

Lecture Notes in Computer Science 3499
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Andrzej Pelc Michel Raynal (Eds.)

Structural Information
and Communication
Complexity

12th International Colloquium, SIROCCO 2005
Mont Saint-Michel, France, May 24-26, 2005
Proceedings

13

Volume Editors

Andrzej Pelc
Université du Québec en Outaouais
Département d’informatique
Gatineau, Québec J8X 3X7, Canada
E-mail: Andrzej.Pelc@uqo.ca

Michel Raynal
Université de Rennes 1, IRISA
Campus de Beaulieu, Avenue du General Leclerc, 35042 Rennes, France
E-mail: raynal@irisa.fr

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.2, C.2, G.2, E.1

ISSN 0302-9743
ISBN-10 3-540-26052-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26052-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11429647 06/3142 5 4 3 2 1 0

. .

. .

. .

.

. .

L(h, k)

. .

. .

.

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. .

Cellular Networks: Where Are
the Mobile Users?

(Invited Talk)

Amotz Bar-Noy

CUNY, New York

Abstract. Mobiles are roaming in a cellular network. Unless they report
their new location each time they cross boundaries of cells, the system
must conduct a search operation to find their exact location. Reporting
new locations by mobiles consumes expensive up-link communication
lines. Therefore, in current and future cellular networks, at each point
in time for any particular mobile, the system knows only a zone of cells
containing the one cell which is the location of this mobile. For this
zone, the system maintains a profile that predicts the exact location of
the mobile by associating a probability with each cell in the zone. An
efficient search should optimize usage of down-link communication lines
and the time needed to find the mobile.

This model gives rise to many optimization problems. This talk dis-
cusses some of them. We first describe the optimal dynamic program-
ming solution that finds a mobile that is located in a zone of n cells in
no more than D rounds. This solution assumes an a priori knowledge
of the mobile’s profile. We then present solutions in which the system
develops a mobile’s profile while searching for that mobile more than
once. The above solutions are for locating one mobile. Next, we address
search operations involving m mobiles where m can be greater than one.
One example is the call conference search in which the system must find
all the m mobiles. Another example is the yellow pages search where the
search is over once one out of the m mobiles is found. Finding an optimal
solution to the conference call problem is NP-hard. We therefore present
an efficient approximation solution. For the yellow pages problem we dis-
cuss work in progress. We conclude with the privacy issue by exploring
the tradeoff between the accuracy of the profiles and the efficiency of the
optimal solutions that are based on these profiles.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distributed Data Structures: A Survey
(Invited Talk)

Cyril Gavoille

LABRI, Bordeaux

Abstract. This survey concerns the role of data structures for com-
pactly storing and representing various types of information in a localized
and distributed fashion. Traditional approaches to data representation
are based on global data structures, which require access to the entire
structure even if the sought information involves only a small and lo-
cal set of entities. In contrast, localized data representation schemes are
based on breaking the information into small local pieces, or labels, se-
lected in a way that allows one to infer information regarding a small
set of entities directly from their labels, without using any additional
(global) information.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, p. , 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2

On Designing Truthful Mechanisms for Online
Scheduling�

Vincenzo Auletta1, Roberto De Prisco1,2, and Paolo Penna1,
and Giuseppe Persiano1

1 Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,
Università di Salerno, via S. Allende 2, I-84081 Baronissi (SA), Italy

{auletta, robdep, penna, giuper}@dia.unisa.it
2 Faculty Group at Akamai Technologies, Cambridge, MA, USA

Abstract. We study the online version of the scheduling problem in-
volving selfish agents considered by Archer and Tardos [FOCS 2001]:
jobs must be scheduled on m parallel related machines, each of them
owned by a different selfish agent.

Our study focuses on general techniques to translate approxima-
tion/competitive algorithms into equivalent approximation/competitive
truthful mechanisms. Our results show that this translation is more prob-
lematic in the online setting than in the offline one. For m = 2, we
develop an offline and an online “translation” technique which, given
any ρ-approximation/competitive (polynomial-time) algorithm, yields
an f(ρ)-approximation/competitive (polynomial-time) mechanism, with
f(ρ) = ρ(1 + ε) in the offline case, for every ε > 0. By contrast, one
of our lower bounds implies that, in general, online ρ-competitive algo-
rithms cannot be turned into ρ(1+ ε)-competitive mechanisms, for some
ε > 0 and every m ≥ 2.

We also investigate the issue of designing new online algorithms from
scratch so to obtain efficient competitive mechanisms, and prove some
lower bounds on a class of “natural” algorithms. Finally, we consider the
variant introduced by Nisan and Ronen [STOC 1999] in which machines
can be verified. For this model, we give a O(1)-competitive online mech-
anism for any number of machines and prove that some of the above
lower bounds can be broken.

1 Introduction

Optimization problems dealing with resource allocation are classical algorithmic
problems and they have been studied for decades in several models. Typically,
algorithms are evaluated by comparing the (measure of) the solutions they re-
turn to the best possible one. In particular, one tries to estimate the loss of

� Work supported by the European Project IST-2001-33135, Critical Resource Sharing
for Cooperation in Complex Systems (CRESCCO).

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 3–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

4 V. Auletta et al.

performance due to the lack of computational resources (approximation ratio)
or to the lack of information (competitive ratio).

In both settings, the underlying hypothesis is that the input is (eventually)
available to the algorithm (either from the beginning in off-line algorithms or
during its execution in on-line algorithms). This assumption cannot be consid-
ered realistic in the context of modern networks like the Internet where certain
information regarding the resources are not directly available to the “protocol”.
Indeed, since the resources are owned/controlled/used by different self-interested
entities (e.g., corporations, autonomous systems, etc.). Each of these entities,
or selfish agents, hold some private information which is needed in order to
compute an optimal resource allocation (e.g., routing the traffic over the Inter-
net requires routers of different autonomous systems to exchange information
on which routers can process traffic faster). Each agent can possibly misreport
his/her piece of information if this leads the system to compute a solution that
is more beneficial for him/her. This, in spite of the fact that such a solution may
not be not globally optimal.

The field of Mechanism Design is the branch of Game Theory and Microeco-
nomics that studies how to design complex auctions, also termed mechanisms,
which guarantee that no agents has an incentive in misreporting his/her piece
of information. Loosely speaking, a mechanism is a pair M = (A,P), where A
is an algorithm computing a solution, and P = (P 1, . . . , Pn) is the vector of
payment functions (see Sect. 1.1 for a formal definition). Selfish agents are sup-
pose to be rational and thus will deviate from the truth-telling strategy (in our
problem, to report ri = si) only if a better one exists. Therefore, one seeks for
truthful mechanisms, that is, mechanisms that guarantee that every agent i can
maximize his/her net profit or utility by playing the truth-telling strategy (see
Sect. 1.1).

In this work we consider the online version of a basic scheduling/routing
problem involving selfish agents, first addressed by Archer and Tardos [2]. We
will investigate the approximation/competitive ratio of truthful mechanisms for
this problem. Our goal is to quantify the (further) loss of optimality due to the
combination of selfish agents with the online setting. Central to our study is the
existence of general techniques that allow to translate ρ-approximation/competi-
tive algorithms into a f(ρ)-approximation/online mechanisms, for some function
f(·).

1.1 The Problem

Offline Selfish Version. Consider the problem of scheduling jobs on related ma-
chines (Q||Cmax): We are given a set of m machines with speed s1, s2, . . . , sm

and a set of n jobs of size J1, J2, . . . , Jn. We want to assign every job to a ma-
chine so to minimize the makespan, that is, the maximum over all machines
of wi/si, where wi is the sum of the job weights assigned to machine i. When
the set of machines m is fixed, this problem version is commonly denoted to as
Qm||Cmax.

On Designing Truthful Mechanisms 5

We study the selfish version of the Q||Cmax problem in which each machine
i is owned by a selfish agent and the corresponding speed si is known to that
agent only. In particular, any schedule S that assigns load wi to machine i is
valuated by agent i as vi(S), where

vi(S) def= −wi/si,

that is, the opposite of the completion time of machine i. Intuitively, vi(S)
represents how much user i likes solution S. This model has been first considered
by Archer and Tardos [2].

We stress that our goal is to compute a solution S which minimizes the
makespan with respect to the true machine speeds s1, . . . , sm. Hence, we need
to provide some incentive (e.g., a payment P i) to the each agent i in order to
let him/her truthfully report his/her speed. Formally, a mechanism is a pair
M = (A,PA), where PA = (P 1

A, . . . , Pm
A), and A is a scheduling algorithm. Each

agent i reports its type bi which is not necessarily the true type ti
def= 1/si.

Algorithm A gets in input the reported types b = (b1, . . . , bm), and each agent i
receives a payment equal to P i

A(b, J). Obviously, each agent i wants to maximize
the resulting net profit or utility defined as

uM
i (b, J) def= P i

A(b, J) + vi(A(b, J)).

Each agent knows both algorithm A and the payment function P i
A.

A mechanism is said to be truthful with dominant strategies (or simply truthful)
if the payments PA and the algorithm A guarantee that no agent obtains a larger
utility when reporting bi �= ti, independently of the other agents’ reported types;
that is, for all J , for all reported types b−i = (b1, . . . , bi−1, bi+1, . . . , bm) of all the
agents except i, and for all possible declarations bi of agent i, it holds that

uM
i ((ti, b−i), J) ≥ uM

i ((bi, b−i), J),

where the writing (x, b−i) denotes the vector (b1, . . . , bi−1, x, bi+1, . . . , bm). We
stress that no agent i has any advantage from knowing the true speeds t−i of
the other agents: indeed, the utility of agent i does not depend on the speeds
of the other agents (the work/payment assigned to machine/agent i depend on
the agent bids b only). If M guarantees that the utility is non-negative for all
agents i that report their true type, then we say that the mechanism enjoys the
voluntary participation property.

Online Selfish Version. In the online version of Q||Cmax, jobs arrive one-by-one
and must be scheduled upon their arrival. Moreover, jobs cannot be reallocated.
For any (possibly infinite) sequence of jobs J = J1J2 · · ·, we let Jk denote the
prefix J1J2 · · · Jk of the first k jobs, for 1 ≤ k ≤ |J |. Before any job appears,
each agent declares her type and we denote by b = (b1, . . . , bm) the vector of
declared types. An online mechanism for Q||Cmax is a pair M = (A,P) where
P is a sequence of payment functions P k

i , for i = 1, . . . , m and k > 0 such that

6 V. Auletta et al.

– The algorithm A is an online algorithm for Q||Cmax; we denote by wA
i (b, Jk)

the sum of the job sizes assigned to machine i by the solution computed by
A on input Jk and vector b of declared types.

– When the k-th jobs arrives, it is assigned by A to a machine and each agent
i receives non-negative payment P k

i (b, Jk). That is, we are not allowed to
ask money back from the agents.

The total payment received by agent i after k jobs is equal to Pi(b, Jk) =∑k
j=1 P j

i (b, Jj).

Definition 1 (online truthful mechanism). We say that an online mecha-
nism is truthful with respect to dominant strategies if for any prefix Jk of J ,
for all b−i, and for all types ti, the function uM

i ((bi, b−i), Jk) is maximized for
bi = ti.

Verifiable Machines. We also study the online version of the model proposed
by Nisan and Ronen [9] of verifiable machines. Here the payment for each job
is awarded after the job is released by the machine (we stress that a machine
cannot release a job assigned to it before the job has been executed). Intuitively,
if a machine has received positive load, the mechanism can verify whether the
machine lied declaring to be faster and, if so, the machine receives no payment.

1.2 Previous Results

Archer and Tardos [2] have characterized the (offline) algorithms A for Q||Cmax

for which there exist payment functions P such that (A,P) is a truthful mech-
anism. In particular they show that if an algorithm A is monotone (that is, it
satisfies wA

i ((b′i, b−i), J) ≤ wA
i ((bi, b−i), J), for all b′i > bi) then there exists a

payment function P such that (A,P) is truthful. Under mild assumptions on A,
it is possible to define the payment function to guarantee voluntary participation.
They also gave a monotone optimal (exponential-time) algorithm for Q||Cmax

and a (3 + ε)-approximate randomized (polynomial-time) monotone algorithm.
In [4] we gave a (4 + ε)-approximate deterministic (polynomial-time) monotone
algorithm for Qm||Cmax. Recently and independently from this work, Andel-
man et al [1] provided an elegant technique for turning any ρ-approximation
algorithm for Qm||Cmax into a ρ(1 + ε)-approximation monotone mechanism.
As a result, given any polynomial-time (1 + ε)-approximation algorithm for this
problem, one can obtain a (1 + ε)-approximation mechanism running in poly-
nomial time. They indeed settle the approximation guarantee of the Qm||Cmax

by obtaining a fully polynomial-time approximation scheme which is monotone.
Moreover, they provide a 5-approximation truthful mechanism for the Q||Cmax

problem, i.e., for any number of machines.
Nisan and Ronen [9] considered the case of unrelated machines and gave a

randomized 7/4-approximate truthful mechanism for two machines and a de-
terministic m-approximate truthful mechanism for any number of machines.
Moreover, they proved that no deterministic truthful mechanism can be (2− ε)-

On Designing Truthful Mechanisms 7

approximate for m ≥ 2 machines. Nisan and Ronen also considered the case of
verifiable unrelated machines and gave a polynomial-time (1 + ε)-approximate
truthful mechanism for any fixed number of machines. For the case of verifiable
related machines (that is Q||Cmax), in [6], we characterized the algorithms A for
which there exist payment functions P such that (A,P) is a truthful mechanism.
Based on this we developed a polynomial-time (1 + ε)-approximate truthful
mechanism for the offline version of Q||Cmax.

1.3 Our Contribution

A central question in (algorithmic) mechanism design is to translate approxi-
mation/online algorithms into approximation/online mechanisms: given an al-
gorithm A of approximation/competitive ratio ρ, can we obtain a monotone al-
gorithm A with the same approximation/competitive ratio? A general approach
to the design of approximation/competitive mechanisms might be that of devel-
oping general “monotonization” techniques: starting from any ρ-approximation/
competitive algorithm A, transform A into a monotone algorithm A with ap-
proximation/competitive ratio ρ depending on ρ. We first consider the Q2||Cmax

problem for which we provide the following two general results:

Offline Case: Every polynomial-time ρ-approximation algorithm can be trans-
formed into a monotone polynomial-time (ρ + ε)-approximation algorithm A,
for every ε > 0 (Theorem 3). This result is a special case of the one obtained
independently by Andelman et al [1]: indeed, their monotonization technique
extends our result to any fixed number of machines.

Online Case: Given an online ρ-competitive algorithm A, for every t > 0, it is
possible to obtain an online monotone algorithm At whose competitive ratio ρ
satisfies ρ ≤ max{ρ · t, 1 + 1/t} (Theorem 5). Moreover, the same bound holds if
A is a ρ-competitive algorithm (only) for identical speeds. The “monotonization”
of the greedy algorithm 1 thus yields and online mechanism whose competitive
ratio is at most 1 +

√
7/2 < 1.823 (Corollary 2).

It is natural to ask whether the loss of performance due to our “monotoniza-
tion” for the online setting is really necessary, and whether (some of the) existing
algorithms could preserve their competitive guarantee (after being turned into
a monotone one).

We first show a general lower bound on monotone online algorithms. Consider
the problem restricted to instances for which smax/smin = r, for any r > 0. Then,
no such algorithm can be less than ρ(r)-competitive, with ρ(r) ≥ min{r, 1+1/r}
(Theorem 6). This gives a general lower bound of φ � 1.62, which also holds for
sequences of two jobs (Corollary 3). At least for such sequences our technique is
optimal: indeed, since the greedy algorithm is 1-competitive, our method yields
a φ-competitive online algorithm (simply choose t = φ).

1 This algorithm, also known in the literature as ListScheduling, assigns the current
job Ji to the machine that minimize the completion time of Ji.

8 V. Auletta et al.

An underlying implicit assumption in designing scheduling algorithms is that,
for the same set of jobs, speed vectors s = (s1, s2) and sα = (αs2, αs1) lead to the
same solution (modulo a machine re-indexing). We show that this (apparently
natural) way of proceeding must necessarily lead to online monotone algorithms
whose competitive ratio is not smaller than 2. In particular, we isolate two
pathological facts that, each of them alone, prevent from having a non-trivial
competitive ratio (see Theorems 7-8): (i) the first job is always assigned to the
fastest machine, and (ii) solution for (s1, s2) is isomorphic (modulo a index
exchange) to that for (s2, s1).

It is worth observing that the lack of information plays a central role both in
the online and in the selfish setting of the problem. In the online setting we do
not know the “future;” when dealing with “selfish” agents we do not know part of
the input. Our results (see Table 1) show that the combination “online+selfish”
makes the Q2||Cmax problem harder than both the offline with selfish agents
and the online (without selfish agents) versions. In particular, for

√
2 < r ≤ φ,

it holds that (i) r is a lower bound for any online monotone algorithm (i.e., any
mechanism), while (ii) there is an upper bound ρ ≤ 1 + 1/(r + 1) < r provided
by the greedy for the online case (without selfish agents).

Table 1. Our and previous results for the case of two machines: all lower bounds also

apply to exponential-time algorithms, while upper bounds are obtained via polynomial-

time ones

Offline Online
Lower Bound Upper Bound Lower Bound Upper Bound

Non Selfish 1 1 + ε 1 + 1/(r + 1) 1 + 1/(r + 1), for r ≤ φ
[trivial] [8] [folklore] [3–greedy]

1 + 1/r, for r > φ
[3–greedy]

Selfish 1 1 + ε min{r, 1 + 1/r} 1 +
√

7/2 < 1.823
[trivial] [Cor. 1] or [Thm. 6] [Thm. 5 and Cor. 2]

[1]

All our lower bounds also apply to Qm||Cmax, for any m > 2. As for the
upper bounds, in Sect. 6 we present a 12-competitive algorithm for any num-
ber of verifiable machines. This is the first constant-competitive truthful online
algorithm for any number of machines (Q||Cmax).

The ability to “verify” machines has been proved to yield better approxi-
mation mechanisms in the offline case for other scheduling problems [9, 6]. The
results here show that the same happens also for the online version of Qm||Cmax,
for any m ≥ 2. By contrast, the results by Andelman et al [1] imply that in the
offline setting verification does not help for Qm||Cmax, for any m ≥ 2.

Due to lack of space, some of the proofs are omitted in this extended abstract.
We refer the interested reader to the full version of this work [5].

On Designing Truthful Mechanisms 9

Notation. Throughout the paper si will denote the speed of the i-th machine, ti
its type (i.e., ti = 1/si) and bi the type reported by agent i.

2 Characterization of Online Truthful Mechanisms

For the offline case, Archer and Tardos [2] characterized the class of algorithms
that can be used as part of a truthful mechanism. More precisely, we have the
following definition and theorem.

Definition 2 (monotone algorithm). An algorithm A is monotone if, for
every i, for every J , for every b−i, for every bi and b′i > bi it holds that

wA
i ((b′i, b−i), J) ≤ wA

i ((bi, b−i), J),

where wA
i ((bi, b−i), J) is the load assigned to machine i when J is the job sequence

and agents report types (bi, b−i).

Theorem 1 (offline characterization [2]). A mechanism M = (A,P) is
truthful if and only if A is monotone. Moreover, for every monotone algorithm
A, there exist payment functions P such that (A,P) is truthful and satisfies vol-
untary participation if and only if

∫∞
0

wA
i ((u, b−i), J) du < ∞ for all i, J, and

b−i. In this case, we can take the payments to be

Pi((bi, b−i), J) = bi · wA
i ((bi, b−i), J) +

∫ ∞

bi

wA
i ((u, b−i), J)du. (1)

Next, we translate the result above into the online setting. We will use the
characterization to obtain our upper and lower bounds.

Theorem 2 (online characterization). An online mechanism M = (A,P)
is truthful if and only if A is an online monotone algorithm. Moreover, for
every online monotone algorithm A, there exists a payment function P such
that (A,P) is truthful. In addition, there exist payment functions P k

i such that
P k

i ((bi, b−i), Jk) ≥ 0 for all J , k and (bi, b−i).

3 Monotonization Techniques

3.1 Offline Monotonization

In this section we give a general technique for transforming any ρ-approximate
algorithm A for Q2||Cmax into an offline (ρ+ε)-approximate monotone algorithm
A. Essentially, our monotonization technique goes thorough two steps: (i) we first
consider an algorithm Aγ which is noting but A running over speeds rounded
to the closest power of γ, and (ii) we inspect the solutions of Aγ by varying
only one of the two machine speeds over a polynomial number of values: indeed,
considering only instances (1, γi) will guarantee the monotonicity.

10 V. Auletta et al.

In the sequel we let A be any algorithm satisfying the following two properties:

wA
1 ((smin, smax), J) ≤ wA

2 ((smin, smax), J), (2)
A((smin, smax), J) = A((1, smax/smin), J). (3)

This is without loss of generality since any offline algorithm which violates any
of the two conditions above can be easily modified without any loss in the ap-
proximation guarantee.

Theorem 3. For algorithm A and every ε > 0, there exists a monotone algo-
rithm A such that, if A is a (polynomial-time) ρ-approximation algorithm for
Q2||Cmax, then algorithm A is a monotone (polynomial-time) (ρ + ε)-approxi-
mation algorithm.

Corollary 1. For every ε > 0, there exists a polynomial-time (1 + ε)-approxi-
mation mechanism for Q2||Cmax.

Remark 1. Recently and independently from this work, the above result has been
improved in [1]. The authors provided a more general technique for obtaining a
monotone algorithm A for the Qm||Cmax problem. In particular, Corollary 1 can
be improved so to obtain a monotone FPTAS for this problem version. Moreover,
for the case m = 2, their technique essentially leads to the same algorithm as
the one proposed here.

3.2 Online Monotonization

The basic idea is to output a “fixed” allocation that ignores the machine speeds
as long as they are “almost the same”: this allocation is based on the machine
indexes only. As soon as one machine becomes significantly faster than the other,
we assign all jobs to that machine. The algorithm template in Figure 1 imple-
ments this idea.

Algorithm A-asymmetric
1. fix a threshold t > 1;
2. smax := max{s1, s2}; smin := min{s1, s2};
3. if smax/smin ≤ t then

run online algorithm A on machine speeds s′1 = s′2 = 1;
1. else assign every job to machine of speed smax;

Fig. 1. An online monotone algorithm for two machines

Theorem 4. For every t > 1 and for every online algorithm A for Q2||Cmax,
algorithm A-asymmetric is an online monotone algorithm for Q2||Cmax.

On Designing Truthful Mechanisms 11

�

W (σ)

wA
1 ((1, 1), J)

s1

wA−as
1 ((s1, s2), J)

�

s2 · ts2/t

Fig. 2. The work curve wA−as
1 ((·, s2), J) of algorithm A-asymmetric

Proof. The algorithm A-asymmetric is clearly an online algorithm since the
choice of which strategy to use is done based on the machine speeds, which
do not change during the online phase (i.e., when jobs arrive).

Let wA−as
i ((s1, s2), J) denote the work assigned to machine i by A-asymmetric

on input J and speeds (s1, s2), for i = 1, 2. Also let W (J) =
∑|J|

a=1 Ja. Observe
that, by definition of A-asymmetric, we have that

wA−as
1 ((s1, s2), J) =

⎧⎪⎪⎨⎪⎪⎩
wA

1 ((1, 1), J) if s1 ≤ s2 and s1 ≥ s2/t,
wA

1 ((1, 1), J) if s1 > s2 and s1 ≤ s2 · t,
0 if s1 ≤ s2 and s1 < s2/t,
W (J) if s1 ≥ s2 and s1 > s2 · t.

(4)

Notice that, since t > 1, we have s2/t < s2. From the above equation we obtain
the allocation curve in Figure 2, which clearly implies the monotonicity w.r.t.
machine 1.

By using the same argument, we can prove the monotonicity of the function
wA−as

2 ((s1, ·), J). This completes the proof.

Theorem 5. For every ρ-competitive online algorithm A for Q2||Cmax, and for
every t > 1, algorithm A-asymmetric is ρas-competitive algorithm for Q2||Cmax

for ρas = max{ρ · t, 1 + 1/t}.

Corollary 2. There exists an online monotone algorithm for Q2||Cmax whose
competitive ratio is 1+

√
7

2 � 1.823.

Proof. Let us consider the greedy algorithm Agr whose competitive ratio on
two machines of identical speed is 3/2 [8]. Then, from Theorem 5 we have
that algorithm Agr-asymmetric has competitive-ratio bounded from above by
max{3t/2, 1 + 1/t}. We minimize this quantity by choosing t > 1 such that
3t/2 = 1 + 1/t. This corresponds to t = 1+

√
7

3 , thus yielding a competitive ratio
equal to 1+

√
7

2 � 1.823.

12 V. Auletta et al.

4 Lower Bound for Online Selfish Scheduling

In this section, we provide a general lower bound for online Q||Cmax with selfish
agents. This result proves that the selfish online version of this problem is more
difficult than the corresponding version of the problem with no selfish agents,
even for two machines.

Theorem 6. For every m ≥ 2 and every r > 1, no monotone online algorithm
can be less than ρr-competitive, where ρr = min{r, 1 + 1/r}. This holds even for
two jobs.

Proof. By contradiction, let A be an online monotone ρ-competitive algorithm
on m machines, for ρ < min{r, 1 + 1/r}. Let J = (J1, J2) = (1, r) and let s =
(1, . . . , 1). Observe that A(s, J) cannot allocate two jobs on the same machine
otherwise A would produce a solution of cost 1 + r, while the optimum costs r,
contradicting the hypothesis that A is ρ competitive. Without loss of generality,
assume wA

1 = 1 and wA
2 = r.

Suppose now that speed of machine 1 is increased to r. Since A is monotone
also with respect to the sequence J1, then it must be the case wA

1 ((r, s−1), J1) =
wA

1 (s, J1) = 1. Since we do not allow jobs to be reassigned, we have to consider
only two cases:

(wA
1 ((r, s−1), J) = 1 + r.) In this case, (1+1/r)/opt((r, s−1), J) = 1+1/r, thus
contradicting the hypothesis that A is ρ-competitive.

(wA
1 ((r, s−1), J) = 1.) This gives r/opt((r, 1), J) = r, contradicting the hypoth-
esis that A is ρ-competitive.

Hence the theorem follows.

Corollary 3. No monotone online algorithm for Q2||Cmax can be less than φ-
competitive. This holds even for two jobs, in which case the bound is tight since
there exists a φ-competitive online monotone algorithm.

Proof. The lower bound follows from Theorem 6 by taking r = φ = 1+1/r. As for
the upper bound, consider algorithm Agr-asymmetric with t = φ. For sequences
of two jobs Agr is 1-competitive. Theorem 5 thus implies a competitive ratio
ρ ≤ max{φ, 1 + 1/φ} = φ.

5 On Building Online Monotone Algorithms

Apparently, a good way to obtain online monotone algorithms is to guarantee
that faster machines receive more work. In particular, when dealing with the
case of only one job, a natural (optimal) solution is to assign it to the fastest
machine. This is also what a direct use of the so called Vickery auction [10] would
give for our problem. (These so called “sealed bid” auctions compute a solution
only based on the agents’ bids – see e.g. [9, 2].) This motivates the following
definition:

On Designing Truthful Mechanisms 13

Definition 3 (best-first algorithm). An algorithm A is best-first if the first
job is always assigned to the fastest machine.

In addition, it is natural to treat speeds (s1, s2) and (αs2, αs1) as essentially
the same instance: by rescaling, and reindexing machines we reduce both of them
to (1, s2/s1). Hence, the algorithm is supposed to produce the same solution. We
thus consider the following class of algorithms:

Definition 4 (symmetric algorithm). An algorithm A is symmetric if, for
any two speed vectors s and s′ such that, for a permutation π, s′ = π(s) it holds
that, for all i, wA

i (s, J) = wA
π(i)(s

′, J).

A simple argument shows that any monotone algorithm which is best-first
and symmetric cannot be less than 2-competitive, even for m = 2. There are,
however, algorithms which are best-first though not symmetric or vice versa.
Does any of these give a better performance? The next two results prove that
the answer to this question is no.

Theorem 7. For every m ≥ 2, no online monotone best-first algorithm for
Qm||Cmax can be better than 2-competitive. This holds even for two jobs.

Proof. By contradiction, let A be a best-first, monotone and (2−γ)-competitive
algorithm, for some γ > 0. Consider J = (1, 1+ε), for some ε > 0, and let s1 = 1,
s2 = 1+ε and si = ε, with 3 ≤ i ≤ m. Notice that, since A is (2−γ)-competitive
and best-first, it is possible to take ε sufficiently small so that A assigns the first
job to machine 2 and the second job to machine 1.

Suppose now that speed of machine 2 is reduced to 1 − ε. We observe that
A, on input J and (1, 1 − ε) assigns no jobs to machine 2. In fact, since it is
best-first, it assigns the first job to machine 1. Moreover, since it is monotone,
it has to assign a load to machine 2 not greater than 1. Thus, also the second
job is assigned to machine 1. However, this implies that the solution computed
by A has cost 2 + ε, while the optimum has cost 1 + ε. For ε sufficiently small,
this contradicts the hypothesis that A is (2− γ)-competitive.

Theorem 8. For every m ≥ 2, no online monotone symmetric algorithm for
Q2||Cmax can be less than 2-competitive. This holds even for two jobs.

Proof. We prove the theorem for m = 2. The extension to m > 2 is straighfor-
ward. Let us assume by contraddiciton that A is a monotone, symmetric, and
(2− γ)-competitive algorithm, for some 0 < γ < 1. Consider J = (1, 1 + ε), for
some ε > 0 and let s1 = 1 and s2 = 1 + ε. For sufficiently small ε, algorithm
A cannot allocate two jobs on the same machine. We thus have two possible
solutions for algorithm A:

solution machine 1 machine 2
s1 = 1 s2 = 1 + ε

SOL1 1 + ε 1
SOL2 1 1 + ε

14 V. Auletta et al.

Let ε be such that 2
1+ε > 2− γ, that is, ε < γ

2−γ . We distinguish two cases:

(A((1, 1 + ε), J) = SOL1.) By monotonicity of A, wA
2 ((1, 1), J) ≤ wA

2 ((1, 1 +
ε), J) = 1. If wA

2 ((1, 1), J) = 0, then we have a solution of cost 2 + ε,
thus implying that A must be at least (2 + ε)/(1 + ε)-competitive. For
our choice of ε, this would contradict the hypothesis that A is (2 − γ)-
competitive. Thus, A((1, 1), J) must coincide with solution SOL1. Again, by
monotonicity, it must hold wA

1 ((1 + ε, 1), J) ≥ wA
1 ((1, 1), J) = 1 + ε. This

contradicts the hypothesis that A is symmetric: indeed, from Definition 4
it holds that wA

2 ((1, 1 + ε), J) = wA
1 ((1 + ε, 1), J) = 1 + ε, thus implying

wA
1 ((1, 1 + ε), J) = 1.

(A((1, 1 + ε), J) = SOL2.) Let us consider the allocation produced by A w.r.t.
the first job only, that is, J1 = J1 = 1. Observe that, since jobs cannot be
reassigned, it must hold wA

1 ((1, 1 + ε), J) = 1 = wA
1 ((1, 1 + ε), J1). Since A

must be monotone also w.r.t. J1, it holds that wA
2 ((1, 1), J1) ≤ wA

2 ((1, 1 +
ε), J1) = 0. This implies wA

1 ((1, 1), J1) = J1 = 1. By monotonicity, wA
1 ((1 +

ε, 1), J1) = 1. When the second job arrives, algorithm A can assign it to one
of the two machines. If wA

1 ((1+ε, 1), J) = J1 +J2 = 2+ε, then A cannot be
(2−γ)-competitive because of our choice of ε. Therefore, it must be the case
that wA

1 ((1+ε, 1), J) = 1 and wA
2 ((1+ε, 1), J) = J2 = 1+ε. This contradicts

the hypothesis that A is symmetric: indeed, we have wA
1 ((1, 1 + ε), J) = 1 �=

wA
2 ((1 + ε, 1), J1) = 1 + ε.

Remark 2. Observe that our monotonization technique for offline algorithms re-
quires the algorithm to be “monotonized” to be both best-first and symmetric.
Thus, we implicity require the resulting algorithm to be best-first and symmetric
as well.

6 Online Mechanisms with Verification

In this section we consider online mechanisms with verification [6]: the pay-
ments to an agent can be provided after the corresponding machine
terminates; in this case, the mechanism can compute the payments as a func-
tion of such finish time(s). In the online setting, once machine j releases a
job Ji, the mechanism observes a release time r(Ji). However, machine j could
declare to be slower (i.e., bj > sj) and release all jobs accordingly (i.e.,
r(Ji) = Ji/bj).

In [6] we provide a sufficient condition to design truthful mechanisms:

Definition 5 (weakly monotone algorithm [6]). An algorithm A is weakly
monotone if, for every job sequence J , for every i, for every s−i it holds that

wA
i ((si, s−i), J) = 0⇒ ∀s′i < si, w

A
i ((s′i, s−i), J) = 0.

We will make use of the following result:

On Designing Truthful Mechanisms 15

Theorem 9 ([6]). An algorithm A admits a payment function p such that M =
(A, p) is truthful for the case of verifiable machines if and only if A is weakly
monotone.

We first observe that the greedy algorithm is weakly monotone. Therefore,
we have the following result on the “power” of verification for the Q2||Cmax

problem:

Theorem 10. Let us consider the Q2||Cmax problem. There exists two functions
UBv(·) and LB(·), such that (i) no truthful mechanism can be less than LB(r)-
competitive if machines cannot be verified, (ii) there is an UBv(r)-competitive
truthful mechanism for the case of verifiable machines, and (iii) if r satisfies√

2 < r ≤ φ, then UBv(r) < LB(r).

Proof. Consider r such that
√

2 < r ≤ φ, thus implying r < 1 + 1/r. Theorem 6
implies that no online monotone algorithm can be less than LB(r)-competitive,
with LB(r) = min{r, 1 + 1/r} = r. On the contrary, if verification is allowed,
then the greedy algorithm is weakly monotone. Theorem 9 thus implies that its
competitive ratio ρgr satisfies (see Table 1)

UBv(r) ≤ ρgr ≤ 1 + 1/(r + 1).

For r >
√

2, it holds that r > 1 + 1/(r + 1), thus implying UBv(r) < LB(r).

In [3] an 8-competitive algorithm Assign-R has been given. The algorithm
assumes that the optimum opt(s, J) is known in advance and assigns a new job
to the least capable machine, that is, the slowest machine such that the cost
of the resulting assignment stays below Λ

def
= 2 · opt(s, J). A simple doubling

technique is then used to remove this assumption at the cost of losing a factor
of 4 in the approximation.

A simple observation shows that algorithm Assign-R is not weakly monotone.
We next modify it so to obtain a weakly-monotone algorithm having a constant
competitive ratio for the Q||Cmax problem, i.e., for any (even non-constant)
number of machines.

Algorithm Monotone-Assign-R(s, Λ):
/* s1 ≤ s2 · · · ≤ sm; */
initialize w′

j := 0 and w′′
j := 0 for every machine j;

1. upon arrival of new job Ji do begin
2. let l be the slowest machine such that

((w′′
l + Ji)/sl ≤ 2Λ) ∧ ((w′

l > 0) ∨ (w′
l+1 > 0));

3. assign Ji to machine l;
4. if w′

l > 0 then w′′
l := w′′

l + Ji else w′
l := Ji; end.

Fig. 3. An online weakly monotone algorithm for any number of machines

16 V. Auletta et al.

Algorithm Monotone-Assign-R (see Fig. 3) receives a threshold Λ. In assigning
the kth job to a machine, the algorithm considers the slowest machine i for which
the makespan of the resulting schedule, computed considering only the real jobs,
does not exceed 2Λ. Then two cases are possible:

1. At least one machine faster than j has not received any load yet. Then job
k is assigned to the fastest such machine and is considered a ghost job.

2. All machines faster than j have been assigned at least one job. In this case,
job k is assigned to machine j and is considered a real job.

Lemma 1. For every speed vector s and for every Λ ≥ 2 · opt(s, J), algo-
rithm Monotone-Assign-R does not fail in assigning any newly arrived job in
J . Moreover, if algorithm Monotone-Assign-R fails in assigning a job Ji, then
opt(s, J) ≥ opt(s, J i) ≥ Λ.

Proof. Let J ′ denote the set of jobs that Monotone-Assign-R assigns to a machine
which is currently empty, and J ′′ def

= J \ J ′. Jobs in J ′′ are assigned according
to algorithm Assign-R. Hence, if Monotone-Assign-R fails, then Assign-R fails as
well. Therefore, opt(s, J i) ≥ Λ and the lemma follows.

Using a doubling technique (see e.g. [7]) one can obtain an algorithm
Monotone-Assign-R which, starting from Λ = 1, doubles the value of Λ each
time Monotone-Assign-R(s, Λ) fails: in this case we assign Ji, and jobs that pos-
sibly arise subsequently, by running Monotone-Assign-R with a new parameter
Λ′ = 2Λ. (We continue doubling the value of Λ until it is possible to assign Ji

to some machine.) Notice that every time we double the value of Λ, we ignore
the assignment performed in the previous phases (i.e., for smaller values of Λ).

Theorem 11. Algorithm Monotone-Assign-R is at most 12-competitive.

Proof. Let J ′ denote the set of jobs that Monotone-Assign-R assigns to a machine
which is currently empty, and J ′′ def

= J \ J ′. Let Λ(s, J) denote the last value
for which Monotone-Assign-R does not fail. Algorithm Monotone-Assign-R assigns
jobs in J ′′ as algorithm Assign-R. Moreover, each machine has at most one extra
job from J ′. Hence, given the values w′

j and w′′
j defined as in algorithm Monotone-

Assign-R (see Fig. 3), we have w′
j ≤ Λ and w′′

j ≤ Λ. From Lemma 1 we obtain
w′′

j ≤ 8 · opt(s, J ′) and w′
j ≤ 4 · opt(s, J ′′). Hence, at each time step, the cost C

of the solution satisfies C ≤ max1≤j≤m{w′
j + w′′

j } ≤ 12 · opt(s, J).

Theorem 12. Algorithm Monotone-Assign-R is weakly-monotone.

Proof. Given the speed vector s, let s′ = (s′i, s−i) with s′i < si. We denote by
Λ(s, i) the value of Λ for which Monotone-Assign-R allocates job Ji. We will prove
by induction on i that Λ(s, i) = Λ(s′, i) and that Monotone-Assign-R produces the
same allocation. The base step i = 1 is trivial. As for the inductive step, since Ji is
not allocated to machine with speed si, let l be the index of the machine to which
Ji is allocated to. If (w′′

l + Ji)/sl ≤ Λ(s, i − 1), then, by inductive hypothesis,

On Designing Truthful Mechanisms 17

the same holds with respect to s′, thus implying that Ji is also allocated to
machine l on input s′. Clearly, in this case, Λ(s′, i) = Λ(s′, i − 1) = Λ(s, i).
Otherwise, let l(s) and l(s′) denote the index of the machine to which job Ji is
assigned to on input s and s′, respectively. In the two cases, we must increase
the corresponding threshold up to a value such that (w′′

l(s) + Ji)/sl(s) ≤ Λ(s, i)
and (w′′

l(s′) + Ji)/sl(s′) ≤ Λ(s′, i). Hence, Λ(s′, i) = Λ(s, i) and l(s′) = l(s). (The
latter equality follows from Step 2 in Monotone-Assign-R(s, Λ)). By inductive
hypothesis, the allocation of J i−1 is the same, thus implying that also job Ji is
allocated to the same machine.

Finally, using the payment functions for weakly monotone algorithms of [6],
we can obtain the following:

Corollary 4. The Q||Cmax problem with verifiable machines admits an online
truthful polynomial-time mechanism which is 12-competitive.

Acknowledgements. We are grateful to the authors of [1] for providing us with
a copy of their work.

References

1. N. Andelman, Y. Azar, and M. Sorani. Truthful approximation mechanisms for
scheduling selfish related machines. In Annual Symposium on Theoretical Aspects
of Computer Science (STACS), volume 3404 of LNCS, pages 69–82, 2005.

2. A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proc.
of the IEEE Symposium on Foundations of Computer Science (FOCS), pages 482–
491, 2001.

3. J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of
the ACM, 44(3):486–504, 1997.

4. V. Auletta, R. De Prisco, P. Penna, and G. Persiano. Deterministic truthful ap-
proximation mechanisms for scheduling related machines. In Annual Symposium
on Theoretical Aspects of Computer Science (STACS), volume 2996 of LNCS,
pages 608–619. Springer, 2004.

5. V. Auletta, R. De Prisco, P. Penna, and G. Persiano. On designing truthful mech-
anisms for online scheduling. Technical report, European Project CRESCCO,
http://www.ceid.upatras.gr/crescco/, 2004.

6. V. Auletta, R. De Prisco, P. Penna, and G. Persiano. The power of verification for
one-parameter agents. In International Colloquium on Automata, Languages, and
Programming (ICALP), volume 3142 of LNCS, 2004.

7. Y. Azar. Online load balancing. Springer, 1998. In Online algorithms - the state
of the art, pag. 178-195.

8. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-
nical Journal, 45:1563–1581, 1966.

9. N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proc. of the 31st
Annual ACM Symposium on Theory of Computing (STOC), pages 129–140, 1999.

10. W. Vickrey. Counterspeculation, Auctions and Competitive Sealed Tenders. Jour-
nal of Finance, pages 8–37, 1961.

On Private Computation in Incomplete
Networks�

Amos Beimel

Dept. of Computer Science, Ben Gurion University,
Beer Sheva 84105, Israel

Abstract. Suppose that some parties are connected by an incomplete
network of reliable and private channels. The parties cooperate to exe-
cute some protocol. However, the parties are curious – after the protocol
terminates each processor tries to learn information from the communi-
cation it heard. We say that a function can be computed privately in
a network if there is a protocol in which each processor learns only the
information implied by its input and the output of the protocol. The
question we address in this paper is what functions can be computed
privately in a given incomplete network. It is known that if a network is
2-connected then every pair of parties can communicate privately. Thus,
the question is interesting only for non-2-connected networks. We first
characterize the functions that can be computed privately in simple net-
works – networks with one separating vertex and two 2-connected com-
ponents. We then deal with private computations in arbitrary networks:
we reduce this question to private computations of related functions on
trees, and give sufficient and necessary conditions on the functions that
can be computed privately on trees.

1 Introduction

The question of private computation of functions on communication networks is
a fundamental question. For example, we would like to compute the output of
an electronic election without revealing the votes of individuals. The general sce-
nario we consider is that some parties are connected by an incomplete network of
reliable and private channels and each party has an input. The parties cooperate
to honestly execute some protocol computing a given function, but some of them
are curious. That is, after the protocol terminates they collude and try to learn
information from the communication they heard. A protocol is t-private if any
coalition of at most t passively corrupted parties does not learn any information
that is not implied by their inputs and the output of the function.

Many papers dealing with private computation, e.g., [7, 3, 8], assume that
the communication network is complete, that is, there is a private and reliable
communication channel between any pair of parties. The question we address in

� Partially supported by the Lynn and William Frankel Center for Computer Sciences.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 18–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Private Computation in Incomplete Networks 19

this paper, following [4], is what functions can be computed privately in a given
incomplete network. If the network is sufficiency connected then the situation is
simple as proved by [3, 7, 11, 12].

Theorem 1. If n > 2t and the network is (t + 1)-connected, every function can
be computed t-privately in G.

Bläser et al. [4] characterize the Boolean functions that can be 1-privately
computed in connected networks with one separating vertex and two 2-connected
components. We consider the more general question that naturally arises. Our
goal is, given a communication network, characterize which functions can be
computed 1-privately in this network.

Our Results. We first consider simple networks with one separating vertex and
two 2-connected components. We give an exact characterization of the functions
that can be computed 1-privately in such a network. This result generalizes a
result of Bläser et al. [4] who characterize the Boolean functions that can be
computed 1-privately in such a network. While Boolean functions that can be
computed privately in such networks are very simple structure (“if then else”
functions), the non-Boolean functions that can be computed privately in such
networks have a richer structure. Our proof is somewhat simpler than the proof
of [4], and has two stages: We first reduce the question of private computation in
such a network to a question of private computation of a related function with
two variables in a simpler model, and then characterize the functions that can
be computed in the simpler model.

We next consider 1-private computations in arbitrary networks. We reduce
the private computation of a function in an arbitrary network to private compu-
tation of a related function in a tree. The idea of this reduction is that we can
replace each 2-connected component in the network by a single vertex holding
the inputs of the component. We then give sufficient and necessary conditions
on the functions that can be computed privately on trees. We do not know the
exact characterization of the functions that can be computed privately on trees.

t-privacy. In this work we focus on 1-privacy. Our results in Section 3 generalize
to networks with one separating set of size t−1 and two t-connected components.
However, our results for arbitrary networks do not generalize to t-privacy as the
component structure of such networks can be complicated.

Historical Notes. There are a few models of secure computation. One distinction
is whether the “bad” parties have unlimited power or they are polynomial-time
randomized machines. The other distinction is whether the “bad” parties are
honest-but-curious, or they are malicious, that is, they deviate from their proto-
col to gain more information. In this work we consider honest-but-curious parties
with unlimited power. We review some previous results concerning this model.
Chaum, Crépeau, and Damg̊ard [7] and Ben-or, Goldwasser, and Wigderson [3]
proved that in a complete network with n parties, if n > 2t then every function
can be computed t-privately. Kushilevitz [20] characterizes the functions that

20 A. Beimel

can be computed privately in a network with two parties. Chor and Kushile-
vitz [8] characterize the Boolean functions that can be computed t-privately in
complete networks when n ≤ 2t. All these works, as well as our work, assume
that the network is synchronous.

We next consider private computation in incomplete networks. Dolev, Dwork,
Waarts, and Yung [12] have proved that if there are at most t honest-but-curious
parties, then every pair of parties can communicate privately if and only if the
network is (t + 1)-connected. Bläser, Jakoby, Lískiewicz, and Manthey [4], in
a work that inspired the current work, characterize the Boolean functions that
can be computed 1-privately in a network with one separating vertex and two
2-connected components. They also considered the randomness required for pri-
vate protocols in incomplete networks. Jakoby, Liskiewicz, and Reischuk [18]
considered tradeoff between randomness and connectivity in private computa-
tion. Finally, Bläser et al. [5] consider protocols that reveal minimum information
for functions that cannot be computed privately in a given incomplete network.

The connectivity requirements for several distributed tasks in several models
has been studied in many papers; for example Byzantine agreement [11, 14], ap-
proximate Byzantine agreement [13, 27], reliable message transmission [11, 12],
and reliable and private message transmission [23, 12, 24, 25, 26]. Simple impossi-
bility results and references can be found in [14, 21]. Connectivity requirements
in partially authenticated networks has been considered in [1, 2]. Secure com-
munication and secure computation in multi-recipient (multi-cast) models have
been studied in [17, 16, 15, 9]. Secure computation in directed networks has been
studied in [10]. Secure communication against general adversarial structures has
been studied in [19].

Organization. In Section 2, we describe our model and present some background
on connectivity. In Section 3, we characterize the functions that can be com-
puted 1-privately in networks with two 2-connected components. In Section 4,
we reduce private computation of functions in arbitrary networks to private com-
putation of related function on trees, and, in Section 5, we give sufficient and
necessary conditions on the functions that can be computed privately on trees.

2 Preliminaries

The Model. The communication network is modeled by an undirected graph
G = 〈V,E〉, where (1) The vertices V = {v1, v2, . . . , vn} are the parties in the
network. We denote their number by n (i.e., |V | = n); in the sequence we refer to
parties as vertices. (2) The edges E describe the communication channels. That
is, there is an edge 〈u, v〉 in E if and only if there is a communication channel
between u and v. We assume that these communication channels are reliable and
private: an adversary that does not control u or v (but might control all other
vertices in the network) cannot read, change, delete, or insert messages sent on
the edge 〈u, v〉.

On Private Computation in Incomplete Networks 21

Protocols. We consider an n-party protocol for computing a given function.
Briefly, in the beginning of the protocol, each vertex vi has a private input ai

and a private random input ri, where ri is distributed uniformly in some finite
domain (the random inputs (r1, . . . , rn) are independent). A protocol Π com-
putes its output in a sequence of rounds. For a round j, let i ← (j mod n) + 1.
In round j, only Vertex vi is active1 and sends a message mj,k (i.e., a string) to
vk for each of its neighbors; this message will become an available input to vk in
the next round. If vk is not a neighbor of vk then mj,k is the empty string. The
message mj,k is a function of the round number j, the receiver k, the sender’s
input ai, the sender’s random input ri, and the previous messages vi got, i.e.,
〈mj′,i〉1≤j′<j . A computation of the protocol ends in a round in which each
vertex computes an output.

Transcripts, Views, and Outputs. Let S ⊆ {v1, . . . , vn}. Given an execution of a
protocol Π on inputs (a1, . . . , an) and random inputs (r1, . . . , rn), we define: The
transcript of S of the execution is the sequence of messages that vertices in S
got during the execution; it is denoted by TRANSS(a1, . . . , an, r1, . . . , rn). The
view of S is the triplet 〈ai〉vi∈S , 〈ri〉vi∈S , and TRANSS(a1, . . . , an, r1, . . . , rn); it
is denoted by VIEWS(a1, . . . , an, r1, . . . , rn). We consider the random variables
TRANSS(a1, . . . , an, 〈ri〉vi∈S) obtained by randomly selecting 〈ri〉vi /∈S and out-
putting TRANSS(a1, . . . , an, r1, . . . , rn). We also consider the similarly defined
random variables for VIEWS(a1, . . . , an, 〈ri〉vi∈S).

In the model we consider, the n-party honest-but-curious model, each party
is curious, that is, coalitions of parties may try to deduce as much information
possible from their own view of an execution about the private inputs of the
other parties. However, each party is honest, that is, it scrupulously follows
the instructions of the protocol. In such conditions, it is easy to enforce the
correctness condition (for securely computing a function f), but not necessarily
the privacy conditions.

In the following definition we consider functions f : A1 × . . . × An → O,
where A1, . . . , An and O are some finite sets, and the ith input of f is the in-
put of vi. The privacy requirement we consider is unconditional, that is, even
a curious adversary with unlimited power does not gain information. Further-
more, we consider perfect security, that is, we require no error in the correct-
ness, and exactly the same distributions in the privacy requirement. Our results
remain the same if we only require statistical security. In the following defini-
tion we define privacy against an adversarial structure S ⊆ 2V , that is S is
a collection of subsets of the vertices. We require that if parties in a set in S
collude then, from their view, they do not gain information that is not implied
by their inputs and the output of the function. In this work we mainly focus
on 1-privacy, that is we want to protect the privacy against each individual. We
define the more general case of S-privacy as it is used as a tool to characterize
1-privacy.

1 By adding extra rounds, this assumption is without loss of generality.

22 A. Beimel

Definition 1 (Private Computation). Let G = 〈V,E〉 be network with n
vertices, A1, . . . , An, and O be finite sets, f : A1 × . . .×An → O be a function,
and S ⊆ 2V be an adversarial structure. A protocol Π S-privately computes f ,
if the following conditions hold:

Correctness. For every a1, . . . , an and every r1, . . . , rn, the output of each vi with
VIEW{vi}(a1, . . . , an, r1, . . . , rn) is f(a1, . . . , an).

Privacy. For every S ∈ S, for every 〈a1, . . . , an〉 ∈ A1 × . . . × An and ev-
ery 〈a′

1, . . . , a
′
n〉 ∈ A1 × . . . × An such that ai = a′

i for every vi ∈ S,
and every 〈ri〉vi∈S, if f(a1, . . . , an) = f(a′

1, . . . , a
′
n) then the random vari-

ables VIEWS((a1, . . . , an, 〈ri〉vi∈S)) and VIEWS((a′
1, . . . , a

′
n, 〈ri〉vi∈S)) are

equally distributed.

A function f can be computed t-privately in G if there is a protocol Π that
S-privately computes f in G, where S = {S ⊆ V : |S| ≤ t}.

Since each vertex learns the output of f (and knows its input), we require that
the privacy is protected only when f(a1, . . . , an) = f(a′

1, . . . , a
′
n). We assume

that all parties in the system know the topology of the graph G. Furthermore,
we assume that the system is synchronous and all the parties in the system know
in which round the protocol starts.

In the sequence, we will use the following proposition of [8], which holds
for every 2-party protocol (i.e., even without the correctness and privacy re-
quirement). Informally, this proposition says that if changing the inputs of both
parties yields the same transcript, then changing the input of only one party
also yields the same transcript.

Proposition 1 ([8]). Consider a two-party protocol. Let a1, a2, a
′
1, a

′
2 be inputs,

r1, r
′
1, r2, r

′
2 be random inputs, and h be a transcript such that

TRANS{1,2}(a1, a2, r1, r2) = TRANS{1,2}(a′
1, a

′
2, r

′
1, r

′
2) = h.

Then, TRANS{1,2}(a1, a
′
2, r1, r

′
2) = TRANS{1,2}(a′

1, a2, r
′
1, r2) = h.

Connectivity. The reliability of a network is closely related to its connectivity.
In this section, we review the relevant concepts related to connectivity. For more
details, the reader can consult, e.g., [6].

We consider vertex connectivity of undirected graphs. A graph G = 〈V,E〉
is connected if for every two vertices u, v there is a path connecting them in G.
In this paper, we only consider connected graphs. A vertex z ∈ V is called a
separating vertex (or a cut-vertex) if for some u, v ∈ V \{z} every path between u
and v passes through z. For a connected graph, a vertex z is a separating vertex
if and only if removing z from G results in an unconnected graph. A connected
graph is 2-connected if it contains at least 3 vertices and it does not contain a
separating vertex. By a result of Menger [22], a graph G with at least 3 vertices
is 2-connected if and only if for every vertices u, v ∈ V either 〈u, v〉 ∈ E or there
exist two vertex-disjoint paths between u and v in G. An edge e is a bridge if
for some u, v ∈ V , every path between u and v passes through e.

On Private Computation in Incomplete Networks 23

A subgraph B of G is a component if it is a maximal 2-connected induced
subgraph of G. We next define the component graph of a connected graph, which
replaces every component in G by a single vertex.2

Definition 2 (Component Graph). Given a connected graph G = 〈V,E〉, we
define its component graph TG = 〈V ′, E′〉 as follows: The vertices in V ′ are the
components of G, the leaves in G, and the separating vertices in G. There is an
edge in E′ between every separating vertex and every component containing it,
between a leaf and its neighboring separating vertex, and between two separating
vertices connected by a bridge. For every component W in G, we denote the
corresponding vertex in TG by vW .

For example, a graph G and its component graph are described Fig. 1. In G there
are two components W0 = {v1, v2, v3} and W1 = {v3, v4, v5}, two separating
vertices v3 and v5, and one leaf v6. Thus, the component graph of G has 5
vertices.

v1 v4

v5v2

v3

v6 v5

v3

v6

vW0 vW1

A graph G. The component graph of G.

Fig. 1. A graph and its component graph

By Menger’s theorem, every cycle in G is contained in exactly one component.
This fact implies the following observation.

Observation 2. If the graph G is connected, then the graph TG is a tree.

3 Incomplete Networks with Two 2-Connected
Components

In this section we characterize the functions that can be computed 1-privately
in connected networks that contain one separating vertex and two 2-connected
components. As an intermediate step, we consider a model we call the two-
party and eavesdropper model. Using this intermediate model, we characterize
the functions that can be computed privately in connected networks that contain
two 2-connected components. That is, we prove that a function can be computed
privately in connected networks that contain two 2-connected components if and

2 The component graph we define is similar to the block-cutvertex graph as defined
in [6].

24 A. Beimel

only if a related function can be computed in the two-party and eavesdropper
model. Roughly speaking, the two parties correspond to the 2-connected com-
ponents and the eavesdropper is the separating vertex. To complete the charac-
terization, we characterize the functions that can be computed privately in the
the two-party and eavesdropper model.

The Two-Party and Eavesdropper Model. Consider the following two-party and
eavesdropper model of private computation. Alice has a secret input a taken from
some finite domain A and Bob has a secret input b taken from some finite domain
B; they wish to compute a function f : A×B → O such that the eavesdropper
Eve, which hears the communication that they exchange, can compute f(a, b);
however Eve should not learn any information on a and b that is not implied by
f(a, b). Formally, we consider the network with 3 vertices {v1, v2, v3} (where v1

and v3 are Alice and Bob respectively and v2 is Eve) and two edges 〈v1, v2〉 and
〈v2, v3〉, consider functions that do not depend on v2’s input, and consider the
adversarial structure S = {{v2}}.

3.1 Reduction to the Two-Party and Eavesdropper Model

We first use the two-party and eavesdropper model to characterize the functions
that can be 1-privately computed in connected networks with two 2-connected
components. We consider a network Gn0,n1 , with n0 + n1 + 1 vertices, which is
composed of two 2-connected components. The first component is denoted by
W0 and has n0 + 1 vertices; the second component is denoted by W1 and has
n1 + 1 vertices. The two components share exactly one vertex denoted z. In this
paper we assume that n0, n1 ≥ 2, that is, each connected component contains
at least 3 vertices. (The cases where n0 = 1 or n1 = 1 is characterized in the full
version of this paper). Such a graph is illustrated in Fig. 2. Given an (n0+n1+1)-
argument function f : A1× . . .×An0×B1× . . .×Bn1×C → O, define, for every
c ∈ C, a 2-argument function fc : (A1 × . . . × An0) × (B1 × . . . × Bn1) → O,
where for every a ∈ A1 × . . .×An0 and every b ∈ B1 × . . .×Bn1 ,

fc(a, b) def= f(a, b, c). (1)

Lemma 1. Let f : A1× . . .×An0×B1× . . .×Bn1×C → O be a function, where
n0, n1 ≥ 2. The function f can be computed 1-privately in Gn0,n1 if and only if
for every c ∈ C the function fc can be computed privately in the two-party and
eavesdropper model, where Alice’s input is a and Bob’s input is b.

Proof. First, assume that there is a protocol privately computing f in Gn0,n1 .
For every c ∈ C, we construct a private protocol for fc in the two-party and
eavesdropper model. Alice, holding a ∈ A1 × . . . × An0 simulates the n0 + 1
vertices in the component W0 (including z), and Bob, holding b ∈ B1 × . . . ×
Bn1 simulates the n1 vertices in component W1 excluding z. At the end of
the protocol, Alice sends the output to Bob, thus the eavesdropper knows the
output. The eavesdropper knows that the input of z is c, as c is fixed, and hears

On Private Computation in Incomplete Networks 25

2-connected component2-connected component
with n0 + 1 vertices with n1 + 1 vertices

W0 W1

z

Fig. 2. The Graph Gn0,n1

the messages exchanged between z and the vertices in W1. Thus, the information
the eavesdropper learns is at most the information that z learns in the protocol
for f , and the 1-privacy of that protocol implies the privacy of the protocol for
fc.

Now assume that, for every c ∈ C, the function fc can be privately com-
puted in the two-party and eavesdropper model, where Alice’s input is a and
Bob’s input is b. By Corollary 1 (appearing in Section 3.2), we can assume
that this protocol is deterministic. We construct a (randomized) protocol for f .
W.l.o.g., assume that the protocol Πc for every fc proceeds in rounds, where
in odd rounds Alice sends a one bit message to Bob, and in even rounds Bob
sends a one bit message to Alice. Let Πi

c be the ith message sent in the pro-
tocol. Thus, in odd rounds (respectively, even rounds) the bit Πi

c depends on
c, a (respectively, b), and the previous messages. The protocol for f will have
a virtual round for each round of the protocol for fc. In each virtual round,
Vertex z picks a random bit ri, and the parties in Wi mod 2 (including z) com-
pute the function Πi

c ⊕ ri using a 1-private protocol. Such 1-private proto-
col exists by Theorem 1, since 1 + ni mod 2 > 2 and each component is 2-
connected.

We next argue that this protocol is 1-private. As the vertices use 1-private
protocols to compute each value Πi

c ⊕ ri and ri is chosen at random by z, each
vertex, except for z, does not learn any information during the protocol. Vertex
z knows the random bits, thus, it knows the communication exchanged in the
protocol for fc. However, the information it gets is exactly the information the
eavesdropper gets in the protocol for fc, thus z gains no information. ��

3.2 The Two-Party and Eavesdropper Model

The functions that can be computed privately in the two-party and eavesdropper
model are a subset of the functions that can be computed in the two-party
model (without the eavesdropper) as characterized by Kushilevitz [20]. We first
introduce some notation from [20]. We represent a function f : A × B → O by
a matrix Mf whose rows are labeled by the elements of A, columns are labeled
by the elements of B, and Mf (a, b) = f(a, b).

26 A. Beimel

Definition 3 ([20]). Let M be a matrix whose rows are labeled by the elements
of A and columns are labeled by the elements of B. The relation ∼C on B is
defined as follows: b, b′ ∈ B satisfy b ∼C b′ if there exists some a ∈ A such that
M(a, b) = M(a, b′). The equivalence relation ≡C on B is defined as the transitive
closure of the relation ∼C . That is, b ≡C b′, for b, b′ ∈ B, if there are b1, . . . , b�

such that b ∼C b1 ∼C b2 ∼C . . . ∼C b� ∼C b′. Similarly, the relations ∼R and
≡R are defined on A. That is, a, a′ ∈ A satisfy a ∼R a′ if there exists some
b ∈ B such that M(a, b) = M(a′, b), and the relation ≡R on A is defined as the
transitive closure of the relation ∼R. If b ≡C b′, then we say that columns b and
b′ of M are equivalent, and, similarly, if a ≡R a′, then we say that rows a and
a′ of M are equivalent.

Definition 4 (Forbidden Matrix [20]). A matrix M is a forbidden matrix
if the following three conditions hold: (1) the matrix is not constant, (2) all the
rows of M are equivalent according to ≡R, and (3) all the columns of M are
equivalent according to ≡C .

Kushilevitz [20] proved that a function f can be privately computed in the
two-party model (without the eavesdropper) if and only if the matrix Mf does
not contain a forbidden matrix. We adapt this result to the two-party and eaves-
dropper model, where there is an additional requirement.

Lemma 2. A function f : A×B → O can be computed privately in the two-party
and eavesdropper model if and only if

1. The inputs corresponding to any output value form a rectangle. That is, for
every a0, a1 ∈ A, every b0, b1 ∈ B, and every o ∈ O if f(a0, b0) = f(a1, b1) =
o then f(a0, b1) = f(a1, b0) = o.

2. The matrix Mf does not contain a forbidden matrix.

Proof. First, assume that f satisfies Conditions (1) and (2). We construct a
deterministic private protocol computing f . The protocol is identical to the
protocol of [20], with a small change in the proof of privacy. In each step of the
protocol, Alice, holding an input a, and Bob, holding an input b, maintain a
rectangle A0 × B0 ⊆ A × B, known also to Eve, such that 〈a, b〉 ∈ A0 × B0. In
the beginning, A0 ← A and B0 ← B. At the end of the protocol, A0 × B0 is
constant, so Eve can deduce the value of f . In each step, consider the matrix M
which is the matrix Mf restricted to A0 × B0. The matrix M becomes smaller
in each step, and the equivalence relations ≡R and ≡C change accordingly. By
Condition (2), the matrix M is not forbidden. If M is constant, Eve deduces
that this constant is the output and the protocol ends. If not all the rows of
M are equivalent according to ≡R, Alice sends to Bob the equivalence class
of a in M , and both parties set A0 as this equivalence class. Otherwise, not
all the columns of M are equivalent according to ≡C , Bob sends to Alice the
equivalence class of b in M , and both parties set B0 as this equivalence class.
As Mf does not contain a forbidden matrix, the protocol must reach a constant
rectangle. Since, in each stage of the protocol, 〈a, b〉 ∈ A0 × B0, this protocol

On Private Computation in Incomplete Networks 27

is correct. We next argue that Eve does not learn information on 〈a, b〉 that is
not implied by f(a, b). This follows from the fact that if f(a, b) = f(a′, b′) then,
by Condition (1), f(a, b) = f(a, b′) = f(a′, b) = f(a′, b′). Thus, in each stage of
the protocol, a ≡R a′ and b ≡R b′ in M , and the same communication string is
exchanged on 〈a, b〉 and 〈a′, b′〉, thus Eve does not gain extra information.

We next assume that Conditions (1) and (2) are necessary. It can be shown
that if f can be computed privately in the two-party and eavesdropper model,
then it can be computed privately in the regular two-party model. Thus, by [20],
the matrix Mf does not contain a forbidden sub-matrix.

Suppose that the set of inputs corresponding to some output value is not a
rectangle, that is, there are a0, a1 ∈ A, and b0, b1 ∈ B such that f(a0, b0) =
f(a1, b1) = o while f(a0, b1) �= o. Since Eve does not learn any information on
the inputs, the probability distribution on the transcripts that are possible on
〈a0, b0〉 is equivalent to the probability distribution on the transcripts that are
possible on 〈a1, b1〉. By Proposition 1, this distribution should be the same on
the inputs 〈a0, b1〉, contradicting the requirement that Eve can compute f from
the communication. ��

Notice that in the proof of Lemma 2 we construct a deterministic protocol.

Corollary 1. A function f : A×B → O can be computed privately in the two-
party and eavesdropper model if and only if it can be computed privately in the
two-party and eavesdropper model by a deterministic protocol.

We next describe two examples.

f1 b0 b1 b2

a0 0 0 3
a1 2 1 1
a2 2 4 3

f2 b0 b1 b2

a0 0 0 3
a1 2 1 1
a2 2 4 4

In both examples, Condition (1) holds. For example, in both examples the rect-
angle corresponding to the output value 2 is {a1, a2}×{b0}. In the first example,
however, the matrix is forbidden and the function f1 cannot be computed pri-
vately. In the second example, we changed the bottom-left entry from 3 to 4;
now the matrix does not contain a forbidden sub-matrix, and the function f2

can be computed privately. The partition induced by the protocol is detailed in
the matrix.

The next lemma, which is implicit in [4], states that the characterization for
Boolean functions is much simpler.

Lemma 3. A Boolean function f : A×B → {0, 1} can be computed privately in
the two-party and eavesdropper model iff it depends only on one of its inputs, that
is, if there exists a function f ′ such that at least one of the following conditions
hold: (1) f(a, b) = f ′(a) for all a ∈ A and b ∈ B, or (2) f(a, b) = f ′(b) for all
a ∈ A and b ∈ B.

28 A. Beimel

Proof. If a function f (Boolean or non-Boolean) depends only on one of its
inputs then it satisfies Conditions (1) and (2) of Lemma 2, thus can be computed
privately in the two-party and eavesdropper model.

For the other direction, assume that a Boolean function f can be computed
privately in the two-party and eavesdropper model, thus satisfies Condition (1).
Assume towards contradiction that f depends on its two input, thus: (1) As f
depends on its first input, there exist b ∈ B and a′, a′′ ∈ B such that f(a′, b) = 0
and f(a′′, b) = 1, and (2) As f depends on its second input, there exist a ∈ A
and b′, b′′ ∈ B such that f(a, b′) = 0 and f(a, b′′) = 1. By Condition (1), on
one hand, 0 = f(a, b′) = f(a′, b) = f(a, b), and on the other hand 1 = f(a, b′′) =
f(a′′, b) = f(a, b), a contradiction. ��

Combing Lemma 1 and Lemma 2, we get a combinatorial characterization
of the functions that can be computed 1-privately in networks with two compo-
nents.

Theorem 3. Let f : A1 × . . . × An0 × B1 × . . . × Bn1 × C → O be a function,
where n0, n1 ≥ 2. The function f can be computed 1-privately in Gn0,n1 iff for
every c ∈ C:

1. The inputs of fc (as defined in (1)) corresponding to any output value form a
rectangle. That is, for every a0,a1 and b0, b1, if fc(a0, b0) = fc(a1, b1) = o
then fc(a0, b1) = fc(a1, b0) = o.

2. The matrix Mfc
does not contain a forbidden matrix.

4 Networks with Many Connected Components

In this section we consider private computation of functions in arbitrary con-
nected networks. As in the previous section, the characterization of the functions
that can be computed privately has two stages. We first reduce the problem of
private computation in the network to private computation of a related function
in the component graph of G, which is a tree. In Section 5, we give necessary
and sufficient conditions for computing a function privately on trees. However,
we do not give an exact characterization of these functions.

4.1 Reduction to Private Computation in Trees

In this section we reduce private computation in an arbitrary connected network
to private computation of a related function in a tree, namely, the component
graph of the network. Formally, let G be a graph with n vertices and TG be
the component graph of G with n′ vertices (as defined in Definition 2). We say
that a vertex in G is curious if it is either a separating vertex in G or a leaf in
G. Notice that curious vertices in G are also vertices in TG. Given a function
f : A1 × . . . × An → O we define an n′-argument function f ′, where the input
of a curious vertex is the same as before and the input of a vertex vW , for a
component W in G, is the inputs of the non-separating vertices in W .

On Private Computation in Incomplete Networks 29

In the component graph we replaced every component W in G by one vertex
vW in TG holding the inputs of the non-separating vertices in the component.
The idea of the reduction is that in G we can compute by a private protocol the
messages sent by vW in the tree. Hence, we do not need any privacy requirements
for such vW .

Lemma 4. Let S = {{v} : v is a curious vertex in G}. A function f can be
computed 1-privately in G iff f ′ can be computed S-privately in TG.

Proof. First, assume that there is a protocol Π privately computing f in G.
We construct an S-private protocol Π ′ computing f ′ in TG. The protocol Π ′

simulates the protocol Π: (1) Every curious vertex in G, which is a vertex in TG

having the same input, sends and receives the same messages in both protocols.
(2) Every vertex vW simulates all the non-separating vertices in W . (3) Every
message sent between two separating vertices in the same component W in G,
is sent via vW in Π ′. Thus, every curious vertex has the same view in Π ′ as it
had in Π. Since Protocol Π is 1-private and in Π ′ we require privacy only for
the curious vertices, Protocol Π ′ is S-private.

Now, assume that there is an S-private protocol Π ′ computing f ′ in TG. We
construct a 1-private protocol Π computing f in G. In this protocol, every curi-
ous vertex will effectively have the same information as in Π ′, and the messages
received by a vertex vW will be secret-shared by all vertices in W . In Π ′, every
vertex vW has a random input rW distributed uniformly in some finite set R. In
the beginning of Protocol Π, each vertex w ∈ W chooses a random input rw,0

distributed uniformly in R, and the parties define rW =
⊕

w∈W rw,0. Protocol
Π ′ has rounds and in each round only one vertex sends messages. W.l.o.g., as-
sume that every message in Π ′ is one bit. Protocol Π will have a virtual round
for every round of Π ′. There are three cases to consider:

If the sender of a message m in Π ′ is u and the receiver is v, where u and v
are curious vertices, then u sends the message m to v in Π.

If the sender of a message m in Π ′ is u, where u is a separating vertex in
G, and the receiver is vW , where W is a connected component in G, then each
vertex w in W chooses at random, with uniform distribution, a bit rw and the
vertices in W compute the function m ⊕

⊕
w∈W rw using a 1-private protocol.

By Theorem 1 such protocol exists since each connected component has size at
least 3. On one hand, the vertices in W collectively know the message m. On
the other hand, each vertex gains no information from this virtual round.

The last case is when the sender of a message m in Π ′ is vW , where W
is a connected component in G, and the receiver is v, where v is a separating
vertex in G. In this case, the message m in Π ′ is function of the inputs of
the non-separating vertices in W , the random input rW , and the messages vW

got in previous rounds. In Protocol Π, the vertices in W know the inputs of
the non-separating vertices in W , and collectively know the random input rW

and the messages vW got in previous rounds. Thus, m is a function of inputs
known to vertices in W . In Protocol Π, the receiver v chooses a random bit rv

with uniform distribution, and the vertices in W compute the function m ⊕ rv

using a 1-private protocol. On one hand, vertex v learns the message m, but

30 A. Beimel

no additional information. On the other hand, each vertex in W \ {v} gains no
information from this virtual round.

We next argue that this protocol is 1-private. First we argue that every
non-curious vertex in G learns no information in this protocol. The messages
such a vertex gets during the execution of Protocol Π are messages in 1-private
protocols computing a function masked by rv for a separating vertex v in the
connected component. Thus, each non-curious vertex does not learn any infor-
mation during the protocol for f . Every curious vertex learns only the messages
it got in Π ′, and, since Π ′ is S-private, the curious vertex gains no information
that is not implied by its input and the output of the function. ��

5 Private Computation on Trees

By Lemma 4, to characterize which functions can be computed 1-privately on G,
we need to characterize which functions can be computed S-privately in TG. We
do not have an exact characterization of these functions. We only give necessary
and sufficient conditions for this task. In the sequence, we say that a vertex v is
curious if {v} ∈ S.

5.1 Sufficient Condition

In this section we give a sufficient condition for computing a function S-privately
in a tree. Using Lemma 4, the results of this section give a sufficient condition
for computing a function 1-privately in arbitrary networks. The sufficient condi-
tion is a simple generalization of the condition of [20]. We next introduce some
notation generalizing Definitions 3 and 4 (taken from [20]). We represent a func-
tion f : A1 × . . . An → O by an n-dimensional array Mf whose ith-dimension is
labeled by the elements of Ai, and Mf (a1, . . . , an) = f(a1, . . . , an).

Definition 5 (Forbidden Array). Let M be an n-dimensional array whose
ith-dimension is labeled by the elements of Ai, and S be a the collection of curious
vertices (where |S| = 1 for every S ∈ S). The relation ∼i on Ai is defined as
follows: a, b ∈ Ai satisfy a ∼i b if there exist some a, b ∈ A1 × · · · × An and an
index j �= i such that (1) {vj} ∈ S, (2) ai = a, (3) bi = b, (4) aj = bj, and
(5) M(a) = M(b). The equivalence relation ≡i on Ai is defined as the transitive
closure of the relation ∼i.

An array M is a forbidden array iff (1) the array is not constant, (2) for all
i, all the elements of Ai are equivalent in M according to ≡i.

Lemma 5. Let f be a function. If the array Mf does not contain a forbidden
array, then f can be computed S-privately on any tree with n vertices.

Proof. The protocol is a simple generalization of the protocol of [20]. In each step
of the protocol, the parties, maintain a cube R1× . . .×Rn ⊆ A1× . . .×An, such
that 〈a1, . . . , an〉 ∈ R1 × . . .×Rn. In the beginning, Ri ← Ai for i ∈ {1, . . . , n}.

On Private Computation in Incomplete Networks 31

At the end of the protocol, R1×. . .×Rn is constant, so each party can deduce the
value of f . In each step, consider the array M which is the array Mf restricted
to R1 × . . . × Rn. As Mf does not contain a forbidden array, the array M is
not forbidden. If M is constant, then all the vertices know that this constant is
the output, and the protocol ends. Otherwise, for some i ∈ {1, . . . , n}, not all
the elements of Ai are equivalent in M according to ≡i. Vertex vi sends to its
neighbors the equivalence class of ai in M , and this information is propagated
to all vertices in the tree. Thereafter, all parties set Ri as this equivalence class.
Since, in each stage of the protocol, 〈a1, . . . , an〉 ∈ R1 × . . .× Rn, this protocol
is correct. We next argue that each curious vertex vj does not learn information
on 〈a1, . . . , an〉 that is not implied by aj and f(a1, . . . , an). This follows from
the fact that if vj is curious and f(a) = f(b) where aj = bj , then in each stage
of the protocol ai ≡i bi in M for every i, and the same communication string is
exchanged on a and b, thus vj does not gain extra information. ��

In the protocol described in the proof of Lemma 5, each message is propagated
to all the vertices in the tree. This was possible since the sufficient condition
has strong requirements, and this explains why the sufficient condition is not
necessary.

5.2 Necessary Condition

In a tree, every vertex that is not a leaf is a separating vertex. Informally, this
means that such vertex can learn all the information sent from one side of a
tree to the other side. Formulating this intuition is simple: We show that if a
function can be computed in a tree then a related function can be computed in
the two-party and eavesdropper model, where Alice’s input is the inputs of one
side of the tree, Bob’s input is the inputs of other side of the tree, and Eve is the
separating vertex. This is formulated in the next lemma, whose proof is similar
to the proof of sufficiency in Lemma 1.

Lemma 6. Let T = 〈V,E〉 be a tree and S ⊆ 2V , where |S| = 1 for every S ∈ S.
Let vi be a curious vertex in T which is not a leaf. W.l.o.g. assume that for every
j, k such that j < i < k, vertex vi separates vertex vj and vertex vk. Furthermore,
let f be a function that can be computed S-privately in T . For every c ∈ Ai,
define fc as fc(〈a1, . . . , ai−1〉, 〈ai+1, . . . , an〉) = f(a1, . . . , ai−1, c, ai+1, . . . , an).
Then, for every every c ∈ Ai, the function fc can be computed privately in the
two-party and eavesdropper model.

Using Lemma 2 we can deduce the following necessary condition. Roughly
speaking, the condition is that the inputs corresponding to each output value are
a union of certain n-dimensional cubes. For the lemma, we need the following
notation: Let f : A1 × · · · ×An → O be a function, I ⊆ {1, . . . , n} be a set, and
c = 〈ci〉i∈I be a vector where ci ∈ Ai for every i ∈ I. Denote fI,c : Πi/∈IAi → O,
the restriction of f to {1, . . . , n} \ I, as follows fI,c(〈ai〉i/∈I) = f(〈b〉i∈{1,...,n})
where bi = ci if i ∈ I and bi = ai otherwise. The proof of the following lemma is
omitted for lack of space.

32 A. Beimel

Lemma 7. Let T = 〈V,E〉 be a tree and S ⊆ 2V , where |S| = 1 for every
S ∈ S and 〈u, v〉 /∈ E for every two non-curious vertices u, v.3 Assume that a
function f : A1 × · · · × An → O can be computed S-privately in T , and define
I

def= {i : vi is a curious vertex}, and n′ = n − |I|. Then, for every c ∈ Πi∈IAi

and every output value o ∈ O, the inputs of fI,c corresponding to o are an
n′-dimensional cube, that is, there exist sets 〈Ri〉i/∈I such that Ri ⊆ Ai and
fI,c(a) = o if and only if ai ∈ Ri for every i /∈ I.

Acknowledgement. We would like to thank Enav Weinreb for valuable comments
that greatly improved this write-up.

References

1. A. Beimel, M. Franklin. Reliable communication over partially authenticated net-
works. Theoretical Computer Science, 220:185–210, 1999.

2. A. Beimel, L. Malka. Efficient reliable communication over partially authenticated
networks. In the 22nd PODC, pages 233–242, 2003.

3. M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In the 20th STOC, pages 1–10,
1988.

4. M. Bläser, A. Jakoby, M. Lískiewicz, B. Manthey. Private computation – k-
connected vs. 1-connected networks. In CRYPTO 2002, vol. 2442 of LNCS, pages
194–209, 2002.

5. M. Bläser, A. Jakoby, M. Lískiewicz, B. Manthey. Privacy in non-private environ-
ments. In ASIACRYPT 2004, vol. 3329 of LNCS, pages 137 – 151. 2004.

6. B. Bollobás. Modern Graph Theory. 1998.
7. D. Chaum, C. Crépeau, I. Damg̊ard. Multiparty unconditionally secure protocols.

In the 20th STOC, pages 11–19, 1988.
8. B. Chor, E. Kushilevitz. A zero-one law for Boolean privacy. SIDMA, 4(1):36–47,

1991.
9. Y. Desmedt, Y. Wang. Secure communication in multicast channels: The answer

to Franklin and Wright’s question. J. of Cryptology, 14(2):121–135, 2001.
10. Y. G. Desmedt, Y. Wang. Perfectly secure message transmission revisited. In

EUROCRYPT 2002, vol. 2332 of LNCS, pages 502–517. 2002.
11. D. Dolev. The Byzantine generals strike again. J. of Algorithms, 3:14–30, 1982.
12. D. Dolev, C. Dwork, O. Waarts, M. Yung. Perfectly secure message transmission.

J. of the ACM, 40(1):17–47, 1993.
13. C. Dwork, D. Peleg, N. Pippenger, E. Upfal. Fault tolerance in networks of bounded

degree. SIAM J. on Computing, 17(5):975–988, 1988.
14. M. J. Fischer, N. A. Lynch, M. Merritt. Easy impossibility proofs for distributed

consensus problems. Distributed Computing, 1(1):26–39, 1986.
15. M. Franklin, R. N. Wright. Secure communication in minimal connectivity models.

J. of Cryptology, 13(1):9–30, 2000.
16. M. Franklin, M. Yung. Secure hypergraphs: privacy from partial broadcast. In the

25th STOC, pages 36–44, 1993.

3 This is a technical requirement as we can replace such non-curious neighbors by a
new vertex holding the inputs of the two neighbor.

On Private Computation in Incomplete Networks 33

17. O. Goldreich, S. Goldwasser, N. Linial. Fault-tolerant computation in the full
information model. In the 32nd FOCS, pages 447–457, 1991.

18. A. Jakoby, M. Liskiewicz, R. Reischuk. Private computations in networks: Topology
versus randomness. In the 20th STACS, vol. 2607 of LNCS, pages 121–132. 2003.

19. M. V. N. A. Kumar, P. R. Goundan, K. Srinathan, C. Pandu Rangan. On perfectly
secure communication over arbitrary networks. In the 21st PODC, pages 193–202,
2002.

20. E. Kushilevitz. Privacy and communication complexity. SIDMA, 5(2):273–284,
1992.

21. N. A. Lynch. Distributed Algorithms. Morgan Kaufman Publishers, 1997.
22. K. Menger. Allgemeinen kurventheorie. Fund. Math., 10:96–115, 1927.
23. T. Rabin, M. Ben-Or. Verifiable secret sharing and multiparty protocols with

honest majority. In the 21st STOC, pages 73–85, 1989.
24. H. M. Sayeed, H. Abu-Amara. Efficient perfectly secure message transmission in

synchronous networks. Information and Computation, 126:53–61, 1996.
25. K. Srinathan, V. Vinod, C. Pandu Rangan. Efficient perfectly secure communica-

tion over synchronous networks. In the 22nd PODC, pages 252–252, 2003.
26. K. Srinathan, V. Vinod, C. Pandu Rangan. Optimal perfectly secure message

transmission. In CRYPTO 2004, vol. 3152 of LNCS, pages 545 – 561, 2004.
27. E. Upfal. Tolerating a linear number of faults in networks of bounded degree.

Information and Computation, 115(2):312–320, 1994.

Traffic Grooming on the Path�

Jean-Claude Bermond1, Laurent Braud2, and David Coudert1,��

1 Mascotte Project, CNRS/I3S/INRIA – 2004 route des Lucioles – B.P. 93 – F-06902
Sophia-Antipolis Cedex – France

2 ENS-Lyon – 46 allée d’Italie – F-69364 Lyon Cedex 07 – France

Abstract. In a WDM network, routing a request consists in assigning
it a route in the physical network and a wavelength. If each request uses
at most 1/C of the bandwidth of the wavelength, we will say that the
grooming factor is C. That means that on a given edge of the network
we can groom (group) at most C requests on the same wavelength. With
this constraint the objective can be either to minimize the number of
wavelengths (related to the transmission cost) or minimize the number
of Add Drop Multiplexer (shortly ADM) used in the network (related to
the cost of the nodes). Here we consider the case where the network is a
path on N nodes, PN . Thus the routing is unique. For a given grooming
factor C minimizing the number of wavelengths is an easy problem, well
known and related to the load problem. But minimizing the number of
ADM’s is NP-complete for a general set of requests and no results are
known. Here we show how to model the problem as a graph partition
problem and using tools of design theory we completely solve the case
where C = 2 and where we have a static uniform all-to-all traffic (requests
being all pairs of vertices).

1 Introduction

Traffic grooming is the generic term for packing low rate signals into higher speed
streams (see the surveys [13, 22, 24]). By using traffic grooming, one can bypass
the electronics in the nodes for which there is no traffic sourced or destinated
to it. Typically, in a optical network using wavelength division multiplexing
(WDM), instead of having one SONET Add Drop Multiplexer (shortly ADM)
on every wavelength at every node, it may be possible to have ADMs only
for the wavelength used at that node (the other wavelengths being optically
routed without electronic switching). More precisely, in SONET networks, the
bandwidth offered by a wavelength (typically 2.5 or 10 Gbits/sec.) is shared by
several low speed streams. For instance, an OC-48 corresponds to a bandwidth
of 2.5Gbits/sec is a container for 4 OC-12, each corresponding to a 655Mbits/sec

� This work has been partially funded by European projects fet Crescco and COST
293 Graal, and has been done in the crc Corso with France Telecom.

�� Correspondig author: David.Coudert@sophia.inria.fr

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 34–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Traffic Grooming on the Path 35

stream. In order to managed those bitstream, an ADM is to be placed each time
a stream is added or dropped from a wavelength.

In the past many papers on WDM networks had for objective to minimize
the transmission cost and in particular the number of wavelengths to be used
[8, 1, 11], recent research has focused on reducing the total number of ADMs
used in the network, trying to minimize it.

Here, we consider the particular case of paths (the routing is unique) with
static uniform all-to-all traffic (requests being all pairs of vertices).

To each request {i, j} routed on the path from i to j, we want to assign a
wavelength in such a way that at most C requests use the same wavelength on a
given edge of the path. Equivalently, each request uses 1/C of the bandwidth of
the wavelength. C is called the grooming ratio (or grooming factor). For example,
if the request from i to j is one OC-12 and a wavelength can carry an OC-48, the
grooming factor is 4. Given the grooming ratio C and the length N of the path,
the objective is to minimize the total number of (SONET) ADMs used, denoted
A(PN , C), and so reducing the network cost by eliminating as many ADMs as
possible from the “no grooming case”.

Figure 1 shows how to groom requests for a grooming factor C = 2 and a
path PN with N = 3, 7, 9 vertices. For N = 7 we have 21 requests. So, a priori,
if we give one wavelength to each request we need 42 ADMs. Using the same
wavelength for disjoint requests (case C = 1) we will see after that 33 ADMs
suffice. Indeed two requests may share an ADM if they have a common extremity.
For C = 2 we will see that the construction given in Figure 1 is optimal and use
20 ADMs (note that 4 requests share the same ADM in vertex 3).

To the best of our knowledge, the problem for paths has only been studied
in [10] where it has been proved NP-complete for a general set of requests and
no other results are known. Other topologies have also been considered and in

0 1 2 3 4 5 6 7 8210

0 1 2 3 4 5 6

Fig. 1. Constructions for N = 3, 7 and 9

36 J.-C. Bermond, L. Braud, and D. Coudert

particular unidirectional rings primarily in the context of variable traffic require-
ments [6, 12, 17, 25, 27], but the case of fixed traffic requirements has served as
an important special case [2, 3, 4, 5, 13, 15, 16, 19, 20, 22, 26, 28].

In this paper we model the grooming problem on the path as a graph partition
problem. Then, we show how a greedy algorithm gives a solution for C = 1 and
any set of requests. Thus, using tools of design theory, we determine exactly the
number of ADMs in the case C = 2 for the all-to-all set of requests.

2 Modelization

Here we are given a physical graph and a set of requests. The physical graph will
be the path PN with vertex set V = {0, 1, 2, . . . , N − 1} and where the edges are
the pairs {i, i + 1}, 0 ≤ i ≤ N − 2.

The set of requests I is a set of pairs {u, v} that we model by a graph
G = (V,E) where each edge e = {u, v} is associated to the request {u, v}. Each
request is routed along the unique subpath from u to v and we associate to it a
wavelength w.

For a subgraph B of requests of G, we define the load of an edge e = {i, i + 1}
of PN , L(B, e), as the number of requests which are routed through e, that is
the number of edges {u, v} of B such that u ≤ i < v.

Now let Bw = (Vw, Ew) be the subgraph of G containing all requests carried
by wavelength w. The fact that the grooming ratio is C can be expressed as
L(Bw, e) ≤ C for each edge e of PN . The number of ADMs used for wavelength
w is nothing else than |Vw|.

So the problem corresponds to partition the edges of G (set of requests) into
subgraphs Bw (set of requests with wavelength w) such that L(Bw, e) ≤ C.

It is straightforward to see that minimizing the number W of wavelengths
needed to route all requests is equivalent to minimize the number of subgraphs
in the partition. Furthermore this is an easy problem since the load L(G, e)
is easy to compute. For example if G is the complete graph, L(G, {i, i + 1}) =
(i+1)(N−i−1). If Lmax(G) is the maximum load over all the edges, Lmax(G) =
maxe∈PN

L(G, e), then we need at least Lmax(G)
C wavelengths and we can assign

them in a greedy way. For the complete graph, the number of wavelengths is
therefore:

Proposition 1. For the all-to-all set of requests on the path PN and grooming
ratio C, the minimum number of wavelength needed is

⌈
N2−ε
4C

⌉
, where ε = 1

when N is odd and 0 otherwise.

Proof. We have Lmax(KN) = maxe∈PN
L(KN , e) = max{i,i+1}=e∈PN

(i+1)(N−
i− 1) =

⌈
N2−ε

4

⌉
, where ε = 1 when N is odd and 0 otherwise.

Here our objective is to minimize the number of ADMs, that is the sum of
the number of vertices in the Bw. Thus the problem can be formalized as follows:

Traffic Grooming on the Path 37

Problem 1 (Grooming problem on the path).
Inputs : a path PN , a grooming ratio C and a set of requests I modeled

by the graph G = (V,E)
Output : a partition of the edges of G into subgraphs Bw = (Vw, Ew),

w = 1, . . . , W , such that load(Bw, e) ≤ C for each edge e of PN

Objective :minimize
∑

1≤w≤W |Vw|

Here we mainly consider G = KN and, following [4], we will denote A(PN , C)
the optimal number of ADMs for a grooming ratio C and all-to-all set of requests
on the path.

We have formalized the problem in its undirected version, but for paths it is
the same for directed or symmetric directed versions. Indeed, if we consider a
dipath

−→
PN where the arcs are from i to i + 1, and if the requests are the couples

(u, v), with u < v, the problem is exactly the same. If we consider a symmetric
dipath P ∗

N with arcs (i, i + 1) and (i + 1, i) and the requests are the couples
(u, v), we can split the problem into 2 disjoint subproblems, one with the dipath−→
PN oriented from 0 to N − 1 with all requests (u, v) with u < v, and the second
on the dipath

←−
PN oriented from N − 1 to 0 with requests (u, v) with v < u.

To the best of our knowledge, this problem has only been studied in [10] where
it has been proved NP-complete, and no other results are known. However, the
grooming problem for rings has been extensively studied. For example in [4]
we have shown that the grooming problem on the unidirectional ring can be
formalized as follows:

Problem 2 (Grooming problem on the cycle).
Inputs : a number of nodes N and a grooming ratio C
Output : a partition of the edges of KN into subgraphs Bw = (Vw, Ew),

w = 1, . . . , W , such that |Ew| ≤ C
Objective :minimize

∑
1≤w≤W |Vw|

We denote A(CN , C) the optimal number of ADMs for a grooming ratio C
and all-to-all set of requests on the unidirectional ring.

Note that in Problem 2, for the ring, it is supposed that the two requests (u, v)
and (v, u) are assigned to the same wavelength (using thus 1/C of the capacity of
the wavelength). Clearly, a bound on the number of ADMs for unidirectional ring
gives a bound for our problem, but there might be very different (for example
A(C3, 2) = 5 but A(P3, 2) = 3) due to capacity constraints.

In fact, the problem for unidirectional rings corresponds to the problem of
path “with erasure” [10]. In this model a request (u, v) uses 1/C of the bandwidth
on the whole path and not only on the subpath between u and v. The “load
condition” becomes: there are at most C requests in any subgraph Bw which is
exactly the constraint of Problem 2.

We will show in the next section that the grooming problem on the path for
C = 1 and general instances can be solved polynomially, which is not the case
on the ring (in the erasure model) [23, 25, 14].

38 J.-C. Bermond, L. Braud, and D. Coudert

3 Grooming Ratio C = 1

When the grooming ratio is equal to 1, the grooming problem on the path
can be solved optimally for any set of requests in polynomial time. We prove
this in Theorem 1 and give the exact number of ADMs in the all-to-all case in
Corollary 1.

Theorem 1. A(PN , G, 1) =
∑N−1

i=0 max
{
d−G(i), d+

G(i)
}
.

Proof. The lower bound is simple since in each node i of the path PN we can
not do better than sharing an ADM between a request ending in this node, that
is a request {u, i} with u < i, and a request starting from it, that is {i, v} with
i < v. Thus A(PN , G, 1) ≥

∑N−1
i=0 max

{
d−G(i), d+

G(i)
}
.

Now, note that it is always possible to put a request ending in node i and
a request starting from i in a same subgraph. Thus we can form the subgraphs
using a greedy process: scan the nodes of the path from 0 to N − 2 and add to
each subgraph containing a request ending in i a requests starting from i (if any
left), and then create a new subgraph for each remaining request that start from
i (if any). So, in each node i, we will use max

{
d−G(i), d+

G(i)
}

ADMs and so the
lower bound is attained.

Finally, one may remark that this process will create more subgraphs than
necessary, but we can merged two subgraphs if they contains disjoint requests.
Doing so we will use the optimal number of subgraphs.

Corollary 1. A(PN , 1) = 3N2−2N−ε
4 , where ε = 1 when N is odd and 0 other-

wise .

A simple construction is the following. First, one can easily check that A(P2, 1)
= 2 and A(P3, 1) = 5. Then let the vertices of PN be 0, 1, . . . , N − 1, ar-
range them in this order, and suppose that A(PN , 1) = (3N2 − 2N − ε)/4,
where ε = 1 when N is odd and 0 otherwise. Let now the vertices of PN+2

be x, 0, 1, . . . , N − 1, y and arrange them in this order. The subgraphs of the
partition of KN+2 will be: the N subgraphs Bj , 0 ≤ j ≤ N − 1, each of
them containing the edges {x, j} and {j, y}, and so |V (Bj)| = 3; the subgraph
BN which contains only the edge {x, y}, and so |V (B0)| = 2; and the sub-
graphs of the partition of KN . So altogether the partition of KN+2 contains
2 + 3N + (3N2− 2N − ε)/4 =

(
3(N + 2)2 − 2(N + 2)− ε

)
/4, where ε = 1 when

N is odd and 0 otherwise.

When the grooming ratio is C ≥ 2, the problem is NP-complete and difficult
to approximate for general instance. In particular, when the grooming ratio
is equal to C = 2, this problem is similar to partition the edges of G into
the maximum number of K3 (see [9, 18]), although such partition only provides
an upper bound of the total number of ADMs (two K3 may share an ADM).
However, for G = KN we will give in the next sections the exact number of
ADMs for C = 2.

Traffic Grooming on the Path 39

4 Lower Bounds

Consider a valid construction for Problem 1 and let ap denote the number of
subgraphs of the partition with exactly p nodes, A the number of ADMs, and
W the number of subgraphs of the partition. We have the following equalities:

A =
N∑

p=2

pap (1)
N∑

p=2

ap = W (2)
W∑

w=1

|Ew| = |E| (3)

In the particular case where G = KN we know by Proposition 1 that W ≥⌈
N2−ε
4C

⌉
, where ε = 1 when N is odd and 0 otherwise, and we have E = N(N−1)

2 .

To obtain accurate lower bounds we need to bound the value of |Ew| for a
graph with |Vw| = p vertices, satisfying the load constraint. Let γ(C, p) be this
maximum number of edges. Equations 2 and 3 becomes

N∑
p=2

ap ≥
⌈

N2 − ε

4C

⌉
(4)

N∑
p=2

apγ(C, p) ≥ N(N − 1)

2
(5)

In what follows we will restrict ourselves to the case C = 2, which is already
non immediate and for which we have been able to obtain exact values. To obtain
the right lower bounds when N is even, we need to determine γ(2, p, 2h) which
is the maximum number of edges of a graph B with p vertices with at least 2h
vertices of odd degree and such that L(B, e) ≥ 2 for each edge of PN . Note that
γ(2, p) = γ(2, p, 0).

We will denote by G+H the graph obtained by merging the right most node
of G with the left most node of H.

Lemma 1. γ(2, p, 2h) =
⌊

3p−3−h
2

⌋
Proof. We prove the lemma by induction. It is true for p = 2 as a graph with
two vertices has at most one edge. In that case h = 1 and we have equality.
For p = 3 the maximum number of edges is 3, obtained with a K3, and there is
equality for h = 0. With h = 2, the graph has at most 2 edges and the equality
is attained with a P3. Similarly for p = 4, the graph has at most 4 edges. Let
the vertices be {a, b, c, d} with a < b < c < d. For h = 0 the equality is obtained
by the graph C4 consisting of the 4 edges {a, b}, {b, c}, {c, d} and {a, d}, and for
h = 1 equality is attained by the graph consisting of an edge joined by a vertex
to a K3 more precisely the 4 edges {a, b}, {b, c}, {c, d} and {b, d}.

Now consider a graph B with p vertices and 2h vertices of odd degree. Let
m(B) be the number of edges of B, and let u0 be the first vertex (in the order
of the path).

1. If u0 has degree 1, B − {u0} has at least 2h − 2 vertices of degree 1 and
therefore m(B) ≤ γ(2, p− 1, 2h− 2) + 1 =

⌊
3p−3−h

2

⌋
2. If u0 is of degree 2, let u1 and u2 be the 2 neighbors of u0, with u0 <

u1 < u2. As L(B, {u1 − 1, u1}) ≤ 2 there is no edge {u, u1} with u <

40 J.-C. Bermond, L. Braud, and D. Coudert

u1, and as L(B, {u1, u1 + 1}) ≤ 2 there is at most one edge {u1, v} with
v > u1.
(a) If there is no edge {u1, v}, the graph obtained from B by deleting u0

and u1 has at least 2h − 2 vertices of odd degree and so m(B) ≤
γ(2, p− 2, 2h− 2) =

⌊
3p−4−h

2

⌋
.

(b) If there is an edge {u1, v1} 3 subcases can appear.
i. either v1 = u2 and the graph obtained from B by deleting u0 and u1

(and therefore the K3 {u0, u1, v1}) has the same number of vertices
of odd degree as B and so m(B) ≤ γ(2, p− 2, 2h) =

⌊
3p−3−h

2

⌋
.

ii. or v1 < u2. Due to the load constraint there is no edge {u, v1} with
u < v1 and at most one edge {v1, v} with v1 < v. The graph ob-
tained from B by deleting u0, u1, v1 has at least 2h − 2 vertices of
odd degree and 3 or 4 edges less than B. So m(B) ≤ γ(2, p−3, 2h) =⌊

3p−3−h
2

⌋
.

iii. or v1 > u2 we do the same reasoning by deleting from B the vertices
u0, u1, u2 and we obtain m(B) =

⌊
3p−3−h

2

⌋
.

So in all cases the bound is proved. Furthermore a careful analysis indicates
when the bound is attained. An optimal (p, 2h) can be obtained either by adding
an edge joined to a vertex of even degree of a (p− 1, 2h− 2) optimal graph (case
1); or by adding two edges {a, b} and {a, c} with a < b < c, c being a vertex of
even degree of an optimal (p − 2, 2h − 2) graph (case 2.a); or by adding a K3

joined to a vertex of an optimal (p − 2, 2h) graph (case 2.b.i); or by adding a
C4 joined to a vertex of an optimal (p − 3, 2h) graph (careful analysis of case
2.b.iii).

In particular when p is odd and h = 0, the optimal graph is unique and
consists of a sequence of K3’s sharing two by two a vertex (K3 + K3 + · · · +
K3).

For any h, equality is attained with the graph consisting of K3s and h edges
merged in the following way e+K3 +e+K3 + · · ·+K3 +e+K3 +K3 + · · ·+K3.

Theorem 2. A(PN , 2) ≥
⌈

11N2−8N−3
24

⌉
when N is odd, and when N is even

A(PN , 2) ≥
⌈

N(N−1)
3 +

⌈
N2

8

⌉
+ N

6

⌉
.

Proof. By Lemma 1 we know that |Ew| ≤ γ(2, p, 2h) = 3pw−3−hw

2 for a Bw with
pw vertices and 2hw vertices with odd degree. So

W∑
w=1

|Ew| ≤
N∑

p=2

3p − 3

2
ap −

W∑
w=1

hw

2
(6)

If N is odd,
∑W

w=1 hw can be equal to 0, but when N is even all vertices of
KN being of odd degree,

∑W
w=1 2hw ≥ N . So Equations 1, 4 and 5 becomes

Traffic Grooming on the Path 41

A =

N∑
p=2

pap (7)

N∑
p=2

ap ≥
⌈

N2 − ε

8

⌉
(8)

N∑
p=2

3p − 3

2
ap − (1 − ε)

N

4
≥ N(N − 1)

2
(9)

Thus Equation 9 become
N∑

p=2

3pap ≥ N(N − 1) + 3
N∑

p=2

ap + (1 − ε)
N

2
(10)

and so, A(PN , 2) ≥ N(N − 1)

3
+

⌈
N2 − ε

8

⌉
+ (1 − ε)

N

6
(11)

When N is odd, we have ε = 0 and so A(PN , 2) ≥ 11N2−8N−3
24 , and when N

is even, we have ε = 1 and so A(PN , 2) ≥
⌈

N(N−1)
3 +

⌈
N2

8

⌉
+ N

6

⌉

5 Constructions for C = 2

5.1 3-GDD

Let v1, v2, . . . , vl be non negative integers; the complete multipartite graph with
group sizes v1, v2, . . . , vl is defined to be the graph with vertex set V1∪V2∪· · ·∪Vl

where |Vi| = vi, and two vertices u ∈ Vi and v ∈ Vj are adjacent if i �= j.
Using terminology of Design Theory, the graph of type pα1

1 pα2
2 . . . pαl

l will be
the complete multipartite graph with αi groups of size pi. The existence of a
partition of this multipartite graph into Kk is equivalent to the existence of a
k-GDD (Group Divisible Design) of type pα1

1 pα2
2 . . . pαl

l .
Here we are interested in the existence of 3-GDD’s, that is partitions into

K3’s.

Theorem 3 (Existence of a 3-GDD (see [7])). There exists a 3-GDD of
type pα1

1 pα2
2 . . . pαl

l if and only if (i) each node of the complete multipartite graph
has even degree, and (ii) the number of edges is a multiple of 3.

It follows that when N ≡ 1 or 3 (mod 6), KN can always be partitioned into
K3. Various constructions are explained in [21]. One can found in [7] a collection
of multipartite graphs for which there exists a 3-GDD.

5.2 Constructions for Small Values of N

We have reported in the following table the number of ADMs and the number
of subgraphs of optimal constructions for some small cases. The most important
constructions are given in Section A.

N 2 3 4 5 6 7 8 9 10 11 12 13 16 17 20
A(PN , 2) 2 5 7 10 16 20 28 34 45 52 64 73 115 127 180
Nb subgraphs 1 1 2 3 6 6 8 10 13 15 18 20 32 36 50

42 J.-C. Bermond, L. Braud, and D. Coudert

5.3 Constructions for Odd Values

In this section we will show that the lower bound is attained for odd values and
we will prove it by induction. Note that to have equality, an optimal solution
has to contains the minimum number of subgraphs, that is

⌈
N2−1

8

⌉
. If N ≡ 1 or

3 (mod 6), any subgraph of the decomposition with p nodes has exactly 3p−3
2

edges, which implies p odd and no vertices of odd degree. So the subgraphs of
the decomposition are of the form K3 + K3 + · · · + K3. If N ≡ 5 (mod 6), an
optimal decomposition consists of K3’s and one C4, some of them being merged
together.

Theorem 4 (1.26 page 190 of [7]). Let u and v be positive integer with v ≤ u.
Then a 3-GDD of type u1v11u exists if and only if (u, v) ≡ (1, 1), (3, 1), (3, 3),
(3, 5), (5, 1) (mod (6, 6)).

Corollary 2. Given u and v satisfying the condition of Theorem 4 and an op-
timal construction for both u and v, we can build an optimal construction for
N = 2u + v.

Proof. Let the nodes of KN be numbered from left to right 0, 1, . . . , u−1, u, . . . , u+
v−1, . . . , 2u+v−1=N and let A={0, 1, . . . , u− 1}, B={u, u + 1, . . . , u + v − 1}
and C = {u + v, u + v + 1, . . . , 2u + v − 1}.

The 3-GDD of type u1v11u has 3u2−u+4uv
6 K3, and we say that the K3s are

of type ABC or ACC or CCC depending of their number of nodes in A, B and
C. There are uv K3 of type ABC, u(u−v)

2 K3 of type ACC and u(v−1)
6 K3 of

type CCC.
Note that as expected the number of subgraphs in the partition is u2−1

8 +
3u2−u+4uv

6 − u(v−1)
6 = (2u+v)2−1

8 .
Each node of A is the left most node of v + u−v

2 = u+v
2 K3 of type ABC or

ACC. Since each node of A is the right most node of at most u−1
2 subgraphs of

the partition of Ku, we can merged each subgraph with one K3 and so we save
u2−1

8 ADMs.
Each node of C is the right most node of v K3 of type ABC. It is also involved

in u − v K3 of type ACC and in u−1−(u−v)
2 = v−1

2 K3 of type CCC. Thus we
can merged each K3 of type CCC with a K3 of type ABC and so we save u(v−1)

6
more ADMs.

Note that since each node of B is the middle node of a K3 of type {a, b, c},
we can not merge the subgraphs of the partition of Kv.

Finally, the construction use 3u2−u+4uv
2 +A(Pu, 2)−u2−1

8 −u(v−1)
6 +A(Pv, 2) =

3u2−u+4uv
2 + 11u2−8u−3

24 − u2−1
8 − u(v−1)

6 + 11v2−8v−3
24 = 11(2u+v)2−8(2u+v)−3

24 , which
is the lower bound.

Theorem 5. When N is odd, A(PN , 2) =
⌈

11N2−8N−3
24

⌉
. Furthermore, the con-

struction contains N2−1
8 subgraphs.

Traffic Grooming on the Path 43

Proof. For N = 3, 5, 7, 13, 17 we give direct constructions in Lemmas 3, 5, 6, 9
and 11. For other values we will use Corollary 2 using induction on u.

– When N = 12t + 1, t ≥ 2, let u = 6t − 3 and v = 7. Since (6t − 3, 7) ≡
(3, 1) (mod 6, 6), we can used Corollary 2.

– When N = 12t + 3, t ≥ 0, we can use Corollary 2 with u = 6t + 1 and v = 1
– When N = 12t+5, t ≥ 3, we can use Corollary 2 with u = 6t−3 and v = 11,

and for N = 29 we can used Corollary 2 with u = 11 and v = 7
– When N = 12t+7, t ≥ 0, we can used Corollary 2 with u = 6t+3 and v = 1
– When N = 12t + 9, t ≥ 0, we can used Corollary 2 with u = 6t + 3 and

v = 3.
– When N = 12t + 11, t ≥ 1, we can used Corollary 2 with u = 6t + 3 and

v = 5. Finally, we can also use Corollary 2 for N = 11 with u = 5 and v = 1

5.4 Construction for Even Values

In view of the lower bound, an optimal partition will have exactly
⌈

N2

8

⌉
sub-

graphs and each vertex will appear with odd degree and otherwise the value
3p−3

2 is attained. So we will have mainly K3’s, plus N
2 graphs K3 + e (except

for some congruence classes where one edge is isolated) some of these K3’s or
K3 + e being merged together.

Lemma 2. There exists a 3-GDD of type (2u)1(2v)12u when u ≥ v ≥ 1 and
u(v − 1) ≡ 0 (mod 3).

Proof. To prove that, one has to check that all nodes have even degree (which
is true) and that the total number of edges is a multiple of 3.

Since we have 4u2 + 4uv + 4uv + 4u(u−1)
2 = 6u2 + 6uv + 2u(v − 1) edges it

remains to check that u(v − 1) ≡ 0 (mod 3).

Theorem 6. When N is even, A(PN , 2) =
⌈

N(N−1)
3 +

⌈
N2

8

⌉
+ N

6

⌉
= 11N2−4N

24 +

εN , where εN = 1
2 when N ≡ 2 or 6 (mod 12), εN = 1

3 when N ≡ 4 (mod 12),
εN = 5

6 when N ≡ 10 (mod 12), and 0 when N ≡ 0 or 8 (mod 6). Furthermore,

the construction contains
⌈

N2

8

⌉
subgraphs.

Proof. First of all, we know from Lemmas 3, 4, 7, 8, 10 and 12 that the theorem
is true for N = 2, 4, 8, 12, 16, 20.

Now suppose that the result is true for 2u and 2v, that is for w = u or v,

A(P2w, 2) =

⌈
2w(2w − 1)

3
+

⌈
4w2

8

⌉
+

2w

6

⌉
=

44w2 − 4w

24
+ εw (12)

where εw = 1
2 when 2w ≡ 2 or 6 (mod 12), εw = 1

3 when 2w ≡ 4 (mod 12),
εw = 5

6 when 2w ≡ 10 (mod 12), and 0 otherwise. Furthermore, the construction

use
⌈

4w2

8

⌉
subgraphs.

44 J.-C. Bermond, L. Braud, and D. Coudert

Let now N = 4u + 2v, where u and v are such that there exists a 3-GDD
of type (2u)1(2v)12u. Let also the nodes be A,B,C1, C2, . . . , Cu with |A| = 2u,
|B| = 2v and |Ci| = 2, 1 ≤ i ≤ u, and let C = ∪u

i=1Ci.
To simplify the notation, we say that an edge is of type CC if it has one node

in Ci and another in Cj with i �= j.
The 3-GDD of type (2u)1(2v)12u has 6u2−2u+8uv

3 K3: 4uv of type ABC,
2u(2u−2v)

2 = 2u(u− v) of type ACC and 2u(v−1)
3 of type CCC.

We observe that each node of C is the right most node of 2v K3 of type ABC

and is involved in 2u − 2v K3 of type ACC and 2u−2−(2u−2v)
2 = v − 1 K3 of

type CCC. Thus, we can merge each K3 of type CCC with a K3 of type ABC

and so save 2u(v−1)
3 ADMs. Furthermore, we can merged each edge

{
c1
i , c

2
i

}
such

that c1
i , c

2
i ∈ Ci, 1 ≤ i ≤ u, with a K3 of type ABC or ACC and so save u more

ADMs.
Each node of A is the left most node of 2v + 2u−2v

2 = u + v K3 of type ABC
or ACC and is the right most node of at most 2u−2

2 + 1 = u subgraphs of the

optimal construction for 2u. Thus we can merged each subgraph and save
⌈

4u2

8

⌉
more ADMs.

By hypothesis we have

A(P2u, 2) −
⌈

4u2

8

⌉
=

⌈
2u(2u − 1)

3
+

2u

6

⌉
=

⌈
u(4u − 1)

3

⌉
=

u(4u − 1)

3
+ αu (13)

where αu = 1
3 when u ≡ 2 (mod 3) and 0 otherwise.

Altogether the construction uses the following number of ADMs.

A(PN , 2) ≤ A(P2u, 2) −
⌈

4u2

8

⌉
+ A(P2v, 2) + (6u2 − 2u + 8uv)

− 2u(v−1)
3

+ 2u − u

(14)

≤ u(4u − 1)

3
+ αu +

44v2 − 8v

24
+ εv +

18u2 − u + 22uv

3
(15)

≤ 11(4u + 2v)2 − 4(4u + 2v)

24
+ αu + εv (16)

Now we have to check that αu + εv = εN in all cases. For that, observe that
the conditions of Lemma 2 are satisfied when v = 1 and when v = 4, assuming
that u ≥ v ≥ 1. So we have reported in the following table all cases that satisfies
the above construction.

N condition u v αu εv αu + εv εN

12t + 2 t ≥ 1 3t 1 0 1
2

1
2

1
2

12t + 4 t ≥ 2 3t− 1 4 1
3 0 1

3
1
3

12t + 6 t ≥ 0 3t + 1 1 0 1
2

1
2

1
2

12t + 8 t ≥ 2 3t 4 0 0 0 0
12t + 10 t ≥ 0 3t + 2 1 1

3
1
2

5
6

5
6

12t + 12 t ≥ 1 3t + 1 4 0 0 0 0

Traffic Grooming on the Path 45

Furthermore, the number of subgraphs in our construction for N = 4u + 2v
is equal to the number of K3 of type ABC plus the number of K3 of type
ACC and plus the number of subgraphs in the construction for 2v, that is
4uv + 2u(u− v) +

⌈
4v2

8

⌉
=
⌈

(4u+2v)2

8

⌉
.

In conclusion, Theorem 6 is true for all even N .

Acknowledgment

Many thanks to C.J. Colbourn for his help in solving the case N = 17.

References

1. B. Beauquier, J-C. Bermond, L. Gargano, P. Hell, S. Pérennes, and U. Vaccaro.
Graph problems arising from wavelength-routing in all-optical networks. In IEEE
Workshop on Optics and Computer Science, Geneva, Switzerland, April 1997.

2. J-C. Bermond and S. Ceroi. Minimizing SONET ADMs in unidirectional WDM
ring with grooming ratio 3. Networks, 41(2), February 2003.

3. J.-C. Bermond, C.J. Colbourn, A. Ling, and M.-L. Yu. Grooming in unidirectional
rings : K4 − e designs. Discrete Mathematics, Lindner’s Volume, 284(1-3):57–62,
2004.

4. J-C. Bermond and D. Coudert. Traffic grooming in unidirectional WDM ring
networks using design theory. In IEEE ICC, Anchorage, Alaska, May 2003.

5. J-C. Bermond, D. Coudert, and X. Muñoz. Traffic grooming in unidirectional
WDM ring networks: the all-to-all unitary case. In IFIP ONDM, pages 1135–1153,
February 2003.

6. A. L. Chiu and E. H. Modiano. Traffic grooming algorithms for reducing electronic
multiplexing costs in WDM ring networks. IEEE/OSA Journal of Lightwave Tech-
nology, 18(1):2–12, January 2000.

7. C.J. Colbourn and J.H. Dinitz, editors. The CRC handbook of Combinatorial
designs. CRC Press, 1996.

8. D. Coudert and H. Rivano. Lightpath assignment for multifibers WDM optical net-
works with wavelength translators. In IEEE Globecom, Taipei, Taiwan, November
2002.

9. D Dor and M. Tarse. Graph decomposition is NP-complete: a complete proof of
Holyer’s conjecture. SIAM Journal on Computing, 26(4):1166–1187, 1997.

10. R. Dutta, S. Huang, and N. Rouskas. On optimal traffic grooming in elemental
network topologies. In Opticomm, pages 13–24, Dallas, October 2003.

11. R. Dutta and N. Rouskas. A survey of virtual topology design algorithms for
wavelength routed optical networks. Optical Networks, 1(1):73–89, January 2000.

12. R. Dutta and N. Rouskas. On optimal traffic grooming in WDM rings. IEEE
Journal of Selected Areas in Communications, 20(1):1–12, January 2002.

13. R. Dutta and N. Rouskas. Traffic grooming in WDM networks: Past and future.
IEEE Network, 16(6):46–56, November/December 2002.

14. L. Epstein and A. Levin. Better bounds for minimizing sonet adms. In WAOA,
September 2004.

15. O. Gerstel, P. Lin, and G. Sasaki. Wavelength assignment in a WDM ring to
minimize cost of embedded SONET rings. In IEEE Infocom, pages 94–101, San
Francisco, California, 1998.

46 J.-C. Bermond, L. Braud, and D. Coudert

16. O. Gerstel, R. Ramaswani, and G. Sasaki. Cost-effective traffic grooming in WDM
rings. IEEE/ACM Transactions on Networking, 8(5):618–630, 2000.

17. O. Goldschmidt, D. Hochbaum, A. Levin, and E. Olinick. The SONET edge-
partition problem. Networks, 41(1):13–23, 2003.

18. I. Holyer. The NP-completeness of some edge-partition problems. SIAM Journal
on Computing, 10(4):713–717, 1981.

19. J.Q. Hu. Optimal traffic grooming for wavelength-division-multiplexing rings with
all-to-all uniform traffic. OSA Journal of Optical Networks, 1(1):32–42, 2002.

20. J.Q. Hu. Traffic grooming in wdm ring networks: A linear programming solution.
OSA Journal of Optical Networks, 1(11):397–408, 2002.

21. C.C. Lindner and C.A. Rodger. Design Theory. CRC Press, 1997. ISBN
0849339863.

22. E. Modiano and P. Lin. Traffic grooming in WDM networks. IEEE Communica-
tions Magazine, 39(7):124–129, July 2001.

23. M. Shalom and S. Zaks. A 10/7 + ε approximation for minimizing the number of
adms in sonet rings. In IEEE BroadNets, pages 254–262, October 2004.

24. A. Somani. Survivable traffic grooming in WDM networks. In D.K. Gautam,
editor, Broad band optical fiber communications technology – BBOFCT, pages 17–
45, Jalgaon, India, December 2001. Nirtali Prakashan. Invited paper.

25. P-J. Wan, G. Calinescu, L. Liu, and O. Frieder. Grooming of arbitrary traffic
in SONET/WDM BLSRs. IEEE Journal of Selected Areas in Communications,
18(10):1995–2003, October 2000.

26. J. Wang, W. Cho, V. Vemuri, and B. Mukherjee. Improved approches for cost-
effective traffic grooming in WDM ring networks: Ilp formulations and single-
hop and multihop connections. IEEE/OSA Journal of Lightwave Technology,
19(11):1645–1653, November 2001.

27. X. Yuan and A. Fulay. Wavelength assignment to minimize the number of SONET
ADMs in WDM rings. In IEEE ICC, New York, April 2002.

28. X. Zhang and C. Qiao. An effective and comprehensive approach for traffic groom-
ing and wavelength assignment in SONET/WDM rings. IEEE/ACM Transactions
on Networking, 8(5):608–617, 2000.

A Small Cases

Remark that all the subgraphs that we consider in the constructions satisfies
L(Bw, e) ≤ 2. It is clear for a K3 {u, v, w} where we suppose u < v < w. For an
edge {t, u} glued with the K3 {u, v, w}, we suppose that t < u < v < w.

Lemma 3. A(P2, 2) = 2 and A(P3, 2) = 3.

Lemma 4. A(P4, 2) = 7.

Proof. Let the vertices of P4 be Z4. The first subgraph contains the K3 {1, 2, 3}
plus the edge {0, 1}, and the second subgraph contains the two edges {0, 2} and
{0, 3}.

Traffic Grooming on the Path 47

Lemma 5. A(P5, 2) = 10.

Proof. Let the vertices of P5 be Z5. The graphs of the decomposition are the
2 K3 {0, 2, 4} and {0, 1, 3} plus the subgraph B3 containing the 4 edges {1, 2},
{2, 3}, {3, 4} and {1, 4}. This construction fit the lower bound.

Lemma 6. A(P7, 2) = 20

Proof. Let the vertices of P7 be Z7, that is 0, 1, 2, 3, 4, 5, 6. The construction is
obtained using the partition of K7 into the 7 K3 {i, i + 1, i + 3}, indices being
taken modulo 7, and the remark that the 2 K3 {0, 1, 3} and {3, 4, 6} fit in a same
subgraph. This construction use 20 ADMs and according to Theorem 2 we have
A(P7, 2) ≥ 20.

Lemma 7. A(P8, 2) = 28

Proof. Let the nodes be a1, a2, b1, b2, c1, c2, d1, d2. We have 4 groups of 2 consec-
utive nodes and we use a 3-GDD of type 24. Our construction consist on the 4 K3

{a2, b2, c2}, {b1, c2, d1}, {a1, c2, d2} and {a1, b2, d1} plus the 4 K3 + e {a1, a2}+
{a2, b1, d2}, {b1, b2}+{b2, c1, d2}, {a1, b1, c1}+{c1, c2} and {a2, c1, d1}+{d1, d2}.
This construction use 28 ADMs.

Lemma 8. A(P12, 2) = 64

Proof. Let the nodes of P12 be a1, a2, b1, b2, c1, c2, d1, d2, e1, e2, f1, f2 and arrange
them in this order.

Our construction consist on the 2 subgraphs (union of K3) {a1, b1, c1} +
{c1, e2, f1} and {a2, c1, d2}+{d2, e1, f2}, plus the 6 K3 +e {a1, a2}+{a2, b2, f1},
{b1, b2}+ {b2, c2, d2}, {c1, c2}+ {c1, d1, e1}, {a2, c2, d1}+ {d1, d2}, {a2, b1, e1}+
{e1, e2} and {a1, d2, f1} + {f1, f2}, and plus the 10 K3 {b1, d1, f1}, {b2, d1, e2},
{a1, c2, e2},{b1, c2, f2},{a1, d1, f2},{b2, c1, f2},{a1, b2, e1},{b1, d2, e2},{c2, e1, f1}
and {a2, e2, f2}. Altogether, we use 2× 5 + 6× 4 + 10× 3 = 64 ADMs.

Lemma 9. A(P13, 2) = 73

Proof. Let the vertices of P13 be Z13 and remark that K13 can be partitioned
into the 26 K3 {i, i + 1, i + 4} and {i, i + 5, i + 7}, i ∈ Z13. Our construction
consist on the subgraph {0, 1, 4} + {4, 5, 8} + {8, 9, 12}, plus the 3 subgraphs
{i, i + 1, i + 4} + {i + 4, i + 5, i + 8}, i = 1, 2, 3, plus the 4 K3 {j, j + 1, j + 4},
j = 9, 10, 11, 12, and plus the 13 K3 {k, k + 5, k + 7}, k ∈ Z13. Altogether this
construction use 7 + 3× 5 + 17× 3 = 73 ADMs and according to Theorem 2 we
have A(P13, 2) ≥ 73.

48 J.-C. Bermond, L. Braud, and D. Coudert

Lemma 10. A(P16, 2) = 115

Proof. Let the vertices of P16 be A ∪ B ∪ C, where A = {a0, a1, a2, a3, a4, a5},
B = {b0, b1, b2, b3} and C = {c0, c1, c2, c3, c4, c5}. Our construction is based on
the existence of a 3-GDD of type 614123, which consist on 24 K3 of type ABC, 6
K3 of type ACC and 2 K3 of type CCC, and by merging the 5 subgraphs of the
decomposition of K6 with K3s of type ABC, the 2 K3 of type CCC and the 3
edges {ci, ci+1}, i = 0, 1, 2, with K3s of type ABC. Altogether this construction
use 115 ADMs and the subgraphs of the decomposition are:

– The 4 graphs on 5 vertices {a0, b0, c1}+{c1, c2, c4}, {a2, b1, c0}+{c0, c3, c4},
{a0, a2, a5}+ {a5, b1, c1} and {a1, a3, a5}+ {a5, b2, c2}, so 20 ADMs.

– The 4 K3+e {a2, b3, c0}+{c0, c1}, {a1, b0, c2}+{c2, c3}, {a0, b2, c4}+{c4, c5}
and {a2, a3}+ {a3, b0, c5}, so 16 ADMs

– The 2 graphs on 6 vertices (2K3 + e) {a0, a3, a4}+{a4, a5}+{a5, b0, c4} and
{a0, a1}+ {a1, a2, a4}+ {a4, b0, c0}, so 12 ADMs,

– The 21 K3 {a0, b1, c3}, {a0, b3, c5}, {a1, b1, c4}, {a1, b2, c1}, {a1, b3, c3},
{a2, b0, c3}, {a2, b2, c3}, {a3, b1, c5}, {a3, b2, c5}, {a3, b3, c4}, {a4, b1, c2},
{a4, b2, c0}, {a4, b3, c2}, {a5, b3, c1}, {a0, c0, c2}, {a1, c0, c5}, {a2, c2, c5},
{a3, c1, c3}, {a4, c1, c5}, {a5, c3, c5} and {b0, b2, b3}, so 63 ADMs

– The star {b0, b1}+ {b1, b2}+ {b1, b3}, so 4 ADMs.

Lemma 11. A(P17, 2) = 127

Proof. Let the vertices of P17 be Z17. The decomposition is based on the exis-
tence of a 3-GDD of type 325132 (which was kindly given to us by C.J. Colbourn)
and the subgraphs are:

– The 9 graphs on 5 vertices (consisting of two K3s with a common ver-
tex, the one in the middle) {0, 1, 2} + {2, 5, 11}, {3, 4, 5} + {5, 13, 15},
{1, 4, 11} + {11, 12, 13}, {2, 4, 14} + {14, 15, 16}, {0, 5, 6} + {6, 11, 14},
{2, 3, 7} + {7, 11, 16}, {0, 4, 8} + {8, 11, 15}, {1, 5, 9} + {9, 13, 14} and
{0, 3, 10}+ {10, 12, 14}, so altogether 45 ADMs.

– The 24 K3s {4, 6, 12}, {1, 6, 13}, {2, 6, 15}, {3, 6, 16} {1, 7, 12}, {4, 7, 13},
{3, 7, 15}, {0, 7, 14} {2, 8, 12}, {3, 8, 13}, {1, 8, 16}, {5, 8, 14} {3, 9, 12},
{4, 9, 15}, {2, 9, 16}, {0, 9, 11} {2, 10, 13}, {1, 10, 15}, {4, 10, 16}, {5, 10, 11}
{1, 3, 14}, {0, 12, 15}, {0, 13, 16} and {5, 12, 16}, so 72 ADMs.

– The 3 graphs decomposing the K5 on 6, 7, 8, 9, 10, the 3 K3 {6, 8, 10} and
{6, 7, 9} and the C4 {7, 8, 9, 10}, so 10 more ADMs.

In summary our construction use 127 ADMs, the lower bound.

Lemma 12. A(P20, 2) = 180

Proof. The construction is similar to the construction of Lemma 10 and use a
3-GDD of type 238123.

Range Augmentation Problems
in Static Ad-Hoc Wireless Networks

Davide Bilò1 and Guido Proietti1,2

1 Dipartimento di Informatica, Università di L’Aquila,
Via Vetoio, 67010 L’Aquila, Italy

{davide.bilo, proietti}@di.univaq.it
2 Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”,

IASI-CNR, Viale Manzoni 30, 00185 Roma, Italy

Abstract. Given a set V of n stations, a transmission power cost func-
tion c : V × V �→ R

+ ∪ {+∞}, an initial power assignment p0 : V �→
R

+, and a connectivity property π, a range augmentation problem con-
sists of finding a minimum power augmentation assignment p such that
pf (·) = p0(·) + p(·) satisfies property π. In this paper, we focus on the
problem of biconnecting an already existing connected network, to make
it resilient to the failure of either a wireless link or a station. For these
problems we give a H2

n-approximation greedy algorithm (where Hn is
the n-th harmonic number) after proving that they are both not ap-
proximable within (1 − o(1)) ln n, unless NP⊂DTIME(nO(log log n)), even
when c is a distance cost function restricted to three power levels, or
it is a distance cost function and p0 induces a tree network. Moreover,
we prove that both problems remain APX-hard even if the initial power
assignment is uniform. In this latter scenario, we finally show that any
λ-approximation algorithm for the corresponding problem in wired net-
works, is a 2λ-approximation algorithm for the wireless case.

Keywords: Radio Networks, Connectivity Augmentation, Network Sur-
vivability, Approximation Algorithms.

1 Introduction

In the last decades, human interest towards wireless telecommunication networks
has considerably grown-up. This is essentially due to the fact that when the
communication goes partially or totally via ether, then most of the rigidity of
the classic wired communication model can be overcome. In particular, pure
wireless networking requires no fixed backbone communication infrastructure,
and thus hosts can exchange messages only through radio signals. This can
be done either directly (single-hop model), or, more realistically, by traversing
intermediate hosts (multi-hop model [19]). In this latter scenario, static ad-hoc
wireless networks (or simply radio networks) are indisputably emerging as one
of the most popular models [12, 22], thanks to their extreme versatility.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 49–64, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 D. Bilò and G. Proietti

A radio network can be viewed as a collection of homogenous battery-operated
stations (or nodes), i.e., stationary radio transmitters/receivers which can com-
municate with each other by sending/receiving radio signals. In practice, stations
are usually equipped with omnidirectional antennas, and this is the model we
assume for this paper. Each node transmits messages at a certain power level,
but interferences from other transmissions and background noise may attenuate
the signal. So the transmission power level of a station s affects its transmission
range, i.e., the set of nodes s can directly send messages to. These two quan-
tities are strictly related: the higher is the transmission power of a node, the
larger will be its transmission range. For the purpose of avoiding interference
problems and saving energy consumption, each node may vary its transmission
power.

In a realistic setting, the power of a signal falls as 1/dα, where d is the distance
from the transmitter s and α ≥ 1 represents the distance-power gradient [21]. In
particular, if the receiver t is at a distance d(s, t) from s, and s transmits with
power p(s), then the power detected by t is p(s)/d(s, t)α. As one can assume that
the signal sent from s can be decoded by the receiver t if the power detected by
t is at least 1, then it is clear that p(s) must be no less than d(s, t)α. Moreover,
in any real setting 2 ≤ α ≤ 4 (usually α = 2).

Survivable network design problem. Given an embedding network, a net-
work design problem consists of finding an optimal subnetwork satisfying some
connectivity property π, and that minimizes/maximizes some objective function.
For instance, given an edge-weighted undirected graph, the cheapest connected
network with respect to the sum of its edges is clearly a minimum spanning
tree. Given current attention to the network reliability, one usually desires to
build networks which are resilient to component crashes. A network with edge-
connectivity k allows communication between each pair of nodes even if at most
k − 1 links fails. This definition straightforwardly extends to the vertex connec-
tivity case.

Besides the problem of building-up a fault-tolerant network from scratch,
sometimes one may be interested in strengthening the reliability of an already
existing network. If this problem is already relevant for wired networks, it be-
comes more important for wireless networks. Indeed, interferences from other
signals and environmental conditions (e.g., storms, rain, fog, etc.) make link
crashes more frequent in wireless networks than in wired networks. Moreover,
hosts are battery-operated, so they may shut because of energy shortage.

In this paper we give attention exactly to this problem, in the case of radio
networks and with the objective of minimizing the total increase of energy con-
sumption. Moreover, we will assume that all established links are bidirectional or
symmetric. In the symmetric link model, if a node s is assigned to send messages
to a node t, then t must directly send messages to s, too. In practice, symmetric
links are desirable because they greatly simplify routing protocols.

Organization of the paper. The paper is organized as follows: in Section
2 we describe the general problem and give an overview of the current state

Range Augmentation Problems 51

art; in Section 3 we prove inapproximability results for different variants of our
problem; in Section 4 we study the relations between our problem and the cor-
responding problem in wired networks; finally, in Section 5 we describe approx-
imation algorithms for the general problem in the case of either a link or a node
failure.

2 General Problem Statement and Related Work

General problem statement. In the general Range Augmentation Problem
(Rap) we are given a 4-tuple 〈V, c, p0, π〉 where:

• V is the set of n stations (or nodes);
• c : V × V �→ R

+ ∪ {+∞} is the transmission power cost function. With a
little abuse of notation, we will denote by uv the ordered pair of stations
(u, v)1;

• p0 : V �→ R
+ is the initial power assignment;

• π is a network connectivity predicate;

and we are asked for a minimum total power augmentation assignment p, i.e., a
function p : V �→ R

+ that minimizes
∑

v∈V p(v) and such that π(pf) is satisfied,
where pf (v) = p0(v) + p(v) for each station v.

Therefore a minimum total power augmentation assignment p specifies how
the nodes must increase their current transmission power in order to satisfy
property π, and in such a way that the total increase of energy consumption is
minimized.

Problem classes. The above Rap definition is powerful and contains a wide
range of problems. First note that if p0 is the constant zero function, then the
problem of building a minimum total power network from scratch satisfying
property π is a special case of Rap. Moreover, predicate π may range over a
very large set of properties. A first classification of such properties may be the
following:

• π is a property related to the asymmetric-link network induced from pf . Such
a network can be modelled through a communication digraph Dpf

= (V,E),
where E = {uv|u, v ∈ V ∧ pf (u) ≥ c(uv)};

• π is a property related to the symmetric-link network induced from pf . Even
in this case, such a network can be modelled through a communication graph
Gpf

= (V,E), where E contains the unordered pair (u, v) iff pf (u) ≥ c(uv)∧
pf (v) ≥ c(vu).

Another important parameter of Rap is the transmission power cost function
c. First of all, the function c may be symmetric, i.e., c(uv) = c(vu) for every

1 Whenever the transmission power cost function of a pair uv is not defined, it is
assumed to be +∞.

52 D. Bilò and G. Proietti

pair of stations u, v2. Moreover, in any realistic setting (see [21]), we may have a
distance function d3 and a transmission-power gradient α ≥ 1.Henceforth, unless
stated otherwise, we denote by cs a symmetric transmission power cost function
and whenever it is a distance we will denote it by d.

As a direct consequence of the above discussion, we need to classify Rap. We
argue that the important parameters are c, p0 and π. Therefore, we will denote
by Rap[c, p0, π] a class of Rap, and for simplifying the notation, we will denote
the property π throughout a mnemonic name. For instance, the connectivity
Rap with asymmetric power cost function and the initial power assignment to
be equal to 0 will be denoted by Rap[c, 0,C], where 0 is the constant function
04, and C stays for connectivity. By Rap[cs, 0,SC] we will denote the strong
connectivity Rap with symmetric power cost function and with the initial power
assignment to be equal to 0.

It is worth noticing that any “negative” result for Rap[cs, p0, π] holds for
its asymmetric power cost function version, i.e., Rap[c, p0, π], as it is a special
case.

Related work. The objective of minimizing the total power has been addressed
under many specific properties π. Among them, we remind the following:

• In [2] it is claimed that Rap[c, 0,C] can not be approximated within (1 −
o(1)) ln n, unless NP ⊂ DTIME(nO(log log n)). The same paper presents a fac-
tor 2+2 ln(n−1) approximation algorithm for such a problem. Its symmetric
version is MAX-SNP-hard [8]. For this latter problem there is a polynomial
time approximation scheme with a performance guarantee of 5/3 + ε [1].

• In [2] it is also claimed that Rap[c, 0,SC] is as hard as the Set Cover Problem.
The paper contains also a factor 3+2 ln(n− 1) approximation algorithm for
such a problem. Its symmetric version has been proved to be MAX-SNP and
factor 2 approximation algorithms are known for it [5, 17].

• Rap[cs, 0, kE(V)C], where kE(V)C stays for k-Edge (Vertex) Connectivity5,
is NP-hard when k = 2 [4]. These results hold even when the stations are
located onto a plane, and the transmission power cost function is given by
the Euclidean distance function. Approximation algorithms for both prob-
lems come out from a careful analysis of approximation algorithms for k-

2 Assume that +∞ can be compared.
3 Function d is a distance if, for each pair of stations u, v:

- d(uv) ≥ 0 (it is assumed that d(ww) = 0 for every station w);

- d(uv) = d(vu);

- d(uv) ≤ d(uw) + d(wv), for every station w (triangle inequality).

4 Henceforth, whenever p0 will be denoted by a constant ρ ∈ R
+, then we mean

p0(v) = ρ for every station v.
5 From now on, whenever we will refer to both k-edge and k-vertex connectivity prob-

lems, we will write k-connectivity or simply kC.

Range Augmentation Problems 53

edge (vertex) connectivity problems for wired networks6 when applied to
radio networks (see [4, 13]). However, such algorithms do not perform as
well as in the wired case, since the objective function to minimize is dif-
ferent. Călinescu and Wan [4] proved that the 2-approximation algorithm
of Khuller and Ragavachari [15] for kEC, has a performance guarantee of
2k when applied to Rap[cs, 0, kEC]. In the same paper it has been proved
that the 2-approximation algorithm of Khuller and Vishkin [16] for 2VC is
a factor 4 approximation algorithm for Rap[cs, 0, 2VC]. In the paper of Ha-
jiaghayi, Immorlica and Mirrokni [13], the authors proved that any factor
λ approximation algorithm for kC is an algorithm for Rap[cs, 0, kC] with a
performance guarantee of 2λk. Moreover, by a careful analysis of the fac-
tor k approximation algorithm of Kortsarz and Nutov [18] for kVC, they
proved that such an algorithm has a performance guarantee of 8(k − 1) for
Rap[cs, 0, kVC] with a slight improvement for values of k = 4, 5, 6, 7.

For a survey of other Rap classes, such as unicast, broadcast, multicast, etc.,
see [3, 6, 7, 20, 22, 24].

In this paper we focus on Rap[c, p0, kCA], where kCA stays for k-(either
edge or vertex) Connectivity Augmentation, when the initial range assignment
p0 induces a connected graph.

3 Inapproximability Results

In this section we prove some inapproximability results for Rap[cs, p0, 2CA]
through reductions from the Set Cover Problem.

In the Smallest Set Cover Problem (Scp) we are given a set U = {o1, . . . , om}
of m objects and a collection S of h subsets S1, . . . , Sh of U . We are asked for
the smallest cover C∗, i.e., the minimum cardinality collection C∗ ⊆ S such
that

⋃
S∈C∗ S = U . In the weighted version of the Scp (Wscp) at each set S is

associated a real positive value w(S) (called weight) and the objective function
is to minimize the total weight of the cover w(C∗) =

∑
S∈C∗ w(S).

Both problems are not-approximable within a factor better than (1−o(1)) ln m,
unless NP ⊂ DTIME(mO(log log m)) [10]. Moreover, there exists a simple factor
Hm approximation greedy algorithm (see [23]), where Hm =

∑m
i=1 1/i is the

m-th harmonic number. We remind that, for every m ≥ 1, ln(1 + m) ≤ Hm ≤
1 + lnm.

Let P be an optimization problem and I an instance for P . We denote by
optP (I) an optimal solution for I when the problem is P . If the instance will
be clear from the context, we omit I from notation. With a little abuse of no-
tation, we will denote by optP the measure of optP whenever it will not create
confusion.

6 In the k-edge (vertex) connectivity problem (kE(V)C) we are given a weighted undi-
rected graph G = (V, E), with weight function w : E �→ R

+ and we are asked
for finding a subset of edges E∗ of E, such that the graph G∗ = (V, E∗) is k-edge
(vertex) connected and

∑
e∈E∗ w(e) is minimized.

54 D. Bilò and G. Proietti

Theorem 1. Rap[d, p0, 2CA] is not-approximable within a factor better than
(1−o(1)) ln n, unless NP ⊂ DTIME(nO(log log n)), even when the distance function
d is restricted to three power levels.

Proof. Let U and S be an instance of Scp. Let V = {r} ∪ VU ∪ VS , where
VU = {vi | oi ∈ U} and VS = {ui | Si ∈ S }. Let d(ui, uj) = 2, for different
ui, uj ∈ VS . Let d(r, vi) = 3,∀vi ∈ VU , d(r, ui) = 2, ∀ui ∈ VS , and let d(vi, vj) =
5 for different vi, vj ∈ VU . If oi ∈ Sj then d(vi, uj) = 3, otherwise d(vi, uj) = 5.
Let p0(r) = 3, p0(vi) = 3, for each vi ∈ VU , and let p0(ui) = 2 for each ui ∈ VS

be the initial power assignment (see Figure 1). It is easy to prove that d is a
distance function and that Gp0 is connected.

uk

vi

3 3 2

vj

2 2

u1

uh

2

r

3

5

oi ∈ Sk
2

2
oj /∈ Sk

5

Fig. 1. The generic reduction from Scp instances into Rap[d, p0, 2CA] instances as

explained in Theorem 1. Bold edges represent the connected graph induced from the

initial power assignment p0. Note that the edges satisfy the triangle inequality

Now, let C be a solution for the Scp. We transform C into a solution for
Rap[d, p0, 2CA] in the following way: for each vi ∈ VU we set p(vi) = 0, while
for each uj ∈ VS , if Sj ∈ C then p(uj) = 1, otherwise p(uj) = 0. Note that the
total power augmentation assignment p equals the cardinality of C.

Now we prove that any optimal solution p∗ for Rap[d, p0, 2CA] is a transfor-
mation of a solution for Scp. Note that it suffices to prove that Gp0+p∗ contains
no edge having cost 5. Indeed, if this is true, then p∗(vi) = 0, ∀vi ∈ VU , while
p∗(uj), with uj ∈ VS , may be either 0 or 1. Moreover, as ∀vi ∈ VU , (r, vi) is a
bridge7 in Gp0 , then Gp0+p∗ must contain at least one edge covering (r, vi), and
so at least one node uj ∈ VS such that oi ∈ Sj must increase its power by one
(i.e., p∗(uj) = 1).

It remains to prove that any optimal solution p∗ for Rap[d, p0, 2CA] is such
that Gp0+p∗ does not contain any edge having cost 5. If not so, then note that
such edges must be incident to some vi ∈ VU . For each of such vi’s take a vertex
uj ∈ VS such that c(vi, uj) = 3 (note that such a vertex always exists as object
oi is covered by some set in S), and set p(vi) = 0 and p(uj) = 1 (note that

7 A bridge of a graph G = (V, E) is an edge whose removal from G disconnects it.
Bridge b ∈ E is covered by a set of edges F , with F ∩ E = ∅, if F contains an edge
whose addition to G makes b to be not a bridge.

Range Augmentation Problems 55

p∗(vi) = 2). For the remaining nodes v ∈ V set p(v) = p∗(v). Now it is easy to
see that p is a better solution for Rap[d, p0, 2CA] than p∗.

Since the transformation function restricted to the set of optimal solutions
is a bijection and preserves the costs8, then the theorem follows from the inap-
proximability results for Scp [10]. ��

One may think that the problem becomes “easier” if the initial power assign-
ment induces a tree. The following theorem shows that this is not the case:

Theorem 2. Rap[d, p0, 2CA] is not-approximable within a factor better than
(1− o(1)) ln n, unless NP ⊂ DTIME(nO(log log n)), even when Gp0 is a tree.

Proof. Let U and S be an instance of Scp and let V, p0 and d be defined as in
Theorem 1 except for different ui, uj ∈ VS , for which d(ui, uj) = 2 + δ.

By proceeding as in Theorem 1, it is not hard to prove that, for small values
of δ, the transformation function restricted to the set of optimal solutions is a
bijection. Since the transformation preserves costs, except for a linear additive
function f(δ) such that hδ ≥ f(δ) δ 	→0−→ 09, then the theorem follows from the
inapproximability results for Scp [10]. ��

An interesting variant of Rap[c, p0, 2CA] is when we treat with the so called
uniform instances, i.e., instances for which the initial power assignment is the
same for each node. Even if in the next section we prove that this simplification
let the problem become “easier”, it remains “intractable”.

Theorem 3. Rap[d, ρ∈R
+, 2CA]is APX-hard, unless NP⊂DTIME(nO(log log n)).

Proof. Let U and S be an instance of Scp and let V be defined as in Theorem 1.
Let d(ui, uj) = 2, for different ui, uj ∈ VS . Let d(r, w) = 2,∀w ∈ V \ {r}, and
let d(vi, vj) = 4 for different vi, vj ∈ VU . If oi ∈ Sj then d(vi, uj) = 3, otherwise
d(vi, uj) = 4. Let p0(v) = 2 for every station v.

By proceeding as in Theorem 1, it is not hard to prove that the transformation
function restricted to the set of optimal solutions for both instances is a bijection.
Let optRap denote an optimum for Rap[d, ρ, 2CA]. By construction, we have
that optRap = m + optScp, where |U | = m. Since Scp is not-approximable
within (1 − o(1)) ln m, unless NP ⊂ DTIME(mO(log log m)) [10], then under the
same hypothesis, Rap[d, ρ, 2CA] is not-approximable within a factor better than
m+(1−o(1))(ln n)optScp

m+optScp
. See Corollary 1 to complete the proof. ��

Theorem 4. Rap[d, ρ∈R
+, 2CA]is APX-hard, unless NP⊂DTIME(nO(log log n)),

even when the initial power assignment p0 induces a tree.

Proof. Combines the transformations described in Theorems 2 and 3 and the
proof of Theorem 3. ��

8 We can implicitly assume that each set S ∈ S has weight 1.
9 Remember that |S | = h.

56 D. Bilò and G. Proietti

Next theorem captures an inapproximability result for the Rap[cs, p0, 2CA],
whenever we have an existing communication network of nodes located onto a
Euclidean plane and we want to increase its reliability, but not all the pairs of
nodes are allowed to communicate with each other.For instance, such a situation
may happen when there is a set A of agents, each owning some base nodes,
and there is a set R of clients, with R ∩ A = ∅. Assume each client r ∈ R is a
subscriber of a subset of agents Ar ⊆ A, so it is allowed to communicate only
with base nodes owned by agents in Ar. Then, in order to guarantee a better
service, such as improving the network reliability, the agents might commonly
decide to augment their base nodes transmission power.

Theorem 5. Rap[cs, p0, 2CA] is not-approximable within a factor better than
(1 − o(1)) ln n, unless NP ⊂ DTIME(nO(log log n)), even when the stations are
located onto a 2-dimensional plane and cs is the Euclidean distance function,
whenever it is different from +∞.

Proof. Let U and S be an instance of Scp. Let V = {r} ∪ VU ∪ VS where
VU = {vi | oi ∈ U} and VS = {ui | Si ∈ S }. Let r be the center of two
concentric circumferences with radius 1 and δ < 1, respectively. Let ui’s be
located all over the circumference with radius δ, while vi’s are located all over
the other circumference. Assume that vi’s can not directly communicate with
each other. Moreover vj ’s and ui’s can directly communicate with each other iff
oj ∈ Si. Let p0(r) = p0(vi) = 1 and let p0(ui) = 2δ (see Figure 2).

vj

vk

ok /∈ Si

1

δ

ui u�
2δ

1

1

oj ∈ Si

1

2δ

Fig. 2. The generic transformation from Scp instances into particular Rap[cs, p0, 2CA]

instances as explained in Theorem 5. For each unordered pair of stations (u, v), either

cs(u, v) = +∞ or it is equal to the Euclidean distance between the two stations. Bold

edges represent the connected graph induced from the initial power assignment p0

By proceeding as in Theorem 1, it is not hard to prove that, for small values
of δ, the transformation function restricted to the set of optimal solutions for
both instances is bijective. Since the transformation preserves costs, except for a
linear polynomial P (δ), that tends to zero for small values of δ, then the theorem
follows from the inapproximability results for Scp [10]. ��

Range Augmentation Problems 57

Remark 1. The inapproximability result of Theorem 5 can be extended for the
broadcast Rap. The proof is quite similar.

4 Relations ith Wired Augmentation Problems

As the best actually known algorithms for Rap[cs, 0, kC] are the same of the
corresponding problem for wired networks (see [4, 13]), then for Rap[cs, p0, kCA]
we first analyze the relations with its wired corresponding problem.

In the k-(either edge or vertex) Connectivity Augmentation Problem (kCap)
we are given a weighted undirected graph G = (V,E), with weight function
w : E �→ R

+, and a spanning connected subgraph H of G. We are asked
for a set of edges F ⊆ E whose addition to H makes it to be k-edge (ver-
tex) connected and such that w(F) =

∑
e∈F w(e) is minimized. Both prob-

lems have been proved to be NP-hard [9, 11] for k = 2 (for a survey on kCap
see [14]).

The following definitions and lemmas turn out to be useful for our purposes.

Definition 1. Given a weighted digraph D = (V,E), with non negative weight
function c, the power induced from D to a host v ∈ V (denoted by pD

f (v))
is maxvu∈E c(vu), while the total power assignment induced from D (denoted
by pf (D)), is

∑
v∈V pD

f (v). The extension of these definitions for a weighted
undirected graph G are straightforward10.

Definition 2. Given a weighted digraph D = (V,E), with non negative weight
function c and an initial power assignment p0, the total additional power as-
signment induced from D (denoted by p(D)), is

∑
v∈V

(
pD

f (v)− p0(v)
)
. The

extension of this definition for a weighted undirected graph G is straightfor-
ward.

Lemma 1. [17] For any undirected graph G = (V,E), pf (G) ≤ 2c(G)11. ��

Lemma 2. [17] For any undirected forest F , c(F) ≤ pf (F). ��

Lemma 3. Let F be a feasible forest12 for Rap[c, p0, 2CA] that minimizes p(F).
Then p(F) is an optimum for Rap[c, p0, 2CA].

Proof. For the sake of contradiction let us assume that p(F) is not an opti-
mal solution, that is, there exists a feasible range assignment p∗, such that

10 An undirected edge (u, v) with weight w can be viewed as two directed edges uv and
vu both having weight w.

11 c(G) =
∑

e∈E c(e).
12 The union between Gp0 and F generates a 2-edge (vertex) connected graph.

w

58 D. Bilò and G. Proietti∑
v∈V p∗(v) < p(F) and G′ = Gp∗+p0 −Gp0 is not a forest13. We prove that we

can remove edges from G′ until there is no cycle left and the resulting graph is
still a cover for T , where T is the bridge graph14 (resp., cut-node graph15) of Gp0 .
Let (v1, v2), . . . , (vk−1, vk), (vk, v1) be a cycle in G′ and consider the subtree T ′

of T covered by this cycle. If we prove that each edge (resp., vertex) of T ′ is
covered by at least 2 edges of the cycle, then we can remove any of such edges
and the remaining edges still form a cover for T ′.

For the sake of contradiction, let us assume that there is an edge (resp.,
vertex) e of T ′ covered by only one cycle edge, say (vj , vj+1). The removal of e
and (vj , vj+1) from T ′ splits T ′ into two subtrees T1, T2, such that vj is in T1 and
vj+1 is in T2. Since a cycle is a 2-edge connected graph, then there is another
cycle edge, say (vi, vi+1), with i �= j, that covers e. So we can remove any edge
of the cycle obtaining a cover for T ′, and the claim follows. ��

Remark 2. The results in Lemma 3 can be easily extended for 2Cap.

At this point we have sufficient material for relating 2Cap with
Rap[c, p0, 2CA]. Unfortunately, the relation between the two problems is “rather
slack” even if we restrict ourself to the case of symmetric cost function.

Theorem 6. Any λ-approximation algorithm A for 2Cap is a factor nλ ap-
proximation algorithm for Rap[c, p0, 2CA].

Proof. Build a complete edge-weighted (weight function w) undirected graph G
on V as follows. For every pair of nodes u, v, let w(u, v) = wu(v)+wv(u), where
wu(v) = max{0, c(uv)− p0(u)} and wv(u) = max{0, c(vu)− p0(v)}16.

From Remark 2 and Lemma 3 we have that any minimal (w.r.t. edge re-
moval) solution for 2Cap and Rap[c, p0, 2CA] is a forest. So let F ′ = (V,E′)
denote the forest solution computed by the algorithm A when applied to the
instance G,w,Gp0 , while F2Cap denotes a forest that is an optimal solution for
it. Moreover, let F∗ = (V,E∗) denote a forest that is an optimal solution for

13 G′ is the graph obtained by removing the edges in Gp0 from Gp∗+p0 .
14 The bridge graph of a graph G is a tree T obtained by repeatedly coalescing into a

node non-bridge edges of G until there are only bridges.
15 A cut-node of a graph G = (V, E) is a node whose removal from G disconnects it.

A cut-node v is covered by a set of edges F ∩ E = ∅, if F contains an edge whose
addition to G makes v to be not a cut-node.The cut-node graph of a graph G is a
tree T obtained by:

– coalescing each 2-vertex connected components C (i.e., subset of vertices in G which
induces a 2-vertex connected graph) into a node uC ;

– adding the set of cut-nodes;
– connecting a cut-node v to a vertex uC representing a 2-vertex connected compo-

nent, iff v ∈ C.

16 Assume that +∞± ρ = +∞ for any ρ ∈ R
+.

Range Augmentation Problems 59

Rap[c, p0, 2CA]. Then as a consequence of Lemma 1 (we remind that the cost
function is c) we have that:

p(F ′) =
∑
v∈V

(
pF

′
f (v)− p0(v)

)
=
∑
v∈V

max
u|vu∈E′

{wv(u)} ≤ w(F ′)

≤ λw(F2Cap) ≤ λw(F∗) = λ
∑
v∈V

∑
u|vu∈E∗

wv(u) ≤ nλp(F∗).

��
In Figure 3 we give an example showing that an optimum for 2Cap is a Ω(n)-

approximation for Rap[cs, p0, 2CA] even if we decide to apply the transformation
described in Theorem 6 or not. By contrast to the previous result, a better result
holds for the case in which the initial range assignment is identical for all stations
(we remind that 2Cap is approximable within a factor 2 [14]).

1 + ε 1 + ε1 + ε 1 + ε 1 + ε 1 + ε

x1 x2

v1 v2

u1u2

v2iv2i−1

u2i

ε

ε

ε ε

ε

ε

r

u2i−1

1 + 2ε

1 + ε

1 + 2ε

1 + 2ε

1 + ε 1 + ε

1 + 2ε

1 + ε

Fig. 3. An example for the result in Theorem 6. Bold edges represent the initial con-

nected graph. The initial power assignment is 1 + ε for r and vi’s, while it is ε for

x1, x2 and ui’s. The optimum for 2Cap is given by the solid thin edges, which induces

a total power augmentation assignment of 2i = Ω(n). The optimum power assignment

is given by assigning power 1 + 2ε to x1, x2 for a total power augmentation of 2 + 2ε.

Even if we apply the transformation described in Theorem 6, we have that the solid

thin edges have a weight w equal to 1 while the dashed one a weight equal to 1 + 2ε

and the gap between the power induced from an optimum for 2Cap and an optimum

power assignment still remains Ω(n)

Corollary 1. Any λ-approximation algorithm A for 2Cap is a factor 2λ ap-
proximation algorithm for Rap[cs, ρ ∈ R

+, 2CA].

Proof. The proof is identical to the one described in Theorem 6 except for the
last inequality of the equation where the term n can be replaced by 2, as a
direct consequence of Lemma 2 along with the definition of w (note that as cs

is symmetric and the initial power assignment is uniform, then wu(v) = wv(u),
for every pair of stations u, v). ��

60 D. Bilò and G. Proietti

5 Approximation Algorithms

In this section, we describe approximation algorithms for Rap[c, p0, 2CA]. We
start by treating Rap[c, p0, 2ECA], namely the edge-connectivity case. We first
build a weighted digraph D = (V,E), with weight function w : E �→ R

+∪{+∞},
representing the residual network w.r.t. the initial range assignment p0. More
formally, for each pair of nodes u, v ∈ V , w(uv) = +∞ iff (u, v) is either an edge
in Gp0 or c(u, v) = +∞, otherwise w(uv) = max{0, c(uv) − p0(u)}. We use the
ideas in [2] for approximating Rap[c, p0, 2ECA].

Definition 3. A star S is a tree consisting of one center and several leaves
adjacent to the center. The weight of the star, denoted by w(S) is given by the
sum of weights of the arcs from the leaves to the center plus the maximum weight
chosen among the arcs going from the center to the leaves.

Definition 4. A star S is bridge cost-effectiveness w.r.t. graph H, if it min-
imizes w(S)/|B(S|H)|, where B(S|H) denotes the set of bridges of H covered
by S.

Next we describe an algorithm for Rap[c, p0, 2ECA].

Input: A weighted digraph D = (V, E), with weight function w and a graph Gp0 .
Output: A power assignment augmentation p for Rap[c, p0, 2ECA].

begin
H ← Gp0 , H ′ ← (V, ∅)
while H is not 2-edge connected do

S′ ← λ-apx of a bridge cost-effectiveness star S w.r.t. H
price(b) = w(S′)/|B(S′|H)|, ∀b ∈ B(S′|H)
H ← H ∪ S′ {Here S′ is considered as undirected}
H ′ ← H ′ ∪ S′

end while
for all v ∈ V, p(v) = maxu|(v,u)∈E(H) w(vu)
output p

end.

Number the bridges of Gp0 in the order in which they were covered by the
algorithm. Let b1, b2, . . . , bm, with m < n, be this numbering, assuming Gp0 has
m bridges. In the following lemma, we let opt denote an optimum solution for
Rap[c, p0, 2ECA]. The proofs of the following lemma and theorem combine the
ideas in [2] together with the performance analysis of the greedy algorithm for
Wscp [23].

Lemma 4. For each k ∈ 1, . . . , m, price(bk) ≤ 2λopt/(m − k + 1), where λ is
the approximation factor for a bridge cost-effectiveness star.

Proof. In any iteration, the remaining stars of the optimal solution cover the
uncovered bridges with a total cost of at most 2opt. This is true because from
Lemma 3 we have that the optimum solution is a forest F = ∪�

i=1Ti, where

Range Augmentation Problems 61

� < m. If we root each Ti arbitrarily and for every vertex v, we define the star
Sv consisting of v and all its children, then as proved in [2] for a tree, we have∑

v∈V

w(Sv) ≤ 2opt

as a vertex u contributes to
∑

v∈V w(Sv) for at most two stars and its contribu-
tion in each star is at most the power induced from F to u. Therefore, among the
remaining stars, there must be one having bridge cost-effectiveness of at most
2opt/b, assuming there are b bridges uncovered. In the iteration in which bridge
bk was covered, b was at least m− k + 1. For the λ-approximated greedy choice,
it follows that

price(bk) ≤ 2λopt

b
≤ 2λopt

m− k + 1
.

��

Now we can state the following:

Theorem 7. The greedy algorithm is a factor 2λHn approximation algorithm
for Rap[c, p0, 2ECA], where λ is the factor approximation for a bridge cost-
effectiveness star.

Proof. Since the cost of each star picked is distributed among the new bridges
covered, the total power induced from the stars picked is less or equal than∑m

i=1 price(bi). By the previous lemma, this is at most

2λ

(
1
m

+
1

m− 1
+ · · ·+ 1

2
+ 1

)
opt = 2λHmopt ≤ 2λHnopt.

��

5.1 Approximating the Cost-Effectiveness Star

Next we describe how to find aHn-approximation for the bridge cost-effectiveness
star. We use the ideas in [2].

Definition 5. A powered star is a star with a fixed power p(v) associated with
the center v, and all the arcs from the center to the leaves have weight at most
p(v). The weight of the powered star S′ with center v and power p(v), denoted
by w(S′), is equal to p(v) plus the sum of the weights of the arcs from the leaves
to the center.

One can prove that if S′ is a powered star minimizing w(S′)/|B(S′|H)|, then
by ignoring the fixed power of its center, the same star is bridge cost-effectiveness
w.r.t. H. Therefore, we describe an algorithm for approximating the bridge cost-
effectiveness powered star. So, for each possible center v ∈ V and each other node
v′ ∈ V \{v}, let p(v) = w(vv′) be the fixed power associated with the center. We
build the following instance of Partial Weighted Set Cover Problem (Pwscp). For

62 D. Bilò and G. Proietti

each node u with which v can communicate directly by setting its transmitting
power to p(v), define the set Su as the set of bridges of H covered by (u, v), and
assign it a weight w(Su) = w(uv). Let U be the set of bridges of H covered by
some set Su. The objective is to find a partial collection of sets C∗ that minimizes
(p(v)+

∑
S∈C∗ w(S))/|∪S∈C∗ S|. It is easy to prove that this transformation maps

optimal solutions for the problem of finding the cost-effectiveness powered star
into optimal solutions for Pwscp. Moreover the transformation preserves the
weights.

For solving our problem, we use a modified version of the well-known factor
Hm approximation greedy algorithm for Wscp [23]. The greedy algorithm for
Wscp starts with a solution C = ∅, and until C is not a cover for U , it picks
a cost-effectiveness set w.r.t. the uncovered objects, i.e., the set minimizing the
ratio between its cost and the number of new objects covered, and adds it to C.
Our picking strategy is slightly different; we pick a cost-effectiveness set and adds
it to C until the objective function improves. The following statement holds:

Lemma 5. There exists a factor Hm approximation greedy algorithm for Pwscp.

Proof. Assume that optPwscp covers k ≤ m objects. Consider the instance of
Wscp obtained from Pwscp by simply ignoring p(v). Let optk

Wscp denote the
optimum collection of sets covering at least k objects. As a consequence of the
performance analysis of the greedy algorithm for Wscp [23], and because of the
non negative value p(v), we have that our solution has a total cost less or equal

than
p(v)+Hkopt

k
Wscp

k ≤ HmoptPwscp. ��
As a direct consequence of Theorem 7 and Lemma 5, we have:

Corollary 2. Rap[c, p0, 2ECA] can be approximated within a factor of 2H2
n.
��

Now we extend the Rap[c, p0, 2ECA] algorithm for the vertex-connectivity
case. Let C(S|H) be the set of cut-vertices of H covered by S. We say that a star
S is cut-node cost-effectiveness w.r.t. graph H, if it minimizes w(S)/|C(S|H)|.
Now we can prove that:

Theorem 8. There exists a factor 2λHn approximation greedy algorithm for
Rap[c, p0, 2VCA], where λ is the approximation factor for a cut-node cost effec-
tiveness star.

Proof. The algorithm is similar to the one described for Rap[c, p0, 2ECA]. The
picking strategy is the following: add a λ-approximation of the cut-node cost-
effectiveness star to H until it becomes 2-vertex connected. Note that an anal-
ogous of Lemma 4 still holds if λ is the approximation factor for the cut-node
cost-effectiveness star. ��

Corollary 3. Rap[c, p0, 2VCA] can be approximated within a factor of 2H2
n.

Proof. Define an instance of Pwscp as done for Rap[c, p0, 2ECA]. The only
difference is that Su is the set of cut-nodes covered by (u, v). Note that Lemma 5
still holds. ��

Range Augmentation Problems 63

References

1. E. Althaus, G. Călinescu, I.I. Mandoiu, S. Prasad, N. Tchervenski, and A. Ze-
likovsky, Power efficient range assignment for symmetric connectivity in static ad
hoc wireless networks, Wireless Networks, accepted for publication. Availble on-
line at http://www.mpi-sb.mpg.de/∼althaus/winet.pdf.

2. G. Călinescu, S. Kapoor, A. Olshevsky, and A. Zelikovsky, Network lifetime and
power assignment in ad-hoc wireless networks, In Proc. of 11th European Symp.
on Algorithms (ESA’03), LNCS 2832, 114–126, 2003.

3. G. Călinescu, I.I. Măndoiu, and A. Zelikovsky, Symmetric connectivity with min-
imum power consumption in radio networks, In Proc. of the 2nd IFIP Int. Conf.
on Theoretical Computer Science, Montreal, August 2002.

4. G. Călinescu and P.-J. Wan, Range assignment for high connectivity in wireless
ad-hoc networks, In Proc. of the 2nd International Conference on Ad-Hoc, Mobile,
and Wireless Networks (ADHOC-MWN’03), 235–246.

5. W. Chen and N. Huang, The strongly connecting problem on multihop packet
radio networks, IEEE Transaction on Communications, 37 (1989), 293–295.

6. T. Chu and I. Nikolaidis, Energy efficient broadcast in mobile ad-hoc networks, In
Proc. of the 1st Int. Conf. on Ad-Hoc Networks and Wireless (ADHOC-NOW’02),
Toronto, Canada, 20-21 September 2002, 177–190.

7. A.E.F. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca, On the complexity
of computing minimum energy consumption broadcast subgraphs, In 18th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’01), LNCS 2010,
121–131, 2001.

8. A.E.F. Clementi, P. Penna, and R. Silvestri, On the power assignment problem in
radio networks, Electronic Colloquium on Computational Complexity (ECCC’00).

9. K.P. Eswaran and R.E. Tarjan, Augmentation problems, SIAM Journal on Com-
puting 5(4) (1976), 653–665.

10. U. Feige, A treshold of ln n for approximating set cover, Journal of the ACM, 45
(1998), 634–652.

11. G.N. Frederickson and J. Jájá, Approximation algorithms for several graph aug-
mentation problems, SIAM Journal on Computing 10(2) (1981), 270–283.

12. Z. Haas and S. Tabrizi, On some challenges and design choices in ad-hoc communi-
cations, In Proc. of the IEEE Military Communication Conference (MILCOM’98).

13. M.T. Hajiaghayi, N. Immorlica, and V.S. Mirrokni, Power optimization in fault-
tolerant topology control algorithms for wireless multi-hop networks, Proc. of the
9th Annual International Conference on Mobile Computing and Networking, (MO-
BICOM’03), 300–312.

14. S. Khuller, Approximation algorithms for finding highly connected subgraphs, in
Approximation Algorithms for NP-Hard Problems, D.S. Hochbaum Ed., PWS Pub-
lishing Co., Boston, MA, 1996.

15. S. Khuller and B. Ragavachari, Improved approximation algorithms for uniform
connectivity problems, Journal of Algorithms, 21 (1996), 433–450.

16. S. Khuller and U. Vishkin, Biconnectivity approximation and graph carvings, Jour-
nal of the ACM, 41(2) (1994), 214–235.

17. L.M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc, Power consumption in packet
radio networks, Theoretical Computer Science, 243 (2000), 289–305.

18. G. Kortsarz and Z. Nutov, Approximating node connectivity problems via set
covers, Algorithmica 37(2) (2003), 75–92.

19. G.S. Lauer, Packet radio routing, in Routing in Communication Networks, M.
Streenstup Ed., Prentice-Hall, 1995.

64 D. Bilò and G. Proietti

20. W. Liang, Constructing minimum-energy broadcast trees in wireless ad hoc net-
works, In Proc. 3rd ACM Int. Symp. on Mobile Ad Hoc Networking and Computing
(MOBIHOC’02), 112–122.

21. T.S. Rappaport, Wireless Communications: Principles and Practices, Prentice
Hall, 1996.

22. G. Rossi, The Range Assignment Problem in Static Ad-Hoc Wireless Networks,
Università di Roma “Tor Vergata”, Ph.D. Thesis, 2003.

23. V.V. Vazirani, Approximation Algorithms, Springer-Verlag, 2001.
24. P.-J. Wan, G. Călinescu, X.-Y. Li, and O. Frieder, Minimum energy broadcast

routing in static ad hoc wireless networks, In Proc. of the IEEE Conf. on Computer
Communications (INFOCOM’01), 2, 1162–1171.

On the Approximability of the L(h, k)-Labelling
Problem on Bipartite Graphs�

(Extended Abstract)

Tiziana Calamoneri1 and Paola Vocca2

1 Dipartimento di Informatica, Università degli Studi di Roma “La Sapienza”,
via Salaria 113, 00198 Roma, Italy

calamo@di.uniroma1.it
2 Department of Mathematics, University of Lecce - Italy,

via Provinciale Lecce-Arnesano, P.O. Box 193,73100 Lecce, Italy
paola.vocca@unile.it

Abstract. Given an undirected graph G, an L(h, k)-labelling of G as-
signs colors to vertices from the integer set {0, . . . , λh,k}, such that any
two vertices vi and vj receive colors c(vi) and c(vj) satisfying the fol-
lowing conditions: i) if vi and vj are adjacent then |c(vi) − c(vj)| ≥ h;
ii) if vi and vj are at distance two then |c(vi) − c(vj)| ≥ k. The aim of
the L(h, k)-labelling problem is to minimize λh,k. In this paper we study
the approximability of the L(h, k)-labelling problem on bipartite graphs
and extend the results to s-partite and general graphs. Indeed, the de-
cision version of this problem is known to be NP-complete in general
and, to our knowledge, there are no polynomial solutions, either exact
or approximate, for bipartite graphs.

Here, we state some results concerning the approximability of the
L(h, k)-labelling problem for bipartite graphs, exploiting a novel tech-
nique, consisting in computing approximate vertex- and edge-colorings
of auxiliary graphs to deduce an L(h, k)-labelling for the input bipartite
graph. We derive an approximation algorithm with performance ratio
bounded by 4

3
D2, where, D is equal to the minimum even value bound-

ing the minimum of the maximum degrees of the two partitions.
One of the above coloring algorithms is in fact an approximating

edge-coloring algorithm for hypergraphs of maximum dimension d, i.e.
the maximum edge cardinality, with performance ratio d.

Furthermore, we consider a different approximation technique based
on the reduction of the L(h, k)-labelling problem to the vertex-coloring
of the square of a graph. Using this approach we derive an approximation
algorithm with performance ratio bounded by min(h, 2k)

√
n + o(k

√
n),

assuming h ≥ k. Hence, the first technique is competitive when D =
O(n1/4).

These algorithms match with a result in [2] stating that L(1, 1)-
labelling n-vertex bipartite graphs is hard to approximate within n1/2−ε,
for any ε > 0, unless NP=ZPP.

� Partially supported by the Italian Research Project PRIN 2003 ”Optimization, sim-
ulation and complexity of the design and management of communication networks”.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 65–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

66 T. Calamoneri and P. Vocca

We then extend the latter approximation strategy to s-partite graphs,
obtaining a (min(h, sk)

√
n + o(sk

√
n))-approximation ratio, and to gen-

eral graphs deriving an (h
√

n + o(h
√

n))-approximation algorithm, as-
suming h ≥ k.

Finally, we prove that the L(h, k)-labelling problem is not easier than
coloring the square of a graph.

1 Introduction

The frequency assignment problem (FAP) in a wireless network is a widely stud-
ied problem (see [1, 15] for a survey). A wireless network consists of a set of
radio transmitter/receiver stations distributed over a region. Communication
takes place by a node broadcasting a signal over a fixed range (whose size is
proportional to the power expended by the node’s transmitter). Any receiver
within the range of the transmitter can receive the signal. In this context, the
frequency assignment task is to assign radio frequencies to transmitters at dif-
ferent locations without causing interference. This situation can be modelled
by a graph G, whose nodes are the radio transmitters/receivers, and the ad-
jacencies indicate possible communications and, hence, interferences. To avoid
interference, two adjacent stations must receive far frequencies. Therefore, the
problem is closely related to graph coloring, where colors represent possible fre-
quencies.

Many graph coloring models have been proposed to represent the FAP prob-
lems depending on the specific features of the problem (i.e. handling the inter-
ference, the availability of frequencies etc.) [15]. Among all these models the
most widely accepted for the interferences avoidance is the L(h, k)-labelling, in-
troduced by Griggs and Yeh [12] in the special case h = 2 and k = 1. The
L(h, k)-labelling problem is a coloring problem with some constraints araising
from practical reasons: a radio station and its neighbors must have far frequen-
cies, at least h apart, so their signals will not interfere (direct collision); further-
more, a radio station must have a signal of frequency different at least k from
the radio stations adjacent to its neighbors (hidden collision). The nature of the
environment and the geographical distance are the major factors determining
parameters h and k, and usually, h ≥ k holds.

It has been proven that the decision version of the L(h, k)-labelling prob-
lem is NP-complete even for h ∈ {1, 2} and k = 1 [14, 13, 12]. Therefore, the
problem has been widely studied for many specific classes of graphs. For some
classes of graphs the problem has been proved to be polynomially solvable and
for other classes to be approximable within a constant factor (see [7] for a sur-
vey on the L(h, k)-labelling, and, for instance, [6, 8, 10, 11, 18] for some specific
results).

In this paper we focus on the approximability of the L(h, k)-labelling problem
on bipartite graphs, for any constant h ≥ 2 and k ≥ 1. It is easy to see that
when h = k = 1, the L(h, k)-labelling problem on a graph G is equivalent to

On the Approximability of the L(h, k)-Labelling Problem 67

vertex-coloring G2, where G2 is the square graph of G, and a wide literature is
known in this case (e.g., see [3, 14]).

Concerning bipartite graphs, previous best known results deal only with
h = 2 and k = 1 [5], where the authors prove that the decision version of the
L(2, 1)-labelling problem is NP-complete also for planar bounded degree (Δ = 7)
bipartite graphs and they present an infinite class of bipartite graphs requiring
at least Δ2

4 colors, where Δ is the maximum degree. We improve the lower bound
by a constant factor, and we present two approximation algorithms whose ap-
proximation ratios depend on the degree and on the dimension of the vertex set,
respectively. In particular the first algorithm exploits a novel technique, consist-
ing in computing the approximate vertex- and edge-colorings of auxiliary graphs
to deduce an L(h, k)-labelling for the input bipartite graph. The second approx-
imation technique is based on the reduction of the L(h, k)-labelling problem to
the vertex-coloring of the square graph. This strategy has the advantage to be
extendable to s-partite and general graphs.

The obtained results are listed below:

− We improve the lower bound by a constant factor of 1
4 .

− For n-vertex general bipartite graphs we derive two approximation algorithms
with performance ratio:

– 4
3D2, where D is equal to the minimum even value bounding the minimum
of the maximum degrees of the two partitions; this result is improved to
9
2 if one of the two partitions has regular degree 2;

– min(h, 2k)
√

n + o(k
√

n), assuming h ≥ k.

Hence, the first technique is competitive when D = O(n1/4).

These algorithms match with a result in [2] stating that L(1, 1)-labelling n-
vertex bipartite graphs is hard to approximate within n1/2−ε, for any ε > 0,
unless NP=ZPP.

The technique used to derive the approximation algorithm for general bipar-
tite graphs straightforwardly derives from an edge-coloring approximation al-
gorithm for hypergraphs. More precisely, given an n-vertex hypergraph H with
maximum edge-cardinality d, we describe a d–approximation algorithm for the
edge-coloring. To the knowledge of the authors, the best known previous results
concern d–uniform hypergraphs, and the approximation ratio is a function of the
vertex degree instead of the edge’s dimension [4, 16].

Additionally, we extend the last result to s-partite graphs, obtaining a
(min(h, sk)

√
n + o(sk

√
n))-approximation ratio.

Finally, for what concerns general graphs:

− We present a (h
√

n + o(h
√

n))-approximation algorithm, assuming h ≥ k;
− We prove that the L(h, k)-labelling problem is not easier than coloring the

square of a graph.

Note that no results are known about the approximability of the L(h, k)-
labelling problem on general graphs, while for the coloring of square graphs an
O(
√

n)-approximation algorithm exists [14]. In this context our result strongly
relates the approximability of these two problems.

68 T. Calamoneri and P. Vocca

2 Definitions and Preliminary Results

In this section, we recall some basic concepts and known results, and introduce
some definitions useful for the rest of the paper.

Definition 1. An L(h, k)-labelling of a graph G = (V,E) is a function f from
V to the set of all nonnegative integers such that
1. |f(x)− f(y)| ≥ h if x and y are at distance 1 in G;
2. |f(x)− f(y)| ≥ k if x and y are at distance 2 in G;
for some fixed integer values h, k ≥ 1.

The span of an L(h, k)-labelling of a graph G is the difference between the
maximum and minimum value of f . It is not restrictive to assume that the
minimum value is 0, so the span coincides with the maximum value of f .

The L(h, k)-number of G, denoted by λ∗
h,k(G) (or simply λ∗(G), when the

values of h and k are clear from the context), is the minimum span, over all
L(h, k)-labellings of G. The task of the L(h, k)-labelling problem is to determine
λ∗(G). Although not necessary for our reasonings, we assume h ≥ k, as suggested
by real applications.

Let G = (V,E) be a (multi)graph. In the following we denote by Δ(G)
the maximum degree of G. Consider an optimal vertex-coloring of G and an
optimal edge-coloring of G, let χ∗(G) and χ′∗(G) be its chromatic number and
chromatic index, respectively, and let χ(G) and χ′(G) denote the number of
colors used by an approximation algorithm for coloring vertices and edges of
graph G, respectively.

Here, we recall some results relating these quantities.

Theorem 1. [19, 17] The chromatic index of any graph G of maximum degree
Δ(G) satisfies Δ(G) ≤ χ′∗(G) ≤ Δ(G) + 1. If G is a multigraph then χ′∗(G) ≤
3
2Δ(G).

Since the proof is constructive, we have the following result:

Corollary 1. There is an algorithm for coloring the edges of any graph (multi-
graph, respectively) G with maximum degree Δ(G), that guarantees a perfor-
mance ratio of 1 + 1

Δ(G) (3
2 , respectively).

Theorem 2. [9] There is a simple greedy algorithm for coloring the vertices of
any (multi)graph G with maximum degree Δ(G), with at most Δ(G) + 1 colors
(i.e. χ(G) ≤ Δ(G) + 1).

Corollary 2. For any (multi)graph G, χ(G) ≤ χ′(G) + 1.

Let B = (U ∪ V,E) be a bipartite graph. The sets U and V are defined as
upper and lower set, respectively, in view of the usual graphical representation
of bipartite graphs, although – of course – they can be freely interchanged. Let
ΔU and ΔV be the maximum degrees of the vertices in the upper and lower

On the Approximability of the L(h, k)-Labelling Problem 69

1

2
3

4

5

6

7

8

a
b

c

de

f

g

h
i

j k

l

1 2 3 4 5 6 7 8

a b c d e f g h i j k l

b)

a)

m

m

Fig. 1. a) A bipartite graph B; (b) Its incident graph I(B)

set, respectively, and let δ(x) denote the degree of a vertex x. We introduce the
following three structures.

The first one is a multigraph associated with a bipartite graph with one
partition containing only vertices of degree exactly two.

Definition 2. Let B = (U ∪ V,E) be a bipartite graph with one partition con-
taining only vertices of degree exactly two (w.l.o.g. let it be V). The incidence
graph I(B) = (U,E′) is a multigraph defined as follows:
i. The vertex set corresponds to the upper set U of B;
ii. The edge set E′ corresponds to the lower set V of B. For every vertex e ∈ V ,

such that (u, e) ∈ E ∧ (v, e) ∈ E, there exists an edge (u, v) ∈ E′.

The incidence graph of the bipartite graph in Fig. 1 (a) is shown in Fig. 1 (b).
It is straightforward to see that all vertices in I(B) have the same degree as

they have in the upper set of B. Observe that any (multi)graph is the incidence
graph of a bipartite graph with all vertices in the lower set of degree 2.

The second structure is a generalization of the incidence graph, extended to
even-degree bipartite graphs. Assume that each vertex x of the lower set V in
the bipartite graph B = (U ∪ V,E) has even degree δ(x), and that an ordering
of the edges incident at each vertex is given. Let 〈ex

1 , ex
2 , . . . , ex

δ(x)〉 denote the
ordered sequence of edges incident at x ∈ V .

Definition 3. Given a bipartite graph B = (U ∪ V,E) as above, the extended
incidence graph Ext(B) = (U,E′′) of B is a (multi)graph defined as follows:
− the vertex set corresponds to the upper set U of B;
− for every vertex x ∈ V and each couple ex

2j+1 = {x, u} ∈ E and ex
2j+2 =

{x, v} ∈ E, where j ∈ {0, . . . , δ(x)/2− 1}, there exists an edge (u, v) ∈ E′′.

70 T. Calamoneri and P. Vocca

1

2

3

4
5

6

7

8

1 2 3 4 5 6 7 8

a b dc
a)

e f

1

2

3

4
5

6

7

8

d''

a''

a'

b'

c'

c''

d'

e'
f' f''

b) c)

Fig. 2. (a) A bipartite graph B; (b) The extended incidence graph Ext(B); (c) The

node graph N(B)

Fig. 2 (b) shows the extended incidence graph of the graph in Fig. 2 (a).
Each vertex of Ext(B) maintains the same degree it has in B, therefore

Δ(Ext(B)) = Δ(B). Furthermore, observe that a vertex x ∈ V generates in
Ext(B) a set of δ(x)/2 edges, denoted Set(x). In Fig. 2 (b), Set(a) = {a′, a′′},
Set(b) = {b′}, Set(c) = {c′, c′′}, Set(d) = {d′, d′′}, Set(e) = {e′}, and, Set(f) =
{f ′, f ′′}.

Note that, the extended incident graph represents a hypergraph where each
v ∈ V is a hyperedge.

The third structure is associated to a general bipartite graph and represents
nodes in the upper set and the relations they have through nodes in the lower set.

Definition 4. The node-graph N(B) = (U,E′′′) of a bipartite graph B = (U ∪
V,E) is a simple graph defined as follows:
− the vertex set corresponds to the upper set U of B;
− an edge (u, v) ∈ E′′′ if and only if there exists a vertex x in the lower set of

B such that (u, x) ∈ E and (x, v) ∈ E.

In Fig. 2 (c) the node-graph of the graph in Fig. 2 (a) is depicted. The
maximum degree Δ(N(B)) of N(B) is bounded by min{ΔU · (ΔV − 1), |U |}.

3 Bipartite Graphs: Lower Bound

In [5], Bodlaender et al. proved that for every Δ ≥ 2, there is a bipartite graph
with maximum degree Δ such that λ∗

0,1 ≥ Δ2

4 . Since λ∗
0,1 ≤ λ∗

h,1, for any h > 0,

the value Δ2

4 represents a lower bound for λ∗
h,k of bipartite graphs. We improve

this bound to Δ2 −Δ + 1.

On the Approximability of the L(h, k)-Labelling Problem 71

Definition 5. Let B be the class of bipartite graphs B = (U ∪ V,E) satisfying
the following conditions:
a. Both the upper set U and the lower set V have q2 + q + 1 vertices, for any

integer q ≥ 0;
b. Any vertex u ∈ U ∪ V has exactly degree Δ = q + 1;
c. Given u, v ∈ U (or, u, v ∈ V), then |Adj(v) ∩Adj(u)| = 1.

We show that the cardinality of B is infinite. Let us consider a projective plane
P of order q, for some prime power q. Let U represent points and V lines of
P. For u ∈ U and v ∈ V , (u, v) ∈ E if and only if point u belongs to line v.
It is straightforward to verify that the bipartite graph so defined satisfies the
constraints in Definition 5 and, since all vertices in U (or in V) are at distance
2, we have λ∗

0,1(B) ≥ |U | = q2 + q + 1 = Δ2 −Δ + 1.
Note that the class B has been introduced in [12] without deriving the lower

bound. It is easy to see that this lower bound applies to s-partite graphs, for
any s.

4 First Approximation Algorithm for Bipartite Graphs

The first algorithm we propose reduces the L(h, k)-labelling problem to both the
edge- and the vertex-coloring of the (extended) incidence and the node-graphs
associated with a given bipartite graph.

To make the exposition easier, the presentation proceeds in three steps. First
we analyze bipartite graphs with vertices in the lower partition of regular degree
2. Then, we extend the technique to bipartite graphs with even-degree lower set.
Finally, we generalize the algorithm to any bipartite graph.

4.1 Lower Set of Regular Degree 2

Let B = (U ∪V,E) be a bipartite graph with all vertices in the lower set having
regular degree 2. Let I(B) = (U,E′) be the corresponding incidence graph.

Let c1 and c′1 be two functions for vertex- and edge-coloring I(B), requiring
χ1(I(B)) and χ′

1(I(B)) colors, respectively.
These two colorings can be exploited to deduce an L(h, k)-labelling of B in

the following way:
− label each vertex v in the upper set of B with k(c1(v)− 1);
− label each vertex e in the lower set B with (χ1(I(B))−1)k+h+k(c′1(e)−1),
where the term −1 is due to the fact that the smallest value for c1 and c′1 is 1,
while for the L(h, k)-labelling it is 0. The term (χ1(I(B)) − 1)k represents the
largest color used in the upper set, and term h is the separation value.

It is easy to prove that the labelling produced is indeed an L(h, k)-labelling.
The span of this labelling is k(χ1(I(B)) + χ′

1(I(B))) + h− 2k.
Hence, from Corollary 2, we have:

λ(B) ≤ 2kχ′
1(I(B)) + h− k. (1)

72 T. Calamoneri and P. Vocca

Consider now an optimal L(h, k)-labelling of B and call f(v) the color assigned
to vertex v in B. We can use this labelling to achieve a feasible edge-coloring for
I(B): consider each vertex e in the lower set of B and its corresponding edge e
of I(B); label e in I(B) with �f(e)/k�+ 1.

This labelling is a feasible edge-coloring of I(B) since, for any pair of adjacent
edges e and e′ in I(B), they are at distance two in V (via the vertex in the upper
set corresponding to the common end-point) and, hence, they have labels at least
k apart, so �f(e)/k�+1 and �f(e′)/k�+1 are different. Therefore, for the number
χ′

2(I(B)) of used colors it holds:

χ′∗ ≤ χ′
2(I(B)) ≤ λ∗(B)

k
+ 1 (2)

Furthermore, if we consider any non trivial bipartite graph B, i.e. a connected
graph with at least three vertices, with maximum degree Δ(B) then λ∗(B) ≥
h + (Δ(B)− 1)k. Since, in this case, Δ(B) ≥ 2, we have λ∗(I(B)) ≥ h + k. On
the other hand, since k ≤ h, then k ≤ λ∗(I(B))/2 .

From Equation 1, Corollary 1 and Equation 2, and from the above observa-
tions, we get:

λ(B) ≤ 3λ∗(B) + 2k + h ≤ 9
2
λ∗(B).

The previous reasonings lead us to the following theorem:

Theorem 3. The L(h, k)-labelling problem on bipartite graphs with a partition
of regular degree 2 is 9

2–approximable.

4.2 Lower Set of Even Degree

In this subsection we extend the results of the previous section to bipartite
graphs having vertices in the lower set of even degree.

Let B = (U ∪ V,E) be a bipartite graph, with vertices in the lower set of
even degree. Let ΔU and ΔV be the maximum degree of the upper and lower
set, respectively. Consider the associated node graph N(B) and the extended
incidence graph Ext(B).

Observe that there exists a vertex-coloring function of N(B) using at most
χ(N(B)) ≤ Δ(N(B)) + 1 ≤ ΔU · (ΔV − 1) + 1 colors.

Consider now the trivial greedy algorithm to color edges of Ext(B) that
sequentially considers each Set(v) and assigns to all its edges the same smallest
feasible color.

Lemma 1. The greedy algorithm for edge-coloring Ext(B) uses at most
χ′(Ext(B)) ≤ ΔV ·ΔU −ΔV + 1 colors.

Proof. Let us consider Set(x) for some x ∈ V . Set(x) has at most ΔV /2 vertex
disjoint edges, each one of them incident at most 2(ΔU−1) further edges; hence,
to color Set(x) at most 2 · ΔV /2 · (ΔU − 1) colors must be avoided. The proof
follows.

On the Approximability of the L(h, k)-Labelling Problem 73

Corollary 3. Ext(B) can be edge-colored so that all edges in Set(x), for any
x, receive the same color, with a guaranteed performance ratio of ΔV .

Proof. The claim follows from Lemma 1 and from the obvious inequality
χ′∗(Ext(B)) ≥ Δ(Ext(B)) = ΔU .

An immediate consequence of the above result is shown in the following
theorem.

Theorem 4. Given an n–vertex hypergraph H of dimension d, then there exists
an approximation algorithm coloring edges of H with guaranteed approximation
ratio of d.

We are now ready to derive a feasible L(h, k)-labelling of B as follows. Let c1

be a vertex-coloring function for N(B) and let c′1 be an edge-coloring function
for Ext(B), with the property that edges of Set(x) have all the same color, for
each x. Let χ1(N(B)) and χ′

1(Ext(B)) denote the number of colors required.

Proceed as follows:
− label each vertex v in the upper set of B with k(c1(v)− 1);
− label each vertex x in the lower set of B with (χ1(N(B)) − 1)k + h +

k(c′1(Set(x))− 1).
By the definitions of N(B), Ext(B), and the specific edge-coloring function
c′1, the labelling obtained is feasible and its span is λ(B) = kχ1(N(B)) +
kχ′

1(Ext(B)) + h− 2k.
Reminding that χ1(N(B)) ≤ Δ(N(B)) + 1 ≤ ΔU (ΔV − 1) + 1 and that

χ′
1(Ext(B)) ≥ ΔU we have:

λ(B) ≤ kχ′
1(Ext(B))ΔV + h− k. (3)

Similarly to Subsection 4.1, we assume to have an optimal L(h, k)-labelling for
B with span λ∗(B) and deduce a feasible edge-coloring for Ext(B) with the
property that all edges in Set(x) have the same color, for any x. Let χ′

2(Ext(B))
be the number of used colors. It follows that:

χ′∗(Ext(B)) ≤ χ′
2(Ext(B)) ≤ λ∗(B)

k
+ 1. (4)

Considering that, for the class of graphs under consideration Δ ≥ 3 (if Δ = 2
we have already given a result), we have λ∗(B) ≥ h + 2k. Additionally, since
h ≥ k, then k ≤ λ∗(B)

3 . From Equation 3, Corollary 3, Equation 4, and the above
observations, we have:

λ(B) ≤ k

(
λ∗(B)

k
+ 1

)
Δ2

V + h− k ≤

≤ Δ2
V λ∗(B) + (Δ2

V − 3)
λ∗(B)

3
+ λ∗(B) =

=
4
3
Δ2

V λ∗(B). (5)

From the above discussion we have the following theorem:

74 T. Calamoneri and P. Vocca

Theorem 5. The L(h, k)-labelling problem on bipartite graphs with all vertices
in the lower set of even degree is 4

3Δ2
V –approximable, where ΔV is the maximum

degree of the lower set.

4.3 General Bipartite Graphs

In this subsection we further extend the previous results obtaining an approx-
imation algorithm guaranteeing a performance ratio of 4

3D2 for each bipartite
graph where D is the smallest even value bounding the minimum of the maxi-
mum degrees of the two partition.

Let B = (U ∪ V,E) be a bipartite graph. W.l.o.g. let ΔV = min ΔU ,ΔV ,
hence D is either ΔV or ΔV + 1. Consider all vertices in the lower set with odd
degree, and for each such vertex x, add a dummy vertex vx in the upper set and
a dummy edge (x, vx) in E. In this way a new bipartite graph B′ = (U ′ ∪ V,E′)
is generated and its lower set has maximum degree D and all vertices in V
have even degree. Hence, we can consider graphs N(B) and Ext(B′) and apply
Theorem 5. Indeed, it is easy to see that a feasible L(h, k)-labelling for B′ is a
L(h, k)-labelling for B, also. Obviously, the viceversa could not be true. Hence,
we have the following theorem:

Theorem 6. The L(h, k)-labelling problem on bipartite graphs is 4
3D2–

approximable, where D is the smallest even value bounding the minimum of
the maximum degrees of the two partitions.

5 Second Approximation Algorithm

In this section we propose another approximation algorithm for λ∗
h,k(B) on a

general bipartite graph B with a ratio min(h, 2k)
√

n + o(k
√

n), not depending
on the degree of the graph.

In [14] the author proves the existence of an approximation algorithm for
vertex-coloring the square G2 of any n vertex graph G with performance ratio√

n− 1 + 1.
Consider any bipartite graph B = (U ∪ V,E). We remind that any L(1, 1)-

labelling of B is a vertex-coloring of B2, and it partitions the vertex set in
classes such that vertices in different classes have different colors. Furthermore,
if a class contains nodes of both U and V , we can split it into two classes so
that each of them contains only elements in the upper (lower) set. Let L1,1(U)
and L1,1(V) be the number of classes covering U and V , respectively. It holds
L1,1(U) + L1,1(V) ≤ 2(λ1,1(B) + 1), where the term +1 derives from the fact
that the smallest color of an L(1, 1)-labelling is 0. Additionally, observe that
λ∗

h,k(B) ≥ λ∗
1,1(B). We are now ready to describe the algorithm.

Run algorithm described in [14] on B to obtain an L(1, 1)-labelling such that:

λ1,1(B)
λ∗

1,1(B)
≤
√

n− 1 + 1.

On the Approximability of the L(h, k)-Labelling Problem 75

If 2k ≤ h, consider the classes induced by colors and split them into classes
separating vertices of U and of V .

Number all classes in U , starting from 0, and all classes in V , starting again
from 0. Then, for each vertex v ∈ U belonging to class numbered f(v), label v
with kf(v). Finally, for each vertex v ∈ V belonging to class numbered f(v), label
v with k(L1,1(U)− 1) + h + kf(v). The computed labelling is a feasible L(h, k)-
labelling of B and has span λh,k(B) ≤ k(L1,1(U) − 1) + k(L1,1(V) − 1) + h ≤
2kλ1,1(B) + h. The performance ratio of the previous algorithm is:

λh,k(B)
λ∗

h,k(B)
≤ 2kλ1,1(B) + h

λ∗
h,k(B)

≤

≤ 2kλ1,1(B)
λ∗

1,1(B)
+

h

λ∗
h,k(B)

≤ 2k(
√

n− 1 + 1) + 1

as λ∗
h,k(B) is at least h for each non trivial graph with at least two vertices.

If 2k > h, instead of labelling nodes as above described, we proceed as follows:
Consider the classes induced by colors and label each node in the class colored
f(v) with hf(v). The produced labelling is feasible and its span is λh,k(B) ≤
hλ1,1(B). Hence, the performance ratio is h

√
n− 1 + h.

The above discussion leads to the following theorem:

Theorem 7. Given a n-vertex bipartite graph B, there exists a polynomial time
approximation algorithm for computing an L(h, k)-labelling of B with
min(h, 2k)

√
n + o(k

√
n) guaranteed performance ratio.

Observe that the 4
3D2-approximation algorithm is better than this one when

D = O(n1/4).
Furthermore, it is easy to generalize the above strategy to s-partite graph.

In this case we have the following theorem:

Theorem 8. Given an n-vertex s-partite graph G, there exists a polynomial
time approximation algorithm for computing an L(h, k)-labelling of G with
min(h, sk)

√
n + o(sk

√
n) guaranteed performance ratio.

Proof. The proof easily derives by generalizing Theorem 7, and it is omitted in
this extended abstract for the sake of brevity.

6 General Graphs

In this section, we show a result stating the strong tie between the L(h, k)-
labelling problem and the problem of coloring the vertices of the square of a
graph with the minimum number of colors.

Theorem 9. Let be given any value α > 1 and a graph G. If there exists
an algorithm finding an approximate vertex-coloring of G2 with approximation

76 T. Calamoneri and P. Vocca

ratio χ(G2)
χ∗(G2) ≤ α, then there exists an algorithm finding an approximate L(h, k)-

labelling of G with approximation ratio λh,k(G)
λ∗

h,k
(G) ≤ hα.

Conversely, let be given any value β > 1 and a graph G. If there exists
an algorithm finding an approximate L(h, k)-labelling with approximation ra-
tio λh,k(G)

λ∗
h,k

(G) ≤ β, then there exists an algorithm finding an approximate vertex-

coloring of G2 with approximation ratio χ(G2)
χ∗(G2) ≤ hβ.

Proof. Suppose there exists an algorithm coloring vertices of G2 with perfor-
mance ratio χ(G2)

χ∗(G2) ≤ α, for any graph G = (V,E). Let f(v) be the color assigned
to vertex v. Then a feasible L(h, k)-labelling for G is obtained by assigning label
h(f(v) − 1) to v, assuming h ≥ k. It is easy to see that such a labelling is a
feasible L(h, k)-labelling and its performance ratio is:

λh,k(G)
λ∗

h,k(G)
≤ h(λ1,1(G))

λ∗
1,1(G)

≤ hα.

Conversely, suppose there exists an approximation algorithm for L(h, k)-labelling
with performance ratio λh,k(G)

λ∗
h,k

(G) ≤ β for any graph G.

Since h ≥ k ≥ 1, a L(h, k)-labelling is always a feasible L(1, 1)-labelling for G.
On the other hand, using a similar reasoning as in Section 3, λ∗

1,1(G) ≥ λ∗
h,k/h.

It follows that:

χ(G2)
χ∗(G2)

≤ hλh,k(G)
λ∗

h,k(G)
≤ hβ

Corollary 4. The problem of vertex-coloring the square of a graph with the
minimum number of colors is in APX if and only if the problem of L(h, k)-
labelling a graph is in APX, for each constant value h and k ≤ h.

Note that for a not constant h, the L(h, k)-labelling problem is not easier than
the vertex-coloring of the square of a graph.

From Theorem 9 and considering the approximation algorithm described in
[14], we can state the following theorem:

Theorem 10. Given a n-vertex graph G, there exists a polynomial time approx-
imation algorithm for computing an L(h, k)-labelling of G with h(

√
n− 1 + 1)

guaranteed performance ratio.

References

1. K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sas-
sano. Models and solutions techniques for frequency assignmet problems. Technical
report, Konrad-Zuse-Zentrum für Informationtechnik Berlin, December 2001.

2. G. Agnarsson, R. Greenlaw, and M.M. Halldorson. On powers of chordal graphs
and their colorings. Congr. Numerant., 144:41–65, 2000.

On the Approximability of the L(h, k)-Labelling Problem 77

3. G. Agnarsson and M. M. HalldLorsson. Coloring powers of planar graphs. In Pro-
ceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 654.662, N.Y., January 9–11 2000. ACM Press.

4. N. Alon and J. H. Kim. On the degree, size, and chromatic index of a uniform
hypergraph. J. Combin. Theory Ser. A, 77:165–170, 1997.

5. H. L. Bodlaender, T. Kloks, R. B. Tan, and J. van Leeuwen. λ-coloring of graphs.
Proc. of STACS 2000. Lecture Notes in Computer Science, 1770:395–406, 2000.

6. T. Calamoneri. Exact solution of a class of frequency assignment problems in cel-
lular networks (extended abstract). Proc. of the ICTCS 2003. Lecture Notes in
Computer Science, 2841:163–173, 2003.

7. T. Calamoneri. The l(h, k)-labelling problem: A survey. Technical Report 04/2004,
Dept. of Computer Science, University of Rome La Sapienza, 2004.

8. T. Calamoneri, A. Pelc, and R. Petreschi. Labelling trees with a condition at
distance two. In Proc. of R.C. Bose Centenary Symp. on Discr. Math. and Appli-
cations, 2002. Accepted to Discrete Mathematics.

9. R. Diestel. Graph theory. Springer-Verlag, New York, 1997. Translated from the
1996 German original.

10. J. P. Georges and D. W. Mauro. Some results on λj
k-numbers of the products of

complete graphs. Congr. Numer., 140:141–160, 1999.
11. J. P. Georges, D. W. Mauro, and M. I. Stein. Labeling products of complete

graphs with a condition at distance two. SIAM Journal on Discrete Mathemat-
ics, 14(1):28–35, February 2001.

12. J. R. Griggs and R. K. Yeh. Labelling graphs with a condition at distance 2. SIAM
Journal on Discrete Mathematics, 5(4):586–595, November 1992.

13. Y. L. Lin and S. S. Skiena. Algorithms for square roots of graphs. SIAM Journal
on Discrete Mathematics, 8(1):99–118, February 1995.

14. S. T. McCormick. Optimal approximation of sparse Hessians and its equivalence
to a graph coloring problem. Mathematical Programming, 26(2):153–171, 1983.

15. R. A. Murphey, P. M. Pardalos, and M. G. C. Resende. Frequency assignment
problems. In D.-Z. Du and P. M. Pardalos, editors, Handbook of combinatorial
optimization, volume Supplement A. Kluwer Academic Publishers, 1999.

16. N. Pippinger and J. Spencer. Asymptotic behaviour of the chromatic index for
hypergraphs. J. Combin. Theory Ser. A, 51:24–42, 1989.

17. C. E. Shannon. A theorem on coloring the lines of a network. J. Math. Phys,
28:148–151, 1949.

18. J. van den Heuvel, R. A. Leese, and M. A. Shepherd. Graph labeling and radio
channel assignment. Journal of Graph Theory, 29, 1998.

19. V. G. Vizing. On an estimate of the chromatic class of a p-graph (in russian).
Diskret. Analiz, 3:23–30, 1964.

A Tight Bound for Online Coloring
of Disk Graphs�

Ioannis Caragiannis1, Aleksei V. Fishkin2, Christos Kaklamanis1,
and Evi Papaioannou1

1 Research Academic Computer Technology Institute and
Department of Computer Engineering and Informatics,

University of Patras, 26500 Rio, Greece
2 Max Planck Institut für Informatik,

Stuhlsatzenhausweg 85, Geb. 46.1, 66123 Saarbrücken, Germany

Abstract. We present an improved upper bound on the competitiveness
of the online coloring algorithm First-Fit in disk graphs which are graphs
representing overlaps of disks on the plane. We also show that this bound
is best possible for deterministic online coloring algorithms that do not
use the disk representation of the input graph. We also present a related
new lower bound for unit disk graphs.

1 Introduction

We study minimum coloring, a fundamental combinatorial optimization prob-
lem in graphs. Given a graph G, the minimum coloring problem is to find an
assignment of colors (denoted by positive integers) to the nodes of the graph so
that no two nodes connected by an edge are assigned the same color and the
number of colors used is minimized. We consider intersection graphs modeling
overlaps of disks on the plane.

The intersection graph of a set of disks in the Euclidean plane is the graph
having a node for each disk and an edge between two nodes if and only if the
corresponding disks overlap. Each disk is defined by its radius and the coordi-
nates of its center. Two disks overlap if the distance between their centers is at
most equal to the sum of their radii. A graph G is called a disk graph if there
exists a set of disks in the Euclidean plane whose intersection graph is G. The
set of disks is called the disk representation of G. A disk graph is called unit disk
graph if all disks in its disk representation have the same radius. A disk graph
is σ-bounded if the ratio between the maximum and the minimum radius among
all the disks in its disk representation is at most σ.

In disk graphs, minimum coloring is important since it can model frequency
assignment problems in radio communication networks utilizing the Frequency
Division Multiplexing technology [10]. Consider a set of transmitters located in

� This work was partially supported by the European Union under IST FET Project
CRESCCO.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 78–88, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Tight Bound for Online Coloring of Disk Graphs 79

fixed positions within a geographical region. Each transmitter may select to use a
specific frequency from an available spectrum in order to transmit its messages.
Two transmitters can successfully (i.e., without signal interference) transmit
messages simultaneously either if they use different frequencies or if they use the
same frequency and their ranges do not overlap. Given a set of transmitters in a
radio network, in order to guarantee successful transmissions simultaneously, the
important engineering problem to be solved is the frequency assignment problem
where the objective is to minimize the number of frequencies used all over the
network. Assuming that all transmitters have circular range, the graph reflecting
possible interference between pairs of transmitters is a disk graph. The frequency
assignment problem is equivalent to minimum coloring.

An instance of the minimum coloring problem may or may not include the
disk representation (i.e., disk center coordinates and/or radii) of the disk graph as
part of the input. Clearly, the latter case is more difficult. Information about the
disk representation of a disk graph is not easy to extract. Actually, determining
whether a graph is a disk graph is an NP-complete problem [11].

The minimum coloring problem has been proved to be NP-hard in [3, 8] even
for unit disk graphs. A naive algorithm is algorithm First-Fit: it examines the
nodes of the graph in an arbitrary order and assigns to each node the smallest
color not assigned to its already examined neighbors. Clearly, First-Fit does not
use the disk representation. It computes 5-approximate solutions in unit disk
graphs [7, 14]. By processing the nodes of the graph in a specific order, First-Fit
computes 3-approximate solutions in unit disk graphs [8, 14, 15]. In general disk
graphs, a smallest-degree-last version of First-Fit achieves an approximation ratio
of 5 [7, 13, 14].

In the online versions of the problem, the disk graph is not given in advance
but is revealed in steps. In each step, a node of the graph appears together with
its edges incident to nodes appeared in previous steps (and possibly, together
with the center coordinates and/or the radius of the corresponding disk). When
a node appears, an online coloring algorithm decides which color to assign to
the node. The decisions of the algorithm at a step cannot change in the future.

The performance of an online algorithm is measured in terms of its com-
petitive ratio (or competitiveness, [1]) which is defined as the maximum over
all possible sequences of disks of the ratio of the number of colors used by the
algorithm over the minimum number of colors sufficient for coloring the graph
(i.e., its chromatic number).

First-Fit is essentially an online algorithm. It has been widely studied in a
more general context and has been proved to be Θ(log n)-competitive in in-
ductive graphs with n nodes [12, 9]. Disk graphs are inductive [4, 5] so the up-
per bound holds for disk graphs as well. The lower bound holds also for trees
(which are disk graphs) so the Θ(log n) bound holds for general disk graphs. In
unit disk graphs, First-Fit is at most 5-competitive [7, 14] while for σ-bounded
disk graphs with n nodes, it is at most O(min{log n, σ2})-competitive [4]. For
unit disk graphs, a lower bound of 2 on the competitiveness of any determin-
istic online coloring algorithm is presented in [6]. The best known lower bound

80 I. Caragiannis et al.

on the competitiveness of deterministic coloring algorithms in σ-bounded disk
graphs is Ω(min{log n, log log σ}) [4]. A competitive ratio of O(min{log n, log σ})
is achieved by two algorithms presented in [4] and [2]. The former uses the disk
representation while the latter does not but it is quite impractival. Both algo-
rithms use First-Fit as a subroutine.

In this paper we show that algorithm First-Fit itself is O(log σ)-competitive
when applied to σ-bounded disk graphs. This significantly improves the previ-
ously known upper bound of O(σ2) on the competitiveness of First-Fit. Further-
more, it matches the best known upper bound for online deterministic coloring
algorithms, previously achieved either by algorithms that use the disk representa-
tion [4] or by quite impractical algorithms that do not use the disk representation
[2]. Our second result indicates that First-Fit has optimal competitiveness (within
constant factors) among all deterministic online algorithms for disk graphs that
do not use the disk representation. In particular, we show that any deterministic
online coloring algorithm that does not use the disk representation has compet-
itive ratio Ω(log σ) on σ-bounded disk graphs. Combined with previous results,
our lower bound establishes a tight bound of Θ(min{log n, log σ}) on the op-
timal competitiveness of deterministic online coloring algorithms in σ-bounded
disk graphs with n nodes that do not use the disk representation. We also prove
a new lower bound of 2.5 on the competitiveness of deterministic online coloring
algorithms for unit disk graphs that do not use the disk representation. This
result improves a previous lower bound of 2 [6].

The rest of the paper is structured as follows. A discussion on previous upper
bounds and the proof of the upper bound on the competitiveness of First-Fit
are presented in Section 2. The lower bounds are presented in Section 3. We
conclude with open problems in Section 4.

2 The Upper Bound

In this section, we prove the upper bound for algorithm First-Fit. Although this
upper bound can also be achieved by two other known algorithms presented
in [4] and [2], respectively, our result is important because of the simplicity of
algorithm First-Fit.

The algorithm of Erlebach and Fiala [4] classifies the disks into a logarithmic
number of classes so that the disks belonging to the same class form a 2-bounded
disk graph and runs algorithm First-Fit in each class using disjoint sets of colors
for coloring the disks of different classes. The classification is performed according
to the radii of the disks; hence, the algorithm uses the disk representation. The
proof of the O(log σ) upper bound follows by the fact that algorithm First-Fit
has constant competitive ratio on 2-bounded disk graphs.

The algorithm Layered classifies the disks into layers and applies algorithm
First-Fit to each layer separately, using a different set of colors in each layer.
Layers are numbered with integers 1, 2, ... and a disk is classified into the smallest
layer possible under the constraint that it cannot be classified into a layer if it
overlaps with at least 16 mutually non-overlapping disks belonging to this layer.

A Tight Bound for Online Coloring of Disk Graphs 81

The proof that algorithm Layered is O(log σ)-competitive is based on the
following arguments. First, if a disk of radius R belongs to some layer i > 1,
then there is a disk of radius at most R/2 belonging to layer i − 1. Hence, if
the disk graph given as input to algorithm Layered is σ-bounded, the number of
layers is at most 1 + log σ. The logarithmic competitive ratio follows since the
maximum independent set in the neighborhood of each node within each layer
has size at most 15, and, hence, algorithm First-Fit is proved to have constant
competitive ratio within each layer. Clearly, algorithm Layered does not use the
disk representation.

For checking whether a new node presented has 16 or more non-overlapping
disks of some layer in its neighborhood may require time Ω(n16). This could be
decreased to Ω(n8) by changing the constraint so that a disk cannot be classified
into a layer if it overlaps with at least 8 mutually non-overlapping disks belonging
to this layer. Still, it can be proved that there exists a constant α > 1 such that
for each disk of radius R belonging to some layer i > 1, there exists a disk at
layer i − 1 of radius smaller than R/α. This is the best possible improvement
in the idea of algorithm Layered since, for any α > 1 arbitrarily close to 1 (e.g.,
α = 1 + 1/σ), a disk of radius R can overlap with 7 mutually non-overlapping
disks of radius R/α, and, hence, the logarithmic upper bound on the number of
layers cannot be established.

Surprisingly, we show that algorithm First-Fit itself is at most O(log σ)-
competitive, improving the previously known O(σ2) upper bound. Combining
this result with the O(log n) upper bound which is known for the competitive
ratio of First-Fit we obtain that First-Fit is O(min{log n, log σ})-competitive. Al-
gorithm First-Fit runs in time proportional to the number of edges of the disk
graph, i.e., O(n2), and does not use the disk representation. Hence, it is much
simpler than the previously known algorithms that achieve the same bounds.

Theorem 1. First-Fit is O(log σ)-competitive for σ-bounded disk graphs.

Proof. Let G be a σ-bounded disk graph with chromatic number κ. Assume that
the nodes of G appear online and are colored by algorithm First-Fit. Consider
a representation of G by overlapping disks on the plane of radii between r (the
radius of the smallest disk) and Rmax (the radius of the largest disk) so that
Rmax/r ≤ σ. We classify the nodes into levels 0, 1, ..., �log (Rmax/r)� as follows:
a node corresponding to a disk of radius R belongs to level �log (R/r)�. Since
Rmax/r ≤ σ, the index of the last level is at most �log σ�.

We will first show that a node of G belonging to level i ≥ 0 is adjacent to at
most 15(κ− 1) other nodes of level at least i.

Assume otherwise that there exists a node u of G at level i which is adjacent
to at least 15κ − 14 other nodes of level at least i. Let R be the radius of the
disk d corresponding to node u in the disk representation. Then i = �log (R/r)�.
Also, let Sd be the set of disks corresponding to nodes adjacent to d which belong
to levels at least i. Clearly, all the disks of Sd have radii at least r2i.

We apply the following shrinking procedure on the disks of Sd. We shrink
each disk d′ in Sd into a disk of radius r2�log R/r� as follows: If the center cd′ of
d′ is inside d, we shrink d′ into a disk having the same center cd′ . Otherwise, let

82 I. Caragiannis et al.

pd′ be the point in the periphery of d′ which is closest to the center of d. We
shrink d′ so that pd′ is again the point in the periphery of d′ which is closest
to the center of d. Denote by S′

d the set of shrunk disks. Clearly, each of the
disks in S′

d overlaps with d since either its center is contained in d or a point in
its periphery is contained in d. This means that all disks in S′

d are completely
contained into the disk of radius R + 2i+1 centered at the center cd of disk d.
An example of the shrinking procedure is depicted in Figure 1.

d2c

d1

d

d2

3

d3c

d2pdc
d1p

d1c

d

Fig. 1. The shrinking procedure. The disk d overlaps with three disks. Grey disks are

the three corresponding shrunk disks

The node-induced subgraph H of G defined by the nodes of G corresponding
to the disks of Sd is (κ − 1)-colorable since the graph G is κ-colorable and the
nodes of H are all adjacent to u in G. Consequently, since by our assumption H
contains the neighbors of u in G with levels at least i and since there are at least
15κ − 14 such nodes, the maximum independent set in H has size at least 16.
Consider such an independent set of 16 nodes in H and the 16 non-overlapping
disks of Sd corresponding to these nodes. Clearly, the 16 corresponding shrunk
disks of S′

d are also non-overlapping. Each of these disks has radius r2i and,
hence, their total area is

16π
(
r2i
)2

= π
(
r2i+1 + r2i+1

)2
> π

(
R + r2i+1

)2
.

Since these disks are non-overlapping, this contradicts the fact that all disks
of S′

d are completely contained in the disk of radius R + r2i+1 centered at cd.
Consequently, our assumption is incorrect and u is adjacent to at most 15(κ−1)
other nodes of G of level at least i.

We will now show that each node of G at level i ≥ 0 is colored by al-
gorithm First-Fit with a color in the range [1, (15κ− 14) (i + 1)]. Hence, the
maximum color that can be assigned to a node of G by First-Fit is at most

A Tight Bound for Online Coloring of Disk Graphs 83

(15κ − 14) (�log σ�+ 1). Since G has chromatic number κ, this implies that al-
gorithm First-Fit is O(log σ)-competitive.

We use induction on the level of nodes. The statement is true for nodes of
level 0, since any such node is adjacent to at most 15(κ − 1) nodes of G and,
hence, it will be assigned a color in [1, 15κ− 14].

Now assume that the statement is true for nodes of level i = 0, ..., k (for
k < �log σ�). We will show that it also holds for nodes of level k + 1. Consider a
node u at level k +1. This node will be adjacent to nodes of smaller levels which
may use up to color (15κ−14)(k+1) and to at most 15(κ−1) additional nodes of
levels at least k+1. Hence, the maximum color that can be assigned by algorithm
First-Fit to node u is (15κ− 14)(k + 1) + 15(κ− 1) + 1 = (15κ− 14)(k + 2). This
completes the proof of the theorem. ��

3 The Lower Bound

The result proved in the following establishes that algorithm First-Fit achieves the
best possible competitive ratio (within constant factors) among all deterministic
online coloring algorithms that do not use the disk representation.

We present an adversary ADV which, on input an integer k and a determin-
istic online coloring algorithm A, outputs a tree T with at most 2k−1 nodes such
that A colors T with at least k colors. We describe the adversary ADV in the
following. This is a non-recursive description of the adversary very similar to
that used in [4] for proving lower bounds on disk graphs and (in a more general
form) in [12] for proving lower bounds on inductive graphs. We use the notation
〈s, t〉 to represent the nodes in the tree but the root, where t ≥ 1 is an integer
representing the level of the node and s a binary string of length k − t− 1. We
use the function str() which, on input integers i ≥ 0 and j with 0 ≤ j ≤ 2i,
returns a string of length i (possibly empty) which is the binary representation
of j with i binary digits. We use the symbol � to denote the concatenation of
two strings. The adversary ADV can be described as follows.

Create 2k−2 nodes labeled as 〈str(i, k− 2), 1〉, for each i = 0, ..., 2k−2− 1, and
introduce them to algorithm A.
For i = 2 to k − 1

For j = 0 to 2k−i−1 − 1
Let S� be the set of colors assigned by A to nodes

〈str(j, k − i− 1)�
i− 1 times︷ ︸︸ ︷
000...00 , 1〉, 〈str(j, k − i− 1)�

i− 2︷ ︸︸ ︷
00...00, 2〉,

..., 〈str(j, k − i− 1)� 0, i− 1〉.
Let Sr be the set of colors assigned by A to nodes

〈str(j, k − i− 1)� 1

i− 2︷ ︸︸ ︷
00...00, 1〉, 〈str(j, k − i− 1)� 1

i− 3︷︸︸︷
0..00, 2〉,

..., 〈str(j, k − i− 1)� 1, i− 1〉.

84 I. Caragiannis et al.

If S� = Sr then
Create a new node 〈str(j, k − i− 1), i〉 connected to nodes

〈str(j, k − i− 1)� 1

i− 2︷ ︸︸ ︷
00..00, 1〉, 〈str(j, k − i− 1)� 1

i− 3︷︸︸︷
0..00, 2〉,

..., 〈str(j, k − i− 1)� 1, i− 1〉

and introduce it to algorithm A.
else

Let 〈s, t〉 be the node to which A assigns a color not in S�.
Rename it as 〈str(j, k − i− 1), i〉

Endif
Endfor

Endfor
Create a new node r connected to nodes labeled

〈
k − 2︷ ︸︸ ︷

000...00, 1〉, 〈
k − 3︷ ︸︸ ︷

000...00, 2〉, ..., 〈0, k − 2〉, 〈∅, k − 1〉,

and introduce it to algorithm A.

The adversary forces the algorithm to use at least k colors. In each iteration,
it can be shown by induction on i that all the i− 1 nodes examined for defining
the set S� (and similarly for Sr) are colored with i − 1 different colors. Hence,
after the if-then-else statement, the adversary will have forced algorithm A to
use i different colors, i.e., k − 1 colors at the end of all iterations. This clearly
holds if the sets S� an Sr are not the same (else statement). Otherwise, it is guar-
anteed by the introduction of a new node which is connected to nodes colored
with the i− 1 different colors of Sr (if-then statement). Then, the last node r is
connected to nodes with k−1 different colors and will be assigned a k-th color by
algorithm A.

Also, it can be seen that when a new node is introduced in an iteration, the
nodes to which it is connected will not be connected to other nodes in subse-
quent iterations. Hence, in general, the resulting graph is a forest. The number
of nodes is at most 2k−1 since there are 2k−2 nodes at level 1, at most one
new node in each iteration and one more node at the end. Actually, when the
adversary runs against algorithm First-Fit, then the constructed graph is a tree
with exactly 2k−1 nodes (in each iteration, a new node is introduced). We de-
note this tree by TFF (k) and we will first show that this is an αk−1-bounded
disk graph, for every α > 2. Then, we will show how to adapt this construction
for forests produced by the adversary against other deterministic online coloring
algorithms.

Given a disk d of radius R corresponding to some node of the tree TFF (k),
we define the vertical stripe of d to be the vertical stripe of width 2R which
completely contains d. In our construction, the disk representation of TFF (k)
is such that the disks corresponding to nodes in the subtree of a node u do

A Tight Bound for Online Coloring of Disk Graphs 85

not cross the boundaries of the vertical stripe of the disk d corresponding to
u. Furthermore, the vertical stripes of any two disks corresponding to children
of the same node are disjoint. These two invariants guarantee that the disks
corresponding to nodes belonging to different subtrees do not overlap.

We first locate a disk of radius αk−1 corresponding to the root r of the tree.
Disks corresponding to nodes of level i (for i = 1, ..., k − 1) will have radius
αi−1.

A node u at level i with i = 2, ..., k, has i− 1 children u1, ..., ui−1 in TFF (k)
with levels 1, ..., i−1, respectively. Let d be the disk corresponding to node u and
let d1, ..., di−1 be the disks corresponding to its children u1, ..., ui−1, respectively.
Assuming that the center of the disk d has horizontal coordinate h, the center of
the disk dj has horizontal coordinate hj = h−αi−1+3αi−12−i+j . The horizontal
stripes of the disks d1, ..., di−1 are disjoint since for two disks dj and dj′ with
j > j′, their centers differ in the horizontal coordinate by

hj − hj′ = (h− αi−1 + 3αi−12−i+j)− (h− αi−1 + 3αi−12−i+j′
)

=
3
2
αj−1(α/2)i−j(2− 2−j+j′+1)

>
3
2
αj−1

> αj−1 + αj′−1

which is the sum of their radii.
Furthermore, neither the leftmost disk d1 nor the rightmost disk di−1 cross

the boundary of the horizontal stripe of d. Indeed, the leftmost point of d1 has
horizontal coordinate

h1 − 1 = h− αi−1 + 3αi−12−i+1 − 1
= h− αi−1 + 3(α/2)i−1 − 1
> h− αi−1 + 2
> h− αi−1

which is the horizontal coordinate of the left boundary of the horizontal stripe
of d. Also, the rightmost point of di−1 has horizontal coordinate

hi−1 + αi−2 = h− αi−1 + 3αi−1/2 + αi−2

= h + αi−1/2 + αi−2

< h + αi−1

which is the horizontal coordinate of the right boundary of the horizontal stripe
of d.

The vertical coordinate of the center of disk dj is defined so that it is smaller
than the vertical coordinate of the lowest point in the intersection of disk dj

with disk d. This guarantees that, among all disks corresponding to nodes in
the subtree of u, the disks that d overlaps with are those corresponding to its
children in TFF (k).

86 I. Caragiannis et al.

In the disk representation of the tree TFF (k), we use disks of radii between
1 and αk−1. So, TFF (k) is an αk−1-bounded disk graph. An example of the
construction is depicted in Figure 2.

c3

c

c4

d

Fig. 2. The disk representation of the tree produced by algorithm ADV on input k = 5

and algorithm First-Fit. The dashed lines indicate the boundaries of the horizontal

stripes of two disks

Now, consider the forest created by the adversary on input an integer k and
some other algorithm A. In this case, some iterations may have renamed some
nodes instead of introducing new ones. We construct the disk representation
of such a forest by starting with the disk representation of TFF (k). We follow
the execution of the adversary on input k and some algorithm A. When, the
adversary executes the else statement in an iteration, we remove the disk cor-
responding to the node 〈str(j, k − i − 1), i〉 (since this node is not introduced)
and move horizontally all the disks corresponding to nodes of the subtree of
node 〈s, t〉 so that the disk d corresponding to node 〈s, t〉 (and no other disk
in its subtree) overlaps with the disk corresponding to the parent node of node
〈str(j, k−i−1), i〉 in TFF (k). From now on, the node to which disk d corresponds
has been renamed as 〈str(j, k − i− 1), i〉.

Clearly, this also yields an αk−1-bounded disk graph. The above discussion
leads to the following lemma.

Lemma 1. For any α > 2, the forest constructed by the adversary ADV on
input an integer k ≥ 3 and any deterministic online coloring algorithm A is an
αk−1-bounded graph.

A Tight Bound for Online Coloring of Disk Graphs 87

Now given a sufficiently large σ, the graph produced by the adversary on input
k = 1+�logα σ� and any deterministic algorithm is a 2-colorable σ-bounded disk
graph which the algorithm colors with at least 1 + �logα σ� colors. We obtain
the following.

Theorem 2. Any deterministic online algorithm for coloring σ-bounded disk
graphs that does not use the disk representation has competitive ratio Ω(log σ).

For unit disk graphs, the best known lower bound on the competitiveness of
any deterministic algorithm is 2 [6] and holds also for algorithms that use the
disk representation. On input a deterministic online algorithm A, the adversary
in the proof of [6] constructs a κ-colorable unit disk graph with κ ∈ {1, 2, 3},
which algorithm A colors with at least 2κ colors. In the following, we improve
this lower bound for deterministic online coloring algorithm in unit disk graphs
that do not use the disk representation.

Consider a deterministic online coloring algorithm A and the forest produced
by adversary ADV on input 5 and algorithm A. Each connected component of
the forest produced by ADV is a subtree of the tree TFF (5) produced by ADV
on input 5 and algorithm First-Fit. The tree TFF (5) is a unit disk graph as shown
in Figure 3.

Fig. 3. The tree TFF (5) and its disk representation with unit disks

Hence, the output of the adversary ADV on input 5 and any deterministic
algorithm A is a unit disk graph. Since this output is a forest, it is 2-colorable,
while the adversary forces A to use at least 5 colors. We obtain the following.

Theorem 3. Any deterministic online algorithm for coloring unit disk graphs
that does not use the disk representation has competitive ratio at least 2.5.

4 Open Problems

Our results on σ-bounded disk graphs can be extended to other classes of geo-
metric graphs such as intersection graphs of squares and intersection graphs of

88 I. Caragiannis et al.

rectangles whose height to width ratio is bounded by a constant. It still remains
to show whether there exist deterministic online coloring algorithms that use the
disk representation and have competitive ratio o(log σ). Our lower bound clearly
fails in this case since a very simple online algorithm could use the information
for the radii of the disks produced by the adversary ADV and color disks of
radius αi with colors 1 and 2 depending on whether i is even or odd.

Also, it would be interesting to investigate whether randomization helps in
improving the known upper bounds and even beating the lower bounds for deter-
ministic algorithms. To our knowledge, randomized online coloring algorithms
have not been studied except for very general classes of graphs (e.g., in [16])
where the results are much weaker than those for disk graphs.

References

1. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cam-
bridge University Press, 1998.

2. I. Caragiannis, A. V. Fishkin, C. Kaklamanis, and E. Papaioannou. Online algo-
rithms for disk graphs. In Proc. of the 29th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS ’04), LNCS 3153, Springer, pp.
215-226, 2004.

3. B.N. Clark, C.J. Colbourn, and D.S. Johnson. Unit disk graphs. Discrete Mathe-
matics, 86, pp. 165-177, 1990.

4. T. Erlebach and J. Fiala. On-line coloring of geometric intersection graphs. Com-
putational Geometry: Theory and Applications, 9(1-2), pp. 3-24, 2002.

5. T. Erlebach and J. Fiala. Independence and coloring problems on intersection
graphs of disks. Manuscript, 2003.

6. J. Fiala, A.V. Fishkin, and F.V. Fomin. Off-line and on-line distance constrained
labeling of graphs. In Proc. of the 9th Annual European Symposium on Algorithms
(ESA ’01), LNCS 2161, pp. 464-475, 2001.

7. A. Gräf. Coloring and recognizing special graph classes. Musikinformatik und Me-
dientechnik Bericht 20/95, Johannes Gutenberg, Universität Mainz, 1995.

8. A. Gräf, M. Stumpf, and G. Weissenfels. On coloring unit disk graphs. Algorith-
mica, 20(3), pp. 277-293, 1998.

9. A. Gyárfás and J. Lehel. On-line and first fit colorings of graphs. Journal of Graph
Theory, 12(2), pp. 217-227, 1988.

10. D.K. Hale. Frequency assignment: theory and applications. In Proc. of the IEEE,
68(12), pp. 1497-1514, 1980.

11. P. Hliněný and J. Kratochv́ıl. Representing graphs by disks and balls. Discrete
Mathematics, 229(1-3), pp. 101-124, 2001.

12. S. Irani. Coloring inductive graphs on-line. Algorithmica, 11, pp. 53-72, 1994.
13. E. Malesińska. Graph theoretical models for frequency assignment problems. PhD

Thesis, Technical University of Berlin, 1997.
14. M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, and D.J. Rosenkrantz. Simple

hueristics for unit disk graphs. Networks, 25, pp. 59-68, 1995.
15. R. Peeters. On coloring j-unit sphere graphs. Technical report, Dept. of Economics,

Tilburg University, 1991.
16. S. Vishwanathan. Randomized online coloring of graphs. In Proc. of the 31st An-

nual Symposium on Foundations of Computer Science (FOCS ’90), 1990.

Divide and Conquer Is Almost Optimal for the
Bounded-Hop MST Problem on

Random Euclidean Instances

(Extended Abstract)

Andrea E.F. Clementi1, Miriam Di Ianni1, Angelo Monti2,
Massimo Lauria2, Gianluca Rossi1,�, and Riccardo Silvestri2

1 Dipartimento di Matematica,
Università degli Studi di Roma“Tor Vergata”,

Via della Ricerca Scientifica 1, 00133 Roma - Italy
{clementi, diianni, rossig}@mat.uniroma2.it

2 Dipartimento di Informatica,
Università degli Studi di Roma “La Sapienza”,

Via Salaria 113, 00198 Roma - Italy
lauria@mclink.it, {monti, silver}@di.uniroma1.it

Abstract. The d-Dim h-hops MST problem is defined as follows: Given
a set S of points in the d-dimensional Euclidean space and s ∈ S, find
a minimum-cost spanning tree for S rooted at s with height at most h.
We investigate the problem for any constants h and d > 0. We prove the
first non trivial lower bound on the solution cost for almost all Euclidean
instances (i.e. the lower-bound holds with high probability). Then we
introduce an easy-to-implement, very fast divide and conquer heuristic
and we prove that its solution cost matches the lower bound.

1 Introduction

Given a positive integer h, an h-tree T is a rooted tree such that the number
of hops (edges) in the path from the root to any other node is not greater
than h. The cost of T , denoted as cost(T), is the sum of its edge weights. The
Minimum h-hops Spanning Tree problem (h-hops MST) is defined as follows:
Given a graph G(V,E) with nonnegative edge weights and a node s ∈ V , find
a minimum-cost h-tree rooted at s and spanning G. The h-hops MST problem
and the related problem in which the constraint is on the tree diameter find
applications in several areas: networks [4], distributed system design [22, 7], bit-
compression for information retrieval [6].

The efficient construction of a (minimum) spanning tree of a communica-
tion network yields good protocols for broadcast and anti-broadcast1 operations.

� Supported by the European Union under the IST FET Project CRESCCO.
1 The anti-broadcast operation is also known in literature as Accumulation or All-to-

One operation.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 89–98, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

90 A.E.F. Clementi et al.

The hop restriction limits the maximum number of links or connections in the
communication paths between source and destination nodes: It is thus closely
related to restricting the maximum delay transmission time of such fundamental
communication protocols. The hop restriction finds another relevant application
in the context of reliability : Assume that, in a communication network, link
faults happen with probability p and that all faults occur independently. Then,
the probability that a multi-hop transmission fails exponentially increases with
the number of hops. Summarizing, a fixed bound on the maximum number of
hops is sometimes a necessary constraint in order to achieve fast and reliable
communication protocols.

For further motivations in studying the h-hops MST problem see
[5, 11, 15, 24].

The h-hops MST problem is NP-hard even when the edge weights of the
input graphs form a metric and h = 2 [1]. Algorithmic research on this issue
thus aims to design and analyse efficient approximation algorithms.

Several previous works [5, 11, 24] focused on the 2-dimensional geometric ver-
sion of the problem (2-Dim h-hops MST), i.e., when nodes are points of the
Euclidean 2-dimensional space, the graph is complete, and the edge weights are
the Euclidean distances. As for the case h = 2, polynomial-time, constant-factor
approximation algorithms are given in [23, 8, 17, 14, 18] and a PTAS is provided
in [3] for 2-Dim h-hops MST. We remark that all such approximation algo-
rithms are not fast and/or easy-to-implement and, for h ≥ 2, neither hardness
results nor polynomial-time (exact) algorithms are known for the 2-Dim h-hops
MST problem. Even more, for h ≥ 3, no polynomial-time, constant-factor ap-
proximation algorithms are known.

Another series of papers have been devoted to evaluate and compare so-
lutions for the 2-Dim h-hops MST problem returned by some heuristics on
random planar instances by performing computer experiments [9, 11, 12, 21, 24].
Almost all such works adopt the uniform input random model, i.e., points are
chosen independently and uniformly at random from a fixed square of the plane.
The motivation on this input model is twofold: On one hand, the uniform distri-
bution is the most suitable choice when nothing is known about the real input
distribution or when the goal is to perform a preliminary study of the heuristic
on arbitrary instances. On the other hand, uniform distribution well models im-
portant applications in the area of ad-hoc wireless and sensor networks: In such
scenarios, once base stations are efficiently located, a large set of small wireless
(mobile or not) devices are well-spread over a geographical region. Clearly, in
these networks, efficient and reliable protocols for broadcast and accumulation
is a primary goal [10].

We emphasize that no theoretical analysis is currently available on the ex-
pected performance of any efficient algorithm for the 2-Dim h-hops MST
problem.

In the sequel, with the term random instance, we mean a finite set of points
chosen independently and uniformly at random from a fixed d-dimensional hy-
percube.

Divide and Conquer Is Almost Optimal 91

Our first result is a lower bound on the cost of any h-tree spanning a random
set of points, i.e., a finite set of points chosen independently and uniformly at
random from a fixed d-dimensional hypercube (d-cube).

Theorem 1. Let h, d ≥ 1 be constants. Let S be a random set of n points in a
d-cube of side length L and let T be any h-tree spanning S. Then, it holds that

cost(T) =

⎧⎨⎩Ω
(
L · n 1

h

)
if d = 1

Ω
(
L · n1− 1

d + d−1
dh+1−d

)
otherwise

with high probability.

Here and in the sequel the term with high probability (in short, w.h.p.) means
that the event holds with probability at least 1− e−c·n, for some constant c > 0.
So, according to our input model, claiming that a given bound holds w.h.p. is
equivalent to claiming that it holds for almost all inputs.

We then introduce a simple Divide et Impera heuristic h-Party. It makes a
partition of the smallest d-cube containing S into cells. In each non-empty cell,
it selects an arbitrary sub-root s′ and connects s′ to the root s; finally, it solves
the non-empty cell sub-instances of the problem with h − 1 hops, recursively.
Choosing the size of the cells is the critical technical issue: This is solved by
means of the lower bound in Theorem 1.

Theorem 2. Let h, d ≥ 1 be constants. Let S be a set of n points in a d-cube
of side length L and let s ∈ S. For any h-tree T returned by h-Party on input
(S, s), it holds that

cost(T) =

⎧⎨⎩O
(
L · n 1

h

)
if d = 1

O
(
L · n1− 1

d + d−1
dh+1−d

)
otherwise.

Theorems 1 and 2 imply that, for any fixed h, h-Party returns a solution which
is, with high probability, a constant factor approximation of the optimum. So,
even though this fast algorithm provides no provably-good approximation in the
worst-case, it works well on almost-all Euclidean instances.

h-Party is the first heuristic that works in O(n) time and it can be thus
efficiently applied to very large instances. In fact, the heuristic has been imple-
mented and tested on instances of hundreds of thousands points [9].

Notice that, differently from Theorem 1, the bound in Theorem 2 holds for
any Euclidean instance. It thus follows that random instances are those having
the largest cost.

1.1 Related Works

The 2-Dim 2-hops MST problem can be easily reduced to the classic Facility
Location Problem on the plane. Indeed, the distance of the root from vertex i
can be seen as the cost of opening a facility at vertex i. It thus follows that all
the approximation algorithms for the latter problem apply to the 2-Dim 2-hops

92 A.E.F. Clementi et al.

MST as well. In particular, the best result is the PTAS given by Arora et al in [3].
The algorithm works also in higher dimensions; however, it is based on a complex
dynamic programming technique that makes any implementation very far to be
practical. Several polynomial-time approximation algorithms for the Metric 2-
hops MST problem have been presented in the literature. Notice that, in [1]
Alfandari and Paschos proved that Metric 2-hops MST is Max SNP-hard
and, hence, PTAS cannot be found for this problem unless P = NP. The first
constant factor approximation algorithm was given by Shmoys et al in [23],
they presented a 3.16 approximation algorithm. After this, a series of constant
factor approximation algorithms was published, see [8, 17, 14]. Currently, the best
factor is 1.52 due to Mahdian et al [18]. All such algorithms are not practically
efficient.

As for the general h-hops MST problem, Gouveia [12] and, successively,
Gouveia and Requejo [13] provided and experimentally tested exact super-
polynomial time algorithms, based on the branch and bound technique. In [2, 16]
a polynomial-time O(log n)-approximation algorithm is given, but its time com-
plexity is nO(h). Voss in [24] presented a tabu-search heuristic for the h-hops
MST problem, but the time complexity is very high when the graph is dense.
In [21] heuristics based on Prim algorithm and on Evolutionary techniques have
been experimentally tested. Finally, in [9] experimental tests have been per-
formed on greedy heuristics and on h-Party.

2 Preliminaries

In the proof of our results we make use of the well-known Hölder inequality. We
thus present it in the following convenient forms. Let xi, i = 1, . . . , k be a set of
k non negative reals and let p, q ∈ R such that p ≥ 1 and q ≤ 1. Then, it holds
that:

k∑
i=1

xp
i ≥ k

(∑k
i=1 xi

k

)p

; (1)

k∑
i=1

xq
i ≤ k

(∑k
i=1 xi

k

)q

. (2)

3 The Lower Bound

The next lemma is the first known lower bound on the cost of h-trees for general
Euclidean instances.

Lemma 1. Let h, d ≥ 1 be constants. Let S be a set of points in a d-
dimensional Euclidean space. Consider a partition of the space in d-cubes
with the side length of each d-cube being l and let nl be the number of the
d-cubes containing points of S. For any h-tree T spanning S it holds that

Divide and Conquer Is Almost Optimal 93

cost(T) =

⎧⎪⎨⎪⎩
Ω
(
l · n1+ 1

h

l

)
if d = 1

Ω

(
l · n

1+ d−1
dh+1−d

l

)
otherwise.

Proof. We equivalently show that cost(T) = Ω
(
L · n1+ 1

g(h)

)
where

g(h) =
{

d if h = 1
d · g(h− 1) + d otherwise.

Notice that 1/g(h) = d−1
dh+1−d

if d > 1 and 1/g(h) = 1
h if d = 1.

Let s be the point root of the tree T and consider a d-sphere centered at s
and of radius r = Θ(l · (nl)

1
d) such that the number n′

l of non-empty d-cubes
outside the sphere is at least nl

2 . Finally let B be the set of points in these n′
l

d-cubes.
The proof is by induction on the height h of the tree T . If h = 1, for each of

the n′
l d-cubes, there is an edge in T of length at least r. This implies that

cost(T) ≥ r · n′
l = Ω

(
l · n1+ 1

d

l

)
= Ω

(
l · n

1+ 1
g(1)

l

)
.

Let h ≥ 2. Let A = {a1, a2, . . . , a|A|} be the set of points whose father is at
distance at least r

h and let β = 1− 1
d + 1

g(h) . Two cases may arise.

- Case |A| ≥ nβ
l . Since there are at least |A| edges of length r

h , it holds that

cost(T) ≥ r

h
· |A| = Ω(l · nβ+ 1

d

l) = Ω

(
l · n

1+ 1
g(h)

l

)
.

- Case |A| < nβ
l . For every point x in B there is a path from x to the root s

with at most h hops. Since the distance from x to s is at least r in the path
there is at least one edge of length at least r

h . Hence we can partition the points
in A ∪ B into |A| subsets A1, A2, . . . A|A| where a point y is in Ai if ai is the
first point in A in the path from y to s. Notice that the points in the subsets
Ai, 1 ≤ i ≤ |A|, belong to (edge-)disjoint subtrees T1, T2, . . . , T|A| of T where Ti

is an (h− 1)-tree rooted at ai. Let nl,i be the number of d-cubes containing the
points of Ti, 1 ≤ i ≤ |A|. It holds that

cost(T) ≥
∑|A|

i=1 cost(Ti)
= Ω

(∑|A|
i=1 l · nl,i

1+ 1
g(h−1)

)
by inductive hypothesis

= Ω

(
l · |A| ·

(∑ |A|
i=1 nl,i

|A|

)1+ 1
g(h−1)

)
by the Hölder inequality

94 A.E.F. Clementi et al.

= Ω
(
l · |A|−

1
g(h−1) · nl

1+ 1
g(h−1)

)
since

∑|A|
i=1 nl,i ≥ n′

l ≥ nl

2

= Ω

(
l · n

− β
g(h−1)+1+ 1

g(h−1)

l

)
since |A| < nβ

l

= Ω

(
l · n

1+
g(h)−d

d·g(h−1)·g(h)

l

)
= Ω

(
l · n

1+
d·g(h−1)

d·g(h−1)·g(h)

l

)
since g(h) = d · g(h− 1) + d.

= Ω

(
l · n

1+ 1
g(h)

l

)
The thesis follows. �

By applying the probabilistic method of bounded differences [19], we derive
the following lower bound

Theorem 1. Let h, d ≥ 1. Let S be a random set of n points in a d-cube of side
length L and let T be any h-tree spanning S. Then, it holds that

cost(T) =

⎧⎨⎩Ω
(
L · n 1

h

)
if d = 1

Ω
(
L · n1− 1

d + d−1
dh+1−d

)
otherwise

with high probability.

Proof. Let us partition the d-cube into n d-cubes, each of them with side length
l = L

n
1
d
. Let nl be the number of non-empty d-cubes. Lemma 1 implies that

cost(T) =

⎧⎪⎨⎪⎩
Ω
(
L · n−1 · n1+ 1

h

l

)
if d = 1

Ω

(
L · n− 1

d · n
1+ d−1

dh+1−d

l

)
otherwise

The theorem follows by noticing that, by applying the method of bounded dif-
ferences [19], we have that nl ≥ n/4, with high probability. �

4 The Divide and Conquer Heuristic

The heuristic h-Party is described in Figure 2 while its solution cost is proved
in the following
Theorem 2. Let h, d ≥ 1 be constants. Let S be a set of n points in a d-cube
of side length L and let s ∈ S. For any h-tree T returned by h-Party on input
(S, s), it holds that

cost(T) =

⎧⎨⎩O
(
L · n 1

h

)
if d = 1

O
(
L · n1− 1

d + d−1
dh+1−d

)
otherwise.

Divide and Conquer Is Almost Optimal 95

t

h-Party: n = 400, h = 3

t

h-Party: n = 400, h = 8

(a) (b)

Fig. 1. The trees yielded by the h-Party heuristics on the same random instance with

400 points and h = 3, 8

procedure h-Party(S, s)
if h = 1 then T ← {{x, s}|x ∈ S − {s}};
else begin

T ← ∅;
if d = 1 then k ←

⌊
|S| 1

h

⌋
;

else k ←
⌊
|S|1−

1
d
+ d−1

dh+1−d

⌋
;

Let L be the side length of the smallest d-cube containing all points in S;
Partition the d-cube into d-cubes of side length L⌊

k
1
d

⌋ ;

Let k′ be the number of d-cubes and
let Si be the points of S in the i-th d-cube, 1 ≤ i ≤ k′;
for i ← 1 to k′ do

if |Si| ≥ 1 then begin
choose a point s′ in Si;
T ← T ∪ {{s′, s}};
if |Si| > 1 then T ← T∪ (h − 1)-Party(Si, s

′);
end;

end;
output T

Fig. 2. Algorithm h-Party

Proof. We equivalently show that cost(T) = O
(
L · n1− 1

d + 1
g(h)

)
where

g(h) =
{

d if h = 1
d · g(h− 1) + d otherwise

96 A.E.F. Clementi et al.

Notice that, as in Lemma 1, 1/g(h) = d−1
dh+1−d

if d > 1 and 1/g(h) =
1
h if d = 1. The proof is by induction on h. If h = 1 it is clear that
cost(T) = O(L · n).
For h ≥ 2, let t be the number of non-empty d-cubes in the d-cube of size
length L and {q1, q2, . . . qt} be the set of points selected by the procedure in
the t non-empty d-cubes, let Ti be the (h − 1)-tree rooted in qi and Si be
the set of points spanned by Ti, 1 ≤ i ≤ t. By inductive hypothesis, we get
cost(Ti) = O

(
L

k
1
d
· |Si|1−

1
d + 1

g(h−1)

)
. We thus have that

cost(T) =
∑t

i=1 d(qi, s) +
∑t

i=1 cost(Ti)
≤ L · t +

∑t
i=1 cost(Ti) since d(qi, s) ≤ L

= O
(
L · t +

∑t
i=1

L

k
1
d
· |Si|1−

1
d + 1

g(h−1)

)
by inductive hyp.

= O

(
L · t + L

k
1
d
· t ·

(∑ t
i=1 |Si|

t

)1− 1
d + 1

g(h−1)
)

by the Hölder ineq.

= O
(
L · t + L

k
1
d
· t

1
d− 1

g(h−1) · n1− 1
d + 1

g(h−1)

)
since

∑t
i=1 |Si| = n

= O
(
L · k + L · k− 1

g(h−1) · n1− 1
d + 1

g(h−1)

)
since t ≤ k

= O
(
L · n1− 1

d + 1
g(h) + L · n− 1

g(h−1) (1− 1
d + 1

g(h))+1− 1
d + 1

g(h−1)

)
= O

(
L · n1− 1

d + 1
g(h) + L · n1− 1

d +
g(h)−d

d·g(h−1)·g(h)

)
= O

(
L · n1− 1

d + 1
g(h)

)
.

where the last step follows since

g(h)− d

d · g(h− 1) · g(h)
=

d · g(h− 1)
d · g(h− 1) · g(h)

=
1

g(h)
.

�
Finally, it is not hard to verify that, for any h > 0, the worst-case time complexity
is O(n).

5 Open Problems

It would be interesting to extend our asymptotical analysis to non constant h
(e.g. h = Ω(log n)).

References

1. L. Alfandari and V.T. Paschos. Approximating minimum spanning tree of depth
2. Intl. Trans. In Op. Res. 6:607-622, 1999.

2. E. Althaus, S. Funke, S. Har-Peled, J. Koenemann, E. A. Ramos, M. Skutella,
Approximation k-hop minimum-spanning trees, Operations Research Letters, 33,
115- 120, 2005.

Divide and Conquer Is Almost Optimal 97

3. S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean k-
medians and related problems. Proc. 30-th ACM Symposium on Theory of Com-
puting 106-113, 1998.

4. K. Bala, K. Petropoulos, and T.E. Stern. Multicasting in a Linear Lightwave Net-
work. Proc. of INFOCOM, 1350–1358, 1993.

5. A. Balakrishnan and K. Altinkemer. Using a hop-constrained model to generate
alternative communication network design. ORSA Journal of Computing 4: 147-
159, 1992.

6. A. Bookstein and S.T. Klein. Compression of Correlated Bit-Vectors. Information
Systems, 16(4):110–118, 1996.

7. R. Chou and T. Johnson. Distributed Operating Systems and Algorithms. Addison-
Wesley. Reading, MA 1997

8. F.A. Chudak. Improved approximation algorithms for uncapacitated facility loca-
tion problem. Proc. of the 6-th Conference on Integer Programming and Combina-
torial Optimization 1998.

9. A.E.F. Clementi, M. Di Ianni, A. Monti, G. Rossi, and R. Silvestri, Experimental
Analysis of Practically Efficient Algorithms for Bounded-Hop Accumulation in Ad-
Hoc Wireless Networks, In Proc. of the IEEE IPDPS-WMAN, 2005, to appear.

10. A. Ephremides, G.D. Nguyen, and J.E. Wieselthier. On the Construction of
Energy-Efficient Broadcast and Multicast Trees in Wireless Networks. In Proc.
of the 19th INFOCOM, 585–594, 2000.

11. L. Gouveia. Using the Miller-Tucker-Zemlin constraints to formulate a minimal
spanning tree problem with hop constraints. Computers and Operations Research
22: 959-970, 1995.

12. L. Gouveia. Multicommodity flow models for spanning trees with hop constraints.
European Journal of Operational Research 95:178-190, 1996.

13. L. Gouveia and C. Requejo. A new relaxation approach for the hop-constrain min-
imum spanning tree problem. European Journal of Operational Research 132:539-
552, 2001.

14. S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms.
Journal of Algorithms 31:228-248, 1999.

15. M. Haenggi. Twelve Reasons not to Route over Many Short Hops, in Proc. IEEE
Vehicular Technology Conference (VTC’04 Fall), (Los Angeles, CA), Sept. 2004.

16. G. Kortsarz and D. Peleg. Approximating the weight of shallow Steiner trees.
Discrete Applied Mathematics 93:265-285, 1999.

17. M.R. Korupolu, C.G. Plaxton and R. Rajaraman. Analysis of a Local Search
Heuristic for Facility Location Problems. Proc. of the 9th annual ACM-SIAM Sym-
posium on Discrete algorithms 1-10, 1998.

18. M. Mahdian, Y. Ye and J. Zhang, A 1.52-approximation algorithm for the unca-
pacitated facility location problem. Proc. of APPROX 2002 LNCS 2462: 229-242,
2002.

19. C.J.H. McDiarmid. On the method of bounded differences. In Surveys in Combi-
natorics: Invited Papers at the 12th British Combinatorial Conference. J. Siemons
Ed. London Mathematical Society Lecture Notes Series, 141:148-188, 1989.

20. P. Raghavan and R. Motwani, Randomized Algorithms. Cambridge Univ. Press,
1995.

21. G. R. Raidl and B. A. Julstrom, Greedy Heuristics and an Evolutionary Algorithm
for the Bounded-Diameter Minimum Spanning Tree Problem. Proc. of the 2003
ACM Symposium on Applied Computing 747-752, 2003.

22. K. Raymond. A Tree-Based Algorithm for Distributed Mutual Exclusion. ACM
Transactions on Computer Systems, 7(1):61–77, 1989.

98 A.E.F. Clementi et al.

23. D.B. Shmoys, E. Tardos and K. Aardal, Approximation algorithms for facility loca-
tion problems. Proc. of the 29-th Annual ACM Symposium on Theory of Computing
265-274, 1997.

24. S. Voss, The steiner tree problem with hop constraint, Annals of Operations Re-
search 86:321-345, 1999.

Distributed Exploration of an Unknown Graph

Shantanu Das1, Paola Flocchini1, Amiya Nayak1, and Nicola Santoro2

1 School of Information Technology and Engineering, University of Ottawa, Canada
{shantdas,flocchin,anayak}@site.uottawa.ca

2 School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Abstract. We consider a group of identical asynchronous agents, ini-
tially located at different nodes of an undirected simple graph. The nodes
of the graph are unlabeled, and each contains a whiteboard where the
visiting agents can write to and read from. The agents, initially, do not
know the graph nor its topology. The only a-priori knowledge the agents
may have is either the number n of nodes, or the total number k of
agents. The goal is for the agents to construct a labelled map of the
unknown graph, the same for all agents, so to be in complete agreement
with each-other about their environment. This problem, called Labelled
Map Construction, is closely related to a variety of other basic prob-
lems, including election and rendezvous. We are interested in efficient
and generic protocols that can solve the problem, irrespective of the
graph topology, where the cost of the algorithm is measured in terms of
the total number of moves (or, edge traversals) made by the agents. We
present a novel deterministic algorithm that, provided that n and k are
co-prime (a necessary condition), constructs a map of the graph, elects
a leader among the agents, and provides a unique labelling on the nodes
of the graph. Our algorithm uses no more than O(k m) edge traversals
where m is the number of edges in the graph. Our result improves on
the finding by Barriere et al. [4] for graphs with sense of direction, ex-
tending it to graphs with arbitrary labelling, provided that one of n or
k is known.

1 Introduction

1.1 Labelled Map Construction

The problem of exploring and mapping an unknown environment has been exten-
sively studied due to its various applications in different areas. Some examples
are navigating a robot through a terrain containing obstacles, finding a path
through a maze, or searching a computer network using mobile software agents.
The environment to be explored is often modelled as a graph, (or sometimes a
digraph) containing one or more mobile entities (we shall call them agents) that
can move through the edges of the graph; the goal is to create a map of the
graph.

We consider here a distributed version of this problem where several asyn-
chronous agents are initially located at different nodes of a graph. The agents are

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 99–114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

100 S. Das et al.

identical, have the same capabilities and follow the same protocol—in fact they
are indistinguishable from one-another. The graph and its topology are initially
not known to the agents. At each node of the graph there is a whiteboard that
can be accessed by the visiting agents in fair mutual exclusion. The goal for the
agents is to construct a labelled map of the unknown graph, the same for all
agents, so to be in complete agreement about their environment. We call this
problem labelled map construction (LMC).

If the nodes of the graph are labelled with unique identifiers and these labels
are visible to the agents, the LMC problem can be resolved quite easily: a simple
depth-first traversal of the graph (by each agent) would suffice. However, it may
be the case that the labels assigned to the nodes of the graph are not visible to the
agents. For example, if the agent is a robot traversing a graph-like world, it may
not have enough sensory capabilities to uniquely identify a node when it reaches
it, or if the agent is a software agent traversing a network, it may not have access
to the identification field of the nodes in the network. Thus, from the viewpoint of
the agents, we can assume the nodes of the graph to be unlabeled (anonymous),
so that all nodes of same degree look the same to an agent. Clearly, in order
to explore such an anonymous graph, the agents need to somehow mark the
nodes (by writing on the whiteboards), so that previously visited nodes can be
identified on subsequent visits. However, having multiple identical agents creates
problems here: marks made by one agent could be indistinguishable from those
made by another; different agents might mark in the same way different nodes.
Thus, it is not clear whether the agents can successfully map an anonymous
graph.

This problem, as we show, is closely related to some others basic problems,
like Agent Election, Labelling and Rendezvous in such a way that solving any one
of these problems will allow us to solve all the others too. We are interested in
the necessary conditions under which LMC can be solved. We are also interested
in efficient and generic protocols that can solve the problems, irrespective of the
graph topology, where the cost of the algorithm is measured in terms of the total
number of moves (or, edge traversals) made by the agents.

1.2 Related Work

Most of the previous work on exploration of unknown graphs has been limited to
single agent exploration. Studies on exploration of labelled graphs (or digraphs),
have emphasized minimizing the cost of exploration in terms of either the number
of moves (edge traversals) or, the amount of memory used by the agent (e.g.,
see [1, 9, 7, 20, 21]).

Exploration of anonymous graphs is possible only if the agents are allowed to
mark the nodes in some way; except when the graph has no cycles (i.e. the graph
is a tree [13, 10]). For exploring arbitrary anonymous graphs, various methods of
marking nodes have been used by different authors. Bender et al. [5] proposed the
method of dropping a pebble on a node to mark it and showed that any strongly
connected directed graph can be explored using just one pebble, if the size of the
graph is known and using O(log log n) pebbles, otherwise. Dudek et al. [11] used

Distributed Exploration of an Unknown Graph 101

a set of distinct markers to explore unlabeled undirected graphs. Yet another
approach, used by Bender and Slonim [6] was to employ two cooperating agents,
one of which would stand on a node, thus marking it, while the other explores
new edges. The whiteboard model, which we use here, has been earlier used by
Fraigniaud and Ilcinkas [14] for exploring directed graphs and by Fraigniaud et
al. [13] for exploring trees. In [10, 14] the authors focus on minimizing the amount
of memory used by the agents for exploration (they however do not require the
agents to construct a map of the graph).

There have been very few results on exploration by more than one agent.
As mentioned earlier, a two agent exploration algorithm for directed graphs was
given in [6], whereas Fraigniaud et al. [13] showed how k agents can explore a
tree. In both these cases however, the agents are co-located (i.e. they start from
same node at the same time) and they have distinct identities.

The other problems which have been studied in the similar setting of mo-
bile agents dispersed in a graph are the problems of Rendezvous (i.e. gathering
the agents in a single node) and Agent Election (electing a leader among the
agents). The research on the Rendezvous problem is rather extensive; for a recent
account see [2]. However, most of these results are obtained using probabilistic
algorithms. Among deterministic solutions to the problem, the investigations of
Yu and Yung on synchronous graphs of known topology [23] and of Dessmark et
al. on synchronous rings and graphs [8] are limited to agents with distinct labels.
In the context of anonymous agents in an unlabeled network, the only known
results are those of Flocchini et al. and of Kranakis et al. on ring networks using
pebbles [12, 19], and those of Barriere et al. on graphs with sense of direction
[4]. In [3], Barriere et al. consider solutions to the agent election problem in
presence of distinct but incomparable agent labels.

The results obtained in [4] are closely related to our results. In that paper,
the authors consider the rendezvous and agent election problem in a setting
very similar to our model. However one major difference is that in their model,
the edge-labelling on the graph is not arbitrary—rather the labelling provides a
sense of direction to the agents.

Our work is also related to some of the classical results in the traditional dis-
tributed computing model (where the computing entities are stationary proces-
sors communicating through message passing). In that model, Gallager, Humblet
and Spira [17] gave a distributed algorithm for leader election and spanning tree
construction, in labelled graphs. Korach, Kutten and Moran [18] showed that
the leader election problem is closely related to graph exploration and they pro-
posed the territory acquisition approach for electing a leader in arbitrary (but
labelled) graphs. Sakamoto [22] considered anonymous networks and has given
an algorithm that builds a spanning forest of the graph under a variety of initial
conditions.

1.3 Our Results

We first examine the necessary conditions under which LMC can be solved. At
least, the agents need to know the value of n (the number of nodes in the graph)

102 S. Das et al.

or k (the number of agents). Furthermore, the value of n and k need to be
co-prime to each-other.

We show, that under these conditions, it is indeed possible to solve the La-
belled Map Construction problem in finite time and efficiently. In fact, we present
a protocol that will allow a team of k anonymous agents scattered in an unknown
unlabeled graph of n nodes and m links to construct a map of the graph, elect
a leader among the agents, and provide a unique labelling on the nodes of the
graph. Our algorithm uses no more than O(km) edge traversals.

Our result improves on the earlier result by Barriere et al. [4] that, when k
and n are co-prime, Agent Election is possible if the graph is endowed with sense
of direction. We show that it is possible to achieve Agent Election even in the
absence of sense of direction, provided that the agents know the value of either
n or k. (This is certainly a weaker assumption because the value of n can always
be determined by the agents in a graph having sense of direction.)

In section 2.2 we formally describe the LMC and other related problems and
discuss about their relationship. In section 3, we give an algorithm for collab-
orative exploration of the graph by multiple agents, that uses only a single bit
of whiteboard memory and makes O(m) moves. We then extend this algorithm,
in section 4, to construct a spanning tree of the graph, elect a leader among
the agents and build a uniquely labelled map of the graph. Finally, we show the
correctness of our protocol in section 5. Due to the space constraint, the proofs
of some of the lemmas are omitted.

2 Model and Problems

2.1 Model

The environment to be explored by the agents is a simple undirected connected
graph G = (V,E) having n = |V | nodes. The labels (if any) on the nodes are
invisible to the agents, so that the nodes are anonymous to the agents. However,
an agent visiting a node can distinguish among the various edges incident at
that node1. In other words, the edges incident to a node in the graph are locally
labelled with distinct port numbers. However, this labelling is totally arbitrary
and there is no coherence between the labels assigned to edges at the various
nodes. Without loss of generality, we assume that the links incident at a node
u are labelled as 1, 2, 3, . . . , d(u), where d(u) is the degree of that node. Note
that each edge e = (u, v) has two labels, one for the link or port at node u
and another for the link at node v. We denote the former label as lu(e) and
the later as lv(e); these two labels are possibly different. The edge labelling
of the graph G is specified by λ = {lv : v ∈ V }, where for each vertex u,
lu : {(u, v) ∈ E : v ∈ V } → {1, 2, 3, . . . , d(u)} defines the labelling on its incident
edges. We denote by Δ, the maximum degree of a node in the graph.

1 This assumption is necessary because otherwise an agent cannot even explore a
simple three-legged-star graph.

Distributed Exploration of an Unknown Graph 103

There are k agents and each agent starts from a distinct node of the graph,
called its homebase. The agents have computing and storage capabilities, execute
the same protocol, and can move from a node to the neighboring node in G.
After moving from u to v, an agent has the label lu(u, v) of the edge from
which it departed, as well as the label lv(v, u) of the edge from which it arrived.
Whenever an agent reaches a node, it can communicate directly with the other
agents present in that node.

The agents are anonymous in the sense that they do not have distinct names
or labels. They execute a protocol (the same for all agents) that specifies the
computational and navigational steps. They are asynchronous, in the sense that
every action they perform (computing, moving, etc.) takes a finite but otherwise
unpredictable amount of time.

An agent can communicate with other agents by leaving a written message
at some node which can be read by any agent visiting that node. Thus, in our
model, each node of the network is provided with a whiteboard, i.e., a local storage
where agents can write and read (and erase) information; access to a whiteboard
is done in mutual exclusion. The whiteboards are also used for marking the nodes.
Initially, the homebases of the agents are marked2. The amount of whiteboard
memory available at a node, is limited; O(log n) bits suffice for our algorithms.

Initially the agents do not know the graph or its topology. The only a-priori
knowledge the agents may have is either the size of the graph, n, or the total
number of agents present, k.

2.2 Problems and Constraints

The Labelled Map Construction problem consists in having the agents construct
the same map of the graph, where both edges and nodes are labelled; the edges
labels are same as those of the graph, while there is no a-priori restriction on the
node labels except that each node must have a unique label. We assume that
the amount of local memory available with an agent is enough to store such a
map.

Formally, the LMC problem can be stated as follows. An instance of the
problem consists of a graph G(V,E) with an edge-labelling λ defined on G,
and a placement function p : V → {0, 1} which defines the initial locations
of the k = |{v ∈ V : p(v) = 1}| agents. A given instance (G,λ, p) of the LMC
problem is said to have been solved by a distributed algorithm A, if on executing
the algorithm A, each agent obtains a node-labelled, edge-labelled map of the
graph, (with the position of the agent marked in it) such that the label assigned
to any particular node is the same in all the maps.

In the rest of this section, we look at the relationship between the LMC
problem and other related problems for multiple agents dispersed in an unknown
environment. For each of these, the problem instance is defined in the same
manner as for the LMC problem.

2 Since both nodes and agents are anonymous this marker denotes that the node is
the homebase of some agent, but cannot be used to break symmetry.

104 S. Das et al.

– The Labelling problem : The problem of assigning unique labels to the nodes
of an unlabeled graph. A given instance (G,λ, p) of the Labelling problem is
said to have been solved when the whiteboard of each node is marked with
a label and no two nodes have the same label.

– The Agent Election problem(AEP) : The problem of electing a leader among
the agents. A given instance (G,λ, p) of the AEP problem is said to have
been solved when exactly one of the k agents reaches the state ‘LEADER’
and all other agents reach the state ‘FOLLOWER’.

– The Rendezvous(RV) problem : The problem of gathering all the agents
together in one node. A given instance (G,λ, p) of the Rendezvous problem
is said to have been solved when all the k agents are located in a single node
of G.

– The Spanning Tree Construction(SPT) problem : The problem of construct-
ing a spanning tree of the graph. A given instance (G,λ, p) of SPT problem
is said to have been solved if each edge of the graph G is marked as either a
Tree-edge or Non-Tree edge, such that the set of Tree-edges, T represents a
spanning tree of the graph G (i.e. (V, T) is a tree).

For any of the above problems, an instance of the problem is said to be
solvable if there exists a deterministic algorithm A such that every execution3

of the algorithm A solves the particular instance of the problem.

Theorem 1. The LMC problem is solvable for the instance (G,λ, p) if and only
if the AEP problem is solvable for the same instance.

Proof. LMC => AEP : Once the LMC problem has been solved, agent election
can be done without making any extra moves. When each agent has a uniquely
labelled map of the graph, the agent whose homebase has the smallest label in
the map, (among all the homebase nodes), changes to ‘LEADER’ state and all
the other agents change their state to ‘FOLLOWER’.
AEP => LMC: Once a leader agent is elected, this agent can explore the graph,
marking the nodes with unique labels, while the other agents remain stationary
in their homebases. Thus the leader agent can construct the map and then it can
visit the homebase of each agent to communicate the map to the other agents.
Note that only 2(m + n) extra moves are required in this case.

It is interesting to note that solving the Rendezvous problem is also equivalent
to solving the agent election problem, in the presence of whiteboards. The mutual
exclusion property of the whiteboards allow us to break the symmetry among
the agents and elect a leader, once the agents rendezvous at a single node. On
the other hand, solving the LMC problem solves both Labelling and Rendezvous.
Once the agents have a labelled map they can mark the whiteboard of the nodes
with the respective labels. The agents can then move to the node having the
smallest label, thus achieving Rendezvous. Both these tasks could be done in

3 Recall that we are considering an asynchronous system and the agents can start
execution at any arbitrary time.

Distributed Exploration of an Unknown Graph 105

O(k.n) moves. Finally, note that solving the Labelling problem helps us to solve
the LMC problem. Once the graph is labelled, each agent can execute a depth-
first traversal of the labelled graph, to obtain a uniquely labelled map of the
graph. During the depth-first traversal, each agent would make 2m moves, for
total of 2k.m moves.

Thus the problems of Labelling, Rendezvous, Agent Election and Labelled
Map Construction are computationally equivalent in our model. However the
SPT problem is not equivalent to these four problems, in general.

The relationship among these problems can be used to determine the condi-
tions for solvability of the LMC problem, based on previous results for the leader
election problem.

Lemma 1. The LMC problem is not solvable if the agents know neither the
value of n (the size of the graph) nor k (the number of agents present).

Lemma 2. For k agents in a graph of size n, the LMC problem is not solvable,
in general, if gcd(n, k) > 1 i.e. if n and k are not co-prime.

Notice that when n and k are not co-prime, it is possible that the agents
are initially placed in exactly symmetrical positions with respect to each other
(provided that the graph itself is symmetrical; e.g. a ring), such that, no deter-
ministic algorithm can break the symmetry among the agents and achieve leader
election. Also note that Lemma 1 holds even when gcd(n, k) = 1.

For the rest of this paper, we shall assume that gcd(n, k) = 1 and the agents
have prior knowledge of the value of at least one of n and k. Under these condi-
tions, we show that it is possible to solve the Labelled Map Construction problem,
using just O(log n) node memory and making O(k.m) moves.

3 Distributed Traversal

As a preliminary step in our solution protocol, we will have the agents perform
an initial cooperative exploration of the graph. We want the agents to explore
the graph collectively, in such a way that the total number of edge traversals is
minimized. Each agent can traverse an area around its homebase, while avoiding
the parts being explored by the other agents. During the exploration, the agent
needs to remember the path to its homebase, so that it does not get lost. Each
agent stores in its memory the sequence of labels (in order) of edges traversed by
it, starting from the homebase. We call this sequence of labels as the Exploration
Path. When the edge e = (u, v) is traversed by the agent from u to v, then the
label lv(e) is appended to the Path. This enables the agent to return back to
the previously visited node (i.e. u) whenever it wants to. When it does so, the
agent is said to have backtracked the edge e and the label lv(e) is deleted from
the Path. So, at all times during the traversal, the Path contains the sequence
of labels of the links that an agent has to traverse (in reverse order) to return
to its homebase from the current node.

106 S. Das et al.

Each agent on wake-up, starts traversing the graph, from the homebase and
it marks the visited nodes if they are previously unmarked4. The agent also
builds a partial Map of the territory that it marks. The edges are marked as ‘T’
or ‘NT’, where ‘T’ edges belong to the territory and are included in the Map,
whereas, ‘NT’ edges are not included in the Map. The algorithm executed by
each agent is the following:

Algorithm EXPLORE

1. Set Path to empty ;
Initialize the Map as single-node graph consisting of the homebase;

2. While there is another unexplored edge e at the current node u,
mark link lu(e) as ‘T’ and then traverse e to reach node v;
If v is already marked,

return back to u and re-mark the link lu(e) as ‘NT’;
Otherwise

mark the link lv(e) as ‘T’, and mark v as explored;
Add link lv(e) to Path;
Add the edge e to Map;

3. When there are no more unexplored edges at the current node,
If Path is not empty then,

remove the last link from Path, traverse that link and repeat Step 2;
Otherwise, Stop and return the Map;

We make the following observations about the effects of this algorithm.

Lemma 3. During the execution of algorithm EXPLORE,

(a) If an agent marks a node, it eventually traverses each edge incident to it.
(b) Every node in the graph is marked by exactly one agent.
(c) If two nodes are marked by the same agent then there exists a consecutive

sequence (i.e. a path) of ‘T’ edges joining them. On the other hand, if two
nodes are marked by two different agents, then every path joining them would
contain at least one ‘NT’ edge.

(d) There is no cycle consisting of only ‘T’ edges.

Lemma 4. The total number of edge traversals made by the agents in executing
algorithm EXPLORE, is at most 4.m, irrespective of the number of agents.

Proof. During the algorithm EXPLORE, each ‘T’ edge is traversed twice—once
in the forward direction and once while backtracking. Each ‘NT’ edge is traversed
four times, twice from each side. As there are (n−k) ‘T’ edges, the total number
of moves (i.e. edge traversals) made by the agents is (4m− 2n + 2k).

4 Recall that the homebases are already marked.

Distributed Exploration of an Unknown Graph 107

Note that for this algorithm, we do not require much memory at the white-
boards of the nodes. In fact one bit per whiteboard is sufficient—for marking
the node as explored.

When an agent A finishes executing algorithm EXPLORE, A would have
obtained a map of the territory marked by it. This territory is a tree consisting
of all the nodes marked by it and the ‘T’ edges connecting these nodes; the
edges leaving the territory are marked ‘NT’. The territories marked by different
agents are all disjoint, and together they span the whole graph. So, the dis-
tributed traversal of the graph by multiple agents creates a spanning forest of
the graph. Two adjacent trees in the forest would be connected through one or
more ‘NT’ edges, each joining a node of one tree to that of another.

Notice that some of the ‘NT’ edges could possibly be connecting nodes of
the same tree (i.e. they are back edges) while the other ‘NT’ edges connect
nodes from two distinct trees. The agents cannot, in general, distinguish be-
tween these two types of ‘NT’ edges and from the point of view of an agent,
all the ‘NT’ edges, it encounters, seem to be going out of its territory. Thus,
the maps constructed by algorithm EXPLORE provide an incomplete view of
the graph to the agents and constructing the complete map of the graph does
not simply involve joining these partial maps together. In the next section we
show how we can merge these maps and also achieve leader election among the
agents.

4 Merging the Maps: Spanning Tree Construction

To obtain the map of the whole graph, the maps constructed by the agents after
the execution of algorithm EXPLORE, need to be merged somehow. The task
of merging together the maps (i.e. the territories) of the agents, is complicated
by the fact that the maps constructed by two agents may look exactly similar.
Also there may be cyclic ‘NT’ edges connecting two nodes of the same tree. To
avoid the cyclic edges, we would first construct a spanning tree of the graph by
joining the trees marked by different agents.

In this section, we show how the agents can construct a spanning tree of the
graph and then finally use it to obtain a complete map of the graph. Here, the
reader may recall the well-known distributed algorithm for minimum spanning
tree construction(MST) given by Gallager, Humblet and Spira [17], where the
spanning tree is constructed by repeatedly joining adjacent trees using the unique
edge of minimum weight connecting them. Such an approach is unfortunately
not applicable in our setting, since neither the edges nor the nodes have unique
labels, making it impossible for the agents to agree on a unique edge for joining
two trees5.

5 Also note that our model is drastically different from that of MST , where the compu-
tational entities were immobile (i.e. connected to the nodes) and they communicated
by message passing.

108 S. Das et al.

Thus, in our setting, we need a much more complicated protocol for merging
the maps and building the spanning tree. Such a distributed algorithm, MERGE-
TREE, is described in the following.

This new algorithm uses the algorithm EXPLORE as a procedure. The algo-
rithm proceeds in phases, where in each phase, some agents become passive i.e.
they stop participating in the algorithm. Agents communicate by writing certain
symbols on the whiteboards. Two special symbols would be used which we call
the ‘ADD-ME’ symbol and the ‘DEFEATED’ symbol. An agent can be in one
of three states: Active, Defeated or Passive. Each agent is active at the time
it starts the algorithm, but it may become defeated and subsequently passive,
during some phase of the algorithm. When an agent becomes passive during a
phase, it keeps waiting at its current location till the end of the algorithm. At
the time an agent starts the algorithm, it knows the value of either n or k.

Algorithm MERGE-TREE

Phase 0 : Each agent on startup executes procedure EXPLORE and when it
finishes, it has a map of the territory marked by it and also a count of the
number of nodes marked. Each agent maintains a Token which is of the form
(Nc,Ac, Ph) where Nc (Node-Count) is the count of the number of nodes marked
by it, Ac (Agent-Count) is the number of agents in its territory (initially set to
1) and Ph is the phase number which is also initially set to 1. Now the agent
can begin the first phase.

In phase i ≥ 1, an agent A (if active), executes the following steps:

STEP 1 – ‘WRITE-TOKEN’ : Agent A does a depth-first traversal of its ter-
ritory using the map; recall that a territory is a tree. During the traversal the
agent writes its Token on the whiteboard6 of each node in its tree.

STEP 2 – ‘COMPARE TOKEN’ : During this step, the agent compares its
Token with the Tokens in adjacent trees. Agent A starts a depth-first traversal
of its territory. During the traversal, whenever it finds an ‘NT’ edge e = (u, v)
incident to some node u in its territory, it traverses the edge e to reach the other
end v, compares its Token with the Token at v, and takes an appropriate action,
before returning back to u. If it does not find any Token at node v (or, finds a
Token from the previous phase i−1), it waits till the Token for phase i is written
at v. On the other hand, if it finds a Token from phase i+1 at node v, it ignores
that Token, goes back to u and continues with the traversal.

Two Tokens from the i-th phase, T1 = (Nc1, Ac1, i) and T2 = (Nc2, Ac2, i),
are compared as follows. Token T1 is said to be larger than Token T2 if either
Nc1 > Nc2, or Nc1 = Nc2 and Ac1 > Ac2. The two tokens are said to be equal
if both Nc1 = Nc2 and Ac1 = Ac2. Otherwise, Token T1 is smaller than Token
T2.
After the comparison of Tokens, the agent takes one of the following actions:

6 Any previously written Token or symbol is deleted from the whiteboard.

Distributed Exploration of an Unknown Graph 109

– If the Token at the other side is larger, it writes a ‘ADD-ME’ symbol on the
whiteboard of node v and returns to node u. It remembers7 the node u, (as
the terminal node) and the edge e (as the bridge edge). It then does a com-
plete traversal of its territory writing ‘DEFEATED’ symbols on each node
in its territory. It now becomes defeated. (The actions taken by a defeated
agent are described below.)

– If the Token at the other side is equal to its own Token, it ignores the Token,
returns to its own tree and continues with its traversal.

– If the Token at the other side is smaller, it waits at node v till it finds a
‘DEFEATED’ symbol. On finding a ‘DEFEATED’ symbol, it goes back to
u and continues with the traversal.

If agent A becomes defeated then it takes the following actions. It continues
with the traversal and Token comparisons — whenever it finds a Token which is
smaller or equal to its Token, it takes the same action as an active agent; but,
when it finds a Token that is larger than its Token, it ignores it. (So, a defeated
agent never writes any ‘ADD-ME’ symbol.) After completing the traversal, the
defeated agent A returns to the terminal node u and marks the bridge edge e
as a ‘T’ edge. It then traverses the edge e to reach the other end, say v. It adds
the edge e to its map and designates the vertex corresponding to node v, as the
junction point, in the map. At this stage, the agent A becomes passive and does
not participate in the algorithm anymore.

During the traversal, whenever an active (or defeated) agent A finds an ‘ADD-
ME’ symbol at some node w in its tree, it takes the following action. It deletes
the ‘ADD-ME’ symbol and waits at node w till the agent B (which had writ-
ten the message), returns back to w. Agent A then acquires all the information
available in agent B’s memory, including B’s Token, its map and all other To-
kens and maps acquired earlier by agent B. Agent A also remembers the vertex
corresponding to node w, as the location where it acquired this new information.
(This vertex is called the acquisition point.)

STEP 3 – ‘UPDATE TOKEN’ : If the agent A completes the second step
without becoming passive, it extends its territory and updates its Token, before
starting the next phase. The agent adds together the Node-count and Agent-
count values respectively, from all the acquired Tokens, including its own Token,
to get the new values of Node-count Nc, and Agent-count Ac. The new phase
number is obtained by incrementing Ph by one. The agent also constructs a new
map by merging the acquired maps with its own map. Note that the agent has
the information about how to merge the maps8. (While merging the maps, the
agent may have to relabel some of the vertices of the maps, to ensure unique
labelling of the vertices.) The resulting map constructed by the agent defines its
new territory.

7 The agent remembers a node by marking in its map.
8 The maps are disjoint except for the joining vertex.

110 S. Das et al.

On updating the Token, if the agent finds that the new node-count is equal
to n (or the agent-count is equal to k), then it reaches the termination condition.
Otherwise, it proceeds with the next phase9.

When an agent A reaches the termination condition, it becomes the leader agent;
at this stage, it has a spanning tree of the whole graph. Finally, it executes the
following procedure:

Procedure COMPLETE-MAP

1. The leader agent executes a depth-first traversal of the spanning tree, writing
node labels on the appropriate whiteboards.

2. The leader agent traverses the graph, adding the non-tree edges to the map.
3. The leader agent traverses the spanning tree to communicate the full map

to all the agents.

5 Analysis of the Algorithm

In this section, we show the correctness of our algorithm and analyze its com-
plexity. We use the following notations. GiA denotes the subgraph of G that
corresponds to the territory of agent A at the time when it reaches the end of
phase i. If A becomes passive in phase i, then GiA = φ. We denote by Γi the
set of all agents which start phase i, in active state. We say that the algorithm
reaches phase i, if there is at least one agent that starts phase i.

Whenever an agent A becomes defeated on comparing its Token with the
Token of an agent B, during phase i, we say that agent A was defeated by agent
B in phase i. In that case we know that B was active at the start of phase i and
B’s Token in phase i was larger than A’s Token, in phase i.

The following facts imply that there is no deadlock in the algorithm MERGE-
TREE.

Lemma 5. (a) An (active) agent that starts phase i, either completes the phase
or becomes passive during the phase.

(b) At the end of every phase i reached by the algorithm MERGE-TREE, there
is always at least one active agent.

Proof. Part(a): We show that there cannot be any cyclic waiting among the
agents. Suppose, for the sake of contradiction, that there is a group of agents
A1, A2, . . . , At such that for each 1 ≤ j ≤ t− 1, Aj waits for Aj+1, and At waits
for A1. We represent these agents as vertices of a graph and we draw directed
(colored) arcs to denote who waits for whom. (The color of the edge denotes the
type of waiting.) There are three situations when an agent A, in phase i ≥ 1 has
to wait at a node v for some agent B:

9 After k phases, if the agent has neither reached the termination condition nor has
become passive, then it may terminate with failure notification.

Distributed Exploration of an Unknown Graph 111

1. Agent A found no Token, or a Token from phase (i − 1) at node v and it
is waiting for the Token for phase i to be written, by agent B. [Denoted by
Blue arc.]

2. Agent A is waiting at node v, after finding an ‘ADD-ME’ symbol written by
B. [Denoted by Yellow arc.]

3. Agent A found agent B’s Token (at node v) to be smaller than its own Token.
This indicates A is waiting for agent B to write a ‘DEFEATED’ symbol at
v. [Denoted by Red arc.]

Note that in first case above, agent B is either in a lower phase than A, or
B is yet to complete step-1 of phase i. But in the other two cases, both A and
B have to be in step-2 of the same phase i and also B would have a smaller
Token than A in that phase. Also note that an agent can be waiting only if it is
in step-2 (i.e. the COMPARE-TOKEN step) of some phase.

So, each Aj , 1 ≤ i ≤ t, is in step-2 of some phase and for any 1 ≤ j, k ≤ t,

– there is a blue arc from Aj to Ak if and only if Ak is in smaller phase than
Aj .

– there is a red or yellow arc from Aj to Ak if and only if Ak is in the same
phase as Aj but has a smaller Token than Aj .

Let us first consider the case when at least one of the arcs in the cycle is blue.
Let Aj be the first node with a blue arc in the cycle (connecting Aj to Aj+1).
Let Aj be in phase i. By definition of red and yellow arcs, we then know that
any Ak with k < j are in the same phase i. If j = t, we immediately have a
contradiction because, by definition of blue arc, A1 would have to be in a phase
smaller than i. Let us then assume that 2 ≤ j ≤ k− 1. Also in this case we have
a contradiction because, by definition of blue arc, Aj+1, Aj+2, . . . , At must be
in a smaller phase than phase i. So, there can neither be a blue nor a red (or
yellow) arc from At to A1. Thus, we cannot have a cycle containing any blue
arc.

We now consider the case when the cycle is composed by yellow and red arcs
only. In this case, all the agents in the cycle would be in the same phase i, and
each agent would have a smaller Token than the agent on its left — which is not
possible!

So, we conclude that there can not be any cyclic waiting among the agents.
Each agent in phase i, either reaches the end of the phase or becomes passive.

Part(b): Note that an agent A can be defeated by an agent B during phase i,
only if B’s Token in phase i is larger than A’s Token, in phase i. So, an agent A
having the largest Token in phase i cannot be defeated in phase i. Thus, agent
A remains active at the end of phase i.

We will now show that the algorithm MERGE-TREE terminates in finite
time, and on termination, there is exactly one leader agent and the map con-
structed by the leader agent is a spanning tree of the graph G.

112 S. Das et al.

Lemma 6. The following holds for any phase i that is reached by the algorithm:

1. For each A ∈ Γi, GiA is a tree.
2. For any A,B ∈ Γi, if A and B are distinct, then GiA ∩GiB = φ.
3. Hi =

⋃
A∈Γi

GiA, is a subgraph of G having the same vertex set as G.

For an agent A ∈ Γi, we define NodeCount(GiA) to be the number of nodes
in GiA. Note that, this is equal to the Nc part in the Token of agent A for phase
i + 1. Similarly, AgentCount(GiA) is defined to be the number of nodes in GiA

that are agent homebases. This is equal to the Ac part in the Token of agent A
in phase i + 1. We have the following corollary as a consequence of the above
lemma:

Corollary 1. For any phase i reached by the algorithm, we have∑
A∈Γi

NodeCount(GiA) = n and
∑

A∈Γi

AgentCount(GiA) = k

Two agents A and B are said to be neighbors in phase i, if G contains an
edge e = (u, v) such that GiA contains the vertex u and GiB contains the vertex
v. Note that the edge e is not included in either GiA or GiB (as GiA∩GiB = φ),
so e would remain to be marked as an ‘NT’ edge at the end of phase i.

Lemma 7. If gcd(n, k) = 1 then, for any phase i ≥ 1 with |Γi| ≥ 2, at least one
agent B ∈ Γi, becomes passive during phase i.

Thus, in each phase, at least one of the active agents, becomes passive, until
in some phase i, there is only a single active agent left. The territory of this agent
A, would be the tree GiA containing all the nodes of G (due to Lemma 6), and
the node-count and agent-count of A would equal n and k respectively. Thus,
agent A would reach termination condition and the algorithm would terminate.
Note that the termination condition can be reached only if there is a single
active agent. The algorithm would always terminate within k phases, because in
each phase of the algorithm, some agent would become passive. So, we have the
following theorems:

Theorem 2. If gcd(n, k) = 1, then algorithm MERGE-TREE terminates after
at most i < k phases, with a single agent A reaching the termination condition;
when this happens, GiA represents a spanning tree of G.

Theorem 3. After executing the procedure COMPLETE-MAP, every agent has
a uniquely labelled map of the graph.

This proves the correctness of our algorithm.

Theorem 4. The number of edge traversals made by the agents during algo-
rithm MERGE-TREE is in O(k.m) where m in the number of edges in the
graph G.

Distributed Exploration of an Unknown Graph 113

Proof. During procedure EXPLORE, the agents perform at most 4m moves.
During each phase of the algorithm MERGE-TREE, each ‘T’ edge is traversed
twice in step-1 and twice in step-2, during the depth-first traversals; Each NT
edge is traversed at most four times in step-2. This accounts for 4m moves per
phase and thus a total of O(k.m) moves. Other than that each defeated agent
does one extra traversal of its tree to write ‘DEFEATED’ messages. These extra
moves would account for at most O(k.n) edge traversals. Finally, the procedure
COMPLETE-MAP takes O(m) edge-traversals.

As for the memory requirement, observe that O(log n) bits suffice for a white-
board.

Acknowledgements

This work has been partially supported by NSERC (National Sciences and En-
gineering Research Council of Canada) and by Tecsis Corporation.

References

1. S. Albers and M. Henzinger, “Exploring unknown environments”, In Proc. 29th
Annual ACM Symp. Theory Comput., 416–425, 1997.

2. S. Alpern and S. Gal, The Theory of Search Games and Rendezvous, Kluwer, 2003.
3. L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro, “Can we elect if we cannot

compare?”, In Proc. 15th ACM Symp. on Parallel Algorithms and Architectures
(SPAA’03), 200–209, 2003.

4. L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro, “Election and rendezvous
in fully anonymous systems with sense of direction”, In Proc. 10th Coll. on Struc-
tural Information and Communication complexity (SIROCCO’03), 17–32, 2003.

5. M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan, “The power of a
pebble: Exploring and mapping directed graphs”, In Proc. 30th ACM Symp. on
Theory of Computing (STOC’98), 269–287, 1998.

6. M. Bender and D. K. Slonim, “The power of team exploration: two robots can
learn unlabeled directed graphs”, In Proc. 35th Symp. on Foundations of Computer
Science (FOCS’94), 75–85, 1994.

7. X. Deng and C. H. Papadimitriou, “Exploring an unknown graph”. J. of Graph
Theory 32(3), 265–297, 1999.

8. A. Dessmark, P. Fraigniaud, and A. Pelc, “Deterministic rendezvous in graphs”,
In Proc. 11th European Symposium on Algorithms (ESA’03), 184–195, 2003.

9. A. Dessmark and A. Pelc, “Optimal graph exploration without good maps”, In
Proc. 10th European Symposium on Algorithms (ESA’02), 374–386, 2002.

10. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc, “Tree exploration with little
memory”, Journal of Algorithms, 51:38–63, 2004.

11. G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic exploration as graph
construction”, Transactions on Robotics and Automation, 7(6):859–865, 1991.

12. P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, C. Sawchuk, “Multiple mobile
agent rendezvous in a ring”. Proc. 6th Latin American Theoretical Informatics
Symp. (LATIN’04), 599–608, 2004.

114 S. Das et al.

13. P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc, “Collective tree explo-
ration”, In 6th Latin American Theoretical Informatics Symp. (LATIN’04), 141–
151, 2004.

14. P. Fraigniaud and D. Ilcinkas, “Digraph exploration with little memory”, Proc.
21st Symp. on Theoretical Aspects of Computer Science (STACS’04), Montpellier,
246–257, 2004.

15. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg, “Graph exploration by a
finite automaton”, In 29th Symposium on Mathematical Foundations of Computer
Science (MFCS), 451–462, 2004.

16. P. Fraigniaud, A. Pelc, D. Peleg, and S. Perennes, “Assigning labels in unknown
anonymous networks with a leader”, Distributed Computing 14(3), 163–183, 2001.

17. R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for
minimum-weight spanning trees”, ACM Transactions on Programming Languages
and Systems 5(1), 66–77, Jan. 1983.

18. E. Korach, S. Kutten, S. Moran, “A Modular Technique for the Design of Efficient
Distributed Leader Finding Algorithms”, ACM Transactions on Programming Lan-
guages and Systems 12(1), 84–101, 1990.

19. E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk, “Mobile agent rendezvous
in a ring”, In Int. Conf. on Distibuted Computing Systems (ICDCS 03), 592–599,
2003.

20. P. Panaite and A. Pelc, “Exploring unknown undirected graphs”, Proc. 9th ACM-
SIAM Symp. on Discrete Algorithms (SODA’98), 316–322, 1998.

21. P. Panaite and A. Pelc, “Impact of topographic information on graph exploration
efficiency”, Networks, 36 (2000), 96–103, 2000.

22. N. Sakamoto, “Comparison of initial conditions for distributed algorithms on
anonymous networks”, Proc. 18th ACM Symposium on Principles of Distributed
Computing (PODC’99), 173–179, 1999.

23. X. Yu and M. Yung, “Agent rendezvous: A dynamic symmetry-breaking prob-
lem”, In Int. Coll. on Automata Languages and Programming (ICALP’96), 610–
621, 1996.

Two Absolute Bounds
for Distributed Bit Complexity�

Yefim Dinitz1 and Noam Solomon2

1 Dept. of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
2 Dept. of Mathematics, there
{dinitz, noams}@cs.bgu.ac.il

Abstract. The concept of distributed communication bit complexity
was introduced by Dinitz, Rajsbaum, and Moran. They studied bit com-
plexity of Consensus and Leader Election, arriving at more or less exact
bounds. This paper answers two questions on Leader Election, which
remained open. The first is to close the gap between the known upper
and lower bounds, for electing a leader by two linked processors. The
second is whether the known algorithm, sending 1.5n bits while electing
a leader in a chain of even length n, is optimal, in the case when n is
known to the processors. For both problems, absolutely exact bounds are
found. Moreover, the lower bound proofs show that there is no optimal
algorithm other than the suggested one(s).

1 Introduction and Model Definition

The concept of distributed communication bit complexity was introduced by
Dinitz, Rajsbaum, and Moran [3]; it generalizes the known communication com-
plexity measure (see e.g. [6, 2]) to the distributed computing setting. They showed
that message complexity is unable to distinguish between complexities of solv-
ing Consensus, Leader Election, and Maximal Id Finding (henceforth, denoted
Consensus, Leader, and MaxF) in chains and rings, which contradicts intuition.
In contrast, the bit complexity bounds proven there distinguish them success-
fully, which justifies importance of the suggested new complexity measure. In [3]
(see its full version in [4]) and the sibling paper [5], several more or less tight pairs
of upper and lower bounds for Consensus, Leader, and MaxF in chains, trees, and
rings were found. This paper studies two questions on Leader in chains, which
remained open. The first is to close the gap between known upper and lower
bounds, for electing a leader by two linked processors. The second is whether
the algorithm [5], sending 1.5n bits while electing a leader in a chain of even
length n, is optimal, in the case when n is known to the processors. For both
cases, absolutely exact bounds are found: For the former question, the recursive
formula and explicit expression are given, while for the latter one, optimality
of the known algorithm is confirmed. Moreover, in both cases, the lower bound

� Partially supported by the Lynn and William Frankel Center for Computer Science.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 115–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 Y. Dinitz and N. Solomon

proofs show that there is no optimal algorithm other than the suggested one(s).
We hope that our techniques would shed a new light on some fine aspects of
distributed computation.

The model we consider consists of a failure-free, asynchronous message pass-
ing distributed system, with arbitrary but finite link delays and negligible local
computation times, without shared memory; it is a standard one, for more detail
see e.g. [1, 7]. The network topology concerned is a chain, with n links and n+1
processors. We assume that the only input is distinct ids at terminals, and that
all processors are identical, in the sense that they all run the same (determin-
istic) algorithm, or program. However, the processors may behave differently,
because the program of a processor has access to its id, if any, and to its number
of incident links. The ids are taken from the set ZM = {0, 1, . . . ,M −1}, M ≥ 2.
We say, for short, that two ids are paired if they are given to the terminals. For a
task T , BitC(T) is the number of bits sent needed to solve T , in the worst case.

The Leader task requires that each processor should output (decide on) a
binary value “leader”/“non-leader”, so that there will be exactly one leader.
Besides, it is required that any non-leader should learn which of its incident
links is in the direction to the leader. The MaxF version requires that the ter-
minal with the maximal id must be chosen to be leader; clearly, BitC(MaxF) ≥
BitC(Leader).

Initially, all processors are asleep and in the same initial state, except for the
id and number of incident links information. When a processor wakes up, spon-
taneously, or when it receives a message on an incident link, it is activated. Then,
according to the (common) processor algorithm and its own local information,
it sends messages on its incident links (it may send zero or more messages on
each link), changes its state, may decide “leader”/“non-leader”, and enters the
waiting state; all this is done immediately. In this paper, following [3, 5], when
defining an algorithm, we assume that each message consists of a single bit. In
our lower bound proofs, we assume more generally that a processor may send
several bits at the same time, but it gets information, sent to it, bit by bit.

There may be different executions beginning from the same initial state.
The “worst case”, for an algorithm, is the maximal number of bits sent, over
all id pairs and all possible executions. We use the concept of scheduler which
is a formal device that specifies the order in which processors wake up and
messages are delivered. For convenience of analysis, we consider a formal clock:
each processor activation step is done at the next moment 1, 2, As well, names
A and B are given formally to the terminals. However, those clock and names
are not available to processors, and are in no sense related to the algorithm.

Notice that an upper bound, confirmed by showing an algorithm, must be
valid for all schedulers and inputs, while to obtain a lower bound L, it is sufficient
to show that, for any algorithm, there exists some scheduler and some input, s.t.
the execution under that scheduler with that input requires at least L bits sent.

We assume, following [3, 5], that a scheduler wakes each terminal, eventually,
if not woken by a message previously, and that no internal processor is awaken
by the scheduler. Another important case, when a scheduler may wake any set

Two Absolute Bounds for Distributed Bit Complexity 117

of processors, and is ought to wake at least one arbitrary processor, remains as
an interesting open question, for both problems addressed in this paper.

A distributed algorithm solving some task is said to have the terminating
property (or is terminating), if each processor becomes eventually ensured that
no more message concerning this task will be sent by any processor and that there
is no messages in transit, except, may be, messages sent by itself. This property
enables each involved processor to begin eventually communicating with other
participating processors on another task.1 For a distributed task T , we denote
by BitCt(T) its bit complexity for the case when the termination property is
required; clearly, BitCt(T) ≥ BitC(T).

Suppose that there is an algorithm solving task T , for the case when ids are
taken from the set ZM = [0..M − 1]. Notice that its slight variation solves it,
with the same complexity, if the id range is [s..s + M − 1]. Indeed, it suffices to
simulate the original algorithm, relating to each id x as to x−s. In what follows,
we identify such a version with the original algorithm.

2 Leader and MaxF for Two Processors

In this section, we consider the network consisting of two linked processors. We
find the bit complexity for Leader and MaxF and describe all optimal algorithms.

Theorem 1. For the two processor network, BitC(Leader) = BitC(MaxF) =
2�log2((M +2)/3.5)� and BitCt(Leader) = BitCt(MaxF) = 2�log2((M +1)/3)�.

The theorem is implied by the following algorithms and lower bounds. Since
MaxF is a special variant of Leader, we present our upper bounds for MaxF only
and lower bounds for Leader only.

2.1 Algorithms

Proposition 1. For the two processor network, there exists a terminating algo-
rithm solving MaxF in 2�log2((M + 1)/3)� bits sent.

Proof. We suggest a recursive algorithm; its execution is divided into rounds
sending two bits each. For the minimum value 2 of M , there is a single degenerate
round, requiring no communication: each processor decides leader or non-leader
according to the value of its id 1 or 0, respectively. For M ≥ 3, let us divide the
id range into the median id �M/2�, the sub-range of lesser ids [0..(�M/2� − 1)],
and that of greater ids [(�M/2�+ 1)..(M − 1)]. Note that the longest one of the
id sub-ranges is of the length �M/2�, for any M .

During describing the execution, we identify a processor with its id. For exam-
ple, we recommend to the reader to consider the cases ZM = [0..4] (�M/2� = 2)

1 Indeed, the only messages remaining to deliver, if any, are from itself. Hence, by the
FIFO property, any new message sent by it will reach the target processor after it
would finish all its activity in the previous task.

118 Y. Dinitz and N. Solomon

lesser greater

lesser

0 1

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10

9 8 9 9 11 9 0
1

1

0
1

1
0

1
0
1
1

1
0
1
0

3

a)

c)

0 1 2 3 4 5 6 7 8 9 10 11
greater

b)

Fig. 1. Optimal algorithms: (a) the terminating case, (b) the non-terminating case,

(c) various rounds, for the non-terminating case (earlier messages up; the leader is filled

grey)

and ZM = [0..10] (�M/2� = 5). In parentheses, a mnemonic meaning of the
operation is given, for easier understanding. For illustration see Fig. 2.1.

Round Description

1. Each lesser id sends 0 [Am I the non-leader?], each greater id sends 1 [Am I
the leader?], while the median id sends nothing and waits.

2. If a lesser (resp., greater) id gets 0 (resp., 1), then [it realizes that both
ids are lesser (resp., greater) ones, and] the algorithm continues to the next
round, for solving the problem in the corresponding sub-range (whose length
is at least 2, by the case assumption).
When the median id gets bit 0 or 1, it decides that it is the leader or non-
leader, respectively, and responds by the opposite bit [I agree with your
suggestion].
If a lesser id gets 1, then it decides non-leader; if a greater id gets 0, then it
decides leader.

The correctness of the proposed algorithm is immediate. The algorithm is
terminating, since at any its stage, any processor knows for sure whether it
waits for the next bit to be delivered, or the algorithm finishes.

Let us analyze now the number of bits sent. We define the following recurrent
relation:

mt
2(i+1) = 2mt

2i + 1, i ≥ 0; mt
0 = 2 .

Lemma 1. If M is at most mt
2i, the worst case number of bits sent is 2i.

Proof. We prove by induction on i. In the base case i = 0, the statement is
trivially correct. Assume it is correct for i = k, k ≥ 0, and consider the case

Two Absolute Bounds for Distributed Bit Complexity 119

i = k + 1. For any M ≤ mt
2(k+1), either there is a single round, with 2 bits

sent, or the algorithm continues to the same problem in some id sub-range. In
the latter case, the length of both id sub-ranges is at most mt

2k, hence, the
algorithm finishes the problem solution with sending at most 2k bits, by the
induction assumption, i.e. 2k +2 bits are sent totally. The statement correctness
follows. ��

The solution to the above recurrence relation is:

mt
2i = 3 · 2i − 1 .

By inverting it, we obtain the worst case number of bits sent be 2�log2((M +
1)/3)�, as required. (Note that, in comparison with the bound 2�log2 M� − 2
of the algorithm [3, 4], this is less by approximately 2 log2 1.5 ≈ 1 bit, as the
asymptotic average.) ��

Proposition 2. For the two processor network, there exists an algorithm solving
MaxF in 2�log2((M + 2)/3.5)� bits sent.

Proof. The algorithm is similar, in its structure, to the terminating algorithm as
above. Moreover, it coincides with it for M at most 5. Beginning from M = 6,
the algorithm is as follows. The id range is divided into the minimum id 0, the
maximum id M − 1, the lesser ids from 1 to �M/2�, and the greater ids from
�M/2� + 1 to M − 2. Each round sends 2 bits, except for the finishing round
considering the id sub-range of length at least 6, which sends 4 bits.

Round Description, M ≥ 6

1. Each lesser id sends 0 [Am I the non-leader?], each greater id sends 1 [Am
I the leader?], while the minimum and maximum ids decide non-leader and
leader, respectively, send nothing and wait.

2. If a lesser (resp., greater) id gets 0 (resp., 1), then [it realizes that both
ids are lesser (resp., greater) ones, and] the algorithm continues to the next
round, solving the problem in the corresponding sub-range.
When the minimum or maximum id gets any bit, it responses by the opposite
bit [I am not as you are; let us finish].
If a lesser (resp., greater) id gets 1 (resp., 0), then it sends once more 0 (resp.,
1) [confirms its intention].

3. After getting the second bit, the minimum id always responses 0 [I am the
non-leader], and the maximum one 1 [I am the leader].
If a lesser or greater id gets the second bit 0, it decides leader, and if 1
non-leader.

Let us prove that the algorithm solves MaxF. The only non-trivial case con-
cerns the decision of a lesser (resp., greater) id which gets the first bit 1 (resp.,
0). Let us consider such a lesser id x (the other case is similar). If the other id
is a greater or the maximum one, it sends the second bit 1 to x, and x correctly
decides non-leader, while if the other id is the minimum one, it sends 0 to x, and
x correctly decides leader.

120 Y. Dinitz and N. Solomon

The algorithm is not terminating in the case, when in some round, the mini-
mum or maximum id, w.r.t. the range of that round, decides and waits. Indeed,
let that id be x. If the other id is the maximum or minimum one, the execution
finishes, and no bit will be ever delivered to x. In all other cases, some bit should
be delivered to x, eventually. Note that there are no means, to x, to distinguish
between these two situations.

The analysis of number of bits sent has the same structure as that of the ter-
minating algorithm. Therefore, we mention here only the different considerations
needed. We define the recurrence relation:

mnt
2i+2 = 2mnt

2i + 2, i ≥ 1; mnt
2 = 5,mnt

0 = 2 .

Lemma 2. If M is at most mnt
2i , the worst case number of bits sent is 2i.

Proof. The proof is similar to that of Lemma 1, so only difference from that
proof is mentioned. The (trivial) base cases of induction are i = 0 and i = 1.
At the induction step, M is at least 6, so the bound to prove is at least 4. The
analysis is not similar only for the finishing round. By the round description, the
number of bits sent in such a round is exactly 4, which suffices. ��

The solution to the above recurrent relation is:

mnt
2i = 3.5 · 2i − 2, i ≥ 1 .

By inverting it, we obtain the worst case number of bits sent be 2�log2((M +
2)/3.5)�, as required. (Note that this is less by approximately 2 log2 1.75 ≈ 1.5
bits, as the asymptotic average, than the number of bits 2�log2 M� − 2 of the
algorithm [3, 4].) ��

2.2 Lower Bounds

Now, we pass to the lower bounds. In fact, their proof given below shows that
the only structure of an optimal algorithm must be such as that of the algorithm
suggested above. We prove the lower bounds for executions under the symmetric
scheduler [3, 4], defined as follows:

– At step 0, both processors are woken up;
– At each following step, the first bit in every queue, if any, is delivered.

Proposition 3. For any algorithm solving Leader in the two processor network
and its executions under the symmetric scheduler, at least 2i bits must be sent,
in the worst case, if ids are chosen from any set of cardinality M ≥ mt

2(i−1) +1,
when the termination property is required, or M ≥ mnt

2(i−1) +1, otherwise, i ≥ 1.

Proof. Let us consider an an arbitrary integer set Z of cardinality M , as in the
statement, and an arbitrary algorithm A solving Leader in the two processor
network, when ids are chosen from Z. Since the scheduler is fixed, any choice of
ids implies a unique execution. We will call an id passive, if it sends no bit, upon
its wake-up.

Two Absolute Bounds for Distributed Bit Complexity 121

Lemma 3. 1. There exist at most two passive ids.
2. If there exist two passive ids, then each one of them decides immediately upon

its wake-up, while the decision depends on the id only and the decisions for
those two passive ids are different.

3. If A is terminating and M exceeds 2, then there exists at most one passive
id.

The proof is omitted. ��
Let us, first, assume A be terminating. We prove the statement of Proposi-

tion by induction on i. Basic case i = 1: Since M is at most mt
0 + 1 = 3, by

Lemma 3(3), there are at least two non-passive ids. Let us give them to the pro-
cessors. Since each one of them sends at least one bit, at least two bits are sent.

Assume now correctness of the statement for i = k, k ≥ 1, and let us prove it
for the case i = k + 1. Among at least mt

2k + 1 ids in Z, at most one is passive.
Let us divide the set of other ids, which is of cardinality at least mt

2k, into two
groups Z0 and Z1, according to their first bit sent be 0 or 1, respectively. The
largest one of them is of cardinality at least mt

2(k−1) + 1, by definition of mt
2k;

we denote it by Z ′.
Let us consider the continuation of A, from its step 1 an on, for all choices

of ids from Z ′. In fact, the only information available to each processor after
step 0, is its id and the fact that the other id belongs to Z ′ as well. Therefore, a
simulation of A from step 1 and on is an algorithm solving Leader, when ids are
chosen from Z ′. By the induction assumption, such a solution requires to send
at least 2k bits, in the worst case. Totally, A sends at least 2k + 2 bits, in the
worst case, as required.

Let us turn now to the case when the termination property is not required.
The proof has the same structure and goes in the same way as the above
proof. The only exception is the case when there are two passive ids, M equals
mnt

2(i−1) + 1, and besides either i = 1 or |Z0| = |Z1| = mnt
2k. We omit the proof

for this case. ��

3 Leader in a Chain of Known Even Length

Consider Leader problem in a chain of length n, where the value of n is known
to the processors. Let us denote the middle processor P0. We call A-half and
B-half the chain intervals [A..P0] and [P0..B], respectively.

3.1 Optimal Algorithms

Let us begin from the description of a few algorithms (for illustration see Fig. 3.1).
In any execution, we call an internal processor woken by the bit b an b-processor.

Algorithm-2, working for n = 2: The terminals decide “non-leader”, while the
single non-terminal has the built-in decision “leader”.

Algorithm-4, working for n = 4: Terminals decide “non-leader” and send 1;
any 1-processor decides “non-leader” and sends 0 forward; the single 0-processor

122 Y. Dinitz and N. Solomon

BA

A B

A B

A B

A B

1

1

0 00 0

1 0 0 1

0 01 100 00

0 000 10001 011

1

1

0 1

11

Fig. 2. Optimal algorithms: Algorithm-2; a version of each one of Algorithm-4,

Algorithm-6, and Algorithm-8, each with its unique execution; Main Algorithm, with

a sample execution. (Bits sent at a link are ordered from left to right. The leader is

filled grey.)

P0 decides “leader” and sends nothing. When it gets one more 0, it does not
react.

The flip of bit values 0 and 1 results in another version of Algorithm-4.

Algorithm-6, working for n = 6: Each terminal decides “non-leader” and sends
1. Any 1-processor decides “non-leader”, and sends 00 forward. Any 0-processor
does nothing and waits for an additional bit. Such a processor, after receiving the
second bit from the same processor, decides “non-leader” and sends 0 forward.
If it receives the second bit from the other processor, it decides “leader” and
sends nothing (this happens for P0 only).

The rearrangement between links to send 1 and 00 define another versions
of Algorithm-6. More algorithm versions arise by changing 00 to 01. Even more
versions are the result of the bit values flip, as above.

Algorithm-8, working for n = 8: A similar family of algorithms differs from
Algorithm-6 in the following: Instead of 1, 00, and 0 sent on the three consequent
links of the half-chain, there are 1, 00, 01, and 0 sent on its four links.

The versions of Algorithm-8 are obtained by all the rearrangements of 1, 00,
and 01, and by the bit values flip.

Main Algorithm [5], working for n ≥ 8: Each terminal decides “non-leader”
and sends 0. Any 0-processor sends 1 forward. Any 1-processor decides “non-
leader”, sets that the leader is farther, and sends 0 forward and 1 backward. Upon
receiving 1 from its following processor, a 0-processor decides “non-leader”, sets
that the leader is farther, and sends nothing. Upon receiving 0 from its following
processor, a 0-processor decides “leader”, and sends nothing.

The second version of Main Algorithm arises by flipping the bit values.

Two Absolute Bounds for Distributed Bit Complexity 123

Proposition 4. Algorithms-2, -4, -6, -8, and Main Algorithm solve Leader in
0, 4, 8, 12, and 1.5n bits sent, respectively.

Proof. For Algorithms-2, -4, -6, and -8, the proof is trivial. Let us consider Main
Algorithm. Since n is even, the wave meeting happens always at a link between a
0-processor, sending 1, and either a 1-processor or a terminal, sending 0. Hence,
(i) exactly one 0-processor (that incident to the wave meeting link) gets reply 0,
which causes it to decide “leader”, and (ii) the number of bits sent at the links
looks always as two sequences 1,2,...1,2, beginning from the two chain ends,
which results in 1.5n bits. ��

3.2 Lower Bound

Let us consider the family of schedulers which wake A first, allow B to be waken
by the first message sent to it, if exists, and otherwise wake B after all processors
have become quiescent. Let us call the execution prefix before waking B, under
any such scheduler, a full A-wave; a full B-wave is defined similarly. A full wave
is called halting if it halts before reaching the other terminal. Clearly, A- and
B-waves depend only on the id given to the corresponding terminal. Any prefix
of a full wave is called a wave. We say that waves meet when the first message
sent by one of the waves reaches a processor activated in the other wave; we
denote the wave meeting moment, if any, by tm. At that moment, the link, e,
carrying the message as above may carry also a message sent by the reached
processor; we say that the waves meet at e. It is easy to see that any execution
begins from interleaved independent A- and B-waves , up to their meeting or
halting of both of them before a meeting. Suppose that full A- and B- waves,
executed separately, cover overlapping chain areas. Clearly, by fine tuning the
wave interleaving by the scheduler, we are able to make the waves meet at any
link in the overlapped area. We use words like “forward”, “ backward”, “farther”,
etc. w.r.t. the wave origin.

In this section, we prove the following statement:

Theorem 2. For M ≥ 6, BitC (Leader) in an even length chain is 0 if n = 2,
4 if n = 4, 8 if n = 6, and 1.5n if n ≥ 8, even if the value of n is known
to the processors. Moreover, for n ≥ 10, Main Algorithm is the single optimal
algorithm.

In what follows, we analyze an arbitrary optimal Leader algorithm; by Propo-
sition 4, it sends no more bits than stated in Theorem 2, in the worst case.

Consider the case n = 2, when no bit is sent. No terminal may decide ”leader”,
since then P0 would not know the direction to the leader. Hence, Algorithm-2 is
the unique optimal algorithm.

Henceforth, we assume that n is at least 4. Let us begin with a few observa-
tions. It may be shown that no built-in decision at internal processors is possible,
that is all internal processors should be woken eventually.

Notice that for at most one id, ex-id1, there exists a wave initiated by it,
which halts before P0. Indeed, otherwise, we could give two such ids to A and

124 Y. Dinitz and N. Solomon

B, and arrive at a deadlock without P0 decided. For the wave from any id other
than ex-id1, we call its part up to waking P0 the half-wave.

Let us say that a non-terminal processor is a one-entry, w.r.t. some execution,
if it receives exactly one message (waking it) during that execution. Observe
that at any execution, where N bits are sent, there are at least 2n − 2 − N
one-entries. Indeed, suppose that there are k one-entries, each receiving one
bit, while the n − 1 − k other processors receive at least two bits each. Then,
N ≥ k +2(n−1−k) = 2n−2−k, and the statement follows. As a consequence,
for any execution of any optimal algorithm, by Proposition 4, there are at least
two one-entries, if n = 4, 6, 8, and more than two if n ≥ 10.

We say that a scheduler is TPB (Tail-Preference Balanced), if before the
wave meeting, it prefers to deliver messages at links closer to the wave origin,
and at the links at the same distance from it, to processors closer to it. Let
us fix an arbitrary TPB scheduler, S. Observe that, under S and for ids other
than ex-id1, the two half-waves should meet at P0. Moreover, then, all message
queues at links are empty at moment tm, except for those from P0. Hence, after
tm, information propagates from P0 only.

Lemma 4. Consider an algorithm sending at most N bits. Then, for any id,
x, given to w.l.o.g. A, except for ex-id1 and at most one more id, ex-id2, some
other id, y, may be given to B, so that in the execution under S, there are at
least n− 1− �N/2� one-entries in the A-half-chain.

The proof is omitted.
Note that for any optimal algorithm, the number of one-entries as in Lemma 4

is at least 1. We assign to each id x as in Lemma, the farthest one-entry in A-
half-chain, w.r.t. the execution, Ex, as in Lemma 4; let us denote it by Px. By
the definition of a one-entry, in Ex, the propagation from P0 after tm to the
direction of x stops before reaching Px. Hence the interval [A..Px] has finished
all its activity in Ex, including processor decisions, before the A-wave propa-
gated beyond Px (that is, independently on the information propagated from
B). Besides, any A-half-wave from x under S coincides with that in Ex. This
allows to prove the following:

Corollary 1. For any id, x, given to w.l.o.g. A, except for ex-id1, ex-id2 and
at most one more id, ex-id3, at any execution under S, independently on the
id given to the other terminal, all processors in [A..Px] decide “non-leader” (in
particular, the terminal decides so).

In what follows, we assume that no id is one of ex-id1,2,3.
Clearly, the reaction of all internal processors to the bit waking it—deciding

and bit sending—is completely defined by that bit, since the initial processor
state is unique. Let us classify algorithms by properties I(b), b = 0, 1: A b-
processor decides and relays a bit forward immediately upon its wake-up, of their
executions under S.

Case 1 : Neither I(0), nor I(1) are satisfied.

Two Absolute Bounds for Distributed Bit Complexity 125

Such an algorithm cannot be optimal, since then, at the execution under
S, each processor would receive at least two messages (either for deciding or for
propagating the wave to the direction of P0), i.e. at least 2n−2 messages totally.

Case 2 : Both I(0) and I(1) are satisfied.
We may assume w.l.o.g. that any 1-processor decides “non-leader”; indeed, if

both 0- and 1-processors decide “leader”, all internal processors would be leaders.
Then, each 0-processor decides “leader”; indeed, otherwise, Corollary 1 implies
that, under S, no leader would be chosen. Assume further that any 1-processor
relays bit 0 farther. If n = 4, we arrive at Algorithm-2. Otherwise (n ≥ 6), each
half-wave would contain at least one 0-processor, which decides “leader”,—a
contradiction.

The only remaining case is that any 1-processor decides “non-leader” and re-
lays 1 farther. If two distinct ids cause the terminal to send 1, there would be no
0-processors, i.e. no internal leaders. Then underS, by Corollary 1, no leader would
be elected. If two distinct ids cause the terminal to send 0, there would be two lead-
ers. Hence, in case M ≥ 6, there will always be an id pair causing a contradiction.

Therefore if n ≥ 6, the only possible case for an optimal algorithm is:
Case 3 (main): W.l.o.g., I(1) is satisfied, while I(0) is not.
Notice that any one-entry is a 1-processor, since an one-entry must decide

and relay a message forward immediately. By the above bound 2n−2−N for the
number of one-entries, in any execution of an optimal algorithm under S, there
are at least two one-entries. Hence, each 1-processor must decide “non-leader”.

Assume, at-first, that a 1-processor relays 1 farther, upon its wake-up. By
Corollary 1, for any id pair x, y and under S, the only region, where the leader
may be chosen, is strictly between Px and Py. However, both Px and Py are
1-processors, which immediately guarantee that all processors in that interval
are 1-processors, and hence no leader will be elected,—a contradiction.

Now, we are left with the single possibility (that used in the algorithms
mentioned in the Theorem): Any 1-processor relays 0 farther. At-first, assume
n ≥ 10, and consider the execution, E, of an optimal algorithm under S, for any
pair of ids, x and y, distinct from ex-id1. Then, by the bound 2n − 2 − N ≥ 3
for the number of one-entries, w.l.o.g. A-half-chain contains at least two one-
entries, while x is given to A, and B sends a message upon its wake-up. Let P
and Q denote the first two one-entries in A-half-chain, and k denote the distance
between them, k ≥ 2. Let us change E to another execution prefix, E′ which:

– begins with waking A and B,
– does not deliver the first message sent by B until A-wave reaches B or halts,
– coincides with E until delivering the first bit relayed by Q (recall that at

this moment the entire interval [A..Q] is quiescent, by definition of the TPB
property),

– continues after Q exactly as after P, periodically, with period k links, up to
reaching B.

We claim that the obtained execution prefix is legal. This is so, since the sit-
uation in each period after Q is exactly the same as at that after P, with no
influence from outside.

126 Y. Dinitz and N. Solomon

Let us prove that k equals 2. Assuming k > 2, to the contrary, we will show
that the execution prefix E′ sends too many bits. In (A..P), all processors receive
at least two bits each. In each period, all processors except of just one receive so
as well. In the finishing part, all links bear at least one bit, except for the last
link, bearing at least two messages: to and from B. An easy counting results in
more than 1.5n bits totally. Hence, k equals 2. More counting shows that exactly
three bits should to be sent in every period.

In analyzing the structure of such a period, we show that the two messages
to its single non-one-entry come from different directions, and that both contain
bit 1. By showing that [A..P] should consist of a single link bearing a single bit
1 from A to P, we arrive finally at Main Algorithm.

For the case n = 8, we assume that there exists an algorithm sending strictly
less than 1.5 ·8 = 12 bits, in the worst case. Then, the inequality 2n−2−N ≥ 3
holds as well, so we are able to analyze it in the same way as in the above case.
We thus show that 1.5 · 8 are sent, arriving at a contradiction.

Now, we consider the case n = 4, 6, 8, returning to analysing an arbitrary
optimal algorithm. We would need another technique. If an algorithm admits
at least one non-halting wave, that wave may be shown to be periodic, and the
algorithm to coincide with Main Algorithm, in the way as above. The following
statement finishes the proof of Theorem 2.

Proposition 5. In the case n = 4, 6, 8, if an algorithm generates halting waves
only, then it either coincides with one of Algorithms-4, -6 and -8, or sends more
bits, than those algorithms, in the worst case.

Remark : We have very strong reasons to believe that also in the case n ≤ 8,
there is no optimal algorithm other than Algorithm-2, Algorithm-4, Algorithm-6,
and Algorithm-8.

References

1. Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simula-
tions and Advanced Topics. McGraw–Hill, England, 1998.

2. Martin Dietzfelbinger. The linear-array problem in communication complexity re-
solved. In Proceedings of the 29th ACM Symposium on Theory of Computing, 1997,
373–382.

3. Ye. Dinitz, S. Moran, and S. Rajsbaum. Bit complexity of breaking and achiev-
ing symmetry in paths and rings. In: Proc. of the 31th Symposium on Theory of
Computing, STOC’99, 265–274.

4. Ye. Dinitz, S. Moran, and S. Rajsbaum. Bit complexity of breaking and achieving
symmetry in chains and rings. Technical Report #CS-2004-11, Dept. of Comp. Sci.,
Technion, August 2004, 29p.

5. Ye. Dinitz, S. Moran, and S. Rajsbaum. Exact Communication Costs for Consensus
and Leader in a Tree. J. of Discrete Algorithms 1 (2003), 167–183.

6. Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Univer-
sity Press, 1997.

7. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

Finding Short Right-Hand-on-the-Wall
Walks in Graphs

Stefan Dobrev1, Jesper Jansson2,
Kunihiko Sadakane4, and Wing-Kin Sung3

1 SITE, University of Ottawa, Canada
sdobrev@site.uottawa.ca

2 Department of Computer Science and Information Systems,
The University of Hong Kong, Hong Kong

jjansson@cs.hku.hk
3 School of Computing, National University of Singapore

ksung@comp.nus.edu.sg
4 Department of Computer Science and Communication Engineering,

Kyushu University, Japan
sada@csce.kyushu-u.ac.jp

Abstract. We consider the problem of perpetual traversal by a single
agent in an anonymous undirected graph G. Our requirements are: (1)
deterministic algorithm, (2) each node is visited within O(n) moves, (3)
the agent uses no memory, it can use only the label of the link via which
it arrived to the current node, (4) no marking of the underlying graph
is allowed and (5) no additional information is stored in the graph (e.g.
routing tables, spanning tree) except the ability to distinguish between
the incident edges (called Local Orientation).

This problem is unsolvable, as has been proven in [9, 28] even for
much less restrictive setting. Our approach is to somewhat relax the
requirement (5). We fix the following traversal algorithm: “Start by taking
the edge with the smallest label. Afterwards, whenever you come to a
node, continue by taking the successor edge (in the local orientation) to
the edge via which you arrived” and ask whether it is for every undirected
graph possible to assign the local orientations in such a way that the
resulting perpetual traversal visits every node in O(n) moves.

We give a positive answer to this question, by showing how to con-
struct such local orientations. This leads to an extremely simple, mem-
oryless, yet efficient traversal algorithm.

1 Introduction

The problem of searching and exploring an unknown environment is a funda-
mental problem with applications ranging from robot navigation to searching
the WWW. As such, it has been extensively studied under many different as-
sumptions about the environment. Typically, either a geometric setting has been
assumed (see e.g. [7, 11, 29]) or the environment is modeled as a graph with moves
permitted only along the edges.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 127–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

128 S. Dobrev et al.

The graph setting has been extensively investigated [1, 3, 6, 12, 13, 14, 16, 20,
25] under many different assumptions (directed vs undirected graphs, anony-
mous nodes vs nodes with distinct identities) and goals (different variants of the
exploration, focusing on time complexity, minimizing the memory requirements).

An important aspect of any solution is its memory requirements – both in the
exploring agent(s) and in the network environment itself (can the agent mark
the nodes, what is the nature of the marks and how many can be used?). Since
the desire is to have simple and cost efficient agents, and there can be many of
them independently operating in the network, it is of practical importance to
limit both the local memory of the agents, and their ability to mark the network.

An extreme case of minimizing memory requirements is to limit the agents
memory to a constant number of bits. This can be modeled as exploring a graph
using finite automata and has been intensively studied in 70’s [9, 24, 26, 28]. The
strongest result is due to Rollik [28]: No finite group of finite automata can
cooperatively explore all cubic planar graphs (see [21] for more recent results).
This means that we either have to allow the agents to use more memory, resort
to randomization or provide some structural information that restricts the set
of graphs we have to traverse.

If we do not place strict restrictions on the local memory, single pebble is
sufficient to explore the graph [5], even for anonymous directed graphs 1.

Another possibility is to drop the determinism requirement – it is known that
a random walk of length O(n3) would, with high probability, visit every node
[22]. Trying to regain determinism led into research of derandomized random
walks, searching a sequence (called Universal Traversal Sequence) of edge labels
that would traverse all graphs in a given class. While many interesting results
have been achieved [2, 4, 23, 27], the memory requirements are not always clear
and the traversal times are rather high, especially with respect to our goal of
O(n) time.

Research most closely related to our result considers using structural infor-
mation to improve the time and/or memory complexity of graph traversal. First
results (concerning exploration of a labyrinth using a compass) are due to Blum
and Kozen [8]. Later, Flocchini et al [18] introduced a more general notion of
Sense of Direction and proved that traversal can be performed using O(n) mes-
sages/agent moves [17]. Fraigniaud et al [19] have shown that interval routing
scheme can be used to achieve the same. In fact, given a spanning tree, the graph
can be traversed using O(n) moves. Pelc and Panaite [25] studied the impact of
having a map of the graph on the efficiency of graph exploration/traversal. All
these solutions, though, use quite a lot of memory – either in the network (rout-
ing tables in [19], remembering the spanning tree) or in the agent (storing Sense
of Direction and remembering visited nodes in [17], remembering the network
map in [25]).

1 The graph must be strongly connected and an upper bound on the number of nodes
must be known. The time complexity, while polynomial, is quite high, though.

Finding Short Right-Hand-on-the-Wall Walks in Graphs 129

In this paper we propose to use the capabilities already present in the
system – namely the ability to distinguish the links incident to a node – to store
the information allowing efficient traversal: A common requirement in point-to-
point networks is that the nodes can distinguish between incident edges (often
called Local Orientation). This is normally done by giving the edges incident to
a node v numbers 1, 2, . . . , dv, where dv is the degree v. Usually, there is no as-
sumption on how is this edge ordering chosen. In this paper we propose to choose
the local orientations in a very specific way. Whether this costs us any memory
depends on how are the lower level communication layers implemented, but it is
quite conceivable that if done at the time of network construction/initialization,
it comes essentially for free.

We fix the following traversal algorithm: “Start by taking the edge labelled 1.
Afterwards, whenever you come to a node, continue by taking the successor edge
(in the local orientation) to the edge via which you arrived” and ask whether it
is for every undirected graph possible to to choose the local orientations in such
a way that the resulting perpetual traversal visits every node in O(n) moves.

We give a positive answer to this question, by showing how to construct such
local orientations. This leads to an extremely simple, memoryless, yet efficient
traversal algorithm.

The paper is organized as follows: In Section 2 we introduce the notation used
and give basic definitions and properties. Section 3 contains the main result of the
paper. In Section 4 we discuss how to adapt to dynamically changing networks.
Section 5 contains open questions, as well as a brief comparison to Sense of
Direction.

2 Preliminaries

Let G be a simple, connected, undirected graph. Let dv denote the degree of
vertex v in G. We assume that each vertex can distinguish edges incident to it,
by having assigned unique label to each incident edge2. This labeling (denoted
πv and called local orientation) and defines cyclical ordering of the edges incident
to v. Let succv(e) denote the successor of e in πv. Denote by G the symmetric
directed graph obtained from G by replacing each undirected edge by two di-
rected edges in opposite direction. For each directed edge e = {u, v} we define
the underlying edge to be the undirected edge (u, v).

We want to find a (short, possibly non-simple) cycle C in G containing all
vertices of G and satisfying the right-hand rule: If e1 = {u, v} and e2 = {v, w}
are two successive edges of C then e2 = succv(e1). Since the local orientations
can be rotated so that the underlying edge with label 1 is used in outgoing
direction at every vertex, the algorithm “Start by using edge labelled 1 and then
follow the successor edges” traverses exactly C. We call such a cycle a witness
cycle for G.

2 More precisely, to endpoints of the edges incident to v. Each edge gets two labels,
one at each endpoint. Note that these two labels can be different and unrelated.

130 S. Dobrev et al.

d

1 2

3

.

.

.

d-1
d-2

Fig. 1. Ordering two bidirectional, two incoming and two outgoing underlying edges

Let H be a subgraph of G containing all its vertices. For a vertex v, denote
by bv, iv and ov the number underlying edges incident to v used by H in both
directions, only incoming and only outgoing, respectively. Let d′v denote the
number of underlying edges used by H, i.e. d′v = bv + iv + ov.

The overall idea is to find a graph H containing all the edges of a witness cycle
C and then to figure out how to label the edges of H to obtain single witness
cycle. The following definition captures the right-hand traversal property that
must be satisfied at each vertex of a witness cycle:

Definition 1. We say that a vertex v is RH-traversable if there exists a local
orientation πv in v such that for each directed edge of H incoming to v via an
underlying edge e there exists an outgoing edge in H leaving v via the underlying
edge that succeeds e in πv.

We call such ordering a witness ordering for v.

If bv = dv, the vertex v is said to be saturated. The following Lemma charac-
terizes the necessary local conditions for existence of the witness ordering:

Lemma 1. v is RH-traversable if and only if v is saturated or iv = ov > 0.

Proof. The if direction: If v is saturated, any ordering of the underlying edges
will do. In the second case, choose any ordering in which bidirectional edges are
labelled 1, 2, . . . , dv, forming one compact block followed by an outgoing edge. All
remaining unidirectional edges are placed as a block preceding the bidirectional
block; the edges of this unidirectional block alternate directions, with the last
edge preceding the bidirectional block being incoming – see Figure 1.

The only if direction: First of all, note that since the successor function is
injective, iv must be equal to ev. Furthermore, note that if a bidirectional under-
lying edge is followed by an unused underlying edge, the RH-traversal property is
violated. Finally, if v is not saturated and there are no unidirectional underlying
edges, there must be such bidirectional edge. ��

Finding Short Right-Hand-on-the-Wall Walks in Graphs 131

1

1

2

1 2

2

2

1

12

3

2

3

1

Fig. 2. Each vertex is RH-traversable, but the witness orderings of the vertices define
several cycles and no cycle spans the whole graph

Note that if a witness cycle exists, each vertex is RH-traversable. The converse is
not necessarily true, as the witness orderings of the vertices might define several
cycles, none of which span the whole graph – see Figure 2.

3 Main Result

First note that if G is Hamiltonian, a Hamiltonian cycle can be chosen as witness
cycle and we get C of length n. (The RH-traversability is trivially satisfied as
each node is visited only once.) Therefore, for the rest of the paper, we assume
G is not Hamiltonian.

The main idea of our approach is to

– first find a subgraph H such that each vertex is RH-traversable and
– then figure out how to connect the edges of H to form a single witness

cycle C.

One obvious possibility is to set H = G, i.e. use all edges bidirectionally.
From Lemma 1 we know that each vertex can be made RH-traversable. Moreover,
since each node of G is of even degree, G has an Eulerian cycle. However, it is
not immediately clear how to choose the local edge orderings to satisfy RH-
traversability and simultaneously result in a single cycle. Another problem is
that the resulting cycle would be of length O(|E|), not O(n).

This forces us to take the following more refined approach:

1. Construct a directed graph H such that
(a) The undirected graph H ′ induced by the bidirectional edges of H is

connected and contains all vertices of G.
(b) Each vertex v of H is either saturated or has exactly two unidirectional

underlying edges, one incoming and one outgoing.
(c) H contains O(n) edges.

2. For each vertex of H define a witness ordering. (These orderings define one
or more cycles in H.)

3. Locally modify the orderings in some nodes in order to merge these cy-
cles into one supercycle C containing all vertices, while maintaining RH-
traversability.

132 S. Dobrev et al.

The first property of H ensures that if we connect all vertices of H into a
single cycle C, it will span the whole graph. The second property ensures that
each vertex is RH-traversable and the third guarantees that C is of size O(n).
Note again that the second property does not guarantee by itself that the witness
orderings of the vertices define single cycle spanning H (see Figure 2) – we really
need to do the third step.

3.1 Constructing Subgraph H

The following algorithm constructs the graph H:

Algorithm Construct H:
1: H ← ∅; {Unless stated otherwise, when an edge is added to H, it is added

bidirectionally}.
2: repeat
3: Find in G a cycle Ci such that it does not contain two consecutive vertices

that are both in H.
4: Add Ci to H.
5: until no such cycle Ci can be found.
6: Add to H all vertices of G not yet in H, together with all their incident

edges.
7: If H is not connected, add some bridging edges to make it connected. (Note

that because of the previous step, there is no need to add vertices.)
8: Let G̃ = (Ṽ , Ẽ) be the graph induced by all yet unused underlying edges.
9: repeat

10: repeat
11: Find a vertex v of degree 1 in G̃.
12: Add to H the edge incident to v in G̃; remove v from G̃.
13: until There is no vertex of degree 1 in G̃
14: Find in G̃ a cycle C ′

i.
15: Add C ′

i to H unidirectionally (in arbitrary direction) and remove all the
vertices of C ′

i from G̃.
16: until no such cycle C ′

i can be found.
17: Add the remaining edges of G̃ (a forest, possibly empty) to H.

Lemma 2. H uses at most 5n underlying edges.

Proof. We prove the lemma by observing the following facts:

– Fact 1. The number of edges added on lines 2. . . 5 is at most 2n−3k1, where
k1 is the number of resulting connected components.

Proof: We charge the cost of each cycle to its new vertices. Since at least
half of the vertices of the cycle are new, each one of them is charged at most
2 edges. In addition, the vertices of the first cycle (of size at least 3) in each
component are charged 1 edge each (as they are all new).

– Fact 2. The number of edges added on line 6 is at most 2n− 2.

Finding Short Right-Hand-on-the-Wall Walks in Graphs 133

Proof: Let us divide those edges into E1 – the edges between nodes added in
line 6 and E2 – the edges between the new and the “old” (added before line 6)
nodes. The graph induced by edges in E1 does not contain cycle, otherwise
a cycle of all-new vertices would have been found in line 3. Similarly, the
graph induced by the edges in E2 does not contain cycle, otherwise that
cycle (containing exactly half new vertices) would have been found in line 3.

– Fact 3. The number of edges added on line 7 is at most k2 < k1, where k2

is the number of connected components after line 6.

Proof: Straightforward.
– Fact 4. The number of edges added on lines 9. . . 17 is at most n.

Proof: For each edge that is added to H one vertex is removed from G̃. ��

Let us call the cycles added in line 15 relief cycles.

Lemma 3. H is connected, contains all vertices of G and each vertex is either
saturated or it lies on exactly one relief cycle.

Proof. The first two properties follow by construction from lines 6 and 7. If
node v does not lie on a relief cycle, then either it has never been in G̃ or it was
removed from there in lines 10. . . 13 or 17. Either case can happen only if v is
(or becomes) saturated. v cannot be in more then once relief cycle, because it is
removed from G̃ when its relief cycle is added to H. ��

Lemma 4. The complexity of Algorithm Construct H is O(n3).

Proof. We will show how to implement line 3 (finding a cycle that does not
contain consecutive old vertices) in time O(n2). This straightforwardly results
in O(n3) time for the loop on lines 2..5.

The loop on lines 9..16 can be executed only O(n) times, and the statements
in its body can easily be implemented in O(n2) time. As the remaining steps can
be easily implemented in O(n2) time, the overall complexity would be O(n3).

The line 3 can be implemented in O(n2) in the following way: Define graph
G′ = (V ′, E′) as follows: (1) V ′ contains all old vertices (the vertices inH)
and one vertex for each connected component of the graph induced by the new
vertices. (2) An edge (u, v) ∈ E′ where u is an old vertex and v corresponds
to a connected component of new vertices if and only if there is an edge in G
connecting u to a vertex from the connected component corresponding to v.

Note that a cycle in G′ defines a cycle in G satisfying the requirements of
line 3. Since O(n2) time is sufficient for constructing G′ as well as for finding a
cycle in it, line 3 can be implemented in time O(n2). ��

3.2 Constructing Witness Cycle C

Once we have H, the local ordering of underlying edges in each vertex is initial-
ized according to the construction from the proof of Lemma 1. We know (from
Lemmas 3 and 1) that such witness ordering exists for each vertex v; however, we

134 S. Dobrev et al.

C1

C2

3

4

2= x2

1= x1

C3
5= x3

6

1

2

3

4

5

6

Fig. 3. Applying rule Merge3

may not get a single cycle spanning all vertices (see Figure 2). In the next step,
we combine the resulting cycles until we get one such cycle, while maintaining
RH-traversability. To achieve that, we use the following rules:

Rule Merge3: Let v be a node incident to at least three different cycles C1,
C2 and C3. Let x1, x2 and x3 be underlying edges in v containing incoming
edges for cycles C1, C2 and C3, respectively (x1, x2 and x3 can be unidirectional
or bidirectional). The ordering of the edges in v which makes the successor
of x2 become the successor of x1, successor of x3 become the successor of x2

and successor of x1 become successor of x3 and keeps the relative order of the
remaining edges the same (see Figure 3) connects the cycles C1, C2 and C3

into one cycle, while remaining a witness ordering for v (because the original
ordering was).

Rule EatSmall: Fix an arbitrary ordering γ of the cycles. Let C1 be the smallest
non-simple cycle in this ordering and let v be a vertex appearing in C1 at least
twice which is also incident to a different cycle C2 such that γ(C1) < γ(C2).
Let x and y be underlying edges containing incoming edges of C1 and C2 in v,
respectively; let z be the underlying edge containing the incoming edge by which
C1 returns to v after leaving via the successor of x. If z is successor of y, choose
a different x. Modify the ordering of the edges in v as follows: (1) the successor
of x becomes the new successor of y, (2) the old successor of y becomes the new
successor of z, (3) the old successor of z becomes the new successor of x and (4)
the order of the remaining edges does not change – see Figure 4.

Lemma 5. Applying the rule EatSmall results in transfer of one loop of edges
from cycle C1 to C2, while maintaining RH-traversability.

Proof. Straightforward from construction. ��

The overall strategy of applying these rules is as follows:

Finding Short Right-Hand-on-the-Wall Walks in Graphs 135

1

C2

after

5

2

3

4

6

C1

before

3

4
1

2=z

5=y

C1

C26=x

Fig. 4. Applying rule EatSmall

Algorithm MergeCycles:
1: repeat
2: while rule Merge3 can be applied do
3: Apply rule Merge3.
4: end while
5: Apply rule EatSmall.
6: until neither Merge3 nor EatSmall can be applied
7: (Optional) remove all simple cycles

Lemma 6. The algorithm MergeCycles terminates in O(n3) time.

Proof. Note that initially there are at most 10n/3 cycles (H has at most 10n
edges and each cycles has at lest 3 edges). Since rule Merge3 decreases the
number of cycles by 2 and rule EatSmall does not increase the number of cycles,
rule Merge3 can be applied at most 5n/3 times during the whole execution of
algorithm MergeCycles.

Since rule EatSmall transfers come edges from the smallest non-simple cycle
to a bigger (in γ) cycle, it can be successively (without intervening Merge3)
applied only O(n) times (remember, the number of edges is at most 10n). This
means that the rule EatSmall can be applied only O(n2) times.

In order to apply rule Merge3, we need to find a vertex incident to three
different cycles. In order to apply rule EatSmall, we need to find the smallest
non-simple cycle and a repeated vertex on this cycle which is incident to a bigger
cycle. Both tests can be straightforwardly done in O(n) time by traversing and
marking the different cycles, resulting in O(n3) overall complexity for algorithm
MergeCycles. ��

Lemma 7. If neither Merge3 nor EatSmall can be applied, H consists of a
single non-simple cycle spanning all the vertices and of a set of pairwise vertex
disjoint simple cycles.

136 S. Dobrev et al.

Proof. Before proceeding with the proof, let us remind you that the graph H ′

consisting of bidirectional edges of H is connected and contains all vertices of
H. (Follows directly from lines 6 and 7 of the construction of H.)

Let C1 be the smallest non-simple cycle at the moment when neither rule can
be applied. Let E′ be the set of all underlying edges which are not used by C1,
but are incident to C1. Each edge of E′ is used by a single cycle, otherwise rule
Merge3 could be applied.

Assume first that all these edges are unidirectional. Then all edges of H ′

are used by C1, because H ′ is connected and E′ would separate it. Since H ′

contains all vertices, C1 does as well. No underlying bidirectional edges outside
C1 means that all other cycles are pairwise edge-disjoint. However, they must be
also vertex disjoint, because the rule Merge3 cannot be applied and C1 contains
all vertices. Similarly, all other cycles are simple, since C1 contains all vertices
and rule EatSmall cannot be applied.

To complete the proof, we prove by contradiction that there is no bidirectional
edge incident to C1, but not belonging to C1. Assume the opposite. From the
properties of H ′ we get that either there is a vertex v ∈ C1 incident to both
an external bidirectional edge and a bidirectional edge in C1 (contradiction, as
that would allow rule EatSmall to apply, since the outside bidirectional edge can
only belong to a larger non-simple cycle) or that each of the vertices of C1 is
incident to an outside bidirectional edge (in such case either C1 is simple cycle
or EatSmall can be applied – contradiction in both cases). ��

Now we are ready for the main theorem:

Theorem 1. There exists a witness cycle C of length at most 10n covering all
vertices of G.

Proof. From Lemma 6 we know that eventually no rule can be applied. From
Lemma 7 we get that at that moment there exists single non-simple cycle (which
we choose as C) covering all vertices. Since this cycle uses each directed edge of
H at most once, from Lemma 2 we get the length property. ��

Note 1: We can remove from H all the remaining simple cycles to get a graph
containing only C. The RH-traversability will obviously not be violated.

Note 2: In each vertex we can rotate the edges in such way that the edge labelled
1 will always be in C.

From Lemmas 4 and 6 we get the main complexity theorem:

Theorem 2. Witness cycle of length at most 10n covering all vertices of G can
be constructed in time O(n3).

4 Adapting to Dynamic Topology Changes

In previous section we described how to initialize the network so that the RH-
traversal leads to an efficient traversal. In this section we show how to maintain

Finding Short Right-Hand-on-the-Wall Walks in Graphs 137

u
v

newly added edge

Fig. 5. Adding an edge connecting two unsaturated vertices

this property even in the case of topology changes. More precisely, we show how
to modify the local orientations in case of adding new vertices and edges to the
network.

In order to simplify the algorithm, we assume the only topology changes are
(1) connecting a new vertex to the existing graph by a single edge, and (2)
adding an edge between two existing vertices. More complex changes can easily
be implemented using a sequence of these basic operations.

If a new edge (u, v) connects two unsaturated vertices, it can be inserted
between the outgoing and incoming underlying edges without violating RH-
traversability – see Figure 5. However, if one of the vertices is saturated, we
have to use the new edge in both directions. Inserting the edge at position 1
ensures that it is a successor for some incoming edge, and that it has a successor
outgoing edge, i.e. both u and v remain RH-traversable. However, this might
result in splitting C into two cycles. That can be easily corrected by applying
rule EatSmall while possible, as we known that Merge3 is not applicable. Note
that it is sufficient to perform the test only at node u, as we know that if there
are indeed two cycles, they meet at u and v.

Algorithm Adapt:
1: { Edge (u, v) (and possibly a new vertex v) has been added.}
2: if either u or v are saturated then
3: Insert (u, v) as a an edge used bidirectionally in C to location 1 in the

local orientations of u and v.
4: else
5: Insert (u, v) as an edge unused in C to a place between outgoing and

incoming underlying edges in u and v – see Figure 5.
6: end if
7: Apply rule EatSmall at u while possible.
8: (Optional) Remove all non-Hamiltonian simple cycles from.

By construction and from Lemma 7 we get:

Theorem 3. Applying algorithm Adapt after each topology change will main-
tain C as the witness cycle containing every node of the graph. Moreover, at
most 2 directed edges are added to C for each edge newly added to G.

138 S. Dobrev et al.

After adding n′ new vertices and m′ new edges, the resulting witness cycle
is guaranteed to grow by no more then 2m′ edges. If m′ becomes too high,
recomputing the witness cycle might be necessary to bring the length back to
O(|V |). Our approach does not handle vertex and/or edge removal, as the graph
could become disconnected and/or severe non-local changes might be needed.

5 Conclusions

We have shown that for every connected simple undirected graph the local ori-
entations in the vertices can be chosen in a way that creates a right-hand rule
cyclical walk of length at most 10n covering all vertices. Moreover, we have
shown how to maintain this property even when more vertices and edges are
added to the graph. Still, several questions remain unanswered:

– Can the length of the walk be further reduced? What is the lower bound?
– Can the time complexity of finding a witness cycle of length O(n) be reduced

from O(n3)? How?
– What is the time complexity of finding the shortest witness cycle? How to

find it?
– The only property of the walk we were interested in was its length. Suppose

we want to use these walks for mutual search [10] instead of traversal. How
do we design the local orientations so that performing RH-walk leads to
efficient mutual search?

– How to compute the local orientations in a distributed manner? What can
be done if the nodes are anonymous?

– How to react to node or edge removal?

We can view our construction as a way to create globally consistent edge
labelling. Comparing it to another globally consistent edge labelling, namely
Sense of Direction, we observe that our approach uses minimal number of differ-
ent labels and allows much simpler and more memory efficient graph traversal.
However, Sense of Direction is more general and can be used in ways our con-
struction cannot (e.g. avoiding entering a node - see [15].)

References

1. S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM Journal
on Computing, 29:1164–1188, 2000.

2. N. Alon, Y. Azar, and Y. Ravid. Universal sequences for complete graphs. Discrete
Appl. Math., 27(1-2):25–28, 1990.

3. B. Awerbuch, M. Betke, and M. Singh. Piecemeal graph learning by a mobile robot.
Information and Computation, 152:155–172, 1999.

4. A. Bar-Noy, A. Borodin, M. Karchmer, N. Linial, and M. Werman. Bounds on
universal sequences. SIAM J. Comput., 18:268–277, 1989.

5. M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. In Proc. of STOC 98, pages 269–287, 1998.

Finding Short Right-Hand-on-the-Wall Walks in Graphs 139

6. M. Bender and D. K. Slonim. The power of team exploration: two robots can learn
unlabeled directed graphs. In Proc. of FOCS 94, pages 75–85, 1994.

7. A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain.
SIAM Journal on Computing, 26:110–137, 1997.

8. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier
to search than graphs). In Proc. of FOCS 78, pages 132–142, 1978.

9. L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195282, 1978.
10. Harry Buhrman, Matthew Franklin, Juan A. Garay, Jaap-Henk Hoepman, John

Tromp, and Paul Vitányi. Mutual search. J. ACM, 46(4):517–536, 1999.
11. X. Deng, T. Kameda, and C. H. Papadimitriou. How to learn an unknown envi-

ronment i: The rectilinear case. Journal of the ACM, 45:215–245, 1998.
12. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal of Graph

Theory, 32(3):265–297, 1999.
13. A. Dessmark and A. Pelc. Optimal graph exploration without good maps. In Proc.

10th European Symposium on Algorithms (ESA’02), pages 374–386, 2002.
14. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little

memory. Journal of Algorithms, 51:38–63, 2004.
15. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Finding a black hole in an

arbitrary network: optimal mobile agents protocols. In Proc. of PODC 2002, pages
153–162, 2002.

16. C.A Duncan, S.G. Kobourov, and V.S.A Kumar. Optimal constrained graph explo-
ration. In 12th ACM-SIAM Symposium on Discrete Algorithms (SODA’01), pages
807–814, 2001.

17. P. Flocchini, B. Mans, and N. Santoro. On the impact of sense of direction on
communication complexity. Information Processing Letters, 63(1):23–31, 1997.

18. P. Flocchini, B. Mans, and N. Santoro. Sense of direction: definition, properties
and classes. Networks, 32(3):165–180, 1998.

19. P. Fraigniaud, C. Gavoille, and B. Mans. Interval routing schemes allow broadcast-
ing with linear message-complexity. Journal of Distributed Computing, 14(4):217–
229, 2001.

20. P. Fraigniaud and D. Ilcinkas. Digraph exploration with little memory. In 21st
Symp. on Theoretical Aspects of Computer Science (STACS’04), 2004.

21. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a
finite automaton. In Proc. of MFCS 2004, pages 451–462, 2004.

22. U. Friege. A tight upper bound on the cover time for random walks on graphs.
Random Structures and Algorithms, 6(1):51–54, 1995.

23. S. Hoory and A. Wigderson. Universal traversal sequences for expander graphs.
Inf. Process. Lett., 46(2):67–69, 1993.

24. D. Kozen. Automata and planar graphs. In Proc. of Fundations Computatial The-
ory (FCT 79), pages 243–254, 1979.

25. P. Panaite and A. Pelc. Impact of topographic information on graph exploration
efficiency. Networks, 36.

26. M.O. Rabin. Maze threading automata. Technical Report Seminar Talk, University
of California at Berkeley, October 1967.

27. O. Reingold. Undirected st-connectivity in log-space. Electronic Colloquium on
Computational Complexity, 94, 2004.

28. H.A. Rollik. Automaten in planaren graphen. Acta Informatica, 13:287–298, 1980.
29. N. Roo, S. Hareti, W. Shi, and S. Iyengar. Robot navigation in unknown ter-

rains: Introductory survey of length,non-heuristic algorithms. Technical Report
ORNL/TM12410, Oak Ridge National Lab., 1993.

Space Lower Bounds for Graph Exploration via
Reduced Automata�

Pierre Fraigniaud1, David Ilcinkas1, Sergio Rajsbaum2, and Sébastien Tixeuil1

1 CNRS, LRI, Univ. Paris Sud, France
2 Instituto de Matemáticas, UNAM, D.F. 04510, Mexico

{pierre, ilcinkas, tixeuil}@lri.fr
rajsbaum@math.unam.mx

Abstract. We consider the task of exploring graphs with anonymous
nodes by a team of non-cooperative robots modeled as finite automata.
These robots have no a priori knowledge of the topology of the graph,
or of its size. Each edge has to be traversed by at least one robot. We
first show that, for any set of q non-cooperative K-state robots, there
exists a graph of size O(qK) that no robot of this set can explore. This
improves the O(KO(q)) bound by Rollik (1980). Our main result is an
application of this improvement. It concerns exploration with stop, in
which one robot has to explore and stop after completing exploration.
For this task, the robot is provided with a pebble, that it can use to
mark nodes. We prove that exploration with stop requires Ω(log n) bits
for the family of graphs with at most n nodes. On the other hand, we
prove that there exists an exploration with stop algorithm using a robot
with O(D log Δ) bits of memory to explore all graphs of diameter at most
D and degree at most Δ.

Keywords: Graph exploration, finite automaton, robot, mobile agent.

1 Introduction

The problem of exploring an unknown environment occurs in a variety of situ-
ations, like robot navigation, network maintenance, resource discovery, WWW
search, etc. The environment is modeled as a graph where one or more mobile
agents, called robots in this paper, are trying to collectively traverse every one
of its edges. There is a large body of work, that considers several variants of the
problem, since at least 1951; see e.g. [1, 2, 3, 4, 5, 6, 7, 8] and references herein.

In this paper we are interested in exploration of undirected graphs where
nodes are not uniquely labeled. Besides the theoretical interest of understanding
when or at what cost such graphs can be explored, this situation can occur

� This work has been supported by the projects: INRIA “Grand Large”, “PairAPair”
of the ACI “Masses de Données”, “FRAGILE” of the ACI “Sécurité et Informa-
tique,” LAFMI (Franco-Mexican lab in Computer Science), and PAPIIT-UNAM.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 140–154, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Space Lower Bounds for Graph Exploration 141

in practice, due to e.g. privacy concerns, limited capabilities of the robots, or
simply anonymous edge intersections. We do assume that a robot can identify
the edges incident to a node through unique port labels. Our main goal is to
compute complexity bounds on the amount of memory needed by a set of robots
as a function of the size of the graphs that they can explore.

A robot moves from one node to another along the edges. When in a node,
it (deterministically) decides on the port number of an incident edge to move
to the node at the other end of the corresponding edge. It is easy to see that
a robot can traverse all edges of some graphs, say a cycle, but that it cannot
recognize when it has visited a node twice, so it explores all the graph but never
stops. Thus we consider also robots that can mark nodes; as in previous work
e.g. [1, 2] the robot can drop a pebble in a node and later identify it and pick it
up. In this case the robot can explore a graph and stop.

1.1 Collective Exploration

A graph that a set of robots cannot explore when they all star from some given
node (or set of nodes) is said to be a trap for them. The first trap for a finite
state robot is generally attributed to Budach [3] (the trap is actually a planar
graph). The trap constructed by Budach is of large size. A much smaller trap
was described in [6]: for any K-state robot, there exists a trap of at most K + 1
nodes. In [7], Rollik proved that no finite set of finite cooperative robots, i.e.,
automata that exchange information only when they meet at a node, can explore
all graphs. In the proof of this result, the author uses as a tool a trap for a set
of q non-cooperative K-state robots. This latter trap is of size O(KO(q)) nodes.

The size1 Õ(KK···
K

), with 2q + 1 levels of exponential, of the trap constructed
for cooperative robots depends highly on the size of a trap for non-cooperative
robots.

In this paper, we first show (cf. Theorem 1) that for any set of q non-
cooperative K-state robots, there exists a 3-regular graph G, and two pairs
{u, u′} and {v, v′} of neighboring nodes, such that any robot of the set, starting
from u or u′, fails to traverse the edge {v, v′}. The graph G has O(qK) nodes,
thus improving the O(KO(q)) bound of [7] (cf. Corollary 1). By simply plugging
this new trap for non-cooperative robots in the trap for cooperative robots by

Rollik, we get a new trap of size Õ(KK···
K

), with q + 1 levels of exponential,
thus smaller than the one in [7] (cf. Corollary 2).

1.2 Exploration by a Single Robot

Theorem 1 has a significant impact on the space complexity of graph exploration
by a single robot. We distinguish the two types of exploration mentioned above
perpetual exploration and exploration with stop, where the robot has to stop once
exploration is completed.

1 The Õ notation hides logarithmic factors.

142 P. Fraigniaud et al.

In acyclic graphs, exploration with stop is strictly more difficult than per-
petual exploration. In particular, it is shown in [4] that exploration with stop in
n-node bounded degree trees requires a robot with memory size Ω(log log log n),
whereas perpetual exploration requires O(1) bits.

As mentioned above, when exploration with stop is required, the robot is
provided with a pebble. We prove (cf. Theorem 2) that exploration with stop
requires a robot with Ω(log n) bits for the family of graphs with at most n nodes.
Note that, in arbitrary graphs, perpetual exploration and exploration with stop
are not comparable because even if perpetual exploration is a simpler task than
exploration with stop, in the latter case the robot is given a pebble. Therefore,
even if the existence of a trap of at most K + 1 nodes for any K-state robot
described in [6] implies an Ω(log n) bits lower bound for the memory size of a
robot that performs perpetual exploration in all graphs with at most n nodes,
our Ω(log n) lower bound is not a consequence of the result in [6].

Finally, we prove (cf. Theorem 3) that there exists an exploration with stop
algorithm using a robot with O(D log Δ) bits of memory for the exploration with
stop of all graphs of diameter at most D and degree at most Δ.

2 Preliminaries

In Section 2.1 we define formally what we mean by a robot exploring a graph. In
Section 2.2 we describe the basic properties of a robot. In Section 2.3 we show
how to simplify the structure of a robot, for the proofs of the following sections.

2.1 Graphs and Robots

A robot considered in this paper traverses a graph by moving from node to node
along the edges of the graph. All nodes are identical and hence indistinguishable
to the robot. However, each edge has two labels, each one associated to one of
its two endpoints. The labels are arbitrary, except that the edges incident to a
node are required to have different labels in their endpoints corresponding to
the node. When a robot is in a node, it sees only the labels at the endpoints of
the edges incident to the node. This allows the robot to distinguish the edges
incident to the node through their unique labels, called local port numbers.

An edge may have different port numbers in its two endpoints. When a robot
is in a node s and traverses an edge to get to the node t at the other end of the
edge, it learns the label at t’s endpoint of the edge once it enters t. The robot
decides which edge to take to leave t based on this label, as well as on the other
local port numbers at t (and hence the degree of t). To compute memory lower
bounds, it suffices to consider graphs where both port numbers coincide, and
where all nodes have the same degree. In such a graph a robot can be described
by a very simple automaton, as we shall see next. Thus, the graphs considered
in this paper are δ-homogeneous undirected graphs: δ-regular and edge-colored.
A graph is δ-regular if each of its nodes has degree δ, and it is edge-colored if

Space Lower Bounds for Graph Exploration 143

each edge is labeled with one of the integers in the set Δ = {0, 1, . . . , δ − 1} in
a way that no two edges incident to the same node have the same color.

When a robot traverses a δ-homogeneous graph, each time it arrives to a node
the local environment looks exactly the same as in any other node: all nodes are
equal and in each node all local ports are 0, 1, . . . , δ− 1. Thus, the robot decides
which edge to take to exit the node based only on its current state. Formally, a
δ-robot or simply robot when δ is understood, is an automaton A = (Δ,S, f, s0),
with a finite set of states S, an initial state s0 ∈ S, and a transition function
f : S → S × Δ. For a state s ∈ S with f(s) = (s′, i), denote fst(s) = s′ and
f�(s) = i. The δ-robot A moves on a δ-regular graph as follows. Initially A is
placed on a node of the graph in state s0. If A is in a node v in state s then A
moves to the node v′ such that the edge {v, v′} is labeled f�(s), and changes to
state fst(s). We say that A traversed the edge {v, v′}. We assume that every state
s ∈ S of A is reachable from s0 (unreachable states do not affect the behavior
of A and can be ignored). In Section 4 we will consider an extended definition
of a robot that can drop a pebble in a node and pick it up when it returns to
the node to drop it somewhere else.

A trap for a set of δ-robots is a pair (G,U), where G is a δ-homogeneous
graph and U is a set of nodes, such that if all the robots are placed in nodes of
u ∈ U , each in its initial state, then there will be an edge {v, v′} that is never
traversed by the robots.

2.2 Basic Properties

Consider a robot A = (Δ,S, f, s0). The transition function f defines a directed
labeled graph G(A) = (S, F) with node set S and arc set F , such that the arc
s → t ∈ F iff fst(s) = t, and the arc has label f�(s). Notice that the labeled
graph G(A) together with the starting node s0 completely determine the robot
A.

Each node of G(A) has out-degree 1 because f is a function. It follows that
G(A) consists of a simple, possibly empty path starting in s0 and ending in some
node s1, followed by a simple cycle starting and ending in s1. This is because we
assume that A has no unreachable states and S is finite. Thus, the arc labels of
the path define a path word W0 over Δ, |W0| ≥ 0, and the arc labels of the cycle
define a cycle word W over Δ, |W | ≥ 1. Clearly, |W0W | = |S|. The footprint of
A is fp(A) = W0W

∗. When A is placed on a node of a graph in state s0, fp(A)
is the sequence of labels of edges traversed by A. The next lemma says that once
A reaches a node x of the graph in some state s that belongs to the cycle of
G(A), the path that A follows in G is a closed path that includes x; moreover,
A returns to x in the same state s.

Lemma 1. Consider a robot A with path and cycle words W0,W placed in a
node of a graph G. Let x be a node reached by A after at least |W0| steps, and
assume A is in state s at this moment. Then A will eventually be back in x in
state s.

144 P. Fraigniaud et al.

Proof. Consider the behavior of A after at least |W0| steps. The robot A is thus
changing from state to state along the cycle of G(A). Since this cycle is finite,
and G is also finite, the robot must be twice in the same node in the same state.
Assume for contradiction that A is not twice in (x, s), i.e. in node x in state s.
Then let x′ be the first node (after x) for which A is twice in the same state, s′.
Consider the path taken by A from the initial node to the first time it is in node
x′ in state s′, and let x1 be the last node before entering x′ in state s′ for the first
time. Suppose A is in state s1 at this time. So A is never twice in (x1, s1). When
A eventually returns to x′ in s′, the last node visited is x′′ in state s′′. But since
all the states considered in the lemma are in the cycle of G(A) (because A has
taken at least |W0| steps), it must be that s′′ = s1. Thus, f�(s′′) = f�(s1), which
implies that x1 = x′′ (since G is homogeneous). Then A is twice in (x1, s1), a
contradiction. ��

2.3 Reduced Robots

A robot A is irreducible if G(A) satisfies two properties: (i) for any two consec-
utive (distinct) arcs s → s1 → s2, it holds f�(s) �= f�(s1), and (ii) for the two
arcs with the same end-node s → s1, s2 → s1, it holds f�(s) �= f�(s2). We show
here how to obtain an irreducible robot A′ = (Δ,S ′, f ′, s′0) from a robot A. The
behavior of A and of A′ on a graph will not be exactly the same, but will be
related in the sense that the region of a graph traversed by A cannot be much
larger than the region traversed by A′.

Let Ḡ(A) be the undirected graph corresponding to G(A). Then, if A is
irreducible and its simple cycle is of length at least 2, then Ḡ(A) is edge-colored.
Roughly speaking, we want the robot to be irreducible to construct a graph
based on Ḡ(A) on which the robot will be moving. Since the constructed graph
must be homogeneous, Ḡ(A) must be homogeneous. Then we can place A at
the beginning of the path of Ḡ(A) and it will never try to go out of Ḡ(A). To
obtain an irreducible robot A′ from A we perform a series of reduction steps that
modify its transition function and reachable states. When A,A′ are placed on
the same node of a graph, the path traversed by A′ is contained in the the path
traversed by A; essentially A′ skips some closed walks of A. These reductions
are formally defined next.

A reduction step is the operation consisting of transforming a robot A =
(Δ,S, f, s0) into another robot A′ = (Δ,S ′, f ′, s′0) where one of the above prop-
erties (i) or (ii) is enforced for two arcs, each corresponding to a type-i or type-ii
reduction step. The idea is to repeat type-i steps until no more are possible, and
hence the robot satisfies property (i), and then if property (ii) is not satisfied,
do a single type-ii step to enforce property (ii). Only type-i reductions change
the path traversed by the robot.

A type-i reduction step is applicable if G(A) has two consecutive distinct arcs
s→ s1 → s2 with f�(s) = f�(s1). First, if s = s2 (so the cycle is of length 2 with
same labels), A′ is obtained from A by letting f ′(s) = (s, i), where i = f�(s); and
if s1 = s0 then s′0 = s. For other states f ′ = f . Otherwise, if s �= s2, it is possible

Space Lower Bounds for Graph Exploration 145

that s has 0, 1, or 2 in-neighbors. In each of these cases A′ is obtained from A by
the following modifications. If s has 0 in-neighbors, then s = s0; let s′0 = s2. If s
has 1 in-neighbor t (t �= s1), with f(t) = (s, i), then let f ′(t) = (s2, i); If s = s0

then let s′0 = s2. If s has 2 in-neighbors t1, t2, with f(t1) = (s, i), f(t2) = (s, j),
then s �= s0; Let f ′(t1) = (s2, i) and f ′(t2) = (s2, j). For other states f ′ = f .
After doing these modifications, A′ is obtained by removing any unreachable
states. Notice that for each one of the previous 3 cases at least one unreachable
state is removed, namely s. Thus, at most K − 1 type-i reductions are possible,
starting from a K-state robot.

We will use the following properties of a type-i reduction. Since f�(s) =
f�(s1) = i, if the robot is in a node v of the graph in state s, then it moves to
v′, where {v, v′} is colored i, changes to state s1, and moves back to v, in state
s2. Thus, it is easy to check that a type-i reduction eliminates this v, v′, v loop
from the path traversed by the robot in the graph, and makes no other changes
to the path; that is, if the path arrives to v from w and then proceeds to w′

after traversing the v, v′, v loop, after the type-i reduction the robot will go from
w to v and then directly to w′. Therefore, before the reduction step, the robot
explores a node at most distance 1 from the nodes explored by the robot after
the reduction.

Once a type-i reduction step is not applicable in G(A), a single type-ii re-
duction step is used, defined as follows. Assume there are two states such that
f(s) = f(s1), that is, G(A) has two arcs with the same end-node s→ t, s1 → t,
and f�(s) = f�(s1); otherwise the reduction does nothing. Exactly one of s, s1

must be in the cycle of G(A), let’s say s1. So there is a path from t to s1. Notice
that this path is of length at least 1 (i.e. the cycle of G(A) is of length at least
2), because otherwise t = s1 and there is a loop from t to itself labeled f�(s),
and a type-i reduction is applicable.

Recall that fp(A) = W0W
∗. Let W ′ be the longest common postfix of W0 and

W ; |W ′| > 0 by the type-ii assumption. We consider two cases: |W0| > |W ′| and
|W0| = |W ′|. In the first case W is a postfix of W0; let t1 be the in-neighbor of
the node just before W ′ starts in the simple path of G(A) and let t2 be the node
just before W ′ starts in the cycle of G(A); thus f�(fst(t1)) = f�(t2) is the first
letter of W ′. In both cases A′ is obtained from A by the following modifications:
If |W0| > |W ′|, let f ′(t1) = (t2, f�(t1)). If |W0| = |W ′| let s′0 = t2, and removing
any unreachable states.

We use the following two properties of a type-ii reduction. A type-ii reduction
does not change at all the path traversed by the robot in the graph. After a type-ii
reduction is executed property (ii) is satisfied, and property (i) is not violated.

The previous arguments imply:

Lemma 2. For any robot A = (Δ,S, f, s0) the robot A′ obtained through the
longest possible sequence of type-i reductions followed by a type-ii reduction is
irreducible. Let k be the number of type-i reduction steps in this sequence. Then
k ≤ |S| − 1. Assume both start at some node of a given graph. Then any edge
traversed by A is at distance at most k from some edge traversed by A′.

146 P. Fraigniaud et al.

3 A Trap for a Team of Non-cooperative Robots

In this section, we focus on graph exploration by a team of non-cooperative
robots.

Theorem 1. For any set A of q non-cooperative K-state robots, there exist a
3-homogeneous graph G and two pairs of neighboring nodes {u, u′} and {v, v′}
such that (1) the edge {u, u′} is labeled 0, (2) starting at u or at u′, any robot
in A fails to traverse the edge {v, v′}, and (3) G has 10qK + O(q) nodes.

Proof. The proof is by induction on q ≥ 0. The basic step is q = 0. The corre-
sponding graph G is displayed on Figure 1.

u u’

v

v’

1

12

2

0

0

Fig. 1. Basic step of the induction

For the induction step, assume that Theorem 1 holds for q, and let us show
that it holds for q + 1. Let A be a set of q + 1 non-cooperative K-state robots,
and let A ∈ A. By induction hypothesis, let Gq be an n-node 3-homogeneous
graph (where n is 10qK + O(q)) having two pairs of neighboring nodes {u, u′}
and {v, v′} with the edge {u, u′} labeled 0, such that, starting at u or at u′, any
robot in A \ {A} fails to traverse the edge {v, v′}. We construct a graph Gq+1

that satisfies Theorem 1 for A.
Let Â be an irreducible robot obtained from A as in Lemma 2. Consider its

footprint fp(Â) = W0W
∗, |W0W | ≤ K. We concentrate first our attention on

Â, and will come back later to the original robot A. Let us denote by pi the
i-th letter in fp(Â). Recall that since Â is irreducible, its associated undirected
graph Ḡ(Â) is homogeneous.

Let us place Â at node u of Gq, and let us observe its behavior. Let H1 be
the graph obtained from Gq by “cutting” the edge {v, v′}. In H1, nodes v and
v′ are both connected to a pending “half-edge.” If Â traverses the edge {v, v′}
in Gq, then in H1 it traverses one of these two half-edges, say the half-edge e

pending at v. We consider two cases, depending on when Â traverses e.

Case 1. If Â traverses e at step i ≤ |W0| (so pi is the label of e), then we connect
to e a path of length |W0|− i whose extremity is denoted by w. The edges of this
path are labeled pi+1, . . . , p|W0|. Note that since Â is irreducible, two consecutive
labels of this path are distinct. At w, we add a ring of length |W |. The edges of

Space Lower Bounds for Graph Exploration 147

this ring are labeled p|W0|+1, . . . , p|W0|+|W | starting and ending at w. Note that
since Â is irreducible, two consecutive labels of the ring are distinct, and the
three labels p|W0|, p|W0|+1, and p|W0|+|W | are pairwise distinct. To avoid parallel
edges we add a ring of length 2|W | at w if |W | = 2; to avoid loops when |W | = 1,
we add a ring with labels abab, where a is equal to the single letter of W , and b
is different from a and from the label pi of e.
Case 2. If Â traverses e at step i > |W0|, then it traverses e to get into some
state s of the cycle in G(Â); assume this is the j-th state of the cycle (recall
that the cycle is assumed to start in the last state of the path of G(Â)). That
is, after traversing e, Â would traverse edges labeled p|W0|+j , p|W0|+j+1, . . .

Let x be the node of H1 reached by Â after |W0| steps, let W−1 be the
sequence W written in reverse order, and let Â−1 be the robot that traverses
edges labeled (W−1)∗. Thus, when Â−1 starts at x and Â reaches x, Â−1 proceeds
as Â, but backwards. Let Â∗ be the robot that traverses edges labeled W ∗, i.e.
the robot derived from Â by removing states and transitions that involved W0.

Claim . Starting from x, Â−1 eventually traverses one of the half-edges pending
at v or v′.

Proof. Assume for contradiction that Â−1 does not traverse any of the half-edges
pending at v or v′. By Lemma 1, Â−1 returns to x in the same state, and hence
its path in H1 is a closed path. This path traversed backwards is exactly what
Â∗ traverses from x. So Â∗ does not traverse any of the half-edges pending at v
or v′. Thus, Â also does not traverse them, a contradiction. !

By Claim 3 we can consider the state reached by Â−1 after it traverses one
of the pending half-edges; assume this is the k-th state of the cycle in G(Â). We
consider two sub-cases, depending on whether Â−1 traverses the same half-edge
as Â, or not.

Case 2.1. The robot Â−1 traverses the half-edge e pending at v (i.e., the same
as Â). This implies that the k-th label in W is equal to the (j − 1)-th label
in W , which is the label of e. We consider the section of the cycle of G(Â)
from the j-th state to the k-th state. The end edges of this section have the
label of e. We now consider the following word: W ′ = W (j − 1)W (j)W (j +
1) . . . W (k−1)W (k)W (k+1) . . . W (j−1)W (j)W (j+1) . . . W (k−1)W (k)W (k+
1) . . . W (j−1)W (j)W (j+1) . . . W (k−1)W (k) (Note that W (j−1) = W (k) and
|W ′| ≥ 2 × |W | + 2). The two robots Â and Â−1 cannot follow the same path
forever after crossing edge e: otherwise, it would mean that moving them both
backwards, they would also follow the same path forever (which is impossible
since the two robots took different paths at node x in the past). Moreover, the
two robots must separate after at most |W | steps, and since |W ′| ≥ 2× |W |+ 2,
they must separate after at least 1 step and at most |W | − 1 steps. Now, if the
two robots separate from each other at some point after crossing edge e, let us
consider the smallest l such that W (j + l) �= W (k− 1− l), i.e. the nearest place
where the two robots separate from one another. Since W (j− 1) = W (k), l ≥ 1.

1

148 P. Fraigniaud et al.

By definition of l, we have W (j + l− 1) = W (k− l). Since the considered robots
are reduced, we also have W (j + l − 1) �= W (j + l). Still by definition of l, we
get W (j + l) �= W (k − 1 − l). Finally, because we consider reduced robots and
we have W (j + l− 1) = W (k− l), we get W (j + l− 1) �= W (k− 1− l). Overall,
this means that W (j + l− 1), W (j + l), and W (k − 1− l) are pairwise disjoint.
We are now ready to construct the following graph: from e, there is a chain that
ends in W (j + l − 1) at node w, and from this last node a circle W ′′ goes from
W (j + l) to W (k− l− 1). Since W (j + l) �= W (k− 1− l) (see above), |W ′′| > 2.
When |W ′′| > 2, we add at w a ring of length |W ′′| labeled W ′′, starting and
ending at w, so that once Â and Â−1 reach w, each one traverses this ring in
the opposite direction, and gets back to w in the appropriate state to proceed
along the path back to the half-edge e.

Case 2.2. The robot Â−1 traverses the half-edge e′ pending at v′ (i.e., not the
same as Â). Suppose when Â−1 goes through v′ it is in state s. We consider
again the section of the cycle of G(Â) from the j-th state to the k-th state (if
the section is of length 1, we extend it with W to make sure there is at least one
internal node). We connect e and e′ by a path with the labels of this section.
Thus, when A traverses the half-edge e, it follows the newly added path, and
gets to v′ in the appropriate state, namely s, to proceed along the same path of
Â−1 but backwards, and return to x.

In all three cases, every node of degree 2 in the resulting graph is comple-
mented by a pending half-edge, and every node of degree 1 is complemented
by two pending half-edges. Every half-edge is labeled consistently so that the
resulting graph, denoted by H2, is 3-homogeneous.

Finally, if Â does not traverse any of the two pending half-edges, then we set
H2 = H1. For l = 0, 1, 2, let parity(l) be the parity of the number of pending
half-edges labeled l in H2.

Claim . For any l, l′ ∈ {0, 1, 2}, parity(l) = parity(l′).

Proof. An edge of H2 can be considered as two non-pending half-edges. For
l ∈ {0, 1, 2}, let tl be the total number of half-edges of H2 labeled l, and pl,
resp. npl, be the number of pending, resp. non-pending, half-edges of H2 labeled
l. All nodes in H2 are exactly of degree 3 and are incident to one half-edge of
each label. Thus t0 = t1 = t2 = |H2| where |H2| is the number of nodes of
H2. In H2, if an half-edge is not pending, then it forms an edge with another
non-pending edge of H2 with the same label. Therefore, all the npl’s are even.
Since tl = pl + npl, tl and pl have the same parity, and thus all the pl’s have the
same parity. !

The parity of the number of pending half-edges of a given label in H2 is
denoted by �. If � is odd, then we add to H2 a node connected to one of the
half-edges, labeled say l, and add two half-edges pending from this node, labeled
l′ �= l and l′′ /∈ {l, l′}. As a consequence, � becomes even. Now, we pair the half-
edges with identical labels. For every pair but one, we connect the two half-edges
of the pair by the gadget displayed in Figure 2. (It could be possible to connect

2

Space Lower Bounds for Graph Exploration 149

the half-edges by just one edge, but the resulting graph may then not be simple).
By labeling the edges of every gadget appropriately, we obtain a 3-homogeneous
graph H3 with only two pending half-edges, of the same label.

H2

Fig. 2. The gadget for connecting half-edges

Claim . Starting from u, Â does not traverse any of the two half-edges of H3.

Proof. By construction, Â travels in Gq, and outside Gq it follows the trajectory
defined by paths and/or the ring attached to Gq at edges e and e′. Therefore, Â
does not traverse any of the half-edges of H2. In particular, it does not traverse
any of the two half-edges of H3. !

We define H4 as the graph obtained from H3 by adding a “tower” of height
K +1 connected to the two remaining half-edges, and a gadget closing the tower
(see Figure 3):

K+1

H3 v v’11

Fig. 3. The “tower” added to H3

Finally, the two internal nodes of the gadget at the top of the tower in H4

are denoted by v1 and v′
1 (see Figure 3).

Claim . The edge {v1, v
′
1} of H4 is not traversed by A when starting from u.

Proof. By Claim 3, starting from u in H4, Â does not traverse any of the two
edges leading from H3 to the tower. By Lemma 2, the trajectory of A is never

3

4

150 P. Fraigniaud et al.

at distance greater than K (where K is the number of states of A) from the
trajectory of Â. Thus, since the tower is of height K + 1, A never reaches the
top of the tower. Therefore, A does not traverse the edge {v1, v

′
1}. !

We repeat the same construction by considering the robot Â launched from
u′ in H4. More precisely, we construct Gq+1 from H4 in the same way H4 was
constructed from Gq. In particular, there is a tower in Gq+1, and we define the
nodes v2 and v′

2 of Gq+1 as the two internal nodes of the gadget at the top of
this tower. By construction Gq+1 is 3-homogeneous.

Claim . Any robot in A fails to traverse the edge {v2, v
′
2} of Gq+1 when starting

from u or u′.

Proof. By induction hypothesis, starting from u or u′, a robot in A \ {A} never
traverses v, v′ in Gq and so will never traverse any of the edges added to obtain
Gq+1, and hence does not traverse the edge {v2, v

′
2} of Gq+1. From Claim 3,

starting from u, A fails to traverse the edge {v1, v
′
1} of H4. This edge being the

one that is “opened” to construct Gq+1 from H4, A fails to reach any of the
two nodes v2 or v′

2 in Gq+1. Finally, by construction of Gq+1 from H4, A fails to
reach any of the two nodes v2 or v′

2 in Gq+1 when starting from u′, in the same
way A fails to reach any of the two nodes w or w′ in H4 when starting from u.
!

To complete the proof, it just remains to compute the size of Gq+1.

Claim . |Gq+1| ≤ |Gq|+ 10K + O(1).

Proof. We give simple upper bounds on the size of the intermediate graphs.
First, we have |H2| ≤ |Gq| + K + O(1). Moreover, there are at most one half-
edge pending from every added node in H2. For each pair of pending half-edges,
we added four nodes, and thus |H3| ≤ |H2|+ 2K + O(1). Finally, the tower has
2K +O(1) nodes and thus |H4| ≤ |Gq|+5K +O(1). The same procedure for the
starting node u′ contributes to another 5K + O(1) additional nodes. The result
follows. !

As a direct consequence of the previous claim, |Gq+1| ≤ 10qK + O(q), which
completes the proof of Theorem 1. ��

By simply rewriting Theorem 1, we derive a bound of the size of the small-
est trap for a set of q non-cooperative K-state robots, improving the one by
Rollik [7]:

Corollary 1. For any set of q non-cooperative K-state robots, there exists a
trap of size O(qK).

By simply plugging this latter bound in the construction by Rollik [7] for
team of cooperative robots, we get:

Corollary 2. For any set of q cooperative K-state robots, there exists a trap of

size Õ(KK···
K

), with q + 1 levels of exponential.

5

6

Space Lower Bounds for Graph Exploration 151

4 Bounds for Exploration with Stop

In this section, we consider the exploration with stop problem, in which a robot
must traverse all edges of the graph, and eventually stop once this task has been
achieved. A robot cannot solve this task in graphs with more nodes than its
number of states, by Lemma 1. Thus, the robot is given pebbles that it can drop
and take to/from any node in the graph. It is known that any finite robot with
a finite source of pebbles cannot explore all graphs [7]. On the other hand, it is
known that a robot with unbounded memory can explore all graphs, using only
one pebble [5]. An important issue is to bound the size of the robot as a function
of the size of the explored graphs.

A δ-p-robot with a pebble or simply p-robot when δ is understood, is an au-
tomaton A = (Δ,S, f, s0, sf), with a finite set of states S, s0, sf ∈ S, and

f : S × {0, 1} → S ×Δ× {pick, drop}.

Every state s ∈ S has a component p(s) ∈ {0, 1} that indicates if A has the
pebble, p(s) = 1, or not, p(s) = 0. For the initial state, s0, p(s0) = 0; for the
stop state, sf , p(sf) = 1. Each node v of the graph is in some state p(v) ∈ {0, 1}
that indicates if the pebble is in v, p(v) = 1, or not, p(v) = 0. The initial state
of the graph satisfies: p(v) = 1 for exactly one node v. We will assume the robot
is placed initially in the node with the pebble.

The movement of a δ-p-robot A on a δ-regular graph is represented by a
sequence of configurations, each one consisting of the state of the robot and the
state of the graph. For the initial configuration, A is placed on some node of
the graph in state s0, and the pebble is in exactly one node. In general, if A is
in a node v in state s in some configuration, we compute f(s, p(v)) = (s′, i, b).
In the next configuration A will be in the node v′ such that the edge {v, v′} is
colored i, in state s′. Also in the next configuration: if b = drop then p(v) = 1
and p(s′) = 0, and if b = pick then p(v) = 0 and p(s′) = 1. It is assumed that b
can be equal to drop only if p(s) = 1 and b can be equal to pick only if p(v) = 1.

A robot A explores with stop a graph if after starting in any node of the
graph that has the pebble, it traverses all its edges and enters a stop state. A
graph which A does not explore with stop is called a trap for A.

The next theorem shows that a p-robot that performs exploration with stop
in all graphs of at most n nodes requires Ω(n1/3) states, or equivalently Ω(log n)
bits of memory.

Theorem 2. For any K-state p-robot there exists a trap of size O(K3).

Proof. Let A = (Δ,S, f, s0, sf) be a K-state p-robot. We construct a trap of
size O(K3) for A. For that purpose, we consider the restriction of A to states s
such that p(s) = 0 and input 0 (on nodes with no pebble). This defines a robot
(with no pebble, as in Section 2.1) except that some states may be unreachable
from s0. For every state s of this robot, we consider the robot As that has s as

152 P. Fraigniaud et al.

initial state, and includes only reachable states from s. Let A = {As} be the set
of all these robots. Thus, |A| ≤ K.

Let G be a graph satisfying Theorem 1 for the set A. Remove edges {u, u′}
and {v, v′} from G. Consider two copies of the resulting graph, with the four
nodes of degree 2 indexed by the index of the copy, 1 and 2. These nodes are
re-connected as follows. Let c be the color of the deleted edge {v, v′}. Create two
edges {v1, v

′
2} and {v′

1, v2} with color c. The resulting graph is denoted by G1

(see Figure 4).

u1

u’1

v1

v’1

Graph G Graph G
u2

u’2

v2

v’2

Fig. 4. The graph G1

Consider an infinite ternary tree modified as follows. Each node is replaced
by a 6-cycle. Edges of the cycles are labeled alternatively 1 and 2. Then, edges
of the infinite tree are replaced by two “parallel” edges labeled 0, as depicted on
Figure 5. The resulting graph is denoted by T .

0

1

2
1

2

1
2

100

1

2
1

2

0

2
1

2

1

0

0 0

0 0

0 0

0

2

2
1

0
2

1

1
2

2
100

0 0

0

Fig. 5. The modified infinite tree T

The two graphs G1 and T are composed by replacing every pair {{x, y},
{x′, y′}} of parallel edges in T by a copy of G1. More precisely, x, y, x′, y′ are
respectively connected to nodes u1, u

′
2, u

′
1, u2 in G1. These new edges are labeled

0. The resulting graph is denoted by G2. A “meta-edge” of G2 is defined as a
copy of G1 replacing a parallel edge of T .

Space Lower Bounds for Graph Exploration 153

By definition of G and A, the p-robot A is unable to traverse a meta-edge of
G2 without the help of the pebble2. We now modify G2 to obtain a graph G3 such
that the p-robot A is unable to explore G3, even with the pebble. G3 contains
O(K) 6-cycles of T , and thus has at most O(K3) nodes. The transformation
from G2 to G3 is technical and very similar to the transformation used in [6]
and in [7]. Thus we only sketch the construction of G3, skipping technical details.
Since any p-robot cannot go from a 6-cycle to another 6-node cycle of G2 without
using the pebble, we define key steps as those for which the last time the p-robot
leaves a 6-cycle with the pebble, go through a meta-edge, and enters another 6-
cycle with the pebble. Because the number of states is finite, A will eventually
be twice in the same state at these key steps, at two nodes w and w′. With the
same technique as in [6], we identify the nodes w and w′. This leads to the graph
G3 with the desired properties, that is G3 has O(K) 6-cycles, and thus O(K)
“parallel” edges. In each pair of “parallel” edges, there is a copy of G1. Since G1

has O(K2) nodes, then G3 has O(K3) nodes. ��

Theorem 3. There exists an exploration with stop algorithm which requires
O(D log Δ) bits of memory when performed in the family of graphs with diameter
at most D and degree at most Δ.

Proof. We describe an algorithm called DFS-with-stop, that enables a robot
to explore all graphs, with stop. Exploration is achieved by a traversal of the
graph similar to DFS. Let u0 be the initial position of the robot. The pebble
is dropped at u0, and will remain there until exploration is completed. The
exploration proceeds in a sequence of phases. At phase i ≥ 1, the robot performs
a DFS at depth i. At any time during each phase the robot keeps in memory
the current sequence of port numbers leading back to u0 in the DFS tree. This
takes O(i log Δ) bits of memory during phase i, in a graph of maximum degree
Δ. At the beginning of Phase i, the robot sets the variable stop ← true. The
robot traverses the edges incident to a node u in increasing order of their labels.
When the robot leaves the current node u, and enters some node v, it proceeds
as follows. If the pebble is at v, then the robot backtracks. Otherwise, if the
current depth of the DFS is ≤ i−1, then the robot carries on the DFS traversal.
If the current depth of the DFS is equal to i, then the robot checks whether v has
already been visited or not during a previous phase. For that purpose, the robot
performs an auxiliary DFS of depth i− 1 from v. This again requires O(i log Δ)
bits of memory for storing the sequence of port numbers leading back to v in
the auxiliary DFS tree. If the robot finds the pebble during the execution of the
auxiliary DFS, then v is at distance ≤ i−1 from u0, and thus it has already been
explored during a previous phase. If the robot does not find the pebble during
the execution of the auxiliary DFS from v, then it sets the variable stop← false.
After completion of the DFS at Phase i, the robot stops if and only if stop = true.

2 Since the {u, u′} edges are “open”, the proof requires to consider the last time the
p-robot is in a u node; this is deferred to the full version of the paper.

154 P. Fraigniaud et al.

Else, it carries on exploration, by starting Phase i + 1. Clearly, the robot stops
after Phase D + 1 in a graph of diameter D. The memory requirement of this
exploration algorithm is dominated by the storage of the sequences of port labels
corresponding to two paths (one for the DFS, one for the auxiliary DFS). These
paths are of length at most D + 1 in the family of graphs with diameter D, and
thus contributes for O(D log Δ) when the degree of the graph is at most Δ. ��

5 Conclusions

We have proved that exploration with stop (using one pebble) requires Ω(log n)
bits for the family of graphs with at most n nodes. In [6], the same lower bound
holds for perpetual exploration. In fact, [6] proves that perpetual exploration
requires Θ(D log Δ) for the family of graphs of diameter at most D and degree
at most Δ. This latter result is obtained by proving that DFS-exploration is
space-optimal. We thus ask the following question: is Ω(D log Δ) bits of memory
required to explore with stop all graphs of diameter at most D and degree at
most Δ?

References

1. M. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. Information and Computation 176: 1–21,
2002. Prel. Version in STOC 1998.

2. M. Bender and D. Slonim. The power of team exploration: Two robots can learn
unlabeled directed graphs. In 35th Ann. Symp. on Foundations of Computer Science
(FOCS), pages 75–85, 1994.

3. L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195–282, 1978.
4. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little

Memory. In 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 588–597, 2002.

5. G. Dudek, M. Jenkins, E. Milios, and D. Wilkes. Robotic Exploration as Graph
Construction. IEEE Transaction on Robotics and Automation 7(6): 859–865, 1991.

6. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph Exploration by a
Finite Automaton. In 29th International Symposium on Mathematical Foundations
of Computer Science (MFCS), LNCS 3153, pages 451–462, 2004.

7. H.-A. Rollik. Automaten in planaren graphen. Acta Informatica 13: 287–298, 1980.
8. C.-E. Shannon. Presentation of a Maze-Solving Machine. In 8th Conf. of the Josiah

Macy Jr. Found. (Cybernetics), pages 173–180, 1951.

Communications in Unknown Networks:
Preserving the Secret of Topology

Markus Hinkelmann and Andreas Jakoby

Institut für Theoretische Informatik,

Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

{hinkelma, jakoby}@tcs.uni-luebeck.de

Abstract. Cryptography investigates security aspects of data dis-
tributed in a network. This kind of security does not protect the secrecy
of the network topology against being discovered if some kind of com-
munication has to be established. But there are several scenarios where
even the network topology has to be a part of the secret.

In this paper we study the question of communication within a secret
network where all processing nodes of the network have only partial
knowledge (e.g. given as routing tables) of the complete topology. We
introduce a model for measuring the loss of security of the topology when
far distance communication takes place. We will investigate lower bounds
on the knowledge that can be deduced from the communication string.
Several kinds of routing tables are not sufficient to guarantee the secrecy
of topology. On the other hand, if a routing table allows to specify the
direction from which a message is coming from we can run a protocol
solving the all–to–all communication problem such that no processing
node can gain additional knowledge about the network.

Finally, we investigate the problem, whether a knowledge base can be
generated from local knowledge of the processing nodes without losing
the state of secrecy. It will be shown that this is not possible for static
networks and most kinds of dynamic networks.

Keywords: communication in unknown networks, security of the topol-
ogy, network entropy.

1 Introduction

Talking about cryptographic aspects in computer science one usually thinks
about some private data that has to be kept as a secret. But this kind of secu-
rity does not protect a secret communication network against being discovered
if some kind of communication takes place. Consider for example the situation
of a secret agent in the following scenario:

The evil secret agent Fat Bastard is spying on Austin Powers. To send
his results to Dr. Evil he uses a network of couriers who do not know for
whom they are working. To protect the network against attacks of the

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 155–169, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 M. Hinkelmann and A. Jakoby

intelligence service every courier only knows a local part of the courier
network. Hence, each single attack only destroys a small part of the
network and does only give negligible knowledge about the remaining
network. Furthermore, if a local attack occurs all neighbours of the at-
tacked courier may disappear. Every courier has a local instruction set,

Fig. 1. Fat Bastard spies on Austin Powers

telling him how to forward a message. To improve efficiency one may
want to reduce the number of messages received by every member of the
network. Note that the intelligence service may get additional knowledge
about the topology when analysing the amount of received messages and
the local instruction set of a courier.

The fact that a courier has restricted access of the network topology is of
strategic importance. If the network is located in an hostile environment it is
necessary to reduce the risk of the couriers from being compromised. Further-
more, the existence of central entities in the network has to be avoided [21]. We
enhance the security of those networks if the couriers have as little knowledge
about the network as possible. If the knowledge about the network is limited,
i.e. it is a subject of privacy, then it will also be a hard task for the enemy to
choose where to place loyal forces to intercept a transmission.

In this paper we focus on the question whether all–to–all communication is
possible if we keep the network topology as a secret.

Communication and Computation in Unknown and Restricted
Networks

The interplay of network topology and communication security has been studied
extensively in the last decade. So far, one has examined the effects of restricted
networks for secure and private computations and communications (see e.g. [3,
10, 11, 14, 18]). The goal is to compute a function depending on the secret inputs
of the network nodes (called players) such that after the computation is done
no player knows anything about the secrets of the other players that cannot
be derived from the function value and its own secret. The authors investigate

Communications in Unknown Networks 157

the question whether privacy of data can be preserved if the communication
network is restricted. The range of possible attacks varies between byzantinean
players [9] and honest-but-curious players [2, 8], where the players follow the
protocol precisely but are allowed to “gossip” afterwards.

Depending on the computational power of the players we distinguish between
cryptographically secure privacy and information theoretically secure privacy. In
the first case we assume that no player is able to gain any information about
the input bits of the other players within polynomial time [19, 20]. In the second
case we do not restrict the computational power of the players. This notion of
privacy (sometimes called unconditional privacy) has been introduced by Ben-Or
et al. [2] and Chaum et al. [8].

In the papers cited so far, the authors assume that the network is fixed and
known in advance. The situation changes when we consider unknown or dynamic
networks. This kind of networks is investigated if focusing on ad–hoc networks.
The main security attributes that are considered for ad–hoc networks are avail-
ability (survival against an attack), confidentiality (hiding sensitive information),
integrity (accepted data is not corrupted), authentication, and non-repudiation
(a message cannot be denied by the sender). But only confidentiality addresses
privacy concerns [21]. Known protocols that achieve secure communication in an
ad–hoc network are usually based on discovering parts of the existing topology
at first and using this knowledge to distribute data. Therefore, they are based
on the assumption that the topology is stable for a sufficiently long period of
time. If Byzantinean players may occur most papers are dedicated to protocols
for finding a trusted path from the sender to the receiver [4, 5, 6]. Malicious links
can be avoided by assigning high costs, resp. weights, to these links. [1].

All papers cited above ignore the aspect that the network topology might be
a secret for itself. Focusing on anonymous communication one gets some kind of
a model that considers the topology as a secret [7, 15, 17]. These papers study
the traffic analysis problem, i.e. the problem of hiding the sender or the receiver
of a message or even the path used for routing a message: Chaum introduces a
central entity called mix [7]. In his protocol a message is first sent to the mix
which forwards the message to the receiver and clouds the relationship of the
sender and the receiver. Onion routing extends this technique such that proxies
in the network establish an anonymous channel between the sender and the
receiver [15, 17]. Basically, the sender chooses a delivery path and encodes the
path information in the message. Step by step, the proxies decode the successor
in the path and forwards the message. The proxies en route work as distributed
mixes of the path. Hence, these solutions of the traffic analysis problem explicitly
use given routing information in the network.

Our Security Goal

We focus on the problem of all-to-all communication in an unknown network
where the topology is the subject of secrecy. Therefore, we introduce a model
called advised network that combines a communication network and partial
knowledge about it. We present a method for measuring the information gain

158 M. Hinkelmann and A. Jakoby

on the network topology, resp. the loss of network secrecy, when performing
a protocol that establishes arbitrary communications between the players. The
model of measuring the information gain is closely related to Shannon’s entropy
function [16] and the mutual information.

Since players which do not know anything about the network — nor even
their neighbourhood — cannot perform any kind of useful communication, we
make some knowledge K of the topology available to every player. Then, we will
investigate the information gain on the network topology G that can be deduced
by examining the communication string C. More precisely, we will investigate the
conditional mutual information I(G; C|K). Moving knowledge about the protocol
into the knowledge base one can always guarantee that I(G;C|K) = 0. Therefore
we are also interested in the uncertainty of the topology if the knowledge base
is given, i.e. H(G|K).

The paper is organised as follows. In the following section we will formally
introduce our model of advised networks that combines the network topology
with partial knowledge. Furthermore, we introduce the network entropy and the
corresponding mutual information as a measure for the amount of information
given by the communication string about the topology. Section 3 is dedicated
to the problem of determining necessary conditions of the knowledge for all–to–
all communication. We will show that some knowledge about the distances in
the network will always be revealed during the execution of a protocol solving
all–to–all communication. In Section 4 we will analyse knowledge bases that
correspond to routing tables. If the routing table defines a spanning tree of
the network, then partial knowledge of this routing table is sufficient to find a
protocol that guarantees I(G; C|K) = 0. Then, in Section 5 we will investigate
the question whether it is possible to construct some kind of routing table–like
knowledge base from local network knowledge like the neighbourhood. We will
show this is not possible for static networks. Furthermore, we will discuss this
problem for dynamic networks. We will show that the construction of a sufficient
knowledge base is possible if and only if the players are added to the network
node by node. Section 6 will conclude this paper. This work is based on [13].

2 Preliminaries

G = (V, E) denotes a graph, V are the vertices and E are the edges of G. For a
graph G the edges of G are given by E(G) and the vertices by V(G). We refer
|V (G)| to be the size of G and Gn to the set of graphs with n vertices.

A (communication) network is an undirected graph G = (V, E). The
edges are called links. The vertices are called processing nodes (PN for
short). The set nbh(Pi) is called the neighbourhood of PN Pi, i.e. the set of
all PNs that have links to Pi. A path between two PNs Pi, Pj ∈ V in G is
a acyclic subgraph πG(Pi, Pj) with V(πG(Pi, Pj)) = {v1, v2, . . . , vk}, v1 = Pi,
vk = Pj , and E(πG(Pi, Pj)) = {{vi, vi+1} | i ∈ [1, k − 1]} ⊆ E(G). The length
of πG(Pi, Pj) is the number of links in the path. For easier notation we identify
πG(Pi, Pj) with its ordered sequence of PNs.

Communications in Unknown Networks 159

The networks investigated in this paper are synchronous, i.e. the PNs act
in rounds. At the beginning of a round the PNs may receive messages from
their neighbours. Then, internal computations are performed. At the end of
a round the PNs may send messages to their neighbours that are received in
the following round. The communication behaviour of the PNs is specified by
the used protocol. Usually protocols are based on some knowledge about the
underlying network topology. In the following we assume that a protocol can be
executed on every network. To provide the PNs with the knowledge necessary to
execute the protocol on the specific network we allow the PNs to use a predefined
and network specific data base K. A PN Pi does not need to have a global view
of the network. It is rather possible that the data base includes knowledge about
Pi’s neighbourhood, how many PNs exist in the network, and that the network
is connected. The data base grants Pi only a restricted access to a local data
base Ki ∈ K. More formally we define:

Definition 1. Let R be the set of all local data bases. A mapping T : Gn −→ Rn

is called knowledge base generator. The knowledge base of G is denoted
as K := (K1, . . . , Kn) = T (G) and Ki is called knowledge base of PN Pi.
The tuple (G, K) is called advised network.

Note that a local knowledge base Ki may not reveal the whole network to PN
Pi. Thus, there may exist several networks such that Ki is the knowledge base
provided to Pi. Hence, an additional information source for Pi about the network
topology is given by the communication sequence when performing a protocol.
Let CP,K,i be the set of all communication sequences Ci seen by Pi using Ki

when performing a protocol P. If P is deterministic then |CP,K,i| = 1. To address
the possible networks we define

G[Ki] := {G ∈ Gn | ∃K′ : T (G) = K′ = (K′
1, . . . ,K′

i, . . . ,K′
n) and K′

i = Ki}.
G[Ki, Ci] := {G ∈ Gn | ∃K′ : T (G) = K′ = (K′

1, . . . ,K′
i, . . . ,K′

n) and K′
i = Ki

and Ci ∈ CP,K′,i }.

The purpose of this paper is to find a knowledge base and a protocol that solves
a communication problem such that no additional knowledge can be obtained by
listening to the received messages, i.e. G[Ki] = G[Ki, Ci]. In particular, we will
focus on the all–to–all communication problem (A2A), i.e. for all pairs
(Pi, Pj) ∈ V × V the PN Pi sends an individual message mi,j to Pj . After
receiving mi,j the receiver Pj is able to identify the sender Pi.

We are interested in the amount of uncertainty of the PNs about the network.
To measure the uncertainty we adapt Shannon’s entropy function [16] and the
mutual information that are defined as follows. For two discrete random variables
X, Y the probability of x is denoted as px := P(X = x) and the conditional
probability of x given y is denoted as px|y := P(X = x|Y = y). The
entropy of X, resp. the conditional entropy of X given Y , is defined by

H(X) := −
∑

x
px·log(px) and H(X|Y) := −

∑
y

∑
x

py·px|y·log(px|y).

160 M. Hinkelmann and A. Jakoby

The conditional mutual information between X and Y given Z is defined
by

I(X; Y |Z) := H(X|Z)−H(X|Y, Z).

Definition 2. Let (G,K) be an advised network, let P be a protocol solving
a communication problem on (G,K), and let Pi ∈ V(G). The knowledge base
Ki defines the discrete random variable X with values in Gn. Note that P(X =
G′|Ki) > 0 iff G′ ∈ G[Ki]. The uncertainty about G of Pi is defined by H(X|Ki).
We call H(X|Ki) the network entropy according to Pi and K. We say K
covers the mutual information of P iff I(X;Ci|KiP) = 0 for all i and
Ci ∈ CP,K,i. The set cov(P) is defined as the set of all knowledge bases that
cover the mutual information of P.

Note that using this definition we do not restrict the computational power of
a PN that tries to gain some knowledge about the network from the communi-
cation sequence. For easier notation we write H(G|Ki) instead of H(X|Ki) and
I(G;Ci|KiP) instead of I(X; Ci|KiP). In our model the distribution of X is un-
known to Pi. Thus, all networks in G[Ki] are indistinguishable for Pi. Therefore,

P(Gi = G′|Ki) = 1
|G[Ki]| for all G′ ∈ G[Ki] and H(G|Ki) = log(|G[Ki]|) is the

network entropy according to Pi and K.
Our aim is to find a protocol P and a knowledge base generator T such that

P solves a given communication problem on (G, T (G)) = (G,K) for all networks
G and

K ∈ cov(P), i.e. I(G; Ci|KiP) = 0 for all i and Ci ∈ CP,K,i .

If G is known to all PNs, then any protocol that solves A2A fulfils this condition.
Since we address the network as the subject of secrecy, we want to maximise
the network entropy of the PNs. Therefore, the knowledge provided to a PN has
to be as small as possible.

3 Lower Bounds on the Knowledge to Solve A2A

In the following we want to present some properties that must be fulfilled by a
knowledge base to cover the mutual information of a protocol solving A2A.

Inherent Knowledge

The protocol P has to solve A2A on all networks. Especially, P solves A2A on
(G, T (G)) where G is a tree. Recall that we do not limit the computational
power of the PNs. On a tree for any pair Pi, Pj and any PN Pk on the path from
Pi to Pj the PN Pk receives all messages sent from Pi to Pj . Thus, Pk is able
to extract the same information from these messages as Pj . Since each PN Pj is
able to identify the sender Pi of a message mi,j addressed to it, every PN is able
to decide which PN is the destination and which is the sender. Therefore, we
assume in the following that the sender and receiver is given in the header of a

Communications in Unknown Networks 161

message. To solve A2A the PN Pj has to be reachable from all other PNs. Hence,
the knowledge base generator has to include the knowledge that G is connected,
the size of G, the ID i of Pi and all other used IDs in Ki. We call this inherent
knowledge.

If the knowledge base of an advised network only contains inherent knowledge,
then a protocol that solves A2A for all connected networks has to broadcast any
message. But if messages are broadcasted in 2–connected components, some PNs
gain partial knowledge about these components. Note that this is not deducible
from inherent knowledge.

To minimise the partial knowledge about the network, communication is done
using a selective broadcast, resp. via selected links. Therefore, we also add the
knowledge about the links used by P to the inherent knowledge. We assume
that these links can be addressed by Pi as e1, . . . , ek. The use of selected links
motivates the use of routing tables as knowledge bases. In Section 4 we will
see that the neighbourhood of a PN does not need to be known in detail. We
will present a protocol that solves A2A by addressing explicit neighbours. This
protocol can easily be transformed into a protocol that only uses incident links
without knowledge of the adjacent PNs.

Monotone Offset Function

If messages travel through a synchronous network they are delayed at least one
round by every PN they pass. Hence, the round when a message is received
depends on the delay, respectively on the number of PNs passed. We will show
that there must be some information about the distances in the knowledge base
to communicate in the network without revealing knowledge.

Definition 3. Let (G,K) to be an advised network and P be a communication
protocol that solves A2A on (G,K). A function Δ : V × V → N is called mono-
tone offset function (MOF) for (G, K) with P, iff for all processing nodes
Pi �= Pj ∈ V , for all paths πG(Pi, Pj) = {v0, . . . , vk} that are used by P, and for
all l ∈ [0, k − 1] it holds that Δ(Pi, vl) < Δ(Pi, vl+1).

If a MOF is given, we can construct a protocol that routes the messages
along the paths as defined in P. In addition we delay the messages according to
the setting of the MOF. Thus, the delay and the upper bound of the distance
between two PNs is given by the MOF. Hence, we get:

Lemma 1. Let (G,K) be an advised network. If a MOF Δ for (G,K) is de-
ducible from the knowledge base K, then there exists a communication protocol
P such that P solves A2A on (G,K) and the execution of P does not reveal more
information about the distances in G than K.

Proof. P is deterministic and works as follows. Let πG(Pi, Pj) be a path from
Pi to Pj in G and Δ be a function fulfilling the property of Definition 3 with
V(πG(Pi, Pj)) = {v0, . . . , vk}. If a message M has to be sent from Pi to Pj , then
v0 delays M for Δ(v0, v0) rounds and sends M to v1. For l ∈ [1, k−1] vl receives

162 M. Hinkelmann and A. Jakoby

M after Δ(v0, vl) rounds, it delays M for Δ(v0, vl+1)−Δ(v0, vl)− 1 ≤ 0 rounds
and sends M to vl+1. The delay of M equals the values of Δ for all pairs of
PNs. Thus, the execution does not reveal more information about the distances
as given by K.

If no MOF is given, then the communication in the network provides more
information about the network topology than without sending messages.

Theorem 1. Let (G,K) be an advised network and P a communication protocol
that solves A2A on (G,K). If it is not possible to deduce a MOF for (G,K) with
P from K, then K �∈ cov(P).

To prove this theorem we show that if no MOF is known, then by ex-
amining the communication of P either some networks can be excluded, i.e.
G[Ki] \ G[Ki, Ci] �= ∅, or a MOF can be constructed. Hence, the knowledge base
in an advised network needs to contain consistent information about the dis-
tances or the delay of messages in the network.

Proof. Let di,j : N −→ 2G[KjP] be a mapping from the delay δ of a message
travelling in (G,K) from Pi to Pj to the set G[KjPδ] that includes all networks
of G[KiP] for those a message sent from Pi to Pj is delayed by δ.

If there exists processing nodes Pi �= Pj and delays δa, δb with
di,j(δa), di,j(δb) �= ∅ and di,j(δa) �= di,j(δb), then there exists a network
G′ ∈ (di,j(δa) ∪ di,j(δb)) \ (di,j(δa) ∩ di,j(δb)). W.l.o.g. assume G′ ∈ di,j(δa).
Thus, di,j(δb) ⊂ G[KjP] and I(G; δb|KjP) > 0, i.e. K �∈ cov(P).

If for all processing nodes Pi �= Pj there exists a delay δi,j with di,j(k) = ∅
for all k < δ and di,j(k) = di,j(δ) for all k ≥ δ, then the function Δ(i, j) = δi,j

is a monotone offset function for (G,K) with P. The property of Definition 3
follows from the fact that with growing distance to the sender the delay must
increase strong monotonically. Assume K ∈ cov(P) then Δ is deducible from K
— a contradiction.

4 Routing Tables

Types of knowledge bases that include inherent knowledge and sufficient knowl-
edge about distances in the network are routing tables. Furthermore, routing
in most networks as well as in the Internet is done using routing tables. Thus,
we want to analyse the properties of a routing table such that A2A is possible
by using the table and one cannot reveal additional knowledge about the net-
work. For easier notation we assume that every PN knows its neighbourhood.
The functions discussed in the following, i.e. the nextG and the lastG function,
depend on the neighbour that sends a message. Note that we can easily modify
this function such that they depend only on the used links.

If a message is received by a PN, the routing table provides the information
to which neighbours the message has to be send next. These neighbours may
depend on the sender and the receiver of the message. In the following definition
a routing table is represented by the function nextG.

Communications in Unknown Networks 163

Definition 4. Let (G,K) be an advised network where K includes inherent
knowledge. K fulfils the weak routing table property (WRTP) on G, if
for all Ps, Pt, Pi ∈ V(G) holds: There exists a function nextG : V 3 → 2V that is
computable by Pi using Ki such that |{Pj |Pi ∈ nextG(Pj , Ps, Pt)}| ≤ 1 and for
a path πG(Ps, Pt) with V(πG(Ps, Pt)) = {P0, . . . , Pk}, Ps = P0 and Pt = Pk it
holds that Pi+1 ∈ nextG(Pi, Ps, Pt) for all i < k.
K fulfils the consistent routing table property (CRTP) on G, if K

fulfils WRTP and for the function nextG that is computable by Pi using Ki

under WRTP holds: The network STG(V(G), E′) is a spanning tree of G where
E′ = {{Pi, Pj}|∃Ps, Pt : Pj ∈ nextG(Pi, Ps, Pt)}.
K fulfils the strong routing table property (SRTP) on G, if K fulfils

CRTP and it holds: For the function nextG computable by WRTP of K there is a
partially defined function lastG : V 3 → V that is computable by Pi using Ki such
that for all Pi, Pj , Ps, Pt holds lastG(Pi, Ps, Pt) = Pj if Pi ∈ nextG(Pj , Ps, Pt)
and lastG(Pi, Ps, Pt) = ⊥ otherwise.

The WRTP property defines for all sender–receiver pairs a tree connecting
both PNs. If the knowledge base fulfils CRTP, then the nextG–function induces a
spanning tree of the network. The SRTP property guarantees that the knowledge
base provides information about the predecessors, i.e. the inverse of the nextG–
function. By a counter–example we can show that:

Theorem 2. There exist advised networks (G,K) that fulfil CRTP such that for
all communication protocols P that solve A2A on G it holds that K �∈ cov(P).

Proof. Assume P to solve A2A on an advised network (G,K) with K ∈ cov(P).

Let G be the network illustrated in Figure 2 and let K include inherent knowl-
edge and the function nextG but not lastG. As P solves A2A the node Ps sends
a message M to Pt. K ∈ cov(P) fulfils
WRTP, thus, P1 receives M exactly once,
otherwise P1 learns that P1, P2, P3 belong
to the same 2–connected component of G.
P1 gets to know its preceding processing
node if Ps sends a message to Pt. Now
assume, that every pair of processing
nodes exchange messages. Thus, for all
sending and receiving processing node

P2

P0 Ps P1 PtP3

Fig. 2. Network from the proof of
Theorem 2

each processing node is able to compute the predecessor. If K ∈ cov(P) all
communication that is seen by Pi ∈ V(G) must be computable from Ki and the
knowledge about P. Hence, lastG is computable from K and K fulfils SRTP, a
contradiction.

If K fulfils SRTP the function lastG provides each PN Pi with the size, i.e. the
number of nodes of the subtrees corresponding to each neighbour Pj in nbh(Pi):

sizeST(Pi, Pj) :=
∑

Pt∈V(G) |{Ps | lastG(Pi, Ps, Pt) = Pj}| .

164 M. Hinkelmann and A. Jakoby

Note that we can easily compute the function sizeST(Pi, Pj) of a pair Pi, Pj even
if Pj �∈ nbh(Pi) such that sizeST(Pi, Pj) is the number of nodes reachable from
Pj in STG without passing Pi.

Theorem 3. Let (G,K) be an advised network where K fulfils SRTP . Then,
there exists a protocol P that solves A2A with K ∈ cov(P).

The protocol routes the messages using nextG and lastG. If a PN Pi has
to forward a message M due to nextG, Pi delays M according to the sizes of
the subtree including Pi as seen from the receiving neighbours. One can show
that Pi does not get further information about the network, especially, Pi gets
no additional information about the distances between two nodes. Algorithm 1
describes a protocol that realises one–to–one communication. The procedure can
be easily modified to solve A2A.

Algorithm 1 Sending a message M from Ps to Pt

Input: message M , sending PN Ps, receiving PN Pt, nextG, lastG

1: for all Pi ∈ V(G) do in parallel
2: if Pi �= Ps then receive M end if
3: if Pi = Ps then
4: for all Pj ∈ nextG(Pi, Ps, Pt) do in parallel
5: dPj ← ∑

Pk∈nbh(Pi)\{Pj} sizeST(Pi, Pk)

6: end for
7: else if Pi �∈ {Ps, Pt} then
8: for all Pj ∈ nextG(Pi, Ps, Pt) do in parallel
9: dPj ← −sizeST(Pi, lastG(Pi, Ps, Pt)) +

∑
Pk∈nbh(Pi)\{Pj} sizeST(Pi, Pk)

10: end for
11: end if
12: if Pi �= Pt then delay M for dPj rounds, send M to Pj end if
13: end for

5 Generating Routing Table–Like Knowledge Bases

So far, we have analysed advised networks with given knowledge bases. When
real communication networks are set up a PN gets the knowledge about its
environment from a higher authority: The network administrator plugs in the
wires, the DHCP–Server answers a broadcast and informs the node about its IP–
address and the gateway to the Internet. We want to keep the network topology
secret. Thus, a higher authority with a global view on the network should be
avoided. Now, we are going to analyse whether the PNs are able to build up SRTP
fulfilling routing tables from inherent knowledge and the knowledge about their
neighbourhood by exchanging some messages. Recall that the communication
sequence of a PN must not give more knowledge about the network than is
deducible from the constructed knowledge base.

Communications in Unknown Networks 165

The networks considered so far have been static. In the following we focus
on networks that are dynamic. These are inspired by ad–hoc networks. We con-
centrate on dynamic networks where single PNs or networks of PNs are added
to a given network. This means, single PNs or communication networks may ap-
pear and be connected to the existing network by adding links. The connection
is done by updating the nbh–function in the knowledge bases and combining
those. More formally, in the beginning a PN Pi uses K0

i . In the case that some-
thing occasionally changes, some of the PNs get updated knowledge bases. Thus,
at round T , PN Pi is allowed to use all knowledge bases in {Kj

i | j ∈ [0, T]}.
Therefore, we assume that KT

i includes the contents of all prior knowledge bases.
We deal with the question whether the routing tables KT+1

i can be generated
without revealing more knowledge about the network than given by KT+1

i by
analysing the communication that occurs during the generation of the modified
routing tables. Since we will discuss the update problem in the following, we will
omit the superscript T .

If the nbh–function is updated, the PNs do not have any information about
the settings of the SRTP conforming functions nextG and lastG of the added
PNs. Thus, for generating a SRTP fulfilling knowledge base of the combined
network communication in the network is necessary. In the following we will
show that adding single nodes to a network can be handled without revealing
more knowledge by the communication than one can deduce from the resulting
knowledge base.

Definition 5. Let (G′,K′) and (G′′,K′′) be two node disjoint advised net-
works. (G,K) is called the combined network of (G′,K′) and (G′′,K′′) iff
G = (V(G′) ∪ V(G′′),E(G′) ∪ E(G′′) ∪ E) for some links E ⊆ {{Pi, Pj}|Pi ∈
V(G′), Pj ∈ V(G′′)}. For each PN Pi ∈ V(G′) the knowledge base Ki consists of
K′

i, the size of G, and the modified neighbourhood function of Pi in G. Analo-
gously, the knowledge base for a processing node in V(G′′) is modified.

If we add a single PN to an existing network, the new PN can select one of
its neighbours to be its exclusive neighbour in the nextG–tree. Using a protocol
analogously to Algorithm 1 we can update the knowledge bases of the remaining
PNs. Hence, we get:

Lemma 2. Let (G′,K′) and (G′′,K′′) be two disjoint advised networks where
K′,K′′ fulfil SRTP. If the network G′′ consists of a single PN, then there exists a
protocol P that generates the knowledge base of the combined network (G,K) such
that K fulfils SRTP and K ∈ cov(P) and no further knowledge can be deduced
by any PN performing P.

Combining Networks

Let (G′,K′) and (G′′,K′′) be two advised networks both of size at least two as
illustrated in Figure 3. Assume that K′ and K′′ fulfil the strong routing table
property. Now we combine G′ and G′′ to a connected network G by adding some
links. Let K be the resulting knowledge base. In the following we will focus on

166 M. Hinkelmann and A. Jakoby

the question whether K fulfils the strong routing table property, i.e. focusing on
the question whether we can construct a nextG–function as used in the definition
of the strong routing table property from the local knowledge about K′,K′′ and
the updated neighbourhoods.

e1

e2

e5

e4

e6

P1

Pt

e3

Ps

P2

P3

Fig. 3. Possible connections be-
tween two subnetworks

i = 1

i = 2

i = 3

KBi G1 G2 G3 G4 G7G5 G6

i = 4

i = 5

i = 6

Fig. 4. Knowledge bases and additional knowl-
edge of P1, resp. P2 , (first column) and cor-
responding networks after combining two net-
works

Theorem 4. There does not exist a communication protocol P such that for all
sequences of advised networks (G′,K′), (G′′,K′′), . . . where all knowledge bases
fulfil SRTP, P generates a SRTP fulfilling knowledge K base of the combined net-
work and K ∈ cov(P) where K only consists of the knowledge given by K′,K′′, . . . ,
the updated neighbourhood function and a new nextG–function.

Proof. We consider the case of combining two advised networks (G′,K′) and
(G′′,K′′). (G,K) denotes the combined network. G′ and G′′ each consist of two
PNs. Figure 4 illustrates some examples for (G,K). In the images G′ consists
on the two nodes on the left hand side and G′′ consists of the remaining nodes.
The PNs of G′ are denoted as P1 and P2 where P1 is drawn in the upper left
corner. The graph in the first column gives possible shapes of the knowledge
base in the combined network (G,K) for the distinguished PN that is denoted
by the solid dot. We denote the knowledge base in row i as KBi. In remaining
columns we give all networks G that may occur for the knowledge base in the
same row. The first three rows consider P1 as the distinguished PN and the last
three rows consider P2. A solid line in the knowledge base KBi means that the
distinguished PN knows that the corresponding link is part of the spanning tree
STG induced by the nextG–function of K. If the line is dotted, the link exists but
is not part of STG. In total, there are 15 possibilities for G. But restricting to
the knowledge bases in the first column only the networks G1, . . . , G7 can occur.

Assume that the knowledge bases K′ does not include any information about
G′′ andK′′ does not include any information about G′. Let P be a communication
protocol that generates the knowledge base of the combined network (G,K) such

Communications in Unknown Networks 167

that K fulfils SRTP. Assume that K ∈ cov(P). Since P and K′ are fixed we omit
them in the probabilities. Assume that G = G4. Then, either KB1, KB2, or KB3

has be the resulting knowledge base of P1 after performing P. Thus, there exists
j ∈ {1, 2, 3} with P(KBj) > 0. Since K ∈ cov(P), the PN cannot distinguish
between possible networks. Hence, for all i ∈ [1, 4] it holds that

P(Gi|KBj) = 1
4 and P(Gi, KBj) = 1

4 · P(KBj).

In total, there exist 15 networks G after the combination process. Therefore,

P(Gi) = 1
15 and P(Gi,KBj) = 1

15 · P(KBj |Gi).

Thus, P(KBj |Gi) can be described independently of Gi for i ∈ [1, 4]:

P(KBj |Gi) = 15
4 · P(KBj).

This implies that for i, l ∈ [1, 4] and j ∈ {1, 2, 3} it holds that

P(KBj |Gi) = P(KBj |Gl).

Recall that if G4 occurs, then only KB1, KB2, or KB3 may be the result of P
for P1. Thus,∑

j∈{1,2,3}
P(KBj |G4) = 1 and therefore,

∑
j∈{1,2,3}

P(KBj |G1) = 1.

Especially, it holds that

P(KBj |G4) = P(KBj |G1) = 0

for j ∈ {4, 5, 6}. Analogously to our analysis above, we can show for P2 that
KB4,KB5,KB6 are the only possible knowledge bases for P2 if G7 occurs.
Hence, ∑

i

P(KBi|G7) =
∑

i∈{4,5,6}
P(KBi|G7) = 1

and
P(KBj |G4) = P(KBj |G1) = 0

for all j �∈ {4, 5, 6} – a contradiction. We can conclude that K �∈ cov(P).

If we restrict the knowledge bases to contain only the inherent knowledge,
nextG, and lastG, then it follows by the theorems above:

Corollary 1. Let K be a knowledge base fulfilling SRTP. Then, there does not
exist a protocol P such that K ∈ cov(P) and P generates K from the inherent
knowledge in dynamic networks except the case PNs are added one by one and
K fulfils SRTP.

168 M. Hinkelmann and A. Jakoby

Static Networks

Static networks are fixed from the beginning. They never change their shape.
In contrast to dynamic networks a protocol P, that generates a SRTP fulfilling
knowledge base, cannot resort to the addition of one PN like in Lemma 2. Static
networks lack to know the sequence in which the PNs are included into the
network.

The question whether knowledge bases can be generated out of inherent
knowledge in the static case also influences the dynamic case. When a communi-
cation network is set up it usually consists of several PNs. Thus, most dynamic
networks originate from a static basis. Such a basis has as well to be provided
with a knowledge base that allows all–to–all communication.

Calculating the network entropy we can show:

Theorem 5. There does not exist a communication protocol P such that for
each communication network G the protocol P generates a SRTP fulfilling knowl-
edge base K ∈ cov(P) such that only the inherent knowledge and the SRTP
nextG–/ lastG–functions are deducible from K.

To prove this theorem we analyse the network entropy of the network given
in Figure 3. One can show that either P1 learns something about the remaining
links incident to Pt or Pt learns something about the remaining links incident
to P1.

6 Conclusions and Open Problems

In this paper we have investigated the secrecy of network topology. Therefore, we
have introduced the model of advised networks. The available knowledge of the
PNs about the network is represented by their knowledge bases. A information
theoretic metric called network entropy is introduced. We have investigated some
knowledge bases with routing table properties and studied whether these are
sufficient to ensure privacy of the network. For knowledge bases that fulfil the
strong routing table property a protocol is presented that solves the all–to–all
communication problem. This protocol does not reveal additional information
about the network topology. Finally, we have dealt with the question whether
the knowledge bases can be generated from inherent knowledge. More precisely,
we have studied whether a routing table that only consists of SRTP functions
can be computed if two or more dynamic networks are combined. We have shown
that there does not exist a protocol that generates the desired knowledge bases
without giving away more information about the topology than allowed. The only
exception is the case where single nodes are added in dynamic environments.

Many problems remain open. We want to minimise the knowledge given to
the PNs. Do routing tables provide minimal knowledge? And if not, can we
find a knowledge base such that the network entropy is maximal? The dynamic
networks used are inspired by ad–hoc networks. We allowed that PNs and links
are added. But in ad–hoc networks links and PNs may disappear or some links

Communications in Unknown Networks 169

are inoperable from time to time. What property is sufficient for a knowledge
base in these environments? It also remains as an open problem whether
asynchrony increases the network uncertainty and therefore, the security.

Acknowledgements. We would like to thank an unknown referee for useful
comments and R. Reischuk for fruitful discussions.

References

[1] B. Awerbuch, D. Holmer, C. Nita-Rotaru, H. Rubens, An On-Demand Secure
Routing Protocol Resilient to Byzantine Failures, ACM Workshop WiSe, 2002,
21–30.

[2] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness Theorem for Non cryp-
tographic Fault-tolerant Distributed Computing, STOC, 1988, 1–10.

[3] M. Bläser, A. Jakoby, M. Lískiewicz, B. Siebert, Private Computation – k-
connected versus 1-connected Networks, CRYPTO, 2002, 194–209.

[4] M. Burmester, Y. Desmedt, Secure Communication in an Unknown Network Using
Certificates, ASIACRYPT, 1999, 274–287.

[5] M. Burmester, T. Van Le, Secure Multipath Communication in Mobile Ad hoc
Networks, ITCC, 2004, 405–409.

[6] M. Burmester, T. Van Le, A. Yasinsac, Weathering the Storm: Managing Redun-
dancy and Security in Ad Hoc Networks, ADHOC-NOW, 2004, 96–107.

[7] D. Chaum, Untraceable electronic mail, return addresses, and digital pseudonyms,
Communications of the ACS, 4(2), 1981, 84–88.

[8] D. Chaum, C. Crépau, I. Damg̊ard, Multiparty unconditionally secure protocols,
STOC, 1988, 11–19.

[9] D. Dolev The Byzantine generals strike again, J. of Algorithms, 3(1), 1982, 14-30.
[10] M. Franklin, N. Wright, Secure communication in minimal connectivity models,

EUROCRYPT, 1998, 346–360.
[11] M. Franklin, M. Yung, Secure hypergraphs: privacy from partial broadcast (Ex-

tended Abstract), STOC, 1995, 36–44.
[12] D. M. Goldschlag, M. G. Reed, P. F. Syverson, Hiding Routing Information, In-

formation Hiding, 1996, 137-150.
[13] M. Hinkelmann, Preserving the Secret of Topology, Diplomarbeit, Institut für The-

oretische Informatik, Universität zu Lübeck, 2004
[14] A. Jakoby, M. Lískiewicz, R. Reischuk, Private Computations in Networks: Topol-

ogy versus Randomness, STACS, 2003, 121–132.
[15] M. Reiter, A. Rubin, Crowds: anonymity for Web transactions, ACM Transactions

on Information and System Security, 1(1), 1998, 66-92.
[16] C.E. Shannon, A Mathematical Theory of Communication, The Bell System Tech-

nical Journal, vol. 27, 1948, 379–423 and 623–656.
[17] P. F. Syverson, D. M. Goldschlag, M. G. Reed, Anonymous Connections and

Onion Routing, IEEE Symposium on Security and Privacy, 1997, 4–7.
[18] Y. Wang, Y. Desmedt, Secure communication in broadcast channels: the answer

to Franklin and Wright’s question, EUROCRYPT, 1999, 446–458.
[19] A. C. Yao, Protocols for Secure Computations, FOCS, 1982, 160–164.
[20] A. C. Yao, How to generate and exchange secrets, FOCS, 1986, 162–167.
[21] L. Zhou, Z. J. Haas, Securing Ad Hoc Networks, IEEE Network, 13(6), 1999,

24–30.

An Improved Algorithm for Adaptive
Condition-Based Consensus

Taisuke Izumi and Toshimitsu Masuzawa

Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, 560-8531, Japan

{t-izumi, masuzawa}@ist.osaka-u.ac.jp

Abstract. Condition-Based Approach studies restrictions on the inputs
of a distributed problem, called conditions, to circumvent several impos-
sibility results. Especially, for the synchronous consensus problem, the
relation between conditions and time complexity bounds has been stud-
ied. In our previous work [12], we introduced the adaptiveness on time
complexity of the condition-based approach, and established the adap-
tive condition-based approach: It classifies all possible input vectors into
the hierarchical sequence of conditions according to their difficulty called
legality level. For such hierarchy, adaptive algorithms achieve time com-
plexity depending on the legality level of input vectors. In this paper, we
propose an improved version of the adaptive condition-based algorithms
for synchronous consensus that achieves better time complexity than the
previous one. On the assumption that majority of processes are correct,
the proposed algorithm terminates within min{f + 2, t + 1}− l rounds if
l < f , where f and t is the actual and the maximum numbers of faults
respectively, and l is the legality level of input vectors. Moreover, the
algorithm terminates in 1 round if l ≥ t and f = 0, and terminates
within 2 rounds if l ≥ f holds. Compared with our previous algorithm,
the proposed algorithm improves time complexity by one round in the
case of f = t and l > f .

1 Introduction

The consensus problem is a fundamental and important problem for designing
fault-tolerant distributed systems. Informally, the consensus problem is defined
as follows: each process proposes a value, and all non-faulty processes have to
agree on a common value that is proposed by a process. The (uniform) consen-
sus problem has many applications, e.g., atomic broadcast [3][10], shared objects
[1][11], weak atomic commitment [9] and so on. However, despite of the variety
of its applications, the consensus problem is known to be unsolvable by deter-
ministic solutions in asynchronous systems subject to only a single crash fault
[8]. Thus, several approaches to circumvent this impossibility, such as synchrony
[5][7], randomization [2] and unreliable failure detectors [3], have been proposed.

As one of such approaches, the condition-based approach is recently intro-
duced [14]. The principle of this approach is to restrict inputs so that the

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 170–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Improved Algorithm for Adaptive Condition-Based Consensus 171

generally-unsolvable problem can become solvable. A condition represents some
restriction to inputs. In the case of the consensus problem, the condition is de-
fined as a subset of all possible input vectors whose entries correspond to the
proposal of each process. The first result of the condition-based approach clari-
fies the condition for which the uniform consensus can be solved in asynchronous
systems subject to crash faults [14]. More precisely, this result presented a class
of conditions, called d-legal conditions, and proved that the d-legal conditions
is the class of necessary and sufficient conditions that make the (uniform) con-
sensus solvable in asynchronous systems where at most d processes can crash.
Several succeeding researches study application of the condition-based approach
to synchronous systems [15][16][19]. Since it is well-known that the uniform con-
sensus problem can be solved in synchronous systems with crash faults, these
researches focus on improvement of the time complexity for the restricted input
vectors. While it is known that any synchronous uniform consensus algorithm
needs at least min{f + 2, t + 1} rounds for termination, where f and t is the
actual and the maximum numbers of faults respectively [4][6], more efficient
algorithms can be realized if the condition-based approach is introduced. For
example, the algorithm proposed in [16] can solve the uniform consensus within
min{f + 2, t + 1− d} rounds if the input vector is in some d-legal condition, and
terminates within min{f + 2, t + 1} rounds otherwise.

In our previous paper [12], we advanced the condition-based approach, and
introduced the notion of adaptiveness on the time complexity of the condition-
based approach. Intuitively, the adaptive condition-based approach classifies all
possible input vectors into a legal condition sequence that is hierarchical division
of all possible input vectors according to their difficulty. Execution time of the
adaptive condition-based algorithms for a given input vector depends on the
location of the input vector in the hierarchy, called legality level of the input
vector1. To explain the legality level more precisely, we present an example for
the d-legal condition Cmax

d : The condition Cmax
d consists of the vectors in which

the largest value in the vector appears at more than d entries. Clearly, from the
definition, Cmax

d includes Cmax
d+1 . Thus, we can classify all possible input vectors

into the hierarchy Cmax
1 ⊇ Cmax

2 ⊇ · · ·Cmax
n . The legality level of an input vector

is defined as the location in the hierarchy. For example, the legality levels of two
vectors I1 =< 0, 1, 1, 1, 1 > and I2 =< 0, 1, 2, 2, 2 > are 3 and 2 respectively. For
any input vector with legality level l, the algorithm proposed in our previous
result [12] terminates within min{f + 2− l, t + 1} rounds if l < f holds, within
2 rounds if l ≥ f holds, and within 1 round if f = 0 and l ≥ t holds on the
assumption that majority of processes are correct.

In this paper, we improve the time complexity of the adaptive condition-based
algorithm. Same as our previous result, the proposed algorithm also assumes that
majority of processes are correct. For any input vector with legality level l, it
terminates within min{f + 2, t + 1} − l rounds if l < f holds, within 2 rounds if

1 The notion of the legal condition sequence and the legality level is similar to that of
the hierarchy and the degree proposed in [17].

172 T. Izumi and T. Masuzawa

l ≥ f holds, and within 1 round if f = 0 and l ≥ t holds. This algorithm achieves
the strictly better time complexity than the previous one: It improves the time
complexity by one round in the case of f = t and l < f . We derive the key idea
of this improvement from the scheme proposed in [16]. The main contribution
of this paper is to modify this scheme to an adaptive version.

The paper is organized as follows: Section 2 provides the system model,
the definition of the uniform consensus problem, and the formalization of the
adaptive condition-based approach. In Section 3 and 4, we present our adaptive
condition-based consensus algorithm. This algorithm is proposed in the incre-
mental manner: In Section 3, we first introduce a simple adaptive condition-based
algorithm ACC, which is one of existing algorithms and the basis of the algo-
rithm we propose in this paper. Then, in Section 4, we consider an improvement
of ACC. Finally, we conclude this paper in Section 5.

2 Preliminaries

2.1 Distributed System

We consider a synchronous distributed system with round-based synchrony. The
distributed system consists of n processes P = {p0, p1, p2, · · · , pn−1} that are
completely connected, that is, any pair of processes can communicate with each
other by directly exchanging messages. All channels are reliable: each channel
correctly transfers messages. The system is round-based, that is, its execution is
a sequence of synchronized rounds identified by 1, 2, 3 · · ·. Each round r consists
of three phases:

Send phase. Each process pi sends messages.
Receive phase. Each process pi receives all the messages sent to pi at the

beginning of round r.
Local processing phase. Each process pi executes local computation.

Processes can crash. If a process pi crashes during round r, it makes no
operation subsequently. The messages sent by pi at round r may or may not be
received. We say a process is correct if it never crashes, and say “a round r is
correct” when no process crashes during round r. There are an upper bound t
on the number of processes that can crash. We also denote the actual number
of crash processes by f (≤ t). In the rest of the paper, we assume that t < n/2
holds.

2.2 Uniform Consensus

In a consensus algorithm, each correct process initially proposes a value, and
eventually chooses a decision value from the values proposed by processes so
that all processes decide the same value. The uniform consensus is a stronger
variant of the consensus. It disallows faulty processes to disagree on the decision
value. More precisely, the uniform consensus is specified as follows:

An Improved Algorithm for Adaptive Condition-Based Consensus 173

Termination : Every correct process eventually decides.
Uniform Agreement : No two processes decide different values.
Validity : If a process decides a value v, then, v is a value proposed by a process.

The set of values that can be proposed is denoted by V. Moreover, we assume
that V is a finite ordered set.

2.3 Legality Level

Notations. An input vector is a vector in Vn, where the i-th entry represents
pi’s proposal value. We usually denote an input vector for an execution by I. We
also define view J of I to be a vector in (V ∪ {⊥})n obtained by replacing some
entries in I by ⊥ (⊥ is a default value such that ⊥�∈ V). Let ⊥n be the view such
that all entries are ⊥. For views J1 and J2, we denote J1 ≤ J2 if ∀k : J1[k] �=⊥⇒
J1[k] = J2[k] holds. For two views J1 and J2, we define their union J = J1∪J2 as
follows: ∀k : J [k] = a �=⊥⇔ J1[k] = a or J2[k] = a. For a view J (∈ (V ∪ {⊥})n)
and a value a(∈ V ∪{⊥}), #a(J) denotes the number of entries of value a in the
vector J , that is #a(J) = |{k ∈ {0, 1, · · · , n − 1}|J [k] = a}|. For a view J and
a value a, we often describe a ∈ J if there exists a value k such that J [k] = a.
Finally, for two vectors J1 and J2, we denote the Hamming distance between
J1 and J2 by dist(J1, J2), that is dist(J1, J2) = |{k ∈ {0, 1, · · · , n − 1}|J1[k] �=
J2[k]}|.

Conditions and Legality. A condition is formally defined as a subset of Vn.
First, as an important class of conditions, we introduce (d, h)-legal conditions 2.

Definition 1 ((d, h)-legal conditions). A condition C is (d, h)-legal (where h
is a mapping h : C �→ V) if h, d, and C satisfy the following properties:

1. ∀I ∈ C : #h(I)(I) > d,
2. ∀I1, I2 ∈ C : h(I1) �= h(I2)⇒ dist(I1, I2) > d.

Intuitively, (d, h)-legal condition is the set of input vectors I such that h(I)
can be calculated even when at most d entries of I are lost. From the definition,
as long as mapping h satisfies h(I) ∈ I, Vn can be (0, h)-legal, and (n, h)-legal
condition is only the empty set. Notice that (d, h)-legal condition is not uniquely
determined by d and h (for instance, for a (d, h)-legal condition, its subset is
also a (d, h)-legal condition). In recent researches, it is shown that (d, h)-legal
conditions help to reduce the worst-case execution time of synchronous consensus
algorithms. To be more precise, for any (d, h)-legal condition, there exists a
consensus algorithm that terminates (1) within min{t + 1− d, f + 2} rounds for

2 The (d, h)-legal conditions is a subclass of d-legal conditions defined in [15] (the
condition C is d-legal if there exists a mapping h such that C is (d, h)-legal). This
difference does not restrict the class of condition applicable to our algorithm because
our algorithm can be instantiated with any h.

174 T. Izumi and T. Masuzawa

input vectors satisfying the condition, and (2) within min{f + 2, t + 1} rounds
otherwise [16]. In this sense, we can regard d as a characteristic value representing
difficulties of input vectors in (d, h)-legal condition. However, from the definition,
a (d, h)-legal condition can include a (d+1, h)-legal condition. This implies that a
(d, h)-legal condition can include easier input vectors. Therefore, to define actual
difficulty of input vectors, we introduce legality levels of input vectors that are
defined from a legal condition sequence as follows:

Definition 2 (Legal condition sequence). A sequence of conditions C =<
C0, C1, · · ·Cn > is an h-legal condition sequence if the following properties are
satisfied:

– C0 = Vn, Cn = ∅,
– ∀k (0 ≤ k ≤ n− 1): Ck is (k, h)-legal and Ck+1 ⊆ Ck, and
– ∀k (0 ≤ k ≤ n− 1): (� ∃C ′ : C ′ is (k + 1, h)-legal and Ck+1 ⊂ C ′ ⊆ Ck).

Definition 3 (Legality level). For a h-legal condition sequence C, the legality
level of an input vector I is l if I ∈ Cl and I �∈ Cl+1 hold.

Since Cn is empty and C0 is the set of all possible input vectors, any legal
condition sequence uniquely defines the legality level of each input vector. The
legality level represents the actual difficulties of input vectors in the sense that
we previously mentioned.

Example An example of a (d, h)-legal condition is Cmax
d :

Cmax
d = {I ∈ Vn|#a(I) > d, where a is the maximum value in I}

The condition Cmax
d is a maximal (d, h)-legal condition defined by d and h =

max. Moreover, it is maximal, that is, there is no (d, h)-legal condition C such
that Cmax

d ⊂ C [14] 3. Therefore, for Cmax
d , we can define legal condition sequence

Cmax =< Cmax
0 , Cmax

1 , · · ·Cmax
n >. As an example, we consider two input vectors,

I1 =< 0, 0, 1, 3, 3 > and I2 =< 0, 0, 2, 2, 2 >. Both vectors are contained in Cmax
1 .

However, whereas I2 is contained in Cmax
2 , I1 is not. Therefore, for Cmax, legality

levels of vectors I1 and I2 are respectively 1 and 2.
The algorithm proposed in this paper is instantiated with a legal condition

sequence, that is, the instantiated algorithm can utilize the legal condition se-
quence and the mapping h. In the following discussions, let the algorithm be
instantiated with a legal condition sequence C =< C0, C1, · · · , Cn >, where each
Ck is (k, h)-legal. We denote the legality level of an input vector I for C by
l(I).

3 Actually, the definition of maximality in [14] is stronger: The (d, h)-legal condition
C is maximal if C ∪ {I ′} is not (d, h′)-legal for any mapping h′ and input vector
I ′ �∈ C

An Improved Algorithm for Adaptive Condition-Based Consensus 175

3 Algorithm ACC

The algorithm we present in this paper is an extension of algorithm ACC pre-
sented in [12]. Thus, in this section, we first introduce the algorithm ACC. The
algorithm ACC terminates within f + 2 − l(I) rounds if l(I) < f , within two
rounds if l(I) ≥ f and f �= 0 holds, and in one round if l(I) ≥ t and f = 0
holds 4. In the following subsection, we first introduce the fundamental function
decode, which is used as a subroutine of our algorithm. Then, we propose the
algorithm ACC.

3.1 Function decode

The function decode(J) is presented in Figure 1. The function decode has an
argument J which is a view. Informally, the role of the function decode(J) is to
obtain the value h(I) from J . When a process invokes decode(J), it constructs
all possible vectors I ′ such that I ′ ≥ J holds (line 4), and chooses the vector
with the maximum legality level from them (line 5). For the chosen vector I ′,
the algorithm returns the value h(I ′). For this function, we can show that the
following lemmas hold. In the following lemmas, let E(J) be the value stored in
E immediately after the line 4 of decode(J) is executed.

Lemma 1. If E(J) is nonempty, the condition dist(I1, I2) ≤ #⊥(J) holds for
any I1, I2 ∈ E(J).

Proof . Since J ≤ I1 and J ≤ I2, this lemma clearly holds. �

Lemma 2 (Decode Validity). For any J �=⊥n, the resultant value of decode(J)
is contained in J .

Proof . For any vetror I ∈ E(J), h(I) ∈ J holds. If E(J) �= ∅, the resultant value
h(I ′) is necessarily contained in J because the vector I ′ belongs to E. Thus, we
prove this lemma by showing E(J) �= ∅ for any J �=⊥n. Suppose for contradiction
that for a view J , the set E(J) becomes empty. Then, we consider a vector I ′′ ≥ J
that is obtained by replacing ⊥ of J by a value in J . From the definition of
mapping h, h(I ′′) is a value in I ′′, that is, it is a value in J . This implies that
I ′′ ∈ E(J) holds. This is contradiction. �

Proof. Clearly, return values are included in J . We prove the termination by
showing that decode(J) is necessarily terminates. Since we assume that J �=⊥n,
E(J) is necessarily nonempty (any vector obtained by replacing ⊥ by a non-
⊥ value in J is necessarily contained in E(J)), and thus the execution
terminates. �

4 The algorithm ACC presented here is slightly different from that in [12]. The original
ACC does not have one-round decision scheme (however, this scheme itself is also
presented in [12]).

176 T. Izumi and T. Masuzawa

1: Function decode(J) :
2: variable
3: E : init ∅

4: E ← {I ∈ V n|h(I) ∈ J and J ≤ I}
5: I′ ← argmaxI′∈E l(I′)
6: return(h(I′))

Fig. 1. Function decode(J)

Lemma 3 (Decode Agreement). Let I be an input vector, and J be a view
such that J ≤ I and #⊥(J) ≤ l(I) hold. Then, decode(J) = h(I) holds.

Proof . Let I ′ be the vector that is chosen from E at line 5 (that is, the resultant
value is h(I ′)). Then the vector I and I ′ are necessarily included in E, and thus
dist(I ′, I) ≤ #⊥(J) ≤ l(I) holds from lemma 1. In addition, since the vector I ′

has the maximum legality level in E, l(I) ≤ l(I ′) also holds. This implies that
I ′ ∈ Cl(I) holds. Therefore, h(I ′) = h(I) =decode(J) holds. �

3.2 The ehavior of Algorithm ACC

Using function decode, we proposed a simple adaptive algorithm ACC [12]. The
algorithm is based on the well-known floodset algorithm [13][18]. The typical
floodset algorithm is as follows: Each process maintains its own view, which
stores only its proposal at round 1. In each round, each process sends its own
view to all processes, receives views from other processes, and updates its own
view by the union of the current view and all the received views. The primary
objective of the floodset algorithm is to guarantee that all processes have a
same view after execution of an appropriate number of rounds. In non-condition-
based algorithms, f + 1 rounds are sufficient for all non-crashed processes to
have a same view. This relies on the fact that f + 1 rounds’ execution includes
at least one correct round and the fact that all non-crashed processes have a
same view at the end of a correct round. On the other hand, considering the
input vector condition, f + 1 − l(I) rounds are sufficient [16][19]. In this case,
processes may have different views at the end of round f +1− l(I), however, it is
guaranteed that a common value (that is h(I)) can be calculated from each view.
The primary issue the algorithm ACC must consider is to execute the floodset
algorithm till an appropriate round even though the values of f and l(I) are
unknown.

The behavior of ACC is as follows: The algorithm executes the floodset al-
gorithm as an underlying task. In each round r, each process pi supposes that
legality level of the input vector is t + 1 − r, and estimates a decision value
by executing decode(Ji), where Ji is the view maintained by pi. This estima-
tion can be wrong, and thus, at the next round, each process checks whether
its estimation is correct or not. More precisely, at round r + 1, each process
pi sends its estimation to all processes (including itself). If all messages re-
ceived by pi have a same estimation w, pi decides a value w. Then, each pro-
cess terminates at round f + 2 − l(I) or earlier. However, if a process pj ac-

B

An Improved Algorithm for Adaptive Condition-Based Consensus 177

cidentally decides at a round earlier than round f + 2 − l(I) while another
process pi decides at round f + 2 − l(I), those decisions may differ. Hence,
to avoid this inconsistency, we introduce the scheme of overwriting views into
the algorithm: If pi receives more than n/2 messages carrying a common es-
timation w, before the estimation for the next round, it overwrites its own
view by the view J from other processes such that decode(J) = w holds.
When a process decides a value w at round r + 1, all other processes nec-
essarily have such a view as J at the end of round r + 1 because at least
n−f(> n/2) correct processes necessarily sends the same estimation w at round
r + 1. Thus, all other processes are guaranteed to decide the value w at round
r + 2.

In addition, the algorithm ACC has another exceptional decision scheme
that allows the algorithm to terminate in one round if l(I) ≥ t and f = 0
hold. We call this scheme fast decision. The idea of the fast decision is bor-
rowed from [15]. At round 1, if a process pi gathers all proposals and rec-
ognizes that legality level of the input vector is t or more, it does not have
to execute the next round for checking its estimation. Therefore, the process
pi can immediately decide a value decode(Ji) (= h(I)) and thus, the algo-
rithm terminates if f = 0. In this case, even though up to t processes crash,
all other processes can calculate h(I) from their own views. This implies that
each process eventually decides a value h(I), and thus the uniform agreement is
guaranteed.

Figure 2 presents the code of the algorithm ACC for process pi. The view of
each process pi is maintained in the variable Ji. The variables V iewsi and Si

respectively denote views and estimations received from other processes at the
current round. The lines 9-11 correspond to the fast decision scheme. The lines
12-18 correspond to the view-overwriting scheme. The line 19 corresponds to
the estimation of a decision value. Notice that the estimation is done after the
view-overwriting.

4 Improved Algorithm IACC

In this subsection, we present the algorithm IACC, which is an extension of ACC.
The algorithm IACC terminates within min{f + 2, t + 1} − l(I) rounds when
l(I) < t holds. Compared with ACC, it improves the time complexity by one
round in the case of f = t and l(I) < f .

4.1 Slow Decision

To improve the time complexity, the algorithm IACC has one more additional
decision scheme, which is called slow decision. The algorithm IACC is presented in
Figure 3, which is obtained by appending extra codes of the slow decision scheme
to ACC. The slow decision part appear at lines 23-27. In addition, messages are
modified to carry an extra information num. Since the algorithm ACC clearly

178 T. Izumi and T. Masuzawa

Algorithm ACC(vi) for h-legal condition sequence and t crashes (t < n/2)
Code for pi:

1: variable:
2: Ji, Si : init ⊥n and Ji[i] ← vi

3: si : init ⊥
4: V iewsi : init <⊥n,⊥n, · · · ,⊥n>

5: for each round r = 1, 2, · · · , t + 2 do :
6: send (Ji, si) to all processes (including pi)
7: Let (V iewsi[j], Si[j]) be the message received from pj

(if no message is received from pj , V iewsi[j] =⊥n and Si[j] =⊥)

8: Ji ←
⋃n−1

k=0
Viewsi[k] /∗ Updating the view ∗/

9: if r = 1 and #⊥(Ji) = 0 and l(Ji) ≥ t then
10: decide(decode(Ji)) and exit /∗ Fast decision ∗/
11: endif
12: if r > 1 then
13: if ∃w �=⊥: #w(Si) + #⊥(Si) = n then decide(w) and exit endif
14: if ∃w �=⊥: #w(Si) > n/2 then
15: Let y be a value such that Si[y] = w and #w(Si) > n/2 hold
16: (deterministically chosen)
17: Ji ← V iewsi[y] /∗ Overwriting the view ∗/
18: endif
19: endif
20: si ← decode(Ji) /∗ Estimation of decision value ∗/
21: endfor

Fig. 2. Algorithm ACC: Adaptive Condition-based Consensus

achieves the improved time complexity in the case of f < t or l(I) ≥ f , at the
following discussion, we assume that f = t and l(I) < f holds.

The basic idea of the slow decision is derived from a precedent result [16].
Our scheme can be regarded as an adaptive version of it.

The aim of the slow decision scheme is to stop execution at round t + 2 −
f ′, where f ′ is the number of crash faults occurring at round one. It can be
understood that this idea achieves t + 1− l(I)-round time complexity although
the consensus problem is correctly solved by the following observation: If f ′ is
l(I) or less, each process can calcutate h(I) at round one and thus they can
reach agreement within two rounds. On the other hand, if f ′ is greater than l(I)
then, t + 2 − f ′-round execution contains at least one correct round, and thus
all processes can reach agreement at round t + 2 − f ′ or earlier. In both cases,
most importantly, the length of the execution does not exceed t+1− l(I) rounds
(remind that we only consider the case of l(I) < t).

To achieve this aim, in our scheme, each process detects the number of crash
faults occurring at round one, and broadcasts the number of detected crashes
as an extra information num. Each process pi has the variable numi, which
represents the estimation of f ′. At round two or later , each process stores the
maximum value of all received num into numi as the current estimation of f ′.
When current round r is larger than or equal to t+2−numi, process pi decides
its current estimation si and terminates. Then, each estimation numi can be
slightly different from actual value of f ′. However, this difference does not cause
any problem. The details are explained in the correctness proof (Case2-2 and
Case2-3 in the proof of Lemma 8).

An Improved Algorithm for Adaptive Condition-Based Consensus 179

Algorithm ACC(vi) for h-legal condition sequence and t crashes (t < n/2)
Code for pi:

1: variable:
2: Ji, Si : init ⊥n and Ji[i] ← vi

3: si : init ⊥
4: numi : init 0
5: V iewsi : init <⊥n,⊥n, · · · ,⊥n>
6: Fi : init < 0, 0, · · · , 0 >

7: for each round r = 1, 2, · · · , t + 2 do :
8: send (Ji, si, numi) to all processes (including pi)
9: Let (V iewsi[j], Si[j], Fi[j]) be the message received from pj

(if no message is received from pj , V iewsi[j] =⊥n, Si[j] =⊥, and Fi[j] = 0)

10: Ji ←
⋃n−1

k=0
Viewsi[k] /∗ Updating the view ∗/

11: if r = 1 and #⊥(Ji) = 0 and l(Ji) ≥ t then
12: decide(decode(Ji)) and exit /∗ Fast decision ∗/
13: endif
14: if r > 1 then
15: if ∃w �=⊥: #w(Si) + #⊥(Si) = n then decide(w) and exit endif
16: if ∃w �=⊥: #w(Si) > n/2 then
17: Let y be a value such that Si[y] = w and #w(Si) > n/2 hold
18: (deterministically chosen)
19: Ji ← V iewsi[y] /∗ Overwriting the view ∗/
20: endif
21: endif
22: si ← decode(Ji) /∗ Estimation of decision value ∗/
23: if r = 1 then numi ← #⊥(Ji)
24: else numi ← max(Fi) endif /∗ Updating # faults of round 1 ∗/
25: if r ≥ t + 2 − numi then
26: decide(si) and exit /∗ Slow decision ∗/
27: endif
28: endfor

Fig. 3. Algorithm IACC: An Improved Adaptive Condition-based Consensus Algo-

rithm

4.2 Correctness of IACC

In this subsection, we prove the correctness of IACC. For the proof, we define
the following notations and terms: Jr

i , Viewsr
i , numr

i and Sr
i respectively denote

the value of Ji, Viewsi, numr
i and Si at the end of round r (line 27). Let P r

be the set of processes that neither crash by the end of round r nor terminate
by the end of round r − 1 (possibly terminate at the end of round r), and
Pc be the set of correct processes. For short, let fm = max{numi|pi ∈ P 1}.
We say that pi decides by the fast decision, the slow decision or the regular
decision if pi decides at line 12, 15, or 26 respectively. Notice that the regular
decision has higher priority than the slow decision. That is, if a process can decide
by both the regular and the slow decision, it decides by the regular decision.
Due to lack of space, proofs of several lemmas are omitted. They are given in
Appendix.

Lemma 4 (Validity). If a process decides a value w, then w is a value proposed
by a process.

180 T. Izumi and T. Masuzawa

Proof . This lemma clearly holds from Lemma 2. �

Lemma 5. If a round r (1 ≤ r ≤ t + 1) is correct, then Jk
i = Jk

j holds for any
pi, pj ∈ P k and k ≥ r.

Proof . We prove this lemma by induction on k. (Basis) We consider the case
of k = r. Since round k(= r) is correct, each process in P k receives a same set of
messages at round k. Thus, for any pi, pj ∈ P k, Viewsk

i = Viewsk
j and Sk

i = Sk
j

holds. Since the value of Jk
i is deterministically calculated from the values of

Viewsk
i and Sk

i , Jk
i = Jk

j holds for any pi, pj ∈ P k. (Inductive step) Suppose
as induction hypothesis that Jk

i = Jk
j holds for some k(≥ r) and any pi, pj ∈ P k

(let J be the value of Jk
∗). Since each process in P k sends a message (J, ∗) at

round k + 1 unless it crashes, for each pi, V iewsk+1
i contains only values J and

⊥n. Then, the value of Jk+1
i is either

⋃n−1
x=0 V iewsk+1

i [x] = J (obtained at line
10) or Jk+1 = V iewsk+1

i [x] = J (obtained at line 18). In any cases, Jk+1
i = J

holds. This implies that Jk+1
i = Jk+1

j holds for any pi, pj ∈ P k+1. �

Lemma 6. If a round r (1 ≤ r ≤ t+2) is correct, then every process pi ∈ P r+1

decides at round r + 1 by the regular decision.

Proof . From Lemma 5, the variable Jr
i has a common view (say J) for any

pi ∈ P r. This implies that each process pi sends the same message (J,w, numr−2
i)

at round r + 1 where w = decode(J). Then, since Sr+1
i contains only w and

⊥, each process pi(∈ P r+1) decides a value w at round r + 1 by the regular
decision. �.

Lemma 7 (Regular Termination). Each process pi decides a value at round
max{2, f + 2− l(I)} or earlier unless it crashes.

Proof. Let R = max{2, f + 2 − l(I)}. If there exists a correct round r up to
R − 1, the lemma clearly holds from Lemma 6. Thus, we have only to consider
the case that every round up to R−1(≤ max{1, f +1−l(I)}) is not correct. Since
at least one process crashes in each round up to R − 1, at most l(I) processes
can crash at round 1 (notice that it also holds in the case of 1 ≥ f + 1 −
l(I)). Then, #⊥(JR−1

i) ≤ l(I) holds for any pi ∈ PR−1 because if a process pk

does not crash at round 1, all processes receive pk’s proposal at round 1, and
thus, J [k] �=⊥ holds for every view in the execution. Therefore, from Lemma 3,
we obtain decode(JR−1

i) = h(I). Then, since every process pi in PR−1 sends
message (JR−1

i , h(I)), SR
i contains only h(I) and ⊥. This implies that each

process pi in PR decides h(I) at round R. �

Lemma 8 (Slow Termination). If l(I) < t holds, each process pi decides a
value at round t + 1− l(I) or earlier unless it crashes.

An Improved Algorithm for Adaptive Condition-Based Consensus 181

Proof. We consider the following two cases.

– (Case1) When fm ≤ l(I) holds: Since ⊥ appears at most fm times in J1
k ,

#⊥(J1
k) ≤ fm ≤ l(I) holds for any process pk ∈ P 1. Then, from Lemma 3,

we obtain decode(J1
k) = h(I), and thus each process pk ∈ P 1 sends a message

(V iew1
k, h(I), num1

k) at round 2. This implies that S2
k contains only values

h(I) and ⊥ for any pk ∈ P 2. Therefore, each process decides at round 2 or
earlier, that is, each process decides at round t + 1− l(I) or earlier (because
we assume t > l(I)).

– (Case2) When fm > l(I) holds: Since at least fm processes crash at round
1, there exists a correct round in the first t + 2 − fm rounds. Letting r′ be
such a correct round, for any pi, each numr′

i has a common value f ′
m because

each pi receives a same set of messages at round r′ and the value of numr′
i

is the maximum vale among all the received values of num∗. In addition,
this also implies that numr′′

i = f ′
m holds for any r′′ ≥ r′. It follows that

num
t+1−l(I)
k = f ′

m for any pk ∈ P t+1−l(I) (remind that t+2−fm ≤ t+1−l(I)
holds because we assume fm > l(I)). Here, we further divide this case into
the following three cases (notice that fm ≥ f ′

m holds).
• (Case2-1) When fm ≥ f ′

m > l(I) holds: In this case, at round r =
t + 1− l(I), r ≥ t + 2− f ′

m = t + 2− numr
i holds for any pi ∈ P r. This

implies that each process decides at round t + 1 − l(I) or earlier (line
25).
• (Case2-2) When fm > l(I) ≥ f ′

m and t + 1 − l(I) ≥ 3 hold: Then,
num1

i ≤ f ′
m holds for any pi ∈ Pc (if not, f ′

m becomes larger because a
process in Pc sends a message with higher num∗ at round two and all
processes in P 2 receive it). Hence, from Lemma 3, decode(J1

i) = h(I)
holds for any process pi ∈ Pc. Since we assume l(I) < t, each pro-
cess in Pc does not decide at round 1 and sends a message contain-
ing h(I) to all processes at round 2. Then, #h(I)(S2

i) ≥ |Pc| > n/2
holds for any pi ∈ P 2. This implies that each process in P 2 overwrites
its view by the view J such that decode(J) = h(I), and that sends
a message containing h(I). Therefore, S3

i contains only h(I) and ⊥
for any pi ∈ P 3, and thus we can conclude each pi decides at round
3 ≤ t + 1− l(I).
• (Case2-3) When fm > l(I) ≥ f ′

m and t + 1− l(I) < 3 hold: Then, since
t− 2 < l(I) < fm holds, we obtain fm = t and l(I) = t− 1. This implies
that t processes crash at round 1 and thus round 2 is correct. Therefore,
at the end of round 2, num2

i = fm = t holds for any pi ∈ P 2, and each
process decides at round 2 = t + 1− l(I).

�

Lemma 9 (Fast Termination). If l(I) ≥ t and f = 0 holds, each process pi

decides a common value at round 1.

Proof. Since f = 0 holds, each process pi receives messages from all pro-
cesses. This implies that J1

i = I holds, and thus, pi decides decode(I) at round 1
(line 12). �

182 T. Izumi and T. Masuzawa

Lemma 10. Let pi be the process that decides first. If pi decides w at round r by
the regular decision, then each process pk∈Pc sends a message (Jr−1

k , w, numr−1
k)

at round r.

Proof . Since the process pi decides a value w by the regular decision at round
r, Sr

i contains only w and ⊥. This implies that every process pk ∈ Pc sends
a message (Jr−1

k , w, numr−1
k) at round r because no process in Pc terminates

at the beginning of round r (remind that pi is the process that decides
first). �

Lemma 11. Let pi be the process that decides first. If pi decides w at round r,
then each process pj ∈ P r decides w at round r or r + 1 unless it crashes.

Proof. We consider the following two cases. (Case1) When pj decides at round
r: From Lemma 10, clearly Sr

j [k] = w holds for any process pk ∈ Pc, and thus
pj decides w. (Case2) When pj does not decide at round r: From Lemma 10,
we can show that every process in Pc sends a message (Jr−1

∗ , w, numr−1
∗) at

round r. Then, since t < n/2 holds, we obtain #w(Sr
k) > n/2 for any pk ∈ P r.

Therefore, each process pk overwrites its own variable Jk by a view Vk such
that decode(Vk) = w holds. Then, since every process pk ∈ P r sends a message
(Vk, w, numr+1

k) at round r + 1 (or is crashed at the beginning of round r + 1),
Sr+1

j contains only w and ⊥ for any pj ∈ P r+1. This implies that pj decides a
value w at round r + 1. �.

Lemma 12 (Uniform Agreement). No two processes decide different values.

Proof. Let pi be the first process that decides, and w be pi’s decision. We show
that any process pj decides the same value w if it decides. Let r denote the round
when pi decides.

– (Case1) When pi decides by the fast decision: Since pi decides at round one,
l(I) ≥ t and w = h(I) clearly holds. Then, from Lemma 3, decode(J1

k) =
h(I) = w holds for each pk ∈ P 1 since #⊥(J1

k) ≤ t ≤ l(I) holds. Thus, if pj

decides by the fast decision, it clearly decides w. Even if not, pj also decides
w at round two unless it crashes because S2

j contains only w and ⊥ at the
end of round two.

– (Case2) When both pi and pj decide by the regular decision : In this case,
this lemma clearly holds from Lemma 11.

– (Case3) When pi and pj decide respectively by the regular decision and the
slow decision : From Lemma 11, pj decides at round r + 1 by the regular
decision if it does not decide at round r. Since we assume pj decides by the
slow decision, pj decides at round r. On the other hand, from Lemma 10,
we can show that every process pk ∈ Pc sends a message (Jr−1

k , w, numr−1
k)

at round r, and thus #w(Sr
j) > n/2 holds. Then, before the decision, pj

overwrites its own variable Jj by a view Vk such that decode(Vk) = w holds,
and assigns w to sj. This implies that pj also decides w.

An Improved Algorithm for Adaptive Condition-Based Consensus 183

– (Case4)When pi decides by the slow decision : The proof of this case consists
of three steps. We first show that the round r is a correct round. Suppose
for contradiction that r is not correct. Since at least numr

i processes crash
at round 1, there exists a correct round r′ by round t + 2 − numr

i (≤ r).
Since we assume that r is not correct, r′ < r holds. Then, from Lemma 6,
pi decides at round r′ + 1(≤ r) by the regular decision. This is contradic-
tion.
Next we prove that pj never decides at round r by the regular decision. Sup-
pose for contradiction that pj decides at round r by the regular decision.
Then, since round r is correct, pi also receives the same set of messages as
pj. Thus, Sr

j = Sr
i holds. This implies that pi also decides at round r by the

regular decision. This is contradiction.
Finally, we prove that pj decides w at round r by the slow decision. Since
round r is correct, each process pk ∈ P r receives a same set of messages at
round r. This implies that numr

j = numr
i holds. Thus, in this case, pj also

decides at round r by the slow decision because the second step above shows
pj does not decide at round r by the regular decision. Moreover, we obtain
Jr

i = Jr
j from Lemma 5. This implies that decode(Jr

j) = decode(Jr
i) = w

holds and thus pj decides w.

From the above, the lemma holds. �

From Lemmas 4, 7, 8, 9 and 12, the following theorem holds.

Theorem 1. The algorithm IACC solves the uniform consensus (1) within one
round if l(I) ≥ t and no process crashes, (2) within two rounds if l(I) ≥ f , and
(3) within min{f + 2, t + 1} − l(I) rounds otherwise.

5 Concluding Remarks

This paper proposed an adaptive condition-based algorithm for synchronous
consensus. The algorithm improved the time complexity of our previous results
in [12]. On the assumption that majority of processes is correct, the proposed
algorithm terminates within min{f + 2, t + 1} − l(I) rounds if l(I) ≤ f , and
within 2 rounds if l(I) ≥ f , where l(I) is the legality level of the input vector.
Moreover, this algorithm terminates with one round if l(I) ≥ t and f = 0 hold
(fast decision), Compared with existing algorithms, it achieves the best time
complexity.

Acknowledgment. This work is supported in part by a JSPS, Grant-in-Aid for
Scientific Research ((B)(2)15300017), and “The 21st Century Center of Excel-
lence Program” of the Ministry of Education, Culture, Sports, Science and Tech-
nology, Japan.

184 T. Izumi and T. Masuzawa

References

1. H. Attiya and J. L. Welch. Sequential consistency versus linearizability. ACM
Transactions on Computer Systems, 12(2):91–122, 1994.

2. M. Ben-Or. Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In Proc. of the second annual ACM symposium
on Principles of distributed computing(PODC), pages 27–30, 1983.

3. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

4. B. Charron-Bost and A. Schiper. Uniform consensus is harder than consensus.
Journal of Algorithms, 51:15–37, Apr 2004.

5. D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for
distributed consensus. Journal of the ACM, 34(1):77–97, 1987.

6. D. Dolev, R. Reischuk, and R. Strong. Early stopping in byzantine agreement.
Journal of ACM, 37(4):720–741, 1990.

7. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, 1988.

8. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

9. R. Guerraoui. Revisiting the relationship between non-blocking atomic commit-
ment and consensus. In Proc. of 9th International Workshop on Distributed Algo-
rithms(WDAG), volume 972 of LNCS, Sep 1995.

10. V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems.
In S. Mullender, editor, Distributed Systems, chapter 5, pages 97–145. Addison-
Wesley, 1993.

11. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13:124–149, 1991.

12. T. Izumi and T. Masuzawa. Synchronous condition-based consensus adapting to
input-vector legality. In Proc. of 18th International Conference on Distributed
Computing(DISC), volume 3274 of LNCS, pages 16–29. Springer-Verlag, Oct 2004.

13. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
14. A. Mostefaoui, S. Rajsbaum, and M. Raynal. Conditions on input vectors for

consensus solvability in asynchronous distributed systems. Journal of the ACM,
50(6):922–954, 2003.

15. A. Mostefaoui, S. Rajsbaum, and M. Raynal. Using conditions to exppedite consen-
sus in synchronous distributed systems. In Proc. of 17th International Conference
on Ditributed Computing(DISC), volume 2848 of LNCS, pages 249–263, Oct 2003.

16. A. Mostefaoui, S. Rajsbaum, and M. Raynal. The synchronous condition-based
consensus hierarchy. In Proc. of 18th International Conference on Distributed
Computing(DISC), volume 3274 of LNCS, pages 1–15. Springer-Verlag, Oct 2004.

17. A. Mostefaoui, S. Rajsbaum, M. Raynal, and M. Roy. Condition-based consensus
solvability: a hierarchy of conditions and efficient protocols. Distributed Computing,
17(1):1–20, 2004.

18. M. Raynal. Consensus in synchronous systems: A concise guided tour. In Proc.
of Pacific Rim International Symposium on Dependable Computing(PRDC), pages
221–228, 2002.

19. Y. Zibin. Condition-based consensus in synchronous systems. In Proc. of 17th
International Conference on Ditributed Computing(DISC), volume 2848 of LNCS,
pages 239–248, Oct 2003.

Biangular Circle Formation by Asynchronous
Mobile Robots�

Branislav Katreniak

Faculty of Mathematics, Physics and Informatics,
Comenius University, Bratislava
katreniak@dcs.fmph.uniba.sk

Abstract. Consider a community of simple autonomous robots freely
moving in the plane. The robots are decentralized, asynchronous, de-
terministic without the common coordination system, identities, direct
communication, memory of the past, but with the ability to sense the
positions of the other robots. We study the problem of forming an ab-
solutely symmetric formation – regular circle. Unlike the existing algo-
rithms for similar problems that have supposed a stronger model and
guaranteed only convergence to a final formation, we are interested in
solving the problem for fully asynchronous model. Unfortunately, the
problem in general is very hard under these circumstances and seems
to be unsolvable. We present an algorithm that solves an intermediate
problem, the biangular circle formation, deterministically in finite time.

1 Introduction

We consider a distributed system consisting of very weak autonomous mobile
robots. The robots are anonymous, have no common knowledge, no common
sense of the direction (e.g. compass), no central coordination and no means of
direct communication. The study of such a weak system is motivated by the
question of the minimal complexity of the mobile devices needed to perform
non-trivial tasks. While a number of results deal with heuristics and practi-
cal applications, deterministic worst-case solutions are rare. We use the asyn-
chronous model introduced in [4] where the task of arbitrary pattern formation
is addressed. It was shown that with a common sense of the direction the ar-
bitrary pattern formation problem is solvable. Moreover, without the common
sense of the direction there are patterns which are not formable. In [2], [3] it was
shown that the gathering problem is solvable with multiplicity detection and
in limited visibility model with compass. We use the basic model without any
extensions and study the problem of the pattern formation for the particular
pattern – biangular circle. The only similar problem (convergence to the regular
circle pattern) was addressed [1] only in a semi-synchronous model.

� Supported in part by APVT 20-018902.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 185–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

186 B. Katreniak

Consider the life-cycle of a robot: Initially it is in a waiting state, wakes up
asynchronously, observes the other robots’ positions, computes a point in the
plane, moves toward this point (but may not reach it) and becomes waiting
again. Each step takes an unpredictable amount of time. Robots are oblivious,
i.e. the only input for their computation is the currently observed set of the other
robots’ positions.

First, we only require the robots to move onto the boundary of a circle. This
problem is easy, every robot just takes the shortest way to the smallest enclosing
circle (SEC) of all robots. The SEC will never move and all robots will reach
SEC in a finite time.

In section 4 we show how the robots can reach the boundary of a circle at
distinct positions, provided they are located at distinct positions at the start.
Only the robots closest to SEC will take the shortest way to SEC, others will
wait until it is secure for them to do a side-step – an atomic move along the
concentric circle.

Finally, we would like the robots to form1 a regular circle. This problem is very
hard and seems to be unsolvable in general. In section 5 we show an intermediate
result: Robots try to form a regular circle, but they do not achieve it in all cases.
In general they form only a bit less symmetric pattern, the biangular circle. The
main idea of the algorithm is the synchronization of the asynchronous robots.
We present a restricted pseudo-synchronous model with robots moving along the
boundary of a fixed circle and show its emulation in our asynchronous model.
Then this pseudo-synchronous circle model is used to transform the circle pattern
into the biangular circle pattern.

2 Model

We use the model introduced in [4]. Each robot is viewed as a point in a plane
equipped with sensors. It can observe the set of all points which are occupied
by at least one other robot. Note that the robot only knows whether there are
other robots at a specific point, but it has no knowledge about their number (i.e.
it cannot tell how many robots are at a given location). The local view of each
robot consists of a unit of length, an origin (w.l.o.g. the position of the robot
in its current observation), an orientation of angles and the coordinates of the
observed points. No kind of agreement on the unit of length, the origin or the
orientation of angles is assumed among the robots.

A robot is initially in a waiting state (Wait). Asynchronously and indepen-
dently from the other robots, it observes the environment (Look) by activating
its sensors. The sensors return a snapshot of the world, i.e. the set of all points
occupied by at least one other robot, with respect to the local coordinate sys-
tem. Then, based only on its local view of the world, the robot calculates its
destination point (Compute) according to its deterministic algorithm (the same

1 We again suppose that robots are at the start located at distinct positions.

Biangular Circle Formation by Asynchronous Mobile Robots 187

for all robots). After the computation the robot moves towards its destination
point (Move); if the destination point is the current location, the robot stays
on its place. A move may stop before the robot reaches its destination (e.g.
because of limits to the robot’s motion energy). The robot then returns to the
waiting state. The sequence Wait – Look – Compute – Move forms a cycle of a
robot.

The robots are fully asynchronous, the amount of time spent in each phase
of a cycle is finite but otherwise unpredictable. In particular, the robots do not
have a common notion of time. As a result, robots can be seen by the other
robots while moving, and thus computations can be made based on obsolete
observations. The robots are oblivious, meaning that they do not remember
any previous observations nor computations performed in any previous cycles.
The robots are anonymous, meaning that they are indistinguishable by their
appearance, and they do not have any kind of identifiers that can be used during
the computation. Finally, the robots have no means of direct communication:
any communication occurs in a totally implicit manner, by observing the other
robots’ positions.

There are two limiting assumptions concerning infinity :

Assumption 1. The amount of time required by a robot to complete a cycle is
finite and bounded from above be a fixed constant.

Assumption 2. The distance traveled by a robot in a cycle is bounded from
below be a fixed ε (or the robot gets to the destination point).

As no other assumptions on space exist, the distance traveled by a robot in a
cycle is unpredictable.

3 Notations

In general, r denotes the robot itself or its position in the plane. The configuration
of robots R at a given time is the set of positions in the plane occupied by the
robots; n is the number of robots in R.

Given two distinct points a and b in the plane, [a, b) denotes the half-line that
starts in a and passes through b; flip([a, b)) denotes [a, b) rotated by 180◦ about
a; [a, b] denotes the line segment between a and b; |a, b| the Euclidean distance
between the points a and b. Given two half-lines [c, a) and [c, b), we denote by
�(a, c, b) the clockwise angle centered in c from [c, a) to [c, b); by |�(a, c, b)| the
size of this angle; by axis(�(a, c, b)) the axis of this angle.

Given a circle C with center c and radius rad, we say that robot r is on
C (r ∈ C) if |r, c| = rad (i.e. r is on the circumference of C); r is inside C if
|r, c| < rad; radius(r) in C is the line segment [c, q], where q is the intersection
between the circumference of C and [c, r). We say that two robots r and r′ are
on the same radius in C, if r′ ∈ radius(r).

Points in the plane form a biangular situation (see Figure 1.a) if there exists
a point c (the center of biangularity), a polar ordering of the points around c,

188 B. Katreniak

Fig. 1. (a) Biangular situation, (b) Biangular circle; (c) String of angles SA(r1)

and two nonzero angles α, β such that each two adjacent points form with c
angle α or β and the angles alternate.

Points in the plane form a biangular circle (see figure 1.b) if they are simul-
taneously in the biangular situation and on the boundary of a circle with the
center of the biangularity equal to the center of the circle.

Given a set of points R in the plane, the smallest enclosing circle of the
points is the circle with minimal radius such that all points from R are inside
or on the circle. We denote the circle by SEC and its center by c, the set R is
always unambiguous from the context. The smallest enclosing circle of a set of
n points is unique and can be computed in polynomial time2.

Given a set of points R in the plane, their SEC and c, the successor Succ(r)
of any point r is

– either the point ri �= r, ri ∈ [c, r] with minimal |r, ri| if such a point exists
– or the point ri �= r such that there is no other point inside the angle �(r, c, ri)

and there is no other point on the radius(ri) further from c

We will denote by Succ(i)(r) the i-th power of Succ(r).
Given a set of points R in the plane, the string of angles SA(r) of any point

r is the sequence {|�(Succ(i−1)(r), c,Succ(i)(r))|; 1 ≤ i ≤ n} (see Figure 1c).
The reverse string of angles revSA(r) is defined in the same way as string of
angles, but all angles are counterclockwise oriented3 (i.e. revSA(r) is the reverse
of SA(r)). Instead of SA(r) we will write only SA if we do not consider a spe-
cific point r or when the point r is unambiguous from the context. Make a set
of all SA and revSA starting in all points and keep only the lexicographically
smallest ones. The resulting subset are the the lexicographically first strings of
angles (LFSA). We will call the size of LFSA the degree of symmetry and de-
note by k.

2 E.g. take every pair and triple of robots and verify the circle defined by them.
3 The robots do not have the common sense of clockwise direction, but every in-

dividual robot can locally distinguish between a clockwise and counterclockwise
orientation.

Biangular Circle Formation by Asynchronous Mobile Robots 189

4 Circle Formation

Problem 1 (Circle formation).
Given is a group of n robots on distinct positions in the plane, arrange them on
the boundary of a circle on distinct positions.

We will keep the smallest enclosing circle SEC invariant and use a polar
coordinate system based on it. The center of the polar coordinate system is c,
the unit of distance rad. Angle 0 and clockwise direction are defined only locally
for every robot. Angle 0 is either the radius the robot stays on if c �= r, or the
robot’s local angle 0 otherwise. The clockwise direction is the robot’s local one.
We will denote (a, α)P the point at the distance a from c at the angle α (e.g.
(1, 0)P is the intersection of [c, r) and SEC).

Algorithm Circle formation implements the solution: Any robot on SEC
stays on its place. All others try to get on SEC along their radii. If more then
one robot is on the same radius, only the closest one to SEC will move towards
SEC. The others have to wait until they become one of the closest one to c and
then do a side-step, an atomic move along the concentric circle, to one third of
the angle to the next robot. Side-steps are allowed at most in the distance 1

2
from the center4. If a robot wants to do a side-step further than 1

2 from c, it will
move along its radius to this distance first. If the robot is staying on c, it will
move anywhere close enough to c to be the nearest to c also in its next cycle.

Fig. 2. Circle formation algorithm

4.1 Correctness

Lemma 1. The smallest enclosing circle SEC is invariant.

Proof. No robot ever leaves SEC and no robot ever moves behind the boundary
of SEC.

Lemma 2. If a robot did a side-step, there are no other robots on its radius in
its new life-cycle and it will visit no occupied radius during its side-step.

Proof. If a robot does a side-step, other robots on the same radius do not leave it
(they cannot be the closest to c) until it finishes the side-step. Robot will occupy

4 We will use it in chapter 5.

190 B. Katreniak

Circle formation(R, r)
1 d ← Min(|ri, c|; ri ∈ R); e ← Min(|ri, c|; ri ∈ R, ri �= r)
2 if (� ∃ri ∈ R; ri �= r; ri ∈ [r, (1, 0)P])
3 then return (1, 0)P

4 if |r, c| > d
5 then return r
6 if r = c
7 then return (e

2
, 0)P

8 if |r, c| > 1
2

9 then return (1
2
, 0)P

10 return (d, |�(r,c,Succ(r))|
3

)P

new radius in its next cycle (Assumption 2). As the robot’s new radius is max. in
one third to the nearest old occupied radius and so it is for each other robot, no
occupied radius was visited and no other robot stays on the destination radius.

Lemma 3. If a robot chooses the direct way to SEC, it will choose it in all its
next life-cycles until it gets there.

Proof. If a robot r chose the direct way to SEC, there is no other robot on the
same radius closer to SEC. Other robots on the same radius cannot cross its
way and so is it for all others (Lemma 2).

Lemma 4. Every robot will reach SEC in finite time.

Proof. Consider a robot nearest to the c. It will optionally move to the distance
1
2 and do a side-step. But then it always chooses direct way to SEC and gets
there in finite time (Assumptions 1, 2). Eventually, every robot becomes the
nearest to c.

5 Biangular Circle Formation

Problem 2 (Biangular circle formation).
Given is a group of n robots on distinct positions, arrange them in a biangular
circle pattern.

For at most two robots, the problem is trivially solved – robots can simply
stay at their positions. Due to a lack of space the special algorithms for three
and four robots are not included. We solve the problem for at least five robots
here.

We will keep the smallest enclosing circle SEC invariant and base the po-
lar coordinate system on it in the same way as we did in the circle formation
problem. We only override the clockwise direction in some special cases.

5.1 Pseudo-synchronous Circle Model

Imagine the pseudo-synchronous circle model (PSC model) where robots move
along the boundary of a fixed circle C. Each step takes finite time and has three
phases:

Biangular Circle Formation by Asynchronous Mobile Robots 191

1. Robots synchronously observe the configuration.
2. Robots compute their destination points.
3. Robots asynchronously move to their destinations. Every robot may stop

before it reaches its destination (even not move at all). But at least one
moving robot (if such a robot exists) must pass a distance greater than some
fixed ε or get to the destination.

We call a robot elected, if its position at the start of a step is not equal to its
computed destination point (i.e. it wants to move). We will denote byM(·) the
set of elected robots.

The algorithm used in computation phase must meet the following rules:

Assumption 3. Every robot is able to compute M(·).

Assumption 4. It is guaranteed that all robots are at distinct positions during
the movement phase.

Assumption 5. The degree of symmetry cannot be higher during the robots’
movement than it was in the observed configuration. If at least one moving robot
did not move, the degree of symmetry must be lower.

5.2 Emulation of PSC Model in Asynchronous Model

We define the circle C being equal to SEC (SEC must be invariant) and any
robot’s position as the intersection of its radius and SEC (as the projection on
SEC).

Algorithm Emulate PSC implements the emulation. Having observed the
configuration, robot calculates:

– The set of elected robots M(·) (Assumption 3).
– Destination angle A(·) in PSC model5.
– Distance D(·) defined as 1

2 + 1
4k (k is the degree of symmetry).

Default action for any robot r is to move along its radius to SEC (refer to
Figure 3). This default action is chosen if any robot is closer to c than D(·) or if
any non-elected robot is inside SEC or if the robot is not elected. Otherwise the
robot goes along its radius to the distance D(·) from c. If and only if all elected
robots are at the distance D(·) from c and all non-elected on SEC, every elected
robot does a side-step by angle A(·).

As long as robots are moving only along their radii, the configuration in the
PSC model (the projection on SEC) is invariant and so are the functionsM(·),
A(·) and D(·). This corresponds to the observation and computation phase of
the PSC model.

The algorithm Emulate PSC ensures that all robots are moving only along
their radii until all non-elected robots get on SEC and all elected robots get

5 We emulate a general algorithm in PSC model and A(·) is the destination in it.

192 B. Katreniak

Fig. 3. One step – elected robots are white: (a) nonelected robots are inside SEC; (b)

elected robots go onto the dotted circle; (c) waiting for the synchronized configuration;

(d) two elected robots observed the synchronized configurations; (e) D(·) increased

(dotted circle grew), new elected robot waits until all robots get out of the dotted

circle and all non-elected on SEC

Emulate PSC(R, r)
1 if (∃r′ ∈ R; |r′, c| < D(·))
2 then return (1, 0)P

3 if (∃r′ ∈ R \M(·); r′ �∈ SEC)
4 then return (1, 0)P

5 if r �∈ M(·)
6 then return (1, 0)P

7 if (∃r′ ∈ M(·); |r′, c| �= D(·))
8 then return (D(·), 0)P

9 return (D(·),A(r))P

to the distance D(·) from c. We will call this configuration the synchronized
configuration. At least one elected robot observes the synchronized configuration
and starts doing a side-step. Everything from this moment to the moment a new
step starts corresponds to the movement phase of the PSC model.

At the begining of each step the following assumptions must hold:

Assumption 6. Every moving robot is moving directly towards SEC.

Assumption 7. Every robot’s distance from c is at least D(·).

While the Assumption 7 holds, the observation and computation phases of
PSC model are emulated (potentially many times again and again). When the
Assumption 7 breaks, the movement phase is emulated. When the Assumption 7
becomes valid again, the movement phase has finished and the next step starts.
Note that Assumption 6 cannot be checked by observing the configuration and
thus cannot be used in the algorithm.

Correctness of the Emulation. We have to show that we have synchronized
the asynchronous robots into the global steps of the PSC model. Robots must
not have remembered any movement across the radii when the next step starts,
they can be moving only directly towards SEC. In addition we have to show
that the next step starts in finite time and assure the progress property of the
PSC model.

Biangular Circle Formation by Asynchronous Mobile Robots 193

Lemma 5. When the next step starts, the Assumption 6 holds.

Proof. While at least one elected robot did not start doing a side-step, the actual
degree of symmetry k is lower (Assumption 5) than the one in the synchronized
configuration and thus the actual D(·) is more than the one in the synchronized
configuration.

While at least one robot is doing a side-step, it is closer to c than in the
synchronized configuration because robots are moving along a line. Assumption
5 ensures that k do not increase and thus D(·) will not decrease.

Robots choose the default action whenever at least one robot is closer to c
than D(·). Every elected robot has to either do a side-step (robots that observed
the synchronized configuration) and then take the default action until it gets
to the distance D(·) from c or just take the default action until it gets to the
distance D(·). In both cases every elected robot gets to the distance D(·) only
when it cannot have remembered any side-step movement. This ensures that the
Assumption 6 holds when the next step starts.

Lemma 6. The next step starts in a finite time.

Proof. At the start of every step, non-elected robots get in finite time onto SEC.
Then elected robots move in finite time to the distance D(·) from c. Finally the
synchronized configuration is broken and all elected robots get in finite time to
the distance at least (actual) D(·) from c and new step starts.

Lemma 7. At least one robot (if such robot exists) in PSC model passes every
step a distance greater than some fixed ε or get to the destination.

Proof. At least one elected robot will observe the synchronized configuration
and start doing a side-step. Assumption 2 ensures that this robot will pass some
minimal distance required by PSC model or get to the destination.

5.3 Idea of the Solution

We will first use the circle formation algorithm to form a circle. Then we switch
to the PSC model and try to transform the circle in a finite sequence of steps to
the regular one. We will not be able to achieve it in general and will form only
the biangular circle in some cases.

Let us denote one string in the set of the lexicographically first strings of
angles LFSA by S. Note that the strings in LFSA are the same, they differ only
in the starting point and the direction. We have to analyze two cases:

– If all strings in LFSA are oriented in the same direction then only the rota-
tions around c are present. We have the rotation case (Figure 4.a) and the
string S can be written in form wk for some w.

– If there are strings in LFSA oriented in clockwise and counterclockwise di-
rections then also the mirrorings about axes passing trough c are present. We
have the mirroring case (Figures 4.b, 4.c) and the string S can be written in
form (wwR)

k
2 for some w, where the first and last angles in w and wR may

194 B. Katreniak

Fig. 4. Undistinguishable (white) robots: (a) rotation case, k = 2; (b) mirroring case,

k = 6; (c) mirroring case, k = 2

only be half angles of an angle in SA – when the axis of mirroring symmetry
passes trough an axis of an angle. Note that in mirroring case the degree of
rotation symmetry is k

2 .

If all elected robots in PSC model are moving synchronously, the degree of
symmetry cannot decrease. We will build the regular pattern in each symmetric
part of the circle and will not allow the increase of the degree of symmetry until
the regular configuration is achieved. The motivation is simple – the solution
must consider this synchronous behavior. When the robots break some sym-
metry, we start building the regular situation from the start with lower degree
of symmetry. As the degree of symmetry is a natural number, the process will
restart only finite number times. The only exception is the increased degree of
symmetry in case the regular circle formation is reached6.

We have to solve many technical details: We are going to concatenate the
circle formation algorithm and the PSC emulation algorithm. We have to perform
steps in the PSC model in order to form the regular circle in finite time and assure
the invariance of SEC and take care to not increase the degree of symmetry.

5.4 Concatenation of Circle Formation and PSC Model

The concatenation of two different algorithms is not possible in general. We have
to construct new algorithm, which chooses and calls the right subalgorithm using
only the observed configuration.

In our case everything is prepared and the concatenation is done very simply:
the circle formation algorithm is used when at least two robots occupy the same
radius, the PSC model emulation otherwise.

Correctness of the Concatenation. If all robots occupy different radii at the
start, only the PSC model emulation algorithm will be used. Otherwise the circle
formation algorithm is used first until the last two robots on the same radius
are separated. This is done only by robot(s) doing side-steps in the distance
not more than 1

2 from c. This is correct start for the PSC model emulation
algorithm because only default actions will be performed until the robots finish
their side-steps and move along their radii close enough towards SEC to start
the first step.

6 Regular circle will not be formed only when robots are in the moment the circle
formation algorithm has finished in the biangular configuration.

Biangular Circle Formation by Asynchronous Mobile Robots 195

5.5 Choosing Elected Robots in PSC Model

Assumption 3 gives us the first restriction. In addition we will elect only the
smallest possible number of robots.

Lemma 8. The minimal size of a nonempty subset of robots that all robots can
agree on from the strings of angles is equal either to |LFSA| if no robot is on an
axis of a mirroring symmetry, or to |LFSA|

2 otherwise.

Proof. The robot r must recognize whether it is elected or not only from its set
{SA(r), revSA(r)}, because all other robots must agree with it and the other
robots do not know its local clockwise orientation.

The robots with equal {SA, revSA} must be all elected or not, because the
robots run the same deterministic algorithm. Thus if a robot r is elected, all
other robots with equal SA or revSA must be elected too; |{SA| SA = SA(r)}| =
|LFSA|. Thus the minimal size of a nonempty subset of robots that all robots
can agree on is either |LFSA| if SA(r) �= revSA(r), or |LFSA|

2 otherwise.

According to Assumption 3 and Lemma 8 we have to elect one robot for each
period w in the rotation case and two symmetric robots (one in the special case)
for each rotation period wwR in the mirroring case. It is therefore sufficient to
define the elected robotsM(·) and their moves A(·) only for the smallest rotation
period and this implicitly defines this movement for the whole configuration.

In a biangular configuration (regular being a special case) all robots would
be elected and the use of the PSC model emulation would lead to breaking the
invariance of SEC. This is why biangular (regular) configurations are handled as
a special case – no robot is elected and applying the default action robots move
onto SEC and stay there.

5.6 Critical Robots

Invariance of SEC during one step is easily achieved when at least one non-
identical rotation is among the symmetries (Figures 4.a,b). Any not moving
undistinguishable robots on SEC assure its invariance. Otherwise, we cannot
send arbitrary robot into SEC without breaking its invariance (Figure 5.b).

We will call a (set of) robot(s) critical if its deletion from SEC modifies SEC
(see Figures 5.a,c,d, 4.c).

Lemma 9. A robot is critical if and only if the sum of its two adjacent angles
is greater than 180◦. If n ≥ 4, at most two robots can be critical and the critical
robots are neighbors.

Proof. Three (two) robots on SEC forming a triangle (line) such that c is inside
this triangle (line) are sufficient to assure the invariance of SEC. The removal of
a robot with the sum of adjacent angles at most 180◦ thus cannot modify SEC.

If there are two not neighboring critical robots, the sum of their adjacent
angles would be more than 360◦: 2(180◦ + ε) > 360◦.

Three neighboring critical robots make similar contradiction (see Figure 5.e):
α + β + γ + δ > x + (180◦ − x) + x + (180◦ − x) = 360◦.

196 B. Katreniak

Fig. 5. Critical (white) robots cannot leave SEC. (a) one critical robot; (b) critical

robot breaking the invariance of SEC; (c) two critical robots; (d) two critical robots

form angle 180◦; (e) three robots cannot be critical

Fig. 6. 180◦ angle is handled as a special case. Critical robots are white. (a) elected

robots going to synchronize in distance D(·); (b) elected robots move to the radii of

critical robots; (c) all robots wait until the robot doing side-step finishes

Consider a configuration where two critical robots form with c angle 180◦

(see Figure 5.c). These two critical robots cannot move. We forbade in the PSC
model the robots to stay on the same place and thus no other robot can ever get
between the critical robots. We must make an exception.

The nearest robot(s) to the critical ones (with lex. smaller {SA, revSA}, both
for equal) will move onto the critical robot(s) in the PSC model7 (Figure 6).
When it (they) get there, circle formation algorithms will be activated and it
(they) move between the two critical robots. We achieve it by defining the clock-
wise direction of the moving robot(s) in the direction to the 180◦ angle.

Correctness of the Exception. The two critical robots assure the invariance
of SEC. The nearest robot(s) to the critical ones is(are) moving onto it(them),
thus it(they) will be the nearest also in the next step. Following Lemma 7 we
get that it(they) reach(es) the critical robot(s) in finite time.

The switch to the circle formation algorithm is done in the moment, when
the first moving robot r1 reached the destination and the other one r2 (if ex-
ist) may be still moving (see figure 6.c). In such a case r1 and all other robots
will wait (because r2 is strictly closer to c than any other robot) until r2 ei-
ther reaches its destination or wakes up and goes directly towards SEC. In all
cases we have a correct starting situation for the circle formation algorithm.
One another robot (n ≥ 5) always stays on SEC and it ensures that the
180◦ angle disappears and robots will continue as if there never was any 180◦

angle.

7 No robots will meet in reality, only in the projection in PSC model.

Biangular Circle Formation by Asynchronous Mobile Robots 197

5.7 Rotation Case

For a given period of angles w we must elect one robot and move it by an angle
in order to convert w into the form α|w|;α = 360◦

kn in finite time. As we do not
have to break any symmetries, we can define the first matching robot as the one
with the smallest {SA, revSA}.

For our construction we need the configuration with exactly one maximal
angle. If this is not the case, we move the first noncritical robot at one side of
one of the greatest angles in order to enlarge one maximal angle (Figure 7.a).
We will let it pass an angle small enough to not (potentially) increase the degree
of symmetry.

Now we know that one angle (mark as τ) in w is the strictly greatest. We
will take care to hold the size of all other angles bellow τ . If we choose in the
following to move a robot in such a way that τ could become not the strictly
greatest, we move the next one first.

One strictly greatest angle ensures that no rotation symmetry can arise. The
only symmetry we will have take care for is the mirroring about the axis running
trough the axis of τ (later only axis) (see Figure 7.b).

We will build a sequence of α angles starting at one side of τ . If the sequence
of α angles is not complete on either of the axis’ sides, we first complete one
side. We choose the side of the axis with more robots. If equal number of robots
is on both sides, we either move the robot on the axis to one side, either move
one robot (closest to the axis or any) onto the axis (see Figure 7.b).

The different number of robots on the sides of the axis ensures that the
mirroring symmetry about the axis cannot arise while robots are moving only
on one side of the axis. So we can build a sequence of α angles on one of the
axis and cram all needless robots between the axis and the last robot in the
sequence (see Figures 7.c,7.d). The lengthening of the sequence by one angle is
as follows: cram all the abundant robots between the place for the new robot
in the sequence and first robot next to this place (b.e. in the middle) or spread
them in order to keep all angles bellow τ . Then move the new robot on its place
in the sequence.

When the sequence is complete on one side, we continue in building the
sequence on the other side (see Figures 7.d-f). We must take care for the mir-
roring. If the chosen robot’s move would increase the degree of symmetry, we
first move the next robot a bit (b.e. halfway or less between the original destina-

Fig. 7. Rotation case. (a) creating one strictly greatest angle; (b) assuring different

number of robots on the sides of “axis”; (c)-(f) building a sequence of α angles

198 B. Katreniak

tion and next robot’s position). At the end the robots stay in the regular circle
pattern.

For the correctness observe: the degree of symmetry could not rise until the
regular circle pattern is formed, SEC remained invariant, regular circle pattern
is formed in finite time.

5.8 Mirroring Case

For each string of angles wwR in a mirroring configuration two symmetric robots
(or one on the axis of mirroring) must be elected and the angle they move by
must be defined.

The representation wwR of the period is not sufficient, we also need to know
whether there are robots at the beginning and end of w (i.e. whether the robots
stay on the intersections of SEC and the axis of mirroring).

When a robot is an the axis of mirroring, we will break the mirroring symme-
try and convert the problem to the rotation case in the lower degree of symmetry.
The robot on the axis with lex. smaller {SA, revSA} will move to any side of the
axis by an angle one third of the distance to the next robot (see Figure 8a). If
this move could rise the degree of symmetry, the robot will move by a smaller
angle or to the other side. The side cannot be chosen globally by all robots, but
the moving robot can use its local clockwise direction.

So it is sufficient to consider the cases with no robots on the axis of mirroring
(and thus n ≥ 6). Unlike the rotation case, in the mirroring case we cannot
start building the sequence of α angles anywhere. We must align the sequence
of robots to fit the mirroring symmetry. The nearest robot by the axis will go to
the angle α

2 from the axis.
To avoid the increasing of the degree of symmetry, we create (in analog to

the rotation case) one strictly greatest angle and take care to never increase any
other angle to its size. The adjacent half-angles about the axis are considered as
one angle.

We will build the sequence of α angles from both sides of w. We will lengthen
the sequence at that side, where the lengthening will not break the strictly
greatest angle and the critical robots need not move. If the sequence can be
lengthened on both sides, we continue in the one where the robot dedicated to
move is closer to its target. The process of lengthening is the same as in the
rotation case.

Fig. 8. Forming the regular circle in the mirroring case. (a) robot on the axis is breaking

the mirroring symmetry; (b),(c) building a sequence of aligned α angles

Biangular Circle Formation by Asynchronous Mobile Robots 199

6 Conclusions and Open Issues

We studied in this paper the problem of forming the biangular circle formation.
First we presented solution for an easy problem – circle formation. Then we
showed that robots can in finite time rearrange the circle to the biangular circle.

The regular circle is not formed only in cases when the biangular configuration
is observed in the PSC model. Note that if the robots would have a common
sense for clockwise orientation, the electing functionM(·) could be based just on
clockwise strings of angles SA. Robots would be able to elect nontrivial subset of
them in all cases (except regular circle) and continue in forming the regular circle.
This single modification of the algorithm solves the regular circle formation
problem in the model with the common sense of clockwise orientation.

Open questions:

– Is it possible to form a regular circle in general case? Try to characterize the
configurations transformable into the regular circle.

– Is it possible to form regular circle in the pseudosynchronous model?
– The algorithm supposes infinite precision in the observation. Is it possible

to eliminate it? How to define such a model?
– Time complexity of the solution may be defined, analyzed and improved.

Acknowledgement. Author would like to thank Rastislav Královič, Dana Par-
dubská and Michal Forǐsek for their support.

References

1. X.Défago, A. Konagaya. Circle formation for oblivious anonymous mobile robots
with no common sense of orientation. In Proc. of the 2nd ACM Annual Workshop
on Principles of Mobile Computing (POMC’02), pages 97-104, Toulouse, France,
October 2002

2. Cieliebak, P. Flocchini, G. Prencipe and N. Santoro. Solving the Robots Gathering
Problem. In 30th International Colloquium on Automata, Languages and Program-
ming (ICALP 2003), to appear. Eindhoven, The Netherlands, 30 Giugno – 4 Luglio,
2003.

3. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of Asynchronous
Mobile Robots with Limited Visibility. In STACS, 2001.

4. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for Weak
Robots: The Role of Common Knowledge in Pattern Formation by Autonomous
Mobile Robots. In ISAAC ’99, pages 93-102, 1999

5. I. Chatzigiannakis, M. Marcou, S. Nikoletseas: Distributed circle formation for
anonymous oblivious robots. WEA 2004

6. Noa Agmon, David Peleg: Fault-tolerant gathering algorithms for autonomous mo-
bile robots. SODA 2004: 1070-1078

7. Ichiro Suzuki, Masafumi Yamashita: Distributed Anonymous Mobile Robots: For-
mation of Geometric Patterns. SIAM J. Comput. 28(4): 1347-1363 (1999)

Hardness and Approximation Results for Black
Hole Search in Arbitrary Graphs�

Ralf Klasing��, Euripides Markou� � �, Tomasz Radzik†, and Fabiano Sarracco‡

Abstract. A black hole is a highly harmful stationary process residing
in a node of a network and destroying all mobile agents visiting the node,
without leaving any trace. We consider the task of locating a black hole
in a (partially) synchronous arbitrary network, assuming an upper bound
on the time of any edge traversal by an agent. For a given graph and a
given starting node we are interested in finding the fastest possible Black
Hole Search by two agents (the minimum number of agents capable to
identify a black hole). We prove that this problem is NP-hard in arbi-
trary graphs, thus solving an open problem stated in [2]. We also give
a 7/2-approximation algorithm, thus improving on the 4-approximation
scheme observed in [2]. Our approach is to explore the given input graph
via some spanning tree. Even if it represents a very natural technique, we
prove that this approach cannot achieve an approximation ratio better
than 3/2.

Keywords: approximation algorithm, black hole search, graph explo-
ration, mobile agent, NP-hardness.

1 Introduction

Problems related to security in a network environment have attracted many
researchers. For instance protecting a host, i.e., a node of a network, from an
agent’s attack [11, 12] as well as protecting mobile agents from “host attacks”,

� Research supported in part by the European project IST FET CRESCCO (contract
no. IST-2001-33135), the Royal Society Grant ESEP 16244, EGIDE, and the Am-
bassade de France en Grèce/Institut Français d’ Athènes. Part of this work was done
while E. Markou, T. Radzik and F. Sarracco were visiting the MASCOTTE project
at INRIA Sophia Antipolis.

�� MASCOTTE project, I3S-CNRS/INRIA/Université de Nice-Sophia Antipolis, 2004
Route des Lucioles, BP 93, F-06902 Sophia Antipolis Cedex (France), email
Ralf.Klasing@sophia.inria.fr

� � � Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, email emarkou@softlab.ece.ntua.gr

† Department of Computer Science, King’s College London, London, UK, email
radzik@dcs.kcl.ac.uk

‡ Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, email
Fabiano.Sarracco@dis.uniroma1.it

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 200–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hardness and Approximation Results 201

i.e., harmful items stored in nodes of the network, are important with respect to
security of a network environment. Various methods of protecting mobile agents
against malicious hosts have been discussed, e.g., in [8, 9, 10, 11, 12, 13].

We consider here malicious hosts of a particularly harmful nature, called black
holes [1, 2, 3, 4, 5, 6]. A black hole is a stationary process residing in a node of
a network and destroying all mobile agents visiting the node, without leaving
any trace. We are dealing with the issue of locating a black hole: assuming that
there is at most one black hole in the network, at least one surviving agent must
find the location of the black hole if it exists, or answer that there is no black
hole, otherwise. The only way to locate the black hole is to visit it by at least
one agent, hence, as observed in [4], at least two agents are necessary for one
of them to locate the black hole and survive. Throughout the paper we assume
that the number of agents is the minimum possible for our task, i.e., 2, and that
they start from the same node, known to be safe.

The issue of efficient black hole search was extensively studied in [3, 4, 5, 6]
in many types of networks under the scenario of a totally asynchronous network
(i.e., no upper bound on this time needed for an edge traversal). In this setting
it was observed that, in order to solve the problem, the network must be 2-
connected. Moreover, it is impossible to answer the question of whether a black
hole actually exists in an asynchronous network, hence [3, 4, 5, 6] work under the
assumption that there is exactly one black hole and the task is to locate it.

In [1, 2] the problem is studied under the scenario we consider in this paper
as well. The network is partially synchronous, i.e. there is an upper bound on
the time needed by an agent for traversing any edge. This assumption makes a
dramatic change to the problem: the black hole can be located by two agents
in any graph; moreover the agents can decide if there is a black hole or not in
the network. If, without loss of generality, we normalize to 1 the upper bound
on edge traversal time, then we can define the cost of a Black Hole Search as
the time taken under the worst-case location of the black hole (or when it does
not exist in the network), assuming that all the edge traversals take time 1. In
[2] the BHS problem is studied in tree topologies, while in [1] a variant of the
problem is studied in which the black hole can be located only in a given set of
nodes (which is a subset of the set of nodes of the graph) and it is proved that
this variant is NP-hard in an arbitrary graph.

In this paper we show that the problem of finding the minimum cost Black
Hole Search by two agents in an arbitrary graph is NP-hard even under the
restricted scenario of one safe node (the starting node), thus solving an open
problem stated in [2]. Moreover, we give a 7/2-approximation algorithm for this
problem, i.e., we construct a polynomial time algorithm which, given a graph
and a starting node as input, produces a Black Hole Search whose cost is at
most 7/2 times larger than the best Black Hole Search for this input. This result
improves on the 4-approximation scheme observed by [2]. Finally, we show that
any Black Hole Search that explores the given input graph via some spanning
tree cannot have an approximation ratio better than 3/2.

202 R. Klasing et al.

2 Model and Terminology

Let G = (V,E) be a connected graph. We assume that the nodes of G can be
partitioned into two subsets: a set of black holes B � V , i.e. nodes destroying
any agent visiting them without leaving any trace; and a set of safe nodes V \B.
During a Black Hole Search (or simply BHS), a set of agents starts from a special
node s ∈ V \ B (which we call starting node), and explores the graph G by
traversing its edges. Obviously s is known to be a safe node; more generally,
there exists a subset Ŝ ⊆ V \ B of nodes initially known to be safe. The target
of the agents is to report to s the information on which nodes of G are black
holes.

In this paper we consider the following restricted version of the problem:
|B| ≤ 1 (i.e. there can be either one black hole or no black holes at all in G),
Ŝ = {s} (only the starting node is initially known to be safe), the set of agents has
size 2, agents have a complete map of G, agents have distinct labels (we will call
them Agent-1 and Agent-2) and they can communicate only when they are in the
same node (and not, e.g., by leaving messages at nodes). Finally, the network is
(at least partially) synchronous. We consider the following formalization, called
the Minimum Cost BHS Problem, or simply BHS problem.

Instance : a graph G = (V,E), and a node s ∈ V .
Solution : an exploration scheme E = (X, Y) for G and s, i.e. two equal-size

sequences of nodes in G, X = 〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉 which
satisfy the feasibility constraints listed below.

Measure : the cost of the BHS based on E .

When a BHS based of E is performed in G, Agent-1 follows the path defined
by X while Agent-2 follows the path defined by Y, in synchronized steps. In
other words, at the end of the i-th step of the exploration scheme, Agent-1 is
in node xi, while Agent-2 is in node yi. We say that each step has length one
time unit. As soon as an agent deduces the existence and the exact location of
the black hole, it “aborts” the exploration and returns to the starting node s by
traversing nodes in V \B. A pair of sequences of nodes X and Y defines a feasible
exploration scheme for a graph G and a starting node s, which can be effectively
used as a basis for a BHS on G, if it satisfies the following four constraints.

Constraint 1: x0 = y0 = s, xT = yT .
Constraint 2: for each i = 0, . . . , T − 1, either xi+1 = xi, or (xi, xi+1) ∈ E;

similarly for Agent-2, either yi+1 = yi or (yi, yi+1) ∈ E.
Constraint 3:

⋃T
i=0 {xi} ∪

⋃T
i=0 {yi} = V .

We need some further definitions to state the fourth constraint. Given an
exploration scheme E = (X, Y), the explored territory at step i is

Si =
{⋃i

j=0 {xj} ∪
⋃i

j=0 {yj} , if xi = yi;
Si−1, otherwise.

Hardness and Approximation Results 203

Observe that, by Constraint 1, S0 = {s} and, by Constraint 3, ST = V . A
node v is explored at step i if v ∈ Si, otherwise it is unexplored. The
definition of explored territory covers the assumption that, whenever the two
agents are in the same node, they communicate to each other that the nodes of
the network they visited are safe. A meeting step (or simply meeting) is the
step 0 and every step 1 ≤ j ≤ T such that Sj � Sj−1. Observe that for each
meeting step j, we must have xj = yj (but not necessarily the opposite); we call
this node a meeting point. Each sequence of steps 〈j + 1, j + 2, . . . , k〉 between
two consecutive meetings j and k is a phase of length k−j. Now we can give the
last constraint for a feasible exploration scheme. It says that during each phase,
an agent can visit at most one unexplored node, and the same unexplored node
cannot be visited by both agents (see [2]).

Constraint 4: for each phase 〈j + 1, . . . , k〉,
| {xj+1, . . . , xk} \ Sj | ≤ 1, | {yj+1, . . . , yk} \ Sj | ≤ 1, and
{xj+1, . . . , xk} \ Sj �= {yj+1, . . . , yk} \ Sj .

Lemma 1. If k is a meeting step of exploration scheme E, then xk = yk ∈ Sk−1.
Each phase of E has length at least two.1

Any length-2 phase 〈j + 1, j + 2〉 at the end of which the explored territory
increases by 2 nodes must have the following structure. Let m be the meeting
point at step j. During step j +1, Agent-i visits an unexplored node vi adjacent
to m. In step j + 2, the agents meet in a safe node adjacent to both v1 and v2.
Note that this node can be either m, and in this case we denote the phase as
b-split(m, v1, v2), or a distinct node m′, and in this case we denote the phase as
a-split(m, v1, v2,m

′).
For an exploration scheme E = (X, Y) and a “location” of a black hole B,

where B = ∅ or B = {b} for b ∈ V \ {s}, the execution time is defined
as follows. If B = ∅, then the execution time is equal to the length T of the
exploration scheme, plus the shortest path distance from xT (= yT) to s. In this
case the agents must perform the full exploration, and then get back to s. If
B = {b}, then let j be the first step in E such that b ∈ Sj . The execution time
in this case is equal to j plus the shortest path distance from xj(= yj) to s
avoiding b. One agent, say Agent-1, vanishes into the black hole b during the
phase ending at step j, so it cannot meet Agent-2 at the meeting point xj = yj .
Thus the surviving Agent-2 knows at the end of step j the exact location of the
black hole (see Constraint 4), so it can go straight back to s. The cost of the
BHS based on an exploration scheme E = (X, Y) (or simply the cost of E) is
the maximum of the execution times of E for all possible locations of the black
hole B.

It is easy to check that if G is a tree, then the case B = ∅ gives always the
maximum execution time among all possible locations of the black hole in the
nodes of G. If G is an arbitrary graph, then this property does not always hold.

1 Some proofs are omitted due to the space restrictions.

204 R. Klasing et al.

3 NP-Hardness of the BHS Problem in Arbitrary
Graphs

In this section, we prove the NP-hardness of the BHS problem in arbitrary graphs
by providing a reduction from a particular version of the Hamiltonian Circuit
problem to the decision version of the BHS problem.

cpHC problem

Instance : cubic planar graph G = (V,E), and an edge (x, y) ∈ E;
Question : does G contain a Hamiltonian cycle that includes edge (x, y)?

dBHS problem

Instance : graph G′ = (V ′, E′), with a starting node s ∈ V ′, and a positive
integer X;

Question : does there exist an exploration scheme E for G′ starting from s,
such that the BHS based on E has cost at most X?

One can check that the reduction from the 3-SAT problem to the Hamiltonian
Cycle problem given in [7] proves actually that the cpHC problem is NP-hard.
For an arbitrary instance of the cpHC problem (i.e. for each planar cubic graph
G = (V,E) and edge (x, y) ∈ E), we construct in linear time a corresponding
instance of the dBHS problem (i.e. a graph G′, a starting node s, and an integer
X) such that the original instance is a positive instance of the cpHC problem if
and only if the constructed instance is a positive instance of the dBHS problem.

Since G is planar, we can find in linear time an (arbitrary) combinatorial
planar embedding of G, i.e. a clockwise order Lv of the neighbors of each node
v ∈ V . We then construct both G′ and its embedding, as extensions of G and
its (combinatorial planar) embedding, in the following five steps.

1. G′ has originally the same nodes (original nodes), the same edges and the
same embedding as G.

2. Replace the edge (x, y) with the edges (x, s) and (s, y), where s /∈ V is a new
node. The node s replaces the node y in Lx, and the node x in Ly.

3. For each edge (v, w) in the current graph (the current set of edges is E ∪
{(x, s), (s, y)} \ {(x, y)}) add two nodes z

(v,w)
1 and z

(v,w)
2 (twin nodes) and

four edges (z(v,w)
1 , v) , (z(v,w)

1 , w), (z(v,w)
2 , v) and (z(v,w)

2 , w). For the embed-
ding, place z

(v,w)
1 before and z

(v,w)
2 after w in Lv. Similarly, place z

(v,w)
1 after

and z
(v,w)
2 before v in Lw.

4. For each node v ∈ V ∪{s} and for each pair of nodes z
(v,w)
i , z

(v,u)
j consecutive

in Lv, add an edge between these z
(v,w)
i and z

(v,u)
j . We call this edge a

shortcut edge. Let z
(v,u)
j follow z

(v,w)
i in Lv. Then, in the embedding of G′,

place z
(v,u)
j immediately before v in the order of the neighbors of z

(v,w)
i , and

place z
(v,w)
i immediately after v in the order of the neighbors of z

(v,u)
j .

Hardness and Approximation Results 205

5. For each node v ∈ V ∪ {s} \ x, add a new node vF (flag node) and an edge
(v, vF). For the embedding, vF can be in any place in Lv.

Figure 1, which will be used as an illustration for the proof of Lemma 5,
illustrates also the construction of graph G′. If n = |V | and e = |E|, are the
numbers of nodes and edges in G, then graph G′ has n original nodes, one
starting node s, n flag nodes and 2(e + 1) twin nodes. Since in cubic graphs
e = 3

2n, the total number of nodes in G′ is 5n+3. This construction can be done
in linear time with respect to the size of G. We assume that s is the starting node,
while the remaining 5n + 2 nodes are initially unexplored. We set X = 5n + 2.

Lemma 2. If u and w are two original nodes having a common neighbor v in
G, then there exists in G′ a path [u, z′, z′′, w] where z′ is a twin node for the edge
(u, v) and z′′ is a twin node for the edge (v, w).

Lemma 3. Each twin node in G′ has degree 4.
Lemma 4. If the graph G has a Hamiltonian cycle that includes edge (x, y),
then there exists an exploration scheme EHC on G′ starting from s, such that
the BHS based on it has cost at most 5n + 2.

Proof. Let {v1 = y, e1, v2, . . . , en−1, vn = x, en, v1 = y} be such Hamiltonian cy-
cle in G. Consider the exploration scheme EHC defined by the following sequence
of phases:

1. b-split(s, sF , y), where sF is the flag node of s;
2. a-split(s, z1, z2, y), where z1 and z2 are the twin nodes of the edge (s, y);
3. for each node vi of the Hamiltonian cycle, with (i = 1, . . . , n− 1):

(a) let vj be the third neighbor of vi, other than vi−1 and vi+1; if j > i then
b-split(vi, z1, z2), where z1 and z2 are the twin nodes of (vi, vj);

(b) b-split(vi, v
F
i , vi+1), where vF

i is the flag of vi;
(c) a-split(vi, z1, z2, vi+1), where z1 and z2 are the twin nodes of the edge

(vi, vi+1);
4. a-split(x, z1, z2, s), where z1 and z2 are the twin nodes of the edge (x, s).

Now let us compute the length of EHC . As we have seen in Section 2, each
a-split and b-split phase has length 2, and increases the explored territory by 2
nodes. The overall number of phases is therefore (5n + 2)/2 and hence EHC has
length 5n + 2. Notice that this is also the exploration time of EHC , for the case
B = ∅, since EHC ends in s.

Claim. Consider the meeting step when the agents are to meet at a node vi. If
a black hole has been just discovered, then the remaining cost of the BHS is not
greater than the remaining cost in the case of no black hole.

Proof. (Sketch) It suffices to show that if there is a black hole in G′, then the
surviving agent can keep following the Hamiltonian Cycle (possibly by using a
shortcut edge), and get to s in less time units than in the case B = ∅.

206 R. Klasing et al.

This implies that also the cost of the BHS based on EHC is 5n + 2, i.e. there
is no allocation of the black hole that yields a larger exploration time. Observe
that the BHS defined above is optimal since it is not possible to explore 5n + 2
nodes in less that 5n + 2 time units. ��

Lemma 5. If there exists an exploration scheme on G′ starting from s such that
the cost of the BHS based on it has cost at most 5n + 2, then the graph G has a
Hamiltonian cycle that includes edge (x, y).

Proof. Let Eσ be such exploration scheme. By Lemma 1, each phase of Eσ has
length at least two and cannot explore more than two unexplored nodes. Since
G′ has 5n + 2 unexplored nodes, Eσ must end in s, and each of its phases
must be either an a-split or a b-split . Consider the sequence Mσ of the meeting
points established for Eσ at the end of each a-split , excluding the last one which
is s.

Claim. Nodes x and y must be the two endpoints of Mσ and s cannot be in Mσ.

Each meeting point vi in Mσ other than s must have at least degree 5 since
one neighbor is needed for the initial exploration of vi, two unexplored neighbors
are needed for the a-split that ends in vi and two further unexplored neighbors
are needed for the a-split that leaves vi. For this reason only the original nodes
of G′ (neither flags nor twins) can be in Mσ. Finally, each flag node has to be
explored with a b-split having as meeting point the original node adjacent to it,
hence each original node of G′ (i.e. each node of G) must be in Mσ. Now we
prove that the sequence Mσ defines a Hamiltonian cycle on G, i.e.:

a) each node of G appears exactly once in Mσ;

b) if nodes vi and vj are consecutive in Mσ, then the edge (vi, vj) must be
in G.

We start by proving a). We have seen that each node of G is in Mσ, thus we
have to prove that no node appears twice or more. Compute the neighbors needed
by a node vi in Mσ: at least one neighbor is needed for the initial exploration
of vi (two neighbors, if it is done through an a-split). Then, for each occurrence
of vi in Mσ, two unexplored neighbors are needed for meeting in vi with an
a-split , and two additional unexplored neighbors are needed for leaving vi with
an a-split . Moreover the flag vF

i has to be explored with a b-split from vi, hence
another unexplored neighbor of vi is needed. If the node vi occurs k times in Mσ,
then the total number of neighbors needed by vi is at least 1 + 4k + 2 = 3 + 4k.
Since each original node in G′ has only 10 neighbors (as G is a cubic graph), it
must be k ≤ 1, thus each node appears exactly once in Mσ.

Now we prove property b) of Mσ. According to the structure of G′, a-split
operations can either explore two twin nodes of an original edge (in this case
property b) is verified since the meeting point is adjacent in G to the previous
one), or explore two original nodes of G′ and meet in another original node which
may not be adjacent to the previous meeting point, thus violating property b).
Suppose that this latter kind of split (a big a-split) happens from a node A to a
node B; see Figure 1. In order to do this, A must have two unexplored original

Hardness and Approximation Results 207

A

B

E

FDC

Fig. 1. A big a-split from A to B. Big circles – original nodes in G; small circles –

twin nodes; shortcut edges are dotted; flag nodes are not represented

neighbors (C and D in the figure) both having B as a neighbor. B must be
already explored, therefore the last original neighbor of B (E in the figure) must
have already been a meeting point (we can suppose without loss of generality
that the one from A to B is the first big a-split in Mσ). At this point no other big
a-splits can be performed from B (all its original neighbors are now explored)
and, by property a), E cannot be again a meeting point, thus the sequence Mσ

can have either C or D as the next meeting point. Supposing that C is that
one, consider the instant when D becomes a meeting point. We cannot get to D
with a big a-split, since D does not have two neighbors in G that are unexplored,
hence also F has been already a meeting point. Now all the original neighbors
of D have already been a meeting point in Mσ, and none of them can be s, thus
there is no way to leave D without violating property a). Therefore there cannot
be any big a-split in σ, and thus also property b) is verified. ��

4 An Approximation Algorithm for the BHS Problem

One may approach the BHS problem in an arbitrary graph G in the following
way. First select a spanning tree in G and then search the graph using the tree
edges. As observed in [2], this approach guarantees an approximation ratio of 4
since the following exploration of an n-node tree requires at most 4(n−1) steps.
Both agents traverse the tree together in, say, the depth-first order and explore
each new node v with a two-step probe phase: one agent waits in the parent p of
v while the other goes to v and back to p.

To follow this “spanning-tree” approach effectively, we need good exploration
schemes for trees and good spanning trees for those schemes. Intuitively a good
heuristic for the former problem should be to minimize the time spent by one

208 R. Klasing et al.

agent waiting for the other one. A good heuristic for the latter problem should
be to minimize the number of nodes without siblings in the selected spanning
tree. It may be difficult, if possible at all, to schedule exploration of such nodes
not using probe phases (which imply waiting).

We assume throughout this section that the starting node s has degree at least
2. In Sections 4.1 and 4.2 we present algorithms Search-Tree(T, s) and Generate-
Tree(G, s), which implement the above general heuristics. Algorithm Search-
Tree(T, s) generalizes the algorithm proposed in [2] for so-called bushy trees. The
Spanning Tree Exploration (STE) algorithm returns for G and s the exploration
scheme computed by Search-Tree(TG, s), where TG is the spanning tree computed
by Generate-Tree(G, s). In Section 4.3 we show that the approximation ratio of
the STE algorithm is at most 7/2.

4.1 Exploration Schemes for Trees

Let T be a rooted n-node tree and let s denote its root. Our algorithm Search-
Tree(T, s) for constructing an exploration scheme for T uses the following order
L(T) of the nodes of T other than the root. We first order the children of each
node according to the number of descendants: a child with more descendants
comes before a child with fewer descendants and the ties are resolved arbitrarily.
Thus from now on T is an ordered rooted tree. Let 〈w1, w2, . . . , wp〉 be the
sequence of the internal nodes of T ordered according to their depth-first-search
numbers. The order L(T) is this sequence with each node wi replaced by the
(ordered) list of its children. The i-th node in the order L(T) will be denoted by
vi and called the i-th node of the tree. The odd (even) nodes of T are the nodes
at the odd (even) positions in L(T).

We classify all nodes other than the root s into the following three types. The
type-1 nodes are the leaves of T ; the type-3 nodes are the internal nodes with
at least one sibling; and the type-4 nodes are the internal nodes (other than the
root) without siblings. Informally, in the exploration scheme which we produce
for T a type-i node contributes i units to the total cost. Note that there is no
type 2. We denote by xt the number of type-t nodes. We consider first the case
when T does not have any type-4 nodes (x4 = 0) and has an odd number of nodes
(an even number of unexplored nodes). Agent-1 (Agent-2) will be responsible for
exploring the odd (even) nodes in the order L(T).

We construct first the exploration sequence YT for Agent-2. Initially YT =
〈w′

1 = s, w′
2, . . . , w

′
2p−1 = s〉 is the depth-first traversal of the p internal nodes

w1, w2, . . . , wp of T . For each internal node w in T , if v2(i+1), v2(i+2), . . . , v2(i+k)

are the children of w which are at even positions in L(T), then replace in YT

the first occurrence of w with the sequence w, v2(i+1), w, v2(i+2), w, . . . , v2(i+k), w.
That is, Agent-2 traverses the internal nodes of the tree in the depth-first man-
ner, and whenever it arrives during this traversal at an internal node w for
the first time, before proceeding to the next node it first explores all children
of w which are even nodes of T . The exploration sequence XT for Agent-1 is
constructed analogously. Since T has an odd number of nodes, both sequences
YT and XT have the same length 2p − 1 + (n − 1) = x1 + 3x3 + 1. Lemma 6

Hardness and Approximation Results 209

says how these sequences are actually properly synchronized to form a valid
(feasible) exploration scheme for T . It can be proven by induction, considering
different kinds of relative positions of nodes v2i−2, v2i−1, v2i and their parents.
Lemma 7 follows from Lemma 6 and the formula for the length of sequences YT

and XT .

Lemma 6. Let T be a tree rooted at s with 2q +1 ≥ 3 nodes and with no type-4
nodes. For the exploration scheme ET = (XT , YT) and i = 1, . . . , q,

1) there exist the i-th meeting step in ET ; let m(i) be that step;
2) the set of the explored nodes at step m(i) is Sm(i) = {s} ∪ {v1, . . . , v2i};
3) the meeting point at the i-th meeting step is the parent of node v2i.

Lemma 7. Let T be a tree rooted at s which has n = 2q +1 ≥ 3 nodes and does
not have any type-4 nodes. The exploration scheme ET = (XT , YT) is valid, can
be computed in linear time and its cost is equal to x1 + 3x3.

Now we consider a general tree T , which may have type-4 nodes. For each type-
4 node v in T , we add a new leaf l with parent v, placing l at the end of the list of
the children of v. If the total number of nodes, including the added nodes, is even,
then we add one more leaf as the last child of an arbitrary internal node. The
obtained ordered tree T ′ is as required in Lemma 7. We obtain ET = (XT , YT)
for T from ET ′ = (XT ′ , YT ′) for T ′ by replacing the traversals of the added edges
with waiting: if an added leaf l is, say, an odd node in T ′ and has parent v, then
replace l in XT ′ with v. Tree T ′ has x′

1 = x1 + x4 + β leaves, for β ∈ {0, 1}, and
x′

3 = x3 + x4 type-3 nodes. Thus, using Lemma 7, the cost of ET is as given in
the following lemma.

Lemma 8. The exploration scheme ET = (XT , YT) for a rooted tree T is valid,
can be computed in linear time and its cost is at most x1 + 3x3 + 4x4 + 1.

4.2 Generating a Good Spanning Tree of a Graph

We describe now our algorithm Generate-Tree(G, s) which computes a span-
ning tree TG of a graph G such that the cost of the exploration scheme for
G computed by algorithm Search-Tree(TG, s) has cost at most 7/2 times worse
than the minimum cost of an exploration scheme for G. Algorithm Generate-
Tree tries to minimize the number of type-4 nodes. Following the terminology
used in [2], we define as bushy the rooted trees in which each internal node
has at least two children. Bushy trees do not have type-4 nodes. Algorithm
Search-Tree computes for a bushy tree the same exploration scheme as the algo-
rithm proposed in [2], and it was proven in [2] that that exploration scheme is
optimal.

Algorithm Generate-Tree uses procedure Bushy-Tree(G′, v) which for a given
graph G′ = (V ′, E′) and a node v ∈ V ′ computes a maximal bushy tree T
in G′ rooted at v (that is, there is no bushy tree T ′ rooted at v such that
T � T ′ ⊆ E′).

Algorithm Generate-Tree consists of three steps. In Step 1 we compute vertex-
disjoint trees T0, T1, . . . , Tk, using procedure Bushy-Tree. Tree T0 is rooted at s.

210 R. Klasing et al.

Tree Ti, i = 1, 2 . . . , k is returned by Bushy-Tree(G′, v), where G′ is the subgraph
of G induced by the set of nodes not covered by the previous trees T0, . . . , Ti−1

and v is an arbitrary node in G′ with degree (in G′) at least 3. At the end of
Step 1, the graph G′ induced by the remaining uncovered nodes does not have
a node of degree greater than 2. In Step 2 the nodes of G′ (exterior nodes)
are appended to the trees T0, T1, . . . , Tk by creating shortest paths to the leaves
of these trees. In the final Step 3 all trees T0, T1, . . . , Tk are linked together into
a spanning tree TG of G. Figure 2 shows an example of a final spanning tree,
including the details about the types of the nodes used later in the analysis. The
algorithm can be implemented to run in linear time.

Algorithm 1 Algorithm Generate-Tree (G, s)
1: Step 1 (collecting bushy trees):
2: T0 ←Bushy-Tree (G,s); F ←∅;
3: Let G′ be the subgraph of G induced by the nodes of G not in T0;
4: while there exists a node u in G′ : dG′(u) ≥ 3 do
5: T ←Bushy-Tree (G′,u); F ←F ∪ {T};
6: Remove from G′ the nodes in T and all edges incident to them;
7: end while
8: Let X be the set of nodes still in G′ (exterior nodes);
9: Step 2 (appending exterior nodes):

10: Let Xe be the set of nodes in X adjacent to trees in {T0} ∪ F (type-e nodes);
11: Append each node in Xe to one of the trees Ti adjacent to it;
12: Let Xm = X \ Xe (type-m nodes);
13: Append nodes in Xm by creating shortest paths to type-e nodes;
14: Step 3 (linking the trees):
15: TG ←T0;
16: while F �= ∅ do
17: Find an edge (u, v) such that u ∈ TG and v ∈ T ∈ F ;
18: Add (u, v) and T to TG; F ←F \ {T};
19: end while

The set X of exterior nodes can then be partitioned into the nodes adjacent
to a leaf of some Ti (type-e nodes) and the nodes not adjacent to any node of Ti

(type-m nodes). Note that we use two classifications of the nodes of G. The first
one partitions the nodes into three types 1, 3 and 4, and the second one which
assigns types e and m to some of the nodes. We will need to introduce further
types and sub-types to the second classification, We will need also to refer to
intersections of types from these two classifications; for example, a type-4e node
is a node which is both a type-4 and a type-e node.

Lemma 9. Each type-m node has degree at most 2 in G. For each maximal
path 〈v0, v1, . . . , vh〉 of type-m nodes in G, one of the two end nodes is adjacent
to a type-e node, while the other has degree 1 or is adjacent to a type-e node.

On the basis of the above lemma, the computation done during Step 2 can
be viewed in the following way. Append first each type-e node to a leaf of a tree

Hardness and Approximation Results 211

T0

3T

T2

1T

1

4e

1

33

4mm

3

4e
331

4e
3

1

33

3

131

13

s

4mm

1

1

33

1

4me
3

1

3

4l

4l

4l

4mm

4mm

4l

4l

3 1 1

1 1 1

4e

4mm

4me

4mm
4me

3

11

1

1

4e

Fig. 2. An example of a final spanning tree computed by algorithm Generate-Tree.

Types of nodes 1, 3 or 4, and further subdivision of type-4 nodes are indicated

Ti, and then consider the maximal paths of type-m nodes. Append the length-0
paths and the paths with one end node having degree 1 (in G) to the adjacent
type-e nodes. For each remaining path, remove its middle edge, breaking the
possible tie arbitrarily, and append the resulting two paths to the adjacent type-
e nodes (after the removal of the middle edges, each path is adjacent to exactly
one type-e node). We sub-divide the type-m nodes into the type-me nodes which
are adjacent to type-e nodes and the remaining type-mm nodes. During Step 2
paths composed of one type-e node, possibly one type-me node and possibly one
or more type-mm nodes are appended to leaves of the trees Ti. During merging
of tree in Step 3, at most 2 nodes of each appended tree may become type-4
nodes. We call them type-4l nodes.

4.3 Approximation Ratio of the STE Algorithm

Lemma 8 implies that the cost of the exploration scheme computed by the STE
algorithm for graph G and the starting node s is

tALG ≤ x1 + 3x3 + 4x4 + 1, (1)

where xi is the number of type-i nodes in tree TG. Since the cost of the opti-
mal exploration scheme is at least tOPT ≥ n − 1 = x1 + x3 + x4, the number
x4 should be closely analysed. We provide first a bound on x4e + x4me + x4l

212 R. Klasing et al.

(Lemma 10). We then use the number x4mm to strengthen the lower bound
on the cost of the optimal exploration scheme: no exploration scheme can keep
exploring the type-4mm nodes at the average rate of one node per one step
(Lemma 11). Lemmas 10 and 11 and the bound (1) imply our final result stated
in Theorem 1.

Lemma 10. For tree TG computed by algorithm Generate-Tree(G, s),

x4e + x4me + x4l ≤ 5x1 + x3 + x1mm − 10. (2)

Proof. Consider the maximal paths of type-4 nodes in TG, distinguishing two
kinds of such paths. In an leaf path the last node (the node furthest from the
root) has only one child (which must be a leaf); while in a mid-tree path the
last node has at least two children. Each leaf path contains at most one type-4e
node, at most one type-4me node and possibly one or more type-4mm nodes.
Moreover, if a type-4me node is present in such a path, then the leaf attached
to the last node of the path is a type-1mm node. Each mid-tree path contains at
most two type-4e nodes, at most two type-4me nodes, at most two type-4l nodes
and any number of type-mm nodes. Hence, denoting by z′ and z′′ the number
of the leaf paths and the number of the mid-tree paths, respectively, we have
x4e ≤ z′ + 2z′′, x4me ≤ x1mm + 2z′′, and x4l ≤ 2z′′, so

x4e + x4me + x4l ≤ 6z′′ + z′ + x1mm. (3)

The last node of a mid-tree path must be a branching node in TG, so z′′ ≤ x1−2.
On the other hand, since different maximal path of type-4 nodes are attached in
TG to a different type-3 nodes, we have z′′ ≤ x3 − z′. Thus

6z′′ ≤ 5(x1 − 2) + x3 − z′, (4)

and Inequalities (3) and (4) give immediately (2). ��

Lemma 11. The minimum cost of an exploration scheme for an n-node graph
G is

tOPT ≥ n− 1 +
1
2
xmm = x1 + x3 + x4 +

1
2
(x1mm + x4mm). (5)

Theorem 1. For any graph G, the ratio of the cost tALG of the exploration
scheme computed for G by the STE algorithm to the cost tOPT of an optimal
exploration scheme for G is at most 7/2.

5 Limitations of BHS Based on Spanning Trees

The approximation algorithm for the BHS problem in arbitrary graphs which we
presented in the previous section was based on the following two-part approach.
Find first a suitable spanning tree T of the graph to explore, and then explore T

Hardness and Approximation Results 213

using a good BHS for trees. We show now that no graph exploration using this
technique can guarantee a better approximation ratio than 3/2.

Let Gc = (V,E) be an odd-length cycle with V = {v1, v2, . . . , vc} and E =
{(v1, v2), . . . , (vc−1, vc), (vc, v1)}. A new graph G′

c is obtained from Gc using the
construction for the NP-hardness proof given in Section 3, taking edge (vc, v1) as
(x, y), with the following modification. The construction from Section 3 would
add two shortcut edges for each node v ∈ V ∪ {s}, but we add only one. If we
trace the cycle 〈s, v1, v2, . . . , vc, s〉 in a planar embedding of G′

c, then the shortcut
edges alternate between both sides of the cycle. Graph G′

7 is shown in Figure 3.
Graph G′

c has 4c + 3 nodes and, using an argument as in the proof of Lemma 4,
one can show that the cost of an optimal exploration scheme for G′

c is 4c + 2.
Consider the spanning tree of G′

c as shown in Figure 3. In the notation from
Section 4.1, this tree has x3 = c−1 type-3 nodes (v1, v2, . . . , vc−1) and x1 = 3c+3
type-1 nodes. Lemma 7 implies that the cost of the exploration scheme computed
for this tree by algorithm Search-Tree from Section 4.1 is x1+3x3 = 6c. We show
now that this is essentially the best what an exploration scheme for a spanning
tree of G′

c can do. Lemma 12, proven in [2], and Lemma 13 imply that the cost
of any exploration scheme for any spanning tree of G′

c is at least 6c − 2, so at
least 3/2−O(1/c) times higher than the optimal cost of exploring G′

c.

Lemma 12. [2] Let T = (VT , ET , s) be a rooted tree with n+1 nodes. Let xβ and
xγ denote the number of nodes in VT \ {s} with exactly one descendant (type-β
nodes) and with at least two descendants (type-γ nodes), respectively. Then the
cost of any exploration scheme for T is at least n + xβ + 2xγ .

7v

v6

5v

v4

3v

v2

1v

s

Fig. 3. Graph G′
7 and its “good” spanning tree (solid edges)

214 R. Klasing et al.

Lemma 13. For any spanning tree T of G′
c rooted at s, xβ + 2xγ ≥ 2c− 4.

Proof. Each node in V \ {vc} has at least one descendant. Let z be the number
of type-β nodes in V \ {vc}. At least z − 2 shortcut edges must belong to T : for
each type-β node u in V \ {vc} except for at most two such nodes, the shortcut
edge of u must be in T . Thus there are at least z − 2 twin nodes of type β or γ,
so xβ + 2xγ ≥ z + 2(c− 1− z) + z − 2 = 2c− 4. ��

6 Conclusion

We proved that producing an optimal exploration scheme for an arbitrary graph
is NP-hard, thus solving an open problem stated in [2]. We also gave a polynomial
time 7/2-approximation algorithm for the BHS problem, which improves the ratio
of 4 observed in [2]. Finally, we showed that any BHS that explores a graph via
some spanning tree, as our algorithm does, cannot have an approximation ratio
better than 3/2. A natural open problem is to decrease the 7/2 approximation
ratio. It would also be interesting to generalize the model described in Section 2,
and to investigate complexity issues, for the case of many agents and black holes.

References

1. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Complexity of searching for
a black hole. 2004. manuscript.

2. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black hole in
tree networks. In Proc. of 8th International Conference on Principles of Distributed
Systems (OPODIS 2004), pages 34–35, 2004.

3. S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, and N. Santoro.
Black hole search by mobile agents in hypercubes and related networks. In Proc.
of 6th International Conference on Principles of Distributed Systems (OPODIS
2002), pages 169–180, 2002.

4. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile agents searching for
a black hole in an anonymous ring. In Proc. of 15th International Symposium on
Distributed Computing (DISC 2001), pages 166–179, 2001.

5. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole in
arbitrary networks: Optimal mobile agents protocols. In Proc. 21st ACM Sympo-
sium on Principles of Distributed Computing (PODC 2002), pages 153–161, 2002.

6. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Multiple agents rendezvous
on a ring in spite of a black hole. In Proc. 7th International Conference on Prin-
ciples of Distributed Systems (OPODIS 2003), 2003.

7. M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar hamiltonian circuit
problem is np-complete. SIAM Journal on Computing, 5(4):704–714, 1976.

8. F. Hohl. Time limited black box security: Protecting mobile agents from malicious
hosts. In Proc. Conf. on Mobile Agent Security, LNCS 1419, pages 92–113, 1998.

9. F. Hohl. A framework to protect mobile agents by using reference states. In Proc.
20th Int. Conf. on Distributed Computing Systems (ICDCS 2000), pages 410–417,
2000.

Hardness and Approximation Results 215

10. S. Ng and K. Cheung. Protecting mobile agents against malicious hosts by inten-
tion of spreading. In Proc. Int. Conf. on Parallel and Distributed Processing and
Applications (PDPTA’99), pages 725–729, 1999.

11. T. Sander and C.F. Tschudin. Protecting mobile agents against malicious hosts.
In Proc. Conf. on Mobile Agent Security, LNCS 1419, pages 44–60, 1998.

12. K. Schelderup and J. Ines. Mobile agent security – issues and directions. In Proc.
6th Int. Conf. on Intelligence and Services in Networks, LNCS 1597, pages 155–167,
1999.

13. J. Vitek and G. Castagna. Mobile computations and hostile hosts. In D. Tsichritzis,
editor, Mobile Objects, pages 241–261. University of Geneva, 1999.

On Semi-perfect 1-Factorizations�

Rastislav Královič and Richard Královič

Department of Computer Science,
Faculty of Mathematics, Physics and Informatics,

Comenius University, Bratislava, Slovakia

Abstract. The perfect 1-factorization conjecture by A. Kotzig [7] as-
serts the existence of a 1-factorization of a complete graph K2n in which
any two 1-factors induce a Hamiltonian cycle. This conjecture is one of
the prominent open problems in graph theory. Apart from its theoreti-
cal significance it has a number of applications, particularly in design-
ing topologies for wireless communication. Recently, a weaker version
of this conjecture has been proposed in [1] for the case of semi-perfect
1-factorizations. A semi-perfect 1-factorization is a decomposition of a
graph G into distinct 1-factors F1, . . . , Fk such that F1 ∪ Fi forms a
Hamiltonian cycle for any 1 < i ≤ k. We show that complete graphs K2n,
hypercubes Q2n+1 and tori T2n×2n admit a semi-perfect 1-factorization.

1 Introduction

In this paper we deal with 1-factorizable graphs, i.e. graphs whose edges can
be decomposed into 1-factors (perfect matchings). Clearly, taking the union of
any two 1-factors Fi and Fj gives a 2-factor: a spanning subgraph consisting
of a set of vertex-disjoint cycles. Additionally, if Fi ∪ Fj is connected it forms
a Hamiltonian cycle and the corresponding 1-factors Fi, Fj are said to form a
perfect pair.

It is widely known that a complete graph K2n is 1-factorizable, see e.g. [8] for
a survey. In his 1963 paper [7], A. Kotzig conjectured that for every n ≥ 2 the
complete graph K2n can be decomposed into n−1 one-factors in such a way that
any two of them form a perfect pair. Despite an extensive effort, this conjecture
is still open. Currently it is known that such perfect factorization exists if either
n is prime, 2n−1 is prime or 2n ∈ {16, 28, 36, 40, 50, 126, 170, 244, 344, 730, 1332,
1370, 1850, 2198, 3126, 6860} (the references can be found in [10]).

One possible application of the perfect 1-factorization comes from the area
of wireless communication. In [3] the problem of building a topology for an ad-
hoc network of Bluetooth devices is addressed. As each device can communicate
with exactly one other device at a time, the communication pattern at a given
time forms a matching. In a bandwidth-efficient topology, a number k of 1-
factors is used for communication in a time-multiplexed fashion, where k is

� Supported in part by grant APVT-20-018902.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 216–230, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Semi-perfect 1-Factorizations 217

the parameter of the network: larger values of k increase the robustness and
decrease the diameter of the network while introducing more communication
overhead due to interference. To achieve fairness, the chosen 1-factors should
cover all edges. Moreover, any two of them should form a connected graph. In
[3], a 1-factorization of K2n into F1, . . . , Fn−1 is presented, such that any two
1-factors from {F1, . . . , Fp} form a perfect pair, where p is the smallest prime
factor of 2n − 1. Hence, the possible choices of the parameter k depend on the
number of vertices which is not very convenient.

As a step towards the general solution, [1, 6] propose to solve a weaker version
of the conjecture: find a 1-factorization of a graph G into 1-factors F1, . . . , Fk

such that F1 ∪ Fi forms a Hamiltonian cycle for any 1 < i ≤ k. Such a 1-
factorization will be called semi-perfect.

The semi-perfect 1-factorization conjecture has application also to the topo-
logical graph theory. In [5], the genus of joins and compositions of graphs is
studied. According to [1]:

This kind of edge coloring (i.e. semi-perfect 1-factorization) of the
cubes (and graphs in general) would lead to an improvement of exist-
ing genus results for joins and compositions of these graphs...

In this paper we show that complete graphs K2n, hypercubes Q2n+1 and tori
T2n×2n admit a semi-perfect 1-factorization.

The potential of semi-perfect 1-factorizations in the topology design is yet to
be investigated.

2 Preliminaries

Unless stated otherwise, we consider simple undirected graphs. A 1-factor (i.e.
perfect matching) of a graph G is a spanning subgraph in which all vertices have
degree 1. A 1-factorization is a decomposition of the set of edges into distinct
1-factors.

A 1-factorization of a graph G into 1-factors F1, . . . , Fk is called semi-perfect
if F1 ∪ Fi forms a Hamiltonian cycle (i.e. connected 2-factor) for any 1 < i ≤ k.

Instead of constructing the particular 1-factors Fi, we shall construct the
respective Hamiltonian cycles F1 ∪ Fi according to the following definition:

Definition 1. Let G be a graph, P be a 1-factor of G and H1, . . . , Hk be Hamil-
tonian cycles of G such that each Hi contains P as its subset. Furthermore,
let each edge of G \ P be covered by exactly one cycle Hi. We call the set
{H1, . . . , Hk} a P -cover of G.

It is easy to see that from given G, P and H1, . . . , Hk that form a P -cover of
G we can construct a semi-perfect 1-factorization of G. Indeed, let P1 := P and
Pi+1 := Hi\P for each 1 ≤ i ≤ k. The 1-factors P1, . . . , Pk+1 form a semi-perfect
1-factorization of G.

In order to construct semi-perfect 1-factorizations of complete graphs and
hypercubes we shall investigate the following two graph operations:

218 R. Královič and R. Královič

Definition 2. Let G = (V,E) be a graph. We define a graph O1(G) as follows:
Each vertex v is replaced by vertices v0 and v1 connected by an edge. Each edge
(u, v) is replaced by edges (u0, v0), (u1, v1), (u0, v1), (u1, v0). Formally,

O1(G) = (V ′, E′), V ′ = {v0, v1 | v ∈ G}

E′ = {(v0, v1) | v ∈ G} ∪ {(u0, v0), (u1, v1), (u0, v1), (u1, v0) | (u, v) ∈ E}
Similarly, we define O2(G) as

O2(G) = (V ′, E′), V ′ = {v0, v1 | v ∈ G}

E′ = {(v0, v1) | v ∈ G} ∪ {(u0, v0), (u1, v1) | (u, v) ∈ E}

The graph O2(G) is the usual Cartesian product G×K2.

Fig. 1. The operations O1(G) and O2(G)

3 Complete Graphs

In this section we show that complete graphs K2n admit a semi-perfect 1-
factorization. To do so we use the facts that K2n

∼= O1(Kn) and the directed
complete graph K∗

n has a Hamiltonian decomposition, i.e. the arcs of K∗
n can be

decomposed into disjoint Hamiltonian cycles.

Lemma 1. Let G be an undirected graph without loops and multiple edges and
G∗ be a directed graph obtained from G by replacing each edge by two opposite
arcs. Let H = {H1, . . . , Hk} be a set of Hamiltonian cycles on G∗, such that each
arc of G∗ is covered exactly once by H. Let G′ = O1(G) and P = {(v0, v1) | v ∈
V (G)} be a 1-factor of G′. Then there exists a P -cover of G′, i.e. a semi-perfect
1-factorization of G′.

Proof. We shall create the P -cover H′ = {H ′
1, . . . , H

′
2k} of the graph G′ by

constructing two Hamiltonian cycles H ′
2i−1,H

′
2i of G from each Hamiltonian

cycle Hi.
Without loss of generality let V (G) = {1, . . . , n}. Let Hi = {u1, . . . , un},

where u1 = 1. Every second edge of the cycles H ′
2i−1 and H ′

2i will be from P ,
i.e. of the form {x0, x1} for some x in V (G). We construct a Hamiltonian cycle
H ′

2i−1 as a sequence of vertices (v1, . . . v2n), such that for the 2j−1-st edge of the
sequence, denoted e2j−1, it holds e2j−1 = {v2j−1, v2j} = {x0, x1} where x = uj .

On Semi-perfect 1-Factorizations 219

What remains to be set is the orientation of the edge e2j−1 in the sequence, i.e.
whether v2j−1 = x0 and v2j = x1 or vice versa.

We say that the edge e2j−1 is oriented positively if v2j−1 = x0∧v2j = x1 and
negatively if v2j−1 = x1 ∧ v2j = x0. Define the orientation of e2j−1 inductively
in the following way: Edge e1 is oriented positively, i.e. v1 = u10 = 10 and
v2 = u11 = 11. If uj−1 < uj then edge e2j−1 has the same orientation as the
edge e2j−3, otherwise it has opposite orientation.

The Hamiltonian cycle H ′
2i is constructed in the same way as H ′

2i−1, except
that orientation of edges e2j−1 for all j > 1 is flipped.

From the construction of H′ it follows that each H ′
i contains the matching

P as its subset. It remains to show that each edge of E(G′) \ P is covered by
exactly one H ′

i.
Let {u, v} be any edge of G such that u < v. Let Hx be the only member of

H that covers the edge (u, v) and Hy be the only member of H that covers the
edge (v, u). This situation is illustrated on Figure 2.

Fig. 2. Construction used in Lemma 1 where u < v, edge (u, v) is covered by Hx and

edge (v, u) is covered by Hy. Dashed lines belong to cycles H ′
2x−1 and H ′

2x. Thin solid

lines belong to cycles H ′
2y−1 and H ′

2y. The case u > 1 is presented on the left-hand

side. The case u = 1 is presented on the right-hand side

Assume that u > 1. Obviously x �= y, hence Hx and Hy contribute to four
different Hamiltonian cycles on G′: H ′

2x−1, H ′
2x, H ′

2y−1, and H ′
2y. The construc-

tion of H′ ensures that edges {u0, u1} and {v0, v1} have the same orientation
in H ′

2x−1 and H ′
2x and opposite orientation in H ′

2y−1 and H ′
2y. Thus it holds

that edges {u1, v0} and {u0, v1} are covered only by H ′
2x−1 and H ′

2x and edges
{u0, v0} and {u1, v1} are covered only by H ′

2y−1 and H ′
2y.

Now consider the case u = 1. Clearly the edges {11, v0}, {11, v1} are covered
only by the cycles H ′

2x−1 and H ′
2x. Similarly, the edges {10, v0}, {10, v1} are

covered only by the cycles H ′
2y−1 and H ′

2y. ��

Now we plug the facts about complete graphs into the preceding lemma:

Theorem 1. Let n > 1 and K2n be a complete graph with 2n vertices. Then
there exists a semi-perfect 1-factorization of K2n.

220 R. Královič and R. Královič

Proof. Obviously, the graph K2n
∼= O1(Kn). Assume that n /∈ {4, 6}. By the

result of Tillson [11] it is known that an oriented complete graph K∗
n is decom-

posable into n − 1 Hamiltonian cycles for all n /∈ {4, 6}. Hence according to
Lemma 1 there exists a semi-perfect 1-factorization of K2n.

For cases n = 4 and n = 6 we use similar approach as in Lemma 1: take the
appropriate n−1 Hamiltonian cycles H on Kn and construct 2n−2 Hamiltonian
cycles on O1(Kn) that form a P -cover. Since H is not a decomposition of K∗

n,
the technique for assigning orientations to ej from Lemma 1 does not work.
However, it is possible to find a suitable assignment of orientations.

Fig. 3. A semi-perfect 1-factorization of O1(K4) ∼= K8

Fig. 4. A semi-perfect 1-factorization of O1(K6) ∼= K12

On Semi-perfect 1-Factorizations 221

For n = 4 we take Hamiltonian cycles H1 = (1, 2, 3, 4), H2 = (1, 3, 4, 2) and
H3 = (1, 4, 2, 3). The resulting semi-perfect 1-factorization of K8 is shown on
Figure 3.

For n = 6 we take Hamiltonian cycles H1 = (1, 2, 6, 3, 4, 5), H2 = (1, 6, 4, 2,
5, 3), H3 = (1, 5, 4, 3, 2, 6), H4 = (1, 3, 6, 5, 2, 4) and H5 = (1, 4, 6, 5, 3, 2). The
resulting semi-perfect 1-factorization of K12 is shown on Figure 4. ��

4 Hypercubes

To show that hypercubes Q2n+1 admit a semi-perfect 1-factorization we use the
same technique as for complete graphs. We use the fact that Qn

∼= O2(Qn−1)
and that an even hypercube is Hamiltonian decomposable.

Lemma 2. Let G be an undirected graph without loops and multiple edges with
an even number of vertices. Let H = {H1, . . . , Hk} be a set of Hamiltonian cycles
on G, such that each edge of G is covered exactly once by H. Let G′ = O2(G)
and P = {(v0, v1) | v ∈ V (G)} be a matching of G′. Then there exists a P -cover
of G′, hence there exists a semi-perfect 1-factorization of G′.

Proof. We shall create the P -cover H′ = {H ′
1, . . . , H

′
2k} of the graph G′ by

constructing two Hamiltonian cycles H ′
2i−1,H

′
2i on G from a Hamiltonian cycle

Hi in a similar fashion as in Lemma 1. However, since edges {u0, v1} and {u1, v0}
do not exist in G′, the orientation of edges in the constructed cycles must be
alternating. To ensure the correctness of the construction, the number of vertices
of G must be even.

Let n = 2m, V (G) = {1, . . . , 2m} and Hi = (u1, . . . , u2m), where u1 = 1.
We construct a Hamiltonian cycle H ′

2i−1 as a sequence of vertices (v1, . . . , v4m),
such that v4j−3 = u2j−10, v4j−2 = u2j−11, v4j−1 = u2j1 and v4j = u2j0.

The Hamiltonian cycle H ′
2i is constructed in the same way as H ′

2i−1, except
that the orientation of all edges is flipped: v4j−3 = u2j−11, v4j−2 = u2j−10,
v4j−1 = u2j0 and v4j = u2j1. This construction is illustrated by Figure 5.

Obviously each H ′
i contains the matching P as its subset. Any edge of

E(G′) \ P can be expressed as {uq, vq} for some q ∈ {0, 1}. Let Hi be the only

Fig. 5. Construction used in Lemma 2 where x = u2j−1, y = u2j and z = u2j+1

for some Hi = (u1, . . . , u2m). Dashed lines belong to the cycle H ′
2i−1. Thin solid lines

belong to the cycle H ′
2i

222 R. Královič and R. Královič

member of H that covers the edge {u, v}. The construction of H′ ensures that
the edge {uq, vq} is covered by either H ′

2i−1 or H ′
2i. Hence H′ is a P -cover of the

graph G′. ��

Theorem 2. Let n ≥ 1 and Q2n+1 be a hypercube with 22n+1 vertices. Then
there exists a semi-perfect 1-factorization of Q2n+1.

Proof. It is easy to see that the hypercube Q2n+1 is isomorphic to O2(Q2n).
By the result of Aubert and B. Schneider [2] (see also [9, 4]) it is known that
a hypercube Q2n is decomposable into n Hamiltonian cycles for all n. Hence
according to Lemma 2 there exists a semi-perfect 1-factorization of Q2n+1. ��

5 Tori

In this section we show that a torus T2n of size 2n × 2n admits a semi-perfect
factorization. Obviously, torus Tn where n is odd contains an odd number of
vertices and thus does not admit a semi-perfect 1-factorization.

We shall denote the vertices of a torus Tn by pairs [i, j], i, j ∈ {1, . . . , n}, such
that two vertices [i, j] and [k, l] are connected by an edge if and only if exactly one
of the two conditions holds: j = l∧|k−i| ∈ {1, n−1} or k = i∧|j−l| ∈ {1, n−1}.
Edges with |k − i| = n− 1 or |j − l| = n− 1 are called wrap-around edges.

Since tori are 4-regular, a 1-factorization can be viewed as an edge coloring
using 4 colors. This 1-factorization is semi-perfect if and only if edges of color 0
together with edges of any other color form a Hamiltonian cycle.

It is possible to embed a torus Tn in an infinite grid by cutting the wrap-
around edges. Edges {[i, 1], [i, n]} are replaced by edges {[i, 0], [i, 1]} and {[i, n],
[i, n+ 1]}; edges {[1, i], [n, n]} are replaced by edges {[0, i], [1, i]} and {[n, i], [n+
1, i]}. By this operation we obtain an embedded torus ETn.

Definition 3. An embedded torus ETn is a subgraph of infinite two-dimensional
grid induced by vertices {1, . . . , n} × {1, . . . , n} united with the set of external
edges Eext defined as follows:

Eext =
{
{[0, i], [1, i]}, {[n, i], [n+1, i]}, {[i, 0], [i, 1]}, {[i, n], [i, n+1]} | 1 ≤ i ≤ n

}
Edges of ETn that are not external are called internal edges.

A Hamiltonian cycle in a torus may form several paths in the corresponding
embedded torus. All these paths are terminated by an external edge. We call
these paths partial paths.

Definition 4. Let ET be an embedded torus with a given edge 4-coloring. A
path containing only edges of color 0 and color i for some fixed i is called a
partial path if and only if it starts and ends with an external edge.

We show that it is possible to color the edges of an embedded torus by 4
colors such that certain invariant about the partial paths is preserved.

On Semi-perfect 1-Factorizations 223

Fig. 6. Edge 4-coloring of an embedded torus used in Lemma 3. Color 0 is printed

as bold lines, color 1 as thin lines, color 2 as dotted lines, and color 3 as dashed lines.

Regularly repeating patterns are marked by ellipses. Formal description of this coloring

is presented in the Appendix

Fig. 7. Connectivity of partial paths used in Lemma 3. Left picture shows partial

paths colored by 0 and 1, middle picture partial paths colored by 0 and 2, and right

picture paths colored by 0 and 3. Regularly repeating patterns are marked by ellipses.

Formal description is presented in the Appendix

Lemma 3. Let ETn be an embedded torus of size n×n, such that n ≥ 4 is even.
Then it is possible to color its edges in such a way that the external edges are
colored as in Figure 6. Moreover, each edge is covered by some partial path and
the external edges are connected by partial paths according to Figure 7. Exact
formulation of these invariants is presented in the Appendix.

Proof. We shall construct the described coloring of ETn inductively. The appro-
priate coloring for n = 4 and n = 6 is presented on Figure 8.

Now assume that n ≥ 8 and we already have an appropriate coloring for an
embedded torus ET ′ of size n − 4 × n − 4. We insert the torus ET ′ into the
embedded torus ET of size n × n such that a vertex [i, j] is mapped onto the
vertex [i + 2, j + 2], hence vertices of the torus ET ′ are mapped onto vertices

224 R. Královič and R. Královič

Fig. 8. Colorings of embedded tori ET4 and ET6 used in Lemma 3. Color 0 is printed

as bold lines, color 1 as thin lines, color 2 as dotted lines and color 3 as dashed lines

Fig. 9. Colorings of the tori T4 and T6 that induce a semi-perfect 1-factorization

{3, . . . , n− 2}× {3, . . . , n− 2}. Edges not covered by ET ′ (i.e. edges incident to
V (ET)\V (ET ′)) are colored according to Figure 6. It is straightforward to check
that this coloring is consistent with the external edges of ET ′ and preserves the
invariant about the connectivity of the partial paths presented on Figure 7. Also,
it is easy to see that each edge of ET is covered by some partial path. ��

Theorem 3. Let Tn be a torus of size n× n such that n ≥ 4 is even. Then Tn

admits a semi-perfect 1-factorization.

Proof. We find an edge 4-coloring of the torus Tn that induces a semi-perfect
1-factorization. In case n = 4 or n = 6 the appropriate 4-coloring is shown on
Figure 9.

Assume that n ≥ 8. We obtain a coloring of a torus T of size n× n similarly
as in Lemma 3. Let ET ′ be an embedded torus of size n − 4 × n − 4 colored
according to Lemma 3. We insert a torus ET ′ into T such that a vertex [i, j] is
mapped onto the vertex [i+ 2, j +2] and color the remaining edges according to
the Figure 10. It is easy to see that this coloring is consistent with the coloring
of the external edges of ET ′.

It remains to show that invariants about partial paths granted by Lemma 3
and the coloring presented on Figure 10 ensure that the edges of color 0 together
with the edges of any other color form a Hamiltonian cycle of Tn.

Analogically to Lemma 3, it is easy to see that all non-wrap-around edges
of T are covered by some partial path of the embedded torus corresponding to
the torus T . Hence, to prove that edges of colors 0 and c ∈ {1, 2, 3} form a

On Semi-perfect 1-Factorizations 225

Fig. 10. Edge 4-coloring of a torus used in Theorem 3. Color 0 is printed as bold

lines, color 1 as thin lines, color 2 as dotted lines and color 3 as dashed lines. Regu-

larly repeating patterns are marked by ellipses. Formal description of this coloring is

presented in the Appendix

Hamiltonian cycle, it is sufficient to show that all wrap-around edges of colors 0
and c are covered by one cycle consisting of edges of colors 0 and c.

For c = 1 it is easy to verify this fact. Indeed, the wrap-around edges of colors
0 and 1 occur on a cycle in the following order: {[n, n], [n, 1]}, {[n − 1, n], [n −
1, 1]}, {[n− 3, n], [n− 3, 1]}, . . . , {[n− 2i− 1, n], [n− 2i− 1, 1]}, . . . , {[3, n], [3, 1]},
{[1, n], [n, n]}

Similar statement holds for c = 2. The order of the wrap-around edges is:
{[1, 1], [n, 1]}, {[n, 2], [1, 2]}, {[1, n], [n, n]}, {[n − 1, n], [n − 1, 1]}, {[n − 3, n], [n −
3, 1]}, . . . , {[n− 2i− 1, n], [n− 2i− 1, 1]}, . . . , {[3, n], [3, 1]}

And the order of wrap-around edges for c = 3 is: {[n− 1, n], [n− 1, 1]}, {[n−
3, n], [n−3, 1]}, . . . , {[n−2i−1, n], [n−2i−1, 1]}, . . . , {[3, n], [3, 1]}, {[1, 3], [n, 3]},
{[1, 4], [n, 4]}, . . . , {[1, i], [n, i]}, . . . , {[1, n − 1], [n, n − 1]}, {[n − 2, n], [n − 2, 1]},
{[n−4, n], [n−4, 1]}, . . . , {[n−2i, n], [n−2i, 1]}, . . . , {[2, n], [2, 1]}, {[1, 1], [1, n]},
{[1, n], [n, n]}

Hence, we have proven that for every color c ∈ {1, 2, 3} the edges of colors 0
or c form a Hamiltonian cycle of Tn. ��

6 Conclusions and Further Research

We have shown that complete graphs K2n, hypercubes Q2n+1 and tori T2n×2n

admit a semi-perfect 1-factorization. The case of Q2n remains open. As it seems,
there is no direct relation between perfect and semi-perfect 1-factorizations, how-
ever it might be interesting to find another topologies admitting semi-perfect 1-
factorization. Also, the potential of semi-perfect 1-factorizations in the topology
design could be investigated.

[1,1]

[n,1] [n,n]

[1,n]

226 R. Královič and R. Královič

References

1. Dan Archdeacon: Problems in Topological Graph Theory. http://
www.emba.uvm.edu/ ˜archdeac/problems/perfectq.htm

2. J. Aubert, B. Schneider: Decompositions de la somme cartsienne d’un cycle et
l’union de deux cycles hamiltoniens en cycles hamiltoniens, Discrete Mathematics,
38(1982)7-16.

3. S. Baatz et al.: Building Efficient Bluetooth Scatternet Topologies from 1-Factors,
Proc. IASTED International Conference on Wireless and Optical Communications,
WOC 2002, pp. 300–305, Banff, Alberta, Canada, July 2002

4. Douglas W. Bass, I. Hal Sudborough: Hamilton Decompositions and (n/2)-
Factorizations of Hypercubes, Journal of Graph Algorithms and Applications,
7(2003)79–98

5. D. Craft: On the genus of joins and compositions of graphs, Discrete Mathematics,
178(1998)25–50.

6. D. Craft, private communication

7. A. Kotzig: Hamilton graphs and Hamilton circuits Theory of Graphs and its Ap-
plications Proceedings of the Symposium of Smolenice, 1963 Nakl. ČSAV Praha,
1964, pp. 62–82

8. E. Mendelsohn, A. Rosa: One-Factorizations of the Complete Graph – a Survey
Journal of Graph Theory, 9, 1985, 43–65

9. K. Okuda, S. W. Song: Revisiting Hamiltonian Decomposition of the Hypercube,
Proc. XIII Symposium on Integrated Circuits and System Design, SBCCI2000, pp.
55–60, Manaus, Brazil, September 2000.

10. D.A. Pike: Hamiltonian decompositions of line graphs of perfectly 1-factorizable
graphs of even degree Australian Journal of Combinatorics 12 (1995), 291–294

11. T.Tillson: A Hamiltonian decomposition of K2n, 2n ≥ 8, J. Combin. Theory Ser.
B 29 (1980) 68–74.

Appendix – Formal Formulation of Invariants

Formal version of Lemma 3

Let ETn be an embedded torus of size n×n, such that n ≥ 4 is even. Let c(e) be
the color of the edge e ∈ E(ETn) and mc(e) be the last edge of the (0, c)-colored
partial path beginning with the external edge e ∈ E(ETn). Then it is possible to
color edges of ETn such that all edges are covered by some partial path and the
following conditions hold:

Top edges:
c([0, 1], [1, 1]) = 3
c([0, i], [1, i]) = 1 ∀2 ≤ i ≤ n

Left edges:
c([1, 0], [1, 1]) = 1
c([2i, 0], [2i, 1]) = 3 ∀1 ≤ i ≤ n

2
c([2i + 1, 0], [2i + 1, 1]) = 0 ∀1 ≤ i ≤ n

2 − 1

On Semi-perfect 1-Factorizations 227

Bottom edges:
c([n, i], [n + 1, i]) = 1 ∀1 ≤ i ≤ n− 1
c([n, n], [n + 1, n]) = 0

Right edges:
c([2i + 1, n], [2i + 1, n + 1]) = 0 ∀0 ≤ i ≤ n

2 − 1
c([2i, n], [2i, n + 1]) = 3 ∀1 ≤ i ≤ n

2 − 1
c([n, n], [n, n + 1]) = 1

Partial paths:
m1([1, 0], [1, 1]) = {[3, 0], [3, 1]}
m1([2i + 1, 0], [2i + 1, 1]) = {[2i− 1, n], [2i− 1, n + 1]} ∀2 ≤ i ≤ n

2 − 1
m1([n, 2i + 1], [n + 1, 2i + 1]) = {[n, 2i + 2], [n + 1, 2i + 2]} ∀0 ≤ i ≤ n

2 − 2
m1([n, n− 1], [n + 1, n− 1]) = {[n− 1, n], [n− 1, n + 1]}
m1([n, n], [n + 1, n]) = {[n, n], [n, n + 1]}
m1([0, n], [1, n]) = {[1, n], [1, n + 1]}
m1([0, 2i], [1, 2i]) = {[0, 2i + 1], [1, 2i + 1]} ∀1 ≤ i ≤ n

2 − 1
m2([2i + 1, 0], [2i + 1, 1]) = {[2i− 1, n], [2i− 1, n + 1]} ∀1 ≤ i ≤ n

2 − 1
mc([n, n], [n + 1, n]) = {[n− 1, n], [n− 1, n + 1]} ∀c ∈ {2, 3}
m3([0, 1], [1, 1]) = {[2, 0], [2, 1]}
m3([i, 0], [i, 1]) = {[i− 2, n], [i− 2, n + 1]} ∀3 ≤ i ≤ n

Proof. The proof is equivalent to the proof written in Section 5. The following
coloring of the internal edges of ET not covered by ET ′ is used:

Top edges:
c([1, 1], [1, 2]) = 2
c([1, 2i], [1, 2i + 1]) = 0 ∀1 ≤ i ≤ n

2 − 1
c([1, 2i + 1], [1, 2i + 2]) = 3 ∀1 ≤ i ≤ n

2 − 1
c([1, 1], [2, 1]) = 0
c([1, 2], [2, 2]) = 3
c([1, i], [2, i]) = 2 ∀3 ≤ i ≤ n
c([2, 1], [2, 2]) = 2
c([2, 2], [2, 3]) = 1
c([2, 2i + 1], [2, 2i + 2]) = 0 ∀1 ≤ i ≤ n

2 − 1
c([2, 2i], [2, 2i + 1]) = 3 ∀2 ≤ i ≤ n

2 − 1

Bottom edges:
c([n, 2i + 1], [n, 2i + 2]) = 0 ∀0 ≤ i ≤ n

2 − 2
c([n, 2i], [n, 2i + 1]) = 3 ∀1 ≤ i ≤ n

2 − 1
c([n, n− 1], [n, n]) = 2
c([n− 1, i], [n, i]) = 2 ∀1 ≤ i ≤ n− 2
c([n− 1, n− 1], [n, n− 1]) = 0
c([n− 1, n], [n, n]) = 3
c([n− 1, 2i + 1], [n− 1, 2i + 2]) = 3 ∀0 ≤ i ≤ n

2 − 2
c([n− 1, 2i], [n− 1, 2i + 1]) = 0 ∀1 ≤ i ≤ n

2 − 2
c([n− 1, n− 2], [n− 1, n− 1]) = 1
c([n− 1, n− 1], [n− 1, n]) = 2

228 R. Královič and R. Královič

Left edges:
c([2, 1], [3, 1]) = 1
c([2, 2], [3, 2]) = 0
c([2i + 1, 1], [2i + 1, 2]) = 3 ∀1 ≤ i ≤ n

2 − 2
c([2i, 1], [2i, 2]) = 0 ∀2 ≤ i ≤ n

2 − 1
c([2i + 1, 1], [2i + 2, 1]) = 2 ∀1 ≤ i ≤ n

2 − 2
c([2i + 1, 2], [2i + 2, 2]) = 2 ∀1 ≤ i ≤ n

2 − 2
c([2i, 1], [2i + 1, 1]) = 1 ∀2 ≤ i ≤ n

2 − 1
c([2i, 2], [2i + 1, 2]) = 1 ∀2 ≤ i ≤ n

2 − 1

Right edges:
c([n− 2, n− 1], [n− 1, n− 1]) = 3
c([n− 2, n], [n− 1, n]) = 1
c([2i + 1, n− 1], [2i + 1, n]) = 3 ∀1 ≤ i ≤ n

2 − 2
c([2i, n− 1], [2i, n]) = 0 ∀2 ≤ i ≤ n

2 − 1
c([2i + 1, n− 1], [2i + 2, n− 1]) = 2 ∀1 ≤ i ≤ n

2 − 2
c([2i + 1, n], [2i + 2, n]) = 2 ∀1 ≤ i ≤ n

2 − 2
c([2i, n− 1], [2i + 1, n− 1]) = 1 ∀1 ≤ i ≤ n

2 − 2
c([2i, n], [2i + 1, n]) = 1 ∀1 ≤ i ≤ n

2 − 2

Formal Description of Figure 10

Let T be a torus of size n×n and ET ′ be an embedded torus of size (n−4)×(n−4)
as in the proof of Theorem 3. Let c(e) be the color of the edge e ∈ E(T). The
coloring of T used in the proof of Theorem 3 presented on the Figure 10 satisfies
the following conditions:

Wrap-around edges

c([1, 1], [n, 1]) = 2
c([1, 2], [n, 2]) = 2
c([1, i], [n, i]) = 3 ∀3 ≤ i ≤ n− 1
c([1, n], [n, n]) = 0
c([1, 1], [1, n]) = 3
c([2i, 1], [2i, n]) = 3 ∀1 ≤ i ≤ n

2 − 1
c([2i + 1, 1], [2i + 1, n]) = 0 ∀1 ≤ i ≤ n

2 − 1
c([n, 1], [n, n]) = 1

Edges on the outermost perimeter

Top edges:
c([1, 2i + 1], [1, 2i + 2]) = 1 ∀0 ≤ i ≤ n

2 − 1
c([1, 2i], [1, 2i + 1]) = 0 ∀1 ≤ i ≤ n

2 − 1

Left edges:
c([1, 1], [2, 1]) = 0
c([2i, 1], [2i + 1, 1]) = 1 ∀1 ≤ i ≤ n

2 − 1
c([2i + 1, 1], [2i + 2, 1]) = 2 ∀1 ≤ i ≤ n

2 − 2
c([n− 1, 1], [n, 1]) = 3

On Semi-perfect 1-Factorizations 229

Bottom edges:
c([n, 2i + 1], [n, 2i + 2]) = 0 ∀0 ≤ i ≤ n

2 − 2
c([n, 2i], [n, 2i + 1]) = 1 ∀1 ≤ i ≤ n

2 − 1
c([n, n− 1], [n, n]) = 2

Right edges:
c([2i + 1, n], [2i + 2, n]) = 2 ∀0 ≤ i ≤ n

2 − 2
c([2i, n], [2i + 1, n]) = 1 ∀1 ≤ i ≤ n

2 − 1
c([n− 1, n], [n, n]) = 3

Edges between the outermost and the 2nd outermost perimeter

Top edges:
c([1, 2], [2, 2]) = 3
c([1, i], [2, i]) = 2 ∀3 ≤ i ≤ n− 1

Left edges:
c([2, 1], [2, 2]) = 2
c([2i + 1, 1], [2i + 1, 2]) = 3 ∀1 ≤ i ≤ n

2 − 2
c([2i, 1], [2i, 2]) = 0 ∀2 ≤ i ≤ n

2 − 1
c([n− 1, 1], [n− 1, 2]) = 2

Bottom edges:
c([n− 1, 2], [n, 2]) = 3
c([n− 1, i], [n, i]) = 2 ∀3 ≤ i ≤ n− 2
c([n− 1, n− 1], [n, n− 1]) = 0

Right edges:
c([2i, n− 1], [2i, n]) = 0 ∀1 ≤ i ≤ n

2 − 1
c([2i + 1, n− 1], [2i + 1, n]) = 3 ∀1 ≤ i ≤ n

2 − 2
c([n− 1, n− 1], [n− 1, n]) = 2

Edges on the 2nd outermost perimeter

Top edges:
c([2, 2], [2, 3]) = 1
c([2, 2i + 1], [2, 2i + 2]) = 0 ∀1 ≤ i ≤ n

2 − 2
c([2, 2i], [2, 2i + 1]) = 3 ∀2 ≤ i ≤ n

2 − 1

Left edges:
c([2, 2], [3, 2]) = 0
c([2i + 1, 2], [2i + 2, 2]) = 2 ∀1 ≤ i ≤ n

2 − 2
c([2i, 2], [2i + 1, 2]) = 1 ∀2 ≤ i ≤ n

2 − 1

230 R. Královič and R. Královič

Bottom edges:
c([n− 1, 2i], [n− 1, 2i + 1]) = 0 ∀1 ≤ i ≤ n

2 − 2
c([n− 1, 2i + 1], [n− 1, 2i + 2]) = 3 ∀1 ≤ i ≤ n

2 − 2
c([n− 1, n− 2], [n− 1, n− 1]) = 1

Right edges:
c([2i, n− 1], [2i + 1, n− 1]) = 1 ∀1 ≤ i ≤ n

2 − 2
c([2i + 1, n− 1], [2i + 2, n− 1]) = 2 ∀1 ≤ i ≤ n

2 − 2
c([n− 2, n− 1], [n− 1, n− 1]) = 3

Free-Riders in Steiner Tree Cost-Sharing Games�

Paolo Penna and Carmine Ventre

Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,
Università di Salerno, via S. Allende 2,

I-84081 Baronissi (SA), Italy
{penna, ventre}@dia.unisa.it

Abstract. We consider cost-sharing mechanisms for the Steiner tree
game. In this well-studied cooperative game, each selfish user expresses
his/her willingness to pay for being connected to a source node s in an
underlying graph. A mechanism decides which users will be connected
and divides the cost of the corresponding (optimal) Steiner tree among
these users (budget balance condition). Since users can form coalitions
and misreport their willingness to pay, the mechanism must be group
strategyproof : even coalitions of users cannot benefit from lying to the
mechanism.

We present new polynomial-time mechanisms which satisfy a stan-
dard set of axioms considered in the literature (i.e., budget balance,
group strategyproofness, voluntary participation, consumer sovereignty,
no positive transfer, cost optimality) and consider the free riders issue
recently raised by Immorlica et al. [SODA 2005]: it would be desirable
to avoid users that are connected for free. We also provide a number
of negative results on the existence of polynomial-time mechanisms with
certain guarantee on the number of free riders. Finally, we extend our
technique and results to a variant considered by Biló et al. [SPAA 2004]
with applications to wireless multicast cost sharing.

1 Introduction

Consider the typical scenario in which a set U of n users wishes to jointly buy
a certain service from some service providing company. Each user i ∈ U has a
private value vi representing his/her willingness to pay for the service offered:
vi is the maximum amount of money that user i is willing to pay for the ser-
vice or how much he/she would benefit from getting the service. The service
provider must then develop a so called mechanism, that is, a policy for deciding
(i) which users should be serviced and (ii) the price that each of them should pay
for getting the service. Developing a fair and economically viable cost-sharing
mechanisms is a central problem in cooperative game theory with many practical
applications (see e.g [18]). In particular, due to its application to multicast and

� Work supported by the European Project IST-2001-33135, Critical Resource Sharing
for Cooperation in Complex Systems (CRESCCO).

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 231–245, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

232 P. Penna and C. Ventre

bandwidth allocation, Steiner tree games (and some variants) received a lot of
attention [3, 7, 2, 15]. In this game(s), a network G = (U ∪ {s}, E, c) is given,
where U = {1, 2, . . . , n} corresponds to the set of users and s is a source node.
The weight ce of an edge e = (i, j) ∈ E denotes the cost of connecting i to j.
The (minimum) cost C(S) required to connect a subset S of users to the source
is the cost of a (optimal) Steiner tree containing s and S.

An important class of mechanisms is the class of budget-balanced mecha-
nisms, that is, the sum of the prices charged to all users is equal to the overall
cost C(S) of providing the service to the subset S of users that are selected for
being serviced. Observe that, given a subset of users S ⊂ U , computing the opti-
mal cost C(S) is NP-hard [5]. Also, practical applications require the mechanism
to output the optimal tree connecting S to s.

In addition, users cannot be assumed to be altruistic nor obedient. Therefore,
each user is considered a selfish agent reporting some bid value bi (possibly
different from vi); the true value vi is privately known to agent i. Based on the
reported values b = (b1, b2, . . . , bn) a mechanism M = (A,P) uses algorithm A
to compute (i) a subset S(b) of users and (ii) a Steiner tree T (b) connecting
s to S(b) in G. Then, according to the payment vector P = (P 1, P 2, . . . , Pn),
each user i ∈ S(b) is charged an amount of money equal to P i(b). Selfish
agents are assumed to be rational and thus, knowing the mechanism M , an user
i could report bi �= vi whenever this increases his/her utility : given the bids
b−i = (b1, . . . , bi−1, bi+1, . . . , bn) of the other agents, the utility function of user
i is defined as

uM
i (bi,b−i) :=

{
vi − P i(b) if i ∈ S(b),
0 otherwise.

In [15] we provided the first mechanism for the Steiner tree game which meets
all of the following axioms (previously considered in e.g. [13, 7]):

Cost Optimality (CO). Let Copt(S(b)) denote the minimum cost required
to service all users in S(b). We require that the computed solution is an
optimal Steiner tree for connecting the set S(b) to the source s, that is,
COST(T (b)) = Copt(S(b)).

No Positive Transfer (NPT). No user receives money from the mechanism,
i.e., P i(·) ≥ 0.

Voluntary Participation (VP). We never charge an user an amount of
money greater than her reported valuation, that is, ∀bi,∀b−i bi ≥ P i(bi,b−i).
In particular, a user has always the option to not pay for being connected if
he/she is not interested. Moreover, P i(b) = 0, for all i /∈ S(b), i.e., only the
users getting connected will pay.

Consumer Sovereignty (CS). Every user is guaranteed to get the service
if she reports a high enough valuation, that is, ∀b−i, ∃bi such that i ∈
S(bi,b−i) = 1.

Free-Riders in Steiner Tree Cost-Sharing Games 233

Budget Balance (BB).
1. Cost recovery. The cost of the computed solution is recovered from all

the users being serviced, that is,∑
i∈S(b)

P i(b) ≥ COST(T (b)).

2. Competitiveness. No surplus is created, that is,∑
i∈(b)

P i(b) �> COST(T (b)).

If some surplus were created, then a competitor may offer the same
service at a better price.

Group Strategyproofness (GSP). We require that a user i ∈ U that mis-
report her valuation (i.e., bi �= vi) cannot improve her utility nor improve
the utility of other users without worsening her own utility (otherwise, a
coalition C containing i would secede). Consider a coalition C ⊆ U of users.
Let bj = vj for all j /∈ C. Let bC and b−C denote the bid vectors of those
users in C and in U \ C, respectively. The group strategyproofness requires
that, if the inequality

uM
i (bC ,v−C) ≥ uM

i (vC ,v−C) (1)

holds for all i ∈ C, then it must hold with equality for all i ∈ C as well.
It is easy to see that, since the above property must be fulfilled for every
possible v−C , then the GSP condition can be restated by replacing v−C by
b−C . In particular, the special case of C = {i} yields the weaker notion of
strategyproofness (or truthfulness with dominant strategies): for every user i,
∀bi and ∀b−i, it holds that uM

i (vi,b−i) ≥ uM
i (bi,b−i).

It is worth observing that the mechanism in [15] runs in polynomial time, in
spite of the NP-hardness of the problem of computing an optimal tree for a given
set of terminals [5]. Intuitively, the mechanism in [15] is always able to pick a set
S(b) for which the optimal Steiner tree can be computed in polynomial time,
thus ensuring the CO property.

Recently, Immorlica et al [6] considered cost-sharing games under the addi-
tional constraint of no free riders: no user should be serviced for free. This work,
among other results, contains a general scheme for obtaining mechanisms with
no free riders and satisfying all axioms above. For the Steiner tree game, their ap-
proach cannot lead to polynomial time mechanism, unless P = NP. By contrast,
our polynomial-time mechanism in [15] is far from the no-free-riders condition:
a single user will pay for the cost of the whole tree servicing the selected users
S and thus all other users are free riders.

In this work we investigate the existence of mechanisms for the Steiner tree
game (and some of its variants) that possibly reduce the number of free riders,
still running is polynomial time.

234 P. Penna and C. Ventre

1.1 Previous Work and Our Contribution

The breakthrough paper by Moulin and Shenker [13, 12] provided a natural
and powerful technique for building group-strategyproof mechanisms based on
the following tool: a cost-sharing function ξ(·) which specifies, for each sub-
set S of users, how the cost C(S) is shared among them, that is, ∀S ⊆ U ,∑

i∈S ξ(S, i) = C(S). They indeed considered a natural scheme for building
a mechanism M(ξ) depending on the cost-sharing function ξ(·) (see Fig. 1),
and proved that mechanism M(ξ) is group strategyproof if the function ξ(·) is
cross-monotonic, that is, for all S′ ⊂ S ⊆ U , and for all i ∈ S′, if holds that
ξ(S′, i) ≥ ξ(S, i).

Mechanism M(ξ)

1. S is initialized to U ;
2. If there exists an user i in S with vi < ξ(S, i) then drop i from S. Keep repeating

this step, in arbitrary order, until for every user i in S, vi ≥ ξ(S, i);
3. Charge each user i an amount equal to P i(b) := ξ(S, i).

Fig. 1. A general scheme to build a mechanism starting from a cost-sharing function
ξ(·) [13]

The existence of such functions was known for the MST game in a work
by Kent and Skorin-Kapov [8]. Jain and Vazirani [7] provided a more general
technique for building cross-monotonic cost-sharing methods for the MST game
and proved that this technique yields a polynomial-time 2-approximate budget-
balanced (BB) mechanism for the Steiner tree game. 1 The technique by Jain and
Vazirani [7] is based on a non-trivial use of primal-dual algorithms and inspired
several works which obtain polynomial-time α-approximate BB mechanisms for
other cost-sharing games (namely, metric TSP [7], facility location [14], single-
source rent-or-buy [14, 10], wireless multicast [2], Steiner forest [9]).

In a recent work, Immorlica et al [6] provided a number of lower bounds
on the approximation factor α that cross-monotonic functions can achieve for
some cost-sharing games. These lower bounds do not apply in general since
mechanisms not using cross-monotonic cost-sharing functions may exist [15, 6].
In particular, in [15] we provide a polynomial-time mechanism for the Steiner
tree game which achieves all axioms above. Unfortunately, this mechanism is
far from the no-free-rider condition since it always charges the cost to a single
user. 2

1 An α-approximate BB mechanism guarantees (only) that COST(T (b)) ≤∑
i P i(b) ≤ α · Copt(S(b)).

2 A similar mechanism for general cost-sharing games has been also presented in [6],
though their work does not investigate computational issues for the Steiner tree
game.

Free-Riders in Steiner Tree Cost-Sharing Games 235

In this work we provide a new mechanism which guarantees that, given its
computed multicast tree T and the subset ST of users connected to s, there are
at most |ST | − |leaves(T)| free riders, with leaves(T) being the set of leaves of
tree T . This mechanism still runs in polynomial time and satisfies all axioms
above. We also achieve similar results for the wireless multicast game considered
in [2, 15]: for this game we obtain α-approximate BB mechanism with the same
bound on the number of free riders. The factor α is the same of a mechanism in
[15] which, however, has |ST | − 1 free riders. To the best of our knowledge, this
factor α is the best known for this game.

Since, in the worst case, our mechanisms yield |ST |−1 free riders, we investi-
gate the existence of polynomial-time mechanisms having a better guarantee. We
first prove that the scheme in [6] for budget-balanced mechanism does not apply
to either of our problems and, in the worst case, has the same bad guarantee (i.e.,
|ST | − 1 free riders). This negative result applies also to exponential-time mech-
anisms and it is due to the fact that the optimal cost function of our games are
not subadditive3, as required in [6]. Further, we show that any budget-balanced
mechanism which has no free riders must solve an NP-hard problem. The same
negative result holds for α-approximate BB mechanisms for the wireless multi-
cast game, for some α > 0. In particular, the (1+ε)-approximate BB mechanism
given in [6] turns out to be intractable for this game, for small ε > 0.

It is worth observing that, under certain hypothesis, α-approximate BB mech-
anisms with no free riders do not exist for the Steiner tree game, for α < 2. This
follows from previous results by Immorlica et al [6] and van Zwam [17]. The
mechanism proposed here satisfies these additional hypothesis and, therefore,
free riders cannot be avoided.

1.2 Preliminaries and Notation

Consider a graph G = (U ∪ {s}, E, c) where the set of terminals coincides with
the set of users U . Given a terminal set S ⊆ U , we let ST ∗(S) denote the
minimum-cost tree connecting s to the set S. The tree MST (S) is (any of) the
minimum spanning tree(s) over the subgraph of G induced by all and only the
vertices in S ∪ {s}. We consider any tree T connecting S to s as rooted at s
and we denote by leaves(T) the set of leaves resulting from this orientation. We
consider every such a tree as the set of its directed edges (a, b), where a is the
parent of b. For any node a of tree T , we define leaves(T, a) as the set of all
leaf-nodes that are descendent of a.

A cost-sharing method for a cost function C(·) is a function ξ(·) which dis-
tributes this cost to the users that get the service. The function ξ(·) takes two
arguments: a set of users S and a user i and returns a nonnegative real number
satisfying the following:

if i /∈ S then ξ(S, i) = 0 and (2)

3 A cost function C(·) is subadditive if C(S ∪{i}) > C(S), for every S ⊂ U , i ∈ U \S.

236 P. Penna and C. Ventre∑
i∈S

ξ(S, i) = C(S). (3)

A β-cost-sharing method ξ(·) satisfies Eq. 2 and the following relaxation of
Eq. 3: CA(S) ≤

∑
i∈S ξ(S, i) ≤ β ·CA(S). Given a function ξ : 2U×U → R+∪{0},

we define Pξ
0 := U , and Pξ

j := {S \ {i}| S ∈ Pξ
j−1 ∧ ξ(S, i) > 0}. Intuitively, Pξ

j

contains the family of all possible sets S that the scheme in Fig. 1 can generate
after j users have been dropped. Thus, the set Pξ :=

⋃
j≥0 P

ξ
j contains all

possible output sets S(b) of M(ξ). A function ξ : 2U×U → R+∪{0} is self cross-
monotonic if, for every S, S′ ∈ Pξ with S′ ⊂ S, it holds that ξ(S′, i) ≥ ξ(S, i),
for every i ∈ S′.

A mechanism M is upper continous if, fixed a vector b−i, if user i is serviced
for every bi > b, then it is also serviced for bi = b. Clearly, the mechanism M(ξ)
is upper continous. Let A denote an algorithm that, given a set S ⊆ U , returns
a tree connecting S to s. We plug this algorithm into the scheme in Fig. 1 by
adding a final step in which a tree T (b) := A(S(b)) is output, thus obtaining a
mechanism MA(ξ) for the Steiner tree game. This defines a cost function CA(·)
satisfying CA(S(b)) = COST(A(S(b))), for every subset S(b) ∈ Pξ.

The following result provides an useful tool for building polynomial-time
(approximate) budget-balanced group strategyproof mechanisms:

Theorem 1 ([15]). For any optimal (respectively, α-approximation) algorithm
A and any self cross-monotonic β-cost-sharing method ξ(·) for CA(·), the mecha-
nism MA(ξ) is group strategyproof, β-approximate BB (respectively, αβ-approxi-
mate BB) and satisfies NPT, VP and CS. Moreover, MA(ξ) runs in polynomial
time if A and ξ(·) are polynomial time.

Observe that, if A is optimal in Pξ only (i.e., CA(S) = Copt(S), for every
S ∈ Pξ) then mechanisms MA(ξ) and Mopt(ξ) will output exactly the same
solutions, for any optimal algorithm opt. Hence, the following holds:

Theorem 2. Let ξ(·) be a self-cross monotonic cost-sharing ξ(·) for CA(·) and let
A be optimal in Pξ. Then, the mechanism MA(ξ) is group strategyproof, budget-
balanced and satisfies CO, NPT, VP and CS. Moreover, MA(ξ) runs in polynomial
time if A and ξ(·) are polynomial time. Finally, MA(ξ) is upper continous.

2 Steiner Tree Game

We will develop a cost-sharing method which charges all and only the leaf nodes
of the computed solution T . In particular, each time one node is dropped, a new
tree is generated by removing the corresponding leaf. The possible trees that
this process can possibly generate starting from MST (U) is defined as follows:

Definition 1. We let Tn = MST (U) and Tn = {Tn}. Then, given Tj+1, we
define inductively Tj := {T | T ∪ {(a, b)} ∈ Tj+1 ∧ b ∈ leaves(T ∪ {(a, b)})}.
Moreover, for any T ∈ Tj, we let ST denote the set of all nodes of tree T other
than s.

Free-Riders in Steiner Tree Cost-Sharing Games 237

In the next section we prove that any of these trees is optimal, that is, its
cost equals the cost of the optimal Steiner tree connecting s to the same set of
nodes of the tree.

2.1 Cost Optimality

Observe that, by definition, a minimum spanning tree MST (U) is also an optimal
Steiner tree for the terminal set U , that is, COST(ST ∗(U)) = COST(MST (U)).
We next show that, starting from this tree, if we repeatedly remove any leaf
node, then the tree T that we obtain remains an optimal Steiner tree for the set
of nodes it contains:

Theorem 3. For any T ∈ Tj, COST(ST ∗(ST)) = COST(MST (T)), with 0 ≤
j ≤ n.

Proof. The proof is by induction on j, starting from j = n down to j = 0.

Base step (j = n). By Def. 1 we obtain T = Tn and STn
= U . In this case,

since there are no Steiner points, then the theorem clearly holds.
Inductive step (from j + 1 to j). Let T ∈ Tj , thus implying that there exists

an edge (a, b) such that T b := T ∪{(a, b)} ∈ Tj+1 and b is a leaf in T b. Hence,
a ∈ ST and ST b = ST ∪ {b}.
By contradiction assume COST(T) > COST(ST ∗(ST)). We will show that
there exists a tree T ′ spanning ST b and whose cost is lower than the cost of
ST ∗(ST b), thus contradicting the optimality of ST ∗(ST b). The new tree T ′

is constructed as follows:

T ′ :=
{

ST ∗(ST) ∪ {(a, b)} if b �∈ ST ∗(ST),
ST ∗(ST) otherwise.

We thus obtain

COST(T ′) ≤ COST(ST ∗(ST)) + c(a,b) < COST(T) + c(a,b) = COST(T b).

Since a ∈ ST , then T ′ is a tree spanning ST ∪ {b} = ST b . By inductive
hypothesis, we have COST(T b) = COST(ST ∗(ST b)), and the above inequal-
ity yields COST(T ′) < COST(ST ∗(ST b)). This contradicts the optimality of
ST ∗(ST b).

This completes the proof.

2.2 Cost-Sharing Function

We first define a function ξT (·) that shares the cost of T among its leaves:

Definition 2. Given a tree T and any a ∈ leaves(T), we let

ξT (a) :=
∑

(u,v)∈T :a∈leaves(T,u)

c(u,v)

|leaves(T, u)| . (4)

238 P. Penna and C. Ventre

Lemma 1. For any tree T , it holds that
∑

a∈leaves(T) ξT (a) = COST(T).

Proof. Since for every a ∈ leaves(T) there exists (u, v) ∈ T such that a ∈
leaves(T, u), we simply observe that∑

(u,v)∈T

∑
a∈leaves(T,u)

c(u,v)

|leaves(T, u)| =
∑

a∈leaves(T)

∑
(u,v)∈T :

a∈leaves(T,u)

c(u,v)

|leaves(T, u)|

The left hand side is COST(T), while the right hand side is
∑

a∈leaves(T) ξT (a).
The lemma thus follows.

We use the trees Tj and the associated functions ξT (·) for defining a self
cross-monotonic cost-sharing function ξleaves(·) as follows:

ξleaves(ST , a) =
{

ξT (a) if a ∈ leaves(T),
0 otherwise, (5)

for every T ∈ Tj , with 0 ≤ j ≤ n.

Lemma 2. Let ξ = ξleaves. Then Pξ
j =

⋃
T∈Tj

ST , for every 0 ≤ j ≤ n.

Theorem 4. The function ξleaves(·) is self cross-monotonic.

Proof. It is easy to see that, since ξleaves(·) is non-zero only for the leaf nodes,
then starting from Tn = MST (U), at each step the mechanism M(ξleaves) will
consider a tree T ∈ Tj and remove some leaf b. Let T ′ = T \ (a, b) denote the
new tree obtained in this way. We prove that ξleaves(ST , i) ≤ ξleaves(ST ′ , i), for
every i ∈ ST ′ . Since ST ′ = ST \ {b}, it holds that i �= b. For every (u, v) ∈ T ′,
|leaves(T, u)| ≥ |leaves(T ′, u)|. Moreover, by definition of T ′, if i ∈ leaves(T, u)
for some edge (u, v), then i ∈ leaves(T ′, u). Therefore, if i ∈ leaves(T), we obtain

ξleaves(ST , i) =
∑

(u,v)∈T :
i∈leaves(T,u)

c(u,v)

|leaves(T, u)| ≤
∑

(u,v)∈T :
i∈leaves(T,u)

c(u,v)

|leaves(T ′, u)|

=
∑

(u,v)∈T ′:
i∈leaves(T ′,u)

c(u,v)

|leaves(T ′, u)| = ξleaves(ST ′ , i).

Otherwise, that is i �∈ leaves(T), it simply holds ξleaves(ST , i) = 0 ≤ ξleaves(ST ′ , i).
Now consider any two trees T ∈ Tj and T ′ ∈ Tj−k with ST ′ ⊂ ST . By

definition, there exists a sequence of trees T1, T2, . . . , Tk+1, with T1 = T and
Tk = T ′, which is obtained by repeatedly removing some leaf node of Tl, with
1 ≤ l ≤ k − 1. The above argument thus yields ξleaves(ST1 , i) ≤ ξleaves(ST2 , i) ≤
· · · ≤ ξleaves(STk

, i). The theorem thus follows from Lemma 2.

Free-Riders in Steiner Tree Cost-Sharing Games 239

2.3 Analysis

We first observe that Lemma 2 and Theorem 3 imply that MST is optimal on
Pξleaves . Hence, by applying Theorem 2 with ξ = ξleaves, we obtain the following
result:

Corollary 1. The Steiner tree game admits a mechanism MMST (ξ) which is
polynomial-time, group strategyproof, budget-balanced and satisfies CO, NPT,
VP and CS. The mechanism is upper continous and garantees that, if T is the
tree given in output, then there are at most |ST | − |leaves(T)| free riders.

3 Wireless Multicast Game

A variant of the Steiner tree problem considered in [2, 15] is the wireless multicast
which is defined as follows. Each node of the graph G corresponds to a station
of an ad-hoc network. Stations are located on a c-dimensional Euclidean plane
and, given the distance d(i, j) between i and j, the cost of connecting i to j is
c(i,j) := d(i, j)γ , for some γ > 1. This quantity represents the power that station
i must spend to transmit directly to j. Thus, given a multicast tree T , its cost
is the overall power consumption, that is,

POW(T) :=
∑

i∈U∪{s}
max

(i,j)∈T
{c(i,j)},

that is, every node contributes as the cost of its longest outgoing edge in T . The
game is thus defined as the Steiner tree game with the only difference that the
cost function COST(·) is replaced by the function POW(·) above. As in [2, 15],
we will consider γ ≥ c, since for γ < c no approximation algorithm in known;
moreover, in many applications γ ≥ 2 and stations are located on the plane (i.e.,
c = 2).

Since POW(T) < COST(T) whenever T as at least two leaves, if we apply
the payment scheme for the Steiner tree game, the mechanism will create some
surplus, that is, users will pay more than the cost. We next modify the payment
scheme so to avoid this.

Given a tree T , and any node i, let e1(i), e2(i), . . . , ek(i) denote the list of
nodes in T outgoing from i and satisfying cej(i) ≤ cej+1(i) (ties are broken ar-
bitrarily). We define a function w(·) which weights the edges of T according to
their contribution to POW(T). In particular, let mc(ej(i)) denote the marginal
contribution4 of edge ej(i), that is,

mc(ej(i)) :=
{

cej(i) −max{cel(i)| cel(i) < cej(i)} if j > 1,
cej(i) otherwise. (6)

4 A similar concept is employed in [2] for defining the Shapley value of a wireless
multicast tree.

240 P. Penna and C. Ventre

Finally, defined
equal(ej(i)) := |{el(i)|cel(i) = cej(i)}|

we let
wej(i) := mc(ej(i))/equal(ej(i)). (7)

By definition,
∑k

j=1 wej(i) = cek(i), thus implying POW(T) =
∑

e∈T we. We
can share this cost by considering the graph G with edge costs ce replaced by
we, for every e ∈ T . This idea leads to the following result:

Theorem 5. Let we be defined as in Eq. 7 with respect to T = MST (U). Also
let ξwireless(·) be defined as in Eq.s 4-5 by replacing ce with we, for every e ∈ T .
Then, the function ξwireless(·) is a self-cross monotonic cost-sharing method for
CA(S) := POW(MST (S)).

We can modify the mechanism for the Steiner tree game by replacing ξleaves(·)
by ξwireless(·), thus obtaining a polynomial-time mechanism MMST (ξwireless) which
outputs a tree T ∈ T (see Def. 1) and that recovers the corresponding cost
POW(T). In [4] the authors proved that, for any γ ≥ δ, the total weight of a
MST over a set S of points is at most (3c − 1) times the cost of the optimal
wireless broadcast tree for S. (For c = 2 ≤ γ the constant has been improved
down to 7.5 [4].) Thus, using an argument similar to [2, 15], Theorem 3 yields
the following result:

Corollary 2. The wireless multicast game admits a polynomial-time mechanism
MMST (ξ) which is group strategyproof, (3c − 1)-approximate BB and satisfies
NPT, VP and CS. The mechanism is upper continous and guarantees that, if T
is the tree given in output, then there are at most |ST | − |leaves(T)| free riders.
Additionally, for c = 2, mechanism MMST (ξwireless) is 7.5-approximate BB.

The above result improves over the mechanism in [15] since in this mecha-
nism there are always |ST | − 1 free riders. In the next section we compare our
mechanism with other mechanisms.

4 Negative Results and Open Questions

Immorlica et al [6] proposed two mechanisms for avoiding free riders in a cost-
sharing game with cost function C(·). The first mechanism is budget-balanced
and works for subadditive functions C(·):

Mechanism IMM-budget-balance

1. Initialize the set S of serviced users to the empty set and the amount of money
m that is already charged to 0;

2. For i from 0 to n, do the following: if bi ≥ min{C({i}), C(S ∪ {i, . . . , n}) − m},
then include i in S, and charge him/her min{C({i}), C(S ∪ {i, . . . , n}) − m}
(therefore, m will be increased by this quantity).

Free-Riders in Steiner Tree Cost-Sharing Games 241

The following fact shows that, in our games, the optimal cost function is not
subadditive and, more importantly, mechanism IMM-budget-balance does
not guarantee any bound on the number of free riders:

Fact 6. There exists an instance of the Steiner tree game for which the mech-
anism IMM-budget-balance yields n − 1 free riders. The same result holds
for the wireless multicast game.

Proof. Consider a clique Kn of n nodes and let any of its edges have cost 0. We
build a graph G by connecting a new node s to every node of Kn with an edge
of cost 1. Then, for every S ⊆ U , with S �= ∅, C(S) = 1. Hence, mechanism
IMM-budget-balance charges 0 to all but one user in the final set S.

A similar argument applies to the following instance of the wireless multicast
game: consider the star G connecting s to n ≥ 2 nodes at distance 1 from s. In
this case, there will be, in the worst case, n− 1 free riders.

We also mention that, for the Steiner tree game, a known result by Megiddo
[11], combined with a characterization of upper continous budget-balanced mech-
anisms without free riders [6–Th. 4.3], implies that the above (upper continous)
mechanism cannot guarantee the no-free-rider condition even if edges have non-
zero weight.

We next show that, unless P = NP, there exist no polynomial-time mechanism
satisfying all axioms above plus the no-free-rider condition.

Theorem 7. Let Copt(·) be a cost function which is NP-hard (to approximate
within a factor α). Then, no polynomial-time strategyproof mechanism M guar-
antees no free riders and satisfies NPT, VP, CS and (α-approximate) BB, unless
P = NP.

Proof Sketch. The strategyproofness, NPT, BB (no surplus part) and CS condi-
tions imply that, for every S ⊆ U , there exists a bid vector bS = (bS ,0−S) such
that S(bS) ⊇ S. The VP and the no-free-rider condition imply that S(bS) = S.
Hence, the (α-approximate) BB condition implies that M is able to compute
(an α-approximation of) the optimum Copt(S) in polynomial time, thus imply-
ing P = NP. (See Appendix 5 for the full proof of this theorem.) �

Since the Steiner tree problem cannot be approximated within some factor
α > 1, then it is not possible to have polynomial time α-approximate BB mecha-
nisms and no free riders. Hence, the following mechanism for (1+ε)-approximate
BB mechanisms [6] cannot run in polynomial time for small ε > 0:

Mechanism IMM-(1 + ε)-approximate-BB

1. Drop all users i such that bi ≤ δ and let R = {r1, r2, . . . , r|S|} be the (arbitrarily)
ordered set of remaining users; /* the value of δ depends on ε > 0 */

2. Find the first user ri ∈ R such that bri ≥ C({ri, ri+1, . . . , r|S|}) − nδ; The set
S := {ri, ri+1, . . . , r|S|} is serviced, user i pays C(S) − nδ, and every body else
in S pays δ.

242 P. Penna and C. Ventre

Observe that, for the wireless multicast game, the mechanism above would be
polynomial-time only if a polynomial-time (1 + ε)-approximation algorithm for
the wireless multicast optimization problem exists. To the best of our knowledge,
the best factor is achieved by a combination of the best known Steiner tree
algorithm [16] with the results in [4]. This combination (see [1]) yields an upper
bound which is larger than the approximation factor (3c − 1) for the wireless
broadcast [4]. Whether such bounds are tight is an interesting open problem.
Below we mention other questions that remain open.

4.1 Open Questions

In view of these negative results, one may try to improve our mechanisms along
two directions: (i) decrease the number of free riders and/or (ii) improve the
approximation factor of the mechanism for wireless multicast game.

As already mentioned, a result by Immorlica et al [6] characterizes the class of
upper continous α-approximate budget-balanced mechanisms with no free riders
as the mechanisms which can be obtained using α-cross-monotonic cost-sharing
methods. Hence, the lower bounds on cross-monotonic cost-sharing methods [11,
2] imply that, for the two games considered here, mechanisms without free riders,
if any, cannot be obtained directly from the scheme in Fig. 1 or from mechanism
IMM-budget-balance (both of them being upper continous). For the Steiner
tree game, a tight result by van Zwam [17], implies that the polynomial-time
2-approximate BB mechanisms by [7] are the best possible in the class of upper
continous one.

Concerning polynomial-time mechanisms and the free rider issue, the follow-
ing question is interesting to us: Is there any such mechanism which guarantees
that a constant fraction of the serviced set ST are not free riders? First of all,
it is well-known that every node in G of degree 2 cannot be a Steiner point if
G is metric. Hence, these nodes could also be charged and participate to the
payments. Unfortunately, nodes that in tree Tn = MST (U) have degree 2 can
be Steiner points and their removal could lead to suboptimal solutions.

Generally speaking, the main question left open is to find a trade off between
the number of free-riders and the approximation factor of the budget balance
for polynomial-time mechanisms.

References

1. E. Althaus, G. Calinescu, I. Mandoiu, S. Prasad, N. Tchervenski, and A. Zelikovsky.
Power efficient range assignment in ad-hoc wireless networks,” submitted journal
version. Preliminary results in WCNC ’03 and TCS ’03, 2003. Submitted journal
version available at http://www.cs.iit.edu/∼calinesc/.

2. V. Biló, C. Di Francescomarino, M. Flammini, and G. Melideo. Sharing the cost
of multicast transmissions in wireless networks. In Proceedings of SPAA, pages
180–187, 2004.

3. J. Feigenbaum, C.H. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences, 63(1):21–41, 2001.

Free-Riders in Steiner Tree Cost-Sharing Games 243

4. M. Flammini, A. Navarra, R. Klasing, and S. Perennes. Improved approximation
results for the minimum energy broadcasting problem. In Proc. of the joint work-
shop on Foundations of mobile computing (DIALM-POMC), pages 85–91. ACM
Press, 2004.

5. M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the theory
of NP-completeness. Freeman, 1979.

6. N. Immorlica, M. Mahdian, and V. Mirrokni. Limitations of cross-monotonic cost-
sharing schemes. In Proc. of the 16th Annual ACM Symposium on Discrete Algo-
rithms (SODA), January 2005.

7. K. Jain and V.V. Vazirani. Applications of approximation algorithms to coopera-
tive games. In Annual ACM Symposium on Theory of Computing (STOC), pages
364–372, 2001.

8. K. Kent and D. Skorin-Kapov. Population monotonic cost allocation on MST’s.
In Operational Research Proceedings KOI, volume 43-48, 1996.

9. J. Könemann, S. Leonardi, and G. Schäfer. A group-strategyproof mechanism
for Steiner forests. In Proc. of the 16th Annual ACM Symposium on Discrete
Algorithms (SODA). ACM Press, January 2005. To appear.

10. S. Leonardi and G. Schäfer. Cross-monotonic cost-sharing methods for connected
facility location games. Technical Report MPI-I-2003-1-017, Max-Plankt-Institut
für Informatik, September 2003. Also in Proc. of 5th ACM Conference on Elec-
tronic Commerce (EC), pages 242-243, ACM Press, 2004.

11. N. Megiddo. Cost allocation for Steiner trees. Networks, 8:1–6, 1978.
12. H. Moulin. Incremental cost sharing: characterization by coalition strategy-

proofness. Social Choice and Welfare, 16:279–320, 1999.
13. H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: budget

balance versus efficiency. 1997. http://www.aciri.org/shenker/cost.ps.
14. M. Pàl and É. Tardos. Strategy proof mechanisms via primal-dual algorithms. In

Proc. of the 44th FOCS, 2003.
15. P. Penna and C. Ventre. More Powerful and Simpler Cost-Sharing Methods. In Pro-

ceedings of the 2nd Workshop on Approximation and Online Algorithms (WAOA),
number 3351 in LNCS, September 2004. To appear in the LNCS series.

16. A. Robins and Zelikovsky. Improved approximation Steiner tree in graphs. In
Proc. of the 11th Annual ACM Symposium on Discrete Algorithms (SODA), pages
770–779, 2000.

17. S. van Zwam. A lower bound on the cost recovery of the Steiner tree game with
cross-monotonic cost shares. Technical Report 18-04, Dipartimento di Informatica
e Sistemistica, Università di Roma “La Sapienza”, 2004.

18. H.P. Young. Cost Allocation, volume 2, chapter 34 of Handbook of Game Theory,
volume 2, edited by R.J. Aumann and S. Hart, pages 1193–1235. Elsevier Science,
1994.

5 Proof of Theorem 7

We next show two useful lemmata which state some basic properties of strat-
egyproof mechanisms. Basically, these results concern how changing one bid in
the vector b can affect the outcome of the mechanism (i.e., the serviced set and
the computed payments). Given a mechanism M = (A,P), we let σA

i (b) = 1

244 P. Penna and C. Ventre

if and only if i ∈ S(b), with S(b) being the subset of users that algorithm A
decides to service on input b.

The following lemma states “steady” conditions on strategyproof mecha-
nisms:

Lemma 3 (keep). Let M = (A,P) be a strategyproof mechanism and let S(b)
denote the set of users serviced on input b. Then, the following conditions must
hold:

σA
i (bi,b−i)⇒ ∀b′i > bi, i ∈ S(b′i,b−i); (8)

σA
i (bi,b−i) = σA

i (b′i,b−i)⇒ P i(bi,b−i) = P i(b′i,b−i). (9)

Proof. (Eq. 8). By contradiction, if σA
i (b′i,b−i) = 0 and σA

i (bi,b−i) = 1, for
some b′i > bi and for some b−i, then consider the situation in which vi = b′i and
v−i = b−i. In this case, we obtain

vi ·σA
i (bi,v−i)−P i(bi,v−i) ≥ vi−bi = b′i−bi > 0 ≥ vi ·σA

i (vi,v−i)−P i(vi,v−i),

where the last inequality follows from the fact that σA
i (vi,v−i) = σA

i (b′i,v−i) = 0
and from the NPT condition. This contradicts the fact that M is strategyproof.

(Eq. 9). By contradiction, let us assume that σA
i (bi,b−i) = σA

i (b′i,b−i) and
P i(bi,b−i) < P i(b′i,b−i), for some bi, b′i and b−i. Consider the situation in
which vi = b′i, thus implying

vi · σA
i (bi,v−i)− P i(bi,v−i) > vi · σA

i (vi,v−i)− P i(vi,v−i),

thus contradicting the fact that M is strategyproof.

The following lemma states that, if users “compete” with each other for being
serviced, then the prices cannot be bounded from above by any constant:

Lemma 4 (drop). Let M = (A,P) a strategyproof mechanism satisfying NPT
and CS. For every b = (b1, . . . , bn), if there exists i, j ∈ U and bj, such that

σA
i (b) = 1; (10)

σA
i (b) = 0, with b = (bj ,b−j). (11)

Then there exists a bi such that P i(b′) ≥ bi, where b′ = (bi,b−i).

Proof. From the CS condition, there exists bi such that σA
i (bi,b−i) = 1, where

b = (bj ,b−j). By contradiction, assume that P i(bi,b−i) < bi. Consider the case
in which vi = bi and v−i = b−i. Because of the NPT and Eq. 11, it holds
that uM

i (vi,v−i) = uM
i (bi,b−i) ≤ 0. Moreover, uM

i (bi,v−i) = uM
i (bi,b−i) =

vi−P i(bi,b−i) > 0, thus contradicting the fact that M = (A,P) is strategyproof.

The above lemma easily implies the following result.

Lemma 5. Let M = (A,P) a strategyproof mechanism satisfying NPT and CS.
For every S ⊆ U and for every b > 0, there exists a vector bS = (bS ,0−S) such
that, if mechanism M returns a set S(bS) of users with S �⊆ S(bS), then there
exists i ∈ U such that P i(b) > b.

Free-Riders in Steiner Tree Cost-Sharing Games 245

Proof. Simply increase the bids of users in S one by one, from 0 to a value bi ≥ b
such that the current user must be serviced. (This value exists because of the
CS condition.) If at some point, a user i ∈ S previously considered is dropped,
because of Lemma 4, there exists a bid vector b′ for which P i(b′) > b.

Let M = (A,P) be a polynomial-time mechanism satisfying the hypothesis of
Theorem 7. By contradiction, let M run in polynomial time. The above lemma
and the (α-approximate) BB imply S ⊆ S(b). The no-free-rider and VP con-
ditions thus yield S(b) = S. Hence, the (α-approximate) BB condition implies
that M is able to compute (an α-approximation of) the optimum Copt(S) in
polynomial time, thus implying P = NP.

On the Feasibility of Gathering by
Autonomous Mobile Robots

Giuseppe Prencipe

Dipartimento di Informatica,
L.go Bruno Pontecorvo, 3 – 56100, Pisa, Italy

prencipe@di.unipi.it

Abstract. Given a set of n autonomous mobile robots that can freely
move on a two dimensional plane, they are required to gather in a po-
sition of the plane not fixed in advance (Gathering Problem). The
main research question we address in this paper is: under which condi-
tions this task can be accomplished by the robots? The studied robots
are quite simple: they are anonymous, totally asynchronous, they do not
have any memory of past computations, they cannot explicitly commu-
nicate among each other. We show that this simple task cannot be in
general accomplished by the considered system of robots.

Keywords: Mobile Robots, Multiplicity Detection, Distributed Coordi-
nation, Distributed Models, Computability.

1 Introduction

In this paper, we consider a distributed system populated by a set of n au-
tonomous and anonymous mobile robots that can freely and independently move
on a plane: in particular, they do not obey to any central coordinator. The be-
havior of these robots is quite simple: each of them execute a cycle of sensing,
computing, moving and being inactive. In particular, each robot is capable of
sensing the positions of other robots in its surrounding, performing local com-
putations on the sensed data, and moving towards the computed destination.
The local computation is done according to a deterministic algorithm that takes
in input the sensed data (i.e., the robots’ positions), and returns a destination
point towards which the executing robot moves. All robots execute the same
algorithm. The main research focus is to understand which are the conditions
that allow these robots to complete given tasks, such as exploring the plane or
forming a pattern like a circle, and design, in case the task is solvable, to design
the algorithm they have to execute.

In this paper we focus on the Gathering problem: the robots are asked
to meet in finite time in a point p of the plane not determined in advance.
In spite of its apparent simplicity, this problem has recently been tackled in
several studies: in fact, several factors render this problem difficult to solve [3,
4, 5, 8, 10]. In particular, in all these studies, the problem has been solved only

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 246–261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Feasibility of Gathering by Autonomous Mobile Robots 247

making some “extra” assumption on the capability of the robots. In particular,
in [4, 5, 10] the robots must be able to detect whether a given point on the plane
is occupied by one or more robots. In contrast, such an assumption is not used
in [3], but it is assumed an unlimited amount of memory the robots can use (the
robots are said to be non-oblivious). In [8], the robots are assumed to have only
limited visibility (i.e., they can sense only a portion of the plane) and to share
a compass. Recently [1], Gathering has also been studied in the presence of
faulty robots; another study has been devoted to design convergence solutions
to the problem [6].

In this paper we aim to prove that Gathering is in general impossible, if
the nature of the robots is not changed, and no “extra” assumption is made on
the capabilities of the robots. The results shown here, are based on the basic
model usually adopted in the majority of the studies present in literature. In
particular, we will use the features of Corda, first presented in [7], and of the
model from Suzuki et al. (here referred to as Atom): the description of these
models will be the focus of the next section. In Section 3 the impossibility of the
Gathering is presented.

2 Definitions

2.1 Autonomous Mobile Robots

In this section, we describe the Corda model, that will be used to prove
the impossibility of Gathering. The robots we consider are modeled as de-
vices with computational capabilities1, that are equipped with motorial capa-
bilities – allowing them to move on the plane – and sensorial capabilities that
let them to observe the positions of the other robots in the plane, and form
their local view of the world. The set of absolute positions2 on the plane oc-
cupied by the robots at a given time instant is called a configuration of the
robots.

The local view of each robot includes a unit of length, an origin, and a
Cartesian coordinate system defined by the directions of two coordinate axes,
identified as the x and y axis, together with their orientations, identified as the
positive and negative sides of the axes.

The robots are able to sense the complete plane: we say they have Unlimited
Visibility. The robots, however, can not distinguish whether there is more than
one fellow on a given positions of the plane: we say that they cannot detect
multiplicity. The case when the robots can sense just a portion of it (Limited
Visibility) has been studied too [8]; in particular, each robot can sense up to at
most a distance V .

1 To our knowledge, nothing is ever mentioned on the computational power of the
modeled robots. For the purpose of this paper, they can be considered as Turing-
equivalent machines.

2 i.e., with respect to an inertial reference frame.

248 G. Prencipe

During its life, each robot cyclically executes four states:

i. Wait.The robot is idle. A robot cannot stay indefinitely idle (see Assumption
A2 below). At the beginning all the robots are in Wait.

ii. Look. The robot observes the world by activating its sensors which will
return a snapshot of the positions of all other robots within the visibility
range with respect to its local coordinate system. Each robot is viewed as
a point, hence its position in the plane is given by its coordinates, and the
result of the snapshot (hence, of the observation) is just a set of coordinates
in its local coordinate system: this set forms the view of the world of r. More
formally, the view of the world of r at time t is defined as the last snapshot
taken at a time smaller than or equal to t.

iii. Compute. The robot performs a local computation according to a deter-
ministic algorithm A (we also say that the robot executes A). The algorithm
is the same for all robots, and the result of the Compute state is a destina-
tion point. Since the robots are oblivious, then A can access only the set of
robots’ positions retrieved during the last Look.

iv. Move. If the point computed in the previous state is the current location of
r, we say that r performs a null movement, and it does not move; otherwise it
moves towards the point computed in the previous state. The robot moves to-
wards the computed destination of an unpredictable amount of space, which
is assumed neither infinite, nor infinitesimally small (see Assumption A1 be-
low). Hence, the robot can only go towards its goal, but it cannot know how
far it will go in the current cycle, because it can stop anytime during its
movement3. The amount of space traveled by a robot during this state is
also called the length of the move.

The sequence: Wait - Look - Compute - Move will be called a computation
cycle (or briefly cycle) of a robot.

The (global) time that passes between two successive states of the same robot
is finite but unpredictable. In addition, no time assumption within a state is
made. This implies that the time that passes after the robot starts observing the
positions of all others and before it starts moving is arbitrary, but finite. That
is, the actual move of a robot may be based on a situation that was observed
arbitrarily far in the past, and therefore it may be totally different from the
current situation.

This assumption of asynchronicity within a cycle is important in a totally
asynchronous environment, since each robot has enough time to perform its
local computation; furthermore, in this way it is possible to model also different
motorial speeds of the robots.

In the model, there are only two limiting assumptions about space and time.
The first one refers to space.

3 That is, a robot can stop before reaching its destination point, e.g. because of limits
to the robot’s motorial capabilities.

On the Feasibility of Gathering by Autonomous Mobile Robots 249

Assumption A1(Distance). The distance traveled by a robot r in a move is
not infinite. Furthermore, there exists an arbitrarily small constant δr > 0,
such that if the destination point is closer than δr, r will reach it; otherwise,
r will move towards it of at least δr.

As no other assumptions on space exist, the distance traveled by a robot in
a cycle is unpredictable.

Similarly, to prove that the algorithms designed in Corda terminate in finite
time, the following assumption on the length of a computational cycle is made.

Assumption A2(Computational Cycle). The amount of time required by a
robot r to complete a computational cycle is not infinite. Furthermore, there
exists a constant εr > 0 such that the cycle will require at least εr time.

As no other assumption on time exists, the resulting system is fully asyn-
chronous and the duration of each activity (or inactivity) is unpredictable. As
a result, the robots do not have a common notion of time, robots can be seen
while moving, and computations can be made based on obsolete observations.

The robots do not necessarily share the same x−y coordinate system, and do
not necessarily agree on the location of the origin (that we can assume, without
loss of generality, to be placed in the current position of the robot), or on the unit
distance. In general, there is no agreement among the robots on the chirality of
the local coordinate systems (i.e., in general they do not share the same concept
of where North, East, South, and West are).

The robots are totally oblivious; that is, the robots can only store the robots’
positions retrieved in the last observation.

The robots are completely autonomous: no central control is needed. Fur-
thermore they are anonymous, meaning that they are a priori indistinguishable
by their appearance, and they do not (need to) have any kind of identifiers that
can be used during the computation4.

Moreover, there are no explicit direct means of communication: any commu-
nication occurs in a totally implicit manner. Specifically, it happens by means of
observing the robots’ positions in the plane, and taking a deterministic decision
accordingly. In other words, the only mean for a robot to send information to
some other robot is to move and let the others observe (reminiscent of bees in a
bee dance).

In the following, we will discuss in detail the implications of time settings.

2.2 Activation Schedules

Before proceeding to prove the main result of this paper, we need to describe
in more detail the critical feature that regards the way the robots act during

4 Note that the non obliviousness feature does not imply the possibility for a robot
to find out which robot corresponds to which position it stored, since the robots are
anonymous.

250 G. Prencipe

the computation; that is, the timing of the operations executed by each robot
during its life.

In particular, in the model described so far, the amount of time spent in ob-
servation5, in computation, in movement, and in inaction is finite but otherwise
unpredictable; then, we say that the robots are fully asynchronous. In particular,
the robots do not (need to) have a common notion of time. Each robot executes
its actions at unpredictable time instants. This setting is adopted in Corda. If
the robots move according to this time setting, we say that they move according
to an asynchronous activation schedule. Furthermore,

Definition 1. An algorithm A solves a problem P in Corda if, by activating
the robots according to any asynchronous activation schedule, the robots reach a
configuration such that the task defined by P is accomplished.

In contrast, if the robots execute their activities (observation, computation,
movement, and waiting) in an atomic and instantaneous fashion (that is, the
amount spent in each activity of each cycle is negligible), we say that the robots
are atomically synchronized, and that they move according to an atomic activa-
tion schedule. This temporal setting was first introduced by Suzuki et al. [10];
we will refer to this setting as Atom.

Let us denote by C and Z the class of problems that are solvable in the asyn-
chronous and the atomic setting, respectively. The relationship between these
two classes is expressed from the following

Theorem 1 ([9]). C ⊂ Z.

Therefore, in order to prove the impossibility of Gathering, it is sufficient
to show that the problem is unsolvable in the atomic setting.

In an atomic activation schedule, at each time instant t, every robot ri is
either active or inactive. At least one robot is active at every time instant, and
every robot becomes active at infinitely many unpredictable time instants6. For
any t ≥ 0, if ri is inactive, then pi(t + 1) = pi(t); otherwise pi(t + 1) = p, where
pi(t) denotes the position of robot ri at time instant t, and p is the point returned
by A [10].

Thus, an active robot ri executes its cycle atomically and instantaneously, in
the sense that a robot that is active and observes at t, has already reached its
destination point p at t+1, and no fellow robot can see it while it is moving (or,
alternatively, the movement is instantaneous).

We now introduce two general properties that follow from the Atom setting,
and that are not specific to the Gathering. The first one stresses out the fact
that, if a set of robots that at a given time instant t lie on the same position of
the plane are all active at time t, then they will behave like they were one robot.

5 i.e., activating the sensors and receiving their data.
6 A special case is when every robot is active at every time instant; in this case we say

that the robots are strongly synchronized. In [2, 10], the authors refer to this case
simply as synchronous.

On the Feasibility of Gathering by Autonomous Mobile Robots 251

Lemma 1. Let H be a set of black robots that at time t lie all on the same point
pt

H
. If all robots in H are active at time t, then at time t + 1 all robots in H will

again lie on the same position (possibly different from pt
H
).

Proof. The lemma follows from the fact that A is deterministic, the robots can-
not detect multiplicity, and that all robots in H clearly have the same view of
the world at t.

The following lemma points out that, if all robots in the system take the
decision to move towards a point p at the same time instant t, then, even if a
subset of them is blocked, all the others will still move towards p.

Lemma 2. Let us assume that activating all robots at time t they gather on the
same point p at time t + 1, and let H, with 1 ≤ |H| < n, be any subset of robots
that are not on p at t. If all robots not in H were still activated at t, and all
robots in H were inactive at t, then all ri, ri �∈ H, will be on p at t + 1, and all
robots in H will not.

Proof. The lemma follows from the lack of multiplicity detection and from the
fact that A is deterministic.

3 Is Gathering Possible?

To our knowledge, in all solutions proposed to solve the Gathering, the ability
of the robots to detect multiplicity (i.e., if on a given point there is more than one
robot) is used either implicitly (like in [10]) or explicitly (like in [4]). Moreover,
as already mentioned, the only attempt to avoid use of multiplicity detection
to solve the problem, produced a solution that works only for non oblivious
robots [3]. In other words, all previous solutions make some extra assumption on
the capabilities of the robots. In this section, we indeed prove that Gathering
is impossible in general.

In particular, we first focus on Atom; by Theorem 1, the result extends to
Corda. In the following we assume that the n robots in the system execute only
deterministic and oblivious algorithms according to atomic activation schedules.
Moreover, we assume n ≥ 3. In fact, in [10] it has been proven that there
exists no oblivious algorithm that solves the problem in a model based on Atom
when n = 2, under the assumption that two robots never collide (since they
are modeled as no-dimensional points). Therefore, by Theorem 1, this case is
unsolvable in Corda too7.

Moreover, we denote by A a generic deterministic and oblivious algorithm,
and by Ag an oblivious deterministic algorithm that correctly solves the gather-
ing problem in Atom. Recall that Ag solves the gathering problem if, starting

7 In [5], however, has been proved that the problem is trivially solvable in Corda,
hence in Atom, if the robots can collide: in this case, in fact, it is sufficient to move
the robots against each other until they gather.

252 G. Prencipe

y

x

y

x

x

y

y

x

y

x

Fig. 1. Orientation of the axes of the black robots and of the white robot, in Assum3

from any valid initial configuration, it lets the robots gather on the same point p
in finite time: here, a valid initial configuration is a configuration where no two
robots occupy the same position on the plane.

Finally, let H be a set of robots that at time t lie all together on the same
point on the plane: in the following, we indicate such a position by pt

H
, and by

|H| the number of robots in H.

3.1 The Proof: General Idea

The general idea to prove impossibility of Gathering is as follows. First, we
define a scenario that we will use to defeat any possible Ag. In particular, in this
scenario

Assum1. all robots have the same unit distance;
Assum2. δ = δ1 = . . . = δn (with δi as defined in Assumption A1 of Sec-

tion 2.1);
Assum3. robots r1, . . . , rn−1, from now on the black robots, have the same

orientation and direction of the local coordinate system, while rn, from now
on the white robot, has a local coordinate system where both axes have
the same direction but opposite orientation with respect to the coordinate
system of the black robots (see Figure 1). In the following, we denote by pt

w

the position of the white robot at time t. The black and white coloring is
used only for the sake of presentation, and this information is not used by
the robots during the computation. The same applies for the indices given
to the robots (they are anonymous).

We want to stress out, however, that Assum1–Assum3 are not known to the
robots; hence they cannot use these information in their computations. Moreover,
Ag correctly solves Gathering iff the robots gather in finite time regardless
their local unit measures, and the local orientation of their axes; hence, Ag must
work also in a scenario described by Assum1–Assum3.

On the Feasibility of Gathering by Autonomous Mobile Robots 253

x

y
pB

pw

b.

x

a.
y

pw

pB

B
B
′

B
′ = ∅

B

Fig. 2. In (a) a E1-configuration is depicted, while in (b) a E2-configuration. By Assum3

and since the robots cannot detect multiplicity, in both configurations (and in general

in any E-configuration) the white robot has the same view of the world as the robots

in B. In fact, both rn and the robots in B see only one other robot on the point of

coordinate (z, z′), with respect to their local coordinate systems

Second, we indeed show that there exists no Ag that can be executed in such
a scenario according to an atomic activation schedule and that allows the robots
to gather in a point in finite time. More specifically, we first show that, given
Ag, there exists always an atomic activation schedule that brings the robots, in
a finite number of cycles, in a particular configuration, called E-configuration,
and defined as follows.

Definition 2 (E-configuration). An E-configuration is a configuration of the
robots where (i) the black robots are partitioned in two groups B and B

′, with
B
′ possibly empty; (ii) the robots in B

′ and the white robot rn lie on the same
position pw, and (iii) the robots in B lie on a position pB �= pw. Moreover, E1-
configuration (shortly E1) is the E-configuration where B

′ = ∅ (see Figure 2.a),
and E2-configuration (shortly E2) is the E-configuration where |B| = 1 and |B′| =
n− 2 (see Figure 2.b).

Then, we prove that there exists an atomic activation schedule for Ag that,
starting from a E-configuration, lets the robots loop between E-configurations,
always avoiding the gathering.

Assume for a moment that at a given time t robots are in a E-configuration;
furthermore, let the robots in B (resp. the white robot) be active at t, and
the robots in B

′ inactive for all t′ ≥ t. Then, since the robots cannot detect
multiplicity, the robots in B and the white robot have the same view of the
world at time t. Hence, since Ag is deterministic, we have that

Lemma 3. If no robot changes position at time t + 1, then no robot will ever
move, independently from their activation sequences (given that the robots in B

′

stay inactive).

3.2 The Proof

As already outlined in Section 3.1, we first show that a E-configuration can
be reached by executing Ag according to a specific atomic activation schedule,

254 G. Prencipe

.

.

.

A

A

A

A

A

A

A

A

I

· · ·

· · ·

· · ·

..

.

.

.

.
.
.
.

..

.
..
.

.

.

.
.
.
.

..

.

ts tE − 1

r1

rk

rn

tE

..

.

ts + 1 · · ·

Fig. 3. The synchronous activation schedule SyncFE described in Lemma 4

say SyncFE. Such a schedule is built as follows: at each cycle, if the robots,
all activated, do not compute all the same destination point (according to the
definition of Ag), then they are activated and moved towards the destination
point they compute. Otherwise, one of them, say rk, is kept inactive, while all
others are activated. In this way, the n− 1 robots that are active will gather on
the same point p̃, while rk does not; hence, the robots are in a E-configuration.
More formally,

Lemma 4. Given Ag, there exists an atomic activation schedule SyncFE for
Ag, and a time tE > 0 such that, if the robots do not all occupy the same position
on the plane when the execution of Ag starts, the robots are in E1 or E2 at time
tE, if the computation is done according to SyncFE.

Proof. Let ts be the time when the computation starts, and pos1, . . . , posn be
the positions occupied by the robots at this time. By hypothesis, there exist
at least two positions posi and posj , i �= j, such that posi �= posj . SyncFE is
reported in Schedule 1 (refer to Figure 3 for a pictorial representation).

Schedule 1 BuildE(ts, pos1, . . . , posn).
Init. At the beginning, all robots are inactive. Set t = ts, and go to Rule1.
Rule1. If normally activating all robots at time t they are not on the same point p̃ at

time t + 1, then in SyncFE all ri are active at t. Set t = t + 1, and go to Rule1.
Otherwise,

Rule2. let rk be a robot that is not on p̃ at time t. Then, in SyncFE all ri, i �= k, are
active at t, while rk is inactive at t.

In the following we will show that, starting the execution of Ag at time ts
according to SyncFE, all robots are in a E1-configuration or E2-configuration at
time tE > ts. In fact, since by hypothesis Ag solves the problem, after finite time
Rule2. is executed; hence tE is finite. Moreover, until tE−1 all robots are always
active, and at this time, rk is the only robot to be inactive.

By construction, tE is the first time such that, if all the robots were nor-
mally activated at time tE− 1, they would be on the same position p̃ at time tE.
Therefore, since there exists at least two positions posi and posj at time ts such

On the Feasibility of Gathering by Autonomous Mobile Robots 255

that posi �= posj , there must exist at least one robot rk that is not on p̃ at time
tE − 1. According to Rule2., rk is inactive at tE − 1. By Lemma 2, at time tE

all robots ri, i �= k, are on p̃, and rk is on a position different from p̃, and the
lemma follows.

In the following two lemmas, we show that there is no algorithm that, starting
from E1 or E2, lets the robots gather in a point.

Lemma 5. There exists no deterministic oblivious algorithm that, starting from
a E1-configuration, solves the gathering problem in a finite number of cycles for
a set of n ≥ 3 robots that can not detect multiplicity.

Proof. By contradiction, let Ag be a deterministic oblivious algorithm that,
starting from a E1-configuration, lets the robots gather in a point in finite
time when they cannot detect multiplicity. In the following, we will describe
an atomic activation schedule SyncFE1 for Ag such that, if the robots are in a
E1-configuration at a given time ts and the computation is done according to
SyncFE1 , the robots never gather in the same point p.

Schedule 2 BuildE1(ts, pos1, . . . , posn).
Init. At the beginning, all robots are inactive. Set t = ts, and go to RuleB1.
RuleB1. If activating one of the black robots at time t, it is not on pt

w at time t + 1,
then in SyncFE1 all black robots are activated at t and moved to the destination
point they compute. The white robot is inactive at t. Set t = t + 1, and go to
RuleW1.

RuleB2. Otherwise,
RuleB2.1 In SyncFE1 , the black robots r1, . . . , rn−2 are active at t and moved to

the destination point they compute. The black robot rn−1 and the white robot
rn are inactive at t. Set t = t + 1.

RuleB2.2 In SyncFE1 , the white robot is active at t and moved to the destination
point it computes. All black robots are inactive at t. Set t = t + 1.

RuleB2.3 In SyncFE1 , the black robot rn−1 is active at t and moved to the desti-
nation point it computes. The black robots r1, . . . , rn−2 and the white robot
rn are inactive at t. Set t = t + 1, and go to RuleW1.

RuleW1. If activating the white robot at time t, it is not on pt
B at time t + 1, then in

SyncFE1 the white robot is activated at t and moved to the destination point it
computes. The black robots are inactive at t. Set t = t + 1, and go to RuleB1.

RuleW2. Otherwise,
RuleW2.1 As in RuleB2.1.
RuleW2.2 As in RuleB2.2.
RuleW2.3 As in RuleB2.3, except that at the end of this step go to RuleB1.

Proof. Let pos1 = . . . = posn−1 = pts

B
, and posn = pts

w . SyncFE1 is reported in
Schedule 2 (refer to Figure 5 for a pictorial representation).

It follows from the definition of E1 that, at ts, pts

B
�= pts

w . SyncFE1 moves
alternatively the black robots (as a group) and the white robot, until at time

256 G. Prencipe

t either the black robots compute as destination point pt
w, or the white robot

computes as destination point pt
B
. When this happens, the gathering is avoided

1. by first moving all the black robots but one on pt
w; then,

2. by moving the white robot on pt
B
; and finally,

3. by moving the last black robot (still on pt
B
) on pt

w;

that is the black robots and the white robot are forced to switch their positions.
First note that, after every execution of RuleB1. all black robots must change

position, and move all together towards the new destination (different from the
position occupied by the white robot). In fact, let t∗ ≥ ts be a time instant
when RuleB1. starts being executed, and such that all robots in B are on the
same position pt∗

B
�= pt∗

w . It follows from the definition of SyncFE1 that at t∗ all
black robots are active. If all these robots are still on pt∗

B
at the end of RuleB1.

(that is at time t∗ + 1), then by Lemma 3 no robot would ever move, hence the
robots would never gather on the same point. Therefore, the robots in B cannot
be on pt∗

B
at the end of RuleB1., and they must change position. Furthermore,

since there is a black robot that, if active at t∗, would reach a position p �= pt∗
w

at time t∗ + 1, by Lemma 1 the black robots will reach all together p at time
t∗+1, with p �= pt∗

w and p �= pt∗
B

. Symmetrically, it follows that, if RuleW1. starts
at time t∗, the white robot will be on a position p �= pt∗

w and p �= pt∗
B

at time
t∗ + 1, while all black robots are inactive at t∗ (hence they are still on pt∗

B
at

time t∗ + 1). Therefore, as long as RuleB1. or RuleW1. are executed, the robots
are in E1-configurations.

r2

p

r3

r1

p′

p

r3

r2r1

p′

r2

p′ = pt′
w

r3

r1

p = pt′
b

t′

t′′′ = t′ + 2 t′ + 3

p

p′

r1r3

r2

t′′ = t′ + 1

Fig. 4. Execution of RuleB2. in schedule BuildE1() in Lemma 5, with n = 3. At time t′

each robot sees only one other robot; in particular, r1 and r2 see one robot on the point

of coordinate (z, z′) (with respect to their local coordinate system), and r3 sees one

robot on the point of coordinate (z, z′) (with respect to its local coordinate system).

That is, all the robots have the same view of the world. This view of the world is

observed also by r3 at time t′′, and by r2 at time t′′′

On the Feasibility of Gathering by Autonomous Mobile Robots 257

rn

r1

.

..

rn−2

rn−1

A I

I

A

I

I

I

I

AI

AI

I

A

IA

I

A

A

.

..
.
..

.

..
.
..

.

..

· · ·

· · ·
· · ·
· · ·
· · ·

B2.1 B2.2 B2.3 W1.

· · ·

· · ·
· · ·
· · ·
· · ·

W1.B1.

I

ts

Fig. 5. The synchronous activation schedule SyncFE1 described in Lemma 5. Here is

depicted the case when RuleB2. is invoked first

Since, by hypothesis, Ag solves the problem, after a finite number of cycles
either RuleB2. or RuleW2. is executed. Without loss of generality, let us assume
that RuleB2. is executed first, say at time t′ > ts (the case when RuleW2. is
executed first can be handled similarly). Thus, according to SyncFE1 , n−2 black
robots are active at time t′, while rn−1 and rn are inactive (RuleB2.1). This rule
is chosen because there is a black robot that, if normally activated at t′, would
compute pt′

w as destination point. Hence, by Lemma 1, the n − 2 active robots
will leave p = pt′

B
and reach p′ = pt′

w (Figure 4).
At this point, RuleB2.2 is invoked at time t′′ = t′ + 1: the white robot is

active at t′′, while all black robots are inactive. By Assum1–Assum3 and since
multiplicity cannot be detected, rn has the same view of the world that the black
robots that moved in RuleB2.1 had at time t′ (refer to Figure 4); specifically,
the white robot sees only one robot, that is the last black robot rn−1 that at
this time is still on p (rn−1 is inactive at t′ and t′′). As a consequence, since Ag

is oblivious and deterministic, the result of the Compute state of rn at t′′ is the
same as the result of the Compute state that the black robots performed at time
t′ (in RuleB2.1): that is, rn decides to reach the only other robot it sees (rn−1),
hence rn computes p as destination point. Therefore, at time t′′ + 1 the white
robot reaches rn−1 on p.

Finally, RuleB2.3 is started at time t′′′ = t′′ + 1: the last black robot rn−1

(still on p) is active at t′′′, while all the other black robots (at this time on p′)
and rn (on p) are inactive. At time t′′′, rn−1 has the same view of the world that
the black robots that moved in RuleB2.1 had at time t′; specifically, since it can
not distinguish multiplicity, it sees all other black robots (on p′) as one robot.
Therefore it computes p′ as destination point, and reaches all the other black
robots at time t′′′ + 1.

In conclusion, if RuleB2.1 is started at time t′, at time t′′′+1 = t′+3 all black
robots are on p′, and the white robot is on p. That is, the black and white robots
simply switched positions, and at time t′+3 they are again in a E1-configuration.
Therefore, by executing Ag according to SyncFE1 , the robots will never gather
on the same point. This leads to a contradiction, and the lemma follows.

Lemma 6. In Corda there exists no deterministic oblivious algorithm that,
starting from a E2-configuration, solves the gathering problem in a finite number
of cycles for a set of n ≥ 3 robots that can not detect multiplicity.

258 G. Prencipe

Proof. By contradiction, let Ag be a deterministic oblivious algorithm that,
starting from a E2-configuration, lets the robots gather in a point in finite time
when they cannot detect multiplicity. Similarly to the previous lemma, we will
describe a synchronous activation schedule SyncFE2 for Ag such that, if the
robots are at a given time ts in a E2-configuration and the computation is done
according to SyncFE2 , the robots never gather in the same point p. By Lemma 1,

Schedule 3 BuildE2(ts, pos1, . . . , posn).
Init. At the beginning, all robots are inactive. Set t = ts, and go to Rule1.
Rule1. If activating all robots at time t, they are not on the same position p̃ at time

t + 1, then in SyncFE2 all robots are normally activated. Set t = t + 1, and go to
Rule1.

Rule2. Otherwise,
Rule2.1 If no robot is on p̃ at time t, then in SyncFE2 all robots in B

′ and rn−1

are active at t and moved to the destination point they compute. The white
robot rn is inactive at t. Set t = t + 1, and go to RuleB1. defined in Lemma 5.

Rule2.2 If rn is on p̃ at time t, then all robots in B
′ are active at t, while rn−1 and

rn are inactive at t. Set t = t + 1, and go to Rule1.
Rule2.3 If rn−1 is on p̃ at time t, then all robots in B

′ are active at t, while rn and
rn−1 are inactive at t. Set t = t + 1, and go to RuleB1. in Schedule 2.

Rule2.4 If all robots in B
′ are on p̃ at time t, then rn−1 is active at t, while the

robots in B
′ and rn are inactive. Set t = t+1, and go to RuleB1. in Schedule 2.

as long as Rule1. is executed, all robots in B
′ move always all together; hence, at

any time, they always occupy the same position on the plane. Since by hypoth-
esis Ag solves the problem, after a finite number of cycles Rule2. is executed,
say at time t′, and let p̃ as defined in Rule2., that is the point where the robots
would gather if all active at t′.

It follows from the definition of E2 that at the beginning pts

B
�= pts

w . Without
loss of generality, let us assume that r1, . . . , rn−2 are the black robots in B

′ (at
ts they lie on pts

w), and that rn−1 is the only robot in B.
SyncFE2 moves all robots until they decide to gather on the same point (even-

tually this happens, since by hypothesis Ag solves the problem); in particular,
all robots in B

′ are forced to move together, hence to lie always on the same
point. When this happens, the robots are forced to reach either a E1 or a E2-
configuration. At this point, SyncFE2 behaves exactly like SyncFE1 described in
the previous lemma; hence it avoids the gathering. Let pos1, . . . , posn−2, posn =
pts

w , and posn−1 = pts

B
. SyncFE2 is reported in Schedule 3 (refer to Figure 6 for

a pictorial representation).
First, note that it is impossible that at time t′ the robots in B

′ and rn are al-
ready on p̃, while the only robot in B is not. In fact, let us assume that rn and the
robots in B

′ are already on p̃ at time t′; thus, the robots are in a E-configuration
at t′. Rule2. is executed at t′ because, if all the robots were active at t′, they would

On the Feasibility of Gathering by Autonomous Mobile Robots 259

be on p̃ at time t′ + 1; hence, since by hypothesis rn and the robots in B
′ are

already on p̃ at time t′, these robots would not move between time t′ and t′ + 1.
Therefore, is like the robots in B

′ are inactive at t′. Hence, by Lemma 3, no
robot would change position between time t′ and t′ + 1, hence they would not
gather on p̃ at time t′ + 1, and Rule2. would not have been executed at time t′.
Similarly, it can be proven that

it is impossible that at time t′ the robot in B and rn are already on p̃,
while the robots in B

′ are not (it is sufficient to switch the roles of B and
B
′ in Lemma 3); and

it is impossible that at time t′ the robot in B and those in B
′ are already

on p̃, while rn is not.

Moreover, since by hypothesis t′ is the first time such that activating all
robots, they would gather on the same point, it can not be that all robots
are already on p̃ at t′. In the following, we analyze the remaining possible
cases.

1. No robot is on p̃ at time t′. In this case, Rule2.1 is executed, and rn is inac-
tive at t′. Hence, by Lemma 2, at time t′ + 1 all robots but rn are on p̃; that
is, the robots are in a E1-configuration.

2. Only rn is already on p̃ at time t′. In this case, Rule2.2 is executed, and
the robots in B

′ are active at t′, while rn−1 and rn are inactive. Hence, by
Lemma 2, at time t′ + 1 all robots in B

′ and rn are on p̃, while rn−1 is not.
That is, the robots do not gather in p̃ at t′ + 1, and they are again in a
E2-configuration.

3. Only rn−1 is already on p̃ at time t′. In this case, Rule2.3 is executed: at t′,
rn−1 and rn are inactive, while the robots in B

′ are active. By Lemma 2,
at time t′ + 1 all robots but rn are on p̃; that is, the robots are in a E1-
configuration.

4. Only the robots in B
′ are already on p̃ at time t′. Rule2.4 is executed.

Using an argument similar to the one used in the previous case, it fol-
lows that also in this case the robots are in a E1-configuration at time
t′ + 1.

In conclusion, at time t′ + 1, either the robots are in a E1-configuration or
again in a E2-configuration. In the first case, the lemma follows by Lemma 5. In
the second case, either Rule2.2 is never executed again after t′ +1, or every time
it is executed the robots are once again in a E2-configuration. In both cases, the
lemma follows.

To summarize, thus far we proved that,

given any algorithm Ag, there exists an atomic activation schedule that,
starting from any valid configuration for the gathering problem, brings
the robots either in a E1 or E2-configuration in a finite number of cycles
(Schedule 1);

260 G. Prencipe

I

A

A

A

A

A

A

A

A

.

.

.
.
.
.

.

.

.

· · ·

· · ·
· · ·
· · ·
· · ·

B1.Rule1.Rule1.

A

· · ·

· · ·
· · ·
· · ·
· · ·

Rule2.ts

rn

r1

.

..

rn−2

rn−1

AA

Fig. 6. The synchronous activation schedule SyncFE2 described in Lemma 6. The case

when Rule2.1 is executed first is depicted

there exists no deterministic oblivious algorithm that, starting form a
E1 or E2-configuration, solves the gathering problem in a finite number
of cycles (Schedules 2 and 3 in the Appendix).

Hence, by Lemmas 4–6, and by Theorem 1, it follows that

Theorem 2. In Corda and Atom, there exists no deterministic oblivious al-
gorithm that solves the Gathering problem in a finite number of cycles, hence
in finite time, for a set of n ≥ 2 robots.

References

1. N. Agmon and D. Peleg. Fault Tolerant Gathering Algorithms for Autonomous
Mobile Robots. In Proc. 15th Symposium on Discrete Algorithms (SODA 2004),
pages 1063–1071, 2004.

2. H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A Distributed Memoryless Point
Convergence Algorithm for Mobile Robots with Limited Visibility. IEEE Trans-
actions on Robotics and Automation, 15(5):818–828, 1999.

3. M. Cieliebak. Gathering non-oblivious mobile robots. In Proc. Latin American
Conf. on Theoretical Informatics (LATIN ’04), LNCS 2976, pages 577–588, 2004.

4. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving The Gathering
Problem. In Proc. 30th International Colloquium on Automata, Languages and
Programming (ICALP ’03), pages 1181–1196, 2003.

5. M. Cieliebak and G. Prencipe. Gathering Autonomous Mobile Robots. In
Proc. of 9th International Colloquium On Structural Information And Commu-
nication Complexity (SIROCCO 9), pages 57–72, June 2002.

6. R. Cohen and D. Peleg. Robot Convergence via Center-of-gravity Algorithms. In
Proc. 11th International Colloquium On Structural Information And Communica-
tion Complexity (SIROCCO 11), pages 79–88, 2004.

7. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for Weak
Robots: The Role of Common Knowledge in Pattern Formation by Autonomous
Mobile Robots. In Proc. 10th Annual International Symposium on Algorithms and
Computation (ISAAC ’99), LNCS 1741, pages 93–102, December 1999.

8. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of Autonomous
Mobile Robots With Limited Visibility. In Proc. 18th International Symposium on
Theoretical Aspects of Computer Science (STACS 2001), LNCS 2010, pages 247–
258, February 2001.

On the Feasibility of Gathering by Autonomous Mobile Robots 261

9. G. Prencipe. The Effect of Synchronicity on the Behavior of Autonomous Mobile
Robots. Theory of Computing Systems, 2004. (accepted for publication).

10. I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation
of Geometric Patterns. Siam Journal of Computing, 28(4):1347–1363, 1999.

Majority and Unanimity in Synchronous
Networks with Ubiquitous Dynamic Faults

Nicola Santoro1 and Peter Widmayer2

1 School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

2 Institut for Theoretical Informatics, ETH Zurich, Switzerland
widmayer@inf.ethz.ch

Abstract. In this paper we are interested in synchronous distributed
systems subject to transient and ubiquitous failures. This includes sys-
tems where failures will occur on any communication link, systems where
every processor will fail at one time or another, etc., and, following a
failure, normal functioning can resume after a finite (although unpre-
dictable) amount of time. Notice that these cases cannot be handled by
the traditional component failure models.

The model we use is the transmission failure model, known also as
the dynamic faults model. Using this model, we study the fundamental
problem of agreement in synchronous systems of arbitrary topology.

We establish bounds on the number of dynamic faults that make any
non-trivial form of agreement (even strong majority) impossible; in turn,
these bounds express connectivity requirements which must be met to
achieve any meaningful form of agreement. We also provide, construc-
tively, bounds on the number of dynamic faults in spite of which any
non-trivial form of agreement (even unanimity) is possible.

These bounds are shown to be tight for a large class of networks, that
includes hypercubes, toruses, rings, and complete graphs; incidentally, we
close the existing gap between possibility and impossibility of non-trivial
agreement in complete graphs in presence of dynamic Byzantine faults.

None of these results is derivable in the component failure models;
in particular, all our possibility results hold in situations for which those
models indicate impossibility.

1 Introduction

1.1 The Framework

In this paper, we are concerned with the fundamental problem of agreement
in synchronous systems where failures have mostly a transient and ubiquitous
nature; that is, faults can occur anywhere in the system and, following a failure,
normal functioning can resume after a finite (although unpredictable) time.

The reality of these systems is not fully captured by the component failure
models proposed in the literature.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 262–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Majority and Unanimity in Synchronous Networks 263

Consider, for instance, the processor failure model (e.g., see [13, 14, 16, 18,
25]). In this model, only processors can be faulty; any other type of failures is
inscribed to the faulty behaviour of some of the involved processors: if a message
is lost, either the sending or the receiving processor will be declared faulty; once
this happens, that processor will be forever considered faulty. This leads to
undesirable conclusions: in the case of ubiquitous failures where any processor
may occasionally lose messages (a situation that clearly occurs in real systems),
the entire system will be declared unusable for any computation, even if the
system is synchronous.

Analogous undesirable situations occur in the link failure model and in the
hybrid failure models that consider both links and processors (e.g. [6, 28, 31]).
Some attempts have been made to remedy this situation by modifying the model
allowing some failed processors and links to recover (e.g., [1, 22]), but they are
just partial and limited to eventually-synchronous systems.

In this paper we are interested in synchronous distributed systems subject to
(possibly transient) ubiquitous failures. This includes systems where failures will
occur on any communication link, systems where every processor will experience
at one time or another send or receive failure, etc. Notice that these cases can
not be handled by the traditional component failure models.

The model we use is the transmission failure model, known also as the dy-
namic faults model, introduced in [29] and investigated e.g. in [5, 7, 8, 9, 10, 11,
12, 19, 20, 24, 26, 30]. In this model, a transmission is a pair (α, β) of messages
α, β ∈ M ∪ {Ω} for a pair (i, j) of neighbouring processors called source and
destination, where M is a fixed and possibly infinite message universe and Ω
is the null message: α is the message sent by the source and β is the message
received by the destination; by convention α = Ω denotes that no message is
sent, and β = Ω denotes that no message is received. A transmission (α, β) is
faulty if α �= β, non-faulty otherwise. In this model, the only failures occurring
in the system are transmission faults, and failures are fully dynamic: the set of
pairs (source, destination) whose transmissions are faulty may change at every
clock cycle. An instance of this model is the single mobile failure described in
[27].

Notice that component failures can be easily modeled by transmission faults;
for instance, loss (i.e., α �= Ω = β) of all messages sent by and to a processor
can be used to describe a crash failure of that processor; analogously, it is easy
to describe all the other subtypes of faults considered in the component failure
model: send and receive failures, Byzantine failures, etc. Similarly, the crash
failure of a link can be modeled by the loss of all messages sent between the two
incident processors. In other words, the processor and the link failure models
can be seen as a special static cases of the transmission failure model, where all
the faults are restricted to the transmissions involving a fixed (though, a priori
unknown) set of processors or of links.

In this paper, we are concerned with the fundamental problem of agreement
in presence of dynamic transmission faults in synchronous systems of arbitrary
topology.

264 N. Santoro and P. Widmayer

1.2 Related Work

Synchronous agreement in the component failure models is perhaps the most
intensively and extensively studied problem in distributed computing. We will
just note that most of the work has focused on the complete graph (e.g., [14,
16, 17, 23, 25, 31]); fewer studies have focused on other classes of graphs (e.g.,
[4, 15, 17, 25]) or on arbitrary networks [13].

In the dynamic faults model, the studies on agreement have focused on syn-
chronous systems whose communication topology is the complete graph, and both
possibility and impossibility results have been established [29, 30]. In particular,
for these systems the established bounds have been shown to be tight in the
case of omission (i.e., α �= β = Ω) failures, as well as in the case of any mix of
corruption (i.e., Ω �= α �= β �= Ω) and addition (i.e., Ω = α �= β) failures. In the
case of Byzantine (i.e., arbitrary) transmission failures there was however a gap
between the possibility and impossibility bounds.

The link between conditions for (partial) broadcast and for possibility of
(partial) agreement with dynamic faults was established in [29]. Most of the
subsequent research on dynamic faults has focused on reliable broadcast in the
case of omission failures; the problem has been investigated in complete graphs
[10, 26, 30], hypercubes [8, 11, 19], tori [7, 12], star graphs [8], as well as in arbi-
trary topologies [5]. The more general problem of evaluation of Boolean functions
has been studied only for complete networks [9, 30]; computation of some special
functions has been investigated also in the case of anonymous networks [9].

1.3 Main Contributions

In this paper we present several results, extending the existing knowledge on
agreement with dynamic faults to topologies other than the complete network.

Impossibility
First of all, we prove a general theorem characterizing classes of faulty trans-
missions for which any non-trivial agreement is impossible. As a corollary, we
prove several impossibility results, some of them quite unexpected, and clearly
not inferable from the existing results of the other models.

Consider for example a d-dimensional hypercube and let us consider the oc-
currence of just d transmission faults per clock cycle. With d omissions per clock
cycle, we can simulate the crash failure of a single processor; hence, unanimity
clearly can not be expected. What about other levels of agreement ?

Something can be learned from the processor failure model. For the hyper-
cube, Dolev’s results in the processor failure model [13] state that unanimity
among the non-faulty processors is possible if the number of the faulty proces-
sors is less than d. If the d omissions per clock cycle are localized to a single
processor, there is only one “faulty” processor; hence, by Dolev’s result, an agree-
ment among n− 1 processors is possible.

What happens if those d omissions per clock cycle are dynamic (i.e., not
localized to a single processor) ? Since with d omissions per clock cycle at most

Majority and Unanimity in Synchronous Networks 265

a single processor can be isolated from the rest, one might still reasonably expect
that an agreement among n− 1 processors can be reached even if the faults are
dynamic. Not only this expectation is false, but we prove that any form of non-
trivial agreement can not be reached under those conditions. In fact, even strong
majority is impossible.

If the transmission faults are arbitrary (omissions, additions, and corrup-
tions: the Byzantine case), the gap between the static and dynamic cases is even
stronger. By Dolev’s result [13], it follows again that in the hypercube an agree-
ment among n − 1 processors is possible in spite of d Byzantine transmission
faults if they are statically restricted to the messages sent by a single processor.
From our results with omissions, we already know that if the faults are dynamic
then strong majority is impossible; if the faults are Byzantine, we show that this
is so even if the number of faults is just �d/2�.

These results for the hypercube are instances of the more general results ob-
tained here. We consider arbitrary networks and establish bounds on the number
of transmission faults that make any non-trivial form of agreement impossible;
in turn, these bounds express connectivity requirements that must be met to
achieve any meaningful form of agreement. Let G = (V,E) be the network
topology, and let d be its max degree. We prove that:

1. With d omissions per clock cycle, strong majority cannot be reached.
2. If the failures are any mixture of corruptions and additions, the same bound

d holds for the impossibility of strong majority.
3. In the case of arbitrary faults (omissions, additions, and corruptions: the

Byzantine case), strong majority cannot be reached if just �d/2� transmis-
sions may be faulty.

Figure 1 summarizes these findings.
These results are established using the proof structure for dynamic faults

introduced in [29]. Although based on the bivalency argument of Fischer, Lynch

AD+CO+OM = �d/2

(Byzantine)

AD+CO = d OM = d

No Faults
�������

�������

�������

�������

Fig. 1. Impossibility. Minimum number of faults per clock cycle that may render

strong majority impossible

266 N. Santoro and P. Widmayer

and Paterson [18], the framework differs significantly from the ones for asyn-
chronous systems since we are dealing with a fully synchronous system1 where
time is a direct computational element, with all its consequences; e.g., the clock
value is explicitly part of the state of a processor; non-delivery of an expected
message is detectable, unlike asynchronous systems where a ”slow” message is
indistinguishable from an omission; etc.

Possibility
We then turn to the possibility of agreement in spite of dynamic faults. We
examine all the combinations of different types of faults, and for each we establish
bounds for achieving unanimity among the processors. The results we obtain vary
with the types of faults and are sometimes counterintuitive.

We first consider the case when the faults are just omissions. It is known
that, in the d-dimensional hypercube, if the faults are at most d − 1 omissions
per clock cycle, then broadcast (and thus unanimity) is possible (e.g., [8, 11]).
These results are actually just instances of the more general results established
here.

In fact, we prove that, in any network G, if the faults are omissions, then
unanimity can be reached if the number of faults per clock cycle is at most c−1,
where c is the connectivity of G.

Interestingly, if the faults are corruptions, we show that unanimity can always
be achieved regardless of the number of faults. This is true also in systems where
the faults are only additions. On the other hand, the combination of additions
and corruptions creates a c− 1 threshold for unanimity.

In the more complex Byzantine case of omissions, additions and corruptions,
we prove that unanimity is still possible if at most �c/2� − 1 transmissions per
clock cycle may be faulty. A summary of all the possibility results is shown in
Figure 2.

Let us stress that, regardless of any analogy with bounds established in the
component failure models, none of these results is implied or derivable from those
models. On the contrary, these possibility results are obtained with a number and
type of faults for which all the component failure models indicate impossibility.

Tightness
For all systems, except those where faults are just corruptions or just additions
(and in which unanimity is possible regardless of faults), the bounds we have
established are similar except that the possibility ones are expressed in terms of
the connectivity c of the graph, while the impossibility ones are in terms of the
degree d of the graph.

This means that, in the case of d-connected graphs, the impossibility bounds
are indeed tight:

1 A bivalency approach for impossibility results in synchronous systems, first used in
[29], has been recently employed also in [2, 3, 27].

Majority and Unanimity in Synchronous Networks 267

(Byzantine)
AD+CO+OM = �c/2
 − 1

AD+OM = c − 1AD+CO = c − 1

CO = ∞

CO+OM = c − 1

OM = c − 1

�

���

�

�������

�������

�������

�������
�������

�������

AD = ∞

�������
�������

No Faults

Fig. 2. Possibility. Maximum number of faults per clock cycle in spite of which una-

nimity is possible

1. with the number of faults (or more) specified by the impossibility bound,
even strong majority is impossible;

2. with one less fault than specified by the impossibility bound, even unanimity
can be reached, and

3. any agreement among less than a strong majority of the processors can be
reached without any communication.

In other words, in these systems, agreement is either trivial or complete or im-
possible.

This large class of networks includes hypercubes, toruses, rings, complete
graphs, etc. As a consequence, we also close the existing gap in [29, 30] between
possibility and impossibility for non-trivial agreement with dynamic Byzantine
faults in complete graphs.

For those graphs where c < d there is a gap between possibility and impos-
sibility. Closing this gap is clearly a goal of future research.

2 Definitions and Terminology

Most of the terminology is taken from [29]; some of it was in turn a modification
and adaptation for the synchronous case of that of [18].

A k-agreement protocol P is a synchronous system of n ≥ 2 processors
p1, . . . , pn connected through dedicated communication links. The connection
structure is an arbitrary undirected, connected simple graph G = (V,E). An
edge joining two nodes of the graph is a bidirectional link between the two pro-
cessors. The degree of a node pi in the graph is denoted by di; d is the maximum
node degree. The graph G is said to be a d-edge-connected graph if, between any

268 N. Santoro and P. Widmayer

two nodes, there exist d edge-disjoint paths, (one might say that neighbors are
d-connected). Rings, toruses, hypercubes and complete graphs are examples of
d-edge-connected graphs.

Processors communicate by sending messages to adjacent processors. The
system operates in complete synchrony: each processor has direct read-only ac-
cess to a global clock, and every message sent at time t is received (if no error
occurs) and processed at its destination at time t+1. The message sent by some
processor need not be the same for all destination processors, i.e., separate links
allow for different messages to different destinations at the same time. Each pro-
cessor pi has a message register holding a message vector mi ∈ (M ∪ {Ω})di ,
where M is a fixed and possibly infinite message universe, and Ω is the null
element indicating absence of communication. The component mij of mi is the
message to be sent from pi to its neighbor pij

.
A transmission is a pair (α, β) of messages; α is the sent message and β is the

received message; by convention, α = Ω denotes that no message is transmitted,
and β = Ω denotes that no message is received. Let Φ denote the set of all
transmissions.

A transmission (α, β) is faulty if α �= β, non-faulty otherwise. Faulty trans-
missions can be partitioned into three sets, corresponding to the three types of
faults considered in this paper:

– omissions: O = {(α, β) ∈ Φ : α �= Ω = β}
(a sent message is never delivered to a destination processor);

– additions: A = {(α, β) ∈ Φ : α = Ω �= β}
(a message is delivered to a processor, although no message was sent);

– corruptions: C = {(α, β) ∈ Φ : Ω �= α �= β �= Ω}
(a sent message is delivered with different content to a destination pro-

cessor).

Each processor pi has a one-bit input register2 with an initial value xi ∈
{0, 1}, an output register for which it must choose a value vi ∈ {0, 1} as the
result of its computation, and an unbounded amount of local storage. The values
of the registers and of the global clock, together with the program counters and
the internal storage, comprise the internal state of each processor.

For each processor, the initial state prescribes fixed starting values for all but
the input register; in particular, the output register starts with null value Ω, and
the clock starts with value 0. Each processor acts deterministically; it can never
change the input register nor the clock, and can change the value of its output
register only once, from Ω to v ∈ {0, 1}. The states in which the output register
has value v ∈ {0, 1} are distinguished as being v-decision-states.

2 For simplicity, we describe here Boolean agreement; all the results hold also for
non-binary values.

Majority and Unanimity in Synchronous Networks 269

The system reaches a k-agreement if within finite time k processors choose
the same value v ∈ {0, 1} subject to the condition that, if all values xi were
the same, then v must be that value. Note that if k ≤ �n/2�, a k-agreement
can be trivially reached without any communication (e.g., each pi chooses xi for
v). In this paper, we are interested in non-trivial agreements (i.e., k > �n/2�),
especially (�n/2�+1)-agreement (strong majority) and n-agreement (unanimity).

A message matrix A= (αij) is a n× n–matrix of messages, where αij := δ if
(pi, pj) �∈ E, for a special δ ∈M not used otherwise; by definition, (pi, pi) �∈ E.

A transmission pattern τ for A is a set of n(n − 1) transmissions τ [i, j],
i �= j, of the form (α, β), where α = αij and τ [i, j] = (δ, δ) iff (pi, pj) �∈ E.
τ [i, j] = (α, β) indicates that pi sends α to pj and, as a result of this transmission,
pj receives β from pi. The message system maintains a non-empty set T(A)
of transmission patterns for each message matrix A. It supports the abstract
operation transmit(A): return a transmission pattern τ ∈ T(A). Thus, if |T(A)|
> 1, the message system acts non-deterministically.

A configuration of the system consists of the internal state of each processor.
An initial configuration is one in which all processors are in an initial state.

A step takes one configuration C to another and consists of the following
atomic (indivisible) sequence of operations, where λ(C) is the message matrix
defined by the contents of the message registers in C:

1. a transmit(λ(C)) is performed to obtain a transmission pattern τ for λ(C);
2. the global clock is incremented by one unit;
3. depending on pi’s internal state, on the current clock value and on the re-

ceived messages (as specified by τ), each processor pi enters a new internal
state.

Since processors act deterministically, a step is completely determined by the
transmission pattern τ ; τ is called an event, and τ(C) denotes the resulting con-
figuration. For t > 0, let Rt(C) = R(Rt−1(C)), where R0(C) = R(C) = {τ(C) :
τ ∈T(λ(C))} is the set of all possible configurations resulting from C in one step.
The configurations in R(C) are sometimes called succeeding configurations of C.
Let R∗(C) = {C ′ : ∃t ≥ 0, C ′ ∈ Rt(C)} be the set of configurations reachable
from C. A configuration that is reachable from some initial configuration is said
to be accessible.

Let v ∈ {0, 1}. A configuration C has decision value v if at least k processors
are in a v-decision state; note that if k > �n/2�, a configuration can have at
most one decision value. A configuration C is v-valent if there exists a t ≥ 0 such
that all C ′ ∈ Rt(C) have decision value v; that is, a v-valent configuration will
always result in at least k processors deciding on v. A configuration C is bivalent
if there exist in R∗(C) both a 0-valent and a 1-valent configuration.

A set S of transmission patterns (events) is w-admissible, 0 ≤ w ≤ 2|E|, if

1. for each message matrix A, ∃τ ∈ S for A;
2. every τ ∈ S contains at most w faulty transmissions;
3. ∃τ ∈ S which contains exactly w faulty transmissions.

270 N. Santoro and P. Widmayer

Given a set of events S, a k–agreement protocol P admits w faults in S if S
is w-admissible and ∪A T(A) = S (i.e., the message system returns only events
in S). A k–agreement protocol is correct in spite of w transmission faults in S if

1. for each v ∈ {0, 1}, some accessible configuration has decision value v;
2. it admits w faults in S;
3. for each initial configuration C there exists a t ≥ 0 such that every C ′ ∈

Rt(C) has a decision value.

3 On Agreement in Spite of Faults

In this section we generalize to arbitrary networks the theorems of [29] for com-
plete graphs.

Let si(C) denote the internal state of pi in C. From the definitions of state
and of event, the next two properties follow immediately.

Property 1. For two configurations C ′ and C ′′, let λ(C ′) = (αij) and λ(C ′′) =
(βij) be the corresponding message matrices. If sj(C ′) = sj(C ′′) for some pro-
cessor pj , then (αj1, ..., αjn) = (βj1, ..., βjn).

Property 2. Let C ′ and C ′′ be two configurations such that sj(C ′) = sj(C ′′) for
some processor pj , and let τ ′ and τ ′′ be events for λ(C ′) and λ(C ′′), respectively.
Let τ ′[i, j] = (α′

i,j , β
′
i,j) and τ ′′[i, j] = (α′′

i,j , β
′′
i,j). If β′

i,j = β′′
i,j for all i, then

sj(τ ′(C ′)) = sj(τ ′′(C ′′)).

Two configurations C ′ and C ′′ are l-adjacent if si(C ′) = si(C ′′) for all i �= l;
they are adjacent if they are l-adjacent for some l.

A set S of events is l-adjacency-preserving if for any two l-adjacent configu-
rations C ′ and C ′′ there exist in S two events τ ′ and τ ′′ for λ(C ′) and λ(C ′′), re-
spectively, such that τ ′(C ′) and τ ′′(C ′′) are l-adjacent. S is adjacency-preserving
if is l-adjacency-preserving for all l.

A set S of events is continuous if for any configuration C and for any τ ′, τ ′′ ∈ S
for λ(C), there exists a finite sequence τ0, . . . , τm of events in S for λ(C) such
that τ0 = τ ′, τm = τ ′′, and τi(C) and τi+1(C) are adjacent, 0 ≤ i < m.

Lemma 1. If S contains all possible events with at most w faults, then S is
continuous.

Note that, in Lemma 1, it is not necessary, but sufficient for S to contain all
possible events with at most w faults.

Theorem 1. Let S be continuous, k-adjacency-preserving and w-admissible,
w > 0. Let P be a (�(n − 1)/2� + 2)–agreement protocol. If P contains two
accessible k-adjacent configurations, a 0-valent and a 1-valent one, then P is
not correct in spite of w transmission faults in S.

Majority and Unanimity in Synchronous Networks 271

Theorem 2. Let S be adjacency-preserving, continuous and w-admissible. Then
no k-agreement protocol is correct in spite of w transmission faults in S for
k > �n/2�.

Proof. Assume P is a correct (�n/2�+1)-agreement protocol in spite of w trans-
mission faults when the message system returns only events in S. In a typical
bivalency approach, the proof involves two steps: first it is argued that there
is some initial configuration in which the decision is not already predetermined;
second, it is shown that it is possible to forever postpone entering a configuration
with a decision value.

Lemma 2. P has an initial bivalent configuration.

Lemma 3. A bivalent configuration has a succeeding bivalent configuration.

From Lemmas 2 and 3 it follows that there exists an infinite sequence of accessible
bivalent configurations, each derivable in one step from the preceding one. This
contradicts the assumption that for each initial configuration C there exists a
t ≥ 0 such that every C ′ ∈ Rt(C) has a decision value; thus, P is not correct.
This concludes the proof of Theorem 2.

The above theorems provide a powerful tool for proving impossibility results
for non-trivial agreement: if it can be shown that a set S of events is adjacency-
preserving, continuous, and w-admissible, then by Theorems 1 and 2 no non-
trivial agreement is possible for the types and numbers of faults implied by S.
Obviously, not every set S of events is adjacency-preserving.

4 Impossibility of Strong Majority

4.1 Omission Faults

We show that no strong majority protocol is correct in spite of d transmission
faults, even when the faults are only omissions. For message matrix A = (αij),
let O(A) be the set of all events τ on A defined as follows: for at most d pairs
(pi, pj) ∈ E, τ [i, j] = (αij , Ω), and for all other pairs (pi, pj) ∈ E, τ [i, j] =
(αij , αij). Then, O :=

⋃
A O(A) is the set of all events containing at most d

omission faults.

Lemma 4. O is d–admissible, continuous and adjacency-preserving.

Then, by Theorem 2, we immediately get

Theorem 3. No k-agreement protocol P is correct in spite of d transmission
faults in O for k > �n/2�.

4.2 Addition and Corruption Faults

Here, we show that no strong majority protocol is correct in spite of d transmis-
sion faults, when the faults are additions and corruptions. For message matrix

272 N. Santoro and P. Widmayer

A = (αij), let AC(A) be the set of all events τ on A defined as follows: for at
most d pairs (pi, pj) ∈ E, τ [i, j] = (αij , βij), αij �= βij , where βij �= Ω if αij �= Ω,
and for all other pairs (pi, pj) ∈ E, τ [i, j] = (αij , αij). Then AC :=

⋃
A AC(A)

is the set of all events containing at most d addition and corruption faults.

Lemma 5. AC is d–admissible, continuous and adjacency-preserving.

Then, by Theorem 2, we immediately get

Theorem 4. No k-agreement protocol P is correct in spite of d transmission
faults for AC for k > �n/2�.

4.3 Byzantine Faults

We show that no strong majority protocol is correct in spite of �d/2� arbitrary
transmission faults. For a message matrix A = (αij), let ACO(A) be the set of all
events τ on A containing at most �d/2� faulty transmissions. Then ACO:=

⋃
A

ACO(A) is the set of all events containing at most �d/2� transmission faults,
where the faults may be omissions, corruptions and additions.

Lemma 6. ACO is �d/2�–admissible, continuous and adjacency-preserving.

Theorem 5. No k–agreement protocol P is correct in spite of �d/2� transmis-
sion faults in ACO for k > �n/2�.

5 Possibility Results

Let c be the (edge-)connectivity of G; then there are at least c edge-disjoint
paths between any pair of nodes. This fact has been used in the component
failure model to show that, with enough redundant transmissions, information
can be correctly propagated in spite of faults and that the processors can reach
some form of agreement (e.g. [13, 15]). Our results on the possibility of agreement
in spite of a certain amount w of dynamic faults also exploit this fact; the value
of w obviously depends on the nature of the faults.

Our general strategy is to first prove that it is possible to correctly broadcast
the value of a bit within a fixed amount of time T in spite of w faults per clock
cycle. This reliable broadcast, once established, can then be trivially used to
correctly compute the logical OR of the input values, enabling the processors to
reach unanimity in spite of those w faults per clock cycle. The reliable broadcast
protocols will differ depending on the nature of the faults.

5.1 Single Type Faults

It is well known that it is possible to broadcast in spite of w ≤ c− 1 omissions
per clock cycle; let T ∗(G) denote the time this process requires in G. Hence

Theorem 6. Let the system faults be omissions. Unanimity can be reached in
spite of w = c− 1 faults per clock cycle in time T = T ∗(G).

Majority and Unanimity in Synchronous Networks 273

Currently, the best available bound is T ∗(G) = O(diam(G)w+1) [5], where
diam(G) is the diameter of the graph. Better bounds are known for specific net-
works [7, 8, 11, 12, 19, 26, 30]; interestingly, in a hypercubes, diam(G) + 2 clock
cycles are known to suffice [19].

Surprisingly, if the faults are just corruptions, unanimity can be reached
regardless of the number of faults.

Theorem 7. Let the system faults be corruptions. Unanimity can be reached
regardless of the number of faults in time T = diam(G).

In case of just additions, if all processors transmit to their neighbours in
each clock cycle, they avoid the creation of unintended messages. Thus, they
can correctly compute the OR using a simple diffusion mechanism: initially, a
processor sends its value; if at any time it is aware of the existence of a 1 in the
system, it will only send 1 from that moment on. The process clearly terminates
after diam(G) clock cycles. Hence

Theorem 8. Let the system faults be additions. Unanimity can be reached re-
gardless of the number of faults in time T = diam(G).

5.2 Composite Faults

If the system suffers of omissions and corruptions or omissions and additions,
the situation is fortunately no worse than that of systems with only omissions.

Theorem 9. Unanimity can be reached in spite of w = c−1 faults per clock cycle
if the system faults are omissions and corruptions, or omissions and additions.
In both systems, the time to agreement is T = T ∗(G).

For systems with the two other types of composite dynamic faults, we achieve
the reliable broadcast of 1 using a more complex mechanism for reliable trans-
mission of a bit to a neighbour.

Consider a processor pi and a neighbour pj ; let Di,j be the set of the c
(shortest) disjoint paths from pi to pj , including the direct link (pi, pj). Let
li,j be the max length of any one of those paths, and let l = maxi,j{li,j}. To
communicate a bit to pj , pi will send it along all the c paths in Di,j for a
number t of communication cycles, where t depends on the type of faults, and
will be discussed later. Every processor p on one of those paths, upon receiv-
ing the message for pj , will forward it only along the path. Note that incor-
rect path information (due to corruptions and/or additions) in a message for
pj received by x is detectable since (1) x knows the neighbour z from which it
received the message; and (2) x can determine if z is its predecessor in the
claimed path to pj . A message with incorrect path information will be dis-
carded. The specifics of the communication process depend on the faults in the
system.

In the case of both additions and corruptions, using the technique of [30],
we distinguish between even and odd clock cycles; an even clock cycle and

274 N. Santoro and P. Widmayer

its successive odd cycle constitute a communication cycle. Processor pi will
transmit its value only during t successive even (resp. odd) cycles if the bit
is 0 (resp. 1). Processors on the path, receiving a bit during an even (resp.
odd) cycle, will forward it in the next even (resp. odd) cycles, regardless of its
value.

In case of Byzantine faults, a communication cycle lasts only one clock cycle;
that is, any received message is forwarded along the path immediately.

In both cases,

Lemma 7. In absence of faults, pj will receive at least (l − 1) + c(t − (l − 1))
copies of the message from pi within t communication cycles.

Lemma 8. If w is the maximum number of faults per clock cycle, then in t
communication cycles at most w t copies of the message from pi are lost or
arrive incorrectly at pj.

In case of additions and corruptions, pj can determine the correct content of
the bit in spite of receiving (possibly conflicting) values both in even and odd
cycles.

Lemma 9. Reliable transmission is possible in spite of c− 1 additions and cor-
ruptions and uses 2(c− 1)(l − 1) clock cycles.

Hence, reliable broadcast can be guaranteed if at most c − 1 additions and
corruptions occur in the system:

Theorem 10. Let the system faults be additions and corruptions. Unanimity
can be reached in spite of w = c − 1 faults per clock cycle; the time is T ≤
2 diam(G) (c− 1) (l − 1).

In case of Byzantine faults, the decision process (i.e., how pj , out of the
possibly conflicting received messages, determines the correct content of the
bit) is simple: pj selects as correct the bit value received most often during
the t time units. In this case, the decision is correct if the number of cor-
rect copies of the message received by pj is greater than the number of faulty.
By Lemmas 7 and 8, for this to happen it must be w ≤ �d/2� − 1 and thus
t ≥ (c− 1)(l − 1).

Lemma 10. Reliable transmission tolerates �c/2�−1 Byzantine faults per clock
cycle, and uses (c− 1)(l − 1) clock cycles.

Hence, reliable broadcast can occur in spite of �c/2� − 1 Byzantine faults.

Theorem 11. Let the system faults be arbitrary. Unanimity can be reached in
spite of w = �c/2�−1 faults per clock cycle; the time is at most T ≤ diam(G) (c−
1) (l − 1).

Majority and Unanimity in Synchronous Networks 275

5.3 Tightness of Impossibility Bounds

The results of Section 4 and Section 5 together show that the established impos-
sibility bounds for agreement protocols are indeed tight in the case of d-connected
graphs:

1. with the number of faults (or more) specified by the impossibility bound,
even strong majority is impossible;

2. with one less fault than specified by the impossibility bound, even unanimity
can be reached, and

3. any agreement among less than a strong majority of the processors can be
reached without any communication.

This large class of networks includes hypercubes, toruses, rings, complete
graphs, etc. As a consequence, we also close the existing gap in [29, 30] between
possibility and impossibility for non-trivial agreement with dynamic Byzantine
faults in complete graphs.

For those graphs where c < d, the results established here leave a gap between
possibility and impossibility. Closing this gap is the goal of future investigations.

References

1. M.K. Aguilera, W. Chen, and S. Toueg, “Failure detection and consensus in the
crash-recovery model”. Distributed Computing 13 (2), 99-125, 2000.

2. M.K. Aguilera and S. Toueg, “A simple bivalency proof that t-resilient consensus
requires t+1 rounds”. Information Processing Letters 71, 155-158, 1999.

3. Z. Bar-Joseph and M. Ben-Or, “A tight lower bound for randomized synchronous
consensus”, Proc. ACM Symp. on Principles of Distributed Computing (PODC
98), Puerto Vallarta, 193-199, 1998.

4. M. Ben-Or and D. Ron, “Agreement in presence of faults on networks of bounded
degree”, Information Processing Letters 57 (6), 329 - 334, 1996.

5. B.S. Chlebus, K. Diks, and A. Pelc, “Broadcasting in synchronous networks with
dynamic faults”. Networks 27, 309-318, 1996.

6. F. Cristian, H. Aghili, R. Strong, and D. Dolev, “Atomic broadcast: From simple
message diffusion to Byzantine agreement”. Information and Computation 118 (1),
158 - 179, 1995.

7. G. De Marco and A. Rescigno, “Tighter bounds on broadcasting in torus networks
in presence of dynamic faults”. Parallel Processing Letters 10, 39-49, 2000.

8. G. De Marco and U. Vaccaro, “Broadcasting in hypercubes and star graphs with
dynamic faults”, Information Processing Letters 66, 309-318, 1998.

9. S. Dobrev, “Computing input multiplicity in anonymous synchronous networks
with dynamic faults”. In Proc. 26th Int. Workshop on Graph-Theoretic Concepts
in Computer Science (WG 2000), LNCS 1928, 138-148, 2000.

10. S. Dobrev, “Communication-efficient broadcasting in complete networks with dy-
namic faults”. In Proc. 9th Coll. on Structural Information and Communication
complexity (SIROCCO’02), 101-113, 2002.

276 N. Santoro and P. Widmayer

11. S. Dobrev and I. Vrt’o, “Optimal broadcasting in hypercubes with dynamic faults”.
Information Processing Letters 71, 81-85, 1999.

12. S. Dobrev and I. Vrt’o, “Optimal broadcasting in even tori with dynamic faults”.
Parallel Processing Letters 12, 17-22, 2002.

13. D. Dolev, “The Byzantine generals strike again”. J. Algorithms 3 (1), 14-30, 1982.
14. D. Dolev and H. R. Strong, “Polynomial algorithms for multiple processor agree-

ment”. In Proc. 14th ACM Symp. on Theory of Computing (STOC 82), 401-407,
1982.

15. C. Dwork, D. Peleg, N. Pippenger and E. Upfal, “Fault tolerance in networks of
bounded degree”, SIAM J. Computing 17 (5), 975-988, 1988.

16. M. J. Fischer and N.A. Lynch, “A lower bound for the time to assure interactive
consistency”, Information Processing Letters 14 (4), 183-186, 1982.

17. M. J. Fischer, N.A. Lynch, and M. Merritt, “Easy impossibility proofs for dis-
tributed consensus problems”, Distributed Computing 1 (1) 26-39, 1986.

18. M. J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of distributed con-
sensus with one faulty process”, J. ACM 32 (2), 1985.

19. P. Fraigniaud and C. Peyrat, “Broadcasting in a hypercube when some calls fail”,
Information Processing Letters 39, 115-119, 1991.

20. L. Gasienic and A. Pelc, “Broadcasting with linearly bounded faults”, Discrete
Applied Mathematics 83, 121-133, 1998.

21. J. Garay and Y. Moses, “Fully polynomial Byzantine agreement for n > 3t pro-
cessors in t + 1 rounds”. SIAM J. Computing 27 (1), 247-290, 1998.

22. R. Guerraoui and R. R. Levy, “Robust emulation of shared memory in a crash-
recovery model. In Proc. 24th Int. Conf. on Dist. Computing Systems (ICDCS’04),
400-407, 2004.

23. V. Hadzilacos, “Connectivity requirements for Byzantine agreement under re-
stricted types of failures”. Distributed Computing 2 , 95-103, 1987.

24. R. Kralovic, R. Kralovic, and P. Ruzicka, “Broadcasting with many faulty links”.
In Proc. 10th Coll. on Structural Information and Communication complexity
(SIROCCO’03), 211-222, 2003.

25. L. Lamport, R. Shostak and M. Pease, “The Byzantine generals problem”. ACM
Trans. Programming Languages and Systems 4 (3), 382-401, 1982.

26. Z. Liptak and A. Nickelsen, “Broadcasting in complete networks with dynamic edge
faults”, In Proc. 4th Int. Conf. on Principles of Distributed Systems (OPODIS 00),
Paris, 123-142, 2000.

27. Y. Moses and S. Rajsbaum, “A Layered Analysis of Consensus”, SIAM J. Com-
puting 31 (4), 989 - 1021, 2002.

28. K. J. Perry and S. Toueg, “Distributed agreement in the presence of processor and
communication faults”. IEEE Trans. Software Engineering SE-12 (3), 477-482,
March 1986.

29. N. Santoro and P. Widmayer, “Time is not a healer”. In Proc. 6th Symposium on
Theoretical Aspects of Computer Science (STACS 89), 304 - 313, 1989.

30. N. Santoro and P. Widmayer, “Distributed function evaluation in the presence of
transmission faults”. In Proc. Int. Symposium on Algorithms (SIGAL 90), 358 -
367, 1990.

31. U. Schmid and B. Weiss, “Formally verified Byzantine agreement in presence of
link faults”. In Proc. 22nd Int. Conf. on Distributed Computing Systems (ICDCS
02), 608-616, 2002.

Minimizing the Number of ADMs in SONET
Rings with Maximum Throughput

Mordechai Shalom and Shmuel Zaks�

Department of Computer Science, Technion, Haifa, Israel
{cmshalom, zaks}@cs.technion.ac.il

Abstract. SONET ADMs are dominant cost factors in WDM/SONET
rings. Whereas most previous papers on the topic concentrated on the
number of wavelengths assigned to a given set of lightpaths, more re-
cent papers argue that the number of ADMs is a more realistic cost
measure. The minimization of this cost factor has been investigated in
recent years, where single-hop and multi-hop communication models,
with arbitrary traffic and uniform traffic loads have been investigated.
As a first attempt to understand the trade-off between the number of
wavelengths and the number of ADMs, we concentrate on the all-to-all,
uniform traffic instance with multi-hop, splittable communication. We
look for a solution which makes a full use of the bandwidth and uses the
minimum possible number of ADMs under this constraint. We develop an
architecture based on successive nested polygons and present a necessary
and sufficient condition for a solution in this architecture to be feasible.
This architecture leads to a solution using O(W log W +N) ADMs (com-
pared to NW ADMs for the basic architecture in [1]) which is optimal
for W = O(N/ log N). We further improve this result to O(W log W +N)
ADMs, where W = o(W).

Keywords: Wavelength Assignment, Wavelength Division Multiplex-
ing(WDM), Optical Networks, SONET, Add-Drop Multiplexer(ADM).

1 Introduction

1.1 Background

A single fiber-optic cable offers a bandwidth that can potentially carry informa-
tion at the rate of several terabits per second, much faster than any electronic
device can handle. In order to utilize the potential of optical fiber, wavelength-
division multiplexing (WDM) is used. The bandwidth is partitioned into a num-
ber of channels at different wavelengths. Several signals can be transmitted
through a fiber link simultaneously on different channels. The number of channels
(wavelengths) available in WDM systems is limited by the chosen technology.

� This research was supported in part by the fund for the promotion of research at
the Technion, by B. and I. Green research fund.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 277–291, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

278 M. Shalom and S. Zaks

One of the important parameters affected by the technology is the network cost.
Add/drop multiplexers (ADMs) are employed at the network nodes to insert
lightwaves into the fiber and extract them.

WDM ring networks are deployed by a growing number of telecom carriers.
The problem of minimizing the number of wavelengths has been extensively
studied. Variants of this problem such as to maximize the number of lightpaths
given a limited number of wavelength (the MAXPC problem) or minimize the
blocking probability of a lightpath were also studied.

Among others, in [2] and [3] it is argued that a more realistic cost measure is
the number of ADMs used by the network. Moreover, these studies concentrate
on a ring topology, since higher level networks which make use of the WDM net-
work may not support arbitrary topologies. The most widely deployed network
above the WDM layer is the SONET/SDH self-healing rings, and these networks
have to be configured in rings for protection purposes.

The problem of minimizing the additional overhead resulting from the need
of these lightpaths to be configured as rings is studied in the literature. This can
be split into two problems:

– Assign a route to a lightpath; namely, choose one of two possible directions
on the ring such that the maximum number of lightpaths intersecting on an
edge is minimal. This is called the ring loading problem. In [4] an optimal
solution for the problem in directed rings is given. As for undirected rings,
a polynomial time approximation scheme is given in [5].

– Given the routing above, assign wavelengths to the paths such that the
number of ADMs used by the system is minimized. We focus on this problem.

The number of ADMs is determined as follows. Each lightpath uses one ADM
at each endpoint. An ADM in a common endpoint of two lightpaths can be shared
if they are colored with the same color.

A number of previous works [6, 2, 1, 3, 7, 8, 9] studied the minimum ADM
problem in which each traffic stream has a predetermined routing. In ring net-
works this is also called the arc version of the problem. The problem is proved
to be NP − hard [3]. For ring networks heuristic algorithms were presented
in [2, 3, 10]. Subsequently 3/2, 10/7+ ε and 10/7-approximation algorithms were
presented in [7, 8, 9], respectively. The problem is investigated for general topolo-
gies in [6].

Generally, the wavelength allocation problems studied so far can be viewed
in two categories: The problem of minimizing the number of wavelengths used
and the problem of minimizing the number of ADMs used. In [2] it is pointed
out that these objective functions may lead to different results; in particular,
these objective functions cannot always be minimized simultaneously.

1.2 Our Work

As an attempt to investigate the relationship between the number of wavelengths
and the number of ADMs, in this work we concentrate on the uniform all-to-all
communication pattern and require maximum utilization of the bandwidth of

Minimizing the Number of ADMs in SONET Rings 279

W wavelengths. Furthermore we assume the multi-hop communication model
and splittable requests, and investigate the problem of minimizing the number
of ADMs used under these conditions.

We propose an architecture of successive nested polygons and give a necessary
and sufficient condition for a solution in this architecture to be feasible. Using
this condition we give an optimal solution for W = 2 and a solution using
O(W log W +N) ADMs for the general case, where W is o(W) and N is the size
of the ring. In other words, if W < N/ log N the cost depends asymptotically
only on N , and if W > N1+ε/ log N for any ε > 0, then the cost depends only
on W .

Our technique is extendable to sequences of polygons which are not neces-
sarily nested. The question of the performance of a feasible solution using this
architecture, is open.

In Section 2 we give a formal definition of the problem, in Section 3 the
basic properties of the solution are investigated. In Section 4 we introduce our
demand function which is important for the result. In Section 5 we present the
architecture and analyze its performance. In Section 6 we conclude the results
and mention further research directions.

2 Problem Definition

Consider W bidirectional SONET rings with (the same) N nodes {0, 1, ..., N−1},
each operating on a separate wavelength and one ADM for each wavelength at
each node. Each ring consists of N lightpaths and traffic can be switched between
the rings at each node. This architecture is called PPWDM ([1]).

Consider also the uniform all-to-all traffic where the traffic from node i to
node j is

T (i, j) =
{

0 if i = j
τ otherwise.

As we will be interested mostly in asymptotic results, and the differences
in the results between odd and even values of N are small, we will assume for
simplicity that N is even.

Consider the shortest path routing of the above traffic T , where traffic from
node i to node (i + N/2) mod N is split and routed equally on both directions.
Figure 1 shows the routing of the demands T (0, j). The load induced on the
system by any node in any direction is

N/2−1∑
j=1

τj +
τ

2
N

2
=

(
(N/2− 1)N/2

2
+

N

4

)
τ =

N2

8
τ

To obtain the total load induced by all nodes we multiply the above by the
number of nodes (N). Since it is clear that the load is the same on each directed
edge, we conclude that in this specific routing of the traffic demand T , the load
on every directed edge is N2

8 τ .

280 M. Shalom and S. Zaks

0

N-2

1

2

3

N-1

Fig. 1. Routing of traffic from node 0

Clearly the above total load is the minimum possible because of the shortest
path routing. Moreover, this total load is distributed evenly on all the edges.
Therefore in any routing there is at least one edge with this load or more, in
other words this is the minimum possible maximum edge load.

Assuming that the unit of traffic is the capacity of one wavelength, the ca-
pacity of each edge is W . The maximum all to all uniform traffic that can be
routed on the above PPWDM ring satisfies: N2

8 τ = W , or τ = 8W
N2 . For the rest

of the paper n
def
= N

2 , therefore:

τ =
2W

n2
.

As traffic can be switched freely between the rings at each node and the
capacity of each edge is equal to its load, this traffic can be routed on a PPWDM
ring which uses NW ADMs.

Our goal is to find an architecture that uses the same number W of wave-
lengths, supports the same traffic demand (T) and uses smallest possible number
of ADMs.

Proposition 1. Every solution should use a shortest path routing.

Otherwise the total load will increase and the average load will be greater than
n2

2 τ (= W). Therefore, there will be at least one edge with load greater than its
capacity.

For this reason and the fact that each edge has the same capacity in each
direction, the problem can be separated into two identical ”directed” problems,
one for each direction. We will deal with the ”clockwise” problem, in which there

Minimizing the Number of ADMs in SONET Rings 281

are N directed edges (i, i + 1) and the traffic from node i to node j is positive
only when the shortest path from i to j is ”clockwise”.

An architecture is defined by its lightpaths and the routing of the traffic over
these lightpaths.

– Lightpaths:

Definition 1. A lightpath is a dipath p of the cycle and a wavelength (color)
w(p) ∈ N assigned to it.

Definition 2. A coloring w is valid if any two lightpaths p and p′ such that
w(p) = w(p′) have no edges in common.

Definition 3. A Lightpath Graph is a directed multigraph with N nodes,
and an edge e = (i, j) for each lightpath from node i to node j. For such an

edge l(e)
def
= (j − i) mod N and w(e) is the color assigned to the lightpath

it represents.

The number of ADMs used at each node v of the lightpath graph is the
number of colors ”touching” v, namely |{w(e)|e is adjacent to v}|.
The number of ADMs used by a lightpath graph is the sum of the number
of ADMs used at each node.

– Routing: The routing problem is the following multi-commodity flow prob-
lem:

• Input:
∗ A Lightpath Graph and capacities c(e) = 1 for all edges.
∗ A demand matrix:

D(i, j) =

⎧⎨⎩
τ if 0 < (j − i) mod N < N/2
τ/2 if (j − i) mod N = N/2
0 otherwise

of different commodities.
• Output: A flow of the above commodities, completely satisfying the

demands.

Our problem is to find a lightpath graph (and a valid coloring of it) with as
few ADMs as possible, admitting a routing of the commodities D(i, j).

3 Preliminaries

Proposition 2. The circle (0, 1, ..., N−1, 0) is a subgraph of the lightpath graph
of any solution.

This is because for each edge e = (i, i + 1) the traffic T (i, i + 1) is non-zero
and should be routed on the shortest path which is formed by a single lightpath
consisting of e only. Therefore each such edge e is an edge of the lightpath graph.

282 M. Shalom and S. Zaks

Proposition 3. The Lightpath Graph of a solution is Circular Eulerian:

Consider the links e and e′ entering and leaving a node. Their capacities are both
W and fully used. The capacity dedicated to passthrough traffic is the same in
both of them, and uses the same set of wavelengths. Therefore, the capacity
dedicated to the remaining traffic is the same and uses the same wavelengths in
both edges. Therefore the out degree of any node equals to its in degree. The
underlying graph is connected, otherwise there are two distinct nodes i and j
such that D(i, j) can not be routed.

As such, this graph can be decomposed into simple cycles, each of which will
be called a polygon.

Definition 4. A polygon is a sequence of distinct nodes beginning with the least
numbered node. The multiplicity of a polygon is the number of maximal increasing
subsequences of this sequence. A polygon with multiplicity 1 is a convex polygon.

Lemma 1. Any solution can be decomposed into convex polygons.

Proof. Any solution is a valid coloring of the lightpaths with W colors. Let Ec

be the set of edges in the lightpath graphs such that the corresponding lightpath
is colored (assigned wavelength) c. Let: l(c) =

∑
e∈Ec

l(e). For any color c,
l(c) ≤ N , because otherwise there is at least one edge containing two or more
lightpaths with the same color, rendering the coloring invalid. On the other hand∑

e∈E l(e) =
∑W

c=1 l(c) = WN , because there are W edges (lightpaths) using
any physical link. By the pigeonhole principle for all c, l(c) = N . The lightpaths
of Ec do not overlap and the sum of their lengths is N , therefore they form a
convex polygon. ��

Corollary 1. The number of ADMs used by a color c is the number |Ec| of the
edges of the corresponding convex polygon.

In view of the preceding results our design problem can be formulated as
follows: Find W polygons with minimum total number of edges (nodes) such
that routing problem has a solution.

4 The Demand Function

In this section we introduce the demand function which is important in our
analysis:

Definition 5. Given a demand matrix d and an edge e of a Lightpath Graph,
we define:

d(e)
def
=

∑
i,j

d(i, j)

where the sum is taken over all the node pairs i, j such that e is in the direction
of the path (on the directed circle) from i to j.

Minimizing the Number of ADMs in SONET Rings 283

v0

v1

v2

u3

u2

v3u0

u1

e

Fig. 2. Demands routable on e

In other words, d(e) is the total demand that can potentially be routed on the
edge e.

For the demand matrix D in Section 2, we define similarly D(e) =
∑

i,j D(i, j).
In Figure 2 we present a network with N = 12 nodes. For the edge e depicted

in the figure, we have D(e) = D(u3, v0) + D(u2, v0) + D(u2, v1) + D(u1, v0) +
D(u1, v1) + D(u1, v2) + D(u0, v0) + D(u0, v1) + D(u0, v2) + D(u0, v3). Note that
the summation includes the pairs (ui, vj) for which the shortest path from ui to
vj include e = (u0, v0).

Definition 6. Given a polygon P , we define:

d(P)
def
= min {d(e)|e ∈ P}

Proposition 4. In every solution, all the edges of the lightpath graph satisfy
D(e) ≥ 1.

Otherwise there is an edge with unused capacity under any shortest path routing.
But the demand matrix can be routed only by using the full capacity of all the
edges.

Corollary 2. In every solution, all the polygons of the lightpath graph satisfy
D(P) ≥ 1.

Lemma 2. Given a lightpath graph, we have:

D(e) > D̃(l(e))
def
= W

(
1− l(e)

n

)2

for every edge e.

284 M. Shalom and S. Zaks

Proof. Consider an edge e = (a, b) with l(e) = l and a pair of nodes u and v
such that e is on the shortest path from u to v. Let i = a − u and j = v − b.
Clearly v − u ≤ n. But v − u = (v − b) + (b− a) + (a− u) = j + l + i, therefore
i + j ≤ n − l. The pairs of nodes satisfying this condition contribute τ to D(e)
except one pair satisfying v − u = n which contributes τ/2. We get:

D(e) =
∑

{(i,j)|i+j<n−l}
τ +

∑
{(i,j)|i+j=n−l}

τ

2

= τ

(
n−l∑
s=1

s +
1
2
(n− l + 1)

)

= τ

[
(n− l)(n− l + 1)

2
+

n− l + 1
2

]
=

W

n2
(n− l + 1)2 = W

(
1− l

n

)2

+ O(
1
n

)

��
Note that D(e) depends only in the length l(e) of e. With some abuse of notation,
we will use D(l(e)) and D(e) with the same meaning. We will use the following
simple properties of the demand function:

limn→∞(D(e)− D̃(l(e))) = 0

D−1(x) ≥ D̃−1(x) =
(
1−

√
x√
W

)
n

D̃ and D̃−1 are both decreasing functions.

5 Nested Polygons

5.1 Definitions

Definition 7. Consider two edges e = (i, j) and e′ = (i′, j′) of a lightpath graph.
Assume w.l.o.g. that i = 0. The edges are said to be:

disjoint if j ≤ i′ < j′

crossing if i′ < j < j′

contained if i′ < j′ ≤ j

In the last case e′ is said to be contained in e.

Definition 8. A convex polygon P ′ is nested in another convex polygon P , if P
is a cyclic permutation of some subsequence of P ′.

Proposition 5. If a polygon P ′ is nested in polygon P , then any pair of edges
e ∈ P and e′ ∈ P ′, are either disjoint or e′ is contained in e.

Definition 9. A sequence P1, P2, ..., Pk of polygons is a nested sequence of poly-
gons if for all i < k, Pi+1 is nested in Pi.

Minimizing the Number of ADMs in SONET Rings 285

5.2 Properties of Nested Polygons

Lemma 3. If a nested sequence of polygons is a solution, namely it admits a
routing of the demand matrix D, then:

∀i ≤W, D(Pi) ≥ i.

Proof. Assume a nested sequence of polygons P1, P2, ... is a solution. Consider
any routing admitted by this solution and any edge ei ∈ Pi. This edge is con-
tained in exactly i − 1 edges e1 ∈ P1, e2 ∈ P2, ..., ei−1 ∈ Pi−1. All the demands
routed on the edges e1, e2, ..., ei−1 could be potentially routed on ei too. There-
fore the sum of the demands that could potentially routed on ei is at least the
sum of the demands actually routed on these edges, which is their total capacity,
namely i. Therefore, D(ei) ≥ i. This is true for any edge ei ∈ Pi, we conclude
D(Pi) ≥ i. ��

Lemma 4. If a nested sequence of polygons satisfies:

∀i ≤W, D(Pi) ≥ i.

then there is a routing of the uniform demand matrix D.

Proof. We present an algorithm constructing the claimed routing and prove its
correctness:

RandomRoute(Demand d, Polygon P){
// Routes as much as possible of the demand matrix d
// over the polygon P
∀e ∈ P, f(e) = 0
For each pair of nodes u, v {

Let e1, e2, ..., ek be the edges of P which are on the shortest
path from u to v
and ei = (ai, bi)
if (k > 0) {

For (i = 1; i ≤ k; i + +) {
xi = min(d(u, v), 1− f(ei))
f(ei)+ = xi

d(ai, bi)+ = d(u, v)− xi

}
d(u, a1)+ = d(u, v)
d(bk, v)+ = d(u, v)
d(u, v) = 0

}
}

}

286 M. Shalom and S. Zaks

Route(Demand D){
d=D;
for {i = 1; i ≤W ; i++}{

RandomRoute(d,Pi);
}

}

Claim. If RandomRoute(d,P) is invoked when d(P) ≥ 1, upon its return ∀e ∈
P, f(e) = 1.

Proof. Consider any edge e ∈ P . d(P) ≥ 1, therefore d(e) =
∑

i,j d(i, j) ≥ 1.
Each pair contributing to this sum is considered exactly once for this edge by
the algorithm. The value of d(i, j) when it is considered by the algorithm is
at least equal to its value in the beginning of RandomRoute. This is because
d(i, j) is decreased only after it is considered. It contributes d(i, j) to f(e) until
f(e) = 1. The total contribution to f(e) is therefore min(1, d(e)) = 1. f(e) does
not decrease through RandomRoute, which means that the value of f(e) upon
return is 1.

Claim. If RandomRoute(d,P) is invoked when d(P) ≥ 1, upon its return d(P ′)
is decremented by 1 for all polygons P ′ nested in P .

Proof. Consider a polygon P ′ nested in P and an edge e′ ∈ P ′. There is exactly
one edge e ∈ P containing e′. All other edges of P are disjoint to e′. A decrease
in d(e′) occurs only when d(u, v) changes for some pair u, v. This is done always
with a change (increase) in f(e) or f(e′′) where e′′ is a disjoint edge.

Case 1, The change is in f(e): Whenever f(e) is increased, d(e′) is decreased
by the same amount (see Figure 3). By the previous claim these decreases sum
up to 1.

Case 2, The change is in a disjoint edge e′′: This change will not affect d(e′)
because the corresponding increase in the demand d(b′′, v) (see Figure 4).

Therefore, d(e′) is decreased exactly by 1, and consequently, so is d(P ′).

By induction on W , using the above results, we prove that: If ∀i ≤W, D(Pi) ≥
i, the above algorithm ends with f(e) = 1 for all the edges. Therefore the nested
sequence of polygons is a feasible solution. ��

Lemma 3 and Lemma 4 imply:

Theorem 1. A nested sequence of polygons P1, P2, ..., PW is a solution if and
only if

∀i ≤W, D(Pi) ≥ i. (1)

5.3 Optimum Solution for W=2

As previously stated, any solution contains the circle (0, 1, ..., N, 0). Further-
more, we know that this solution consists of two convex polygons, namely, the
above circle and one convex polygon. The circle is nested in all convex polygons,

Minimizing the Number of ADMs in SONET Rings 287

v

u

e'

e

v

u

e'

e

Fig. 3. Change in f(e)

v

u

e'
'

e

v

u

e'
'

e

Fig. 4. Change in a disjoint edge

therefore any solution for W = 2 is a nested sequence of polygons P1, P2 where
P2 is the circle itself. It remains to find P1:

We know that P1 must satisfy D(P1) ≥ 1. Therefore all the edges e ∈ P1

must satisfy D(e) ≥ 1, implying l(e) ≤ D−1(1). We want to find the poly-
gon with minimum total number of edges, therefore we choose l = �D−1(1)� and

288 M. Shalom and S. Zaks

build the polygon which consists of �2n/l� edges such that l(e) = l and at most
one edge such that l(e) < l. The number of edges in this polygon is

� 2n

�D−1(1)�� ≤ �
2n

�D̃−1(1)�
� =

⎡⎢⎢⎢ 2n⌊
(1− 1√

2
)n

⌋
⎤⎥⎥⎥ ≈ 2

1− 1√
2

≈ 6.8

This solution uses N+7 ADMs instead of 2N ADMs in PPWDM, still getting
the same throughput. From the above discussion it follows that:

Theorem 2. For W = 2 any optimum solution uses N + 7 ADMs.

5.4 A Solution for any W Using Nested Polygons

Assume for simplicity that N is a power of 2. We build a nested sequence of
polygons Pi as follows: All the polygons in the sequence, share a special node 0,
and the lengths of their edges are powers of two.

For each 1 ≤ i < W ,

ki =
{
�log D̃−1(i)� if D̃−1(i) ≥ 1
0 otherwise

All the edges of each polygon Pi have length li = 2ki . Clearly, ki is a non
increasing sequence. Therefore the lengths li, li+1 of the edges of two consecutive
polygons Pi, Pi+1 satisfy li = m li+1, where m is some (possibly 0) power of 2. It
is clear that this is a nested sequence of polygons. Moreover the lengths satisfy:

li = 2ki ≤ D̃−1(i)

D̃(li) ≥ i

Therefore D(Pi) ≥ i which is a sufficient condition for the solution to be feasible
(1).

Theorem 3. The number of ADMs used by the solution is at most 8WlnW +
2N + O(W).

Proof. The number ADMi of the ADMs of polygon Pi is: ADMi = N
2ki

. For
every i such that D̃−1(i) ≥ 1 we have:

ADMi =
2n

2�log D̃−1(i)� <
2n

2(log D̃−1(i)−1)
=

4n

D̃−1(i)
=

4(
1−

√
i√

W

) =
4
√

W√
W −

√
i

For other values of i we have ADMi = N . Note that, D̃−1(i) ≥ 1 if and only if
i ≥ D̃(1) = W (1− 1/n)2. The total number of ADMs satisfies:

W∑
i=1

ADMi ≤ 4
√

W

�W (1−1/n)2�−1∑
i=1

1√
W −

√
i

+
W∑

i=�W (1−1/n)2�
N

Minimizing the Number of ADMs in SONET Rings 289

The first sum above is bounded by

4
√

W

W−2∑
i=1

1√
W −

√
i
≤ 4
√

W

W−1∫
1

1√
W −

√
x

dx

= 8
√

W
(√

W ln(
√

W −
√

x) +
√

x
)1

W−1

= 8W ln(
√

W − 1)− 8W ln(
√

W −
√

W − 1) + 8
√

W (1−
√

W − 1)

≤ 8W ln
√

W − 1√
W −

√
W − 1

= 8W ln(
√

W − 1)(
√

W +
√

W − 1)
< 8W ln(2W)
= 8W lnW + O(W)

and the second sum is bounded by:

N(W −W (1− 1
n

)2 + 2)

= N(W (1− (1− 1
n

)2) + 2) = N(W
1
n

(2− 1
n

) + 2)

< 4W + 2N

Summing both bounds we get:
W∑
i=1

ADMi ≤ 8WlnW + 2N + O(W)

��

Conclusion: If W = O(N/ log N) the asymptotic cost depends only on N , and
if W = Ω(N1+ε/ log N) for any ε > 0, then the asymptotic cost depends only
on W .

5.5 An Improved Upper Bound

Now we show how the O(W log W +N) upper bound of Theorem 3 can be further
improved.

Lemma 5. The problem is sub-additive in W .

Proof. A solution S1 for W1 wavelengths and N nodes and a solution S2 for W2

wavelengths and N nodes can be superposed to obtain a solution for W1 + W2

wavelengths. This is true because:

τ =
2(W1 + W2)

n2
=

2W1

n2
+

2W2

n2
= τ1 + τ2

where τ (resp. τ1, τ2) are the uniform demands for W (resp. W1,W2) wavelengths.
��

290 M. Shalom and S. Zaks

Theorem 4. There is a solution using O(W log W + N) ADMs, where W =
o(W).

Proof. We omit constant factors. We consider two cases:

– W log W is O(N). In this case our upper bound is O(N) which is optimal.
– N is o(W log W). In this case let W be such that N = W log W . W is

o(W). Let X = W/W . Because of the sub-additivity, the superposition of X
solutions of an instance with W wavelengths and N nodes is a solution for
our instance of W wavelengths and N nodes. This solution uses

X ·O(W log W + N) = X ·O(N) = O(
W

W
W log W) = O(W log W)

ADMs.
��

6 Conclusion and Open Problems

Our result is a first attempt to understand the trade-off between the wavelength
minimization and ADM minimization problem. We dealt with the special case of
splittable, multi-hop communication. We considered the all-to-all uniform traffic
instance. In cases that the requests are not splittable, our solution can be used
for infinitely many values of W and N , namely for the cases where 2W/n2 is an
integer.

An O(W +N) lower bound is immediate. The problem of closing the gap be-
tween our O(W log W +N) solution and this lower bound remains open. Another
open question is whether the problem considered is NP-hard.

Acknowledgement. We thank Prof. Reuven Cohen and Doron Tsur for intro-
ducing us to the problem and for helpful discussions.

References

1. O. Gerstel, P. Lin, and G. Sasaki. Combined wdm and sonet network design. In
INFOCOM’99, Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 2, pages 734–43, 1999.

2. O. Gerstel, P. Lin, and G. Sasaki. Wavelength assignment in a wdm ring to mini-
mize cost of embedded sonet rings. In Infocom’98, Seventeenth Annual Joint Con-
ference of the IEEE Computer and Communications Societies, volume 1, pages
69–77, 1998.

3. L. Liu, X. Li, P-J. Wan, and O. Frieder. Wavelength assignment in a wdm rings to
minimize sonet adms. In INFOCOM’2000, Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies, Tel-Aviv, Israel, pages 1020–
1025, 2000.

Minimizing the Number of ADMs in SONET Rings 291

4. G. Wilfong and P. Winkler. Ring routing and wavelength translation. In Pro-
ceedings of the ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’98, San Francisco, California, pages 333–341, Jan 1998.

5. S. Khanna. A polynomial time approximation scheme for the sonet ring loading
problem. Bell Labs Technical Journal, pages 36–41, Spring 1997.

6. T. Eilam, S. Moran, and S. Zaks. Lightpath arrangement in survivable rings to
minimize the switching cost. IEEE Journal of Selected Area on Communications,
20(1):172–182, Jan 2002.

7. G. Călinescu and P-J. Wan. Traffic partition in wdm/sonet rings to minimize sonet
adms. In 15th International Parallel and Distributed Processing Symposium, 2001.

8. M. Shalom and S. Zaks. A 10/7 + ε approximation scheme for minimizing the num-
ber of adms in sonet rings. In First Annual International Conference on Broadband
Networks, San-José, California, USA, October 2004.

9. L. Epstein and A. Levin. Better bounds for minimizing sonet adms. In WAOA,
Workshop on Approximation and Online Algorithms, Sep 2004.

10. P.J. Wan, G. Călinescu, L.-W. Liu, and O. Frieder. Grooming of arbitrary traffic in
sonet/wdm rings. IEEE Journal of Selected Area on Communications, 18(10):1995–
2003, 2000.

Optimal Gossiping in Square Meshes
in All-Port Mode and with Short Packets

(Extended Abstract)

Rui Wang� and Francis C.M. Lau

Department of Computer Science, The University of Hong Kong

Abstract. We present optimal solutions for the gossiping problem in
square meshes under the all-port, full-duplex (F*) and the all-port, half-
duplex (H*) models. We assume packets are of finite size, each carrying
at most one message.

Keywords: Gossiping, meshes, information dissemination, networks, al-
gorithms.

1 Introduction

Gossiping, also known as total exchange and all-to-all (nonpersonalized) broad-
cast, is a communication problem in which each processor (or node) has a unique
message to be transmitted to every other processor. Because of its rich commu-
nication pattern, gossiping is a useful benchmark for evaluating the communica-
tion capability of an interconnection structure. The gossiping problem has been
studied extensively during the last two decades; a summary of the results can
be found in [7], [9], [10]. Gossiping is needed in many communication scenarios,
including those arising from the use of radio networks [4].

Krumme et al. have suggested that the gossiping problem can be studied
under four different communication models [11]: (1) the full-duplex, all-port
model, (2) the full-duplex, one-port model, (3) the half-duplex, all-port model,
and (4) the half-duplex, one-port model, which can be identified by the labels
F*, F1, H*, H1, respectively. A full-duplex link allows both ends to send/receive
a message at the same time; a half-duplex link allows only one end to do so at
a time. In the one-port mode, only one of the incident links of a node may be
active at a time; all the incident links may be active at the same time in the
all-port mode. The four models, therefore, form a spectrum, with F* being the
strongest in communication capability and H1 the weakest.

Bermond et al. [3] have added another dimension to the problem, suggest-
ing that a packet carrying messages cannot be of infinite size. They studied the

� Correspondence: Rui Wang, Department of Computer Science, The University of
Hong Kong, Hong Kong / Email: rwang@cs.hku.hk.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 292–306, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimal Gossiping in Square Meshes 293

gossiping problem under this hypothesis and under the F1 model, deriving re-
sults for the complete graph, hypercube, cycle, and path [5]. Bagchi et al. have
considered the same, but under the H1 model [1], [2].

We study gossiping schemes with the bounded packet size restriction. We use
p to denote the size of a packet: p = 1 means that a packet can carry up to one
message, p = 2 two messages, etc.

The gossiping process advances by rounds (or timestep) in a lock-step fashion.
In each round, a packet can only travel across one edge. We define gF∗(N) and
gH∗(N) to be the times (rounds) of the F* and H* models required respectively
to complete a gossip for the interconnection network N with p = 1. Our focus is
on the 2D mesh which is an important communication fabric for modern parallel
machines including some of the fastest machines in the Top500 list. Under the
restriction of bounded packets size, the following are the existing results.

F* model: For p = 1, Soch and Tvrdik obtained the optimal result, �(mn −
1)/2�, for the m× n mesh with the restriction that at least one of m and n
must be even [15].

F1 model: For p = 1, Bermond et al. gave an algorithm that can solve the
problem for the m × n mesh in 2mn − 3 −max{m,n} steps, m and n odd
[3].

H* model: For p = 1, Fujita and Yamashita gave an algorithm that can solve
the problem for n× n (square) mesh in n(n + 1)/2 + �(3n− 5)/2� steps [8].
Based on the optimal gossiping in path given in [13], Lau and Zhang [12]
have improved this to n(n + 1)/2 + �(n− 1)/2�.

H1 model: For any value of p, Bagchi et al. derived the result 2mn/p+O(m+
n), for the m× n mesh [2].

In this paper, we assume the all-port mode and consider only the case of p = 1.
Many of the modern designs of routers use separate controllers to manage the
links, which can operate simultaneously in parallel. Both the F* and the H*
model are realistic models for router implementation. One well-known example
of H* router is the Network Design Frame [6]. The C104 router for transputer
[14] is an example of the F* model.

We present optimal algorithms for n × n square meshes (n can be odd or
even) under the H* and the F* models with p = 1. The algorithms gossip along
shortest paths.

2 Preliminaries

An n × n square mesh Mn×n = (V,E) is a graph of |V | = n2 vertices and
|E| = 2n(n − 1) edges, and has n rows and n columns. Existing lower bounds
for square meshes as given in [8], [12], and [13] are as follows.

Lemma 2.1. gH∗(Mn×n) � n(n + 1)/2, and gF∗(Mn×n) � �(n2 − 1)/2�.

This paper shows that both bounds are tight.

294 R. Wang and F.C.M. Lau

We number the rows (the columns) of Mn×n with−k,−k+1, . . . ,−1, 0, 1, . . . k−
1, k from top to bottom (from left to right) if n = 2k + 1 is odd. If n is even
(2k), we omit row and column 0. A node (vertex) is uniquely indexed by vx,y,
where x and y are the node’s row and column numbers, respectively. A mesh
Mn×n = (V,E), in which each vertex vx,y ∈ V initially (at round 0) holds a
unique message σx,y, begins gossiping at round 1. At the end of gossiping, every
vertex has all the messages. We use (−1, 0), (1, 0), (0,−1) and (0, 1) to refer to
the up, down, left, and right directions, respectively, for message movements. The
set of the messages sent to vx,y via the edge (vx−a,y−b, vx,y), i.e., along direction
(a, b), is denoted by P a,b

x,y . Note that the zero direction (0, 0) is also involved and
P 0,0

x,y = {σx,y}. We assume that a message will not reach the same node more
than once so that we can define Rx,y(σi,j) to be the round at which the message
σi,j arrives at vx,y. A gossiping algorithm can be completely represented by the
pair (P,R).

Definition 2.1. An F* Gossiping Scheme (GS) on mesh Mn×n = (V,E) is a
pair (P,R), such that for k � x, y � k and directions (a, b), (c, d),

complete: P 0,0
x,y ∪ P 0,1

x,y ∪ P 1,0
x,y ∪ P 0,−1

x,y ∪ P−1,0
x,y = {σi,j |vi,j ∈ V }, i.e., every

message will eventually reach vx,y;
initialized: P 0,0

x,y = {σx,y} and Rx,y(σx,y) = 0;
1-bounded: σ, σ′ ∈ P a,b

x,y , σ �= σ′ =⇒ Rx,y(σ) �= Rx,y(σ′), i.e., p = 1;
duplication free: (a, b) �= (c, d) =⇒ P a,b

x,y ∩ P c,d
x,y = φ;

precedence constrained: (a, b) �= (0, 0), σ ∈ P a,b
x,y =⇒ Rx,y(σ) > Rx−a,y−b(σ),

i.e., a message leaving a node must have first arrived at the node.

The H* model gossiping scheme needs a further restriction:

Definition 2.2. An F* GS (P,R) is also an H* GS if all links are

half -duplex: σ ∈ P a,b
x,y , σ′ ∈ P−a,−b

x−a,y−b =⇒ Rx,y(σ) �= Rx−a,y−b(σ′).

The quality of a GS (P,R) is measured by max{Rx,y(σi,j)|vx,y, vi,j ∈ V },
the time it requires to complete the gossip. If this number is no more than
r, the gossiping scheme is termed an r-GS. Clearly, on a mesh of size n × n,
r � �(n2 − 1)/2�, and r � n(n + 1)/2 if the GS is of the H* model.

Rotating a direction (a, b) by 90◦ clockwise gives the direction (b,−a); ro-
tating a square mesh by 90◦ clockwise will superimpose node vx,y upon vy,−x.
Square meshes are highly symmetric with respect to rotating. An ideal GS should
be that everything looks the same from the different sides. This can be captured
by a definition.

Definition 2.3. A statement Q((x1, y1), (x2, y2), . . . , (xz, yz)), where each(xi, yi)
is either a node index or a direction, is 90◦-rotating symmetric if
Q((x1, y1), (x2, y2), . . . , (xz, yz))⇐⇒ Q((y1,−x1), (y2,−x2), . . . , (yz,−xz)).

The rotating symmetry says that σi,j ∈ P a,b
x,y ⇐⇒ σj,−i ∈ P b,−a

y,−x , and Rx,y(σi,j) =
r ⇐⇒ Ry,−x(σj,−i) = r. That is, if the mesh is rotated clockwise by 90◦, P 1,0

x,y

will completely overlap with P 0,−1
y,−x , and so on.

Optimal Gossiping in Square Meshes 295

With rotating symmetry we need only to consider P a,b
x,y and Rx,y(σi,j) for

−k � x, y � 0. We cannot expect more symmetry than rotating symmetry, such
as “flipping”; for example, if σi,j ∈ P a,b

x,y ⇐⇒ σj,i ∈ P b,a
y,x (flipping along the

diagonal) also holds, then message σi,i will be in two different P a,b
0,0 ’s, violating

the duplication free requirement.
We present an F* �(n2−1)/2�-GS and an H* (n(n+1)/2)-GS for Mn×n—both

are optimal, rotating symmetric, and shortest-path routed. Section 3 focuses on
odd n, and Section 4 on even n. What is interesting is that the H* and F*
optimal schemes can share the same P and the same order for messages arriving
at the nodes. Same P means identical routing paths, and same arriving order
means that the i-th messages passing through a same link under the different
models are the same ones.

3 Odd n

Throughout this section, we
assume n = 2k + 1 with k � 1
and consider Mn×n. Section
3.1 focuses on the F* model,
presenting an optimal F* GS
(P,R). We will construct a
new P in Section 3.2 and an
Rh in 3.3 such that (P,Rh) is
an optimal H* GS. Denoting
by Rf

x,y(σ) the arriving order
of σ at vx,y under GS (P,Rh),
(P,Rf) forms an optimal F*
GS.

−k y 0 k+y k

k

k+x

0

x

−k

P 0,1
x,y

P 1,0
x,y

P−1,0
x,y

P−1,0
x,y

P 0,−1
x,y

P 0,−1
x,y

Fig. 1. Message gathering at vx,y for −k � x, y � 0.
Rotating it and changing the labels accordingly gives
the scenarios of the other areas

3.1 An F* GS

We choose P such that |P a,b
x,y | = (k + ax + by)(k + 1). By the 90◦-rotating

symmetry, we need only to determine P a,b
x,y for −k � x, y � 0. Our design is

illustrated in Fig. 1, where

P 0,0
x,y = {σx,y},

P 0,1
x,y = {σi,j |−k�i�0,−k�j<y},

P 1,0
x,y = {σi,j |−k�i<x,y�j�k+y},

P 0,−1
x,y = {σi,j |x�i�k+x,0<j�k} ∪ {σi,j |x<i�0,y<j�0} ∪ {σi,j |−k�i<x,k+x�j�k},

P−1,0
x,y = {σi,j |0<i�k,−k�j�0} ∪ {σi,j |x<i�k,j=y} ∪ {σi,j |k+x<i�k,0<j�k}.

(3.1)

Fig. 2 gives an example of a complete GS, for M5×5. Clearly, the above P is
duplication free. Note that |P 0,0

x,y | = 1 and

296 R. Wang and F.C.M. Lau

�⇐⇐⇐⇐
⇑⇐⇐⇐⇐
⇑⇐⇐⇐⇐
⇑ ⇑ ⇑ ⇑ ⇑
⇑ ⇑ ⇑ ⇑ ⇑

⇒�⇐⇐⇐
⇒⇑⇐⇐⇐
⇒⇑⇐⇐⇐
⇑ ⇑ ⇑ ⇑ ⇑
⇑ ⇑ ⇑ ⇑ ⇑

⇒⇒�⇐⇐
⇒⇒⇑⇐⇐
⇒⇒⇑⇐⇐
⇑ ⇑ ⇑ ⇑ ⇑
⇑ ⇑ ⇑ ⇑ ⇑

−2

⇓ ⇓ ⇓⇐⇐�⇐⇐⇐⇐
⇑⇐⇐⇐⇐
⇑ ⇑ ⇑⇐⇐
⇑ ⇑ ⇑ ⇑ ⇑

⇒⇓ ⇓ ⇓⇐
⇒�⇐⇐⇐
⇒⇑⇐⇐⇐
⇑ ⇑ ⇑⇐⇐
⇑ ⇑ ⇑ ⇑ ⇑

⇒⇒⇓ ⇓ ⇓
⇒⇒�⇐⇐
⇒⇒⇑⇐⇐
⇑ ⇑ ⇑⇐⇐
⇑ ⇑ ⇑ ⇑ ⇑

−1

⇓ ⇓ ⇓⇐⇐
⇓ ⇓ ⇓⇐⇐�⇐⇐⇐⇐
⇑ ⇑ ⇑⇐⇐
⇑ ⇑ ⇑⇐⇐

⇒⇓ ⇓ ⇓⇐
⇒⇓ ⇓ ⇓⇐
⇒�⇐⇐⇐
⇑ ⇑ ⇑⇐⇐
⇑ ⇑ ⇑⇐⇐

⇒⇒⇓ ⇓ ⇓
⇒⇒⇓ ⇓ ⇓
⇒⇒�⇐⇐
⇑ ⇑ ⇑⇐⇐
⇑ ⇑ ⇑⇐⇐

0

−2 −1 0

� 01 02 03 04
01 11 09 07 05
02 12 10 08 06
03 07 08 12 11
04 05 06 10 09

01 � 01 02 03
02 01 08 06 04
03 02 09 07 05
07 03 08 12 11
05 04 06 10 09

02 01 � 01 02
03 05 01 05 03
04 06 02 06 04
08 07 03 12 11
06 05 04 10 09

01 02 03 12 10
� 01 02 03 04
01 11 09 07 05
02 06 07 08 06
03 04 05 09 08

02 01 02 03 09
01 � 01 02 03
03 01 08 06 04
06 02 07 07 05
04 03 05 09 08

03 05 01 02 03
02 01 � 01 02
04 06 01 05 03
07 06 02 06 04
05 04 03 09 08

02 03 04 11 09
01 05 06 12 10
� 01 02 03 04
01 05 06 07 05
02 03 04 08 06

03 02 03 04 08
02 01 05 06 09
01 � 01 02 03
05 01 06 06 04
03 02 04 07 05

04 06 02 03 04
03 05 01 05 06
02 01 � 01 02
06 05 01 05 03
04 03 02 06 04

Fig. 2. P a,b
x,y and Rx,y(σi,j) in M5×5 for −2 � x, y � 0. The l.h.s. is for P a,b

x,y , in which
there are 3 × 3 = 9 matrices, each for one node vx,y in the region −2 � x, y � 0; the
one for vx,y shows the gathering of messages at vx,y. In each matrix, message σi,j is
represented by an arrow in position (i, j) to indicate the membership of σi,j to P a,b

x,y .
The arrows ⇓, ⇐, ⇑ and ⇒ are for sets P−1,0

x,y , P 0,−1
x,y , P 1,0

x,y and P 0,1
x,y respectively. On

the r.h.s., the numbers indicate both the rounds and the P a,b
x,y they belong, different

fonts for different P a,b
x,y ’s. To see the scenario at nodes other than −2 � x, y � 0, simply

rotate the figure

|P a,b
x,y | = (k + ax + by)(k + 1) = |P a,b

x−a,y−b|+ k + 1 if (a, b) �= (0, 0) (3.2)

which implies that |P 0,0
x,y |+ |P 0,1

x,y |+ |P 1,0
x,y |+ |P 0,−1

x,y |+ |P−1,0
x,y | = n2. Combining

this with duplication freeness, completeness would follow, and thus P is qualified
to be a part of the gossiping scheme. Since −k � ax + by � k, we have

|P a,b
x,y | � 2k(k + 1) =

n2 − 1
2

.

Hence, P is possible to support an F* GS to match the lower bound (n2− 1)/2.
To achieve this, we are going to define an R that lets the messages of P a,b

x,y arrive
at vx,y respectively in rounds 1, 2, . . . , |P a,b

x,y |, i.e.,

{
Rx,y(σi,j)|σi,j ∈ P a,b

x,y

}
=

{
{0} if (a, b) = (0, 0),
{1, 2, . . . , |P a,b

x,y |} if (a, b) �= (0, 0). (3.3)

Obviously, if we did so, we need not worry about the 1-bounded requirement
and the optimality, but only to guarantee the precedence constraint. For this,
we rewrite (3.1) in a recurrence form.

P 0,0
x,y = {σx,y},

P 0,1
x,y = P 0,0

x,y−1 ∪ P 0,1
x,y−1 ∪ {σi,y−1|−k�i<x} ∪ {σi,y−1|x<i�0},

P 1,0
x,y = P 0,0

x−1,y ∪ P 1,0
x−1,y ∪ {σx−1,j |y<j�k+y},

P 0,−1
x,y = P 0,0

x,y+1 ∪ P 0,−1
x,y+1 ∪ {σi,y+1|x<i�0} ∪ {σi,k+y+1|−k�i<x},

P−1,0
x,y = P 0,0

x+1,y ∪ P−1,0
x+1,y ∪ {σk+x+1,j |0<j�k}.

(3.4)

For (a, b) �= (0, 0), the above can be summarized as

Optimal Gossiping in Square Meshes 297

P a,b
x,y = P 0,0

x−a,y−b ∪ P a,b
x−a,y−b ∪Qa,b

x,y, (3.5)

where Qa,b
x,y is a set of k messages from P b,−a

x−a,y−b and/or P−b,a
x−a,y−b. With this

observation, we let vx,y receive P a,b
x,y from vx−a,y−b in the order: P 0,0

x−a,y−b first,
then P a,b

x−a,y−b, and Qa,b
x−a,y−b the last. Within each set, we adopt “the first ar-

riving at vx−a,y−b, the first to be received by vx,y, breaking ties arbitrarily”. To
be precise, besides Rx,y(σx,y) = 0 as an initialization, we have

Rx,y(σi,j) = Rx−a,y−b(σi,j) + 1 for σi,j∈P 0,0
x−a,y−b∪P a,b

x−a,y−b, (3.6)

{Rx,y(σi,j)|σi,j∈Qa,b
x,y} =

{
|P a,b

x−a,y−b|+ 1 + r
∣∣1 � r � k

}
. (3.7)

Thus, vx,y receives from vx−a,y−b the loner σx−a,y−b of P 0,0
x−a,y−b in the first

round, and then in rounds 2 to |P a,b
x−a,y−b| + 1, collects P a,b

x−a,y−b, and at last
the k messages of Qa,b

x,y in rounds |P a,b
x−a,y−b| + 2 to |P a,b

x−a,y−b| + k + 1 = |P a,b
x,y |,

satisfying (3.3). This can be seen in the example in Fig. 2.
About the precedence constraint, for σi,j ∈ P 0,0

x−a,y−b∪P a,b
x−a,y−b, (3.6) guaran-

tees that R conforms to Rx,y(σi,j) > Rx−a,y−b(σi,j). So, we need only to justify
that the messages in Qa,b

x,y can be received in the rounds specified in (3.7) without
breaking the precedence constraint. We need a simple fact from (3.5) and (3.6);
it is for (a, b) �= (0, 0) and r � 0:

σi,j ∈ P 0,0
x−ar,y−br ∪ P a,b

x−ar,y−br =⇒ Rx,y(σi,j) = Rx−ar,y−br(σi,j) + r. (3.8)

Applying this to σx−ra,y−rb ∈ P 0,0
x−ar,y−br gives that Rx,y(σx−ar,y−br) = r, or

Rx,y(σx±r,y) = Rx,y(σx,y±r) = r for r � 0.
By the rotating symmetry, the discussion can be restricted to the following

four cases:

Q0,1
x,y, −k � x, y � 0: By (3.8), messages of {σi,y−1|−k�i<x} reach vx,y−1 in

rounds 1, 2, . . . k − |x|, and those of {σi,y−1|x<i�0} in rounds 1, 2, . . . , |x|.
So, at vx,y, the former can be assigned rounds from |P 0,1

x,y−1| + 1 + 1 to
|P 0,1

x,y−1|+1+k−|x| and the later from |P 0,1
x,y−1|+2+k−|x| to |P 0,1

x,y−1|+1+k.
Q1,0

x,y, −k � x, y � 0: For {σx−1,j |y<j�k+y}, the argument is similar.
Q0,−1

x,y , −k � x � 0, −k � y < 0: {σi,y+1|x<i�0} reach vx,y+1 in rounds 1 to
|x|. As {σi,k+y+1|−k�i<x} ⊆ P 1,0

x,y+1, they reach vx,y+1 no later than |P 1,0
x,y+1| =

(k + x)(k + 1) � k(k + 1). Since |P 0,−1
x,y | = (k− y)(k + 1) � (k + 1)(k + 1) =

k(k + 1) + k, the last k rounds of P 0,−1
x,y can be assigned to Q0,−1

x,y without
breaking the precedence constraint.

Q−1,0
x,y , −k � x < 0, −k � y � 0: {σk+x+1,j |0<j�k} ⊆ P 0,−1

x+1,0. By (3.8), for
σ ∈ Q−1,0

x,y , Rx+1,y(σ) = Rx+1,0(σ) + |y| � |P 0,−1
x+1,0| + |y| � k(k + 1) + k.

So, the k messages of Q−1,0
x,y come to vx+1,y at rounds no later than k(k +

1) + 1, k(k + 1) + 2, . . . , k(k + 1) + k, respectively, and therefore can be for-
warded to vx,y at rounds k(k + 1) + 2, k(k + 1) + 3, . . . , k(k + 1) + k + 1,
respectively, where k(k+1)+k+1 = (k+1)(k+1) � (k−x)(k+1) = |P−1,0

x,y |.

298 R. Wang and F.C.M. Lau

In any case, all of the k messages in Qa,b
x,y can be sent to vx,y from vx−a,y−b in

the last k rounds, from |P a,b
x,y | − k to |P a,b

x,y |, in accordance with the precedence
constraint.

Finally, P is designed to be such that σi,j ∈ P a,b
x,y with (a, b) �= (0, 0) only if

ai+bj < ax+by, or vx,y receives from above only those messages that are above
it, from below only those below it, from left only those on its left, and from right
only those on its right. This promises us a shortest-path gossiping. Now we can
conclude:

Theorem 3.1. For Mn×n where n is odd, (P,R) is an optimal F* GS which
completes the gossiping within (n2 − 1)/2 rounds and routes messages along
shortest paths.

As a closing remark, to extend the GS in general 2D mesh Mm×n, where m =
2k +1, n = 2l+1 with k, l � 1, a natural generalization is to extend P such that
|P a,b

x,y | = (|ak + bl|+ax+ by)(|bk +al|+1) � (mn+ |m−n|−1)/2. Based on this
P an

(
(mn + |m − n| − 1)/2

)
-GS in Mm×n can be generated (the messages of

{σi,k+y|i < x} ⊆ P 1,0
x,y need to be speeded up to vx,y). Comparing with the lower

bound (mn − 1)/2, it uses |m − n|/2 rounds more. In fact, the optimality can
be reached. There is a P that satisfies |P a,b

x,y | � (mn− 1)/2 and supports an F*(
(mn− 1)/2

)
-GS in Mm×n. Due to the lack of space, we claim without proof:

Theorem 3.2. For odd m,n > 1, gF∗(Mm×n) = (mn− 1)/2.

3.2 P for Both Models

We now turn to an optimal GS for H* model. To match the lower bound,
we must keep every edge busy,
i.e., |P a,b

x,y |+|P
−a,−b
x−a,y−b| = n(n+

1)/2. We adopt (3.2) as the
size of P a,b

x,y . The idea of (3.1),
letting vx,y forward all it has
from vx−a,y−b to vx+a,y+b,
however, is not always appli-
cable, because P a,b

x,y may have
amessage arriving at the round
n(n + 1)/2 (either P a,b

x,y or
P−a,−b

x−a,y−b must have such a
message), leaving no time for
vx,y to forward it. In such a
case vx,y has to give up the
“dead” message and resort to
those coming from other di-
rections to make up. The re-
fined P for the H* (as well as
F*) model is shown in Fig. 3,

−k y 0 k+y k

k

k+x

0

x

−k

P 0,1
x,y

P 1,0
x,y

P−1,0
x,y

P−1,0
x,y

P−1,0
x,y

P 0,−1
x,y

P 0,−1
x,y

P 0,−1
x,y

Fig. 3. P a,b
x,y for −k � x � 0 and −k � y < 0

Optimal Gossiping in Square Meshes 299

in which the two dashed lines, each covering k messages, belong to P 0,−1
x,y and

P−1,0
x,y , respectively. Mathematically, we have

P 0,0
x,y = {σx,y}; (3.9)

P 0,1
x,y = {σi,j |−k�i�0, −k�j<y} = P 0,1

x,y−1 ∪ {σi,y−1|−k�i�0}; (3.10)

P 1,0
x,y = {σi,j |−k�i<x, y�j�k+y} = P 1,0

x−1,y ∪ {σx−1,j |y�j�k+y}; (3.11)

P 0,−1
x,y = P 0,0

x,y+1 ∪ P 0,−1
x,y+1 ∪ {σi,k+y+1|−k�i<x}

∪{σi,y+1|x<i�k} −
{
{σx+1,j |0<j�k} y=−1,
{σi,y+2|0<i�k} y<−1; (3.12)

P−1,0
x,y = P 0,0

x+1,y ∪ P−1,0
x+1,y ∪ {σx+1,j |0<j�k}

∪
{
{σx+1,j |−k�j<y} ∪ {σx+1,j |y+1<j�0} − {σi,y+1|1<i�k} x=0,
{σk+x+1,j |0<j�k} − {σx+2,j |0<j�k} x<0.

(3.13)

All the above are for−k �
x, y � 0 and y �= 0, and
(3.9) and (3.11) are also
for y = 0. For nonzero di-
rection (a, b) other than
(1, 0), P a,b

0,0 is implied by
(3.11) with the rotating
symmetry. Fig. 4 shows
an example in M7×7. It
is easy to see that P
is complete and duplica-
tion free and conforms to
(3.2). For (a, b) �= (0, 0),
some facts about Px,y are:

�⇐⇐⇐⇐⇐⇐
⇑⇐⇐⇐⇑ ⇑ ⇑
⇑⇐⇐⇐⇐⇐⇐
⇑⇐⇐⇐⇐⇐⇐
⇑⇐⇑ ⇑ ⇑ ⇑ ⇑
⇑⇐⇑ ⇑ ⇑ ⇑ ⇑
⇑⇐⇑ ⇑ ⇑ ⇑ ⇑

⇒�⇐⇐⇐⇐⇐
⇒⇑⇐⇐⇑ ⇑ ⇑
⇒⇑⇐⇐⇐⇐⇐
⇒⇑⇐⇐⇐⇐⇐
⇑ ⇑⇐⇑ ⇑ ⇑ ⇑
⇑ ⇑⇐⇑ ⇑ ⇑ ⇑
⇑ ⇑⇐⇑ ⇑ ⇑ ⇑

⇒⇒�⇐⇐⇐⇐
⇒⇒⇑⇐⇑ ⇑ ⇑
⇒⇒⇑⇐⇐⇐⇐
⇒⇒⇑⇐⇐⇐⇐
⇑ ⇑ ⇑⇐⇑ ⇑ ⇑
⇑ ⇑ ⇑⇐⇑ ⇑ ⇑
⇑ ⇑ ⇑⇐⇑ ⇑ ⇑

⇒⇒⇒�⇐⇐⇐
⇑ ⇑ ⇑ ⇑⇐⇐⇐
⇒⇒⇒⇑⇐⇐⇐
⇒⇒⇒⇑⇐⇐⇐
⇑ ⇑⇒⇑ ⇑ ⇑ ⇑
⇑ ⇑⇒⇑ ⇑ ⇑ ⇑
⇑ ⇑⇒⇑ ⇑ ⇑ ⇑

−3

⇓ ⇓ ⇓ ⇓⇐⇐⇐�⇐⇐⇐⇐⇐⇐
⇑⇐⇐⇐⇑ ⇑ ⇑
⇑⇐⇐⇐⇐⇐⇐
⇑⇐⇑ ⇑⇐⇐⇐
⇑⇐⇑ ⇑ ⇑ ⇑ ⇑
⇑⇐⇑ ⇑ ⇑ ⇑ ⇑

⇒⇓ ⇓ ⇓ ⇓⇐⇐
⇒�⇐⇐⇐⇐⇐
⇒⇑⇐⇐⇑ ⇑ ⇑
⇒⇑⇐⇐⇐⇐⇐
⇑ ⇑⇐⇑⇐⇐⇐
⇑ ⇑⇐⇑ ⇑ ⇑ ⇑
⇑ ⇑⇐⇑ ⇑ ⇑ ⇑

⇒⇒⇓ ⇓ ⇓ ⇓⇐
⇒⇒�⇐⇐⇐⇐
⇒⇒⇑⇐⇑ ⇑ ⇑
⇒⇒⇑⇐⇐⇐⇐
⇑ ⇑ ⇑⇐⇐⇐⇐
⇑ ⇑ ⇑⇐⇑ ⇑ ⇑
⇑ ⇑ ⇑⇐⇑ ⇑ ⇑

⇒⇒⇒⇓ ⇓ ⇓ ⇓
⇒⇒⇒�⇐⇐⇐
⇑ ⇑ ⇑ ⇑⇐⇐⇐
⇒⇒⇒⇑⇐⇐⇐
⇑ ⇑⇒⇑⇐⇐⇐
⇑ ⇑⇒⇑ ⇑ ⇑ ⇑
⇑ ⇑⇒⇑ ⇑ ⇑ ⇑

−2

⇓ ⇓ ⇓ ⇓⇐⇐⇐
⇓ ⇓ ⇓ ⇓⇐⇐⇐�⇐⇐⇐⇐⇐⇐
⇑⇐⇐⇐⇑ ⇑ ⇑
⇑⇐⇑ ⇑⇐⇐⇐
⇑⇐⇑ ⇑⇐⇐⇐
⇑⇐⇑ ⇑ ⇑ ⇑ ⇑

⇒⇓ ⇓ ⇓ ⇓⇐⇐
⇒⇓ ⇓ ⇓ ⇓⇐⇐
⇒�⇐⇐⇐⇐⇐
⇒⇑⇐⇐⇑ ⇑ ⇑
⇑ ⇑⇐⇑⇐⇐⇐
⇑ ⇑⇐⇑⇐⇐⇐
⇑ ⇑⇐⇑ ⇑ ⇑ ⇑

⇒⇒⇓ ⇓ ⇓ ⇓⇐
⇒⇒⇓ ⇓ ⇓ ⇓⇐
⇒⇒�⇐⇐⇐⇐
⇒⇒⇑⇐⇑ ⇑ ⇑
⇑ ⇑ ⇑⇐⇐⇐⇐
⇑ ⇑ ⇑⇐⇐⇐⇐
⇑ ⇑ ⇑⇐⇑ ⇑ ⇑

⇒⇒⇒⇓ ⇓ ⇓ ⇓
⇒⇒⇒⇓ ⇓ ⇓ ⇓
⇒⇒⇒�⇐⇐⇐
⇑ ⇑ ⇑ ⇑⇐⇐⇐
⇑ ⇑⇒⇑⇐⇐⇐
⇑ ⇑⇒⇑⇐⇐⇐
⇑ ⇑⇒⇑ ⇑ ⇑ ⇑

−1

⇓ ⇓ ⇓ ⇓⇐⇐⇐
⇓ ⇓ ⇓ ⇓⇐⇐⇐
⇓ ⇓ ⇓ ⇓⇐⇐⇐�⇐⇐⇐⇐⇐⇐
⇑⇐⇑ ⇑ ⇑ ⇑ ⇑
⇑⇐⇑ ⇑⇐⇐⇐
⇑⇐⇑ ⇑⇐⇐⇐

⇒⇓ ⇓ ⇓ ⇓⇐⇐
⇒⇓ ⇓ ⇓ ⇓⇐⇐
⇒⇓ ⇓ ⇓ ⇓⇐⇐
⇒�⇐⇐⇐⇐⇐
⇑ ⇑⇐⇑ ⇑ ⇑ ⇑
⇑ ⇑⇐⇑⇐⇐⇐
⇑ ⇑⇐⇑⇐⇐⇐

⇒⇒⇓ ⇓ ⇓ ⇓⇐
⇒⇒⇓ ⇓ ⇓ ⇓⇐
⇒⇒⇓ ⇓ ⇓ ⇓⇐
⇒⇒�⇐⇐⇐⇐
⇑ ⇑ ⇑⇐⇑ ⇑ ⇑
⇑ ⇑ ⇑⇐⇐⇐⇐
⇑ ⇑ ⇑⇐⇐⇐⇐

⇒⇒⇒⇓ ⇓ ⇓ ⇓
⇒⇒⇒⇓ ⇓ ⇓ ⇓
⇒⇒⇒⇓ ⇓ ⇓ ⇓
⇒⇒⇒�⇐⇐⇐
⇑ ⇑ ⇑ ⇑⇐⇐⇐
⇑ ⇑ ⇑ ⇑⇐⇐⇐
⇑ ⇑ ⇑ ⇑⇐⇐⇐

0

−3 −2 −1 0

Fig. 4. P a,b
x,y in M7×7 for −3 � x, y � 0

|P a,b
x,y | = |P

a,b
x−a,y−b|+ k + 1 = (k + ax + by)(k + 1) � (n2 − 1)/2; (3.14)

|P a,b
x,y |+ |P

−a,−b
x−a,y−b| = n(n + 1)/2; (3.15)

|P a,b
x,y | �= |P

−a,−b
x−a,y−b| and |P a,b

x,y | < |P
−a,−b
x−a,y−b| ⇐⇒ ax + by � 0; (3.16)

σi,j ∈ P a,b
x,y =⇒ ai + bj < ax + by. (3.17)

(3.14) and (3.15) are crucial for P to support optimal gossiping schemes respec-
tively under the F* and the H* models. (3.17) implies that any GS based on P
will gossip messages along shortest paths.

3.3 Rf for F* and Rh for H*

To design the round assignment Rh under the H* model, we need to schedule the
edge orientation. If among P a,b

x,y σ is the i-th message arriving at vx,y, then the

300 R. Wang and F.C.M. Lau

number i is denoted by Rf
x,y(σ) and termed the arriving order of σ at vx,y (or

in P a,b
x,y). The relation between Rh and Rf reflects the edge orientation schedule.

Intuitively, an edge should not stick to the same direction for a long time; other-
wise some sending node might be exhausted. It seems success is more likely if we
flip the edge as frequently as possible, especially in the first few rounds during
which the nodes have not accumulated many messages. This intuition can be
captured for σ ∈ P a,b

x,y as follows.

Rh
x,y (σ) =

⎧⎪⎨⎪⎩
2Rf

x,y(σ) ax+by�0,
2Rf

x,y(σ)− 1 ax+by>0, Rf
x,y(σ)�|P−a,−b

x−a,y−b|,∣∣∣P−a,−b
x−a,y−b

∣∣∣ + Rf
x,y(σ) ax+by>0, Rf

x,y(σ)>|P−a,−b
x−a,y−b|.

(3.18)

To understand this formulization, consider an edge {vx,y, vx−a,y−b}. There
are |P a,b

x,y | messages from vx−a,y−b to vx,y and |P−a,−b
x−a,y−b| messages from vx,y

to vx−a,y−b. By (3.16), |P a,b
x,y | < |P−a,−b

x−a,y−b| if and only if ax + by � 0. So,
if |P a,b

x,y | < |P−a,−b
x−a,y−b|, vx,y would receive from vx−a,y−b at the even rounds

2, 4, . . . , 2|P a,b
x,y | < n(n− 1)/2; otherwise, at the rounds 1, 3, . . . , 2|P−a,−b

x−a,y−b| − 1
and the rounds 2|P−a,−b

x−a,y−a|+1 to |P−a,−b
x−a,y−b|+|P a,b

x,y | = n(n−1)/2. So on an edge,
Rh starts with the majority direction (along which more messages travel), and
reverses the direction at each round until the messages of the minority direction
have all been transported. Thus, we do not need to worry about the initialized,
1-bounded, half-duplex, and optimal requirements for Rh.

(3.18) provides us an easier way for designing Rh, ordering the messages of
each P a,b

x,y from 1 to |P a,b
x,y |, to design an Rf that satisfies{

Rf
x,y(σ)

∣∣σ ∈ P a,b
x,y

}
=

{
1, 2, . . . , |P a,b

x,y |
}

for (a, b) �= (0, 0). (3.19)

For (a, b) = (0, 0), Rf
x,y(σx,y) is of course 0 so that to make Rh

x,y(σx,y) to be 0 for
the initialization. Obviously, Rf could be an F* round assignment that pushes
the messages of P a,b

x,y to vx,y one by one in round 1 to round |P a,b
x,y | � (n2− 1)/2,

if it is precedence constrained (as will see, it happens to be).
A message σ ∈ P a,b

x,y arriving at vx,y in round Rx,y(σ) = n(n− 1)/2 is dead at
vx,y, with no further movement. By the discussion following (3.18), a sufficient
and necessary condition for the existence of a dead message can be stated as

Lemma 3.1. P a,b
x,y has a dead message if and only if ax+by > 0. If ax+by > 0,

the dead message σ ∈ P a,b
x,y is the one with arriving order Rf

x,y(σ) = |P a,b
x,y |.

A message σ ∈ P a,b
x,y is said to be hurried into vx,y from vx−a,y−b if, after

getting to vx−a,y−b, it comes to vx,y at the first round when the edge takes the
direction (a, b). For a message σ ∈ P a,b

x−a,y−b, if σ is not dead at vx−a,y−b and
comes to vx−a,y−b from vx−2a,y−2b with arriving order s, then, according to the
edge orientation schedule (3.18), the earliest available order for it going to vx,y

(being hurried) is

Optimal Gossiping in Square Meshes 301

αa,b
x,y(s) =

⎧⎨⎩
s + 1 s�|P−a,−b

x−a,y−b|,
2s− |P−a,−b

x−a,y−b| |P−a,−b
x−a,y−b|<s�|P−a,−b

x−2a,y−2b|,
s + k + 2 |P−a,−b

x−2a,y−2b|<s�|P a,b
x−a,y−b|−1.

(3.20)

Moreover, all the messages σ ∈ P 0,0
x−a,y−b ∪ P a,b

x−a,y−b, except the one dead at
vx−a,y−b (if it exists), can be hurried to vx,y with order αa,b

x,y

(
Rx−a,y−b(σ)

)
, caus-

ing neither contradiction with (3.19) nor conflict with the precedence constraint.
Suppose we do so, among the |P a,b

x,y | orders of (3.19), we have used |P a,b
x−a,y−b| if

ax + by > 1 and |P a,b
x−a,y−b|+ 1 otherwise.

By Lemma 3.1, P a,b
x−a,y−b has a dead message if and only if ax + by > 1.

If ax + by � 1, then |P a,b
x−a,y−b| � |P−a,−b

x−a,y−b|, leading to αa,b
x,y

(
|P a,b

x−a,y−b|
)

=
|P a,b

x−a,y−b|+1 = |P a,b
x,y |−k, and implying that the k leftover orders are |P a,b

x−a,y−b|+
t + 1 for t = 1, 2, . . . , k. Otherwise, |P a,b

x−a,y−b| � |P−a,−b
x−a,y−b| + 2(k + 1), and

then from (3.20) we can see that for s = |P−a,−b
x−a,y−b| + t with 1 � t � k + 2,

αa,b
x,y(s) = |P−a,−b

x−a,y−b|+2t, so the k+1 orders leftover should be |P−a,−b
x−a,y−b|+2t+1

for 1 � t � k + 1. For convenience, we define

βa,b
x,y(t) =

{
|P a,b

x−a,y−b|+ t + 1 ax+by�1,

|P−a,−b
x−a,y−b|+ 2t + 1 ax+by>1.

(3.21)

βa,b
x,y specifies the orders not covered by αa,b

x,y. So, for (3.19), we have

Lemma 3.2.
{
1, 2, . . . , |P a,b

x,y |
}

=
{
βa,b

x,y(t)
∣∣1�t�k

}
∪
{
αa,b

x,y(s)
∣∣0�s<|P a,b

x−a,y−b|
}

∪
{{

αa,b
x,y

(
|P a,b

x−a,y−b|
)}

ax+by�1,{
βa,b

x,y(k + 1)
}

ax+by>1.
(3.22)

The proof is omitted. (3.22) suggests that for σ ∈ P a,b
x,y we define Rf

x,y(σ) =
αa,b

x,y

(
Rf

x−a,y−b(σ)
)

if σ ∈ P 0,0
x,y ∪ P a,b

x−a,y−b, and βa,b
x,y

(
t
)

otherwise. Actually, this
suggestion needs to be fine tuned when used and not used for all cases. There
are four cases to consider:

Case 1: σi,j ∈ P 0,1
x,y where − k � x, y < 0;

Case 2: σi,j ∈ P 1,0
x,y where − k � x, y � 0;

Case 3: σi,j ∈ P 0,−1
x,y where − k � x � 0 and − k � y < 0;

Case 4: σi,j ∈ P−1,0
x,y where − k � x � 0 and − k � y < 0.

(3.23)

The other cases can be inferred from them by the rotating symmetry, Rf
x,y(σi,j) =

Rf
y,−x(σj,−i) (the lonely message σx,y in P 0,0

x,y has Rf
x,y(σx,y) = 0).

(3.22) is in fact the principle of “the first coming (to vx−a,y−b), the first to
leave (for vx,y)” for handling P a,b

x,y ∩
(
P 0,0

x−a,y−b ∪ P a,b
x−a,y−b

)
. Unfortunately, this

principle does not work well for H*. It can be seen in Fig. 3 that at a node, while
most of the messages will continue their journey along the direction they came,
some of them will also make a turn for other destinations (productive), and some

302 R. Wang and F.C.M. Lau

will stop before reaching the mesh boundary (abortive). A reasonable idea is to
hurry up those that will be productive at some later node, and slow down those
that will be abortive. Our design of Rf for the first two cases reflects this idea.
The suggestion (3.22) is adopted only in the last two cases where ax + by > 0.

Case 1: We need the messages in row x to reach vx,y early (hurried), and those
in row x + 1 to reach late (slowed). This can be done by letting vx,y receive
P 0,1

x,y in the order of rows x, x−1, . . . ,−k, x+2, x+3, . . . , 1, 0, x+1. (v−k,−k+1

is an exception, it receives in the order of rows −k,−k + 1, . . . , 0).

Rf
x,y(σi,j)

(σi,j∈P 0,1
x,y)

=

⎧⎪⎪⎨⎪⎪⎩
i + k + 1 x=−k,y=−k+1,
(x− i)(k + y) + y − j −k�i�x,
(k + i− 1)(k + y) + y − j x+1<i�0,
k(k + y) + y − j i=x+1.

(3.24)

Case 2: We expect the messages of column y to come first, then the messages of
column k + y, and those of column y +1 arrive last. This can not be realized
immediately. The trick is to adjust P 1,0

−k+1,y to P 1,0
0,y little by little to achieve

the aim at v0,y.

Rf
x,y(σi,j)

(σi,j∈P 1,0
x,y)

=

⎧⎨⎩
x− i j=y,
(j − y)(k + x) + k + i + 1 (j−y)(k+x)+i<0,
k + (k + y − j)(k + x) + x− i (j−y)(k+x)+i�0.

(3.25)

That is, vx,y first receives k messages in the order of column y, y+1, y+2, . . .,
and then it turns to receiving the leftover messages in the order of column
k + y, k + y − 1, k + y − 2 The mentioned intention is realized at x = 0.

Case 3: This is divided into two subcases: y = −1, and y < −1. We use function
α to define Rf

x,y recursively on Rf
x,y+1 (for y + 1 � 0, Rf

x,y+1 is implied by
applying rotating symmetry on (3.25), so the recursion is well defined).

Rf
x,y(σi,j)

(σi,j∈P 0,−1
x,y)

(y=−1)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α0,−1

x,y

(
Rf

x,y+1(σi,j)
)

σi,j∈P 0,0
x,y+1∪P 0,−1

x,y+1,

α0,−1
x,y

(
Rf

x,y+1(σx+1, −i+1)
)

x<i�0, j=y+1,

α0,−1
x,y

(
Rf

x,y+1(σx+1, −i)
)

−k�i<x, j=k+y+1,
β0,−1

x,y (i) 0<i�k, j=y+1.

(3.26)

Rf
x,y(σi,j)

(σi,j∈P 0,−1
x,y)

(y<−1)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α0,−1

x,y

(
Rf

x,y+1(σi,j)
)

σi,j∈P 0,0
x,y+1∪P 0,−1

x,y+1,
β0,−1

x,y (−i + 2) x<i�0, j=y+1,
β0,−1

x,y (−i + 1) −k�i<x, j=k+y+1,
β0,−1

x,y (1) i=k+y+2, j=y+1,

α0,−1
x,y

(
Rf

x,y+1(σi, y+2)
)

0<i�k, i �=k+y+2 j=y+1.

(3.27)

Case 4: This is divided into three subcases: x = 0, x = −1, and x < −1. At
x = 0, it is similar to (3.24) except that the messages in column y + 1 are
swapped with those of P 0,−1

x,y in row y + 1. For x < 0, it is similar to Case 3
but trickier in assigning the rounds to the messages in row x+1 and k+x+1.
This is because, for large n, when y is approaching −k, the messages of row
k + y + 1 come (from right) to vx+1,y too late.

Optimal Gossiping in Square Meshes 303

Rf
x,y(σi,j)

(σi,j∈P−1,0
x,y)

(x=0)
=

⎧⎨⎩
(y − j)(k − x) + i− x −k�j�y,
(k + j − 1)(k − x) + i− x y+1<j�0,
k(k − x) + j i=x+1, 0<j�k.

(3.28)

Rf
x,y(σi,j)

(σi,j∈P−1,0
x,y)

(x=−1)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α−1,0
x,y

(
Rf

x+1,y(σi,j)
)

σi,j∈P 0,0
x+1,y∪P−1,0

x+1,y,

α−1,0
x,y

(
Rf

x+1,y(σx+2,j+1)
)

i=k+x+1, 0<j<k,
β−1,0

x,y (1) i=x+k+1, j=k,

α−1,0
x,y

(
Rf

x+1,y(σx+2,j)
)

i=x+1, j=1,
β−1,0

x,y (j + 1) i=x+1, 1<j�k.

(3.29)

Rf
x,y(σi,j)

(σi,j∈P−1,0
x,y)

(x<−1)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α−1,0
x,y

(
Rf

x+1,y(σi,j)
)

σi,j∈P 0,0
x+1,y∪P−1,0

x+1,y,

α−1,0
x,y

(
Rf

x+1,y(σx+2,j)
)

i=x+1, 0<j�k+x+1,
β−1,0

x,y (j − k − x− 1) i=x+1, k+x+1<j�k,
β−1,0

x,y (j − x− 1) i=k+x+1, 0<j�k+x+2,

α−1,0
x,y

(
Rf

x+1,y(σx+2,j)
)

i=k+x+1, k+x+2<j�k.

(3.30)

� 01 02 03 04 05 06
01 13 22 23 19 07 09
02 11 20 21 14 15 17
03 09 18 19 08 10 12
04 24 08 14 11 13 16
05 07 10 15 18 20 22
06 16 12 17 21 23 24

01 � 01 02 03 04 05
02 01 17 18 19 07 09
03 02 15 16 09 10 12
04 03 13 14 06 07 08
08 04 19 14 11 13 16
10 05 20 15 18 20 22
12 06 11 17 21 23 24

02 01 � 01 02 03 04
08 07 01 13 19 07 09
04 03 02 12 08 09 10
06 05 03 11 05 06 07
14 08 04 14 11 13 16
15 10 05 15 18 20 22
17 12 06 16 21 23 24

03 02 01 � 01 02 03
16 07 24 01 10 11 12
06 05 04 02 07 08 09
09 08 07 03 04 05 06
08 14 10 04 09 11 13
10 15 11 05 18 20 22
12 17 12 06 19 21 23

01 02 03 04 13 22 23
� 01 02 03 04 05 06
01 11 20 21 14 20 11
02 09 18 19 14 15 17
03 24 06 09 08 10 12
04 07 07 10 13 15 17
05 16 08 12 16 18 19

02 01 02 03 04 17 18
01 � 01 02 03 04 05
04 01 15 16 14 20 11
03 02 13 14 09 10 12
06 03 19 09 06 07 08
07 04 20 10 13 15 17
08 05 11 12 16 18 19

04 03 01 02 03 04 13
02 01 � 01 02 03 04
08 07 01 12 14 20 11
06 05 02 11 08 09 10
09 06 03 14 05 06 07
10 07 04 15 13 15 17
12 08 05 16 16 18 19

06 05 04 01 02 03 04
03 02 01 � 01 02 03
11 20 19 01 10 11 12
09 08 07 02 07 08 09
06 09 10 03 04 05 06
07 10 11 04 13 15 17
08 12 12 05 14 16 18

02 03 07 05 13 22 23
01 08 06 04 11 20 21
� 01 02 03 04 05 06
01 09 18 19 11 15 16
02 24 05 08 14 15 17
03 07 06 09 08 10 12
04 16 07 10 12 13 14

03 02 03 07 05 17 18
02 01 08 06 04 15 16
01 � 01 02 03 02 05
04 01 13 14 11 15 16
05 02 19 08 09 10 12
06 03 20 09 06 07 08
07 04 11 10 12 13 14

06 05 02 03 07 05 13
04 03 01 08 06 04 12
02 01 � 01 02 03 04
08 07 01 11 11 15 16
08 05 02 14 08 09 10
09 06 03 15 05 06 07
10 07 04 16 12 13 14

09 08 07 02 03 07 05
06 05 04 01 08 06 04
03 02 01 � 01 02 03
14 15 16 01 10 11 12
05 08 10 02 07 08 09
06 09 11 03 04 05 06
07 10 12 04 11 12 13

03 12 09 06 13 22 23
02 11 08 05 11 20 21
01 10 07 04 09 18 19
� 01 02 03 04 05 06
01 24 04 07 10 11 12
02 07 05 08 14 15 17
03 16 06 09 08 10 12

04 03 12 09 06 17 18
03 02 11 08 05 15 16
02 01 10 07 04 13 14
01 � 01 02 03 04 05
04 01 19 07 10 11 12
05 02 20 08 09 10 12
06 03 11 09 06 07 08

05 04 03 12 09 06 13
07 06 02 11 08 05 12
03 08 01 10 07 04 11
02 01 � 01 02 03 04
07 04 01 14 10 11 12
08 05 02 15 08 09 10
09 06 03 16 05 06 07

06 05 04 03 12 09 06
09 08 07 02 11 08 05
12 11 10 01 10 07 04
03 02 01 � 01 02 03
04 07 10 01 10 11 12
05 08 11 02 07 08 09
06 09 12 03 04 05 06

Fig. 5. Rf
x,y(σi,j) in M7×7 for −3 � x, y � 0

The design of Rf is finished, and so is Rh. As examples in M7×7, Fig. 5 shows
the values of Rf

x,y(σi,j) and Fig. 6 the values of Rh
x,y(σi,j). We conclude with the

next theorem (proof omitted).

Theorem 3.3. (P,Rf) is an F*
(
(n2 − 1)/2

)
-GS and (P,Rh) is an H*

(
n(n +

1)/2
)
-GS, both optimal and routing messages along shortest paths in Mn×n with

odd n > 1.

304 R. Wang and F.C.M. Lau

� 01 03 05 07 09 10
01 17 26 27 23 11 13
03 15 24 25 18 19 21
05 13 22 23 12 14 16
07 28 12 18 15 17 20
09 11 14 19 22 24 26
10 20 16 21 25 27 28

02 � 01 03 05 07 09
04 01 25 26 23 11 13
06 03 23 24 17 18 20
08 05 21 22 11 13 15
12 07 27 18 15 17 20
14 09 28 19 22 24 26
16 10 19 21 25 27 28

04 02 � 01 03 05 07
16 14 01 25 23 11 13
08 06 03 23 15 17 19
12 10 05 21 09 11 13
18 12 07 26 15 17 20
19 14 09 27 22 24 26
21 16 10 28 25 27 28

06 04 02 � 02 04 06
20 11 28 01 20 22 24
12 10 08 03 14 16 18
18 16 14 05 08 10 12
12 18 20 07 13 15 17
14 19 22 09 22 24 26
16 21 24 10 23 25 27

02 04 06 08 17 26 27
� 01 03 05 07 09 10
01 15 24 25 22 28 19
03 13 22 23 18 19 21
05 28 11 17 12 14 16
07 11 13 18 21 23 25
09 20 15 20 24 26 27

04 02 04 06 08 25 26
02 � 01 03 05 07 09
08 01 23 24 22 28 19
06 03 21 22 17 18 20
11 05 27 17 11 13 15
13 07 28 18 21 23 25
15 09 19 20 24 26 27

08 06 02 04 06 08 25
04 02 � 01 03 05 07
16 14 01 23 22 28 19
12 10 03 21 15 17 19
17 11 05 26 09 11 13
18 13 07 27 21 23 25
20 15 09 28 24 26 27

12 10 08 02 04 06 08
06 04 02 � 02 04 06
19 28 27 01 20 22 24
18 16 14 03 14 16 18
11 17 20 05 08 10 12
13 18 22 07 21 23 25
15 20 24 09 22 24 26

04 06 14 10 17 26 27
02 16 12 08 15 24 25
� 01 03 05 07 09 10
01 13 22 23 21 27 28
03 28 09 15 18 19 21
05 11 11 17 12 14 16
07 20 13 19 23 25 26

06 04 06 14 10 25 26
04 02 16 12 08 23 24
02 � 01 03 05 07 09
08 01 21 22 21 27 28
09 03 27 15 17 18 20
11 05 28 17 11 13 15
13 07 19 19 23 25 26

12 10 04 06 14 10 25
08 06 02 16 12 08 23
04 02 � 01 03 05 07
16 14 01 21 21 27 28
15 09 03 26 15 17 19
17 11 05 27 09 11 13
19 13 07 28 23 25 26

18 16 14 04 06 14 10
12 10 08 02 16 12 08
06 04 02 � 02 04 06
26 27 28 01 20 22 24
09 15 20 03 14 16 18
11 17 22 05 08 10 12
13 19 24 07 21 23 25

06 24 18 12 17 26 27
04 22 16 10 15 24 25
02 20 14 08 13 22 23
� 01 03 05 07 09 10
02 28 08 14 20 22 24
04 11 10 16 18 19 21
06 20 12 18 12 14 16

08 06 24 18 12 25 26
06 04 22 16 10 23 24
04 02 20 14 08 21 22
02 � 01 03 05 07 09
08 02 27 14 20 22 24
10 04 28 16 17 18 20
12 06 19 18 11 13 15

10 08 06 24 18 12 25
14 12 04 22 16 10 23
06 16 02 20 14 08 21
04 02 � 01 03 05 07
14 08 02 26 20 22 24
16 10 04 27 15 17 19
18 12 06 28 09 11 13

12 10 08 06 24 18 12
18 16 14 04 22 16 10
24 22 20 02 20 14 08
06 04 02 � 02 04 06
08 14 20 02 20 22 24
10 16 22 04 14 16 18
12 18 24 06 08 10 12

Fig. 6. Rh
x,y in M7×7 for −3 � x, y � 0

4 Even n

The same ideas for odd n applies
as well to even n(= 2k). For space
reason, we state the next theorem
without proof.
Theorem 4.1. There are an F*
�(n2−1)/2�-GS and an H* (n(n+
1)/2)-GS, both of which route mes-
sages along shortest paths in Mn×n

of even n.
As in the odd n case, both schemes
are rotating symmetric and based
on the same P . For −k � x, y �
−1, P a,b

x,y is illustrated in Fig. 7,
and formulated below. Note that,
for even n, the subscripts of P or

−k y −1 1 k�y k

k

k�x

+1
−1

x

−k

P 0,1
x,y

P 1,0
x,y

P−1,0
x,y

P−1,0
x,y

P−1,0
x,y

P 0,−1
x,y

P 0,−1
x,y

P 0,−1
x,y

Fig. 7. Gathering at vx,y for −k � x, y < 0

σ cannot be 0. We use the new operators � and ⊕ in place of + to take the
values −1 and 1, respectively, once 0 is produced. For example, when x = −k,
x � k = −1 and x⊕ k = 1.

Optimal Gossiping in Square Meshes 305

P 0,0
x,y = {σx,y}; (4.1)

P 0,1
x,y = {σi,j |−k�i�1, −k�j<y}; (4.2)

P 1,0
x,y = {σi,j |−k�i<x, y�j�k�y}; (4.3)

P 0,−1
x,y = P 0,0

x,y⊕1 ∪ P 0,−1
x,y⊕1 ∪ {σi,k+y+1|−k�i<x} ∪ {σi,y⊕1|1<i�k}

∪
{
{σi,y⊕1|x<i<1} − {σx⊕1,j |1<j�k} y=−1,
{σi,y⊕1|x<i�1} − {σi,y⊕2|1<i�k} y<−1; (4.4)

P−1,0
x,y = P 0,0

x⊕1,y ∪ P−1,0
x⊕1,y ∪ {σk+x+1,j |1<j�k}

∪{σx⊕1,j |1<j�k} −
{
{σi,y⊕1|1<i�k} ∪ {σ1,1} x=−1,
{σx⊕2,j |1<j�k} x<−1.

(4.5)

Clearly, P is complete and duplication free. For (a, b) �= (0, 0), there are
some facts about |P a,b

x,y |, which are similar to those of (3.14–3.16). For examples,
|P a,b

x,y |+ |P
−a,−b
x−a,y−b| = n(n + 1)/2, and

|P a,b
x,y | =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(k + ax + by)(k + 1) ax+by<1, ay−bx�1;
k(k + 1) ax+by=1, ay−bx�1;
(k + ax + by)k ax+by>1, ay−bx�1;
(k + ax + by)k ax+by<1, ay−bx<1;
k2

ax+by=1, ay−bx<1;
(k + ax + by)k + ax + by − k − 1 ax+by>1, ay−bx<1.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�

⌈
n2 − 1

2

⌉
.

The above are necessary for schemes based on P to match the lower bounds.
Rf and Rh are omitted because of space. They can be defined similarly as is
done in Section 3.

5 Conclusion and Discussion

This paper mainly focuses on square meshes and presents optimal gossiping
algorithms under the F* and H* models with p = 1. As mentioned at the end of
Section 3.1, the F* alogrithm can be generalized to gossip optimally in nonsquare
meshes. Thus the problems about meshes are solved with the positive answers
that gF∗(Mm×n) = �(mn−1)/2� and gH∗(Mn×n) = n(n+1)/2. It seems possible
that the same ideas can be applied to higher dimensional square meshes and tori
to obtain optimal or near-optimal results. For non-square 2D meshes, relaxing
the rotating symmetry from 90◦ to 180◦ (e.g., P a,b

x,y = P−a,−b
−x,−y), the method can

be extended to result in fast H* algorithms.
Using some vector language, the solutions can be expressed in a more unified

way, and the proofs can be conducted succinctly. Because of the lack of space, we
omitted many of the proofs which can be found in an unpublished manuscript
at www.cs.hku.hk/∼fcmlau/gossip.pdf.

306 R. Wang and F.C.M. Lau

Acknowledgement

This work is supported in part by a Hong Kong RGC grant (“Fast gossiping for
mesh-connected parallel computers”).

References

1. A. Bagchi, E.F. Schmeichel, and S.L. Hakimi, “Sequential information dissemina-
tion by packets”, Networks, vol. 22, pp. 317–333, 1992.

2. A. Bagchi, E.F. Schmeichel, and S.L. Hakimi, “Parallel information dissemination
by packets”, SIAM J. Computing, vol. 23, pp. 355–372, 1994.

3. J.-C. Bermond, L. Gargano, A.A. Rescigno and U. Vaccaro, “Fast gossiping by
short messages”, Proc. Int’l Colloquium Automata, Languages, and Processing’95,
pp. 135–146, 1995.

4. M. Chrobak, L. Gasieniec, and W. Rytter, “Fast broadcasting and gossiping in
radio networks”, Proc. of 41st Annual Symposium on Foundations of Computer
Science, 2000, pp. 575–581.

5. J.-C. Bermond, L. Gargano, and S. Perennes, “Optimal sequential gossiping by
short messages”, Discrete Applied Mathematics, vol. 86, pp. 145–155, 1998.

6. W.J. Dally, and P. Song, “Design of self-timed VLSI multicomputer communication
controller”, Proc. Int’l Conf. Computer Design, pp. 230–234, 1987.

7. P. Fraigniaud and E. Lizard, “Methods and problems of communication in usual
networks”, Discrete Applied Math., vol. 53, pp. 79–134, 1994.

8. S. Fujita and M. Yamashita, “Fast gossiping on square mesh computers”, Infor-
mation Processing Letters, vol. 48, pp. 127–130, 1993.

9. S.M. Hedetniemi, S.T. Hedetniemi, and A. Liestman, “A survey of gossiping and
broadcasting in communication networks”, Networks, vol. 18, pp. 319–349, 1988.

10. J. Hromkovic, R. Klasing, B. Monien and R. Peine, “Dissemination of information
in interconnection networks (Broadcasting & Gossiping)”, Combinatorial Network
Theory, pp. 125–212, D.-Z. Du and D.F. Hsu, eds., 1996.

11. D.W. Krumme, “Fast gossiping for the hypercube”, SIAM J. Computing, vol. 21,
no.2, pp. 365–380, Apr. 1992.

12. F.C.M. Lau and S.H. Zhang, “Fast gossiping in square meshes/tori with bounded-
size packets”, IEEE Trans. on Parallel and Distributed Systems, Vol. 13, No. 4,
April, 2002, pp. 349–358.

13. F.C.M. Lau and S.H. Zhang, “Optimal gossiping in paths and cycles”, J. of discrete
algorithms, vol. 1, no. 5-6, pp. 461–475, Oct. 2003.

14. M.D. May, P.W. Thompson, and P.H. Welch, “Networks, routers, and transputers”,
Amsterdam: IOS Press, 1993.

15. M. Soch and P. Tvrdik, “Optimal gossiping in noncombining 2D meshes”, Proc.
Int’l Colloquium Structural Information Comm. Complexity (SIROCCO’97), 1997.

Geometric Routing Without Geometry

Mirjam Wattenhofer1, Roger Wattenhofer2, and Peter Widmayer1

1 Department of Computer Science, ETH Zurich
2 Computer Engineering and Networks Laboratory, ETH Zurich

Abstract. In this paper we propose a new routing paradigm, called pseudo-
geometric routing. In pseudo-geometric routing, each node u of a network of
computing elements is assigned a pseudo coordinate composed of the graph (hop)
distances from u to a set of designated nodes (the anchors) in the network. On
theses pseudo coordinates we employ greedy geometric routing. Almost as a side
effect, pseudo-geometric routing is not restricted to planar unit disk graph net-
works anymore, but succeeds on general networks.

1 Introduction

With the advent of ad hoc, sensor, mesh or peer-to-peer systems, networking research
has recently received a second wind of attention. In the center of interest is the routing
problem. Contrary to established networks such as the Internet, these new networks ask
for a novel generation of routing protocols. First, ad hoc or sensor networks run on plain
and feeble hardware that does not allow nodes to store large routing tables as needed by
classic routing algorithms such as distance-vector or link-state routing. Second, peer-to-
peer or ad hoc networks are highly dynamic – the topology of the network is changing
constantly, at much higher rates than in conventional networks such as the Internet.
Consequently, this leads to an immense exchange of control messages in classic routing
protocols.

In order to tackle the routing problem for ad hoc/sensor/mesh/peer-to-peer networks,
the research community has proposed an array of innovative routing protocols and
paradigms. Originated from multihop radio networks, geometric routing is a promi-
nent representative, combining small memory overhead with few updates per topology
change. In geometric routing the nodes do not have routing tables at all, instead it is
assumed that the nodes have coordinates in the Euclidean plane.

The early proposals of geometric routing—suggested twenty years ago by Takagi
and Kleinrock [25]—were of purely greedy nature: Each node knows its own coordi-
nate, as well as the coordinates of its neighbors. When receiving a message containing
the coordinate of the destination, a node forwards the message to its “best” neighbor –
the neighbor node geometrically closest to the destination.

Yet, already in simple configurations greedy geo-routing can fail if the message
reaches a local minimum with respect to the distance to the destination, that is a node
without any “better” neighbors. This deadlock, however, can be resolved by using more
elaborate geo-routing protocols (see Section 2). In this paper we advocate using the
original greedy geo-routing, however, with a higher-dimensional geometric space.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 307–322, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

308 M. Wattenhofer, R. Wattenhofer , and P. Widmayer

Another problem is the availability of position information (coordinates) which is
needed to run a geo-routing algorithm. Clearly, one possible technical solution is to
equip each node with a Global Positioning System (GPS) receiver. However, in com-
parison to a sensor node, a GPS receiver is clumsy, expensive, and energy-inefficient.
Moreover, GPS reception might be obstructed by climatic conditions; if nodes are de-
ployed indoors, there is no reception at all.

As a GPS-alternative, researchers proposed to compute so-called virtual coordi-
nates merely from connectivity or distance information and employ geometric routing
schemes on those coordinates. However, the apparent computational complexity of vir-
tual coordinates [20, 18] discourages from using them in real systems.

In this paper we advocate a paradigm shift. Instead of trying to solve the tough
virtual coordinates problem and then use advanced geo-routing techniques, we go back
to the roots and use greedy geometric routing on down-to-earth virtual coordinates.

In particular, we propose that the virtual (or pseudo) coordinate of a node u is a
vector, composed by the graph (hop) distances from u to a set of designated nodes (the
anchors) in the network. Almost as a side effect, pseudo-geometric routing is not re-
stricted to planar unit disk graph networks anymore, but succeeds on general networks.
We believe that the coordinate of a node will be relatively stable even if the network
topology changes, hence making our routing scheme applicable for highly dynamic
networks.

In order to gain a deeper insight into this new routing paradigm and to explore its
algorithmic foundations and limits, we assess its potential by investigating various basic
network topologies.

After giving an overview of related work in the following section, we state the model
used in this paper in Section 3. In Sections 4 – 9 we analyze the properties of our routing
paradigm for different network topologies, namely rings, trees, grids, unit disk graphs,
butterfly networks, and hypercubes. Section 10 concludes on the paper.

2 Related Work

There are a hand full of routing protocols which are similar in spirit. We discuss selected
protocols in this section.

The link-reversal paradigm [11] improves significantly on the standard distance-
vector routing protocol1 by not updating the distances with each topology change. Re-
cently, the performance of the link-reversal paradigm was analyzed [4]. Besides being
more apt than distance-vector routing to be applicable in highly dynamic networks, the
link-reversal protocol also requires less memory.

Speaking of memory-efficiency: In classic large scale communication networks a
dominant problem is to develop compact routing schemes which feature low memory
overhead per node and still produce efficient routes between source and destination.
The first routing scheme which addresses the efficiency-memory tradeoff was proposed

1 In distance-vector, each node stores the distance to each destination, and which link to follow --
a derivative of distance-vector is deployed in the Internet BGP protocol.

Geometric Routing Without Geometry 309

in [16], where the idea of hierarchically clustering a network into levels and using the
resulting structure for routing was introduced.

Subsequently, the trade-off between memory space and stretch factor was theo-
retically analyzed [21, 14] and a plethora of compact routing schemes was proposed
[8, 5, 26, 2]. For comprehensive surveys on compact routing see [12, 13, 15].

An important branch of compact routing, so called interval routing, is based on
the idea of grouping nodes in cyclic intervals and was first suggested in [23] for tree
networks. Later on this work was extended to other network topologies [27, 9, 7]. It is
worth noting that an interval routing scheme, once computed for a graph, can be used
to perform other tasks than routing. [10] proposed a Θ(n) broadcast algorithm that uses
only interval routing labels.

The best compact routing schemes provide amazing memory-stretch ratios. How-
ever, they are hardly applicable in dynamic networks since all routing tables have to be
computed from scratch if the topology of the network changes.

A well-studied routing paradigm for radio networks is geometric (a.k.a. geographic,
location-based, position-based, or simply geo-routing) routing. The first proposals were
of purely greedy nature. As pointed out in the introduction, already in simple con-
figurations greedy geo-routing can fail if a message reaches a local minimum. This
deadlock problem, however, was resolved by the employment of face routing, which
explores the boundaries of faces of the planarized network graph [17]. In recent years,
geo-routing has experienced several improvements. The routing schemes GFG [3] and
GOAFR+ [19] advocate a combination of greedy and face routing. Whereas GFG does
not give competitive worst-case guarantees, GOAFR+ is a routing algorithm which is
efficient for average-case networks as well as asymptotically worst-case optimal. Re-
cently, the locality aware location service LLS [1] proposes a solution how the co-
ordinates of mobile destinations can be learned efficiently using a peer-to-peer-like
scheme.

Unfortunately, it is not always feasible to assume that each node in the network
knows its position. As an alternative, researchers proposed to compute so-called vir-
tual coordinates, coordinates computed merely from connectivity or distance informa-
tion, and employ geo-routing schemes on top of these coordinates. In [22] a greedy
routing scheme is employed on the virtual coordinates which are obtained by a spring-
based algorithm. By solving a convex linear program the coordinates of the network
nodes are estimated in [6], whereas the heuristic in [24] is based on multidimensional
scaling.

Apart from these heuristics there is little work on virtual coordinates: In [20] the
authors present an approximation algorithm for the virtual coordinates problem, with
polylogarithmic approximation ratio only. In a lower bound paper [18] it is shown
that virtual coordinates cannot be approximated arbitrarily well. These two results
dampen our hopes that using geo-routing on virtual coordinates in real systems is
practical.

Instead of embedding the nodes in the two dimensional Euclidean space, in this pa-
per we propose to embed the nodes in a sufficiently high dimensional pseudo geometric
space and employ a greedy geo-routing scheme on top.

310 M. Wattenhofer, R. Wattenhofer , and P. Widmayer

3 Model

Let a network on n nodes be given, where k nodes a1, a2, . . . , ak are designated anchors
and there exists a unique order on the anchors with a1 ≺ a2 ≺ . . . ≺ ak. Each node
u in the networks knows the underlying network topology and is furthermore able to
determine its graph (hop) distance di to each one of the k anchors ai. The (pseudo-)
coordinate of node u is then defined to be (d1, . . . , dk). Thus, the network is embedded
in a pseudo k-dimensional space. Each node knows in addition to its own coordinate
the coordinates of all its direct neighbors.

In pseudo-geometric routing algorithms when receiving a message containing the
(pseudo) coordinate of the destination, a node forwards the message to its “best” neigh-
bor – the neighbor node geometrically closest (in the pseudo geometric space) to the
destination. In the following we say that the pseudo-geometric routing problem can
be solved if there is a pseudo-geometric routing algorithm which guarantees message
delivery.

In general, a routing algorithm may have two basic problems. The first and foremost
problem, we henceforth also call naming problem, is that all nodes must have unique
identifiers, otherwise the destination is not identifiable in general. Once the naming
problem is solved, the algorithm furthermore has to guarantee that any destination must
finally be reached from any source –the routing problem.

In the following, we exemplarily demonstrate at the showcase where the graph is a
line which properties of the pseudo-geometric routing problem we analyze, why these
properties are important from a theoretical and practical point of view and how the next
sections are structured. In general, we first concentrate on the naming problem before
we finally give a pseudo-geometric routing scheme.

The first property we explore is the minimal number of anchors we need to solve
the naming problem. Theoretically speaking, we give a lower bound on the number of
anchors. From a practical point of view this is a quite natural property. Amongst others,
it gives the minimal amount of storage which is needed per node to solve the naming
problem.

Example: If a node a with degree one on the line is chosen to be an anchor, each
node on the line has a unique coordinate, since each node has a unique distance to a.
This leads to the following lemma.

Lemma 1 (min). Choosing a node on the line with degree one solves the naming prob-
lem.

The second property we are interested in is an upper bound on the number of an-
chors which are needed to solve the naming problem, in the following sense. If we allow
an adversary to choose the anchors arbitrarily, how many anchors must be chosen until
the naming problem is solved? In practice it is often not feasible to deliberately assign
anchors, but anchors are chosen more or less arbitrarily, hence we might come across
this upper bound.

Example: For the line, this upper bound is trivially obtained by observing that for
any two nodes on the line each node has a unique distance vector.

Geometric Routing Without Geometry 311

Lemma 2 (any). Two arbitrarily chosen anchors on a line solve the naming problem.

In networks another crucial factor is the degree of locality. Having a local solution
is clearly favorable to having a global solution, where we use local in the sense of the
anchors being in a constant size neighborhood of each other. The advantage of local
solutions lies in the fact that failures and updates can be dealt with locally. Leading to
the third property we look at our example.

Example: Since two arbitrary anchors on the line solve the naming problem, clearly
two incident anchors solve the naming problem.

Lemma 3 (local). Two incident nodes on the line solve the naming problem.

Finally, we give a pseudo-geometric routing scheme. Towards this goal we explicitly
assume that the anchors are chosen in some way and based on this choice of anchors
show how nodes pass a message such that it eventually reaches the destination. For
most of the analyzed topologies we show that the chosen path is actually the shortest
path between source and destination.

Example: Choose one anchor on the line, namely a node with degree one. Based on
its own coordinate and the coordinate of the destination, a node immediately knows to
which neighbor to pass the message such that it reaches the destination on the shortest
path.

Theorem 4. The pseudo-geometric routing problem on the line can be solved (locally)
with one anchor.

Wrapping up, in the following sections we concentrate for each topology on three
important properties related to the naming problem. The first property called min is a
lower bound on the number of anchors we need to solve the naming problem, whereas
any is an upper bound. Local gives a choice of anchors which solves the naming prob-
lem and is local, if such a choice exists. With local we mean that the anchors are within
constant graph distance from each other. We then give a pseudo-geometric routing
scheme which guarantees message delivery.

4 Ring

4.1 Naming

With one anchor a only, there are �(n−1)/2� pairs of nodes with pairwise same distance
to a, that is, they cannot be distinguished. On the other hand, with two anchors a and
b, which are at distance d �= n/2 to each other, or arbitrary three anchors each node has
a unique coordinate. Leading to following lemmas.

Lemma 5 (min, local). If chosen properly, exactly 2 anchors solve the naming problem
in the ring, specifically two incident anchors solve the naming problem.

Lemma 6 (any). 3 arbitrarily chosen anchors solve the naming problem in the ring.

312 M. Wattenhofer, R. Wattenhofer , and P. Widmayer

4.2 Routing

Suppose we have two anchors which solve the naming problem in the ring. A node
u can reconstruct the position of the anchors based on its and its neighbors’
coordinates. Furthermore, u knows the position of the destination relative to the an-
chors and hence can pass the message to the neighbor which is nearest to the des-
tination. By this discussion and Lemma 5 the following theorem can be deduced
immediately.

Theorem 7. The pseudo-geometric routing problem on the ring can be solved (locally)
with 2 anchors. Furthermore, the chosen route between source and destination is a
shortest path.

5 Grid

5.1 Naming

With one anchor only at least
√

n nodes do have the same coordinate in the grid. On
the other hand, if we choose one anchor a such that it lies in the upper left corner of the
grid and another anchor b which lies in the upper right corner of the grid, all nodes have
different coordinates (see Figure 1(a)).

Lemma 8 (min). If chosen properly, we need exactly 2 anchors in the grid to solve the
naming problem.

Lemma 9 (local). It is not possible to solve the naming problem in the grid locally.

Proof. Consider an arbitrary subgraph of the grid with constant diameter, where all
nodes in the subgraph are anchors. Then there are two nodes incident to a corner node
which are not anchors. Those two nodes cannot be distinguished by the anchors. (See
Figure 1(b) for an example.)

a b

(2, 3)

(a) Two An-
chors Solve
the Naming
Problem.

v

u

(b) (
√

n −
1)2 + 1
anchors do
not solve
the naming
problem.

Fig. 1. min and any for the grid

Geometric Routing Without Geometry 313

Lemma 10 (any). If the anchors are chosen arbitrarily, then at least (
√

n − 1)2 + 2
anchors are needed to solve the naming problem.

Proof. We prove the Lemma by giving an example where (
√

n − 1)2 + 1 anchors are
already chosen, but there are still two nodes which are not distinguishable. Hence, at
least (

√
n − 1)2 + 2 nodes are needed to solve the naming problem. The example is

depicted in Figure 1(b). The white nodes are the anchors which are already chosen,
whereas u, v are the nodes with same coordinate.

5.2 Routing

Given that the anchors a, b are placed as proposed in Lemma 8, a node u can compute
the position of each anchor, based on its coordinate and the coordinate of its neighbors.
It thus knows where the destination lies and hence can pass the message to one of its
neighbors which lies in the quadrant of the destination guaranteeing that the message
always reaches the destination on a shortest path.

Theorem 11. The pseudo-geometric routing problem on the grid can be solved with
two anchors. Furthermore, the chosen route between source and destination is a short-
est path.

6 Tree

6.1 Naming

Before we prove the minimal number of anchors needed to solve the naming problem
in a tree, we define the following helpful term. Given a tree T = (V,E), let the root r
of the tree be an arbitrary node and call the such rooted tree Tr. Consider those nodes in
Tr which have degree at least three and have no descendant with degree at least three.
Formally L(Tr) = {v ∈ V ; deg(v) ≥ 3,maxu∈Tr(v) deg(u) ≤ 2}, where deg(v) is the
degree of a node v and Tr(v) is the subtree of Tr rooted in v. Then the minimal coverage
number mc(T) of T is defined as mc(T) = maxr∈V

∑
v∈L(Tr) (deg(v)− 2).

v

S

B

Fig. 2. Minimal coverage number in stair-tree S and complete binary tree B

To get an intuitive understanding of the minimal coverage number, we depict two
examples in Figure 2.

In the stair-tree S, L(S) = {v} and mc(S) = deg(v)− 2 = 1. Note, that choosing
v and the root as anchors also solves the naming problem.

314 M. Wattenhofer, R. Wattenhofer , and P. Widmayer

In the complete binary tree B = (V,E), L(B) = {v ∈ V ;∃l ∈ V, deg(l) =
1, d(v, l) = 1}, that is all nodes which are neighbors of a leaf. Then, mc(B) = |L(B)| ·
(3 − 2) = (n + 1)/4. Again, note that choosing every second leaf as an anchor also
solves the naming problem.

Lemma 12 (min). Let mc(T) be the minimal coverage number in a tree T = (V,E).
Then, we need at least mc(T) anchors.

Proof. Each node u ∈ V with degree at least 3 must have at least one anchor in each but
one of its neighbor-subtrees, where we use the term neighbor-subtree for subtrees of T
rooted in neighbor nodes of u. Otherwise, if there are no anchors in more than one of its
neighbor-subtrees, there are two neighbors u1, u2 of u which cannot be distinguished,
since the distance from each anchor to u1, u2 is exactly the distance to u plus one for
both. Hence, u1 and u2 have the same coordinate. Thus, the number of anchors we need
is at least the minimal coverage number. (We have to subtract 2 from the degree of each
node to avoid double counting and have a true lower bound.)

It is worthwhile to observe that the above discussion of Figure 2 shows that the
minimal coverage number is –at least for some trees– (almost) tight.

By the Lemma above and the depicted example (Figure 2) the following lemma is
self-explaining.

Lemma 13 (local). It is not possible to solve the naming problem in a tree locally.

Lemma 14 (any). If the anchors are chosen arbitrarily, we need up to n − 1 nodes to
solve the naming problem.

Proof. If in the star we choose the center as an anchor, we additionally have to choose
n− 2 of the n− 1 siblings in order to distinguish each pair of siblings.

Lemma 15. In a tree it is always sufficient to choose all leaves as anchors.

Proof. Consider two arbitrary nodes u, v in the tree. The nodes lie on a path p con-
necting u, v via their least common ancestor and furthermore connecting u, v to a leaf-
anchor l. A leaf-anchor is a node with degree one on this path p. Hence, by Lemma
1, l can distinguish between all nodes on this path, specifically between u and v. This
shows that any two nodes can be distinguished.

6.2 Routing

Assume now that each leaf is an anchor2. Based on its own coordinate and the coordi-
nate of its neighbors a node u knows for each anchor in which direction it lies. By the
choice of the anchors, the coordinate of the destination t is smaller than u’s coordinate
in at least one position i. Then t must lie in the direction of the corresponding anchor
ai, since in all other directions the distance to ai is increasing. Thus, u passes the mes-
sage to its neighbors which lies in this direction and consequently the message always
reaches the destination on the shortest (and only) path.

2 There are trees, where this choice is near to optimal, like the complete binary tree, but there
are others, like the stair-tree in Figure 2, where choosing all leaves is wasteful.

Geometric Routing Without Geometry 315

Theorem 16. The pseudo-geometric routing problem on the tree can be solved with |L|
anchors, where |L| is the number of leaves in the tree.

7 Unit Disk Graph

7.1 Naming

In order to prove a lower bound on the number of anchors needed in the unit disk
graph3 to solve the naming problem, we construct a unit disk graph which experiences
this lower bound.4 Specifically, we construct a unit disk grid tree, that is a unit disk
tree, which is a subgraph of the grid graph. As we have seen in Section 6, trees with a
large number of leaf-siblings (that is leaves which have a common father) have a large
minimum coverage number and thus experience a large lower bound. Hence, we build a
unit disk tree in such a way that the number of leaf-siblings is maximal. We henceforth
show how the graph is constructed, lower bound the number of nodes in graph distance
k from the root and then lower bound the total number of nodes in the whole graph.
Based on those bounds we finally prove that there are Θ(n) sibling-leaves and hence,
by Lemma 12 we need Θ(n) anchors to solve the naming problem.

k

T (k)
u

v

Fig. 3. Recursive construction of unit disk graph

The unit disk grid tree T (k) is built recursively as depicted in Figure 3. The tree with
depth k consists of four trees with depth (k−3)/2 each, depicted by shaded triangles in
the figure. The root of the new tree is connected through two paths of length (k + 1)/2
to two nodes u, v which are each connected themselves to two of the smaller trees.

Lemma 17. In T (k) there are at least (k+3)2

8 nodes which are at distance k from the

root and (k+3)2

16 which are at distance k − 1 from the root.

3 A unit disk graph is a graph where there is an edge between two nodes iff their Euclidean
distance is at most one.

4 The complete graph Kn is also a unit disk graph and experiences a lower bound of n − 2, but
from a practical point of view this graph is not interesting since each node can hear each other
node and so a message can just be transmitted with maximal radio strength and is immediately
received by the destination.Thus, the naming problem is not an issue at all.

316 M. Wattenhofer, R. Wattenhofer , and P. Widmayer

Proof. Let L(k) be the number of nodes in distance k from the root. Then

L(k) = 4L((k − 3)/2)

and L(1) = 2. We now develop this equation recursively, resulting in

L(k) = 4iL(
k −

∑i−1
j=0 3 · 2j

2i
) = 4log((k+3)/4)L(1)

= ((k + 3)/4)2 · 2 = (k + 3)2/8.

Let L′(k) be the number of nodes in distance k − 1. This number can be computed as
above, with the exception that L′(1) = 1. Hence we immediately get

L′(k) = ((k + 3)/4)2 · 1.

Lemma 18. In T (k) there are at most 9 · k2 nodes.

Proof. Let N(k) be the number of nodes in the tree T (k). Then

N(k) < 4N((k − 3)/2) + 2k

and N(1) = 3. As before we develop this equation recursively, and get

N(k) < 4iN(
k −

∑i−1
j=0 3 · 2j

2i
) +

i−1∑
j=0

2 · 4j
k −

∑j−1
p=0 3 · 2p

2j

= 4tN(1) + 2(k(2t − 1)− (4t − 1) + 3(2t − 1)) ≤ 9 · k2,

where we substituted t for log((k + 3)/4) for the sake of readability.

Lemma 19 (min). There are unit disk graphs where we need at least ((
√

n + 9)/12)2

anchors to solve the naming problem.

Proof. By Lemma 17 and the definition of the minimal coverage number in Section
6 the minimal coverage number of the constructed unit disk graph of depth k is (k +
3)2/16. Since by Lemma 18 the graph of depth k has at most 9k2 nodes, we can con-
struct a unit disk graph on n nodes with depth at least

√
n/3. Substituting

√
n/3 for

k we thus obtain a minimal coverage number of at least ((
√

n + 9)/12)2. Following
Lemma 12 this concludes the proof.

The locality-lemma is a direct implication of the lemma above.

Lemma 20 (local). It is not possible to solve the naming problem in a unit disk tree
locally.

Lemma 21 (any). If chosen arbitrarily, we need up to n−1 anchors to solve the naming
problem in unit disk graphs.

Proof. If we choose all nodes in T (
√

n/3) except two sibling-leaves, we still cannot
distinguish between those two siblings. Hence, we have to choose one of them to solve
the naming problem and have in total n− 1 anchors.

Geometric Routing Without Geometry 317

7.2 Routing

By the same discussion as in Section 6 the routing problem on the unit disk grid tree
can be solved by choosing all leaves as anchors.

Theorem 22. The pseudo-geometric routing problem on the unit disk grid tree can be
solved with 2 · ((

√
n+9)/12)2 anchors. Furthermore, the chosen route between source

and destination is the shortest path.

8 Butterfly

Due to the lack of space we omit the proofs for the lemmas in this section and refer the
interested reader to the full paper [28].

8.1 Naming

We say that a node in the butterfly network is in column i if it is in the (i+1)st column
from the left (that is the leftmost column has index 0) and in row j if it is in the jth
row from the top (that is the uppermost row has index 1) (see Figure 4). In a butterfly
network on n nodes we have k rows and (log k + 1) columns, where k(log k + 1) = n,
that is k = cn/ log n, c ≤ 2 . An optimal choice of anchors, as shown in Lemma 23,
is then to select all nodes in column 0 which are in row at most k/2 and all nodes in
column log k which are in odd rows (see Figure 4, where the white nodes are anchors).

1

k

0 log k

Fig. 4. k anchors solve the naming problem

Lemma 23 (min). In the butterfly network we need k anchors to solve the naming
problem, where k(log k + 1) = n.

Lemma 24 (local). It is not possible to solve the naming problem in the butterfly lo-
cally.

Lemma 25 (any). If chosen arbitrarily, we need n−1 anchors in the butterfly network
to solve the naming problem.

8.2 Routing

Given that the anchors are chosen as described above we obtain following result.

318 M. Wattenhofer, R. Wattenhofer , and P. Widmayer

Theorem 26. The pseudo-geometric routing problem on the butterfly network can be
solved with k anchors, where k(log k + 1) = n.

9 Hypercube

9.1 Naming

If we subsequently use the term coordinate we mean the classical hypercube coordinate,
with one bit per dimension. For example in a 2-dimensional hypercube the nodes have
classical coordinates (0, 0), (0, 1), (1, 0) and (1, 1). If we refer to the (pseudo) coordi-
nate as obtained by the anchors, we use the term distance vector. Furthermore, with d
we refer to the dimension of the hypercube, where d = log n.

Lemma 27 (min). To solve the naming problem in a d-dimensional hypercube one
needs at least log n/ log log n anchors.

Proof. Each anchor a is able to subdivide the nodes in at most d classes, since the
distance of a node to a is at most d. Thus, k anchors are able to differentiate between
at most dk nodes. Since we need to differentiate between all nodes it must hold that
dk ≥ n and we immediately get k ≥ log n/ log log n.

Lemma 28 (any). If chosen arbitrarily, we need up to n/4+1 anchors in the hypercube
to solve the naming problem

Proof. The goal is to make the points u = (0, 0, 0, . . . , 0) and v = (1, 1, 0, . . . , 0)
indistinguishable for as many anchors as possible. Towards this goal we choose all
anchors to be of the form (1, 0, 0, . . . , 0) + x and (0, 1, 0, . . . , 0) + x, where x is a d-
dimensional vector with first and second coordinate zero, and the other entries can be
chosen arbitrarily. The distance of each anchor to u and v is thus 1+|x|, where |x| is the
number of ones in the coordinate of x. The number of anchors we have chosen, without
being able to distinguish u, v is 2d−2 = n/4. Hence, to solve the naming problem we
need at least one further anchor and the lemma follows.

We subsequently show how to choose d anchors which solve the naming problem
locally.

Lemma 29. Suppose each node with distance one to the origin is an anchor. Then for
each node u in the hypercube it holds that its distance vector is composed of at most
two different values.

Proof. The coordinate of a node p in the hypercube can be expressed in the coordinates
of the anchors a1, . . . , ad, where ai has a 1 in position i of its coordinate, and zeroes
elsewhere: p = t1 ·a1 + t2 ·a2 + . . .+ td ·ad, where ti ∈ {0, 1}. Let Δi be the distance
of p to ai. Then, Δi = t1 + . . .+ ti−1 +¬ti + ti+1 + . . . td, where ¬0 ≡ 1 and ¬1 ≡ 0.
We claim that out of any three distances between one point p and three anchors, at least

Geometric Routing Without Geometry 319

two have to be equal. Without loss of generality (wlog) we consider the distances to the
anchors a1, a2, a3.

Δ1 = ¬t1 + t2 + t3 + t4 + . . . + td

Δ2 = t1 + ¬t2 + t3 + t4 + . . . + td

Δ3 = t1 + t2 + ¬t3 + t4 + . . . + td.

Assume further wlog that Δ1 �= Δ2. Thus, it has to hold that t1 �= t2. We now show that
Δ3 has to be equal to either Δ1 or Δ2. First we assume that Δ3 �= Δ1 and consequently
t1 �= t3. Then, t3 = t2 since ti ∈ {0, 1} and by assumption above t1 �= t2. Therefore,
Δ2 = t1 + ¬t2 + t3 + t4 + . . . + td = Δ3. The same argument holds if Δ3 �= Δ2 and
in general for arbitrary three-tuples of distances and the lemma is proved.

Lemma 30 (local). If each node with distance one to the origin is an anchor, all nodes
in the hypercube can obtain unambiguously their coordinate as a function of their dis-
tance vector.

Proof. The coordinate of node p in the hypercube can be expressed in the coordinates
of the anchors a1, . . . , ad: p = t1 · a1 + t2 · a2 + . . . + td · ad, where ti ∈ {0, 1}.
By Lemma 30 each distance vector is comprised of at most two values x, y, where we
assume wlog that x < y. We show how the coordinate of p is derived by its distance
vector. Start with Δ1 and Δ2. There are two cases, either Δ1 = Δ2 or Δ1 �= Δ2.
In the first case, ¬t1 + t2 + t3 + . . . + td = t1 + ¬t2 + t3 + . . . + td, and hence
¬t1 + t2 = t1 + ¬t2, which means that t1 = t2. If on the other hand Δ1 �= Δ2, we
get ¬t1 + t2 �= t1 + ¬t2. We can distinguish further whether Δ1 < Δ2 or not and get
¬t1 + t2 < t1 + ¬t2. if Δ1 < Δ2 or ¬t1 + t2 > t1 + ¬t2. if Δ1 > Δ2. In the first
case the only feasible solution is t1 = 1, t2 = 0 in the second one t1 = 0, t2 = 1.
The equations above hold for each pair of distances and hence we can deduce that if the
distance vector is comprised of exactly two different values, then mapping the smaller
value to one and the larger value to zero gives the exact coordinate of the node. The
mapping is unambiguous, since there is only one feasible solution to the inequalities.
If on the other hand the distance vector is comprised of exactly one value, we merely
obtain the relation t1 = t2 = . . . = td. Therefore, we basically have two possibilities
of mapping the nodes: Either we map to the origin or to the coordinate (1, 1, . . . , 1).
Since the distance vector of the origin contains only 1s, whereas the distance vector of
the point (1, 1, . . . , 1) contains only ds, we can additionally distinguish between those
two points and map (1, 1, . . . , 1) to (0, 0, . . . , 0) and (d, d, . . . , d) to (1, 1, . . . , 1) and
the lemma is proved.

9.2 Routing

Assume now that each node with distance one to the origin is an anchor as proposed in
Lemma 30. Based on its own, its neighbors’ and the destination’s distance vector each
node u can compute its own, its neighbors’ and the destination’s coordinate. If u passes
the message to the neighbor v with the smallest Hamming distance to the destination’s
coordinate, the message always reaches the destination on a shortest path.

320 M. Wattenhofer, R. Wattenhofer , and P. Widmayer

Theorem 31. The pseudo-geometric routing problem on the hypercube can be solved
(locally) with log n anchors. Furthermore, the chosen route between source and desti-
nation is a shortest path.

10 Conclusions

In this paper we proposed a new routing algorithm called pseudo-geometric routing,
and analyzed it for the usual suspects of network topologies. We believe that pseudo-
geometric routing may evolve into a promising new routing paradigm, for highly dy-
namic real world networks with memory constraints.

In the table below we summarize the results of the previous sections. For each topol-
ogy we give the lower and upper bound, indicate by a checkmark whether a local solu-
tion exists and whether the routing scheme finds the shortest path between an arbitrary
source and destination, or only an approximation.

min any local s.p.
Line 1 2 � �
Ring 2 3 � �
Grid 2 (

√
n − 1)2 + 2 − �

Tree mc(T) n − 1 − �
UDG ((

√
n + 9)/12)2 n − 1 − �

Butterfly n
log n

n − 1 − −
Hypercube log n

log log n
n/4 + 1 � �

There are still a lot of questions open with regard to pseudo-geometric routing, or
routing for dynamic networks in general. Most importantly, we plan to study the “real-
world” behavior of our algorithm. In particular, the lower bound for unit disk graphs
(which are a generally accepted model for all sorts of multihop radio networks) is rather
discouraging. On the other hand, the result for highly regular unit disk graphs such as
the grid, is encouraging. Real sensor networks will be somewhere in-between general
unit disk graphs and a grid. In this context, an in-depth analysis of mobility vs. updates
is also a direction of future research.

References

[1] I. Abraham, D.Dolev, and D. Malkhi. LLS: a Locality Aware Location Service for Mobile
Ad hoc Networks. Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications (DIAL-M), 2004.

[2] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact Name Independent
Routing with Minimum Stretch. Proc. of the ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2004.

[3] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with Guaranteed Delivery in
Ad hoc Wireless Networks. In Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIAL-M), 1999.

Geometric Routing Without Geometry 321

[4] C.Busch, S. Surapaneni, and S. Tirthapura. Analysis of Link Reversal Routing Algorithms
for Mobile Ad hoc Networks. In SPAA ’03: Proceedings of the fifteenth annual ACM
symposium on Parallel algorithms and architectures, pages 210–219. ACM Press, 2003.

[5] L. Cowen. Compact Routing with Minimum Stretch. In Proc. of the ACM-SIAM Symp. on
Discrete Algorithms (SODA), 1999.

[6] L. Doherty, L. E. Ghaoui, and K. Pister. Convex Position Estimation in Wireless Sensor
Networks. In Proc. of Joint Conf. of the IEEE Computer and Communications Societies
(INFOCOM), 2001.

[7] T. Eilam, S. Moran, and S. Zaks. A Simple DFS-Based Algorithm for Linear Interval
Routing. In WDAG ’97: Proceedings of the 11th International Workshop on Distributed
Algorithms, 1997.

[8] K. Fath, P. Flocchini, and S. Pierre. A Compact Routing Technique for Communication
Networks . IEEE Canadian Conference on Electrical and Computer Engineering, 1999.

[9] P. Fraigniaud and C. Gavoille. Interval Routing Schemes. Algorithmica, 21(2):155–182,
1998.

[10] P. Fraigniaud, C. Gavoille, and B. Mans. Interval Routing Schemes Allow Broadcasting
with Linear Message-complexity. Proc. of Symp. on Principles of Distributed Computing
(PODC).

[11] E. M. Gafni and D. P. Bertsekas. Distributed algorithms for Generating Loop-free Routes
in Networks with Frequently Changing Topology. IEEE Transactions on Communications,
29:11–18, 1981.

[12] C. Gavoille. A Survey on Interval Routing. Theoretical Computer Science, 245(2):217–
253, 2000.

[13] C. Gavoille. Routing in Distributed Networks: Overview and Open Problems. SIGACTN:
SIGACT News (ACM Special Interest Group on Automata and Computability Theory), 32,
2001.

[14] C. Gavoille and M. Gengler. Space-Efficiency for Routing Schemes of Stretch Factor
Three. Journal of Parallel and Distributed Computing, 61(5):679–687, 2001.

[15] C. Gavoille and D. Peleg. Compact and Localized Distributed Data Structures. Journal of
Distributed Computing, 16:111–120.

[16] L. Kleinrock and F. Kamoun. Hierarchical Routing for Large Networks. Computer Net-
works, 1:155 – 174, 1975.

[17] E. Kranakis, H. Singh, and J. Urrutia. Compass Routing on Geometric Networks. 11th
Canadian Conference on Computational Geometry, pages 51–54, 1999.

[18] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit Disk Graph Approximation. In Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communications (DIAL-
M), 2004.

[19] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric Ad-Hoc Routing: Of
Theory and Practice. In Proc. of Symp. on Principles of Distributed Computing (PODC),
2003.

[20] T. Moscibroda, R. O’Dell, M. Wattenhofer, and R. Wattenhofer. Virtual Coordinates for
Ad hoc and Sensor Networks. Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIAL-M), 2004.

[21] D. Peleg and E. Upfal. A Tradeoff between Space and Efficiency forRouting Tables. In
Proc. of ACM Symp. on Theory of Computing (STOC), 1988.

[22] A. Rao, C. Papadimitriou, S. Ratnasamy, S. Shenker, and I. Stoica. Geographic Routing
without Location Information. In Proc. of Mobile Computing and Networking (MobiCom),
2003.

[23] N. Santoro and R. Khatib. Labelling and Implicit Routing in Networks. Comput. J.,
28(1):5–8, 1985.

322 M. Wattenhofer, R. Wattenhofer , and P. Widmayer

[24] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization from Mere Connectivity. In
Proc. of Intl. Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), 2003.

[25] H. Takagi and L. Kleinrock. Optimal Transmission Ranges for Randomly dDistributed
Packet Radio Terminals. IEEE Transactions on Communications, 32:246–257, 1984.

[26] M. Thorup and U.Zwick. Compact Routing Schemes. Proc. of the ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2001.

[27] J. van Leeuwen and R. Tan. Interval Routing. The Computer Journal, 30:298 – 307, 1987.
[28] M. Wattenhofer, R. Wattenhofer, and P. Widmayer. Geometric routing without geometry.

Technical report, ETH Zurich, 2005.

	Frontmatter
	Cellular Networks: Where Are the Mobile Users?
	Distributed Data Structures: A Survey
	On Designing Truthful Mechanisms for Online Scheduling
	On Private Computation in Incomplete Networks
	Traffic Grooming on the Path
	Range Augmentation Problems in Static Ad-Hoc Wireless Networks
	On the Approximability of the {\itshape L}({\itshape h},{\itshape k})-Labelling Problem on Bipartite Graphs (Extended Abstract)
	A Tight Bound for Online Coloring of Disk Graphs
	Divide and Conquer Is Almost Optimal for the Bounded-Hop MST Problem on Random Euclidean Instances
	Distributed Exploration of an Unknown Graph
	Two Absolute Bounds for Distributed Bit Complexity
	Finding Short Right-Hand-on-the-Wall Walks in Graphs
	Space Lower Bounds for Graph Exploration via Reduced Automata
	Communications in Unknown Networks: Preserving the Secret of Topology
	An Improved Algorithm for Adaptive Condition-Based Consensus
	Biangular Circle Formation by Asynchronous Mobile Robots
	Hardness and Approximation Results for Black Hole Search in Arbitrary Graphs
	On Semi-perfect 1-Factorizations
	Free-Riders in Steiner Tree Cost-Sharing Games
	On the Feasibility of Gathering by Autonomous Mobile Robots
	Majority and Unanimity in Synchronous Networks with Ubiquitous Dynamic Faults
	Minimizing the Number of ADMs in SONET Rings with Maximum Throughput
	Optimal Gossiping in Square Meshes in All-Port Mode and with Short Packets
	Geometric Routing Without Geometry
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

