6] A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi. Timed test
cases generation based on state characterisation technique. In Proc. IEEE Real-
Time Syst. Symp. (RTSS), pp. 220–229, Madrid, Spain, 1998.

[7] M.A. Fecko, M.U. Uyar, A.Y. Duale, and P.D. Amer. A technique to gen-
erate feasible tests for communications systems with multiple timers. IEEE/ACM
Trans. Netw. 11(5), pp. 796–809, 2003.

[8] G. Luo, G.v. Bochmann, and A.F. Petrenko. Test selection based on commu-
nicating nondeterministic finite state machines using a generalized Wp-method.
IEEE Trans. Softw. Eng. 20(2), pp. 149–162, 1994.

[9] A.F. Petrenko, G.v. Bochmann, and M.Y. Yao. On fault coverage of tests
for finite state specifications. [Elsevier] Comput. Netw. ISDN Syst. 29(1), pp.
81–106, 1996.

[10] A. Rezaki and H. Ural. Construction of checking sequences based on charac-
terization sets. [Elsevier] Comput. Commun. 18(12), pp. 911–920, 1995.

[11] D.P. Sidhu and T.K. Leung. Fault coverage of protocol test methods. In Proc.
IEEE INFOCOM, pp. 80–85, New Orleans, LA, 1988.

[12] J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Testing timed au-
tomata. [Elsevier] Theoret. Comput. Sci. 254(1-2), pp. 225–257, 2001.

[13] H. Ural and K. Zhu. Optimal length test sequence generation using distinguish-
ing sequences. IEEE/ACM Trans. Netw. 1(3), pp. 358–371, 1993.

[14] Y. Wang. Timing Faults in EFSM Models with Multiple Concurrent Timers. PhD
thesis, Graduate Center of CUNY, New York, NY. (in progress).

[15] J. Zhu and S.T. Chanson. Toward evaluating fault coverage of protocol test
sequences. In Proc. IFIP Protocol Specif. Test. Verif. (PSTV), pp. 137–151, Van-
couver, Canada, 1994.

An Expressive and Implementable Formal
Framework for Testing Real-Time Systems�

Moez Krichen and Stavros Tripakis

Verimag Centre Equation,
2, avenue de Vignate, 38610 Gières, France

{krichen, tripakis}@imag.fr

Abstract. We propose a new framework for black-box conformance
testing of real-time systems, based on the model of timed automata. The
framework is expressive: it can fully handle partially-observable, non-
deterministic timed automata. It also allows the user to define, through
appropriate modeling, assumptions on the environment of the system
under test (SUT) as well as on the interface between the tester and
the SUT. The framework is implementable: tests can be implemented as
finite-state machines accessing a finite-precision digital clock. We pro-
pose, for this framework, a set of test-generation algorithms with respect
to different coverage criteria. We have implemented these algorithms in
a prototype tool called TTG. Experimental results obtained by apply-
ing TTG on the Bounded Retransmission Protocol show that only a
few tests suffice to cover thousands of reachable symbolic states in the
specification.

1 Introduction

Our work targets black-box conformance testing for real-time systems. By “black
box” we mean that the tester has no knowledge nor access in the internals of
the system under test (SUT), thus, can only rely on its observable input/output
behavior. We follow a formal, model-based testing approach, in the sense that we
assume a formal specification is available and conformance is also defined in a
formal way.

Real-time systems operate in an environment with strict timing constraints.
Examples of such systems are many: embedded systems (e.g., automotive, avionic
and robotic controllers, mobile phones), communication protocols, multimedia
systems, and so on. When testing real-time systems, one must pay attention
to two important facts. First, it is not sufficient to check whether the system
under test (SUT) produces the correct outputs; it must also be checked that the
timing of the outputs is correct. Second, the timing of the inputs determines
which outputs will be produced as well as the timing of these outputs.

� Work partially supported by CNRS STIC project “CORTOS” and by IST Network
of Excellence “ARTIST2”.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 209–225, 2005.
c© IFIP 2005

210 M. Krichen and S. Tripakis

Many formal testing frameworks use models such as (extended) Mealy ma-
chines (e.g., see [11, 14, 16]) or labeled transition systems (e.g., see [18, 8, 13]).
These models are not well-suited for real-time systems. In Mealy machines, in-
puts and outputs are synchronous, which is a reasonable assumption when mod-
eling synchronous hardware, but not when outputs are produced with variable
delays, governed by complex timing constraints. In labeled transition systems
(LTSs) inputs and outputs are asynchronous. However, there is no explicit mod-
eling of time. In some cases [18], the notion of quiescence is used: timeouts are
modeled by special δ actions which can be interpreted as “no output will be
observed”. This is problematic, because timeouts need to be instantiated with
concrete values upon testing (e.g., “if nothing happens for 10 seconds, output
FAIL”). However, there is no systematic way to derive the timeout values (in-
deed, durations are not expressed in the specification). Thus, one must rely on
empirical, ad-hoc methods.

We advocate an explicit specification of timing assumptions and requirements
for testing real-time systems. For this, we need a specification model which
explicitly talks about time. We opt for the model of timed automata (TA) [1].
TA have been established during the past decade as a suitable model for real-
time systems. With respect to existing testing methods based on TA (see [12]
and references therein) our framework presents two major contributions.

First, the framework is expressive: it can handle the full class of partially-
observable, non-deterministic TA. In existing works, only subclasses of the TA
model are considered. For example, [17, 9] consider TA with “isolated” and “ur-
gent” outputs, which means that for each input sequence there is a unique output
emitted at a precise point in time. A simple specification such as “when input
a is received, output b must be emitted within at most 10 time units” cannot be
expressed in this model. Other works use event-recording automata [15] or TA
with restricted clock resets [10] or guards [5].

Second, our framework is implementable: the tests we generate can be ex-
ecuted by an automatic tester which uses a digital clock of finite precision. In
most existing works the tester is implicitly assumed to have access to an infinite-
precision clock, allowing, for instance, to distinguish between an event observed
at time 1 or at time 1+ε, for ε arbitrarily close to 0. An exception is the work [5]
where a digitization of the TA semantics is used to model the tester clock. Our
approach is more general in the sense that the digital-clock model is not “hard-
wired” in the test generation algorithm. Rather, it is provided explicitly by the
user as a Tick automaton (see Section 2). Tick automata can model not only
fixed-step digitization but also skewed or diverging clocks, or any other sam-
pling and interfacing mechanism the tester might use to observe and control
the SUT.

In this paper we describe our framework from a methodological point of
view (Section 2). We give special emphasis on modeling expressiveness and show
through examples that the framework is rich enough to capture assumptions on
the environment of the SUT, event-based or variable-based interfaces between
the SUT and the tester, delays introduced by such interfaces, digital-clock sam-

An Expressive and Implementable Formal Framework 211

pling, and so on. Such explicit modeling is important for two reasons. First, it
provides the user of the framework with full control on the assumptions made
on the testing infrastructure and how these affect the generated tests. Second,
it avoids the need for special algorithms (e.g., digitization [5]) in order to treat
the above features: the latter simply become part of an extended specification
model. Indeed, our test generation method uses standard symbolic reachability
techniques available in most TA model-checking tools. Also note that symbolic
reachability techniques scale much better than testing techniques based on the
region graph [7, 17].

The framework is accompanied by a prototype tool called TTG (Timed Test
Generator), built on top of the IF tool-suite [3]. To control the explosion of
the potential number of tests, we have implemented in TTG a set of test selec-
tion techniques, among which a set of test generation algorithms with respect
to various coverage criteria, such as state, location, action or selected-variable
coverage. To illustrate the practical interest of our approach, we have used TTG
to generate tests for the well-known Bounded Retransmission Protocol (BRP).
The results are described in Section 3 and show that a few tests suffice to cover
thousands of reachable symbolic states.

2 The Testing Framework

In this section we present the essential features of our testing framework. For
more details, the reader is referred to [12]. We also illustrate some methodologi-
cal aspects of our framework, especially modeling issues regarding environment
assumptions and interface conditions between the tester and the SUT.

The Model: Timed Automata with Inputs, Outputs and Unobservable
Actions. To model the specification, we use timed automata (TA) [1]. As the
TA model is well-known, we only give a brief overview here. We also present
a “pure” TA model without discrete variables and omit discussion on how to
compose TA. In practice, these features are essential for ease and clarity of
modeling: they are indeed part of our tool, see Section 3.

Let R be the set of non-negative reals. Given a set of actions Σ, the set (Σ∪R)∗

of all finite real-time sequences over Σ will be denoted RT(Σ). ε ∈ RT(Σ) is the
empty sequence. Given Σ′ ⊆ Σ and ρ ∈ RT(Σ), ΠΣ′(ρ) denotes the projection
of ρ to Σ′, obtained by “erasing” from ρ all actions not in Σ′. For example,
if Σ = {a, b}, Σ′ = {a} and ρ = a 1 b 2 a 3, then ΠΣ′(ρ) = a 3 a 3. The time
spent in a sequence ρ, denoted time(ρ) is the sum of all delays in ρ, for example,
time(ε) = 0 and time(a 1 b 0.5) = 1.5.

A timed automaton over Σ is a tuple (Q, q0, X,Σ, E) where Q is a set of
locations; q0 ∈ Q is the initial location; X is a set of clocks; E is a set of edges. Each
edge is a tuple (q, q′, ψ, r , d , a), where q, q′ ∈ Q are the source and destination
locations; ψ is the guard, a conjunction of constraints of the form x#c, where
x ∈ X, c is an integer constant and # ∈ {<,≤, =,≥, >}; r ⊆ X is the set
of clocks to be reset; d ∈ {lazy, delayable, eager} is the deadline (lazy deadlines

212 M. Krichen and S. Tripakis

impose no urgency, delayable means that once enabled the transition must be
taken before it becomes disabled and eager means the transition must be taken
as soon as it becomes enabled); and a ∈ Σ is the action. We will not allow eager
edges with guards of the form x > c.

A TA A defines a labeled transition system (LTS). Its states are pairs s =
(q, v), where q ∈ Q and v : X → R is a clock valuation. 0 is the valuation
assigning 0 to every clock of A. SA is the set of all states and sA

0 = (q0,0) is the
initial state. There are two types of transitions. Discrete transitions of the form
(q, v) a→ (q′, v′), where a ∈ Σ and there is an edge (q, q′, ψ, r , d , a), such that
v satisfies ψ and v′ is obtained by resetting to zero all clocks in r and leaving
the others unchanged. Timed transitions of the form (q, v) t→ (q, v + t), where
t ∈ R, t > 0 and there is no edge (q, q′′, ψ, r , d , a), such that: either d = delayable
and there exist 0 ≤ t1 < t2 ≤ t such that v+t1 |= ψ and v+t2
|= ψ; or d = eager

and v |= ψ. We use notation such as s
a→, s
 a→, ..., to denote that there exists

s′ such that s
a→ s′, there is no such s′, and so on. This notation naturally

extends to timed sequences. For example, s
a1b→ s′ if there exist s1, s2 such that

s
a→ s1

1→ s2
b→ s′. A state s ∈ SA is reachable if there exists ρ ∈ RT(Σ) such

that sA
0

ρ→ s. The set of reachable states of A is denoted Reach(A).
In the rest of the paper, we assume given a set of actions Σ, partitioned in

two disjoint sets: a set of input actions Σin and a set of output actions Σout. We
also assume there is an unobservable action τ
∈ Σ. Let Στ = Σ ∪ {τ}.

A timed automaton with inputs and outputs (TAIO) is a timed automaton
over Στ . A TAIO is called observable if none of its edges is labeled by τ . A
TAIO A is called input-complete if it can accept any input at any state: ∀s ∈
Reach(A) .∀a ∈ Σin . s

a→. It is called deterministic if ∀s, s′, s′′ ∈ Reach(A) .∀a ∈
Στ . s

a→ s′ ∧ s
a→ s′′ ⇒ s′ = s′′. It is called non-blocking if ∀s ∈ Reach(A) .∀t ∈

R .∃ρ ∈ RT(Σout ∪ {τ}) . time(ρ) = t ∧ s
ρ→. The non-blocking property states

that at any state, A can let time pass forever, even if it does not receive any
input. This is a sanity property which ensures that a TAIO does not “force” its
environment to provide an input by blocking time. The set of observable timed
traces of A is defined to be Traces(A) = {ΠΣ(ρ) | ρ ∈ RT(Στ) ∧ sA

0
ρ→}.

Specifications, Implementations and Conformance. We assume that the
specification of the system to be tested is given as a non-blocking TAIO AS .
We assume that the SUT, also called implementation, can be modeled as a non-
blocking, input-complete TAIO AI . Notice that we do not assume that AI is
known, simply that it exists. The assumption of AS and AI being non-blocking
is natural, since in reality time cannot be blocked. The assumption of AI being
input-complete is also reasonable, since a system usually accepts all inputs at
any time, possibly ignoring them or issuing an error message when the input is
not valid. Notice that we do not assume, as is often done, that the specification
AS is input-complete. This is because AS needs to be able to model assumptions
on the environment, i.e., restrictions on the inputs, as we show below.

We also do not assume that AS is deterministic. In fact, AS may contain un-
observable actions. Partially-observable or non-deterministic models often arise

An Expressive and Implementable Formal Framework 213

in practice. For instance, when specifications are built of many components (Fig-
ure 1), internal communication among these components is not observable to the
tester (in fact it may simply be an artifact of modeling). This is indeed true in
the case of the communication protocol we treat in Section 3. Non-determinism
may also result when abstractions are applied to the model in order to reduce
its size.

The timed input-output conformance re-

�
�

�

�

�

� �

�

Fig. 1. A specification with internal

(unobservable) actions

lation, denoted tioco, requires that after any
observable sequence specified in AS , every
possible observable output of AI (including
delays) is also a possible output of AS . tioco
is inspired from its “untimed” counterpart,
ioco [18]. The key idea is that time delays,
along with output actions, are considered to
be observable events. More precisely, define
A after σ as the set of all states of A that can
be reached by some timed sequence ρ whose
projection to observable actions is σ and let

out(S) be the set of all observable events (output actions or delays) that can
occur when the automaton is at some state in S. Formally, A after σ = {s ∈ SA |
∃ρ ∈ RT(Στ) . sA

0
ρ→ s ∧ ΠΣ(ρ) = σ}, out(S) =

⋃
s∈S out(s), out(s) = {a ∈

Σout | s a→}∪elapse(s) and elapse(s) = {t > 0 | ∃ρ ∈ RT({τ}) . time(ρ) = t∧s
ρ→}.

Then, AI conforms to AS , denoted AI tioco AS , if

∀σ ∈ Traces(AS) . out(AI after σ) ⊆ out(AS after σ). (1)

Figure 2 shows an example of a specification Spec1, which could be expressed
in English as follows: “after the first a received, the system must output b no
earlier than 2 and no later than 8 time units”.1 Thus, this specification requires
that the output b is not emitted neither too early nor too late. Implementa-
tions Impl1 and Impl2 conform to Spec1. Impl1 produces b exactly 5 time units
after reception of a. Impl2 produces b sometime in the interval [4, 5]. Implemen-
tations Impl3 and Impl4 do not conform to Spec1. Impl3 may produce a b after
1 time unit, which is too early. Impl4 fails to produce a b at all. Formally, let-
ting σ = a 1, we have out(σ(Impl3)) = (0, 4] ∪ {b} and out(σ(Impl4)) = (0,∞),
whereas out(σ(Spec1)) = (0, 7]. The last example shows that “doing nothing”
is not an option for the SUT, since doing nothing is equivalent to letting time
pass, resulting in a tester timeout when the deadline for producing an output is
reached. This example also illustrates how our framework handles timeouts in a
seamless way, without the need of modeling artifacts such as quiescence [18].

1 Unless otherwise mentioned, deadlines of output edges are delayable and deadlines
of input edges are lazy. In order not to overload the figures, we do not always draw
input-complete automata. We assume that implementations ignore the missing in-
puts (this can be modeled by adding self-loop edges covering these inputs).

214 M. Krichen and S. Tripakis

Fig. 2. Examples of specification and implementations

Modeling Assumptions on the Environment. Often, the SUT is supposed
to operate correctly only in a particular environment, not in any environment.
This brings up the issue of how to incorporate assumptions on the environment
when building a model of specification. Figure 3 shows how this can be done. The
specification can be modeled compositionally, in two parts: one part modeling the
environment (assumptions) and another part the nominal behavior of the SUT in
this environment (requirements). In this case, the interactions between the two
components are not unobservable, but are exported as inputs and outputs of the
global specification. A simple example of such a situation is shown in Figure 3.
The specification expresses schedulability of an aperiodic task in a typical real-
time operating system: “assuming the minimal inter-arrival time of task A is
20 time units, the task must be executed within 10 time units”. Notice that
environment assumptions generally make the specification non-input-complete.
In the above example, the second arrive input cannot be accepted until at least
20 time units have elapsed since the first arrive.

Modeling Input/Output Variables. The TA model we have presented uses
the notion of input/output actions, implying an event-based interface between
the tester and the SUT. In practice, many systems communicate with the ex-
ternal world using input/output variables. We now show how to model such
situations in our framework.

Fig. 3. Specification including assumptions on the environment: generic scheme (left)
and example of a task scheduler (right)

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

a?

Impl4

a? x := 0

b!

Impl1

a? x := 0

b!

Spec1

a? x := 0

b!

Impl2

a? x := 0

b!

Impl3

2 ≤ x ≤ 8 x = 5 4 ≤ x ≤ 5 1 ≤ x ≤ 5

requirements
(on the SUT)

assumptions
(on the environment)

�
� ��

� �
� �

� �

� � �

� ��

y := 0 y ≥ 20
y := 0

x := 0
arrive?

arrive? arrive?

finish!
x ≤ 10arrive? finish!

An Expressive and Implementable Formal Framework 215

There are basically two possibilities to specify real-time requirements related
to variables. One is to refer to variable updates and the other to refer to value
durations. The first can be modeled in our framework using an action for each
update. The second can be modeled using a “begin” action for the point in
time where a variable changes its value to the value that is of interest and an
“end” action for the moment where the variable changes to a different value.
For example, assume x is an input variable and y an output variable. Consider
the requirement “y will be updated at most 10 time units after x is updated”.
Notice that x is updated by the environment (or the tester) while y is updated
by the SUT. Thus, updatex can be introduced as an input action and updatey as
an output action. The specification can be modeled as a TA similar to the one
for Spec1 of Figure 2, with a replaced by updatex and b replaced by updatey.

This simplistic way of modeling supposes that updates are immediately per-
ceived (by the SUT or by the tester) when they occur. This is obviously not
always true. For instance, a sampling controller typically reads its inputs only
periodically (but may write the outputs as soon as they are ready). In this case,
it could be that the specification only requires that the output be produced at
most 10 time units after the input is sampled by the controller, not after it is up-
dated by the environment. This situation can also be modeled in our framework
by explicitly adding automata modeling the sampling (either at the SUT side,
or at the tester side, or both). In fact, we will add such an automaton, called
the Tick automaton in order to generate digital-clock tests (see below). The Tick
automaton models in some sense sampling at the tester side. A similar automa-
ton can be used to model sampling at the SUT side, with the difference that the
tick event would in this case be an input event. More elaborate interfaces (e.g.,
event handlers with buffering, and so on) can also be modeled, as long as they
can be expressed as (extended) timed automata.

Modeling Interfacing Delays. As a last example of modeling methodology,
we show how to model interfacing delays between the tester and the SUT. This
can again be done by composing the specification with “delay automata”, as
shown in Figure 4. A simple input delay automaton is shown to the right of the
figure. Input action a is the original action whereas at is the output command of
the tester. This automaton models the assumption that the tester output may
experience a delay of at most 2 time units until it is perceived by the SUT.
Notice that this automaton does not allow a new input to be produced while
the previous one is still in “transit”. For this, a more complicated automaton is
necessary, which buffers input events. The point is that, as mentioned above, such
elaborate interfaces can all be modeled explicitly. Thus, the user has full control
on how the assumptions made on the tester equipment affect the generated tests.

Digital-Clock Test Generation. The conformance relation tioco is “ideal”
in the sense that it captures non-conformance of a SUT at an infinite-precision
time-measuring level. For instance, if the guard 1 ≤ x ≤ 5 of SUT Impl3 of
Figure 2 was replaced by 1.9 ≤ x ≤ 5 then Impl3 would still be non-conforming.

216 M. Krichen and S. Tripakis

� �� �
�

a?
z ≤ 2

z := 0
at?

� �

� �

specification

input
delay

output
delay

a? b!

at? bt! automaton
simple input-delay

Fig. 4. Specification composed with interface-delay automata

In fact, the same would be true if the guard was replaced by 2−ε ≤ x ≤ 5, for any
ε > 0. It is reasonable to define tioco in such an “ideal” way, since we do not want
conformance to depend on implementation details such as tester equipment. On
the other hand, the tester’s time-observation capabilities are limited in practice:
testers only dispose of a finite-precision digital clock (a counter) and cannot
distinguish among observations which elude their clock precision. Our framework
takes this limitation into account. First, we allow the user to explicitly model the
assumptions on the tester’s digital clock. Second, we generate tests with respect
to this model.

Note that generating digital-clock tests does not mean that we discretize
time: the specification still has a continuous-time semantics. It is the tester
which “samples” this semantics with a digital clock. Also note that the tests we
generate are both sound and precise with respect to tioco. Intuitively, soundness
means that if the tester announces “fail” then the SUT is indeed non-conforming
w.r.t. tioco. The test is precise in the sense that the tester announces “fail” as
soon as possible: as soon as the observations the tester disposes of permit to
conclude that the SUT is non-conforming, the tester will announce “fail”. It
may, however, be the case that the observations do not permit such a conclusion
to be made: this situation occurs, for instance, when a faulty behavior gives the
same digital-clock observation as a non-faulty behavior.

�� �

Tick automaton.

tick!

Specification

ΣoutΣin

���x := 0
eager
x = 10

tick!

perfectly periodic Tick

�� �

�

�� ���

��

eager
x = 10, x := 0

tick!
0 < x ≤ 1

Tick with jitter:
9 ≤ x ≤ 10

tick!

x = 10, x := 0
eager

x := 0
delayable
9 ≤ x ≤ 11

tick!

Tick with skew

Fig. 5. Extending the specification with a tester clock model and possible such models

An Expressive and Implementable Formal Framework 217

The tester’s digital clock is modeled as a Tick automaton, which is a special
TAIO with a single output action tick. Three possible Tick automata are shown
in Figure 5. The first models a perfectly periodic clock with period equal to 10
time units: in this case, the n-th tick occurs precisely at time 10n. The second
automaton models a clock with “skew”: in this case, the n-th tick may occur
anywhere in the interval [9n, 11n]. The third automaton models a clock with
“jitter”: in this case, the n-th tick may occur anywhere in the interval [10n −
1, 10n + 1]. Notice that this automaton contains unobservable transitions (the
ones with deadline eager).

Once a Tick automaton is chosen, it is composed with the specification au-
tomaton AS as shown in Figure 5. This yields a new TAIO, denoted ATick

S ,
which has as inputs the inputs of AS and as outputs the outputs of AS plus the
new output tick. Notice that AS and Tick do not synchronize on any discrete
transitions, they only synchronize in time (time elapses at the same rate for
both).

Test generation is done based on the extended

�
	

		
�
�

���

�

�
�

��

b?
c?

tick?

a!

a!

b?, c? tick?

PASS FAIL

FAIL PASS

Fig. 6. A digital-clock test rep-

resented as a finite tree

specification, ATick
S .2 A test is represented as a

finite tree like the one shown in Figure 6 and
is generated using an algorithm similar to the
one presented in [18]. Nodes of the tree are ei-
ther input nodes (where the tester issues an in-
put to the SUT) or output nodes (where the
tester awaits for an output from the SUT or
for the next tick of its own clock). Leaves are
marked “pass” or “fail” indicating conformance
or not. Each node of the tree corresponds to
a set of states of ATick

S . Such sets are gener-
ally dense due to the continuous state-space of
the clocks. The sets are represented symbolically using simple constraints on
clocks. For instance, the constraint 1 ≤ x ≤ 2 ∧ x = y represents the fact
that clock x has some value within [1, 2] and clock y is equal to x. The con-
straints are implemented using a matrix data structure called DBM (differ-
ence bound matrix) [2, 6]. Computing successor nodes is also done symboli-
cally, using a bounded-time reachability analysis for timed automata, as shown
in [19, 12].

Test Selection with Respect to Coverage Criteria. At each point during
test generation, the generation algorithm has a number of choices to make: stop
the test or continue, wait for an output or issue an input, which of the possible
inputs, etc. There are different ways to resolve these choices. For instance: in-
teractively (the user guides the test generation), randomly (the algorithm takes
decisions at random), exhaustively (generate all possible tests, up to a given

2 The extended specification may also include other automata to model environment
assumptions, interface delays, etc., as shown previously.

218 M. Krichen and S. Tripakis

depth provided by the user), or guided by some coverage criterion. Our tool
implements all these choices.3 We briefly elaborate on the last one.

At the moment, we consider simple coverage criteria such as state, location
or edge coverage, aiming to cover, respectively, all reachable states, locations or
edges of the specification. The state and location criteria are based on the fact
that each node of a digital test tree corresponds to a set of states (thus also
a set of locations) of the specification. Therefore, each such node “covers” the
corresponding set. The edge criterion is similarly based on the fact that each
edge of the test tree corresponds to a set of transitions (thus also a set of edges)
of the specification.

We also consider simple variations of the above criteria. For instance, in-
put/output action coverage seeks to cover reachable input/output actions of the
specification. In a context of extended TA such as those used by our tool, we can
also define partial state coverage, with respect to a subset of the variables mak-
ing up the state space. It should be noted that some of these criteria subsume
others. For instance, achieving state coverage implies location coverage, partial
state coverage and action coverage.

We now briefly describe the test-generation algorithm w.r.t. a coverage cri-
terion. The algorithm starts by choosing at random a point p in the space to
be covered (e.g., a location for location coverage, a symbolic state for state cov-
erage, etc.). Then a reachability algorithm is run on the product ATick

S in order
to find a discrete path reaching the point p to be covered. Note that, since we
consider coverage only for reachable states (or locations, or actions, etc.) the
point is reachable, thus, a path exists. Also note that this path is labeled only
with observable (input or output) actions. Once the path is found, it is extended
into a test tree: this is done by completing all nodes in the path whose outgoing
edge is labeled with an output action or tick, by the remaining outputs. This is
the first generated test which covers not only p but other points as well (e.g.,
all locations encountered in the test tree). The algorithm proceeds by choos-
ing a new uncovered point and repeating the above process, until all points
are covered. This algorithm has been implemented in our tool TTG, described
below.

3 Tool and Case Study

The TTG Tool. We have built a prototype test-generation tool, called TTG
(Timed Test Generator), on top of the IF environment [3]. The IF modeling
language allows to specify systems consisting of many processes communicating
through message passing or shared variables and includes features such as hi-
erarchy, priorities, dynamic creation and complex data types. The IF tool-suite
includes a simulator, a model checker and a connection to the untimed test gen-
erator TGV [8]. TTG is implemented independently from TGV. TTG is written

3 Another way to select tests is using a test purpose. This approach is taken, for
instance, in the TGV tool [8].

An Expressive and Implementable Formal Framework 219

Fig. 7. The TTG tool

in C++ and uses the basic libraries of IF for parsing and symbolic reachability
of timed automata with deadlines.

TTG takes as inputs the specification and Tick automata, written in IF lan-
guage, as well as a set of user options specifying the test-generation mode.
There are four modes: interactive (user-guided); random; exhaustive up to a
user-defined depth; or coverage with respect to a criterion among state, location,
action or partial state. TTG generates an executable which will perform the test
generation when run. The executable takes additional options (e.g., depth) and
generates one or more tests, depending on the chosen mode. The tests are output
in IF language.

Case Study: The Bounded Retransmission Protocol. The Bounded Re-
transmission Protocol (BRP) is a protocol for transmitting files over an unre-
liable (lossy) medium. The architecture of the protocol is shown in Figure 8.
The protocol is implemented by the Transmitter and the Receiver. The users
of the protocol are the Sending and Receiving clients. The medium is modeled
by the Forward and Backward channels. Upon receiving a file from the Sending
client (action put), the Transmitter fragments the file into packets and sends
each packet to the Receiver (action send), awaiting an acknowledgment for each
packet sent (action ack). If a timeout occurs without receiving an acknowledg-
ment, the Transmitter resends the packet, up to a maximum number of retrials.
At the end, if the file is transmitted successfully the Transmitter does not output
anything to the Sending client. Otherwise, the Transmitter responds either with

Fig. 8. The BRP specification and interfaces

TTG test generator

Specification
(.if file)

Tick automaton
(.if file) test cases

(.if files)

I/O actions file

user options

Transmitter

Sending client

Backward channel

Receiving client

Forward channel

Receiver
�

� �

�

�

�

� ��

send

ack

put T abort
send

ack

get R abortdk

220 M. Krichen and S. Tripakis

“abort” (action T abort) if the packet that failed was a “middle” one, or with
“don’t know” (action dk) if the packet was the first or last one (in this case
the file may or may not be received at the other end). In case of success, the
Receiving client receives the file (action get). In case the Receiver does not hear
from the Transmitter for some time, it outputs R abort to the Receiving client.

Here, we use the BRP model developed in [4]. The model has been initially
developed in SDL, then automatically translated in IF. The model is shown in
Figure 9.4 States in red (labeled “decision ...”) are transient states, meaning that
time does not elapse and the automaton moves through these states without be-
ing interrupted by other concurrent automata. The Transmitter has two clocks,
“t repeat” and “t abort”, and the Receiver one clock, “r abort”.5 The keyword
“when” preceeds a clock guard and “provided” precedes a guard on discrete vari-
ables. Keyword “task” is for assignments. The model is parameterized by five
parameters: p, the number of packets in a file; max retry, the maximum num-
ber of retries in sending a packet (after timeout); dt repeat, the timeout delay;
dt abort, the time the Transmitter waits before outputting T abort; dr abort, the
time the Receiver waits before outputting R abort. The values used in our case
study are:

p = 2, max retry = 4, dt repeat = 2, dt abort = 15, dr abort = 13.

For testing, we view the four components enclosed in dashed square in Fig-
ure 8 as the BRP specification. The Sending and Receiving clients play the role
of the environment, but they are not explicitly modeled, i.e., no assumptions
are made on the environment. The interface of the SUT with its environment is
captured by actions put (input) and get, dk, T abort, R abort (outputs).

Using TTG, we generate tests for the perfectly periodic Tick automaton with
clock period equal to 1, with respect to various coverage criteria. The results are
shown in Table 1. The criteria used are: (reachable) configurations, locations,
actions, and the values of the five discrete variables of the model, namely, m,
b, c, i, j. A configuration corresponds to an entire symbolic state and includes
a vector of locations and values of variables for each automaton, plus a DBM
representing symbolically the set of clock states. Thus, this criterion is the same
as state coverage discussed in Section 2.

Column “size” shows the number of elements to be covered. Thus, there are
14687 reachable configurations in total6, there are 4 global locations (we do
not count transient locations) and 6 actions (the 5 input/output actions plus
tick). Variables b and c are booleans (they encode the alternating bit for the

4 The automata have been drawn automatically using the if2eps tool by Marius
Bozga. The model of BRP that we use in this paper can be found in the IF web page:
http://www-verimag.imag.fr/ async/IF/ http://www-verimag.imag.fr/∼async/
IF/ under “examples”.

5 The clocks are reset to a negative value and count upwards. This is not an essential
difference with the TA model presented earlier.

6 The forward and backward channels are modeled by lossy FIFO buffers. These buffers
remain bounded because reception of messages are eager.

An Expressive and Implementable Formal Framework 221

Fig. 9. Transmitter (up) and Receiver (down)

main

start

[1] task b := false;

idle

[1] deadline lazy;
 input put(p);
 task j := 0;

 task m := first;
 task i := 1;

[2] input ack(void);

send

[1] output sdt(m, b) via ({tr}0);
set t_repeat := - (0 + dt_repeat);

[2] input ack(void);

wait_ack

[1] input ack(c);
[2] when t_repeat=0;

 reset t_repeat;

decision_13

[1] provided ((c = b) = true);
 task b := not b;
 reset t_repeat;

[2] provided ((c = b) = false);

decision_14

[1] provided ((i < max_retry) = true);
 task i := (i + 1);

[2] provided ((i < max_retry) = false);

decision_18

[1] provided (m = first);
 task j := 1;

 task m := middle;
 task i := 1;

[2] provided (m = middle); [3] provided (m = last);

decision_20

[1] provided ((m = middle) = true);
 output T_abort();

 set t_abort := - (0 + dt_abort);

[2] provided ((m = middle) = false);
 output dk();

 set t_abort := - (0 + dt_abort);

decision_23

[1] provided ((j < p) = true);
 task j := (j + 1);

 task i := 1;

[2] provided ((j < p) = false);
 task m := last;

 task i := 1;

wait_abort

[1] when t_abort=0;
 reset t_abort;

[2] input ack(void);

main

start

[1] task p := 0;

idle

[1] input sdt(m, c);
[2] when r_abort=0;
 output R_abort();

 reset r_abort;

decision_4

[1] provided (((b = c) or (m = first)) = true);
 output ack(c) via ({rt}0);

 set r_abort := - (0 + dr_abort);
 task b := not c;

[2] provided (((b = c) or (m = first)) = false);
 output ack(b) via ({rt}0);

decision_11

[1] provided (m = first);
 task p := 0;

[2] provided (m = middle);
 task p := (p + 1);

[3] provided (m = last);
 output get(p);
 reset r_abort;

222 M. Krichen and S. Tripakis

Table 1. Test generation results for the BRP case study

criterion size time # of depth coverage of other criteria
used (sec) tests config. locations actions m b c i j

config. 14687 400 24 6 - 53 100%

locations 4 37 1 12 21% 100% 100% 100% 100% 100% 25% 100%

actions 7 76 1 43 36% 100% 100% 100% 100% 100% 25% 100%

m 3 17 1 2 1% 75% 50% 100% 100% 100% 25% 100%

b 2 16 1 2 1% 75% 50% 100% 100% 100% 25% 100%

c 2 17 1 2 1% 75% 50% 100% 100% 100% 25% 100%

i 4 35 1 9 20% 75% 50% 100% 100% 100% 100% 100%

j 3 16 1 2 1% 75% 50% 100% 100% 100% 25% 100%

Transmitter and Receiver, respectively). Variable m takes three possible values
(beginning, middle or end of file). Variable i takes four possible values, from 1
to max retry. Variable j takes three possible values, from 0 to p. Column “time”
shows the time in seconds taken by TTG to generate a test suite with respect
to the corresponding coverage criterion. Column “# of tests” shows the number
of tests in the suite. Notice that the configuration criterion requires 24 tests
whereas all other criteria can be covered with just one test. Column “depth”
shows the depth of the generated tests (i.e., the length of the longest path
from the root to a leaf). For the configuration criterion, the depth varies be-
tween 6 and 53. The rest of the columns show the percentage of coverage of
the other criteria by the test suite generated for the given criterion. For ex-
ample, the test covering the four global locations also covers 3105 configura-
tions, which amounts to approximately 21% of the total number of configura-
tions.

Perhaps the most interesting finding from the above experiments is that a
relatively small number of tests suffices to cover all reachable configurations of
the specification (in fact, we cover the states of the product automaton ATick

S). It
is worth comparing this number to the number of tests generated with the “ex-
haustive up to given depth” option. As shown in Table 2, the size of exhaustive
test suite grows too large even for relatively small depths. The table also shows
the percentage of the above criteria covered by the exhaustive test suite. It can

Table 2. Exhaustive test suites for the BRP case study

depth time # of coverage of other criteria
(sec) tests config. locations actions m b c i j

1 17 2 0.2% 75% 33% 100% 100% 100% 25% 100%

2 17 3 2% 75% 50% 100% 100% 100% 50% 100%

3 22 5 5% 75% 50% 100% 100% 100% 50% 100%

4 39 11 8% 75% 50% 100% 100% 100% 75% 100%

5 168 41 14% 75% 50% 100% 100% 100% 75% 100%

6 1677 371 18% 75% 50% 100% 100% 100% 100% 100%

An Expressive and Implementable Formal Framework 223

be seen that even though the number of tests is large, only a small percentage
of coverage is achieved: for instance, 18% configuration coverage for 371 tests at
depth 6.

Sometimes not only the number of tests but also their size is important. By
looking at our test generation algorithm, where a test is obtained by completing
a path, we can say that the size of a test is essentially its depth. As one can see
from Table 1 the largest test depth is 53. This can be explained as follows. In our
implementation we use the following heuristic to choose which configuration to
cover next: we pick a configuration which is “far” from the initial one, that is, at a
large depth. The expectation is to cover as many configurations as possible with
every new test. Thus, this heuristic tends to favor the generation of fewer but
“longer” tests. Obviously, a different approach is to favor “shorter” (but perhaps

Fig. 10. A test generated by TTG for the BRP case study

main

loc_0

[1] output put();

loc_1

[1] input R_abort();

[2] input get();

[3] input T_abort();

[4] input dk();

[5] input TICK();

FAILPASS

loc_2

[1] input R_abort();

[2] input get();

[3] input T_abort();

[4] input dk();[5] input TICK();

loc_3

[1] input TICK();

[2] input R_abort();

[3] input T_abort();

[4] input dk();[5] input get();

loc_4

[1] output put();

loc_5

[1] input TICK(); [2] input R_abort(); [3] input T_abort(); [4] input dk();[5] input get();

224 M. Krichen and S. Tripakis

more) tests. This can be done by changing the heuristic to pick configurations
which are “close” to the initial one.

A test generated by TTG for the configuration coverage option is shown in
Figure 10.

4 Summary and Future Work

We have proposed a testing framework for real-time systems based on partially-
observable, non-deterministic timed-automata specifications and on digital-clock
tests. To our knowledge, this is the first framework that can fully handle such
specifications and such tests. We showed that, through appropriate modeling, as-
sumptions on the environment and the interface between the tester and SUT can
be captured in the framework in a seamless way, without need for extra notions
or algorithms. We also reported on a recent implementation of a test generation
algorithm with respect to coverage criteria and experimental results obtained
for the Bounded Retransmission Protocol. These results show that a few tests
suffice to cover thousands of reachable symbolic states of the specification. We
are currently studying alternative notions of coverage and methods to generate
minimal test suites (without redundant tests). We are also examining how to
adapt other testing problems than conformance, for instance, fault detection or
state identification [14], to the timed setting.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. B. Berthomieu and M. Menasche. An enumerative approach for analyzing time
Petri nets. IFIP Congress Series, 9:41–46, 1983.

3. M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier. IF: a
validation environment for timed asynchronous systems. In Proc. CAV’00, volume
1855 of LNCS. Springer, 2000.

4. M. Bozga, S. Graf, A. Kerbrat, L. Mounier, I. Ober, and D. Vincent. SDL for
Real-Time: What is Missing? In Proceedings of SAM’00: 2nd Workshop on SDL
and MSC (Grenoble, France), pages 108–122. IMAG, June 2000.

5. R. Cardell-Oliver. Conformance tests for real-time systems with timed automata
specifications. Formal Aspects of Computing, 12(5):350–371, 2000.

6. D.L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, vol-
ume 407 of LNCS, pages 197–212. Springer–Verlag, 1989.

7. A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi. Timed test cases gen-
eration based on state characterization technique. In RTSS’98. IEEE, 1998.

8. J.C. Fernandez, C. Jard, T. Jéron, and G. Viho. Using on-the-fly verification
techniques for the generation of test suites. In CAV’96, volume 1102 of LNCS.
Springer, 1996.

9. A. Hessel, K. Larsen, B. Nielsen, P. Pettersson, and A. Skou. Time-optimal real-
time test case generation using UPPAAL. In FATES’03, 2003.

An Expressive and Implementable Formal Framework 225

10. A. Khoumsi, T. Jéron, and H. Marchand. Test cases generation for nondetermin-
istic real-time systems. In FATES’03, 2003.

11. Z. Kohavi. Switching and finite automata theory, 2nd ed. McGraw-Hill, 1978.
12. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.

In 11th International SPIN Workshop on Model Checking of Software (SPIN’04),
volume 2989 of LNCS. Springer, 2004.

13. V. Kuliamin, A. Petrenko, N. Pakoulin, A. Kossatchev, and I. Bourdonov. Inte-
gration of functional and timed testing of real-time and concurrent systems. In
Ershov Memorial Conference, volume 2890 of LNCS. Springer, 2003.

14. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
- A survey. Proceedings of the IEEE, 84:1090–1126, 1996.

15. B. Nielsen and A. Skou. Automated test generation from timed automata. In
TACAS’01. LNCS 2031, Springer, 2001.

16. A. Petrenko, S. Boroday, and R. Groz. Confirming configurations in EFSM testing.
IEEE Trans. Software Eng., 30(1), 2004.

17. J. Springintveld, F. Vaandrager, and P. D’Argenio. Testing timed automata. The-
oretical Computer Science, 254, 2001.

18. J. Tretmans. Testing concurrent systems: A formal approach. In J.C.M Baeten and
S. Mauw, editors, CONCUR’99 – 10th Int. Conference on Concurrency Theory,
volume 1664 of LNCS, pages 46–65. Springer-Verlag, 1999.

19. S. Tripakis. Fault diagnosis for timed automata. In Formal Techniques in Real
Time and Fault Tolerant Systems (FTRTFT’02), volume 2469 of LNCS. Springer,
2002.

Firewall Conformance Testing�

Diana Senn, David Basin, and Germano Caronni

ETH Zürich, 8092 Zürich, Switzerland
{dsenn, basin}@inf.ethz.ch, gec@acm.org

Abstract. Firewalls are widely used to protect networks from unautho-
rised access. To ensure that they implement an organisation’s security
policy correctly, they need to be tested. We present an approach that
addresses this problem. Namely, we show how an organisation’s network
security policy can be formally specified in a high-level way, and how
this specification can be used to automatically generate test cases to test
a deployed system. In contrast to other firewall testing methodologies,
such as penetration testing, our approach tests conformance to a speci-
fied policy. Our test cases are organisation-specific — i.e. they depend on
the security requirements and on the network topology of an organisa-
tion — and can uncover errors both in the firewall products themselves
and in their configuration.

1 Introduction

Firewalls are a common and widely deployed technology to control access to
networked systems. Although they are sometimes viewed as an “appliance” that
can be used out of the box, considerable work is required in practice to config-
ure them so that they implement an organisation’s network security policy. To
ensure that this is done properly and that the employed firewalls then behave
as expected, the entire setup must be tested. This is particularly important in
high-security environments like banking or in military settings.

In this paper we present an approach to specification-based firewall testing,
where an organisation’s network security policy comprises the specification. This
can also be called firewall conformance testing, as it tests if the firewalls conform
to the network security policy. Our motivation to follow this path comes from
the fact that there is a wide range of security needs and network topologies, and
a firewall testing procedure should be tailored to both of these. Note that such
testing says nothing about the appropriateness of the security policy itself. For
this, a separate analysis of the security policy is needed.

Our approach is based on the following ideas: First, we propose a formal
language for specifying network security policies. Second, we show how to au-
tomatically generate test cases from formal policies. A test case consists of test

� This work was partially supported by armasuisse. It represents the views of the
authors.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 226–241, 2005.
c© IFIP 2005

Firewall Conformance Testing 227

input, also called test data, and the expected test output. Our test cases consist
of a series of network packets (test data) and a statement per packet whether we
expect this packet to reach its destination or not. We are testing firewalls and use
the term firewall implementation to denote everything that is delivered by the
firewall manufacturer, and the term firewall configuration (or firewall rule set) to
denote its configuration by the customer. By executing the generated test cases
directly on the real network (as opposed to simulation), we can find errors both
in the firewall configuration and in the firewall implementation. These tests can
be done just before deploying a network, or after configuration updates. Note
that we do not explicitly search for all possible bugs in the firewall implementa-
tion as is sometimes done in penetration testing. Rather, our method succeeds
in finding all policy related errors.

The contributions of this paper are a language for the formal specification
of network security policies, the novel combination of different methods for gen-
erating abstract test cases, and an algorithm for generating concrete test cases
from policies. As firewalls can be very complex, we have made some simplifying
assumptions in this paper: We assume that all firewalls are stateful packet fil-
ters1, and we do not test for problems with timing or sequence numbers. Future
work will aim at eliminating these simplifications and at carrying out large-scale
case studies.

This paper is organised as follows: We give a comparison with related work
in Section 2. Then we present our formal policy specification language in Section
3, and the process of test case generation in Section 4. The entire process is then
illustrated on an example in Section 5. We conclude and report on future work
in Section 6.

2 Related Work

Most preexisting work on firewall testing covers different aspects of testing
by hand [Hae97, Sch96]. Constructing these tests relies on human experts who
mainly focus on detecting known vulnerabilities, for example forwarding exter-
nal packets that claim to come from an internal source. Most of this testing falls
under the heading of penetration testing.

Over the last few years, a new approach to firewall testing was taken by
[BMNW99, JW01], which can be called specification-based firewall testing. The
general idea comes from specification-based software testing: The specification is
used to generate test cases, against which the system implementation is tested.
In the case of specification-based firewall testing, the system is the firewall and

1 A packet filter can filter traffic only at OSI Layer 4 (TCP and UDP), whereas an
application level firewall can interpret and filter higher-level protocols. A stateful
packet filter can forward (changed or unchanged), drop, or reject a packet based
on its source IP address, the packet’s source port, its destination IP address, its
destination port, its TCP flags, and the state of the connection the packet belongs
to.

228 D. Senn, D. Basin, and G. Caronni

the specification is a security policy. The difference to penetration testing is sub-
stantial: Whereas penetration testing tends to always use the same test cases, in
specification-based testing they depend on the policy and are designed explicitly
to test conformance with the policy.

These specification-based approaches share some similarities with ours. Wool
et al. [BMNW99, BMNW03, MWZ00, Woo01], for example, gather the configu-
rations of the network and the firewalls, and then simulate the network under
test, i.e. they start with the firewall rules instead of with the policy. In their
simulation, tests can then be executed easily and without doing harm. There
are a number of tools (Firmato [BMNW99, BMNW03], Fang [MWZ00], LFA
[Woo01]) implementing this approach. The disadvantages of this approach are
twofold: First it relies on the correctness of the firewall implementations and
second it needs to interpret the different firewall rule languages (of the different
vendors). Thus it tests a model, which will never model reality perfectly. We
treat firewalls as black boxes and therefore can test firewalls without having to
formalise and provide a semantics for their rule language. Additionally, by car-
rying out tests on the real network, we can find errors in not only the firewall
configuration, but also in the firewall implementation. The advantage of testing
a model, as Wool et al. do, is that there is no interaction with a running system
and that the tests themselves can do no harm.

An approach similar to specification-based firewall testing is to generate the
firewall rules from a formal policy [Gut97, BCG+01]. What firewall rule gener-
ation has in common with specification-based firewall testing is that both need
a formal specification. Guttman [Gut97], for example, takes an approach sim-
ilar to formalising policies as we do, but includes all the low-level details. He
then models the network as a bipartite graph and computes the individual rules
for each firewall from the global policy by completing a graph traversal of this
model. His aim is different from ours: he generates the firewall rules from the
policy, whereas we assume that there are firewall rules whose correctness we
would like to check. What our work has in common is that we also need a formal
policy. However, his policies are specified in a way that they easily become too
detailed and therefore are subject to policy errors. In contrast, in our approach,
we separate the low-level details from the policy, thereby making policies easier
to understand and policy writing less error-prone.

3 A Formal Network Security Policy

A network security policy formalises what kind of traffic is allowed between
different zones. A zone is a part of a network that is separated from the rest of
the network by means of one or more firewalls. In what follows, we will use the
term policy to denote any part of a security policy, be it formal or informal, and
the term formal policy for our formalisation of the network security policy. Note
that in our work, we shall assume that users do not play a role in policies.

Figure 1 illustrates a network with three zones: the public Internet, the de-
militarised zone (DMZ), and the private Intranet of a company. In this example,

Firewall Conformance Testing 229

Fig. 1. A sample graphical network layout

our network also has two servers, a Mailserver and a Webserver, standing in the
DMZ. A policy for this network defines what traffic is allowed to flow between
these different zones. This can be direction dependent (for example, there may
be different restrictions on what connections are allowed to be initiated from
the private zone to the Internet than the other way) and thus we need two rules
per pair of zones. We assume that all clients in a zone are equivalent, in that
differences in their IP addresses have no effect on the firewalls’ behaviours2. In
contrast, we do distinguish between servers, as we would like to be able to state
different policies for different servers. Thus, in the example given, instead of stat-
ing policies for traffic flowing to and from the DMZ, we state individual policies
for the two servers. Policies for traffic within zones need not be specified, since
compliance with these policies cannot be enforced by firewalls.

@ Connections to Private
DMZ → Private: ACCEPT securetraffic
Internet → Private: DENY ∗

@ Connections to the DMZ
∗ → Webserver: ACCEPT webtraffic
∗ → Mailserver: ACCEPT mailtraffic

@ Connections to the Internet
Private → Internet: ACCEPT ∗
DMZ → Internet: DENY ∗

Fig. 2. A sample formal policy

Figure 2 gives an example of a formal policy for the given network, where
lines starting with @ are comments, and where * means everything. The second

2 This represents our uniformity hypothesis.

230 D. Senn, D. Basin, and G. Caronni

line, for example, states that only secure traffic is allowed from the DMZ zone to
the private zone. But which connections are secure? This can change quickly (for
example, when a new ssh weakness is found) and is therefore stated separately
from the policy in what we call keyword definitions. The idea is that our policy is
expressed at a high-level; this way it is both manageable and understandable by
managers as well as security specialists. Because of this, we also use names for
network zones. The low-level details (IP-addresses, etc.), which may be subject to
frequent change, are stored separately in what we call a textual network layout.
The graphical version presented in Figure 1 does not contain these low-level
details.

securetraffic = ssh, scp, https, imaps
webtraffic = http, https
mailtraffic = smtp, imap, imaps

Fig. 3. Keyword definitions

An example of keyword definitions is given in Figure 3. Here the security
engineer has decided that SSH, SCP, HTTPS, and IMAPS are secure proto-
cols. These protocols are application level protocols. At the TCP level — where
stateful packet filters work — they are represented by their TCP port number.

DMZ: 129.132.178.192/27
Private (Intranet): 192.168.1.0/24
Internet: !DMZ, !Private

∗ ∗ ∗
@ Name of the Firewall Interface Comment
FW1 eth0 (0.0.0.1)
FW1 eth1 (129.132.178.193)
FW2 eth0 (129.132.178.194) Packet filter
FW2 eth1 (192.168.1.1) Packet filter

∗ ∗ ∗
@ Name (fac.) IP Service
Mailserver 129.132.178.200 smtp
Mailserver 129.132.178.200 imap
Webserver 129.132.178.197 http

Fig. 4. A sample textual network layout

An example of a textual network layout, providing the low-level details
of the network shown in Figure 1, is given in Figure 4. The first part gives
the IP-address-ranges for the zones in CIDR notation [FLYV93]. For example,
129.132.178.192/27 means that the first 27 bits are used to represent the net-
work and the remaining 5 bits are used to identify hosts, which results in the
30 hosts starting at 129.132.178.193 and ending at 129.132.178.222 (note that
129.132.178.192 represents the network address, and 129.132.178.223 represents

Firewall Conformance Testing 231

the broadcast address). The ! operator represents set complement with respect
to the universe of all possible IP addresses (from 0.0.0.0 to 255.255.255.255) and
thus the third line means that the Internet consists of everything other than
the DMZ and the Private zone. The second part provides the IP addresses of
the firewall-interfaces along with some comments. The last part lists the IP ad-
dresses of the servers together with the service they provide. The stars separate
the different parts and @ again represents comments.

The grammars for formal policies, keyword definitions, and textual network
layout can be found in the Appendix.

4 Test Case Generation

In this Section, we first present our method for test case generation in detail,
before giving a concrete example in Section 5. Our test case generation consists
of two parts. First we generate test tuples from the formal policy. Afterwards
we generate abstract test cases. The idea of the abstract test cases is to test
the correct stateful handling of a protocol by a firewall. For example, a stateful
packet filter may be tested to determine whether it correctly handles TCP traffic.
To generate the concrete test cases, we instantiate the abstract test cases with
the test tuples.

4.1 Abstract Test Cases

We must generate a set of abstract test cases for every protocol we want to
test. Once we have these test cases, we can use them for every test concerning
this protocol. The generation consists of two steps: We first construct a Mealy
automaton describing the protocol for which we want to generate abstract test
cases. Then we generate test cases for this Mealy automaton using the well
known UIO-sequences method [SD88]. We will now explain the generation in
detail.

Mealy Automata

Definition 1. A Mealy automaton is a six-tuple M = (Q,Σ, Γ, δ, λ, q1), where
Q = {q1, q2, ..., q|Q|} is a finite set of states, Σ = {σ1, σ2, ..., σ|Σ|} is a finite
input alphabet, Γ = {γ1, γ2, ..., γ|Γ |} is a finite output alphabet, δ : Q×Σ → Q
is the transition function, λ : Q×Σ → Γ is the output function, and q1 ∈ Q is
the initial state.

In our models, the input of a transition represents the packet (we only model
the parts of it essential for determining the firewall’s action) reaching the firewall,
and the output represents the corresponding packet leaving the firewall. A typical
input has the form x : A → B, where x represents packet information being sent
from source A to destination B. The output packet can either be the same as
the input packet, different from the input packet (i.e. changed by the firewall),

232 D. Senn, D. Basin, and G. Caronni

or non-existent (dropped by the firewall). Thus Σ = Γ ∪ {−}, where the “–”
symbol represents no output.

Test Cases for Mealy Automata
The general idea behind testing a specification given as a Mealy automaton Mspec

is to ensure that every transition of Mspec is correctly implemented, where the
implementation is also assumed to be a Mealy automaton Mimp. This is achieved
by testing every transition in Mspec, say from state si to state sj , according to
the following steps:

1) Bring the implementation automaton Mimp into the initial state s1.
2) Transfer Mimp into the state si.
3) Test the transition (apply its input and see if the output is correct).
4) Verify that Mimp is now in the state sj .

Step one is easy if there is a reliable reset: Just apply the reset input to
go back to the initial state. The TCP protocol, which we present in the next
Section, has such a reliable reset.

Steps two and three can be solved by building a test tree T according to the
following rules and afterwards traversing all the paths [Cho78]:

Level 1: Label the root of T with the initial state of Mspec.
Level (k+1): Examine the nodes in the k-th level from left to right. A node

in the k-th level is terminated if its label is the same as a nonterminal at
some level j, j ≤ k. Otherwise, let Mspeci

denote its label. If on input x,
machine Mspec goes from state Mspeci

to state Mspecj
, then we attach a

branch and a successor node to the node labelled Mspeci
in T . The branch

and the successor node are labelled with x and Mspecj
, respectively.

Step 4 can be achieved by using either the W-method [Cho78], UIO sequences
[SD88], or distinguishing sequences [Gil61, Gil62]. All these methods achieve the
same fault coverage. We have chosen the UIO sequences because they generate
the shortest test cases of the three methods. In brief, a UIO sequence is an in-
put/output sequence x for a state s that distinguishes s from all other states,
i.e. λ(si, x)
= λ(s, x), for all si
= s.

We can now fit the pieces together to generate our abstract test cases: We
take every possible path in the test tree, prepend it with the reset input, and
append the UIO sequence of the end state (of the path). Thus we get a set of
abstract test cases, where every abstract test case consists of a series of I/O
tuples (describing input and expected output). Every abstract test case starts
with the reset input to bring the machine back into its initial state, followed by
a series of I/O tuples to bring the machine into some state si and one I/O tuple
to test the transition from state si to state sj (extracted from the test tree),
and finally a series of I/O tuples (the UIO sequences) to verify that state sj was
reached.

Firewall Conformance Testing 233

4.2 Test Tuples

A test tuple is a four-tuple (sIP, dIP, proto, exp), where sIP and dIP represent
IP addresses, proto is the name of a protocol, and exp ∈ {ACCEPT, DROP}
represents an expectation. A test tuple describes whether a connection from the
source sIP to the destination dIP using protocol proto is allowed by the formal
policy. If the policy allows a connection, we expect the firewalls to let this data
through, and therefore exp in this case would be ACCEPT. If a connection is not
allowed (or explicitly forbidden) by the policy, exp will be DROP. This means
that the test tuples are policy-specific and thus must be generated for every
policy. Note that the statefulness of a connection is not modelled by these test
tuples, but rather by the abstract test cases.

We generate test tuples in two steps. First we combine the formal policy
with the low-level details contained in the keyword definitions and the textual
network layout. This means that we transform every rule

source → destination: action keyword

from the formal policy into n low-level rules, where n is the number of protocols
named in the keyword definitions. In these low-level rules, the names of source
and destination are replaced with the corresponding IP ranges.

These low-level rules can be represented graphically using one two-
dimensional graph per protocol, where the x-axis represents the source IP
addresses and the y-axis represents the destination IP addresses. For each low-
level rule

sIPr dIPr protocol action

the cross-product sIPr × dIPr defines a rectangular region in the graph. We
colour this region according to the given action (grey for ACCEPT, black for
DROP). An example of this is given in Section 5, Figure 7.

In a second step, we choose our test tuples from these low-level rules. This
is necessary because it is generally infeasible to test every possible combination
of IP addresses. However, as we assume uniformity within zones, it is sufficient
to choose for each low-level rule an arbitrary IP from the source IP range and
an arbitrary IP from the destination IP range. As boundary points are a source
of errors in practice, we also select addresses to test these. That is, we choose
the lowest IP address, an arbitrary (intermediate) IP address, and the highest
IP address per range. This results in nine (three times three) test tuples per
low-level rule.

Until now, we just considered what the policy explicitly states. But we should
also test implicit statements, i.e. what is not explicitly allowed is forbidden. This
is best explained on the graphical representation (see Figure 7 for an example). In
the graph, we coloured all the areas where we have an explicit policy statement
(either in grey or black). This means that for all the uncoloured areas there
exists no explicit policy statement. Note that a part of the uncoloured area is
not testable since, as we stated earlier, policies for traffic within zones cannot
be enforced by firewalls. But the rest of the uncoloured areas can be partitioned

234 D. Senn, D. Basin, and G. Caronni

into rectangles and then test tuples can be chosen, analogous to the procedure
given above, where the expectation is set to DROP.

The resulting test tuples are then used to instantiate the abstract test cases.
How this is done is explained in the next Subsection.

4.3 Concrete Test Cases

In the last two Subsections, we have explained the generation of test tuples
and abstract test cases. Recall that abstract test cases test the correct stateful
handling of a protocol, and they contain variables for source and destination
addresses (A and B respectively). Recall further that test tuples are of the form
(sIP, dIP, proto, exp), formalising whether a connection from the IP address sIP
to the IP address dIP using protocol proto is allowed or not. We now explain how
to instantiate the abstract test cases with the test tuples and thereby generate
concrete test cases that test if the policy is correctly implemented in a stateful
manner. Given a test tuple (sIP, dIP, proto, exp) and abstract test cases ai for
the protocol proto, the instantiation proceeds as follows:

– replace every occurrence of A in every ai with sIP,
– replace every occurrence of B in every ai with dIP, and
– if exp == DENY then replace the expected output in every ai with “–”.

The resulting test data represents network packets. These packets can then be
built and injected into the actual network and the results can be compared to
the expectations of the given test cases.

In this paper, we only consider the testing of stateful packet filters. This
means that we only need abstract test cases for TCP and UDP, but not for every
possible (application-level) protocol. Thus, instead of instantiating the abstract
test cases generated for proto with test tuples of the form (sIP, dIP, proto, exp),
we instantiate the abstract test cases for TCP with these tuples. To model proto
at the TCP-level, we use the TCP port-number pnum of proto as the destination
port. Thus, B in the abstract test cases is replaced with dIP:pnum (instead of
dIP) in this case, to produce the concrete test cases.

As described above, our abstract test cases are generated from Mealy au-
tomata using the UIO sequences method. The resulting unoptimised test se-
quences have length O(mn2) per automaton, where m denotes the number of
transitions and n denotes the number of states of the automaton (Theorem 3 of
[SD88]). As test sequences can be optimised, i.e. subsequences completely con-
tained in others can be eliminated, the above complexity bound represents the
worst case.

The work needed for generating test tuples is the following: If we have a
policy containing r rules, and at most p protocols per keyword, we get O(rp)
test tuples. The generation of the abstract test cases needs only be done once
per protocol, i.e. this is a one-time cost. The generation of the test tuples and
the instantiation of concrete test cases based on them has to be done once per
policy. As we use each test tuple to instantiate at most O(mn2) abstract test
cases, in the worst case we generate O(rpmn2) concrete test cases.

Firewall Conformance Testing 235

When testing Mealy automata, we can distinguish between two types of er-
rors: operation errors, which are errors in the output function, and transfer
errors, which are errors in the next state function. If the implementation au-
tomaton has the same number of states as the specification automaton, then we
can detect all errors of both kinds, and our abstract test cases are reliable and
valid in the sense described by [GG75]. If there are extra states in the imple-
mentation, the UIO sequences method we use may however miss errors.

If our uniformity hypothesis holds, i.e. the firewall reacts in the same way to
all clients within a zone, then our test tuples represent all possible connections
(between every possible source and destination). Hence instantiating the abstract
test cases with these test tuples, the resulting concrete test cases are reliable and
valid.

5 An Example

Abstract Test Cases for TCP.
A graphical Mealy automaton for the TCP protocol is given in Figure 5. The
automaton is not a full specification: sequence numbers and acknowledgement
numbers have been omitted. Also the input alphabet does not contain all possible
combinations of flags. But the central parts of the protocol are specified. The
respective input and output of each transition are written next to the transition
and are separated by a slash. The input fin: A → B, for example, stands for a
TCP packet sent from A to B, where exactly the fin flag is set. A and B stand
for two hosts and are instantiated with concrete IP addresses later.

Fig. 5. Automaton for TCP

236 D. Senn, D. Basin, and G. Caronni

Fig. 6. Test Tree for TCP

From the Mealy automaton for TCP, we construct a test tree using the
method given in Section 4.1. The test tree for TCP is given in Figure 6: NEW
is the start state of the Mealy automaton and represents level 1 of the test tree.
From the state NEW there are two transitions, one back to NEW and one to
the state SYN A. Thus the states NEW and SYN A represent level 1 of the test
tree. As we already had state NEW in the test tree, the test tree is continued
only for state SYN A.

Proposition 1. The UIO sequences for TCP are:

NEW: (5/-)(2/2)
SYN A: (6/-)(5/5)
SYN B: (7/-)(6/6)(9/9)(10/10)
ESTABLISHED: (8/8)(11/11)
FIN1 A: (7/7)(9/9)(6/6)(2/2)
FIN2 A: (9/9)(6/6)(2/2)
CLOSE A: (6/6)(2/2)
FIN1 B: (6/6)(8/8)(7/7)(2/2)
FIN2 B: (8/8)(7/7)(2/2)
CLOSE B: (7/7)(2/2)

As an example, consider the UIO sequence of the state NEW. On input syn: A
→ B, only the states NEW and SYN A will respond with output syn: A → B;
all the other states will have no output. As the state SYN A, in contrast to state
NEW, will also respond to syn & ack: B → A, we identify the state NEW if we
send the packets syn: A → B and syn & ack: B → A and only see the second
packet behind the firewall.

Firewall Conformance Testing 237

We will now construct two test cases according to the four step procedure
given in Section 4.1. Our first test case should test the transition from state
NEW to itself.

1) Bring the machine into its initial state: (1 / 1).
2) Transfer the machine into state NEW: no action is needed here.
3) Test the transition: (8 / -) is one possibility.
4) Verify that the machine is now in state NEW: (5 / -)(2 / 2) is the UIO

sequence of state NEW.

Thus the resulting test case is (1 / 1)(8 / -)(5 / -)(2 / 2).

Our second test case should test the transition from state SYN B to state ES-
TABLISHED.

1) Bring the machine into its initial state: (1 / 1).
2) Transfer the machine into state SYN B: (2 / 2)(5 / 5).
3) Test the transition: (6 / 6).
4) Verify that the machine is now in state ESTABLISHED: (8 / 8)(11 / 11) is

the UIO sequence of state ESTABLISHED.

Thus the resulting test case is (1 / 1)(2 / 2)(5 / 5)(6 / 6)(8 / 8)(11 / 11). Anal-
ogous to the two examples given, test cases for all the other transitions need to
be constructed.

An Example of Test Tuples
We will illustrate the generation of test tuples on the example of the formal
policy given in Figure 2. Apart from the policy, we need the keyword definitions
given in Figure 3 and some knowledge (i.e. IP addresses) of the network under
test (given in Figure 1). Let us assume that we have the information about the
network under test given in Figure 4.

As an example, we generate test tuples for the HTTPS protocol. HTTPS
is contained in the keywords securetraffic and webtraffic. Therefore we have to
build and colour a graph for all rules of the formal policy except the fourth one.
The result can be seen in Figure 7. In this graph, test tuples are marked by a
circle, and untestable areas are marked with a question mark. One example of
such a test tuple is (129.132.178.192, 192.168.0.255, https, DENY).

An Example of a Concrete Test Case
In this example, we have only generated abstract test cases for TCP. Thus we
instantiate these abstract test cases with the above test tuples, to generate con-
crete test cases. For this, we represent every application level protocol with its
TCP port number (e.g. 443 for HTTPS).

As an example, we present the instantiation of one abstract test case with
two test tuples.

238 D. Senn, D. Basin, and G. Caronni

Fig. 7. Policy for https with test points

Example 1. Test Case Instantiation
an abstract test case for TCP: (1 / 1)(8 / -)(5 / -)(2 / 2).
test tuple 1: (129.132.178.192, 192.168.0.255, HTTPS, DENY)
test tuple 2: (129.132.178.192, 192.168.1.0, HTTPS, ACCEPT)

Using the first test tuple we get the concrete test case:
(rst: 129.132.178.192 → 192.168.0.255:443 / –)
(fin: 129.132.178.192 → 192.168.0.255:443 / –)
(syn & ack: 192.168.0.255:443 → 129.132.178.192 / –)
(syn: 129.132.178.192 → 192.168.0.255:443 / –)

Using the second test tuple we get:
(rst: 129.132.178.192→ 192.168.1.0:443 / rst 129.132.178.192→ 192.168.1.0:443)
(fin: 129.132.178.192 → 192.168.1.0:443 / –)
(syn & ack: 192.168.1.0:443 → 129.132.178.192 / –)
(syn: 129.132.178.192→ 192.168.1.0:443 / syn: 129.132.178.192→ 192.168.1.0:443)

Let us explain these two test cases. Recall that a test case (this holds for
the abstract and the concrete test cases) is composed of a series of input and
expected output packets. Each of the above test cases contains four such I/O
pairs. Thus for the first concrete test case we try to initiate a https-connection
from 129.132.178.192 to 192.168.0.255, where we expect the firewall to drop all

Firewall Conformance Testing 239

these packets. That is we test that a https-connection from 129.132.178.192 to
192.168.0.255 is not allowed.

The second concrete test case belongs to a series of test cases that test if
a https-connection can be initiated from 129.132.178.192 to 192.168.1.0 and if
this is done correctly, i.e. they test whether the firewall handles the TCP con-
nection correctly. This specific test case tests the start of such a connection (as
explained in the last Subsection). The first packet resets the connection and
should be accepted by the firewall. The second packet attempts to close the con-
nection, but as the connection no longer exists (it was reset before), this packet
should not be allowed, and therefore should be dropped by the firewall. The
third packet is not the start of a new connection and thus should be dropped as
well, and finally the fourth packet initiates a new connection and should be let
through.

With the second concrete test case we can find different kinds of errors: 1)
A bug in the firewall implementation if the fin or the syn & ack packet is let
through (i.e. the stateful connection handling is incorrect), and 2) a bug in the
firewall configuration if the syn packet is blocked.

6 Conclusion

We have presented a new approach to test the conformance of firewalls to a
given security policy. Our contributions are the following: a language for the
formal specification of network security policies, the novel combination of dif-
ferent methods for generating abstract test cases, and an algorithm for gen-
erating concrete test cases from the policy. Overall, our method is designed
to find errors both in the firewall implementation and the firewall
specification.

In this paper our focus has been on the theoretical basis of our approach. We
are currently implementing a prototype testing tool based on this work. We plan
to use this tool to conduct case studies, to see how effective our method is in
finding errors as well as to determine its robustness. An interesting scenario will
be to stress test the firewalls, i.e. to run many different test cases at the same
time.

To reduce the complexity of the problem, we have simplified matters by
assuming that our firewalls are stateful packet filters and by not testing for
problems with timing or sequence numbers. As a next step, we plan to eliminate
these simplifications. In particular, we shall adapt our approach to application-
level firewalls. As some application-level protocols are difficult to handle by a
firewall, e.g. SIP [RSC+02] needs dynamic port opening, this problem is quite
challenging. With respect to timing properties, at the moment we can only test
the correct ordering of test packets over time. It would be interesting to test,
for example, what happens when there is a long pause between test packets
belonging to the same test case.

240 D. Senn, D. Basin, and G. Caronni

References

[BCG+01] J. Burns, A. Cheng, P. Gurung, S. Rajagopalan, P. Rao, D. Rosenbluth,
A.V. Surendran, and D.M. Martin. Automatic management of network
security policy. In Proceedings of DISCEX II, 2001.

[BMNW99] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato:
A novel firewall management toolkit. In IEEE Symposium on Security
and Privacy, pages 17–31, 1999.

[BMNW03] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato:
A novel firewall management toolkit. Technical report, Dept. Electri-
cal Engineering Systems, Tel Aviv University, Ramat Aviv 69978 Israel,
February 2003.

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines.
In IEEE Transactions on Software Engineering, Vol. SE-4, No 3, pages
178–187, May 1978.

[FLYV93] V. Fuller, T. Li, J. Yu, and K. Varadhan. RFC 1519: Classless inter-
domain routing (CIDR): an address assignment and aggregation strategy.
http://www.ietf.org/rfc/rfc1519.txt, September 1993.

[GG75] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data
selection. In IEEE Transactions on Software Engineering (TSE), Volume
1, Number 2, pages 156–173, June 1975.

[Gil61] A. Gill. State-identification experiments in finite automata. In Informa-
tion and Control, vol. 4, pages 132 – 154, 1961.

[Gil62] A. Gill. Introduction to the Theory of Finite-state Machines. McGraw-
Hill, 1962.

[Gut97] J. D. Guttman. Filtering postures: Local enforcement for global poli-
cies. In 1997 IEEE Symposium on Security and Privacy, pages 120–129,
Oakland, CA, 1997. IEEE Computer Society Press.

[Hae97] Reto E. Haeni. Firewall penetration testing. Technical report, The George
Washington University Cyberspace Policy Institute, 2033 K St, Suite
340N, Washington, DC, 20006, US, January 1997.

[JW01] Jan Jürjens and Guido Wimmel. Specification-based testing of firewalls.
In Andrei Ershov, editor, 4th International Conference Perspectives of
System Informatics (PSI’01), LNCS. Springer, 2001.

[MWZ00] Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis
engine. In Proceedings of the 2000 IEEE Symposium on Security and
Privacy (S&P 2000), pages 177–187, May 2000.

[RSC+02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. RFC 3261 SIP: Session initiation
protocol. http://www.ietf.org/rfc/rfc3261.txt, June 2002.

[Sch96] E. Schultz. How to perform effective firewall testing. In Computer Secu-
rity Journal, vol. 12, no. 1, pages 47–54, 1996.

[SD88] Krishan Sabnani and Anton Dahbura. A protocol test generation pro-
cedure. In Computer Networks and ISDN Systems 15, pages 285–297,
1988.

[Woo01] A. Wool. Architecting the lumeta firewall analyzer. In Proceedings of the
10th USENIX Security Symposium, pages 85–97, August 2001.

Firewall Conformance Testing 241

A Grammars

A.1 General
IP = DDD’.’DDD’.’DDD’.’DDD .
D = [digit] .
PROTO = letter {letter | ’-’ | ’+’ | digit | ’.’ | ’ ’} | NUM .
NUM = {digit} .
NAME = letter {letter | digit} .
ACTION = ’accept’ | ’deny’ .
PRE = ’pre’ .
POST = ’post’ .
COMMENT = ’@’ TEXT ’\n’
TEXT = {letter | digit ...}

A.2 Formal Network Policy

POLICY = {RULE | COMMENT}
RULE = SOURCE ’→’ DEST : ACTION KEYWORDS
SOURCE = NETWORK
DEST = NETWORK
NETWORK = NAME
KEYWORDS = (’∗′ | NAME) {’,’ KEYWORDS}

A.3 Keyword Definitions

KEYWORD-DEFINITIONS = {DEFINITION | COMMENT}
DEFINITION = NAME ’=’ PROTO {’,’ PROTO}

A.4 Network Layout

NETLAYOUT = NETWORKS ’∗ ∗ ∗’ FIREWALLS ’∗ ∗ ∗’ SERVERS
NETWORKS = {NET | COMMENT}
NET = NAME’:’ RANGE {’,’ RANGE}
RANGE = IP’/’DD | ’ !’NAME
FIREWALLS = {FIREWALL | COMMENT}
FIREWALL = FW IF TEXT
FW = NAME
IF = [’eth0’ | ’eth1’ ...] ’(’IP’)’
SERVERS = {SERVER | COMMENT}
SERVER = NAME IP PROTO

Test Generation for Interaction Detection in
Feature-Rich Communication Systems

Caixia Chi and Ruibing Hao

Bell Labs Research China, Lucent Technologies,
Beijing, China, 100080

chic@lucent.com, rhao@research.bell-labs.com

Abstract. This paper proposes a technique to generate test sequences
to check the conformance of an implementation of a feature-rich com-
munication system to its specification, as well as to detect the interac-
tions between the features of the system. A concept called color span is
introduced to measure the extent of the interactions between different
features. A modified Chinese postman tour algorithm is proposed to
produce an approximate minimum-cost and minimum color span tour
of the transition graph of a finite-state machine. Test generation using
the proposed algorithm for the SIP-based Internet telephony end system
and for the Link Management Protocol are reported.

1 Introduction

With the convergence of 3G wireless and mobile Internet, more and more feature-
rich communication systems are designed and deployed. An example is the pop-
ular MSN messenger client which provides voice call, instant messaging and
video communication services. A feature-rich communication system is a sys-
tem that can offer many value-added services to its users, in which different
services may interfere with each other, and result in a problem known as fea-
ture interaction [1]. For example, Internet telephony end systems can offer basic
call functions, as well as some value-added services including automatic call an-
swering, call forwarding, call waiting, call redirection, etc. When a user wants
to apply a feature to automatically accept an incoming call in addition to an
existing call forwarding feature, the interaction between automatic call answer-
ing and call forwarding occurs. Feature interactions also occur in very low level
communication protocol systems. In [2], we have identified some feature interac-
tions in the protocols for core optical networks. Interactions between features of
a communication system are usually caused by different reasons such as resource
sharing or requirement violation, and can be identified through various ways in-
cluding protocol verification, simulation, or testing. In this paper, we focus our
discussion on how to identify feature interactions in a real system by means of
testing.

As stated in [3], a communication protocol system can be specified as a
deterministic finite-state machine (FSM), conformance test can be to present a

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 242–257, 2005.
c© IFIP 2005

Test Generation for Interaction Detection 243

method to test whether there is a discrepancy between the specification and the
implementation of an FSM. Typically, the implementation of a system is tested
for conformance by applying a sequence of inputs from an external tester, and
then verifying that the corresponding sequence of outputs is what is expected[3].
Lots of work has been done on generating test sequences for FSM’s [4][5][6][7],
and all these work focus on finding a tour of the transition graph of the FSM
that meets certain coverage criteria, such as a transition tour [7], or a postman
tour [3].

With the richness of features in modern communication systems, it is impor-
tant to make sure that a feature that works correctly in a stand alone mode also
works as expected in an integrated multi-feature system. Thus to guarantee the
reliability and usability of whole system, identifying the interactions between
features becomes more important. Generating conformance test cases that at
the same time can detect feature interactions in a feature-rich communication
system can be an efficient way to achieve this goal. Unfortunately we have not
seen any previous work on this aspect.

This paper describes a technique for generating optimal test sequences for
an implementation of a feature-rich communication system with an emphasis on
detecting the system’s malfunctions resulted by interactions between different
features. The mechanism proposed in this paper tries to interleave the opera-
tions of different features as much as possible such that interactions between
different features can be tested. A concept called color span is introduced in
this paper to specify the interleaving extent of multiple features, then an opti-
mization technique is used to find test sequences with minimum color span such
that transitions from different features interleave with each other as much as
possible in order to test interactions between different features.

In section II, some preliminary knowledge on graph theory and finite au-
tomata theory is introduced. Section III describes the algorithm to generate test
sequence minimal in time and with the minimum color span, section IV ex-
tends the algorithm to generate test sequence with minimum color span only. In
Section V, the algorithm is applied to generate test sequence for the SIP-based
Internet telephony end systems. In Section VI, we report the conformance test
sequence generated for the Link Management Protocol [15]. The paper concludes
in section VII.

2 Preliminaries

2.1 Graphs

Let G = (V,E) be a labelled directed graph with vertex set V , edge set E, where
V = {v1, · · · , vn} and m = |E|. G may contain loops and parallel edges, which
are distinguished from one another by different labels. An edge e from vertex vi

to vj is represented by a triple (vi, Le, vj), where Le is a label such that each
edge in E has an unique representation.

244 C. Chi and R. Hao

A walk in G is a finite, non-null sequence of consecutive edges: W = (vi1 , L1,
vi2)(vi2 , L2, vi3) · · · (vir−1 , Lr−1, vir

). Note that in a walk, a particular edge may
appear more than once. Vertex vi1 is called the origin of W , and vir

the tail of
W . A tour is a walk that starts and ends at the same vertex[8]. An Eulerian tour
of G is a tour which contains every edge of E exactly once.

Graph G is strongly connected if for any pair of distinct vertices vi and vj ,
there exists a walk W in G with vi as the origin and vj as the tail[9].

The in-degree and out-degree of a vertex vi in G are denoted by d−G(vi) and
d+

G(vi), respectively. The index G is omitted if G is obvious in the context. A
directed graph is balanced if for every vertex vi, d+(vi) = d−(vi). For each
vi ∈ V , set σi = d−(vi)−d+(vi). Let S = {vi ∈ V |σi > 0}, T = {vi ∈ V |σi < 0},
σ =

∑
vi∈S

σi.

A postman tour of G is a tour which contains every edge of E at least
once. The Chinese postman problem is to find an optimal (minimum-cost)
postman tour of a directed, strongly connected graph G; such a tour is called a
Chinese postman tour.

2.2 Finite-State Machines

A given finite-state machine (FSM) M can be taken as a directed graph G =
(V,E), where V = {v1, · · · , vn} represents the specified states of the FSM and a
directed edge represents a transition from one state to another in the FSM [3].
In this paper, it is assumed that G is strongly connected.

The following symbols are introduced in [3] and we include them here for the
convenience of the reader. There is an edge in E from vi to vj with label ak/ol

if and only if the FSM M , in state si upon receiving input ak produces output
ol, and moves into state sj . When there are multiple transitions from state si

to sj , there are multiple parallel edges from vertex vi to vj in the correspond-
ing graph G. Therefore, an edge in G is fully specified by a triple (vi, L, vj),
where L ≡ ak/ol, L

(i) ≡ ak, and L(o) ≡ ol. It is assumed here that M is a
deterministic FSM, that is, for a vertex vi ∈ V which has two outgoing edges
(vi, L1, vj) ∈ E, and (vi, L2, vk) ∈ E, L

(i)
1
= L

(i)
2 , although it is permissible that

L
(o)
1 = L

(o)
2 . In this case, a walk W in G which corresponds to a sequence of

state transitions is specified by its origin(the initial state) and a sequence of
input operations.

For a state machine that describes the behaviors of a feature-rich commu-
nication system, different features will often trigger different transitions of the
state machine. For the ease of better presentation, we assign each system feature
with a distinguished color, then G can be transformed into a colored graph, in
which the color associated with each edge is the same as the color of the feature
that realizes the corresponding transition in M .

Let G = (V,E,C) be a colored graph with vertex set V , edge set E and color
set C, where V = {v1, · · · , vn} and n = |V |,m = |E|, C = {c1, · · · , ck}. Each
edge e ∈ E is assigned a color ce ∈ C.

Test Generation for Interaction Detection 245

3 Problem Statement

3.1 Mathematical Model

In an implementation, features of a complex communication system are often
implemented in different processes or invoked according to different rules, thus
concurrent operation of these features are inevitable. Interleaving the operations
of different features and invoking features in different orders may result in some
intricate interaction problems. Previous research efforts have been mostly fo-
cused on the general conformance testing problem, whose purpose is to establish
the confidence that a given implementation is in compliance with every func-
tion/feature description of a specification. It emphasizes on checking the com-
pliance of individual feature of a system. However, many field observations have
shown that even if an implementation passes the tests for all individual features,
it still might fail to perform a function when there are other features running in
the system concurrently. There is little work on systematically generating test
sequences to test the interactions between the features.

In this work, we study the test sequence generation problem with a stress on
testing the interactions between different features. We propose an algorithm to
generate test sequences with requests from different features interleaving with
each other as much as possible. A parameter to measure the interleaving extent of
features in a test sequence is defined at first, then the test sequence generation
problem is stated as an optimization problem which strives to maximize the
interleaving extent of features, and finally an algorithm is proposed to solve the
problem.

For a given walk W of a colored graph G, the associated color sequence of
W is denoted as CS(W) = ci1 , ci2 , · · · , cir−1 , where cij

is the color assigned to
edge ej = (vij

, Lj , vij+1) in G.
For an edge ej in W , its color span in W , sW (ej), is defined as the length

of the longest same color sub-walk in W starting with ej . For example, if
W = (v1, l1, v2)(v2, l2, v3)(v3, l3, v4)(v4, l4, v5) and the color sequence of W is
CS(W) = c1, c1, c1, c2, according to this definition, the color span of edge
e1 = (v1, l1, v2) in W is 3 and the color span of edge e3 = (v3, l3, v4) in W
is 1. Based on the color span definition of edges in a walk, we can also give the
color span definition for a walk. The color span of a walk W is defined as the
maximum of all the edge colorspans in the walk, s(W) = max{sW (ei), ei ∈ W}.
If all edges in a walk are of the same color, the colorspan of the walk is the length
of the walk. The longest same color sub-walks in a walk W are also called the
critical sections of W .

For example, given a walk W = e1, e2, e3, e4, e5, e6, e7, and its color sequence
CS(W) = c1, c1, c1, c1, c2, c2, c3, the color span of W is 4 and the critical section
of W is e1, e2, e3, e4. If all edges in W are of the same color, e.g., CS(W) =
c1, c1, c1, c1, c1, c1, c1, then s(W) = 7.

As we have described earlier, for a state machine M , transitions resulted
from different features are assigned with different colors. Given a test sequence
consisting of the edges in M , the color span of the test sequence reflects the

246 C. Chi and R. Hao

interleaving extent of features. The larger the color span, the less the interleav-
ing. Thus different from the traditional test sequence generation problem, which
tries to find a Chinese postman tour, we need to find a postman tour which
has the minimum color span. In summary, the problems we need to solve are as
follows:

Problem 1: Given a colored digraph G = (V,E,C), find a postman tour T
such that |T | and s(T) are both minimized, where |T | is the number of edges in
T and s(T) is the color span of T .

Problem 2: Given a colored digraph G = (V,E,C), find a postman tour T
such that s(T) is minimized.

The first problem is to find a Chinese postman tour such that s(T) is min-
imized, while the second problem only has one optimization object that is to
minimize s(T). For the optimal solution T to problem 1 and the optimal solu-
tion T ′ to problem 2, it is easy to prove that s(T ′) ≤ s(T), |T | ≤ |T ′|.
3.2 Algorithm for Problem 1

If a colored digraph G is an Eulerian graph, Problem 1 is reduced to find an
Euler tour T in G such that its color span s(T) is minimized. If G is not
an Eulerian graph, from [11] we know that G must have un-balanced vertex,
and the number of such un-balanced vertex is even. For any postman tour of
G, some edges are traversed more than once. Suppose that a postman tour T
passes edge eij = (vi, vj) for kij times, we add kij − 1 new edges between vi

and vj and associate each new edge with the same color as eij , these new edges
are called the augmented edges of eij . The resulted augmented graph is denoted
as G̃, then G̃ is an Eulerian Graph, and T is an Euler tour of G̃, apparently,
s(T) is determined by the color of the newly added edges and the way to form
the tour.

To solve Problem 1, we need augment graph G to guarantee the existence of
an Euler tour and then from the augmented graph find such a tour with the
minimum color span. The solution can be summarized as the following steps:

Step 1. Get E1 ⊂ E in G with the condition that when G is augmented with
only edges in E1, the new graph G̃ has an Euler tour.
Step 2. On the condition that step 1 is satisfied, choose E′

1 that has the minimum
number of edges.
Step 3. For G̃, augmented from G using only edges in E′

1, find an Euler tour
T , such that s(T) is minimized.

When an edge set satisfies condition in step 1, it is referred to as a feasible
augment edge set of G. When an edge set satisfies condition in both step 1 and
step 2, it is referred to as the optimal augment edge set of G. If a tour satisfies
condition in step 3, it is called the optimal tour.

In [11], the author gives an algorithm to find the optimal augment edge set for
G in polynomial time, so we only need to find an optimal tour on the augmented

Test Generation for Interaction Detection 247

Eulerian graph G̃. In the following we will show that to find such an optimal
tour on G̃ is a NP-Complete problem.

Theorem 1. For a given balanced graph G = (V,E,C), and an integer k ≤
|E|, deciding if there is a tour T in G that traverses each edge once and has a
color span s(T) ≤ k is a NP-Complete problem.

Proof. For a given colored digraph G = (V,E,C), a dual graph Ĝ = (U,A, Ĉ)
can be constructed according to the following steps:
Step 1: U = E, that is, each edge in G corresponds to a node in Ĝ. Let ui ∈ U
corresponds to ei ∈ E.
Step 2: For ei = (vr, vs), ej = (vp, vq) ∈ E, if vs = vp, that is, ei and ej are
adjacent via node vs in G, then (ui, uj) ∈ A, in Ĝ.
Step 3: Ĉ has an initial value of NULL. For any (ui, uj) ∈ A, if c(ei) = c(ej) in
G, that is, ei and ej have the same color in G, then ĉ(ui, uj) = 1, Ĉ = Ĉ ∪ {1};
otherwise, Ĉ(ui, uj) = n, n ∈ N+ and n
∈ Ĉ, Ĉ = Ĉ ∪ {n}.

By above construction, if two adjacent edges in G have different colors, their
corresponding nodes are connected in Ĝ by an edge with a color different from
all the other colors assigned to edges in A.

Fig. 1 (1) (2) give a graph G and its dual graph Ĝ. The label on edges of
Fig.1(1) is (l, c), where l is the the edge index and the c is the color assigned
to the edge. The label edges of Fig.1(2) is the color assigned to the edge. Each
edge index in Fig.1(1) corresponds to a vertex in Fig.1(2).

Finding a tour T in G that traverses each edge exactly once and has s(T) ≤ k
is equivalent to finding a simple path p in Ĝ that passes each node in Ĝ exactly
once and has s(p) ≤ k − 1. As a special case of this problem, if all edges in G
have the same color, the problem is equivalent to finding a travelling salesman

1 2

3

(1,1)

(2,1)

(7,2)

(3,1)

(4,3)

(5,3)

(6,2)

(1) (2)

1
2

3

4

5

6

7

1

8
16

2

9

7
1

1

4
5

11

1

2

3

Fig. 1. A Prime Graph G (1) and its Dual Graph Ĝ(2)

248 C. Chi and R. Hao

path in Ĝ, which is known to be a NP-C problem. So the original problem is
also NP-Complete.

In the following we give a heuristic algorithm to find an Euler tour in G
with an approximately minimum color span in time complexity O(m), where m
is the number of edges of G.

Algorithm 1: Find an Euler tour with an approximately minimal color span
on a balanced digraph.
Input: G = (V,E,C) /* a balanced colored digraph */
Output: An Euler tour with an approximately minimal color span.

begin
1. i := 0.
2. Get an arbitrary vertex v1 ∈ V , call subroutine getCircuit(v1, G) to get

a circuit Ti with v1 as the beginning and ending vertex.
3. G := G− Ti, if G = NULL, stop and return Ti as the optimal tour.
4. Otherwise, arbitrarily select a vertex v in Ti such that d+

G(v) ≥ 1
5. Call subroutine getCircuit(v,G) to find a circuit C starting from

and ending at v; Replace v in Ti with C to get Ti+1;
6. i := i + 1; Go to step 3.
end

Procedure getCircuit(v,G)
Output: A circuit in G that begins with and ends at v with an approximately
minimal color span.

begin
1. Let Ē := {e1, e2, · · · , ek} be the set of all edges in G.
2. Arbitrarily select an edge e = (v, v′) ∈ Ē, T := e;
3. Ē := Ē\e, v1 := v, v2 := v′;
4. If v2 = v, return T ;
5. If ∃e′ = (v2, v

′′) ∈ Ē such that the color of e′ is different from (v1, v2)
6. T := T · e′; /* append edge e′ to T */
7. otherwise arbitrarily select an edge e′ = (v2, v

′′) from Ē
8. T := T · e′;
9. e := e′, Goto step 3;
end

Combining the algorithm to find an optimal augment edge set for G given in
[11] and algorithm 1, we give a heuristic solution to Problem 1 in Algorithm 2.

Algorithm 2: A Heuristic Solution to Problem 1
Input: G = (V,E,C) /* a strongly connected colored digraph */
Output: A shortest Postman Tour with an approximately minimal color span.

Test Generation for Interaction Detection 249

begin
1. For each vi ∈ V , set σi := d−(vi) − d+(vi).

2. If σi = 0, i = 1 . . . n, then set G̃ := G goto step 7; Otherwise,
3. Let S = {vi ∈ V |σi > 0}, T = {vj ∈ V |σj < 0}. For ∀vi ∈ S,∀vj ∈ T ,

find the shortest path from vi to vj ;
4. Construct a complete bi-partite graph H = (X, Y, EH , W),

with X = {xi,p|vi ∈ S, p = 1, 2, · · · , σi},
Y = {yj,q|vj ∈ T, q = 1, 2, · · · , |σj |}, EH = {xi,pyj,q|xi,p ∈ X, yj,q ∈ Y }.
Associates each edge xi,pyj,q in H, p = 1, 2, · · · , σi, q = 1, 2, · · · , |σj |,
a weight w(vi, vj) ∈ W , where w(vi, vj) is the length of the shortest
path between vi and vj in G.

5. Find the perfect match M = {e1, e2, · · · , ek} in H, such that
w(M) =

∑
e∈M

w(e) is minimized.

6. For each edge xi,pyj,q ∈ M , suppose the shortest path between vi and vj

in G is Pi,j , add every edge in Pi,j to G. Set the newly augmented

balanced graph as G̃.

7. Call Algorithm 1 to find the Euler tour T in G̃ such that s(T) is minimized .
8. Return T .
end

3.3 A Heuristic Solution to Problem 2

The color span, s(T), of an Euler tour T depends largely on the color of the
feasible edges added to graph G and also the algorithm to find the Euler tour.
Intuitively, a tour with less s(T) can be found when the colors of the feasible
edges become more. Based on such an intuition, we modify the process to find
the feasible edges for G in a way such that the path formed by the feasible edges
has a minimum color span.

Definition 1. Given a graph G = (V,E,C), the minimum color span path Cij

for node pair (vi, vj) is the one with the minimum color span value among all
the paths from node vi to vj.

Following we present an algorithm to find the minimum color span path from
a given node s to every other node in a graph. The complexity of the algorithm
is O(n2m), where m,n is the number of edges and vertices of G.

Algorithm 3: Find the Minimum color span Paths.
Input: G = (V,E,C), v /* a strongly connected colored digraph and a source
node*/
Output: Minimum color span path from node v to every other node in G.
Notations: l(vi) - the current minimum color span value for all the paths from
v to vi;
p(vi) - the current minimum color span path from v to vi;
a(vi) - the immediate ancestor for vi on the current minimum color span path
from v to vi;
F - visited node set; M - unvisited node set.

250 C. Chi and R. Hao

1. l(v) := 0, p(v) := v, F := {v}, M := V \{v};
2. For any vj ∈ V and vj �= v /* initialization */

p(vj) := NULL;
if (v, vj) ∈ E, l(vj) := 1, a(vj) := v;
otherwise l(vj) := ∞, a(vj) := NULL;

3. Select a node vi in M such that l(vi) = min
vj∈M

l(vj).

If l(vi) = ∞, stop, no path between vi and all the nodes in M ;
Otherwise, p(vi) := p(a(vi)) · vi;

4. Set F := F ∪ {vi}, M := M\{vi}. If M = ∅, stop, the minimum color span
paths from v to all the other nodes have been found; otherwise,

5. For all vj ∈ M , if (vi, vj) ∈ E and l(vj) > s(p(vi) · (vi, vj))
/* s() is defined in Section 3.1. */

set l(vj) := s(p(vi) · (vi, vj)), a(vj) := vi;
6. Go to step 3.
end

In algorithm 2, when we augment the graph to find the shortest postman tour,
we only search for a perfect matching in which the sum of weights of these
augmented edges is minimized, and have not considered the color span of each
augmented path. However, in problem 2, we only care about the color span of
the final generated tour and the length of the tour is no longer an issue. An
intuitive heuristic approach to problem 2 is to use path with smaller color span
when augmenting. This is very similar to what is called the minimax matching
problem [16].

Definition 2. Given a bi-partite graph H = (X,Y,EH ,W), M is a matching of
H, let w̃(M) = max{wxi,yj

|(xi, yj) ∈ M}. If H has a maximum matching M∗,
such that for all maximum matchings of H, w̃(M∗) = min{w̃(M)}, then M∗ is
called the minimax matching of H.

The algorithm proposed in [10] can be modified to get the minimax matching
of a bi-partite graph in time complexity O(m2), as shown in Algorithm 4.

Algorithm 4: Find the Minimax Matching.
Input: H = (X,Y,EH ,W) /* Directed bi-partite graph H with assigned weight
on each edge */
Output: Matching M of H such that max

e∈M
{w(e)} is minimized.

begin
1. For any edge in H, assign a new weight w′(e) = W − w(e),

where W is a real number larger than any w(e), e ∈ EH ;
2. Call maximin matching algorithm [10] to get the maximin matching M

of H based on the new weight;
3. M is the minimax matching of the original graph H.
end

begin

Test Generation for Interaction Detection 251

If we use the value of color span for each edge as the weight for each edge
in the bi-partite graph H, then Algorithm 4 can be used to find a matching
whose edge’s maximum color span is the minimal among all the matchings. By
combining algorithm 1, 3 and 4, we now give a heuristic algorithm for problem
2 with complexity O(m2 +n2m), where m is the number of vertices and n is the
number of edges of G.

Algorithm 5: A Heuristic Solution to Problem 2
Input: G = (V,E,C) /* a strongly connected colored digraph */
Output: A Postman Tour with an approximately minimal color span.

begin
1. For each vi ∈ V , set σi := d−(vi) − d+(vi).

2. If σi = 0, i = 1 . . . n, then set G̃ := G goto step 7; Otherwise,
3. Let S = {vi ∈ V |σi > 0}, T = {vj ∈ V |σj < 0}. ∀vi ∈ S,∀vj ∈ T ,

find the minimum color span path from vi to vj using Algorithm 3;
4. Construct a complete bi-partite graph H = (X, Y, EH , W),with

X = {xi,p|vi ∈ S, p = 1, 2, · · · , σi}, Y = {yj,q|vj ∈ T, q = 1, 2, · · · , |σj |},
EH = {xi,pyj,q|xi,p ∈ X, yj,q ∈ Y }.
Associates each edge xi,pyj,q in H, p = 1, 2, · · · , σi, q = 1, 2, · · · , |σj |,
a weight w(vi, vj), where w(vi, vj) is the color span of the
minimum color span path from vi to vj in G.

5. Find the minimax match M = {e1, e2, · · · , ek} in H using Algorithm 4.
6. For each edge xi,pyj,q ∈ M , suppose the minimum color span path between

vi and vj in G is Ci,j , add every edge in Ci,j to G.

Set the newly augmented balanced graph as G̃.

7. Call Algorithm 1 to find the Euler tour T in G̃ such that s(T) is minimized .
8. Return T .
end

4 Test Generation for Internet Telephony End System

SIP-based Internet telephony systems have become popular with the introduc-
tion of 3GPP. Service creation, as well as feature interactions, has been well
studied for the Internet telephony systems [1][12][13][14]. However we haven’t
seen any test generation work that considers the interaction detection prob-
lem for SIP-based Internet telephony systems. In the following, we use an FSM
to model an Internet telephony end system and apply the algorithms we dis-
cussed above to generate test sequences for the Internet telephony end
system.

4.1 Model of the Internet Telephony End System

An Internet telephony end system can support many services and as a case
study, we suppose the end system only supports the services discussed in [1],

252 C. Chi and R. Hao

Idle;
No RTP

Calling
;

No RTP

Called;
No RTP

Connect
ed;Both
RTP

Connect
ed;No
RTP

Connect
ed;No
Out RTP

Ringing

Accept

Call
Accept

Disconnect

Disconnect

Reject

Disconnect

Redirect

Forward

Hold

Unhold

Disconnect

Ringing

Call

Mute

Unmute

Disconnect

Features: Basic Call Feature; Hold; Mute; Forward; Redirect; Reject.

Fig. 2. Internet Telephony End System FSM

which include basic call functions such as call, accept, and disconnect, and also
other features such as call reject, call redirect, call transfer, call hold, and mute.

Fig. 2 gives the FSM of an Internet telephony end system. Since the end
system is the only entity where signaling and media flows are guaranteed to
converge, the state of the end system should include both control signalling
state and media state. In the FSM, each state of the end system is denoted as
(Control State;Audio State), the combination of the signaling state and the
audio media state. Basic call functions include the following actions: call, ring,
accept and disconnect. The actions of the call hold feature include: hold and
unhold; the actions of mute feature include: mute and unmute.

Fig. 3 gives the augmented graph of Fig. 2 after applying algorithm 2. There
is a label c : a on each transition, c is the color assigned to the transition,
and a is the action that results in this transition. For this example FSM, since
every shortest path used by algorithm 2 in finding the perfect match is also the
minimum color span path, the same augmented graph can be generated when
applying algorithm 5.

Using algorithm 1, we generate the following Euler tour T for Fig. 3:
Call → Accept → Hold → Disconnect → Call → Accept → Hold → Call →
Disconnect → Call → Accept → Hold → Ring → Reject → Call → Accept
→ Hold → Unhold → Mute → Disconnect → Ring → Redirect → Ring →
Accept → Mute → Unmute → Forward → Ring → Accept → Disconnect

The corresponding color sequence for this test sequence is:
CS(T) = 112111211112161122311511334111, and its color span is s(T) = 4.

Test Generation for Interaction Detection 253

Idle;
No RTP

Calling
;

No RTP

Called;
No RTP

Connect
ed;Both
RTP

Connect
ed;No
RTP

Connect
ed;No
Out RTP

1:Ringing

1:Accept

1:Call
1:Accept

1:Disconnect

 1:Disconnect

6:Reject

1:Disconnect

5:Redirect

4:Forward

2:Hold

2:Unhold

1:Disconnect

1:Ringing

1:Call

3:Mute

3:Unmute

1:Disconnect

1:Call

1:Accept

2:Hold

1:Call

1:Accept

3:Mute

1:Ringing

1:Ringing

Color Assignment: 1: Basic Call Feature; 2: Hold; 3: Mute; 4: Forward; 5: Redirect; 6:Reject

1:Call 1:Accept

2:Hold

2:Hold

1:Ringing

1:Accept

Fig. 3. Augmented Graph for Internet Telephony End System FSM

5 Test Generation for LMP

5.1 Introduction to LMP

Generalized Multiprotocol Label Switching (GMPLS) is being standardized by
Internet Engineering Task Force (IETF) to serve as an integral protocol for the
next generation of data networks. Link Management Protocol (LMP)[15] is one
of the control plane components of GMPLS, and it provides the fundamental
functions to support GMPLS routing and signaling protocols.

The features of LMP include: control channel management, link property
correlation, link connectivity verification, and fault management. Control Chan-
nel Management allows two nodes in optical network to establish and maintain
control channels between adjacent nodes. Link Property Correlation allows two
nodes in optical network to automatically exchange their TE link properties, ver-
ify the TE link configuration. Link Connectivity Verification provides functions
such that two nodes in optical network can discover their data plane neighbor,
exchange their interface ID, and verify their physical connectivity. Fault Man-
agement makes nodes in optical network suppress downstream alarms, localize
faults for protection and restoration.

LMP features are specified using the Control Channel FSM, the Data Link
FSM and the TE Link FSM in the LMP draft [15]. In most cases, Control Chan-
nel Management controls the state transition of a control channel, Link Property
Correlation controls the state of a TE link, while behaviors of Link Connectivity
Verification and Fault Management can change the state transition of a data link.

254 C. Chi and R. Hao

On the other hand, these features are not independent, they interact with each
other via the operation on the shared state machine. For example, Link Property
Correlation can change a data link’s state when it finds the data link property
is not correlated in both sides, Control Channel Management can change a TE
link’s state when there is no active control channels for the TE link.

Some feature interaction problems of LMP have been identified in [2]. In the
following, we study the feature interaction testing problem of LMP.We use the
active data link FSM of LMP as an example, applying algorithm 2 to generate
a test sequence to guarantee that each transition is traversed at least once and
the operations of different features are interleaved with each other as much as
possible such that their interactions can be checked.

5.2 Data Link Model of LMP

Fig. 4 shows the active LMP data link FSM. The label on each transition is
c : i/o, where c is the color assigned to the transition, i is the input event for
the transition and o is the output event of the transition. Explanation of the
transitions are given in the following table, in which ! represents the event of
sending out a message and ? represents the event of receiving a message.

Inputs:
1 : evCCUp: Control channel has gone up.
2 : evCCDown: LMP neighbor connectivity is lost.
3 : ?msgBeginVerifyAck: Receive BeginVerifyAck message.
4 : ?msgBeginVerifyOK: Receive correct BeginVerify message.
5: ?msgTstSuccess: Receive TestStatusSuccess message.

Down

Test

Up/
Free

Up/
Alloc

2: 3/3

1: 2/_
2: 7/6

2: 5/6

2: 11/3

4: 14/_
1: 2/_
3: 12/_
3: 18/_

5: 9/_

4: 13/_

2: 3/3

1: 15/_

5: 10/_

 Color Assignment: 1: CCM; 2: LCV; 3: LPC; 4: FM; 5: LDP.

Fig. 4. Active LMP Data Link FSM

Test Generation for Interaction Detection 255

6 : ?msgTestOK: Receive compatible Test message.
7 : ?msgTstStatusFailure: Receive TestStatusFailure message.
8 : evPsvTestFail: VerifyDeadInterval has expired.
9 : evLnkAlloc: Allocate the data link.
10: evLnkDealloc: Deallocate the data link.
11: evTestRet: A retransmission timer expires.
12: ?msgLinkSumErr: Receive error LinkSummary.
13: evLocalizeFail: FM localizes a Failure.
14: evDlDown: The data link is down.
15: inBandConfigOK: Link is ready for path establishment.
16: evTstFail: Verification fails.
17: ?msgEndVerify: Receive EndVerify message.
18: ?msgLinkSumNack: Receive LinkSummaryNack message.

Output:
1 : !msgBeginVerify: Send out BeginVerify message.
2 : !msgBeginVerifyAck: Send out BeginVerifyAck message.
3 : !msgTest: Send out Test message.
4 : !msgTestSuccess: Send out TestSuccess message.
5 : !msgTestFailure: Send out TestFailure message.
6 : !msgTstStatusAck: Send out TstStatusAck message.
7: !msgEndVerify: Send out EndVerify message.
8: !msgEndVerifyAck: Send out EndVerifyAck message.
9: !msgBeginVerifyNack: Send out EndVerifyNack message.
10: !msgLinkSumNack: Send out LinkSumNack message.

5.3 Optimal Test Sequence for LMP

Fig. 5 shows the balanced augmentation of the active LMP data link FSM. Since
the shortest paths adopted to augment Fig. 4 is also the minimum color span
paths, the same augmented graph will be generated no matter which of algorithm
2 and algorithm 5 is used. In Fig. 5 the dashed links are the links augmented to
Fig. 4. There is a label (l, c) on each link, l is a label assigned to the link and c
is the color of the link.

Using algorithm 1, we get an Euler tour T1 for Fig. 5:
T1 = 1, 3, 2, 4, 12, 9, 11, 13, 10, 8, 17, 14, 18, 15, 20, 16, 7, 5, 6, 19. Its corresponding
color sequence is CS(T1) = 21221541553131412221, and its color span is s(T1) =
3. The following gives the test sequence corresponding to tour T1.
?msgBeginVerifyAck/!msgTest → evCCDown/ → ?msgBeginVerifyAck/
!msgTest → ?msgTstStatusFailure/ !msgTstStatusAck → inBandConfigOK/
→ evLnkAlloc/ → evLocalizeFail/ → inBandConfigOK/ → evLnkAlloc/ →
evLnkDealloc/ → ?msgLinkSumErr/ !msgLinkSumNack→ inBandConfigOK/
→ ?msgLinkSumNack/ → inBandConfigOK/ → evDlDown/ → inBandCon-
figOK/ → ?msgBeginVerifyAck/!msgTest → evTestRet/!msgTest → ?msgTst-
Success/!msgTstStatusAck → evCCDown/

256 C. Chi and R. Hao

Down

Test

Up/
Free

Up/
Alloc

(2,2)

(6,2)

(5,2)

(10,5)

(11,4)

(7,2)

(16,1)

(8,5)

(17,3)

(18,3)

(19,1)

(20,4)

(3,1)

(4,2)

(15,1)

(9,5)

(1,2)

(14,1)

(13,1)

(12,1)

 Color Assignment: 1: CCM; 2: LCV; 3: LPC; 4: FM; 5: LDP.

Fig. 5. Symmetric Augmentation of the Active LMP Data Link FSM

6 Conclusion

In this paper, a technique is proposed to generate optimal conformance test se-
quences for the purpose of feature interaction detection for a complex feature-rich
communication system. A feature-rich communication system may offer many
features and these features can be implemented in multiple processes and as a
result their operations can interleave with each other. Whether or not the imple-
mented system can work correctly when such an interleaving occurs needs to be
verified. We define a parameter color span to measure the extent of the interac-
tions between different features, propose an algorithm to find test sequences with
minimum length and minimum color span such that all the transitions of the
FSM are traversed at least once and the features of the system are interleaved
with each other as much as possible.

With the protocol being modelled as a finite-state machine, the same ap-
proach can be used for many other purposes such as inter-operability testing
and fault detection. Some state verification techniques such as UIO sequences
can also be combined to make the algorithm more powerful and practical.

Acknowledgement

We are indebted to the colleagues in Bell Labs Research China for the valuable
comments and stimulating discussions.

Test Generation for Interaction Detection 257

References

1. Xiaotao Wu, Henning Schulzrinne,“Feature Interactions in Internet Telephony
End Systems”, Technical Report, Department of Computer Science, Columbia
University, January 2004.

2. Caixia Chi, Dong Wang, Ruibing Hao, “A Framework on Feature Interactions in
Optical Network Protocols”, Feature Interaction Workshop’2003, June 2003.

3. Alfred V.Aho, Anton T.Dahbura, David Lee, and M.Ümit Uyar, “An Optimiza-
tion Technique for Protocol Conformance Test Generation Based on UIO Se-
quences and Rural Chinese Postman Tours”, IEEE Tran. on Communications,
Vol.39,NO.11, Nov.1991, 1604-1615.

4. David Lee, Mihalis Yannakakis, “Principles and Methods of Testing Finite State
Machines - A Survey”, Proceedings of the IEEE, Vol.84,No.8,August 1996.

5. T.S.Chow,“Testing software design modeled by finite-state machines ”,IEEE
Trans. Software Eng. Vol.SE-4,No.3,pp.178-187,1978.

6. K.K.Sabnani and A.T.Dahbura,“A protocol test generation procedure”, Com-
puter Networks and ISDN Syst.Vol.15,No.4,pp285-297,1988.

7. S.Naito and M.Tsunoyama,“Fault detection for sequential machines by tran-
sitions tours”, in Proc.IEEE Fault Tolerant Comput. Symp.,IEEE Computer
Soc.Press,pp.238-243,1981.

8. T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms. The
MIT Press, 1997.

9. J.A.Bondy and U.S.R.Murty, Graph Theory With Applications. New York: Else-
vier North Holland,1976.

10. Gross O. The bottleneck assignment problem: an algorithm. In: Procedings,
and Symposium on Mathematical Programming(Wolfe Ped), Rand Publication,
1960,87-88.

11. A.Gibbons, Algorithmic Graph Theory. Cambridge, MA:Cambridge University
Press,1985.

12. John de Keijzer, Douglas Tait, and Rob Goedman, “JAIN: a new approach to
services in communication networks”. IEEE Communications Magazine, 38(1),
January 2000.

13. Jonathan Lennox and Henning Schulzrinne, “Feature interaction in Internet tele-
phony”, In Feature Interaction in Telecommunications and Software Systems VI,
Glasgow, United Kingdom, May 2000.

14. J. Rosenberg, J. Lennox, and Henning Schulzrinne. “Programming Internet tele-
phony services”. IEEE Network, 13(3):42C49, May/June 1999.

15. Jonathan P. Lang, “Link Management Protocol (LMP)”, Internet draft, draft-
ietf-ccamp-lmp-10.txt, October 2003, work in progress.

16. K. Imai, S. Sumino and H. Imai,“ Minimax Geometric Fitting of Two Correspond-
ing Sets of Points and Dynamic Furthest Voronoi Diagrams”, IEICE Transactions
on Information and Systems, Vol.E81-D, No.11 (November 1998), pp.1162-1171.

Fault Detection of Hierarchical Networks with
Probabilistic Testing Algorithms

Keqin Li1 and David Lee2

1 Bell Labs Research, Lucent Technologies
2 Department of Computer Science and Engineering,

The Ohio State University

Abstract. As communications networks are expanding to larger ar-
eas the control and maintenance of routing information are becoming
a formidable task. To cope with its size and complexity and to make the
network reliable and scalable hierarchical network has been proposed
with new features to support the information infrastructure. However,
the network hierarchy adds more complications to the network design
and implementations and that hampers the network reliability and qual-
ity of services. Conformance testing is known to be a powerful tool for
network fault detection yet most of the works in the published literature
are on networks without hierarchy. We present probabilistic algorithms
for testing hierarchical networks along with the added features. Based on
a formal model of the networks, we provide a formal analysis that shows
that our probabilistic algorithms guarantee a high fault coverage with a
feasible number of tests. To further reduce the number of tests we iden-
tify test equivalence classes and that enables us to significantly reduce
the number of tests yet without losing the fault coverage. Experimental
results on Internet OSPF protocol are reported.

1 Introduction

Networks are indispensable for our daily communications, including PSTN (Pub-
lic Switched Telephone Network), ATM, wireless, and Internet. With the expand-
ing networks and new and sophisticated services, which are demanded by the
user applications, the networks become more complex, and their reliability and
scalability pose a challenge yet are essential for the QoS (Quality of Services).
For the reliability of a large network, a key function is to ensure correct rout-
ing of information, and, consequently, routing protocols play a critical role. In
this work we investigate conformance testing of routing protocols that checks
whether an implementation of a routing protocol conforms to its specification.

As networks grow in size, the control and maintenance of routing information
become difficult if not impossible. In order to improve the scalability of routing
systems, hierarchy is introduced into networks [10] where large networks are par-
titioned into several subdomains. The routing information within a subdomain
is first aggregated and then shared with other subdomains; the detailed internal
network structure of a subdomain is hidden from each other while networking

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 258–274, 2005.
c© IFIP 2005

Fault Detection of Hierarchical Networks 259

devices in different subdomains are still reachable from each other. Hierarchy
in PSTN [18], PNNI [2] in ATM network, and OSPF [15] [16] in Internet are
typical hierarchical mechanisms in networks.

The telephone networks worldwide are classical hierarchical routing networks
[18]. Telephone-switching offices or exchanges are classified according to their
level in a hierarchy. Routing in PSTN is performed as follows. When a call
is coming, the switch checks its routing database to match the prefix of the
destination phone number. If there is a match, the call is routed to the next
switch. Otherwise, the call is routed to the higher-level switch/exchange. When
the call arrives at the destination switch, the suffix of the number is checked for
ringing the callee phone.

The PNNI (Private Network-Network Interface) [2] protocol provides mecha-
nisms to support scalable, QoS-based ATM routing and switch-to-switch
Switched Virtual Connection (SVC) interoperability. To create a PNNI network
hierarchy, ATM switches at the lowest hierarchical level can be organized into
multiple peer groups, each of which elects a Peer Group Leader (PGL) and its
parent node becomes active. The purpose of the active parent node, or Logical
Group Node (LGN), is to represent the entire peer group to other LGNs. Within
each peer group, all nodes exchange complete topology database information
among them. However, the LGN reduces the amount of information shared with
other peer groups by sending only a limited amount of aggregated information
to its neighbor LGNs, which in turn flood that information down to all nodes
within their child peer group.

In order to improve scalability, a two level hierarchy is proposed in OSPF [15]
[16], which is a widely used routing protocol in the Internet. An Autonomous
System (AS) is divided into areas. Each area has been assigned an area ID and
contains a group of routers, called Internal Routers. In order to avoid routing
loops, these areas are organized in a hub-and-spoke structure. Area 0 is the
backbone area and all the other areas attach to area 0 by one or more Area
Border Routers (ABR). Routers in area 0 is at level 1 and all the other routers
at level 2; it is a two-level hierarchy.

Routers in one area operate as if there is no hierarchy imposed. The routers
originate and exchange LSAs (Link State Advertisement) which contains the
topology update information so that each router has an identical Link State
Database (LSDB), which represents the topology of the area for routing table
computation. In each routing table entry, destination, cost to the destination
and nexthop are specified. Note that the destinations of routing table entries are
all in this area. Since an ABR belongs to multiple areas, logically there is one
routing table entry for each area to which an ABR belongs.

In order to make the destinations in one area at level 2, e.g., area 1, reach-
able for routers and hosts outside the area, Summary-LSAs are originated and
advertised outside the area by ABRs. The main fields of Summary-LSA are des-
tination and metric to the destination. For each entry of area 1’s routing table,
a Summary-LSA is originated, in which the destination field is the destination

260 K. Li and D. Lee

of the routing table entry, and the metric field is the cost. This procedure is
referred to as summarization.

In order to reduce the control traffic, a procedure referred to as aggregation
is used. In an ABR of an area at level 2, e.g., area 1, several address ranges
can be configured, and each address range can cover several entries in a routing
table. For each address range, the ABR originates one Summary-LSA, instead
of several Summary-LSAs from these routing table entries.

Upon receiving a Summary-LSA originating by an ABR, the router performs
inter-area route calculation. One inter-area routing table entry is generated for
each Summary-LSA received. In the routing table entry, the destination is the
one described in the Summary-LSA, the cost is the sum of cost to the ABR and
the metric specified in the Summary-LSA, and the nexthop is the same as the
nexthop to the ABR.

In summary, when an AS is divided into areas and ABRs are designated, the
following additional operations are performed by routers in the AS:

– Summary-LSA origination, performed by ABRs; and
– Inter-area route calculation, performed by every router.

To establish hierarchy in networks, new features are added into routing systems
of networking devices. For example, when a hierarchy is structured in OSPF,
router needs to originate a new type of Link State Advertisement (LSA) and
perform different routing table calculations. These new features and operations
are essential for the reliability of hierarchical networks. On the other hand, the
implementations of the hierarchical OSPF are rather complex, and practical ex-
periences show [15] that the hierarchy of OSPF is also a source of implementation
faults and that often leads to the degradation of Internet performances. Conse-
quently, their conformance testing is essential for the correct implementations of
the OSPF routing protocol.

Currently, most testing tools conduct a test of routers in an isolated environ-
ment and check the conformance of router’s behaviors in accordance with RFCs.
Available commercial tools include Agilent RouterTester [1], Spirent AX/4000
and SmartBits TeraRouting Tester [19] and IXIA IxANVL [9]. A main function
of these tools is to generate a set of tests corresponding to each of the require-
ments in the design/RFC for ”typical” network configurations/topologies. Most
of these tools also test on the hierarchical features of OSPF, yet in an ad hoc
way and on a static network environment.

We study conformance testing of hierarchy features of routing protocols of
networking devices. We propose probabilistic testing algorithms on routers con-
nected to the networks and in a dynamic environment. Furthermore, we study
test equivalence class of network configurations to selectively test representa-
tive configurations; we can significantly cut down the configurations to test yet
without sacrificing the fault coverage. We provide a formal analysis of the fault
coverage of our probabilistic algorithms and show that a high fault coverage can
be guaranteed yet with a reasonable testing cost.

Given its importance in the current Internet, the testing of hierarchy of OSPF
is our focus of investigation, and we take it as a case study of our general theory.

Fault Detection of Hierarchical Networks 261

The rest of the paper is organized as follows. In Section 2, we describe a
formal model of hierarchical networks and the basics of conformance testing
with OSPF as a case study. We then discuss in Section 3 equivalence classes
of network topologies and present our probabilistic algorithms for testing the
hierarchy features with a fault coverage analysis. Experimental results on Cisco
and Zebra OSPF implementations are reported in Section 4.

2 Conformance Testing and Modeling

In recent years, there are a lot of activities in the area of protocol conformance
testing. We only mention a few related publications here. For instance, [17] high-
lights works in the area of algorithmic test generation from formal specifications
with fault model-driven test derivation, [4], [5] and [6] describe methods for test-
ing real time systems with fault coverage analysis, and [3] and [12] contain a
survey.

As an important and complex routing protocol, testing of OSPF has been
studied [8] [21], however, the approaches are on OSPF protocols without hier-
archy. In this case, a bipartite graph Gb =< R, W,Eb > is used to model the
network in which RUT (Router Under Test) locates. As in Figure 1, Router
Nodes in the set R represent routers in the network, and Network Nodes in the
set W are used to model networks or LANs (Local Area Network). Edges in set
Eb connect Router Nodes and Network Nodes, i.e., a router is in a LAN. A router
can be in more than one LAN and a LAN can contain more than one router. For
the completeness of tested network configurations and topologies, the number
of Network Nodes m = |W | has to satisfy m = !n

2 "�n
2 � where n = |R| is the

number of Router Nodes [8].
In order to test hierarchical OSPF, a two-level bipartite graph can be used to

model the network in which RUT locates. It can be considered as an extension
of the basic model in Figure 1.

At the first level, a bipartite graph G0 =< R0,W0, ABR,E0 > is used to
model the backbone area 0 as in Figure 2 where

– R0 = {r(0)
x |x = 1, 2, · · · , n0} is the set of n0 = |R0| Internal Router Nodes in

area 0.

RT1

RT2
RT3

RT4N1

N2N3

Gb=<R, W, Eb>

r1 r2 r3 r4

w1 w2 w3

Fig. 1. Basic Model

262 K. Li and D. Lee

r
)0(

1 r
)0(

2

w
)0(

1 w
)0(

2 w
)0(

3 w
)0(

4

abr1 abr2 abr3 abr4

Fig. 2. The First Level Bipartite Graph

– W0 = {w(0)
x |x = 1, 2, · · · ,m0} is the set of m0 = |W0| Network Nodes in area

0.
– ABR = {abrx|x = 1, 2, · · · , k} is the set of k = |ABR| ABR Nodes in area

0.
– E0 is the set of edges connecting router and network nodes.

For instance, internal router nodes r
(0)
1 and r

(0)
2 are connected together with

ABR router node abr4 by network (LAN) node w
(0)
4 ; and ABR nodes abr3 and

abr4 are connected by network node w
(0)
2 .

A second level bipartite graph Gi =< Ri, Wi, ABRi, Ei > is used to model
a non-backbone area i(i
= 0). In Figure 3, area 1, which connects to abr1 in
Figure 2, is expanded as an example.

– Ri = {r(i)
x |x = 1, 2, · · · , ni} is the set of ni = |Ri| Internal Routers in area i.

– Wi = {w(i)
x |x = 1, 2, · · · , mi} is the set of mi = |Wi| Network Nodes in area

i.
– ABRi is the set of bi = |ABRi| ABR Nodes in area i. In OSPF, all ABRs

must attach to the backbone area, thus, ABRi ⊆ ABR.
– Ei is the set of edges connecting router nodes and network nodes in area i.

When all the ABR Nodes are expanded the whole two-level bipartite graph
is in Figure 4. Note that more than one ABR router can be in a same area.
Suppose that there are l non-backbone areas. Then, there are n0 internal non-

Area 1

r
)1(

1

r
)1(

2

r
)1(

3

w
)1(

1

w
)1(

2

w
)1(

3

abr1

Fig. 3. A Second Level Bipartite Graph

Fault Detection of Hierarchical Networks 263

Area 1
Area 2

Area 3
Area 4

Fig. 4. The Two-Level Bipartite Graph Model

ABR router nodes in the backbone area 0,
l∑

i=1

ni internal non-ABR router nodes

in the l non-backbone areas at the second level, and
l∑

i=1

bl = k ABR routers.

For clarity, we make the following assumptions.

No Range Assumption. An ABR only advertises metrics to Internal Router
Nodes in the areas to which it attaches, i.e., no address range is configured at
ABR.

Link Cost Assumption. All the link costs from Router Node to Network Node
are 1, and all the link costs from Network Node to Router Node are 0.

Single Entry Assumption. There is only one ABR per non-backbone area.
Note that the above assumptions are only for clarity and that they can be relaxed
or modified with due changes in our algorithms.

With these assumptions, the whole hierarchical network contains k ABR
Nodes, the number of non-backbone areas is also k, i.e., l = k, bi = 1(1 ≤ i ≤ k),

the total number of routers is
k∑

i=0

ni + k, and the total number of networks is

k∑
i=0

mi.

Based on the formal model, we now present our probabilistic testing algo-
rithms.

3 Probabilistic Testing Algorithms

In order to test the behaviors of the RUT in dynamic environment in a struc-
tured manner, we need to generate all the possible network topologies, and,
taking each network topology as a test case, we check the RUT. However, it is
formidable to generate and test all the possible topologies. We need to reduce

264 K. Li and D. Lee

Area 0

Area 1

Area 0

Area 1

Area 0

Area 2

Area 1

(1) (2) (3)

Fig. 5. Positions of RUT

the number of test cases without losing the fault coverage. We achieve this by the
following two approaches: identifying test equivalence classes and randomization.

A randomized algorithm is an algorithm that uses random numbers to influ-
ence the choices it makes in the course of its computation. Once viewed as a tool
in computational number theory, it has by now found widespread applications,
fueled by the two major benefits of randomization: simplicity and speed. Ran-
domized algorithms have been used for conformance testing. For instance, [11]
applies a random walk for fault detection. For many applications, a randomized
algorithm is the fastest algorithm available, or the simplest, or both [7]. [13]
and [14] provide a comprehensive introduction survey of paradigms underlying
randomized algorithms.

We are focused on testing the hierarchy of OSPF. Since Summary-LSA orig-
ination and inter-area route calculation are two new functions/features from
the hierarchy of OSPF, we conduct tests on their implementations and ana-
lyze the fault coverage. According to the different positions and hence functions
of RUT in an AS, different testing algorithms are needed, as enumerated in
Figure 5:

1. RUT is an internal router. In this case, RUT receives Summary-LSA and
performs inter-area route calculation. When RUT is an internal router in a
non-backbone (level 2) area, it receives Summary-LSAs originated by one
ABR. And when it is in the backbone (level 1) area, it receives Summary-
LSAs originated by multiple ABRs. Thus, the testing algorithm for internal
router in the backbone (level 1) area can test internal router in non-backbone
(level 2) area. In the following, we only consider the case in which RUT is
an internal router in the backbone (level 1) area.

2. RUT is an ABR and there is only one non-backbone (level 2) area. In this
case, RUT originates Summary-LSA, but no inter-area route calculation is
performed.

3. RUT is an ABR and there are two or more non-backbone (level 2) area. In
this case, RUT performs Summary-LSA origination and also inter-area route
calculation.

According to the three different cases, we design and analyze the corresponding
probabilistic testing algorithms.

Fault Detection of Hierarchical Networks 265

3.1 Internal Router in Backbone Area 0

In this subsection, we consider the case when RUT is an Internal Router in the
backbone area 0. In this case, RUT receives Summary-LSA and performs inter-
area route calculation. We first identify equivalent Summary-LSAs advertised
by ABRs; we only need to test on one Summary-LSA among each equivalence
class and that significantly reduces the number of tests. We then present a prob-
abilistic testing algorithms to test the inter-area route calculation by RUT with
a fault coverage analysis. Recall that in this case the following functions of an
ABR have to be tested. An RUT in area 0 receives Summary-LSAs originated
by ABRs, and calculates/updates inter-area routes accordingly. Therefore, the
inter-area route calculation is to be checked. We only need to consider ABRs,
which are reachable from RUT.

Since an ABR summarizes the topology of a non-backbone area by Summary-
LSAs, the topologies of this non-backbone area are invisible to RUT. The inter-
area route calculation is conducted by the combination of the known topology
of area 0 and Summary-LSAs originated by ABRs.

Under the No Range Assumption, ABRi advertises metrics to the internal
routers r

(i)
1 , r

(i)
2 , · · · , r(i)

ni in area i where (1 ≤ i ≤ k). These Summary-LSAs can
be taken as a Distance Vector v(i) = (v(i)

1 , v
(i)
2 , · · · , v(i)

ni), advertised into area 0.
For a reachable Internal Router Node r

(i)
j (1 ≤ j ≤ ni), v

(i)
j is the length of the

shortest path from ABRi to this Router Node. Under the Link Cost Assumption,
it is obvious that v

(i)
j ≥ 1(1 ≤ i ≤ k, 1 ≤ j ≤ ni).

In order to generate all the possible topologies in area i, the number of LANs
in this area is at least mi = !ni+1

2 "�ni+1
2 �. It is obvious that mi ≥ ni(ni ≥

1). Obviously, the longest path from ABRi to an Internal Router is ni. As a
convention, if r

(i)
j is not reachable from ABRi, we set v

(i)
j =∞.

Proposition 1. If an internal router node r
(i)
j is reachable from ABRi, then

1 ≤ v
(i)
j ≤ ni(1 ≤ i ≤ k, 1 ≤ j ≤ ni). Otherwise, v

(i)
j =∞.

Consider the distance vector advertised by ABRi from area i, i.e.,
v(i) = (v(i)

1 , v
(i)
2 , · · · , v(i)

ni). We construct u(i) = (u(i)
1 , u

(i)
2 , · · · , u(i)

ni) where

u
(i)
j =

{
1, ifv(i)

j <∞
∞, ifv(i)

j =∞ 1 ≤ j ≤ ni.

Then we construct u(i), which is obtained by permuting components of u(i).
Since we only consider ABRi’s, which are reachable from RUT, its cost (path

length) is finite x. Therefore, the ni internal nodes in area i correspond to ni

entries in the routing table of RUT, and their costs are x + u
(i)
j , j = 1, · · · , ni,

respectively. It is natural to assume that the correctness of the routing table
computation of RUT is not affected by the permutation of the internal nodes in
an area i, which correspond to the identical ni entries in the routing table; we
claim that they are equivalent.

In summary, for each area i, we have a set of ni + 1 Characteristic Distance
Vectors, each of which represents an equivalence class of distance vectors:

266 K. Li and D. Lee

⎧
⎪⎨

⎪⎩
(∞,∞, · · · ,∞)︸ ︷︷ ︸

ni

, (1,∞, · · · ,∞)︸ ︷︷ ︸
ni

, (1, 1, · · · ,∞)︸ ︷︷ ︸
ni

, · · · , (1, 1, · · · , 1)︸ ︷︷ ︸
ni

⎫
⎪⎬

⎪⎭
. For each ABRi,

we only need to test these ni+1 vectors. However, there are still
∏k

i=1 ni possible
combinations of Characteristic Distance Vectors to test, and it is impossible to
test on each of them in real OSPF networks. We apply probabilistic algorithms
[8] with the following constants, parameters and variables:

1. k (input parameter): number of non-backbone areas;
2. n0, n1, n2, · · · , nk (input parameters): number of internal routers in area 0,

1, 2, · · ·, k respectively;
3. 0 ≤ p1, p2, p3, p4 ≤ 1 (input parameters): probability of edge insertion, node

insertion, edge deletion, and node deletion, respectively in area 0; p1 + p2 +
p3 + p4 = 1.

4. G0 =< R0, W0, ABR,E0 > (variable): topology graph of area 0 with internal
router nodes R0, network nodes W0, set of ABR nodes ABR, and edges E0;

5. v(1), v(2), · · · , v(k) (variable): distance vectors advertised by ABR1, ABR2,
· · ·, ABRk, respectively, into area 0;

6. v0 ∈ R0 (constant): router under test.

Algorithm 1
Input: k, n0, n1, n2, · · · , nk, 0 ≤ p1, p2, p3, p4 ≤ 1
Output: implementation fault in hierarchy of OSPF or conformance

1. repeat
2. Construct initial network topology graph G0 with

R0 = {v0}, W0 = ABR = E0 = φ;
3. while (G0 is not a complete graph)
4. UPDATE(G0);
5. if ROUTE(G0) = FALSE;
6. return ”faulty”;
7. end-while
8. end-repeat
9. return ”conforms”

The algorithm is probabilistic in nature. Line 2 constructs an initial network
topology graph G0 of area 0 with only one router node: v0 (RUT). The while-
loop from Line 3 to Line 7 continues until a complete bipartite graph is obtained.
Subroutine UPDATE(G0) in Line 4 gets a new network topology of area 0. Sub-
routine ROUTE(G0) in Line 5 generates distance vectors advertised by ABRs,
and checks LSDB and routing table of RUT. If any faults are detected, the pro-
cess is aborted and ”faulty” is reported in Line 6. Otherwise, after sufficient
repetition of the repeat-loop from Line 1 to Line 8, ”conforms” is declared in
Line 9 with a good confidence in the topologies and router behaviors that have
been tested.

Fault Detection of Hierarchical Networks 267

Subroutine UPDATE(G0)
In Algorithm 1, while-loop is repeated until network topology graph of area
0 becomes a complete bipartite graph. Each repetition of the loop runs the
subroutine UPDATE(G0) in Line 4, which updates G0 incrementally.

Subroutine UPDATE(G0)
Parameters: n0,m0, 0 ≤ p1, p2, p3, p4 ≤ 1
Variables: G0 =< R0, W0, ABR,E0 >

1. switch(p)
2. case ’p1’: if(|E0| < (|R0|+ |ABR|) ∗ |W0|)
3. /* graph is not complete */
4. insert an edge u.a.r. in E0;
5. case ’p2’: if(|R0|+ |ABR|+ |W0| < n0 + m0)
6. /* nodes below upper bounds */
7. insert a node u.a.r. in R0 ∪ABR ∪W0;
8. Add all related physical links to E0.
9. case ’p3’: if(|E0| > 0)
10. /* edge set is not empty */
11. delete an edge u.a.r. from E0;
12. case ’p4’: if(|R0|+ |ABR|+ |W0| > 1)
13. /* node set is not empty */
14. delete a node u.a.r. from R0 ∪ABR ∪W0;
15. Remove all related physical links from E0;
16. return

For a network topology, one of the four operations on edge or node insertion or
deletion is performed with probability 0 ≤ p1, p2, p3, p4 ≤ 1. We can partition the
unit interval into four subintervals I1 = [a0, a1), I2 = [a1, a2), I3 = [a2, a3), I4 =
[a3, a4] with |I1| = p1, |I2| = p2, |I3| = p3, |I4| = p4. We then sample uniformly
at random (u.a.r.) in the unit interval and obtain 0 ≤ p ≤ 1. We then ”switch”
on the value of p in Line 1. Specifically, depending on p ∈ Ii, i = 1, 2, 3, 4, one
of the cases is executed at Line 2, 5, 9, or 12. This subroutine is similar to the
corresponding one described in [8] and we omit the details.

Subroutine ROUTE(G0)
In Algorithm 1, once G0 is updated, the subroutine ROUTE(G0) is called. This
subroutine has the following functions:

1. Generating distance vectors advertised by ABRs into area 0;
2. Calculating routing update information, i.e., Link State Update packets

(LSU packets), and sending to RUT;
3. Obtaining LSDB and routing table from RUT, and checking correctness.

Function 2 and 3 are similar to the corresponding ones described in [8]. The
subroutine ROUTE(G0) is described in the following where Line 4 is for Function
2 and 3.

268 K. Li and D. Lee

Subroutine ROUTE(G0)

1. for i← 1 until k do
2. generate 1 possible value of v(i) u.a.r.;
3. for each possible combination < v(1), v(2), · · · , v(k) > do
4. <Function 2 and 3>

In this subroutine, the one vector of area i is generated uniformly at random.
Thus, the calculation and correctness checking operations are performed only
once for each topology in area 0.

Combining Distance Vector
Recall that we only take into account ABRs which are reachable from RUT and
there are k of them. For ABRi,i = 1, · · · , k, there are ni distinct Characteristic
Distance Vectors, which we have to test on, and there are a total of

∏k
i=1 ni. It

can be shown that each of them is to be tested by Algorithm 1 with a non-zero
probability.

Fault Coverage
The inter-area route calculation/update is performed upon receiving each
Summary-LSAs, and a reasonable fault model is that a calculation, which is
based on a specific Summary-LSA, is performed incorrectly. This is often re-
ferred to as a single-fault model. A single fault involves an ABR Node ABRx

that is reachable from RUT and an internal router r
(x)
y of area x. When ABRx

advertises a Summary-LSA destined for r
(x)
y to area 0, RUT calculates inter-area

route to r
(x)
y incorrectly.

We present the following result on fault coverage. Due to space limit we omit
the proof.

Proposition 2. There exists a polynomial P (k, n0, n1, · · · , nk) such that for any
0 < ε ≤ 1, with no more than P (k, n0, n1, · · · , nk) ln 1

ε repetitions of the repeat-
loop in Algorithm 1, any single-fault is to be detected with a probability at least
1− ε.

It shows that with a polynomial number of tests Algorithm 1 detects any
single fault with a high probability.

3.2 Area Border Router: Only One Non-backbone Area

In this subsection, we consider the case when RUT is an ABR and there is only
one non-backbone level 2 area, i.e., area 1. In this case, RUT originates Summary-
LSA, but no inter-area route calculation is needed since there is only one level
2 area. We present a probabilistic testing algorithm to test the Summary-LSA
origination feature with a fault coverage analysis. Recall that in this case the
following functions of an ABR have to be tested:

Fault Detection of Hierarchical Networks 269

– Area 0 Summary-LSA origination. RUT originates Summary-LSA from area
1 into the backbone area. This function is only determined by the topology
of area 1, more specifically, by the routing table of area 1.

– Area 1 Summary-LSA origination. RUT originates Summary-LSA from area
0 into the non-backbone area 1. This function is only determined by the
topology of area 0, more specifically, by the routing table of area 0.

Testing Algorithm
We present a probabilistic testing algorithm with the following:

1. n0, n1(input parameters): number of internal routers in area 0 and area 1;
2. 0 ≤ p1, p2, p3, p4 ≤ 1(input parameters): probability of edge insertion, node

insertion, edge deletion, and node deletion, respectively in area 0; p1 + p2 +
p3 + p4 = 1.

3. v0 (constant): router under test.
4. G0 =< R0, W0, {v0}, E0 > (variable): topology graph of area 0 with internal

router nodes R0, network nodes W0, an ABR node v0, and edges E0;
5. G1 =< R1, W1, {v0}, E1 > (variable): topology graph of area 1 with internal

router nodes R1, network nodes W1, an ABR node v0, and edges E1.

Algorithm 2
input: n0, n1, 0 ≤ p1, p2, p3, p4 ≤ 1
output: implementation fault in hierarchy of OSPF or conformance

1. repeat
2. construct initial network topology graph G0 with

R0 = W0 = E0 = φ;
3. while(G0 is not a complete graph)
4. UPDATE(G0);
5. GENERATE(G1);
6. if ROUTE(G0, G1) = FALSE;
7. return ”faulty”;
8. end-while
9. end-repeat
10. return ”conforms”

The algorithm is probabilistic in nature. Line 2 constructs an initial network
topology graph G0 of area 0 with only one ABR node: v0 (RUT). The while-
loop from Line 3 to Line 8 continues until a complete bipartite graph is obtained.
Subroutine UPDATE(G0) in Line 4 gets a new network topology of area 0. It
is the similar to the one in Algorithm 1. Subroutine GENERATE(G1) in Line
5 generates a new network topology of area 1. Subroutine ROUTE(G0, G1) in
Line 6 checks LSDB and routing table of RUT. If any faults are detected, the
process is aborted and ”faulty” is reported in Line 7. Otherwise, after sufficient
repetition of the repeat-loop from Line 1 to Line 9, ”conforms” is declared in
Line 10 with a good confidence in the topologies and router behaviors that have
been tested.

270 K. Li and D. Lee

Subroutine GENERATE(G1)
In Algorithm 2, while-loop is repeated until network topology graph of area
0 becomes a complete bipartite graph. In each repetition of the loop, subrou-
tine UPDATE(G0) is called to updates G0 incrementally. After that, subroutine
GENERATE(G1) is called to generate a new topology graph G1:

Subroutine GENERATE(G1)

1. Construct initial graph G1 =< R1,W1, {v0}, E1 > with
R1 = {r(1)

x |x = 1, 2, · · · , n1},W1 = {w(1)
x |x = 1, 2, · · · , m1}, E1 = φ;

2. Choose l from [n1 + 1..(n1 + 1)m1] u.a.r.;
3. Insert l edges u.a.r. into E1.

In Line 1, an initial G1 is constructed with all the nodes yet without any
edges. In Line 2, the number of edges to be inserted into G1 is determined
randomly. In Line 3, these edges are inserted into G1 randomly to obtain G1.

Subroutine ROUTE(G0 , G1)
In Algorithm 2, after G0 is updated and G1 is generated, subroutine ROUTE(G0,
G1) is called to check the correctness of RUT. It is similar to that in [8] and we
omit the details. Note that LSU packets are calculated and sent to RUT for both
areas, and LSDBs of the two areas are obtained, respectively. Routing table of
RUT is also computed based on the LSDBs. If any of them is incorrect, ”faulty”
is returned.

Fault Coverage
The Summary-LSA origination is performed based on routing table entries one
by one, a reasonable fault model is to assume that the origination based on a
specific routing table entry is performed incorrectly. Since the Summary-LSA
originations of the two areas are performed at the same time, and there may
be interactions of them in an implementation, we need to consider the routing
table entries in both areas. Again this is a single-fault model; a single fault
about Summary-LSA origination involves an internal router r

(0)
x of area 0 and

an internal router r
(1)
y of area 1. When both of them are reachable from RUT,

RUT originates one or two Summary-LSAs incorrectly.
Similar to the fault coverage analysis of Algorithm 1, we have the following:

Proposition 3. There exists a polynomial P (n0, n1) such that for any 0 < ε ≤
1, with no more than P (n0, n1) ln 1

ε repetitions of the repeat-loop in Algorithm
2, any single-fault is to be detected with a probability at least 1− ε.

It shows that with a polynomial number of tests Algorithm 2 detects any
single fault with a high probability.

Fault Detection of Hierarchical Networks 271

3.3 Area Border Router: More than One Non-backbone Area

In this subsection, we consider the case when RUT is an ABR and there is
more than one non-backbone (level 2) area, i.e., k ≥ 2. Specifically, suppose that
RUT is ABR1 which connects the backbone area and the non-backbone (level
2) area 1. In this case, both Summary-LSA origination and inter-area route
calculation are performed, since there are two or more level 2 areas. Obviously,
it is a combination of the previous two cases, and we can apply both Algorithm 1
and 2 to test the two functions as follows. Initially network topology graph G0 of
area 0 is constructed with only one router node: v0 (RUT). Then G0 is updated
until it becomes a complete bipartite graph. With each G0, network topology
G1 of non-backbone area 1 is generated using Algorithm 2, and characteristic
distance vectors v(i), i = 2, · · · , k of the other non-backbone areas are originated
using Algorithm 1. We check the valid performance of RUT using Algorithm 2.
On the other hand, the corresponding LSDB and routing table of RUT are also
tested using Algorithm 1. Upon detecting any faults, the process is aborted and
”faulty” is reported. Otherwise, after sufficient repetition, ”conform” is declared.
Obviously, the fault coverage of both Algorithm 1 and 2 apply, and faults in this
case can be detected with a high probability in polynomial number of repetitions.

In summary:

Theorem 1. For testing the hierarchy features of an IP router OSPF proto-
col with the probabilistic algorithms, any single fault can be detected with a
high probability and in a number of tests that is polynomial in the size of the
network.

4 Experiments

We implemented both probabilistic algorithms in a software tool to test IP
routers. For this experiment we use a software tool, Socrates. It was developed
at Bell Labs [8], and can simulate IP network topologies. We further enhance the
software to simulate hierarchical IP network topologies for our testing. When an
RUT is connected to simulator it perceives itself is connected to a real network
of IP routers and interacts as if it is a router connected with Internet, performing
due operations: it exchanges messages, including LSAs, with other routers and
computes routing tables with each network topology update.

In order to test the inter-area route calculation, Algorithm 1 is implemented
and integrated with the simulator with the following configuration in Figure 6.

In this configuration, RUT is r
(0)
1 , and w

(0)
1 and w

(0)
2 are physical networks

connecting RUT and the software tool. The other routers and networks in area 0
are simulated by the software tool. For this experiment, we set k = 1, i.e., there
is only one ABR with one non-backbone area. The distance vectors advertised
by ABR1 into area 0 are generated by the software tool.

In order to test the summary-LSA origination function, Algorithm 2 is ap-
plied, and the experiment configuration is in Figure 7.

272 K. Li and D. Lee

Are
a 1

…

…

abr1RUT

Software Tool

Area 0
w1

(0) w2
(0) wm0

(0)

r1
(0) r2

(0)

w3
(0)

rn0
(0)

Fig. 6. Experiment Configuration 1

…

…

abr1

RUT

Software Tool

w1
(0)

w2
(0) wm0

(0)

r1
(0) r2

(0) rn0
(0)

…

…

Area 0

Area 1

r1
(1) r2

(1) rn1
(1)

w1
(1) w2

(1) wm1
(1)

Fig. 7. Experiment Configuration 2

In this configuration, RUT is abr1, and w
(0)
1 and w

(1)
1 are physical networks

connecting RUT and the software tool. The other routers and networks in area
0 and 1 are simulated.

We tested OSPF implementations of Cisco router and Zebra [20]. We used
several combinations of n0 and n1 in the experiments and most of the tests went
well without reporting any faults.

In order to verify the fault detection capability, we intentionally introduced
some errors into the implementation of Zebra. For example, one of the added
errors was that during Summary-LSA origination when both r

(0)
n0 and r

(1)
n1 were

Fault Detection of Hierarchical Networks 273

reachable from RUT and that the modified implementation of RUT originated
summary-LSAs with wrong value in the metric field. We applied our algorithms
against the faulty implementation, and all the faults were detected. Specifically,
for n0 = n1 = 4, after a large number of runs of the testing algorithm, the
average time to detect the fault was 10.25 minutes. For n0 = n1 = 6, the average
time was 22 minutes. When n0 = n1 = 8, the average time was 33.5 minutes.
Note that our algorithms detected the faults in the first run of the repeat-loop
before the network topology became a complete graph.

5 Conclusion

We study testing of hierarchical networks with Internet OSPF routing protocol
as a case study. Due to the size and complexity of all the possible network topolo-
gies it is impossible to test on each network configuration. We discuss network
topology equivalence and reduce the testing to the characteristic topology rep-
resentation for each equivalence class. We then provide probabilistic algorithms
for testing the hierarchy features and show that a high fault coverage can be
achieved with a polynomial number of tests. The basic ideas and mechanisms
can be applied to the testing of the hierarchy features of PSTN, ATM PNNI and
other hierarchical networks.

We have analyzed the fault coverage with a single fault model. Apparently,
multiple faults are easier to detect since they result in more violations of the net-
work protocol specifications. However, a rigorous analysis is yet to be obtained.
One of the difficulties is that different faults might ”cover up” each other, and
how to model their interactions and show rigorously the fault coverage remains
to be investigated.

Acknowledgement

We are indebted to Caixia Chi for part of the analysis of the fault coverage and
to Ruibing Hao and Dawei Wang for their help with the experiments.

References

1. Agilent Technologies: URL=http://advanced.comms.agilent.com/routertester/

2. ATM Forum: Private Network-Network Interface Specification Version 1.1 (PNNI
1.1). 2002

3. Gregor v. Bochmann, Alexandre Petrenko: Protocol Testing: Review of Methods
and Relevance for Software Testing. International Symposium on Software Testing
and Analysis, August 1994, Seattle, Washington, USA

4. Abdeslam En-Nouaary, Ferhat Khendek, Rachida Dssouli: Fault Coverage in Test-
ing Real-Time Systems. Proceedings of the Sixth International Conference on Real-
Time Computing Systems and Applications, 1999

274 K. Li and D. Lee

5. Ahmed Khoumsi, Mehdi Akalay, Rachida Dssouli, Abdeslam En-Nouaary, Louis
Granger: An Approach for Testing Real Time Protocol Entities. Proceedings of
the IFIP TC6/WG6.1 13th International Conference on Testing Communicating
Systems: Tools and Techniques, 2000

6. Abdeslam En-Nouaary, Rachida Dssouli, Ferhat Khendek: Timed Wp-Method:
Testing Real-Time Systems. IEEE Transactions on Software Engineering, Volume
28, Issue 11, November 2002

7. Rajiv Gupta, Scott A. Smolka, Shaji Bhaskar: On Randomization in Sequential
and Distributed Algorithms. ACM Computing Surveys, Vol. 26, No. 1, 1994

8. Ruibing Hao, David Lee, Rakesh Sinha, Dario Vlah: Testing IP Routing Protocols -
From Probabilistic Algorithms to Software Tool. FORTE/PSTV 2000

9. Ixia: URL= http://www.ixiacom.com/products/conformance applications/
10. Leonard Kleinrock, Farouk Kamoun: Hierarchical Routing for Large networks Per-

formance Evaluation and Optimization. Computer Networks, Vol. 1, No. 3, (1977)
155-174

11. David Lee, K. K. Sabnani, D. M. Kristol and Sanjoy Paul: Conformance Testing of
Protocols Specified as Communicating Finite State Machines - a Guided Random
Walk Based Approach. IEEE Trans. on Communications, Vol. 44, No. 5, (1996)
631-640

12. David Lee, Mihalis Yannakakis: Principles and Methods of Testing Finite State
Machines - a Survey. Proceedings of the IEEE, vol. 84, pp. 1090–1123, Aug 1996

13. Rajeev Motwani, Prabhakar Rafhavan: Randomized Algorithms. Cambridge Uni-
versity Press, New York, 1995

14. Rajeev Motwani, Prabhakar Raghavan: Randomized Algorithms. ACM Computing
Surveys, Vol. 28, No. 1, 1996

15. John Moy: OSPF - Anatomy of an Internet Routing Protocol. Addison-Wesley,
1997

16. John Moy: OSPF Version 2. Internet RFC 2328
17. Alexandre Petrenko: Fault Model-Driven Test Derivation from Finite State Mod-

els: Annotated Bibliography. In the Proceedings of Modelling and Verification of
Parallel Processes (MOVEP’2k). Nantes, France, June 19-23, 2000

18. Misha Schwartz: Telecommunication Networks: Protocol, Modeling and Analysis.
Addison-Wesley, 1987

19. Spirent Communications: URL=http://www.spirentcom.com/
20. Zebra: URL=http://www.zebra.org/
21. Yixin Zhao, Xia Yin, Bo Han, Jianping Wu: OnLine Test System Applied in Rout-

ing Protocol Test. International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2001

Detecting Trapdoors in Smart Cards Using
Timing and Power Analysis �

Jung Youp Lee1, Seok Won Jung2, and Jongin Lim1

1 Graduate School of Information Security,
Korea University, Anam Dong, Sungbuk Gu, Seoul, Korea

2 Department of Information Security,
Mokpo National University, ChonNam, Korea

Abstract. For economic reasons, in spite of security problems, the com-
mands of re-initializing the card and writing patch code are widely used
in smart cards. The current software tester has difficulty in detecting
these trapdoor commands by reason that trapdoors are not published
and programmed sophisticatedly. Up to now the effective way to detect
them is to completely reveal and analyze the entire code of the COS with
applications such as the ITSEC. It is, however, very time-consuming and
expensive processes. We propose a new approach of detecting trapdoors
in smart cards using timing and power analysis. By experiments, this
paper shows that this approach is a more practical method than the cur-
rent methods.

Keywords: Smart Card, Trapdoor, Timing Analysis, Power Analysis

1 Background

The smart card has a high level of security, since it could safely store secret keys
and execute cryptographic algorithms. In addition, smart cards are so small and
easy to handle that they are replacing magnetic-stripe cards as bank cards and
credit cards in electronic payment systems.

Since enormous amounts of money flow in a widely-distributed system, the
service provider of an electronic payment system must have a high degree of
confidence in the IC chip manufacturer, the producer of the Chip Operating
System (COS) with applications, and the smart card issuer. The service provider
must be able to be certain that the software in the COS performs the required
financial transactions without any errors and that the software is free of security
leaks, not to mention trapdoors deliberately introduced into the software.

Evaluating and testing smart cards could provide the service provider with
confidence. Evaluations are generally applied to the description documents or

� This research was supported by the MIC(Ministry of Information and
Communication), Korea, under the ITRC(Information Technology Research Center)
support program supervised by the IITA(Institute of Information Technology
Assessment).

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 275–288, 2005.
c© IFIP 2005

276 J.Y. Lee, S.W. Jung, and J. Lim

the program code with static procedures. In contrast to static methods, tests
are applied to the real smart card in operation with dynamic procedures.

The Trusted Computer System Evaluation Criteria (TCSEC) [1], the Infor-
mation Technique System Evaluation Criteria (ITSEC) [2], and the Common
Criteria (CC) [3] are representative evaluation methods. The TCSEC were cre-
ated in order to establish a catalog of criteria for evaluating the trustworthiness
of software products by the American Department of Defense (DoD) in 1985.
The ITSEC published in 1990 were European criteria based on TCSEC. The
CC were made in order to provide a uniform standard for evaluating the cor-
rectness of a software in 1996. The CC have also been published as international
standard ISO 15408. The basic procedure for evaluating a system is to rate the
mechanisms that it uses to maintain security with regard to the pre-defined basic
threats. For example, the ITSEC have six quality levels from E1 to E6. If the
software satisfies minimum requirements such as informal descriptions of func-
tions, it has the lowest level E1. For the highest level E6, a complete evaluation
is required. For instance, full source code and object code testing are necessary
for level E6.

As well as the software, the hardware could be evaluated by various criteria.
The VISA corporation requires the Chip Hardware Architecture Review for their
smart cards [4]. This is an evaluation of the basic chip, without a COS or an
application. This evaluation identifies features that the COS and applications
must enable properly in order to achieve the security desired.

To test the software of a smart card, the service provider or its agency exam-
ines the input and output data with regard to their relationship to each other, as
defined in the specifications. If the examiner knows the internal data structures
and processes of the COS with applications, the number of possible input values
could be reduced. Besides the functional tests of the COS with applications, the
VISA corporation performs risk testing [4]. This testing verifies that the security
features provided by the IC chip are appropriately implemented by the COS, and
evaluates the protection that a card provides against various documented and
well-known attacks.

The hardware of a smart card is tested by the IC chip manufacturer and by
the card body manufacturer. The card body is verified by mechanical, chemical,
and thermal test regulations of the ISO/IEC 10373. In every fabrication processes
of a smart card, the ATR test and the EEPROM test are performed to check
whether the IC chip has been damaged by being packaged into the module or
by being heated during the embedding process.

In the real smart card fields, the commands of re-initializing the card and
writing patch code are widely used. For economic reasons, the re-initializing
command is intentionally inserted into the COS to reuse incorrectly issued cards
which should be cut into pieces using a pair of scissors. This command clears the
EEPROM of a smart card. Nowadays the patch command is almost always used
at initial stage that a new COS with applications is introduced. This command
is used to correct the errors of the COS or to adapt the minor changes of the
specifications. This command writes patch code into the EEPROM. In many

Detecting Trapdoors in Smart Cards Using Timing and Power Analysis 277

cases, these commands are not published. Such unpublished commands could be
trapdoors. The malicious developer of the COS could easily introduce trapdoors
in the form of patch code that reads all of the EEPROM memory including
the key information. This is a serious risk, especially to the electronic payment
system that uses only the symmetric key. The exposure of the key means a crash
of the system.

By means of the software test of a smart card, the service provider could have
the confidence that the smart card of its system complies with the specifications
and that it operates without errors or security weakness including trapdoors.
However, it is sometimes incorrectly assumed that these tests can discover all
Trojan horses in the software. Although the unsophisticated trapdoors could
be detected, an experienced programmer can easily create trapdoors that are
not detected by current tests. Up to now the effective way to detect them is
to completely reveal and analyze the entire code of the COS with applications.
However, it is very time-consuming and expensive processes. The ITSEC level
E4 which is the lowest level of the source code testing can cost around 300,000
euro. In order to be certified of the level E6, it takes several years and costs
several million euros [5].

We propose a new approach of detecting trapdoors in smart cards using
timing analysis and power analysis. The basic idea is as follows: if a terminal
transmits the commands which are not in the specifications into a smart card,
their response time and power consumption are same. However, the trapdoor
command which is also not in the specifications has the different response time
and the different power consumption as compared with the other commands.
This idea provides a fast and inexpensive method for detecting trapdoors com-
pared to known test methods.

The following section classifies the types of trapdoors in smart cards. Section
3 illustrates the current test methods to detect trapdoors. Section 4 introduces
the timing analysis and the power analysis. Section 5 presents the methods to
detect the defined trapdoors using timing and power analysis, and shows the
practice.

2 Types of Trapdoors in Smart Cards

The smart card has a interface so-called Application Protocol Data Unit (APDU)
that consists of a command APDU and a response APDU to communicate with
the terminal [6]. This tells us that a trapdoor in a smart card also has a APDU
format and that it could be detected by the analysis of the APDU format.

A command APDU, which is sent by the terminal to the card, consists of a
mandatory header and an optional body in Figure 1. The header is composed

Fig. 1. Structure of a command APDU

278 J.Y. Lee, S.W. Jung, and J. Lim

of four elements: the class byte (CLA), the instruction byte (INS), and two
parameter bytes (P1 and P2). The body is composed of the length of input data
(Lc field), the input data (data field), and the expected length of output data
(Le field).

A response APDU, which is sent by the card in reply to a command APDU,
consists of an optional body and a mandatory trailer in Figure 2. The body is
the output data and the trailer is a status word.

Fig. 2. Structure of a response APDU

Trapdoors could be inserted in a command APDU that is in the published
documents such as the specifications or a manual. This command operates the
defined function as well as the hidden function and it returns the response with
the hidden information. Trapdoors could be a new command APDU that is not
in the published documents. Also, a series of commands could be a trapdoor. If
the commands of this trapdoor executes in order, the last command performs
a hidden function. Otherwise, it performs a normal function. We classify these
trapdoors into three types: steganographic commands, trapdoor commands, and
trapdoor sequences. In the following subsections, we will define the types of
trapdoors in detail.

2.1 Steganographic Commands

Definition 1. A steganographic command is a command defined in the published
documents and implemented in the smart card, which has one or more hidden
functions than defined in the published documents.

Almost all smart card operating systems contain the GET CHALLENGE com-
mand for generating and issuing random numbers [7]. This command could be
modified to a steganographic command. If a smart card generates a 16-byte
random number, The first 8-byte number of the random number is actually gen-
erated by the pseudo-random number generator. The remaining 8-byte number
would then consist of an 8-byte value taken from the EEPROM and XORed
with the first 8-byte random number. An external program could then be used
to read out the entire memory contents, including all of the keys. Incidentally,
this is a good example of a steganographic trapdoor.

2.2 Trapdoor Commands

Definition 2. A trapdoor command is a command that is not defined in the
published documents and is implemented in the smart card.

Detecting Trapdoors in Smart Cards Using Timing and Power Analysis 279

To make a trapdoor in smart cards, the developer of the COS and applications
usually defines a new command rather than modifies an existing command. The
reason is that he could handle the trapdoor as a normal command.

A command APDU consists of CLA, INS, P1-P2, Lc, Data, and Le. Therefore
a trapdoor command could use one or more elements of a command APDU as the
trapdoor awareness data. According to that data, trapdoor commands could be
defined by CLA trapdoor commands, INS trapdoor commands, P1-P2 trapdoor
commands, and so on.

If an experienced programmer inserts a trapdoor command into the COS,
he would use one or more commands before the trapdoor command to block
easy detecting. The successful authentication command, for example, may be
requested before the patch command is applied. Also he would intentionally use
the error status word for the successful trapdoor command to pretend that the
smart card does not support that command.

2.3 Trapdoor Sequences

Definition 3. A trapdoor sequence is a sequence of commands defined in the
published documents and implemented in the smart card, of which the last com-
mand operates as a trapdoor if the commands are executed in predefined order.

Suppose a trapdoor sequence is a sequence of the GET RESPONSE command,
the PUT DATA command, and the GET CHALLENGE command. The GET
CHALLENGE command, which returns a random number in normal state, could
respond to the key information if the above sequence of commands are sent into
a smart card according to the defined order.

Trapdoor sequences are usually defined to avoid the collision with the possible
command sequences of transactions in the specifications.

3 Current Test Methods to Detect Trapdoors

A functional test is commonly used to discover trapdoors in a real smart card
in operation. Figure 3 illustrates the method used to determine the unpublished
commands. A CLA in the APDU is sent into the smart card, being changed from
’00’ to ’FF’. As soon as a return code other than ’invalid class’ is received, the
first valid class byte has been determined. Then all possible INSs are sent with
the determined CLA. The unsupported INS returns the status word ’unknown
instruction’, and the supported INS does return the other status word. In a
similar manner, the possible parameters of a command could be determined. If
suitable software is available in the terminal, this method can be used determine
which commands are supported by a smart card in a few minutes.

The reason that this simple search algorithm for CLA, INS, and P1-P2 is
possible is that practically most of command interpreters in smart card operating
systems evaluate received commands by starting with the CLA byte and working
through the following bytes.

280 J.Y. Lee, S.W. Jung, and J. Lim

Fig. 3. Basic procedure for determining the commands set of a smart card

However, an experienced programmer can easily create trapdoors that are not
detected by this test as mentioned in Subsection 2.2. If he uses the error status
word ’unknown instruction’ for the successful trapdoor command, there is no
way to detect them by this test. What is worse, this test could not practically
detect a steganographic command or a trapdoor sequence.

4 Timing Analysis and Power Analysis

In the previous section, we show that the current test methods are not sufficient
to detect trapdoors in smart cards. It is well known fact that a timing analysis
and a power analysis are powerful methods to attack the smart card. This paper
explains how these methods could be applied to detect trapdoors effectively in
the next section. We introduce the concept of a timing analysis and a power
analysis in the following subsections.

We suggest that the side channel attacks which are focus to on the crypto-
graphic algorithms in the smart card could be used for detecting trapdoors. It
would be powerful methods as much for the cryptographic algorithms.

Detecting Trapdoors in Smart Cards Using Timing and Power Analysis 281

4.1 Timing Analysis

This subsection briefly describes the timing analysis of [10]. A timing attack
can be mounted if the execution time of the cipher depends on the value of
the key. For example, consider the square-and-multiply algorithm for modular
exponentiation, which is the basis of many public-key cryptosystems. If no special
precautions are taken, the total execution time of the cipher will vary depending
on the key. Hence, it is possible to deduce the key by comparing the cipher
execution times for different keys.

4.2 Power Analysis

This subsection briefly describes the power analysis of [11] and how it can be used
to attack encryption algorithms. Simple Power Analysis (SPA) involves directly
interpreting the power consumption measurement of a device like a smart card.
SPA can yield information about a device’s operation as well as key material.
For example, when an attacker can find out which branch of a jump instruction
is taken in the DES operation, it becomes possible to use such information to
draw conclusions about the secret key because a conditional branch is commonly
used to compute the DES key scheduling.

Differential Power Analysis (DPA) is a statistical approach, where many
traces are collected, and are examined for correlations. A partial guess of a
key could determine whether the value of a particular bit in the outputs is 0 or
1. The value divides the traces into two sets. Then, the averages of the traces for
the two sets are compared. If the guess is incorrect, there will be no correlation
between the two sets. However if the guess is correct, the first set will have a
different bias than the second one. When the averages of the two sets are sub-
tracted, there will be a spike in the difference. In such manner, the entire key
can be derived.

5 Detecting Trapdoors in a Smart Card

Most smart cards support the protocol T=0, half-duplex transmission of asyn-
chronous characters [6]. In the protocol T=0, the COS has to parse the received
INS in order to distinguish the commands that are incoming data transfers to
the smart card and the commands that are outgoing data transfers to the ter-
minal. Therefore, the COS commonly has the command processing steps as the
following Algorithm 1.

Algorithm 1. APDU command processing steps

Step 1. Receive a command APDU header.
Step 2. Parse the command according to INS.
Step 3. Receive a command APDU body if it is the incoming data transfer

command.
Step 4. Process the secure messaging.

282 J.Y. Lee, S.W. Jung, and J. Lim

Fig. 4. Power consumption of a general GET CHALLENGE command

Fig. 5. Power consumption of a trapdoor GET CHALLENGE command

Step 5. Check the input command according to the specifications.
Step 6. Performs the command.
Step 7. Send a response APDU.

If the smart card supports only block transmission protocols such as T=1, type
A, type B [6, 8, 9], the steps may differ from the above. For example, Step 3 could
be merged to step 1. Step 2 and 4 could be swapped. Since most of smart cards
supporting block transmission protocols are implemented T=0 also, without loss
of generality, we assume that the smart cards have T=0 protocol.

For experiments, the sample COS is developed on the Samsung OPENice
i500 smart card development tools. The power consumption graph is the differ-
ence of the voltages over 50 ohms between Vcc of the smart card and Vcc of the
terminal measured by the Tektronix TDS 5052 Digital Phosphor Oscilloscope.

Detecting Steganographic Commands
This trapdoor executes an ordinary function and a trapdoor function at the same
time. It should be implemented in Step 6 of Algorithm 1, and it has additional
operations compared with an original command.

Detecting Trapdoors in Smart Cards Using Timing and Power Analysis 283

Let us use an example where a trapdoor GET CHALLENGE command gen-
erates a random number and operates XOR with one byte of the EEPROM
memory. After that, it updates the EEPROM area for the next address to read.

Most smart card ICs have a hardware random number generator, so the power
consumption graph of the GET CHALLENGE command is generally simple like
Figure 4. On the other hand, because the trapdoor GET CHALLNGE command
has additional operations, the power consumption graph differs compared with
the general implementation of the GET CHALLENGE command if the same IC
is used. Figure 5 tells us that it has additional operations that are not known,
so we suspect this as a trapdoor.
Detecting Trapdoor Commands
This trapdoor has one or more new CLA, INS, P1-P2, Lc, Data, or Le. We
illustrate a INS trapdoor command first, which is the representative trapdoor.
In Step 2, the INS of an input command APDU is compared within the switch
clause or the if-else clause. If it is matched, the COS calls the function and

Fig. 6. Processing time of commands that are not in a command parser

Fig. 7. Processing time of an INS trapdoor command

284 J.Y. Lee, S.W. Jung, and J. Lim

returns an ordinary status word. Otherwise, the COS returns the status word
’6D00’ (unknown instruction).

The INS trapdoor command can be implemented in Step 2 of Algorithm 1.
Although this trapdoor returns the status word ’6D00’ as Example 1, we could
easily guess that this command of which the processing time is different from
those of other commands would be a trapdoor. In a similar manner like Figure
3, INSs from ’00’ to ’FF’ are sent into the smart card. Figure 6 shows that the
processing time of INSs that are not in the command parser and Figure 7 shows
an INS trapdoor command.

Because the INS value is between 0 and 255, the full search time of INS trap-
door commands is only about 8 seconds assuming that the processing time of
one command is 30ms as [5].

Example 1. Pseudo-code for command parser and trapdoor function

command_parser ()
{

switch (apdu.ins)
{

case TRAPDOOR:
trapdoor();

break;
case READ_BINARY:

read_binary();
break;
case WRITE_BINARY:

if (apdu.lc > 0)
receive_arr(apdu.body, apdu.lc);

write_binary();
break;
// *** Abbr. ***//
case GET_CHALLENGE:

get_challenge(&tApdu);
break;
// *** Abbr. ***//
default:

send_sw(0x6D00);
return;

}
}

trapdoor()
{

format_file_system();
send_sw(0x6D00);

}

Detecting Trapdoors in Smart Cards Using Timing and Power Analysis 285

Although an experienced programmer can enforce a delay that the command
parser matches the processing time with a trapdoor command. Since instruc-
tions are different, the power consumption of a trapdoor command would be
different from those of other commands. Figure 8 shows the power consumption
of commands which return the status word ’6D00’ with a enforced delay, and
Figure 9 shows the power consumption of a trapdoor.

In Step 5 of Algorithm 1, P1 and P2 are checked whether they comply with the
specifications or not, respectively. Generally P1 is checked first and P2 second.
For example, that the P1-P2 trapdoor command operates as a trapdoor only
when P1 = 0x37 and P2 = 0xBF. Matching P1 causes a small difference of
the processing time because matching P1 enables P2 to be compared. To search
the matching P1, the same method for detecting the INS trapdoor command
is applied. After the full search of P1, P2 could be searched by the same way.

Fig. 8. Power consumption of commands which return the status word ’6D00’ with a
enforced delay

Fig. 9. Power consumption of a trapdoor command

286 J.Y. Lee, S.W. Jung, and J. Lim

Fig. 10. Processing time of a P1-P2 trapdoor command when P1 != 0x37

Fig. 11. Processing time of a P1-P2 trapdoor command when P1 = 0x37

Figures 10 and 11 show the processing time of the P1-P2 trapdoor command
with matching P1 or not.

Detecting other trapdoor commands are the extension of detecting INS trap-
door commands or P1-P2 trapdoor commands.

Detecting Trapdoor Sequences
To implement a trapdoor sequence, the commands in a sequence have to save
the current state for the next command to execute. Suppose that a trapdoor
sequence is a sequence of the GET RESPONSE command, the PUT DATA
command, and the GET CHALLENGE command. The variable CUR STATE in
RAM of a smart card is for the current state. If the GET RESPONSE command
is executed, the CUR STATE will be set the GET RESPONSE state as defined
by S1. If the PUT DATA command is executed and the CUR STATE is S1, the
CUR STATE will be set the PUT DATA state as defined by S2. If the GET
CHALLENGE command is executed and the CUR STATE is S2, a trapdoor

Detecting Trapdoors in Smart Cards Using Timing and Power Analysis 287

Fig. 12. Power consumption of the PUT DATA command if the previous command is
not the GET RESPONSE command

will be executed and the CUR STATE will be initialized to S0. Any other cases
make the CUR STATE to S0.

With respect to the PUT DATA command, the CUR STATE will be set the
next state if the previous command is the GET RESPONSE command, or it will
be initialized. This means that the power consumption difference exists. Figure
12 and 13 show the difference of the power consumption.

The number of commands in most electronic payment systems is 30, more
or less. The number of states is about 10 in one command. In other words, one
command may return one of about 10 status words. To find one chain, a minimum
of two command executions is needed. The full search time of a trapdoor sequence
is estimated only about 90 minutes assuming that the processing time of one
command is 30ms.

Fig. 13. Power consumption of the PUT DATA command if the previous command is
the GET RESPONSE command

288 J.Y. Lee, S.W. Jung, and J. Lim

6 Conclusion

In the real field, even though the COS developers often insert trapdoors for
economic reasons, the current analyzing methods for source code of the COS or
the functional test software for smart cards could not detect trapdoors efficiently.

In this paper, trapdoors are classified into steganographic commands, trap-
door commands, and trapdoor sequences, based on the idea that the number
of the smart card trapdoors are finite apart from general software because they
should follow the APDU format. They are implemented with various ways in the
special area of source code according to the basic COS structure.

Side channel attacks which are used to expose secret values of the crypto
algorithms in the smart card could be applied to detect trapdoors in the smart
card. The timing analysis is useful to detect trapdoor commands which are
representative trapdoors in the real smart cards. The power analysis could be
used to detect steganographic commands and trapdoor sequences which are more
difficult to detect than trapdoor commands. We explain that this idea is very
useful to detect trapdoors compared with the current methods.

Furthermore, they also provide the practical and inexpensive methods in the
real smart card world. We want this paper to be the start of detecting trapdoors
for real smart cards using a timing analysis and a power analysis.

References

1. Trusted Computer Systems Evaluation Criteria, US DoD 5200.28-STD, Dec. 1985.
2. Information Technology Security Evaluation Criteria, Version 1.2, Office for Official

Publications of the European Communities, June 1991.
3. Common Criteria for Information Technology Security Criteria, Version 2.1, Aug.

1999.
4. VISA Corporation, Chip Card: Testing and Approval Requirements Version 7.0,

Industry Services, Dec. 2002.
5. W. Rankl and W. Effing, ”Smart Card Handbook,” Third Edition, John Wiley &

Sons, Ltd, 2003, pp.244, pp.544-546, pp.579, pp.589.
6. ISO/IEC 7816-3:1997, Identification cards - Integrated circuit(s) cards with con-

tacts - Part 3: Electronic signals and transmission protocols.
7. ISO/IEC 7816-4:1995, Identification cards - Integrated circuit(s) cards with con-

tacts - Part 4: Interindustry commands for interchange.
8. ISO/IEC 14443-3:2001, Identification cards. Contactless integrated circuit(s) cards.

Proximity cards. Part 3: Initialization and anticollision.
9. ISO/IEC 14443-4:2001, Identification cards. Contactless integrated circuit(s) cards.

Proximity cards. Part 4: Transmission protocol.
10. P. Kocher, ”Timing Attacks on Implementation of Diffie-Hellman, RSA, DSS, and

Other Systems,” CRYPTO 1996, LNCS 1109, Springer-Verlag, 1996, pp.104-113.
11. P. Kocher, J. Jaffe, and B. Jun, ”Differential Power Analysis,” CRYPTO 1999,

LNCS 1666, Springer-Verlag, 1999, pp.388-397.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 289 – 30 , 2005.
© IFIP 2005

From U2TP Models to Executable Tests with TTCN-3
 - An Approach to Model Driven Testing -

Justyna Zander1, Zhen Ru Dai1, Ina Schieferdecker1,2, and George Din1

1 Fraunhofer Fokus, TIP,
Kaiserin-Augusta-Allee 31,

10589 Berlin, Germany
{j.zander,dai,schieferdecker,din}@fokus.fraunhofer.de

2 Technical University Berlin, Faculty IV,
Straße des 17. Juni 135,

10623 Berlin,
Berlin, Germany

Abstract. The approach towards system engineering according to Model-
Driven Architectures (MDA) with code generation derived from model implies
also an increased need for research on automation of the test generation process.
This paper presents an approach to derive executable tests from UML 2.0
Testing Profile diagrams automatically. In particular, an approach to derive
executable tests within the Testing and Test Control Notation (TTCN-3) is
discussed. The transformation rules between the source U2TP meta-model to
the target TTCN-3 meta-model are given.

Keywords: UML 2.0 Testing Profile, UML, Testing, TTCN-3, QVT, Model
transformation, MOF, MDA.

1 Introduction

Recently, the attention around automatic derivation of executable code from abstract
models has been raised in the context of MDA (Model Driven Architecture [1]). We
believe that that this concept can also be used also in testing area. Therefore, it is
proposed to enhance MDA with a separate development line for testing artefacts
[12]. We believe that derivation of executable tests from their models is possible to
some extent. Due to complete test designs we gain the advantage of reduced work on
pure tests programming. Several efforts have been undertaken to establish an
approach to automate - or at least to provide significant support for an automated -
test generation. Algorithms have been defined to derive tests from formal system
specification given in various notations. But today, none of the approaches is widely
used in the industrial practice for large applications [17]. As UML and MDA have
gained much momentum in industry, we focus on using these concepts to show that
retrieving executable test instances from system model can be supported via test
skeleton generation combined with manual completion of the tests.

MDA prescribes certain model artefacts to be used along system development, how
those models may be prepared and their relationship [1]. It is an approach to system
development that separates the specification of functionality from the specification of

3

290 J. Zander et al.

the implementation of that functionality on a specific technology platform [3]. Main
MDA artefacts are platform independent system models (PIMs), platform specific
system models (PSMs) and system code [1][14]. There is a clear distinction between
PIM, PSM and system code although it depends on the context, the development
process and the details of the system and target platform, where the border between
PIM, PSM and system code is to be placed. Within these three abstraction levels,
transformation techniques are used to translate model parts of one abstraction level
into model parts on another abstraction level. These transformations can also be used
to specify the relations and invariants between the models on different abstraction
levels, which are the base to check the consistency between models and to validate
models against each other. These MDA abstraction levels can also be applied to test
modelling [15] as according to the philosophy of MDA, the same modelling
mechanism can be re-used for multiple targets [16]. Similarly, test models can be
specified platform independently and platform specific before generating executable
test codes [8].
 As shown in Fig. 1, platform independent system design models (PIM) can be
transformed into platform specific system design models (PSM). While PIMs focus
on describing the pure functioning of a system independently from potential
platforms that may be used to realize and execute the system, the relating PSMs
contain a lot of information on the underlying platform. In another transformation
step, system code may be derived from the PSM. Certainly, the completeness of the
code depends on the completeness of the system design model [8].

Fig. 1. System and Test Development

 According to model driven testing1 approach, a platform independent test design
model (PIT) can be transformed either directly to test code or to a platform specific
test design model (PST) [10]. Finally, the test design model can be transformed into
executable test code from either PST or PIT.
 This paper presents transformations between UML 2.0 Testing Profile (U2TP [4])
specifications used to represent PITs and Testing and Test Control Notation (TTCN-
3 [5]). The transformations are specified as transformation rules between the U2TP

1 We define model driven testing as testing based-MDA.

 From U2TP Models to Executable Tests with TTCN-3 291

meta-model [4] and the TTCN-3 meta-model [10]. Afterwards, the generated output
is completed and compiled to executable test code in Java [18].
 U2TP and TTCN-3 meta-models are both defined as Meta Object Facility (MOF)
models [1]. Transformation rules provided in this paper define relation between
source and target meta-classes of these meta-models, while the transformations are
performed on model (instance) level, i.e. deriving parts of TTCN-3 modules from
parts of U2TP specifications. This procedure is shown in Fig. 2.

Fig. 2. Transformation of U2TP to TTCN-3

 The goal is to get executable tests from U2TP models automatically, however, in
general the generation will only be semi-automatic as U2TP specifications can be
very abstract so that further details are needed to make the tests executable.
Examples include the addition of concrete data, timing or default behaviours.
 The environment, which is used to demonstrate the feasibility of our approach is
Eclipse with its UML2.0 plug-in [19]. U2TP is realized as an extension of the UML
2.0 plug-in via its Java API. The transformation rules are also realized in Java. The
transformations generate objects within a TTCN-3 meta-model instance, which
enables the compilation and execution of the tests designed previously in U2TP.
 The paper is divided into six sections. After the introduction, Section 2 is devoted
to the U2TP and TTCN-3 meta-models which are used as source and target for the
transformations. Additionally, we discuss Eclipse and its UML 2.0 plug-in as a tool
which is used to implement and demonstrate our approach. In Section 3, the
transformation theory in the context of model driven testing is discussed. Section 4
provides the methodology of retrieving the executable test code, which is possible by
applying presented transformation rules and appropriate compilation. The
transformation rules could be formalized in Query/View/Transformation (QVT)
rules defined by CBOP/IBM/DSTC [3]. However due to lack of vendors providing
appropriate tools and because of the limitations of the UML 2.0 profiling support in
Eclipse, we had to realize the transformation rules directly in Java. Thus, we define
our own mapping language and rules based on meta-model classes. In Section 5, an
example of U2TP diagram is presented and the transformation rules for this example
are described. Furthermore, the same example analysis, but resulting from
application of the transformer implementation is continued. In Section 6, the results
are discussed and conclusions are taken. Finally, future work challenges are outlined.

292 J. Zander et al.

2 Related Work

Research as well as industrial work related to generation of executable tests from
UML models according to MDA concepts is being continuously developed.
LEIRIOS Test Generator™ tool (LTG) [23] implements the Smart Testing concept.
It supports Model Based Testing - an approach in which one defines the behaviour of
a system in terms of actions that change the state of the system (state machine).
UML 2.0 models are used for automatic generation of test sequences. LEIRIOS core
technologies implement smart heuristics to compute the test cases.
 Objecteering Software [24] on the other side provides the opportunity of working
with pragmatic design and coding tools, which combine UML modelling, code
production, debugging and Java application testing in a single environment.
Objecteering/UML tool is integrated into the Eclipse 2.0 platform. This integration
allows the Java developer to take advantage of a strongly model-oriented tool,
which, when integrated with a dedicated Java environment, associates the support of
UML modelling with the support of Java development. Objecteering/UML tool bases
however on UML 1.4 meta-model.
 Finally, Telelogic TAU Generation2 [25] represents generation of advanced
software development and testing tools, supporting the latest industry-standards for
visual systems and software development (UML 2.0 Testing Profile) and systems
and integration testing (TTCN-3). Telelogic team provides an approach that
automates testing activities covering test specification, development of testing
software and execution of test campaigns. U2TP is selected as modelling language
for test case specification. The models are then transformed to TTCN-3 language,
which is used for describing executable test cases.
 Our approach is to use similar methodology as LEIRIOS deriving executable tests
from UML 2.0 models, however we extend the models with U2TP concepts and
integrate our tool with Eclipse platform as Objecteering team does. We develop also
transformation rules from U2TP to TTCN-3 as offered by Telelogic, but we define
the rules on the meta-model level using methods available in Eclipse to implement
our approach.

3 Theoretical Background

The transformation between U2TP and TTCN-3 is obtained by use of the Eclipse
framework for meta-modelling, repository generation and read/write access to model
data in repositories. We store model information in Eclipse meta-modelling
framework (EMF [21]) based repositories. The transformation rules are defined
between source and target meta-models (see Fig. 3) and applied to concrete meta-
model instances, i.e. source and target models in U2TP and TTCN-3 respectively.
We design and develop test specifications in U2TP and perform the transformations
on model level so as to get TTCN-3 test model instances.
 In the following section we describe the main concepts of U2TP and TTCN-3, as
well as introduce Eclipse being the tool used for the transformation.

 From U2TP Models to Executable Tests with TTCN-3 293

Fig. 3. Transformation Architecture

3.1 The UML 2.0 Testing Profile

The UML 2.0 Testing Profile (U2TP) defines a language for designing, visualizing,
specifying, analyzing, constructing and documenting the artefacts of test systems. It
is a test modelling language that can be used with all major object and component
technologies and be applied to test systems in various application domains. U2TP
can be used stand alone for the handling of test artefacts or in an integrated manner
with UML for a handling of system and test artefacts together [4]. The UML 2.0
Testing Profile extends UML 2.0 with test specific concepts like test components,
verdicts, defaults, etc. These concepts are grouped into concepts for test architecture,
test data, test behaviour and time. Being a profile, the U2TP seamlessly integrates
into UML. It is based on the UML 2.0 meta-model [2] and reuses UML 2.0 syntax.
The U2TP concepts are structured into:
− Test architecture concepts defining concepts related to test structure and test

configuration, i.e. the elements and their relationships involved in a test,
− Test behaviours concepts defining concepts related to the dynamic aspects of test

procedures and addressing observations and activities during a test,
− Test data concepts defining concepts for test data used in test procedures, i.e. the

structures and meaning of values to be processed in a test, and
− Time concepts defining concepts for a time quantified definition of test procedures,

i.e. the time constraints and time observation for test execution [9].

A detailed structure of U2TP concepts is given in Table 1.

Table 1. Overview of the Testing Profile concepts [8]

Architecture
concepts

Behaviour concepts Data concepts Time Concepts

SUT Test objective Wildcards Timer
Test components Test case Data pools Time zone

Test context Defaults Data partitions
Test configuration Verdicts Data selectors

Arbiter Test control Coding rules
Scheduler

294 J. Zander et al.

 In [4], the meta-model of U2TP is also introduced and explained. It is the source
meta-model for the transformation and hence a basis for defining the mapping rules
as well as to develop source test models being transformed. It is the input for our
transformation work.
 Although Eclipse provides EMF, the UML2 plug-in of Eclipse [19] and the
profiling mechanism of this plug-in for extensions of UML require that the U2TP
meta-model is written in Java from scratch. The UML2 plug-in is based on the UML
2.0 meta-model [2] but provides a specific realization of this in the context of EMF.
It allows us to develop a U2TP plug-in for Eclipse and to integrate it with the TTCN-
3 plug-in for Eclipse [18].

3.2 TTCN-3 and Its Meta-model

The Testing and Test Control Notation version 3 (TTCN-3 [5]) has been developed
at the European Telecommunication Standardization Institute (ETSI) and has been
also standardized at the International Telecommunication Union (ITU-T). TTCN-3 is
a test specification and implementation language to define test procedures for black-
box testing of distributed systems. It enables tests execution, if appropriate tools and
system under test (SUT) are available. In [10] a meta-model for TTCN-3 is provided,
which represents the concept space of TTCN-3 and enables the use of TTCN-3 in the
context of meta-modelling, repositories and model transformations.
 The main objectives for the development of the TTCN-3 meta-model were:
− The separation of concerns by separating the TTCN-3 concept space and semantics

(represented in the TTCN-3 meta-model) from TTCN-3 syntactic aspects (defined
in the core language and the presentation formats).

− The ability to define the semantics on concept space level without being affected
by syntactic considerations e.g. in case of syntax changes.

− To ease the exchange of TTCN-3 specifications of any presentation format and not
of textual TTCN-3 specifications only.

− To ease the definition of external language mappings to TTCN-3 as such
definitions can reuse parts of the conceptual mapping from other languages.

− To integrate TTCN-3 tools into MDA based processes and infrastructures[1].

 The TTCN-3 test meta-model defines the TTCN-3 concept space with additional
support for the different presentation formats. It does not directly reflect the structure
of a TTCN-3 modules but rather the semantics structure of the TTCN-3 language
definition. It is defined as a single package with concept structures for types and
expressions, modules and scopes, declarations, and statements and operations.
 The TTCN-3 meta-model is the target used in our transformation and another base
for the definition of the mapping rules. Each meta-class of the target meta-model is
named applying the same convention: the logical name for the TTCN-3 concept
represented by the meta-class being prefixed with “TT” to make the meta-classes
easily identifiable as meta-classes from TTCN-3. The meta-model for TTCN-3
language is technically defined in UML by using the Rational Rose tool [22]. The
EMF [21] generator provided by Eclipse was used to generate the TTCN-3
repository by the creation of a corresponding set of Java implementation classes
from this Rose model.

 From U2TP Models to Executable Tests with TTCN-3 295

3.3 Eclipse

The Eclipse Project [19] is an open source software development project dedicated to
providing a robust, full-featured, commercial-quality, industry platform for the
development of highly integrated tools. It is composed of three subprojects: the
Eclipse Platform, the Java Development Tools (JDT), and the Plug-in Development
Environment (PDE). The success of the Eclipse Platform depends on how well it
enables a wide range of tool builders to build advanced integrated tools. The Eclipse
Platform provides building blocks and a foundation for constructing and running
integrated software-development tools [20].
 We use PDE to create the U2TP plug-in for Eclipse based on the UML2 Project
[19]. Additionally, the Eclipse Modelling Framework (EMF) [21] being a modelling
framework and code generation facility enables us to build partly the tools based on
the structured meta-models. EMF is a Java framework and code generation facility
for building tools and other applications based on meta-models defined in EMF. The
EMF Ecore defines the meta-model for all the models handled by the EMF.

4 Transformation Approach

We define transformation from U2TP models to TTCN-3 models. Since TTCN-3
provides a direct generation of executable tests we provide by this translation also a
direct way towards test code. Based on concrete U2TP specifications the user is
enabled to generate TTCN-3 code, to complete the TTCN-3 definitions if needed
afterwards and to execute his/her tests finally. The idea is to provide transformation
rules which enable to map the concepts on meta-model level. However, the
transformation itself is performed on the model level.
 The UML 2.0 Testing Profile is targeted at UML 2.0 providing selected extensions
to the features of TTCN-3 as well as restricting/omitting other TTCN-3 features. In
general, a mapping from TTCN-3 to U2TP is possible but not the other way around.
For the U2TP to TTCN-3 mapping, restrictions on U2TP level are necessary that
restrict the U2TP definitions to executable models. In the following, we assume
U2TP models which can be mapped to TTCN-3. The principal approach towards the
mapping to TTCN-3 consists of two major steps. U2TP stereotypes and associations
are selected and assigned to TTCN-3 concepts. Afterwards, procedures to collect
required information for the generated TTCN-3 modules are defined [5].
 In Fig. 4, the specific application of U2TP to TTCN-3 transformation is
considered in the general framework of MDA-based testing [11], where platform-
independent tests (PIT) relate to platform-independent system models (PIM) and
platform-specific tests (PST) relate to platform-specific system models (PSM). We
provide in this paper mapping from a more abstract test design in U2TP down to a
detailed technical level in TTCN-3.
 Afterwards, the generated test code is completed in TTCN-3 and changed into
executable test code. The translation from PITs to PSTs for specific target system
platforms is not considered in this work. Also, we do not explicitly model the target
test platform (and hence the specifics of the test code dealing with technical test
platform characteristics) but rely here on the capabilities of TTCN-3 to generate and
adapt executable tests by use of the TTCN-3 runtime interfaces (TRI [6]) and the
TTCN-3 control interfaces (TCI [7]).

296 J. Zander et al.

 The way of getting the test code from TTCN-3 repository is performed by using a
TTCN-3 compiler (e.g. TTthree [18]). After provision of a test adaptor, the tests
originally being designed in U2TP can be performed.

Fig. 4. Transformation of PIT/PST in U2TP to Test Code in TTCN-3

 Mapping rules (provided in the next section) define the connection between
appropriate nodes of source and target meta-models. These nodes are stereotypes
(and extensions of UML 2.0 meta-classes), primitive types or interfaces in case of
U2TP and meta-classes in case of TTCN-3 meta-model.

4.1 Mapping Rules Between U2TP and TTCN-3 on Meta-model Level

Mapping is a mechanism for transforming the elements of a model conforming to a
particular meta-model into elements of another model that conforms to another meta-
model [12]. Mapping is specified using some languages. The description may be in
natural language, an algorithm in an action language, or in a model mapping
language. A desirable quality of a mapping language is portability. This enables use
of a mapping with different tools [13].

The mapping language used in this paper is developed by us. A transformation rule
represents the basic unit of mapping between an arrangement of source elements and an
arrangement of target elements [13]. Transformation rules are used in our case to
express mappings from concepts of the U2TP meta-model to concepts of the TTCN-3
meta-model. For example, we map each U2TP TestComponent stereotype to the
TTComponentType meta-class of TTCN-3. Such a procedure is needed for each
element of the source meta-model. Thus, we map each stereotype, interface, primitive
type, as well as properties, operations and parameters to appropriate meta-classes and
associations of the target meta-model. We used the comparison provided in [4], Chapter
6.6.2 as the base for developing the transformation rules and concretized and completed
these rules (Table 2), which defines the semantic relation between U2TP elements and
TTCN-3 meta-model elements. Mapping rules provided at this part present selected, the
most important, however relatively simple issues. The meta-classes of source meta-
model have a correspondence in target meta-model. Hence, concrete mapping rules
between elements of U2TP and TTCN-3 meta-models are provided.

 From U2TP Models to Executable Tests with TTCN-3 297

Table 2. Relation between U2TP and TTCN-3 meta-model elements (excerpt)

U2TP Element TTCN-3 Meta-model Element

SUT
system association of TTTestcase
TTVariable

TestComponent TTComponentType
TestCase TTTestcase

TestContext
TTModule
TTComponentType for the MTC type

TestConfiguration

TTFunction
TTPortLinkKind
TTCreateTC
TTStartTC

TestObjective TTComment

Arbiter
TTComponentType
TTExternalFunction or TTFunction

Verdict TTVerdict
ValidationAction TTExternalFunction or TTFunction

Default
TTDefaultType
TTAltstep

DefaultApplication TTDefaultKind
Stimuli TTOutputKind
Observation TTInputKind

Coordination
TTOutputKind
TTInputKind

LogAction TTLog
InteractionOperator(alt,determAlt) TTAlternative
InteractionOperator(loop) TTLoopKind
DataSelector TTExternalFunction or TTFunction

DataPartition
TTExternalFunction or TTFunction,
TTTemplate

CodingRule TTWithKind
LiteralAny matching/expression

Timer
TTTimer,
TTTimerType

StartTimerAction TTTimerStatementKind
StopTimerAction TTTimerStatementKind
ReadTimerAction,
TimerRunningAction

TTTimerOp

TimeOutAction,
TimeOut,
TimeOutMessage,

TTTimeOut

Duration TTFloatType
Port TTPort , TTPortKind, TTPortType
Parameters TTModuleParameter

 All the mapping rules presented above are connected mostly with single concepts.
However, there are such elements like time zone or scheduler that cannot be
transformed one by one. The time zone concept cannot be directly expressed in
TTCN-3 so that it has been not yet considered in the mapping. Furthermore, it is
assumed that the scheduler is implicitly present in the TTCN-3 semantics and
therefore realized by every TTCN-3 run time environment, so that there is no need to
transform it.

298 J. Zander et al.

 Further investigations in the context of U2TP diagrams are done. The attention is
focused especially on Class Diagram, Sequence and Interaction Diagrams.
Prototypical implementation of the transformations serves as reliable proof of
described concepts. Here, appropriate algorithms to order mapping of various
elements are investigated. Different approaches for each type of UML 2.0 diagrams
are elaborated.

5 An Example

Hence we would like to introduce an example of diagram mapping so as to show
how the mentioned U2TP meta-model concepts can be mapped to TTCN-3 meta-
model concepts. In the example, we show how the particular elements of U2TP
given in Fig. 5 are mapped to TTCN-3 meta-classes on the base of a Sequence
Diagram.

The sequence diagram in Fig. 5 specifies the behaviour for InvalidPIN() Test
Case. The test objective of this test case is: Verify that if a valid card is inserted, and
an invalid pin-code is entered, the log with the content “PIN incorrect” is stored.

Fig. 5. Sequence Diagram – the behaviour of the InvalidPIN test case

The interaction specifies the expected sequence of messages (Stimuli – e.g.
storeCardData(current), Observation – e.g. display(“Enter PIN”)) between Test
Component1 and SUT1, when used as a test behaviour. During a Test Case, Log(“PIN
incorrect”) is used to store log event information. Validation Action sets the verdict
to pass. Validation Actions use an arbiter to calculate and maintain a verdict for a Test
Case. Test Cases always return verdicts. This is normally done implicitly through the
arbiter and doesn’t have to be shown in the test case behaviour. In the example, an
arbitrated verdict is returned implicitly.

The diagram also illustrates the use of a Timer – t1 and a duration constraint
({0..3}). The Timer is used to specify how long the Test Component1 will wait for the
Observation. Thus the Timer – t1 is started after sending a Stimulus by Test
Component1 to SUT1. Once the message (Observation) has been received by the Test
Component1, the Timer is stopped.

 From U2TP Models to Executable Tests with TTCN-3 299

 Mapping rules given below are extended in such a way that the whole path of the
inheritance of TTCN-3 meta-classes is given. In this way better overview on the
meta-models structure is presented. Additional restrictions, like associations are
provided to enable the recognition of some important relations in the TTCN-3 meta-
model.
 Let us consider TestComponent stereotype, which is used for the creation of
test components and their connection to the SUT and to other test components. It
specifies TestComponent1 in Fig. 6. TestComponent is mapped to
TTComponentType. TTComponentType has a TTScope which is an abstract
meta-class in the TTCN-3 meta-model. It is also a TTComplexType, which inherits
from TTType. TTType inherits from TTDeclaration and this respectively is
associated with TTModule which inherits from TTScope (see Fig. 6).

Fig. 6. Test Component mapping

 Symbols used in the creation of mapping rules are given in Table 3:

Table 3. Symbols and their Meaning used in Mapping Language

Symbols Meaning
meta-class1::meta-class2 inheritance of meta-class2 from meta-class1
meta-class1@meta-class2 meta-class1 is composed of meta-class2

meta-class$enumeration
enumeration is included in the meta-class as

 an attribute type
enumerationExample(value) represents the value of given enumeration

 Applying the transformation rules to all the concepts presented in Fig. 5, we get
the following results. Stimulus is the element of U2TP meta-model responsible
for sending messages, calling operations, and replying to operation invocations. An
element corresponding to Stimulus on model level is i.e. storeCardData(current)
in Fig. 5. Stimulus is mapped to TTOutputKind(OutputKind_call) in our
example. TTOutputKind is included in TTOutput meta-class as an attribute
type. TTOutput meta-class inherits from TTOtherStatements, while this
inherits from TTFunctionElement. TTFunctionElement is associated with
TTModule, which inherits from TTScope.

 Stimulus mapping

U2tp::TestComponent
TTCN3::TTScope::TTComponentType
TTCN3::TTScope::TTModule@TTDeclaration::TTType
::TTComplexType::TTComponentType

U2tp::Stimulus
TTCN3::TTScope::TTModule@TTFunctionElement::TTOtherStatements
::TTOutput$TTOutputKind(OutputKind_call)

Fig. 7.

300 J. Zander et al.

U2tp::StartTimerAction
U2tp::StopTimerAction
TTCN3::TTScope::TTModule@TTFunctionElement::TTControlStatements
::TTTimerStatement$TTTimerStatementKind(stop, stop)

Observation means according to U2TP specification - receiving messages
(receive), operation invocations (getcall), and operation replies (getreply). An element
corresponding to Observation in the example is e.g. display(“Enter PIN”) in Fig.
5. Here, observation is mapped into TTInputKind (InputKind_getreply).
TTInputKind is included in TTInput meta-class as an attribute type.

TTInput meta-class inherits from TTOtherStatements, while this inherits from
TTFunctionElement. TTFunctionElement is associated with TTModule,
which inherits from TTScope.

Fig. 8. Observation mapping

For the time-quantified control of the communication between two components, a
Timer is used. The U2TP stereotypes StartTimerAction and
StopTimerAction are responsible for t1(2.0) starting and t1 stopping (see Fig. 5).
They are mapped to TTTimerStatementKind(start, stop) respectively.
TTTimerStatementKind is included in TTTimerStatement meta-class as an
attribute type. TTTimerStatement meta-class inherits from
TTControlStatements, while this inherits from TTFunctionElement.
TTFunctionElement is associated with TTModule, which inherits from
TTScope.

Fig. 9. StartTimerAction, StopTimerAction mapping

LogAction is a stereotype of U2TP. Log(“PIN incorrect”) shows its use in the
example (see Fig. 5). TTCN-3 provides a log operation for logging test information in
the test trace. The LogAction is mapped to the TTLog meta-class of the TTCN-3
meta-model. TTLog meta-class inherits from TTControlStatements, while this
inherits from TTFunctionElement. TTFunctionElement is associated with
TTModule, which inherits from TTScope.

Fig. 10. LogAction mapping

U2tp::LogAction
TTCN3::TTScope::TTModule@TTFunctionElement
::TTControlStatements::TTLog

U2tp::Observation
TTCN3::TTScope::TTModule@TTFunctionElement::TTOtherStatements::TTI

ntput$ TTInputKind(InputKind_getreply)

 From U2TP Models to Executable Tests with TTCN-3 301

Validation. Action is another stereotype of U2TP. It is an external function resulting
in a value of the specific verdict type. It is mapped to TTExternalFunction
inheriting directly from TTScope in TTCN-3 meta-model (see Fig. 11).

Fig. 11. ValidationAction mapping

 The TTCN-3 code created after applying the transformation according to the rules
defined above is presented in Fig. 12.

Fig. 12. TTCN-3 code retrieved from the U2TP Diagram

 The U2TP test configuration or types definition deserve special attention as they
are examples of more complex transformations. Furthermore, for fully specified test
cases, all elements of a diagram should be transformed so as to get the whole TTCN-
3 code.

In the following, we provide a concrete example of mapping using the whole test
specification. Implementation of all the rules mentioned before is the proof of their
correctness. We obtained a transformer being able to provide tests in TTCN-3.

Not all the diagrams specified in U2TP are necessary condition to get the full
TTCN-3 code. State machine for message flow on one test component presents the
same point of view as sequence diagram of the same test behaviour in the context of
TTCN-3. Thus, not all available diagrams are used so as to obtain the complete
code.

The results of the transformer work for diagram from Fig. 5 are given in Fig. 13.
Behavioural function’s name results from test configuration, while body of it is

defined alternatively either by sequence diagram or state machine for a test component.

U2tp::ValidationAction
TTCN3::TTScope::TTExternalFunction

302 J. Zander et al.

Fig. 13. Transformer Output - TTCN-3 code retrieved from the U2TP Diagram

6 Outlook and Future Work

This paper is devoted to transformation from U2TP test specifications to TTCN-3
code. Transformation rules are defined on meta-model level. Elements of a source
U2TP repository (defined by a meta-class of the source U2TP meta-model) are
mapped to elements in the target TTCN-3 repository (defined by meta-classes in the
target TTCN-3 meta-model). The transformations follow the principles of MDA-
based testing, which differentiates between platform-independent tests (PIT),
platform-specific tests (PSTs), test code and the relations to the corresponding model
artefacts for the system. In particular, a transformation on PIT level is discussed.
Selected examples of diagram interactions are provided and the transformation
according to the previously defined rules is presented.
 The definition of the transformation rules is almost completed. However, special
cases of diagrams set are to be considered. This applies especially to test designs
specifying Sequence Diagrams, Activity Diagrams or Interaction Overview
Diagrams for the same test behaviours at the same time. Additional algorithms
should be developed to let the transformation recognise the same behaviour so as not
to repeat the same specification in the final TTCN-3 code. Also huge effort must be
undertaken so as to map all possible concepts of U2TP, especially such like timezone
or scheduler. We have created Eclipse U2TP Plug-in based on the UML2 Project.
Furthermore, we developed a tool enabling the transformation and aim to provide the
full transformation with graphical front end in future work.
 The transformation results provide skeletons of TTCN-3 code only, which means
that additional effort must be taken by the user so as to produce complete test
definitions. We believe that a fully automated, complete test generation into TTCN-3
will not be feasible in general as test specifications on detailed concrete level contain
additional definitions, which are not available in abstract test models. Still, the
details of this deserve further investigation. Last but not least, a further aim will be to
consider also the generation of PSTs from PITs and/or from platform-specific system
models (PSMs). Which of these two ways of transformations towards PSTs should
be taken is not clear yet. Research on this will allow us to investigate the relation
between platform specifics on system model and test model side.

 From U2TP Models to Executable Tests with TTCN-3 303

References

[1] OMG: Model-Driven Architecture (MDA) http://www.omg.org/docs/omg/03-06-01.pdf,
http://www.omg.org/docs/formal/02-04-03.pdf

[2] OMG: UML 2.0 Superstructure Final Adopted Specification, www.omg.org/cgi-
bin/doc?ptc/2003-08-02

[3] OMG: MOF Query/Views/Transformations, 2nd Revised Submission, ad/04-01-06, 2004.
[4] OMG: UML 2.0 Testing Profile. Final Adopted Specification, ptc/04-04-02, 2004
[5] ETSI ES 201 873-1 V2.2.1: The Testing and Test Control Notation version 3; Part 1:

TTCN-3 Core Language, 2003.
[6] ETSI ES 201 873-5 V2.2.1: The Testing and Test Control Notation version 3; Part 5:

TTCN-3 Runtime Interfaces, 2003.
[7] ETSI ES 201 873-6 V2.2.1: The Testing and Test Control Notation version 3; Part 6:

TTCN-3 Control Interfaces, 2003.
[8] Z. R. Dai: Model-Driven Testing with UML 2.0, Second European Workshop on Model

Driven Architecture (MDA) with an emphasis on Methodologies and Transformations
(EWMDA'04), Canterbury, England, September 2004.

[9] Z. R. Dai, I. Schieferdecker: Time Concepts for UML 2.0 Based Testing. Workshop on
the usage of the UML profile for Scheduling, Performance and Time (SIVOES 2004),
hold in conjunction with the 10TH IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2004), Toronto, Canada, May 2004

[10] D. Thomas: MDA Revenge of the Modellers or UML Utopia ? IEEESoftware, May/June
2004

[11] I. Schieferdecker, G. Din: A meta-model for TTCN-3. 1st International Workshop on
Integration of Testing Methodologies, ITM 2004, Toledo, Spain, Oct. 2004.

[12] M. Born, I. Schieferdecker, O. Kath and C. Hirai: Combining System Development and
System Test in a Model-centric Approach, RISE 2004, Luxembourg.

[13] G. Caplat, J.L. Sourouille: Considerations about Model Mapping, Workshop in Software
Model Engineering Oct. 2003, San Francisco, USA, http://www.metamodel.com/wisme-
2003/18.pdf

[14] A. Kleppe, J. Warmer, W. Bast: MDA Explained: The Model Driven, Architecture–
Practice and Promise. Addison-Wesley Pub Co, 2003.

[15] Gross, H.: Testing and the UML – a perfect fit. Fraunhofer IESE, Technical Report
110.03E, 2003.

[16] J. Siegel, OMG Staff Strategy Group: Developing in omg’s model-driven architecture.,
2001.

[17] I. Schieferdecker, Z. R. Dai, J. Grabowski, A. Rennoch: The UML 2.0 Testing Profile and
its Relation to TTCN-3, IFIP 15th Intern. Conf. on Testing Communicating Systems -
TestCom 2003, Cannes, France, May 2003.Eclipse UML2 Project, http://www.eclipse.
org/uml2/

[18] Testing Technologies: TTworkbench - TTCN-3 IDE in Eclipse, www.testingtech.de
[19] Eclipse UML2: http://www.eclipse.org/uml2/
[20] Eclipse Platform: http://www.eclipse.org/platform/
[21] Eclipse Modelling Framework: http://www.eclipse.org/emf/
[22] Rational Rose Tool, http://www-306.ibm.com/software/awdtools/developer/datamodeler/
[23] LEIRIOS Test Generator™ tool, http://www.leirios.com/products.php
[24] Objecteering/UML tool,

http://www.objecteering.com/news_events_news_oct2002_eclipse.php
[25] P. Leblanc, White Paper, Implementation of the UML Testing Profile and Production of

Executable Test Cases, Telelogic France, 2003

Using TTCN-3 for Testing Platform Independent Models

Gabor Batori and Domonkos Asztalos

Software Engineering Group, Ericsson Hungary Ltd.,
P.O.B.107, H-1300 Budapest, Hungary

{Gabor.Batori, Domonkos.Asztalos}@ericsson.com

Abstract. In the field of telecommunication UML and Model Driven Architec-
ture (MDA) have an increasing acceptance. MDA brings up new questions about
the testing of the application developed by this technology. In MDA, Platform In-
dependent Model (PIM) is the source of the system, and all maintenance and
enhancement is performed at the platform independent level. However, MDA
supporting tools provide only limited means for describing model level test pro-
cedures so a framework for model testing is indispensable. This paper investigates
how to assist the model level test development with TTCN-3. We found that with
the help of model translators we can facilitate and partly automate the test devel-
opment process.

1 Introduction

The Model Driven Architecture (MDA) [1] of the Object Management Group has
become the dominating trend in software engineering. MDA recommends starting the
design of an application with a Platform-Independent Model (PIM) representing the
business functionality and behavior, undistorted by technology details in the form of a
UML model. In the next phase, Platform-Specific Models (PSM) containing software
architecture dependent information are generated from the PIM by applying mappings
in an MDA tool, preferably by automatic model transformations. Finally, in the code
generation phase MDA tools automatically generate all or most of the implementa-
tion code for the deployment technology. Model transformation methodologies have
been under extensive research recently. These transformation techniques provide higher
quality compared to manually written programs but they require that the PIM contains
the smallest possible number of faults. Unfortunately, it does not matter what tech-
nology we use and how much time we put into design and how careful we are when
programming; mistakes are inevitable. Automation does not alone guarantee neither
the proper choice of underlying architecture nor the elimination of conceptual flaws
from the analysis model because defects injected in the requirements analysis are also
deployed automatically into the implementation.

Due to the increased complexity of IT systems and increased customer require-
ments for quality of service (QoS) and reliability, mathematical-based test generation
techniques often fail, because of the difficulty to select test cases from a (theoretical)
unbounded number of tests. However, there is a strong need for effective testing of com-
plex applications, because it is a well known fact that the development and implementa-
tion of tests is very time consuming and labor intensive. MDA based software develop-

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 304–317, 2005.
c© IFIP 2005

Using TTCN-3 for Testing Platform Independent Models 305

ment offers an effective way to analyze computer systems with early-phase simulation
and the tests created at the early-phase analysis can be reused on the implementation
level.

We use TTCN-3 [2] as a test description language for platform independent model
tests. One essential benefit of TTCN-3 is that the specification of tests is possible in
a platform independent way. Our goal is to develop a framework for testing Platform
Independent Model with TTCN-3, and analyze the possibility of reusing the analysis
level tests on the implementation level.

This paper is organized as follows. In Section 2, we examine existing researches
related to testing UML models. We will present a brief review of Model Driven Archi-
tecture focusing on the testing concepts in Section 3 and address our testing approach.
Section 4 concludes the TTCN-3 language architecture and its relation to MDA. In Sec-
tion 5 we present the structure of a model testing framework and the generation of this
framework with a model transformer. In Section 6, we summarize the current status of
the tester and our future plans.

2 Related Work

Lots of approaches have been taken to use the early-phase model as a basis of test
development. Classic problems of model-based testing are [3]:

1. the generation of test cases from model according to a given coverage criterion,
2. the generation of a test oracle to determine the expected result of a test,
3. the execution of tests in test environments, possibly also generated from models.

Model-based testing is used to define tests which verify that a specific implementation
accurately capture its requirements. Algorithms [4, 5, 6] have been defined to derive
tests from formal system specification given in UML notation and their usage has been
demonstrated with sample applications. But today none of the approaches are widely
used in the industrial practice for large applications. One reason may be the difficulty to
define selection criterions that result test cases with high coverage in respect to the re-
quirements of the application. Furthermore, if MDA and code generation techniques are
used, the test generation can apply with a purpose different of the classical approach.
The difficulty that restricts the usage of problem (1) is: the code and test generation
algorithms have the same source, the PIM. In this case only the correctness of the trans-
lation method could be verified.

UML technology focuses primarily on the definition of system structure and behav-
ior and provides only limited means for describing complex test procedures [7]. CASE
tools provide only minimal support for developing tests. They only assist to create unit
tests, therefore:

– We can execute only a small number of tests.
– We have to execute and estimate them manually.
– The scope of a test is only an object or a small cluster of objects.

306 G. Batori and D. Asztalos

A special UML profile based on the UML 2.0 specification was initiated for test
description using UML [8]. This profile aims at bridging the gap between designers and
testers by providing a means for using UML for system modeling and test development.
This allows a re-use of UML design documents for testing and makes test development
possible in an early system development phase. But UML is not the appropriate lan-
guage to address executable tests, because it is hard to define complex structures of
test data and the graphical notation is sometimes inconvenient especially in case of
a complex test description. The authors of paper [9] showed a methodology of how
to use the UML 2.0 Testing Profile on an existing UML design model. The usability
of the method was demonstrated by developing a test model for a Bluetooth roaming
model.

The paper [10] describes a MOF (Meta-Object Facility) based meta-model of
TTCN-3 and the realization of the meta-model in Eclipse. Moreover, it shows how
to integrate TTCN-3 tools via this meta-model.

3 Testing Concepts in MDA

MDA envisages systems being designed independently of the eventual technologies,
and a PIM can then be transformed into specific platforms. This section provides an
overview of the model driven architecture focusing on the testing aspect.

3.1 Software Development with Executable UML

The OMG Model Driven Architecture addresses the complete life cycle of designing,
deploying, integrating and managing applications using open standards. The MDA aims
at providing a framework for the creation of applications in such a context where even
the interface between the target application and the underlying execution platform is
changing. MDA is a new way of writing specifications and developing applications,
based on a platform-independent model (PIM) and using transformations to create
platform-specific models (PSMs) and source code. The idea is that in a platform in-
dependent model the developer concentrates on a description of what the system has
to do without going into details of how that will be achieved. The platform specific
model, by contrast, describes how the system will realize the behavior implied by the
analysis model [11]. MDA uses the Unified Modeling Language (UML) as notation.
The UML 1.4 standard had relatively little to say about the detailed behavior that
might be specified for the action associated with transitions and states or the meth-
ods implementing operation. In UML 1.5 and UML 2.0 specification, a UML Action
Semantics [12] has been introduced. With the Action Semantics (AS) we can create ex-
ecutable models [13] with a detailed dynamic behavior description. This model can
be executed in an appropriate simulator. The benefits of this approach go well be-
yond simply reducing or eliminating the coding stage. It also ensures platform inde-
pendence, avoids obsolescence (programming languages may change, the model does
not) and allows full verification of the models by executing them in a test and debug
environment.

Using TTCN-3 for Testing Platform Independent Models 307

Platform−Specific
Models

Code
Generation

Model
Transformations

Software
Application Testing

Analysis errors
e.g. wrong state

Target related
Problems e.g.
timing, performance

Platform−
Independent Model

Fig. 1. The MDA architecture

3.2 Testing in MDA

The designated architecture of MDA is summarized in Fig. 1. Firstly, analysts create the
analysis model1 based on the system requirements. Then automatic transformations are
used to create platform specific models (PSMs) and source code. The last phase is the
testing of the implementation. In this method the testing phase only starts after the code
generation has finished. There are two main problems in this method: (1) The creation
of a new model transformer for a new platform is very time consuming, hence the code
generation and the testing phase can be delayed, although there is an executable and
testable model. (2) The model transformation can lead to the mixing up of platform
independent and platform specific information in the implementation. This makes it
difficult to eliminate the errors from the PIM.

In our approach (Fig. 2), we split the testing into two phases. In the first phase, the
simulated platform independent model is verified. In this early stage only the functional
correctness of the model could be tested. Since the analysis model is the source of
the system and the following model transformations, it requires rigorous testing. The
errors found during this phase are related to the analysis model, therefore we call them
analysis errors.

In the second phase, the testing of the implementation is started. Based on the early-
phase tests the testers can build performance, inter-operability etc. test cases. The func-
tional tests can be also repeated in order to verify that the model transformations do
not make any unexpected changes. To minimize the work invested to the testing of
the application we should reuse the early-phase tests. In order for testing to reach its
full potential, it is essential to use the same testing framework throughout the entire
MDA software development process. We use a dashed arrow between the implemen-
tation testing and the platform independent model in Fig. 2 because the early-phase

1 Analysis model and Platform Independent Model (PIM) are used as synonyms in this paper.

308 G. Batori and D. Asztalos

Simulation
Independent Model

Platform−Specific
Models

Code
Generation

Model
Transformations

Software
Application Testing

Analysis errors
Eliminate

PIM
Testing

Platform−

Fig. 2. Extended test model in MDA

testing ensures that the implementation does not contain analysis errors, hence during
the implementation testing only platform related errors can be found. We present some
exceptions in the end of Section 5.2

In the following section we demonstrate that the TTCN-3 language is a feasible can-
didate for this purpose. We present a short overview of the standardized language for
test description, focusing on how to depict tests on analysis as well as on implementa-
tion level.

4 TTCN-3 and Its Relation to MDA

TTCN-3 (Testing and Test Control Notation 3) is the new industry-standard test spec-
ification language that was developed and standardized by the European Telecommu-
nication Standards Institute (ETSI). TTCN-3 can be applied for all kinds of black-box
testing for reactive and distributed systems and makes it possible to be used not only in
conformance testing of telecommunication protocols but as well as for testing Internet,
mobile, data base access etc. protocols and also for inter-operability, robustness etc.
testing. Use of TTCN-3 to support test development has been investigated to encour-
age the parallel development of a test suite together with a standard system analysis.
TTCN-3 language consists of three main units:

Test Behavior. Test behavior is a specification of what to test with which input, re-
sult, and under which conditions. The TTCN-3 language defines several constructs for
describing the functionality of a test system. TTCN-3 allows an easy and efficient de-
scription of complex test behavior in terms of sequences, alternatives, loops and parallel
stimuli and responses.

Using TTCN-3 for Testing Platform Independent Models 309

Test Configuration. This part is responsible for the communication between the System
Under Test (SUT) and the test system. However, the real physical connection is outside
the scope of TTCN-3. Instead, a well defined (but abstract) test system interface shall
be associated with each test case. A complex test configuration may contain several test
components which could communicate with each other and the system under test.

Test Data Definition. One of the key elements of TTCN-3 is the ability to send and
receive complex messages over the communication ports defined by the test configu-
ration. TTCN-3 supports a number of predefined basic data types and structured types
constructed from the basic data types. The TTCN-3 has a special language element, the
template, that provides sophisticated means for describing test data. Templates are used
either to transmit a set of distinct values or to test whether a set of received values match
the template specification.

The general testing process with TTCN-3 includes the following main steps: the
developed abstract test suite is compiled and extended with an adaptor (one special im-
plementation of an abstract TTCN-3 test port) that provides the connection between
the tested system and the executable test suite. Then, the executable test suite is exe-
cuted against the system under test. Finally, the results are evaluated. The TTCN-3 is
an abstract language, hence one can describe the test behavior independently of the un-
derlying communication architecture and data presentation. The structure of a TTCN-3
tester is summarized in Fig. 3. Note that the basic conception of the model driven archi-
tecture is almost the same (see in Section 3.2), but the TTCN-3 focusing on the testing
domain.

There are two ways to alter the behavior of a test suite. One solution is to change the
communication interface and the data encoding/decoding rules. In the field of wireless
communication there are many protocols that are able to transmit data in several differ-
ent ways depending on how reliable the connection is or how important the message is
etc. A good example is the WAP (Wireless Application Protocol) protocol, which can
work on various bearers i.e. SMS, GPRS, Circuit Switched Data etc. This functionality
is especially important in the 3G or 4G mobile technologies where many high level
applications have to work on different transaction protocols.

The second solution is to change the test data definitions. TTCN-3 provides a simple
form of inheritance that enables us to modify an existing template without changing the

Compiler

TTCN−3
Abstract

Test Suite

Executable
Test Suite

Abstract
Test Port

Platform Specific
Test Port

Platform Specific
Data Presentation

Abstract Test
DescriptionData Definitions

Platform−Specific
Tests

Fig. 3. The Architecture of the TTCN-3 language

310 G. Batori and D. Asztalos

original definition. This makes the adaptation of templates to different testing situations
possible and avoids the duplication of similar test data.

In accordance with the discussion above this approach allows to use TTCN-3 during
all part of the model-driven software development. The functionality and the specifica-
tion details are separated, therefore the early-phase functional tests can be reused on
implementation level.

5 Testing Framework for Platform Independent Models with
TTCN-3

In this section, we show how to use the TTCN-3 language in model driven software
development.

5.1 Simulating Executable UML Models

Model execution enables developers to focus on the appropriate behavior of the problem
to be solved, independently of platform dependent problems at an early development
phase. Executable models allow the early verification with simulation, since they com-
pletely describe the dynamic behavior of the system. In order to simulate a model we
need a special environment that is capable to interpret executable models. This environ-
ment is referred to as a UML Virtual Machine. As input, the Virtual Machine requires an
executable UML model (class diagram, state-chart, action specification) and executes
the model according to the initial state and the receiving inputs. Having this Virtual
Machine we are able to define test interfaces.

According to [17], PIMs suffer from testability problems in the area of observability,
the ability to detect errors in control flows, and controllability, the capability to cause
the software to execute an appropriate path. An OMG Request For Proposal (RFP) has
been initiated on a standardized interface of testing and debugging executable UML
models [16]. In Fig. 4, the structure of the interface is concluded.

The goal of the Test Instrument Interface is to standardize the hooks into model ex-
ecution to allow test setup, stimulus, and data collection. Model simulators have some
support for model connection, they provide the ability to define breakpoints in the ex-
ecutable model, to log the actions during the execution. But they do not allow to use

Driver/
DebuggerProtocol

TII

UML
Virtual Machine

Simulation
Architecture

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

PIM
Test

Fig. 4. Test Instrumentation Interface

Using TTCN-3 for Testing Platform Independent Models 311

external testers for the testing of the model. In our approach, we transform UML mod-
els to be able to communicate with an external tester, so that the original simulation
framework can be used. The interface definitions between the test system and the UML
model are addressed on UML level and the physical communication interfaces are de-
rived from these definitions. The extension of executable models with communication
ability is provided through model transformations.

5.2 Towards the Mapping of UML Models into TTCN-3

To create executable tests three partly coherent tasks have to be carried out:

– Define the data uses in the test cases
– Define the behavior of the test cases
– Define the test framework (test configuration)

In this paper we concentrate on the solution of the first and the third problem with
the help of a model translators. A test framework covers the concepts for specifying
test components, the interfaces of and connections between the test components to the
System Under Test. Telecommunication protocols and softwares are distributed appli-
cations, therefore our testing framework was designed to allow the definition of com-
plex distributed test scenarios on model level. We defined a model transformer which
is capable to extend an executable UML model in order to test in a distributed test
configuration.

Most tedious activities during test development are to accurately define the inter-
faces between the system under test (SUT) and the test system, and specify the test
data sending and receiving on these interfaces. Therefore, another model transformer
was defined to create the data definition and the testing framework in TTCN-3 core
language. The test cases can be written manually based on the derived definition.

MDA offers the potential to automatically transform a PIM, perhaps after annotat-
ing it with some platform information, to different PSMs. Modeler will tag their PIM
component with information to control the translation. This approach allows us to store
test specific information in the analysis model independently of the design aspects.

To create a model transformer in UML we have to create the meta-model of the
target language, in our case the meta-model of the TTCN-3 language. Fig. 5 depicts the
communication and data representation part of our meta-model.

The elements of the meta-model are populated (instantiate the elements of the meta-
model) depending on the platform-independent model. According to our experience the
communication interfaces on the implementation level are represented by operations of
classes on the model level. Hence, we specify a tagging structure in order to mark the
operations that are relevant for testing. Tags may denote the direction of the commu-
nication channel created from the tagged operation or the name of the test port which
the given operation belongs to. The data presentation of UML differs from the one of
TTCN-3, therefore we had to define mapping rules between them. Because of the lack
of space only the main mapping rules are summarized in Table 1.

The simple UML data types have unambiguous representation in TTCN-3. The only
exception is the text type because in TTCN-3 five different basic string types can be
defined. We selected the charstring type to represent the UML text type in TTCN-3.

312 G. Batori and D. Asztalos

ID:Integer

TTCN Signature

name:Text

name:Text

TTCN Port

1..n

1

0..n

0..n0..n

0..n

0..1

0..n 0..n

0..n

0..n1

0..1 0..1

0..n 0..n

1..n

1

1..n

1

name:Text

contains

contains
complex

input output

send receive

send receive

has

name:Text

TTCN Data Type

type:Text
subtype:Text

name:Text
type:Text

TTCN Attribute

simple_type:Boolean
optional:Boolean

name:Text

TTCN Message Port

Send Port
Object Ref.

ID:Integer

Receive Port
Object Ref.

TTCN Template

name:Text

name:Text

TTCN Procedure Port

TTCN Component

Fig. 5. Meta-model of the TTCN-3

Table 1. Data presentation mapping rules

UML TTCN

Simple types (Boolean, Double,Integer) Simple TTCN-3 types
Text charstring

Data set record of
Operation parameters record

Polymorphic operations (with small changes) optional parameters
Polymorphic operations union types

We map the input and output parameters of the operations into record types. TTCN-3
ports are also generated which allows to send and receive these record types. We can
define sending templates for these records to test the operation with various input pa-
rameters. In addition, we can define receiving templates to automatically verify the
results of the operation using the TTCN-3 matching mechanism.

The last two rows of Table 1 show an example how the structure of the platform in-
dependent model influence the TTCN-3 data presentation. If analysts create generaliza-
tion relations with many sub-classes and with polymorphic operations then the structure
of the derived TTCN-3 data types have to reflect this inheritance tree. An operation of
the parent-class can be the representation of a communication port and the sub-classes
inherit this operation but in some sub-classes the operation is overridden. In this case
some parameters of the operation may become optional parameters in TTCN-3 if only

Using TTCN-3 for Testing Platform Independent Models 313

small changes (one or two parameters appear or disappear in the operation definition)
occurred during the redefinition of the operation. If the changes in the parameters of
the operation are considerable then it is more profitable to create a new record for this
parameter structure. In order to refer that the new record is derived from a parent-class
we compose a union type which contains the different definitions of the records corre-
sponding to the operation.

To achieve testability, we also use the tagged elements of the model as weaving
points where we should insert new instructions to extend the UML model. The extended
model is capable of communicating with a tester in the simulator. The extension is based
on the definition of the tagged operation.

With MDA we can develop a translator model [14] which is capable to collect in-
formation from high level, platform independent models and generate the TTCN-3 test
interfaces and data definitions. Accordingly, the technical problems related to the com-
munication between the test system and the UML Virtual Machine can be hidden from
the testers as well as the analysts. Fig. 6 depicts the structure of the PIM tester. A dis-
tributed client-server based environment is responsible for the communication between
the two parts of the model tester. This communication interface is also generated from
the analysis model. The interface has two part. The first part is running in the UML
Virtual Machine. This part is capable to access the model. The second part is the imple-
mentation of TTCN-3 test ports. This implementation contains the mappings between
the UML and TTCN-3 data types.

Physical Layer

Data
Test

Behavior

Test
Interface

Communication Interface

Interface
Operations

Tested
Model

Logical Layer

TTCN−3

PIM Tester

UML

TTCN−3 Executor UML Virtual Machine

Test

Fig. 6. Structure of the PIM tester

The different parts of the platform independent model testing are summarized in
Fig. 7. The test development is started with the transformation of the PIM. The TTCN-3
translator creates the communication interfaces and the data definitions. Based on this
definitions the test data and the test behavior can be defined. The model translator cre-
ates the extended PIM, which is executed in a simulator. The TTCN-3 test cases are
executed on the simulated extended platform independent model.

The model-based testing usually not enough to eliminate all faults from the software
because of the following reasons:

314 G. Batori and D. Asztalos

Translator
Extended

PIM
Model UML VM

Code

Data
Definitions

Interface
Communication

TTCN−3
Translator

Test
Cases

PIM

Fig. 7. Mapping to TTCN-3

– The model may contain special object structures.
– Usage of native codes in the model.
– Usage of third party libraries, existing components.

There are special object structures [15] whose functions depend on the architecture,
hence the functions of these objects have to be tested on implementation level as well.
Some MDA tools allow to insert INLINE (platform specific, native language) codes
into the body of the platform independent action code that can be tested only after
the mapping to the platform specific implementation occurs. Furthermore, one can use
third party libraries or existing components that were created without model driven
technology. In this case, the integration with these components have to be tested, but it
is only possible on implementation level. In spite of these limitations of the platform
independent testing, according to our experience approximately 50-60% of the errors
can be found and eliminated in analysis phase.

5.3 Testing Through a MDA Software Development

We experimented on our testing framework during the development of a network man-
agement software. The test environment is depicted in Fig. 8. The test architecture con-
sists of three different elements.

Managed Network. A managed network may contain a few or several hundreds of man-
aged nodes (MN). The managed nodes provide support to ATM switching and IP for-
warding system. An arbitrary mix of different traffic types – data, voice, and video type
of traffic – can be handled with preserved quality of service and with efficient use of
bandwidth for each traffic type.

Network Management Server. This application is required by telecommunication op-
erators for providing reliable operations of the communication network. The tasks in-
volved include monitoring, troubleshooting, and control operations in a wide range of
network management areas.

Web clients. The operators of the network are able to access the management software
through web-based clients. In case of error the operators can reconfigure the network
topology manually.

Using TTCN-3 for Testing Platform Independent Models 315

The main component, the management server, is modeled in UML and the other
components (client, managed nodes) are emulated by TTCN-3 components. This het-
erogeneous infrastructure can be tested with TTCN-3 parallel components. Our goal
hereby is to test the functionality of the server with different network structures or with
erroneous network topologies. In case of a complex real network it is difficult to con-
figure the network to generate incorrect answers. With TTCN-3 and simulation we can
easily establish these situations and can verify that our application (the simulated PIM
model) works as we expect.

A typical problem in model driven development is that the development of the
platform-independent model finishes before the development of the transformation rules
for the specific platform would be completed. In this case we can test the PIM in a sim-
ulator but the test environment act as a real network.

5.4 Empirical Experiences

We used a sample TTCN-3 test module to investigate what kind of modifications were
needed to rerun the early-phase tests on the implementation. At first, we defined manu-
ally 20 test cases to verify the main functionality of the network management applica-
tion. The test module contained 25 type definitions and 30 template specifications for
the data types. Two types of TTCN-3 test port were used during the testing: a HTTP-
based test port for the client and a SNMP port for the communication to the managed
nodes. For simulation testing purposes the test ports, the test components and the data
type definitions were automatically generated from the PIM model. The test port im-
plementations for the Ericsson’s TTCN-3 test executor were also generated from the
PIM model. Three parallel test components were used during the testing, one for the

MN2 MN3

Network
Management Server

Web−Client2Web−Client1

MN1

Fig. 8. Test architecture

316 G. Batori and D. Asztalos

emulation of the web-client and two for the emulation of the managed network. The
test suite was executed against the simulated model and 5 errors were found in the PIM.

Secondly, we executed this test suite on the implementation. The implementation
was generated from the platform independent model with a model transformer devel-
oped in Ericsson Hungary. Naturally, we had to change the implementation of the test
ports. We also needed one new data type and 2 new templates. With these modifica-
tions every test case could be executed on the implementation. One additional error was
found in the implementation which was caused by an integration problem between an
existing and a newly developed component.

6 Conclusion and Future Work

In this article we propose an approach for model level testing of applications designed
with model-driven technology. We can adapt this test design process into the standard
model-driven software development process. By using this approach, we are able to an-
alyze Platform Independent Models with tests written in a standardized test description
language. These early-phase tests primarily focus on the functional correctness of the
software. Moreover, by extending the platform independent tests, other types of tests
(e.g. inter-operability, performance) can be derived. Accordingly, the implementation
level test development time can be reduced.

Regarding further investigation, it would be interesting to study the possibility of
using this testing concept throughout the entire model-driven software development
process and work out a general Model-Driven Test Development method.

References

1. R. Soley: Model Driven Architecture: An Introduction. http://www.omg.org/mda.
2. ETSI ES 201 873-1: The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core

Language. V2.2.1 (2003-02), 2003; also an ITU-T standard Z.140.
3. R.Heckel, M.Lohmann: Towards Model-Driven Testing, Electronic Notes in Theoretical

Computer Science Vol.82 (6), 2003.
4. J. Hartman, C. Imoberdorf, M. Meisinger: UML-Based Integration Testing, ISSTA 2000.
5. J. Offut, A. Abdurazik: Generating Tests from UML Specification, UML99 Fort Collins

(CO), October 1999.
6. L. C. Briand , Y. Labiche: A UML-Based Approach to System Testing, Journal of Software

and Systems Modeling (SoSyM) Vol. 1 No.1 2002 pp. 10-42.
7. I. Schieferdecker, Z. R. Dai, J. Grabowski, A. Rennoch: The UML 2.0 Testing Profile and its

relation to TTCN-3, Testing of Communicating Systems – 15th IFIP International Confer-
ence, TestCom2003, Sophia Antipolis (F), May 2003. Lecture Notes in Computer Science
(LNCS) 2644, Springer, May 2003.

8. UML Testing Profile (Final Submission), April 2004 http://www.fokus.gmd.de/u2tp/.
9. Z. R. Dai, J. Grabowski, H. Neukirchen, H. Pals: From Design to Test with UML – Applied to

a Roaming Algorithm for Bluetooth Devices. Testing of Communicating Systems – 16th IFIP
International Conference, TestCom2004, Oxford, United Kingdom, March 2004. Lecture
Notes in Computer Science (LNCS) 2978, Springer, March 2004.

Using TTCN-3 for Testing Platform Independent Models 317

10. I. Schieferdecker, G. Din: A Meta-model for TTCN-3, Applying Formal Methods: Testing,
Performance, and M/E-Commerce: FORTE 2004 Workshops, Toledo, Spain. Lecture Notes
in Computer Science (LNCS) 3236, Springer, October 2004.

11. S. Shlaer, S. J. Mellor: Recursive Design of an Application-Independent Architecture, IEEE
Software, pp. 61-72, January/February 1997.

12. I. Wilkie, A. King, M. Clarke, C Raistrick: UML ASL Reference Guide, Kennedy Carter,
2001.

13. Supporting Model Driven Architecture with eXecutable UML Kennedy Carter 2002.
14. I. Wilkie, A. King, M. Clarke, C Raistrick: The Intelligent OOA Strategy for Configurable

Code Generation, Kennedy Carter, 1997.
15. S. Shlaer, N. Lang: Shlaer-Mellor Method: The OOA96 Report. http://www.projtech.com.
16. Model-level Testing/Debug RFP (Final Submission) April 2004 http://www.omg.org.
17. G. Eakman: Verification of Platform Independent Models, Workshop on Model Driven Ar-

chitecture in the Specification, Implementation and Validation of Object-oriented Embedded
Systems (SIVOES-MDA), San Francisco, October 2003.

Some Lessons from an Experiment Using
TTCN-3 for the RIPng Testing

Annie Floch1, Frédéric Roudaut1, Ariel Sabiguero1,2, and César Viho1

1 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
{afloch, froudaut, asabigue, viho}@irisa.fr,

http://www.irisa.fr/armor
2 Instituto de Computación, Facultad de Ingenieŕıa,

Universidad de la República, J. Herrera y Reissig 565,
Montevideo, Uruguay
asabigue@fing.edu.uy

http://www.fing.edu.uy/inco

Abstract. This paper presents an experiment in using TTCN-3 for de-
veloping conformance test suite for the RIPng protocol. Main issues that
any new TTCN-3 user may deal with are highlighted. Some methodolog-
ical constraints imposed by TTCN-3 development process are exposed.
Provided solutions are presented together with main features that have
to be included in TTCN-3 based tools to ease test development.

Keywords: Conformance testing, TTCN-3, RIPng, IPv6.

1 Introduction

The European community, through the European Telecommunications Stan-
dards Institute (ETSI), promotes the use of the TTCN-3 language for testing
purposes [1, 2]. Several leading communication protocols and standards followed
the ETSI IEC/OSI 9646 recommendations for testing, both on methodology and
tools. TTCN-3 has been designed to provide a well suited environment for any
kind of testing activity [3, 4, 5, 6], from abstract test suites specification to exe-
cutable test suites [7, 8]. As it is a new language, there is not enough maturity
regarding its usage and environments that are supposed to ease TTCN-3 usage.

In the Internet community in general, TTCN-3 is not widely adopted. More-
over, it is even unfavorably criticized. This is mainly due to the confusion with
it’s predecessor TTCN-2, which was considered too formal and inadequate for
Internet related protocol testing. TTCN-2 was considered a rigid language and
difficult to generate tests for new protocols. This ’bad reputation’ applies for
testing the new protocols developed for the new version of the Internet proto-
col, called IPv6. Indeed, most of the existing test suites are developed using
IPv6 dedicated languages and tools. The most famous one is the v6eval tool-
box (http://www.tahi.org/) developed by the Japanese TAHI project. In this
context, it is difficult to convince people to use TTCN-3 without showing real
executable test suites for at least a simple IPv6 related protocol.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 318–332, 2005.
c© IFIP 2005

Some Lessons from an Experiment Using TTCN-3 for the RIPng Testing 319

The objective of the present work is to gain experience using the general
purpose TTCN-3 language and tools while addressing an IPv6 specific test con-
formance problem. The protocol selected for testing was RIPng protocol [9],
presented later in section 2.1. The RIPng routing protocol has the advantage
of being relatively simple (at least compared to other IPv6 related routing pro-
tocols), while an important and widely deployed protocol in small to medium
organizations. This work also aims at proving to the Internet community that
TTCN-3 is ready to be used for testing, covering all steps from abstract test
suites (ATS) specification to executable test suites (ETS). It was also important
identifying main issues when testing with TTCN-3 and providing solutions that
may help simplifying future test generation.

The methodology behind this work was restricted in scope as the goal was to
to be able to obtain ETS to be executed against real implementations during the
IPv6 interoperability event1 organized by the ETSI/PlugTests Service in October
2004. Thus, we followed a straightforward approach due to time constraints:
some decisions were based on time-to-executable-test parameters. On the other
hand, one may notice that this kind of requirements also corresponds to the
real Internet community context of having ETS as soon as the need of testing is
identified.

Amongst all available TTCN-3 tools, the choice was made in favor of a free
of charge toolkit for academic research purpose. Indeed, due to the youngness of
TTCN-3 and our small knowledge in using this new language, it was important
to use a tool which allows libraries source code modifications if needed.

As a result of this work, a RIPng conformance ATS/ETS based on TTCN-3
is now available. These tests have been ran against real implementations during
the last IPv6 ETSI-PlugTests interoperability event. Test results were considered
interesting by participants.

Doing this work and following the approach indicated above, we face main
issues that any new TTCN-3 user may deal with. As other results, these main
issues have been highlighted. Solutions that we provided are explained. Some
ideas that may help in easing test development using TTCN-3 are proposed.

The paper is structured as follow. At first, Section 2 explains the context
of the work. A short description of the RIPng protocol is given followed by
main components that have to be developed when using TTCN-3 for testing.
Section 3 outlines different steps to obtain TTCN-3 based test suites for the
RIPng protocol. Problems encountered during the test development phase and
provided solutions are also presented. Section 4 presents some results gathered
and lessons learned from this first experiment in using TTCN-3 for RIPng test-
ing. Some ideas that may help in easing other similar effort are presented. The
conclusion of this paper is summarized in Section 5, and future work is suggested.

1 An interoperability event is a session of about one week where real implementations
are tested against several test suites provided by test generation companies and
laboratories.

320 A. Floch et al.

2 The Context of the Experiment

We have been involved for years developing IPv6 conformance tests suites. The
tool used is v6eval, developed by TAHI project (http://www.tahi.org/). In
such line of research, we are working now to produce test suites for several IPv6
routing protocols.

One important reason behind the present work for us is to find provider-
independent tools and languages for defining test suites. TTCN-3 is presented
as a modern standardized abstract language, test oriented and provider indepen-
dent. Tool providers implement their solutions according to the standards, but
independently. It is widely accepted that multi-provider scenarios lead to more
complete and general languages and tools than single provider ones.

Our primary motivation was to experiment with the ability of TTCN-3 for
our testing purposes with real and concrete IPv6 protocol. On the other hand,
we wanted to show to the IPv6 community that TTCN-3 can be used for this
purpose. One way to prove that is to have executable test suites built with
TTCN-3 language and tools, which can be used during interoperability sessions.

2.1 A Short Overview of RIPng

RIPng[9] is the logical step of the well known IPv4 family of RIP protocols into
IPv6 world. RIPng stands for Routing Information Protocol - Next Generation.
RIP belongs to the class of algorithms known as ”distance vector algorithms”.
Distance-vector algorithms are based on the exchange of only a small amount of
information. Each network node that participates in the routing protocol must
be a router as IPv6 protocol provides other mechanisms for router discovery,
and it is assumed to keep information about all destinations within the system.

Limitations of RIP include network diameter restrictions, counting to infinity
to resolve loop situations and the lack of metrics based on dynamic. Some of the
limitations are not per se limitations, but they are a consequence of the design of
the protocol. RIP is not intended to be used as Internet’s single routing protocol,
but as an Autonomous System (AS) internal protocol. RIPng is an UDP-based
protocol and listens on the port 521. It is a message oriented protocol (1-request;
2-response), based on distributed intelligence, without any distinguished node.
The figure 1 shows a typical RIPng deployment scenario, where 6 interconnected
routers exchange routing information as request-response messages.

IPv6 protocol defines and implements four different types of communication
destinations, which are: anycast, unicast, multicast and broadcast. This enhance-
ments at network/transport layers provides better support for protocols using
their services. RIPng uses both unicast and multicast mechanisms for inter router
communication, according to the kind of message exchanged. The multicast ad-
dress ff02::9 is reserved as the all-rip-routers group, which is used except in some
non-multicast channels, where explicit network addresses have to be used.

Authentication mechanisms have better grounds on IPv6 protocol stack and
thus, are removed from RIPng protocol itself.

Some Lessons from an Experiment Using TTCN-3 for the RIPng Testing 321

Fig. 1. Autonomous System RIPng messaging

2.2 A Short Description of TTCN3 Main Components

TTCN-3 is a pretty new language (current TTCN-3 Core Language[10] was
published on 02-2003) with only a first generation of compliers and tools sup-
porting it. TTCN-3 was designed to be able to incorporate testing capabilities
not present on other programming languages, and was also cleared from OSI
peculiarities (that previous versions suffered). TTCN-3 is now flexible enough to
be applied to any kind of reactive system tests.

The structure of a TTCN-3 test system general structure is shown in the
figure 2. As usual, this test system is supposed to be executed against a system

Fig. 2. TTCN-3 Test System Architecture

322 A. Floch et al.

Fig. 3. TTCN-3 based initial approach of test specification

under test (SUT). Each block in the figure represents an entity implementing
a particular aspect required by a test system. The test system user interacts
with the Test Management (TM) and uses the general test execution manage-
ment functionality. The TM entity is responsible for the global test management.
The TTCN-3 Executable (TE) implements the functionality defined as TTCN-3
modules, which can be structured into sub-modules and import definitions from
other modules. Modules have a definition part (defines test components, com-
munication ports, data types, constants, test data templates, etc.) and a control
part (which is responsible for calling test cases and controlling their execution).
Other test layout dependent parameters are defined at the SUT Adapter (SA)
and the Platform Adapter (PA). A TTCN-3 test system has two main internal
interfaces, the TTCN-3 Control Interface (TCI) and the TTCN-3 Runtime In-
terface (TRI). TCI interface specifies the interface between Test Management
(TM) and TTCN-3 Executable (TE) entities. TRI interface specifies the inter-
faces between TE, SUT Adapter (SA) and Platform Adapter (PA) entities.

Figure 3 shows the modules and main methodological tasks that have to be
developed to produce test suites. The blocks named RIPng Test Cases and RIPng
Templates corresponds to the tasks required to define the TTCN-3 Executable
block on figure 2. The blocks named SUT Parameters and PCO Definition cor-
responds to parameters required by the SA to interface with the SUT.

3 TTCN3 Based Test Generation for RIPng

We have a broad experience on the IPv6 field, while this is our first practical
approach to TTCN-3. Nevertheless, both our experience and the methodology

Some Lessons from an Experiment Using TTCN-3 for the RIPng Testing 323

used in the IPv6 community matches the principles suggested in [11]. The hands-
on experience with TTCN-3 presented in this paper tries to answer whether the
language and methodology are ready for addressing to the strong needs of the
IPv6 test community. It is worth mentioning that the Internet community is
a very pragmatic environment, who do not care about the way the tools are
designed, but focus on the way they can quickly answer to their needs. Our goal
was to develop tests for RIPng in a short time with existing new tools. This
work documents field experience with TTCN-3, but does not intend to promote
a methodology.

It is known that a black-box approach to conformance testing will only allow
us to exchange signals with the System Under Test (SUT): in this case, signals
are RIPng messages. Changes in the routing tables of the SUT could be observed
only through the way routing is performed by the SUT and RIPng messages sent.
Most routers implement the Simple Network Management Protocol (SNMP) [12],
which allows inspection of network entities (like interfaces, routing tables, etc ...)
specified by the network administrator. It might have been possible to consider
SNMP inspection of the routing tables of the SUT(gray-testing), but as SNMP
is not required for IPv6 compliance, the idea was dropped. Designed test cases
consisted of exchanging routing information with the SUT and later sending IP
probes to selected destinations so as to determine the way routing information
is not only learned and shared by the SUT, but also, applied on its own routing
decisions.

To be able to specify TTCN-3 test cases we had to obtain a tool and de-
fine the needed modules according to our test purposes. It was also required to
provide the SA with proper definitions so that the mapping between TTCN-3
components communication ports and test system interface ports is done. After
this, the ETS is generated.

3.1 Approach for TTCN-3 Test Specification

Routing Table Entries (RTE) are the key elements exchanged within RIPng
messages. Each router is supposed to have some sort of routing table with at
least the following information: the IPv6 prefix of the destination, a metric,
the IPv6 address of the next router along the path to that destination, a flag
and various timers associated with the route. This suggests that basic routing
operations to test shall be related to RTE maintenance like: RTE creation, RTE
update, RTE deletion, RTE request.

Maybe the simplest test topology would consist of two routers and the SUT,
each connected to a different physical interface of the SUT. From the test pur-
poses settled we were able to build a more complex network layout, shown on
figure 4. The small box in the center represents the role that the SUT plays in
the topology, while the rest of it, marked as Tester represents what has to be
developed to perform the tests. For specific test purposes we selected -projected-
the relevant routers that allow inspection of the desired property and specified
the particular ATS only considering it. This methodology simplifies test design
because we have a single well known network, and it allows us to concentrate

324 A. Floch et al.

Fig. 4. RIPng testing topology

on details of each test purpose by projection of relevant smaller parts of the
network.

It was required right from the first test definitions to be able to emulate
more than one router to explore even simple protocol behavior and properties.
This fact makes us define and handle several Points of Control and Observation
PCO. The distribution of PCO over single or multiple test execution threads or
processes promotes the discussion between parallel vs. single party testing, or in
other words, a Master Test Component (MTC) with Parallel Test Components
(PTC) vs. single MTC. Protocol complexity was not an issue at this point, as the
protocol itself is simple: both solutions are adequate for test requirements. From
our previous experiences and the lack of time for enough testing of the TTCN-3
parallel possibilities and API, we decided for a solution with a single MTC that
handles all required PCO. The decision of using a single node to emulate the
whole network topology allows us to avoid all parallel synchronization problems.
We believe that naive deployment of PTC corresponding to each emulated router
would have produced test suites with different characteristics. Complexity of
test setup would have increased considerably as separate process on different
machines had to be configured, etc.

Another important decision was the tool selection, which was done consider-
ing all the existing tools known to us (testing tech, Telelogic, Danet, OpenTTCN,
etc.). At the time of the selection all available tools were equally eligible as they
all implemented TTCN-3 required components. Also, none of them provided al-
ready built IPv6 libraries that might have helped with the building blocks for
RIPng tests. The decision was based on our experience testing with C++ tools
and licensing conditions that allowed us not only to use the tool for academic

Some Lessons from an Experiment Using TTCN-3 for the RIPng Testing 325

purposes, but also to have access to the source code when needed. Other as-
pects considered were Integrated Development Environments (IDE) and tools
provided that help with simple and repetitive tasks. From all those testing tools
available the choice was made for Danet’s testing tool (http://www.danet.de).

3.2 PCOs Management

Points of Control and Observation (PCO) play a very important role on what
can be observed out of a system. Proper selection of PCO placement would allow
better and detailed protocol inspection. As RIPng is a UDP based protocol the
first test design tried to place PCO at UDP level, as shown in the figure 5.

It was not possible to code a single tester using TTCN-3 that was able to
emulate several routers. The tester is implemented using underlying operating
system protocol stack services, thus it is not possible to simulate traffic to and
from different routers: it would be necessary to define different IPv6 addresses
and Ethernet MAC addresses. TTCN-3 does not allow dynamic definition of
MAC/IPv6 addresses associated to ports. Another observation is that we do not
only need UDP services: ICMP echos are sent through the SUT so as to check
the routing decisions at a certain moment.

The figure 6 shows all the parts -grayed- of the protocol stack that had to be
addressed with the test. The main difficulty was that when more than one router
had to be emulated using a single MTC, IPv6 native stack on the host had to
be disabled and all the steps of the communication had to be emulated from
TTCN-3 modules. It would have been also the same situation with several PTC
running on the same machine. Several issues arose during the development phase.

Fig. 5. RIPng testing architecture, UDP level PCO

Fig. 6. RIPng testing architecture, link layer/IP level PCO

326 A. Floch et al.

Both the TTCN-3 tool and language were not designed to handle this situation
of multiple host emulation using a single Network Interface Card (NIC). Due to
time constraints we worked out the problems by changing some aspects of the
tool implementation by recoding parts of TTCN-3 primitives. We changed TRI
basic primitives so as to handle link layer PCO, which were not implemented
in Danet’s tool. With the modifications introduced we were able to emulate as
many hosts -form data link layer up- as required from a single real host.

This kind of handling increased the complexity of the ATS as not only RIPng
protocol communications had to be implemented. Required UDP assembly and
disassembly of packets also was needed, including checksum and packet length
calculation. IPv6 layer assembly and disassembly of packets was also mandatory.
In the end also data link layer parameter handling had to be introduced to
transmit packets with the corresponding MAC address of the router emulated.
Moreover, reception of the packets and their corresponding processing had to be
handled.

Other link maintenance aspects of IPv6 Neighbor Discovery[13] (ND) algo-
rithm had to be addressed. IPv6 relies several host autoconfiguration tasks to
the ND. Thus, for correct node emulation, ND signaling is necessary.

TTCN-3 template definition was not versatile enough to allow efficient match-
ing of incoming data. The solution found was to create as many PCO as couples
of communicating addresses required. Due to the way IPv6 handles addresses,
each emulated node was associated to several addresses (unicast, broadcast and
multicast). To fulfill this multiple addressing scenario, several PCO were in-
troduced. The complexity generated by this fact was significant, both at ATS
coding and at tool modification level. ATS legibility was also an important issue
as classification of messages received becomes complicated.

3.3 Coding/Decoding, Libraries, etc.

As stated before, the communication between RIPng nodes is message-oriented.
Message definition has a low level of abstraction and coding/decoding is done de-
pendent on the position of bits within the frame. Figure 7 presents RIPng packet
as defined in the RFC 2080[9] with its corresponding IPv6 header prepended,
without any IPv6 options.

Several codification issues needed to be resolved in order to define a TTCN-3
module that abstracts the RIPng packet. First of all, some fields are hard-coded
always, like the protocol version, which is 0b0110 for all IPv6 tests. Other fields
are parameters of templates, like prefixes and prefix length values. Some fields
are parameters of the component, like source and destination addresses (different
from one tested router to other). Finally, others need to be calculated each time
a packet is about to be transmitted, like payload length and checksum values.

We found that there is no easy mechanism, like the ones defined on the RFC
2373[14], for IPv6 address text representation. When defining parameters for a
component, its IPv6 address 2001:2::1 had to be coded. In our environment,
XML files are used (see figure 8).

Some Lessons from an Experiment Using TTCN-3 for the RIPng Testing 327

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| Traffic Class | Flow Label |

+-+

| Payload Length | Next Header | Hop Limit |

+-+

| |

~ Source Address ~

| |

+-+

| |

~ Destination Address ~

| |

+-+

| Source Port | Destination Port |

+-+

| Length | Checksum |

+-+

| command | version | must be zero |

+-+

| |

~ Route Table Entry 1 ~

| |

+-+

| |

~ Route Table Entry 2 ~

| |

+-+

Fig. 7. RIPng packet format

<RUT_LINK2_GLOBAL_ADDRESS1 moduleId="IPv6RouterInterface\">

<OctetStringValue valueKind="4\">

200100020000000000000000000000001

</OctetStringValue>

</RUT_LINK2_GLOBAL_ADDRESS1>

Fig. 8. Markup defining an IPv6 address

To ease TTCN-3 based IPv6 test generation, a test environment shall provide
standardized methods for network address handling and representation.

TTCN-3 data type definitions were coded to provide abstract description of
IPv6 packets. Templates are built based on data type definitions. Figure 9 shows
an example of a template defined.

It can be noted that assigning values to non byte-oriented fields could not be
done in a standard way as it could be done in C++ or Java. Fields like Protocol
Version could be properly type-defined as Bit4, but it was not possible to as-
sign a ”6” value, like it was possible to do with many others like Traffic Class or
Destination Port. The solution found was to invoke an encoding function that en-
coded the ”6” in binary using four digits (Version := int2bit (6, 4)). Even
though this is not particularly a problem, the solution does not seem natural.

Another relevant limitation found was that we were not able to specify a tem-
plate with ”any number of RTE”. The template shown in the figure 9 is defined
for a RIPng packet with exactly two RTE. Pattern matching rules embedded in
TTCN-3 might allow definition of repetitive parts of structures that might help
decreasing the number of data types and templates defined.

Upon message reception, the message classification presented several difficul-
ties, both for handling interleaved reception of RIPng packets and ND ones. This

328 A. Floch et al.

template IPv6PacketType RIPngRequestTable_tp

(IPv6AddressType source, IPv6AddressType est,

IPv6AddressType P1, UInt8 PF1, IPv6AddressType P2, UInt8 PF2) :=

{

Ipv6Header := { Version := int2bit (6, 4),

TrafficClass := 0,

FlowLabel := int2bit (0, 20),

PayloadLength := 0, // CALCULATED BEFORE SENDING

NextHeader := NextHeaderUDP,

HopLimit := 255,

SourceAddress := source, // TEMPLATE PARAMETER

DestinationAddress := dest // TEMPLATE PARAMETER

}

Data := { UDPHeader := {

SourcePort := 777, // NEVERMIND

DestinationPort := 521, // SERVICE PORT

Length := 0, // CALCULATED BEFORE SENDING

Checksum := 0, // CALCULATED BEFORE SENDING

Payload := { Command := 1, // RIPng Request

Version := 1,

MustBeZero := 0,

RTE := { // First RTE

IPv6Prefix := P1,

RouteTag := 0,

PrefixLen := PF1,

Metric := 0

},{ // Second RTE

IPv6Prefix := P2,

RouteTag := 0,

PrefixLen := PF2,

Metric := 0

}

}

}

}

}

Fig. 9. TTCN-3 template for a RIPng packet

fact conspired against legibility of the test. It is desirable to have some aggre-
gation of ”similar” packets. In this way, logical separation of message reception
and handling would lead to more structured ATS.

Also some kind of inspection of unknown packets shall be provided. Recep-
tion message queues are processed sequentially. Upon arrival of a non-matching
packet, the reception queue stalls. A ”wildcard” default packet matching rule
was introduced, but TTCN-3 does not provide methods for inspecting the un-
known packet. Reception of unmatched packets was logged and the analysis had
to be done with external tools like ethereal (http://www.ethereal.com/),
something that was important during test debugging and log analysis.

3.4 Test Execution

From the methodological point of view we intended to perform stepwise refine-
ments of our ATS until we produce the definitive one. Spiral patterns or incre-
mental iterations could not be performed the way that they should. The amount
of modules and things to be generated delayed the first ETS test production.
The delay introduced until we had the first executable version of the test made
that several different pieces of testing code had to be debugged at once and also,
feedback for refining the test suites was delayed.

The lack or building blocks stopped us from concentrating only on RIPng
templates and test cases. Representation of network topology, like routing tables,
were needed. The lack of IPv6 extensions or libraries also forced us to model
from simple things, like IPv6 packets, to complex behavior like ND algorithms.

Some Lessons from an Experiment Using TTCN-3 for the RIPng Testing 329

Fig. 10. Test development cycle

We are aware that this was our first TTCN-3 implementation, but all the facts
suggests that the test development cycle was too big and only few iterations
could be performed. The figure 10 shows the effective RIPng test development
cycle and the main tasks needed for closing it. It is worth comparing our initial
test development plan (see figure 3) with the actual work done. Our experience
suggests that network layer support from the tool is needed to reduce the gap
and, consequently, development overhead.

The tests performed in our laboratory were done against both a GNU/Linux
system running Zebra/RIPngd and FreeBSD system running routed6. From
the test development point of view, Danet’s tool gave the required support for
analyzing and debugging purposes. From the test execution point of view we
found that log information was hard to analyze. One possible reason is that
our changes at PCO were not propagated by the tool to the log files, thus,
Link Layer information was stripped from the packets and did not reach log
files.

Five test cases were developed in time. Generated tests were successfully run
during PlugTests, October 2004 with interesting results. But still, we found it
not easy to use TTCN-3 tools compared to what we can do with v6eval.

4 Main Issues

The objective of the present work was to gain experience using TTCN-3 language
and tools while addressing an IPv6 test conformance problem. As stated before,
one important reason behind the experience was to find provider-independent
tools and languages for defining test suites.

330 A. Floch et al.

We found that there are no standard extensions to handle IPv6 level data.More-
over, there is no easy mechanism for standard IPv6 address representation. For
modeling network layer protocols, tester network stack has to be disabled. At that
moment all IPv6 implementation details, including packet assembly/disassembly,
NDbecomes part of our test andhad to be emulated. It is desirable that an IPv6 ori-
ented test tool provide as many tools as possible to the expert to help him concen-
trate on the test purpose. Even though we partially succeeded, our test suites rely
on PCO behavior not defined in TTCN-3 standard language, thus running them
over an of-the-shelf TTCN tool might be impossible. All our results indicate that
it is not possible to provide standard TTCN-3 test suites for IPv6 protocols based
on our test architecture built on multiple host emulation from a single test node.
Experimental results suggest that the minor changes performed to the tools would
benefit TTCN-3 usage (maybe an IPv6 specialized version of the tools). Field ex-
perience supports that the ability of emulating a complex network from a single
host is beneficial from the point of view of test execution and is worth considering
it as a requirement for the TTCN-3 language.

Ongoing work complementing the RIPng test suite requires usage of other
IPv6 features not implemented in the tool. RIPng relies on the IP Authentication
Header and IP Encapsulated Security Payload to ensure integrity, authentication
and confidentiality of routing exchanges. IPv6 stacks must include IPSec support,
used by RIPng, and we have to manually code IPSec from scratch in TTCN-3
for testing SUT security capabilities.

It seems that TTCN-3 template definition was not versatile enough to allow
efficient matching of incoming data. It might be interesting to have hierarchical
incoming data matching or at least being able to group similar matching rules.
This has a direct impact on ATS legibility as the number of entries in matching
statements grow considerably. We foresee that the problems of expressiveness
would remain also if we use several PTC instead of a single MTC, but the impact
on ATS legibility is so far unpredictable. The experience of such implementation
would help understanding other TTCN-3 aspects, while contrasting single tester
vs parallel testers on the same matter.

We found no way to define recursive or iterative data templates. Repetitive
structures (like routing tables) are sets of individual RTE. The definition of
individual templates for packets with one, two, three, etc. RTE again made the
code difficult to maintain, unnecessarily large and hard to read.

As a consequence of previous limitations, we were unable to find a pleasant
methodology for test creation. It is difficult to abstract parts of the components and
protocols for re-using in future implementations. It takes more time than expected
to produce runnable ETS. This fact makes that feedback from real execution re-
turns late in test development cycle and the risk of delay due to redesign need is high.

5 Conclusion

The work presented in this paper shows that it was possible to develop abstract
test suites for RIPng protocol using TTCN-3 language. Indeed, we were able

Some Lessons from an Experiment Using TTCN-3 for the RIPng Testing 331

to fulfill all steps from abstract test suite definition to executable test suite
derivation and execution.

We have presented the most important lessons we found when applying the
young TTCN-3 language to produce test suites for RIPng protocol. We were
able to meet the schedule and the resulting test suite was successfully presented
at 50th ETSI PlugTests event. This fact shows that it was possible to develop
test suites using TTCN-3, but under special circumstances like having access to
the tool source code and changing its implementation.

The use of TTCN-3 is still in its early phases. Success of the language is
tightly related to the availability of tools and their capacity to cope in time
with the requirements of different fields of application. A careful analysis of
enhancement requests has to be combined with pushing industrial requirements.

There are also pending issues regarding language constructs and style that
would lead to readable ATS. It seems that a strong community working and
proposing solutions to those problems is the most feasible way to find the answer.

The time constraint imposed affected somehow the way things were done.
Several important decisions were taken without enough study and experimenta-
tion. Ongoing work addresses more detailed study of identified problems. In this
new stage we are putting special emphasis on all TTCN-3 modular capabilities.
Our goal is to achieve a modular specification architecture that allows easier test
specification.

Among further aspects of the protocol testing have to be addressed are secu-
rity and fragmentation aspects.

Acknowledgements. The authors would like to thank Wolfgang Sachse and
Danet technical team for their support during the work.

References

1. Jens Grabowski and Dieter Hogrefe. Towards the third edition of ttcn. In Gyula
Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors, (TestCom 1999) Testing of
Communicating Systems, Methods and Applications, ISBN 0-7923-8581-0, pages
19–30. Kluwer Academic Publishers, 1999.

2. Jens Grabowski, Anthony Wiles, Colin Willcock, and Dieter Hogrefe. On the design
of the new testing language ttcn-3. In Hasan Ural, Robert L. Probert, and Gregor
v. Bochmann, editors, (TestCom 2000) Testing of Communicating Systems, Tools
and Techniques, ISBN 0-7923-7921-7, pages 161–176. Kluwer Academic Publishers,
2000.

3. Andreas Ulrich, Hartmut Köoning, and Thomas Walter. Architectures for testing
distributed systems. In Gyula Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors,
(TestCom 1999) Testing of Communicating Systems, Methods and Applications,
ISBN 0-7923-8581-0, pages 93–108. Kluwer Academic Publishers, 1999.

4. Ina Schieferdecker and Theofanis Vassiliou-Gioles. Realizing distributed TTCN-3
test systems with TCI. In Dieter Hogrefe and Anthony Wiles, editors, (TestCom
2003) Testing of Communicating Systems In 15th IFIP Testing of Communicating
Systems, Tools and Techniques, ISBN 3-540-40123-7, pages 95–109. Springer, 2003.

332 A. Floch et al.

5. Stephan Schulz and Theofanis Vassiliou-Gioles. Implementation of ttcn-3 test sys-
tems using the tri. In Ina Schieferdecker, Hartmut Köning, and Adam Wolisz, edi-
tors, (TestCom 2002) Testing of Communicating Systems, Application to Internet
Technologies and Services, ISBN 0-7923-7695-1, pages 425–442. Kluwer Academic
Publishers, 2002.

6. Theofanis Vassiliou-Gioles, Ina Schieferdecker, Marc Born, Mario Winkler, and
Mang Li. Configuration and execution support for distributed tests. In Gyula
Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors, (TestCom 1999) Testing of
Communicating Systems, Methods and Applications, ISBN 0-7923-8581-0, pages
61–67. Kluwer Academic Publishers, 1999.

7. Roland Gecse and Sarolta Dibuz. An intuitive ttcn-3 data presentation format.
In Dieter Hogrefe and Anthony Wiles, editors, (TestCom 2003) Testing of Com-
municating Systems In 15th IFIP Testing of Communicating Systems, Tools and
Techniques, ISBN 3-540-40123-7, pages 63–78. Springer, 2003.

8. Törö. Decision on tester configuration for multiparty testing. In Gyula Csopaki,
Sarolta Dibuz, and Katalin Tarnay, editors, (TestCom 1999) Testing of Commu-
nicating Systems, Methods and Applications, ISBN 0-7923-8581-0, pages 109–128.
Kluwer Academic Publishers, 1999.

9. G. Malkin and R. Minnear. RFC 2080: RIPng for IPv6. http://www.rfc-
editor.org/rfc/rfc2080.txt, 1997.

10. ETSI. Es 201 873-1 ttcn-3 core language, version: 2.2.1.
http://www.etsi.org/ptcc/TTCN-3%20Downloads/es 20187301v020201p.zip,
2003.

11. Jianping Wu, Whongjie Li, and Xia Yin. Towards Modeling and Testing of IP
Routing Protocols. In Dieter Hogrefe and Anthony Wiles, editors, Testing of
Communicating Systems In 15th IFIP Testing of Communicating Systems, ISBN
3-540-40123-7, pages 49–62. Springer, 2003.

12. D. Harrington, R. Presuhn, and B. Wijnen. RFC 3411: An Architecture for De-
scribing Simple Network Management Protocol (SNMP) Management Frameworks.
http://www.rfc-editor.org/rfc/rfc3411.txt, 2002.

13. T. Narten, E. Nordmark, and W. Simpson. RFC 2461: Neighbor Discovery for IP
Version 6 (IPv6). http://www.rfc-editor.org/rfc/rfc2461.txt, 1998.

14. R. Hinden and S. Deering. RFC 2373: IP Version 6 Addressing Architecture.
http://www.rfc-editor.org/rfc/rfc2373.txt, 1998.

A Model-Based Approach for Robustness
Testing

Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon

Verimag,- Centre Equation,
- 2 avenue de Vignate, - F38610 Gieres, France

{Jean-Claude.Fernandez, Laurent.Mounier, Cyril.Pachon}@imag.fr
http://www-verimag.imag.fr/

Abstract. Robustness testing is a part of the validation process which
consists in testing the behavior of a system implementation under ex-
ceptional execution conditions in order to check if it still fulfills some
robustness requirements. We propose a theoretical framework for model-
based robustness testing together with an implementation within the If
validation environment. Robustness test cases are generated from both
a (partial) operational specification and an abstract fault model. This
generation technique is inspired from the ones used in (classical) confor-
mance testing - already implemented in several tools. This framework is
illustrated on a small example.

1 Introduction

Among the numerous techniques available to validate a software system, the pur-
pose of testing is essentially to find defects on a system implementation. When
theoretically founded, testing provides an efficient and rigorous way for error de-
tection. For example, formal methods for conformance testing have been largely
investigated in the telecomunication area, and the so-called “model based” ap-
proach was implemented in several tools (e.g., [4, 15, 9, 7, 1]) and taken into ac-
count by the standardization bodies (e.g., ISO standard 9646).

Robustness Testing. Informally, robustness can be defined as the ability of a
software to keep an “acceptable” behavior, expressed in terms of robustness re-
quirements, in spite of exceptional or unforeseen execution conditions (such as
the unavailability of system resources, communication failures, invalid or stressful
inputs, etc.). Such a feature is particularly important for software critical ap-
plications those execution environment cannot be fully foreseen at development
time. Robustness requirements can then range from very general considerations
(“there is no run-time error”, “there is no system deadlock”), to more specific
properties (“after entering a degraded mode, the system always goes back to a
nominal one”, “some system resources remains always available”, etc.).

Even if this kind of testing has been less studied than in the hardware com-
munity, several approaches have been proposed to automate software robustness

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 333–348, 2005.
c© IFIP 2005

334 J.-C. Fernandez, L. Mounier, and C. Pachon

testing. Most of them are based on fault-injection, i.e., they consist in feeding
the system under test with (sequences of) invalid inputs, chosen within a fault-
model, and supposed to exhibit robustness failures. However, they differ in the
way these inputs are chosen and we review below some of them we consider as
the most representatives:

• A first approach consists in generating random inputs obtained by consid-
ering only the input domain definition. This technique is particularly adequate
to test very large softwares (such an operating system), for which neither a
specification nor even the source code is available. Several tools implement this
technique. In Fuzz [14], inputs are randomly generated and a failure is detected
if the system hangs or dumps a core file. In Ballista [2], test cases consist
of combinations of both valid and invalid inputs focusing on particular parts
of the system (e.g., the most frequently used systems calls of an operating sys-
tem). The verdict distinguishes between several failure criteria (crash, restart,
abort, silent, etc.). More recently, the Riddle tool [8] uses an input grammar
to generate combinations of correct, incorrect and boundary inputs with a bet-
ter coverage of the system functionalities. It also delivers more precise failure
criteria than its predecessors.
• When the source code of the system is available, the generation of relevant

inputs to test its robustness can be improved. For instance it becomes possible
to use some kinds of static analysis techniques to choose the better inputs able
to cover all parameter combinations (w.r.t. an equivalence relation) of public
method calls. This idea is exploited for instance in the JCrasher testing tool [6],
those purpose is to detect undeclared runtime exceptions in Java programs. How-
ever this tool only targets a particular kind of faults (unforeseen combinations
of parameters in method calls), and issue a rather coarse verdict.
• Finally, some techniques may also rely on some abstract specification of

the system behavior to select the test inputs. It is the case for instance in the
so-called Fotg approach [11] (Fault Oriented Test Generation): starting from a
fault introduced in a protocol specification (like a message loss, or a node crash),
it consists in looking (forward) for an error state (a state in which a protocol
fails to meet its requirement), and then to search (backward) for a test sequence
leading from the initial state to this error state. Even if this approach seems
well adapted to fault-tolerant protocols it only deals with single faults (one at a
time), and uses a rather simple specification formalism (Finite State Machines).
A similar technique has been also proposed in the Protos project [3]: it consists
in mutating a high-level and abstract description (expressed by a context-free
grammar) of the system behavior (the set of correct interactions) to introduce
abnormal inputs. Test cases are then generated by performing simulations on
this abstract description.

A Model-Based Approach for Robustness Testing. The objective of this paper
is to extend the model-based approach used in conformance testing to the ro-
bustness testing framework. However, this extension is not straightforward and
it raises the following problems:

A Model-Based Approach for Robustness Testing 335

• First, robustness is defined with respect to a fault model that may vary
from an application to another. This element usually depends on the application
architecture (e.g., unreliability of some communication links, lack of confidence
in some external components, input channel feed by an untrusted user, etc.) and
needs to be expressed at a rather abstract level. Note that some of these faults
may be controllable by an external tester, whereas some others may not.
•Moreover, specifying the system behavior for any exceptional and/or invalid

execution conditions expressed by a fault model is (by definition) hard to achieve.
Therefore the specification should no longer be considered as “exhaustive” in this
context (it may not always reflect the expected behavior of the implementation).
In addition, in a real size system, the specification of some components may also
be over-approximated (for instance when this specification is partially known,
or too complex).
• As a consequence, test verdicts should no longer be based on a conformance

relation between the implementation and this (approximated) specification, but
directly with respect to the initial robustness requirements.

The solution we propose is based on the following elements: The initial system
specification is expressed in a formalism those operational semantics can be
defined in terms of Input-Outputs labelled transition systems and which explicits
the system architecture (communication links attributes, component interface
and internal structure). The fault model is expressed by syntactic mutations
performed on this specification. The robustness requirements are expressed by
a linear temporal logic formula describing the expected behavior of the system
implementation in terms of tester interactions. Of course, checking whether a
given implementation satisfies or not such a formula should remain decidable
during a test (i.e., within a finite amount of time).

Paper Outline. The paper is organized as follows: first (in section 2) we introduce
the models we used, and then (in section 3) we define formally our model-based
approach for robustness testing. Section 4 presents an implementation of this
technique within the IF environment, and section 5 illustrates its use on an
example. We terminate by perspectives and future extensions.

2 Models

In this section, we introduce the models and notations used throughout the pa-
per. The basic models we consider are Input-Output Labelled Transition Systems
(IOLTS), namely Labelled Transition Systems in which input and output actions
are distinguished (due to of the asymmetrical nature of the testing activity).

2.1 Input-Outputs Labelled Transition Systems

We consider a finite alphabet of actions A, partitioned into two sets: input actions
AI and output actions AO. A (finite) IOLTS is a quadruplet M=(QM, AM, TM, qM

init)
where QM is the finite set of states, qM

init is the initial state, AM ⊆ A is a finite
alphabet of actions, and TM ⊆ QM × AM ∪ {τ} × QM is the transition relation.

336 J.-C. Fernandez, L. Mounier, and C. Pachon

Internal actions are denoted by the special label τ
∈ A. We denote by N the
set of non negative integers. For each set X, card(X) is the number of element
of X. For each set X, X∗ (resp. Xω = [X→N]) denotes the set of finite (resp.
infinite) sequences on X. Let σ ∈ X∗ ; σi or σ(i) denotes the ith element of σ.
We adopt the following notations and conventions: Let σ ∈ A∗, α ∈ A ∪ {τ},
p, q ∈ QM. We write p

α→M q iff (p, α, q) ∈ TM and p
σ→M q iff ∃ p0, · · · , pn ∈ QM

such that p0 = p, pi

σ(i+1)→ M pi+1 for i < n, pn = q. In this case, σ is called a
trace or execution sequence, and p0 · · · pn a run over σ. An infinite run of M
over an infinite execution sequence σ is an infinite sequence ρ of QM such that

1. ρ(0) = qM
init and 2. ρ(i)

σ(i)→ M ρ(i + 1)). inf(ρ) denotes the set of symbols from
QM occurring infinitely often in ρ: inf(ρ)={q | ∀n. ∃i. i ≥ n ∧ ρ(i) = q}. Let V
a subset of the alphabet A. We define a projection operator ↓V : A∗→V ∗ in the
following manner: ε ↓V = ε, (a.σ) ↓V = σ ↓V if a
∈ V , and (a.σ) ↓V = a.(σ ↓V) if
a ∈ V . This operator can be extended to a language L (and we note L ↓ V) by
applying it to each sequence of L. The language recognized by M is L(M) = {σ |
∃ρ such that ρ is a run of M over σ}. The IOLTS M is complete with respect to
a set of actions X ⊆ A if and only if for each state qM of QM and for each action
x of X, there is at least one outgoing transition of TM from qM labelled by x ∈
X: ∀pM ∈ QM · ∀x ∈ X · ∃qM ∈ QM such that pM x→M qM. The IOLTS M is said
deterministic if and only:
∀pM ∈ QM · ∀a ∈ AM · pM a→M qM ∧ pM a→M q′M ⇒ qM = q′M. A state p

is said quiescent [16] in M either if it has no outgoing transition (deadlock),
or if it belongs to a cycle of internal transitions (live-lock). Quiescence can be
expressed at the IOLTS level by introducing an extra transition to each quiescent
state labelled by a special output symbol δ. Formally, we associate to LTS M
its so-called “suspension automaton” δ (M) = (QM , AM ∪ {δ}, T δ(M), qM

0) where
T δ(M) = TM ∪ {(p, δ, p) | p ∈ QM ∧ p is quiescent}.
2.2 Specification

We consider specifications, expressed in the If language 1, consisting of compo-
nents (called processes), running in parallel and interacting either through shared
variables or asynchronous signals. Processes describe sequential behaviors includ-
ing data transformations, communications and process creations/destructions.
Furthermore, the behavior of a process may be subject to timing constraints.
The behavior of a process is described as a (timed) automaton, extended with
data. A process has a local memory consisting of variables, control states and
a FIFO queue of pending messages (received and not yet consumed). A process
can move from one control state to another by executing some transition. No-
tice that several transitions may be enabled at the same time, in which case
the choice is made non-deterministically. Transitions can be either triggered by
signals in the input queue or be spontaneous. Transitions can also be guarded by
predicates on variables. A transition is enabled in a state if its trigger signal is
present and its guard evaluates to true.

1 http://www-verimag.imag.fr/ async/IF/index.shtml.en

A Model-Based Approach for Robustness Testing 337

Transition bodies are sequential programs consisting of elementary actions
(variable assignments, message sending, process creation/destruction, etc) and
structured using elementary control-flow statements (like if-then-else, while-do,
etc). In addition, transition bodies can use external functions/procedures, writ-
ten in an external programming language (C/C++). Signals are typed and can
have data parameters. Signals can be addressed directly to a process (using its
pid) and/or to a signal route which will deliver it to one or more processes.
The destination process stores received signals in a FIFO buffer. Signal routes
represent specialized communication media transporting signals between pro-
cesses. The behavior of a signal route is defined by its connection policy (peer to
peer, unicast or multi cast), and finally its reliability (“reliable” or “lossy”). We
use below a simplified abstract syntax and we give its corresponding (informal)
semantics in terms of IOLTS.

Definition 1 (specification syntax).
A specification SP is a tuple (S,C, P) where S is the set of signals, C =

Cint ∪Cext is the set of queues (internal and external ones) and P is the set of
processes. The external queues describe the interface between the specified system
and its environment. A process p ∈ P is a tuple (Xp, Qp, Tp, q

0
p) where Xp is a

set of local typed variables, Qp is a set of states, Σp is a set of guarded commands
which can be performed by p, and Tp ⊆ Qp × Σp × Qp is a set of transitions.
A guarded command has the form [b]α where α can be either an assignment
x := e, an input c?s(x), or an output c!s(e). Above, b and e are expressions,
x ∈ Xp is a variable, c ∈ C is a queue and s ∈ S is a signal. The set of types τi

is partially ordered by the sub-typing relation ≤s.t..

We give the semantics of specifications in terms of labeled transition systems.
For each type τi, we consider its domain Di and we denote by D the disjoint
union of all these domains. We define variable contexts as being total mappings
ρ :

⋃
p∈P Xp → D which associate to each variable x a value v from its domain.

We extend these mappings to expressions in the usual way. We define internal
queue contexts as being also total mappings δ : Cint → (S×D)∗ which associates
to each internal queue c a sequence (s1, v1), ..., (sk, vk) of messages, that is pairs
(s, v) noted also by s(v), where s is a signal and v is the carried parameter value.

Definition 2 (specification semantics).
The semantics of a specification SP is given by a labeled transition system

S=(QS, AS, T S, qS
init). States of this system are configurations of the form (ρ, δ, π),

where ρ is a variable context, δ is a queue context and π = 〈q1, ...qn〉 ∈ ×p∈P Qp is
a global control state. Transitions are either internal (and labeled with τ), when
derived from assignments or internal communication, or visible when derived
from external communication. There is a transition from a configuration (ρ, δ, π)

to (ρ′, δ′, π′) iff there is a transition qp
[b]α−→q′p in the specification such that the

guard b is evaluated to true in the environment ρ. The set of actions is partitioned
into AS

I and AS

O where
AS

I = {c?s(v) ∈ AS, c ∈ Cext, v ∈ D} and AS

O = {c!s(v) ∈ AS, c ∈ Cext, v ∈ D}

338 J.-C. Fernandez, L. Mounier, and C. Pachon

2.3 Mutation

The abstract fault model we consider consists in a mutation function defined
on the specification syntax. Formally, let (S,C, P) be a specification. A fault
model is a function that transforms (S,C, P) into (S′, C ′, P ′). We give hereafter
a (non exhaustive) set of possible transformations. Note that each transformation
corresponds to a fault that can be produced by an external tester.

– Domain extension for a variable. For a process i, if an input signal has a
parameter of type ti, then we can extend ti in t′i where ti ≤ t′i.

– Unreliable channel In a process i, each transition corresponding to an out-

put on a channel c (pi
[b] c!s(e)−→ qi) is “duplicated” into an internal transition

(pi
τ−→qi). At the IF level, this transformation simply consists in replacing a

reliable channel by a lossy one.
– Input failure In a process i, if a state has only input entries, then we add a

new transition from this state, labelled by τ and leading to a sink state.

3 Robustness Testing Framework

In this section we propose a formal framework to test the “robustness” of a
software implementation with respect to a set of robustness requirements.

3.1 Robustness Requirements and Satisfiability Relation

A robustness requirement aims at ensuring that the software will preserve an
“acceptable behavior” under non nominal execution conditions. This notion of
“acceptable behavior” may not only correspond to safety properties (telling that
something bad never happens), but also to liveness properties (telling that some-
thing good will eventually happen). Liveness properties are characterized by in-
finite execution sequences. From the test point of view, only the existence of
a finite execution sequence can be checked on a given IUT (since the test exe-
cution time has to remain bounded). This restricts in practice the test activity
to the validation of safety properties. Nevertheless, an interesting sub-class of
safety properties are the so-called parameterized liveness. Such properties allow
for instance to a express that the IUT will exhibit a particular behavior within a
given amount of time, or before a given number of iterations has been reached.
From a practical point of view, it is very useful to express such properties as
liveness (i.e., in terms of infinite execution sequences), and then to bound their
execution only at test time, depending on the concrete test conditions.

Robustness Requirements. In the approach we propose, a robustness requirement
ϕ is directly modelled by an observer automaton O¬ϕ recognizing all (infinite) ex-
ecutions sequences satisfying ¬ϕ. Several acceptance conditions (Büchi, Muller,
Streett, Rabin, etc) have been proposed to extend finite-state IOLTS to recognize
infinite sequences. For algorithmic considerations, it is more efficient to consider a

A Model-Based Approach for Robustness Testing 339

deterministic observer. Since anyω-regular languages canbe recognized by adeter-
ministic Rabin automaton 2, we choose this kind of acceptance condition to model
our robustness requirements. First we recall the definition of a Rabin automaton.

Definition 3. A Rabin automaton is a pair (B, T) where B= (QB, A, T B, qB
init)

is an IOLTS and T = {(L1, U1), · · · , (Ln, Un)} is a set of couple of subsets of
QB. The language accepted by (B, T) is L(B, T) = {σ ∈ Aω | ∃i.
∃ an infinite run ρ of B over σ such that inf(ρ) ∩ Li
= ∅ and Inf(ρ) ∩ Ui = ∅}.

Clearly, deciding if an execution sequence σ belongs or not to L(B, T) cannot
be performed during a finite test execution. Therefore, this definition needs to
be refined in order to approximate L(B, T) as a set of finite execution sequences.
The solution we propose is to associate parameters (cl, cu) to each pair (L,U) of
T in order to “bound” the acceptance condition. This notion of “parameterized”
Rabin automaton is formalized in the following definition.

Definition 4. Let (B, T) be a Rabin automaton, C = {(cl1 , cu1), · · · , (cln , cun
)}

a set of integer pairs. We define infa(ρ, n) = {q | card({i | ρ(i) = q}) ≥ n}.
The language accepted by the parameterized Rabin automaton (B, T , C) is

then: L(B, T , C) = {σ ∈ A∗ | ∃i.
∃ a run ρ of B over σ such that infa(ρ, cli)∩Li
= ∅ and Infa(ρ, cui

)∩Ui = ∅}.

Implementation. The Implementation Under Test (IUT) is assumed to be a
“black box” those behavior is known by the environment only through a re-
stricted interface (a set of inputs and outputs). From a theoretical point of
view, this behavior can be considered as an IOLTS IUT=(QIUT, AIUT, T IUT, qIUT

init),
where AIUT = AIUT

I ∪AIUT
O is the IUT interface. We assume in addition that this

IUT is complete with respect to AI (it never refuses an unexpected input).

Satisfiability Relation. We are now able to formalize the notion of robustness of
an implementation with respect to a robustness requirement ϕ.

Definition 5. Let I be an IOLTS, ϕ a formula interpreted over execution se-
quences of I. An observer O¬ϕ = (O, T O, CO) for ϕ is a parameterized Rabin au-
tomaton such that IOLTS O is deterministic, complete and L(O¬ϕ) is the set of
execution sequences verifying ¬ϕ. We say that I satisfies ϕ iff L(I) ∩ L(O¬ϕ) = ∅.

3.2 Test Architecture and Test Cases

Test Architecture. At the abstract level we consider, a test architecture is simply
a pair (Ac, Au) of actions sets, each of them being a subset of A : the set of
controllable actions Ac, initiated by the tester, and the set of observable actions
Au, observed by the tester. A test architecture will be said compliant with an
observer O those action set is AO = AO

O ∪AO
I iff it satisfies the following con-

straints : AO
I ⊆ Ac and AO

O ⊆ Au. In other words the tester is able to control
(resp. observe) all inputs (resp. outputs) appearing in the observer.

2 Which is not the case for deterministic Büchi automata.

340 J.-C. Fernandez, L. Mounier, and C. Pachon

Test Cases. Intuitively, a test case T C for a robustness requirement ϕ is a set of
execution sequences, controllable, compatible with a given test architecture and
accepted by an observer O¬ϕ. This notion can be formalized as parameterized
Rabin automaton.

Definition 6. For a given observer O those action set is AO, a test archi-
tecture (Ac, Au) compliant with O, a test case T C is a parameterized Rabin
automaton (TC,T TC, CTC) with TC=(QTC, ATC, T TC, qTC

init) satisfying the following
requirements:

1. ATC = ATC

I ∪ATC

O with ATC

O ⊆ Ac and ATC

I ⊆ Au.
2. TC is deterministic wrt ATC, controllable (for each state of QTC there is at

most one outgoing transition labelled by an action of Ac), and input-complete
(for each state of QTC, for each element a of Au, there exists exactly one
outgoing transition labelled by a).

3. L(TC) ↓ AO ⊆ L(O)

3.3 Test Cases Execution and Verdicts

A test case T C for a robustness requirement ϕ is supposed to be executed against
an IUT by a tester. This IUT is then declared non robust (for ϕ) if such a test
execution exhibits an execution sequence of the IUT that belongs to L(T C) (in
other words if L(TC) ∩ L(IUT)
= ∅). In this case the tester should issue a Fail
verdict, and it should issue a Pass verdict otherwise.

Test Execution. More formally, Let IUT=(QIUT, AIUT, T IUT, qIUT
init) an implemen-

tation, (TC,T TC, CTC) a test case with TC=(QTC, ATC, TTC, qTC
init), and (Ac, Au)

a test architecture. The test execution of TC on IUT can be expressed as a par-
allel composition between IUT and TC with synchronizations on action sets Ac

and Au. This test execution can be described by an IOLTS E=(QE , AE , T E , qE
init),

where AE = ATC, and sets QE and TTC are defined as follows:

• QE is a set of configurations. A configuration is a triplet (pTC, pIUT, λ) where
pTC ∈ QTC, pIUT ∈ QIUT and λ is a partial function from QTC to N, which counts
the number of times an execution sequence visits a state.

• T E is the set of transitions (pTC, pIUT, λ) a→E (qTC, qIUT, λ′) such that

– pTC a→TC qTC, pIUT a→IUT qIUT and

– λ′(qTC) =

⎧
⎪⎪⎨

⎪⎪⎩

λ(qTC) if qTC
∈
⋃

i∈{1,···k}
(LTC

i ∪ UTC
i)

λ(qTC) + 1 if qTC ∈
⋃

i∈{1,···k}
(LTC

i ∪ UTC
i)

The initial configuration qTC
init is (qTC

init, q
IUT
init , λinit), where for all q, λinit(q) = 0.

A Model-Based Approach for Robustness Testing 341

T E describes the interactions between the IUT and the test case. Each counter
associated with a state of LTC

i ∪UTC
i is incremented when an execution sequence

visits this state.

Verdicts. Test execution is supposed to deliver some verdicts to indicate whether
the IUT was found robust or not. These verdicts can be formalized as a function
Verdict on execution sequences of E to the set {Pass,Fail}. More precisely:

– Verdict(σ) = Fail if there exists a run ρ of E over σ, i ∈ {1, 2, . . . , k} and
l ∈ N such that:
1. ρ(l) = (pTC

l , pIUT
l , λl), pTC

l ∈ LTC
i and λl(pTC

l) ≥ cli , and
2. ∀m ∈ [0 · · · l].ρ(m) = (qTC

m , qIUT
m , λm) ∧ qTC

m ∈ UTC
i =⇒ λm(qTC

m) ≤ cui
.

– Verdict(σ) = Pass otherwise.

In practice the test case execution can be performed as follows:

• At each step of the execution the controllability condition may give a choice
between a controllable and an observable action. In this situation the tester can
first wait for the observable action to occur (using a local timer), and then choose
to execute the controllable one.
• Formal parameters CTC are instantiated according to the actual test envi-

ronment. A Fail verdict is issued as soon as an incorrect execution sequence
is reached (according to definition above), and a Pass verdict is issued ei-
ther if the current execution sequence visits “too many often” a state of UTC

i

(λm(qTC
m) > cui), or if a global timer, started at the beginning of test execution,

expires. This last case occurs when an execution sequence enters a loop without
any state belonging to LTC

i or UTC
i .

3.4 Test Graph

Intuitively, the purpose of a test graph TG is to gather a set of execution se-
quences, computed from a (mutated) specification S and an observer O, defined
over a test architecture TA, and belonging to L(O). The test graph is defined
below by computing an asymmetric product ⊗ between S and O.

Definition 7. Let TA = (Ac, Au) a test architecture, S0 a specification and
S=(QS, AS, T S, qS

init) its deterministic suspension automaton with AS ⊆ Ac ∪Au.
Let (O, T O, CO) be an observer with O=(QO, AO, TO, qO

init) and
T O = 〈(LO

1 , UO
1), (LO

2 , UO
2), . . . , (LO

k, UO

k)〉 such that TA is compliant with O.
We define the Parameterized Rabin automaton (TG, T TG, CTG) where

TG=(QTG, ATG, T TG, qTG
init), such that QTG⊆ QS×QO, ATG⊆AS, qTG

0 =(qS
0 , qO0),

and QTG, T TG are obtained as follows:

(pS , pO) a−→T⊗ (qS , qO) iff pS
a−→T S qS and pO

a−→TO qO
.

The pair table T TG is equal to 〈(LTG
1 , UTG

1), (LTG
2 , UTG

2), . . . , (LTG

k , UTG

k)〉 where
LTG

i and LTG
i are defined as follows:

LTG
i = {(pS , pO) ∈ QTG | qO ∈ LO

i } UTG
i = {(pS , pO) ∈ QTG | qO ∈ UO

i }

342 J.-C. Fernandez, L. Mounier, and C. Pachon

3.5 Test Cases Selection

The purpose of the test case selection is to generate a particular test case TC
from the test graph TG. Roughly speaking, it consists in “extracting” a sub-
graph of TG controllable with respect to the test architecture, and containing a
least a sequence of L(TG) (and hence of L(O)).

Clearly, to belong to L(TG), an execution sequence of TG has to reach a
cycle containing a state belonging to some distinguished set LTG

i (for some i) of
the pair table associated to TG. Conversely, any sequence of TG not leading to
a strongly connected component of TG containing a state of LTG

i cannot belong
to L(TG). Therefore, we first define on TG the predicate L2L (for “leads to L”),
to denote the set of states leading to such a strongly connected component:

L2L (q)≡∃(q1, q2, ω1, ω2, ω3). (q ω1=⇒T T G q1
ω2=⇒T T G q2

ω3=⇒T T G q1 and ∃i.q2∈LTG
i)

We can now define a sub-graph of TG, controllable, and containing at least
a sequence of L(O). This subset contains all non controllable transitions of TTG

(labelled by an element of Au), and at most one (randomly chosen) controllable
transition of TTG leading to a state of L2L when several such transitions exist
from a given state of TG. More formally, we introduce a selection function:

select (TTG) = {(p, a, q) ∈ TTG |
a ∈ Au or a = one-of ({ai ∈ Ac | p ai−→T T G qi and L2L (qi)})}

Finally, this subset of TTG remains to be extended with all non controllable
actions of Au not explicitly appearing in TTG, to ensure the input completness
of the test case. The definition of a test case TC is then the following:

Definition 8. let (TG, T TG, CTG) with TG=(QTG, ATG, T TG, qTG
init) a test graph

and TA = (Ac, Au) a test architecture. A test case (TC, T TC , CTC) is a Param-
eterized Rabin automaton with TC=(QTC, ATC, T TC, qTC

init) such that qTC
0 = qTG

0 ,
ATC = ATG ∪Au, QTC is the subset of QTG reachable by TTC from qTC

0 and
TTC is defined as follows:

TTC = select (TTG) ∪ {(p, a, p) | a ∈ Au and
 ∃q. (p, a, q) ∈ TTG}

4 Implementation

We present in this section a complete tool chain which automates the generation
and execution of robustness test cases for Java programs. This tool chain is
built upon the IF validation environment [5], and it integrates some components
developed within the AGEDIS project. First we give the overall architecture of
this tool chain, and we briefly explain how the main operations described in the
previous sections have been implemented. Then we illustrate its use on a running
example.

4.1 Platform Architecture

The overall architecture of the tool chain is depicted in figure 1. It is built upon
several existing tools: model exploration is performed using the IF simulator

A Model-Based Approach for Robustness Testing 343

Fig. 1. Platform for the robustness testing

integrated into the IF environment, test generation uses some of the algorith-
mic techniques borrowed from the TGV tool [12], and test execution relies on
the Spider [10] test engine developed in the Agedis project. This platform is
dedicated to particular specification and target languages (IF and Java), but
a similar architecture could be used with other specification formalisms or pro-
gramming languages. The platform inputs are detailed below.

Implementation Under Test. the IUT is a (distributed) multi-threaded Java pro-
gram, only accessed through a set of public methods (black box IUTs). The
corresponding formal model is an IOLTS where input (resp. output) actions
correspond to method calls (resp. return values).

Test Architecture. Formally, the test architecture is a pair (Ac, Au) of actions
sets (section 3.2). In this particular platform the controllable actions (Ac) are the
set of methods that can be called by an external tester and the observable actions
Au are the values returned to the tester when these method calls terminate.

Specification. In our context, the specification (partially) describes the expected
behavior of the IUT under some nominal execution conditions. It is written using
the IF formalism (see section 2.2 for a short description). In practice this IF spec-
ification can be automatically produced from high-level specification languages
(like SDL or UML).

Fault Model. The fault model lists the potential failures and/or incorrect inputs
supposed to occur within the actual execution environment. It is directly ex-
pressed by a set of syntactic mutations to be performed on the specification.

Observer. The observer is a parameterized Rabin automaton.

344 J.-C. Fernandez, L. Mounier, and C. Pachon

4.2 Implementation Issues

We now briefly sketch the main operators used in this platform to implement
the test generation and test execution technique proposed in this paper. These
operators are depicted by square boxes on figure 1.
Mutation. The mutation operation is a purely syntactic operation performed on
the abstract syntax tree of the IF specification.
Simulation and Determinisation. This operator produces a deterministic sus-
pension IOLTS from the mutated IF specification. It consists in three steps that
are combined on-the-fly: 1. generation of an IOLTS from the mutated IF spec-
ification, 2. computation of the suspension IOLTS ; this step introduces the δ
actions, and 3. determinisation and minimization with respect to the bisimula-
tion equivalence.
Product. This operator computes the test graph from the deterministic suspen-
sion IOLTS associated to the mutated specification (SSd) and the observer (Sobs),
as defined in section 3.4. It is implemented as a joint traversal of these two
IOLTSs.
Test Selection. The test selection operation consists in extracting a test case
TC from the complete test graph TG. TC is a parameterized Rabin automa-
ton, controllable, and such that L(TC) ⊆ L(TG). Practically this operation is
performed in two successive steps (section 3.5):
Computation of State Predicate L2L: This computation is based on an algorithm
due to R.E. Tarjan to compute in linear time the strongly connected components
(SCCs) of TG. When necessary, an SCC can be refined into sub-SCCs to obtain
the elementary cycles containing a distinguished state of the test graph.

Computation of Function Select: Once the state predicate L2L has been com-
puted on TG, it remains to extract a sub-graph of TG containing only control-
lable execution sequences leading to a state satisfying L2L.

Test Case Translator and Test Execution Engine. Test execution is performed
using the Spider test engine [10] developed in the AGEDIS project. This tool
allows the automatic execution of test cases on multi-threaded (distributed)
Java programs. Test cases are described in an XML-based format defined within
Agedis. Extra test execution directives (supplied by the user) can also be used
to map this abstract test case onto the actual implementation interface.

5 Example

We illustrate our approach on a small example describing a simple ticket ma-
chine. The system architecture is presented on figure 2. It consists of two com-
ponents: a coin tray, able to store coins received from a user, and a machine
controller, managing the interactions with this user. These components commu-
nicate each other by message exchanges via two channels C and A. The external
user communicates with both components via the channel U.

A Model-Based Approach for Robustness Testing 345

Fig. 2. Ticket machine architecture

Under nominal conditions, the expected behavior of the system is the following:
the user puts some coins in the coin tray (U?COIN(c)), where possible coins values
c belong to the set {1,2,10}. The controller receives these coins from the coin tray,
ones by ones, (C?COIN(c)), and increases the user credit. The user can then ask for
a ticket (U?PRINT). If his credit is sufficient, a ticket is delivered by the controller
(U!TICKET), otherwise the machine simply waits for more coins. When a ticket is
delivered the machine also needs to return some change to the user. This change
is computed according to the coins available in the coin tray. To do that, the con-
troller asks the coin tray about its current contain (A!ASK). The coin tray then re-
turns its answer (A!ANSWER(n10, n2, n1)), where n10, n2 and n1 denote the num-
ber of coins available in each category. From this information the controller can
then compute the change (function CompChange()) and ask the coin tray to return
it to the user (C!RETURN COIN(...)). Finally, instead of asking for a ticket the user
may also choose to cancel the transaction (U?CANCEL) and the machine should
then returns to him all the coins he put (C!RETURN COIN(...)). This specification
is formalized on Figure 3 (left, without considering the dashed transitions).

5.1 Robustness Test Cases Generation

We focus here on the controller component and we consider a test architecture
where inputs received on channels U and C are controllable, outputs sent on
channel C are observable, and communications on channel A are internal. The
robustness property we want to ensure is the following: “If the controller receives
at least one coin (C?COIN(c)), then it must output a C!RETURN COIN action”. Fig-
ure 3 (right) gives a parameterized Rabin automaton expressing the negation
of this property. In this particular example, we assume that in the real execu-

Fig. 3. Controller specification and robustness property

346 J.-C. Fernandez, L. Mounier, and C. Pachon

Fig. 4. Possible test cases

tion environment two “faults” may happen: the user may silently stop at any
time all interaction with the machine, and communication failures may hap-
pen on channel A. Here the mutation operation introduces two new controllable
actions (Figure 3, dashed lines): abort, starting from state 1 and leading to a
sink state, and disconnect starting from state 3 and leading to state 4. The test
generation technique described in the previous section produces the two (param-
eterized) test cases depicted in figure 4 to invalidate the robustness property. The
first one involves a user abortion and the second one a communication failure.

5.2 Implementation and Test Execution

Two Java implementations of the controller have been written. The first one
simply reproduces its expected behavior under nominal conditions. Running the
above test cases on such an implementation (after instantiation of parameters cl

and cu) leads to a Fail verdict: for both tests there exists a controllable execution
sequence for which the limit value of the cl parameter is reached. The second one
(Figure 5) uses a timer T to detect user quiescence and communication failures.
In such situations it calls a special function (CompDefChange()) to compute defaults
coin values to return back to the user. This implementation is now considered
as robust: the verdict obtained is Pass.

Fig. 5. A “robust” implementation of the controller

6 Conclusion

The current work extends a model based approach used in conformance test-
ing to the validation of robustness properties. Starting from a (possibly incom-
plete) system specification it consists in producing a “mutated” specification by

A Model-Based Approach for Robustness Testing 347

applying syntactic transformations described by an abstract fault model. This
new specification is model-checked against the robustness requirements to pro-
duce diagnostic sequences. These diagnostic sequences are then turned into ab-
stract test cases to be executed on the implementation. Robustness requirements
are bounded liveness properties expressed by parameterized automata on infi-
nite words. The corresponding test sequences are instantiated at test time to
keep the test execution finite. This technique has been implemented inside a
complete tool chain (integrating the test generation and test execution phases)
and experimented on small Java programs.

Compared to existing robustness testing techniques (based on fault injection),
the main advantage of this approach is to much better target the test cases with
respect to expected robustness requirements. In particular “faults” are injected
by the tester only when necessary, and the verdicts produced are sound (a Fail
verdict always indicate a violation of a robustness requirement). However, this
approach is effective only if there exists some (basic) formal specification of the
software under test, describing at least some expected execution scenarios under
nominal conditions (like UML use cases, or sequence diagrams).

A first perspective is to improve our implementation to validate this approach
on larger case studies. A particular point that would require more investigations
is the (static) refinement of the fault model according to a given specification
and robustness property. This would allow to consider more accurate mutations
and would contribute to limit the state explosion inherent to this kind of ap-
proach. Another perspective is to extend this framework to deal with timed
models [13]. Thus, it would be possible to consider other kinds of faults (stress
testing) or properties (response time). The IF specification language already in-
cludes a timed model which makes this extension relevant.

Acknowledgement. We thank the anonymous reviewers for their many helpful
comments. This work was partly initiated in a joint work on robustness testing
inside a French action supported by the Cnrs and gathering members of Irisa,
Laas, Labri, Lri and Verimag laboratories (http://www.laas.fr/TSF/AS23/).

References

1. The Agedis Project. http://www.agedis.de.
2. The Ballista Project. http://www.ece.cmu.edu/ koopman/ballista/.
3. The Protos Project. http://www.ee.oulu.fi/research/ouspg/protos/.
4. A. Belinfante, J. Feenstra, R. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,

and L. Heerink. Formal Test Automation : a Simple Experiment. In 12th Inter-
national Workshop on Testing of Communicating Systems, G. Csopaki et S. Dibuz
et K. Tarnay, 1999. Kluwer Academic Publishers.

5. M. Bozga, S. Graf, and L. Mounier. If-2.0: A validation environment for component-
based real-time systems. In K. L. Ed Brinksma, editor, Proceedings of CAV’02
(Copenhagen, Denmark), volume 2404 of LNCS, pages 343–348. Springer-Verlag,
July 2002.

6. C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for
Java. Software - Practice and Experiece, 1(7), 2000.

348 J.-C. Fernandez, L. Mounier, and C. Pachon

7. J.-. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly verification tech-
niques for the generation of test suites. In CAV’96. LNCS 1102 Springer Verlag,
1996.

8. A. Ghosh, V. Shah, and M. Schmid. An approach for analyzing the Robustness of
Windows NT Software. In Proceedings of the 21st National Information Systems
Security Conference, pages 383–391, Crystal City, VA, 1998.

9. R. Groz, T. Jeron, and A. Kerbrat. Automated test generation from SDL spec-
ifications. In R. Dssouli, G. von Bochmann, and Y. Lahav, editors, SDL’99 The
Next Millenium, 9th SDL Forum, Montreal, Quebec, pages 135–152, Elsevier, Juin
1999.

10. A. Hartman, A. Kirshin, and K. Nagin. A test execution environment running
abstract tests for distributed software. In Proceedings of Software Engineering and
Applications, SEA 2002, Cambridge, MA, USA, November 2002.

11. A. Helmy, D. Estrin, and S. K. S. Gupta. Fault-oriented test generation for mul-
ticast routing protocol design. In Proceedings of the FIP TC6 WG6.1 Joint In-
ternational Conference on Formal Description Techniques for Distributed Systems
and Communication Protocols (FORTE XI) and Protocol Specification, Testing
and Verification (PSTV XVIII), pages 93–109. Kluwer, B.V., 1998.

12. C. Jard and T. Jron. Tgv: theory, principles and algorithms. In The Sixth World
Conference on Integrated Design & Process Technology (IDPT’02), Pasadena, Cal-
ifornia, USA, June 2002.

13. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In SPIN’04 Workshop on Model Checking Software, 2004.

14. B. Miller, D. Koscki, C. Lee, V. Maganty, R. Murphy, A. Natarajan, and J. Steidl.
Fuzz revisited: A re-examination of the reliabilty of UNIX utilities and services.
Technical report, University of Wisconsin, Computer Science Dept., 1995.

15. M. Schmitt, B. Koch, J. Grabowski, and D. Hogrefe. Autolink - A Tool for Au-
tomatic and Semi-Automatic Test Generation from SDL Specifications. Technical
Report A-98-05, Medical University of Lübeck, 1998.

16. J. Tretmans. Test Generation with Inputs, Outputs, and Quiescence. In T. Mar-
garia and B. Steffen, editors, Second Int. Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’96), volume 1055 of Lecture
Notes in Computer Science, pages 127–146. Springer-Verlag, 1996.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 349 – 364, 2005.
© IFIP 2005

Content-Level Conformance Testing: An Information
Mapping Case Study

Boonserm Kulvatunyou, Nenad Ivezic, and Albert T. Jones

National Institute of Standards and Technology, 100 Bureau Drive,
Gaithersburg, MD 20899, USA

{serm, nivezic, jonesa}@nist.gov

Abstract. Content-level conformance testing is a key to achieving interoperable
data exchange among applications deployed across collaborating, yet independ-
ent enterprises. In this paper, we identify four types of content-level confor-
mance tests to support interoperable data exchange: document-verification tests,
information-mapping tests, transaction-behavior tests, and scenario-based tests.
We describe in substantial detail our experience with information-mapping tests
within an industrial B2B integration effort. We review different approaches to
information-mapping conformance verification including logical consistency
checking, human-computer interaction, and event-based checking. We adopt the
human-computer interaction approach and describe a test-case generation
methodology. The methodology details modeling, test requirements specifica-
tion, abstract test-case definition, and, ultimately, executable test-case genera-
tion. Lastly, we provide experimental results of applying our methodology in
the context of an automotive industry development of data exchange standard
for interoperable inventory visibility applications.

1 Introduction

The research study described in this paper is a result of a large business-to-business
(B2B) integration initiative called Inventory Visibility and Interoperability (IV&I).
The initiative is a collaboration that includes the Automotive Industry Action Group
(AIAG) [1], its member companies, and the Manufacturing B2B Interoperability
Testbed at the National Institute of Standards and Technology (NIST) [2]. A key
objective of this initiative is to enable different tools supporting vendor-managed
inventory (VMI or Inventory Visibility (IV)) to interoperate using an internet-based
B2B integration infrastructure. In this paper, we explain the role of content-level
conformance testing in achieving this objective, detail the testing methodology, and
provide results from applying the methodology to one type of content-level confor-
mance test: the information-mapping tests. In Section 2, we present the
interoperability problem addressed in the IV&I project. Section 3 summarizes the
content-level conformance tests needed to support interoperability. Section 4 provides
an overview of the information-mapping test, alternatives to the information-mapping
conformance verification, and the rationale for our selected approach. Section 5
describes the test-case generation methodology for the information-mapping test.

350 B. Kulvatunyou, N. Ivezic, and A.T. Jones

Section 6 illustrates experimental results from interaction with participating IV tool
vendors. Finally, Section 7 concludes the paper by summarizing key research results.

2 Inventory Visibility and Interoperability Problem

Currently, the automotive customer companies typically require their suppliers to
monitor customer inventory and replenish parts using IV tools that use proprietary
formats to exchange data. Consequently, each supplier needs multiple IV tools to
communicate with multiple customers. Fig. 1 shows the current status of the IV tool
usage that involves costly data exchange using proprietary formats.

Fig. 2 shows the target usage scenario where IV tools interoperate in a federated
architecture. In this case, each supplier needs only one tool since the IV tools ex-
change inventory data using a standard message called SyncQuantityOnHand
(SQOH). SQOH is a Business Object Document (BOD) based on a standards specifi-
cation from the Open Application Group Integration Specification (OAGIS) [3].
These OAGIS specifications use the eXtensible Markup Language (XML) format [4].

C a

C b

IV T o o l 1

IV T o o l 1

S a

S b

In v en to ry D ata 1 to S a

In v e n to ry D a ta 1 to S b

In v e n to ry D a ta 2 to S b

In v en to ry D ata 2 to S a

IV T oo l 2

IV T oo l 2

Fig. 1. In the current status of the IV tools usage, customer Ca sends inventory data in a proprie-
tary format (Data 1) to IV Tool 1, while Cb uses another format (Data 2) with IV Tool 2. Both

Ca and Cb trade with suppliers Sa and Sb that, consequently, need to employ both IV tools

 Before interoperability can be achieved among IV tools, it is important to assure
that each IV tool consistently uses the data in the SQOH BOD specification. This is
the purpose for developing the content-level conformance testing methods. It should
be noted that these conformance tests are not necessary in the Fig. 1 scenario, since
the IV tools only operate using their own proprietary representations.

3 Types of Content-Level Conformance Testing

Content-level conformance testing is a function testing (also called functional testing)
[17] focusing on the application-level interoperability in the B2B stack [14]. We clas-
sify the conformance tests at the content level into one of the following four types that
are equally important and complementary: (1) document-verification tests, (2) infor-
mation-mapping test, (3) transaction-behavior test, and (4) scenario-based test.

 Content-Level Conformance Testing: An Information Mapping Case Study 351

Ca

Cb

IV Tool 1

IV Tool 2

Sa

Sb

Inventory Data 1 to Sa

Inventory Data 1 to Sb

Forward to Sb
Inventory Data 1 using
SQOH Representaiton

Forward to Sa
Inventory Data 2 using
SQOH Representation

Inventory Data 2 to Sa

Inventory Data 2 to Sb

Fig. 2. The figure illustrates the target scenario for the IV tools usage. Customer Ca may still
send inventory data in its proprietary format (Data 1) to IV Tool 1, while Cb may still use an-
other proprietary format (Data 2) with IV Tool 2. However, both IV Tool 1 and IV Tool 2 are
capable of exchanging the data using the SQOH BOD standard message. Therefore, suppliers
Sa and Sb. may use only a single IV tool

3.1 Document-Verification Test

The document-verification test spells out structural, syntactic, and semantic rules that
must hold for a message instance containing data exchanged between applications. A
document-verification test includes a generation and a consumption test components.
In the generation case, the tests verify whether the application under test can generate
minimally valid message instances. In the consumption case, the tests verify whether
the application under test appropriately consumes minimally valid message instances.
In both cases, valid means structurally, syntactically, and semantically correct. This
test is a pre-requisite for the three remaining tests.

3.2 Information-Mapping Test

The information-mapping test validates that the intended usage of exchanged data
within the application under test in fact conforms to the agreed upon shared seman-
tics, which is declared in the relevant content standard specification. For example, the
SQOH specification includes data definitions for Customer Id, Inventory Id, and Stor-
age Location Id. It is important that the applications exchanging the inventory data
‘interpret’ the data the same way. This means that they must support the use of the
data in a manner consistent with the content standard specification. On one hand, an
application may interpret ‘Customer’ as a manufacturing plant, ‘Inventory’ as the
quantity on hand at a specific building that has associated delivery docks within a
manufacturer’s plant, and ‘Storage Location’ as the quantity on hand at specific bins
or an area within the site. Another application, however, may interpret the ‘Customer’
as an OEM who has multiple manufacturing plants, ‘Inventory’ as quantity on hand at
a specific plant (which has one or more buildings), and ‘Storage Location’ as a build-
ing within a plant. Such inconsistent interpretation of the business data by two appli-
cations could cause the execution of inappropriate business actions.

3.3 Transaction-Behavior Test

The transaction-behavior test focuses on transactional response of the application
under test. In the transaction-behavior test, responses based on transactional success,

352 B. Kulvatunyou, N. Ivezic, and A.T. Jones

partial success, and failure conditions are verified. These conditions are referred to as
business rules, which must be agreed upon as part of the content standard specifica-
tion. For example, there is a requirement for a protocol that specifies whether passing
inventory information about an item, which is unknown to one IV system, should be
treated as a success or a failure by another IV system. In Fig. 2, if IV Tool 1 considers
the above circumstance a failure condition, while IV Tool 2 accepts partial successes,
Tool 1 might end up resending duplicate data. In addition to testing the behavior
based upon those business rules, we must test for the proper response, and the proper
set of follow-up behaviors to other typical error conditions such as boundary condi-
tions of the field’s domain [16, 18]. Transactional behavior at the content level may
potentially interact and be confused with the transport protocol level behavior. The
boundary between the two levels needs to be well established before interoperability
can be achieved.

3.4 Scenario-Based Test

While the previous types of tests typically involve only one business document at a
time (not counting the transactional response document), the scenario-based test typi-
cally involves multiple business requests and responses. The scenario-based test seeks
to verify the business logic of an application that must be common across data ex-
change steps and participating partners. It focuses on testing a high-level control flow
of business actions and consequences. Transaction flow analysis [16] and cause-and-
effect graphing [13] on an agreed upon business process could help generate test
cases. For example, in some instantiations of the IV Min/Max business scenario, a
business response to a shipment notice is expected within a certain time period when
the inventory data shows that the available quantity is below a specified minimum
level. In others, a receipt notice and purchase order transactions that are handled by
multiple, segregated applications are required. As these examples show, scenario-
based testing can be very involved, difficult to perform, and hard to verify [5].

4 Information-Mapping Test

Information-mapping tests have been developed for other data exchange standards
such as the ISO 10303, informally known as, Standard for Exchange of Product Data
(STEP) [6]. Building on the STEP testing methodology, we propose the addition of
two steps to verify the information-mapping conformance: the Input Test and the
Output Test [7]. The Input Test verifies that the application can read and correctly
interpret the standard representation. The Output Test verifies that the application can
translate correctly from its internal representation to the standard representation.

4.1 Overview of the Test Procedure

Fig. 3 illustrates the general procedure for the two testing steps. The outputs from
both the Output Test and Input Test go through a verification process to determine
conformance by checking syntactic and semantic integrity against the inputs.

 Content-Level Conformance Testing: An Information Mapping Case Study 353

Pre-processor
(Output) Testing

Component under Test

Validation
Standard
Instance

Post-processor
(Input) Testing

Component under Test

Standard
Instance

Analyze
Result

Non-standard
Format

Report

Report

Non-standard
Format

Fig. 3. General procedure for information-mapping test consists of the Output Test and Input
Test. The Output Test requires the test data in a proprietary, non-standard format. The output
from the Output Test is translated to the target standard representation, the standard instance.
The input to the Input Test is the test data in the target standard representation, the standard
instance, and the translated output is a non-standard format, a proprietary representation

4.2 Information-Mapping Test Challenges

Challenges associated with the information-mapping test include effective approaches
for (1) creating the non-standard format as an input to the Output Test, (2) analyzing
the non-standard format output from the Input Test, and (3) validating the standard
instance from the Output Test.

Applications under test typically can read the target standard representation and at
least one proprietary representation. Since the capability to read different formats
varies among components under test, a straightforward way to handle this issue would
be to create and maintain test data in multiple representations. However, this is a
costly commitment. Similarly, analyzing different non-standard outputs from the
Input Test becomes an unmanageable task. The level of difficulty in validating the
output from the component under test is related directly to the target standard repre-
sentation: the more flexible the standard is, the more complicated the validation. On
the other hand, the more formally expressed the standard semantics are, the easier the
validation.

To deal with the first and second challenges, we investigated a ‘reflexive’ testing
approach (shown in Fig. 4) for both the Input and Output Tests. This approach would
resolve issues stemming from proprietary representations because we would have to
deal with the target standard representation only. However, it turns out that this ap-
proach only verifies the integrity of data passing between the input and output inter-
faces but not the data ‘interpretation’ within the application. The approach is easily
compromised as it leaves the critical mapping mismatch undetectable (see Fig. 5).

Validation

Standard
Instance

Post-processor
(Input) Testing

Component under Test

Standard
Instance

Report Pre-processor
(Output) Testing

Component under Test

Fig. 4. An initial ‘reflexive’ testing approach was insufficient to detect mapping mismatch

354 B. Kulvatunyou, N. Ivezic, and A.T. Jones

Fig. 5. The reflexive testing approach cannot detect incorrect mapping from field A to field C
(i.e., coincidentally correct mapping error)

Our refined approach followed the argument that if either the Input Test or Output
Test is verified to conform to the specification, then the other can rely on the reflexive
testing approach. Fig.6 illustrates the proof for this argument when the Input Test is
first verified to conform. It can be shown that the same conclusion holds when the
Output Test is performed first. If this approach holds, then the challenge #1 is elimi-
nated: we need to create test data only in the target standard representation. This is a
major improvement from the STEP testing approach where test data are engineering
graphics on the pieces of paper. In the Output Test, an engineer would draw the
graphic using the tool under test and then push out the graphic data in the target stan-
dard representation.

In the next three subsections, we describe the three potential approaches to address
the second and third challenges: to verify conformance of the Input and Output Tests.

4.2.1 Logical Consistency Approach
The logical consistency approach based on formal ontologies may be used to verify
the results of both Output and Input Tests. However, an ontology of the standard
terminology is needed for the Output Test and another ontology for each application
vendor’s proprietary terminology is needed for the Input Test. In practice, however,
such ontologies are rarely available. Logical consistency alone may only confirm
validity of a document but not correctness of the mapping. Additionally, verifying the
correctness a document requires necessary and sufficient conditions for targeted
terms. However, sufficient conditions often cannot be expressed nor validated from
the data perspective alone but may need to be expressed in terms of business events.
 Consider the term ReceivedDate, a data field in the SQOH BOD. Customers typi-
cally update this field whenever they receive a shipment of ordered goods from a
supplier. Logical relationships between the ReceivedDate and other fields in the
SQOH BOD may be established such that ReceivedDate must be before the BOD’s
current date. A better definition of the field would relate this field to be on or after the
ShippedDate in the latest shipment BOD from the supplier. This requires information
from another transaction. For some test cases, this information may be available; in
others it may not. The two axioms about the ReceivedDate still represent only neces-
sary conditions. A sufficient condition may be that the ReceivedDate correspond to
the Date and Time at which the item is recorded into the inventory. If the item has to
be inspected before it is considered received, then this sufficient condition involves

 Assume that a correct mapping of a field A in the standard
representation is the field B in the proprietary representation.

A B

Application post-processes incorrectly by m apping the field
A to its proprietary representation field C . A C

Application pre-processes the same way as the post-
processing by mapping the data in C back to the standard
representation field A . It is not possible to detect that the
mapping is incorrect.

A C

 Content-Level Conformance Testing: An Information Mapping Case Study 355

Fig. 6. In the refined testing approach, we rely on showing that Input Test is verified before
using the reflexive testing approach

the execution of an event and requires knowledge about the inspection time. If the
event is not broadcast and recorded somewhere, then there is no reference data to
validate the condition. On the other hand, a research is being conduct in our team to
combine the logical consistency approach with the model-based instance equivalence
measurement as a test verification method [19]. The research have demonstrated that
the logical consistency coupled with the instance equivalence measure performs well
when sufficient conditions can be bound or assumed and have suggested a context
where the assumption may hold.

4.2.2 Human-Computer Interaction Approach
In this approach, the user or the application developer manually encodes the data from
its proprietary representation into the target standard representation for the Input Test.
Therefore, the output from the Input Test will already be in the target standard repre-
sentation. In such cases, the conformance verification can rely on one representation
that is the target standard representation for both the Input and Output tests. Here we
circumvent the second challenge. Fig. 7 illustrates this approach associated with the
Input Test, while the Output Test is based on the refined reflexive testing approach as
illustrated earlier in Fig. 6.

Post-processor
(Input) Testing

Component under Test

Standard instance Post-processor
output

Proprietary representation
Store in
proprietary
representatio

Analysis
User Representation

Generate User
Representation

Fill a standard instance form.

Standard
instance

Report

1
2

3
45

Fig. 7. Human-computer interaction-based conformance verification approach

Assume that a correct mapping of a field A in the
standard representation is field B in the proprietary
representation.

A

The post-processing has been corrected in the
application, which now maps A to B.

The reflexive testing approach is used to verify the
output test. Field A is given and the application first
post-processed correctly. The application is then
triggered to pre-process the same information. Data in
C is mapped to A of the standard representation and the
incorrect output mapping is detected.

In the Input Test, the application has been verified that
it post-processes incorrectly in that it maps A to C.

A

A

A

A

A

A

A

B

B

C

C

B

C

B

C

356 B. Kulvatunyou, N. Ivezic, and A.T. Jones

The procedure for the Input Test would be as follows. (1) The application post-
processes a test instance given in the target standard representation. (2) The applica-
tion stores the data in its proprietary representation. (3) Another procedure in the
application then renders the data for user consumption. (4) The user fills a new stan-
dard instance form. (5) The test verifies the syntax and semantic integrity against the
original standard instance given in step 1. It should be noted that procedures in step 2
and 3 are treated as a black box, which means that we assume that the two steps, par-
ticularly the rendering of data onto the screen, are done correctly. In effect, we are
testing the mapping implementation in step 1 and conceptual mapping in step 4. If a
mapping mismatch is found in step 5, the vendor has to determine if the problem lies
in the post-processor (step 1) or the conceptual mapping (step 4).

We note that this approach is not foolproof from the standpoint of coincidental cor-
rectness. Some incorrect mappings may still get through undetected if the vendor
behavior in step 4 coincides with the symmetric mapping as described in Fig. 5.
However, the chances of coincidental correctness decrease as there are two more
mappings in between, from the proprietary representation to the UI representation and
from the UI representation to the output. The test will have higher fidelity if a user
who has no knowledge of the pre- and post-processing interfaces conducts the test.

4.2.3 Event-Based Approach
The event-based approach relies on one or more sequences of messages to trigger
some events in the component under test whenever data changes. If the component
under test triggers the events as expected, then it may conform to the specification.
The event-based approach has a severe limitation in that there are few event-
triggering fields in a typical exchange messages such as BODs. The test is harder to
generate and automate the execution because multiple messages may be needed be-
fore the event is triggered and some events may be actual physical events.

5 Information-Mapping Test Case Generation Method

In this section, we describe the procedure to generate test cases for the information-
mapping conformance test. As described in [8], the heart of this procedure is the busi-
ness-case. The business case definition is described in Section 5.1. Then, a sample
mapping table is described in Section 5.2. Finally, the detail test case generation is
described in Section 5.3.

5.1 Business Case Definition

Business Case Definitions specify requisite constraints among the message elements
and attributes in terms of usage occurrence and tool-support indicators.

The ‘usage occurrence’ for a BOD indicates the minimum and maximum allowable
occurrences for each element/attribute in the context of particular data exchange (e.g.,
the IV&I project). These occurrence constraints are different from those expressed in
the BOD schema because they reflect additional requirements. The occurrences of

 Content-Level Conformance Testing: An Information Mapping Case Study 357

each element/attribute are specified conditionally on their parent elements. For exam-
ple, within a SQOH document schema, the ItemStatus (parent) element may have a
usage occurrence of 0, while the ItemStatus/Code (child) element may have a usage
occurrence of 1. The meaning is that the ItemStatus/Code element must occur if the
ItemStatus element occurs; otherwise, the ItemStatus/Code element must not occur.
The following notation applies:

- 0 means an optional element/attribute that may occur 0 or 1 time.
- C means a conditional optional element/attribute may occur 0 or 1 time, based

on conditions involving elements/attributes beyond the occurrences of their
ancestors.

- 1 means a required element/attribute that must occur once and only once.
- 0+ means an optional element/attribute that may occur zero or more times.
- C+ is similar to C where an element/attribute may occur multiple times.
- 1+ means a required element/attribute that must occur at least one time.

 The ‘tool support’ indicates optionality of elements/attributes from a functional-
requirements perspective and drives the definition of the business cases for testing
purposes. If the field's usage occurrence is required (1 or 1+), that field always re-
quires tool support (S). If the field's usage occurrence is optional or conditionally
optional (0, 0+, C, C+), the tool support indicates whether the tool must be able to
process the field, if it occurs in a message. The following notation applies:

- S means mandatory tool support for the field, i.e., the tool must be able to store,
process, and/or interpret the field.

- NS means optional tool support for the field, i.e., the sending tool may not ex-
pect the receiving tool to interpret, process, and/or store the field.

 The S and NS tool support indicators are also interpreted conditionally on the par-
ent of the element/attribute in the same way as the usage occurrence. All the fields
with mandatory tool support constitute one or more Base Business Cases dependent
upon the optional and conditional usage occurrences.

5.2 Mapping Tables

Mapping Tables specify mappings between each XML-based message ele-
ment/attribute and an intended vendor tool interface. Table 1 shows a mapping table
example with usage occurrence and tool support specifications. Each row of the
‘Element’ column is an XPATH language representation of the document structure
[9]. The row with the bold type font represents an aggregate (complex type) element,
which has children elements/attributes. The ‘Vendor Support’ column shows a vendor
support of each document schema element/attribute. The difference between the Tool
Support and the Vendor Support suggests an additional implementation requirement
for the vendor to satisfy the user’s functional requirements. For example, the vendor
support of the From and To components of the EffectivePeriod but not of the Dura-
tion component is a potential problem since the ‘Tool Support’ column indicates all
three elements must be supported by the tool.

358 B. Kulvatunyou, N. Ivezic, and A.T. Jones

Table 1. An example mapping table with usage occurrence and tool support definitions

Element Description
Usage

Occurrence
Tool

Support
Vendor
Support

Item/CustomerItemId Customer part number 1 S Yes

 Item/CustomerItemId/Id Customer part number 1 S Yes

Item/CustomerItemId/Revision

Part revision number 0 S Yes

Item/EffectivePeriod The period part will be in production C S Yes

 Item/EffectivePeriod/From Start date of part production C S Yes

 Item/EffectivePeriod/To Planned end date of production C S Yes

Item/EffectivePeriod/Duration

Planned duration of production C S No

Item/EndEffectiveQuantity Planned part cumulative quantity C NS No

Item/AvailableQuantity Quantity available for production 1 S Yes

Item/MinimumQuantity The minimum inventory the customer
wishes to have on-hand.

1 S Yes

Item/MaximumQuantity The maximum inventory the customer
wishes to have on-hand.

1 S Yes

5.3 Test Cases Generation Procedure

As mentioned previously, mandatory tool support specification defines one or more
Business Cases with different combinations of optional and conditional ele-
ments/attributes. The specification of business cases defines testing requirements for
the IV&I conformance tests.

Prior to test requirements generation, we must specify possible IV&I profiles (i.e.,
valid combinations of Tool Support and Conditional fields and type of data will be
used such as language, standard identification code, and standard code lists). The
IV&I profiles determine which individual business case makes sense to support from
the business requirements standpoint. Once the profiles are determined, test require-
ments are created to indicate data elements/attributes that must appear in test cases.

Table 2 includes some examples of business cases and associated test requirements
(TR). The numbers in the test requirement columns are ‘Occurrence in Test’. The
possible values are 1, 1+, or 0, which indicate whether the field will be instantiated in
the test data once and only once, once or more, or not at all. Business case 1 repre-
sents a baseline functional requirement as indicated in the Tool Support and the Usage
Occurrence columns. In the example, the base case has the first 3 and the last 3 ele-
ments’ occurrences in test equal to 1, because they all have the Usage Occurrence
equal 1 and the Tool Support equals S with an exception of the Revision field. The
Revision field can have the Occurrence in Test equal 1 in the base case, because there
is no condition on its occurrence. This helps reduce the number of tests.

The EffectivePeriod and its child elements as well as the EndEffectiveQuantity
have additional logic associated to deal with the plan production period or quantity;
hence, they constitute the second business case. Two test requirements are necessary
for the business case, because the conditions in the Usage Occurrence column indicate

 Content-Level Conformance Testing: An Information Mapping Case Study 359

Table 2. Example business cases and test requirements

Bus. Case 1
(Base case)

Bus. Case 2

Element

Usage
Occurrence

Tool
Support

TR1-1 TR2-1 TR2-2

Item/CustomerItemId 1 S 1 1 1

 Item/CustomerItemId/Id 1 S 1 1 1
 Item/CustomerItemId/Revision 0 S 1 0 0

Item/EffectivePeriod C S 0 1 1

 Item/EffectivePeriod/From C S 0 1 1

 Item/EffectivePeriod/To C S 0 1 0
 Item/EffectivePeriod/Duration C S 0 0 1
Item/EndEffectiveQuantity C NS 0 0 0
Item/AvailableQuantity 1 S 1 1 1
Item/MinimumQuantity 1 S 1 1 1
Item/MaximumQuantity 1 S 1 1 1

that the To and the Duration elements cannot be used at the same time. We note that
the mutually exclusive condition between the EffectivePeriod and the EndEffec-
tiveQuantity fields could constitute the third test requirement in the second business
case. However, the EndEffectiveQuantity is excluded because the user indicates that
the tool does not need to support the field.

In summary, the business case concept is a logical grouping of information ele-
ments to make the tests more manageable and understandable. In Table 2, for exam-
ple, the TR 2-1 could be combined with the TR 1-1 for the information-mapping test
because there is no conditional conflict. This could result in a smaller number of tests.

These test requirements (together with IV&I profiles) guide test data selection,
which matches sample application data with test requirements to form test data.
Then, the test data are assembled in the form of abstract (i.e., independent of a
specific format) test cases that match test requirements. The semantic validation rules
ensure valid abstract test cases.

Before generating the executable test cases, conformance level statements are cre-
ated to aggregate abstract test cases that match some conformance testing strategy.
Such a strategy identifies possible aggregation of IV&I profiles and the corresponding
business cases.

6 Experimental Results

Using the approach described above, we have developed test cases and executed them
against two IV applications. Initially, the vendors perform the document-verification
testing which is a self-test using a Reflector Tool [20]. Fig. 8 summarizes the testing
approach used for the mapping test. We validated the generated BOD instances (1)
using an XML parser against the schema using XML Spy 2004 [10], (2) with addi-
tional structural and semantic rules encoded in Schematron [11] using the XT
20020426a XSLT transformation engine [12], and (3) with a Schematron diff tool

360 B. Kulvatunyou, N. Ivezic, and A.T. Jones

using the same XT implementation. The Schematron diff tool has been developed in
this project to assist the conformance verification process. The tool takes test data,
such as a BOD instance, as input and generates Schematron rules that compare the
BOD output from the Input or Output Test with the test data. Due to its limited capa-
bility, the tool cannot completely automate the conformance verification. For exam-
ple, the current tool would raise a flag if the test data were specified in a different
order from the ones in the BOD output from the test.

The rest of this section summarizes the experiment and highlights some results
from the test with the IV applications using the test cases from the base business case
of the SQOH BOD partially illustrated in Table 2.

6.1 Results from the Input Test

At the initiation of the test, we identified a number of mapping mismatches among the
fields Sender, Receiver, CustomerPartyId, SupplierPartyId, Inventory/SiteId, and
StorageLocation/Id. We discovered these mismatches right away because they were
used for authentication and authorization. The BOD development experts define the
Sender as the OEM, the CustomerPartyId as the OEM plants, the Inventory/SiteId as a
pointer to an inventory facility inside the customer plant, and the StorageLocation/Id
as a location within an inventory facility. This means that an OEM can update “on
hand data” at the level of plant, building within a plant, and location within a build-
ing. On the other hand, the IV tool under test interpreted the Sender to be the same as
the CustomerPartyId, which points to the OEM (the Sender serves only as routing
information), Inventory/SiteId as pointing to the OEM’s plant, while StorageLoca-
tion/Id is an identifier for arbitrary locations within the plant. These mismatches were
later resolved with the team of business process experts to match interpretations sug-
gested by the IV tool vendors. In addition, the XML parser validation and the Sche-
matron rules validation indicated that a required field, Inventory/LastModification
DateTime, was missing.

The Schematron diff also raised flags, which indicated either a mapping mismatch
or a representation mismatch in a number of fields. Table 3 lists these fields and pro-
vides a list of input and output values for the tool under test. Table 4 lists the concerns
raised in each case and their resolutions, if there were any.

Pre-processor
(Output) Testing

Component under Test

Auto-generated
BOD Instance

Post-processor
(Input) Testing

Component under Test

BOD Instance

- Schema validation
- Schematron rules

validation

- Schematron diff

Manually Generated
BOD Instance

Report

Report

BOD Instance
- Schema validation
- Schematron rules

validation

- Schematron Diff

Fig. 8. Summary of the approach for BOD mapping test

 Content-Level Conformance Testing: An Information Mapping Case Study 361

Table 3. A list of fields in the SQOH with potential mapping problems as indicated by the
information-mapping test

Field Description Test value Return value
CreationDateTime BOD timestamp An arbitrary date time -

2003-11-10T11:30:47-08:00
Current date time - 2004-
01-28T14:36:02-08:00

BODId BOD unique Id in one
year

An arbitrary string -
200311101130QOH442

An arbitrary string -
637a732d6c7415ee671:f
a5e9fe859:-8000

LastShipment
Info/ShipToParty

Location code of item’s
last shipment destination

DUNS number of customer
plant – 832022258

DUNS number of sup-
plier plant – 732022158

LastShipment
Info/ShipFromParty

Location code of item’s
last shipment origin

DUNS number of supplier
plant – 732022158

DUNS number of cus-
tomer (OEM) –
132022257

LastShipment
Info/ReceivedDateTi
me

Date and Time of last
shipment received by
Customer.

An arbitrary date time
before the current date -
2004-03-02T09:30:00-05:00

The date portion of the
test value without time
information - 2004-03-
02T00:00:00-08:00

Inventory/
LastModification-
DateTime

The last time the Inven-
tory was changed via a
(Shipment) BOD coming
into the sending system
or an event happened
within the sending sys-
tem (e.g., part consump-
tion).

An arbitrary date time
before the current date -
2004-02-28T12:00:00-05:00

Current date time - 2004-
04-28T15:46:11-08:00.

Uom (unit of measure) Quantity unit of measure Each An abbreviated form –
ea

6.2 Results from the Output Test

In the Output Test, similar flags were raised with CreationDateTime, BODId, Re-
ceivedDateTime, and LastModificationDateTime. The additional observations led to
potential problems: (1) only one line item was returned when two were submitted; (2)
the LastShipmentInfo/ShipFromParty and LastShipmentInfo/ShipToParty were miss-
ing; and (3) the field Inventory/InTransitQuantity contained value zero although it
was not specified in the input. In the first case, we discovered that the test application
did not allow inventory information (for a given item and inventory site) to be associ-
ated with more than one supplier. In the second case, it seems that a similar problem
occurred in the Input Test, which could explain the observed mapping problem: If a
field A was mapped (incorrectly) to B and vice versa in the first place and if this map-
ping were fixed (after running the input test) so that now A correctly maps to C, then
the reverse output test may not have had a value in the field B to generate any output,
as observed. This demonstrates the improvement of the refined reflexive testing ap-
proach as described earlier in Fig. 6.

In the third case, the InTransitQuantity means the inventory quantity being trans-
ported to, but not yet received by, the customer at the time of issuing the SQOH mes-
sage. The difference between the data not being specified and the data using a default,
not-agreed-upon value can result in a different interpretation. When the data is not
specified, it means that the field is not used between the customer and the supplier.
However, the supplier may use that particular field with another customer. Showing
or generating a field with a default value (e.g., zero) when it is not actually in use

362 B. Kulvatunyou, N. Ivezic, and A.T. Jones

could result in an incorrect decision made by the supplier (e.g., supplier repeating the
part shipment assuming that it has not shipped the part yet). To avoid these problems,
we recommended to the tool vendors that a null field should not be generated or dis-
played to the user. The tool vendors have agreed that this is an issue which requires
attention.

Table 4. Comments and resolution to fields with potential mapping problems

Field Comment and resolution
CreationDateTime The integration scenario involves federation of business data exchanged among

tools used by customers and suppliers. It might be necessary for the traceability
purpose that the BOD CreationDateTime remains the same from customer to
suppliers. However, the tool under test generates a new timestamp for every new
BOD. A group of IV business process experts indicated that this is not an issue
because the scenario involves continuous updates and traceability is not needed.

BODId The BODId holds similar potential issue and resolution to the Creation-
DateTime.

LastShipment
Info/ShipToParty
LastShipment
Info/ShipFromParty

The mismatches of these two fields appear to result from incorrect mapping. The
use of customer (OEM) identifier instead of the plant identifier is an incorrect
mapping. Consequently, the engineer discovered that the incorrect placements of
the customer identifier into the ShipFromParty field and of the supplier identi-
fier into the ShipToParty field are mapping errors.

LastShipment
Info/ReceivedDateT
ime

The tool stores and/or retrieves only date portion of the input. This is discovered
to be the tool implementation problem.

Inventory/
LastModification-
DateTime

At the first pass, the tool did not generate this field. In the second pass, the tool
interprets and generates this field as the current date time. Both passes indicate
that the information mapping is incorrect.

Uom (unit of meas-
urement)

This error indicates the representation mismatch in the unit of measure. Typi-
cally, this field should be based on a standard. However, the business experts
have indicated that in this scenario, the IV tool should generate the Uom with
the same representation as it receives from the customer.

7 Conclusion

Four types of content-level conformance tests have been identified and described. All
of them can affect interoperability positively at the application level. Of the four, we
discussed in detail various approaches to information-mapping conformance only.
Although the logical consistency approach has attractive capabilities, it could be ex-
pensive and it has implementation limitations. The human-computer interaction ap-
proach is less expensive, but it does not guarantee absolute conformance. It helps
reduce the test data generation effort to only include the target standard representa-
tion. Currently, we are studying how an ontological approach could address the defi-
ciency in the Schematron diff tool when measuring the equivalence between the test
input and the corresponding test output.

We also described information-mapping test-case generation in detail. The current
approach relies on filling out a business case and test requirements spreadsheet manu-
ally. In the future, portions of this process will be automated as certain assumptions
for XML schema design are enforced. In the present approach, we introduced the
conditionally optional concept as distinct from the purely optional field. The result is

 Content-Level Conformance Testing: An Information Mapping Case Study 363

a reduction in the number of tests as the optional fields need not be permutated. In
addition, if the conditions are formally expressed, they can be used to automatically
enumerate the test requirements. It should be noted that the proposed test cases and
testing technique are based only on positive cases. We envision that the data valida-
tion testing techniques [15] might be useful for information-mapping test using nega-
tive test cases. The approach would rely on the implication that if the application
correctly identifies an error, then it is likely that it has correctly mapped/interpreted
the fields. However, there are subtle issues that require further studies and experimen-
tation. An apparent issue is that the applicability of the test may be application spe-
cific. That is, some error conditions are not discovered by the application but by a
middleware component such as a generic schema-based data parser. Another issue is
that the content standards are created for flexible usage, with only a small number of
usage conditions specified. In addition, these usage conditions could be application
specific. In such situations, the only useful conditions could be the common business
rules used in the transaction-behavior test and the scenario-based test.

Finally, we discussed experimental results of a mapping-conformance test using
the human-computer interaction approach to verify the conformance of IV tool im-
plementations with IV&I SQOH BOD specification. We witnessed a strong need for
repeated cycles of testing whenever the vendors updated their tools in response to new
conformance requirements or bug fixes. The feedbacks received from the IV tool
vendors indicate significant benefits from the conformance testing runs, which identi-
fied a number of problems and inconsistencies. Currently, we are planning to run
experiments to analyze benefits of performing the content-level conformance tests as
a prerequisite for interoperability testing and system deployment.

Disclaimer

Certain commercial software products are identified in this paper. These products
were used only for demonstration purposes. This use does not imply approval or en-
dorsement by NIST, nor does it imply that these products are necessarily the best
available for the purpose.

References

1. Automotive Industry Action Group Web Site, accessed December 2004. Available online
via <http://www.aiag.org>

2. The Manufacturing Business-to-Business Interoperability Testbed Web Site, accessed De-
cember 2004. Available online via <http://www.mel.nist.gov/msid/b2btestbed/>

3. The Open Application Group: Open Application Group Integration Specification version
8.0 (2002). Available online via <http://www.openapplications.org/downloads>

4. World Wide Web Consortium: Extensible Markup Language (XML) 1.0 (Third Edition)
W3C Recommendation (February 2004).

5. Morris, K.C., Flater, D. (September 1999): Standards-based Software Testing in a Net-
Centric World. Proceedings of Ninth International Workshop on Software Technology and
Engineering Practice, Computer Society, Pittsburgh, PA 115-122

364 B. Kulvatunyou, N. Ivezic, and A.T. Jones

6. Kemmerer, S.J. (July 1999). STEP the Grand Experience, National Institute of Standards
and Technology Special Publication 939.

7. Morris, K.C., Mitchell, M.J., Barnard, A. (May 1993): Validating STEP Application Mod-
els at the National PDES Testbed.

8. Ivezic, N., Kulvatunyou, B.S., Jones, A.T., Frechette, S., Cho, H., and Jeong, B. (October
2004): An Interoperability Testing Study: Automotive Inventory Visibility and Interopera-
bility. Fourteenth E-Challenge Conference, Vienna, Austria, 551-558.

9. World Wide Web Consortium: XML PATH Language Version 1.0 (November 1999).
Available online via <http://www.w3.org/TR/xpath>

10. Altova GmbH: XML Spy 2004 Professional Edition
11. Jelliffe, R.: The Schematron Assertion Language 1.5. Academia Sinica Computing Center

(2000). Available online via
12. Lindsey, B.: XT version 20020426a, Extensible Stylesheet Transformation Implementation

in Java (2002). Available online via <http://www.blnz.com/xt/index.html>
13. Elmendorf, W.R. (1973) : Cause-Effect Graph in Functonal Testing, TR-00.2487. IBM

Systems Development Division, Poughkeepsie, NY.
14. Kulvatunyou, B.S., Ivezic, N., Martin, M.J., Jones, A.T (october 2003) : A Business-to-

Business Interoperability Testbed: An Overview. The 5th International Conference on
ELECTRONIC COMMERCE (ICEC), Pittsburgh, PA.

15. Beizer, B. (1983): Software Testing Techniques. Van Nostrand Reinhold electri-
cal/computer science and engineering series, NY.

16. Beizer, B. (1990): Software Testing Techniques, 2nd Ed. Van Nostrand Reinhold, NY.
17. Beizer, B. (1995): Black-Box TestingJohm Wiley & Sons, NY.
18. Myers, G.J. (1979): The Art of Software Testing. Wiley Series in Business Data

Processing.
19. Anicic, N., Ivezic, N., and Jones, A (Feburary 2005) : An Architecture for Semantic En-

terprise Application Integration Standards. First International Conference on Interoperabil-
ity of Enterprise Software and Applications, Geneva, Switzerland.

20. Accordare Web Site, accessed April 2004. Available at <http://www.accordare.com>

Quiescence Management Improves
Interoperability Testing

Alexandra Desmoulin and César Viho

IRISA/Université de Rennes 1,
Campus de Beaulieu,
35042 Rennes Cedex,

France
{adesmoul, viho}@irisa.fr

Abstract. At any level of computer networks, interoperability testing
generally deals with several components that communicate while trying
to provide a designated service. When a component remains silent, the
assigned testing verdict is generally Fail, assuming that its behavior is
non-conformant. Sometimes, this silence may be anticipated given the
component’s specifications. In these cases, the fail verdict is not unsatis-
factory. In this paper, we show that “quiescence management” improves
interoperability testing. Based on formal definitions of interoperability
testing, we introduce new definitions that take into account the possi-
ble quiescence of components under test. Through several examples and
scenarios, we show that these new definitions detect non-interoperability
cases with higher precision. Moreover, these new definitions more clearly
distinguish specification-driven quiescences from others, leading to unbi-
ased interoperability tests with accurate verdicts.

1 Introduction

Different methods have been developed to test network components. Among
these methods, we will focus on conformance and interoperability testing. Con-
formance testing evaluates the ability of a component to behave as described
in its specification, generally a standard. Interoperability testing deals with the
ability of two or more components to interact in an operational environment.
This notion can be intuitively defined by the capacity of two or more compo-
nents to behave as described in their specification during their interaction, to
communicate correctly together, and to provide the foreseen service.

Conformance testing is precisely characterized : testing architectures and con-
formance relations [1, 2, 3, 4] were defined. This allows automatic test generation
and execution. This is not the case for interoperability testing although some
definitions exist in [5, 6, 7]. Two main reasons explain the current situation :
interoperability is more often regarded as being a practical requirement than
conformance is. Yet conformance testing is also considered as being prerequisite
to the achievement of interoperability.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 364–378, 2005.
c© IFIP 2005

Quiescence Management Improves Interoperability Testing 365

Conformance and interoperability concern the same objects (implementa-
tions, specifications, etc). For this reason, the different attempts to define the
notion of interoperability use the concepts and theory defined for conformance
testing. In [5], interoperability testing architectures and interoperability relations
were defined. An interoperability relation defines the conditions that two imple-
mentations must satisfy to be considered interoperable. These interoperability
definitions do not manage possible quiescence of implementations and this leads
to incorrect verdicts during testing. For a black-box testing point of view, an
implementation is quiescent when no observable event occurs. Quiescence may
be foreseen in the specification. In this case, quiescence of an implementation
should not be considered as a wrong behaviour. Based on the interoperability
relations defined in [5], new interoperability relations with quiescence manage-
ment have been defined. We show that these new relations can help in solving
this problem.

This paper is structured as follows. First the model and notations used for
the interoperability definitions are presented in Section 2. In Section 3, we sum-
marize the interoperability definitions of [5]. Some testing results obtained with
these definitions are presented in Section 4. The new interoperability relations
with quiescence management are defined in Section 5. Then, the new testing
results with these relations are presented in Section 6 showing the contribution
of quiescence management in interoperability testing. Finally, conclusion and
future work are to be found in Section 7.

2 Model and Notations

The model used to provide formal interoperability definitions, and which we
consequently use, is the model of the IOLTS (Input-Output Labeled Transition
System) [4]. We use it to model specifications. As usual in the black-box testing
context, we also need to model implementations, even if their behaviors are
supposedly unknown. They will also be represented by an IOLTS.

2.1 IOLTS Model

Definition 1. An IOLTS is a tuple M = (QM ,ΣM ,ΔM , qM
0) where

– QM is the set of states of the system and qM
0 ∈ QM is the initial state.

– ΣM denotes the set of observable (input and/or output) events on the
interaction points (with the environment) of the system. We note p?a for
an input event and p!a for an output event with p as an interaction point on
which the event is executed and a as the message.

– ΔM ⊆ QM × (ΣM ∪ τ) × QM is the transition relation, where τ
∈ AM

denotes an internal event. We note q
α→M q′ for (q, α, q′) ∈ ΔM .

Let us consider an IOLTS M , and let α ∈ΣM with α = p.{?, !}.m, μi ∈ ΣM∪τ ,
σ ∈ (ΣM)∗, q, q′, qi ∈ QM:

366 A. Desmoulin and C. Viho

– q
μ1...μn−→ M q′ =Δ ∃ q0 = q, q1..., qn = q′,∀i ∈ [1, n], qi−1

μi→M qi.
– q

ε⇒M q′ =Δ q = q′ or q
τ...τ−→M q′.

– q
α⇒M q′ =Δ ∃ q1, q2, q

ε⇒M q1
α→M q2

ε⇒M q′.
– q

σ⇒M q′ =Δ q
μ1···μn=⇒ M q′ =Δ ∃ q0 = q, q1 . . . , qn = q′,∀i ∈ [1, n], qi−1

μi⇒M

qi, σ = μ1 · · ·μn.
– out(q) =Δ {α ∈ ΣM

O | ∃ q′ and q
α−→M q′} is the set of outputs from q.

– q after σ =Δ {q′ ∈ QM | q σ⇒M q′} is the set of states which can be reached
from q by the sequence of actions σ. By extension, all the states reached
from the initial state of the IOLTS M is (qM

0 after σ) and will be noted by
(M after σ). In the same manner, Out(M,σ) =Δ out(M after σ).

– Traces(q) =Δ {σ ∈ (ΣM)∗ | q after σ
= ∅} is the set of possible observable
traces from q. And, Traces(M) =Δ Traces(qM

0).

– μ̄= p!a if μ = p?a and μ̄ = p?a if μ = p!a. For internal events, τ̄ = τ .

2.2 Some Definitions

In interoperability testing, we usually need to observe some specific events among
all possible traces of an IUT. These traces, reduced to the expected messages,
can be obtained by a projection of those traces on a set. This latter being used
to select the expected events.

Definition 2. Let us consider an IOLTS M , a trace σ ∈ (ΣM)∗, α ∈ ΣM ,
and a set X. The projection of σ on X is noted by σ/X and is defined by :
ε/X = ε, (α.σ)/X = σ/X if α
∈ X, and (α.σ)/X = α.(σ/X) if α ∈ X.

Definition 3 (Projection of an IOLTS on a set). Let us consider an IOLTS
M = (Q,Σ,Δ, q0), a set X. The projection of M on the set of events X is noted
by M/X and is defined by :

– MX = (Q,ΣX ,Δ(X), q0)
∀(q1, a, q′1) ∈ Δ, a ∈ X, (q1, a, q′1) ∈ Δ(X), a ∈ ΣX

∀(q1, a, q′1) ∈ Δ, a /∈ X, (q1, τ, q
′
1) ∈ Δ(X), a /∈ ΣX

– M/X = (M/X,ΣM/X ,ΔM/X , qX
0) is the IOLTS MX obtained after deter-

minization :
• QM/X = 2Q

• ΣM/X = Σ \ {a ∈ Σ|a /∈ ΣX}.
• qX

0 = q0 after ε
• ΔM/X is obtained as : (p, a, p′) ∈ ΔM/X if p = p′ after a, with p, p′

∈ 2Q and a ∈ ΣM/X .

Interoperability testing concerns the interaction of two or more implemen-
tations. In order to provide a formal definition of interoperability, we need to
model interaction. This is done in the definition 4. In this definition, ΣU and ΣL

are the set of events on the different interaction points as described in the testing
architecture (figure 1 of section 3.1).

Quiescence Management Improves Interoperability Testing 367

Definition 4 (Synchronous interaction ‖S). The synchronous interaction of
two IOLTS M1 and M2 is noted M1‖SM2 = (QM1 ×QM2 , ΣM1‖SM2 , ΔM1‖SM2 ,
(qM1

0 ,qM2
0)) with ΣM1‖SM2 ⊆ ΣM1∪ ΣM2 , and the transition relation ΔM1‖SM2

is obtained as follows : ∀(q1, q2) ∈ QM1 ×QM2 ,

(q1, a, q′1) ∈ ΔM1 , a ∈ ΣM1
U ∪ {τ}

((q1, q2), a, (q′1, q2)) ∈ ΔM1‖SM2
,
(q2, a, q′2) ∈ ΔM2 , a ∈ ΣM2

U ∪ {τ}
((q1, q2), a, (q1, q′2)) ∈ ΔM1‖SM2

(1)

(q1, a, q′1) ∈ ΔM1 , (q2, ā, q′2) ∈ ΔM2 , a ∈ ΣM1
L , ā ∈ ΣM2

L

((q1, q2), a, (q′1, q
′
2)) ∈ ΔM1‖SM2

(2)

3 Summary of Quiescence-Less Interoperability
Relations

Interoperability testing can be defined as a set of procedures used to verify
if two or more implementations interact correctly. This test is not precisely
characterized as conformance testing and is often considered as a pragmatic
and a practical requirement. But different attempts to define interoperability
exist [5, 8, 9, 7, 10, 6]. For the quiescence management, we used interoperability
definitions of [5] called interoperability relations. These relations are based upon
ioconf conformance relation and do not manage quiescence. These relations
consider the testing architecture presented in section 3.1 and are presented in
Section 3.2.

3.1 Test Architectures

In order to provide a formal definition of interoperability testing, we have taken
into consideration the general testing architecture of figure 1. Different architec-
tures may be obtained from this architecture as described in [11, 8, 7, 12].

This testing architecture is composed of two interacting IUTs. Each of these
two IUTs has two kind of interfaces : UIi and LIi which are the Upper In-
terfaces and the Lower Interfaces through which the implementation commu-
nicates with its upper and lower layers. Testers are linked to these interfaces :
UTi (Upper Tester) and LTi (Lower Tester). Depending on the accessibility of
the interfaces, these testers can or can not exist. Thus, we obtained different
testing architectures. The unilateral, bilateral and global interoperability test-
ing architectures respectively correspond to the architecture with testers which
observe/control interfaces of a unique implementation, both implementations
separately or both implementations together. We can also distinguish architec-
tures according to the accessibility of upper or lower interfaces. In this paper, we
only consider the case of the accessibility of both interfaces : this architecture is
called total.

With this architecture, the set ΣM of observable events of the definition
1 can be decomposed as follows : ΣM = ΣM

U ∪ΣM
L , where ΣM

U (resp. ΣM
L) is

the set of messages exchanged on the upper (resp. lower) interface. ΣM can be

368 A. Desmoulin and C. Viho

LT1

UT1

IUT2

Tester1 (T1)

UP1

UI1 UI2

LP1

LT2

UT2

UP2

LP2

Test System (TS)

SUT (System Under Test)

IUT1

Tester2 (T2)

LI1 LI2
Lower Level

Fig. 1. General architecture of interoperability testing

also decomposed in order to distinguish input messages from output messages.
ΣM = ΣM

I ∪ΣM
O , where ΣM

I (resp. ΣM
O) is the finite set of input (resp. output)

messages.

3.2 Interoperability Relations

In [5], different interoperability relations have been defined. These relations for-
mally specify conditions to be satisfied by two implementations in order to be
considered interoperable. These interoperability relations are based upon a con-
formance relation : the ioconf conformance relation defined in [4] as follows

Definition 5 (Conformance Relation ioconf).
I ioconf S =Δ ∀σ ∈ Traces(S), Out(I, σ) ⊆ Out(S, σ) .

Remark: In the conformance testing theory, the implementations are input-
completed : in each state, an implementation is supposed to be able to receive any
input message on any (upper or lower) interface. In the context of interoperability
testing, testers can only control the upper interfaces, but not the lower interfaces
which are only observable. Thus, the input-completion of the implementations
concerns only events on the upper interfaces in this context.

The interaction considered is asynchronous : Mi‖Mj = Mi‖SE‖SMj where E
represents the asynchronous environment between the two IOLTS.

Definitions of the Interoperability Relations Without Quiescence Man-
agement. Different interoperability relations were defined depending of the con-
sidered testing architecture and thus, of the access on the different interfaces.
The unilateral total interoperability relation R1 consider the case where we have

Quiescence Management Improves Interoperability Testing 369

only access to one IUT. This relation is based on the fact that, during the inter-
action between I1 and I2, the least we can expect from the implementation I1

is to behave as expected according to its specification S1.

Definition 6 (Unilateral Total Interoperability Relation R1).
R1(I1, I2) =Δ ∀σ1 ∈ Traces(S1),∀σ ∈ Traces(S1‖S2), σ/ΣS1 = σ1 ⇒

Out((I1‖I2)/ΣI1 , σ) ⊆ Out(S1, σ1).

The relation R1 can be applied independently to I2 (based on the specifica-
tion S2). The bilateral lower interoperability relation corresponds to the relation
R1 applied for both I1 and I2.

Definition 7 (Bilateral Total Interoperability relation R2).
R2(I1, I2) =Δ R1(I1, I2) ∧R1(I2, I1).

The global total interoperability relation R3 is based on the global behavior of
the interactions between respectively : specifications S1‖S2 and implementations
I1‖I2.

Definition 8 (Global Total Interoperability relation R3).
R3(I1, I2) =Δ ∀σ ∈ Traces(S1‖S2), Out(I1 ‖I2, σ) ⊆ Out(S1‖S2, σ).

Remark: In [5], the formal interoperability relation definitions do not corre-
spond to their literal definitions. Indeed, different relations have been defined
corresponding to the different possible testing architectures. Thus, the interop-
erability relations must consider only events observable with the corresponding
architecture during testing. But the interoperability relations were written in
such a way that the traces also include non-observable events. For this reason,
the formal definition of the interoperability relations were rewritten. The inter-
operability relations presented above are the corrected relations.

The properties of the interoperability relations proved in [5] are still true
because the proofs were based on the literal definitions of the relations. Some of
these properties are :

– R3 ∼=R R2 : this equivalence suggests that we may avoid the construction
of the interaction of the specification.

– I1 ioconf S1 ⇒ R1(I1, I2), and I1 ioconf S1 ∧ I2 ioconf S2 ⇒ R2(I1, I2) =
R3(I1, I2) : two implementations conformant to their specification in the
sense of ioconf are considered interoperable with these interoperability re-
lations.

4 Interoperability Testing Without Quiescence
Management: Some Examples

On the example of the figure 2, let us consider these four interactions : I1 with
I4, I2 with I4, I3 with I4, and I1 with I5. The results with the interoperability
relations on these interactions are :

370 A. Desmoulin and C. Viho

0

51

2

3 4

U?A

l!a

l?cl?b

l?aU!B U!C

l?a l!b
l!c

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

U?A U?A U?A

l!a l!a l!a

l?a l?a

l!b l!c

3 3 3

4 4

l?b l?b l?b

U!CU!B

I2 I3 I4 I5I1

Fig. 2. Specification S and implementations I1, I2, I3, I4 and I5

– For I1 and I4, we have : R1(I1, I4), R1(I4, I1), R2(I1, I4) and R3(I1, I4).
– For I2 and I4, we have : ¬R1(I2, I4),R1(I4, I2), ¬R2(I2, I4) and ¬R3(I2, I4).
– For I3 and I4, we have : R1(I3, I4), R1(I4, I3), R2(I3, I4) and R3(I3, I4).
– For I1 and I5, we have : R1(I1, I5), R1(I5, I1), R2(I1, I5) and R3(I1, I5).

This last result is unsatisfactory given I5 sends a message that is unexpected
in I1. With an intuitive definition of interoperability, I1 and I5 should be con-
sidered non-interoperable.

Given the test architecture considered, the interoperability scenario (for each
interaction) begins with the tester T1 sending A to the upper interface of I1

(or I2). Then, the testers can not control the scenarios but only observe the
message sent and received on the lower interfaces (communication between the
two IUT). Testers can also receive messages sent by the IUT on its upper
interface.

Notation: for the scenario description, the events in the traces are noted:

• For the exchange between a tester and an implementation Ux{!, ?}m
where x is the number of the concerned IUT, {?, !} the kind of the message from
the point of view of the IUT, and m the message.

• For the exchange between the two implementations in interaction, the
sending and the reception are modeled as explained in the definition 1 (cf. Sec-
tion 2.1) with the number of the IUT concerned.

Thus the scenarios of interaction are :

1. For I1 and I4, we have : U1?A.l1!a.l4?a.l4!b.l1?b.U1!B.
2. For I2 and I4, we have : U2?A.l2!a.l4?a.l4!b.l2?b.U2!C.
3. For I3 and I4, we have : U3?A.l3!a.l4?a.l4!b.l3?b.
4. For I1 and I5, we have : U1?A.l1!a.l5?a.l5!c (with no reception of c by I1).

For the second scenario (interaction of I2 and I4), the verdict of the test (when
testing R1(I2, I4) or R3(I2, I4)) is FAIL because of the output U2!C which is not
allowed in the specification S2 after the trace U2?A.l2!a.l4?a.l4!b.l2?b (only U2!B
is allowed after this trace).

Quiescence Management Improves Interoperability Testing 371

For the other scenarios above (1, 3 and 4), the verdicts are also FAIL whereas
the corresponding interoperability relations are verified. The reason is the ab-
sence of quiescence management in the interoperability relations used as a basis
for the tests. Indeed, in practice, quiescence is observed with timers : after each
event a timer is started and a situation of quiescence is observed if a timeout
occurs (the timer is restarted after each other event). All the scenarios presented
terminate : after the last event takes place, the implementation does not return
to the initial state. Thus, after the last event of the scenario, a timer is started.
As there is no other event that can occur, a timeout is observed. The verdict
is FAIL because this timeout (and quiescence corresponding) is considered as a
not-allowed output of the implementations in interaction. But this quiescence
can be foreseen in the specifications. In this case, the verdict must not be FAIL.
For this reason, it is necessary to manage quiescence in interoperability relations.

5 Quiescence Management

To manage quiescence, we need to model this kind of event. The definition 1
of the IOLTS does not model quiescence. This is done in Section 5.1. Then,
the operations on the IOLTS used in the interoperability relations are rewritten
with quiescence management in Sections 5.2 and 5.3. Finally, the interoperability
relations with quiescence management are defined section 5.4.

5.1 Quiescence and Suspensive IOLTS

Three main situations lead to quiescence of a system :

– A deadlock corresponds to a state after which no event is possible : q ∈
deadlock(M) =Δ Γ (q) = ∅.

– An outputlock corresponds to a state after which only transitions labeled
with input exist and none of these inputs are observed. This is noted : q ∈
outputlock(M) =Δ Γ (q) ⊆ ΣM

I .
– A livelock corresponds to a loop of internal events : q ∈ livelock(M) =Δ

∃τ1, · · · , τn, q
τ1,··· ,τn→ q.

Thus, q ∈ quiescent(M) =Δ q ∈ deadlock(M) ∨ q ∈ outputlock(M) ∨ q ∈
livelock(M). A quiescence state q ∈ quiescent(M) is modeled by q

δ→M q where δ
is treated as an observable output event. The obtained IOLTS is called suspensive
IOLTS [13, 2] and is noted Δ(M).

To study quiescence management in the interoperability relations, we consider
the conformance relation ioco [13].

Definition 9 (Conformance Relation ioco). I ioco S =Δ ∀σ ∈ STraces(S)
(= Traces(Δ(S))),
Out(Δ(I), σ) ⊆ Out(Δ(S), σ)

Quiescence management in some operations used in the interoperability rela-
tions of [5] needs to be studied. These operations are the projection of an IOLTS
on a set and the interaction between implementations.

372 A. Desmoulin and C. Viho

5.2 Projection with Quiescence

To calculate the projection of an IOLTS M on a set X, the problem is to preserve
information on all quiescent states. The steps to calculate this projection are :

1. Calculation of Δ(M)
2. Substitution of events of X̄ by internal events
3. Calculation of livelocks : these livelocks can be due to the precedent step.
4. Determinization

The steps 2 and 4 are the two steps of the calculation of the definition 3. The
steps 1 and 3 are necessary to preserve all information on quiescence.

5.3 Interaction with Quiescence

The method chosen to calculate the interaction of two IOLTS with quiescence
management is a method with calculation of the suspensive IOLTS followed by
the calculation of the interaction. The steps to calculate the interaction with
quiescence on M1 and M2 are :

1. Calculation of Δ(M1) and Δ(M2).
2. Then the following rules are applied :

– Rules (1) and (2) of the definition 4 of the Section 2.2 i.e. propagation
of events on the upper interface (rule (1)) and mapping of events on the
lower interfaces (rule (2)).

– propagation of quiescence modeled in the two IOLTS : a quiescent state is

noted (q1, q2)
δ(1)→ M (q′1, q

′
2) if (q1

δ→M q′1) ∈ Δ(M1), (q1, q2)
δ(2)→ M (q′1, q

′
2)

if (q2
δ→M q′2) ∈ Δ(M2), and we have (q1, q2)

δ→M (q′1, q
′
2) if ((q1, q2)

δ(1)→ M

(q′1, q
′
2)) ∧ ((q1, q2)

δ(2)→ M (q′1, q
′
2)).

– an other rule is necessary to model all quiescent states. This rule is ap-
plied on some particular states. The transitions starting from such states
are labeled with output and input on the lower interface. Thus, no qui-
escence is modeled on the state. But if only the input events can be
mapped with output events, quiescence must be modeled in the corre-
sponding state of the interaction.

3. Calculation of all the deadlocks not already modeled.

Remark: Another method to calculate this interaction is the calculation of the
interaction with the rules of the definition 4 followed by the calculation of qui-
escence on the interaction. But we observe that some situations of quiescence
modeled, which are necessary for quiescence management in interoperability test-
ing, are not modeled with this method. These situations correspond to the case
where two kinds of events are possible : inputs on the upper interface of one of
the implementations (Ii) and outputs on the upper interface of the other imple-
mentation (Ij). In this case, quiescence of Ii can be allowed but not quiescence
of Ij . The corresponding δ(i) is only modeled with the chosen method of inter-
action calculation.

Quiescence Management Improves Interoperability Testing 373

Notation: In the traces of a scenario, the events of the lower interface were noted
la!m.lb?m and the considered interaction was asynchronous. In the following
study on interoperability testing with quiescence management of the Section 6,
the considered interaction is synchronous. Thus, to model the mapping of the
outputs and inputs on the lower interface, we note la!m(lb?m) or la?m(lb!m) for
a point of view from Ia and lb!m(la?m) or lb?m(la!m) for a point of view from Ib.

5.4 Interoperability Relations with Quiescence Management

With these operations (projection and interaction with quiescence), new inter-
operability relations can be defined. The different between these new relations
noted Rδ

x and the relations of section 3.2 is the quiescence management : for
example, Rδ

1 can be deduced from R1 by using the projection and interaction
of sections 5.2 and 5.3.

Definition 10 (Unilateral total interoperability relation).
Rδ

1(I1, I2) =Δ ∀σ1 ∈ Traces(Δ(S1)),∀σ ∈ Traces(S1‖δS2), σ/ΣS1 = σ1 ⇒
Out((I1‖δI2)/ΣS1 , σ) ⊆ Out(Δ(S1), σ1).

The other interoperability relations with quiescence management can be writ-
ten in the same way from the interoperability relations of section 3.2.

6 Interoperability Testing with Quiescence Management

The different scenarios of interaction presented in Section 4 are studied with
quiescence management in this section.

6.1 Interaction Between I1 and I4

This example of interaction corresponds to the figure 3. Allowed quiescence is
modeled on the specification : the concerned states are the states 0 and 2 with

U?A

l?a
l!c

l!b

0

1

2

3 4

5

U!B
U!Cl?al!a

l?b l?c

δ

δ 0

1

2

3

4

0

1

2

δ

δ

δ

δ

δ

U?A

l!a

l?b

U!B

l?a

l!b

Δ (I (I 4)Δ1)

0,0

1,0

2,1

4,2

3,2

U1?A

l1!a

l1?b

U1!B

δ

δ(1)

δ(2)

δ(1)

δ(2)

δ(2)δ(1)

(2)(1)δ

(I 1 (I 4))||δ

δ

Fig. 3. Interaction between I1 and I4

374 A. Desmoulin and C. Viho

outputlocks. Quiescence is also modeled on the IUT and on the interaction of I1

and I4. We can notice that this interaction ends with a deadlock. The results
for the interoperability relations with quiescence management on the interaction
of I1 and I4 are : Rδ

1(I1, I4), Rδ
1(I4, I1), Rδ

2(I1, I4) and Rδ
3(I1, I4). All outputs

are allowed in the specification, but also all quiescent states. Thus, with the inter-
operability relations with quiescence management, this result of interoperability
is preserved in this case.

The scenario of the interaction of I1 and I4 for a unilateral total interoper-
ability relation is : U1?A.l1!a.l1?b.U1!B. Then this scenario terminates with a
timeout (due to the deadlock at the end of the interaction). But this deadlock
is allowed in the specification S1 : the state 4 of I1 corresponds to the state 0 of
the specification where an outputlock is modeled.
The scenario of the interaction of I1 and I4 for a global total interoperability rela-
tion is : U1?A.l1!a(l4?b).l1?b(l4!b).U1!B followed by a timeout. As the quiescence
of the state 0 of S1 is propagated to the interaction of the two specifications, the
deadlock at the end of the scenario is also allowed for this architecture and the
scenario based on the corresponding interoperability relation.

Conclusion: As quiescence at the end of the scenario is allowed in the spec-
ifications, the verdict of the test is PASS. Thus with quiescence management,
the verdict corresponds to the result of the interoperability relations : all the
interoperability relations are verified for this interaction, and the verdicts of the
test based on these relations are PASS.

6.2 Interaction Between I2 and I4

The results with the interoperability relations with quiescence management
on the interaction of I2 and I4 are : ¬Rδ

1(I2, I4), Rδ
1(I4, I2), ¬Rδ

2(I2, I4) and
¬Rδ

3(I2, I4). The result of non-interoperability is due to the output C on the
upper interface of I2 which is not allowed in S2 after the executed trace.

The scenario of the interaction of I2 and I4 is : U2?A.l2!a(l4?b).l2?b(l4!b).U2!C.
The verdict of this scenario is FAIL because of the output U1!C which is not
allowed in S1. For the unilateral total architecture in the point of view of I4, the
timeout is allowed in the specification S4 and the verdict is PASS : Rδ

1(I4, I2).

Conclusion: Quiescence management does not change this verdict of non-
interoperability due to a non-authorized output (for the unilateral total architec-
ture in the point of view of I2 and the global total architecture). In this scenario,
the verdicts also correspond to the result of the corresponding interoperability
relations.

6.3 Interaction Between I3 and I4

For this interaction (cf. figure 4), we have I3 ioconf S but ¬I3 ioco S : the
deadlock at the end of I3 is not allowed in the corresponding state (state 3)
of S. The results with the interoperability relations with quiescence management
on the interaction of I3 and I4 are : ¬Rδ

1(I3, I4), Rδ
1(I4, I3), ¬Rδ

2(I3, I4) and
¬Rδ

3(I3, I4).

Quiescence Management Improves Interoperability Testing 375

U?A

l?a
l!c

l!b

0

1

2

3 4

5

U!B
U!Cl?al!a

l?b l?c

δ

δ 0

1

2

3

0

1

2

δ

δ

δ

δ

U?A

l!a

l?b

l?a

l!b

Δ (I (I 4)Δ)

0,0

1,0

2,1

3,2

U1?A

l1!a

l1?b

δ(1)

δ(2)

δ(1)

δ(2)

(2)(1)δ

(I (I 4))||δ

δ
3

3

δ δ

δ(1)

Fig. 4. Interaction between I3 and I4

The scenario of the interaction of I3 and I4 is : U3?A.l3!a(l4?b).l3?b(l4!b).
The timeout at the end of this scenario does not correspond to a quiescent state
of the specification S3 (but an outputlock exists in the specification of I4 for the
state corresponding to the state 4 of this implementation).

Conclusion: For this scenario, the verdict depends of the tested relation. For a
global total interoperability relation or a unilateral total interoperability relation
in the point of view of I3, the verdict is FAIL. This verdict is due to the timeout
at the end of the scenario. Indeed, no quiescence is foreseen in this state in the
specification S3 because in this state, I3 must send the output B on its upper
interface. For a unilateral total interoperability relation in the point of view
of I4, the verdict is PASS. Quiescence is allowed in S4 after the trace l4?a.l4!b.
All these verdicts correspond to the results of the considered interoperability
relations for the tests.

6.4 Interaction Between I1 and I5

This interaction (cf. figure 5) corresponds to a case for which the results with
the interoperability relations of [5] were not satisfying. All interoperability re-
lations were verified but the message sent by I5 does not correspond to the

0

1 5

3 4

2

U?A

l!a

l?b
l?c

l?a

l?a
l!c

l!b

U!CU!B

δ

δ

0 0

1 1

2 2

3

4

U?A l?a

l!cl!a

l?b

U!B

0,0

1,0

2,1

U1?A

(l2?a)
l1!a

δ(2)

δ(1)

δ

δ(2)

δ δ(1)

δ

δ

δδ

δ

Δ(Ι1) Δ(Ι5)

Δ(Ι1)||Δ(Ι5)

Fig. 5. Interaction between I1 and I5

376 A. Desmoulin and C. Viho

message expected by I1. The results with the interoperability relations with qui-
escence management on the interaction of I1 and I5 are :Rδ

1(I1, I5), ¬Rδ
1(I5, I1),

¬Rδ
2(I1, I5) and ¬Rδ

3(I1, I5). These results correspond more to the practical def-
inition and intuitive notion of interoperability.

The scenario of the interaction of I1 and I5 is : U1?A.l1!a(l5?a). The mes-
sage l5!c is not sent by I5 because in the synchronous context an implementation
can not send a message if it is not waited by the implementation in interaction.
Thus, the scenario ends after the exchange of the message a between I1 and I5

with a deadlock.

Conclusion: For this scenario, the verdict also depends of the tested relation.
For a global total interoperability relation or a unilateral total interoperability
relation in the point of view of I5, the verdict is FAIL. This verdict is due to the
timeout at the end of the scenario. No quiescence is allowed at the corresponding
state of the specification S5 after the input a : an output must occur. This
verdict correspond to the results of the considered interoperability relations :
these results are more satisfying because these two implementations are not
considered interoperable. For a unilateral total interoperability relation in the
point of view of I1, the verdict is PASS. Quiescence is allowed in S1 after the
trace U1?A.l1!a. Thus, the non-interoperability is not detected in the point of
view of I1.

6.5 Synthesis and Main Results

After the study of these interactions, the following properties of interoperability
relations with quiescence management can be highlighted:

– With quiescence management, the verdicts of testing scenarios correspond to
the results of the considered interoperability relations. This was not the case
without quiescence management. Indeed, all timeouts gave a FAIL verdict,
but these timeouts can be allowed in the specification and do not correspond
to an error in the implementations.

– With quiescence management, we can have two conformant implementations
that are not considered interoperable. The interaction of I1 and I5 can be
taken as example for this property.

– The results for the interoperability relations (and the verdicts of the tests)
correspond more to the practical definition and intuitive notion of inter-
operability. Two implementations considered non-interoperable with the in-
teroperability relations without quiescence management remain non-inter-
operable with the new interoperability relations. But two other cases of
non-interoperable exist with the interoperability relations with quiescence
management. The first case corresponds to the non-conformance of one of
the implementations due to quiescence not allowed : an example is the in-
teraction of I3 and I4 where ¬I3 ioco I4. The second case corresponds to
the interaction of an implementation who wants to send a message which is
not expected by the implementation in interaction : example of I1 and I5.
These two cases are no longer considered interoperable with the new in-

Quiescence Management Improves Interoperability Testing 377

teroperability relations and the verdicts of the corresponding tests
are FAIL.

This study considered a synchronous interaction between implementations.
A point that remains to be studied is the difference between synchronous and
asynchronous interaction. This study has already started but is not advanced
enough to give formal results. Nevertheless, we give here some observations that
seem interesting.

With an asynchronous interaction, the three first scenarios studied above
(interaction of I1 with I4, I2 with I4 and I3 with I4) have the same results.
But the last scenario (interaction of I1 with I5) is different if we consider an
asynchronous interaction. Indeed, the message l5!c can be sent by I5 and is
not received by I1. But the timeout received after this event is foreseen in the
specifications, the interoperability relations are verified and the verdict of the
test is PASS even though the message c can not be received by I1.

This latter situation proves that a more formal study is needed to examine
the influence of an asynchronous environment on quiescence management in
interoperability testing.

7 Conclusion

The goal of the study was to investigate the quiescence management in inter-
operability testing. Based on a previous work that gives formal definitions of
interoperability, we provide new definitions that take into account predictable
quiescences of components. Several examples and scenarios show that using these
new definitions leads to more accurate verdicts in interoperability testing. The
obtained results are more consistent with the intuitive notion of interoperability
and practical usage. In light of this information, we can assume that quiescence
management improves interoperability testing.

Our study considered a context of two implementations communicating via a
synchronous environment. Future work will investigate interoperability criteria
with quiescence management in an asynchronous context. We will also study the
generalization of these interoperability criteria to a context with more than two
implementations.

References

[1] ISO. Information Technology - Open Systems Interconnection Conformance Test-
ing Methodology and Framework - Parts 1-7. International Standard ISO/IEC
9646/1-7, 1992.

[2] Thierry Jéron. Le test de conformité : état de l’art. Rapport pour l’AEE (Archi-
tecture Electronique Embarquée), 2001.

[3] E. Brinksma, R. Alderden, J. Langerak, R. Van de Lagemaat, and J. Tretmans.
A Formal Approach to Conformance Testing. In J. De Meer, L. Mackert, and
W. Effelsberg, editors, Second International Workshop on Protocol Test Systems,
pages 349–363, North Holland, 1990.

378 A. Desmoulin and C. Viho

[4] L. Verhaard, J. Tretmans, P. Kars, and E. Brinksma. On asynchronous testing.
In G.V. Bochman, R. Dssouli, and A. Das, editors, Fifth inteernational workshop
on protocol test systems, pages 55–66, North-Holland, 1993. IFIP Transactions.

[5] Sébastien Barbin, Lénäıck Tanguy, and César Viho. Towards a formal framework
for interoperability testing. In M. Kim, B. Chin, S. Kang, and D. Lee, editors,
21st IFIP WG 6.1 International Conference on Formal Techniques for Networked
and Distributed Systems, pages 53–68, Cheju Island, Korea, Août 2001.

[6] R. Castanet and O. Kone. Test generation for interworking systems. Computer
Communications, 23:642–652, 2000.

[7] J.P. Baconnet, C. Betteridge, G. Bonnes, F. Van den Berghe, and T. Hopkinson.
Scoping further EWOS activity for interoperability testing. Technical Report
EGCT/96/130 R1, EWOS, September 1996.

[8] R. Castanet and O. Koné. Deriving coordinated testers for interoperability. In
O. Rafiq, editor, Protocol Test Systems, volume VI C-19, pages 331–345, Pau-
France, 1994. IFIP, Elsevier Science B.V.

[9] T. Walter and B. Plattner. Conformance and interoperability a critical assessment.
Technical Report 9, Computer engineering and networks laboratory (TIK), Swiss
federal institute of technology Zurich, 1994.

[10] Machiel van der Bijl, Arend Rensink, and Jan Tretmans. Component based test-
ing with ioco. In A. Petrenko and A. Ulrich, editors, FATES 2003 — Formal
Apporaches to Testing of Software, volume 2931 of Lecture Notes in Computer
Science, pages 86–100. Springer-Verlag, 2004.

[11] O. Rafiq and R. Castanet. From conformance testing to interoperability testing.
In Protocol Test Systems, volume III, pages 371–385, North-Holland, 1991. IFIP,
Elsevier sciences publishers B. V.

[12] T. Walter, I. Schieferdecker, and J. Grabowski. Test architectures for distributed
systems : state of the art and beyond. In Petrenko and Yevtushenko, editors, Test-
ing of Communicating Systems, volume 11, pages 149–174. IFIP, Kap, September
1998.

[13] J. Tretmans. Testing concurrent systems: A formal approach. In J.C.M Baeten
and S. Mauw, editors, CONCUR’99 – 10th Int. Conference on Concurrency The-
ory, volume 1664 of Lecture Notes in Computer Science, pages 46–65. Springer-
Verlag, 1999.

Author Index

Alcalde, Baptiste 9
Asztalos, Domonkos 304

Basin, David 226
Batori, Gabor 304
Batth, Samrat S. 192
Berrada, Ismäıl 111

Campbell, Colin 97
Caronni, Germano 226
Castanet, Richard 111
Cavalli, Ana 9
Chen, Dongluo 129
Chen, Jessica 146
Chi, Caixia 242
Csopaki, Gyula 159

Dai, Zhen Ru 289
Desmoulin, Alexandra 365
Dibuz, Sarolta 159
Din, George 289

Fecko, Mariusz A. 192
Félix, Patrick 111
Fernandez, Jean-Claude 333
Floch, Annie 318

Hao, Ruibing 129, 242
Hierons, Robert M. 146
Hong, Hyoung Seok 23
Huo, Jiale 97

Ivezic, Nenad 349

Jones, Albert T. 349
Jung, Seok Won 275
Jürjens, Jan 40

Koller, Claudia 40
Krichen, Moez 175, 209
Kulvatunyou, Boonserm 349

Ladani, Behrouz Tork 9
Lam C. Peng 69
Lee, David 129, 258
Lee, Jung Youp 275
Li, Huaizhong 69
Li, Keqin 258
Lim, Jongin 275

Maibaum, Tom 1
Miller, Ray 129
Mounier, Laurent 333

Pachon, Cyril 333
Pap, Zoltán 159
Petrenko, Alexandre 97
Puder, Arno 56

Rensink, Arend 81
Roudaut, Frédéric 318

Sabiguero, Ariel 318
Schieferdecker, Ina 289
Senn, Diana 226

Tretmans, Jan 81
Tripakis, Stavros 175, 209
Trischberger, Peter 40

Ural, Hasan 23, 146
Uyar, M. Ümit 192

van der Bijl, Machiel 81
Veanes, Margus 97
Viho, César 318, 365

Wagner, Stefan 40
Wang, Limei 56
Wang, Yu 192
Wise, Adriana 192

Yenigun, Husnu 146

Zander, Justyna 289

	Frontmatter
	The Epistemology of Validation and Verification Testing
	Passive Testing -- A Constrained Invariant Checking Approach
	Dependence Testing: Extending Data Flow Testing with Control Dependence
	Comparing Bug Finding Tools with Reviews and Tests
	Cross-Language Functional Testing for Middleware
	Using Anti-Ant-like Agents to Generate Test Threads from the UML Diagrams
	Action Refinement in Conformance Testing
	Multiplexing of Partially Ordered Events
	Testing Communicating Systems: a Model, a Methodology, and a Tool
	Coping with Nondeterminism in Network Protocol Testing
	Eliminating Redundant Tests in a Checking Sequence
	On FSM-Based Fault Diagnosis
	State Identification Problems for Timed Automata
	Timing Fault Models for Systems with Multiple Timers
	An Expressive and Implementable Formal Framework for Testing Real-Time Systems
	Firewall Conformance Testing
	Test Generation for Interaction Detection in Feature-Rich Communication Systems
	Fault Detection of Hierarchical Networks with Probabilistic Testing Algorithms
	Detecting Trapdoors in Smart Cards Using Timing and Power Analysis
	From U2TP Models to Executable Tests with TTCN-3 - An Approach to Model Driven Testing -
	Using TTCN-3 for Testing Platform Independent Models
	Some Lessons from an Experiment Using TTCN-3 for the RIPng Testing
	A Model-Based Approach for Robustness Testing
	Content-Level Conformance Testing: An Information Mapping Case Study
	Quiescence Management Improves Interoperability Testing
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

