

Lecture Notes in Computer Science 3460
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ozalp Babaoglu Márk Jelasity
Alberto Montresor Christof Fetzer
Stefano Leonardi Aad van Moorsel
Maarten van Steen (Eds.)

Self-star Properties
in Complex
Information Systems

Conceptual and Practical Foundations

13

Volume Editors

Ozalp Babaoglu
Márk Jelasity
Alberto Montresor
Università di Bologna
Departimento di Scienze dell’Informazione
40126 Bologna, Italy
E-mail: {babaoglu,jelasity,montresor}@cs.unibo.it

Christof Fetzer
Technische Universität Dresden
Fakultät Informatik
01062 Dresden, Germany
E-mail: christof.fetzer@inf.tu-dresden.de

Stefano Leonardi
Università di Roma "La Sapienza"
Dipartimento di Informatica e Sistemistica
00198 Rome, Italy
E-mail: leon@dis.uniroma1.it

Aad van Moorsel
University of Newcastle upon Tyne
School of Computing
Newcastle upon Tyne, NE1 7RU, UK
E-mail: aad.vanmoorsel@newcastle.ac.uk

Maarten van Steen
Vrije Universiteit Amsterdam
Department of Computer Science
1081 HV, Amsterdam, The Netherlands
E-mail: steen@cs.vu.nl

Library of Congress Control Number: 2005925758

CR Subject Classification (1998): C.2.4, C.2, D.2, F.1, F.2, I.2.11, H.4

ISSN 0302-9743
ISBN-10 3-540-26009-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26009-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11428589 06/3142 5 4 3 2 1 0

Preface

Information systems can be complex due to numerous factors including scale,
decentralization, heterogeneity, mobility, dynamism, bugs and failures. Deploy-
ing, operating and maintaining such systems can be not only very difficult, but
also very costly. A flurry of recent activity has been directed at this prob-
lem, and future information systems are envisioned as self-configuring, self-
organizing, self-managing and self-repairing. Collectively, we call these properties
self-� properties.

This book is a “spin-off” of a by-invitation-only Bertinoro workshop on self-�
properties in complex systems which was held in summer 2004 in Bertinoro, Italy.
The Self-star workshop brought together researchers and practitioners from dif-
ferent disciplines and with different backgrounds to discuss complex information
systems. The theme of the workshop was to identify the conceptual and practical
foundations for modeling, analyzing and achieving self-� properties in distributed
and networked systems. Partly based on these discussions, we solicited papers
from the workshop participants and a set of invitees for this book.

We sought original contributions in which authors explicitly take a position
concerning requirements, usefulness, potential and limitations of technologies for
self-� properties of complex systems. This position needed to be founded on re-
search results that were put clearly in context with respect to the position state-
ment. We strongly encouraged visionary statements, thought-provoking ideas,
and exploratory results that will help the reader form her or his own opinions on
the importance of self-� properties in current and future complex information
systems.

We structured the book according to our goal of having such visionary state-
ments. The first part of this book contains a set of separate 1-page summaries of
the positions taken by the various authors. This gives the reader a chance to get
a quick overview of the various positions. The second part of the book contains
the full papers that explain in more detail the positions taken by the different
authors.

Without further ado, we wish you a pleasant and stimulating read.

Bologna, Dresden, Rome, Ozalp Babaoglu
Newcastle upon Tyne, Amsterdam Márk Jelasity
February 2005 Alberto Montresor

Christof Fetzer
Stefano Leonardi
Aad van Moorsel

Maarten van Steen

Organization

Organizing Committee

Ozalp Babaoglu University of Bologna, Italy
Márk Jelasity University of Bologna, Italy
Alberto Montresor University of Bologna, Italy
Christof Fetzer Technical University of Dresden, Germany
Stefano Leonardi University of Rome “La Sapienza,” Italy
Aad van Moorsel University of Newcastle upon Tyne, UK
Maarten van Steen Free University of Amsterdam, The Netherlands

Referees

Vinay Aggarwal
Ozalp Babaoglu
Luca Becchetti
Christof Fetzer

Márk Jelasity
Zbigniew Jerzak
Stefano Leonardi
Alberto Montresor

Aad van Moorsel
Maarten van Steen
Andrea Vitaletti
Berthold Vöcking

Special Thanks

We would like to thank the sponsors of Self-star 2004 for making the Workshop
possible:

FET Open Project BISON
FET Integrated Project DELIS
FET Open Project COSIN
BICI: Bertinoro International Center for Informatics
UNESCO Office Venice, Regional Bureau for Science in Europe (ROSTE)

We are grateful to Dr. Dum of the European Commission for his enthusiasm and
support of research in “Complex Systems” through the projects BISON, COSIN
and DELIS. We would also like to thank the University Residential Centre of
Bertinoro for hosting the Workshop.

Table of Contents

The Self-star Vision . 1

Self-organization

Evolving Fractal Gene Regulatory Networks for Graceful Degradation
of Software

Peter J. Bentley . 21

Evolutionary Computing and Autonomic Computing: Shared Problems,
Shared Solutions?

A.E. Eiben . 36

Self-� Topology Control in Wireless Multihop Ad Hoc Communication
Networks

Wolfram Krause, Rudolf Sollacher, Martin Greiner 49

Emergent Consensus in Decentralised Systems Using Collaborative
Reinforcement Learning

Jim Dowling, Raymond Cunningham, Anthony Harrington,
Eoin Curran, Vinny Cahill . 63

The Biologically Inspired Distributed File System: An Emergent
Thinker Instantiation

Sergio Camorlinga, Ken Barker . 81

Evolutionary Games: An Algorithmic View
Spyros Kontogiannis, Paul Spirakis . 97

Self-awareness

Model Based Diagnosis and Contexts in Self Adaptive Software
Paul Robertson, Robert Laddaga . 112

On the Use of Online Analytic Performance Models in Self-managing
and Self-organizing Computer Systems

Daniel A. Menascé, Mohamed N. Bennani,
Honglei Ruan . 128

Prediction-Based Software Availability Enhancement
Felix Salfner, Günther Hoffmann, Miroslaw Malek 143

VIII Table of Contents

Making Self-adaptation an Engineering Reality
Shang-Wen Cheng, David Garlan, Bradley Schmerl 158

An Online Control Framework for Designing Self-optimizing Computing
Systems: Application to Power Management

Nagarajan Kandasamy, Sherif Abdelwahed, Gregory C. Sharp,
John P. Hayes . 174

Self-management of Systems Through Automatic Restart
Katinka Wolter . 189

Fundamentals of Dynamic Decentralized Optimization in Autonomic
Computing Systems

Tomasz Nowicki, Mark S. Squillante, Chai Wah Wu 204

Self-awareness vs. Self-organization

The Conflict Between Self-* Capabilities and Predictability
Rogério de Lemos . 219

Self-aware Software – Will It Become a Reality?
Peter Andras, Bruce G Charlton . 229

Supporting Self-�

A Case for Design Methodology Research in Self-* Distributed Systems
Indranil Gupta, Steven Ko, Nathanael Thompson, Mahvesh Nagda,
Chris Devaraj, Ramsés Morales, Jay A. Patel . 260

Enabling Autonomic Grid Applications: Requirements, Models and
Infrastructure

M. Parashar, Z. Li, H. Liu, V. Matossian, C. Schmidt 273

Pandora: An Efficient Platform for the Construction of Autonomic
Applications

Simon Patarin, Mesaac Makpangou . 291

Spatial Computing: The TOTA Approach
Marco Mamei, Franco Zambonelli . 307

Towards Self-managing QoS-Enabled Peer-to-Peer Systems
Vana Kalogeraki, Fang Chen, Thomas Repantis,
Demetris Zeinalipour-Yazti . 325

Table of Contents IX

Peer-to-Peer Algorithms

Cooperative Content Distribution: Scalability Through
Self-organization

Pascal Felber, Ernst W. Biersack . 343

Design and Analysis of a Bio-inspired Search Algorithm for Peer to
Peer Networks

Niloy Ganguly, Lutz Brusch, Andreas Deutsch . 358

Multifaceted Simultaneous Load Balancing in DHT-Based P2P
Systems: A New Game with Old Balls and Bins

Karl Aberer, Anwitaman Datta, Manfred Hauswirth 373

Robust Locality-Aware Lookup Networks
Ittai Abraham, Dahlia Malkhi . 392

Power-Aware Distributed Protocol for a Connectivity Problem in
Wireless Sensor Networks

Roberto Montemanni, Luca M. Gambardella . 403

Self-management of Virtual Paths in Dynamic Networks
Poul E. Heegaard, Otto Wittner, Bjarne E. Helvik 417

Sociologically Inspired Approaches for Self-�: Examples and Prospects
David Hales . 433

Author Index . 447

The Self- tar Vision

Achieving various self-� properties has been a grand challenge of computer sci-
ence and engineering since the building of the first computer. The latest rein-
carnation of this challenge is due to the fact that large, complex and dynamic
information systems have suddenly become a key part of the infrastructure of
modern societies. Accordingly, it has become very important to be able to build,
manage, and exploit these systems in the most efficient way possible. In other
words, these systems have to become self-�.

We are now in the process of finding out how to deal with this challenge. It is
a complex problem because information systems are deployed over a very wide
range of environments from wireless sensor networks to powerful supercomputing
clusters, from home networks to the entire Internet. It is very likely that to meet
this challenge, we need to draw ideas from many disciplines that have been
dealing with the design or explanation of large and/or complex systems, such
as the space shuttle, an operating system, the Internet, human intelligence, an
ecosystem, evolution, living organisms, etc. The goal of this book is to explore the
widest possible range of ideas and approaches that can potentially be relevant in
understanding how to build self-� information systems. We invited experts from
different disciplines and asked them the same questions:

Why and where do you think self-� properties are important? How can
your field of research contribute to these goals? What are the most
promising directions to explore in the future?

This chapter contains a selection of the most visionary answers we received. To
make navigation easier, we organized the contributions into the following, rather
fuzzy, categories:

Self- rganization. A typical approach in this group emphasizes the impor-
tance of emergence and self-organization of fully distributed and indepen-
dent components. Biological and social (agent-based.) inspiration belongs
here. For some fields, like in wireless ad hoc networks, this approach is a
must, in other fields it is an interesting alternative. This approach is often
also radical in that it proposes to build systems from scratch as opposed to
enhance existing systems.

Self- wareness. This approach seeks to achieve self-� properties via a meta-
model of the system: self-� is an add-on. An external component controls the
system via a control loop, or a decision mechanism based on the (perhaps pre-
computed) model of the system and its environment. This approach is often
incremental, and therefore more practical, in that it allows the extension of
existing systems with little or no modification.

Versus A small but interesting set of
approaches explicitly investigate the relation (synergies, differences) between
the first two approaches and therefore cannot be classified in either of those.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 1–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

s

o

a

Self- rganizationo Self- wareness.a

2 O. Babaoglu et al.

Supporting Self-�. We included here contributions that aim at developing
methodologies, environments, tools, abstractions, systems support; in short,
things that make it easier (or possible) to develop self-� systems. These ap-
proaches are often highly ambitious, because their scope is quite generic.

We hope that you will find browsing the visions below as much fun as we have.

Self- rganization

Natural Technology
Peter Bentley

Every salamander is a superhero. It is seemingly invulnerable to harm. Cutting
off a leg won’t stop it. It will grow a new one back, complete with bones, muscles
and blood vessels. Cutting off its tail also has no real effect. A few weeks later it
will have grown a new one. Try blinding it, and it will regrow the damaged parts
of its eye. No stake through the heart or silver bullet will stop our superhero
salamander. Damage its heart and it’ll regrow that too.

The salamander is doing more than simple healing here. It is able to regen-
erate parts of itself. Even when major structures (such as a whole leg) are lost,
it can regrow them from nothing. It’s positively miraculous.

Salamanders can do these things and we can’t because their cells have evolved
to be a little bit different to ours. They’re not the only ones. Plants are also clever
in similar ways. You can amputate all of the limbs of a tree and in a couple of
years it will grow a new set. Cut a leg (or “ray” as it is called) from a starfish
and it will grow a new one — and the ray you’ve cut off will grow a new body.
Snails can even regrow their entire head if they loose it.

Imagine trying to design a piece of technology that could do the same thing.
A car that healed itself after a crash. A house that regrew its roof after damage
from a storm. A computer that repaired itself after its circuits had been fried.
Such ideas are so beyond our current abilities that they seem ludicrous. We
can’t design such technologies. We don’t know how. Not only that, we can’t
even design technology that is several orders of magnitude simpler and have it
work.

There’s something going wrong with contemporary design. Complexity is
overwhelming us. For certain types of design, it has already overwhelmed us —
software is now too complex to work reliably. Economies are too complex to
manage reliably. Societies are too complex to govern reliably.

But we are surrounded by complexity that is orders of magnitude more com-
plex than all these examples. Life is designed by evolution at molecular scales
and grows to macro scales. Every cell in our bodies contains a molecular com-
puter made from genes and proteins, which instructs the cell what to do. We
have hundreds of billions of cells in us. We are the most complex entities in the
known universe — and yet we work.

I believe that complexity should not cause our designs to fail. We must look
at successful complex designs in nature and learn from them. We should attempt

o

The Self- tar Vision 3

to discover not only how they work, but how they are formed. Nature does not
perform conscious design, but her designs are better than anything a human
is capable of designing. I aim to discover how this happens by working with
biologists and modelling the processes of evolution and development. I aim to
harness these processes by enabling new forms of technology that can evolve and
develop.

I strongly believe that one day we will achieve some of the capabilities of
living organisms in our technology. We will have self-adaptive, self-designing,
self-building, self-repairing, ... self-� devices. This “natural technology” is not
just a pip-dream of ambitious scientists. It is necessary for us to progress in our
technology. It will be the only way we can construct complex devices that work
reliably in the future.

Evolutionary Computing
A.E. Eiben

The main point advocated here is that evolutionary computing is one of the
key technologies that can help meeting some of the grand self-� challenges. The
arguments backing up this point roughly fall into three categories.

The first argument considers evolutionary computing as a technology that
can be used to solve optimisation problems. EC is widely applicable, it requires
almost no assumptions about the problem to be solved, an evolutionary solver
can be usually developed with limited efforts and it produces good quality solu-
tions at acceptable computational costs for a wide range of problems. The EC
community describes the “niche” of EC (i.e., the class of problems where it offers
competitive performance) by attributes including: many parameters with highly
complex non-linear interactions, many local optima, the presence of noise, dy-
namically changing circumstances (constraints and/or optimisation objectives),
the lack of an analytical problem model, etc. Mind you, it is not suggested that
EC is always applicable; for instance, automatic translation would be very “EC-
hard”.

The second line of argumentation observes that self-� properties are mainly
required in complex, distributed information systems. In such systems the macro-
level behaviour is often a result of complex interactions of numerous of micro-
level entities (for instance, system components, parameters, configurations, etc).
Therefore, population-based adaptive systems (PAS), such as evolutionary algo-
rithms (EA) or adaptive multi-agent systems, can naturally match the essence
of the information systems in question. EAs are inherently distributed and if
only one can identify the individual units, define their utility, and specify how
to create and test new variants on-the-fly, the system is “evolutionarised”. The
example about optimising web services discussed in the paper illustrates this.
The use of a PAS, in particular an EA, offers specific advantages for self-� ap-
plications. By the presence of a population there is an inherent ability to adapt
to changes, which is a key feature in, for instance, self-healing, self-optimisation,
self-reconfiguration, etc.

s

4 O. Babaoglu et al.

The third argument is based on the fact that EAs are capable to perform
real-time self-optimisation by adjusting (some of) their parameters on-the-fly.
Solutions to realise this in evolutionary computing, for instance self-adaptation of
EA parameters, could be transportable to the context of autonomic computing.
Even though an existing EC trick does not work directly, evolutionary weaponry
can very well serve as a source of inspiration.

The second point in my paper concerns the relevance of autonomic computing
to evolutionary computing. An evolving system can be seen as a special case of
an autonomic system and it can be expected that some solutions invented within
autonomic computing can be transferred to EC helping to realise parameter-free
evolutionary algorithms.

What Is Self-�?
Wolfram Krause and Martin Greiner

Complex self-� systems are widespread in nature. Maybe the most fascinating
example is given by ourselves and automatically leads to the question “What
is life?” Here, self-� reveals itself on various scales: the biochemical feed-back
control system within the microscopic cell and, built on top of that, e. g., the
immune system and the brain. We should not hesitate to mention also the next
rougher scale, which is represented for example by social networks and our inter-
actions as part of the ecosystem. Herewith it becomes clear that nature defines
self-� as the self-organizing control of highly complex, interacting and networked
systems.

Recently physics has started a new branch, which will be key to a generic un-
derstanding of self-organization in nature and beyond: the Statistical Physics of
complex networks. It discusses the structure and formation of complex networked
systems, their dynamics and their function. The new insight which along these
lines has already been given for example to gene and metabolic networks consti-
tutes for sure a remarkable highlight and complements the current endeavor to
understand the proteomic function of the deciphered, but hieroglyphic (human)
genome. Applicationwise, this new physics branch not only focuses on complex
networks in nature, but also on social, technical and information systems.

Some of the complex technical systems are beginning to ask similar ques-
tions about self-organization and function as the networked nature. Examples
are production and logistic networks, traffic networks and communication net-
works. Their parallelism results from a common interplay between a material
flow, consisting of either goods, vehicles or data packets, and an information
flow. As these technical networks are up-scaling in size, efficiency requires that
the control of the flow interplay should no longer rely on a central approach
alone. Elements of decentralized control are becoming increasingly important,
which first gather and process local information and then use this for a local
feedback control action. In the limit of a purely decentralized control such net-
worked systems become self-organizing.

Our research focuses on information systems in general and wireless commu-
nication networks in particular. Coordination and synchronization of different

5

tasks shall be performed in a distributive manner. In this context, self-� refers to
self-configuration, self-management, self-repair, self-adaption and related topics.
But these systems are still far from perfect. A deep understanding of the pro-
cesses in biological systems might be the basis for new technological methods
that allow improved system characteristics. Regarding sensor networks, a dis-
tributed, parallel processing of collected data can speed up the data acquisition
and reduce the traffic load of the network. One might even think about nodes
that can act autonomously and start certain actions, based on data acquired at
their own sensors or communicated by neighbors.

However, self-� has also other meanings. The principles of self-� are play-
ing an important role in a large variety of other research topics. In solid state
physics, self-organization is discussed in the context of the “magic” growth of
very specific surface structures, even down to the placement of single atoms.
The magical creation of clusters and other macro-molecules are other exam-
ples for self-� processes. Delicate tasks, like the assembly of carbon atoms to a
fullerene or nanotube, cannot be performed directly. But given certain environ-
mental conditions, self-organization enters the stage and the process just happens
automatically.

Cooperative Agents
Jim Dowling, Raymond Cunningham, Anthony Harrington,
Eoin Curran and Vinny Cahill

Our vision of self-managing distributed systems is based on building decen-
tralised systems using coooperative agents that can adaptively coordinate their
local behaviour to solve system self-management problems. In such a model, each
agent gathers information on its own and takes independent decisions on how to
behave or adapt itself, but in order to establish and maintain self-managing sys-
tem properties, agents must also coordinate their local behaviour models through
interaction with their neighbours or a shared environment.

The design of decentralised algorithms to build self-managing
systems presents a number of challenges. One approach is to use decentralised
algorithms that enable consensus between groups of agents on optimal, local
behaviour models that produce the desired, system self-management behaviour.
The main challenge in designing such algorithms is the establishment of com-
mon behaviour models in agents, given the inherent uncertainty and dynamism
in the environment, and the impossibility of using centralised techniques. De-
signers must also not resort to pseudo-centralised techniques, such as using an
agent’s local view of the system to infer properties of the system as a whole,
as such assumptions in dynamic environments may break down quickly. In de-
signing decentralised systems, we have found as much inspiration in the fields of
statistics and optimisation as in natural, self-organising systems. Decentralised
algorithms will be important in designing self-managing systems areas such as
mobile ad-hoc networks, wireless sensor networks, peer-to-peer systems and very
large distributed systems.

The Self- tar Visions

6 O. Babaoglu et al.

Specific challenges in designing these decentralised algorithms for self-
managing systems include:

– the representation of an agent’s local view of the world
– techniques that improve the accuracy of the agent’s local view using changes

in the agent’s environment and changes in neighbouring agents’ local views
– enabling the establishment of consensus on optimal local behaviour models

that can produce self-managing system behaviour

To conclude, decentralised self-managing computing systems should establish
and maintain self-management properties in dynamic and uncertain environ-
ments with minimal external intervention. Finally, we define a self-managing
decentralised system as follows: “A self-managing decentralised system has ex-
ternally observable self-management properties, that are established and main-
tained solely by the coordination and adaptation of its agents that execute us-
ing only a partial, estimated view of the system, and without knowledge of any
system-wide self-management property”.

The Emergent Thinker
Sergio Camorlinga and Ken Barker

Systems research is a large research area within computer science. Systems re-
search works on operating systems, distributed systems, networks, systems man-
agement, and many other aspects of computer systems. Algorithms and models
have been developed that provide feasible solutions to many of the problems en-
countered in computer systems within constrained environments. However, the
increased complexity of computer systems that are brittle limits the applicabil-
ity of some solutions. The augmented complexity is due to many factors such
as the large number of components, component interdependencies and hetero-
geneity, systems’ ubiquity (i.e. pervasiveness), and nonstop appearance of new
technologies; among other factors. This complexity is calling for better solutions
that are scalable and reliable assuming continuous growth in the number of com-
ponents and component technology, while maintaining the quality of service in
the pervasive use of computing components. Terms like self-organization, self-
configuration, self-monitoring, self-control and many others “self’s” (i.e. self-�
properties) are being defined as system properties that are needed to cope with
the new challenges.

An essential question is how to achieve the self-� properties necessary to
provide services in large computing environments? For this we are proposing
the Emergent Thinker paradigm. The Emergent Thinker provides a shift in the
way we achieve computation by means of Complex Adaptive Systems emergent
computations (a.k.a. swarm intelligence). The Emergent Thinker paradigm is
proposed as an alternative approach for new and current design and implemen-
tation challenges in systems research. The solutions that emerge from the simple
activities of a swarm’s members and the metaphor variety for complex adaptive
systems models in our lives (e.g. biological systems, economic systems, ecologies,

7

brain, social systems, immune systems, etc.) present a fruitful area to explore
for mechanisms and processes with emergent computations that provide self-�
properties.

The Biologically Inspired Distributed File System (BPD) implements the
Emergent Thinker paradigm and corroborates our hypothesis by means of emer-
gent computations achieved by simulating squirrels biological behaviors. The
BPD provides file system services in a complex information system environment
that is dynamic, self-organized, ad-hoc, and decentralized. The BPD is an initial
step for the Thinker. Many pieces remain to be investigated and implemented.
The Thinker establishes a computing framework and we use it to prove and
instantiate the paradigm with the BPD implementation described later in our
paper.

The Emergent Thinker paradigm offers an alternative computational model
for complex information systems design; and nature presents the mechanisms re-
quired for the emergent thinker computations. Mechanisms and processes remain
unknown and waiting for us to uncover. The know-how achieved by applying the
Emergent Thinker could lead us to build up new computing algorithms and mod-
els (some generic, some specific) by uncovering biological, economic, social and
others real systems mechanisms. Thus, a new way to provide computing will
emerge and change our thinking in systems research for large computer systems.

Evolutionary Games
Spyros Kontogiannis and Paul Spirakis

Evolutionary Game Theory is a field of science that examines strategic (and per-
haps antagonistic) interactions among members of a large population of agents.
The individuals base their decision on simple rules. The dynamics of such inter-
actions, under certain conditions, tend to converge to the adaptation of certain
strategies that are “more stable” than others. Interestingly, these strategies are
also robust against invasion. In the general case, evolutionary dynamics may also
lead to chaotic behaviour.

We consider the notions of Evolutionary Game Theory as a solid framework
that allows a concrete examination of self–organization procedures in a large
number of selfish individuals. This theory originated from a fruitful interaction of
Biology, Economics, Game Theory and (rather recently) Computer Science. Our
work examines a yet quite unexplored but crucial aspect of Evolutionary Game
Theory, namely the combinatorial, algorithmic and computational complexity
issues involved.

Indeed, the effort of deriving concrete conclusions in any non-trivial model of
antagonistic evolutionary behaviour, poses interesting computational questions
and complex decision problems. The further, pragmatic growth of the field seems
to depend on how efficiently these questions can be answered, or even approx-
imated. This view seems to invite an interaction of the field with the field of
Algorithmics and Computer Science. We highlight such issues here and provide
initial evidence of the usefulness of algorithmic way of thought in the strategic
evolution domain.

The Self- tar Visions

8 O. Babaoglu et al.

Self- wareness

Self-�: A New Paradigm
Robert Laddaga and Paul Robertson

Software development technology is critically in need of new paradigms sup-
porting increased robustness. Robustness is of great concern now because our
systems are becoming more complex, and because they are increasingly sensing
and controlling our physical environment and processes. One such paradigm is
self-�, a collection of properties such as self reconfigurable, self adaptive, self
aware, and self checking. We believe that all self-� systems share the following
traits:

– Deferral of design decisions to runtime (a form of late binding)
– Metaprogramming
– Explicit attention to state of the world
– Attention to program state

Software design consists in large part in analyzing the cases the software will
be presented with, and ensuring that requirements are met for those cases. A
design decision in the context of any possible program state, any possible input,
and any possible condition of the environment is inherently more complex than
deciding what to do given a specific input in the context of a specific state of the
program and the environment. Self-� systems attempt to use various forms of
metaprogramming to enable them to defer decisions to runtime, when attention
to the state of the world and the state of the program can be used to reduce the
complexity that would otherwise be overwhelming.

Self Adaptive Software (our new self-� paradigm) monitors its own operation
and attempts to correct deviations from required behavior. In the self adaptive
architectures we are developing, it accomplishes this by diagnosing the sources
of deviant behavior, whether internal program problems, or contextual changes
in an embedded program’s environment. The software then responds by recon-
figuring itself, to use alternate procedures that either correct the malfunction,
or perform better in the current context. The diagnosis and reconfiguration are
in part accomplished by storing models of the goals, structure, design and re-
quirements of a program such that they are available to the program at run
time. Since most of our self adaptive systems are also embedded systems, mod-
els of the physical plant which the software controls or effects are also stored
and referenced at run time.

Self Adaptive Software provides some advantages over some other self-� ap-
proaches, that utilize a more reactive programming technique, and which are
inherently less self aware. these advantages include:

– Explicit management of contexts is used to increase robustenss and reduce
effective complexity

– Existing functions can be ”wrapped” and used in self adaptive architectures
– Use of the descriptions and models in the software motivates their produc-

tion, and they are also valuable for development and maintenance

a

9

– It is easier to control (rather than depend on) emergent behavior
– It is easier to make self aware systems explain their behavior

Important open research issues for Self Adaptive Software are the following:

– Providing assurance of software behavior – convergence on correct solutions,
stability, limits on emergent behavior

– Providing tools to assist in development of self evaluation code
– Providing tools to assist in development of descriptions and models of soft-

ware and controlled systems
– Incorporating learning into Self Adaptive systems.

Online Performance Models
Daniel A. Menascé, Mohamed N. Bennani and Honglei Ruan

Modern computing environments are becoming increasingly complex in nature
and exhibit highly varying and unpredictable workloads. Such systems have a
multitude of parameters whose settings may significantly affect performance.
Under these circumstances, it is virtually impossible for human beings to contin-
uously tune a system’s configurable parameters. Therefore, these systems must
be self-managing and self-organizing.

We present an approach that consists of a controller that continuously deter-
mines the configuration that optimizes a given goal function, which is typically
a function of the system performance metrics. The size of the state space of pos-
sible configurations grows in a combinatorial way with the number of controlled
parameters. Therefore, the controller uses combinatorial search techniques to
find a configuration for which the value of the goal function is as close as possi-
ble to its desired level.

The goal function for a system’s current configuration is evaluated as a func-
tion of performance metric measurements. However, as the search technique
explores the configuration state space, the goal values for potential new config-
urations have to be computed through the use of models that can predict the
value of performance metrics for these configurations. We use analytic perfor-
mance models—typically queuing network models—of the controlled system to
obtain the values of these performance metrics for each configuration.

This online use of predictive performance models is a departure from their
common use in capacity planning, where performance models are used to analyze
and compare scenarios over relatively long (in the order of months) periods of
time. In the case of self-configuring and self-managing systems, configurations
may have to change very frequently (at a few-minute intervals).

Our technique has been implemented and evaluated in many different set-
tings. In the paper presented in this book we show the effectiveness of the con-
troller on a real Web server. We also show that the controller becomes more
effective when the frequency of its invocation is a function of the relative error
between the desired performance level and the current performance. The con-
troller effectiveness improves even more if it uses workload intensity forecasting

The Self- tar Visions

10 O. Babaoglu et al.

techniques. The techniques discussed here are shown to be robust to high vari-
ability of the interarrival time and service time distributions. Finally, we showed
how online performance models can be used to design QoS-aware service oriented
architectures.

Proactive Failure Prediction
Felix Salfner, Günther Hoffmann and Miroslaw Malek

Massively distributed, heterogeneous hardware-software systems day by day
reach higher and higher complexity levels and their behavior is in parts, es-
pecially with respect to certain properties such as dependability and security,
unpredictable. A naive belief, that non laboratory systems are deterministic,
manually manageable or fault free, is a myth. A number of reasons lead to
this increased complexity: rapidly increasing size of individual software com-
ponents, growing heterogeneity of components, decentralization, emerging new
technologies such as ad-hoc reconfiguration and accelerated software develop-
ment through code reuse techniques. Additionally, fault tolerance techniques and
performance boosters can introduce stochastic dynamics, which further compli-
cates matters. This has been leading to a change in the way software systems are
perceived and to changing concerns from fault centric — whether a system will
work to how well it will work. There is reason to believe that future systems will
grow in complexity making them even more failure prone and unpredictable.

In order to sustain an acceptable level of dependability, radically new methods
have to be incorporated in addition to a mix of formal methods, attempts to
prove correctness or at least consistency and testing. No amount of proving or
testing will at present certify the system’s correctness. Therefore, we need to
learn to coexist with unpredictable systems and learn to react and adapt in case
of unpredictable changes.

Self-� properties have been proposed as a potential solution to this prob-
lem. We propose an aggressive, preventive maintenance by developing automatic
stochastic software failure prediction methods which provide for downtime min-
imization, graceful degradation or outright failure avoidance. In our work we
focus on self-managing properties, or in other words anticipating software sys-
tems. We advocate a proactive approach which capitalizes on probabilistic failure
prediction by selecting appropriate methods for avoiding the failure (e.g., load
decrease, process retry, failover) or for minimizing the recovery time in case of
a crash.

Since failures are stochastic events, it is our belief that the system’s behavior
can be captured by its probabilistic representation. Machine learning techniques
are a class of algorithms that are able to handle the complexity of software
systems. They are also capable of finding non-obvious relationships in data and
identifying suspicious patterns and deviations from normal behavior. We present
two approaches which are Universal Basis Functions (UBF) and Similar Events
Prediction (SEP). In our study we model and predict failures of a telecommuni-
cation system.

11

Making Self- daptation an Engineering Reality
Shang-Wen Cheng, David Garlan and Bradley Schmerl

We posit our vision of a software engineering reality where engineers can develop
self-adaptive software-intensive systems cost-effectively. Imagine a world where
a software engineer could take an existing software system, specify for a set
of properties of interest (1) an objective, (2) conditions for change, and (3)
strategies for their adaptation and, within a few man-weeks, make that system
self-adaptive where it was not before. An engineer might take an existing client-
server system and make it self-adaptive with respect to a specific performance
concern such as high latency. He might specify an objective to maintain response
latency below some threshold, a condition to change the system if the latency
rises above the threshold, and a few strategies to adapt the system to fix the
high-latency situation.

Systems increasingly require mechanisms to monitor and adapt themselves to
failures or surrounding changes, that is, to self-adapt. Currently such capabilities
are realized in somewhat limited forms through programming language features
such as exceptions and in algorithms such as fault-tolerant protocols. These
mechanisms are often highly specific to the application and tightly bound to the
code, making them costly to build and difficult to maintain once added. Rather
than rely on internal mechanisms, we apply a closed-loop control paradigm us-
ing external mechanisms to monitor, model, and control a running system. We
further use architectural models to get global system perspective and system
constraints, and architectural styles to give us leverage on analysis and guidance
for self-adaptation.

To achieve self-adaptation as we envisioned, in addition to mechanisms for
monitoring, techniques for diagnosis and problem correction, and capabilities for
run-time reconfiguration, we need to make it possible for engineers to use these
in cost-effective and principled ways. In particular, we would like to be sure
that engineers can augment existing systems to be self-adaptive without having
to rewrite them from scratch, that self-adaptation policies and strategies can be
used across similar systems, that multiple sources of adaptation expertise can be
synergistically combined, and that all of this can be done in ways that support
maintainability, evolution, and analysis.

We show how our Rainbow approach, supported by three case studies, fulfills
the important properties of generality, cost-effectiveness, and composability. Specif-
ically, we focus on the separation between the general parts of Rainbow that can be
applied across different styles of systems and different concerns, and the tailorable
parts that need to be written to apply Rainbow to specific systems and concerns.

Control-Theoretic Concepts
Nagarajan Kandasamy, Sherif Abdelwahed, Gregory C. Sharp and
John P. Hayes

Our ongoing research effort focuses on the theory and practice of designing self-
managing distributed computing systems. To operate such systems effectively,
multiple performance-related parameters must be continuously tuned to dynamic

The Self- tar Visions

a

12 O. Babaoglu et al.

operating conditions, and the current state-of-the-art involves substantial human
effort. To cope with the complexity expected of future computing systems, it is
highly desirable for such systems to manage themselves, given high-level quality-
of-service (QoS) objectives from administrators.

Our position is that control-theoretic concepts are applicable to selected and
important resource management problems in computing systems, including self-
optimization where the system aims to improve its performance and efficiency
continuously. Control theory provides a systematic approach to resource man-
agement in general settings; if the underlying system is correctly modeled and its
operating environment accurately estimated, the actions required to maintain a
set QoS level and/or optimize a given utility (cost) function can be derived. It
also provides well-established mathematical techniques to analyze system per-
formance and correctness.

We are currently developing online control techniques that allow multiple QoS
objectives and operating constraints to be explicitly represented as an optimiza-
tion problem and efficiently solved at each time step. This approach can manage
systems exhibiting both simple and complex nonlinear dynamics. Our research
also studies how to build self-healing capabilities within the control framework
where the system reconfigures itself in response to hardware (software) resource
failures. Stability and feasibility analysis of these control algorithms is another
important part of this work. We have, so far, applied this approach to problems
such as power management in microprocessors and real-time data processing un-
der a dynamic workloads with promising results. We plan to extend the approach
to tackle other important resource management problems in distributed systems
such as energy-efficient load balancing in server clusters and dynamic resource
provisioning between multiple applications in data centers, among others.

If successful, this research will result in systematic and theoretically sound
techniques to design and operate large-scale self-managing computer systems.

Restart
Katinka Wolter

Modern information systems are becoming increasingly complex, powerful and
at the same time very widely used. They are being used not only by experts, but
in first place by people who quickly want to buy a train ticket, people who want
to look up something on the Internet, or people who must write a text. Most
users want to have their service delivered by the computer system, but they do
not want to know why and when and how the system works.

Obviously, every system will not always work. Computer systems need main-
tenance, repair and management. Very often, nowadays, some of these can be
done remotely, facilitating this task enormously for customers and management
service providers.

If the deployment of modern computer systems will continue to spread as
it did in the past, management has to become a very simple and easy task.
Otherwise there will soon be not enough people available to support all existing
computer systems. To what extent a system has ’self’ properties will become

13

a very important characteristic. And ’self’ capabilities of systems include as an
essential part easy solutions for complex problems.

Our field of research, the ’black-box’ restart of jobs is an extremely easy
solution for an extremely hard problem. The addressed problem is the reduc-
tion of long job execution times. We do not try to understand why jobs take
extremely long or fail, we only want to know for a given job, whether it is of
the ’extremely long’ type. This reduces the problem complexity enormously and
makes it amenable to a simple solution such as restart. Such simple and prag-
matic solutions are the only way to handle complex information systems in the
future.

We take in our work a pragmatic view and propose an algorithm that is de-
signed for one metric, but works for arbitrary completion time problems. It pro-
vides on-line a recommendation for when a job should be aborted and restarted,
so that system performance is maximised. This will in many cases solve the
problem of ‘pending jobs’ and we see it as a first step on the way to automatic,
or semi-automatic system management.

Restart cannot replace all system management, but it can solve some man-
agement problems, so that in those situations not even someone is needed to
analyse the system and its problem. Some of the management issues are trans-
ferred from people to the system itself.

Mathematical Foundations
Tomasz Nowicki, Mark S. Squillante and Chai Wah Wu

Many original concepts and ideas for self-� properties of complex information
systems have come from the natural sciences where there are various examples
of self-managing systems. An an example, the autonomic function of the human
central nervous system is one often cited inspiration. Hence, in the same way
that mathematics plays important roles in the natural sciences, mathematical
methods must provide the foundations for self-� systems. In particular, mathe-
matical methods must be exploited in a manner that is as central as it is in, e.g.,
physics, to best achieve the diverse goals of providing self-� properties. This is
required in at least 3 fundamental areas: The models and methods to analyze
and understand self-� systems; The laws and properties that characterize and
predict the complex dynamics of any aspect of a self-� system; The algorithms
and policies to control, manage and optimize any aspect of a self-� system and
its complex dynamics to achieve any objective of interest.

This fundamental and pervasive role for mathematical methods in self-� sys-
tems is important for a variety of reasons. Many different issues and problems
associated with self-� systems essentially reduce, either in part or as a whole, to a
much smaller number of fundamental mathematical problems. The correspond-
ing solutions are required across a wide range of temporal and spatial scales in
order to meet a common overall goal. These and other complexities of current
and future self-� systems pose new challenges whose solutions must be based
on sophisticated mathematical methods. We simply cannot afford approaches
based on forcing elementary solutions that do not fit or are inappropriate, as the

The Self- tar Visions

14 O. Babaoglu et al.

consequences of doing so will be disastrous; e.g., consider the chaotic behavior
exhibited in various markets which share some of the characteristics of self-� sys-
tems. Furthermore, new mathematical results and methods must be developed
as needed, and these mathematical results/methods must also be tailored to the
data available and time scale(s) of the problem at hand. These solutions are
often best obtained through a combination of different mathematical methods
working together in a unified manner. They must also balance the quality of
solution with its costs.

In support of this position, our study investigates the mathematical founda-
tions of two fundamental aspects of management in self-� systems: the optimiza-
tion of the entire range of autonomic system objectives, and the dynamic control
of achieving these optimal solutions. We first establish several important results
regarding decentralized optimization, including showing that there is no loss of
quality in the (static) solution obtained under a decentralized approach versus
a centralized approach. We then turn to study the dynamics of this system in
which optimization decisions are made continually over time and at multiple
time scales. Our analysis illustrates some of the potential problems and com-
plicated behavior of such continual decentralized optimization when the system
environment changes over time, which can include phase transitions, chaos and
instability. One of the fundamental problems then is to determine this complex
interaction between dynamics and optimization as we consider in our study.

Versus

The Conflict Between Self-� Capabilities and Predictability
Rogério de Lemos

This paper takes the position that autonomy (the basis for enabling self-� capa-
bilities) and predictability are conflicting aspects when building systems. Start-
ing from the premise that there is a dichotomy on how systems are described,
either process or data, this paper argues that uncertainties associated with these
forms of system description dictate the ability that a system has in adapting to
changes. The difference between process and data representations can be inter-
preted from the perspective of accuracy and precision. While process descriptions
might be precise but not accurate, data descriptions might be accurate but not
precise. In process descriptions, the assumptions that allow a process to be real-
izable introduce uncertainties. However, when these assumptions are discharged
more accurate models can be obtained, thus eliminating uncertainties from the
system. On the other hand, data descriptions are an abstraction of the actual
behaviour of the system, and in some cases for the data to be meaningful it has
to undergo through some generalizations. These two issues inevitably lead to the
introduction of uncertainties on how systems are described, and it is from these
uncertainties that emergent behaviours materialize.

The above argument is supported by two examples on how process and data
descriptions of systems can handle predictability and autonomy. In the first ex-

Self- warenessa Self- rganizationo

15

ample, we present an architectural solution based on exceptional handling to
tolerate faults. The solution relies on a process description for building adapt-
able, but deterministic systems. Uncertainties are eliminated from the system
behaviour, however the solution is not scalable since exceptional handling based
solutions are invariably application dependent, i.e., there is no single mechanism
that is able to deal with a general class of faults. For example, it would be fea-
sible to apply such architectural solution to handle intrusions because of the
uncertainties associated with these. In the second example, we present an artifi-
cial immune system solution (AIS) for the detection of anomalies. The solution
relies on a data description for generating error detectors that are able to iden-
tify new unexpected circumstances. The rationale associated with this approach
is that if systems are to be autonomous when reacting to changes, in this case
undesirable, then it is essential that the system should be able to recognise new
erroneous states, and adapt its set of detectors accordingly. In this particular
context, it has been observed that the generalisation of potential detectors has
lead to a decrease on the detection coverage, and an increase in the number of
false positives, i.e., false alarms.

The idea of developing systems that rely on both process and data represen-
tations, which explores the complementary benefits of these, is not new. Such
hybrid systems have mostly been confined to stand alone closed systems, however
the challenge ahead is whether the same idea can be applied to more complex
systems that are open and collaborative in their nature, and which are expected
to show self-� capabilities and be predictive at the same time.

Self- ware Software
Peter Andras and Bruce G Charlton

Research on self-aware software systems is an active part of computer science
almost since its inception. This research led to many interesting theories and
applications, but no truly self-aware software system has been developed so far.
It appears that a critical barrier that could not be overcome is that software
systems are unable to generate appropriately adaptive responses in previously
unknown situations.

One possible way towards the development of self-aware software is to imi-
tate natural self-aware systems. The theory of abstract communication systems,
built on works of Niklas Luhmann about abstract social systems, provides a
very effective framework for the analysis of such systems. Analysing natural
self-aware systems, like cells or organisations, reveals features that are critically
related to their self-awareness abilities. Such features are: (1) they possess both
short- and long-term memories, (2) they have an information subsystem, which
processes and creates new memories; (3) they have a set of long-term memory
communications representing a self-model that is referenced by identity check
communications of the information subsystem; (4) their self-model is adaptive
and is changing in response to faulty communications, errors and failures expe-
rienced by the system.

a

The Self- tar Visions

16 O. Babaoglu et al.

We see computer software as a communication system of many components
executed on computer hardware. The software in this context is the set of in-
teractions between communication units (e.g., objects). In our view software
systems should have comparable features to natural self-aware systems in or-
der to become truly self-aware. Software systems need to expand their memory
communications, by creating memories of most interactions between software
communication units. The extensive sets of memories will provide the foun-
dations for the development of the information subsystem of the software (see
aspect oriented programming). Self-monitoring should be based on memory com-
munications and on identity-check communications of the system. The software
system itself should emerge to large extent from identity-check communications.
Self-aware software systems should aim to reproduce and expand themselves as
communication systems. They should perform their functionality by adapting to
their environment and reproducing and expanding within this environment. The
software should adapt its self-model, the code of itself, in response to faulty in-
teractions, errors and failures experienced by the system. Building such systems
will need a novel ’from within’ approach to software development.

Supporting Self-�

Design Methodology
Indranil Gupta, Steven Ko, Nathanael Thompson, Mahvesh Nagda,
Chris Devaraj, Ramsés Morales and Jay A. Patel

Today, designing new protocols for self-� distributed systems such as peer-to-
peer systems, autonomic Grid applications, etc., is an extremely challenging
task. The only resources available to a researcher designing new protocols are her
basic distributed systems knowledge, prior research literature, and the designer’s
experiences. This “seat of pants” approach to protocol design has resulted in
long research project timelines, long lag times to production, and complex final
system designs when pieces are assembled.

We believe these shortcomings can be addressed for future systems by popu-
lating and enriching a new resource for the protocol designer – Protocol Design
Methodologies. Loosely, a protocol design methodology is an organized, docu-
mented set of building blocks, rules and/or guidelines for design of a class of
distributed protocols. It is possibly amenable to automated code generation.

Given a distributed computing problem then, a collection of methodologies
can be brought to bear, for either innovating novel protocols, or for composing
existing protocols. This results in a more systematic approach to protocol design.
It augments the creative activity of protocol innovation, rather than stifle it.
Methodology research has already matured in other fields such as hardware
synthesis, operating systems, and software engineering, etc.

Methodologies for distributed systems can be either innovative, i.e., create
novel unknown protocols, or composable, i.e., combine existing protocols, thus
enriching their properties. Methodologies can also be have retroactive or progres-

17

sive, i.e., they can help in understanding design principles of existing protocols,
or create new protocols (or both).

For instance, many protocols derived from natural phenomena suffer from
hand-wavy descriptions and analyses. This is due to the lack of systematization.
We have created a new innovative and progressive methodology that translates
systems of differential equations (that can be used to represent a natural phe-
nomenon) into equivalent distributed protocols. The use of a methodology guar-
antees that the protocol can be specified formally, and its self-stabilization and
fault-tolerance properties can be proved.

Many of the creative distributed protocol ideas, designed by the community
over the years, are either never read or never used in a real system. Retroac-
tive and composable methodologies can help systematize the understanding of
large classes of protocols, increasing not only chances of their use but also the
possibility that they will be composed with other popular protocols.

Autonomic Grid Applications
M. Parashar, Z. Li, H. Liu, V. Matossian and C. Schmidt

Pervasive information and computational Grid environments are inherently large,
complex, heterogeneous and dynamic, globally aggregating large numbers of in-
dependent computing and communication resources, data stores and sensor net-
works. Furthermore, emerging Grid applications are similarly complex and highly
dynamic in their behaviors and interactions. Together, these characteristics re-
sult in application development, configuration and management complexities
that break paradigms based on passive components and static compositions and
interactions, and impose new requirements on programming systems for Grid ap-
plications. Grid programming systems must be able to specify applications that
can detect and dynamically respond during execution to changes in both, the
state of execution environment and the state and requirements of the application.
This requirement suggests that: (1) Grid applications should be composed from
discrete, self-managing components, which incorporate separate specifications for
all of functional, non-functional and interaction-coordination behaviors. (2) The
specifications of computational (functional) behaviors, interaction and coordina-
tion behaviors and non-functional behaviors (e.g. performance, fault detection
and recovery, etc.) should be separated so that their combinations are compos-
able. (3) The interface definitions of these components should be separated from
their implementations to enable heterogeneous components to interact and to
enable dynamic selection of components.

Addressing these challenges requires redefining the programming framework
to address the separations outlined above. Specifically, it requires (1) static ap-
plication requirements and system and application behaviors to be relaxed, (2)
the behaviors of elements to be sensitive to the dynamic state of the system
and the changing requirements of the application and be able to adapt to these
changes at runtime, (3) required common knowledge be expressed semantically
rather than in terms of names, addresses and identifiers, and (4) the core en-
abling middleware services be driven by such a semantic knowledge.

The Self- tar Visions

18 O. Babaoglu et al.

In this paper we first investigate the challenges and requirements of program-
ming Grid applications, and present self-managing applications as a means for
addressing these requirements. We then introduce Project AutoMate, which in-
vestigates autonomic solutions, based on strategies used by biological systems, to
realize Grid applications that are capable of managing (i.e., configuring, adapt-
ing, optimizing, protecting, healing) themselves.

System-Level Support
Simon Patarin and Mesaac Makpangou

Recently, autonomic computing has received much consideration and many ef-
forts have been put in the various aspects of this emergent domain. However,
several years after the identification of this research area (the term “autonomic
computing” was first coined in 2001, while “trouble-free systems” had been al-
ready mentioned in 1999), autonomic applications have still not modified our
day-to-day relationships with a computer.

Although some progresses have made their way into grid computing and
enterprise-class software, the standard end-user is left behind. What should ex-
pect end-users from a forest fire application, an oil-reservoir application or a
self-healing cluster (all examples taken from the most recent literature)? What
about an autonomic Web server, an autonomic proxy-cache, an autonomic mail
server or an autonomic peer-to-peer file-sharing application instead? This fact
is rather paradoxical as the former applications seem much more complex to
apprehend rather than the latter ones. Perhaps, this could be risen as an expla-
nation: complex, unpredictable, applications are required to exercise autonomic
systems appropriately. But, we do not believe it to be true. Internet is more than
enough complex and unpredictable so that any distributed application is a good
candidate to demonstrate autonomic capabilities.

According to us, it is a good system-level support for autonomic applica-
tions that is currently missing. One that would present the right abstractions
to the developers, which would allow them to prototype autonomic applications
rapidly. One that would be flexible enough to cope with the diversity and the
heterogeneity of current platforms. One that would be efficient in terms of per-
formance, because you simply cannot pretend maintaining any sort of quality of
service if the service you propose is of poor quality right from the beginning. And
one that would keep simple applications easy to implement. It is our belief that
such a basis would allow researchers with different motivations and experiences
to put their ideas in practice, free from the painful details of low-level system
implementation. As the first simple autonomic elements become available, it will
be easier and easier to build more complex system or to plug one’s strategy into
an existing element: a bottom-up development strategy does seem appropriate
in building autonomic applications.

After having defined how autonomic systems should work and outlined pos-
sible approaches, time has come to see them actually working and to make them
available to the largest possible audience. We are coming very close to systems

19

that “just work”, all we need now is the right system support to federate current
efforts and reify them.

Spatial Computing
Marco Mamei and Franco Zambonelli

A number of approaches to support self-� properties in computing are being
proposed since the past few years. In general, we fully agree on the opinion that
future computing systems will have to exploit self-� properties in nearly all of
their facets: self-configuration, self-tuning, self-healing etc. Whether you call it
proactive computing or autonomic computing or — better and more compre-
hensive — “self-ware”, it is becoming rather clear that the intrinsic complexity
and decentralization of today and future computing scenarios requires humans
to be out of the loop. Any approach that requires software and complex network
systems to be “manually” managed by human will soon become practically and
economically unfeasible. In this context, most of current scientific and technolog-
ical researches on “self-�” computing propose special-purpose and specially-tune
solutions to specific kinds of problems. Most of these works are indeed interesting
and are providing useful insights on the general problems.

However, we think that to effectively leverage self-� approaches from a sci-
entific curiosity to both a sound science and a practical engineering discipline
we must also definitely look for general purpose approaches and solutions. Such
general purpose approaches should provide a uniform set of abstractions and
tools for deploying a variety of self-� properties in a variety of heterogeneous
computing scenarios that are emerging. These include: (i) micro-networks, i.e.,
networks of low-end computing devices typically distributed over a geograph-
ically small area (e.g., sensor networks and spray computers); (ii) ubiquitous
networks, i.e., networks of medium-end devices, distributed over a geographi-
cally bounded area, and typically interacting via short/medium range wireless
connections (pervasive computing systems, smart environments and cooperative
robot teams); (iii) global networks, characterized by high-end computing systems
interacting at a world-wide scale (the physical Internet, the Web, P2P networks
and multiagent systems).

Starting form such a motivation, our current research work is aimed at iden-
tifying the role that can be possibly played by spatial abstractions and by their
adoption as building blocks for a novel general-purpose “spatial computing”
approach for distributed system development and management. A spatial com-
puting approach — by providing application components with an explicit rep-
resentation of their operational environment in terms of a space encoding some
application-specific features, and by having application level activities expressed
in terms of sensing the properties of space and navigating in it — can effectively
deal with network dynamics in large scale systems, can facilitate the integration
of variety of self-� properties in distributed systems, and also suit those systems
whose activities are intrinsically situated in an environment. More important: (i)
a spatial computing approach, by providing application components with an ab-
stract — high-level perspective of the operational environment, appears suitable

The Self- tar Visions

20 O. Babaoglu et al.

for a wide range of heterogeneous scenarios; (ii) most of current approaches to
self-ware in distributed systems can be easily mapped into phenomena of spatial
self-organization, thus making to model in spatial computing terms a variety of
very diverse self-� approaches. Our paper included in this book elaborate around
spatial computing, its relations with self-� approaches, and sketches some of our
current research work in the area of “spatial computing middleware”.

QoS-Enabled Peer-to-Peer Systems
Vana Kalogeraki, Fang Chen, Thomas Repantis and
Demetris Zeinalipour-Yazti

Current efforts on P2P systems have focused on organizing the nodes in the
network, improving resource usage, minimizing network latencies and reducing
the volume of unnecessary traffic incurred in the P2P overlays. These have shown
that P2P systems have been used successfully in the context of large scale file
systems, resource sharing, multicast and information retrieval. Thus far, most
of the work has concentrated in the sharing of “small” objects including MP3
music files, images, and audio.

Our position is that we can support distributed applications with Quality
of Service (QoS) demands on Peer-to-Peer (P2P) systems. It is our belief that
by exploring the self-� properties such as self-organization, self-configuration
and self-monitoring of the nodes of the P2P infrastructure and the necessary
provisions, we will simplify the management and be able to support distributed
applications that have QoS demands.

We believe that the decades of research in middleware technologies will help
to achieve these goals. Examples include OMG’s Common Object Request Bro-
ker Architecture (CORBA), Microsoft’s Distributed Component Object Model
(DCOM), Sun’s Java Remote Method Invocation (RMI) and the Simple Ob-
ject Access Protocol (SOAP). These represent mature, extensive and portable
infrastructures that simplify the management of the applications and enable
them to interoperate independently of their computing platforms and network-
ing protocols. This work should be fully considered when developing distributed
applications in P2P systems.

However, there are significant challenges that must be addressed. These ap-
plications demand multiple end-to-end QoS guarantees, such as predictable la-
tency and jitter, reliability, and scalability. Large-scale environments have unpre-
dictable latencies and changing resource availability, thus require systems that
are easy to manage and able to adapt to dynamic changes in the utilization or
availability of the resources.

To achieve our goals, we need to explore mechanisms for managing local re-
sources, prioritizing application requests and propagating resource and timing
measurements system-wide, and adaptive self-organization algorithms that im-
prove application latencies and balance the load across multiple peers to meet
the application end-to-end soft real-time and QoS requirements. These will help
us to achieve high levels of performance and scalability and truly create self-
managing QoS-enabled P2P systems.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 21 – 35, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evolving Fractal Gene Regulatory Networks for Graceful
Degradation of Software

Peter J. Bentley

Department of Computer Science, University College London,
Malet Place London, WC1E 6BT, UK
P.Bentley@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/staff/p.bentley/

Abstract. Fractal proteins are an evolvable method of mapping genotype to
phenotype through a developmental process, where genes are expressed into
proteins comprised of subsets of the Mandelbrot Set. The resulting network of
gene and protein interactions can be designed by evolution to produce specific
patterns that in turn can be used to solve problems. In this paper, adaptive
developmental programs, capable of developing different solutions in response
to different signals from an environment, are investigated. The evolvability of
solutions and the capability of these solutions to survive damage is assessed.
Evolution is used to create a fractal gene regulatory network (GRN) that
calculates the squareroot of the input (its environment). This is compared with a
GP-evolved squareroot function and a human-designed squareroot function.
The programs are damaged by corrupting their compiled executable code, and
the ability for each of them to survive such damage is assessed. Experiments
demonstrate that only the evolutionary developmental code shows graceful
degradation after damage. This provides evidence that software based on gene,
protein and cellular computation is far more robust than traditional methods.
Like a multicellular organism, with its genes evolved and developed, it shows
graceful degradation. Should it be damaged, it is designed to continue to work.

1 Introduction

Human designs are carefully-crafted, consciously-created fusions of experience and
skill. Our designs usually work reliably and well under the conditions they were de-
signed for. Unfortunately, they rarely work well under unforeseen conditions. A ship
will sink in the wrong kinds of seas, a car will crash on the wrong kinds of roads. A
program will fail in the wrong kind of software environment. And sadly for computer-
users worldwide, the mess of different software on an average computer causes such
complex environments that programs fail with tired regularity.

Natural systems are also carefully crafted, but there is no conscious mind or skill
needed to produce her designs. Generations of past experience drives evolution to
create robust, damage-tolerant solutions. Organisms don’t fail if they sustain minor
damage. A broken finger hardly slows us. The equivalent damage to a human-
designed program would produce terminal failure.

The work described here continues an ongoing investigation into the use of devel-
opmental systems with evolutionary computation. Here, fractals are employed as a

22 P.J. Bentley

computer representation of proteins. Earlier work has shown that fractal proteins are
highly evolvable by a genetic algorithm (Bentley 2004, 2003c), that specific patterns
of activation in a fractal gene regulatory network (GRN) can be evolved (Bentley,
2004, 2003b), that they can perform computational tasks such as function regression
and robot control (Bentley 2003a), and that evolved fractal GRNs naturally show
fault-tolerance (Bentley 2003c). This work now focuses on the evolution of develop-
mental programs that display graceful degradation when damaged.

2 Background

Questions of reliability and graceful degradation occur frequently in fields focusing on em-
bedded systems. To date, most solutions seem to depend on architectures that partition soft-
ware into separate components, organised in such a way that the failure of non-critical com-
ponents will not induce the failure of the whole system (Shelton & Koopman, 2001).

In Evolutionary Computation, scientists have been focussing on the ability of evo-
lution, and more commonly developmental methods, to enable self-repairing behav-
iour and graceful degradation of solutions. The work of Andy Tyrrell and his group
create fault-tolerant hardware inspired by ideas of embryology and immune systems
(Jackson and Tyrrell, 2002). More recently, Julian Miller has described experiments
evolving developmental programs to create “French Flag” patterns (Miller and
Banzhaf, 2003). He shows that development is able to regenerate these patterns
should some of their cells be removed. Current work by Mahdavi and Bentley (2003)
demonstrates how adaptive evolutionary control can enable a “Smart Snake” to rede-
velop new movement strategies even after the loss of a crucial muscle (Nitinol wire).

In his research on fault-tolerant systems, Thompson (1997) describes how “grace-
ful degradation for free” can be achieved in theory and in practice for robot control-
lers, “from the nature of the evolutionary process.” Thompson suggests that mutation-
insensitive individuals will, in the long term, survive better, thus producing a pressure
towards fault-tolerant solutions. More recently, the same results were demonstrated
with fractal developmental processes (Bentley 2003c), where there are no direct map-
pings: pleiotropy and polygeny are prevalent, and genes are reused over many devel-
opmental iterations. It was shown that through the Baldwin Effect, solutions “natu-
rally” became more efficient and fault-tolerant (Bentley 2003c). In more detail, the
work demonstrated that if evolution was permitted to run for a further 1000 genera-
tions after a perfect solution had evolved, the fractal GRNs continued to evolve: the
number of genes and proteins that made up the solution was reduced (so there is less
to be damaged), and duplicate genes were added, which provide redundancy and
protection against damage.

This paper extends this work, showing that damage directly to the executable code
(and not just a gene in the system) can be survived by evolved developmental programs.

3 Fractal Proteins

Development is the set of processes that lead from egg to embryo to adult. Instead of
using a gene for a parameter value as we do in standard EC (i.e., a gene for long legs),

 Evolving Fractal GRNs for Graceful Degradation of Software 23

natural development uses genes to define proteins. If expressed, every gene generates
a specific protein. This protein might activate or suppress other genes, might be used
for signalling amongst other cells, or might modify the function of the cell it lies
within. The result is an emergent, asynchronous, parallel “computer program” made
from dynamically forming gene regulatory networks (GRNs) that control all cell
growth, position and behaviour in a developing creature (Wolpert et al, 2001).

Table 1. Types of objects in the model

fractal proteins defined as subsets of the Mandelbrot set.
Environment contains one or more fractal proteins (expressed from the environment gene(s)),

and one or more cells.
Cell contains a genome and cytoplasm, and has some behaviours.
Cytoplasm contains one or more fractal proteins.
Genome comprising structural genes and regulatory genes. In this work, the structural

genes are divided into different types: cell receptor genes, environment genes and
behavioural genes.

regulatory gene comprising operator (or promoter) region and coding (or output) region.
cell receptor gene a structural gene with a coding region which acts like a mask, permitting variable

portions of the environmental proteins to enter the corresponding cell cytoplasm.
environment gene a structural gene which determines which proteins (maternal factors) will be

present in the environment of the cell(s).
behavioural gene structural gene comprising operator and cellular behaviour region.

Environment

Cell
Cytoplasm

Genome Fractal
proteins

Fractal
proteins

Environment gene
Cell recepter gene
Regulatory gene
Behavioural gene

FRACTAL DEVELOPMENT

For every cell in the embryo:

For every developmental time step:

Express all environment genes and
calculate shape of merged environment fractal proteins

Express cell receptor genes as receptor fractal proteins
and use each one to mask the merged environment proteins
into the cell cytoplasm.

If the merged contents of the cytoplasm match a promoter
of a regulatory gene, express the coding region of the gene,
adding the resultant fractal protein to the cytoplasm.

If the merged contents of the cytoplasm match a promoter of a
behavioural gene, use coding region of the gene to specify a
cellular function.

Update the concentration levels of all proteins in the cytoplasm.
If the concentration level of a protein falls to zero, that protein
does not exist.

Fig. 1. Representation using fractal
proteins

 Fig. 2. The fractal development algorithm

In this work, a biologically plausible model of gene regulatory networks is con-
structed through the use of genes that are expressed into fractal proteins – subsets of
the Mandelbrot set that can interact and react according to their own fractal chemistry.
Further motivations and discussions on fractal proteins are provided in (Bentley, 2004
& 2003a,b,c). Table 1 describes the object types in the representation; Figure 1 illus-

24 P.J. Bentley

trates the representation. Figure 2 provides an overview of the algorithm used to de-
velop a phenotype from a genotype. Note how most of the dynamics rely on the inter-
action of fractal proteins. Evolution is used to design genes that are expressed into
fractal proteins with specific shapes, which result in developmental processes with
specific dynamics.

3.1 Defining a Fractal Protein

In more detail, a fractal protein is a finite square subset of the Mandelbrot set (Man-
delbrot 1982), defined by three codons (x,y,z) that form the coding region of a gene in
the genome of a cell. Each (x, y, z) triplet is expressed as a protein by calculating the
square fractal subset with centre coordinates (x,y) and sides of length z, see fig. 3 for
an example. In addition to shape, each fractal protein represents a certain concentra-
tion of protein (from 0 meaning “does not exist” to 200 meaning “saturated”), deter-
mined by protein production and diffusion rates.

Fig. 3. Example of a fractal protein defined by (x=0.132541887, y=0.698126164,
z=0.468306528)

3.2 Fractal Chemistry

The model incorporates the notions of cell cytoplasm – a “container” which holds the
proteins belonging to the corresponding cell) and (cellular) environment – the global
“container” which holds proteins visible to all cells. In order to model complex pro-
tein-protein and protein-gene interactions, multiple fractal proteins are allowed to
interact according to their fractal shapes. The interaction occurs by merging separate
protein shapes to form new, complex compounds. The result is a product of their own
“fractal chemistry” which naturally emerges through the fractal interactions.

Fractal proteins are merged (for each point sampled) by iterating through the frac-
tal equation of all proteins in “parallel”, and stopping as soon as the length of any is
unbounded (i.e. greater than 2). Intuitively, this results in black regions being treated
as though they are transparent, and paler regions “winning” over darker regions. See
fig 4 for an example.

3.3 Calculating Concentration Levels

The total concentration of two or more merged fractal proteins is the mean of the
different concentrations seen in their merged product. For example, fig. 4 shows how
fractal proteins are merged to form a new fractal shape. Figure 5 illustrates the

 Evolving Fractal GRNs for Graceful Degradation of Software 25

Fig. 4. Two fractal proteins (left and middle) and the resulting merged fractal protein combina-
tion (right)

Fig. 5. The different concentrations of the two fractal proteins (left and middle) and the concen-
tration levels in their merged product (right)

Fig. 6. The shape of the desired protein as defined by a promoter (left), the shape and concen-
tration levels of merged proteins in the cytoplasm (middle) and the concentration levels seen on
that promoter (right), where total concentration is taken as mean. Note that although a merged
protein may decrease affinity (similarity) to the promoter, should the second protein have a
higher concentration level to the first, it will boost overall concentration seen by the promoter,
i.e., act like a catalyst to speed up (or slow down, if lower) the “reaction”

resultant areas of different concentration in the product. When being compared to the
(xp, yp, zp) promoter region of a gene (the “conditional” part of the gene to be
matched, see later section on genes), the concentration seen on that promoter is de-
scribed by all those regions that “fall under” the promoter, see fig. 5. In other words,
the merged product is masked by the promoter fractal, and the total concentration on
the promoter is the mean of the resulting concentrations, see Fig. 6.

26 P.J. Bentley

3.4 Updating Protein Concentration Levels

Every developmental time step, the new concentration of each protein is calculated
(synchronously). This is formed by summing two separate terms: the previous con-
centration level after diffusion (diffusedconc) and the new concentration output by a
gene (geneoutputconc). These two terms model the reduction in concentration of
proteins over time, and the production of new proteins over time, respectively, where:

diffusedconc = prevconcentration × (1 – 1/ PROTEINDEC + 0.2)
 (PROTEINDEC is a constant normally set to 5)
and:

geneoutputconc = totalconc × tanh((totalconc – ct) / CWIDTH) / CINC

where: totalconc is the mean concentration seen at the promoter,
ct is the concentration threshold from the gene promoter

 CWIDTH is a constant (normally set to 30)
 CINC is a constant (normally set to 2)

3.5 Genes

The environment gene, cell receptor gene, regulatory genes, and behavioural genes all
contain 7 real-coded values:

xp yp zp Affinity threshold Concentration threshold x y z type

where (xp, yp, zp, Affinity threshold, Concentration threshold) defines the promoter
(operator or precondition) for the gene and (x,y,z) defines the coding region of the
gene. The type value defines which type of gene is being represented, and can be one
or all of the following: environment, receptor, behavioural, or regulatory. This en-
ables the type of genes to be set independently of their position in the genome, ena-
bling variable-length genomes. It also enables genes to be multi-functional, i.e. a gene
might be expressed both as an environmental protein and a behaviour.

When Affinity threshold is a positive value, one or more proteins must match the
promoter shape defined by (xp,yp,zp) with a difference equal to or lower than Affinity
threshold for the gene to be activated. When Affinity threshold is a negative value,
one or more proteins must match the promoter shape defined by (xp,yp,zp) with a
difference equal to or lower than |Affinity threshold| for the gene to be repressed (not
activated).

To calculate whether a gene should be activated, all fractal proteins in the cell cy-
toplasm are merged (including the masked environmental proteins, see later) and the
combined fractal mixture is compared to the promoter region of the gene.

The similarity between two fractal proteins (or a fractal protein and a merged frac-
tal protein combination) is calculated by sampling a series of points in each and sum-
ming the difference between all the resulting values. (Black regions of fractals are
ignored.) Given the similarity matching score between cell cytoplasm fractals and
gene promoter, the activation probability of a gene is given by:

 Evolving Fractal GRNs for Graceful Degradation of Software 27

activationprob = (1 + tanh((matchnum – Affinity threshold - Ct) / Cs)) / 2

where: matchnum is the matching score,

 Affinity threshold is the matching threshold from the gene promoter
 Ct is a threshold constant (normally set to 50)
 Cs is a sharpness constant (normally set to 50)

Regulatory Gene
Should a regulatory gene be activated by other protein(s) in the cytoplasm (which
have concentrations above 0) matching its promoter region, its corresponding coding
region (x,y,z) is expressed (by calculating the subset of the Mandelbrot set) and new
concentration level calculated. To do this, the concentration of the resulting protein is
modified by incrementing with geneoutputconc, the result of a function of the concen-
tration threshold (ct) and the mean total concentration seen at the gene promoter (to-
talconc), as given in section 3.5. In this way, higher concentrations of protein on the
promoter will cause an increased rate of output protein concentration growth, while
lower concentrations (below the ct threshold) will increase the diffusion rate of the
output protein (its concentration will decrease at a higher rate).

The cell cytoplasm, which holds all current proteins, is updated at the end of the
developmental cycle.

Cell Receptor Gene
At present, the promoter region of the cell receptor gene is ignored, and this gene is
always activated. As usual, the corresponding coding region (x,y,z) is expressed by
calculating the subset of the Mandelbrot set. However, the resultant fractal protein is
treated as a mask for the environmental proteins, where all black regions of the mask
are treated as opaque, and all other regions treated as transparent. For an example, see
fig. 7. If there is more than one receptor gene, only the first in the genome is used.

Fig. 7. Cell receptor protein (left), environment protein (middle), resulting masked protein to be
combined with cytoplasm (right)

Environment Gene
Like the cell receptor gene, this gene is always activated. It produces environmental
factors for all cells: fractal proteins of concentration 200. If there is more than one
environmental gene, the expressed environmental proteins are merged before being
masked by the receptor protein. If one or more values are being input to the system,

28 P.J. Bentley

the concentration of the environmental fractal proteins are set to those values, i.e. an
input to the system disturbs the environment during development.

Behavioural Gene
A behavioural gene is activated when other protein(s) in the cytoplasm match its pro-
moter region (using the affinity threshold). For this application, a gradual activation
between not activated and activated was required, using the x value of the coding
region (x,y,z) triplet as a fate value to define a function, calculated as follows:

If the gene is being activated with a negative Affinity threshold,
output = output - (totalconcentration - concentrationthreshold) * fate
If the gene is being activated with a positive Affinity threshold,
output = output + (totalconcentration - concentrationthreshold) * fate

Note how the total concentration of proteins seen on the promoter is offset against
the Concentration Threshold gene and scaled by the fate gene (x value of the coding
region), allowing evolution to adjust the range of values seen on the output, and used
to specify behaviours. (If there is more than one behavioural gene, the change to out-
put is averaged over all behavioural genes, each developmental step.)

3.6 Fractal Sampling

All fractal calculations (masking, merging, comparisons) are performed at the same
time, by sampling the fractals at a resolution of 15x15 points. Note that the compari-
son is normally performed between the single fractal defined by (xp,yp,zp) of a gene
and the merged combination of all other proteins currently in the cytoplasm. The
fractal being compared is treated a little like the cell receptor mask – only those re-
gions that are not black are actually compared with the contents of the cytoplasm.

3.7 Development

As was illustrated in figure 2, an individual begins life as a single cell in a given envi-
ronment. To develop the individual from this zygote into the final phenotype, fractal
proteins are iteratively calculated and matched against all genes of the genome.
Should any genes be activated, the result of their activation (be it a new protein, re-
ceptor or cellular behaviour) is generated at the end of the current cycle. Development
continues for d cycles, where d is dependent on the problem. Note that if one of the
cellular behaviours includes the creation of new cells, then development will iterate
through all genes of the genome in all cells.

3.8 Evolution

The genetic algorithm used in this work has been used extensively elsewhere for other
applications (including GADES (Bentley 1999)). A dual population structure is em-
ployed, where child solutions are maintained and evaluated, and then inserted into a
larger adult population, replacing the least fit. The fittest n are randomly picked as
parents from the adult population. The degree of negative selection pressure can be
controlled by modifying the relative sizes of the two populations. Likewise the degree
of positive selection pressure is set by varying n. When child and adult population
sizes are equal, the algorithm resembles a canonical or generational GA. When the

 Evolving Fractal GRNs for Graceful Degradation of Software 29

child population size is reduced, the algorithm resembles a steady-state GA. Typically
the child population size is set to 80% of the adult size and n = 40%. (For further
details of this GA, refer to (Bentley 1999).)

Unless specified, alleles are initialised randomly, with (xp,yp,zp) and (x,y,z) values
between -1.0 and 1.0 and thresh between -10000 and 10000. The ranges and precision
of the alleles are limited only by the storage capacity of double and long ‘C’ data
types – no range constraints were set in the code.

Genetic Operators
Genes are real-coded, but genomes may comprise variable numbers of genes. Given
two parent genomes, the crossover operator examines each gene of parent1 in turn,
finding the most similar gene of the same type in parent 2. Similarity is measured by
calculating the differences between values of operator and coding regions of genes.
One of the two genes is then randomly allocated to the child. If the genome of parent2
is shorter, the child inherits the remaining genes from parent 1. If the genomes are the
same length, this crossover acts as uniform crossover.

Mutation is also interesting, particularly since these genes actually code for pro-
teins in this system. There are four main types of mutation used here:

1. Creep mutation, where (xp,yp,zp) and (x,y,z) values are incremented or dec-
remented by a random number between 0 and 0.5, Affinity Threshold is in-
cremented or decremented by a random number between 0 and 16384 and
Concentration Threshold is incremented or decremented by a random num-
ber between 0 and 200.

2. Duplication mutation, where a (xp,yp,zp) or (x,y,z) region of one gene ran-
domly replaces a (xp,yp,zp) or (x,y,z) of another gene. (This permits evolu-
tion to create matching promoter regions and coding regions quickly.)

3. Gene mutation, where a random gene in the genome is either removed or a
duplicate added.

4. Sign flip mutation, where the sign of Affinity Threshold is reversed.

Crossover is always applied; all mutations occur with probability 0.01 per gene.

4 Squareroot Function Regression

Previous work has demonstrated how evolution can generate specific fractal proteins
that interact with each other in order to produce desired patterns of activation (Bentley
2004) or to produce a specific set of commands for a robot, to guide it past obstacles
(Bentley 2003a). Here, the task is to produce the square root of a number. The input to
the system is provided by setting the concentration of the first environment fractal
protein (all others have a default value of 200). The output is produced by the behav-
ioural gene(s) as described previously. Each genotype was developed ten times in
succession with random input (concentration) values between 0 and 199. The fitness
was the sum of the differences between the values obtained and true squareroot of the
input.

To evolve the controllers, the fractal development system was initialised with a
single cell, 2 environment genes, 2 receptor gene, 2 behavioural genes and 6 regula-
tory genes. (With variable length genomes, evolution was free to modify these gene

30 P.J. Bentley

numbers). The operator and coding regions of the genes were randomly initialised
with the alleles that defined 10 previously evolved protein fractals (Bentley, 2004). 8
developmental steps were employed (ten times, each with a different environmental
protein concentration, corresponding to the ten random inputs), and the evolutionary
algorithm used a population size of 100, running for 1000 generations.

To provide some assessment of how effective fractal proteins are in improving per-
formance or evolvability, the same system was also run with all fractal proteins dis-
abled. In this non-fractal version, the triplet of three real values were used directly
(the affinity value now defined how small the sum of differences between the cis-
region of the gene and the protein should be before the gene is activated). There were
no protein-protein interactions; no fractal shapes were calculated, merged or com-
pared. All other parameters were kept the same.

5 Squareroot Function Regression Results

Figure 8 shows the final fitness scores achieved by the fractal developmental system
and the system using no fractal proteins, for thirty runs. Fitnesses below 40,000
achieved an acceptable accuracy. It should be clear that the system using fractal pro-
teins achieved acceptable fitnesses in 20 out of 30 runs. The system without fractal
proteins only achieved acceptable fitnesses in 7 out of 30 runs. In addition, solution
quality often suffers without fractal proteins – no solutions achieved the same accu-
racy as those produced with fractal proteins.

0

50000

100000

150000

200000

250000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Experiments

F
it

n
es

s

fractal proteins no fractals

Fig. 8. Fitness of developmental squareroot program using fractal proteins and the developmen-
tal squareroot program without fractal proteins. Results are shown sorted into descending order
of fitness for clarity and ease of comparison. The dotted line denotes a fitness of 40,000 – any
solutions with fitnesses at or below this line are considered sufficiently accurate at calculating
the squareroot of the input

 Evolving Fractal GRNs for Graceful Degradation of Software 31

The reason for the difference in performance seems to be evolvability. Without
fractal proteins, solutions become trapped in local optima – GRNs that produce a
linear output are common, instead of the required non-linear squareroot curve. With-
out the ability for new proteins and genes created by evolution to affect existing pro-
teins and genes (through complex protein-protein and protein-gene interactions), there
is no way for evolution to overcome the trap. With fractal proteins, evolution is free to
add new genes which produce proteins that modify existing solutions subtly and in
nonlinear ways. Evolvability is caused by the ability of this representation to enable
gradual modifications to any solutions - not just by changing existing genes but also
by adding new ones that act in combination with existing ones where necessary. This
is evident during evolution as poor solutions gain large numbers of genes, and good
solutions prune the genes down to more robust sizes. Without fractal proteins, each
gene has a much more binary role - it is either critical to the GRN or has no effect at
all - meaning evolution cannot make small changes quite as easily (despite still being
able to duplicate genes).

Previous work (Bentley 2003c) has shown other aspects of evolvability: even after
evolution has found a perfect solution, it continues to evolve, changing genes, pro-
teins and entire GRNs constantly. This representation enables never-ceasing evolu-
tion, which also results in the solutions becoming compact and robust against damage.

6 Damage Tolerant Developmental Programs

Having shown that fractal proteins do convey a significant advantage for evolutionary
development, a further experiment was performed in order to assess how fractal de-
velopmental programs show graceful degradation, when damaged. Using the results
from the previous experiment, the fittest solution was picked (see figure 9a), the
evolved fractal proteins were written into the code as a short list of real-valued con-
stants (the x, y, z values described earlier), the genetic algorithm removed, and the
resulting fractal developmental squareroot program compiled into a stand-alone ex-
ecutable. (The compiler was GCC 3.3, using xcode on a Mac Powerbook G4, Mac OS
10.3.2.)

6.1 Comparison Methods

Two other programs were used as comparisons in the experiments. The first was a fast
squareroot function, written for speed of execution, provided by Hsieh1. This is writ-
ten in C and was simply compiled to produce a stand-alone executable. The second
was evolved by Landon’s simple GP (Langdon 1998)2. This standard genetic pro-
gramming engine used a function set comprising “+”, “-“, “*” and “/”, population size
of 100, max program size of 100 nodes, number of generations = 1000, probability of
crossover 0.7, and mutation 0.01. Each individual was evaluated by presenting 10
random inputs and calculating the sum of the difference between the outputs and the
true squareroot of the inputs. After twenty runs, only five solutions close to the

1 http://www.azillionmonkeys.com/qed/sqroot.html#fast
2 http://www.cs.ucl.ac.uk/staff/w.langdon/ftp/gp-code/simple/simple-gp.c

32 P.J. Bentley

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 199
(a)

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 199
(b)

Fig. 9. (a) Output of the evolved developmental squareroot function. (b) Output of the GP-
evolved squareroot function. (True squareroot shown by dotted line.)

Fig. 10. GP-evolved squareroot. “GPdiv” divides, trapping divide-by-zero errors

function of squareroot had evolved. Figure 9b shows the output of the best GP square-
root function. Fig. 10 shows its code. The evolved code was then isolated and com-
piled to produce a stand-alone GP-evolved squareroot executable.

7 Damage Tolerance Experiments and Results

Although it was observed that the evolved fractal developmental squareroot function
was more accurate and this accuracy was achieved more consistently than the GP
version, this was not the objective of the work. (Note that all three compiled square-
root programs are set to calculate the squareroot of 11 values from 0 to 199 in steps of
20, so accuracy is measured in terms of these sample points only.) Here we are more
concerned with the ability of the evolved solutions to survive damage to their com-
piled executables. In order to assess this, a “corruption” program was written, which
reads a specified file in a series of 2048 byte chunks, flipping a single, randomly cho-
sen bit in each chunk, before saving in a new file. This was performed 50 times for all
three squareroot programs, resulting in 150 corrupted executables. These were then
executed and the results noted.

The initial results were perhaps predictable. Both the fast squareroot program and
the GP-evolved program were approximately 16 kilobytes in size, smaller than the 28
kilobytes of the developmental squareroot program. This meant they were corrupted
less, resulting in more reliable performance. Indeed, the fast squareroot program ran
perfectly 15/50 times, and ran providing incorrect solutions twice. The GP-evolved
program ran perfectly 10/50 times, and provided incorrect solutions twice. The devel-
opmental program ran perfectly twice, provided approximately correct solutions 3
times, and incorrect solutions twice.

With all three programs being different lengths and containing different code, it was
clear that the comparison was flawed. The developmental program contained many

((GPdiv(x+x+x+GPdiv(((x)-((x)*(x)))-((x)*(x)),(x)*(x))+x+((x+x+x+x)*(x))-(x),((x+x+

x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x)*(x))-(GPdiv((x)*(x),GPdiv(x+x+x+x+x,(x)-

((x)*(x)))))))*(x));

 Evolving Fractal GRNs for Graceful Degradation of Software 33

more calls to memory-handling routines and library functions, resulting in more code
(which was corrupted more), and thus code more likely to fail. To overcome this, the
three squareroot programs were combined into a single program. By changing a simple
compiler directive, the program could be compiled in three different ways:

1. Output result of method 1 only if methods 2 and 3 executed correctly.
2. Output result of method 2 only if methods 1 and 3 executed correctly.
3. Output result of method 3 only if methods 1 and 2 executed correctly.

where method 1 was the fast squareroot function, method 2 was the GP-evolved func-
tion, and method 3 was the fractal developmental squareroot function. This way, all
three programs contained the same code with the same susceptibility to damage, ex-
cept that the code that generated the output was different in each program.

The three executables were corrupted 200 times using the method described previ-
ously. The corrupted programs were then executed and the results noted, see table 2.

Table 2. Results of running 200 corrupted executables for three squareroot programs. Graceful
degradation is defined as solutions producing 10 non-zero values within 50 percent of the cor-
rect values

 Square root GP square root Ev. Dev. square root
Fail 197 198 177
Incorrect run 1 0 13
Graceful degradation 0 0 8
Perfect 2 2 2

8 Analysis

The results are fascinating. Despite all three programs suffering from the same pro-
portion and type of errors (see fig. 11), there is marked difference in performance
between the developmental squareroot program and the fast squareroot and GP-
evolved programs. The latter both only manage to execute correctly 2 out of 200 cor-
rupted executables. They display zero graceful degradation – they simply fail to exe-
cute (or in a single case, execute with incorrect results).

The developmental squareroot program manages to run 23 times out of 200. 13 of those
produce incorrect results (usually all zeros). Only 2 produce perfect results (as good as the
uncorrupted program). But in 8 cases, the developmental squareroot produces approximately
correct solutions, fig 12. The damage to the executable has perhaps corrupted the genes or
fractal proteins, and the developmental program recovers. As was described in section 2,
evolution has not only evolved a good solution, it has created a solution that copes with
damage. It seems that this protection even extends to damage done to the executable code, as
well as simple mutation-driven damage to genes.

Note that the GP-evolved code does not display this property. It is conceivable that
should the GP solution contain bloat (unused code), then it might survive damage
more readily. However, this would not be the same phenomenon observed in the de-
velopmental system, which has no bloat (Bentley 2003c). In the developmental sys-
tem, damage to the code that is actually being used, can be survivable (Bentley,
2003c). It seems probable that only highly evolvable developmental systems enable
this kind of “natural” graceful degradation to emerge.

34 P.J. Bentley

It should also be noted that all three squareroot programs were calculating the
squareroot results according to their inputs. The developmental program did not, in
any sense, have the answer “wired in” as constants – indeed it performed more calcu-
lation using the input to produce the results than the other two programs. The ability
to survive damage arises because of the way the calculation was performed – the
dynamic (gene) networks in the code are able to survive despite having “holes
punched in them” by the corruption program.

Fig. 11. Percentage & type of errors obtained in all runs of the corrupted programs

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 199

Fig. 12 Outputs produced by different runs of the damaged developmental squareroot function,
true squareroot shown in bold. Note that most produce results that are approximately correct
(within 2 of the true value), displaying remarkably graceful degradation

9 Conclusions

Development is the process used by evolution to construct complex, adaptive and
robust forms. Computer algorithms based on development can share some of these
properties. Here, experiments have shown that fractal proteins increase the evolvabil-
ity of developmental programs by allowing new protein-protein and protein-gene
interactions to incrementally modify solutions over several generations. Experiments
have also shown that, unlike traditional software, evolved fractal developmental pro-
grams show graceful degradation after damage to their executable code. While surviv-
ing only around 14 bits (0.05%) of damage 10% of the time is not a great achieve-
ment compared to the robustness of natural systems, given the conventional (brittle)

.

 Evolving Fractal GRNs for Graceful Degradation of Software 35

nature of the programming language, compiler and hardware, it is still considered
impressive. It seems likely that should computer science remove its brittleness and
embrace evolutionary and developmental systems more fully, abilities such as grace-
ful degradation will improve further.

Acknowledgments

This material is based upon work supported by the European Office of Aerospace Research
and Development (EOARD), Airforce Office of Scientific Research, Airforce Research
Laboratory, under Contract No. F61775-02-WE014. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author and do not necessarily
reflect the views of EOARD. MOBIUS is an project.

References

[1] Bentley, P. J. Fractal Proteins. 2004. In Genetic Programming and Evolvable Machines
Journal.

[2] Bentley, P. J. Evolving Fractal Gene Regulatory Networks for Robot Control. 2003a. In
Proceedings of ECAL 2003.

[3] Bentley, P. J. Evolving Fractal Proteins. 2003b. In Proc. of ICES ’03, the 5th Interna-
tional Conference on Evolvable Systems: From Biology to Hardware.

[4] Bentley, P. J. Evolving Beyond Perfection: An Investigation of the Effects of Long-Term
Evolution on Fractal Gene Regulatory Networks. 2003c. In Proc of Information Process-
ing in Cells and Tissues (IPCAT 2003).

[5] Bentley, P. J. From Coffee Tables to Hospitals: Generic Evolutionary Design. 1999.
Chapter 18 in Bentley, P. J. (Ed) Evolutionary Design by Computers. Morgan Kaufmann
Pub. San Francisco, pp. 405-423.

[6] A.H. Jackson, A.M. Tyrrell Implementing Asynchronous Embryonic Circuits using
AARDVArc. 2002. In Proceedings of 2002 NASA/DoD Conference on Evolvable Hard-
ware (EH-2002), IEEE Computing Society, Alexandria, Virginia, pp. 231-240.

[7] S. Kumar and P. J. Bentley. Computational Embryology: Past, Present and Future. 2003.
Invited chapter in Ghosh and Tsutsui (Eds) Theory and Application of Evolutionary Com-
putation: Recent Trends. Springer Verlag (UK).

[8] Langdon, W. (1998) Genetic Programming + Data Structures = Automatic Program-
ming! Kluwer Pub.

[9] Mahdavi S. and Bentley P. J. Adaptive Evolutionary Motion of Smart Robots. 2003. In
Proc. of EvoROB2003, 2nd European Workshop on Evolutionary Robotics.

[10] Mandelbrot, B. The Fractal Geometry of Nature. 1982. W.H. Freeman & Company.
[11] Miller, J. and Banzhaf, W. Evolving the Program for a Cell: From French Flags to Boo-

lean Circuits. 2003. Invited chapter in Kumar, S. and Bentley, P. J. (Eds) On Growth,
Form and Computers. Academic Press, 2003.

[12] Shelton, C. & Koopman, P. Developing a Software Architecture for Graceful Degradation
in an Elevator Control System. Workshop on Reliability in Embedded Systems.

[13] Thompson, A. Evolving Inherently Fault-Tolerant Systems. 1997. In Proc. Instn. Mech.
Engrs 1997.

[14] Lewis Wolpert, Rosa Beddington, Thomas Jessell, Peter Lawrence, Elliot Meyerowitz,
Jim Smith. Principles of Development, 2nd Ed. 2001. Oxford University Press.

Evolutionary Computing and Autonomic
Computing: Shared Problems, Shared Solutions?

A.E. Eiben

Vrije Universiteit Amsterdam

Abstract. The purpose of this paper is to present evolutionary com-
puting (EC) and to identify a number of issues where EC and autonomic
computing, a.k.a. self-*, are mutually relevant for each other. We show
that Evolutionary Algorithms (EA) form a metaheuristic that can be
used to tackle the problem of self-optimisation in autonomic systems
and suggest that an evolutionary approach can also help solving other
challenges in autonomic computing. Meanwhile, an evolving system can
be seen as a special case of an autonomic system. From this perspective,
the quest for parameterless EAs can be positioned in a broader context
and it can be expected that some solutions invented within autonomic
computing can be transferred to EC.

1 Introduction

This position paper is aiming at linking evolutionary computing and autonomic
computing. Autonomic computing is assumed to be known, therefore it is not
reviewed here. Evolutionary computing is discussed emphasizing those facets
that are most relevant to make the main points about the mutual relevance of
the two areas.

We argue that the evolutionary mechanism is inherently capable of optimising
a collection of entities. This capability comes forth from the interplay of three
basic actions: reproduction, variation, and selection. Whenever the entities in
question reproduce they create a surplus, variation during reproduction amounts
to innovation of novel entities1, and finally selection takes care of promoting the
right variants by discarding the poor ones. This process has led to the Homo
Sapiens on Earth and to numerous superior solutions of engineering and design
problems in evolutionary computing [6]. Technically, an evolutionary process can
be perceived as a generate-and-test search algorithm regulated by a number of
parameters and it has two very interesting properties from a self-* perspective.
First, evolution is able to evolve itself, that is, to tune its own parameters on-
the-fly. Second, it is able to adapt itself to changing circumstances, that is, to
track optimal solutions after the objective function is changed.

We also argue that evolutionary computing is one of the key technologies
that can help meeting some of the grand challenges of autonomic computing.

1 That is, in our case reproduction is not simply cloning.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 36–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Evolutionary Computing and Autonomic Computing 37

EC is widely applicable, it requires almost no assumptions about the problem
to be solved, an evolutionary solver can be usually developed with limited ef-
forts and it produces good quality solutions at acceptable computational costs
under a wide range of circumstances. To illustrate our point we describe an evo-
lutionary approach to self-optimisation in a distributed system. Our example
is a problem concerning web services offered to a large number of users via a
(possibly large) number of servers. The quality of service is the key measure to
be optimised and re-optimised if the circumstances change, for instance, if the
behaviour of the users changes over time. The key to our approach is to have
each user session regulated by a number of parameters and allow variations in
these parameters. Adding selection based on the quality of service belonging to
given parameter values introduces survival of the fittest and makes the system
evolutionary.

The paper is organised as follows. In Section 2 a general introduction to EC is
given. Section 3 provides more details on a specific type of EAs, evolution strate-
gies, and illustrates how self-adaptation works in EC. Thereafter, in Section 4,
an example application is described and an evolutionary approach is presented
to realise self-optimisation in the system. Besides specifying a concrete EA to
solve this problem, we also consider general properties of an evolutionary ap-
proach in such a context. The paper is concluded by Section 5, where we discuss
how and why developments in these two fields can be expected to help solving
great challenges in the other field.

2 Evolutionary Computing in a Nutshell

Evolutionary Computing encompasses a variety of so-called evolutionary algo-
rithms [2, 5, 6] that all share a common underlying idea: given a population of
individuals, the environmental pressure causes natural selection (survival of the
fittest), which causes a rise in the fitness of the population over time. The main
principle behind evolution, be it natural or computer simulated, can be sum-
marised as follows. If a collection of objects satisfies that

– they are able to reproduce,
– their offspring inherits their features,
– these features can undergo small random, undirected variations,
– these features effect their reproduction probabilities,

then the features of these objects will change over time in such a way that they
will fit their environment better and better.

In a formal setting, the environment is represented by a given quality func-
tion to be maximised.2 The population is created by randomly generating a set
of candidate solutions, i.e., elements of the function’s domain, and the quality
function is used as an abstract fitness measure – the higher the better. Based on

2 Handling minimisation problems only requires a trivial mathematical transforma-
tion.

38 A.E. Eiben

this fitness, some of the better candidate solutions are chosen to seed the next
generation by applying recombination and/or mutation to them. Recombination
is an operator applied to two or more selected candidates (the so-called parents)
and results one or more new candidates (the children). Mutation is applied to
one candidate and results in one new candidate. Executing recombination and
mutation leads to a set of new candidates (the offspring) that compete – based
on their fitness (and possibly age)– with the old ones for a place in the next
generation. This process can be iterated until a candidate with sufficient quality
(a solution) is found or a previously set computational limit is reached.

In this process there are two fundamental forces that form the basis of evo-
lutionary systems:

– Variation operators (recombination and mutation) create the necessary di-
versity and thereby facilitate novelty.

– Selection acts as a force pushing quality. As opposed to variation, selection
reduces diversity.

Based on the biological analogy one often distinguishes phenotypes and geno-
types of candidate solutions. The phenotype of a candidate is its “outside”, the
way it looks and/or acts. The genotype denotes the code, the “digital DNA”, that
encodes or represents this phenotype. It is an important to note that variation
and selection act in different spaces.

– Variation operators act on genotypes. Mutation and recombination never
take place on phenotypical level, for instance, changing a leg into a wing.
Rather, variation effects on the level of genes that determine the phenotype.

– Selection acts on phenotypes. A gene is never evaluated directly, it has to
be expressed as a physical feature or behaviour and it is this feature or
behaviour that gets evaluated by the environment and influences the survival
and reproduction capabilities.

The combined application of variation and selection generally leads to im-
proving fitness values in consecutive populations. It is easy (although somewhat
misleading) to see such a process as if the evolution is optimising, or at least “ap-
proximising”, by approaching optimal values closer and closer over its course.
Alternatively, evolution it is often seen as a process of adaptation. From this
perspective, the fitness is not seen as an objective function to be optimised, but
as an expression of environmental requirements. Matching these requirements
more closely implies an increased viability, reflected in a higher number of off-
spring. The evolutionary process makes the population increasingly better at
being adapted to the environment.

It is important to note that many components of such an evolutionary process
are stochastic. During selection fitter individuals have a higher chance to be
selected than less fit ones, but typically even the weak individuals have a chance
to become a parent or to survive. For recombination of individuals the choice of
which pieces will be recombined is random. Similarly for mutation, the pieces
that will be mutated within a candidate solution, and the new pieces replacing

Evolutionary Computing and Autonomic Computing 39

them, are chosen randomly. The general scheme of an evolutionary algorithm
can is given in Fig. 1 in a pseudocode fashion.

BEGIN
INITIALISE population with random candidate solutions;
EVALUATE each candidate;
REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

1 SELECT parents;
2 RECOMBINE pairs of parents;
3 MUTATE the resulting offspring;
4 EVALUATE new candidates;
5 SELECT individuals for the next generation;

OD
END

Fig. 1. The general scheme of an evolutionary algorithm in pseudocode

It is easy to see that EAs fall in the category of generate-and-test algorithms.
The evaluation (fitness) function represents a heuristic estimation of solution
quality, and the search process is driven by the variation and the selection op-
erators. Evolutionary algorithms possess a number of features that can help to
position them within in the family of generate-and-test methods:

– EAs are population based, i.e., they process a whole collection of candidate
solutions simultaneously.

– EAs mostly use recombination to mix information of more candidate solu-
tions into a new one.

– EAs are stochastic.

Example: The Travelling Salesman Problem
In the Travelling Salesman Problem (TSP) the task is to find a tour (Hamil-
tonian circle) through n given locations with minimal length. An evolutionary
approach considers tours as phenotypes that are evaluated by their length, the
shorter a tour the higher its fitness. An appropriate genotype can be for instance
a permutation of n location IDs with the obvious genotype-phenotype mapping.
The essence of designing an EA for the TSP is to specify appropriate varia-
tion and selection operators (followed by defining the initialisation procedure,
termination condition, etc). To keep things really simple one could decide to
use mutation as the only variation operator and chose to mutate a permuta-
tion by swapping the values on two randomly chosen positions. As for selection
–remember, it is independent from what genotypes we use – one can use fit-
ness proportional random drawing. Whenever a good individual needs to be
selected from a population of m, any candidate ci is selected by a probability
pi = fitness(ci)/

∑m
i=1 fitness(ci).

40 A.E. Eiben

As mentioned before there are different EA variants. The most important
types, or “dialects”, are (in alphabetical order) evolution strategies, evolution-
ary programming, genetic algorithms, and genetic programming [2, 5, 6]. These
dialects differ only in technical details. For instance, the representation of a
candidate solution is often used to characterise different streams. Typically, the
candidates are represented by (i.e., the data structure encoding a solution has
the form of) strings over a finite alphabet in genetic algorithms (GA), real-
valued vectors in evolution strategies (ES), finite state machines in classical
evolutionary programming (EP), and trees in genetic programming (GP). These
differences have a mainly historical origin. Technically, a given representation
might be preferable over others if it matches the given problem better; that is, it
makes the encoding of candidate solutions easier or more natural. It is important
to note that the recombination and mutation operators working on candidates
must match the given representation. Thus, for instance, in GP the recombina-
tion operator works on trees, while in GAs it operates on strings. As opposed
to variation operators, selection takes only the fitness information into account;
hence it works independently from the actual representation.

Technically, an EA has numerous parameters. The precise list of parameters
and the way they are set are depending on the type of EA at hand. However,
in all cases one has to arrange the population, selection, and variation. The
following list illustrates some common parameters.

– Population size: the number of candidate solutions (typically kept constant
during a run). A small population allows faster progress but increases the
risk of getting stuck in a local optimum because it can only maintain fewer
alternatives, hence less diversity.

– Selection pressure: the extent of bias preferring the good candidates over
weak ones. High selection pressure causes faster progress but increases the
risk of getting stuck in a local optimum by being too greedy. Zero selection
pressure degrades evolutionary search into random walk.

– Mutation magnitude3: the parameter regulating the influence of mutation,
e.g., how often, how big, etc. Using more/larger mutation speeds up the
search but can prevent fine tuning on the optimum.

In the early days of EC it has been claimed that EAs have robust parame-
ters, i.e., that EAs are to a large extent insensitive to the exact parameter values.
Later on this claim has been revised and the contemporary view acknowledges
that using the right parameter values can make a big difference in algorithm
performance. The effects of setting the parameters of EAs has been the subject
of extensive research by the EA community and recently there is much attention
paid to self-calibrating EAs. The ultimate goal is to have a parameter-free algo-
rithm that can calibrate itself to any given problem while solving that problem.
For an extensive treatment of this issue [4] and [6–Chapter 8] are recommended,

3 Mutation magnitude is not an established technical term in EC. It is used here as an
umbrella term covering the commonly used ones, like mutation rate, mutation step
size, etc.

Evolutionary Computing and Autonomic Computing 41

[1] provides an experimental comparison between EAs using different levels of
self-calibration.

3 Evolution Strategies and Self- daptation

In this section we outline evolution strategies. Hereby we present a member
of the evolutionary algorithm family in details and illustrate a very useful fea-
ture in evolutionary computing: self-adaptation. In evolutionary computing self-
adaptivity means that some parameters of the EA are varied during a run in a
specific manner: the parameters are included in the chromosomes and co-evolve
with the solutions. This feature is inherent for evolution strategies, i.e., from the
earliest versions ESs are self-adaptive, and during the last couple of years other
EAs are adopting self-adaptivity.

Evolution strategies are typically used for continuous parameter optimization
problems, i.e., functions of the type f : IRn → IR, using real-valued vectors as
candidate solutions. Parent selection is done by drawing λ individuals with a
uniform distribution from the population of μ, where λ > μ (very often μ/λ is
about 1/7). After creating λ offspring and calculating their fitness the best μ
of them is chosen deterministically either from the offspring only, called (μ, λ)
selection, or from the union of parents and offspring, called (μ + λ) selection.
Recombination in ES is rather straightforward, two parent vectors ū and v̄ create
one child w̄, where

wi =
{

(ui + vi)/2 in case of intermediary recombination
ui or vi chosen randomly in case of discrete recombination (1)

The mutation operator is based on a Gaussian distribution requiring two
parameters: the mean, which is always set at zero, and the standard deviation
σ, which is interpreted as the mutation step size. Mutations then are realised by
replacing components of the vector x̄ by

x′
i = xi + σ ·N(0, 1), (2)

where N(0, 1) denotes a random number drawn from a Gaussian distribution
with zero mean and standard deviation 1. By using a Gaussian distribution here,
small mutations are more likely then large ones. The particular feature of muta-
tion in ES is that the step-sizes are also included in the chromosomes. In the sim-
plest case one σ that acts on each xi, in the most general case a different one for
each position i ∈ {1, . . . , n}. A typical candidate is then 〈x1, . . . , xn, σ1, . . . , σn〉
and mutations are realised by replacing individual 〈x1, . . . , xn, σ1, . . . , σn〉 by
〈x′

1, . . . , x
′
n, σ′

1, . . . , σ
′
n〉, where

σ′ = σ · eτ ·N(0,1) (3)
x′

i = xi + σ′ ·Ni(0, 1) (4)

and τ is a parameter of the method.

a

42 A.E. Eiben

By this mechanism the mutation step sizes are not set by the user, they (the σ̄
part) are co-evolving with the solutions (the x̄ part). To this feature it is essential
to modify the σ’s first and mutate the x’s with the new σ values. The rationale
behind it is that an individual 〈x̄, σ̄〉 is evaluated twice. Primarily, it is evaluated
directly for its viability during survivor selection based on f(x̄). Secondarily, it
is evaluated for its ability to create good offspring. This happens indirectly: a
given σ̄ evaluates favourably if the offspring generated by using it turns viable
(in the first sense). Thus, an individual 〈x̄, σ̄〉 represents a good x̄ that survived
selection and a good σ̄ that proved successful in generating this good x̄.

Observe that using self-adaptive mutation step sizes has two advantages: 1)
the user does not have to bother about it, the EA does it itself, 2) parameter
values are changing during the run. In general, modifying algorithm parame-
ters during a run is motivated by the fact that the search process has different
phases and a fixed parameter value might not be appropriate for each phase. For
instance, in the beginning of the search exploration takes place, where the popu-
lation is wide spread, locating promising areas in the search space. In this phase
large leaps are appropriate. Later on the search becomes more focused, exploiting
information gained by exploration. During this phase the population is concen-
trated around peaks on the fitness landscape and small variations are desirable.

There are various techniques in evolutionary computing to adjust algorithm
parameters (also called strategy parameters) on-the-fly [6–Chapter 8]. Self-
adaptivity is one such technique, where the parameters are changed by the algo-
rithm itself with only minimal influence from the user. In case of self-adaptation
of parameters the algorithm is performing two tasks simultaneously: It is solv-
ing a given problem and it is calibrating (and repeatedly re-calibrating) itself
for solving that problem. While in theory this implies a computational overhead
that could lead to reduced performance, the practice of ES –and many other
EAs adopting self-adaptive features– show the opposite effect.

A convincing evidence for the power of self-adaptation is provided in the
context of changing fitness landscapes. In this case the objective function is
changing and the evolutionary process is aiming at a moving target. When the
objective function changes, the present population needs to be re-evaluated, and
quite naturally the given individuals may have a low fitness, since they have
been adapted to the old objective function. Often the mutation step sizes will
prove ill-adapted: they are too low for the new exploration phase required. The
experiment presented in [8] illustrates how self-adaptation is able to reset the
step sizes after each change in the objective function without any user interven-
tion. Fig. 2 shows that the location of the optimum is changed after every 200
generations (x-axes) with a clear effect on the average best objective function
values (y-axis, left) in the given population. Self-adaptation is adjusting the step
sizes (y-axes, right) with a small delay to larger values appropriate for exploring
the new fitness landscape, thereafter the values of σ start decreasing again once
the population is closing in on the new optimum.

Evolutionary Computing and Autonomic Computing 43

Fig. 2. Moving optimum ES experiment on the 30 dimensional sphere function. See
text for explanation

Over the last decades much experience has been gained over self-adaptation
in ES. The accumulated knowledge has identified necessary conditions for self-
adaptation:

– μ > 1 so that different strategies are present
– Generation of an offspring surplus: λ > μ
– A not too strong selective pressure (heuristic: λ/μ = 7, e.g., (15,100))
– (μ, λ)-selection (to guarantee extinction of misadapted individuals)
– Recombination also on strategy parameters (especially intermediate recom-

bination)

4 The Web Service Example

In this section we show how an evolutionary approach can be used to build
autonomic computing systems, or at least how EC can be utilized to solve some
of the key problems raised within autonomic computing, in particular that of
real-time self-optimisation. To this end, we introduce an example problem that
serves to illuminate the matter. Note, that the point is not to solve the example
problem, but to show how the generic “evolutionary trick” can be applied to
solve challenges in autonomic computing.

4.1 The Web Service Example: The Optimisation Problem

Let us assume some web service to a large number of visitors. Without loss of
generality we can also assume that the service is provided by a number of service
units, e.g., M web-servers offering the same service through the same URL such
that the visitors do not even notice whether their session is conducted by unit A
or unit B. The main task here is to maximise the service level g. We can assume
that the service level g is defined as some combination of the time spent with ob-
taining the service (shorter session, higher service level) and the degree to which
a request could be satisfied (higher degree, higher service level). Furthermore, we

44 A.E. Eiben

postulate that each session conducted with a visitor of the given web site is regu-
lated by a parameterized procedure, using a parameter vector p̄. This parameter
vector can consist of values encoding, for instance, colour, arrangement, etc.
of the web pages used, the (type of) messages presented to the visitor, applied
pricing strategy, the sub-page hierarchy, subroutines used in a session, ordering
of databases consulted in a session, etc. Formally, the values within p̄ can be
Booleans, integers, reals, or even a mixture of them and we have a parameter
optimization problem, since we want to use those p̄ vectors that maximise g, that
is, we want to conduct sessions that maximise service level. In the following we
will illustrate how this can be done in self-* style using an evolutionary approach.

4.2 The Web Service Example: Individuals, Population, Fitness

The basis of this evolutionary approach is to consider a given p̄ as an individual
whose fitness is g(p̄) and to set up a system where a population of individuals
undergoes variation and selection.

To introduce a population we must allow that different values of p̄ are used
simultaneously, i.e., visitor 1 can be serviced by using a procedure belonging to
p̄1, while the interaction with visitor 2 can take place by using p̄2. After finishing
a session the quality of the parameter p̄ used in the session can be determined by
calculating the corresponding service level g(p̄). It can be argued that calculat-
ing g(p̄) should be based on more than one sessions with p̄. Technically, this is a
simple extension having no influence for the present discussion. Having specified
parameter vector p̄ and the utility function g we have the most fundamental re-
quirement for an evolutionary process: an evaluation function or fitness function
applicable to a population of individuals. Then, at all times we can maintain a
set of N parameter values (and call N the population size). Invocation of param-
eter values, that is assigning some p̄ from the given population to a new session,
must be also regulated in some way, but these details are not important for the
present discussion either. What is important is the distinction between the pool
of service units (consisting of M elements) and the pool of N p̄ values, being the
population to be evolved. The key to real-time self-optimisation of the system
consisting of the service units is to evolve this population of parameter values.
Technically this requires variation and selection operators.

4.3 The Web Service Example: Variation

Variation can be handled in a rather straightforward way: using common muta-
tion operators from EC we can specify small random perturbations to a given
value p̄, yielding p̄′. Alternatively, if there are no appropriate off-the-shelf muta-
tion operators, one can design application specific mutation – this is mostly not
too difficult. For a well-defined procedure we also have to define when to apply
variation. A simple heuristic for this is to create a child p̄′ to p̄ as soon as p̄ gets
evaluated, i.e., g(p̄) is calculated. Of course, there is no need to restrict ourselves
to mutation only, and also recombination can be used to create new individ-
uals. Here again common recombination operators from EC can be applied to
two parent vectors p̄1 and p̄2, or designed for the specific needs. (This might be

Evolutionary Computing and Autonomic Computing 45

more difficult than inventing mutation operators.) Depending on the operator
the result can be one or two new vectors. For specifying when recombination is
applied we can use a heuristic similar to that concerning mutation.

4.4 The Web Service Example: Selection

Selection is a bit more complicated than variation in our case. To begin with
parent selection, we can keep it very simple and unbiased, that is, not related
to the fitness of the individuals (utility of the parameter vectors). This can be
achieved by the heuristic mentioned above and mutate every individual after it
gets evaluated, regardless to its fitness. As for recombination we can apply this
heuristic too but we also need to specify how to select a second parent p̄2, for a
given p̄1. Here we can use a random choice based on the uniform distribution,
giving every other individual in the population an equal chance.

Concerning survivor selection we will consider two options: local competition
and global competition. The basic idea behind local competition is that each
newborn child competes with its parent(s) directly. In this case each new p̄′

must be used in a session as soon as possible after its “birth” to calculate its
utility, that is, its fitness value. This might imply a requirement for the invoca-
tion procedure, but we do not discuss this aspect here. What is important for
meaningful selection is that a parent p̄ is kept in the population (and probably
used again) until its offspring p̄′ gets evaluated. When g(p̄) and g(p̄′) are both
known then we select either of them based on g and delete the other one. This
selection can be deterministic (keep the winner) or probabilistic giving the win-
ner a higher chance to survive. Note that some form of additional population
management might be required here if we allow that a waiting parent (a given
p̄ whose offspring p̄′ is not evaluated yet) can be invoked and used in a session.
This extra bookkeeping is needed to ensure that no individual is being deleted
too early, yet minimising the period during which parents and offspring under
evaluation co-exist.4

Global competition is based on the idea to let parents and children co-exist
for a while and consequently to let populations grow. During such a predefined
period of growth, called epoch, no individual is deleted. The length of an epoch
can be specified as a given number of fitness evaluations (parameter vector in-
vocations), successful sessions, wall-clock time, etc. Children born in this period
are added to the population without restriction and are being used to seed ses-
sions, thereby getting evaluated. At the end of an epoch, the population size can
be reset to its initial value N by selecting N individuals for survival based on
their fitness. Here again, the selection can be deterministic (keeping the best N)
or probabilistic giving better individuals a higher chance to survive.

4.5 The Web Service Example: System Review

Our web service application has a number of properties worth further consid-
eration. From the perspective of the whole system, it is an example of self-

4 Notice that such a co-existence would mean that the population size is not constant.

46 A.E. Eiben

optimisation. Starting with a set of randomly generated or manually engineered
session handling strategies (that is, a population of vectors p̄), the system is
continuously improving the service level (optimising g(p̄)). In principle, the sys-
tem is also able to cope with changing circumstances, for instance changes in
the types of visitors requiring new strategies to provide high quality service.
Population-based search methods, like EAs, are in general capable of tracking
moving optima, although for applications where coping with time varying ob-
jectives is essential specific extensions might be required to boost this property,
cf. [3] and [6–Chapter 13.4].

From an evolutionary computing perspective we can observe that the EA
as described above has no selection pressure (i.e., positive bias towards fitter
candidates) during parent selection, only during survivor selection. This is, in
principle, no problem. To prevent degradation to random walk, an EA must
have selection pressure somewhere, either in parent or in survivor selection, but
not necessarily in both. Many common EAs have fitness-related bias only in
one selection procedure, e.g., generational GAs have no survivor selection (all
children survive), while evolution strategies “lack” parent selection. It would not
be difficult, however, to add bias when selecting parents in our system. We could
simply require that invocation of a vector p̄ from the population for a new session
be based on fitness information (the utility function g).

As opposed to regular EAs, where population updates are neatly arranged
consecutively, here we have a completely asynchronous process, where at a given
time some individuals might undergo evaluation (by being used in a user session),
some others might be mutated (because their session has just been finished), and
yet others might be being deleted. For this reason, the evolutionary process in
our example shows more resemblance with natural evolution than most EAs do.
Technically, we could say that our EA is performing distributed optimisation
in the sense that different candidate solutions are processed independently (in
different sessions), possibly on different machines (web servers). A good solution
found in some “corner” of the system, however, can quickly proliferate – in an
evolutionary system highly fit individuals will always dominate weaker ones and
spread over time.

Another aspect where our system is more “natural” than many other EAs is
the behaviour based evaluation. In most EA applications the problem at hand
can be modelled in such a way that the fitness function is a straightforward
input-output mapping, a formula. Think, for instance, of the TSP example in
Section 2 of this paper, where we only need a simple sum of distances of the
edges represented by a permutation to calculate its fitness. In the web service
example application a candidate solution has to do something, rather than just
be something. A trivial consequence of this is that fitness evaluations can take a
long time, in our case a whole session with a visitor of the web site. In general,
this implies that relatively few candidates can be evaluated in a given amount
of time. In other words, evolution will be relatively slow. Large populations
and/or many generations are usually advantageous for getting good results, but
in our case these might not be feasible. This might cause progress at a slow

Evolutionary Computing and Autonomic Computing 47

rate and necessitate special (application dependent) tricks to obtain satisfactory
performance.

Last, but not least, let us note that there is no self-adaptation, or any other
mechanism, in this EA to change its own parameters on-the-fly. The EA is ap-
plied for real-time (self-)optimisation of the system providing the web services
without optimising itself. This shows that self-adaptation on EA level is not a
requirement for self-optimisation on system level.

5 Links Between Evolutionary and Autonomic
Computing

From the self-* perspective we can summarise the most important properties of
evolutionary algorithms as follows:

1. EAs form a (meta)heuristic that can be used to solve optimisation problems.
By the presence of a population of candidate solutions EAs are inherently
suited to cope with time varying optimisation objectives.

2. EAs need to be optimised themselves, in particular, their parameter settings
have to be determined appropriately for maximum performance. Because
evolutionary search consists of different stages, optimal parameter values
depend on time.

3. EAs are capable to perform real-time self-optimisation. To this end, self-
adaptation is a particularly successful technique that is able to determine ap-
propriate algorithm parameters following the progress of the search process,
thus handling time dependency of optimal parameters given a stationary
problem. Furthermore, it can also deal with changing objectives, resetting
and re-optimising parameters automatically, without any user intervention.

4. EAs are inherently distributed and parallelisable because different members
of the population can be naturally allocated to different processors.

It is rather clear from this list that evolutionary computing in general, and
existing techniques within evolutionary computing in particular, can be used
to meet some canonical challenges in autonomic computing, for instance, self-
optimisation. Additionally, the evolutionary paradigm can serve as a source of
inspiration, or let us say as a generic approach, to achieve other self-* properties,
like self-configuration or self-healing. There exists related work also advocating
population based approaches, such as multi-agent systems and ant-colony opti-
misation [9, 7].

To see the relevance of autonomic computing to evolutionary computing let
us recall the problem of parameter control in EC. During the last decade it
become increasingly clear within the field that the numerous EA parameters
have a complex relationship with each other, or more precisely, a combined, non-
linear influence on algorithm performance. Since non-linear problems with many
interacting parameters belong to the niche of EC, it is a natural idea to use an
evolutionary system to optimise itself on-the-fly, cf. [4] and [6–Chapter 8]. Self-
optimisation or self-configuration has thus became one of the great challenges

48 A.E. Eiben

of evolutionary computing. Existing techniques, like self-adaptation of mutation
step-sizes, can solve this problem partially, but a completely parameterless EA
requires much more, for instance regulating selection pressure, population size,
mutation and recombination parameters simultaneously. From this perspective,
an evolving system can be seen as a special case of an autonomic system and it
can be expected that some solutions invented within autonomic computing can
be transferred to EC, meaning indeed that the two fields would share solutions
to common problems.

Acknowledgement

I am grateful for M. Jelasity for the discussions about a suitable application
example.

References

1. T. Bäck, A.E. Eiben, and N.A.L. van der Vaart. An empirical study on GAs “without
parameters”. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo,
and H.-P. Schwefel, editors, Proceedings of the 6th Conference on Parallel Problem
Solving from Nature, number 1917 in Lecture Notes in Computer Science, pages
315–324. Springer, Berlin, Heidelberg, New York, 2000.

2. T. Bäck, D.B. Fogel, and Z. Michalewicz, editors. Evolutionary Computation 1:
Basic Algorithms and Operators. Institute of Physics Publishing, Bristol, 2000.

3. J. Branke and H. Schmeck. Designing evolutionary algorithms for dynamic opti-
mization problems. In A. Ghosh and S. Tsutsui, editors, Advances in Evolutionary
Computating: Theory and Applications, pages 239–262. Springer, Berlin, Heidelberg,
New York, 2003.

4. A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

5. A.E. Eiben and M. Schoenauer. Evolutionary computing. Information Processing
Letters, 82:1–6, 2002.

6. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer,
Berlin, Heidelberg, New York, 2003.

7. Luca Maria Gambardella. Engineering complex systems: Ant colony optimization
to model and to solve complex dynamic problems. In SELF-STAR: International
Workshop on Self-* Properties in Complex Information Systems. Bolgna, Italy, June,
2004.

8. F. Hoffmeister and T. Bäck. Genetic self-learning. In F.J. Varela and P. Bourgine,
editors, Toward a Practice of Autonomous Systems: Proceedings of the 1st European
Conference on Artificial Life, pages 227–235. MIT Press, Cambridge, MA, 1992.

9. Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal, Ian
Whalley, Jeffrey O. Kephart, and Steve R. White. A multi-agent systems approach
to autonomic computing. Technical Report RC23357 (W0410-015), IBM research
Division, October 2004.

Self-� Topology Control in Wireless
Multihop Ad Hoc Communication Networks

Wolfram Krause1,2, Rudolf Sollacher1, and Martin Greiner1

1 Corporate Technology, Information & Communications, Siemens AG,
D-81730 München, Germany

{rudolf.sollacher, martin.greiner}@siemens.com
2 Frankfurt Institute for Advanced Studies,

and Frankfurt International Graduate School for Science,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt am Main, Germany
krause@th.physik.uni-frankfurt.de

Abstract. Wireless multihop ad hoc communication networks represent
an infrastructure-less generalization of todays cellular networks. Since a
central control authority is missing, the complex network has to self-�
itself for various operating tasks. Key to a self-� realization is the design
of simple, yet robust distributive control rules, which allow the overall
network to perform well. Two examples from topology control are given.
The first one addresses the connectivity issue, where a self-� rule is pre-
sented and shown to lead to strong network connectivity almost surely.
A generic system analysis is used in the second example to first develop
a phenomenological description of the network’s end-to-end throughput
capacity and then to sketch further steps towards a self-� rule for ob-
taining a large throughput performance.

1 Introduction

What means self-�? A general answer remains obscure. It depends on the context
within which the question is posed. For example, in material physics self-� stands
for selforganization of surface growth. In bio-chemistry it would be selforganized
growth of macromolecules. Self-configuration, self-management and self-repair
are aspects of self-� in computer science. In this paper we pick an example from
electrical engineering and present selected issues on its self-�.

The challenging technical system of our choice are wireless multihop ad hoc
networks [1, 2, 3]. They represent a very complex and infrastructure-less commu-
nication network, which has no central controller. Each device, which according
to the network jargon we will denote as node, does not only act as a communica-
tion source and sink, but also forwards communication for others. This requires a
lot of coordination amongst all nodes. Fig. 1 helps to explain the key mechanisms
and the associated problems. Each node has to build up wireless communication
links to its neighbors. With regulation of its transmission power, it is able to

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 49–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 W. Krause, R. Sollacher, and M. Greiner

Fig. 1. A wireless multihop ad hoc network consists of spatially distributed nodes,

which are connected by wireless links. One-hop neighbors of a node all lie inside its

transmission range (shown as dotted circle). An end-to-end communication hops from

one node to the next along an end-to-end route (shown as thick line). To avoid in-

terference all neighbors (shown attached to thick dashed links) of an ongoing one-hop

transmission (shown as a very thick link) are blocked by medium access control

modify its transmission range and its neighborhood. Here the node faces frus-
tration for the first time. On the one hand it wants to save energy and to keep its
transmission power as low as possible, but on the other it might have to choose
a larger neighborhood and help the network to gain strong connectivity, so that
each node will be able to communicate to any other via multihop routes. This
brings us to another protocol layer, from link control to routing control. End-
to-end routes have to be explored and maintained. During their execution the
communication hops from one node to the next. This is where another protocol
layer, called medium access control, sets in. It blocks all neighbors attached to

Self-� Topology Control 51

an ongoing one-hop transmission in order to avoid interference. This represents
another frustration, now across layers. Whereas routing efficiency prefers short
end-to-end routes with the consequence of large one-hop neighborhoods, medium
access control prefers to block small neighborhoods with the consequence of long
end-to-end routes. A delicate balance between these two layers is necessary for
the overall network to gain a large end-to-end throughput performance, which
measures the amount of communication traffic the network is able to handle
without overloading.

Link, medium access and routing control represent the most basic layers
within the protocol stack of wireless multihop ad hoc networks. For the overall
network to perform well those have to be intra- as well as interlayer efficient. It is
here, where self-� has to appear. For demonstration we focus on topology control
throughout this paper, but note that this is only a subclass of control actions.
Since a global control master is missing, the topology control actions have to
be distributive and initiated locally by single-node actions. By in- or decreasing
its transmission power a node modifies its local topology, eventually forces its
new and old neighbors to respond, accumulates and evaluates their feedback,
upon which it decides whether to accept or reject the explorative move. As a
result of the sum of many such local control actions, the network then runs
into certain topology patterns. Of course we are interested only in such network
structures which lead to a good network performance. It is our primary goal
to engineer the local topology control rules in such a way, that their collective
iterative action leads to a good global topology defined by a good global network
performance. This may be taken to the records as an engineering definition
of self-�. In some sense the situation is similar to what we have learned from
cellular automata, where the self-organizing emergence of specific macroscopic
spatio-temporal patterns is already encoded in the CA update rules [4].

During the last years, the first sensor networks using multihop ad hoc network
technology were deployed. Transmission power control algorithms are used to
minimize the power consumption of the nodes, but topology optimization for
throughput enhancement has not yet been considered in these implementations.

The organization of the paper is as follows. In sect. 2 a local self-� connec-
tivity control is presented for static wireless multihop ad hoc networks. Sect. 3
presents important preparatory steps for a self-� throughput-optimized topology
control for such networks. It focuses on a generic system analysis, provides an
understanding as to what limits the end-to-end throughput performance, and
presents a search for performance-optimized network topologies. A brief out-
look is given in sect. 4 and includes some suggestions for self-� large-throughput
control rules.

2 Self-� Connectivity

We begin with the case that each node i of the network has exactly the same
transmission power Pi = P [5, 6]. Then according to a simple isotropic propa-
gation-receiver model, a node will have wireless links to those nodes which are

52 W. Krause, R. Sollacher, and M. Greiner

located within its transmission radius R = (P/β)1/α. α is a spatial fading ex-
ponent and β represents the signal-to-noise ratio. Excluding finite-size effects, a
node will then on average have 〈k〉∞ = ρπR2 neighbors. The total number of
nodes N distributed over some area L2 determine the node density ρ = N/L2.
The question now is, how large does P , or equivalently R or 〈k〉∞, have to be
so that the overall network becomes strongly connected? Strong connectivity re-
quires that each node can reach any other node via at least one multihop route.
This question falls into the regime of continuum percolation [7]. For an ensemble
of spatial point patterns, where points have been randomly and homogeneously
thrown into a square area, Fig. 2 illustrates the logarithmic N -dependence of
〈k〉∞, for which 99 % of the thrown realizations are strongly connected. To be
on the safe side, the value 〈k〉∞ = 24 guarantees strong connectivity almost
surely for network sizes up to several thousands. Fig. 3 (left) exemplifies the
structure of such a network. However, there are major problems with rules like
〈k〉∞ = 24. If the nodes would not be randomly distributed in a homogeneous
manner, but in a more clustered way, then the average neighborhood has to be
significantly larger than 24 [7]; consult again Fig. 2. In such cases, nodes of small-
and even medium-sized networks would have direct links to almost every other
node, thus putting the multihop idea at stake. An even more striking problem
with 〈k〉∞ = const is its distributive implementation. Only with additional in-
ternal and external information input on quantities like ρ, α, β, a node is able
to adjust its transmission power to a respective value P = const. Clearly, there
is a strong need for a different kind of connectivity control, one with a self-�
property.

The minimum-node-degree rule [7] is designed to resolve the shortcomings of
the P = const rule. Each node finds its transmission power in a self-� way, only
communicating with its neighbors. Starting from the smallest possible transmis-
sion power, echo requests are send, containing the current list of neighbors
and the currently used transmission power. If another node receives such an
echo request, and does not already belong to the neighbor list, it replies. The
transmission power is increased until a given minimum number kmin of neighbors
is reached. To ensure that all nodes have at least kmin neighbors, eventually a
node with already enough neighbors is forced to further increase its own trans-
mission power: once an echo request from another node, which suffers a lack
of neighbors, but is currently outside the transmission range, is received, the
own power is increased to build up a bidirectional communication link to the
requesting node. Note, that as a result of all nodes having at least kmin bidirec-
tional neighbors the transmission power values differ from node to node. This
heterogeneity leads to the occasional emergence of one-directed links, which do
not qualify as communication links used for routing. More explicit details of this
connectivity rule are given in Ref. [7].

Fig. 2 also illustrates the required kmin values to guarantee strong connec-
tivity with a 99 % confidence level for networks based on random homogeneous
point patterns. Even for network sizes of several thousands the minimum-node
degree remains below kmin = 8. It turns out that this value also holds for net-

Self-� Topology Control 53

 0

 10

 20

 30

 40

 50

 60

 10 100 1000

<
k>

∞
, k

m
in

N

<k>∞, random
kmin, random

<k>∞, clustered
kmin, clustered

24
8

Fig. 2. Average node degree 〈k〉∞ (solid curve with crosses) and minimum-node de-

gree kmin (dashed curve with crosses) required to guarantee strong connectivity with a

99 % confidence level for wireless multihop ad hoc networks with N randomly and ho-

mogeneously distributed nodes. For comparison the two respective curves with squared

symbols are for a clustered distribution of nodes, for which the parameters have been

chosen as in Ref. [7]. The lines 〈k〉∞ = 24 and kmin = 8 are shown for guidance

Fig. 3. Various structures for wireless multihop ad hoc networks: (left) const-P rule

with 〈k〉∞ = 24, (center) minimum-node-degree rule with kmin = 8, (right) e2e-

throughput optimized according to (6). The same random homogeneous spatial point

pattern with N = 300 nodes has been used for all three cases

54 W. Krause, R. Sollacher, and M. Greiner

works based on random clustered point patterns; see again Fig. 2 and Ref. [7].
This demonstrates the robustness and adaptivity of this simple connectivity
rule. A visualization of a resulting network structure is given in Fig. 3 (center).
Compared to a respective P = const structure, the average node degree 〈k〉
and, consequently, also the average transmission power is significantly smaller.
This proves that the minimum-node-degree does not only self-� into a strongly
connected network structure, but that it is also energy efficient.

3 Towards Self-� End-to-End Throughput

Maybe the most important performance measure of wireless multihop ad hoc net-
works is given by the end-to-end throughput capacity. It represents the amount
of data traffic the network is able to handle without overloading. For sure, the
end-to-end throughput depends on the underlying network structure. Hence, it
is a self-� goal to construct a topology control that beyond strong connectivity
also ensures a large throughput capacity. This goal is ambitious and requires a
careful preparation. In this section we will focus on a preparatory system analysis
and a subsequent search for throughput-optimized network structures.

3.1 Back-on-the-Envelope Estimate of End-to-End Throughput

A crude estimate of the end-to-end throughput is given by

Te2e =
1
D

N

mac
. (1)

On average an active one-hop transmission involves mac nodes. It is not only
the one-hop sending and receiving node, but also all neighbors attached to them
by outgoing links. Before the one-hop communication takes place, the outgoing
neighbors are being blocked by medium access control to avoid interference. The
ratio N/mac then counts the maximum number of one-hop transmissions which
can take place at the same time. The diameter D of the network is defined as
the mean of all shortest end-to-end routes. Hence, expression (1) measures the
maximum number of end-to-end communications which can be completed per
time.

It is interesting to look at how the expression (1) scales with the network
size N . Whereas the quantity mac is of the order one to two times the N -
independent average node degree 〈k〉, the diameter D ∼ √

N scales with the
reciprocal embedding dimension of planar geometrical networks. This leads to
the capacity estimate Te2e ∼

√
N , which increases with the network size. Within

the employed rough picture, this has to be compared with a one-channel central-
hub network, where all intra-cellular end-to-end communications go directly from
the sender to the base station and then to the receiver. This makes D = 2 and
mac = N , resulting in Te2e = 0.5. Hence, for networks larger than a certain size,
the multihop ad hoc mode of wireless networks will produce a larger end-to-end
throughput than the cellular mode.

Self-� Topology Control 55

Due to its simplicity, the expression (1) is too crude and overestimates the
end-to-end throughput capacity. It assumes the one-hop traffic to be homoge-
neously distributed over the network. This is of course not the case. Due to the
multihop nature of the end-to-end routes, spatially central nodes have to for-
ward more communication traffic for others than nodes lying at the periphery.
The central nodes will become congested first and will be most critical to the
network’s overall performance. The questions are, how much does this most-
critical-node effect lower the end-to-end throughput and how does this affect its
scalability. First answers to these questions will be provided by a generic packet
traffic simulation.

3.2 Generic Packet Traffic Simulation

For the investigation of the throughput scaling behavior, the simulation must be
able to calculate results for network sizes up to 2000 nodes within a resonable
amount of time. Therefore, we employ a generic packet traffic simulation with the
implementation of a generic packet creation and a forwarding algorithm based
on a generic mac protocol.

The simulation implements random end-to-end packet traffic. Time is divided
into discrete steps. During each time step a node can either create a new packet
with probability μ, forward or receive a packet, become blocked due to medium
access control, or remain idle. During packet creation, a respective receiving
node is selected at random, to which the packet will be forwarded one hop after
the other along the respective shortest-path route during successive time steps.
Nodes with non-empty packet queues are competing for one-hop transmissions.
They are sequentially checked in random order and, if successful, they as well
as their intended one-hop receiver mac-block the attached outgoing neighbors,
which are then not allowed to send or receive other packets during the remainder
of this time step. Once a packet arrives at its final destination, it is immediately
removed from the network. More details of this generic packet traffic simulation
can be found in Ref. [8].

During simulations the single-node in- and out-packet flux rates μin
i and μout

i

are monitored. For sub-critical packet creation rates μ the inequality μin
i < μout

i

holds for all nodes. Once this inequality turns into an equality for the first
time for one node, the critical network load is reached. This defines the critical
packet creation rate μcrit and the end-to-end throughput capacity Te2e = μcritN .
The latter represents the maximum rate of end-to-end communications without
network-wide overloading.

Fig. 4 illustrates the end-to-end throughput obtained from the generic packet
traffic simulation for network structures generated with the kmin = 8 connectivity
rule. An average over a large enough number of random homogeneous point
patterns has been taken. For very small network sizes the end-to-end throughput
starts with Te2e = 1, then drops down to about Te2e = 0.7 for a little larger N ,
only then to bounce back and cross Te2e = 1 around N ≈ 100. Beyond this
network size the end-to-end throughput increases further and scales as Te2e ∼
(N − N0)γ . The exponent turns out to be γ = 0.22, which is lower than γ =

56 W. Krause, R. Sollacher, and M. Greiner

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000

T
e2

e

N

kmin = 8
kmin = 20
kmin = 40
optimized

Fig. 4. Network-size dependent end-to-end throughput for various network structures

based on random homogeneous point patterns: minimum-node-degree kmin = 8 (solid),

20 (dashed), 40 (large dots), and throughput-optimized (small dots) according to (6).

Curves with symbols are results from a generic packet traffic simulation. Respective

curves without symbols represent the estimate (6)

0.5 from the simple-minded expression (1). Again, the main reason for this is
the heterogeneous distribution of the one-hop traffic. Note however, that for all
network sizes the end-to-end throughput stays above the Te2e = 0.5 central-hub
limit. Note also, that a fully connected network, where each node has one-hop
links to any other node, produces the N -independent value Te2e = 1.

Different sparse network structures will lead to different heterogeneities of
the one-hop traffic and, most likely, to a different end-to-end throughput behav-
ior. This suspicion is confirmed with Fig. 4, where Te2e(N) is also shown for
minimum-node-degree network structures based on values other than kmin = 8.
The resulting small-N behaviors are similar, and so does the scaling behavior
Te2e ∼ (N − N0)γ for sufficiently large network sizes. However, the scaling ex-
ponent changes with kmin. For example, for kmin = 20 and 40 we find γ = 0.24
and 0.29. Given this clear proof that the end-to-end throughput depends on the
underlying network structure, it is now most natural to pose the next question
in line: what is the network structure that optimizes the end-to-end through-
put? The answer is far from simple and requires several steps with more system
analysis. The first step needs to find a translation of the simulational findings
into an analytic function, which in a second step serves as objective function for
optimization.

Self-� Topology Control 57

Fig. 5. (a) The evolution of the end-to-end throughput in dependence of the optimiza-

tion rounds nr until the first local maximum of expression (6) is reached. The initial

N = 300 network realization has been constructed with the self-� (kmin = 8) connec-

tivity rule, applied to a random homogeneous point pattern. The upper curve is for (6),

whereas the lower curve represents its counterpart from the packet traffic simulations.

(b) The subsequent evolution of the end-to-end throughput, according to expression

(6) (upper curves) as well as packet traffic simulations (lower curves), in dependence

on the number of meta-rounds nmr. Each meta-round is kicked off with a random per-

turbation of nptb = 1, 2, 4, 8 randomly selected nodes from a local-maximum network

configuration

58 W. Krause, R. Sollacher, and M. Greiner

3.3 Most Critical Node Effect

Within the single-node description the in-packet flux rate can be described with

μin
i = μN

Bi

N(N − 1)
. (2)

On average μN new packets are inserted into the network per time step, of which
the fraction Bi/N(N −1) will be routed via node i during successive time steps.
The betweenness centrality

Bi =
N∑

m�=n=1

(n �=i)

bmn(i)
bmn

(3)

counts the number of shortest paths going through i out of all N(N − 1) end-
to-end combinations. bmn represents the number of shortest paths from m to n,
of which bmn(i) pass by i. Compared to μin

i , the modeling of the out-packet flux
rate

μout
i =

1
τ send
i

(4)

is more delicate. Due to the competition between neighbors to gain medium
access for one-hop transmissions, node i can not send a packet right away, but
has to wait a characteristic time τ send

i . A convenient empirical ansatz for this
sending time is given by

τ send
i = 1 +

1
Bi

∑
j∈N in

i

Bj =
Bcum

i

Bi
. (5)

It compares the betweenness centrality Bi to its cumulative counterpart Bcum
i ,

the latter being a respective sum over the ingoing neighbors. Equating relations
(2) and (4) yields an expression for the critical packet creation rate μcrit and for
the end-to-end throughput,

Te2e = μcritN ≈ N(N − 1)
supi Bcum

i

. (6)

At least, this expression is consistent with the finding Te2e = 1 for fully
connected networks, where each node has the same Bi = N − 1, resulting in
Bcum

i = N(N − 1). As another quick consistency calculation reveals, it also
produces Te2e = 0.5 of a central-hub network. However, the fate of (6) is de-
cided with the minimum-node-degree networks. In Fig. 4 it is compared with
the throughput curves obtained earlier from the generic packet traffic simula-
tions. For various kmin values the overall agreement is remarkable. Except for
minor deviations the simulationally found scaling exponents γ = γ(kmin) are
reproduced.

Self-� Topology Control 59

3.4 Throughput Optimization of the Network Topology

Due to the good reproduction of the simulational findings, the analytic expression
(6) qualifies as objective function for the search of optimized network structures,
producing a maximum end-to-end throughput. This search is quite challenging.
First of all, the expression for the end-to-end throughput depends on the network
structure in a complicated non-linear and non-local manner, which does not allow
for a local decomposition [9, 10]. Moreover, the space of all testable network
structure configurations is very large. It is of the order (N − 1)N : each of the N
nodes has its own transmission power ladder with N − 1 rungs; being on rung k
means that the picked node is able to reach its k closest neighbors. Of course not
all of these configurations are meaningful for wireless multihop ad hoc networks.
It is important to confine the search operations only to the meaningful ones.

As initial configuration the network structure obtained with the minimum-
node-degree (kmin = 8) connectivity rule is chosen. This sets a minimum node
degree kmin

i ≥ kmin for each node i. During subsequent optimization operations,
the respective transmission power values of all nodes are not decreased below
their initial value, thus ensuring strong connectivity for all times. Search oper-
ations are performed in rounds. Per round, each node is randomly picked once.
A picked node explores in two directions. In the first move it increases its trans-
mission power by one rung and, if the newly reached node does not already have
a large enough transmission power, forces the latter to climb up its ladder until
its rung suffices to successfully build a new mutual bidirectional communication
link. In the other move the picked node steps down its transmission power ladder
by one rung, implying that the lost neighbor might also move down its ladder
until it reaches the rung just before another communication link is broken. Both
moves modify the local network structure, require a global update of the end-
to-end routes and the betweenness centralities for all nodes, and lead to two
modified estimates of the end-to-end throughput (6), which are then compared
to the old estimate before the two explorative moves. The network structure
yielding the largest estimate is accepted. This update procedure, which has its
motivation from the echo requests of the self-� connectivity rule presented in
sect. 2, guarantees meaningful wireless multihop ad hoc network structures and
keeps the occurrence of interfering one-directed links to a minimum.

A local maximum of (6) is reached, if during a complete search round no im-
provement of the throughput estimate is found. Fig. 5a shows a typical evolution
of the end-to-end throughput in dependence of the number of search rounds until
the first local maximum is reached, which only takes a modest number of rounds.
The increase of the throughput performance is already remarkable. Once a local
maximum is reached, the respective network realization is perturbed by forcing
a small, randomly chosen fraction of the nodes to step up or down by one rung
on their transmission power ladder, including respective new or lost neighbor
actions as explained before. We denote the period until the next local maximum
is found as a meta-round. Fig. 5b illustrates the evolution of the end-to-end
throughput in terms of meta-rounds. The striking feature is that if more than
one node is perturbed out of its local-maximum state, the throughput perfor-

60 W. Krause, R. Sollacher, and M. Greiner

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 1000 10000 100000

p(
B

icu
m

)

Bi
cum

kmin = 8
optimized

Fig. 6. Distribution of Bcum
i for an ensemble of minimum-node-degree networks with

kmin = 8 as well as for an ensemble of throughput-(6)-optimized networks. The network

size is N = 300

mance decreases with the number of meta-rounds. If only one node is perturbed,
the throughput performance remains more or less the same as found for the first
local-maximum network realization, but there is no further improvement.

It is important to check all of these results with packet traffic simulations. As
demonstrated in Fig. 5a+b, a strong correlation between the simulation results
and the throughput estimate (6) is found. This is a non-trivial and important
statement. This analysis shows that the first local maximum yields the highest
throughput and all further maxima show a lower performance. Therefore, the
optimization can be terminated after reaching the first local maximum. Never-
theless, the fraction of the explored search space is small. Other maxima might
exist, but we do not know any algorithm to find them within the constraint of
reasonable cpu time.

Fig. 3(right) shows such a first-local-maximum network structure. It is still
similar to the initial network structure, which is illustrated in Fig. 3(middle). It
appears that only a few more communication links have been added. However,
those have been introduced in such a careful way that end-to-end routes are mod-
ified to decrease the largest Bcum

i values. For the initial as well as the optimized
network topologies the Bcum

i distribution is shown in Fig. 6. The optimization
process strongly decreases large Bcum

i values, thus leading to an increase of the
throughput performance.

Self-� Topology Control 61

For various network sizes, ranging from N = 100 to 1000, ensembles con-
sisting of 100 throughput-optimized network realizations have been generated.
Besides the optimized estimate (6) the end-to-end throughput has also been cal-
culated from packet traffic simulations. Results are shown as small-dotted curves
in Fig. 4. The optimized network topologies have an end-to-end throughput sig-
nificantly larger than for the other networks. This shows again that the expres-
sion (6) qualifies as a useful objective function for optimization, although the
discrepancy between estimated and simulated throughput has increased to some
extend. The end-to-end throughput of the optimized topologies again reveals the
scaling behavior Te2e ∼ (N − N0)γ . For the estimate (6) we find γ = 0.43 and
from the packet traffic simulations we get γ = 0.46. These values are very close to
the mean-field estimate γ = 0.5 following from (1). It demonstrates that within
the optimized network topologies the heterogeneities of the one-hop traffic have
been considerably reduced. With other words, the network structure has been
modified in such a way that the new end-to-end routes distribute the overall
network traffic more evenly and reduce the peak traffic loads of the bottleneck
nodes.

So far, a self-� topology control to construct wireless multihop ad hoc net-
work structures with a large end-to-end throughput performance has not been
put forward. The presented preparatory steps, including the generic system anal-
ysis and a subsequent search for optimized network structures, serve as a proof of
principles. They motivate and justify future self-� efforts. Clearly, a careful char-
acterization of the structural properties of the obtained throughput-optimized
network topologies is needed next. In particular, a precise understanding of the
small, but decisive topology differences between the networks, obtained from
the first local maximum of the performance optimization, and their initial,
minimum-node-degree counterparts are key to the development of successful
self-� proposals.

4 Conclusions and Outlook

Another, admittedly very intriguing approach to self-� topology control could be
network game theory. In Ref. [11] a coupling of playing games with neighboring
nodes and network structure evolution has been introduced. Consequently, the
goal of network game theory would be: give a game to the nodes, let them play,
and by doing so they will automatically end up in a self-� construction of a
game-dependent network structure. Of course, for the moment this is only an
idea and a lot of tough conceptual work is still necessary to prove it right (or
wrong).

Although we have focused on topology control so far, there is plenty of self-�
open range beyond it. For example, in Ref. [12] a reinforced load dependent
routing metric has been proposed, which adapts to packet traffic congestion,
is able to increase the end-to-end throughput and to decrease the end-to-end
time delay in wireless multihop ad hoc communication networks. Other impor-
tant self-� issues, which should be addressed not only in wireless multihop ad

62 W. Krause, R. Sollacher, and M. Greiner

hop networks, but also in extensions like sensor-actutator networks, are effi-
cient medium-access-control assignments, network robustness, network security
and more network function. Some preliminary, biology-inspired investigations in
these directions have already been presented [13].

Acknowledgments

W. K. gratefully acknowledges support by the Frankfurt Center for Scientific
Computing and the Ernst von Siemens-Scholarship.

References

1. Proceedings of the 3rd ACM Int. Symp. on Mobile Ad Hoc Networking and Com-
puting (MobiHoc 2002), ACM, Lausanne, Switzerland, 2002.

2. Proceedings of the 4th ACM Int. Symp. on Mobile Ad Hoc Networking and Com-
puting (MobiHoc 2003), ACM, Annapolis, MD, USA, 2003.

3. Proceedings of the 5th ACM Int. Symp. on Mobile Ad Hoc Networking and Com-
puting (MobiHoc 2004), ACM, Roppongi, Japan, 2004.

4. A. Deutsch, S. Dormann, Cellular Automaton Modeling of Biological Pattern For-
mation, Birkhäuser, Boston, 2004.

5. P. Gupta, P. R. Kumar, The capacity of wireless networks, IEEE Trans. Info.
Theory IT–46 (2) (2000) 388–404.

6. C. Bettstetter, On the minimum node degree and connectivity of a wireless multi-
hop network, in: MobiHoc 2002 [1], pp. 80–91.

7. I. Glauche, W. Krause, R. Sollacher, M. Greiner, Continuum percolation of wireless
ad hoc communication networks, Physica A 325 (2003) 577–600.

8. W. Krause, I. Glauche, R. Sollacher, M. Greiner, Impact of network structure on
the performance of wireless multihop ad hoc communication, Physica A 338 (2004)
633–658.

9. R. Montemanni, L. M. Gambardella, Exact algorithms for the minimum power
symmetric connectivity problem in wireless networks, Computers and Operations
Research.

10. R. Montemanni, L. M. Gambardella, A. Das, Mathematical models and exact algo-
rithms for the min-power symmetric connectivity problem: an overview, in: J. Wu
(Ed.), Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wire-
less, and Peer-to-Peer Networks, CRC Press, to appear.

11. H. Ebel, S. Bornholdt, Evolutionary games and the emergence of complex networks,
cond-mat/0211666.

12. I. Glauche, W. Krause, R. Sollacher, M. Greiner, Distributive routing & congestion
control in wireless multihop ad hoc communication networks, Physica A 341 (2004)
677–701.

13. J.-Y. Le Boudec, S. Sarafijanović, An artificial immune system approach to misbe-
havior detection in mobile ad-hoc networks, in: A. J. Ijspeert, D. Mange, M. Mu-
rata, S. Nishio (Eds.), Bio-ADIT 2004, Lausanne, Switzerland, 2004, pp. 96–111.

Emergent Consensus in Decentralised Systems
Using Collaborative Reinforcement Learning

Jim Dowling, Raymond Cunningham, Anthony Harrington,
Eoin Curran, and Vinny Cahill

Distributed Systems Group, Trinity College, Dublin, Ireland

Abstract. This paper describes the application of a decentralised coor-
dination algorithm, called Collaborative Reinforcement Learning (CRL),
to two different distributed system problems. CRL enables the establish-
ment of consensus between independent agents to support the optimisa-
tion of system-wide properties in distributed systems where there is no
support for global state. Consensus between interacting agents on local
environmental or system properties is established through localised ad-
vertisement of policy information by agents and the use of advertisements
by agents to update their local, partial view of the system.

As CRL assumes homogeneity in advertisement evaluation by agents,
advertisements that improve the system optimisation problem tend to
be propagated quickly through the system, enabling the system to col-
lectively adapt its behaviour to a changing environment. In this paper,
we describe the application of CRL to two different distributed system
problems, a routing protocol for ad-hoc networks called SAMPLE and a
next generation urban traffic control system called UTC-CRL. We eval-
uate CRL experimentally in SAMPLE by comparing its system rout-
ing performance in the presence of changing environmental conditions,
such as congestion and link unreliability, with existing ad-hoc routing
protocols. Through SAMPLE’s ability to establish consensus between
routing agents on stable routes, even in the presence of changing levels
of congestion in a network, it demonstrates improved performance and
self-management properties. In applying CRL to the UTC scenario, we
hope to validate experimentally the appropriateness of CRL to another
system optimisation problem.

1 Introduction

In the future, many distributed systems will consist of interacting, autonomous
components that organise, regulate and optimise themselves without human in-
tervention. However, with increasing system size and complexity our ability to
build self-managed distributed systems using existing programming languages,
top-down design techniques and management infrastructures is reaching its lim-
its [1], as solutions they produce require too much global knowledge.

Self-managing distributed computer systems, on a scale comparable with bio-
logical autonomic systems, require a decentralised, bottom-up approach to their

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 63–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

64 J. Dowling et al.

construction. Self-managing decentralised systems can be modelled as collections
of self-managing agents using decentralised coordination to enable a weak form
of consensus to emerge between a group of agents partial views of the system
[2, 3]. Consensus between the agents’ partial views of the system can be used as
a basis for system optimisation, coordinating the execution of self-management
actions and the collective adaptation of agents to a changing and uncertain envi-
ronment. The benefits of such an approach include improved scalability, the pos-
sibility of establishing self-management properties, self-optimisiation, the lack of
centralised points of failure or attack, as well as possible system evolution by
evolving the coordination models of the agents.

The construction of self-managing distributed systems using decentralised
coordination models presents a number of challenges. These include designing a
suitable representation for an agent’s local view of the system, the provision of
self-management actions for agents that allow them to adapt to changes in their
local environment, and the design of feedback models that update the agent’s
local view of the world.

This paper discusses collaborative reinforcement learning (CRL), as a tech-
nique for building decentralised coordination models that addresses these chal-
lenges. CRL extends reinforcement learning (RL) with positive and negative
feedback models to update an agent’s policy, i.e., its local model of how to inter-
act with the system, and enable a certain degree of consensus to emerge between
agent policies. We introduce two application areas for CRL, a routing protocol
for Mobile Ad Hoc Networks (MANETs) called SAMPLE and an Urban Traffic
Control (UTC) system called UTC-CRL. Both of these systems are designed
to leverage consensus between agent policies to implement self-managing sys-
tem properties as system optimisation behaviours. The goal of CRL is to enable
agents to produce collective behaviour that establishes and maintains the desired
system-wide self-management properties. However, in open, dynamic distributed
systems, the environment is non-stationary and CRL enables agents to contin-
ually update their consensus on more optimal policies in order to be able to
maintain the system-wide self-management properties in a changing environ-
ment. In the evaluation of SAMPLE we show how the protocol enables routing
agents to continually maintain consensus on any stable routes in the network to
improve system routing performance.

This paper is structured as follows. Section 2 introduces decentralised coordi-
nation and is followed in section 3 by a description of the CRL model. Section 4
presents SAMPLE as both a CRL system and an on-demand routing protocol for
ad hoc networks. We compare simulation results for SAMPLE with two widely
used on-demand MANET routing protocols in different scenarios and explain the
differing abilities of the protocols to adapt and optimise to a view of the MANET
environment. Section 5 introduces our approach to applying CRL to the prob-
lem of Urban Traffic Control. The final section provides some conclusions to the
work presented in this paper.

Emergent Consensus in Decentralised Systems 65

2 Self- anaging Systems Using Decentralised
Coordination

Coordination is the process of building programs by gluing together active pieces
[4], where active pieces can be processes, autonomous objects, agents or applica-
tions. Coordination is the logic that binds independent activities together into a
collective activity. Both centralised and decentralised coordination models have
been developed to describe the “glue” that connects computational activities. A
multi-agent system built using a centralised coordination model is one where the
behaviour of the agents in the system is controlled either by an active manager
agent or by a predetermined design or plan followed by the agents in the system
[5]. A system built using a decentralised coordination model is a self-organising
multi-agent system [5], whose system-wide structure or behaviour is established
and maintained solely by the interactions of its agents that execute using only
a partial view of the system.

Coordination models are necessary for the construction of self-managing dis-
tributed systems as they organise the self-management and self-adaptive be-
haviour of agents towards system goals. A lack of coordination among agents
in a distributed system can lead to interference between the different agents’
self-management behaviour, conflicts over shared resources, suboptimal system
performance and hysteresis effects [6]. For example, a distributed system that
is composed of self-managing agents, where agents optimise their behaviour to-
wards agent goals is not necessarily optimised at the system-level, as there is
the possibility that conflicting greedy decisions taken by agents may result in
sub-optimal resource utilisation or performance at the system-level. In order
to optimally adapt a system to a changing environment the agents must re-
spond to changes in a coordinated manner, but in decentralised environments,
the coordination mechanism cannot be based on centralised or consensus-based
techniques.

Increasingly, researchers are investigating decentralised coordination ap-
proaches to establish and maintain system properties [7, 8, 9, 10]. Decentralised
control is based on defining local coordination or control models for components
that only have partial views of the system, support only localised interaction
and have no global knowledge. Agents typically store locally a partial, estimated
model of the system and interaction protocols defined between neighbouring
agents enables them to collectively improve the accuracy of their local, estimated
models [11, 12]. This can often result in convergence between the estimated mod-
els of neighbouring agents on a common view of the system or environment [13].
Agents that have converged models can coordinate their behaviour using their
local models to perform collective adaptive behaviour that can establish and
maintain system-wide properties. These system properties emerge from the lo-
cal interaction between neighbouring agents and with no explicit representation
of system properties on the level of the individual agent [7, 8].

Decentralised coordination techniques have been developed that are based on
cooperation [10, 11] and competition [14] between agents. Both approaches are

m

66 J. Dowling et al.

typically evaluated by how they optimise some system property, such as a self-
managing property of the system. There is also the possibility that the system
may attempt to optimise more than one system property. Multiple objective
functions can be used to describe optimisation problems where there is more
than one competing objective function.

Some problems associated with decentralised models include the uncertain
outcome of control actions on agents, as their effect may not be observable until
some unknowable time in the future. Also, optimal decentralised control is known
to be computationally intractable [9], although systems can be developed where
system properties are near-optimal [15, 16, 13, 12], which is often adequate for
certain classes of applications.

3 Collaborative Reinforcement Learning

CRL is a decentralised approach to establishing and maintaining system-wide
properties in distributed systems. CRL is an extension to Reinforcement Learn-
ing (RL) [17] for decentralised multi-agent systems. CRL does not make use of
system-wide knowledge and individual agents only know about and interact with
their neighbouring agents.

CRL can be used to implement decentralised coordination models based on
cooperation and information sharing between agents using coordination actions
and various feedback models, respectively. The feedback models include a nega-
tive feedback model that decays an agent’s local view of its neighbourhood and a
collaborative feedback model that allows agents to exchange the effectiveness of
actions they have learned with one another. In a system of homogeneous agents
that have common system optimisation goals and where agents concurrently
search for more optimal actions in different states using Reinforcement Learning
(RL), collaborative feedback enables agents to share more optimal policies [17],
increasing the probability of neighbouring agents taking the same or related ac-
tions. This process can produce positive feedback in action selection probability
for a group of agents. Positive feedback is a mechanism that reinforces changes
in system structure or behaviour in the same direction as the initial change and
can cause the emergence of system behaviour or structure [3, 18]. In CRL, the
positive feedback process continues until negative feedback, produced either by
constraints in the system or our decay model, causes agent behaviour to adapt so
that agents in the system converge on stable policies. In effect, agents can estab-
lish consensus with their neighbours on more optimal self-management actions
to take given a particular system state.

Given a certain degree of consensus between agents on their policies, the goal
of system optimisation is to have the agents’ policies converge on values that
produce collective behaviour that meets the system optimisation criteria [19].
However, in open dynamic distributed systems, the system’s environment is non-
stationary and we require agents than can collectively adapt their behaviour to
the changing environment to continue to meet the system optimisation criteria.
We believe that the adaptability of system behaviour to changes in its environ-

Emergent Consensus in Decentralised Systems 67

ment is as important an evaluation criterion for complex adaptive distributed
systems as the more traditional criterion for static environments of convergence
and stabilisation on optimal system behaviour.

3.1 Reinforcement Learning

In RL, an agent associates actions with system states in a trial-and-error man-
ner and the outcome of an action is observed as a reinforcement that, in turn,
causes an update to the agent’s action-value policy using a reinforcement learn-
ing strategy [17]. The goal of reinforcement learning is to maximise the total
reward (reinforcements) an agent receives over a time horizon by selecting opti-
mal actions. Agents may take actions that give a poor payoff in the short-term
in the anticipation of higher payoff in the longer term. In general, actions may
be any decisions that an agent wants to learn how to make, while states can be
anything that may be useful in making those decisions.

RL problems are usually modelled as Markov decision processes (MDPs)
[17, 20]. A MDP consists of a set of states, S = {s1, s2, . . . , sN}, a set of actions,
A = {a1, a2, . . . , aM}, a reinforcement function R : S × A → R and a state
transition distribution function: P : S × A → Π(S), where Π(S) is the set of
probability distributions over the set S.

3.2 Coordination in CRL

CRL system optimisation problems are decomposed into a set of discrete opti-
misation problems (DOPs) [7] that are solved by collaborating RL agents. The
solution to each DOP is initiated at some starting agent in the network and
terminated at some (potentially remote) agent in the network. Each agent uses
its own policy to decide probabilistically on which action to take to attempt
to solve a DOP. In CRL the set of available actions that an agent can execute
include DOP actions, Api

, that try to solve the DOP locally, delegation actions,
Adi , that delegate the solution of the DOP to a neighbour and a discovery action
that any agent can execute in any state to attempt to find new neighbours.

The goal of CRL is to coordinate the solution to the set of DOPs among
a group of agents using delegation and discovery actions. This is achieved by
ensuring that an agent is more likely to delegate a DOP to a neighbour when it
either cannot solve the problem locally or when the estimated cost of solving it
locally is higher than the estimated cost of a neighbour solving it.

3.3 Partial Views of System

In dynamic distributed systems, agents typically have a changing number of
neighbouring agents that can be used to help solve a given DOP. To model
an agent’s dynamic set of neighbours, CRL allows agents to execute discovery
actions and then establish causally-connected states with any newly discovered
neighbour. Causally-connected states represent the contractual agreement be-
tween neighbouring agents to support the delegation of DOPs from one to the
other. Causally-connected states map an internal state on one agent to an ex-
ternal state on at least one neighbouring agent. An internal state on one agent

68 J. Dowling et al.

External
State

Internal
States

A

B

Causally-
Connected

States

C

Fig. 1. Causally-Connected States between the MDPs in Agents A, B, C

can be causally-connected to external states on many different neighbouring
agents, see Figure 1. An agent’s set of causally connected neighbours represents
its partial-view of the system.

3.4 Feedback Models

There are various feedback models in CRL, including a collaborative feedback
model that allows agents to exchange the effectiveness of actions they have
learned with one another and a negative feedback model that decays an agent’s
local view of its neighbourhood.

Collaborative Feedback as Advertisement. In CRL, neighbours are in-
formed of changes to Vj(s) of a causally-connected external state, s, at agent
nj using an advertisement . Each agent maintains a local view of its neigh-
bours by storing V values for causally-connected states to neighbours in a local
cache, Cachei. The cache consists of a table of Q-values, for all delegation ac-
tions, ad, at agent ni, and the last advertised Vj(s) for successful transition
to the causally connected state. A Cachei entry is a pair (Qi(s, aj), rj), where
rj is the cached Vj(s) value. When the agent ni receives a Vj(s) advertise-
ment from neighbouring agent nj for a causally-connected state s, it updates
rj in (Qi(s, aj), rj). Examples of implementation strategies for V advertisement
in distributed systems include periodic broadcast/multicast, conditional broad-
cast/multicast, piggybacking advertisement in transmission/acknowledgement
packets and event-based notification.

Decay as Negative Feedback. In certain decentralised systems an agent’s
set of neighbours changes dynamically and to overcome problems related to un-
reachable neighbours, an agent’s cached Vj values become stale using a decay
model [7]. In CRL, we decay cached Vj information in the absence of new ad-
vertisements of Vj values by a neighbour as well as after every recalculation of
Qi values. The absence of Vj advertisements is one aspect of negative feedback
and allows the removal of stale cache entries. The rate of decay is configurable,
with higher rates more appropriate for more dynamic network topologies.

Emergent Consensus in Decentralised Systems 69

3.5 Distributed Model-Based Reinforcement Learning

CRL enables system optimisation in multi-agent RL systems, and states in the
multi-agent system may be distributed over different agents in the network. As
a result, state transitions can be either to a local state on the current agent or to
a remote state on a neighbouring agent. In distributed systems, when estimating
the cost of the state transition to a remote state on a neighbouring agent we also
have to take into consideration the network connection cost to the neighbouring
agent. For this reason, we use a distributed model-based reinforcement learning
algorithm that includes both the estimated optimal value function for the next
state at agent ni, Vj(s′), and the connection cost, Di(s′|s, a) ∈ R where a∈ Adi ,
to the next state when computing the estimated optimal state-action policy as
Qi(s, a) at agent ni (see equation (1)).

In the learning algorithm of CRL, our reward model consists of two parts.
Firstly, a MDP termination cost, R(s, a) ∈ R, provides agents with evaluative
feedback on either the performance of a local solution to the DOP or the per-
formance of a neighbour solving the delegated DOP. Secondly, a connection cost
model, Di(s′|s, a), provides the estimated network cost of the attempted dele-
gation of the DOP from a local agent to a neighbouring agent. The connection
cost for a transition to a state on a neighbouring agent should reflect the un-
derlying network cost of delegating the DOP to a neighbouring agent, while the
connection cost for a transition to a local state after a delegation action should
reflect the cost of the failed delegation of the DOP. The connection cost model
requires that the environment supplies agents with information about the cost
of distributed systems connections as rewards.

The update rule used in the learning algorithm or CRL is:

Qi(s, a) = R(s, a) +
∑

s′ ∈ Si
Pi(s′|s, a).

(Di(s′|s, a) + Decay (Vj(s′))) (1)

where a ∈ Adi
. If a /∈ Adi

, this defaults to the standard model-based reinforce-
ment learning algorithm [20] with no connection costs or decay function. R(s, a)
is the MDP termination cost, P (s′|s, a) is the state transition model that com-
putes the probability of the action a resulting in a state transition to state s′,
Di(s′|s, a) is the estimated connection cost and Vj(s′) is rj ∈ Cachei if a ∈ Ad,
and Vi(s′) otherwise.

3.6 Emergent Consensus

We advocate an experimental approach to the validation of the emergence of
consensus in CRL systems. Due to the lack of a global view of the system,
individual agents cannot validate the existence of system properties and their
existence cannot be validated analytically. We can only validate their existence
through external observation of the system, e.g., through experimentation. The
process through which agents can achieve consensus in CRL systems is decen-
tralised coordination using coordination actions and feedback. They enable con-

70 J. Dowling et al.

sensus to emerge between groups of agents on more optimal actions to execute
actions given shared system states. The convergence of agent policies in CRL is
a feedback process in which a change in the optimal policy of any RL agent, or
a change in the system’s environment as well as the passing of time causes an
update to the optimal policy of one or more RL agents. In CRL, changes in an
agent’s environment can provide feedback into the agent’s state transition model
and connection cost model, while changes in an agent’s optimal policy provides
collaborative feedback to the cached V values of its neighbouring agents using
advertisement. Time also provides negative feedback to an agent’s cached V val-
ues and allows converged policies to be ’forgotten’, enabling policies to converge
again on different behaviours.

As a result of the different feedback models in CRL, agents can utilise more
information about the state of the system and their neighbouring agents to en-
able groups of agents to converge on similar policies. In particular, collaborative
feedback enables agents to share policy information with their neighbours and
achieve consensus on more optimal actions to execute in given system states.
This consensus between neighbouring agents on the actions to execute, assum-
ing the agents perceive the system to be in a similar state, can be the basis for
collective behaviours such as system self-management behaviour.

4 SAMPLE and CRL

The CRL model was used to build a MANET routing protocol called SAMPLE
[12]. SAMPLE is a probabilistic on-demand ad hoc routing protocol that contains
system-wide self-managing properties, such as the adaptation of network traffic
patterns around areas of congestion and wireless interference and the exploitation
of stable routes in the environment.

Ad hoc routing is a challenging problem as it exhibits properties such as
the lack of global network state at any particular node in the network and
frequently changing network topology due to node mobility. This ensures that
system properties of the protocol only emerge from local routing decisions based
on local information and that routing agent’s behaviour has to frequently adapt
to a changing environment.

Two major assumptions of the two most popular MANET routing protocols,
Ad-Hoc On-Demand Distance Vector routing (AODV) [21] and Dynamic Source
Routing (DSR) [22], is that the network has a random topology and that all ra-
dio links function perfectly. Both protocols make these static assumption about
the MANET environment in order to avoid route maintenance problems typi-
cally encountered by proactive routing protocols in MANETs. AODV and DSR
use on-demand routing where routes to destinations are only discovered when
needed using flooding [21, 22] and these routes are discarded when a number of
transmission failures over a network link occur, even though that transmission
failure may be due to a temporary phenomena such as congestion or wireless
interference.

Emergent Consensus in Decentralised Systems 71

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 100 200 300 400 500 600 700 800 900

D
el

iv
er

y
R

at
io

Pause Time

Delivery Ratio vs Pause Time

Routing Protocol
AODV

DSR
SAMPLE

(a) Delivery Ratio

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 0 100 200 300 400 500 600 700 800 900

T
ra

ns
m

is
si

on
s

pe
r

P
ac

ke
t S

en
t

Pause Time

Transmissions per Packet Sent vs Pause Time

Routing Protocol
AODV

DSR
SAMPLE

(b) Transmissions Per Packets Sent

Fig. 2. Perfect Network Links in a Random Topology. Performance with Varying Load.

64 byte packets

 0

 50

 100

 150

 200

 250

 50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t

Offered Kbps

Throughput vs Offered Kbps

Routing Protocol
AODV

DSR
SWARM

Fig. 3. At a varying load, 512 byte packets, SAMPLE delivers a data throughput of

up to 200Kbps. This throughput approaches the theoretical limit of the throughput

achievable in a multi-hop 802.11 mobile ad hoc network scenario

In our evaluation of SAMPLE, in sections 4.1 and 4.4, we show how CRL en-
ables routing agents in SAMPLE to establish consensus on the location of stable
routes in a network with different quality network links and use this consensus
to optimise system routing performance. In SAMPLE we attempt to optimise
multiple, often conflicting system routing performance criteria, including max-
imising overall network throughput, maximising the ratio of delivered packets
to undelivered packets and minimising the number of transmissions required per
packet sent.

4.1 SAMPLE Experiments

We have implemented the SAMPLE routing protocol in the NS-2 network simu-
lator [23]. We compare the performance of the SAMPLE routing protocol to that

72 J. Dowling et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 15 20 25 30 35 40 45 50

D
el

iv
er

y
R

at
io

Offered Kbps

Delivery Ratio vs Offered Kbps

Routing Protocol
AODV

DSR
SWARM

(a) Delivery Ratio

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 15 20 25 30 35 40 45 50

T
ra

ns
m

is
si

on
s

pe
r

P
ac

ke
t S

en
t

Offered Kbps

Transmissions per Packet Sent vs Offered Kbps

Routing Protocol
AODV

DSR
SWARM

(b) Transmissions Per Packet Sent

Fig. 4. Stable Route Topology. Performance with Varying Load. 64 byte packets

of AODV and DSR, in two different scenarios. The first scenario is a random net-
work scenario that is designed to test how SAMPLE compares with AODV and
DSR when the MANET environment reflects their static design assumptions.
The second scenario is a metropolitan area MANET, where a subset of the links
in the network are stable, that is designed to test the ability of the protocols to
adapt their routing behaviour to achieve consensus on the location of the stable
routes in the network. We also introduce congestion into both scenarios to inves-
tigate the effectiveness of the protocols in adapting their routing behaviour to
a changing MANET environment. Our goal here is to compare the performance
of the SAMPLE routing protocol in different, changing environments with on-
demand protocols that make static assumptions about the MANET environment
using the system optimisation criteria identified in Section 4.

The SAMPLE routing protocol combines routing information with data pack-
ets, and as a result the metric of number of routing packets is not a valid one
for comparison with AODV and DSR. For this reason, we use the number of
transmissions (unicast or broadcast) that each protocol makes per application
packet sent during the simulation run as a metric to compare the protocols. This
metric represents the cost to the network of routing each data packet.

4.2 Perfect Network Links in a Random Topology

The comparative performance of the protocols in a scenario that mimics the
random topology used in [24] is first evaluated. A simulation arena of 1500m x
300m is used, with the transmission power of the radio interfaces set to 250m.
The random way-point mobility model is used, with a maximum speed of 20 m/s
and varying pause times. Constant bit rate traffic of 64 byte packets, 4 packets
per second, with 10 flows between random pairs of nodes is used.

We compare the SAMPLE routing protocol to AODV and DSR in an idealised
experiment with no packet loss added to the simulation. Figure 2 shows the
packet delivery ratio and transmissions-per-packet metrics as they vary with

Emergent Consensus in Decentralised Systems 73

the level of mobility in the network. In this scenario, both AODV and DSR
have near-optimal packet delivery ratios, while SAMPLE has between 1% and
4% worse packet delivery ratios, and all protocols have a near-minimal cost (in
terms of network transmissions). As there is no packet loss and all links are of
perfect quality, AODV’s favouring of routes with the shortest hop-count shows
the best performance.

4.3 Achieving Consensus on Stable Links in a Metropolitan Area
MANET

We have also evaluated the performance of SAMPLE against that of AODV
and DSR in a network scenario based on a metropolitan ad hoc network. In
this scenario, there are a subset of nodes in the network that are not mobile.
The network scenario is motivated by the recent appearance of ad hoc networks
designed to supply Internet access to mobile nodes.

In this scenario, we anticipate that certain nodes in the network will be
immobile for extended periods of time, resulting in stable links between them,
and that the traffic patterns in the network will be concentrated on the subset of
nodes that have Internet connectivity. In the experiments presented here we use
3 server nodes. Each client sends constant-bit-rate traffic to one of the servers
at a rate of 4 packets per second. The number of client nodes in the network is
varied in order to create congestion in the network. There are 33 fixed nodes in
these simulations, and 50 mobile nodes. The fixed nodes in the simulation provide
stable links in the network which the routing protocols could exploit. SAMPLE’s
configurable parameters have been tuned to provide improved performance for
this scenario, see [12] for more details.

Figure 4 shows the variation in performance of the three routing protocols as
the number of clients in the network is increased. The packet size sent by clients
was kept fixed at 64 bytes, sent 3 times a second.

As the number of clients in the network is increased, the offered throughput to
the routing protocols is increased. This in turn increases the level of packet loss
and the amount of contention that the Media Access Control (MAC) protocol
must deal with. This increased congestion increases the number of failed MAC
unicasts in the network. Figure 4 shows that increased packet loss results in lower
throughput and packet delivery ratios in AODV and DSR, but that SAMPLE
is able to maintain high throughput and packet delivery ratios with high levels
of packet loss.

In [25] it was demonstrated that for multi-hop 802.11 networks, the achievable
throughput is significantly less than the transmission rate of the radio interfaces.
The maximum achievable data throughput in an 802.11 ad hoc network is ap-
proximately 0.25Mbps (which [25] achieved using 1500 byte packets). Figure 3
shows that SAMPLE manages to approach this limit in this scenario. This shows
experimentally that using CRL, SAMPLE can meet the system optimisation
criteria of maximising network throughput in the metropolitan area MANET
scenario.

74 J. Dowling et al.

4.4 Emergent Consensus and System Optimisation in SAMPLE

In the metropolitan area MANET environment, there are a subset of the links
in the network that are stable. Collaborative feedback adapts routing agent be-
haviour to favour paths with stable links, producing the emergent stable routes
in the network. AODV and DSR do not allow nodes to differentiate between
multiple available links in this manner, due to their static assumptions about
network links. In SAMPLE positive feedback in link selection by routing agents
means that the routing behaviour of agents converges on the stable network
links in the environment. SAMPLE maintains a near-optimal delivery ratio and
using a minimal number of transmissions even at high offered throughput for
802.11 MANETs. An important lesson from SAMPLE is the need for experi-
mentation, as the emergence of more optimal routing properties is sensitive to
tunable parameters in CRL and to the update rule of the learning algorithm
used in SAMPLE.

5 Urban Traffic Control and CRL

We believe that Urban Traffic Control is an appropriate application domain for
the CRL technique. The UTC and MANET application domains exhibit some
similar characteristics. Road traffic-signal controllers can be modelled as au-
tonomous agents. Routing network traffic along a link is analogous to running a
green signal-control phase for this street and the system goal is to maximise over-
all road network throughput by altering signal timings to minimise congestion
and vehicle delay.

The suburban road network provides the links between agent controllers. The
vehicle density or flow-rate provides a measure of the attractiveness or general
fitness of this link. If the quality of service or throughput of the link degrades
suddenly due to traffic incidents, sudden increase in traffic volumes or traffic
signal operation then the link will become congested and it will be sub-optimal
to route vehicles along this link.

The signal-control agent obtains information about its local environment from
its sensor infrastructure. The overall UTC system objective may be to optimise
vehicle throughput the network however this policy must be implemented by
autonomous agents that only possess timely and verifiable information about
their local environment. The key challenge of trying to implement a global op-
timisation strategy based on partial knowledge of a dynamic system is therefore
common to both the UTC and MANET application domains.

5.1 Optimisation in Urban Traffic Control

Advances in sensor infrastructure resulting in online vehicle and traffic flow de-
tection have enabled the advent of adaptive traffic control systems capable of
online generation and implementation of signal timing parameters[26]. Adap-
tive control systems such as SCOOT[37] and SCAT [38] are widely deployed
throughout the world.

Emergent Consensus in Decentralised Systems 75

However the adaptive traffic control systems that are currently deployed are
hampered by the lack of an explicit coordination model for junction or agent
collaboration and are typically reliant on prespecified models of the environment
that require domain expertise to construct. These models are typically used as
an aid to sensor data interpretation and strategy evaluation and may often be
too generic to adequately reflect highly dynamic local conditions[28].

These systems have a limited rate of adaptivity and are designed to respond
to gradual rather than rapid changes in traffic conditions. They employ cen-
tralised data processing and control algorithms that do not reflect the localised
nature of traffic disturbances and flow fluctuations. Yagar and Dion[36] state
that: ”smooth traffic and uncomplicated networks provide good opportunities for
progression, in which case a centralised quasi real-time model, such as SCOOT is
appropriate as a model of central control. However, when faced with significant
demand fluctuation or interference..., a distributed real-time model is required”.

Current research on next generation UTC systems is focusing on applying
novel control strategies and AI techniques to the domain. Hoar et. al [27], have
investigated the application of swarm intelligence to cooperative vehicle control
and isolated signal setting optimisation. Their approach is based on the stig-
mergic model of environment mediated communication to enable inter-vehicle
and vehicle-signal controller cooperation. The fitness function evaluated seeks
to minimise the average waiting time of all vehicles in the network. Initial tests
indicate promising results and increased adaptivity to high rates of change in
traffic flow.

Abdulhai et. al [28], have applied reinforcement learning techniques to UTC
control. Using an unsupervised learning technique they have demonstrated that
an AI approach can at least match the performance of expert-knowledge based
pre-timed signal plans without the requirement of a network model or traffic
engineering expertise. The system attempts to minimise the total delay incurred
by vehicles in all queues on a junction approach. The evaluation results relate
to the operation of a single intersection controller and does not substantially
address distributed signal coordination between agent junctions.

The authors cited above have applied novel techniques to the UTC domain
however they are essentially adopting centralised approaches to the problem.
Their evaluation scenarios are not representative of a real-sized UTC network.
Such approaches are not scalable and Lo and Chow[39] highlight the difficulty
faced by attempting to optimise a real-sized UTC problem in a centralised fash-
ion. They apply a genetic algorithm based control strategy with possible solution
sets encoded as binary strings. For a network with 3 agent junctions operating
with a constrained number of control variables the sample solution space expands
to 270. The addition of agent junctions capable of a normal set of control actions
causes the solution space to grow exponentially and results in an intractably
large solution space.

We believe that adopting a decentralised approach to UTC optimisation is
the only feasible method of tackling the problem on a large scale. We believe this
decentralisation is best attained by modelling individual junctions as agents and

76 J. Dowling et al.

Traffic light Junction

Non-traffic light Junction

A

B

C

D

E

F

G

Fig. 5. Sample Layout of a set of Junctions

allowing consensus to emerge between cooperating agents on a suitable system
control strategy.

5.2 UTC-CRL

The similarities between the UTC and MANET environments coupled with dif-
ficulties exposed by current UTC strategies has prompted the application of the
CRL model to the UTC domain. A large scale UTC system may be modelled in
a decentralised manner using CRL. Using the UTC-CRL approach, traffic lights
would act as agents, choosing a particular action to take, such as changing from
one phase to another and receiving a reward from the environment, for taking
this action. UTC-CRL allows traffic light agents to share their local view of
the congestion at their junction with neighbouring agents to enable convergence
towards a shared view of the congestion in the surrounding area.

Using CRL to tackle this problem has a number of advantages. Firstly, CRL
gives an explicit framework to model the collaboration and coordination between
agents. Secondly, as CRL is a distributed learning technique, traffic light agents
collaborate to allow consensus to be established on the optimal phases to choose
at a junction in an UTC environment that is uncertain and dynamic. This in
turn allows the flows of traffic in an area to be optimised by the collaborating
traffic light agents. Positive feedback is used to reinforce the selection of such
optimal phases. Negative feedback discourages traffic light agents to act in a
greedy fashion as this adversely impacts on congestion levels at neighbouring
traffic light agents.

For example in figure 5, a traffic light agent at junction C uses information
from its neighbouring traffic light agents, {A, B, D, F, G} to optimise the flow of
traffic in the area surrounding junction C. Similarly, junction C communicates
with its neighbours to allow them to optimise the flow of traffic in their individual
area. The traffic light agent would then communicate its view of the environment
to the traffic light agents that are both upstream and downstream of it.

Emergent Consensus in Decentralised Systems 77

Indirect feedback is given by vehicles crossing the junction from one or more
approaches to one or more exits. Secondly, traffic light agents advertise their
view of their local environment to neighbouring agents. Instead of advertising
the cost to a particular destination as in SAMPLE, a traffic light agent in UTC-
CRL advertises its view of the level of congestion associated with a particular
approach from an upstream junction or associated with a particular exit towards
a downstream junction.

For example in figure 5, junction C would advertise to junction A its view
of the congestion on the approach from junction A. Similarly, junction A would
advertise to junction C its view of the congestion on the exit from junction
A towards junction C. By incorporating each of these views into their calcula-
tions, junctions A and C can establish convergent views of the congestion level
which can then in turn inform their collective decisions of which action is most
appropriate.

The type of system optimisation achievable in UTC-CRL depends on the
actions, states and rewards used. The actions available to a particular junction
correspond to a subset of the possible phases at that junction. The set of pos-
sible states relate to the type of system optimisation desired. For example, one
optimisation criteria may be to minimise average number of vehicles waiting at
a junction. Given such a criteria, the states of the traffic light agent at that
junction correspond to a tuple of values that represent the number of vehicles
waiting on each approach to that junction. Another possible optimisation cri-
teria would be to maximise the average velocity of vehicles in the system. This
would require the average velocity of vehicles on each approach to be wirelessly
communicated to the traffic light agent at the junction.

The reward model depends on the particular optimisation strategy being
pursued. When trying to minimise the number of vehicles waiting at a junction,
the reward received by an agent on executing an action should be related to the
number of vehicles that traverse the junction as a result of the particular action
being selected. Alternatively, when trying to maximise the average velocity, the
reward received by executing an action should be related to the change in the
velocities of the vehicles on the various approaches to the junction.

Finally, as CRL is a completely decentralised approach with agents having a
similar number of states and actions, this should allow UTC-CRL to scale to a
large number of traffic light junctions.

5.3 Evaluation Strategy

As highlighted in section 4.1, SAMPLE takes an experimental approach to vali-
date the emergence of consensus between mobile hosts in a MANET. In a similar
approach, UTC-CRL is taking an experimental approach to validate the appro-
priateness of CRL in a large scale UTC setting. In particular, an objective of
the UTC-CRL experimental approach is to verify that consensus can emerge
between collaborating traffic light agents and this emergence of consensus allows
optimisation of traffic flows in this large scale setting. The envisioned setting for
this work corresponds to the Dublin city area which consists of 248 traffic light

78 J. Dowling et al.

junctions, over 750 non-traffic light junctions and over 3000 links joining these
junctions. Given this layout of junctions, models of traffic flows between different
areas of the city are currently under development that correspond to currently
available census data for the greater Dublin area [31]. We have constructed a
model of the road network for Dublin city centre and a traffic model contain-
ing realistic vehicle volumes. We are currently evaluating MDPs to validate the
appropriateness of CRL in this domain.

6 Conclusions

Decentralised computing systems should establish and maintain consensus on en-
vironmental or system properties with minimal external intervention in order to
provide system-wide self-managing behaviour. The challenges of how to achieve
consensus between agents’ local, partial views of the system in order to establish
such properties can be met using decentralised coordination techniques. CRL
is one such coordination technique that enables consensus on optimal policies
to emerge between interacting agents in a decentralised system. In this paper
we described CRL as a decentralised coordination technique and discussed its
application to a MANET routing protocol called SAMPLE and Urban Traf-
fic Control problems. From our evaluation of SAMPLE as a CRL system, we
show that CRL through feedback, advertisement and decay enables consensus
to emerge on stable routes in a MANET and how this can be used to improve
the system routing performance in MANETs with stable nodes.

References

1. Montresor, A., Meling, H., Babaoglu, O.: Towards self-organizing, self-repairing
and resilient distributed systems. Future Directions in Distributed Computing. vol
LNCS 2584 (2003).

2. Visscher, P.: How self-organization evolves. Nature. vol.421 799–800 (2003).

3. Camazine, S., Deneubourg, J., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.:
Self-Organization in Biological Systems. Princeton University Press (2003).

4. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM vol.35 no.2 97–107 (1992).

5. Goldin, D. and Keil, K.: Toward domain-independent formalization of indirect
interaction. 2nd Int’l workshop on Theory and Practice of Open Computational
Systems (TAPOCS) (2004).

6. Efstratiou, C., Friday, A., Davies, N., Cheverst, K.: Utilising the event calculus
for policy driven adaptation in mobile systems. Proceedings of the 3rd Interna-
tional Workshop on Policies for Distributed Systems and Networks (2002) IEEE
Computer Society 13–24 June (2002).

7. Dorigo, M. Di Caro, G.: The ant colony optimization meta-heuristic. New Ideas in
Optimization (1999).

8. Andrzejak, A., Graupner, S., Kotov, V., Trinks, H.: Adaptive control overlay for
service management. Workshop on the Design of Self-Managing Systems. Interna-
tional Conference on Dependable Systems and Networks (2003).

Emergent Consensus in Decentralised Systems 79

9. De Wolf, T. and Holvoet, T.: Towards autonomic computing: agent-based mod-
elling, dynamical systems analysis, and decentralised control. Proceedings of IEEE
International Conference on Industrial Informatics 470–479 (2003).

10. Boutilier, C., Das, R., Kephart, J., Tesauro, G., Walsh, W.: Cooperative nego-
tiation in autonomic systems using incremental utility elicitation. Uncertainty in
Artificial Intelligence (2003).

11. Khare, R., Taylor, R.N.: Extending the representational state transfer (rest) archi-
tectural style for decentralized systems. Proceedings of the International Confer-
ence on Software Engineering (ICSE) (2004).

12. Curran, E., Dowling, J.: Sample: An on-demand probabilistic routing protocol
for ad-hoc networks. Technical Report Department of Computer Science Trinity
College Dublin (2004).

13. Jelasity, M., Montresor A., Babaoglu, O.: A modular paradigm for building self-
organizing peer-to-peer applications. Proceedings of ESOP03 International Work-
shop on Engineering Self-Organising Applications (2003).

14. Panagiotis, T., Demosthenis, T., Mackie-Mason, J.-K.: A market-based approach
to optimal resource allocation in integrated-services connection-oriented networks.
Operations Research vol.50 4 July-August 2002.

15. Littman, M., Boyan, J.: A distributed reinforcement learning scheme for network
routing. Technical Report CS-93-165 (1993).

16. Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communi-
cations Networks. Journal of Artificial Intelligence Research vol 9 317–365 (1998).

17. Sutton, R., Barto, A.: Reinforcement Learning. MIT Press (1998).
18. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from natural to

artificial systems. New York Oxford University Press (1999).
19. Crites, R., Barto, A.: Elevator group control using multiple reinforcement learning

agents. Machine Learning volume 33 2-3 235–262 (1998).
20. Kaelbling, L., Littman, M., Moore, A. Reinforcement learning: A survey. Journal

of Artificial Intelligence Research vol 4 237–285 (1996).
21. Perkins, C.: Ad Hoc On Demand Distance Vector (AODV) Routing. IETF Internet

Draft November (1997).
22. Johnson, D., Maltz, D., Broch, J.: DSR: The dynamic source routing protocol for

multihop wireless ad hoc networks. Ad Hoc Networking 139–172 Addison-Wesley
(2001).

23. NS-2 network simulator. Information Sciences Institute (2003).
24. Broch, J., Maltz, D., Johnson, D., Hu, J., Jetcheva, J.: A Performance Comparison

of Multi-Hop Wireless Ad Hoc Network Routing Protocols. Mobile Computing and
Networking 85–97 (1998).

25. Li, J., Blake, C., De Couto, D., Lee, H., Morris, R.: Capacity of ad hoc wireless
networks. Proceedings of the 7th International Conference on Mobile Computing
and Networking 61–69 (2001).

26. Klein, L.: Sensor Technologies and Data Requirements for ITS. Artech House
(2001).

27. Hoar, R., Penner, J., Jacob, C.: Evolutionary Swarm Traffic: If Ant Roads had
Traffic Lights. Proceedings of the IEEE Conference on Evolutionary Computation
Honolulu Hawaii 1910–1916 (2002).

28. Abdulhai, B., Pringle, R., Karakoulas, G.: Reinforcement Learning for True Adap-
tive Traffic Signal Control. Transportation Engineering vol.129 May (2003).

29. Findler, N.: Harmonization for Omnidirectional Progression in Urban Traffic Con-
trol. Computer-Aided Civil and Infrastructure Engineering vol 14 Honolulu Hawaii
369–377 (1999).

80 J. Dowling et al.

30. Pendrith, M.: Distributed Reinforcement Learning for a Traffic Engineering Appli-
cation. Proceedings of the Fourth Internation Conference on Autonomous Agents
Barcelona Spain (2000).

31. Dublin Transportation Office: DTO Strategy Update - Full Report - Platform For
Change. Available on: http://www.dto.ie/strategy.htm (2001).

32. Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. Pro-
ceedings of The Nineteenth International Conference on Machine Learning 227–234
(2002).

33. Schneider, J., Wong, W., Moore, A. and Riedmiller, M.: Distributed value func-
tions. Proceedings of the Sixteenth International Conference on Machine Learning
371–378 Morgan Kaufmann Publishers 1999.

34. Stone, P.: TPOT-RL applied to network routing. Proceedings of the Seventeenth
International Conference on Machine Learning (2000).

35. Mariano, C, Morales, E.: A new distributed reinforcement learning algorithm for
multiple objective optimization problems. Advances in Artificial Intelligence, In-
ternational Joint Conference 7th Ibero-American Conference on AI 15th Brazilian
Symposium on AI (2000).

36. Yagar, S. Dion, F.: Distributed Approach to Real-Time Control of Complex Sig-
nalized Networks. Transportation Research Record Vol.1 1–8 (1996).

37. Hunt, P. Robertson, R. Winton, R. Bretherton, R.: SCOOT- A Traffic Responsive
Method of Coordinating Signals. Road Research Laboratory, TRRL Report 1014
(1981).

38. Sims, A.: The Sydney Coordinated Adaptive Traffic System. Proceedings of the
ASCE Engineering Foundations Conference on Research Priorities in Computer
Control of Urban Traffic Systems (1979).

39. Lo, H., Chow, A.: Control Strategies for Oversaturated Traffic. Transportation
Engineering vol.130 July (2004).

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 81 – 96, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Biologically Inspired Distributed File System:
An Emergent Thinker Instantiation

Sergio Camorlinga1 and Ken Barker2

1 Computer Science Department, University of Manitoba, Winnipeg MB, R3T 2N2 Canada
sergio_camorlinga@sbrc.ca

2 Computer Science Department, University of Calgary, Calgary AB, T2N 1N4 Canada
barker@cpsc.ucalgary.ca

Abstract. This paper introduces the Emergent Thinker paradigm, an area-wide
logical computing entity, named after a philosopher that continuously analyses
information and has emergent computed solutions for new and/or existing
requests. The Complex Adaptive System (CAS) emergent computation model
and the CAS propagation model are proposed as mechanisms to achieve the
Emergent Thinker. The Thinker is proposed as an alternative approach for new
and existent design and implementation challenges in systems research. The
Biologically Inspired Peer-to-Peer Distributed File System (BPD) is an
instantiation of the Emergent Thinker paradigm and corroborates our hypothesis
that CAS based computation is an alternative paradigm to provide scalable
computation for large distributed systems.

1 Introduction

Systems research has produced solutions to many of its design and implementation
challenges. These solutions are usually based on algorithms and models that have
predetermined, predefined centralized and distributed techniques. However, these
models and algorithms are limited when subject to computing environments that are
dynamic, self-organized, ad-hoc (e.g. in terms of connectivity, operatively, etc.) and
decentralized like those found in peer-to-peer systems, pervasive computing
environments, some grid systems (e.g. grids with no common domain across the
Internet), autonomic systems, etc. Some workarounds are often implemented to
alleviate these system’s limitations. However, it is clear that different approaches are
required for these environments.

Complex adaptive systems (CAS) are defined as systems characterized by having a
large number of members with simple functions and limited communication among
them. The emergence of swarm intelligence [1] from simple members activities
boasts autonomy and self-sufficiency, which allows them to adapt quickly to
changing environmental conditions. The emergent global outcome may be applied
to solve particular distributed system problems. Emergent outcomes (i.e. self-*
properties) providing solutions to specific problems have been documented in

82 S. Camorlinga and K. Barker

different research work published previously. Several examples are available in the
literature [2-11].1

This paper introduces a new computing paradigm, the Emergent Thinker [12], and
an instantiation of the paradigm, the Biologically Inspired Peer-to-Peer Distributed
File System (BPD). The Emergent Thinker uses CAS domains to provide emergent
computation for large, highly dynamic distributed systems. The BPD implements the
Emergent Thinker and experimentally corroborates our hypothesis that CAS based
computation is an alternative valid paradigm to provide scalable computation for large
distributed systems.

Section 2 describes the Emergent Thinker paradigm and the two models the
paradigm is based on: the CAS Emergent Computation model and the CAS
Propagation model. Section 3 explains how the paradigm is applied to design and
implement the BPD. It then continues with a description of the BPD CAS algorithms
utilized and provides a generic description of the architecture. Section 4 presents
some representative results of the BPD implementation. Section 5 discusses and
overviews future work in the Emergent Thinker paradigm to conclude and give final
thoughts in Section 6.

2 The Emergent Thinker Paradigm

2.1 The CAS Emergent Computation Model

A common feature of previous CAS related work is the existence of simple agents2
with local functions3 and a simple communication mechanism4 that is either direct or
indirect. For this, we propose a basic computing model that generalizes previous
work. We call it the CAS Emergent Computation model. See Figure 1.

In the CAS Emergent Computation model, agents follow simple rules to affect their
states and/or environment to generate an emergent pattern formation5 that produces a
system wide result (Figure 1). The system wide result is interpreted as an emergent
computation (i.e. self-* property) that solves a particular distributed system problem
(e.g. aggregation, resource allocation, classification, assignment, path selection,
decision, etc.). A model hypothesis is that all computation to be provided can be
obtained by emergent computations of simple activities.

It is important to stress the difference between an emergent computation and a
regular computation. A regular computation is a CPU computation like arithmetic
and logical operations. An emergent computation is at a higher abstraction level. The
emergent computation outcome is a self-* property that resolves a particular
distributed computing problem. Emergent computations can make use of regular

1 Some authors do not call their mechanisms CAS-based. However in essence they are, if we

assume that these mechanisms have similar characteristics.
2 The terms ‘agent’, ‘individual’, and ‘member’ mean the same across the paper.
3 The terms ‘function’, ‘property’, ‘action’, and ‘activity’ mean the same across the paper.
4 The communication mechanism exists within the domain environment.
5 Emergent pattern formation’ means pattern formations in agents, domain environment, or

both.
 ‘

 The Biologically Inspired Distributed File System: An Emergent Thinker Instantiation 83

Fig. 1. CAS Emergent Computation Model

computations to achieve its outcomes, and could also use other emergent
computations (e.g. hierarchical emergent computations) as part of their computations.

A basic question6 is identifying the relationship that exists between the emergent
computation and the local agents’ properties or actions. By focusing on the cause-
effect relationships, which are dynamic and non-linear, it could lead us to identify
necessary and sufficient conditions to obtain emergent computations (i.e. self-*
properties). Further, it helps us to understand how a specific property produces an
emergent outcome. All these will allow us to control and manage the agent’s
properties to obtain desired global outcomes. This leads to a key question: How can
we identify these relationships? We propose the CAS Propagation model to answer
this question.

2.2 The CAS Propagation Model

The CAS Propagation model is based on the simple idea of amplification by
propagation. The way the different agents connect and exchange information (directly
and/or indirectly) will have a direct consequence in the action’s impact on the other
agents and in the system as a whole. In the past, different approaches have been used
to interconnect CAS agents (e.g. fully connected, small world pattern, random, small
set of neighbors, local paths, etc). These connectivity approaches generate different
global outcomes from the same local properties. We could attribute this to the way the
local properties were propagated and exchanged across the domain and are
consequently amplified for different global, emergent self-* properties. The main
point that the CAS Propagation model makes concerns the spread and its affects on
the amplification of the agents’ actions to eventually give an emergent result, called a
global self-* property (Figure 2).

6 Other questions include issues like message exchanges, speed, property sets, feedbacks, edge

of chaos, limit theory, etc.

84 S. Camorlinga and K. Barker

Fig. 2. CAS Propagation Model

Fig. 3. The Emergent Thinker

Furthermore, the way the actions are propagated and exchanged will have an
impact in the perturbations (i.e. properties’ feedback, environment feedback), which
subsequently affect the local agents’ properties, which then adapt their agents’
behaviors accordingly. If these perturbations are too high, it can force the system into

 The Biologically Inspired Distributed File System: An Emergent Thinker Instantiation 85

chaos. The CAS Propagation model is a fertile area of experimental research that can
lead to an understanding of the fundamentals linkages between local properties and
emergent, global self-* properties that eventually can lead us to develop the theory
and mathematical formulations that represent them.

Based on our clear understanding of the CAS Emergent Computation (Figure 1)
and the CAS Propagation (Figure 2) models, these models are extended to develop
what we call the Emergent Thinker paradigm. The Emergent Thinker paradigm
provides computing services by means of CAS Emergent Computation model
instantiations. The Emergent Thinker is named after a philosopher that continuously
analyses information and has emergent computed solutions for new and/or living
requests. Living requests mean those computations that the Emergent Thinker
continuously works on.

2.3 The Emergent Thinker Paradigm

The Emergent Thinker is defined as an area-wide logical computing entity (Figure 3)
based solely on CAS models and algorithms to provide function services. Function
services are the mechanisms used by an application program to request services from
the Emergent Thinker. The Emergent Thinker uses the CAS Emergent Computation
model (Figure 1) as its building block. It has CAS domain environments that are
implemented in decentralized contexts (e.g. P2P environment, pervasive
environments, multi-processors computers, grids, etc.) providing emergent function
services. The emergent function services are equivalent to system calls provided by a
regular operating system, but with a completely different functionality and purpose
(i.e. at a higher abstraction level). The emergent computation engines are located
wherever the emergent service is required (i.e. pervasive engines). This is possible
because the services or functions (i.e. self-* properties) are continuously emerging
from the system itself. These engines are access points to observable and/or
interpreted global properties. The CAS Propagation model is then used to
experimentally test the properties and the emergent computations utilized by the
Emergent Thinker.

3 The Biologically Inspired Peer-to-Peer Distributed File System

The Biologically Inspired Peer-to-Peer Distributed File System (BPD) is an
instantiation of the Emergent Thinker paradigm. The BPD merges CAS models with
Peer-to-Peer (P2P) computing to implement a Distributed File System (DFS). The
BPD design and implementation presents a novel alternative to existing deterministic,
centralized or distributed techniques proposed in the majority of current P2P and DFS
research. BPD implementation has shown promising results by modeling natural
behaviors in its foundation services to solve distributed systems’ design challenges.
This section reviews the BPD and how the Emergent Thinker paradigm is applied.
Another will detail the BPD architecture design and implementation.

The BPD assumes an environment that has computing devices with ad hoc
behavior (i.e. joining and leaving the network) and no central server or controller. The
BPD is intended to scale from a few peers to thousands of peers allocated across a

86 S. Camorlinga and K. Barker

distributed system within an organization. The BPD targets an environment where
users can seamlessly and dynamically share their storage resources to provide a peer-
to-peer distributed file system.

Figure 4 shows a high level view of the BPD. A P2P system with hundreds or
thousands of computing devices forms a complex environment where peers (Figure 4
circles) continuously connect and disconnect. Each peer has agents that execute basic
actions (in Figure 4 these are depicted with arrows) independent from each other, with
minimum or no communication among them. The emergent computations achieved
by the agents’ actions provide computing services required by the DFS. The DFS is
spread out across the P2P environment. A user or application7 accesses File System
(FS) services for its file management needs through calls to the DFS emergent
computation engine. A DFS emergent computation engine resides in each peer that
provides access to the environment. When an application requires a FS service, the
engine inserts the request into the complex environment and the response emerges
from it and it is delivered to the application that initially made the request. For each
BPD DFS service provided, there is an independent spatially decentralized domain of
agents’ actions that execute on the same physical P2P system.

Fig. 4. BPD High Level View

 Before the CAS Propagation model can be experimentally used within the
Emergent Thinker paradigm, essential DFS building block functions must be
identified. These DFS building block functions must be suitable to be provided by
emergent computation and eventually constitute major components of the FS services
to the applications. A top-down approach is used to analyze application FS services
and identify the common building block functions. For example, Bach [13] describes
the Unix operating system FS services provided to applications. The analysis gives us
the following primary DFS building block functions:

1. Allocation services to implement storing data blocks and/or complete files
across the P2P.

7 The terms ‘user’, and ‘application’ mean the same across the paper.

 The Biologically Inspired Distributed File System: An Emergent Thinker Instantiation 87

2. Retrieval services to implement reading data blocks and/or complete files
from the P2P system.

3. Replication services to implement a data replication scheme to increase
storage reliability and availability.

4. Discovery services to implement a P2P system wide data search.

After the analysis, the four primary DFS functions are the prime candidates to be
implemented by emergent computations. However, further study shows that
replication services (in its different variants) can be implemented with allocation
services. Also, directory and file tables, which are resident at the local peer, can
control retrieval services of known data, while discovery services can control retrieval
services of unknown data. Thus, retrieval services can be implemented with local data
management techniques (known data) and with discovery services (unknown data).
These leave us with two essential DFS building block functions: Allocation and
discovery8 function services.
 Allocation and discovery services are essential distributed services and
consequently we hypothesize that they can be implemented by emergent
computations. We define emergent function services as those basic DFS services that
emerge out of CAS emergent computations.

Fig. 5. BPD Instantiation of the Emergent Thinker Paradigm

 Figure 5 shows the BPD instantiation of the Emergent Thinker paradigm. The
current BPD implementation uses one CAS (i.e. spatially decentralized domain of
agents’ actions) for each emergent function service identified (i.e. allocation and
discovery services). However, these CAS domains run on the same physical P2P

8 The terms ‘discovery’ and ‘search’ are used interchangeably throughout the paper.

88 S. Camorlinga and K. Barker

complex environment so, each CAS domain is logically independent but physically
run on one physical P2P complex environment.

3.1 The BPD Emergent Computing Algorithms Overview

Research has been carried on to use the CAS Emergent Computation and the CAS
Propagation models to experiment and implement the BPD emergent computations
based on natural or biological behaviors. The CAS algorithms utilized are based on
squirrel natural behaviors and provide a novel metaphor for this kind of CAS.
Camorlinga, Barker et al. [6][14] provide details on the BPD CAS algorithms utilized
for allocation and search emergent services. The algorithms are based on CAS
squirrel hoarding mechanisms. The squirrel behaviors modeled and applied to the
DFS emergent function services are briefly described next.

3.1.1 CAS Algorithms for DFS Allocation Services
Many ecological and environmental protection groups have studied the hundreds of
squirrel species found worldwide [15][16].9 Squirrels eat various nuts, acorns, and
other small foodstuffs10 by caching acorns in small hoards over a large geographic
area. When food becomes scarce they return to the caches. Their failure to recover a
great percentage of the horded acorns facilitates the growth of new trees. Squirrels, in
conjunction with Jays [15], are responsible for the vast oak extensions through North
America after the glacial age 10,000 years ago. From a computational perspective,
squirrels are allocating resources (land space) to storage demands (acorns) in such a
way that resources are balanced. The global or corporate consequence emergent from
the behavior of these individuals is a populated forest of oak trees across a wide
geographic area.

For allocation services (e.g. storing data), the most interesting squirrel behavior is
hoarding, rather than foraging, as hoarding leads to a global outcome of which the
individual squirrels cannot possibly be aware. The hoarding approach also reflects a
more natural reflection of the allocation activity. We are interested in the way
squirrels spread out acorns, nuts and other small food pieces in an area to obtain a
resource allocation balance. We exploit these techniques to design and implement
resource allocation services suitable for distributed systems [6].

The squirrel hoarding behaviors can be summarized as:

• Random gathering and burying of small acorn amounts in an area
geographically close to its nest,

• Investigation of various random locations (“sniffing” several places) before
deciding where to put the acorn,

• Possibly deciding not to hoard its food if there are other squirrels around,
and

• Possibly working in small teams with others with whom they are familiar,
while avoiding places inhabited by unknown squirrels.

9 A web search on ‘squirrel resources’ provides reference to squirrel information sources

describing additional behaviors.
10 We speak of these foodstuffs collectively using the exemplar “acorns” as we are interested in

the consequence of the hording activities.

 The Biologically Inspired Distributed File System: An Emergent Thinker Instantiation 89

The “squirrels” CAS based system consists of a P2P environment. Each peer has
one or more caches where squirrels hoard acorns. Squirrels live in these peers in small
groups. When they have acorns, they go through the peers, “sniffing” to find a cache
suitable for the acorn following one of the behaviours described above. Each peer is a
producer and consumer of caches (storage resources). Figure 6 illustrates such an
environment.

Each acorn is a data block that must be stored within the DFS. Each cache is a
group of data blocks available that can be allocated. The goal is efficient allocation of
storage resources by balancing resource allocation across peers’ caches. Each cache
has the same characteristics across peers. What it is different is the number of caches
available per peer. Consequently, if we balance caches then a well-balanced P2P DFS
system is achieved according to peer capabilities (number of caches available in the
peer). How well balance the system is will be measured by the variance of acorns
allocated per cache. The lower the variance (i.e. close to zero), the better allocation
balance obtained.

Fig. 6. CAS Allocation Based on Squirrel Behaviors

3.1.2 CAS Algorithms for DFS Discovery Services
We also apply a slight variation of the squirrel behaviors to discovery services (e.g.
data search). The basic idea is that squirrels with simple hoarding activities
disseminate acorns that contain identifiers. These acorn identifiers are used to dig out
data acorns stored in the peer storage caches where they were allocated [14] and help
us to determine their locations.

Initially each peer has its own squirrels (up to a maximum) according to its
capabilities (Figure 7.a). Each peer shares resources (e.g. files in sharable folders).
Squirrels from different peers are independent of each other. The squirrels are
unaware that their hoarding activities are used to search data. The search emerges as a
global outcome of the activities of the independent members (i.e. squirrels) that work
with simple activities but generate a system wide result. When a new member joins
the P2P environment, there is no administrative activity to do besides joining the P2P
environment. When a new search arrives at a peer (Figure 7.b), the peer’s squirrel

90 S. Camorlinga and K. Barker

puts the acorn id in a sack together with other acorn ids already existing that have
been put there by other squirrels (if any) and hoards them in nearby peers.

If a sack with acorn ids is placed in a peer, the acorn ids are searched within this
peer. Any acorn id that is found is notified of the original search peer, otherwise either
the acorn id remains in the sack or the acorn identifier expires, terminating the data
acorn search. New searches from this peer are added to this sack (if any) and together
continue to be disseminated by the local squirrel to other peers (Figure 7.c).

The whole P2P environment is a living organism that has members joining and
leaving continuously with no administrative burden. Once a member joins, its
sharable resources are available and actively participate in the emergent search
scheme according to its capabilities (i.e. by the number of sharable resources and by
the number of peer’s squirrels available). Each squirrel works locally so that if the
peer disappears, the emergent search algorithm self-adapts to its new context without
interruption. Neither loss of administrative statistics nor waste of resources occurs.
Furthermore, by packing several acorn ids in sacks, the squirrels reduce the number of
messages they carry by a factor of ‘n’, where ‘n’ is the average number of acorn ids
per sack. The more activity the P2P environment has, the greater the message
reduction factor.

In both DFS CAS-based services, experimental research with the CAS propagation
model help us to identify agent actions (i.e. properties) suitable for the BPD. Essential
properties in the squirrel behaviors are identified to provide DFS emergent
computations (i.e. search and allocation services). The BPD implementation uses
these properties and behaviors to become a biologically inspired DFS with emergent
computations.

Fig. 7. CAS Search Based on Squirrel Behaviors

3.2 BPD Design Overview

After we investigate the CAS based algorithms for the identified DFS emergent
computations (Section 3), the next question is how to integrate them within a P2P

a. P2P with Sharable Data

b. A New Data Search

c. An Existing Search

 The Biologically Inspired Distributed File System: An Emergent Thinker Instantiation 91

Fig. 8. BPD Architecture Stack

DFS design? For this, a BPD architecture stack (Figure 8) is designed that merges FS
services with CAS algorithms in a layered structure. The BPD architecture stack runs
in every peer and provide mechanisms for CAS member communication with the use
of the P2P network. It is divided in three layers that together provide file system
services to applications running on the peer. Camorlinga and Barker [17] provide an
extended description of the BPD architecture.
 Briefly the layers are:

• Data glue layer that processes file system calls and provides metadata
services to keep control of files and directories. It consists of Front-end Data
Manager, Local-end Data Manager, and Back-end Data Manager. These
managers are responsible for the metadata services and the FS interface. The
data glue layer also has the Application Programming Interface (API), the
Common Line Interface, and the Graphical User Interface to client
applications.

• CAS layer that provides DFS emergent computation engine responsible for
the complex adaptive systems models and algorithms to provide data
allocation11, retrieval, replication and search emergent function services. The
CAS layer algorithms [6][14] model and apply the behaviors and properties
that are briefly described in Section 3.1.1 and 3.1.2.

• Transport, Network, and Communication (TNC) layer that interconnects
peers across the distributed system with networking and communication
services. It interfaces to the physical peer communication network.

11 Allocation and search emergent services implement the retrieval and replication emergent

services as discussed in Section 3.

92 S. Camorlinga and K. Barker

The BPD also introduces the concept of a bag to represent a container where
related data is kept. A bag is defined as a complete directory hierarchy of related files.
The implicit locality of the CAS models used by the BPD localizes files that are under
the same bag. In this way data locality is implemented by the use of bags. Bag items
(i.e. items) are used to manage bags. An item is defined as a file, a folder within a bag
or the bag itself. All FS application-programming interface (API) is defined around
the bag item concept.

A bags’ holder (i.e. holder) is a virtual place where multiple bags can dynamically
exist. There is one holder per client computer. A holder grows as more bags are
loaded, and shrinks as bags are unloaded. Bags are loaded automatically by changing
to a different bag not already loaded (i.e. equivalent to a directory change in Unix).

Each BPD peer is independent of the others. A peer collaborates with other peers
as shown in Figure 9. The TNC layer provides a communication path between them.
The peers with their software entities (i.e. agents12) within the CAS layer work
together when executing CAS models. A global DFS outcome emerges that balance
resources, search data, maintains locality and scales according to the peer network
characteristics. Figure 9 also shows how the BPD architecture layers are implemented
in each peer.

Fig. 9. The BPD Peer Network

It is important to stress that the software entities live in each peer at the CAS layer.
The software entities execute natural behaviors analogies, briefly described in Section
3.1, which produce DFS emergent computations required within the P2P complex
environment.

12 Also known as squirrels in our CAS analogy.

 The Biologically Inspired Distributed File System: An Emergent Thinker Instantiation 93

4 Results

A BPD software prototype has been built and utilizes the CAS algorithms developed
earlier [6][14] for its emergent function services. Our initial goal was to prove BPD
concepts and instantiation of the Emergent Thinker paradigm. We develop the BPD
architecture software in Java so it runs in each BPD peer (Figure 9).

The data glue layer implements the bag item concept introduced in section 3.2. The
glue layer provides services to store, retrieve, manage, and search bag items (i.e. files)
across the P2P complex environment. These glue layer services constitute the DFS
API interface to client applications. The CAS layer implements both CAS algorithms
for DFS allocation and discovery services. The CAS algorithms follow the biological
behaviors described in Section 3.1. The TNC layer communication is TCP/IP socket-
based among the peers. A more robust peer communication network could be
implemented easily (e.g. JXTA-based P2P communication platform [18]) but this is
sufficient for our purposes.

Fig. 10. Storage Allocation

Figure 10 shows representative results in two P2P systems with 500 and 700 peers
respectively. The CAS allocation obtains a balance of storage resources under a
variety of P2P characteristics (e.g. P2P size, number of peers storing data, P2P
system-wide storage capacity utilization, and peer storage capacity among others).
The storage allocation deviation is usually less than one, which means that each peer
participates according to its storage capabilities and a system wide resource balance is
achieved. Figure 10 results are similar to those obtained in CAS algorithm simulations
carried on in P2P systems with more than 25000 peers [6]. BPD implements the CAS
algorithms with the squirrel behavior properties that emerge with a self-adaptable
system-wide resource allocation balance.

Representative discovery service results are shown in Figure 11. For the first group
of results (Figure 11.a), we vary the number of peers in the environment and keep
fixed the number of concurrent peers searching data. We obtain the average number
of messages with its standard deviation that the BPD takes to discover the search
items. A message is an acorn sack transfer from one peer to another (section 3.1.2).
The number of peers searching is set to 10 in each P2P size. Each peer searches for 2
items. In terms of sharable storage, there are 100 peers with 10 sharable items per
peer. All stored and search data are randomly generated in each experiment. The peers
that participate in the experiments are randomly selected as well.

a. P2P System with 500 Peers

b. P2P System with 700 Peers

94 S. Camorlinga and K. Barker

Fig. 11. Data Discovery

For the second group of results (Figure 11.b), we fix the number of peers to 400
peers and vary the number of concurrent peers searching data. We also obtain the
average number of messages with its standard deviation. In this experiment group,
there are 128 peers with 10 sharable items per peer. Peers and data are randomly
selected and generated in each experiment too. It is important to stress that in both
groups there is no data replication; there is only one copy per item; and no indexes or
auxiliary item location tables exist. The search emerges out as a global outcome of the
CAS members that disseminates acorn sacks across the system. Results compare with
emergent search simulations of thousands of peers previously reported [14].

5 Extended Work

The Emergent Thinker paradigm offers a large experimental area to expand current
system research. BPD touches only a small piece where the paradigm can be applied.
An operating system has many service areas where the paradigm can be instantiated.
For example program execution, security, error detection and response, system
accounting, etc. to mention a few. These areas could use a methodology similar to the
one employed in BPD to achieve emergent computations that provide building
functional blocks for their services. Eventually we can have a complete computing
device based on CAS emergent computations. The more we experiment with CAS
models, the more it will help us to understand its mechanisms and applicability in
system research. Eventually this could facilitate development of a formal generic
mathematical description of the Emergent Thinker paradigm.

In our BPD design analysis (Section 3), we conclude that the emergent computations
on allocation and discovery services are essential. Retrieval and replication services are
considered a higher level and easily implemented with the use of allocation and
discovery services together with local directory tables. However, another design could
try to implement these additional services and others with emergent computations to
expand current work so it includes more emergent processing.

We believe it is appropriate to apply the Emergent Thinker paradigm to application
domains where emergent computations are used to resolve specific, domain-oriented
problems. Some examples of area domains include artificial intelligence, cognitive
sciences, computational economics, optimization, biology, psychology, neurosciences,
and engineering.

a. DFS Search Scalability

b. DFS Concurrent Search

 The Biologically Inspired Distributed File System: An Emergent Thinker Instantiation 95

Current BPD work assumes logically isolated CAS domains. The CAS domains are
logically isolated from the perspective that they compute independent from each
other, however they might be running on the same physical hardware. Future agendas
can analyze and obtain the fundamental bases when the CAS domains are interrelated
at different levels and forms (e.g. hierarchical, intersected, dependant, etc.).

6 Conclusion

Systems research is an area where complex adaptive systems can provide innovative
schemes and models. These schemes and models can provide emergent solutions (i.e.
self-* properties) to a variety of design and implementation challenges in large
distributed systems; some already exist but others have not been conceived before.

We have proposed a generic CAS emergent computing model. This model is later
extended to become the Emergent Thinker paradigm that provides a different
approach to distributed systems computing with the use of self-* properties. The CAS
propagation model is proposed as an experimental means to understand and layout the
fundamentals of the CAS emergent computing model.

The Biologically Inspired Peer-to-Peer Distributed File System (BPD) implements
the Emergent Thinker paradigm. BPD provides file system services in a complex
information system environment that is dynamic, self-organized, ad-hoc and
decentralized. Some of the characteristics that make BPD distinctive include an
architecture design and implementation that merges CAS models with P2P computing;
CAS models for distributed services (storage, retrieval, search, and replication); and the
use of commodity peers for storage and retrieval in a complex dynamic environment.

The Emergent Thinker paradigm offers an alternative computational model for
complex information system environments with the use of Complex Adaptive
Systems models and the self-* properties that emerge out it.

Acknowledgements

We want to thank Peter Graham, John Anderson and Jeff Diamond from University of
Manitoba, Canada for their participation in useful discussions about emergent
computations. We are grateful to the St. Boniface Research Center and the Medical
Informatics Group by sponsoring this research work.

References

1. Bonabeau, E., Theraulaz, G. Swarm Smarts. Scientific American. Vol. 282, No. 3. (2000)
54-61

2. Dorigo, M., Maniezzo V., Colorni, A. The Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Man and Cybernetics. Vol. 26, No. 1.
(1996) 29-41

3. Babaoglu, O., Meling, H., Montresor, A. Anthill: A Framework for the Development of
Agent Based Peer-To-Peer Systems. University of Bologna Technical Report UBLCS-
2001-09. (2002)

96 S. Camorlinga and K. Barker

4. Montresor, A. Anthill: A Framework for the Design and Analysis of Peer-To-Peer
Systems. 4th European Research Seminar on Advances in Distributed Systems, Bertinoro,
Italy. (2001)

5. Montresor, A., Meling, H., Babaoglu, O. Messor: Load-Balancing through a Swarm of
Autonomous Agents. Proceedings of the 1st International Workshop on Agents and Peer-
To-Peer Computing. Bologna, Italy, (2002) 125-137

6. Camorlinga, S., Barker, K., Anderson, J. Multiagent Systems for Resource Allocation in
Peer-to-Peer Systems. Proceedings of the Winter International Symposium on Information
and Communication Technologies. Cancun, Mexico. (2004) 173-178

7. Bonabeau, E., Meyer, C. Swarm Intelligence, a New Way to Think About Business.
Harvard Business Review, (2001) 106-114

8. Solnon, C. Ants Can Solve Constraint Satisfaction Problems. IEEE Trans. on Evolutionary
Computation. Vol. 6, No. 4. (2002) 347-357

9. Bourjot, C., Chevrier, V., Thomas, V. A New Swarm Mechanism Based on Social Spiders
Colonies: From Web Weaving to Region Detection. Web Intelligence and Agent Systems:
An International Journal. Vol. 1, No. 1. (2003) 47-64

10. Jelasity, M., Kowalczyk, van Steen, M. An Approach to Massively Distributed Aggregate
Computing on Peer-to-Peer Networks. Proceedings 12th Euromicro Conference on
Parallel, Distributed and Network based Processing. La Coruña, Spain. (2004)

11. White, T. Swarm Intelligence and Problem Solving in Telecommunications. Canadian AI
Magazine. No 41. (1997) 14-16

12. Camorlinga, S., Barker, K. The Emergent Thinker. International Workshop on Self-*
Properties in Complex Information Systems. Bertinoro, Italy. (2004) 69-71

13. Bach, M.J. The Design of the Unix Operating System. Prentice Hall. Englewood Cliffs,
New Jersey USA (1986)

14. Camorlinga, S., Barker, K. Emergent Search in Large Distributed Systems. 8th International
Conference on Parallel Problem Solving from Nature, Workshop on Games and Emergent
Behaviors in Distributed Computing Environments. Birmingham, UK (2004)

15. Shulman, A., Nelson, E. Foraging Behavior of Squirrels as a Function of Season
Progression From Early Fall Towards Winter. University of the South Ecology. See docs
at www.sewanee.edu/biology/journal/2001/squirrels/squirrelbehavior.html.

16. Bureau of Natural Resources, Wildlife Division. Wildlife in Connecticut: Gray Squirrel.
The Connecticut Department of Environmental Protection. See docs at dep.state.ct.us/
burnatr/wildlife/factshts/gsqrl.htm

17. Camorlinga, S., Barker, K. The Design and Implementation of a Biologically Inspired
Peer-to-Peer Distributed File System. University of Calgary Technical Report 2004-737-
02. Department of Computer Science. Calgary AB Canada (2004)

18. The JXTA project. See docs at http://www.jxta.org

Evolutionary Games: An Algorithmic View�

Spyros Kontogiannis1,2 and Paul Spirakis1

1 Computer Technology Institute,
Riga Feraiou 61, 26221 Patras, Greece

{kontog, spirakis}@cti.gr
2 Department of Computer Science,

University of Ioannina, 45110 Ioannina, Greece

Abstract. Evolutionary Game Theory is the study of strategic interac-
tions among large populations of agents who base their decisions on sim-
ple, myopic rules. A major goal of the theory is to determine broad classes
of decision procedures which both provide plausible descriptions of selfish
behaviour and include appealing forms of aggregate behaviour. For ex-
ample, properties such as the correlation between strategies’ growth rates
and payoffs, the connection between stationary states and the well-known
game theoretic notion of Nash equilibria, as well as global guarantees of
convergence to equilibrium, are widely studied in the literature.

Our paper can be seen as a quick introduction to Evolutionary Game
Theory, together with a new research result and a discussion of many
algorithmic and complexity open problems in the area. In particular, we
discuss some algorithmic and complexity aspects of the theory, which
we prefer to view more as Game Theoretic Aspects of Evolution rather
than as Evolutionary Game Theory, since the term “evolution” actu-
ally refers to strategic adaptation of individuals’ behaviour through a
dynamic process and not the traditional evolution of populations. We
consider this dynamic process as a self-organization procedure which,
under certain conditions, leads to some kind of stability and assures ro-
bustness against invasion. In particular, we concentrate on the notion of
the Evolutionary Stable Strategies (ESS). We demonstrate their qualita-
tive difference from Nash Equilibria by showing that symmetric 2-person
games with random payoffs have on average exponentially less ESS than
Nash Equilibria. We conclude this article with some interesting areas of
future research concerning the synergy of Evolutionary Game Theory
and Algorithms.

1 Introduction

Game Theory is the study of interactive decision making, in the sense that those
involved in the decisions are affected not only by their own choices, but also by
the decisions of others.

� This work was partially supported by the EU within the Future and Emerging
Technologies Programme under contract IST-2001-331116 (FLAGS) and within the
6th Framework Programme under contract 001907 (DELIS).

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 97–111, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

98 S. Kontogiannis and P. Spirakis

This study is guided by two principles:

(1) The choices of players are affected by well-defined (and not changing) pref-
erences over outcomes of decisions.

(2) Players act strategically, ie, they take into account the interaction between
their choices and the ways other players act.

The dominant notion of conventional game theory is the belief that players are
rational and this rationality is common knowledge. This common knowledge of
rationality gives hope to equilibrium play. That is, players use their equilibrium
strategies because of what would happen if they had not.

The point of departure for Evolutionary Game Theory is the view that
the players are not always rational. In evolutionary games, “good” strategies
emerge from a trial-and-error learning process, in which players discover that
some strategies perform better than others. The players may do very little rea-
soning during this process. Instead, they simply take actions by rules of thumb,
social norms, analogies for similar situations, or by other (possibly more com-
plex) methods for converting stimuli into actions.

Thus, in evolutionary games we may say that the players are “programmed”
to adopt some strategies. Typically, the evolution process deals with a huge
population of players. As time proceeds, many small games are played (eg, among
pairs of players that “happen” to meet). One then expects that strategies with
high payoffs will spread within the population (by learning, copying successful
strategies, or even by infection).

Indeed, evolutionary games in large populations of players create a dynamic
process, where the frequencies of the strategies played (by population members)
change in time because of the learning or selection forces guiding the players’
strategic choices. Clearly, the rate of changes depends on the current strategy mix
in the population. Such dynamics can be described by stochastic or deterministic
models. The subject of evolutionary game theory is exactly the study of these
dynamics. A very good presentation of evolutionary game dynamics can be found
in [5]. For a more thorough study the reader is referred to [1].

Numerous paradigms for modeling individual choice in a large population
have been proposed in the literature. For example, if each agent chooses its own
strategy so as to optimize its own payoff (“one against all others” scenario) given
the current population state (ie, other agents’ strategies), then the aggregate
behaviour is described by the best-response dynamics [8]. If each time an
arbitrary user changes its strategy for any other strategy of a strictly better
(but not necessarily the best) payoff, then the aggregate behaviour is described
by the better-response dynamics or Nash dynamics [11]. In case that pairs
of players are chosen at random (repeatedly) and then they engage in a bimatrix
game (“one against one” scenario) whose payoff matrix determines according to
some rule the gains of the strategies adopted by these two players, then we refer
to imitation dynamics, the most popular version of which is the replicator
dynamics[12].

If we allow sufficient time to pass, then the global “state” of the whole pop-
ulation “system” will respond to the forces of selection/learning by either self-

Evolutionary Games: An Algorithmic View 99

organizing and approaching a seemingly stationary state, or by leading to com-
plicated behaviour, such as chaos. In fact, chaos is a very realistic possibility,
appearing even in seemingly very simple systems. One of the goals of Evolution-
ary Game Theory is to characterize those cases where such chaotic behaviour
does not occur.

In the “lucky” cases where the behaviour of the system is self-organizing
and approaches some stationary configuration, we start to wonder how does
this configuration “looks like”. One major question here is whether the station-
ary configuration is “structurally stable”. One can easily understand non-stable
stationary states as follows: Simply check whether an arbitrarily small pertur-
bation in the specification of the system can completely alter the properties of
the stationary state.

Not surprisingly, evolutionary game processes that converge to stable states
have usually the property that those states are also self-confirming equilibria (eg,
Nash equilibria). This is one of the most robust results in Evolutionary Game
Theory, the “folk theorem” that stability implies Nash equilibrium. In fact, one
of the main approaches in the study of evolutionary games is the concept of
Evolutionary Stable Strategies (ESS), which are nothing more than Nash
Equilibria together with an additional stability property. This additional prop-
erty is interpreted as ensuring that if an ESS is established in a population, and
if a small proportion of the population adopts some mutant behaviour, then the
process of selection (or learning) will eliminate the latter. Once an ESS is estab-
lished in a population, it should therefore be able to withstand the pressures of
mutation and selection.

It should be obvious by the above discussion that Evolutionary Game Theory
is a very suitable framework for the study of self-organization. The framework
draws on the rich tradition of Game Theory. It is mathematically precise and
rigorous; it is general enough to be applied in many example areas such as Biology
and species evolution, infection and spread of viruses in living populations or in
the Internet, self-stabilization codes in distributed computing, etc. We would like
to especially stress the suitability of such a theory for the study of self-stabilizing
distributed protocols (eg, Dijkstra). To us it seems that ESS is the right concept.

However, Evolutionary Game Theory will become much more useful if we can
efficiently handle its mathematical models. For example, suppose that we adopt
a dynamic model for the strategic evolution of a population. How efficiently (if
ever) can we answer the model’s long-run behaviour? Can we predict that an
evolutionary game process will stabilize, say, to an ESS? Even more, given the
simple games that the population members play (ie, their payoffs) and given
the description of the adaptation and learning forces, can we claim that such an
evolutionary game process will indeed have any ESS? Can we compute how this
ESS will look like, in the case of an affirmative answer?

Till now, the prime concern of evolutionary game mathematicians has been
to understand the dynamics of evolutionary games (usually via tools of the rich
field of nonlinear differential equations). We propose here a complementary con-
cern: namely, the precise characterization of the computational complexity of the

100 S. Kontogiannis and P. Spirakis

question of convergence in such games. This concern is tightly coupled with the
quest for efficient techniques by which one can predict the long-term behaviour
of evolutionary systems, or compute the precise structure and properties of the
equilibria involved. Such an algorithmic examination may in addition allow for
the understanding of how the environment of the population (its graph of al-
lowable motions of players, its constraints on how players meet, etc) affects the
evolution. It may also allow for efficient comparison of the the evolution tra-
jectories of two phenomenally different evolving populations, in the spirit of
isomorphisms or similar notions.

The proposed blend of the algorithmic thought with Evolutionary Game The-
ory, in fact, intends even to highlight design rules for self-organizing systems
and to complement the older experimental, simulations-based approach, with
efficient computational ways that calculate the impact of such design rules. A
good example here is the rigorous computation of the speed of convergence for
such self-organizing evolutionary systems.

For such a problem, several paradigms of the algorithmic thought may be-
come handy. Such a paradigm is that of the rapid mixing of discrete stochastic
combinatorial processes and its implications on the efficient approximate enu-
meration of the cardinality of the stationary state space.

The purpose of this paper is exactly to propose this algorithmic view of
evolutionary game theory; we do so, by discussing some concrete open problems;
and by offering some new research results on the ESS structure of the vast
majority of evolutionary games.

2 Key Notions of Evolutionary Game Theory

2.1 Non-cooperative Games and Equilibria

We restrict our view to the class of finite games in strategic form. More precisely,
let I = {1, 2, . . . n} be a set of players, where n is a positive integer. For each
player i ∈ I, let Si be her (finite) set of allowable actions, called the pure
strategies set. The choice of a specific action si ∈ Si of a player i ∈ I, is called
a pure strategy for this player. A vector s = (s1, . . . , sn) ∈ ×i∈ISi, where
si ∈ Si is the pure strategy adopted by player i ∈ I, is called a pure strategies
profile or a configuration of the players. The space of all the pure strategies
profiles in the game is thus the cartesian product S = ×i∈ISi of the players’
pure strategies sets (usually called the configuration space).

For any configuration s ∈ S and any player i ∈ I, let πi(s) be a real number
indicating the payoff to player i upon the adoption of this configuration by all
the players of the game. In Economics, the payoffs are, eg, firms’ profits, while
in Biology they may represent individual fitness. In computer networks, where
the players are users (eg, exchanging files), the payoff may be the opposite of a
user’s delay, when her data travel from a source to a destination in the network.

Evolutionary Games: An Algorithmic View 101

The finite collection of the real numbers {πi(s) : s ∈ S} defines player i’s
pure strategies payoff function. Let π(s) = (πi(s))i∈I be the vector function of
all the players’ payoffs. Thus, a game in strategic form is simply described by a
triplet Γ = (I, S, π) where I is the set of players, S is the configuration space of
the players, and π is the vector function of all the players’ payoffs.

A mixed strategy for player i ∈ I is a probability distribution (as op-
posed to a deterministic choice that is indicated by a pure strategy) over the
set Si of her allowable actions. We may represent any mixed strategy as a vec-
tor xi = (xi(si,1), xi(si,2), . . . , xi(si,mi

)), where mi = |Si|, ∀j ∈ [mi]1, si,j ∈ Si

is the jth allowable action for player i, and xi(si,j) is the probability that ac-
tion si,j is adopted by player i. In order to simplify notation, we shall represent
this vector as xi = (xi,1, xi,2, . . . , xi,mi). Of course, ∀i ∈ I,

∑
j∈[mi]

xi,j = 1
and ∀j ∈ [mi], xi,j ∈ [0, 1]. Since for each player i all probabilities are non-
negative and sum up to one, the mixed strategies set of player i is the set
Δi ≡

{
xi ∈ IRmi

�0 :
∑

j∈[mi]
= 1
}

. Pure strategies are then just special, “ex-
treme” mixed strategies in which the probability of a specific action is equal
to one and all other probabilities equal zero.

A mixed strategies profile is a vector x = (x1, . . . ,xn) whose components
are themselves mixed strategies of the players, ie, ∀i ∈ I, xi ∈ Δi. We denote
by Δ = ×i∈IΔi ⊂ IRm the cartesian product of mixed strategies sets of all
the players, which is called the mixed strategies space of the game (m =
m1 + · · ·+ mn).

When the players adopt a mixed strategies profile x ∈ Δ, we can compute
what is the average payoff, ui, that player i gets (for x) in the usual way:
ui(x) ≡ ∑

s∈S P (x, s) · πi(s) where, P (x, s) ≡ ∏
i∈I xi(si) is the occurrence

probability of configuration s ∈ S wrt the mixed profile x ∈ Δ. This (extended)
function ui : Δ → IR is called the (mixed) payoff function for player i.

Let us indicate by (xi,y−i) a mixed strategies profile where player i adopts
the mixed strategy xi ∈ Δi, where all other players adopt the mixed strategies
that are determined by the mixed strategies profile y ∈ Δ. This notation is
particularly convenient when a single player i considers a unilateral “deviation”
xi ∈ Δi from a given profile y ∈ Δ. One of the cornerstones of Game Theory is
the notion of Nash Equilibrium (NE in short) [10]:

Definition 1. A best response of player i to a mixed strategies profile y ∈ Δ
is any element of the set Bi(y) ≡ arg maxxi∈Δi

{ui(xi,y−i)} (usually called
the best response correspondence of player i to the profile y). A Nash
Equilibrium (NE) is any mixed strategies profile y ∈ Δ having the property
that, ∀i ∈ I, yi is a best response of player i to y. That is,∀i ∈ I, yi ∈ Bi(y).

The nice thing about NE is that they always exist in finite strategic games:

Theorem 1 ([10]). Every finite strategic game Γ = (I, S, π) has at least one
Nash Equilibrium.

1 For any integer k ∈ IN, [k] ≡ {1, 2, . . . , k}.

102 S. Kontogiannis and P. Spirakis

2.2 Symmetric 2-Player Games

The subclass of symmetric 2-player games provides the basic setting for much
of the Evolutionary Game Theory. Indeed, many of the important insights can
be gained already in this (special) case.

Definition 2. A finite strategic game Γ = (I, S, π) is a 2-player game when
I = {1, 2}. It is called a symmetric 2-player game if in addition, S1 = S2 and
∀(s1, s2) ∈ S, π1(s1, s2) = π2(s2, s1).

Note that in the case of a symmetric 2-player strategic game, the payoff func-
tions of Γ can be represented by two |S1| × |S2| real matrices Π1, Π2 such that
Π1[si, sj] = π1(si, sj), ∀(s1, s2) ∈ S and Π2 = ΠT

1 (the transpose matrix of Π1).
For any mixed strategies profile x = (x1,x2) ∈ Δ, the expected payoff of

player 1 for this profile is u1(x) = x1
T Π1x2 while the payoff of player 2 is

u2(x) = x2
T Π2x1.

In a symmetric 2-player game Π = Π1 = ΠT
2 and thus we can fully describe

the game by common action set S and the payoff matrix Π of the row player.
Two useful notions, especially in the case of 2-player games, are the support

and the extended support:

Definition 3. In a 2-player strategic game Γ = ({1, 2}, S, π), the support
of a mixed strategy x1 ∈ Δ1 (x2 ∈ Δ2) is the set of allowable actions of
player 1 (player 2) that have non-zero probability in x1 (x2). More formally,
∀i ∈ {1, 2}, supp(xi) ≡ {j ∈ Si : xi(j) > 0}. The extended support of a
mixed strategy x2 ∈ Δ2 of player 2 is the set of pure best responses of player
1 to x2. That is, extsupp(x2) ≡ {j ∈ S1 : u1(j,x2) ∈ maxx1∈Δ1{u1(x1,x2)}}.
Similarly, the extended support of a mixed strategy x1 ∈ Δ1 of player 1,
is the set of pure best responses of player 2 to x1. That is, extsupp(x1) ≡
{j ∈ S2 : u2(x1, j) ∈ maxx2∈Δ2{u2(x1,x2)}}.
The following lemma is a direct consequence of the definition of a Nash Equilib-
rium:

Lemma 1. If (x1,x2) ∈ Δ is a NE of a 2-player strategic game, then
supp(x1) ⊆ extsupp(x2) and supp(x2) ⊆ extsupp(x1).

Proof. The support of a strategy that is adopted by a player is exactly the set of
actions which the player takes with positive probability. At a NE (x1,x2) ∈ Δ,
each player assigns positive probability only to (not necessarily all the) pure
strategies which are best responses to the other player’s strategy. On the other
hand, the extended support of, say, x2 is exactly the set of all the actions (ie,
pure strategies) of player 1 that are best responses to x2, and vice versa. That
is, supp(x1) ⊆ extsupp(x2) and supp(x2) ⊆ extsupp(x1).

When we wish to argue about the vast majority of symmetric 2-player games,
one way is to assume that the real numbers in the set {Π[i, j] : (i, j) ∈ S} are
independently drawn from a probability distribution F . For example, F can be
the uniform distribution in an interval [a, b] ∈ IR. Then, a typical symmetric
2-player game Γ is just an instance of the implied random experiment that is
described in the following definition.

Evolutionary Games: An Algorithmic View 103

Definition 4. A symmetric 2-player game Γ = (S, Π) is an instance of a (sym-
metric 2-player) random game wrt the probability distribution F , if and only if
∀i, j ∈ S, the real number Π[i, j] is an independently and identically distributed
random variable drawn from F .

Definition 5. A strategy pair (x1,x2) ∈ Δ2 for a symmetric 2-player game
Γ = (S, Π) is a symmetric Nash Equilibrium, if and only if (1) (x1,x2) is a NE
for Γ , and (2) x1 = x2.

Not all NE of a symmetric 2-player game need be symmetric. However it is
known that there is at least one such equilibrium:

Theorem 2 ([10]). Every symmetric 2-player game has at least one symmetric
Nash Equilibrium.

2.3 Evolutionary Stable Strategies

We will now restrict our attention to symmetric 2-player strategic games. So, fix
a symmetric 2-player strategic game Γ = (S, Π), for which the mixed strategies
space is Δ2. Suppose that all the individuals of a large population are pro-
grammed to play the same (either pure or mixed) incumbent strategy x ∈ Δ,
whenever they are involved in the game Γ . Suppose also that a small group of
invaders appears in the population. Let ε ∈ (0, 1) be the share of invaders in the
postentry population. Assume that all the invaders are programmed to play the
(pure or mixed) strategy y ∈ Δ whenever they are involved in Γ .

Pairs of individuals in this dimorphic postentry population are now repeat-
edly drawn at random to play always the same symmetric 2-player game Γ . If
an individual plays, the probability that her opponent will play strategy x is
1 − ε and that of playing strategy y is ε. This is equivalent with a match with
an individual who plays the mixed strategy z = (1 − ε)x + εy. The postentry
payoff to the incumbent strategy x is then u(x, z) and that of the invaders’ is
just u(y, z) (u = u1 = u2). Intuitively, evolutionary forces will select against the
invader if u(x, z) > u(y, z).

Definition 6. A strategy x is evolutionary stable (ESS in short) if for any
strategy y �= x there exists a barrier ε̄ = ε̄(y) ∈ (0, 1) such that ∀0 < ε �
ε̄, u(x, z) > u(y, z) where z = (1− ε)x + εy.

One can easily prove the following characterization of ESS, which sometimes
appears as an alternative definition:

Proposition 1. Let x ∈ Δ be a (mixed in general) strategy profile that is
adopted by the whole population. The following sentences are equivalent:

(i) x is an evolutionary stable strategy.
(ii) x satisfies the following properties, ∀y ∈ Δ \ {x}:

[P1] u(y,x) � u(x,x)
[P2] If u(y,x) = u(x,x) then u(y,y) < u(x,y)

104 S. Kontogiannis and P. Spirakis

Observe that the last proposition implies that an ESS x ∈ Δ has to be a Nash
Equilibrium of the underlying symmetric 2-player strategic game Γ (due to [P1])
and has to be strictly better than any invading strategy y ∈ Δ \ {x}, against y
itself, in case that y is a best-response strategy against x in Γ (due to [P2]).

Definition 7. A mixed strategy x ∈ Δ is completely mixed iff and only if
supp(x) = S (that is, it assigns to all the allowable actions non-zero probability).

It is not hard to prove the following lemma:

Lemma 2 (Haigh 1975, [4]). If a completely mixed strategy x ∈ Δ is an ESS,
then it is the unique ESS of the evolutionary game.

An Example. A classical example in Evolutionary Game Theory is the Hawk-
Dove game, in which there are two possible pure strategies for the players in the
population: fighting (ie, being a hawk) or withdrawing (ie, being a dove). Let’s
denote these two strategies by H and D respectively. Strategy H obtains a payoff
V > 0 and strategy D gets a zero payoff, when H is played against strategy D
(ie, hawk eats dove). However, when both players are determined to fight (ie,
they both adopt strategy H), then each of them gets a payoff V −C

2 , where C > 0
is the cost for losing the fight (ie, due to injury). Finally, when both players
are willing to retreat (ie, they both adopt strategy D), then each player gets a
payoff of V

2 . The above described 2-player strategic game is symmetric and has
the following payoff matrix:

Π =

⎡⎣ V −C
2 V

0 V
2

⎤⎦
We assume that the cost of losing a fight exceeds the profit of a victory, ie,
C > V . For example, for C = 6 and V = 4 the payoff matrix is

Π =

⎡⎣−1 4

0 2

⎤⎦
and the (unique) symmetric NE for the symmetric 2-player game Γ =
({H, D}, Π) is the completely mixed strategy x = (2

3 , 1
3). One can easily prove

that x is also an ESS. So, by the previous lemma we deduce that it is the unique
ESS of the Hawk-Dove evolutionary game.

2.4 Population Dynamics

A simple way to think about the evolution of a population whose members play
a 2-player game whenever they meet, is to consider the “state” of the population
at time t to be a vector x(t) = (x1(t),x2(t), . . . ,xm(t)), where S = {1, 2, . . . , m}
is a set of actions, individuals are only allowed to adopt pure strategies in S, and
xi(t) is the population share playing strategy i ∈ S at time (ie, round) t.

Let’s assume that when two individuals meet, they play the symmetric 2-
player game Γ = (S, Π), where Π = Π1 = ΠT

2 . We can interpret for example

Evolutionary Games: An Algorithmic View 105

the payoff value Π1[i, j] as the number of offsprings of the individual that played
strategy i, against an individual who played strategy j. (Similarly, Π2[i, j] =
Π[j, i] is the number of offsprings of the individual playing strategy j, against an
individual playing strategy i). How are the generated offsprings programmed?
There are various ways to define this. For example, they may play the same
strategy as their parents. Then, we have a particular kind of dynamics (usually
called the replicator dynamics). Of course, for the model to be complete, one
has to say how often they are selected from the population.

In general, such a way of thought usually results in defining x(t) via either a
stochastic process, or via a system of differential equations describing its rate of
change (that is, ẋ(t) = f(x(t), t), where f is usually a non-linear deterministic
function). Then the model becomes a sample of a vast variety of dynamical
system models and one can study its evolution by finding how x(t) changes in
time. It is not hard to modify these models in order to capture effects like noise,
random choice of the strategy y to play, or some particular rule of “learning”
which are the good strategies, based on the payoffs that the individuals get
(and perhaps, some desirable payoff values that act as thresholds for changes in
strategy). For more details, we recommend that the interested readers have a
look at [5, 13].

3 The Expected Number of ESS in Random Games

Let Pk ≡ {(v1, . . . , vk) ∈ IRk
�0 :

∑
i∈[k] vi = 1}. In this section we study the

number of ESS in a generic evolutionary game with an action set S = [n] and a
payoff matrix which is an n×n matrix U whose entries are iid random variables
drawn from a probability distribution F . For any non-negative vector x ∈ Pk

for some k ∈ IN, let Yx ≡ Pk \ {x}. The following statement, proved by Haigh,
is a necessary and sufficient condition of a mixed strategy s ∈ Pn being an ESS,
given that (s, s) is a symmetric NE of the symmetric game Γ = (S, U).

Lemma 3 (Haigh 1975, [4]). Let (s, s) ∈ Pn×Pn be a symmetric NE for the
symmetric game Γ = (S, U) and let M = extsupp(s). Let also x be the projection
of s on M , and C the submatrix of U consisting of the rows and columns indicated
by M . Then s is an ESS if and only if ∀y ∈ Yx, (y − x)T C(y − x) < 0 .

We observe that the following lemma also holds, whose proof is straightforward
(comes from the definition of ESS):

Lemma 4. Let s ∈ Pn be an ESS of Γ = (S, U). Then (s, s) is a symmetric NE
for Γ .

Combining lemmas 3 and 4 we observe that it is enough to examine only sym-
metric NE of Γ = (S, U) in order to find out whether this game possesses an
ESS. The following lemma will be useful in our investigation:

106 S. Kontogiannis and P. Spirakis

Lemma 5. Let X1, X2 be two independent random variables of the same mean
μ = E {X1} = E {X2}, whose densities are symmetric around μ (we call them
symmetric random variables). Then P {X1 � X2} � 1

2 .

Proof. Since X1 and X2 are symmetric around μ, we have that P {Xi < μ} �
1
2 , i ∈ {1, 2} and also P {Xi > μ} � 1

2 , i ∈ {1, 2}. Now,

P {X2 > X1} � P {X2 > X1|X1 < μ} · P {X1 < μ} � 1 · 1
2
⇒

⇒ P {X1 � X2} = 1− P {X2 > X1} � 1− 1
2

=
1
2

We now show our main theorem:

Theorem 3. Let Γ = (S, U) be an instance of a random symmetric 2-player
game in which the payoff entries are iid random variables drawn from the uni-
form distribution F that assigns values from the range [0, A], for some constant
A. Then E {#ESS} = o(E {#SymmetricNE}).
Proof. Consider an arbitrary symmetric NE s ∈ Pn, and assume wlog that
extsupp(s) = [m] for some 1 � m � n (by reordering the action set S). Assume
also that s1 � s2 � · · · � sr > 0 = sr+1 = · · · = sm for some 1 � r � m
(ie, its support is supp(s) = [r]). Let x = s|[m] ≡ (s1, . . . , sm) ∈ Pm be the
projection of s to its extended support. Let also C = U |[m],[m] be the submatrix
of U consisting of its first m rows and columns. By lemmas 3 and 4 we know
that a necessary condition for s being an ESS is that C is negative definite, ie,
∀y ∈ Yx, (y − x)T C(y − x) < 0. We shall prove that this is highly unlikely
to hold for any mixed strategy s with support of size r � 1. Set ε = sr > 0.
Consider the following collection of vectors from Yx: ∀1 � k � min{r,m− 1},

yk =
(

x1, . . . , xk−1, xk − ε, xk+1 +
ε

m− k
, . . . , xm +

ε

m− k
, xm+1, . . . , xn

)
and

zk = yk − x =
(

0, . . . , 0,−ε,
ε

m− k
, . . . ,

ε

m− k
, 0, . . . , 0

)
Then we have: ∀1 � k � min{r,m− 1},

(zk)T Cz = ε2 · Ck,k − ε2

m− k

m∑
j=k+1

[Ck,j + Cj,k] +
ε2

(m− k)2
∑

k+1�i,j�m

Ci,j (1)

By lemma 3 we know that a necessary condition for the mixed strategy s (for
which we already assumed that it is such that (s, s) is a symmetric NE for (S, U))
to be an ESS is that ∀1 � k � min{r,m− 1},

(yk − x)T C(yk − x) = (zk)T Cz < 0
/∗ ε>0 ∗/
=⇒

1
m−k

∑m
j=k+1[Ck,j + Cj,k] > Ck,k + 1

(m−k)2

∑
k+1�i,j�m Ci,j

Evolutionary Games: An Algorithmic View 107

Fig. 1. The partition of the payoff sub-matrix C

Consider now the collection of events E =
{Ek ≡ I{Sk>Ck,k+Zk}

}
1�k�min{r,m−1}

where Sk ≡ 1
m−k

∑m
j=k+1[Ck,j + Cj,k] and Zk ≡ 1

(m−k)2

∑
k+1�i,j�m Ci,j . Now

observe that

(a) Zk does not include in this sum any of Ck,j , Cj,k, Ck,k. Thus, Zk is indepen-
dent of Sk and Ck,k.

(b) Sk is not affected at all by the values of Ck,k. Therefore, Sk is also indepen-
dent of Ck,k.

Let Rk ≡ Ck,k + Zk. By our previous remarks, we get the following corollary:

Corollary 1. Rk is a random variable independent of Sk.

By linearity of expectation and assuming that any random variable that is
distributed according to F has an expectation μ, we have that E {Rk} =
E {Ck,k}+ 1

(m−k)2

∑
k+1�i,j�m E {Ci,j} = μ+ (m−k)2·μ

(m−k)2 = 2μ. Similarly, E {Sk} =
1

m−k

∑
k+1�j�m[E {Ck,j}+E {Ck,j}] = (m−k)·2μ

m−k = 2μ. That is, we deduce that

Corollary 2. E {Rk} = E {Sk}.
Notice also that the following lemma holds, whose proof is straightforward:

Proposition 2. Let X1, . . . , Xt be iid uniform random variables drawn from
[0, A]. Then X =

∑t
j=1 Xi is a symmetric random variable around its expectation

E {X} = tA
2 , in the interval [0, tA].

Since {Ck,j , Cj,k}k+1�j�m is a collection of 2(m − k) iid uniform random vari-
ables on [0, A], then (m− k)Sk is symmetric random variable around its expec-
tation 2(m− k)μ in the interval [0, 2(m− k)A], or equivalently, Sk is a symmet-
ric random variable around its expectation 2μ in the interval [0, 2A]. Similarly,
{Ci,j}k+1�i,j�m is a collection of (m−k)2 iid uniform random variables on [0, A]

108 S. Kontogiannis and P. Spirakis

and thus, (m−k)2Zk is a symmetric random variable on [0, (m−k)2A], or equiv-
alently, Zk is a symmetric random variable (around its expectation E {Zk} = μ)
on [0, A]. Therefore, Rk = Zk+Ck,k is also a symmetric random variable (around
its expectation 2μ) on [0, 2A]. Thus, we conclude that

Corollary 3. Rk and Sk have the same expectation 2μ, they are independent of
each other, and they are both symmetric random variables in the interval [0, 2A].

By applying lemma 5 we get that

Proposition 3. ∀k � 1, P {Ek} = P {Sk > Rk} � 1
2 .

Observe that E is a conjunction of independent events. This is because E1
actually describes a structure of the entries in C, by comparing twice the average
value of those entries involved in S1 against the value of C1,1 plus the average
value of the entries in Z1. Nevertheless, E1 says nothing about the internal struc-
ture of the coordinates involved in Z1. It only considers their average value. On
the other hand, E2 (conditioned on the total value of the entries in Z1) actually
partially describes the internal structure of the coordinates in Z1 by comparing
twice the average value of the coordinates in S2 with the value of C2,2 plus the
average value of the coordinates in Z2 and does not care about the values of
C1,1 or the coordinates in S1. Yet, this event says nothing about the internal
structure of the coordinates in Z3, except for its total value, a.s.o. To have an
idea about the nested grouping of the coordinates of C, the reader is referred to
figure 1. More formally, P {E} = P {E1}P {E2 | E1} · · ·P

{
Er∗ |

⋂r∗−1
j=1 Ej

}
where

r∗ = min{r,m − 1}. But, due to our structural argument, P

{
Ei |

⋂i−1
j=1 Ej

}
=

P {Ei} for any i ∈ [r∗], since Ei compares the values inside a sum, while
⋂i−1

j=1 Ej

compares the total value of that sum as a whole with the total value of variables
out of this sum. Hence, by proposition 3 we conclude that

P {E} =
r∗∏

j=1

P {Ej} �
(

1
2

)r∗

(2)

It is worth mentioning that for the random 2-player games considered in
[9] (where each entry of the payoff matrices is uniformly distributed in the
unit sphere) almost all the NE have supports whose sizes are approximately
0.315915n. The scaling of the unit interval [0, 1] to [0, A] for any A > 0 does not
affect this result, since a NE is determined by linear constraints wrt the support
(each support is defined as a system of linear inequalities for a 2-player game,
cf. [6]) and we can scale by A each inequality, so long as A > 0.

Let now q = #NE be the number of NE in our game, that is of course a
random variable. For each NE x of the game, let I(x) = I{x is ESS} be the
corresponding indicator variable of x being also an ESS. Since an ESS implies
our event E, we have that

E {I(x)} = P {I(x) = 1} = P {x is an ESS} � P {E} ⇒ E {I(x)} �
(

1
2

)r∗

⇒ E {#ESS} = E {∑x=NE I(x)} �
(

1
2

)r∗
· E {#NE}

Evolutionary Games: An Algorithmic View 109

by Wald’s inequality for a random sum of random variables. So, we have estab-
lished that, since 0.315915n � r � m, E {#ESS} = O

(
E{#NE}
20.315915n

)
which proves

our main theorem.

Remark 1. If we also adopt the numerical analysis of [9] on the ex-
pected number of NE in such a game, according to which the
expected number of NE is exp (0.281644n +O(log n)), then we will
come to the conclusion that E {#ESS} = exp(0.281644n+O(log n))

20.315915n =
exp (0.281644n +O(log n)− 0.2189755n) = exp (0.0626675n +O(log n)) as n →
∞. This is still exponential, but also exponentially smaller than the expected
number of NE.

4 Open Algorithmic and Complexity Problems in
Evolutionary Game Theory

4.1 ESS Existence and Construction

Simple symmetric 2-player games with no ESS are known to exist. For example,
if an evolutionary game uses the matrix (see Samuelson 1997, [7] p. 46)

Π =

⎡⎣ (1, 1) (2,−2) (−2, 2)
(−2, 2) (1, 1) (2,−2)
(2,−2) (−2, 2) (1, 1)

⎤⎦
has no ESS.

Given the matrix of a symmetric 2-player game, with |S| = s:

(a) Can we decide whether an ESS exists or not?
(b) If there is an ESS, can we compute it (or even approximate it) in polynomial

time?

In [2] it has been shown that the decision problem above is both NP−complete
and co-NP−complete. However, this does not exclude the possibility of efficient
algorithms for both problems when s is moderately small, or at least efficient
approximation algorithms.

In addition, assume that we are given a symmetric 2-player game Γ with a
NE strategy x as input. How efficiently can we check whether x is an ESS? That
is, how hard is the additional stability condition [P2] in terms of computational
complexity?

4.2 Imposing Structural Properties of a Game into the
Evolutionary Dynamics

Our last question deals with some new ways of interaction in the evolutionary
dynamics of a game, that will also depict the special structure of the corre-
sponding traditional game. For example, when a virus spreads in a network, the
architecture of the network itself and the starting points of the virus in it should

110 S. Kontogiannis and P. Spirakis

affect somehow the success of the virus. The proposed game theoretic models
of evolution proposed so far in the literature, mainly focus on the case where
the individuals in a population collide with each other in a random fashion. Ie,
the underlying “interaction” infrastructure is represented by a clique. What if
this is not the case, and we have instead some special graph representing the
interactions? We need new evolutionary models to capture such cases, that will
somehow encode the structure of this graph in the dynamics, via elementary
properties (eg, the connectivity or the expansion of the graph).

To make an example here, let’s assume an initial population of hawks and
doves with the following rules:

– When a hawk meets a dove, it kills it.
– When two hawks meet, they kill each other.
– When two doves meet, they both survive.

The matrix of the game is thus

Π =
[

(0, 0) (1, 0)
(0, 1) (1, 1)

]
If the hawks are all (say) in a connected graph and the doves are isolated, then
if we assume random moves of individuals along the edges of the graph, then all
the doves will survive for ever and at most one hawk will survive in the network.
However, if the doves coexist with the hawks in the same connected graph (eg,
a clique) then the probability of eventual survival of doves is almost zero. We
can thus state the following problem:

Given the matrix A of the game as above, a graph G and an initial
placement of the hawks and doves on its vertices, and given that each
animal follows a random walk on G, compute the survival probability of
each species.

The complexity of this problem is wide open.

4.3 Evolutionary Games as Algorithms

Perhaps the most classical problem in Computational Game Theory is the fol-
lowing:

NE-CONSTRUCT Given the payoff matrix A ∈ IRn×n of a 2-player
strategic game, find a Nash Equilibrium.

Only exponential-time algorithms are known for this problem today. If A is sym-
metric, consider instead an evolution process where the possible strategies are
allt eh strategies of A initially. Since “stability implies Nash” (see property[P2]),
by the folklore theorem of Evolutionary Game Theory, we could impose some
stable dynamics on the population that plays A and find (via solving the dynam-
ical system) its stable states. This would give a NE for A. Thus, we reduce the
problem NE-CONSTRUCT to the problem of (efficiently) finding an (asymp-
totically) stable state of an evolutionary process. While this approach is not yet
explored in full generality, some progress has been made for simple congestion
games [3]).

Evolutionary Games: An Algorithmic View 111

4.4 Other Issues

Many other issues can inspire algorithmic and complexity questions. Examples
are equilibrium selection, trajectory prediction, isomorphism of two evolutionary
processes, etc. We advocate here that a new subfield is wide open.

References

1. Cressman R. Evolutionary dynamics and extensive form games. MIT Press, 2003.
2. Etessami K., Lochbihler A. The computational complexity of evolutionary stable

strategies. Technical Report 55, Electronic Colloquium on Computational Com-
plexity (ECCC), 2004. ISSN 1433-8092.

3. Fischer S., Vöcking B. On the evolution of selfish routing. In Proc. of the 12th
European Symposium on Algorithms (ESA ’04), pages 323–334. Springer, 2004.

4. Haigh J. Game theory and evolution. Advances in Applied Probability, 7:8–11,
1975.

5. Hofbauer J., Sigmund K. Evolutionary game dynamics. Bulletin of the American
Mathematical Society, 40(4):479–519, 2003.

6. Koutsoupias E., Papadimitriou C. Worst-case equilibria. In Proc. of the
16thAnnual Symposium on Theoretical Aspects of Computer Science (STACS ’99),
pages 404–413. Springer-Verlag, 1999.

7. Samuelson Larry. Evolutionary Games and Equilibrium Selection (Economic
Learning and Social Evolution). The MIT Press, 1997.

8. Matsui A., Gilboa I. Social stability and equilibrium. Econometrica, 59:859–867,
1991.

9. McLennan A., Berg J. The asymptotic expected number of nash equilibria of two
player normal form games. Working document, Department of Economics, Univ.
of Minnesota, 2004.

10. Nash J. F. Noncooperative games. Annals of Mathematics, 54:289–295, 1951.
11. Rosenthal R.W. A class of games possessing pure-strategy nash equilibria. Inter-

national Journal of Game Theory, 2:65–67, 1973.
12. Taylor P. D., Jonker L. Evolutionary stable strategies and game dynamics. Math-

ematical Biosciences, 40:145–156, 1978.
13. Weibull, Jörgen W. Evolutionary Game Theory. The MIT Press, 1995.

Model Based Diagnosis and Contexts in Self
Adaptive Software

Paul Robertson and Robert Laddaga

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,

Cambridge, Massachusetts, USA
rladdaga@ai.mit.edu

Abstract. Self Adaptive Software monitors its own operation and at-
tempts to correct deviations from required behavior. In the self adaptive
architectures we are developing, it accomplishes this by diagnosing the
sources of deviant behavior, whether internal program problems, or con-
textual changes in an embedded program’s environment. The software
then responds by reconfiguring itself, to use alternate procedures that
either correct the malfunction, or perform better in the current context.
We present the GRAVA architecture as an example, and show how it uti-
lizes diagnosis of the external context to limit complexity and enhance
robustness in several vision applications.

1 Introduction

Software development technology is critically in need of new paradigms sup-
porting increased robustness. Robustness is of great concern now because our
systems are becoming more complex, and because they are increasingly sensing
and controlling our physical environment and processes. One such paradigm is
self-*, a collection of properties such as self reconfigurable, self adaptive, self
aware, and self checking. We believe that all self-* systems share the following
traits:

– Deferral of design decisions to runtime (a form of late binding)
– Metaprogramming
– Explicit attention to state of the world
– Attention to program state

A design decision in the context of any possible program state, any possible input,
and any possible condition of the environment is inherently more complex than
deciding what to do given a specific input in the context of a specific state of the
program and the environment. Self-* systems attempt to use various forms of
metaprogramming to enable them to defer decisions to runtime, when attention
to the state of the world and the state of the program can be used to reduce the
complexity that would otherwise be overwhelming.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 112–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Model Based Diagnosis and Contexts in Self Adaptive Software 113

Our own version of the self-* paradigm, Self Adaptive Software, uses diagno-
sis of the environmental context to control complexity and increase robustness.
In order to present this idea, we first describe Self Adaptive Software, then de-
scribe model based diagnosis. We then present the GRAVA vision architecture
in general, and the concept of context in a vision application. Next, we present
principal component decomposition, the technique we use to generate contexts
from a corpus of examples. Finally, we present our conclusions.

2 Self Adaptive Software

Software design consists in large part in analyzing the cases the software will
be presented with, and ensuring that requirements are met for those cases. It
is always difficult to get good coverage of cases, and impossible to assure that
coverage is complete. If program behaviors are determined in advance, the exact
runtime inputs and conditions are not used in deciding what the software will
do. The state of the art in software development is to adapt to new conditions
via off-line maintenance, and the required human intervention delays change. In
contrast, the premise of self adaptive software is that the need for change should
be detected, and the required change effected, while the program is running (at
run-time).

The goal of self adaptive software is the creation of technology to enable
programs to understand, monitor and modify themselves. Self adaptive software
understands: what it does; how it does it; how to evaluate its own performance;
and thus how to respond to changing conditions. We believe that self adaptive
software will identify, promote and evaluate new models of code design and run-
time support. These new models will allow software to modify its own behavior
in order to adapt, at runtime, when exact conditions and inputs are known, to
discovered changes in requirements, inputs, and internal and external conditions.

A definition of self adaptive software was provided in a DARPA Broad Agency
Announcement on Self-adaptive Software [11]:

Self-adaptive software evaluates its own behavior and changes behav-
ior when the evaluation indicates that it is not accomplishing what the
software is intended to do, or when better functionality or performance
is possible.

This implies that the software has multiple ways of accomplishing its
purpose, and has enough knowledge of its construction to make effective
changes at runtime. Such software should include functionality for eval-
uating its behavior and performance, as well as the ability to replan and
reconfigure its operations in order to improve its operation. Self adaptive
software should also include a set of components for each major func-
tion, along with descriptions of the components, so that components of
systems can be selected and scheduled at runtime, in response to the
evaluators. It also requires the ability to impedance match input/output
of sequenced components, and the ability to generate some of this code
from specifications. In addition, DARPA seek this new basis of adapta-

114 P. Robertson and R. Laddaga

tion to be applied at runtime, as opposed to development/design time,
or as a maintenance activity.

Self adaptive software constantly evaluates its own performance, and when
that performance is below criteria, changes its behavior. To accomplish this, the
runtime code includes the following things not currently included in shipped
software:

1. descriptions of software intentions (i.e. goals and designs)
2. descriptions of program structure;
3. descriptions of the environment that the program is running in, both com-

putational and (for embedded software) physical;
4. a collection of alternative implementations and algorithms (sometimes called

a reuse asset base).

We will return to further discussion of the first three items above, in a later
section: Model Based Diagnosis. Three metaphors have been useful to early re-
searchers on self adaptive software: coding an application as a dynamic planning
system, or coding an application as a control system, or coding a self aware
system, [12]. The first two are operational metaphors, and the third deals with
the reflective nature of the program.

In programming as planning, the application doesn’t simply execute specific
algorithms, but instead plans its actions. That plan is available for inspection,
evaluation, and modification. Replanning occurs at runtime in response to a
negative evaluation of the effectiveness of the plan, or its execution. The plan
treats computational resources such as hardware, communication capacity, and
code objects (components) as resources that the plan can schedule and configure.
See [2], [9], [16], and [20].

In program as control system, the runtime software behaves like a factory,
with inputs and outputs, and a monitoring and control unit that manages the
factory. Evaluation, measurement and control systems are layered on top of
the application, and manage reconfiguration of the system. Explicit models of
the operation, purpose and structure of the application regulate the system’s
behavior. This approach is more complex than most control systems, because
the effects of small changes are highly variable, and because complex filtering and
diagnosis of results is required, before they can serve as feedback or feed-forward
mechanisms. Despite the difficulties of applying control theory to such highly
non-linear systems, there are valuable insights to be drawn from control theory,
and also hybrid control theory, including for example the concept of stability.
See [9], [10], and [14].

The key factor in a self aware program is having a self-modeling approach.
Evaluation, revision and reconfiguration are driven by models of the operation of
the software that are themselves contained in the running software. Essentially,
the applications are built to contain knowledge of their operation, and they use
that knowledge to evaluate performance, to reconfigure and to adapt to changing
circumstances (see [12], [20], and [15]). The representation and meta-operation

Model Based Diagnosis and Contexts in Self Adaptive Software 115

issues make this approach to software engineering also intriguing as an approach
to creation of artificial intelligence.

3 Model Based Diagnosis

We said before that self adaptive software will include descriptions of:

1. software intentions (i.e. goals and designs)
2. program structure;
3. the environment that the program is running in, both computational and

(for embedded software) physical;

Each of these descriptions will generally be in the form of a model. That is, the
descriptions must involve a significant functional abstraction, so as to support
operations on the descriptions that can in turn affect the functional behaviors of
the things described. So for example, we must be able to recompute the subgoals
of a goal in the light of new contextual information. Also, we want to use the
models of program structure to diagnose problems and support reconfiguration
of the program. Finally, models of the physical environment can be used to:

1. diagnose program failures and performance problems,
2. provide contextual basis for subgoaling and reconfiguring,
3. provide a basis for choosing new strategies for the computation.

We also said earlier that the chief engineering issue for self adaptive software
was evaluation of program performance. It is of course possible to do evaluation
without actually diagnosing a problem, even when one is determined to respond
to the evaluation. For example, given a poor evaluation (which may itself pro-
vide no diagnostic information) we might simply respond by randomly picking
a different algorithm or implementation. Although this fits a broad definition of
self adaptive software, our goals are much higher.

Instead, the kind of evaluation we envision is one that includes and partially
depends on a diagnosis of at least the proximate cause, and where possible the
root cause, of the failure or performance problem. In this sense, the entire self
adaptive apparatus in the program can be thought of as a model based diagnosis
system, in support of the program’s main goals. The program, its goals, and
the environment that it runs in are all modeled in the running system, and
diagnostic reasoning is employed to evaluate program performance. Thus model
based diagnosis realizes the self aware metaphor for self adaptive software.

In the next sections, we introduce a computer vision system that uses diag-
nosed changes in the current context, in order to adapt to those changes.

4 Complexity and Context in Vision

Image understanding programs have tended to be very brittle and perform poorly
in situations where the environment cannot be carefully constrained. Natural vi-
sion systems in humans and other animals are remarkably robust. We believe

116 P. Robertson and R. Laddaga

that recognition of (and adaptation to) changes in the environment is what al-
lows natural vision to be so much more robust than computer vision. A premise
of the self-adaptive approach is that it should be possible, at runtime, to syn-
thesize context specific systems, to determine the need to change context and to
self-adapt the program so that the program’s context matches the state of the
environment and operates robustly because each of its components is operating
well within their optimal range.

The idea of self-adaptation is to adapt the program to a particular “context”.
In order to achieve this adaptation we build structural descriptions that facilitate
dividing the model space into contexts and provide a mechanism for determining
when a context is a good fit to the environment, and diagnosing when we have
a poor context fit. AI has long understood the importance of contexts. In 1975
Minsky introduced the notion of frames [13] which was essentially an approach to
contexts. Frames have been used extensively in AI research, especially for natural
language. Riseman’s Schemas [6] was a similar idea specifically for Computer
Vision.

The first application of the GRAVA architecture [19, 18] was to the interpre-
tation of satellite aerial images. In GRAVA (for Grounded Reflective Adaptive
Vision Architecture), satellite images were segmented into regions of homoge-
neous content and the regions were parsed, much as words are in a sentence
to form a structural understanding of the image. Different image types are
comprised of different kinds of regions, different colors and textures, and dif-
ferent parse rules. Rather than making one huge grammar that includes all
textures and region types, it is better to have grammars, and optical models
tailored to the context because tailored contexts provide greater accuracy and
constraint. In that program the contexts as well as the grammars and region con-
tent models were learned from a corpus of images annotated by a human photo
interpreter.

The use of corpora in building trainable intelligent systems has been a grow-
ing trend in A.I. in recent years especially in natural language [5, 4], speech
understanding [8], and computer vision [17]. These problems are far too difficult
to tackle in their full generality, and require techniques for managing that com-
plexity. One common and beneficial use of corpora is in managing complexity
by learning contexts. Contexts introduce constraints that bound the choices to
be made (or learned) about attributes and their values.

Contexts occur for a variety of reasons, at different levels of processing, and
in different parts of the corpus. Given a set of images it is generally not possible
to divide the images into separate piles with each pile representing a different
context. Contexts for different aspects of the problem can be composed in a
variety of ways. The explosion of possible combinations of contexts is one reason
why the self-adaptive approach is attractive. That is, rather than generating all
possible combinations of contexts in advance—and then having a “big switch”
to choose which to use—it is better to generate the particular combination of
contexts on demand.

Model Based Diagnosis and Contexts in Self Adaptive Software 117

4.1 An Overview of the GRAVA Architecture

The purpose of the reflective architecture is to allow the image interpretation
program to be aware of its own computational state and to make changes to it
as necessary in order to achieve its goal. The steps below provide a schematic
introduction to the GRAVA architecture.

1. The desired behavior is specified in the form of statistical models with the
help of a corpus.

2. The behavior, which covers several different imaging scenarios, is broken
down into contexts. Contexts exist for different levels of the interpretation
problem. Each context defines an expectation for the computational stage
that it covers. Contexts are like frames and schemas; but because the contexts
are gathered from the data automatically it is not necessary to define them
by hand.

3. Given a context a program to interpret the image can be generated from that
context. This is done by compiling the context into a program by selecting
the appropriate agents.

4. The program that results from compiling a context can easily know the
following things:

(a) What part of the specification gave rise to its components.
(b) Which agents were involved in the creation of its components.
(c) Which models were applied by those agents in creating its components.
(d) How well suited the current program is to dealing with the current input.

5. The division of knowledge into agents that perform basic image interpreta-
tion tasks and agents that construct programs from specifications is repre-
sented by different reflective levels.

4.2 Context in Aerial Image Interpretation

To better understand the idea of contexts, consider the case of optical model
contexts and language model contexts.

Figure 1 shows four multi-spectral color SPOT images from the color corpus
that demonstrate different contexts. Images (1) and (2) are similar in content
(mostly farmland and small towns) but the colors and textures of the regions are
very different. In fact, the images are taken under different imaging conditions.
In the case of these two images, the major difference is with the optical models,
since, grammatically, the two are rather similar. In images (3) and (4) the nature
of the terrain is very different. Image (3) shows part of a major city whereas image
(4) shows a rural setting with only small villages. The grammar that is suitable
for parsing images 3 and 4 is quite different. Attempting to interpret any of
these images with the wrong collection of optical or grammatical models may be
expected to produce a poor result especially since knowledge weak segmentation
algorithms often give poor results. In this case, the reason for the differences
between image (1) and image (2) were changes in the SPOT technology used to
image them.

118 P. Robertson and R. Laddaga

(1) (2)

(3) (4)

Fig. 1. Image Contexts

4.3 Context and Face Recognition

We next consider an example from the application of computer vision to face
recognition. Most face recognition systems work by measuring a small number
of facial features given a canonical pose and matching them against a database
of known faces. Frequently however, in practical applications, few frames show a
full frontal face. By building a face recognizer that can seamlessly switch between
different contexts such as pose and lighting we can construct a recognizer that
is robust to normal changes in the natural environment. This permits a much
wider application of face recognition technology. (See [22] for a more complete
description of the face recognition system).

Our application involves recognizing people as they move about an intelligent
space [3] in an unconstrained way. An intelligent(or smart) space is a room or
collection of rooms and corridors that have an abundance of sensors so that com-
puter monitoring can track and understand activities in the space and provide
intelligent support for the activities of the participants. Although the use of a
space may in general be very complex, most spaces have a number of frequently
repeated uses. By modeling the relationship between contexts the system can
predict activities that occur in sequences within a space. For example the se-
quence of “assembling”, “meeting”, and “adjourning” can be learned as a hidden
markov model (HMM) [23, 1].

To better understand contexts for face recognition consider the face “pose”
contexts:

Figure 2 shows four pose contexts: “profile”, “oblique”, “off-center”, and
“frontal”. The profile view, for example, is supported by agents that measure
points along the profile of the face, the corner of the eye, and the lips. The
oblique view, on the other hand, is supported with measurements of the ear and

Model Based Diagnosis and Contexts in Self Adaptive Software 119

Fig. 2. Four Pose Contexts

measurements of the position of the ear, eye, and nose. The triangle formed by
the eye, ear, and nose help to determine the angle of the face to the camera
which allows measurements to be normalized before recognition. The different
contexts control, among other things, what models can be used for matching,
what features can be detected and what transformations must be made to nor-
malize the measurements prior to matching. This example shows contexts for
pose but there are also contexts for lighting, race, gender, and age.

The recognizer supports a collection of face candidate finders, face models,
feature finders, and normalization algorithms implemented as agents. Face can-
didate finder agents look for face like shapes in the image and generate evidence
that supports the selection of a set of contexts based on the shape and shading
of the face candidate. Agents appropriate to the context are selected to make
a special purpose face recognizer. If the recognizer doesn’t succeed in finding
appropriate features where they are expected to be the system self-adapts by
using available evidence to select a more appropriate context, constructing a
new recognizer, and trying again.

5 Principal Component Decomposition

The architecture discussed above can adapt to a changing environment, given
a decomposition of the problem space into contexts. We now describe how we
derive our set of context models from a corpus, automatically.

A corpus provides multiple positive examples of a structure (such as faces)
that we wish to model. The structures in question have one or more dimensions,
for example orientation, and the corpus provides examples of the structure that
enable us to model the location within the appropriate multidimensional space.
One way of doing this is to model the structures as a probability distribution
function (PDF). The natures of the structures may be very different but the
essential nature of a corpus is the same: positive examples of structures in a
multi-dimensional space.

Principal component decomposition is the interpretation of a set of data
points into the component collections by analyzing the principal components of
the interpretation space. After the space has been divided into separate clusters
conventional PCA is applied to produce the models.

The algorithm builds upon two earlier works. The first is a classification pro-
gram developed by Wallace [24], and the second is the practice of using principal
component analysis [7] to reduce the dimensionality of high dimensional prob-

120 P. Robertson and R. Laddaga

lems to model separate populations. Our algorithm applies principal component
analysis recursively in order to separate the collection into successively smaller
clusters. At each point the criterion for separating a population is that it re-
duces the global description length of the original population. A more complete
description can be found in [21].

5.1 A Statistical Model for Clusters

Given an n-dimensional space Sn containing m points. we can interpret the
points in this space as being unrelated points, all members of a single cluster, or
grouped into a number of clusters.

A premise of the GRAVA architecture is that knowledge of the world in the
form of models can be used to produce better descriptions of an image. A good
description of the world in the GRAVA architecture is one that has a minimum
description length. A model allows a shorter description length if the model
reduces the amount of uncertainty about the values of features in the image.

The entropy of the collection data points in the corpus is given by:

H = −
∑

d∈Sn

P (d)log2P (d) (1)

The lower bound MDL of a description that represents all of the points in
the Sn is given by:

DL = −
∑

d∈Sn

log2P (d) (2)

In order to compute this theoretical description length, it is necessary to
know the PDF for points in Sn. A corpus doesn’t specify every possible point in
the space. A corpus provides a collection of representative points in the space.
The job of interpreting the corpus involves modeling the PDF. There are many
choices for modeling a PDF. One model that is simple, predictive, and which
often pertains to naturally occurring distributions is the Gaussian.

The description of a Gaussian model consists of a mean and variance of the
distribution < μ, σ2 >. For a set of points the Gaussian model can be fitted sim-
ply by computing the mean μ and the variance σ2. Given this characterization,
for any point d we can compute the probability P (d) as follows:

P (d) = erf

(
(pos(d)− μn + ε/2)

σn

)
−erf

(
(pos(d)− μn − ε/2)

σn

) (3)

where pos(d) is the position of the point d, ε is the position resolution, μn is
the n-dimensional mean, σ2

n is the n-dimensional variance, and erf() is the error
function.

The choice of whether to consider the points in the corpus as (1) unrelated
individual points, (2) all members of the same model, or (3) divided into groups

Model Based Diagnosis and Contexts in Self Adaptive Software 121

each of which is modeled, is to select the choice that yields the minimum de-
scription length.

The interpretation task can therefore be characterized as dividing the data
points in Sn into n proper subsets Ci,n such that:

Sn =
n⋃

i=1

Ci (4)

The MDL is

arg min
C1,n

n∑
i=1

{(∑
d∈Ci

−log2P (d|Ci)− log2P (d ∈ Ci)
)

+ddl(Ci)
} (5)

where ddl(Ci) is the description length of the distribution used to model Ci.
The description of a point is divided into two parts. The first part identifies
its position in the space (−log2P (d|Ci)) and the second part identifies to which
collection it belongs (−log2P (d ∈ Ci)).

The statistical models chosen for Ci determine the size of the point descrip-
tions. In order to specify the position of a point we choose a resolution ε to be
used uniformly since otherwise a point can have an arbitrary precision and its
representation would be arbitrarily large.

If the representation of a collection includes its mean position μ, the positions
of the points in the collection can be described as distances δ from the mean. So
any point d can be described as an n-dimensional mean and an n-dimensional
displacement:

μ + δ − ε

2
≤ d ≤ μ + δ +

ε

2
(6)

To Communicate the collections, all that is required is the mean position
represented to an accuracy of ε. The points are represented as a description of
which collection they belong to and the offset from the mean: < Ci, δ >.

As the data points in a corpus are divided up into smaller collections the
description length of the individual points is reduced if the distribution that
characterizes the collection is more predictive about the position of its component
points than the distribution for the entire corpus was. Any suitable statistical
distribution can be chosen for a collection.

5.2 Algorithm for Decomposition

Having defined the criteria for an optimal division of the data points into separate
models we are left with the task of defining an effective procedure for achieving
such a division. To accomplish this we developed an efficient algorithm that
approximates a solution to Equation 4.

122 P. Robertson and R. Laddaga

Our algorithm, which we call “principal component decomposition” (PDC),
attempts to divide the data by searching for dividing hyper planes along the
eigenvectors of the data. The idea behind the algorithm is that the principal
eigenvectors represent the dimensions with the greatest spread. The spread can
be caused by a single phenomenon with a large variance, or it can be caused
by more than one phenomenon distributed throughout the space. To distinguish
these two cases we compute the entropy of the data points as a whole and then
we compute the sum of the entropies of the two collections formed by dividing
the data points into two collections with a hyper plane perpendicular to the
eigenvector1. We do this for all possible cut points along the eigenvector. If all
sums of divided collections yield a higher description length than the original
combined collection the collection is not divided, otherwise the collection is di-
vided at the place that yields the minimum description length. This point can
be seen as the minimum point in the entropy curve.

This procedure is repeated for each eigenvector of the collection starting from
the eigenvector that corresponds to the largest eigenvalue until either a division
occurs or until all eigenvectors have been tried. Once a collection has been split
the algorithm is applied to each of the newly divided collections. Eventually
there are no collections of points that split. The algorithm consists of two parts
CHOP and MERGE.

CHOP looks for places to divide a collection of data points into two collections
by finding a dividing hyperplane. CHOP thus produces two collections that have
the property that if collection C0 is divided into C1 and C2, C0 = ∪{C1C2}, and
DL(C0) > DL(C1) + DL(C2). MERGE finds two collections of data points (say
C1 and C2) that have the property that DL(∪{C1C2}) < DL(C1) + DL(C2). If
the collection of data points is non-convex CHOP can cause some points to become
separated from the collection that they naturally belong to. MERGE re-associates
points severed in this way with their natural collection. The advantage of this ap-
proach is that it is possible to construct non-convex collections of data points.

First we describe the algorithm for CHOP (S) that chops the collection into
separate collections.

CHOP (S):

1. S is a set of n-dimensional data points. Let m̄ be the mean and C be the
co-variance matrix.

2. Let v1 . . . vn and λ1 . . . λn be the eigenvectors and corresponding eigen values,
respectively, sorted into decreasing order of eigenvalue.

3. For each eigenvector vi starting with v1 (the one with the largest eigenvalue—
the principal eigenvector), search for the best place to cut the data points
into two collections as follows:

(a) Establish the cutting hyper plane. The cutting hyper plane is the plane
that is perpendicular to the eigenvector vi. We arbitrarily choose the
hyper plane that passes through the mean m̄.

1 A 2-dimensional hyper plane is a line.

Model Based Diagnosis and Contexts in Self Adaptive Software 123

n =m̄T vi

r̄vi =n
(7)

where r̄ is a point specified as a row matrix.
This is the perpendicular form of the equation of a hyper plane. This
representation is convenient because it permits fast calculation of the
distance of a point from the hyper plane. For any point d the distance
from the plane in equation 7 is given by n− dvi.

(b) Sort the points in S in order of distance from the cutting hyper plane.
Since the hyper plane cuts through the mean, approximately half of the
points will be on one side of the hyper plane, with the rest on the other
side. Approximately half of the points, therefore, will have a negative
distance from the plane. The distance is not the absolute distance from
the plane, it is how far to move along the normal to the hyperplane to
reach the plane in the direction of vi.

(c) Let A be the sorted list of data points.
(d) Let B be an empty list.
(e) Let the cutPoint = 0 and position = 0
(f) Let minDL = DL(A) the description length of the entire set of data

points.
(g) Now we simulate sliding the cutting plane along the eigenvector from

one end of the set of data points to the other, by taking points one at a
time from A, putting them into B, and computing the description length
of the two collections as follows:
For each point dj in A do:
i. Remove dj from A.
ii. Add dj to B.
iii. Increment the position (position = position + 1).
iv. Compute the new description length as newDL = DL(A) + DL(B).
v. If newDL < minDL set minDL = newDL and cutPoint = position.

(h) If cutPoint > 0 divide the data points S into two collections S1, and S2

at the position indicated by cutPoint. Then recursively apply CHOP to
both of the sub-collections to see if further chopping can be performed.
Finally return the complete list of chopped collections:
return append(CHOP (S1), CHOP (S2))

4. At this point, all of the eigenvectors of S have been searched for chop points,
and none have been found. The data points cannot be represented with a
smaller description length by chopping along an eigenvector so return the
list of collections as the single collection S:
return list(S)

The nature of the way the collections are divided up results in some groups
of data points being divided unnecessarily.

124 P. Robertson and R. Laddaga

The PCD algorithm described above has a number of interesting character-
istics:

1. PCD produces a structural description of the data points that is an approx-
imation to a global MDL description of the points.

2. Each remaining collection of points can be represented efficiently by the
statistical model chosen for it since if the collection could not be represented
well it would have been divided.

3. Each collection is a good candidate for PCA modeling because of (2). If the
data points were for faces of dogs or humans, as discussed earlier, we may
end up with a good PCA model for human faces and a good PCA model for
dog faces rather than one general model for faces.

4. The algorithm can be implemented efficiently and can produce good decom-
positions very quickly. The number of “chop” and “merge” operations that
are performed in producing a decomposition is very small compared to the
number of points.

5. The algorithm can produce non-convex collections.

The final point (5) is an interesting feature of the algorithm that is not obvious
from the example given above. Non-convex collections cannot be disentangled
by using the “chop” operation alone but inclusion of the “merge” operation
allows two convex collections to be joined so as to produce a non-convex merged
collection.

−10 −5 0 5 10 15 20 25
0

5

10

15

20
2D test data − iteration 0

Data
Principal Eigenvector
Secondary Eigenvector
Division Line

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60
Change in description length vs cluster division point

Points in order along normal to the hyperplane

R
el

at
iv

e
E

nt
ro

py

Change in entropy
Minimum entropy cut point

Fig. 3. Intertwined Non-Convex Shapes

To demonstrate this capability we generated a set of data points by picking
points randomly along two interlocking ’C’ shapes in a ying yang configuration.
Even though the data is quite dense and intertwined the algorithm manages
to “chop” it apart and then “merge” the severed parts back together. Figure 3
shows the first iteration on the data.

The second and third iterations chop the data down further and later iter-
ations merge the severed portions back into their rightful places as shown in
Figure 4.

Model Based Diagnosis and Contexts in Self Adaptive Software 125

Fig. 4. Curved example data

6 Conclusion

The GRAVA system effectively uses model based diagnosis of context models
to adapt to changing environments. This adaptation has been demonstrated in
aerial image interpretation as well as in face recognition applications.

So, in addition to knowledge of content (faces or aerial images), that the
GRAVA agents use to interpret images, GRAVA brings to bear two other kinds
of knowledge. One of these is knowledge of the contexts that can be presented by
the environment (contextual awareness), and the other is self-awareness, or meta-
knowledge about the state of the program and the agents. What is unique about
the recognizer outlined above is that it has multiple ways of interpreting images.
For example, in face recognition, it divides up a complex space of lighting, age,
race, sex, and pose into contexts that can be composed in a huge number of ways
and self-adapts the recognizer at runtime.

In addition, we have developed a novel algorithm for the decomposition of
complex models into collections of simpler models. This forms a backbone mech-
anism for automatically interpreting corpora, and automatically building both
contexts and code for diagnosing context changes.

Since contexts are not random but are structurally related, transitions be-
tween contexts can be modeled as hidden Markov models (HMM). We are cur-

126 P. Robertson and R. Laddaga

rently extending the architecture described in the paper to use HMM reasoning
to optimize the context switching mechanism.

The adaptations that the system can exhibit are limited by the contexts
that are well represented in the hand annotated corpus. We expect to be able to
extend the system to allow for the system to capture examples and automatically
annotate them by tracking previously recognized instances. This would allow
the system to learn to adapt to situations that were not in the original human
annotated corpus. We have not yet attempted this form of learning but plan to
perform such experiments in the near future.

Acknowledgements

Effort sponsored in part by MIT Project Oxygen, and the Project Oxygen part-
ners: Acer, Delta, Hewlett-Packard, Nokia, NTT and Philips.

References

1. L.E. Baum. An inequality and associated maximization technique in statistical
estimation for probabilistic functions of a markov process. Inequalities, 3:1–8,
1972.

2. I. Ben-Shaul, H. Gazit, O. Holder, and B. Lavva. Dynamic self adaptation in
distributed systems. In P. Robertson, R. Laddaga, and H. Shrobe, editors, Self-
Adaptive Software, pages 134–142. Springer-Verlag, 2000.

3. R. A. Brooks. The intelligent room project. In Proceedings of the Second Interna-
tional Cognitive Technology Conference (CT’97), Aizu, Japan, 1997.

4. E. Charniak. Statistical Language Learning. MIT Press, 1993.

5. E. Charniak. Statistical techniques for natural language parsing. pages 33–43,
1997.

6. B. Draper, R. Collins, J. Brolio, A. Hansen, and E. Riseman. The schema system.
Technical Report COINS TR88-76, Computer and Information Science, Univ. Mas-
sachusetts at Amherst, 1988.

7. J.E. Jackson. A user’s guide to Principal Components. John Wiley and Sons, New
York, 1991.

8. F. Jelinek, J.D. Lafferty, and R.L. Mercer. Basic methods of probabilistic context-
free grammars. In Pietro Laface and Renato De Mori, editors, Speech recognition
and understanding. Recent advances, trends, and applications, volume F75. NATO
ASI Series. Berlin: Springer Verlag, 1992.

9. G. Karsai and J. Sztipanovits. A model-based approach to self-adaptive software.
IEEE Intelligent Systems, 14(3):46–53, May/June 1999.

10. M.M. Kokar, K. Baclawski, and Y.A. Eracar. Control theory-based foundations of
self-controlling software. IEEE Intelligent Systems, 14(3):37–45, May/June 1999.

11. R. Laddaga. Self-adaptive software sol baa 98-12. 1998.

12. R. Laddaga. Creating robust software through self-adaptation. IEEE Intelligent
Systems, 14(3):26–29, 1999.

13. M. Minsky. A framework for representing knowledge. In P. H. Winston, editor,
The Psychology of Computer Vision. McGraw-Hill, New York, 1975.

Model Based Diagnosis and Contexts in Self Adaptive Software 127

14. D.J. Musliner, R.P. Goldman, M.J. Pelican, and K.D. Krebsbach. Self-adaptive
software for hard real-time environments. IEEE Intelligent Systems, 14(4):23–29,
July/August 1999.

15. G. Nordstrom, J. Sztipanovits, G. Karsai, and A. Ledeczi. ”metamodeling rapid
design and evolution of domainspecific modeling environments”. In Proceedings of
the IEEE Conference and Workshop on Engineering of Computer Based Systems,
1999.

16. Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gre-
gory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexan-
der L. Wolf. An architecture-based approach to self-adaptive software. IEEE
Intelligent Systems, 14(3):54–62, 1999.

17. P. Robertson. A corpus based approach to the interpretation of aerial images. In
Proceedings IEE IPA99. IEE, 1999. Manchester.

18. P. Robertson. An architecture for self-adaptation and its application to aerial image
understanding. In P. Robertson, R. Laddaga, and H. Shrobe, editors, Self-Adaptive
Software, pages 199–223. Springer-Verlag, 2000.

19. P. Robertson. A Self-Adaptive Architecture for Image Understanding. PhD thesis,
University of Oxford, 2001.

20. P. Robertson and J.M. Brady. Adaptive image analysis for aerial surveillance.
IEEE Intelligent Systems, 14(3):30–36, May/June 1999.

21. P. Robertson and R. Laddaga. Principle component decomposition for automatic
context induction. In Proceedings Artificial and Computational Intelligence 2002,
Tokyo, Japan, 2002.

22. P. Robertson and R. Laddaga. A self-adaptive architecture and its application
to robust face identification. In Pacific Rim Conference on Artificial Intelligence
2002. Springer-Verlag, 2002.

23. A.J. Viterbi. Error bounds for convolution codes and an asymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory, 13:260–269, 1967.

24. C.S. Wallace. Classification by minimum-message-length inference. In G. Goos and
J. Hartmanis, editors, Advances in Computing and Information–ICCI’90, pages
72–81. Springer-Verlag, 1990.

On the Use of Online Analytic Performance
Models in Self- anaging and Self- rganizing

Computer Systems

Daniel A. Menascé, Mohamed N. Bennani, and Honglei Ruan

George Mason University, Department of Computer Science, MS 4A5,
Fairfax, VA 22030, USA

{menasce, mbennani}@cs.gmu.edu
hruan@gmu.edu

Abstract. Current computing environments are becoming increasingly
complex in nature and exhibit unpredictable workloads. These envi-
ronments create challenges to the design of systems that can adapt to
changes in the workload while maintaining desired QoS levels. This paper
focuses on the use of online analytic performance models in the design of
self-managing and self-organizing computer systems. A general approach
for building such systems is presented along with the algorithms used by
a Quality of Service (QoS) controller. The robustness of the approach
with respect to the variability of the workload and service time distribu-
tions is evaluated. The use of an adaptive controller that uses workload
forecasting is discussed. Finally, the paper shows how online performance
models can be used to design QoS-aware service oriented architectures.

1 Introduction

The next generation of large distributed systems will consist of millions of inter-
connected heterogeneous devices and of a very large number of sources that gen-
erate data in widely different formats. These devices have significantly different
characteristics in terms of processing power, bandwidth, reliability, battery life,
and connectivity (wired or wireless). Many different types of applications with
different and competing Quality of Service (QoS) requirements may share a com-
mon computing, communication, and data storage infrastructure. Applications
running in these environments will i) be component-based for increased reusabil-
ity, ii) service-oriented, iii) need to operate in unattended mode and possibly in
hostile environments such as battlefields or natural disaster relief situations, iv)
be composed of a large number of “replaceable” components discoverable at run-
time, and v) have to run on a multitude of unknown and heterogeneous hardware
and network platforms.

Under these circumstances, systems must be adaptable and self-configurable
in order to continuously meet QoS requirements at the application and com-
ponent level in the presence of changes in workload intensity. Adaptability and
self-configuration is also necessary to cope with attacks and failures in order to

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 128–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

m o

On the Use of Online Analytic Performance Models 129

meet availability and security requirements. Therefore, because of the dynamic
aspects of complex distributed computer systems, they must be self-configurable,
self-optimizing, self-healing, and self-protecting.

Some important challenges must be addressed:

– The structure of applications changes dynamically as new services are added
or removed.

– The workload is hard to characterize due to its unpredictable nature, dy-
namically changing services, and application adaptation.

– It is difficult to build static performance models because the system is in
constant evolution.

– There is a multitude of QoS metrics at various levels. Some examples include
response time, jitter, throughput, availability, survivability, recovery time
after attack/failure, call drop rate, access failure rate, packet delays, packet
drop rates.

– There are tradeoffs between QoS metrics (e.g., response time vs. availabil-
ity [15], response time vs. security [18]).

– Transient analysis of QoS compliance, and not just steady-state analysis, of
system behavior is necessary in critical times such as terrorism attacks or
catastrophic failures.

– Global QoS goals have to be mapped to locally enforced and monitored QoS
goals [14].

– There is a need for protocols and mechanisms for efficient QoS goal negotia-
tion, monitoring, and enforcement. Given the heterogeneous nature of these
systems, QoS goals and contracts have to be specified in platform-neutral
terms.

– Resource management mechanisms including resource reservation, resource
allocation, and admission control in non-dedicated resources, as in Grid com-
puting [13], are generally complex.

There has been a growing interest in self-managing systems and self-conf-
iguring systems as illustrated by the papers in a recent workshop [5] and in [1,
2, 6, 7, 8, 9, 10, 11, 17, 20, 22, 25]. In this paper, we describe our approach which
consists of using analytic performance models in the design of self-configurable
and self-managing computer systems. This approach is exemplified in various of
our papers [4, 16, 17, 19, 20]. We provide here an all encompassing framework,
describe the challenges, and summarize result obtained. Section two discusses
our general approach to controlling computer systems. Section three presents an
example of the results obtained by applying these ideas to control a Web server.
The next section shows how analytic performance models are robust when the
workload and service time distributions exhibit high variability. Section five de-
scribes the design of an adaptive controller that uses workload forecasting and
presents an example of results for such a controller. Section six shows how online
performance models can be used to build QoS-aware service oriented architec-
tures that perform QoS negotiation and admission control. Finally, Section seven
presents some concluding remarks.

130 D.A. Menascé, M.N. Bennani, and H. Ruan

2 General Approach

We use Fig. 1 to illustrate our general approach to designing self-organizing
and self-managing computer systems. We consider that a system is subject to a
workload, which may consist of any mix of online transactions and batch jobs.
There is a multitude of parameters and settings that may affect the performance
of such systems. Examples of these parameters include, among others, TCP, web
server, application level, database server, operating system, and load balancer
parameters. An analysis of the effects of various configurable parameters in E-
commerce systems can be found in [23].

The set of parameters is divided into uncontrolled parameters and controlled
parameters. Uncontrolled parameters (1) are those that are not changed dy-

Computation
of

Goal
Function

(4)

Controller
(3)

A B C D E F G H
SELECTED

ON-LINE

Modem Bank

Workload
(5)

Uncontrolled
parameters

(1)

Secondary
responses

(7)

Primary
responses

(6)

Controlled
parameters

(2)

Desired
Goals

(8)

Controlled System

Fig. 1. General approach to self-managing and self-organizing computer systems

On the Use of Online Analytic Performance Models 131

namically by the controller. Typically, these parameters are the ones that have
relatively little impact on performance or that require a system restart or reboot
in order for their effect to take place. Controlled parameters (2) are those whose
settings are changed dynamically by the controller (3) by executing a controller
algorithm. The goal of this algorithm is to find settings of the controlled pa-
rameters that optimize a given goal function (4), which can be expressed in the
form of a utility function [24] or any other function of the values of the primary
responses. Examples will be given in the remaining sections of the paper. The
result of the current goal is passed to the controller, which may request goal
evaluations for different possible settings of the controller parameters.

A set of responses are generated as a result of the workload (5) and of the
settings for all parameters—controlled and uncontrolled. The responses are typi-
cally divided into primary responses (6) and secondary responses (7). The former
are those whose values must be kept within desired ranges as specified by Ser-
vice Level Agreements (SLAs) or QoS goals (8). Examples of primary responses
may include response time, throughput, and probability of rejection. Secondary
responses are those for which no QoS goals are set but that may be used by the
controller algorithm. An example is the utilization of the various devices of the
controlled system.

2.1 The Controller Algorithm

The size of the state space of possible configurations grows in a combinatorial
way with the number of controlled parameters. Therefore, an exhaustive search of
that space is not feasible. The controller uses combinatorial search techniques [21]
such as hill-climbing and beam-search to find a close-to-optimal configuration
for which the value of the goal function is as close as possible to its desired level.

Figure 2 displays an example of a portion of a state space. Each point rep-
resents a configuration of the controlled parameters and the numerical value
associated with each point represents the value of the goal function. Suppose
that the current configuration is point A, which has value 10, and that through
a hill-climbing search, a new configuration, point B with value 35, is found.

An important question is how is the goal value computed for each config-
uration point? The goal value for the current configuration is obtained from
measurements obtained from the system. However, as the search technique ex-
plores the state space, the goal values have to be computed through the use of
models that can predict the value of response variables for configurations differ-
ent from the current one. Our approach consists in using analytic performance
models of the system to obtain the values of the primary responses.

This online use of predictive performance models is a departure from their
common use in capacity planning [12]. In those cases, performance models are
used to analyze and compare scenarios over relatively long (in the order of
months) periods of time. In the case of self-configuring and self-managing sys-
tems, configurations may have to change very frequently (at a few-minute
intervals).

132 D.A. Menascé, M.N. Bennani, and H. Ruan

10 14 18 25 22 148

2015125

9 11 16 30 21

35

A

B

Fig. 2. Example of state space search

2.2 Controller Types

Controllers can be classified according to the control frequency and workload
forecasting method used.

– Control frequency. The interval between two successive executions of the
controller algorithm is called the control interval (CI). Controllers can be
classified according to the length of the controller interval as follows:

• Fixed CI: the length of the control interval is constant.
• Adaptive CI: If the CI is too small and the workload intensity is relatively

stable, the controller algorithm will be executed too often with little or
no effect. If the CI is too large and the workload intensity varies very
rapidly, the controller will not run frequently enough to be effective.
Thus, a CI that adjusts itself to the workload intensity can be more
effective than a fixed CI.

– Workload forecasting. The online performance models used by the controller
algorithm use two types of parameters: workload intensity (e.g., arrival rates
of requests) and service demands of the requests on the various resources of
the computer system [12]. The service demands can be obtained by moni-
toring the utilization of the various system resources (e.g., CPU, disks, and
network segments). Controllers can be classified according to their use of the
workload intensity as follows:

• No forecasting: the workload intensity used to run the performance mod-
els in a given CI is the same as the workload intensity seen in the previous
CI.

• Workload forecasting: the workload intensity used to run the perfor-
mance models in a given CI is a forecast of the workload intensity based
on workload intensity values for a certain number of previous inter-
vals. Workload forecasting techniques such as exponential smoothing,

On the Use of Online Analytic Performance Models 133

weighted moving averages, and polynomial regression [12] can be used.
It was shown [4] that the use of workload forecasting can improve the
QoS of a controlled system, especially when the workload intensity ap-
proaches its saturation value.

3 An Example: A Controlled Web Server

In this section we show the results of applying the techniques described above
to the QoS control of an actual Web server. The HTTP server is Apache 1.3.12,
which was modified to allow for a dynamic change of the number of active threads
(m) and the maximum number of requests in the system (n). These parameters,
m and n, are the controlled parameters. The workload used to drive the server
is generated by SURGE, a workload generator for Web servers [3], using two
client machines sending requests to a third machine that runs the Web server.
SURGE generates references matching empirical measurements regarding file
size distributions, relative file popularity, embedded file references, and tempo-
ral locality of references. This workload generator was selected because it was
demonstrated [3] that, unlike other Web server benchmarks, it exercises servers
in a manner that is consistent with actual empirical distributions observed in
Web traffic. A fourth machine runs the QoS controller. All four machines are
Intel-based and run either Windows 2000 Professional or Windows XP Profes-
sional. All machines are connected through a 100-Mbps LAN switch.

The primary responses are the response time of an HTTP request (R), the
throughput of the HTTP server (X0), and the probability that a request is
rejected (Prej). The goal function is a QoS value defined as QoS = wR×ΔQoSR+
wX ×ΔQoSX +wP ×ΔQoSP , where ΔQoSR, ΔQoSX , and ΔQoSP are relative
deviations of the average response time, average throughput, and probability
of rejection, with respect to their SLAs, and wR, wX , and wP are the relative
weights of these deviations with respect to the QoS value [4, 17]. These deviations
are defined in such a way that their value is in the range [−1, 1]. When the
response metric meets its goal the deviation is zero. The deviation is negative
when the response metric does not meet its goal and positive when the goal is
exceeded. Therefore, the value of QoS is also in the range [−1, 1] and the larger
its value the better. The weights wR, wX , and wP have to be chosen in a way
that reflects the relative importance of the three performance metrics—response
time, throughput, and probability of rejection—to the management of the Web
site. The SLAs and respective weights for the experiment described here are:
R ≤ 0.3 seconds, wR = 0.5, X0 ≥ 50 requests/sec, wX = 0.2, Prej ≤ 0.05, and
wP = 0.3.

Figure 3 shows the variation of the QoS during the experiment. The x-axis is
a time axis labeled in units of control intervals. The workload intensity started
at 5 requests/sec and climbed to 19 requests/sec at CI = 19. Then, the workload
intensity was reduced to 14 requests/sec. The experiment in question lasted 30
CIs and each CI is equal to two minutes. Results are shown for two types of
combinatorial search techniques: hill climbing and beam search (see top two

134 D.A. Menascé, M.N. Bennani, and H. Ruan

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Controller Intervals

Q
o

S

No_controller Hill-climbing Beam search

Fig. 3. A controlled Web server

curves). As it can be seen, the QoS for the uncontrolled Web server (bottom
curve) becomes negative when the load reaches its peak value, indicating that
at least one of the three metrics is not meeting its SLA. On the other hand, the
QoS for the controlled Web server always remains in positive territory for both
hill-climbing and beam search. We noticed in the various experiments we carried
out that beam search tends to provide slightly better results than hill-climbing.
This is probably due to the fact that the latter combinatorial search technique
may at times be trapped at local optima. However, the difference between the
two techniques was never significant.

4 The Robustness of Online Models

Many real workloads exhibit some sort of high variability in their intensity
and/or service demands at the different resources. Therefore, it is important to
investigate the behavior of the proposed technique for self-managing computer
systems in such environments. To this end, we conducted a set of experiments
to study the impact of the variability in the request inter-arrival time and ser-
vice times distributions using a simulated multi-threaded server with one CPU
and one disk. The server has m threads and at most n requests can be in the
server, waiting for a thread or being executed by a thread. The goal function is
the one used in Section 3. The SLAs and respective weights for the experiment
described here are: R ≤ 1.2 seconds, wR = 0.25, X0 ≥ 5 requests/sec, wX = 0.3,
Prej ≤ 0.05, and wP = 0.45.

The variability of the distributions of the inter-arrival time and service times
distributions is represented by their respective coefficients of variation (COV)
(i.e., the standard deviation divided by the mean): Ca and Cs. Figure 4 shows
the value of the QoS during an experiment in which Ca = Cs = 2.0. The x-axis
is labeled in CIs and each CI is equal to two minutes. The workload intensity

On the Use of Online Analytic Performance Models 135

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Monitoring Interval

A
ve

ra
g

e
Q

o
S

No Forecasting Forecasting

Fig. 4. QoS controller performance for Ca = 2 and Cs = 2

varies in the same manner as in Section 3. The top two curves correspond to hill
climbing and beam search and the bottom curve corresponds to the situation
in which the controller is disabled. It can be clearly seen that even at the peak
intensity value (CI = 20), the QoS decreases only slightly (from 0.8 to 0.55) when
the controller is used. On the other hand, the QoS decreases from 0.8 to less than
0.1 when the controller is disabled. Other results for different values of Ca and
Cs are presented in our previous work [4]. These results show the robustness of
analytic models when used for QoS control. Even though these models assume
exponential service and interarrival times (i.e., Cs = 1.0 and Ca = 1.0), they do
a good job at predicting the trends of QoS metrics when these assumptions are
violated. The reason is that it is more important to correctly compare, QoS-wise,
two points in the search space than knowing their absolute QoS values.

5 Adaptive Controller Intervals

Figure 5 shows an algorithm that can be used to dynamically vary the length of
the control interval. This algorithm sets the length of the CI as a multiple, K, of
the smallest possible control interval CImin. When the currently measured value
of the QoS, QoScurr, is less than or equal to a minimum value QoSmin for the
QoS, the controller interval is set to its minimum value CImin. Otherwise, the
controller interval is set to a multiple of CImin according to the relative error ε
between the QoS value, QoSprev, measured last time the controller was activated
and the currently measured value of the QoS, QoScurr.

Figure 6 shows the variation of the QoS when the control interval varies
according to the algorithm of Fig. 5 when Ca = Cs = 1.0. In these curves,
workload forecasting is always used. The workload used in that experiment has
two peaks: one at time 6 and another at time 20. It can be clearly seen from
the figure that the use of a dynamically adjusted controller interval yields better
QoS values. For example, at peak loads (see monitoring intervals 6 and 20), the
QoS for the dynamically adjusted system is always positive. These curves also

136 D.A. Menascé, M.N. Bennani, and H. Ruan

If QoScurr < QoSmin
then CI ← CImin

else begin

ε =

∣∣∣QoScurr−QoSprev
QoSprev

∣∣∣
If 0 ≤ ε ≤ 0.05 then K = 12
If 0.05 < ε ≤ 0.1 then K = 6
If 0.1 < ε ≤ 0.2 then K = 5
If 0.2 < ε ≤ 0.3 then K = 4
If 0.3 < ε ≤ 0.4 then K = 3
If 0.4 < ε ≤ 0.5 then K = 2
If ε > 0.5 then K = 1
CI ← K × CImin

end

Fig. 5. Algorithm for adjusting control interval length

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Monitoring Interval

A
ve

ra
g

e
Q

o
S

No Dynamic Controller Interval
Dynamic Controller Interval

Fig. 6. Dynamic controller interval impact on QoS (forecasting always used)

show that the QoS values obtained when adaptive control intervals are used are
generally higher than those achieved when the controller runs at fixed intervals.

One could ask the question whether these improvements come mainly from
the dynamic adjustment of the control interval and not because of workload
forecasting. To this end, we conducted another set of experiments in which we
compare the average QoS values obtained for the cases when dynamic controller
intervals were used alone against the cases when they were used jointly with
workload forecasting. The results are reported in Fig. 7 for Ca = Cs = 1.0. The
curves in this figure clearly show that there is a statistically significant perfor-
mance gain when forecasting is enabled in conjunction with dynamic controller

On the Use of Online Analytic Performance Models 137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Monitoring Interval

A
ve

ra
g

e
Q

o
S

No Forecasting +Dynamic Controller Interval
Forecasting + Dynamic Controller Interval

Fig. 7. Impact of workload forecasting on QoS (dynamic controller intervals always

used)

interval. There is an accompanying increase in the QoS gain as a result of using
dynamic controller intervals combined with workload forecasting.

6 QoS-Aware Service Oriented Architectures

In [16] we presented a framework for the design of QoS-aware software compo-
nents. This section presents another application of online performance models
in the design of QoS-aware Service Oriented Architectures (SOAs). Figure 8
presents an architecture that consists of QoS-aware service providers (SPs),
clients that make requests to the SPs, and a QoS Broker (QB). SPs register
with the QB. During the registration process, the QB engages in a protocol

SP1

Admission
Control

Services

SP2

Admission
Control

Services

Service
Registration and
Characterization

QoS Negotiation
and Authentication

Performance
Prediction

QoS
Broker

Client

QoS
negotiation

Service
registration

Fig. 8. A Service Oriented Architecture with a QoS broker

138 D.A. Menascé, M.N. Bennani, and H. Ruan

0.0

5.0

10.0

15.0

20.0

25.0

1 7 16 22 30 36 45 53 56 60 65 72 75 80 85 93

Session ID

R
es

p
o

n
se

 T
im

e
 (

se
c)

Non-QoS QoS

0

1

2

3

4

5

6

7

1 7 16 22 30 36 45 53 56 60 65 72 75 80 85 93

Session ID

T
h

ro
u

g
h

p
u

t
(R

eq
u

es
ts

/s
ec

o
n

d
)

Non-QoS QoS

Fig. 9. Response time (top) and throughput (bottom) for the non-QoS and QoS nego-

tiated cases for f = 35%

aimed at characterizing the services provided by an SP in terms of their service
demands. A client that needs a service contacts the QB to discover the service,
authenticate itself, and negotiate QoS requirements in terms of response time
and required throughput for its session with the SP. The QB keeps track of all
accepted QoS requests and uses an online performance model to negotiate new
requests. Based on the results of the performance evaluation, a request may be
accepted, rejected, or a counteroffer may be sent to the client. Once a session is
accepted, the SP is informed and the client makes requests directly to the SP,
which is responsible for admission control.

We implemented the approach in Java and performed several experiments
to validate the approach. A comparison between the QoS-based case and the
non-QoS case (i.e., the case in which no QoS negotiation takes place) is shown
in Fig. 9. The experiments generate a random workload which is submitted to

On the Use of Online Analytic Performance Models 139

the two SPs without using the QoS broker. The workload is replayed against
the same SPs but this time using the QoS negotiation protocol. During this
second phase, a reduction on the response time observed in the non-QoS case is
requested. Let f be the reduction factor in the response time.

Figure 9 compares response times and throughputs between the QoS-brokered
and the non-QoS brokered cases for all sessions executed by SP 1 for a reduc-
tion factor of f = 35%. The top graph of that figure shows the average request
response time for the two cases and the bottom one shows the throughput in
requests/sec. The x-axis is labeled by session ID, each of which is unique in the
experiments. The value at each point is an average over 500 values collected
during the experiments. The curves also display the 95% confidence intervals
for the average values. As it can be seen from the figure, there is a significant
performance gain, i.e., decreased response time and increased throughput for the
service provider. As shown in Table 1, with an f = 35% response time reduc-
tion requirement at QoS negotiation time, the actual response time reduction is
35.2%, which perfectly matches the QoS requirement.

Table 1. Summary of results for f = 0.0, f = 0.20, and f = 0.35

f = 0% f = 20% f = 35%

% RT Reduction 4.1 16.7 35.2
% XPUT Increase 9.0 24.0 54.7

SP 1 % Reject 17.0 22.7 36.9
% Counter Offer 6.9 9.3 9.9
% Acceptance 76.1 68.0 53.2

% RT Reduction 4.9 21.2 35.0
% XPUT Increase 12.1 24.0 54.7

SP 2 % Reject 15.2 29.3 39.8
% Counter Offer 10.8 9.7 10.4
% Acceptance 74.0 61.0 49.8

We also conducted similar experiments for f = 0% and f = 20%. The sum-
mary results for the two SPs are shown in Table 1. In this table, %RT Reduction
stands for the percentage reduction of the average response time and %XPUT
Increase stands for the percent increase in throughput relative to the non-QoS
case. Table 1 also shows, for each SP, the percent of sessions that are rejected,
the percent of session requests that received a counter offer, and the percent
of sessions that were accepted by the QoS broker. As it can be seen, with the
QoS broker, the SPs always achieve better performance than without it. More-
over, the actual response time reductions achieved matched pretty closely the
QoS goals for different values of f . These results demonstrate the applicability
and effectiveness of online analytic performance models for building QoS-aware
Service Oriented Architectures.

140 D.A. Menascé, M.N. Bennani, and H. Ruan

7 Concluding Remarks

This paper presented a general approach that can be used to build self-mana-
ging/organizing computer systems. We showed how online analytic performance
models can be used in an efficient and effective manner for that purpose. We
discussed and presented results for different design alternatives for the controller
component of these autonomic systems. These design alternatives include the se-
lection of a combinatorial search technique, the frequency at which the controller
algorithm is invoked, and the importance of a workload forecasting feature. We
provided promising results obtained from a real web server subject to a work-
load generated by the SURGE benchmark. The robustness of these techniques
with respect to the variability of interarrival times and service times and the
effectiveness of using an adaptive controller were evaluated on a simulated mul-
tithreaded server. We also showed how online performance models can be used
to design QoS-aware service oriented architectures. We are currently expanding
our work along several lines. First, we are looking into the use of online analytic
performance models that are subject to heterogeneous classes of requests. We are
also investigating how the techniques presented here can be used to determine
optimal resource allocation for autonomic data centers. In this case, control has
to be carried out in a distributed manner. Local controllers have to coordinate
with global controllers to maximize a global utility function.

Acknowledgements

This work was partially supported by grant NMA501-03-1-2022 from the Na-
tional Geospatial-Intelligence Agency (NGA) and by grant ACI 0203872 from
the National Science Foundation.

References

1. Anderson, E., Hobbs, M., Keeton, K., Spence, S., Uysal, M., Veitch, A.: Hip-
podrome: running circles around system administration. Conference on File and
Storage Technologies (FAST’02), Monterey, CA, Jan. (2002)

2. Babaoglu, O., Jelasity, M., Montresor, A.: Grassroots Approach to Self-
Management in Large-Scale Distributed Systems. In Proceedings of the EU-NSF
Strategic Research Workshop on Unconventional Programming Paradigms, Mont
Saint-Michel, France, 15-17 September (2004)

3. Barford, P., Crovella, M.: Generating Representative Web Workloads for Network
and Server Performance Evaluation. Proc. 1998 ACM Sigmetrics, Madison, Wis-
consin, June 22-26, (1998)

4. Bennani, M., Menascé, D.A.: Assessing the Robustness of Self-managing Computer
Systems under Variable Workloads. Proc. IEEE International Conf. Autonomic
Computing (ICAC’04), New York, NY, May 17–18, (2004)

5. Chase, J., Goldszmidt, M., Kephart, J.: eds., Proc. First ACM Workshop on Al-
gorithms and Architectures for Self-Managing Systems. San Diego, CA, June 11,
(2003)

On the Use of Online Analytic Performance Models 141

6. Chase, J., Anderson, D., Thakar, P., Vahdat, A., Doyle, R.: Managing Energy and
Server Resources in Hosting Centers. 18th Symp. Operating Systems Principles,
Oct. (2001)

7. Diao, Y., Gandhi, N., Hellerstein, J. L., Parekh, S., Tilbury, D. M.: Using MIMO
Feedback Control to Enforce Policies for Interrelated Metrics With Application to
the Apache Web Server. Proc. IEEE/IFIP Network Operations and Management
Symp., Florence, Italy, April 15-19, (2002)

8. Doyle, R., Chase, J., Asad, O., Jin, W., Vahdat, A.: Model-Based Resource Pro-
visioning in a Web Service Utility. Fourth USENIX Symposium on Internet Tech-
nologies and Systems, March (2003)

9. Garlan, D., Cheng, S., Schmerl, B.: Increasing System Dependability through
Architecture-based Self-repair. Architecting Dependable Systems, R. de Lemos,
C. Gacek, A. Romanovsky (eds.), Springer-Verlag, (2003)

10. Jelasity, M., Montresor, A., Babaoglu, O.: A Modular Paradigm for Building Self-
Organizing Peer-to-Peer Applications. In Post-Proceedings of ESOP03: Interna-
tional Workshop on Engineering Self-Organising Applications, Lecture Notes in
Computer Science, vol. 2977, Springer-Verlag, Berlin (2004)

11. Kermarrec, A.: Self-clustering in Peer-to-Peer overlays. In International Workshop
on Self-* Properties in Complex Information Systems, Bertinoro, Italy, February
(2004) 89–92

12. Menascé, D. A., Almeida, V.A.F., Dowdy, L.W.: Performance by Design: Computer
Capacity Planning by Example, Prentice Hall, Upper Saddle River, NJ, (2004)

13. Menascé, D.A., Casalicchio, E.: A Framework for Resource Allocation in Grid
Computing, Proc. 12th Annual Meeting of the IEEE/ACM International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), Volendam, The Netherlands, October 5–7, (2004)

14. Menascé, D.A.: Mapping Service Level Agreements in Distributed Applications.
IEEE Internet Computing (2004) September/October , Vol. 8, No. 5, 100–102

15. Menascé, D.A.: Performance and Availability of Internet Data Centers. IEEE In-
ternet Computing (2004) May/June, Vol. 8, No. 3, 94–96

16. Menascé, D.A., Ruan, H., Gomaa, H.: A Framework for QoS-Aware Software Com-
ponents. Proc. ACM 2004 Workshop on Software and Performance, San Francisco,
CA, January 14–16, (2004)

17. Menascé, D.A., Bennani, M.: On the Use of Performance Models to Design Self-
Managing Computer Systems. Proc. 2003 Computer Measurement Group Conf.,
Dallas, TX, Dec. 7-12, (2003)

18. Menascé, D.A.: Security Performance. IEEE Internet Computing (2003)
May/June, Vol. 7, No. 3, 84–87

19. Menascé, D.A.: Automatic QoS Control. IEEE Internet Computing (2003) Jan-
uary/February, Vol. 7, No. 1, 92-95

20. Menascé, D. A., Dodge, R., Barbará, D.: Preserving QoS of E-commerce Sites
through Self-Tuning: A Performance Model Approach. Proc. 2001 ACM Conf. E-
commerce, Tampa, FL, Oct. 14-17, (2001)

21. Rayward-Smith, V. J., Osman, I. H., Reeves, C.R., eds, Modern Heuristic Search
Methods, John Wiley & Sons, Dec. (1996)

22. Schintke, F., Schutt, T., Reinefeld, A.: A Framework for Self-Optimizing Grids
Using P2P Components. Intl. Workshop on Autonomic Computing Systems, Sep.
(2003)

142 D.A. Menascé, M.N. Bennani, and H. Ruan

24. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility Functions in Autonomic
Computing. Proc. IEEE International Conf. Autonomic Computing (ICAC’04),
New York, NY, May 17–18, (2004)

25. Wickremisinghe, R., Vitter, J., Chase, J.: Distributed Computing with Load-
Managed Active Storage. IEEE Int. Symp. High Performance Distr. Computing,
July (2002)

23. Sopitkamol, M.: Ranking configuration parameters in multi-tiered e-commerce
sites. ACM Sigmetrics Performance Evaluation Review, Special Issue in E-
commerce and Services, Dec. 2004

Prediction-Based Software Availability Enhancement

Felix Salfner, Günther Hoffmann and Miroslaw Malek

Institut für Informatik, Humboldt-Universität zu Berlin
{salfner, gunho, malek}@informatik.hu-berlin.de

Abstract. We propose a new paradigm for software availability enhancement.
We offer a two-step strategy: Failure prediction followed by maintenance
actions with the objective of avoiding impending failures or minimizing the
effort of their repair. For the first step we present two failure prediction
methods: universal basis functions (UBF) and similar events prediction (SEP),
which are based on probabilistic analysis. The potential of the presented
methods is evaluated by a case-study where failures of a commercial
telecommunication platform have been predicted. The second step includes
existing maintenance methods fitting the proposed approach and a new
recovery strategy called “adaptive recovery blocks”. Since system availability
enhancement is the overall goal, equations to calculate availability of such a
system are given as well.

1 Introduction

Software failures have been identified as the single largest source of unplanned down-
time and system failures (Sullivan et al. [1]). As software is becoming increasingly
complex it also becomes more difficult to manage and is more prone to bugs. Re-
search on software availability issues has largely focused on reducing the number of
errors during software development, e.g., aspect oriented programming or service ori-
ented computing, and on post mortem system repair, aiming at setting the system back
into a fault free state. The disadvantage of the first approach is that it is extremely dif-
ficult if not impossible to build fault-free software. The drawback of the latter is its re-
active approach which makes the system wait for a failure to happen and then reset it
to a fault free state.

In this article we propose a two-step failure prevention and recovery approach. In
the first step the probability of upcoming failures is assessed continuously during run-
time. When a high failure probability has been predicted, in step two either preventive
actions against the potentially upcoming failure are initiated, or reactive mechanisms
are tuned such that time to recovery is shortened. To achieve this, we believe that the
key is to apply machine learning techniques: to observe the system and to learn from
the dynamics of its components in order to infer rules about component interactions
and to correlate the learned rules with failures. These rules may be learned from previ-
ously recorded data: Once we have data describing the evolution of the system we
may build and verify models which would allow us to predict the probability of the
system being in a “healthy” or “failure prone” state.

,

Predicting system failures has been addressed by several authors. For example, a
number of works are on reliability estimation, which inherently yields predictions for

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 143 – 157, 2005.
© Springer-Verlag Berlin Heidelberg 2005

level of abstraction and are generated in an analytical manner. An analytical model for
transaction processing systems has been presented by Garg et al. in [2]. Due to aging,
the service rate of the system in question decreases over time and the software itself
experiences hangs and crashes which result in unavailability. The authors present two
preventive maintenance policies which increase the probability that an arriving trans-
action is carried out within a pre-specified response time. However, their analytical
approach, quickly reaches its limits with increasing complexity of systems in practical
use. A continuous time Markov chain model for a long running server-client type
telecommunication system is described by Huang et al. in [3]. They express downtime
and the cost induced by downtime in terms of the models parameters. In [4] the as-
sumption of exponentially distributed time independent transition rates (sojourn time)
made in [3] are relaxed and a semi-Markov model is built. This way the authors find a
closed form expression for the optimal rejuvenation time.

In contrast to analytically generated models, a number of models that are built
from previously recorded data have been proposed. Literature on applying linear mod-
eling techniques to software systems has been dominated by approaches based on a
single or a limited number of variables. Most models are either based on observations
of workload, time, memory or file tables. In [5] Garg et al. propose a time based mod-
el for detection of software aging. Vaidyanathan and Trivedi [6] propose a workload
based model for prediction of resource exhaustion in operating systems such as Unix.
Li et al. [7] collect data from a web server which they expose to an artificial workload.
The authors build time series ARMA (autoregressive moving average) models to de-
tect aging and estimate resource exhaustion times. The idea of applying statistical
learning theory to extract models from observed behavior of the system has been de-
scribed more recently by Fox et. al [8]. Little attention has been given to detect poten-
tial nonlinear dependencies between various system resources and impending failures.
In this paper we propose Universal Basis Functions that show the potential to make
headway in this area.

Models operating on event-driven data include, for example, the Dispersion Frame
Technique presented by Lin et al. [9]. Most of these models are based solely on the
time of failure occurrence and do not incorporate additional information such as pat-
terns of error messages or information that is contained in the messages itself. Similar
Events Prediction, which is the second approach to failure prediction proposed in this
paper, exploits this additional data.

The paper is structured as follows: A detailed problem statement is given in Sec-
tion 2. In Section 3 two failure prediction methods are presented while maintenance
and repair procedures are discussed in Section 4. In order to assess the impact on sys-
tem availability equations to calculate availability from five quality measures are de-
scribed in Section 5. In Section 6 a proof-of-concept case-study is presented in which
the proposed failure prediction techniques have been applied to a commercial
telecommunication platform.

2 Problem Statement and Research Challenges

Large industrial software systems can consist of millions of lines of code, with hun-
dreds of programmers working on the system. The system can operate in a distributed
way and there are many techniques in which fault tolerance and performance are

the probability of the next failure's occurrence. These models operate on a very high

144 F. Salfner, G. Hoffmann, and M. Malek

boosted, sometimes in obscure and undocumented ways. The system may consist of
many interacting parts, which may not be well specified. The widespread application
of commercial-of-the-shelf-components (COTS) further adds to complexity. When
we mention “large” systems we consider the fact that there is typically no single in-
stance with full knowledge of the system's details.

Currently employed post mortem repair schemes are limited in their scope because
by definition they always need time to identify a failure and they need resources to re-
construct a failure free system state. Consider, for example, a real-time system in
which if we double system resources and have one system act as a standby, the time
needed to identify a failure, switch over to the standby system, initiate the standby sys-
tem and get the the desired result may well exceed deadline guarantees.

There is always a trade-off between availability and the resources needed to
achieve it. We believe that in order to gain a significant improvement in system avail-
ability under resource constraints by the order of a magnitude or so, we need a radical-
ly different approach. If we could predict the appearance of a failure in advance and
early enough to initiate preventive measures, we might be able to alleviate the impend-
ing failure, or at least we might be able to prepare recovery for the upcoming failure in
order to reduce resource consumption and time to repair.

However, “there is no free lunch” also holds for software systems. In order to get a
prediction mechanism to work, we need to identify an adequate mechanism, to build a
model of the system and then make correct predictions about impending failures dur-
ing runtime. This procedure requires human as well as computation resources.

2.1 Problem Statement

Our objective is a development of failure prediction methods with high accuracy and a
determination of automatically invoked actions that are effective, efficient and appro-
priate to the situation for industry scale software systems.

We believe machine learning techniques such as kernel or Markov based mecha-
nisms are two of the most qualified approaches for failure prediction. Given that there
is no way to obtain full knowledge of the system, the only practical way to learn about
it is to “touch and observe” the system by collecting data about its status. This could
include time series about system variables logged in regular time intervals (e.g., mem-
ory consumption or CPU load) as well as event-driven logfile data written by the ap-
plication or the operating system.

The learning task in our scenario can be defined as follows: Given a set of labeled
observations we compute a probabilistic classifier by a learning algorithm that pre-
dicts the target class label, which is either “failure” or “no failure”. As classifier
mechanism, we employ universal basis functions (UBF) and similar events prediction
(SEP). Both methods are described in Section 3. The classifier needs to evaluate fu-
ture events: If we make a prediction at time t we would like to know the future system
status at time t+ . We call the lead time (see Figure 1). is necessary for a pre-
diction to be of any use. It critically depends on the problem domain, e.g., how long
does it take to restart a component, to initiate a fail over sequence or any other action.
The prediction period describes the length of the time interval for which the predic-
tion holds. It can be adapted more flexibly: The larger becomes the easier it is to
predict failures, but the less meaningful the prediction will be. The embedding dimen-
sion specifies how far the observations used for prediction extend into the past.

Prediction-Based Software Availability Enhancement 145

Definitions of accurate failure prediction as well as effective and appropriate ac-
tions are given in Section 5.

2.2 Research Challenges

In addition to finding a solution to the objective given in the previous section, there
are other challenges that have to be taken care of. We are interested in a practical way
to increase availability without stressing the system in other parts. Another challenge
is to cope with changing system dynamics, some of it introduced by changing system
configurations, while at the same time keeping performance implications minimal.
Additionally, data collection may introduce unwanted load to the system and the sheer
volume of data collected is a serious challenge for any modeling algorithm.

Regarding the second step of our approach, open issues include investigation of
actions with respect to their suitability to be combined with failure prediction. Meth-
ods that choose the most effective action depending on failure prediction, system state
as well as other factors have to be developed. Furthermore, the combination of several
failure prediction techniques and maintenance actions seems to be a challenging task.

3 Predicting Failures

The first of our proposed two-step approach is to predict failures. While failures have
to be predicted online – while the system is running – the models used for prediction
are generated off-line by training from previously recorded data. We propose two
models: universal basis functions and similar events prediction and describe the pro-
cess how to derive them.

3.1 Failure Definition

The initial step on the way to failure prediction is to exactly define failures. This is not
a trivial task in a commercial environment. A typical definition is: “A system failure
occurs when the delivered service deviates from fulfilling the system’s function”. It is
important to mention that “system's function” means behavior from the user’s

Fig. 1. Definition of embedding dimension (), lead time () and prediction period ()

tt - t t + t t+ t+tp time

perspective. In addition to this definition, probabilistic, real-time and quality-of-
service aspects may also need to be taken into account. For example, in the case study
described in Section 6 a failure is defined as “call failure rate exceeding a predefined
level”. Please note that a failure does not necessarily imply a collapse of the entire
system.

From the modeling perspective failures must meet certain requirements, too. First,
each failure must occur often enough to ensure that the modeling techniques have
enough cases to learn what indicates upcoming failures. It is difficult if not impossible

146 F. Salfner, G. Hoffmann, and M. Malek

to identify the exact number of failures needed to build a failure prediction model.
This is an area of ongoing research and currently we strongly depend on the modeler's
intuition developed in the process of system observation. Further constraints are giv-
en by the fact that it is sometimes not practical to gather data on failures of certain
types in a large software system.

3.2 Data for Failure Prediction

In our approach, the models for failure prediction are generated by analyzing previ-
ously recorded data in order to extract “symptoms” that indicate an upcoming failure.
Therefore, both failure data and recordings of system variables from which a symptom
can be extracted are needed for model generation – posing conceptual as well as tech-
nical challenges.

Technically, the data should be gathered non-intrusively with minimal implications
on performance. Most software systems are not designed to yield insight information
about their status at any given point in time. Log files have been found to be a feasible
data source for historical system behavior. Issues concerning structure and design of
logfiles have been discussed separately by Salfner et al. [10].

3.3 Variable Selection

An important concern is the selection of system variables that are significant to
achieve good failure prediction. Performance of statistical machine learning models is
closely related to the degrees of freedom in the model, which is strongly influenced by
the number of variables being included in the model. Selecting too few as well as se-
lecting too many variables can lead to poor forecasting performance. See for example
Geman et al. [11]. In a real-world learning problem, the number of variables being
monitored may be in the order of several hundreds, which is comparable to gene se-
quence analysis. There is no a-priori way of determining exactly the importance of
each variable. The set of all observed variables may include noisy, irrelevant or redun-
dant observations distorting the information set gathered. Thus it can be difficult to
determine the most relevant variables with respect to our modeling task beforehand.

This problem is subject to ongoing research efforts and is known under a variety of
names such as variable selection, dimension reduction or feature detection. It consists
of finding the smallest subset of input variables which are sufficient to perform our
modeling task. This type of problem is one of the most prevalent topics in the machine
learning and pattern recognition community and has been addressed by a number of
authors such as Weigend et al. [12]. Limiting the number of input variables to the ones
contributing most to model quality not only decreases the number of free parameters
in our model, the selected variables also can be used to assist an analytical approach in
finding the root cause of a failure.

3.4 Two Models for Failure Prediction

We briefly describe two models we developed for failure prediction. Both models are
inspired by machine learning techniques since we believe that this class of techniques
is capable to handle the challenges imposed by today's complex software systems. See
Hoffmann [13] for a more detailed description of these models.

Prediction-Based Software Availability Enhancement 147

Universal Basis Functions. We employ a novel data-based modeling approach we
call Universal Basis Functions (UBF) that was introduced by Hoffmann [14]. UBF is a
kernel based function approximation technique where the probability of a failure at
some prespecified time in the future is estimated. UBF models are a member of the
class of nonlinear non-parametric data-based modeling techniques. They operate with
linear mixtures of bounded and unbounded activation functions such as Gaussian,
sigmoid and multi quadratics [14][15]. Nonlinear regression techniques strongly
depend on architecture, learning algorithms, initialization heuristics and regularization
techniques and UBF addresses some of these issues. The kernel functions in a UBF
can be adapted to build transfer functions that fit the task of failure prediction making
them robust to noisy data and data with mixtures of bounded and unbounded decision
regions. UBF produce parsimonious models which tend to generalize more efficiently
than comparable approaches such as Radial Basis Functions. To perform online
failure prediction we aim at finding the correlation between availability and
observable input variables.

Failure Prediction by Similar Events. As UBF is tailored to equidistant time series,
Similar Events Prediction (SEP) analyzes patterns in event-driven datasets [16]. Event
patterns are represented by a discrete Markov chain (see Figure 2-a).

During model generation the states are automatically constructed by a hierarchical
clustering technique applied together with additional algorithms to calculate relative
frequencies of paths.

To achieve failure prediction for the running system that had been modeled, ab-
sorption probability distributions are computed to estimate the probability of a failure
at time t in the future. The result is a discrete probability function as depicted by
Figure 2-b.

4 Actions Fitting Failure Prediction

Obviously, failure prediction alone does not affect availability of a system. Therefore,
after having predicted an upcoming failure an action has to be taken in order to proac-
tively prevent the failure or to optimize its repair. In addition to a discussion of repair
actions and preventive maintenance, a new recovery scheme called adaptive recovery
blocks is introduced.

(a) (b)

Fig. 2. Failure prediction with Similar Events Prediction (SEP). (a) Event patterns are
represented as a Markov chain. Each state corresponds to a set of similar events. (b) Failure
prediction is calculation of failure probability at time t in the future

148 F. Salfner, G. Hoffmann, and M. Malek

4.1 Repair Actions

Repairing the system after failure is the classical way of failure handling. These meth-
ods react to failures that have already occurred and are triggered by classical
fault/failure detection mechanisms such as, e.g., coding checks, replication checks,
timing checks or plausibility checks.

Roll-backward recovery reestablishes a previous, fault-free system state and tries
to redo computations from that state (either by the same replica to account for tempo-
rary faults or by another hardware and/or software unit). Typical examples are recov-
ery from a checkpoint or recovery blocks. Redo units comprise, for example, spares or
redundant software modules.

Roll-forward recovery skips or approximates faulty computations and continues
with the next – possibly using another computation unit or module. It is mainly used in
real-time environments where meeting deadlines is more important than 100% correct
results.

Combining reactive recovery methods with failure prediction can reduce mean-
time-to-repair (MTTR). Time-to-repair is characterized by two factors: the time
consumed to prepare the unit that performs the redo operation and the amount of opera-
tions that have to be computed again. The latter is mainly determined by the time
be tween the last checkpoint and the failure's occurrence. Failure prediction has the po-
tential to reduce both: With knowledge of upcoming failures, preparation of redo units
can be started even before the failure occurs and checkpoints may be established short
before failure. For example, in case of spares as redo units, a warm spare could be ele-
vated to become a hot one such that it is almost ready when the failure actually occurs.

Figure 3 sketches both effects. Please note, that in the case of roll-forward recovery
there are no redo operations, hence only a quick preparation of computation units im-
proves MTTR.

Fig. 3. Improved-Time-To-Repair (TTR) for prediction-driven repair schemes. (a) sketches
classical recovery: Time from the last checkpoint (CP) to the occurrence of a failure (F)
determines how much has to be recomputed (dark-gray interval). After a failure occurs, the
substitution unit has to be initialized (light-gray interval). After repair, the unit is “ready” and
starts to redo the lost computations. When it has finished, the system is “up” again. (b) shows
two effects how failure prediction can reduce TTR: The checkpoint may be established closer
to the failure, and the substituting unit can be initialized even before the failure occurs such
that it is ready earlier after the failure

Prediction-Based Software Availability Enhancement 149

4.2 Preventive Maintenance

In the context of the approach presented in this article, the goal of preventive mainte-
nance is to perform actions in order to prevent an imminent failure, which has recently
become an active field in research. We identified four categories of mechanisms: pre-
ventive restarts, state clean-up, preventive failover and system relief.

Preventive restarts reset parts of the system or the system as a whole when a fail-
ure is imminent but has not yet occurred. Software Rejuvenation – introduced in 1995
by Huang et al. [3] – is one of the first members of this group. It counteracts the aging
process of software by preventively restarting specific components. Software aging
describes misbehavior of software that does not cause the component to fail immedi-
ately such as, e.g., memory leaks and bugs that cannot be completely recovered from.
Rejuvenation is based on the assumption, that restarting a component during normal
operation is more efficient than restarting it after the component has failed.

State clean-up tries to prevent failures by cleaning up resources. Examples are
garbage collection, clearance of queues, correction of corrupt data or elimination of
useless processing.

Preventive failover techniques perform a preventive switch from a component that
is likely to fail, to another more reliable component. For example, a preventive switch
to a backup unit may be scheduled by failure prediction. Preventive failover can also
include roll-forward techniques. An example for this is a real-time system where an
imminent miss of deadlines (the failure that has been predicted) can be avoided in a
roll-forward manner using faster but not 100% accurate methods. A third example is
failure prediction driven load balancing aiming at relief of a component or a system
(See Castelli et al. [17])

System mollification (ease-up) tries to prevent failures by taking load of the system
such that it has the chance to recover. For example, a web-server could reject connec-
tion requests depending on the risk of failure.

Some of the techniques described above can either be scheduled periodically or
system state dependent. For periodic triggering several approaches exist to determine
the optimal cycle duration: For example, Dohi et al. [4] use semi-Markov models,
Pfening et al. [18] use a Markov decision process and Garg et al. [19] employ a
Markov Regenerative Stochastic Petri Net (MRSPN). Trivedi et al. [20] show that
state-dependent application of proactive recovery mechanisms has the potential to be
more appropriate and hence more effective than the periodic alternative. The case of
failure prediction-based invocation belongs to the class of state-dependent approaches.
Several other techniques exist as well. For example, Vaidynathan et al. [6] use cluster-
ing of several operating system parameters to estimate system workload and to predict
resource exhaustion by use of a semi-Markov process.

Preventive recovery mechanisms affect Mean-Time-To-Failure (MTTF) since
these methods try only to prevent failures. However, if a failure happens nothing is
done to improve repair. MTTF is affected in two ways: A portion of failures can be
prevented (do not occur) but on the other side some extra failures may be induced.
The incident of an extra failure could, for example, be caused by unnecessary recov-
ery actions performed during peak load periods.

Adaptive Recovery Blocks. Failure prediction enables us to create a new recovery
scheme: Adaptive recovery blocks. Recovery blocks as defined by Randell [21] save
the state at the block's entry (checkpointing) and perform an acceptance test after

150 F. Salfner, G. Hoffmann, and M. Malek

.

traffic while acceptance tests put additional computational load on the system.
Adaptive recovery blocks invest this overhead for reliability only if a failure is likely
to occur whereas in case of low failure probability the overhead can be avoided. See
Figure 4 for illustration.

computation to check the correctness of the result. Checkpointing produces heavy I/O

5 Calculating Availability Enhancement

One of the most widespread dependability measures is system availability. To show
the potential of the presented approach, this section gives general equations to calcu-
late the effect on system availability. A short computational example is given in the
last part.

5.1 Measuring the Quality of Failure Prediction and Maintenance Actions

To evaluate the quality of a given failure prediction driven maintenance/repair strategy
we propose five measures: Precision and recall assess the quality of failure prediction
while the effects of maintenance/repair are gauged by three measures: repair time im-
provement, the probability of prohibiting failures as well as the probability of causing
extra ones.

Fig. 4. Comparison of standard recovery blocks (RB) with adaptive recovery blocks (ARB).
Case (a) shows standard recovery blocks: they first perform checkpointing (CP) then the
computation (COMP) and an acceptance test (AT) at the end. Adaptive recovery blocks first
perform failure prediction (FP). (b) If failure probability (PF) is low, checkpointing and
acceptance test can be avoided or limited. (c) shows the case for high failure probability. The
proportion of failure prediction, checkpointing and acceptance test is application specific, but
in many applications checkpointing and acceptance test will outweigh the failure prediction
overhead

Failure prediction. Several measures exist to account for false positives and false
negatives. We chose precision and recall that are commonly used in information
retrieval [22]. Precision is defined as the portion how many of the generated alarms
have been correct whereas recall is the portion of true failures that had been predicted:

(1)

Prediction-Based Software Availability Enhancement 151

(2)

Both precision and recall can take values in the interval .

Actions. Repair as well as preventive mechanisms that are driven by failure prediction
affect mean-time-to-failure (MTTF) and mean-time-to-repair (MTTR). The effect on
MTTR (see Figure 3) is measured by a repair factor being the mean relative im-
provement in MTTR:

(3)

where is Mean-time-to-Repair in the case that the repair action was prepared
for the failure (hence the condition of correct alarm). can take values in .
Obviously, a repair factor less than 1 indicates improved MTTR whereas values
greater than 1 imply a change for the worse. In the case of preventive actions
equals 1 since preventive actions do not affect MTTR.

The effect on MTTF is measured by two probabilities:

(4)

(5)

 denotes the probability that a failure can be prevented by the mainte-
nance procedure in the case that failure prediction identified the upcoming failure cor-
rectly and denotes the probability that an alarm generates an extra (additional) fail-
ure caused by the failure prediction algorithm or the action itself.

5.2 Calculating Availability

As availability is defined in terms of and , we compute and
for the system with prediction driven maintenance / repair. From that a formula for
availability is derived.

, which is the effective mean-time-to-repair for a system with applied failure
prediction-driven maintenance / repair, is a mixture of and weighed by
probabilities and , respectively. Therefore, it can be computed using
Equation 3:

(6)

In order to compute , we first assess the expected number of failures in an
arbitrary time interval of the original system without prediction-driven mainte-
nance / repair:

(7)

152 F. Salfner, G. Hoffmann, and M. Malek

When applying failure prediction driven maintenance / repair, is altered in two
ways: The triggered action may prevent but may also add extra failures:

(8)

where the number of prevented / extra failures can be calculated by use of and
as follows:

(9)

(10)

The number of correct alarms () and the total number of alarms () can be calculated
rom the number of failures together with precision and recall.

Equation 7 is used to derive an equation for :

(11)

nsertion of Equations 6 and 8 delivers an equation for the mean-time-to-failure:

(12)

n order to compute system availability, Equations 6 and 12 have to be combined re-
sulting in the following formula that express effects of our two-step approach – re-
gardless whether it improves or worsens system availability:

(13)

where , and characterize the original system and is:

(14)

n order to guarantee , is bounded:

(15)

f

I

I

I

5.3 An Example

To get a grasp for the five measures and also to show the potential of the approach, we
provide a short computational example. We chose the values for precision and recall

Prediction-Based Software Availability Enhancement 153

according to the results achieved for one minute ahead failure predictions in a case
study with a commercial telecommunication application (see next section): preci-
sion = 80%, recall = 92.3%. If we would be able to achieve a prevention probability

 = 90%, a probability of extra failure = 1% and a repair time improvement factor
 = 0.5, system availability would be improved by an order of magnitude. Please note,

that the numbers are the same for all order of magnitude transitions, regardless of the
availability of the original system.

6 Case Study

We applied the two machine learning techniques described in 3.4 to data of a commer-
cial telecommunication platform. It is important to mention that the experiment only
covers the failure prediction part of our proposed two-step strategy. The second part,
which includes triggering appropriate maintenance / repair actions based on the failure
prediction, is an ongoing research effort.

To describe the experiment more precisely, the objective was to predict that the
system's failure rate exceeds 0.01% in successive five minute intervals, where a failure
was defined as missing a pre-specified deadline.

6.1 Platform Characteristics

The main characteristics of the software platform we investigated is its component-
based software architecture running on top of a fully-featured clustering environment
consisting of two to eight nodes. The platform offers the ability to measure response
times and hence to detect failures via an external stress generator. We measured data
of a two node cluster non-intrusively using the Unix SAR (system activity reporter)
tool and logfiles produced by the system.

6.2 Data

We have monitored 53 days of operation over a four month period providing us with
approximately 30GB of data. Results presented in this section originate from a three
days excerpt. We split data of the three days into equally proportioned segments (one
day per segment) and used the first segment to build the models and the second to
cross validate the models. The third segment was used as test data, which had been
kept aside. We gathered the numeric values of 42 operating system variables once per
minute and per node. This yielded 84 variables in a time series describing the evolu-
tion of internal states of the operating system, thus in a 24-hour period we collected
n = 120,960 readings. Logfiles were concurrently collected and the same three days
were selected for modeling and testing. System logfiles contain events of all architec-
tural layers above the cluster management layer. The large variety of logged informa-
tion includes 55 different, partially non-numeric variables in the log files. The amount
of log data per time unit varies greatly: from two to 30,000 log records per hour.

154 F. Salfner, G. Hoffmann, and M. Malek

6.3 Results

Using the test data, we calculated precision and recall (see Section 5 for details). We
compared our models to a naive approach that predicts failures periodically with a
period set to mean-time-between-failures calculated from the training and validation
data set. Results are shown in Table 1.

The SEP model was built based on a lead time of one minute, the UBF model with
five minutes. Admittedly, this makes it somewhat difficult to compare the results.
However, we expect a smaller lead time to increase the models quality as is demon-
strated by the SEP model. UBF and SEP models clearly outperform the periodic mod-
el that assumes MTBF to remain constant, which is not the case.

7 Conclusions and Future Work

The speed at which complex and large software systems are built and deployed is a
big obstacle to formally define and describe the exact behavior of these systems. We
believe that in order to further significantly increase software availability under given
resource constraints we need to support software systems during runtime. We pro-
posed an approach where preventive maintenance to avoid failures as well as repair
mechanisms are controlled efficiently and appropriately to the system state by failure
prediction. This is in contrast to the currently predominant post-mortem approach that
waits for failures to happen and reacts afterwards.

For failure prediction, we believe that machine learning techniques that are able to
find relationships in data and to identify suspicious patterns and deviations from nor-
mal behavior, are one of the most promising class of techniques. Inspired by these
techniques we developed two models: Universal Basis Functions (UBF) and Similar
Events Prediction (SEP). Both methods are able to indicate whether or not a system
works but moreover give a probabilistic evaluation on how well the system works. Ad-
ditionally, these models can be powerful tools in understanding the behavior of com-
plex software systems.

We investigated the effectiveness of both techniques to model and predict failures
of a commercial telecommunication system. We compared UBF and SEP to an ap-
proach where failures are “predicted” periodically after Mean-Time-Between-Failure.

Tab 1. Precision and recall for Similar-Events-Prediction (SEP), Universal-Basis-Functions
(UBF) and a naive approach using MTBF. In the case of UBF we report mean values. The
reported results were generated on previously unseen test data

Model Type of Data Precision Recall Lead Time

SEP log files 0.8000 0.9230 1 min.

UBF SAR 0.4912 0.8295 5 min.

MTBF 0.2500 0.2000 MTTF

Prediction-Based Software Availability Enhancement 155

le

Our initial results are encouraging. For UBF we achieve a recall of 82% and a preci-
sion of 49% with 5 minutes lead time while SEP achieves 80% precision and 92% re-
call with 1 minute lead time. Both failure prediction methods compare most favorably
to the MTBF prediction yielding a recall of 20% and a precision of 25%.

Preventive maintenance and repair techniques have been discussed and their effect
on system availability has been investigated. Five quality measures have been identi-
fied covering all effects on availability: precision and recall evaluate the quality of
failure prediction while the repair time improvement factor, probability of failure pre-
vention and the probability of extra failures assess the outcome of the methods trig-
gered by failure prediction. An equation concerning availability calculation of a sys-
tem that employs such a two-step approach has been derived.

Our two-step approach is embedded in an ongoing research effort, where both fail-
ure prediction methods and preventive and recovery actions are being investigated.
Future work will extend the experiments in terms of increasing the size of the data sets
and assessing the stability of the models (e.g., with changing system configuration).
As our experiments investigated only the first step of our two stage procedure, future
efforts will have to focus on the problem of finding out which recovery scheme is best
suited for which situation and will have to investigate their effectiveness. However,
the ultimate question is: How far can we push the availability increase using our pro-
posed approach - can we expect an improvement of an order of magnitude or more?

References

1. Sullivan, M. and Chillarege, R.: Software defects and their impact on system availability -
a study of field failures in operating systems. 21st Int. Symp. on Fault-Tolerant Computing
(FTCS-21) (1991) 2-9

2. Garg, S. and Puliafito, A. and Telek, M. and Trivedi, K.S.: Analysis of Preventive
Maintenance in Transactions Based Software Systems. IEEE Trans. Comput. 47(1) (1998)
96-107

3. Huang, Y. and Kintala, C. and Kolettis, N. and Fulton, N.: Software Rejuvenation:
Analysis, Module and Applications. In: Proceedings of IEEE Intl. Symposium on Fault
Tolerant Computing, FTCS 25. (1995)

4. Dohi, T. and Goseva-Popstojanova, K. and Trivedi, K. S.: Statistical Non-Parametric
Algorihms to Estimate the Optimal Software Rejuvenation Schedule. In: Proceedings of
the Pacific Rim International Symposium on Dependable Computing (PRDC). (2000)

5. Garg, S. and van Moorsel, A. and Vaidyanathan, K and Trivedi, K. S.: A Methodology for
Detection and Estimation of Software Aging. In: Proceedings of the Int'l. Symp. on
Software Reliability Engineering (ISSRE). (1998)

6. Vaidyanathan, K. and Trivedi, K. S.: A Measurement-Based Model for Estimation of
Resource Exhaustion in Operational Software Systems. In: Proceedings of the
International Symposium on Software Reliability Engineering (ISSRE). (1999)

7. Li, L. and Vaidyanathan, K. and Trivedi, K. S.: An Approach for Estimation of Software
Aging in a Web Server. In: Proceedings of the Intl. Symposium on Empirical Software
Engineering (ISESE). (2002)

8. Fox, A. and Kiciman, E. and Patterson, D. and Katz, R. and Jordan, M. and Stoica, I.:
Statistical Monitoring + Predictable Recovery = Self-*. In: Proceedings of the Internation
Workshop on Self-* Properties in Complex Information Systems (SELF-STAR). (2004)

9. Lin, T. and Siewiorek, Daniel P.: Error log analysis: statistical modeling and heuristic
trend analysis. IEEE Transactions on Reliability 39(4) (1990) 419-432

156 F. Salfner, G. Hoffmann, and M. Malek

10. Salfner, F. and Tschirpke, S. and Malek, M.: Comprehensive Logfiles for Autonomic
Systems. In: Proceedings of 9th IEEE Workshop on Fault-Tolerant Parallel, Distributed
and Network-Centric Systems. (2004)

11. Geman S., Bienenstock E. and Doursat, R.: Neural Networks and the Bias/Variance
Dilemma. Neural computation 4(1) (1992) 1-58

12. Weigend A. S., Gershenfeld N. A., eds. : Time Series Prediction. First edition. Addison
Wesley, (1994)

13. Hoffmann, G.A. and Salfner, F. and Malek, M.: Advanced Failure Prediction in Complex
Software Systems. research report 172, Department of Computer Science, Humboldt
University, Berlin, Germany, Available at www.informatik.hu-berlin.de/~salfner (2004)

14. Hoffmann, G.A.: Adaptive Transfer Functions in Radial Basis Function Networks (RBF).
In: International Conference on Computational Science. (2004)

15. Schoelkopf B., Smola A.: Learning with Kernels. edition. MIT Press, (2002)
16. Malek, M. and Salfner, F. and Hoffmann, G.A.: Self-Rejuvenation - an Effective Way to

High Availability. In: SELF-STAR: International Workshop on Self-* Properties in
Complex Information Systems. (2004)

17. Castelli V. and Harper, R.E. and Heidelberger P. and Hunter, S.W. and Trivedi, K.S. and
Vaidyanathan, K. and Zeggert, W.P.: Proactive management of software aging. IBM
Journal of Research and Development 45(2) (2001) 311-332

18. Pfening, A. and Garg, S. and Puliafito, A. and Telek, M. and Trivedi, K. S.: Optimal
Software Rejuvenation for Tolerating Soft Failures. Performance Evaluation 27.28 (1996)

19. Garg, S. and Telek, M. and Puliafito, A. and Trivedi, K.S.: Analysis of Software
Rejuvenation using Markov Regenerative Stochastic Petri Net. In: Proceedings of the
International Symposium on Software Reliability Engineering (ISSRE 1995). (1995)

20. Trivedi, K. S. and Vaidyanathan, K. and Goseva-Popstojanova, K.: Modeling and
Analysis of Software Aging and Rejuvenation. In: Proceedings of the IEEE Annual
Simulation Symposium. (2000)

21. B. Randell: System structure for software fault tolerance. IEEE Transactions on Software
Engineering 1(2) (1975) 220-232

22. Ferber, Reginald: Information Retrieval: Suchmodelle und Data-Mining-Verfahren für
Textsammlungen und das Web. edition. dpunkt.verlag, Heidelberg, Germany (2003)

Prediction-Based Software Availability Enhancement 157

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 158 – 173, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Making Self- daptation an Engineering Reality

Shang-Wen Cheng, David Garlan, and Bradley Schmerl

School of Computer Science,
Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh, PA 15213
{zensoul, garlan, schmerl}+@cs.cmu.edu

Abstract. In this paper, we envision a world where a software engineer could
take an existing software system, specify, for a set of properties of interest, an
objective, conditions for change, and strategies for their adaptation and, within
a few man weeks, make that system self-adaptive where it was not before. We
describe how our approach generalizes to different classes of systems and holds
promise for cost-effective, dynamic system self-adaptation to become an
engineering reality.

1 Introduction

Imagine a world where a software engineer could take an existing software system,
specify for a set of properties of interest, an objective, conditions for change, and
strategies for their adaptation and, within a few man-weeks, make that system self-
adaptive where it was not before. An engineer might take an existing client-server
system and make it self-adaptive with respect to a specific performance concern such
as high latency. He might specify an objective to maintain request-response latency
below some threshold, a condition to change the system if the latency rises above the
threshold, and a few strategies to adapt the system to fix the high-latency situation.
Another engineer might make a coalition-of-services system self-adaptive to network
performance fluctuations while keeping down cost of operating the infrastructure.
Still another engineer might make a cluster of servers self-adaptive to certain security
attacks.

Systems with mechanisms to monitor and adapt themselves to faults or
surrounding changes are known variously as self-adaptive, self-healing, or self-
managing systems. A decade in the past, systems that supported self-adaptation were
rare, confined mostly to domains like telecommunications switches or deep space
control software, where shutdown for upgrades was not an option and human
intervention was not always possible.

Today, more and more systems have this requirement. Systems such as those in the
e-commerce and mobile embedded system domains must operate continuously with
only minimal human oversight. They must cope with variable resources (e.g., band-
width and service availability), system errors (e.g., server components failing, or
connections going down), and changing user priorities (e.g., high-fidelity video
streams at one moment and low fidelity at another). Ubiquitous computing, in which

a

 Making Self- daptation an Engineering Reality 159

highly mobile users operate in heterogeneous environments under resource
constraints, also motivates the need for self-adaptive systems. Finally, leading
software companies like IBM [11] are pursuing ways to develop “self-managing and
self-provisioning” infrastructure to help businesses streamline IT operations [10].

Over the past decade, engineers and researchers alike have responded to and met
this self-adaptation need in somewhat limited forms through programming language
features such as exceptions and in algorithms such as fault-tolerant protocols. But
these mechanisms are often highly specific to the application and tightly bound to the
code. As a result, self-adaptation in today’s systems is costly to build, often taking
many man-months to retrofit systems with the capabilities. Moreover, once added, the
capabilities are difficult to modify and usually provide only localized treatment of
system errors [14, 27].

How might we achieve the kind of envisioned capabilities for self-adaptation?
Clearly there are many lines of research that must contribute, including (a) new
mechanisms for monitoring the behavior of systems in order to detect when problems
occur; (b) new techniques for diagnosing and correcting problems once they are
detected; and (c) new capabilities for run-time reconfiguration that will support on-
line adaptation. However, even if these capabilities were somehow magically
available, there would still remain the important problem of making it possible for
engineers to use them in cost-effective and principled ways. In particular, we would
like to be sure that engineers can augment existing systems to be self-adaptive without
having to rewrite them from scratch, that self-adaptation policies and strategies can be
used across similar systems, that multiple sources of adaptation expertise can be
synergistically combined, and that all of this can be done in ways that support
maintainability, evolution, and analysis.

In previous work, we have developed a framework incorporating some of the
mechanisms mentioned above and demonstrated end-to-end self-adaptation support
through two case studies [4, 12, 13]. We have also described the use of software
architectural style to support analysis and guide decisions for system monitoring,
diagnosis, and changes [3]. In this work, we show how our approach generalizes
across different classes of systems, and re-examine in this context our existing case
studies as well as a new case study on security concern.

2 Related Work

Our work builds on a rich set of existing technologies for dynamic system adaptation,
and improves upon a number of prior approaches.

2.1 Technologies for Dynamic System Adaptation

Gross and colleagues at Columbia University have contributed substantial work on
monitoring—probing and gauging—and effecting technologies [19, 30]. The
DASADA project has defined the probe and gauge infrastructures [1, 15]. Event
systems like SIENA [2] and MEET [18] provide the communication infrastructure
necessary for monitoring. Workflow systems have been applied to support planning in
self-adaptation, such as the Cougaar-based self-adaptation by BBN Technologies [6].

a

160 S.-W. Cheng, D. Garlan, and B. Schmerl

A similar body of research applies adaptation at the infrastructure or operating
system level. In particular, adaptive components or multi-fidelity components provide
useful capabilities in existing software systems and offer complementary approaches
to self-adaptation [9, 22]. In addition, a recent branch of middleware research attempts
to support dynamically adaptive distributed systems by developing reflective,
adaptive, and, in general, more “intelligent” middleware [20]. Adaptive middleware
technology may prove synergistic with our approach.

Adaptive middleware monitors and controls software applications using
interception or interposition techniques. Specifically, an adaptive middleware makes
extensive use of interceptors to, for example, profile, trace, and even affect dynamic
library usage [7, 23]. Fault-tolerant CORBA provides transparent OMG-compliant
fault tolerance through strong replica consistency, using techniques such as N-
versioning, hot, warm, or cold swap, and redundant servers [24]. Some of the
challenges include the ordering of operations, duplication of operations, recovery, and
consistency in the face of multithreading.

A combination of existing dynamic adaptation technologies with a sound
engineering approach holds promise to make self-adaptation an engineering reality.

2.2 Prior Self- daptive Approaches

To date, several dynamic adaptation frameworks have been proposed and developed
[8, 16, 31]. Of these, perhaps the most closely related systems are the architecture
evolution framework of Taylor and colleagues from U.C. Irvine and the self-
organizing systems of Kramer and colleagues from Imperial College, U.K.

Gorlick and colleagues have developed a framework, Weaves, that supports
continuous observation and dynamic rearrangement of systems in the data-flow style
to facilitate software construction and analysis, allowing parts of systems to be
snipped and spliced without disruptions to data-flow [17]. Inspired by the dynamic
observation and reconfiguration capability demonstrated in this work, our work
broadens support to other styles.

In his dissertation on the “open architecture software” approach, Peyman Oreizy
proposed the use of an application’s architectural system model as a basis for
decentralized software evolution for a greater degree of adaptability while supporting
increased assured consistency over previous software evolution techniques [25]. His
approach introduced an “architecture evolution manager” to validate changes to the
architectural model and to carry out the changes on the application’s implementation
to reflect the model. Associated with his approach, the ArchStudio environment
comprises a number of tools to support evolution of software via changes to the
architectural model for C2-style applications. While Oreizy’s thesis provided an
approach for developers to evolve a system by changing its architectural model at
design time, our work focuses on enabling monitoring and adaptation of a system
consistent with its architectural model at run time.

As a natural extension, Oreizy and colleagues added a planning loop to his
software evolution approach and introduced an architecture-based run-time software
evolution framework [8, 26]. As with all architecture-based adaptation, the UCI
“architecture evolution framework” dynamically evolves systems using a monitoring
and execution loop controlled by a planning loop. This framework, built over the

a

 161

course of several years, supports self-adaptation for systems built in the C2
hierarchical publish-subscribe style. Evolution of the architectural model uses
architectural differencing and merging techniques similar to those used to version-
control code. Although powerful and demonstrated on quite a number systems, this
approach would be difficult and costly to apply on a target system that deviates from
the publish-subscribe style or uses a completely different style. Our work overcomes
this limitation by providing a general self-adaptation framework that can be tailored
to specific classes of systems.

The work on self-organizing systems proposes an approach where self-managing
units coordinate toward a common model, an architectural structure defined using the
architectural formalism of Darwin [16]. Each self-organizing component is
responsible for managing its own adaptation with respect to the overall system and
requires the global architectural model to do so. While this approach provides some
advantages of distributed control and eliminates a single point of failure, requiring
each component to maintain a global model and keep the model consistent imposes
significant performance overhead. Furthermore, the approach prescribes a fixed
distributed algorithm for global configuration. Our approach aims to overcome that
limitation by allowing tailorable global reorganization without imposing a high
performance overhead.

3 Requirements for an Engineering Solution

To improve on the state of current practice and overcome the limitations of the
current state-of-the-art, we need an engineering approach that helps software
developers achieve external system adaptation in a principled and cost-effective way.
In particular such an approach should have three important properties:

• Generality. The approach should be applicable to a wide variety of systems and
properties. It should not be limited to a specific class of system such as client-
server or a single system concern such as performance. For example, a
developer should be able to apply the approach with relative ease to a pipe-filter,
repository, or event-based system as well as client-server. The developer should
also be able to tackle a combination of performance, security, reliability, as well
as other prominent run-time system properties using this approach. In addition,
the approach should be applicable to both new and existing software-based
systems.

• Cost-effectiveness. The approach should allow developers to realize and
implement self-adaptation capabilities on supported classes of systems at a
relatively low-cost compared to development from scratch (perhaps order(s) of
magnitude lower), and in a reasonably short amount of time (possibly on the
order of a few man-weeks). The approach should not require substantial change
to legacy systems. In addition, a self-adaptation solution previously applied to a
system should be largely reusable in another system with similar self-adaptation
needs.

• Composability. The approach should allow self-adaptation capabilities of
different domains of concern, e.g., performance, cost, and security, to be
specified independently by domain experts. Developers should then be able to

Making Self- daptation an Engineering Realitya

162 S.-W. Cheng, D. Garlan, and B. Schmerl

compose these capabilities to achieve self-adaptation for a combination of
concerns. The property relies on an expert’s ability to analyze the effectiveness
of the capabilities he specified. Fortunately, separating the concerns facilitates
such analysis. Another implication is that independently specified self-
adaptation capabilities would be reusable for similar concerns in different
systems.

3.1 Making Self- daptation External

In practice, most systems deployed today do not satisfy these requirements. Systems
that do self-adapt today have application-specific and ``hardwired'' self-adaptation
capabilities that are difficult to generalize. Such built-in (internal) capabilities are
often able to detect a problem close to its error source through low-level mechanisms
such as exceptions and time-outs. Yet, at the same time, the code is limited to a
localized view of the system, making it difficult to detect and correct overall system
anomalies such as decreasing end-to-end system throughput. In addition, this internal
approach disperses the adaptation logic throughout the system, making it costly and
difficult to modify and maintain, hence not cost-effective. Embedded and dispersed
logic also makes it challenging to reason about the outcome, making composability
difficult to achieve. Finally, internal and dispersed logic makes reuse nearly
impossible, so developing new self-adaptive systems requires significant duplication
of effort and, thus, high cost.

To realize the goal of having general, analyzable, composable, and cost-effective
adaptation requires that the adaptation be extracted from actual system code and treated
as separate from the system. In fact, a number of recent research efforts use external
mechanisms to monitor and adapt a running-system in a closed-loop control fashion
[1, 26, 30]. The closed-loop control paradigm, as illustrated in Fig. 1, provides us
leverage to “divide and conquer” the self-adaptation problem, separating the approach
into three phases: monitoring, modeling, and control of the target system.

System

control monitor

reflect

Model & adaptation mechanism

Fig. 1. Illustration of Closed-Loop Control

In principle, external adaptation mechanisms have a number of benefits over
internal mechanisms. External control separates the concerns of system functionality
from the concerns of “exceptional behaviors,” enabling the engineer to systematically
focus on and design solutions for dynamic adaptation. As a separate entity, the
effectiveness of the adaptation logic is more analyzable and the mechanism more
modifiable and extendible. These engineering traits allow the engineer to focus

a

 163

development, facilitate reuse, and reduce cost. In turn, the engineer can generalize
techniques and solutions for adaptation to different and even multiple kinds of
systems and system properties. Furthermore, the separation of mechanisms allows this
technique to be applied to systems where the source code is not available. This relies
on a key assumption that the target system provides, or can be wrapped to provide,
hooks to get information out of the system and to make changes.

3.2 Scenarios for Self- daptation

To clearly address the challenges of self-adaptation, one must understand the
scenarios or conditions under which self-adaptation may need to occur. We recognize
three major types of conditions for self-adaptation: system errors, changes in the
environment of the target system including resource variability, and changes in user
preferences. Understanding these different conditions for self-adaptation directly
affects the development of capabilities for measuring, modeling, and controlling the
target system to support self-adaptation.

A system error covers an undesirable condition that arises from the target system
itself. For example, a server component may fail, or a set of network connections may
go down. An environment change and, in particular resource variability, covers an
undesirable condition that often arises outside the target system and causes problems
for the target system. For instance, the wireless network on which an application
depends may change beneath it, causing a sudden disruption of connection or change
in available bandwidth. Or, the context in which a device is used, such as a room, may
change, thus altering the set of resources available to that device. A change in user
priority or preference constitutes a change in some requirements on the target system.
For instance, the user may require high-fidelity video streams at one moment but be
satisfied with low fidelity at another.

These three types of conditions share the common property of being a change that
may not have been anticipated when assumptions about the intended use of the system
were made during system development. These conditions at system run time thus
provide opportunities for improvements to bring the system back within the
boundaries of its requirements under the newly encountered conditions.

4 Role of Software Architecture

A key issue in applying an external control model is to determine the appropriate kind
of models to use as a basis for control decisions. A recent branch of work suggests an
architectural model of the software as a useful basis for making decisions about
system adaptation [14, 26].

4.1 Architectural Model

An architectural model represents the system architecture as a graph of interacting
computational elements.1 We adopt a standard view of software architecture that is

1 Although there are different views of architecture, we are primarily interested in the run-time

component-connector view [5].

Making Self- daptation an Engineering Realitya

a

164 S.-W. Cheng, D. Garlan, and B. Schmerl

typically used today at design time to characterize a system to be built. Nodes in the
graph, called components, represent the system’s principal computational elements
and data stores, including clients, servers, databases, and user interfaces. Arcs, called
connectors, represent the path-ways for interaction between the components.
Additionally, architectural elements may be annotated with various properties, such as
expected throughputs, latencies, and protocols of interaction. Components themselves
may represent complex systems, represented hierarchically as sub-architectures.

However, unlike traditional uses of software architecture as strictly a design-time
artifact, our approach includes a system’s architectural model in its run-time
infrastructure. In particular, developers of self-adaptation capabilities use a system’s
software architectural model to monitor and reason about the system. Using a
system’s architecture as a control model for self-adaptation holds promise in several
areas. As an abstract model, an architecture can provide a global perspective of the
system and expose important system-level behaviors and properties. As a locus of
high-level system design decisions, an architectural model can make a system’s
topological and behavioral constraints explicit, establishing an envelope of allowed
changes and helping to ensure the validity of a change.

Using the architectural model as a basis to monitor and adapt a running system is
known as architecture-based self-adaptation. A number of researchers have
investigated this form of self-adaptation [17, 21, 26]. Their self-adaptive systems have
been hand-crafted to provide strong support for particular classes of system (e.g.,
data-flow) and to target specific domains of concern (e.g., performance). Given a
system in a supported system class, there will typically be an architecture description
language and tool support to analyze and model the system, capture constraints on
system behavior, detect constraint violations, and adapt the system.

4.2 Architectural Style

To capture system commonalities, we adapt the notion of an architectural style.
Traditionally, the software engineering community has used architectural styles to
help encode and express system-specific knowledge [29]. An architectural style
characterizes a family of systems related by shared structural and semantic properties.
The style is typically defined by four sets of entities:

• Component and connector types provide a vocabulary of elements, including
components such as Database, Client, Server, and Filter; connectors such as
SQL, HTTP, RPC, and Pipe; and component and connector interfaces.

• Constraints determine the permitted composition of the elements instantiated
from the types. For example, constraints might prohibit cycles in a particular
pipe-filter style, or define a compositional pattern such as the starfish
arrangement of a blackboard system or a compiler’s pipelined decomposition.

• Properties are attributes of the component and connector types, and provide
analytic, behavioral, or semantic information. For example, load and service
time properties might be characteristic of servers in a performance-specific
client-server style, while transfer-rate might be a property in a pipe-filter style.

• Analyses can be performed on systems built in an appropriate architectural style.
Examples include performance analysis using queuing theory in a client-server
system, and schedulability analysis for a real-time-oriented style.

 165

To support the needs of run-time system self-adaptation, we augment the notion of
style with the notions of operators (to change an architecture) and adaptation
strategies (to package changes for specific purpose). In previous work, we have
extensively described the significant leverage that architectural style affords us [3].
That is, style provides opportunity for specific analysis of system behavior and
properties. For self-adaptation, each style may uniquely guide the choice of metrics,
help identify strategic points for system observation, and suggest possible adaptations.

5 The Rainbow Framework

In this section, we briefly introduce the Rainbow framework, which has already been
reported in prior work [3, 13]. In this paper, we focus on the separation between the
general parts of Rainbow that can be applied to a wide variety of systems, and the
tailorable parts that need to be written to apply Rainbow to specific systems and
concerns.

Fig. 2. The two-part Rainbow Framework

Rainbow uses the architectural model of the system to monitor the system and
“reason” about appropriate actions. Monitoring mechanisms observe the running
system. Observations are related to properties of the architectural model via probes
and gauges [1, 15]. The model is periodically evaluated to ensure that the system is
operating within an envelope of acceptable range. If the evaluation determines that the
system is not operating within the accepted range, the adaptation process is triggered,
which determines the action to take. The adaptation is executed on the running system
via system-level effectors.

The key idea for applying Rainbow in different situations is the separation of the
framework into two parts (see Fig. 2). The first comprises a set of general, common
infrastructures that are reusable across systems. The second consists of tailorable parts
that can be specialized and customized for particular styles of system and various

Making Self- daptation an Engineering Realitya

166 S.-W. Cheng, D. Garlan, and B. Schmerl

system properties of concern. The reusable infrastructures consist of the monitoring
mechanisms, the model manager, the architectural evaluator, the adaptation engine,
the executor, and various translators. The tailorable parts determine what properties
of the system to monitor, what rules or constraints to evaluate, what adaptation
actions to take when constraints are violated, and how to carry out those adaptations
in terms of architectural as well as system-level operators.

This two-part self-adaptation approach has a number of advantages. By providing
a substantial base of reusable infrastructure it greatly reduces the cost of development.
By providing separate tailoring parts it allows engineers to tailor the framework to
different systems with relatively small increments of effort. In particular, the
tailorable model management and adaptation mechanisms give engineers the ability to
customize adaptation to address different properties and domains of concern, and to
add and evolve adaptation capabilities with ease. Furthermore, as described later, a
modular adaptation language for tailoring the adaptation mechanism allows engineers
to consider adaptation concerns separately and then put them to work together. In
short, assessed abstractly, the Rainbow approach has the potential to satisfy the
generality, cost-effectiveness, and composability requirements set forth initially.

6 Case Instantiations of Rainbow

To date, the Rainbow framework has been instantiated in two case study systems, and
a third case study is in progress. Each case study has demonstrated the application of
Rainbow to a different style of system, a different kind of system concern, as well as
slightly different subsets of Rainbow capabilities.

The first case study provided an end-to-end investigation of the feasibility of the
architecture style-based self-adaptation approach, and demonstrated effectiveness
through an experiment on a dedicated testbed consisting of five routers and 11
machines communicating over 10-megabits-per-second lines [13]. The second case
study demonstrated the potential generality of Rainbow applied to a different
architectural style and an additional property of concern over the first case study, as
well as revealed a moderate framework computational overhead [4]. Moreover, these
two case studies helped to distill the reusable infrastructures of the framework [12].
The third case study in progress aims to show generality with a third data point on the
kinds of system concern that Rainbow can address.

Here, we focus on how the two-part framework is instantiated for each of the case-
studies to show how it can make self-adaptation an engineering reality.

6.1 Case 1: Client-Server Style with Performance Concern

In the first case study, we experimented with the application of Rainbow to a client-
and-server style system, which consisted of a number of clients connected to one
cluster of servers, with a specific performance concern of latency. The results show
that for this application and the specific loads used in the experiment, self-adaptation
significantly improved system performance. Fig. 3 shows sample results for system
performance with and without adaptation. Fig. 3a shows that, without adaptation, once
the latency experienced by each client rises above 2 seconds, it never again falls

 167

Fig. 3. System performance with and without self-adaptation. The dashed lines indicate the
desired latency behavior

Fig. 4. Rainbow instantiation for client-server and performance

below this threshold. On the other hand, Fig. 3b shows that if Rainbow issues the
adaptations, the client latencies return to optimal levels.

For this case study, as illustrated in Fig. 4, a vocabulary for the client-server style
system elements is defined, along with performance-related properties. Specific
performance properties—latency, bandwidth, load—are identified for monitoring. An

Making Self- daptation an Engineering Realitya

168 S.-W. Cheng, D. Garlan, and B. Schmerl

invariant is defined over the system’s architectural model to indicate the condition for
adaptation. Thus, the architectural evaluator “sounds an alarm” when the response
time of a client rises above some maximum threshold. A strategy has been defined to
deal with this latency issue, and the strategy uses style-specific architectural operators
such as addServer() and move(). A mapping helps to translate elements and actions in
the architectural level to their counterparts in the system level. Note that, in general,
mappings between architecture-layer and system-layer elements and actions may not
be one-to-one, but will often be one-to-many.

6.2 Case 2: Service Coalition Style with Performance and Cost Concerns

In the second case study, we investigated the use of Rainbow on a service-coalition
style, video-conferencing system with a simultaneous need to provide good-quality
video service while keeping cost down to the customers using the service. Perhaps not
surprisingly, this case study revealed that self-adaptation incurs some latency. In this
system, the lapsed time for adaptation at the architecture, translation, and system
layers were 230, 300, and 1,600 ms, respectively, for one scenario, and 330, 900, and
1,500 ms, respectively, for another. These results indicate that the software
architecture-based approach best suits adaptations that operate on a system-wide scale
and fix longer-term system behavior trends.

Because this system shared common performance properties with the first case
study, we were able to reuse parts of the monitor and control infrastructures. In fact,
from the first case study, the Rainbow prototype reused approximately 100 kilo-lines
of code out of 102, plus an additional 73 kilo-lines of tool and utility code.

For this case study, as shown in Fig. 5, a vocabulary for the service coalition style
system elements is defined, along with performance and cost-related properties.
Specific properties—cost, load, bandwidth—are identified for monitoring. A few
invariants are defined over the system’s architectural model to indicate the conditions
for adaptation. In particular, the architectural evaluator “sounds an alarm” either when
the available bandwidth on certain connections drop below a minimum threshold, or
the cost of serving the users rise above a maximum threshold. Adaptation strategies
have been defined to deal with these two kinds of issues, and the strategies use style-
specific architectural move() operators.

Fig. 5. Rainbow instantiation for service coalition and performance + cost

 169

6.3 Case 3: Client-Server Style with Security Concern

The third case study is a straightforward client-server style system where a set of
servers processes the requests of many clients, some of which can be malicious. The
primary concern in this system is security, specifically, to appropriately detect and
adapt against distributed denial of service attacks without greatly compromising such
attributes as data integrity. Again, due to certain commonalities between this system
and the previous two case studies, a significant subset of the framework, in addition to
the common infrastructures, will be reusable.

In this case study, as illustrated in Fig. 6, a vocabulary for the specific kind of
client-server style system elements is defined, along with security-related properties.
Specific security properties—load, intrusion patterns—are identified for monitoring.
An invariant is defined to trigger adaptation when the intrusion probability rises
above a maximum threshold. Multiple adaptation strategies have been defined to deal
with intrusion, including partitioning the network and securing data. The strategies
use style-specific architectural operators supported by the various system elements.

Fig. 6. Rainbow instantiation for client-server and security

6.4 Generalizing Across Cases

Table 1 summarizes the three case studies along two dimensions—architectural style
and system concern. We believe that the Rainbow framework applies to a sufficient
number of data points in these two dimensions to demonstrate generality.

Table 1. Summary of Rainbow case studies to date

Concern \ Style Client-Server Service-Coalition … Repository …

Performance X X
Cost X
Security X
….
Reliability
…

Making Self- daptation an Engineering Realitya

170 S.-W. Cheng, D. Garlan, and B. Schmerl

These three case studies illustrate how we envision the application of Rainbow and
give concrete examples to help characterize the tailorable parts. These case studies
also bring into focus the aspects of the Rainbow framework that are (or need to be)
reusable and generalized across systems. As a result, we have identified a number of
key challenges to make the Rainbow approach possible.

In particular, we are presently investigating two research challenges that arise from
the ability in Rainbow to tailor specific adaptation strategies for different styles of
systems and different kinds of system concern, namely representing adaptation
knowledge and coordinating adaptations. A general ability to represent adaptation
knowledge allows engineers to “plug-in” different strategies, making adaptation
external and modifiable. This marks an important step toward providing cost-effective
self-adaptation. A general mechanism to resolve conflicts and coordinate adaptations
allows system engineers to consider system properties of concern separately and
compose adaptation strategies.

As these challenges are being resolved, the Rainbow framework holds promise to
realize our vision and make self-adaptation an engineering reality.

7 Looking Forward

In this paper, we have expressed our vision of a software engineering reality where
engineers can develop self-adaptive software-intensive systems cost-effectively. We
have discussed the Rainbow approach and shown how it charts a path to realizing this
vision. Specifically, we have described three case studies of systems with different
concerns and qualitatively demonstrated how Rainbow generalizes across different
styles of systems and different concerns.

In a larger context, the Rainbow framework holds potential for application in
other forms of composition, particularly in relation to human task, autonomic
computing, and software design. Recall that one of the conditions of self-adaptation
is changes in user priority or preference. For Rainbow to be aware of such changes,
it would provide appropriate interfaces to the user level. Specifically, a user
would be able to influence the behavior of the framework via such variables as
frequency and granularity of monitoring, choice of adaptations, and quality of
actions taken.

Recently, there has been a push by IBM and others toward developing systems or
elements of systems that are autonomic. That is, they are self-managing and exhibit
self-configuring, self-healing, self-protecting, and self-optimizing properties [11].
Since Rainbow provides the mechanisms for self-adaptive systems, it is possible to
apply Rainbow in the context of autonomic systems to construct a system of systems
in which each constituent system exhibits self-adaptive capabilities.

Finally, certain insights from the Rainbow approach can influence how software
engineers design future software. One of the main assumptions of the Rainbow
approach is that we require the target system to provide hooks for measuring and
changing the system. What if the software is designed to provide such hooks? Indeed,

 171

if the software engineering community standardizes interfaces for extracting
information from and effecting changes on systems, engineers would be able to
produce systems that plug-and-play with self-adaptation infrastructures like Rainbow.

Acknowledgements

This research was supported by DARPA under grants N66001-99-2-8918 and
F30602-00-2-0616, by the US Army Research Office (ARO) under grant numbers
DAAD19-02-1-0389 ("Perpetually Available and Secure Information Systems") to
Carnegie Mellon University's CyLab and DAAD19-01-1-0485, and the NASA High
Dependability Computing Program under cooperative agreement NCC-2-1298. The
views and conclusions described here are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of
DARPA, the ARO, NASA, the US government, or any other entity.

References

1. Robert Balzer. Probe run-time infrastructure.
http://schafercorpballston.com/dasada/2001WinterPI/ProbeRun-
TimeInfrastructureDesign.ppt, 2001.

2. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, August 2001.

3. Shang-Wen Cheng, David Garlan, Bradley Schmerl, João Pedro Sousa, Bridget
Spitznagel, and Peter Steenkiste. Using architectural style as a basis for self-repair. In Jan
Bosch, Morven Gentleman, Christine Hofmeister, and Juha Kuusela, editors, Software
Architecture: System Design, Development, and Maintenance (WICSA-3), pages 45–59,
Massachusetts, USA, August 25–30, 2002. Kluwer Academic Publishers.

4. Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley Schmerl, and Peter
Steenkiste. An architecture for coordinating multiple self-management systems. In
Proceedings of the 4th Working IEEE/IFIP Conference on Software Architecture
(WICSA-4), Oslo, Norway, June 11–14, 2004.

5. Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,
Robert Nord, and Judith Stafford, editors. Documenting Software Architecture:
Views and Beyond. The SEI Series in Software Engineering. Pearson Education, Inc.,
2003.

6. Nathan Combs and Jeff Vagel. Adaptive mirroring of system of systems architectures. In
Garlan et al. [14], pages 96–98.

7. Timothy W. Curry. Profiling and tracing dynamic library usage via interposition. In
USENIX Summer, pages 267–278, 1994.

8. Eric M. Dashofy, Andre van der Hoek, and Richard N. Taylor. Towards architecture-
based self-healing systems. In Garlan et al. [14], pages 21–26.

9. Jason Flinn, SoYoung Park, and Mahadev Satyanarayanan. Balancing performance,
energy, and quality in pervasive computing. In Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS’02), pages 217–226. IEEE
Computer Society Press, July 02–05, 2002.

Making Self- daptation an Engineering Realitya

172 S.-W. Cheng, D. Garlan, and B. Schmerl

10. Colleen Frye. Self-healing systems. Application Development Trends, pages 29–34,
September 2003.

11. A. G. Ganak and T. A. Corbi. The dawning of the autonomic computing era. IBM
Systems Journal, 42(1):5–18, 2003.

12. David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastructure.
IEEE Computer, 37(10):46–54, October 2004.

13. David Garlan, Shang-Wen Cheng, and Bradley Schmerl. Increasing system dependability
through architecture-based self-repair. In Rogério de Lemos, Cristina Gacek, and
Alexander Romanovsky, editors, Architecting Dependable Systems, Lecture Notes in
Computer Science, pages 61–89, New York, NY, USA, 2003. Springer-Verlag, Inc.

14. David Garlan, Jeff Kramer, and Alexander Wolf, editors. Proceedings of the First ACM
SIGSOFT Workshop on Self-Healing Systems (WOSS’02), New York, NY, USA,
November 18–19, 2002. ACM Press.

15. David Garlan, Bradley Schmerl, and Jichuan Chang. Using gauges for architecture-based
monitoring and adaptation. In [28].

16. Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organizing software architectures
for distributed systems. In Garlan et al. [14], pages 33–38.

17. Michael M. Gorlick and Rami R. Razouk. Using Weaves for software construction and
analysis. In 13th International Conference of Software Engineering, pages 23–34, Los
Alamitos, CA, USA, May 1991. IEEE, IEEE Computer Society Press.

18. Phil Gross. MEET. http://www.psl.cs.columbia.edu/meet/index.html, 2002.
19. Philip N. Gross, Suhit Gupta, Gail E. Kaiser, Gaurav S. Kc, and Janak J. Parekh. An

active events model for systems monitoring. In [28].
20. Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The case for reflective

middleware. In Communications of the ACM, 45(6), pages 33–38, June 2002.
21. Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying Distributed

Software Architectures. InW. Schafer and P. Botella, editors, Proceedings of 5th
European Software Engineering Conference (ESEC 95), pages 137–153, Sitges, Spain,
September 26, 1995. Springer-Verlag, Berlin.

22. V. Markl, G. M. Lohman, and V. Raman. LEO: An autonomic query optimizer for DB2.
IBM Systems Journal, 42(1):98–106, 2003.

23. Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith. Using interceptors to
enhance CORBA. IEEE Computer, pages 62–68, July 1999.

24. Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith. Strongly consistent
replication and recovery of fault-tolerant CORBA applications. Journal of Computer
System Science and Engineering, Spring 2002.

25. Peyman Oreizy. Open Architecture Software: A Flexible Approach to Decentralized
Software Evolution. PhD thesis, University of California, Irvine, 2000.

26. Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory
Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf.
An architecture-based approach to self-adaptative software. IEEE Intelligent Systems,
14(3):54–62, May–June 1999.

27. Proceedings of the International Conference on Autonomic Computing, New York, NY,
May 17-18, 2004.

28. Proceedings of the Working Conference on Complex and Dynamic Systems Architecture,
Brisbane, Australia, December 12–14, 2001.

 173

29. Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996.

30. Giuseppe Valetto and Gail Kaiser. A case study in software adaptation. In Garlan et al.
[14], pages 73–78.

31. Alexander L. Wolf, Dennis Heimbigner, Antonio Carzaniga, Kenneth M. Anderson, and
Nathan Ryan. Achieving survivability of complex and dynamic systems with the Willow
framework. In [28].

Making Self- daptation an Engineering Realitya

An Online Control Framework for Designing
Self- ptimizing Computing Systems:
Application to Power Management�

Nagarajan Kandasamy1, Sherif Abdelwahed2, Gregory C. Sharp3,
and John P. Hayes4

1 Electrical and Computer Engineering Deptartment,
Drexel University, Philadelphia, PA 19104, USA

kandasamy@ece.drexel.edu
2 Institute for Software Integrated Systems,

Vanderbilt University, Nashville, TN 37212, USA
sherif@isis.vanderbilt.edu

3 Harvard Medical School,
Massachusetts General Hospital, Boston, MA 02114, USA

gcsharp@partners.org
4 Electrical and Computer, Engineering Department,
University of Michigan, Ann Arbor, MI 48109, USA

jhayes@eecs.umich.edu

Abstract. Computer systems hosting critical e-commerce applications
must typically satisfy stringent quality-of-service (QoS) requirements un-
der dynamic operating conditions and workloads. Also, as such systems
increase in size and complexity, maintaining the desired QoS by manually
tuning the numerous performance-related parameters will become very
difficult. This paper addresses the design of self-optimizing computer
systems using a generic online control framework in which the control
actions governing the operation of the system are obtained by optimiz-
ing its behavior, as forecast by a mathematical model, over a limited
time horizon. As a specific application of this control technique, we show
how to minimize the power consumed by a processor while satisfying the
QoS requirements of a time-varying workload. We describe the processor
model, formulate the power management problem, and derive the online
control algorithm. The performance of the controller is evaluated using
representative e-commerce workloads.

1 Introduction

Computer systems hosting applications crucial to commerce and banking, trans-
portation, military command and control, among others, must typically satisfy

� A preliminary version of this paper appeared in the proceedings of the IEEE Con-
ference on Autonomic Computing, Washington DC, USA, May 2004.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 174–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

o

An Online Control Framework 175

stringent QoS requirements while operating in highly dynamic environments;
for example, the workload to be processed may be time varying, and hardware
and software components may fail during system operation. To operate such
computer systems efficiently while achieving the desired QoS goals, multiple
performance-related parameters must be continuously tuned to the dynamic op-
erating conditions, and as these systems become more complex, it will become
very difficult for human operators to manage their performance effectively.

To cope with the complexity expected of future computing systems, it is
highly desirable for such systems to manage themselves, given high-level ob-
jectives by administrators. Such self-managing systems aim to achieve QoS ob-
jectives by adaptively tuning key operating parameters with minimal human
intervention [16]. This paper focuses on one key aspect of such systems—self-
optimization, where its performance and efficiency are continuously improved.

We address the design of self-optimizing computer systems within an on-
line control framework. Control theory provides a systematic way to manage
resources in a general setting; if the computer system is correctly modeled and
its operating environment accurately estimated, the control actions required to
maintain a certain QoS by optimizing a given cost function can be derived [20]. It
also provides well-established mathematical techniques to analyze system per-
formance and correctness, and recently, has been successfully applied to such
problems as task scheduling [19] [11], QoS adaptation in web servers [2], load
management in e-mail and file servers [14] [18], network flow control [21] [4], and
power management [15] [27].

The above methods all use feedback or reactive control [22] to first observe
the current system state and then take corrective action, if any, to achieve the
specified QoS. Traditional feedback control has some inherent limitations. It
usually assumes a linearized and discrete-time model for system dynamics, and
a continuous input (output) domain. Many practical systems, however, have a
finite set of possible control inputs, and exhibit hybrid behavior comprising both
discrete-event and time-based dynamics [5].

We propose a model-predictive control approach where the actions governing
system operation are obtained by optimizing its forecast behavior, described by
a mathematical model, for the specified QoS criteria over a limited prediction
horizon [20]. This scheme is more general and widely applicable than feedback
control, allowing for multiple QoS objectives and system operating constraints
to be explicitly represented as an optimization problem and solved for each
control step. It can also control systems exhibiting event-driven and/or nonlinear
dynamics, as well as those with delays and dead times. Finally, the approach
can accommodate run-time modifications to the system model itself, caused by
resource failures and time-varying parameter changes.

As a specific case study, we apply the above control technique to manage the
power consumed by a processor subject to a time-varying workload comprising
HTTP and e-commerce requests. Assuming a processor capable of dynamic volt-
age scaling [23], an online controller is developed to achieve a specified response
time for these requests while minimizing the corresponding power consumption.

Fig. 1. (a) A queuing model of the processor and (b) HTTP requests made to an

Internet service provider in the Washington DC area [7]

Note that power consumption relates quadratically to processor supply voltage
which can be reduced at lower frequencies. Therefore, power savings can be quite
significant. Furthermore, many processors such as the AMD-K-2 [3] and Stron-
gARM [25] support dynamic voltage scaling by offering a limited number of
frequency settings, eight and ten, respectively. We describe the processor model,
formulate the power management problem, and develop the online controller to
operate the processor efficiently within a limited and discrete frequency domain.
Controller performance is evaluated using a representative e-commerce work-
load. Finally, we also discuss how online control can be applied to other resource
management problems in computer systems.

The rest of this paper is organized as follows. Section 2 formulates the proces-
sor power management problem while Section 3 discusses basic predictive-control
concepts and develops the online control algorithm. Section 4 evaluates controller
performance and we conclude the paper with a discussion on future work as well
as other applications of online control in Section 5.

2 Preliminaries

This section discusses system modeling assumptions, specifies the desired QoS
objectives, and formulates the resource management problem.

2.1 System Model

Figure 1(a) shows the queuing model corresponding to a processor P where
λ(k) and μ(k) denote the arrival and processing rates, respectively, of incoming
requests {dj}, and q(k) denotes the queue size at time step k. We do not assume
an a priori arrival-rate distribution for {dj} but use real-world workload traces
such as that shown in Fig.1(b). Also, requests are processed by P in a first-
come first-serve fashion. We assume a processor capable of operating within
a limited set of frequencies U . Therefore, if the time required to process dj

while operating at the maximum frequency umax is cj , then the corresponding

N. Kandasamy et al.176

An Online Control Framework 177

processing time while operating at some frequency u(k) ∈ U is cj/α(k) where
α(k) = u(k)/umax is the scaling factor. The average response time achieved by the
processor during time step k is denoted by ω(k); this includes both the waiting
time in the queue and the processing time on P . We use the model proposed in
[28] to estimate the average power consumed by the processor while operating at
u(k) as ψ(k) = α2(k). This simple model has been shown to provide reasonably
accurate estimates for power consumption.

The above system model corresponds to a special class of hybrid systems
having a finite control set—called switching hybrid systems [1]. The following
discrete-time form of the state space equations describes their dynamics:

x(k + 1) = f(x(k), u(k),Ω(k))

where x(k) ∈ R
n denotes the current system state, and u(k) ∈ U ⊂ R

m and
Ω(k) ∈ R

r the control and environment inputs, respectively, at time k. The
system state is given by the achieved response time and the corresponding
power consumption as x(k) = (ω(k),ψ(k)). The function f (described in Sec-
tion 3.2) models the system dynamics, and computes the next state for time
step k + 1, given x(k), the control input u(k), and the environment inputs
Ω(k) = (λ(k), c(k)) where λ(k) and c(k) denote the request arrival rate and
average processing time, respectively.

2.2 Performance Specification

At each time step, the controller aims to satisfy a designer-specified response
time ω∗ for incoming requests while minimizing processor power consumption.
We pose this resource management problem as one of utility optimization that
maximizes (minimizes) a performance measure given as a function of both the
system state and input variables. Typically, this function is a weighted norm,
where the corresponding variables are lumped together with different weights
reflecting their individual contributions to overall system utility. Operating re-
quirements may also include hard and soft constraints on system variables. Hard
constraints are generally expressed as a feasible domain for a composite set of sys-
tem variables, possibly including the control inputs themselves. A soft constraint
is similarly expressed, and represented by a cost function mapping each point in
the composite space to a scalar value denoting the corresponding penalty. A soft
constraint, therefore, is another way to specify system performance requirements
where the controller aims to minimize the associated cost function.

We now pose the problem of interest. Let J(k) be the cost function corre-
sponding to some system state x(k). Soft constraints may be added to J(k)
using slack variables, defined such that they are non-zero only if the correspond-
ing constraints are violated. Their non-zero values may be heavily penalized in
the cost function. Therefore, the controller has a strong incentive to keep them
at zero if possible. We define an appropriate slack variable ε(k) such that:

ε(k) =
{

0 : ω(k) ≤ ω∗

ω(k)− ω∗ : otherwise

N. Kandasamy et al.

Therefore, the cost function J(k) is now a weighted norm of the form:

J(k) = ‖ε(k)‖Q + ‖ψ(k)‖R

where Q and R denote user-defined weights.

2.3 Problem Formulation

The control problem is to satisfy the QoS specification during the operating
period of the system, i.e., for each time step k, and is formulated as follows:

Minimize
∑

k

J(k)

Subject to x(k + 1) = f(x(k), u(k),Ω(k))
u(k) ∈ U

Note that the control inputs are constrained by the frequency settings available
on the processor. Also, since the underlying control set is discrete and finite,
traditional optimal control techniques cannot be applied directly to solve this
problem, and in most cases, a closed expression for feedback control cannot be
obtained. Moreover, in practice, the operating parameters including Ω(k) may
vary continuously at run time.

3 Controller Design

This section introduces key predictive control concepts and develops the online
control algorithm.

3.1 Predictive Control Concepts

We solve the optimization problem in Section 2.3 under dynamic operating con-
ditions using a predictive control technique [20]. The basic ideas behind this
approach are now briefly discussed. As noted in Section 1, the control actions
governing system operation are obtained by optimizing its forecast behavior,
described by the mathematical model f , for the specified QoS criteria over a
limited prediction horizon of length N . Therefore, the original control problem
is written as follows:

Minimize
k+N∑

i=k+1

J(k)

Subject to x̂(i + 1) = f(x(i), u(i), Ω̂(i))
u(i) ∈ U

where x̂(i) and Ω̂(i) denote the estimated system state and environment inputs,
respectively. Since U is finite, the above problem is clearly solvable, though, in

178

Fig. 2. (a) The overall controller architecture and (b) the look-ahead optimization

process

general, it will not produce an optimal solution for the original control problem.
In many practical situations, however, the main concern is controller feasibil-
ity, namely its ability to drive the system towards the desired operating region
quickly and maintain it there even under dynamic operating conditions.

Figure 2(a) shows the overall structure of the online controller to solve the
above optimization problem. Relevant parameters of the operating environment
such as workload arrival patterns and processing times are estimated, and used
by the system model to forecast future behavior over the look-ahead horizon. The
controller optimizes the forecast behavior as per the specified QoS requirements
by selecting the best control input to apply to the system.

– As shown in Figure 2(b), future system states, in terms x̂(k+i), for a predic-
tion horizon of i = 1, . . . , N steps are estimated during each sampling time
step k using the corresponding behavioral model. These predictions depend
on known values (past inputs and outputs) up to the sampling instant k,
and on the future control signals in terms of u(k + i), i = 1, . . . , N − 1 which
are inputs to the system that must be calculated.

– A sequence of control signals resulting in the desired system behavior is ob-
tained for each step of the prediction horizon by optimizing the cost function.

– The control signal u∗(k) corresponding to the first control input in the above
sequence is applied to the system during time k while the other inputs are
rejected. During the next sampling instant, x(k+1) is known, and the above
steps are repeated. Finally, note that the observed state x(k + 1) may be
different from that estimated by the controller at time k.

3.2 Model Dynamics

To estimate system behavior over the prediction horizon, characteristics of the
workload including the request arrival rate and processing times must also be

An Online Control Framework 179

180 N. Kandasamy et al.

estimated. Various prediction models have been previously proposed for per-
formance estimation of computer systems. In [26], an autoregressive model to
predict trends in network traffic is developed, while [29] combines a Kalman fil-
ter with an autoregressive model to detect changes in web server workloads. The
authors of [13] present both short- and long-term prediction algorithms to es-
timate various performance variables in a computer system including abnormal
events such as QoS violations and system failures.

Based on key characteristics of representative e-commerce workloads, we now
develop an appropriate forecasting model to predict request arrival rates. Figure
1(b) shows HTTP requests made to a computer at ClarkNet, an Internet service
provider in the Washington DC area over a day [7]. Request arrivals, plotted
using a granularity of 30 seconds, clearly show a cyclical trend, as do many
other published workloads [7] [6]. Therefore, we conclude that such workloads
may be predicted using a trend model, used when the increase (decrease) in a
series of values persists for an extended time. The following equations describe
this forecasting model [12]:

λ̂(k) = α · λ(k) + (1− α) · (λ̂(k − 1) + δ(k − 1))

δ(k) = β · (λ̂(k)− λ̂(k − 1)) + (1− β) · δ(k − 1)

λ̂(k + 1) = λ̂(k) + δ(k)

where λ(k) and λ̂(k) denote the observed and estimated arrival rates for time
k, respectively. The estimate λ̂(k) is obtained using a weighted moving average
of recent past estimates and the current observation. The smoothing constant
α determines the weight given to past observations and controls the rate of
averaging. The trend δ(k) present in the arrival rate is detected using a smoothed
average of first differences, i.e., the change in request arrivals from period k to
k + 1. The smoothing constant β controls the rate of averaging. This model is
validated using a real-world workload in Section 4. The processing time estimate
for time k + 1 is given by an exponentially-weighted moving average model as
ĉ(k + 1) = γ · c(k) + (1− γ) · ĉ(k − 1) where γ is the smoothing constant.

The following equations describe the dynamics of the processor model:

q̂(k + 1) = q(k) +
(

λ̂(k + 1)− α(k + 1)
ĉ(k + 1)

)
· ts

ω̂(k + 1) = (1 + q̂(k + 1)) · ĉ(k + 1)

ψ̂(k + 1) = α2(k + 1)

Given the observed queue length q(k), the estimated length q̂(k + 1) for time
step k + 1 is obtained using the workload predictions. The sampling period of
the controller is denoted by ts. The average response times of requests arriving
during the interval [k, k + 1] is estimated as ω̂(k + 1) and the corresponding
power consumption estimate is ψ̂(k + 1).

An Online Control Framework 181

3.3 Control Algorithm

To solve the look-ahead optimization problem presented in Section 3.1, the con-
troller explores the prediction horizon starting from the current state x(k). It
constructs, in breadth-first fashion, a tree comprising all possible future states
up to the specified horizon as follows. Given some x̂(i) within the prediction
horizon, we first estimate the workload Ω̂(i + 1), and generate the next set of
reachable system states by applying all possible control inputs from the set U .
The cost function J(k) corresponding to each generated state is then computed.
Once the prediction horizon is fully explored, a sequence of reachable states with
the minimum cumulative cost is obtained and the control input corresponding
to the first state in this sequence is provided to the processor while the rest are
discarded. The above control action is repeated for each sampling step.

In our experiments, the weights in the cost function J(k) were set to Q = 100
and R = 1 to penalize the controller heavily if a chosen operating frequency fails
to satisfy ω∗. However, if multiple frequencies satisfy ω∗, the lowest frequency
is chosen to minimize energy consumption. Also, since the controller exhaus-
tively evaluates all possible operating states within the prediction horizon to
determine the best input to apply at time step k, the overhead due to this ap-
proach must be analyzed. If |U | denotes the size of the control-input set, and
N the prediction horizon depth, then the number of explored states is given by∑N

i=1 |U |i.
When both the prediction horizon and the number of control inputs are

small, the computational overhead is negligible—as confirmed by experiments
in Section 4. Since control actions are taken after exploring a limited number
of states, we must also guarantee that the underlying physical system is online
controllable. Our system is, since given a state x(k), it is always possible to find
a control input u(k) that forces the system into a different state. This implies
that the controller can make continuous progress towards achieving the desired
QoS objective without a deadlock. We do not analyze the stability of the on-line
controller here; a more detailed analysis is left as future work.

4 Performance Evaluation

The performance of the controller is now evaluated using a representative e-
commerce workload. We first describe how the workload is generated and then
discuss the obtained results.

The authors of [15] propose a feedback controller to balance both energy
consumption and QoS requirements on a processor executing multimedia appli-
cations. Our approach cannot be directly compared to [15] since is assumes a
processor capable of operating at arbitrary frequencies. By contrast, we assume
a processor with a limited number of frequency settings—an AMD Athlon with
possible operating frequencies of 532, 665, 798, 1197, and 1529 MHz [24].

Fig. 3. (a) Workload arrival pattern generated using the HTTP logs of an internet

service provider; (b) requests received by the computer during a day, plotted in 30-

second intervals

4.1 Workload Generation

Our experiments simulated a busy server processing a synthetic yet realistic
workload comprising HTTP requests. To generate the workload, we require a
time-varying request arrival rate, execution times of the individual requests, and
their distribution within the arrival stream. The workload arrival rate shown in
Fig. 3(a) was obtained by combining real-world traces—HTTP requests made to
a computer at Clarknet over a week [7]. (Unfortunately, the published log files
do not have any execution-time information for these requests).

Using the rate information in Fig. 3(a), the distribution of individual requests
within the arrival sequence was determined using two important characteristics
of most web workloads: popularity and temporal locality. First, we generated a
virtual store comprising 10,000 objects, and the time needed to process an object
request was randomly chosen from a uniform distribution between (25, 50) ms.
Simulated requests to the store had the following characteristics:

– Popularity : It has been widely observed that some files are more popular
than others, and that the popularity distribution commonly follows Zipf’s
law [7]. (A few files are extremely popular while many others are very rarely
requested). Therefore, we partitioned the virtual store in two—a “popular”
set with 1000 objects receiving 90% of all requests, and a “rare” set contain-
ing the remaining objects in the store receiving only 10% of requests.

– Temporal locality : This is the likelihood that once an object is requested, it
will be requested again in the near future. In many web workloads, temporal
locality follows a lognormal distribution [9].

4.2 Analysis of Results

We first calibrated the trend model used to forecast arrival rates (described in
Section 3.2). The best fit to the arrival pattern in Fig. 3(a) was obtained for
smoothing constants of α = 0.17 and β = 0.1; the goodness-of-fit measure was

18 N. Kandasamy et al.2

Fig. 4. (a) An overlay of the workload arrival rates from Fig.3(b) and the correspond-

ing predictions made by the online controller; (b) the processor operating frequencies

specified by the controller, and (c) the achieved response times

R̄2 = 0.82 and the predicted values had a mean absolute percentage error of 16%
when compared to observed ones. Figure 4(a) shows the observed and predicted
values overlaid on each other. Though the trend model predicts the arrival rate

An Online Control Framework 183

184 N. Kandasamy et al.

well in most cases, it fails to track sudden surges (or spikes) in request arrivals.
We compared the performance of the trend model with another widely used
forecasting technique; a Box-Jenkins ARIMA model [10] was generated using
Freefore [8] to best fit the observed data in Fig. 3(a). The generated model had
and an average error of 15% between predicted and observed values. Therefore,
we conclude that the trend model provides an adequate fit to the data used
in our experiments; the sudden spikes simply correspond to noise in the data
values. Request processing times were estimated using γ = 0.35.

The performance of the controller was evaluated over a smaller portion of the
overall workload, shown in Fig. 3(b), where the requests received by the computer
during one day are plotted in 30-second observation intervals. We note that this
interval is sufficient to smooth the variability in arrival rates and adequately
track them using the prediction model. Therefore, the sampling period of the
controller was set to ts = 30—no smaller that the observation interval. Also, the
overhead due to controller execution as well as the system dead time (the delay
between changing the operating frequency and its completion) is negligible and
therefore ignored in our experiments. The response time to be achieved by the
controller was set to ω∗ = 4 sec.

Figures 4(a)-4(c) summarize the performance of the controller for a prediction
horizon of two time steps. Figure 4(b) shows how the controller changes processor
frequency to accommodate the time-varying workload in Fig. 4(a). The achieved
response times are shown in Fig. 4(c). The controller does not achieve the desired
QoS during some time periods since it cannot predict sudden (and short-term)
spikes in the arrival rate. The frequent switching activity in Fig. 4(b) occurs
since the cost function J(k) does not include a corresponding switching penalty.
Though control actions in general systems typically incur some penalty, in the
specific case of power management, this penalty is negligible; for example, a
frequency change in the AMD-K-2 processor incurs a time overhead of only 41
μs [24]. Therefore, our cost function ignored this switching penalty.

The overall controller performance is promising; in our experiments, it achieved
the desired response time ω∗ for about 91% of the received requests. We also
evaluated the effect of different prediction horizons on controller performance in
terms of the percentage of requests satisfying their QoS requirement. Increasing
the horizon in this case does not improve performance; in fact, performance suf-
fers slightly. It may be that for this specific workload, model forecasting errors
accumulate with increasing horizon depth, degrading controller performance.

To summarize, our experiments imply that optimal solutions for such on-
line control problems do not exist, particularly when the arrival rates are un-
predictable and potentially unbounded. The system designer must, therefore,
decide upon an acceptable controller configuration after sufficient experimenta-
tion. In this specific case, a short-term forecasting horizon of depth two appears
appropriate. Also, controller performance may be enhanced by improving the
processor model and the cost function—both are topics for future work. Finally,
the controller overhead corresponding to prediction horizons of two, three, and
four was found to be negligible, and hence not reported.

An Online Control Framework 185

Fig. 5. (a) Observed arrival rate and the corresponding predictions made by a Kalman

filter, (b) the variance between the observed and predicted values, and (c) conservative

predictions accounting for noise in the observed arrival rate

5 Discussion

This paper has addressed the design of self-optimizing computer systems using
a generic online control framework. As a specific application of this technique,
we showed how to minimize the power consumed by a computer by designing
a controller to satisfy the QoS requirements of a time-varying workload while
operating the processor at the lowest possible frequency. Its performance was
evaluated using representative e-commerce workloads with encouraging results.
As future work, we plan to improve the performance of the predictive controller
and extend the control scheme to manage distributed systems. The QoS viola-
tions seen in Fig. 4(c) suggest that the system model is somewhat sensitive to
noise in the observed data. We can enhance model accuracy and robustness by
including prediction errors while forecasting arrival and processing rates. Fig-
ure 5(a) shows a portion of the workload previously shown in Fig.3(a) and the
corresponding predictions, obtained using a constant velocity Kalman filter that
implements the trend model presented in Section 3.2. Note that for this work-
load, the variance between predicted and actual values changes over time. In fact,

186 N. Kandasamy et al.

controller

controller Ncontroller 2controller 1

Abstract

...

...

constraints

Operation

function

Composition

subsystem models

system model

Abstract

Global

Subsystem NSubsystem 2Subsystem 1

LocalLocal

.

Local

..

Fig. 6. The multi-level control structure

the variance increases for higher arrival rates. Figure5(b) compares a statically
estimated variance (obtained while tuning the Kalman filter) against a dynamic
estimation. These variance estimates can now be used to obtain conservative
arrival-rate predictions by providing some “spare capacity” to the original pre-
dictions in Fig.5(a). Predictions covering 99% of the noise in the original work-
load are shown in Fig.5(c) using both static and dynamic variance estimation.
When using dynamic estimation, a higher capacity is required during periods
of high variance. Conversely, during periods of low variance, the error margin is
tighter.

The proposed control approach is very general and is applicable to other
resource management problems in computer systems. In [17], we developed an
online controller to operate a distributed computer system in energy-efficient
fashion while satisfying the QoS requirements of a dynamic workload; computers
are switched on (off) as needed to accommodate the time-varying workload. On-
line predictive control is especially useful when control actions have substantial
dead times (such as switching on a computer). We have evaluated this approach
on real-world e-commerce workloads with encouraging results. We also believe a
similar control approach can help design self-healing distributed systems. Certain
computer failures may be predicted shortly before their occurrence by analyzing
the corresponding performance variables [13]. The controller can then initiate
the appropriate reconfiguration action such as switching on a backup computer
in anticipation of such failures to prevent service disruptions.

Finally, in a distributed system with several components, each may have
its own requirement specification defining a desired operating region. In ad-
dition, a global performance requirement for the overall system may also be
specified. Therefore, the controller must effectively coordinate (complex) inter-
actions between the various components to ensure overall system performance.

An Online Control Framework 187

The nature of such systems suggests a hierarchical control structure where each
component has a local controller. Interaction between these controllers is man-
aged via a global controller that aims to satisfy the global specifications of the
overall system. Fig. 6 shows the structure of a two-level control scheme where
local-controller interactions are managed by a higher-level controller using an
abstract system model containing information relevant to its objectives. The
model includes, for instance, details of interactions between system components
in terms of specific local variables contributing to a global objective. The ab-
stract dynamics then represent how these variables would change in response to
certain settings that the global controller enforces via commands to local ones.

We envision a hierarchical structure where the high-level controller takes a
long-term perspective of system dynamics, while the local ones act to optimize
their components on a shorter-term basis. High-level commands are directed to-
wards satisfying global QoS objectives, and act as a set of operating constraints
on each local controller. Each local controller then tries to optimize the perfor-
mance of its underlying component using specific utility functions while satis-
fying any constraints imposed on it. Interaction between these controllers takes
place as follows. Each local controller has a finite set of operating modes cor-
responding to specific parameter settings within its controlled component, e.g.,
a different operational requirement or input domain. The global controller then
places (or restricts) each one in a mode aimed at satisfying the QoS objective.
Local controllers optimize relevant parameters within that mode.

References

1. S. Abdelwahed, G. Karsai, and G. Biswas. Online safety control of a class of hybrid
systems. In 41st IEEE Conference on Decision and Control, pages 1988–1990, 2002.

2. T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for web
server end-systems: A control theoretic approach. IEEE Trans. Parallel & Dis-
tributed Syst., 13(1):80–96, January 2002.

3. Advanced Micro Devices Corp. Mobile AMD-K6-2+ Processor Data Sheet, June
2000.

4. E. Altman, T. Başar, and R. Srikant. Congestion control as a stochastic control
problem with action delay. Automatica, 35:1937–1950, 1999.

5. P. Antsaklis. Special issue on hybrid systems: theory and applications a brief
introduction to the theory and applications of hybrid systems. Proceedings of the
IEEE, 88(7):879–887, July 2000.

6. M. Arlitt and T. Jin. Workload characterization of the 1998 world cup web site.
Technical Report HPL-99-35R1, Hewlett-Packard Labs., September 1999.

7. M. F. Arlitt and C. L. Williamson. Web server workload characterization: The
search for invariants. In Proc. ACM SIGMETRICS Conf., pages 126–137, 1996.

8. Automatic forecasting systems, http://www.autobox.com. Freefore.
9. P. Barford and M. Crovella. Generating representative web workloads for network

and server performance evaluation. In Proc. ACM SIGMETRICS Conf., pages
151–160, 1998.

10. G. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting
and Control. Prentice-Hall, Upper Saddle River, New Jersey, 3 edition, 1994.

188 N. Kandasamy et al.

11. A. Cervin, J. Eker, B. Bernhardsson, and K. Arzen. Feedback-feedforward schedul-
ing of control tasks. J. Real-Time Syst., 23(1–2), 2002.

12. S. A. DeLurgio. Forecasting Principles and Applications. McGraw-Hill Interna-
tional, Singapore, 1998.

13. R. Vilalta et al. Predictive algorithms in the management of computer systems.
IBM Systems Journal, 41(3):461–474, March 2002.

14. S. Parekh et al. Using control theory to achieve service level objectives in perfor-
mance management. J. Real-Time Syst., 23(1-2):127–141, July/September 2002.

15. Z. Lu et al. Control-theoretic dynamic frequency and voltage scaling for multimedia
workloads. In Intl Conf. Compilers, Architectures, & Synthesis Embedded Syst.
(CASES), pages 156–163, 2002.

16. A. G. Ganek and T. A. Corbi. The dawn of the autonomic computing era. IBM
Systems Journal, 42(1):5–18, 2003.

17. N. Kandasamy and S. Abdelwahed. Designing self-managing distributed systems
via on-line predictive control. Technical Report ISIS-03-404, Vanderbilt University,
December 2003.

18. C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: Online data migration with per-
formance guarantees. In Proc. USENIX Conf. File Storage Tech., pages 219–230,
2002.

19. C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback control real-time scheduling:
Framework, modeling and algorithms. Journal of Real-Time Systems, 23(1-2):85–
126, July/September 2002.

20. J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall, London,
2002.

21. S. Mascolo. Classical control theory for congestion avoidance in high-speed inter-
net. In Conf. Decision & Control, pages 2709–2714, 1999.

22. K. Ogata. Modern Control Engineering. Prentice Hall, Englewood Cliffs, NJ, 1997.
23. T. Pering, T. Burd, and R. W. Brodersen. The simulation and evaluation of

dynamic voltage scaling algorithms. In Intl Symp. Low Power Electronics & Design
(ISLPED), pages 76–81, 1998.

24. P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embed-
ded operating systems. In Proc. Symp. Operating Syst. Principles, pages 89–102,
2001.

25. J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-power
microprocessor. In Proc. Conf. Mobile Computing & Networking (MOBICOM),
pages 251–259, 2001.

26. D. Shen and J. L. Hellerstein. Predictive models for proactive network manage-
ment: Application to a production web server. In Proc. Network Operations &
Management Symp., pages 833–846, 2000.

27. T. Simunic and S. Boyd. Managing power consumption in networks on chips. In
Proc. Design, Automation, & Test Europe (DATE), pages 110–116, 2002.

28. A. Sinha and A. P. Chandrakasan. Energy efficient real-time scheduling. In Proc.
Intl Conf. Computer Aided Design (ICCAD), pages 458–463, 2001.

29. F. Zhang and J. L. Hellerstein. An approach to online predictive detection. In Proc.
Modeling, Analysis & Simulation Computer & Telecom. Syst., pages 549–556, 2000.

Self- anagement of Systems Through
Automatic Restart

Katinka Wolter

Humboldt-Universität zu Berlin,
Institut für Informatik,

Unter den Linden 6, 10099 Berlin, Germany
wolter@informatik.hu-berlin.de

Abstract. Modern complex information systems require management
mechanisms that operate to a large extent independently and au-
tonomously. One such mechanism is the restart of components or trans-
actions in case a failure in the system occurs. In this paper we introduce a
pragmatic algorithm to determine close to optimal restart times on-line.

We present a method for choosing best restart times based on empiri-
cal data, if no theoretical distribution is known. The best restart time is
determined based on the empirical hazard rate. We study the sample size
required to come to a reasonably good estimate, the effect of the failure
probability of a job and issues of parameter selection for the hazard rate
estimation. The application considered in this paper is the connection
setup time in HTTP GET necessary for the download of web pages.

1 Introduction

In various situations in computer systems a restart of system components, a re-
issuing of a request, or a re-establishment of a network connection improves the
performance or availability of the component under consideration significantly.
Not always is it known why precisely restart of a process or job becomes neces-
sary or beneficial. Most Internet users, however, are familiar with the fact that
clicking the reload button often helps in speeding up the download of a page,
although we understand only to a limited extent what is happening exactly in
the Internet. Another example is software ‘aging’, for which rejuvenation - the
restart of the software environment - helps in preventing application failures
hence also improves the completion time. But little understanding exists about
the causes of aging and we are not usually able to identify the source of the
problem and remove it. In practical situations, therefore, we will not be able to
come to the required understanding to remove the problems, instead we want to
optimise the deployment of ’black-box’ restart to improve system availability or
performance.

The use of restart has first been proposed for optimising Internet agent ac-
tivities in [2], and further experiments have been carried out in [6]. [3] presents
mathematics to optimise the expected download time, and based on this, [5]

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 189–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

m

190 K. Wolter

introduces a proxy server based architecture for restart including a software
module for the computation of the optimal timeout value. Our objective is to
automate restart, building on the above work. We decide on-line whether restart
will be beneficial and when to do it. In this paper we simulate an on-line proce-
dure by using increasingly more data from measurements taken earlier [5], but
the applied methods can easily be included in a software module like the proxy
server in [5] to be executed in real-time.

The shape of the hazard rate of a probability distribution indicates whether
restart is beneficial. For empirical data the correct theoretical distribution is
unknown and the hazard rate therefore needs to be estimated based on obser-
vations. Estimating the hazard rate is not a straightforward task, since it needs
numerical computation of the derivative of the cumulative hazard rate. In this
paper we derive and implement a new and simple rule based on the hazard rate
that allows us to find the optimal restart time to maximise the probability of
making a deadline. This rule approximates the optimal restart time indepen-
dent of the exact value of the deadline, and is asymptotically exact (when the
deadline increases). Moreover, the rule is very simple, making it a likely can-
didate for run-time deployment. Not in all cases doe the optimal restart time
exists. Restart is applicable to a system if (and only if) the rule finds an optimal
restart time. So, our simple rule actually serves a two-fold purpose: it enables
us to decide whether restart will be beneficial in the given situation, and if so,
it provides us with the optimal restart time.

We apply the rule to data sets we collected for HTTP, thus mimicking the
on-line execution of the algorithm. We explore how much data is required to
arrive at reasonable estimates of the optimal restart time. We also study the
effect of failed HTTP requests by artificially introducing failures in the data
sets. Based on these explorations we provide engineering insights useful for run-
time deployment of our algorithm.

Finally, an important technical detail when using the hazard rate is the value
of the bandwidth in the required smoothing algorithm. Based on many experi-
ments, we obtain a reasonably robust rule for setting the bandwidth based on the
variance of observations. This greatly speeds up the execution of the algorithm,
thus improving its on-line performance.

2 The Restart Model

To automate restart, we need to decide the metric of interest, and postulate a
mathematical model. In our earlier work, we use restart to minimise the expected
download time of a web page in an algorithm that does not make use of the haz-
ard rate [5]. But restart can also be used to increase the probability of making
a deadline and for a finite deadline and a finite number of restarts algorithms
based on the theoretical distribution and lognormally distributed completion
times have been presented in [4]. In our experiments we measured different vari-
ables involved in the download of a web page. In this paper we only use the
connection setup time from data sets already studied in [5]. We again study the

Self- anagement of Systems Through Automatic Restart 191

probability of making a deadline, but unlike the formulation in [4] here we use
an approximation to estimate the optimal restart time. Using the approximation
we can formulate a very simple rule based on the hazard rate, which in fact is
independent of the deadline to be met.

Our mathematical model assumes statistical independence of consecutive pre-
emptive tries. We found this very often to be a realistic assumption in HTTP
downloads from one URL [5]. Let the random variable T denote the comple-
tion time of a job, with probability distribution F (t), t ∈ [0,∞). Assume τ is
a restart time, and introduce the random variable Tτ to denote the completion
time when an unbounded number of retries is allowed. That is, a retry takes
place periodically, every τ time units, until completion of the job or until the
deadline has passed, which ever comes first. We write fτ (t) and Fτ (t) for the
density and distribution of Tτ . A distribution can equally well be described by
the hazard rate

h(t) =
f(t)

1− F (t)

and the cumulative hazard

H(t) =
∫ t

s=0

h(s)ds

which both are very important throughout our analysis. One useful relation
between the cumulative hazard rate and a distribution function is given by

H(t) = − log(1− F (t)).

Restart at time τ is beneficial only if the probability Fτ (t) of making the deadline
t under restart is greater than the probability of making the deadline without
restart, i.e.

Fτ (t) > F (t). (1)

As we have shown in [4], one can intuitively reason about the completion time
distribution with restarts as Bernoulli trials. At each interval between restarts
there is a probability F (τ) the completion ‘succeeds.’ Hence, if the time t is
a multiple of the restart time τ, we can relate the probability of missing the
deadline without and with restart through:

1− Fτ (t) = (1− F (τ))
t
τ . (2)

Eqn. (2) is correct only for values of t and τ such that t is an integer multiple
of τ . But if we ignore this fact, or simply accept (2) as an approximation, we
can find the optimal restart time in a straightforward way. Surprisingly, it turns
out that the approximation gives us a restart time independent of the deadline
t, which is optimal in the limit t → ∞. That is, it optimises the tail of the
completion time distribution under restarts, and is therefore beneficial for many
other metrics as well, such as higher moments of the completion time.

Theorem 1. If the restart time τ∗ is an extreme (in τ) of (1−F (τ))
t
τ for any

deadline t then τ∗ is a point where τ∗.h(τ∗) = − log (1− F (τ∗));

m

192 K. Wolter

Proof. We use that

d

dx
(g(x))x = (g(x))x

(
x d

dxg(x)
g(x)

+ log(g(x))

)
. (3)

τ∗ is an extreme when the derivative of (1− F (τ))
t
τ equates to 0:

d

dτ
(1− F (τ))

t
τ = (1− F (τ))

t
τ

(
f(τ)τ

1− F (τ)
+ log(1− F (τ))

)
= 0. (4)

Irrespective of the value of t it immediately follows that

f(τ)
1− F (τ)

=
− log(1− F (τ))

τ
, (5)

and thus the conclusion holds if and only if the premiss holds. �

Eqn. (5) can be rewritten as

τ · h(τ) = H(τ) (6)

where H(τ) can be interpreted as the surface under the hazard rate curve up
to point τ . We can therefore reason that (5) expresses the fact that if (1) holds
there exists a point on the hazard rate curve such that the rectangle defined
by x- and y-value of this point equals the integral under the hazard rate curve
up to this point. We will refer to 6 as the rectangle equals surface rule. This
very appealing and simple rule is used in this paper for an empirical hazard
rate to find an empirical optimal restart time that maximises the probability of
completion, that is the probability of making an infinite deadline.

It should be noted that if the hazard rate is monotonously increasing, no
value of τ exists, such that (6) holds. In that case restart will not help increas-
ing the probability of completion. Only if the hazard rate decreases after some
point a value of τ exists, such that (6) holds. Only then restart can be applied
successfully.

3 Estimating the Hazard Rate

It follows from (6) that an estimate ĥ(t) of the hazard rate curve is needed to
determine the optimal restart time following the rectangle equals surface rule.
We will in this section provide the main steps of how to estimate the hazard
rate and implement the rule (6) in an algorithm. Some details are shifted to the
appendix. We use the theory on survival analysis in [1].

The hazard rate h(t) can not be estimated directly from a given data set.
Instead, first the cumulative hazard rate H(t) is estimated and then the hazard
rate itself is computed as a numerical derivative.

Let us consider a sample of n individuals, that is n completions in our study.
We sample the completion times and if we order them, we obtain a data set of

193

D distinct times t1 ≤ t2 ≤ . . . ≤ tD where at time ti there are di events, that is
di completions take time ti. The random variable Yi counts the number of jobs
that need more or equal to ti time units to complete. We can write Yi as

Yi = n−
i−1∑
j=1

dj

All observations that have not complete at the end of the regarded time period,
usually time tD, are called right censored. There are Yn − dn right censored
observations. The experimental data we use falls in that category, since Internet
transactions commonly use TCP, which aborts (censors) transactions if they do
not succeed within a given time.

The hazard rate estimator ĥ(t) is the derivative of the cumulative hazard rate
estimator Ĥ(t), which is defined in Appendix A. It is estimated as the slope of
the cumulative hazard rate. Better estimates are obtained when using a kernel
function to smooth the numerical derivative of the cumulative hazard rate. The
smoothing is done over a window of size 2b. A bad estimate of the hazard rate
will yield a bad estimate of the optimal restart time and the optimised metric is
very sensitive to whether the restart time is chosen too short. Therefore a good
estimate of the hazard rate is needed.

Let the magnitude of the jumps in Ĥ(t) and in the estimator of its variance
V̂ [Ĥ(t)] at the jump instants ti be ΔĤ(ti) = Ĥ(ti)− Ĥ(ti−1) and ΔV̂ [Ĥ(ti)] =
V̂ [Ĥ(ti)]− V̂ [Ĥ(ti−1)]. Note that ΔĤ(ti) is a crude estimator for ĥ(ti).

The kernel-smoothed hazard rate estimator is defined separately for the first
and last points, for which t− b < 0 or t + b > tD. For inner points with b ≤ t ≤
tD − b the kernel-smoothed estimator of h(t) is given by

ĥ(t) = b−1
D∑

i=1

K

(
t− ti

b

)
ΔĤ(ti). (7)

The variance of ĥ(t) is needed for the confidence interval and is estimated by

σ2[ĥ(t)] = b−2
D∑

i=1

K

(
t− ti

b

)2

ΔV̂ [Ĥ(ti)]. (8)

The function K(.) is the Epanechnikov kernel defined in Appendix B.
A (1−α) · 100% point wise confidence interval around ĥ(t) is constructed as[

ĥ(t) exp

[
−z1−α/2σ(ĥ(t))

ĥ(t)

]
, ĥ(t) exp

[
z1−α/2σ(ĥ(t))

ĥ(t)

]]
. (9)

where z1−α/2 is the (1− α/2) quantile of the standard normal distribution.
The choice of the right bandwidth b is a delicate matter, but is important

since the shape of the hazard rate curve greatly depends on the chosen bandwidth
(see figure 2) and hence a badly chosen bandwidth will have a serious effect on

Self- anagement of Systems Through Automatic Restartm

194 K. Wolter

the optimal restart time. One way to pick a good bandwidth is to use a cross-
validation technique of determining the bandwidth that minimises some measure
of how well the estimator performs. One such measure is the mean integrated
squared error (MISE) of ĥ over the range τmin to τmax. The mean integrated
squared error can be found in Appendix C. To find the value of b which minimises
the MISE we find b which minimises the function

g(b) =
M−1∑
i=1

(
ti+1 − ti

2

)
(ĥ2(ti) + ĥ2(ti+1))−

2b−1
∑
i�=j

K

(
ti − tj

b

)
ΔĤ(ti)ΔĤ(tj). (10)

Then g(b) is evaluated for different values of b. Each evaluation of g(b) requires
the computation of the estimator of the hazard rate. The optimal bandwidth can
be determined only in a trial-and-error procedure. We found in our experiments
that the optimal bandwidth is related with the size of the data set and the
variance of the data. We use the standard deviation to determine a starting value
and then do a simple step-wise increase of the bandwidth until g(b) takes on its
minimal value. In case the hazard rate is increasing in the first steps, we decrease
b and start again, since then we are obviously beyond the minimum already. In
our experiments and in the literature we always found a global minimum, never
any local minima. Advanced hill-climbing algorithms can be applied to find the
minimum more quickly and more accurately than we do here.

Once the best estimate of the hazard rate is found we need to determine the
point i∗ that satisfies the rectangle equals surface rule (6).

The following simple algorithm determines the optimal restart time τ∗ by
testing all observed points ti, i = 1, . . . , n as potential candidates.

Algorithm 1 (Optimal restart time).

Input ĥ, Ĥ and t;
i = 1; #(t = t1, . . . , tn)
While((i < n) and (ti · ĥ(ti) > Ĥ(ti))) {

i + +;
}
return ti;

This algorithm returns in the positive case the smallest observed value that is
greater than the estimated optimal restart time τ∗.

In many cases, however, the studied data set does not contain observations
large enough to be equal or greater than the optimal restart time. Then we
extrapolate the estimated hazard rate to find the point where the rectangle
equals the surface under the curve. Assuming we have a data set of n observations
ti, i = 1, . . . , n, at first the slope of the estimated hazard rate at the end of the
curve is determined as the difference quotient

slope =
ĥ(tn)− ĥ(tn−1)

tn − tn−1
. (11)

195

Then tτ = tn + Δt is determined such that for tτ eqn. (5) holds.

(tn + Δt) · (ĥ(tn) + slope ·Δt) = Ĥ(tn) · slope ·Δt · tn

⇐⇒ Δt =
Ĥ(tn)− t · ĥ(tn)

ĥ(tn)− 2 slope tn − Ĥ(tn)− slope
. (12)

3.1 Complexity

The computational complexity depends in first place on the number of iterations
needed to find the optimal bandwidth for the hazard rate estimator. In our
experiments we used a heuristic based on the standard deviation of the data set
that gave us the optimal bandwidth often in less than 5 iterations, but sometimes
took up to 20 iterations.

The second important parameter is the number of observations considered.
Each iteration on the bandwidth requires the computation of the estimated
hazard rate, which in turn needs traversing all observations and uses for each
point a window of size 2b. Complexity of the hazard rate estimator is therefore
at most O(n2). Improving on the heuristic for the bandwidth, so that in all cases
only few iterations are needed is certainly worth while.

4 Experiments

We have implemented the algorithm to estimate the hazard rate and determine
the optimal restart time as defined in theorem 1. The implementation is done
in Mathematica and has been applied to the HTTP connection setup data stud-
ied in [5]. This data in fact consists of the time needed for TCP’s three-way
handshake to set up a connection between two hosts.

In our experiments we investigate various issues. One is the uncertainty intro-
duced by small sample sizes. The available data sets consist of approximately one
thousand observations for each URL, that is thousand connection setup times to
the same Internet address. We use these data sets and take subsets of first one
hundred then two hundred observations etc. as indicated in the caption of the
figure and in the table. We do not use data of different URLs in one experiment
since we found that very often different URLs have different distributions or at
least distribution parameters. Furthermore, the application we have in mind is
web transactions between two hosts.

The data we study is data set ‘28’ consisting of the connection setup times
to http://nuevamayoria.com, measured in seconds. This data set shows char-
acteristics such as a lower bound on all observation and a pattern of variation
which we found in many other data sets as well, even though usually not with
the same parameters. The chosen data set is therefore to be seen as one typical
representative of a large number of potential candidates. The considered con-
nection setup times are shown in figure 1. The largest observation in this data
set is 0.399678 seconds.

Self- anagement of Systems Through Automatic Restartm

196 K. Wolter

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0 200 400 600 800 1000

c
s
t

observation

Fig. 1. Data set No. 28; connection setup times (in seconds)

For each of the mentioned subsamples the optimal smoothing factor, or band-
width, is computed by evaluating (10) several times, finding the minimum in a
simple search. Figure 2 shows estimates of the hazard rate for different values
of the bandwidth. Parameter b1 is too large, whereas b2 is too small, b3 is the
one that minimises the error and is therefore the optimal bandwidth. One can
see that too large a bandwidth leads to an extremely smooth curve, whereas
too small a bandwidth produces over-emphasised peaks. From the figure one
might conclude that rather too large a bandwidth should be chosen than one
that is too small, but more experiments are needed for a statement of this kind.
Using the optimal bandwidth, the hazard rate and its 95% confidence interval
are estimated according to (7) and (9). Finally, for each estimated hazard rate
the optimal restart time τ∗ is computed using algorithm 1. In some cases, the
algorithm finds the optimal restart time, since the data set includes still an
observation greater than the optimal restart time. If the data set has no obser-
vation large enough to be greater than the optimal restart time, we extrapolate
according to (12). The optimal restart times are drawn as vertical bars in the
plots in figures 3 and 4. Note that in figure 3 although it looks like all optimal
restart times are extrapolated in fact none of them is. The extrapolated optimal
restart times are indicated by an asterisk in table 1.

The hazard rate curve has no value at the point of the largest observation,
since for the numerical derivation always two data points are needed. Further-
more, because of the limited amount of data in the tail, it is not surprising that
the confidence interval at the last observations grows rapidly.

Table 1 shows some characteristics obtained in the program runs for data
set 28. Each block of the table belongs to a subset of size n with corresponding
standard deviation. The standard deviation changes as more observations come
into consideration. For each subsample three different cases are studied. In the

197

-100

 0

 100

 200

 300

 400

 500

 600

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

ha
za

rd
 r

at
e

connection setup time

b1 = 0.0121551
b2 = 0.0013370
b3 = 0.0067581

Fig. 2. Hazard rate for data set No. 28 and different values of the bandwidth b

first one only the n observations are used and the failure probability equals
either zero, or the relative fraction of observations that are greater than 3.0.
This threshold is the first retransmission timeout of TCP and hence observations
greater 3.0 are (somewhat arbitrarily) censored and retried. We treat them as
censored observations and all censored observations contribute to the failure
probability. Data set ‘28’ does not have any such censored observations, but
many other data sets do. The second group consists of the n observations plus
2n censored ones and has therefore failure probability 2/3, or a little higher if
there are additional censored observations present in the data set. Analogously,
the third group has n + 4n observations and a failure probability of n/5n = 0.8
(or more if there are censored observations in the data set).

If we look at the results for failure probability zero, also plotted in figure 3
for n = 100, 200, 400, 600, 800 we see that the small data sets lead to an overes-
timated optimal restart time (if we assume that the full 1000 observations give
us a correct estimate), but the ‘correct’ value is overestimated by less than 5%.

We used such high, and perhaps unrealistic, failure probabilities in our study
since a failure probability of e.g. 0.1 does not show in the results at all. Looking
at the results for the different sample sizes in the group with high failure prob-
ability, we also find that with the small samples the optimal restart time gets
overestimated.

We also investigate the impact of the failure probability within a group of
fixed sample size. The failure probability is increased by subsequently adding
more failed (and hence censored) observations and then estimates for the hazard
rate and optimal restart time are computed. The failed attempts of course in-
crease the sample size. We notice (as can be seen in table 1) that the bandwidth
used for estimating the hazard rate decreases for increasing failure rate, while the

Self- anagement of Systems Through Automatic Restartm

198 K. Wolter

0.3 0.32 0.34 0.36 0.38 0.4
cst

100

200

300

400

500

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

0.3 0.32 0.34 0.36 0.38 0.4
cst

50

100

150

200

250

300

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

0.3 0.32 0.34 0.36 0.38 0.4
cst

50

100

150

200

250

300

350

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

0.3 0.32 0.34 0.36 0.38 0.4
cst

50

100

150

200

250

300

350

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

0.3 0.32 0.34 0.36 0.38 0.4
cst

50

100

150

200

250

300

350

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

Fig. 3. Estimated hazard rates and confidence intervals for the estimates for increasing

sample size (top row n = 100 and n = 200, middle row n = 400 and n = 600, bottom

row n = 800) and failure probability 0.0

sample standard deviation is computed only from non-failed observations and
hence does not change with changing failure probability. We found in [4] that
for theoretical distributions the optimal restart time decreases with increasing
failure probability. Typically our experiments agree with this property, which,
however, is not true for some subsets of data set ‘28’.

An additional purpose of the experiments was to find out whether we can
relate the optimal bandwidth to any characteristic of the data set. In the lit-
erature no strategy is pointed out that helps in finding the optimal bandwidth
quickly. In our implementation we set the standard deviation as a starting value
for the search. If we have no censored observations (failure probability zero) we
always find the optimal bandwidth within less than five iterations. If the data
set has many censored observations the optimal bandwidth roughly by factor 5

199

Table 1. Optimal restart time (τ∗) and optimal bandwidth (bw) for different subsam-

ple sizes of data set 28 and different failure probabilities

n = 100, StdDev = 0.0121551 n = 200, StdDev = 0.0117341

failure prob. bw τ∗ failure prob. bw τ∗

0.0 0.006758 0.389027 0.0 0.011557 0.389027
0.666667 0.001779 0.597251∗ 0.666667 0.001398 0.674306∗

0.8 0.001779 0.554513∗ 0.8 0.001271 0.638993∗

n = 300, StdDev = 0.0106746 n = 400, StdDev = 0.010383

failure prob. bw τ∗ failure prob. bw τ∗

0.0 0.011742 0.389027 0.0 0.010226 0.399678
0.666667 0.001272 0.333271 0.666667 0.001124 0.333271

0.8 0.001156 0.333271 0.8 0.001124 0.333271

n = 500, StdDev = 0.00997916 n = 600, StdDev = 0.00941125

failure prob. bw τ∗ failure prob. bw τ∗

0.0 0.010977 0.399678 0.0 0.010352 0.399678
0.666667 0.001081 0.333271 0.666667 0.001138 0.333271

0.8 0.001081 0.333271 0.8 0.001019 0.333271

n = 700, StdDev = 0.00895504 n = 800, StdDev = 0.00851243

failure prob. bw τ∗ failure prob. bw τ∗

0.0 0.009850 0.309209 0.0 0.0103 0.399678
0.66667 0.000970 0.333271 0.66667 0.000922 0.332014

0.8 0.000970 0.333271 0.8 0.000922 0.332014

n = 900, StdDev = 0.00816283 n = 1000, StdDev = 0.00784583

failure prob. bw τ∗ failure prob. bw τ∗

0.0 0.009877 0.308456 0.0 0.009493 0.308456
0.6667 0.000884 0.332014 0.6667 0.000949 0.333271

0.8 0.000884 0.332014 0.8 0.000850 0.332014

and we need more iterations to find that value, since our heuristic has a starting
value far too large in that case.

Figure 4 compares two hazard rates using another data set for data with
identical sample size, the first has zero failure rate and the second has failure
rate 0.8. It can be seen that the high number of added censored observations
leads to a much more narrow hazard rate, with lower optimal restart time. Note
that this figure is based on a different data set than the ones above.

In summary, we have provided an algorithm that gives us an optimal restart
time to maximise the probability of meeting a deadline only if restart will indeed
help maximising that metric. So if the algorithm returns an optimal restart
time we can be sure that restart will help. We found a heuristic based on the
variance of the data that helps in finding quickly the bandwidth parameter
needed for the hazard rate estimator. We found that small data sets usually lead
to an overestimated optimal restart time. But we saw earlier (in [4]) that an
overestimated restart time does much less harm to the metric of interest than
an underestimated one and we therefore willingly accept overestimates.

Self- anagement of Systems Through Automatic Restartm

200 K. Wolter

0.09 0.1 0.11 0.12 0.13
cst

100

200

300

400

500

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

0.09 0.1 0.11 0.12 0.13
cst

10

20

30

40

50

60

hazard rate

O
p
t
i
m
a
l

r
e
s
t
a
r
t

t
i
m
e

Fig. 4. Estimated hazard rates and confidence intervals for sample size n = 1000,

failure probability 0.0 (left) and 0.8 (right)

5 Discussion and Conclusions

Self-management of modern, complex systems can include among others the
automatic restart of jobs, or transactions if they are performing badly. As the
considered metric we chose in this paper the probability of completion before
an arbitrary deadline under unlimited number of allowed restarts. We derived
a surface equals rectangle rule for the optimal restart time that is based on the
hazard rate. We implemented an algorithm to estimate the hazard rate from a
given data set and to determine the optimal restart time. The surface equals
rectangle rule provides an answer to the question of whether restart makes sense
in a given scenario. If an optimal restart time is found at all we can be sure that
the shape of the hazard rate is such that restart makes sense and (1) holds. A
very simple heuristic was used to quickly find the best bandwidth for the hazard
rate estimation. The benefit of our algorithm is that it gives reasonably good
estimates on small data sets and can hence be used for fast estimates in on-line
automatic restart.

The run-time of the algorithm depends on the considered number of observa-
tions and on the number of iterations needed to find a good bandwidth for the
hazard rate estimation. We found that for our smaller data sets with up to 400
observations less than 5 iterations are needed and the algorithm is very fast. We
did not evaluate CPU time and the Mathematica implementation is not run-time
optimised, but a suggestion for an optimal restart time in the above setting can
be provided within a few seconds. If, however, the data set grows large, has e.g.
more than 800 observations, each iteration on the bandwidth takes in the order
of some one or two minutes. The polynomial complexity becomes relevant and
the method is no longer applicable in an on-line algorithm.

A good heuristic for choosing the optimal bandwidth is a key part in the whole
process. The better the first guess, the less iterations are needed and the faster
we obtain the optimal restart time. We cannot compare our heuristic to others
since in the literature nothing but pure ‘trial and error’ is proposed. But we
can say, that for small data sets and failure probability zero the optimal restart
time is obtained very fast since the heuristic provides a good first estimate of
the bandwidth.

201

In our experience the smallest data sets were usually sufficient for a reason-
ably good estimate of the optimal restart time. The optimal restart time will
always be placed at the end of the bulk of the observations and some few hun-
dred observations are enough to get a notion of ‘bulk’ and ‘end of the bulk’. If
we consider that some web pages consist of up to 200 objects a data set of 100
samples is not hard to obtain or unrealistic. In Internet transactions some hun-
dred samples are very quickly accumulated. Furthermore, small samples seem to
overestimate the optimal restart time, which does the maximised metric much
less harm than underestimation.

In practical applications the required number of observations is no limitation
to the applicability of our method and having not too much data has a positive
effect on the run-time while it does not deteriorate the obtained result. The
proposed method is well-suited as an on-line restart module.

One may argue that if everybody applies restart networks become more con-
gested and response times will drop further. And in fact restart changes the TCP
timeout - for selected applications. In our measurements we found that less than
0.5% of all connection setup attempts fail. Our method tries to detect failures
faster than the TCP timeout and to restart failed attempts, since for slow con-
nections restart typically does not lead to improved response time, whereas for
failed connections in many cases it does. Failed attempts, however, are so rare
that restarting those does not impose significant extra load on a network, while
potentially speeding those up enormously.

References

1. J. P. Klein and M. L. Moeschberger. Survival Analysis, Techniques for Censored
and Truncated Data. Springer, 1997.

2. S. M. Maurer and B. A. Huberman, “Restart strategies and Internet congestion,”
in Journal of Economic Dynamics and Control, vol. 25, pp. 641–654, 2001.

3. A. van Moorsel and K. Wolter, “Analysis and Algorithms for Restart,” in Proc.
1st International Conference on the Quantitative Evaluation of Systems (QEST),
pp. 195-204, Twente, Netherlands, Sept. 2004.

4. A. van Moorsel and K. Wolter, “Making Deadlines through Restart,” in Proc. 12th
GI/ITG Conference on Measuring, Modelling and Evaluation of Computer and
Communication Systems (MMB 04), pp. 155–160, Dresden, Germany, Sept. 2004.

5. P. Reinecke, A. van Moorsel and K. Wolter, “A Measurement Study of the Interplay
between Application Level Restart and Transport Protocol,” in Proc. International
Service Availability Symposium, Munich, Germany, May 2004.

6. M. Schroeder and L. Buro, “Does the Restart Method Work? Preliminary Results
on Efficiency Improvements for Interactions of Web-Agents,” in T. Wagner and
O. Rana, editors, Proceedings of the Workshop on Infrastructure for Agents, MAS,
and Scalable MAS at the Conference Autonomous Agents 2001, Springer Verlag,
Montreal, Canada, 2001.

Self- anagement of Systems Through Automatic Restartm

202 K. Wolter

Appendix

A Cumulative Hazard Rate

The cumulative hazard rate is estimated using the Nelson-Aalen estimator, which
has especially good small sample performance. The Nelson-Aalen estimator is

Ĥ(t) =

{
0 if t ≤ t1∑

ti≤t
di

Yi
if t1 ≤ t.

(13)

The estimated variance of the Nelson-Aalen estimator is

σ2
H(t) =

∑
ti≤t

di

Y 2
i

. (14)

B Epanechnikov Kernel

For the kernel K(.) the Epanechnikov kernel is used

K(x) = 0.75(1− x2) for − 1 ≤ x ≤ 1 (15)

as it is shown in [1] to be often more accurate than other kernel functions. When
t − b < 0 or t + b > tD the symmetric kernel must be transformed into an
asymmetric one, which is at the lower bound with q = t/b

Kq(x) = K(x)(α + βx), for − 1 ≤ x ≤ q, (16)

where

α =
64(2− 4q + 6q2 − 3q3)

(1 + q)4(19− 18q + 3q2)
(17)

β =
240(1− q)2

(1 + q)4(19− 18q + 3q2)
(18)

For time-points in the right-hand tail q = (tD − 1)/b the kernel function is
Kq(−x).

C Bandwidth Estimation

The mean integrated squared error (MISE) of the estimated hazard rate ĥ over
the range τmin to τmax is defined by

MISE(b) = E

(∫ τmax

τmin

[ĥ(u)− h(u)]2 du

)
= E

(∫ τmax

τmin

ĥ2(u) du

)
− 2E

(∫ τmax

τmin

ĥ(u)h(u) du

)
+E

(∫ τmax

τmin

h2(u) du

)
. (19)

203

This function depends on the bandwidth b used in the Epanechnikov kernel.
The last term does not contain b and can be ignored when finding the best
value of b. The first term is estimated by

∫ τmax

τmin
ĥ2(u) du. We evaluate ĥ(u) at a

not necessarily equi-distant grid of points τmin = u1 < u2 < . . . < uM = τmax

and apply the trapezoid rule. The second term we approximate by a cross-
validation estimate suggested by Ramlau-Hansen where we sum over the event
times between τmin and τmax.

Self- anagement of Systems Through Automatic Restartm

Fundamentals of Dynamic Decentralized
Optimization in Autonomic Computing Systems

Tomasz Nowicki, Mark S. Squillante, and Chai Wah Wu

Mathematical Sciences Department,
IBM Thomas J. Watson Research Center,

Yorktown Heights, NY 10598, USA

Abstract. We consider the fundamentals of a mathematical framework
for decentralized optimization and dynamic optimal control in autonomic
computing systems that provide self-∗ properties. In particular, we first
study conditions under which decentralized optimization can provide the
same quality of solution as centralized optimization. After establishing
such equivalence results under mild technical conditions, we exploit our
mathematical framework to investigate the dynamic control properties
of decentralized optimization including the communication between hi-
erarchical levels. We then study the dynamic case when the parameters
and input to the system changes, and how the additional dynamics can
cause behavior which deviates from the static case, including complicated
behavior such as phase transitions, chaos and instability.

1 Introduction

An autonomic computing system is a complex information system comprised
of many interconnected components that operate at different time scales in a
largely independent fashion and that manage themselves to satisfy high-level
system management requirements and specifications [1]. This includes provid-
ing the self-∗ properties of self-configuring, self-organizing, self-protecting, and
self-repairing. Fundamental problems involved in achieving these goals of self-
management concern the general mathematical framework that provides the
underlying foundation and supports the design, architecture and algorithms em-
ployed throughout the autonomic computing system. Two fundamental aspects
of this mathematical framework are of interest in this paper: the optimization
of the entire range of autonomic system objectives, and the dynamic control of
achieving these optimal solutions.

The increasing complexity of current and future information systems suggests
a decentralized approach for the optimization model of autonomic computing
systems, which is a natural and appropriate way to design and implement large-
scale information systems that provide self-∗ properties. On the other hand, a
centralized approach with complete knowledge over all constituent system com-
ponents has the potential to provide significant improvements over a decentral-
ized approach (ignoring associated overheads, delays, etc.), in the same way that

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 204–218, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fundamentals of Dynamic Decentralized Optimization 205

solutions to global optimization problems (if attainable) are often superior to the
corresponding locally optimal solutions. This fundamental problem involving the
tradeoff between centralized and decentralized approaches arises in a wide range
of applications, and its solution is especially important to achieve the goals of
self-management in autonomic computing systems.

Autonomic computing systems that provide self-∗ properties are dynamic
environments in which optimal self-management decisions must be made contin-
ually over time and at multiple time scales. Dynamic optimal control is needed
to achieve these optimal solutions over time. When the input parameters to the
system change with time, or when the system environment changes over time for
any other reason, the additional dynamical behavior of the resulting continual
optimization problem can be quite complex and a fundamental problem is to de-
termine this interaction between dynamics and optimization. The complicated
behavior caused by these additional dynamics can include phase transitions,
chaos and instability.

Our study focuses on both of these fundamental problems as an important
step toward providing a mathematical foundation for decentralized optimization
and dynamic optimal control in autonomic computing systems with self-∗ prop-
erties. We first establish conditions under which a decentralized optimization ap-
proach is as good as a centralized approach. In particular, we show that there is
no loss of quality in the optimal self-management of complex information systems
when a decentralized approach is used. Our study also considers implementation
schemes where additional information is passed between system components at
different levels of this hierarchical decentralized optimization model in order to
significantly increase the efficiency with which the optimization algorithms com-
pute the optimal solution. We then turn to the dynamic case and illustrate some
possible difficulties and added complexities of optimization under uncertainties
in the ever changing data that is communicated among parts of the system over
time. This uncertainty can be caused by inaccuracies in the measurement, but
can be also due to delay in the measurement and/or communication links of the
system. In both cases, a representative application of our general mathematical
framework is presented and used to illustrate some of the fundamental prop-
erties of decentralized optimization and dynamic optimal control in autonomic
computing systems.

2 Mathematical Framework for Optimization

2.1 System Model

We consider a hierarchical and decentralized model for optimal self-management
in which a complex information system is partitioned into multiple application
environments (AEs) each of which has an application manager (AM) that con-
trols and optimizes the resource management and operations within the applica-
tion environment. The collection of application managers are in turn controlled
and optimized by a central manager (CM) that allocates the system resources
among the application environments; refer to Figure 1. The system hierarchy

206 T. Nowicki, M.S. Squillante, and C.W. Wu

Fig. 1. System model

can contain many levels, i.e., each application environment can itself recursively
include a manager controlling and optimizing subenvironments within the appli-
cation environment. It is the goal of the central manager to optimize the overall
objective function for the entire information system.

This overall objective function can be based on any combination of self-∗
properties (e.g., self-configuring, self-organizing, self-protecting, self-repairing)
and measures (e.g., availability, costs, overheads, penalties, performance, reli-
ability, revenues, risk, robustness, utility [2]) and depends upon the resources,
workloads and other parameters of the information system. In particular, it is
important to note that our use of the overall objective function in this study is
not limited to the more typical measures based on performance, but rather can
be based on any quantitative measure of interest to support any combination of
self-∗ properties. This can include objectives based on measures of the robust-
ness of the desired solution, as well as objectives based on minimal deviations
from “good” states or maximum deviations from “bad” states. Furthermore, our
use of the overall objective function is not limited to any specific self-∗ property
such as those that have been traditionally considered as optimization problems.
Instead, the scope of our study is intended to cover any aspect of any self-∗ prop-
erty, or combination of self-∗ properties, that can be solved, either in part or as
a whole, using a quantitative objective function. Optimization should play an
important role in these aspects of the design and implementation of autonomic
computing systems.

2.2 Optimal Total Cost

To formally express the problem in the standard form of optimization problems,
we consider without any loss of generality minimizing a cost function (since max-
imizing f is equivalent to minimizing −f). A cost function fi(xi, ri, ui) is asso-
ciated with each application environment i, where xi is the set of variables that
can be changed in application environment i, ri is the set of resources allocated
to application environment i, and ui is the set of external variables that affect

AM

AE

f(x,r,u)

AM

AE

f(x,r,u)

AM

AE

f(x,r,u)

Central Manager

Fundamentals of Dynamic Decentralized Optimization 207

application environment i. Examples of ri include the set of servers assigned
to application environment i, or the amount of disk space or processing time
made available to application environment i. Examples of ui include the current
workload of application environment i or conditions imposed by external events
such as failures. The set of variables xi must also satisfy the set of constraints
Ci, i.e., xi ∈ Ci is the feasible region of operation for application environment i.
In general, Ci will depend on ri and ui. Examples of Ci include conditions im-
posed by application environment i, such as an upper limit on the percentage of
requests having end-to-end response times that exceed some threshold when the
resources of application environment i are organized in a multi-tier architecture.

The total cost function for the entire system is given by

h(f1(x1, r1, u1), . . . , fn(xn, rn, un)),

where h aggregates the cost of each application environment i into a single total
cost. Examples of h of interest in this paper include summation (SUM), weighted
summation with nonnegative weights, the maximum function (MAX), and the
minimum function (MIN).

The total set of resources in the system is finite, and the set of resources
assigned to the application environments is required to satisfy a constraint:
(r1, . . . , rn) ∈ R. Examples of this constraint include bounds on the amount
of disk space or number of servers, or in the case when the servers are organized
in multiple tiers, bounds on the end-to-end response or processing time. By al-
lowing elements of R to represent a strict subset of the resources, the central
manager can reserve a set of available resources for direct allocation to any ap-
plication environment i rather than being moved from application environment
j to application environment i.

Then the goal of the autonomic computing system is to globally minimize
the total cost function h subject to constraints. That is,

hc = min
xi,ri

h(f1(x1, r1, u1), . . . , fn(xn, rn, un)) (1)

such that (r1, . . . , rn) ∈ R, xi ∈ Ci(ri, ui). The value hc is the optimal cost of the
information system (which in general depends on the set of external variables
u1, . . . , un) under a centralized approach as it is the globally minimal cost among
all feasible resource allocations ri and all feasible sets of variables xi. The cost
hc can be computed by an optimization algorithm which has knowledge about
the operations of all application environments i including the cost functions fi.

Now we seek to find conditions under which hc can be obtained using a
hierarchical, decentralized approach.

2.3 Decentralized Optimization

For each application environment i, the corresponding application manager i
minimizes the cost function for application environment i by solving the opti-
mization problem:

gi(ri, ui) = min
xi

fi(xi, ri, ui) (2)

208 T. Nowicki, M.S. Squillante, and C.W. Wu

such that xi ∈ Ci(ri, ui), where ri are the set of resources allocated by the central
manager to application environment i. In turn, the central manager determines
the resource allocation by solving the optimization problem:

hd = min
ri

h(g1(r1, u1), . . . , gn(rn, un)) (3)

such that (r1, . . . , rn) ∈ R.
Notice the decentralized nature of this approach. Each application environ-

ment i optimizes the cost within its environment and passes this optimal cost
to the central manager. In particular, there is no need for the central manager
to know the exact form of the cost function fi. As we will show in Section 2.4,
additional information can be sent from each application environment i to the
central manager to aid in the optimization of the total cost.

For vectors in IRn, let≥ be the partial order generated by the positive orthant,
i.e., x ≥ y if xi ≥ yi for all i.

Definition 1. A function g : IRn → IRm is called order-preserving with respect
to ≥ (OPGT) if g(x) ≥ g(y) whenever x ≥ y.

We will refer to such a function as OPGT. Examples of OPGT functions are
SUM, MAX and MIN.

Suppose the external variables ui are constant (in a stationary stochastic
sense) so that we can ignore them for the moment. Section 3 will consider the
case when this assumption is removed. We then have the following equality result
between centralized and decentralized optimization.

Theorem 1. If the aggregation function h is OPGT, then hc = hd, i.e., the
decentralized optimal solution is as good as the centralized optimal solution.

Proof. Clearly hd ≥ hc. Let x∗
i and r∗i be the optimal set of variables and resource

allocations such that

h(f1(x∗
1, r

∗
1 , u1), . . . , fn(x∗

n, r∗n, un)) = hc

while satisfying the constraints (r∗1 , . . . , r∗n) ∈ R, x∗
i ∈ Ci(r∗i , ui). Then by defi-

nition
gi(r∗i , ui) ≤ fi(x∗

i , r
∗
i , ui),

and from the OPGT property of h we have:

hd ≤ h(g1(r∗1 , u1), . . . , gn(r∗n, un))
≤ h(f1(x∗

1, r
∗
1 , u1), . . . , fn(x∗

n, r∗n, un)) = hc.

��

Fundamentals of Dynamic Decentralized Optimization 209

2.4 Hierarchical Implementation

In general, continuous optimization algorithms to solve Equation (3) perform
much more efficiently and effectively if, in addition to the ability to evaluate the
objective function

h̃(r1, . . . , rn) = h(g1(r1, u1), . . . , gn(rn, un)),

the gradient ∇h̃ of the objective function is also available.
Note that

∇h̃ =
∑

i

∇ih · ∂gi

∂r

with ∂gi

∂rj
= 0 for i �= j. Assuming the constraints xi ∈ Ci(ri, ui) are written as

ci(xi, ui) = ri or as ci(xi, ui) ≤ ri, then −∂gi

∂ri
are the Lagrange multipliers in

solving Equation (2); e.g., refer to [3]. Thus by having each application manager
i send to the central manager both g(ri, ui) and the corresponding Lagrange
multipliers, the gradient ∇h̃ can be efficiently computed by the central man-
ager. In this case, the following hierarchical implementation scheme between the
central manager and the application environments can be employed.

1. The central manager sends ri to each application manager i.
2. Depending on the architecture of the system, the central manager might

also send the set of external variables ui to each application manager i. In
other cases, the external variables ui are readily available to each application
manager i.

3. Each application manager i computes gi(ri, ui) and sends it to the central
manager along with the corresponding Lagrange multipliers.

4. The central manager uses this information to compute h̃ and ∇h̃ and find
the next resource allocation (r1, . . . , rn).

5. This is iterated until a suitable resource allocation is found or the algorithm
converges.

Note that this iterative scheme need not require communication between the
central manager and every application manager at each step, as application
manager i can provide its objective and the gradient of this objective both as
functions of ri, for all (or a subset of) feasible ri. In any case, the computation of
gi(ri, ui) for each application environment i does not have to be performed very
accurately (e.g., run too many iterations to compute gi(ri, ui)) at the beginning
of the iterative scheme.

For environments where derivatives are not available or cannot be computed
efficiently, the above hierarchical implementation scheme can be used together
with derivative-free trust-region methods [4] to realize similar benefits. In partic-
ular, when derivative-free trust-region methods are used to compute gi, the trust
region radius and (internal) trust region model used in computing gi can be sent
to the central manager in place of the Lagrange multipliers. This information
can be sent to the central manager in a compact form and used in an efficient
manner that is analogous to the hierarchical implementation scheme provided
above.

210 T. Nowicki, M.S. Squillante, and C.W. Wu

2.5 Application of Decentralized Optimization

Let us now consider a representative application of our mathematical framework
for decentralized optimization in which a set of M heterogeneous computing
servers, S1 , . . . , SM , and a set of routers are used by a common service provider
to host a set of N client application environments, E1, . . . , EN . The router as-
signed to application environment i immediately routes all incoming requests to
one of the servers allocated to and under the control of application manager i.
A service-level agreement (SLA) is created for each application environment to
define the corresponding quality-of-service (QoS) requirements and the revenues
(respectively, penalties) for satisfying (respectively, failing to satisfy) these re-
quirements. To elucidate the exposition, we consider SLAs with a single QoS
class within each application environment.

Optimal self-management in such an autonomic computing system includes
the allocation of servers among the set of application environments, the routing
of requests within each application environment, and the scheduling of requests
at each server within an application environment, all in order to minimize the
global objective function based on the collection of SLAs. Specifically, each ap-
plication manager i solves the optimization problem in Equation (2) and the
central manager solves the optimization problem in Equation (3), where ri are
the set of servers and the router allocated by the central manager to application
environment i, (r1, . . . , rN) ∈ R, ui are the set of workload characteristics for
application environment i, and xi ∈ Ci(ri, ui) are the set of router and per-server
scheduling variables that can be changed in application environment i. With our
focus here on single-class QoS requirements, there is no need to set or adjust any
scheduling variables at each server, and thus xi consists solely of a vector of the
proportional weights for routing requests among the set of servers allocated to
application environment i. The set R is the set of all possible N -way partitions
of the set of servers {S1, . . . , SM}, together with a router for each application
environment.

The details of the cost functions in Equations (2) and (3), as well as the
corresponding constraints Ci(ri, ui), depend upon the specific client environ-
ments being served. We shall thus focus on a typical scenario in which the QoS
requirements are based on the response times of client requests. In particular,

fi(xi, ri, ui) = fi(ETi(xi, ri, ui)),

where ETi(xi, ri, ui) denotes the expectation of the stochastic response time
process for application environment i given the allocation of resources ri and
under the routing and scheduling variables xi and the workload ui. We also
shall consider a linear aggregate cost function that is given by

h(g1(r1, u1), . . . , gN (rN , uN)) =
N∑

i=1

Ĥi gi(ri, ui)

where Ĥi is the holding cost per unit time associated with application environ-
ment i, although MAX and MIN could be used instead of SUM in a similar
fashion.

Fundamentals of Dynamic Decentralized Optimization 211

The workloads ui can be accurately modeled as stationary stochastic pro-
cesses [5]. When the functions fi(·) are linear, the optimization problem in
Equation (2) for each application manager i, under the assumptions of this
section, has been considered in [6] within the context of closed-form approxi-
mations based on heavy-traffic stochastic-process limits to accurately model the
per-server response time processes in each application environment i under gen-
eral conditions in an online fashion. Further assuming independence within and
among the stochastic processes, we obtain from the results in [6] that Equa-
tion (2) is given by

gi(ri, ui) = min
xi

∑
Sj∈ri

Hj

(
1

μi,j
+

xi,jαi + βi

μi,j − λixi,j

)
xi,j , (4)

such that
∑

Sj∈ri
xi,j = 1, xi,j ≥ 0, λxi,j < μi,j , where αi = (C2

Ai
− 1)/2,

βi = (C2
Bi

+1)/2, Hj is the holding cost per customer per unit time at server Sj ,
λ−1

i and C2
Ai

are the mean and squared coefficient of variation of the overall in-
terarrival time process for application environment i, μ−1

i,j and C2
Bi

are the mean
and squared coefficient of variation of the service time process for application
environment i on server Sj ∈ ri, and xi,j is the proportional weight for rout-
ing requests of application environment i to server Sj ∈ ri. The corresponding
central manager optimization problem consists of solving for the set of servers
(r∗1 , . . . , r∗N) ∈ R in Equation (3) with respect to (4), which can be expressed as

hd = min
(r1,...,rN)

N∑
i=1

Ĥi min
xi

∑
Sj∈ri

Hj

(
1

μi,j
+

xi,jαi + βi

μi,j − λixi,j

)
xi,j , (5)

such that (r1, . . . , rN) ∈ R,
∑

Sj∈ri
xi,j = 1, xi,j ≥ 0, λxi,j < μi,j . The solutions

of both of these optimization problems can be computed very efficiently using the
hierarchical implementation scheme of Section 2.4 together with known methods
in convex programming; e.g., refer to [3]. Similarly, the corresponding centralized
optimization problem can be solved via (1) and the above equations, subject to
the same set of constraints.

We have implemented these optimal solutions with which we have conducted
many numerical experiments. Using this approach, we find that even though
the total amount of computation is larger for the decentralized approach, the
optimization is distributed and the work performed by the central manager is
in general less than having the central manager perform centralized global opti-
mization.

3 Mathematical Framework for Dynamic Control

3.1 System Model

The previous section considered decentralized optimization in a static system
environment where the external (workload) variables ui are constant (in a sta-
tionary stochastic sense). On the other hand, autonomic computing systems that

212 T. Nowicki, M.S. Squillante, and C.W. Wu

provide self-∗ properties are clearly dynamic environments in which optimal self-
management decisions need to be made continually over time and at multiple
time scales. The optimal self-management of such complex information systems
therefore must also involve dynamic optimal control for achieving the optimal
solutions that are computed at points in time.

More precisely, the external (workload) variables ui vary over time. These ex-
ternal (workload) variables ui, however, can be accurately modeled as stochastic
processes that vary over time [5]. To achieve the global objectives of autonomic
computing systems with self-∗ properties under such nonstationary behavior,
the decentralized optimization decisions are made periodically at time epochs
t�, � = 0, 1, 2, That is, {t0, t1, t2, . . .} represents the sequence of points in
time when the decentralized optimization process makes its optimal decisions,
where 0 ≡ t0 < t1 < t2 <

The time scales at which these optimal decisions are made depend upon sev-
eral factors, including the delays, overheads and constraints involved in making
changes to decision variables, the QoS requirements of each application environ-
ment i, and the properties of the underlying (nonstationary) stochastic processes.
Then the optimization problems in (2) and (3) are solved at each optimization
decision epoch t� based on measurements collected during previous optimization
intervals τk ≡ [tk, tk+1), k = 0, . . . , �− 1, in order to determine the optimal vari-
ables x∗

i and r∗i that should be deployed during the next optimization interval
τ�, while satisfying the constraints limiting the changes to the decision variables.
We shall assume the intervals τ�, � ≥ 0, are sufficiently long that each application
environment reaches steady state within every interval, and thus the functions
in (2) and (3) are bounded, provided that the constraints for each application
environment are satisfied.

The data from the interval τ�−1 can be used together with data from previous
intervals to parameterize stochastic models related to the optimization decision
process for τ�, to forecast these models to characterize the corresponding system
behavior for the interval τ�, to use these forecasted stochastic models to analyze
the decision process during this interval, and finally to make the appropriate
self-management decisions for the interval τ� of the optimization decision process
which can include interactions with other decision processes.

3.2 Dynamic Control Properties

The control, decision making and optimization mechanisms cannot always be
continuous (due to granularity) and may include some time-delay dependencies.
One of the reasons is that any change requires time and resources. For example,
switching a resource from one application environment to another even if done in
the same physical domain requires some clean-up and quarantine time (due to,
e.g., privacy restrictions in SLAs). The time delays can also be caused by different
time scales of the workloads as well as the operations of several applications
within an environment. It is well known that even very simple (e.g., linear)
models which are only piecewise continuous or contain a feedback element may
exhibit chaotic (in the sense of difficult to predict and qualitatively very sensitive

Fundamentals of Dynamic Decentralized Optimization 213

to initial or control conditions) behavior [7]. This chaotic behavior may appear
in some regimes of parameters, however the sets of vulnerable parameters may
also be very complex – excluding an envelope (e.g., closure or convex hull) of
them might exclude an overly large portion of the parameter space.

As an elementary example of how adding time delay can produce locally
unstable behavior (and hence can produce chaos on the larger scale), consider a
linear dynamical system

yn+1 = (s− d)yn + D (6)

with constant parameters, where the new state depends only on the closest
previous one. This system is stable whenever for ξ = s − d we have |ξ| ≤ 1
and asymptotically stable when |ξ| < 1, where ξ denotes the eigenvalue of the
dynamical system. However, if the balance of s − d is spread over time, we get
a system

yn+1 = syn − dyn−1 + D. (7)

Now the stability condition is that both solutions of ξ2−sξ+d, the characteristic
polynomial of the new system, satisfy |ξ| ≤ 1. In the bifurcation cases, when one
of the eigenvalues is ±1, then the other is ±d, and clearly we may have |d| > 1
even when |s− d| < 1. We skip the detailed analysis of the complex (conjugate)
eigenvalues; e.g., refer to [7].

When the dynamical system near a fix point is as described above and it
is globally bounded (by some non-linear dependencies) in such a way that the
trajectories return to this fix point, then the instability of the fix point produces
very chaotic behavior due to the irregular number of iterates involved in returns
to this fix point.

In special cases chaos can be controllable, for example many stochastically
stable systems exhibit individual chaotic trajectories, but with very well behaved
distributions or moments. The transitions from a deterministic regime, where all
trajectories are predictable at all times, to a stochastic regime, where most of
the trajectories are predictable over long intervals of time, may go through all
kinds of uncontrollable evolutions.

It is therefore essential for any given control system to determine the types
of possible asymptotic behavior, the stability of such behavior under small per-
turbations of the system (a robustness issue), and to conceive of mechanisms
exposing the type of behavior the system is currently in.

3.3 Application of Dynamic Optimal Control

Let us now investigate a representative application of our mathematical frame-
work for dynamic optimal control by extending the (static) decentralized opti-
mization application of Section 2.5 to include the dynamic control for achieving
these optimal solutions. In particular, we consider each application environment
i during any optimization interval τ� in which the corresponding workload pro-
cesses ui are stationary. Every application manager i determines the optimal
routing and scheduling variables x∗

i ∈ Ci by solving the optimization problem
in Equation (4), and the central manager determines the optimal allocation of

214 T. Nowicki, M.S. Squillante, and C.W. Wu

servers (r∗1 , . . . , r∗N) ∈ R by solving the optimization problem in Equation (5).
Then the router variables for each application environment i are obtained by
minimizing the weighted sum of expected response times within application en-
vironment i, and the central manager allocates servers among the set of ap-
plication environment i in order to minimize the overall weighted sum of the
corresponding expected response times.

When λixi,j ≥ μi,j , the response time process for application environment
i on server Sj ∈ ri blows up. In particular, under this condition, the value of
ETi,j within an interval τ� increases with the length of τ� such that ETi,j →∞
as τ� → ∞. While this condition violates key constraints in the decentralized
optimization problem, time delays can cause this situation to occur as we will
demonstrate below. Hence, the smaller the length of τ�, the smaller the explosion
in the value of ETi,j during the interval τ�. On the other hand, the smaller the
length of τ�, the larger the delay in the dynamical system (due to fairly constant
overheads and communication delays) which can lead to the instability problems
illustrated below. Furthermore, the likelihood that a backlog of customers from
interval τ� is not served within this interval and thus spills over into intervals
τ�+k, for k ≥ 1, also depends upon the length of τ�.

There is an analogy between this model and the dynamical systems from
Section 3.2. The rate of growth in the backlog of customers corresponds in
Equations (6) and (7) to the growth rate s, while the server allocation is re-
lated to the decay rate d. In Equation (6) the growth rate and the decay rate
cancel each other immediately within the same time interval and we deal with
the net effect which, by assumption, is such that the backlog remains bounded.
In the presence of time delay as in Equation (7), the decay rate (or the server
allocation) corresponds to a different time interval than the growth rate (or the
backlog rate), which in some cases produces instabilities. We see these effects in
Figures 4 and 5, where the time delay produces high spikes in the total response
time.

In fact, there is a singularity at the point λixi,j = μi,j resulting in a phase
transition between the regions where λixi,j < μi,j and λixi,j > μi,j , and nu-
merical issues can cause problems in the computation of the optimal solutions.
The optimization algorithms used to compute these optimal solutions need to
carefully address these issues.

Dynamic optimal control is clearly needed to achieve the optimal solutions
of Equations (4) and (5) continually over time and at multiple time scales. This,
however, is a very difficult problem within the context of the representative ap-
plication of our mathematical framework, as illustrated by some of the important
issues raised above. Moreover, when the system environment changes over time
(e.g., a change in the workload), the additional dynamical behavior of the result-
ing continual optimization problem can be very complex in terms of both the
mathematical analysis of the system and the insights gained from this analysis.
In order to gain a better understanding of the fundamental interactions between
dynamics and optimization in autonomic computing systems, we consider a sim-
plification of (4) and (5) that reduces to the sum of the corresponding expected

Fundamentals of Dynamic Decentralized Optimization 215

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

time intervals

co
st

optimal allocation
static allocation

Fig. 2. Total response time for optimal allocation and for a constant static allocation

response times. We further assume for clarity of presentation that the servers
are homogeneous and that the decision variables represent the fraction of a large
set of servers allocated between the N = 2 application environments.

This version of the problem is simple enough to understand and gain impor-
tant insights while still being a meaningful representation of dynamic optimal
control in autonomic computing systems. In particular, we expect that the key
trends obtained from our analysis of this simplified version of the problem will
continue to hold even for the more general problem. A deeper mathematical
analysis of the general problem and related issues is outside of the scope of this
paper and is the subject of ongoing research.

Using this simplified version of the problem, the resulting continual optimiza-
tion problem in canonical form is reduced to:

min
K1,K2

(ET1 + ET2) = min
K1,K2

(
K1

K1 − λ1
+

K2

K2 − λ2

)
subject to the constraints K1 + K2 = 1, Ki > λi ≥ 0, where K1 and K2

represent the portion of the servers assigned to each application environment
with workload traffic intensities λ1 and λ2. An explicit optimal solution for K1

and K2 is then obtained in a straightforward manner by the Lagrangian method.
The dynamics of the two time-varying traffic intensities are modeled as si-

nusoidal functions of time. In order to illustrate the various behaviors due to
different server allocations, we consider several methods of adjusting the server
allocation and compare them to a static allocation scheme which assigns a con-
stant server allocation across all time intervals. This static allocation is chosen to

216 T. Nowicki, M.S. Squillante, and C.W. Wu

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

time intervals

co
st

allocation with bound on change
static allocation

Fig. 3. Total response time for static allocation and allocation which limits the change

between succesive time intervals

be the optimal allocation for the average traffic intensity, assuming its behavior
is known.

In Figure 2 we show the total response time ET1+ET2 for the static allocation
scheme and the optimal allocation scheme. The optimal allocation scheme assigns
the optimal allocation at each time interval given the traffic intensities at that
interval. As expected, the static allocation is always no better than the optimal
allocation.

Now we impose a bound on the change in the allocation allowed between
successive time intervals. This is one way to represent the constraint that a large
change in server allocation is undesirable. Figure 3 shows that this limits the
ability of the server allocation to “chase” the optimal allocation and can result
in allocation between intervals which is suboptimal and even can be worse than
static allocation.

Next we consider the effect of allocation based on previous traffic intensity
information due to delays. In Figure 4 we show the total response time if the
optimal allocation is computed based on the traffic intensity of the previous time
interval. As can be expected from using incorrect traffic intensities to allocate
servers, we see that in some time intervals the constraint Ki > λi is violated,
resulting in very large response times. In such cases, one might prefer to use
forecasted traffic intensities based on the data from the previous time interval(s)
to allocate servers rather than using the (incorrect) traffic intensities obtained
directly from the data of the previous time interval.

Fundamentals of Dynamic Decentralized Optimization 217

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

time intervals

co
st

allocation with delay = 1
static allocation

Fig. 4. Total response time for static allocation and optimal allocation based on traffic

intensity of previous time interval

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

time intervals

co
st

allocation with delay = 1 and bound on change
static allocation

Fig. 5. Total response time for static allocation and allocation based on traffic intensity

of previous time interval while limiting the change in allocation between time intervals

218 T. Nowicki, M.S. Squillante, and C.W. Wu

On the other hand, combining the two restrictive effects above does not nec-
essarily make things worse. In particular, for the system under consideration,
the combination of bounded change on allocation and delayed traffic intensities
results in allocation that is better than delayed traffic intensities alone. In Figure
5 we see that the number of violations is less than Figure 4 if we impose a limit
on the change in allocation between time intervals as in Figure 3.

4 Conclusions

We have considered the fundamentals of a mathematical framework for decen-
tralized optimization and dynamic optimal control in autonomic computing sys-
tems with self-∗ properties. This framework provides a mathematical foundation
for these important aspects of self-management in complex information systems
and supports the design, architecture and algorithms employed throughout such
self-∗ system. Using this framework, we first established conditions under which
decentralized optimization can provide the same quality of solution as central-
ized optimization, both in a static environment and under mild technical as-
sumptions. Our study also considered implementation schemes that significantly
increase the efficiency with which the hierarchical decentralized optimization
algorithms compute the optimal solution. We then further exploited our mathe-
matical framework to investigate the dynamic control of continual decentralized
optimization over time. In particular, our study illustrated how the additional
dynamics can cause complicated behavior that deviates considerably from the
static case, yielding potential problems and added complexities for continual op-
timization in environments which change over time. This complicated behavior
can include phase transitions, chaos and instability.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36
(2003) 41–52

2. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic
systems. Technical report, IBM Research Division (2004)

3. Bertsekas, D.P.: Nonlinear Programming. 2nd edn. Athena Scientific (1999)
4. Conn, A.R., Gould, N.I., Toint, P.L.: Trust-Region Methods. SIAM (2000)
5. Gamarnik, D., Lu, Y., Squillante, M.S.: Fundamentals of stochastic modeling and

analysis for self-∗ properties in autonomic computing systems. Technical report,
IBM Research Division (2004)

6. Guo, X., Lu, Y., Squillante, M.S.: Optimal stochastic routing in distributed parallel
queues. Technical report, IBM Research Division (2003) Revised, April 2004.

7. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Sys-
tems. Cambridge University Press (1995)

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 219 – 228, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Conflict Between Self-* Capabilities
and Predictability

Rogério de Lemos

Computing Laboratory,
University of Kent, UK

 r.delemos@kent.ac.uk

Abstract. Although it would be desirable for any system to have self-*
capabilities when faced with changes that might occur either in the system or its
environment, there is a certain classes of systems in which the incorporation of
such capabilities would be difficult to justify. These systems are mainly those
that uncertainties in their behaviours are not desirable. In this paper, we discuss
how the expected degree of autonomy of a system is related to the way in which
a system is described, either process or data. The discussion is presented in the
context of predictability. The type of system being considered are mission-
critical system that are likely to restrict the degree of uncertainty associated
with their behaviour, or the infrastructure that enables this behaviour.

1 Introduction

As computer based systems become more complex, design solutions that promote
their operational autonomy have become the holy grail of system architects and
designers. Autonomy, in this context, would enable the system to react to either
internal or external changes without any outside interference. However, system
autonomy should not be restricted to the actual services delivered by the system, but it
should also be associated with the infrastructure that enables the system to deliver its
services. In other words, autonomy is not necessarily something that should be
observed only at the system interface, it could be a system capability that enables it to
deliver its specified service with a certain degree of quality.

Self-* capabilities are the means by which a system attains its autonomy, and these
capabilities have an impact upon the system’s fundamental properties, which are
functionality, usability, performance, cost, and dependability. In this paper, properties
and capabilities are considered to be two different concepts, the former is a system
attribute that can be directly measured and quantified, while the latter are the means
that enable one or more of the system properties. Although some aspects of self-*
capabilities might allow the system to provide different kinds of services, the view
taken in this paper is that system capabilities are essentially enablers for improving
the system non-functional properties. In addition to self-* capabilities, the system
might have other capabilities whose purpose is also to enhance the quality of services
provided by the system, and reduce the cost for providing them.

220 R. de Lemos

This paper explores the relationship between self-* capabilities and predictability,
which is a fundamental aspect in the design, operation and evaluation of a certain
class of systems. The objective of this exercise is to identify, from the perspective of
predictability, what type of systems should the self-* capabilities be associated with,
and what techniques could be used to attain such capabilities. This would allow
establishing the theoretical and practical limits that can be associated with the
different approaches that are employed in the development of systems.

The rest of the paper is organised as follows. In the next section, the dichotomy
between data and process descriptions of systems is described. Section 3 presents how
self-* capabilities can be incorporated into systems that are essentially represented as
data and process. In the final section some concluding remarks are presented.

2 Dichotomy in the Descriptions of Systems

Simon has distinguished two fundamentally different ways in which systems can be
described [15]: state and process. Since well-established notion of state is used in a
different way in dynamics and control, MacFarlane has suggested instead the usage of
the terms of process and data for making the distinction initially suggested by Simon
 [13].

Data description of systems characterises the system as acted upon, by providing
the criteria for identifying objects, often by modelling the objects themselves [15]. In
this type of description a circle could be described as a locus of all points equidistant
from a give point, such as the representation of a circle as a bit map. Other examples
include pictures, blueprints, most diagrams, and the chemical structure of formulas
 [15]. Process description of systems characterises the system as sensed, by providing
the means for producing or generating objects having the desired characteristics [15].
In this type of description, the construction of a circle could be described as the
rotation of a compass with one arm fixed until the other arm has returned to its
starting point. Alternatively, a circle could be represented as an equation. Other
examples include recipes, differential equations, and equations for chemical reactions
 [15]. A major difference between these two forms of description is the amount of
information required for modelling a system. The process description of a system
usually involves less information than its counterpart. Moreover, it might be the case
that due to its very nature, the data description of systems becomes unbounded, which
is not the case in the process description of systems.

Architects and designers of complex distributed systems are currently facing the
prospect that existing techniques would not scale for the envisaged future systems,
such as, decentralised peer-to-peer, self-organised ad hoc networks, and pervasive
computing. Existing approaches make use of traditional engineering principles in
which system properties are specified and evaluated in a step-wise manner, mainly
top-down. These are essentially based on process descriptions that are amenable to
rigorous or mathematical analysis. For that, it is needed to identify key system
variables that allow monitoring its state and controlling its behaviour, such as, inputs,
outputs, and internal and environmental variables. On the other hand, architects and
designers are seeking alternative decentralised control techniques that can be used
when building complex distributed systems. These approaches are based on large

 The Conflict Between Self-* Capabilities and Predictability 221

population of entities that independently gather information and decide how to
behave. The functionality of these entities is very simple, and their communication is
very limited. With these characteristics, the intent is to obtain desirable macroscopic
behaviours from microscopic behaviours and interactions. These approaches are
based on data descriptions, and it is claimed that the emergent macroscopic
behaviours would be able to provide solutions to specific problems.

The difference between process and data representations can be interpreted from
the perspective of accuracy and precision. While process descriptions might be
precise but not accurate, data descriptions might be accurate but not precise. In
process descriptions, the assumptions that allow a process to be realizable introduce
uncertainties. However, when these assumptions are discharged more accurate models
are obtained, thus eliminating uncertainties from the system. On the other hand, data
descriptions are an abstraction of the actual behaviour of the system, and in some
cases for the data to be meaningful it has to undergo through some generalisations.
These two issues inevitably lead to the introduction of uncertainties on how systems
are represented, and it is from these uncertainties that emergent behaviours
materialize.

This dichotomy between process and data descriptions of systems is clearly
recognised in the context of decentralised solutions for complex systems, while the
distributed systems community take the consensus view, the computational
intelligence community takes either the emergence or learning view. Consensus
approaches are based on protocols that reach agreement under particular failure loads.
Emergence is based on a collection of simple autonomous and self-sufficient entities
that are able to adapt to changing environments. Different from emergent behaviours,
but based on the same principles, learning refers to the automatic mining of
information from available data for the purpose of creating knowledge. In the
following, this dichotomy between process and data descriptions will be used as a
basis for investigating the provision of self-* capabilities in different classes of
systems. Depending on the system, expectations on the degree of autonomy of a
system might be curtailed depending on the assumptions made and the properties of
that system.

3 Self-* and Predictability

The complexity of systems and the way they are integrated will require new
approaches for their development, operation and maintenance. As already mentioned,
conventional deterministic approaches based on process descriptions may not be
sufficient for enabling the provision of a wide range of services that are expected
from these systems. Several new approaches have recently emerged from different
areas, such as, biologically inspired computing being applied to a general class of
problems, control systems being applied to software engineering, and social and
economic models being applied to agent technology, just to mention a few. In this
paper, we restrict ourselves to the first two areas. Issues related to agent technology
and dependability were recently discussed on two panels [5] [10].

The provision of self-* capabilities by software engineering solutions essentially
relies on the representation of systems as processes, in which solutions are normally

222 R. de Lemos

based on the feedback control loop principle. Meta-parameters of system behaviour
and structure, and its environment, are monitored for eventual changes so that the
system can be adjusted for delivering required services in a stable way. The degree of
self-* capabilities that can be achieved by employing these solutions is limited
because of the need for having predictive behaviours, otherwise reaction to changes
would not be deterministic. Predictability is achieved by removing operational
uncertainties from the system otherwise these could disrupt the normal operation of
the system. In other words, it is fundamental that during the development of these
systems the complete state specification is identified, or else the occurrence of
unexpected states can lead to system failures. Considering such restrictions, can a
process oriented system be able to show self-* capabilities? They might be able, but
the degree of autonomy is restricted, and it might be the case that these capabilities
need to be established during design time.

On the other hand, the provision of self-* capabilities by biologically inspired
solutions essentially relies on the representation of systems as data. Such solutions
exploit clever mechanisms from nature by defining algorithms and implementations
that are appropriate for the problem at hand. The inspiration is usually based on the
logical characteristics of biological systems rather than physical. The reason for this is
that logical aspects tend to be more generic, and more appropriate to analyse data in a
virtual data space. Since biological inspired solutions are based on a sample of the
whole data associated with a system, complete system models are difficult to obtain,
which explains why uncertainties are an inherent aspect of these models.
Incorporating learning capabilities into a system might eliminate this deficiency,
however these are likely to introduce another degree of uncertainty. Emergent
behaviours might be useful in dealing with unexpected circumstances, but the system
reaction to these might become unpredictable.

In the following, we focus on two approaches for exemplifying how process and
data descriptions of systems can handle predictability and autonomy.

4 Example of Process and Data Descriptions

In the first example, we present an architectural solution based on exceptional
handling to tolerate faults. The solution relies on a process description for building
adaptable, but deterministic systems. Uncertainties are eliminated from the system
behaviour, however the solution is not scalable since exceptional handling based
solutions are invariably application dependent, i.e., there is no single mechanism that
is able to deal with a general class of faults. For example, it would be feasible to apply
such architectural solution to handle intrusions because of the uncertainties associated
with these [18]. In the second example, we present an artificial immune system
solution (AIS) for the detection of anomalies. The solution relies on a data description
for generating error detectors that are able to identify new unexpected circumstances.
The rationale associated with this approach is that if systems are to be autonomous
when reacting to changes, in this case undesirable, then it is essential that the system
should be able to recognise new erroneous states, and adapt its set of detectors
accordingly. In this particular context, it has been observed that the generalisation of

 The Conflict Between Self-* Capabilities and Predictability 223

potential detectors has lead to a decrease on the detection coverage, and an increase in
the number of false positives [2].

4.1 Architectural Approaches

Architectural representations of systems have shown to be effective in assisting the
understanding of broader system concerns by abstracting away from details of the
system. To leverage the dependability properties of systems, solutions are needed at
the architectural level that are able to guide the structuring of undependable
components into a fault tolerant architecture. Fault tolerance, one of the means to
dependability, is related to the self-repair and self-healing capabilities [7].

Architectural flexibility for supporting run-time change can be achieved by using
specialised co-operative connectors to change the pattern of collaboration between
components: components are rigid entities, and how they interact provide the basis for
adaptability [4] [6]. Each collaboration is identified in terms of pre- and post-
conditions, and invariants. Depending on the required change, a different
collaboration is selected that makes the system to change its behaviour. All the
collaborations are defined during design time together with their respective trigger
conditions. Uncertainty between the alternative collaborations does not exist because
choice has to be deterministic, and uncertainties associated with a particular
collaboration is restricted because behavioural invariants have to be maintained.

In a different work, in order to deal with undesirable, though expected
circumstances, an idealised architectural component was defined with structure and
behaviour equivalent to that of the idealised fault-tolerant component concept [11].
This approach was later extended to deal with commercial off-the-shelf (COTS)
software components [12]. The basic mechanism to deal with the expected
circumstances employed in these approaches was exception handling. The system
architect must know from the outset what exceptions might occur, the causes
associated with these exceptions, and how to match these exceptions with their
respective handlers. The predictability in these systems is obtained by clearly
identifying what is expected, and avoiding the system to become brittle towards the
unexpected. How a system reacts towards expected circumstances should be know
beforehand and should be incorporated in the design of the system.

Alternative techniques could be employed if undesirable circumstances, i.e. faults,
could be grouped in terms of classes. Instead of the need for identifying specific
handlers for each type of undesirable circumstance, as mentioned above, general
solutions based on replication, diversity, and consensus could be devised. However,
although these systems would be robust towards certain classes of faults, they are not
considered sufficiently robust towards general classes of faults. In all these
approaches, there is almost no degree of autonomy for the sake of obtaining
predictable behaviour, which was an essential requirement of the applications
involved.

4.2 Artificial Immune Systems

Nature has been good in solving problems, hence biological inspired approaches are
enthused by nature but do not copy it blindly. There are several areas associated with

224 R. de Lemos

computational intelligence, such as evolutionary algorithms and artificial neural
networks, and one of its recent additions is the area of artificial immune systems
(AIS). Artificial immune system is an example of nature-inspired problem solving
system, which is based on the current understanding of the mammal immune system,
without copying exactly its biological steps.

The immune system is a defence mechanism against body invaders (viruses,
bacteria, and fungi). Since the study of the immune system is still progressing, is no
surprise that there are three main theories for describing it: clonal selection, immune
network, and danger. It consists of four layers of defence: physical barriers, chemical
barriers, innate immunity, and adaptive immunity [3]. In terms of computational
intelligence metaphors, the most relevant layer of defence is the adaptive immunity,
whose role is to defend the body against specific foreign organisms, and to learn and
remember about past invaders. From the perspective of clonal selection, adaptive
immunity is responsible for training the immature lymphocyte cells for distinguishing
between self molecules and foreign antigens, since immune response is undertaken by
mature lymphocyte cells. During the immune response, mature lymphocyte cells
multiply for effective defence, and differentiate for perfect recognition. After immune
response, efficient mature lymphocyte cells are stored for subsequent encounters. The
motivation for immune system to be found interesting as a metaphor is because its
general characteristics: pattern recognition (anomaly detection, noise tolerance),
diversity, learning, memory, redundancy, robustness, feature extraction, distributed,
multi-layered, and adaptive.

Artificial immune systems (AIS) are adaptive systems inspired by theoretical
immunology and observed immune functions, principles and models, which are
applied to complex problems [3]. For the engineering of AIS algorithms, a high-level
framework has been proposed that contains three basic elements [3]. The first layer is
related to the representation of the basic entities of the system, which can be the
antigens and antibodies. This representation can either be numerical (discrete or
continuous) or symbolic. The second layer is the affinity measures that quantify the
interactions between the antigens and antibodies. For the case of discrete
representations the Hamming distance can be employed, while Euclidean distance can
be used for continuous representations. The last layer captures the immune algorithms
that actually define the system dynamics. There are several AIS techniques, just to
mention a few, negative selection algorithms, immune network models, bone marrow
models, clonal selection algorithms, and danger theory [3]. In this paper, for the
purpose of anomaly detection, the negative selections algorithm has been selected, for
several reasons: it was one of the first algorithms to be proposed [8], and since its
understanding is quite intuitive, it became popular, sometimes for the wrong reasons
 [9]. Self/non-self discrimination metaphor behind the negative selection of T-cells in
the thymus provided inspiration for the negative selection algorithm: in the censoring
phase T-cells that match self are eliminated, and in the monitoring phase mature T-
cells will in general match only non-self. The negative selection algorithm has been
used to generate detectors that are able to identify undesirable changes to normal
patterns or behaviour (self) of a system.

A number of works have attempted to build artificial immune systems for fault
tolerance, virus detection, and computer security. Avizienis was one of the first ones
to identify key characteristics of the immune system that were relevant for fault

 The Conflict Between Self-* Capabilities and Predictability 225

tolerance [1]: autonomy, distributed lymphatic vessels among the body, exclusive
communication links, redundancy, and diversity. The immune system metaphor is
actually quite relevant to fault tolerance principles: the self molecules of the immune
system correspond to normal states/behaviours, the non-self molecules (antigenic
patterns) correspond to abnormal states/behaviours, and the T-cells correspond to
error detectors. Based on this metaphor, the creation of immunised fault tolerant
embedded systems has been proposed [16] [17] [19], which explores negative
selection, an immune inspired algorithm, for the generation of error detectors [2].
More recently, this work has been extended to incorporate the capability of generating
adaptable error detectors during run-time, thus providing the means for the system to
adapt itself to previously unexpected and undesirable circumstances. The
incorporation of this capability has come to a price: the accuracy in detecting
erroneous states has decreased when compared with that of an equivalent well craft
engineered system; other studies have drawn the same conclusions [14].

Concerning the application of the negative selection algorithm to anomaly
detection there are several problems in the classification of self/non-self [9]. First is
related to the fact that the whole process is inefficient and time consuming because it
relies on the generation of random detectors: this is a random search, which it does
not use any information from the self. The second problem is that during the training
phase, only negative examples (in this case self) are used. And finally, the whole
approach is not adaptive, once the detectors are identified these will not change
during run-time. Other more pragmatic inconveniences include, the discrete
representation of the entities of system, which creates problems in the definition of
affinity because small mutations in the representations might lead to a great impact on
the meaning of the data. It also includes the trade off between specialisation and
generalisation of detectors, which might have an impact on the run-time efficiency of
the system: specialisation tends to maximise the coverage, while generalisation tends
to minimise the size of the detector set. Based on the above limitations, alternative
approaches have to be investigated in which detectors are able to adapt to changes in
the environment. Recent investigations have adopted the immune network theory as a
metaphor for two reasons. First, its self-assertion view in which there is no knowledge
of self, instead it is developed over time. Second is the support for adaptability that is
obtained through metadynamics, which is the recruitment of new individuals to the
network structure.

The application of data oriented to minimise the size of the detector set approaches
to error detection, that could be either the consequence of faults or intrusions, clearly
illustrates the limitations associated with these approaches. Since faults and intrusions
are considered rare events, the question to be asked is how the system is able to learn
from rare events. If some correlation could be established between rare events, then
the process of identifying new undesirable events could be based on the extrapolation
of what is already known. However, this assumption cannot be generalised, since it is
difficult to establish the correlation between undesirable events. An alternative
approach could be that of learning new undesirable events from what is already
known about the non-erroneous behaviours of the system. This is a daunting
challenge if we consider that the state space of normal behaviours might be much
larger if compared with that of abnormal behaviour. Either the normal behavioural

226 R. de Lemos

state can be encoded in such way that facilitates the search process, or such an
approach becomes prohibitive in terms of efficiency and storage.

Another limitation in applying data descriptions to anomaly detection is how to
improve coverage of the detectors and reduce at the same time the false positives. The
main problem, as already mentioned, is that data is an abstraction of the actual
behaviour of the system. This inevitably introduces uncertainties that have to be
solved by finding a good balance between specialisation and generalisation.

Another problem that is inherent in data oriented approaches is the data itself. In
addition for the need to the data to be representative of the actual system, there is also
the need to have a deep understanding what the data represents. If either of these
issues are not observed the predictability of the system is affected.

4.3 Predictability in Data Descriptions

It has been claimed that data oriented approaches might be appropriate for new
emerging applications, but in what capacity is not yet clear. One issue however is
clear: if predictability has to be an essential capability in the development and
operation of a system, then a data oriented approach might not be an appropriate
solution. This is particularly significant in those classes of systems in which
performance and dependability constraints are critical, such as mission-critical
systems. However, data oriented approaches could nevertheless be employed in such
systems if sufficient protections are incorporated into their designs. Again such
conservative solution would restrict one of the major benefits of data oriented
approaches, which is that of emergent behaviours. An alternative approach, yet not
fully explored, would be to build massively redundant systems, in which the failure of
some the components would not affect the expected outcome of the whole system.
However, for such solution to be successful, diverse data oriented approaches should
be composed in order to increase their combined effectiveness, or coverage. However,
a major weakness in such configuration would be the quality of the training data. If
the data is not good, it does not matter how many approaches are employed if all of
them suffer the same deficiencies.

Still considering the idea of exploring data oriented approaches in the context of
systems containing trillions of components, issues like the identification of the source
of change is important for establishing the appropriate mechanisms to deal with the
change. For example, changes that occur internally to a component and that
eventually affect the behaviour of that component, how these should be handled in the
wider system? If the rest of the system was able to accommodate the unknown
behaviours, what should be the threshold to which the system should react either for
eliminating a whole group of abnormal components, or incorporating these
components as normal? The reverse also raises very interesting questions. If the
environment of a system changes, how these changes are reflected upon the
components of that system: either the components are eliminated from the system, or
the components have to be modified for coping with the changes. All these decisions
affect the predictability of the overall system behaviour if clear strategies are not
implemented. However, as already mentioned, it might be the case that the combined
usage of diverse strategies might be the only way of bringing out the best of the
system, which eventually might lead to unpredictabilities.

 The Conflict Between Self-* Capabilities and Predictability 227

Most of work on the data descriptions has dealt with emergent behaviours or
functional properties. Still to be investigated are the non-functional properties of these
systems, such as, performance, usability and dependability. Concerning in particular
dependability, although it is easy to build a system out of dependable (sub)systems,
though this does not always guarantee the resulting system is dependable, what about
building dependable systems from a collection of individual undependable entities?
Although it is not at all clear how dependability can become an emergent property, it
might be the case that in a large population of entities sufficient redundancies can be
obtained for maintaining the reliability of the system as a whole. Of course that,
solutions intrinsically depend on the application being considered and the levels of
risk associated with it.

5 Conclusions

Although in this paper, the issues concerning self-* capabilities of systems were
presented in terms of the dichotomy on how systems can be described, i.e. process
versus data, we have not overlook the possibility of systems relying on both
representations for achieving different degrees of autonomy depending on the services
to be delivered. The idea of developing systems that rely on both process and data
representations, which explores the complementary benefits of these, is not new. Such
hybrid systems have mostly been confined to stand alone closed systems, however the
challenge ahead is whether the same idea can be applied to more complex systems
that are open and collaborative in their nature, and which are expected to show self-*
capabilities and be predictive at the same time.

References

[1] A. Avizienis. “Towards Systematic Design of Fault-tolerance Systems”. Computer 30(4).
1997. pp. 51-58.

[2] M. Ayara, J. Timmis, R. de Lemos, L. N. de Castro, R. Duncan. “Negative Selection:
How to Generate Detectors”. Proc. of the 1st International Conference on Artificial
Immune Systems. Canterbury, UK. September 2002. pp. 89-98.

[3] L. N. de Castro, J. Timmis. Artificial Immune Systems: A New Computational
Intelligence Approach. Springer-Verlag. 2002.

[4] R. de Lemos. “A Co-operative Object-Oriented Architecture for Adaptive Systems”.
Proc. of the 7th IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems (ECBS’00). Edinburgh, Scotland. April 2000. pp. 120-128.

[5] R. de Lemos. “Novel Approaches in Dependable Computing”. Proc. of the 4th European
Dependable Computing Conference (EDCC-4). Lecture Notes in Computer Science
2485. Eds. P. Thevenod-Fosse, A. Bondavalli. Springer-Verlag. Toulouse, France.
October 2002. pp. 79-80.

[6] R. de Lemos, J. L. Fiadeiro. “An Architectural Support for Self-adaptive Software for
Treating Faults”. Proc. of the 1st ACM SIGSOFT Workshop on Self-Healing Systems
(WOSS'02). Eds. A. Wolf, D. Garlan, J. Kramer. Charleston, SC, USA. November 2002.
pp. 39-42.

[7] R. de Lemos, C. Gacek, A. Romanovsky (Eds.). Proc. of the ICSE 2003 Workshop on
Software Architectures for Dependable Systems. Portland, OR. April 2003.
http://www.cs.ukc.ac.uk/events/conf/2003/wads/ (October 2003).

228 R. de Lemos

[8] S. Forrest, et al. “Self-Nonself Discrimination in a Computer”. Symposium on Research
in Security and Privacy. 1994: p. 202-212.

[9] A. A. Freitas, J. Timmis. “Revisiting the Foundations of Artificial Immune Systems: A
Problem-Oriented Perspective”. Artificial Immune Systems: Proc. 2nd Int. Conf.
(ICARIS-2003). Lecture Notes in Computer Science 2787. Springer-Verlag. 2003. pp.
229-241.

[10] A. Garcia, J. Sardinha, C. Lucena, J. Castro, J. Leite, R. Milidiú, A. Romanovsky, M.
Griss, R. de Lemos, A. Perini. “Software Engineering for Large-Scale Multi-Agent
Systems – SELMAS 2003: Workshop Report”. ACM Software Engineering Notes 28(5).
November 2003.

[11] P. A. de C. Guerra, C. Rubira, R. de Lemos. A Fault-Tolerant Software Architecture for
Component-Based Systems. Architecting Dependable Systems. Lecture Notes in
Computer Science 2677. Springer. Berlin, Germany. 2003. pp. 129-149.

[12] P. A. de C. Guerra, C. Rubira, A. Romanovsky, R. de Lemos. “Integrating COTS
Software Components into Dependable Software Architectures”. Proc. of the 6th IEEE
Int. Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03).
Hokaido, Japan. May 2003.

[13] A. G. J. MacFarlane. “Information, Knowledge and Control”. Essays on Control:
Perspective in the Theory and its Applications. Eds. H. L. Trentelman, J. C. Willians.
Birkhäuser. 1993.

[14] R. A. Maxiom, K. M. C. Tan. “Anomaly Detection in Embedded Systems”. IEEE
Transactions on Computers 51(2). February 2002. pp. 108-120.

[15] H. A. Simon. The Sciences of the Artificial. Second Edition. MIT Press. Cambridge, MA,
USA. 1981.

[16] J. Timmis, R. de Lemos, M. Ayara, R. Duncan. “Towards Immune Inspired Fault
Tolerance in Embedded Systems”. Proc. of 9th International Conference on Neural
Information Processing. IEEE Computer Society. November 2002. pp. 1459-1463.

[17] A. M. Tyrell. “Computer Know Thy Self!: A Biological Way to Look at Fault-
Tolerance.” Second Euromicro/IEE Workshop on Dependable Computing Systems. 1999.
pp. 129- 135.

[18] P. Veríssimo. “Uncertainty and Predictability: Can they be reconciled?” Fudico: Future
Directions in Distributed Computing. Lecture Notes in Computer Science 2584.
Springer. Berlin, Germany. May 2003.

[19] S. Xanthakis, et al. “Immune System and Fault Tolerant Computing”. Lecture Notes in
Computer Science. Ed. J.M. Alliot. Springer-Verlag. 1995. pp. 181-197.

Self- ware Software – Will It Become a Reality?

Peter Andras1 and Bruce G Charlton2

1 University of Newcastle Upon Tyne,
School of Computing Science,

Newcastle upon Tyne, NE1 7RU, UK
peter.andras@ncl.ac.uk

2 University of Newcastle Upon Tyne,
School of Biology(Psychology),

Newcastle upon Tyne, NE1 7RU, UK
bruce.charlton@ncl.ac.uk

Abstract. The possibility of building self-aware software fascinated
computer scientist since the beginning of computer science. Research
in AI, and in particular on software agents, agent system, computa-
tional reflection and reflective software delivered interesting results which
moved towards the development of software systems with features of
self-awareness. However, these approaches have not so far generated any
clear success in terms of real and useful self-aware software. Here we in-
troduce the theory of abstract communication systems, which describes
the world in terms of systems and their environment. Systems comprise
dense, inter-referencing clusters of communications. We analyse natural
self-aware systems highlighting the critical features which make them
able to be self-aware. We analyse software systems in terms of abstract
communication systems theory and compare their critical features with
these natural self-aware systems. We describe the necessary features of
hypothetical self-aware software, discuss the existing barriers that stand
in the way of realization of such systems and how these might be over-
come.

1 Introduction

The concept of self-aware software appeared very early after the building of first
large programmable computers and provided the foundation for science fiction
novels and films (e.g., 2001: A Space Odyssey). In scientific terms these ideas
led to the emergence of the domain of artificial intelligence as part of computer
science [11], [17]. An early failed attempt to build software with self-awareness
used perceptron neural networks, which were believed to lead to the emergence
of some kind of consciousness (e.g., [57]). Other attempts based on symbolic
reasoning also led to failures in terms of producing truly self-aware software
systems [13], [49].

The idea of building an adaptive self-aware software system that is able to
sense itself and maintain itself producing appropriate adaptive behaviours (de-
pendent on the environmental stimuli and on the state of the system) appears

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 229–259, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

a

230 P. Andras and B.G. Charlton

perpetually fascinating for many computer scientists (e.g., [23], [28], [37], [42],
[54], [63], [64]). A direction that grew out from classical artificial intelligence
research is focusing on intelligent agents and multi-agent systems (e.g., [2], [31]).
The aim of this research is to build software agents that can behave intelligently
in a limited sense (e.g., within a strictly defined knowledge domain, like collect-
ing, selecting, categorizing and packaging for delivery of financial news items)
and which can support the professional activity of their owner. One step further
the aim is to build systems of such agents, which are able to perform mean-
ingful negotiations over exchanging services, representing the interests of their
owners [2].

Another important direction is the research on computational reflection [36],
[42], [51] and on reflective software systems [14], [18], [21], [52]. Reflective soft-
ware systems aim to be able to evaluate themselves and generate adaptive re-
sponses to external stimuli, such that the response is appropriate for the state
of the software system. Reflective software research also feeds into the research
on intelligent agents, by providing core software for some of these agents [62].
A more application oriented related area is the research on self-monitoring and
self-healing software [6]. The aim of this research is to build software systems
that are able to evaluate their own state, detect faults and errors and automat-
ically correct them returning the system to a ’healthy’ state. Recent works on
aspect-oriented software development [19], [33], [54] are very promising in terms
of building self-monitoring applications, which is an important step towards self-
aware software systems.

The above mentioned works on building software systems that show some
level of self-awareness in an adaptive and responsive manner led to limited suc-
cess. It appears that the most critical barrier that these systems cannot overcome
yet is that of generating adaptive novel responses to previously unseen situations.
In other words these systems are able to do what they were programmed for and
to make the decisions that their programmers considered when they programmed
them, but they cannot surpass these pre-programmed behaviours by generating
new ones, which were not hard-coded by their programmers. In our view a ma-
jor reason behind this lack of progress is that all these systems are designed to
perform an externally implied function in some kind of efficient manner. This
approach implies that there is no ’self’ in a real sense of the software system
from the point of the view of its design, and that the resources of the system are
usually optimized sufficiently to prevent the emergence of suboptimal behaviours
(these are usually considered erroneous ones), which otherwise is the usual way
of emergence of new behaviours in the case of natural self-aware systems (e.g.,
bacteria, plants, animals, social organizations) [3], [16], [41], [48].

We note that there are positive signs towards software development environ-
ments, which may allow the emergence of the ’self’ of software systems. Lan-
guages like Java and Smalltalk which implement reflection allow some level of
structural self-inspection and self-modification (i.e., structural reification) [22],
[28], [51], [61]. Component-based (e.g., JavaBeans, web services) [30]and aspect-
oriented programming [19], [33], [54] may represent a way away from strict

Self- ware Software – Will It Become a Reality? 231

functional optimality, which in our view prevents the emergence of self-aware
software.

The abstract communication systems approach offers a new way to look at
software systems, and in particular offers an insider view of these systems. The
theory of abstract communication systems [4], [15], [16], [41] was developed orig-
inally in the context of social systems by Luhmann (1996), having its roots in
works on autopoetic systems [45] and in works on decision making in organiza-
tions [10], [58], [44].

In the interpretation followed here, the abstract communication systems ap-
proach views systems as dense collections of inter-referencing communications
generated by communication units, which themselves are not part of the sys-
tem. Such communication systems can be used to describe biological and social
systems providing revelatory insights into the nature of these systems. We pro-
pose here to use this approach to analyse software systems and highlight the
requirements for the building of self-aware software systems.

First, we provide a brief overview of the theory of abstract communication
systems, explaining key concepts and providing examples that highlight key fea-
tures of the explained concepts. Next, we discuss two natural self-aware systems,
living cell and social organizations, emphasizing their critical components that
provide the foundation for their self-awareness. This is followed by the analysis
of software systems using concepts of abstract communication systems theory,
focusing on components of software systems that are required for self-awareness
in our view. Finally, the paper is closed by a discussion about how realizable we
see the generation of self-aware software systems considering the requirements
for this discussed previously.

2 Abstract Communication Systems

In this section we introduce fundamental concepts of abstract communication
systems theory following the work of Luhmann (1996) and our earlier works [4],
[15], [16], [5]. Each introduced concept is explained in theoretical terms supported
by practical examples highlighting the relevant features of the concept.

Communications and Communication Systems. Communications are se-
quences of symbols communicated between communication units. Abstract com-
munication systems are made of such communications between communication
units. The communication units are not part of the system, since they are not
themselves communications but instead transmit and receive communications.
Communications reference other communications, in the sense that the sequence
of symbols contained in a communication is dependent on the contents of other
earlier or simultaneous communications and thereby refer to them. A dense clus-
ter of inter-referencing communications surrounded by rare set of communica-
tions constitutes a communication system. In quantifiable terms it may be said
that a system is a ’significantly’ dense concentration of inter-referenced commu-
nications which persists over a ’significant’ timescale - in which the cut-off levels
of significance define the probability that there is indeed a system.

a

232 P. Andras and B.G. Charlton

For example the system of computer science contains all communications
which reference earlier scientific communications from the domain of computer
science and which follow the rules of these scientific communications (e.g., allow-
ing the possibility of falsification, using logical reasoning, discussing admissible
topics using admissible arguments etc.). A large part of these computer science
communications are scientific papers, which explicitly reference other scientific
papers, and use the conclusions of earlier papers as premises of the logical reason-
ing presented in the paper. According to systems theory, the human computer
scientists are not part of the system of computer science, only their scientific
communications about computer science topics are part of this system.

A communication system is defined by the regularities that specify how ref-
erenced communications determine the content of a referencing communication.
All communications that follow the set of rules defining the system are part of
the system. Other communications that do not follow the rules of the system
are part of the system’s environment. Therefore from the systems perspective
the world is constituted by the system under consideration and its environment-
and there are as many such ’worlds’ as there are systems, such that the same
communication will have different meanings in different systems or be included
in one system but not another. The set of regularities of referencing constitutes
an abstract grammar, which defines an abstract language, characteristic of the
system. For example the sciences of economics and medicine have different spe-
cialist languages, and scientific communications belong to one of these sciences
according to whether they follow the rules of the specific language.

Systems Are Self- eproducing. Communication systems reproduce them-
selves by recruiting new communications, which follow the referencing rules of
the system. How successful the recruitment of new communications is, depends
on earlier communications generated by the system and on the match between
the system and its environment. We can view the system as a self-describing sys-
tem made of communications, which at the same time describes its environment
in a complementary sense. (In other words, the system’s only knowledge of its
environment is within the system itself - the system models the environment,
and that model is the sum of its knowledge of the environment.) Better - ie. more
complex and adaptive - descriptions of the systems environment potentially lead
to higher success in recruiting new communications and more rapid reproduction
and expansion of the system.

For example we may consider the case of artificial intelligence of the 1950s-
1960s. During this period AI research used relatively simple assumptions about
natural intelligent systems (e.g., relatively simple artificial neural networks were
supposed to simulate biological neural networks) and made high promises. AI
research expanded fast in this period. In a relatively short term the promises
made were proved to be unachievable (e.g., the works of Minsky and Papert on
perceptrons). This led to a massive reduction of funding for AI research and the
shrinking of the volume of science communications in the area of AI. After the
1980s revival of AI research science communications in this domain developed
better descriptions of the environment, which led to fewer and smaller failures

r

233

and supported the recent expansion in the domain of novel AI (e.g., data mining,
intelligent control). Better descriptions of the system environment in case of
recent AI fuel the expansion of the system of this science, while the not so good
environment descriptions of classical AI led to the shrinking of AI during the
1970s.

The system communications are about the system itself. Taking another ap-
proach, the system communications reference other system communications in
order to prove that they are part of the system (i.e., that they are correct ac-
cording to the rules of the system). If the communications lead to continuation
the process of proving that they are correct continues. If the system is able to
exist, i.e., to generate/recruit new communications according to the rules of the
system, this implies that the proving process of the correctness of earlier com-
munications continues. In general it is not possible to prove the correctness of
system communications; it is possible to prove only the incorrectness of them,
when there is not further continuation of communications rooted from the orig-
inal communication. We call this the Popper Principle, i.e., that only the falsity
of system communication can be proven by stopping the generation of commu-
nications rooted from the communication in question.

More Adaptive Systems Out-Compete Less Adaptive Ones. Systems
that reproduce and expand faster than other systems may drive to extinction
the slower reproducing and expanding systems. The limits of system expansion
are determined by the probabilistic nature of referencing rules. A communica-
tion may reference several earlier communications indirectly through other ref-
erenced communications constituting referencing sequences of communications.
The indeterminacies of referencing rules determine how long can be such ref-
erencing sequences of communications before the later communications become
a random continuation. Longer referencing sequences of communications (i.e.,
more detailed descriptions) allow better descriptions of the systems and its en-
vironment. The optimal size of the system (i.e., the number of simultaneous
communications being part of the system) is also determined by the indetermi-
nacies of referencing rules. Systems that overgrow their optimal size may split
into similar systems.

For example we may consider the introduction of electronic storage and man-
agement of information in companies. Before this, information was mainly stored
on paper. Paper storage of accounting data for example increases the likelihood
of making errors in calculations compared to electronic handling of the same
data, and also makes it difficult to handle very large amounts of data. Electronic
storage and data management decreases the likelihood of calculation errors and
allows efficient organisation and handling of huge amounts of data. In both cases
the data describes the environment of the company, but in the case of electronic
data it is possible to reliably perform much more complicated operations with
the data (i.e., longer sequences of such operations) than in the case of paper
based data. This implies according to systems theory that the environment
descriptions of companies using electronic data are better than the environment

Self- ware Software – Will It Become a Reality?a

234 P. Andras and B.G. Charlton

descriptions of companies using paper based data. Indeed, companies adopting
electronic data easily out- compete companies using paper based data.

Systems Increase Complexity by Developing Subsystems. Communi-
cation systems may develop subsystems that are systems within the system, i.e.,
they constitute a denser inter-referencing cluster within the dense communica-
tion cluster of the system. Communications that are part of subsystems follow
system rules with additional constraints that are characteristic of the subsys-
tem. More constrained referencing rules decrease indeterminacies and allow the
system to generate better complementary descriptions of the environment and
expand itself faster than systems without subsystems. Systems may also change
by simplification of the set of their communication symbols (i.e., reduction of
the number of such symbols). This may lead to reduction of indeterminacies
in the referencing rules. Consequently systems with simpler sets of communica-
tion symbols may expand faster than systems with larger sets of communication
symbols.

For example we may consider early computer software systems that aimed
to deal with a wide range of problems and had a monolithic architecture. Ex-
tending such software systems was difficult, and led very fast into the generation
of inconsistent data and conflicts between components of the system. More re-
cent software systems are modular, having specialized parts dealing with specific
classes of problems. Expanding these software systems is much easier, and the
likelihood of running into major integration problems is relatively low. Recent
advances in the area of software development led to the building of template
libraries and design patterns, which simplify the building of software systems,
providing standardised building blocks for them. Due to the availability of such
standard components large software systems can be developed and upgraded
faster than before, and current software systems grow much larger than any
previous software system.

Systems with Memory. Another way of extending reliable descriptions of the
environment (i.e., non-random sequences of referencing communications) is by
retaining records of earlier communications, i.e., by having memories of earlier
communications that can be referenced by later communications. In a sense
we can view such memories as the creation of new communication units (or
recruitment of communication units) that produce for a certain period a certain
communication that can be referenced in place of some other communication
(i.e., the one which is represented by the memory). Having memories reduces
the indeterminacies in referencing by allowing direct referencing of much earlier
communications, instead of referencing them through a chain of references.

An alternative way of considering memory systems is that they are commu-
nication systems that 1. model the communications of the main system and 2.
communicate using longer lasting communications than the main system. This
means that the communications in the memory system provide a longer-lasting
record of events in the main system.

235

However, in strict systems theory terms, this is not quite accurate - since the
’memory function’ of a system only refers to its function as perceived by another
system. Furthermore, the ’memory function’ only refers to the memory systems
communications with its environment, yet by definition a complex system has a
much denser communication referenced to itself than its communications with
its environment.

The implication is that a memory system is first and foremost a densely self-
referencing complex system with the implicit function of self-reproduction and
growth in complexity by means of modelling its environment. Therefore, memory
systems arise in the context of an environment, differentiate and expand due to
their self-reproductive qualities; from this it follows that the internal evaluation
processes of memory systems are not primarily concerned with providing an
accurate data base for other systems.

What makes such a system able to function as a memory for another system
is firstly that the memory system has longer lasting communications than the
system using it as memory, and secondly that the memory system’s model of its
environment is under selection by the system which is using it as memory. This
implies that the memory systems model of another system using it as memory is
not a representation of the other system, but is a model which has been selected
by that other system.

This illustrates that memory systems communications are (like all systems)
mainly internal, and the vast majority of the communications of history have
nothing directly to do any environmental system. But the environmental systems
usage of some of the communications of memory systems will amplify some parts
of the memory system and suppress others, reinforcing some random changes in
the evaluation criteria of memory systems and suppressing others such that the
memory system will evolve, will grow in complexity in particular ways, and to an
external observer can be seen to perform its ’memory function’ more efficiently.

Consequently, systems with memory can expand faster than systems without
memory. In the context of human communications such memories of commu-
nications are written or otherwise recorded verbal communications and human
artefacts that can be seen as memories of human behavioural, verbal and written
communications that led to the creation of the artefact.

As an example we may consider the effect of printing on science. Before print-
ing was invented science developed slowly, as it was based on difficult and time
consuming reproduction of scientific texts by handwriting. After the invention of
printing the system of science was able to expand much faster than before, having
more available memory communications (written texts) because each individual
written scientific communication is longer-lasting than verbal communications-
especially when these written communications are incorporated into a specif-
ically archival system which generates new forms of complex communication
based around these long lasting communications (i.e., science librarianship).

Identity-Checking Subsystems. Systems with memory may develop an
information subsystem (the memory is information about the past of the system)

Self- ware Software – Will It Become a Reality?a

236 P. Andras and B.G. Charlton

consisting of communications between communication units generating memory
communications.

Information system communications reference memory communications and
can be seen as representations of information processing operations - so that an
information system may be defined as communications about memory communi-
cations. Hence, the discipline of history may be considered a type of information
system, since history consists of communications about communications con-
cerning the past.

Memories of information systems communications are referenced in future
information system communications and provide the blueprint for processing of
memories. Information system communication memories last longer than memo-
ries of other communications, and constitute long-term memories of the system,
while memories of other communications are the short-term memories of the sys-
tem. The information subsystem emerges if information processing communica-
tions constitute a dense cluster of inter-referencing communications determined
by a set of characteristic referencing rules. Having an information subsystem
allows combination of memories and by this the generation of descriptions of the
environment which are better than such descriptions in systems with memory
but without information subsystem.

But the information system is not primarily concerned with functioning as a
memory system - its memory function is an interpretation reached by an external
observer analysing the relationship between two systems, and concluding that
one system is functioning as memory for another. For example, the system of
the discipline of history (as exemplified by the written communications of pro-
fessional historians) is - from the perspective of historians, its own justification-
its implicit aim being to do ever more history. But from the perspective of the
political system, the function of the discipline of history is (approximately) to
be a repository of information about the past of the society which can be used
for political purposes (ie. for getting and retaining political power). In modern
democratic societies political and other social systems (such as the legal system,
science, education and the mass media) combine to exert a selection pressure
on the discipline of history such that the evaluation criteria of history become
’scientific’ - in other words history is meant to be true and internally consistent,
as a basis for understanding the past and planning the future for many social
systems. But in traditional or ’totalitarian’ societies, the political/ military/ re-
ligious ruling system exerts a monolithic selection pressure o the discipline of
history, which evolves to have a quite different (and non-scientific) function of
justifying the perpetuation in power of the ruling system.

We may consider as another example the solving of a software development
problem by having a series of ad-hoc meetings. The participants of the meetings
may remember ideas discussed at previous meeting and occasionally may refer-
ence them, but it will be very difficult to arrive to a reasonably good solution
without systematic analysis of earlier ideas and developing elaborations of these
ideas. Finding the desired solution will happen much faster if the meetings are
minuted, analysis and synthesis tasks are assigned to participants, and commu-

237

nications about memories of earlier communications are generated in form of
reports that are referenced during the next and later meetings. In this way the
group of developers will progress relatively fast towards an acceptable solution
and the system of the software developer company will expand faster.

The information subsystem of a system provides the references for identity
checking communications of the system. The blueprints of information process-
ing held in long-term memories of the system are referenced by identity check
communications and allow checking the validity of communications within the
context of the system. Having an information subsystem that provides references
for identity check communications decreases the likelihood of generating wrong
communications that cannot be referenced according to the rules of the system.
Reducing the likelihood of wrong communications helps the expansion of the sys-
tem by providing guarantees that the system communications are correct and
can be referenced by further system communications. The identity checking com-
munications turn the information processing blueprints into a self-model of the
system. The self-model of the system is a simplified representation of the system
and of its environment in a complementary sense, containing the information
processing rules of the system.

For example we may consider a small start-up company having the founders
and a couple of other people as employee. The company runs mostly in an in-
formal manner, although standard record keeping is already in place and the
company has its statutes regulating the structure of the company (which is al-
most invisible during the everyday work), decision rights of shareholders, etc. As
the company grows and gets larger contracts and hires more employees it turns
into an established company, with specialised departments (e.g., sales, HR, de-
velopment), sets of rules that describe how information is processed within the
company, and an elaborate visible multilevel structure (e.g., offices indicating
status within the company). The company builds an extensive self-model and an
elaborate identity checking system based on its information system communica-
tions. Identity check communications guarantee that within company processes
and services delivered outside of the company meet the expected quality stan-
dards and together with the self-model of the company provide the foundation
for the building of the company identity. The company would not be able to
meet its growing commitments without this transformation. Having in place the
information subsystem, the identity checking communications and the self-model
allows the company to grow fast and conquer its market.

Faulty Communications. Faulty communications may occur in systems.
Faulty communications are defined as those which do not fit the lexicon of the
system’s language or, which have zero likelihood to be produced in a certain
context according to the rules of the system’s grammar.

For example in case of human speech the pronunciation of meaningless words
(a sequence of phonemes not associated with any word of the lexicon of the
language of the speaker), such words are faulty communications. To differenti-
ate between faulty communications of the system and communications, which
are outside of the system (although produced by communication units, which

Self- ware Software – Will It Become a Reality?a

238 P. Andras and B.G. Charlton

produce communications that are part of the system), we need to consider the
referencing set of the communication. If the referencing set contains exclusively
or dominantly system communications, and the communication in question is
produced instead of a regular system communication that should follow by ap-
plication of some system rules, the communication in question is a faulty com-
munication.

For example, if the meaningless word occurs during meaningful speech, we
have a faulty communication, while if a human produces a meaningless ’word’
by the understanding of another human, this may not be the case of faulty
communication (e.g., if somebody speaks Chinese words in an English environ-
ment, without the intention of linking these communications to other English
communications).

In some cases faulty communications do not lead to any continuation com-
munication within the system (e.g., communications outside of the lexicon of the
system). In other cases system communications may reference faulty communi-
cations. Such cases may lead to further problems within the system and may
cause the system to fail. However this is not necessarily the case - for example
evolution by natural selection proceeds by genetic mutations which are faulty
communications. Most genetic mutations are fatal to survival, or deleterious and
damage the organism, however a minority of mutations are ’mis-interpreted’ by
the system as being meaningful, and by chance these mutations improve the
adaptiveness of the organism enabling it to reproduce relatively more effectively
than the organisms without the mutation - hence the system constituted by
organisms of the same species can grow in complexity.

Communication Errors. Errors of communication systems are defined as
cases when communications happen according to the rules of the system, but the
system of communications cannot lead to continuation because of environmental
constraints. In other words, communication units that are expected to produce
the continuation communication are unable to do this, due to their participation
in other environmental communications - for instance when an organism with
no visual system is dessicated by sunlight since it cannot detect or respond to
the light. The death of the organism is not due to a fault in the system commu-
nications, but to the error constituted by limitations of the organisms system of
communications.

Errors therefore mean that the system’s description of the environment is
not correct in the specific circumstance being experienced. Of course, all system
descriptions of the environment are necessarily incorrect in an absolute sense
because the environment is more complex than the system. However there is
no error so long as the environment description is ’good enough’ to enable the
system communications to continue. An error is said to occur when the incor-
rectness of environmental description leads to an actual failure in continuation
of communications.

Continuations of faulty communications may lead to errors in the above sense.
If there is no continuation of the faulty communication, the error occurs there, as
there in no continuation of the system communications. If there are continuations

239

of the faulty communication, these continuations aim to decide whether the
faulty communication is part of the system or not. Such communications may
reach the ’not part of the system’ decision according to the rules of the system,
with the consequence of ending the sequence of communications by a terminating
communication, implying no continuation within the system. If the halting of
continuation communications happens when there are communications supposed
to be the continuation of the most recent communications, the system reaches
an error in the above defined sense.

Errors may occur even when there is no faulty communication at the root.
Occurrence of such system errors are signs of the mismatch between the system’s
description of the environment and the actual environment. Mismatch errors
imply that some of the rules defining the system are pragmatically wrong (i.e.,
they do not fit the environment as it is being experienced). The system’s action
on finding errors is the generation of communications that check the validity
of communications that led to the communication triggering the error. These
checks aim to find the root of the error, and terminate the continuations of
communications branching out from the root of the error.

For example, in natural sciences hypotheses and theories are built and incor-
porated into ongoing scientific work. But when the experimental results ’falsify’
the theories by not confirming their predictions, this prevents continuations of
communications until the science is revised to remedy this. The root of the
wrong theory is invalidated, together with scientific communications branching
from this root, and these are eliminated from that science so that communica-
tions can continue. This may be described as ’purging’ the system after an error-
to excise the error and its continuations.

Purging the system after an error may have very severe implications for the
system. The invalidation of the branches emerging from the root of the error will
probably shrink the system considerably in the short term. If large scale shrinking
of the system happens the system encounters a failure. System failure may even
lead to the dissolution of the system. For example, the experimental findings
invalidating the roots of alchemy theories led to the elimination of the alchemy
from the system of sciences. In case of the Enron company (an US electricity
distribution giant until 2000), the finding that the roots of the accounting of the
company were false led to the rapid collapse of the company. The attempts to
purge the errors from the Russian economic system caused a collapse in economic
output which has lasted 15 years, so far.

Self- wareness in Systems. Abstract communication systems are self-aware
systems if they have an information subsystem which generates an adaptive self-
model of the system providing reference for identity check communications. In
other words, self awareness implies the evolution of an information sub-system
in the first place, and evolution of particular properties of this information sub-
system. It is important to recognize that, like all systems, the internal commu-
nications of the information subsystem is differentially much greater than the
external communications, and this differential increases as the complexity of the
information subsystem increases. This implies that the function of self-awareness

Self- ware Software – Will It Become a Reality?a

a

240 P. Andras and B.G. Charlton

(like all memory functions) represents only a minority of the communications of
the system which enables self-awareness.

Consequently, self-aware systems generate adaptive actions and form adap-
tive perceptions representing the adaptive changes in their self-model. The adap-
tive changes in the self-model happen in response to faults, errors and failures
experienced by the system. Purging the system of communications leading to
errors imply imposing new structures and possibly new information processing
rules. Simplification of communications, emergence of subsystems and interac-
tions with other systems may also imply changes in the information processing
rules. Changes in the rules of information processing are reflected in changes of
long-term memories and corresponding changes in the self-model of the system.

For example a company may experience difficulties in selling their products
in their market. These difficulties are errors within the system, as expected con-
tinuation communications (i.e., selling of products) do not follow previous com-
munications (i.e., those which lead to the production and packaging for selling of
the products). In response the company may revise its own regulations and other
communications to identify the roots of the problem. If it is found that the com-
pany’s technology is unable to produce sufficiently competitive products in some
market of the company the company may change its technology or may turn its
resources and technologies to produce different products. This change happens
by modifying the regulations of the company and by adapting the self-model
of the company. After the adaptive change of the self-model of the company
identity check communications will change and the company will generate new
adaptively changed actions and experience adaptively changed perceptions. In
some cases the company may survive for very long time, while moving from one
market to another, adaptively changing its self-model and identity in order to
fit better to its environment (e.g., the BARCO company produces visualisation
and optical monitoring equipment today, while originally it was founded as the
Belgian - American Radio Company, which produced radios and later TVs).

3 Memory and Information Subsystems

We discuss in this section two natural systems, which feature self-awareness. The
first system that we discuss is the cell which is a biological self-aware system
producing adaptive responses to external stimuli in function of the state of the
system. The second system that we discuss is the system of a human organization
(e.g., a company or government department), which is again a self-aware system
(i.e., a type of ’management’), which senses itself and produces adaptive and
possibly innovative responses depending on external stimuli and the state of the
system.

The critical features of the discussed systems for the presence of self-
awareness are that they possess both short- and long-term memories and an
information subsystem, which processes and creates new memories, and that
they have an adaptive self-model that is referenced by their identity check com-
munications. (’Adaptive’ means that the self-model has evolved under selection

241

pressure from the system for which it serves the self-awareness function.). The
memories are produced by communication units, which reproduce earlier commu-
nications that happened within the system. The information subsystem is a part
of the communication system which generates new communications about mem-
ory communications (i.e., by referencing memory communications) and leads to
the generation of long-term memory communications representing processes of
combinations and derivations of existing memory communications.

3.1 Cells: Proteins, RNA and DNA

Living cells can be analysed in phenomenological terms by listing their compo-
nents and the properties and behaviours of these components. This traditional
approach is followed by most biology books, describing cells as a complex machin-
ery made of cell membrane, cytoplasm, ribosomes, mitochondria, chloroplasts,
Golgi organelle, cilia, flagella, centrosome, lysosomes, endoplasmic reticulum,
nucleus and possibly various other cellular organelles [48]. For each of these
components their structure and behaviour can be described, listing proteins,
lipids and other molecules that compose them, and describing changes of them
in response to various stimuli (e.g., pump molecules residing in the cellular mem-
brane may introduce or expulse some ions or smaller molecules into/from the
intracellular fluid).

An alternative way of looking at cells is to consider them as abstract commu-
nication systems, in which proteins and other molecules are the communication
units and their interactions are the communications. In this sense the cell is iden-
tified as the set of interactions between proteins and other molecules (e.g., ATP,
RNA) (Andras and Andras in press). All cellular components can be seen as well
organized spatio-temporal patterns of interactions between such molecules, the
proteins playing a central role in most of these interactions. Molecular interac-
tions reference earlier interactions in the sense that the participating molecules
are results of earlier interactions between molecules (e.g., proteins form interme-
diary complexes, which lead to new molecules, including proteins and possibly
now conformations of the participating proteins, the resulting proteins partic-
ipate in new molecular interactions, referencing earlier interactions which led
to their formation or transformation). Such inter-referencing interactions form
a dense cluster within the cell, surrounded by relatively rare interactions with
molecules, which are outside of the cell. The density boundary of the cell system
is materialized as the cell membrane.

Memories of interactions between proteins are contained in RNA molecules.
The appropriate decoding of RNA molecules into proteins at the ribosomes guar-
antees that the appropriate types of proteins are available within the cell and
that the appropriate molecular interactions happen within the cell delivering the
expected functionality of cellular organelles into which the produced proteins are
incorporated. The RNA molecules may change during evolution. Frequent or im-
portant interactions between proteins leading to stable protein complexes may
become encoded by a single RNA, coding directly for protein complex emerging
from the interactions of proteins. The RNA molecules produce the primary mem-
ory subsystem of the cell, allowing the reproduction of earlier communications

Self- ware Software – Will It Become a Reality?a

242 P. Andras and B.G. Charlton

(i.e., molecular interactions) by allowing the reproduction of proteins. The RNA
memory system is a short-term memory system, the RNA molecules being able
to exist for a relatively limited time period (e.g., half-life of mRNA molecules is
around 6 hours [55]).

The short-term memory molecules of the cell participate in many interactions
between such memory molecules (i.e., RNAs). Well known and newly discovered
RNA molecules, like mRNA, rRNA, tRNA, siRNA [1], [47], microRNA [39]and
others interact with each other regulating the translation of memories encoded
in mRNA molecules into proteins. The result of these regulatory interactions is
the appropriate production of types and quantities of proteins within the cell.
The interactions between RNA molecules rearrange some of them (e.g., splicing
of immature mRNA) and produce RNAs corresponding to the right sequence of
proteins that need to be produced or RNAs which can communicate with others
in further regulatory interactions. The system of communications between RNA
molecules constitutes an information subsystem of the cell.

The interactions between RNA molecules are reproduced using memories of
such communications. These memories are the DNA molecules organized into
the genome of the cell. The DNA molecules produce RNA molecules by interact-
ing with proteins and RNA molecules. The produced RNA molecules participate
in RNA interactions and ultimately lead to the generation of various regulatory
and protein encoding RNA molecules and finally to proteins within the cell. The
DNA molecules constitute a secondary memory subsystem of cell consisting of
long-term memories (the DNA molecules usually survive with minor changes
during the whole lifetime of the cell). In bacteria and archaea the DNA contains
mostly segments which encode RNA molecules which lead to protein generation.
In higher organisms the DNA contains a large amount of non-protein coding
segments, which are believed to participate in regulatory interactions between
DNA segments [40]. These regulatory interactions lead to the production of ap-
propriate RNA molecules in appropriate quantities. The regulatory interactions
between DNA segments constitute a communication system, which can be seen
as the secondary information system of the cell (i.e., the information subsystem
regulating RNA interactions).

Following the abstract communication systems theory interpretation we iden-
tified two levels of memory subsystems within the cell constituted by RNA and
DNA molecules, providing memories of protein interactions (short-term mem-
ories) and RNA interactions (long-term memories), respectively. These mem-
ories generate and information subsystem made of interactions between RNA
molecules and segments of DNA molecules, which regulate the expression of
memories under their control including the creation of new memories (e.g.,
spliced RNA molecules, simultaneous production of various combinations of
RNA molecules). The long-term memories contain a blueprint description of
the cell, constituting the self-model of the cell.

The cell performs self-monitoring through the interactions between proteins,
RNA molecules and segments of the DNA [46]. These communications trigger
further communications which reference them. Some of the protein interaction

243

communications lead to interactions with RNA molecules. The results of such
interactions can be seen as short term memories (i.e., possibly modified RNA
molecules). These short term memories participate in RNA interaction commu-
nications contributing to the selection of appropriate RNA molecules for trans-
lation into proteins. RNA interactions may generate RNA molecules or proteins
that interact with DNA molecules (e.g., siRNA molecules), driving the DNA
expression into RNA accordingly to the cell’s needs. Other RNA molecules may
even create new DNA molecules (e.g., RNA retroviruses), creating new memo-
ries of RNA interactions. The self-monitoring ultimately refers to the self-model
(i.e., the DNA blueprint) in order to check the identity of intracellular commu-
nications (i.e., whether they are correct or not, or expected or less expected).

The actions of the cell system are sequences or spatio-temporal patterns of
protein interactions (e.g., secretion of molecules into the extra-cellular space,
movement of the cell). These actions aim to validate the correctness of earlier
cell communications and implicitly to reproduce and expand the cell. The actions
are generated using the memories and the information processing subsystems of
the cell, which regulate the generation of the right proteins in the right amounts
and right places, such that the appropriate cell actions can be generated.

The cell perceptions are the differences between the expected distribution
of protein interactions and the actual distribution of these interactions. The
first is specified through the blueprint of the cell, the second emerges from self-
monitoring identity check communications. For example the presence or absence
of antibiotics in case of bacteria may lead to very different patterns and distri-
butions of protein interactions (i.e., in the presence of ribosome-blocking antibi-
otics many wrong proteins are produced, generating many protein interactions,
which do not fit into the system of protein interactions of the cell). The differ-
ent pattern and distribution of protein interactions leads to changed patterns
of RNA-protein expression and possibly to change patterns of DNA-RNA ex-
pressions (e.g., previously inactive DNA segments are expressed in neurons after
long-term potentiation [12]).

Faults, errors and failures occur in cells. Faults are interactions between pro-
teins that do not follow the language of the cell (i.e., the set of regular inter-
actions). For example such interactions may lead to protein malformations like
prions, which are proteins having a wrong conformation, preventing them from
their regular interactions. Faults may lead nowhere, and in many cases the cell
can simply ignore them, eliminating the possibly hazardous results of faulty
interactions (e.g., toxins produced by such wrong interactions). Errors occur,
when interactions happen according to the rules, but they cannot be continued
by further appropriate interactions. For example, in the case of bacteria in the
presence of antibiotics many appropriate protein interactions cannot be followed
by such interactions because of the lack of appropriate proteins. When errors
happen at the large scale, and large part of the cell system halt the cells may
experience failure, which may lead to the disintegration of the cell (e.g., bacteria
in presence of antibiotics).

Self- ware Software – Will It Become a Reality?a

244 P. Andras and B.G. Charlton

Self-monitoring makes possible for the cells to perceive themselves and im-
plicitly their environment and to select appropriate actions in order to increase
their chance of self reproduction and expansion. In case of faults, errors and
failures these are perceived in terms of deviations form the expected interactions
and the cell invokes new parts of its memory subsystem using its information
subsystem to generate responses to avoid catastrophic effects (i.e., the disin-
tegration or large scale shrinking of the system) of these problems. Adaptive
responses are generated by the cell reflecting the environment of the cell and its
own state. Some of these adaptive responses lead to new memories and fuel the
evolution of the system. For example, bacteria may develop antibiotic resistance
in the presence of antibiotics, and may loose antibiotic resistance after residing
in antibiotic-free environment.

Our analysis shows that cell systems constitute self-aware systems. They are
able to monitor themselves and produce adaptive responses reflecting the state
of their environment and of themselves. They are also able to build upon these
adaptive responses and innovate themselves evolving into new forms adapted
to their environment in such ways that increases their chance to reproduce and
expand.

3.2 Organizations and Bureaucracies

Human communications (verbal, written, gesture based, etc.) constitute a com-
munication system, which is the human society. Human society has many sub-
systems, like subsystems defined by natural languages (e.g., English, Chinese,
etc. societies), and subsystems defined by their specific logic, with associated
functionality in the context of their society (e.g., political system, legal system,
economic system, etc.) [16], [16], [41], [53]. Organizations constitute subsystems
within many parts of the human society, e.g., political parties within the political
system, companies within the economic system, and universities in the higher
education system.

Organizations can be viewed as communication systems made of communi-
cations between humans, these humans acting as communication units for the
organization [4], [10], [15], [44]. The organization is defined by its own language,
which restricts the distributions over possible continuation communications, con-
ditioned by previous communications. The language of the organization is usually
described in terms of statutes, regulations, contracts, rules (rules differ from reg-
ulations in the sense that rules have a limited range of applicability and restrict
the relationship between a few factors, while regulations are large consistent
sets of rules with a wide range of applicability and constraining the relationships
of many factors), and rituals (interpreted in a wide sense, including all kinds
of expected behavioural patterns). The language of the organization imposes
structures (i.e., restrictions on communications) within the organization (e.g.,
organizational hierarchies).

Organizations produce memories that contribute to the success of reproduc-
tion and expansion of the organization. Such memories are products and services,
which represent in a compressed form the human communications that lead to
their production, written paper and electronic records of organizational com-

245

munications, and repeatedly told stories of organizational events. The memories
of the organization are organized into a memory subsystem by communications
about these memories in form of generating organizational rituals, traditions,
rules and regulations. The latter constitute the foundation of the identity check-
ing information subsystem of the organization. Products, services and records
of organizational communications constitute short-term memories of the organi-
zation, they being referenced for relatively short time period. Memories about
processing of short-term memories, like rituals or regulations are long-term mem-
ories of the organization, they persist for long time periods and are referenced
during this time when memory communications are processed. The long-term
memories of the organization describe a self-model of the organization (e.g.,
the constitution of a party describes the organizational units of the party, the
rights and responsibilities of these units and of their members, the decisional
procedures, etc.).

Large organizations have well developed information subsystems, which use
and generate memories and check the identity of organizational communica-
tions by referencing traditions, rules and regulations. The information subsys-
tem of such organizations takes the form of organizational bureaucracy. Thus,
the bureaucratic subsystem of the organization deals primarily with produc-
tion of records, assessment of records, and production of new identity checking
communications in forms of particularized orders based on existing regulations,
formulation of new rules, contracts and regulations. The organizational bureau-
cracy in particular generates the long-term memories of the organization.

Organizations self-monitor themselves by checking the identity of organiza-
tional communications and by generating records of organizational communi-
cations for later identity checks. Organizational bureaucracies perform to large
extent the self-monitoring of the organization by generation and assessment of
records of organizational communications. Self-monitoring drives the appropriate
application of rules by referencing long-term memories of the organization (the
organization’s blueprint) contained in regulations defining the what is allowed
and what is not in the context of organizational communications.

The actions of an organization are organizational communications that mod-
ify the communications in the environment of the organization (e.g., selling prod-
ucts, conquering a part of a market, changing a part of the political discourse
etc.). Communications constituting organizational actions follow the rules of the
organization (e.g., rules describing the delivery of a service). The perceptions of
the organization are the differences between the expected distribution of orga-
nizational communications and their actual distribution. These perceptions are
assessed using memories of earlier communications usually by the organizational
bureaucracy. Actions generate perceptions and perceptions generate actions all
aiming to increase the reproduction and expansion ability of the organization.
If the rules of the organization (i.e., the identity of the organization) match its
environment the perceptions and actions will allow the organizations to recruit
more organizational communications, which usually materializes in the expan-
sion of the organization in the sense of having more humans communicating

Self- ware Software – Will It Become a Reality?a

246 P. Andras and B.G. Charlton

within the organization, more products and services sold and gaining new parts
of markets.

Organizations also experience faults, errors and failures. Faults are those
organizational communications which do not follow the rules of the organiza-
tion. These many times are eliminated without providing reference for many
further organizational communications. Errors occur when organizational com-
munications follow the rules, but they cannot be continues due to environmental
constraints. For example, an inappropriate marketing campaign does not lead
to increase in sales. A major functional role of the organizational bureaucracy
is to discover faults and errors and limit their effects on the organization. By
applying identity checks (i.e., assessing memories of communications - records
to find out whether they comply with the rules) and forming expectations about
future communications according to the rules an effective organizational bureau-
cracy can spot faulty communications and recognize errors. In case of errors the
bureaucracy aims to find the roots of it by analyzing records of organizational
memories, i.e., those communications that led to the generation of the error, and
generates new identity checks, i.e., new communications about rules that are in-
tended to be used to prevent the occurrence of similar errors. Failures happen
when errors halt the continuation of communications within a large part of the
organizations. Failures may lead to the disintegration of the organization, and
usually lead to major restructuring of it, changing rules and regulations, and
reorganizing the organizational bureaucracy.

Organizations adapt to their environment in response to faults, errors and
failures by changing their rules, regulations, structure, and possibly even their
identity (e.g., companies may move completely from one market to another).
These changes in organizations often take the form of adding and modifying
the regulations of the organization, and many times this leads to standardisa-
tion / simplification of organizational communications. Such changes trigger the
reorganization of the organization, provision of new products and services, the
change of its bureaucracy and possibly of its identity. The changes may be ben-
eficial or not for the organization. In a competitive environment, where many
organizations compete for communications generated by the same communica-
tion units (i.e., humans) maladaptive change leads to the shrinking and possibly
to the dissolution of the organization. In less competitive environment (e.g.,
state monopolies or very large corporations) maladaptive changes are likely to
lead to overgrowing bureaucracy as new regulations are put in place to prevent
earlier errors and failures triggering the growth of the organizational bureau-
cracy in charge of generating and imposing regulations and checking adherence
to regulations.

Organizations are self-aware systems, which monitor themselves using their
memories and information subsystem (i.e., the organizational bureaucracy),
sense their environment and act upon their environment, and adapt to their
environment. Organizational adaptations are generated by the organizational
bureaucracy in form of new or revised rules and regulations aimed to prevent
faulty communications, errors and the occurrence of failures, guaranteeing in-
creased ability of the organization to reproduce and expand.

247

4 Self- ware Software

Computer software drives the computer hardware and it is present in increas-
ingly many machines and appliances, including cars, fridges, and mobile phones.
Computer software is made of computer programs written in some programming
language (e.g., Java, C++) and executed on some computer hardware, which is
able to understand the programs and translate them into behaviours of the ma-
chine. In the early times (1950s - 1960s) computer programs were independent
of each other, were executed sequentially, and mainly dealt with processing and
transforming some data records and possibly producing some additional data
records. More recently computer software is composed of many concurrently
active components which communicate with each other.

The usual way is to view computer software in functional terms, associating
with them a set of functions that they can perform and which might be useful
for their user (e.g., word processing, graphics generation, web browsing, etc.).
An alternative way to consider computer software is to view them as part of the
human society interpreted as an abstract communication system. In this context
computer programs can be seen as recorded memory of human communication
(i.e., the communication of the programmers with computers, which transformed
their typed communications into stored records containing the program). This
memory can be recalled by using a computer (or some computing hardware in
general), and the recalled communication will be used to process new society
communications (human or indirectly related to human communications) and
generate possibly new communications and records of earlier communications.
The software is part of the information subsystem of the society allowing the
processing of memories (i.e., electronic records of earlier communications) and to
generate new society communications (e.g., a printed page, a spoken sentence, or
stored data). Unsurprisingly, computer software is used to a very large extent in
the context of information subsystems (i.e., bureaucracies) of various social sub-
systems, like companies, government agencies, and other kinds of organizations.
(We note that computers themselves are products of human communications
and can be seen as memories of these communications that led to the design and
assembly of them.)

In alignment with the above presented view, computer software can be seen
as a communication system of many processes or components executed on com-
puter hardware. In the context of object-oriented software, we may consider
each object (i.e., an instantiation of a class, which is specified in the code of
the software) as a communication unit, and view the software itself as the set
of interactions between these communication units. In current large scale soft-
ware systems such objects appear and disappear frequently, communicating with
many other objects, some of these being created by other programs. Some ob-
jects may create copies of themselves or other objects on distant hardware, and
may reproduce and expand the communication system of which they are part of
(e.g., spyware).

Here we aim to investigate the ways by which computer software may be-
come self-aware. First let us review the features of self-aware communication

Self- ware Software – Will It Become a Reality?a

a

248 P. Andras and B.G. Charlton

systems that we highlighted in the previous section of the paper. Systems with
self-awareness all have short- and long-term memories and identity check com-
munications that reference these memories. Memories provide the foundation for
self-monitoring, which is performed by the information subsystem of the system
using identity check communications and generation of new long-term memory
communications by processing existing memory communications. The system
of long-term memories defines a self-model of the system, which is ultimately
referenced by identity check communications. Self-aware systems perceive their
environments in terms of differences between expected and actual system be-
haviour, perform actions by which they modify their environment, and aim by
their perceptions and actions to reproduce and expand the system. In princi-
ple these systems may expand infinitely, although in practice they may reach
some limits of their expansion. Self-aware systems adapt to their environment
by changing themselves in response to experienced faulty communications, er-
rors and system failures. System adaptations change the information subsystem
of the system, by imposing new or modified identity checks, or smaller or larger
scale reorganizations of the information subsystem, changing the rules defining
the identity of the system. The rest of the section will analyse each of the listed
features of self-aware systems in the context of software systems.

In the case of software systems we can identify short and long term memories
in forms of data and software code. The data is allowed to change frequently
in most cases. Stored data represents to some extent the memories of commu-
nications between objects (although not all communications are represented by
stored data). The software code constitutes long term memories (the blueprint or
self-model of the system), which allow the recreation of objects many times, and
store the rules of communications that lead to creation of these objects in com-
puter memories. The software code is usually not changing. More recently new
software systems emerged, which allow to some extent the change of their code
by incorporating new pieces of code into the system’s long term memory, e.g., se-
curity patches installed by human user or possibly installed automatically. These
changes in the long term memory of the system represent adaptations based on
processing memories of recent communications within the system, which led to
faults, errors and failures. We need to note that all these changes to the soft-
ware code reference human communications, which created the software patches.
Recent software environments like Smalltalk, Java and .NET implement com-
putational reflection [21], [42], which allows in principle changes to the program
code, but the range of practically allowed changes is very limited (e.g., asking for
names and types of exposed variables and methods in newly added components
[24]). Elementary structural changes, like using new methods available in newly
added components are allowed in the context of component-based programming
[34]. Software systems usually do not create memories of communications be-
tween objects (except in cases of faults or errors that can be interpreted by
exception handling components of these objects) and in consequence are unable
to develop an information subsystem that would process memories and possi-
bly generate new memories, including changes to the long term memory of the

249

system. However, we note that recent advances in the area of aspect-oriented
programming [19], [33] allow the software system to track communications be-
tween objects. This can be seen as a critical first step towards the creation of
memories of communications between objects (see logging of object communica-
tions in the context of aspect-oriented programming). In order to make software
systems able to develop self-awareness it is very important to expand their mem-
ory subsystem to provide the foundation for an information subsystem within
the software system.

Self-monitoring is performed by the information subsystem of self-aware sys-
tems. In case of software systems we can find some basic level of self-monitoring
in form of correctness monitoring using methods of exception handling, type
checking and execution pattern matching (in context of aspect-oriented pro-
gramming). These can be seen analogous to basic identity check communica-
tions in self-aware systems. These communications usually check the correctness
of data; they do not check the correctness of communications between objects
or processes in any more general sense (this is usually done during the com-
piling of the software by checking that the long term memory of the software
system conforms the rules of the programming language in which it is written).
Recent advances in aspect-oriented programming [19], [33] and design patterns
[28]indicate significant progress in terms of self-monitoring, by allowing tracking
of object communications (aspect-oriented programming) and using blueprints
of relatively simple communication patterns to enforce appropriate communica-
tions (design patterns; we note also the similar role of ’interface’-s in the context
of Java). Self-aware software systems need much larger scale self-monitoring com-
parable to self-monitoring of natural self-aware systems. Self-monitoring should
be based on memories of communications that happen between objects and pro-
cesses, should check the identity of these communications referencing identity
check communications of the software system (in particular the self-model of the
system, the software code), and generating new memory and identity checking
communications (including new parts of the software code).

In case of natural self-aware systems the identity check communications gen-
erate a large part of communications within the system, and we may see the
system emerging from such identity check communications. Due to the Popper
principle the system’s correctness cannot be proven, and identity checking (or
correctness proving) communications may continue infinitely, guaranteeing the
reproduction and expansion of the system. Existing software systems have ba-
sic mechanisms to check the correctness of data (e.g., type checks, exception
handling methods), but most of them do not check the correctness (or identity)
of communications between communication units (i.e., objects) during runtime
and consequently do not lead to the expansion of the software system inter-
preted as a communication system. We note that run-time type checking is
present in Smalltalk and also to some extent in Java, and the identity check of
communications may become a practical possibility following current trends in
aspect-oriented programming [19], [33] and use and development of design pat-
terns [56]. In case of software systems reproduction and expansion can be seen

Self- ware Software – Will It Become a Reality?a

250 P. Andras and B.G. Charlton

to some extent in form of re-use (template libraries [29], design patterns [26],
component-based programming [30]) and in form of installation and running
of many copies of them. Some of them, like software viruses, are able to repli-
cate themselves by creating new copies of their own code, which is run on the
same or on different computer hardware. Importantly, software systems usually
do not adapt autonomously to their environment (software patches distributed
automatically over the Internet can be seen as a basic form of adaptive change
triggered by human communications generating the patch) or their adaptation is
very limited (recognizing methods and types of variables of a new component).
Perhaps the most autonomous adaptive behaviour can be seen in the context
of implementation of continuation in programs developed using functional lan-
guages, which allows capturing of continuations of executions and the adaptive
recombination of such captured continuations [20], [7]. To overcome the present
limitations of software systems, and to develop self-aware software systems a
major change is needed in the design and analysis of software systems. While
current systems are designed and analysed in terms of their functionality im-
posed on them in the context of their environment, self-aware software systems
should be designed and analysed using a ’from within’ view, which permits the
development of the system such that its own identity check communications lead
to the emergence of the system. Self-aware software systems should aim to repro-
duce and expand themselves as communication systems and they should perform
their intended and externally imposed functionality by adapting to their envi-
ronment and reproducing and expanding within this environment. Steps that
may lead to such systems include works on cellular automata [25], multithread
parallel systems [59], software viruses [35], the concept of continuation [20], [7],
development of persistent systems [8], self-monitoring and self-healing systems
[6], component based programming [30]and aspect-oriented programming [19],
[33], [54].

Actions of software systems are sequences of communications with effect on
the environment of the system. These effects can be triggered actions of human
users (e.g., pressing a button or clicking the mouse on a certain place of the
screen) or communications originating from other software systems (e.g., arrival
of data through the Internet connection). The actions of the software system
follow the rules established by the self-model of the system (i.e., procedures
described in the software code), but the referencing of the self-model happens
mostly during the compilation of the code into objects (notable exceptions are
programs written in scripting languages, e.g., the use of the function ’eval’ to
include new code from an additional file). In contrast, natural self-aware systems
reference their self-model communications frequently during the identity check
communications. They also generate short-term memories of their action com-
munications, which are checked for their identity by referencing other memory
communications, self-model communications, and by generating new memory
communications. Perceptions of software systems are the detections of changes
in their environment. Typically such perceptions are implemented in the form
of ’if-then-else’ rules or multiple variants of this (e.g., ’switch’, ’case-of’), or

251

in form of exception handling (i.e., equivalent of a final or possibly branching
’else’). The expectation about possible communications is usually characterized
by a flat prior distribution, i.e., there is no prior information represented in the
encoding of the perception interpretation code. The difference between the flat
prior expectation and the experienced distribution (i.e., one of the possibilities
appears with certainty, while others have zero experienced probability) triggers
communications within the software systems. Similarly to the case of actions,
perception communications reference the self-model of the software system only
at time of compilation of the objects. Natural self-aware systems have expec-
tations based on prior experience. These expectations are usually characterized
by non-flat distributions over the space of possibilities. Prior experience changes
the expectations adaptively, so that the system can generate the most appropri-
ate communications in response to its perceptions. Self-aware systems also refer-
ence their self-model and memory communications frequently when the generate
perception triggered communications. To turn software systems into self-aware
systems they need to have frequent references to their short- and long-term
memories, adaptive expectations encoding non-flat prior distributions of possi-
bilities, and more flexibility of the behaviour of the software system that might
be achieved by on-line adaptation of the self-model (i.e., the software code) and
frequent recompilation (or partial recompilation) of objects.

Works on dependable systems and software reliability [9], [38] created an
elaborated theory of faults, errors and failures in the context of software sys-
tems. The most common mechanisms to deal with faults are the data validation
combined with roll-back and the exception handling methods. The roll-back is
triggered by invalid data and restores the previous correct state of the system.
In case of databases the roll-back restores previous data that satisfied the va-
lidity checks before, in case of more complex software systems recovery blocks
executed in parallel may be used to restore a valid state of the system [38]. Ex-
ception handling methods include the handling of invalid data, type mismatch,
and invalid access rights, providing essentially an ’if-then-else’ type solution of
dealing with unexpected communications grouped in one or a few categories.
Related recent work addresses the concept of ’re-start’, i.e., when does a pro-
gram or communication need to be re-initiated [65]. ’Re-start’ can handle in
principle a general class of errors, when the expected continuation communica-
tions do not happen. Natural self-aware systems check the identity (validity) of
communications permanently by referencing their short- and long-term memory
communications and creating new identity check communications. Identity check
communications eliminate most of the faulty communications, errors are limited
by structures that may change adaptively, and failures trigger major adaptive
changes in the self-model of the system. This suggests that self-aware software
systems need to expand their response repertoire to deal with faults, errors
and failures, by employing frequent identity check communications to validate
data and communications between objects, including communications referenc-
ing long-term memory communications (i.e., the software code), use of adaptive
structures, re-start methods and parallel multi-thread execution to limit errors

Self- ware Software – Will It Become a Reality?a

252 P. Andras and B.G. Charlton

and to create slack resources (i.e., enough many communications so the system
can continue its own reproduction even if many communications lead to faults
and errors), and by adapting its own self-model in response to errors and failures
by changing and adding to the software code.

Adaptation is a key feature of natural self-aware systems. Adaptation includes
the generation of appropriate actions and forming of appropriate perceptions in
order to increase the reproduction and expansion ability of the system, and also
the modification of the self-model of the system in response to errors and fail-
ures experienced by the system. Software systems are able to form appropriate
perceptions and generate appropriate actions to some extent, but they are un-
able to adapt their self-model by themselves during their existence in response
to errors and failures experienced by them. Software systems are most adaptive
in terms of stored data that is changing frequently and to lesser extent in terms
of changing access interfaces of objects (e.g., using methods of a newly added
component). Adding new security patches and updates is a relatively new way
of adaptation of software systems, which changes the self-model of the software
system in response to errors and failures. At the same time we have to note
that all these adaptations are triggered by communications with humans (even
in the case of automated updates the new modules are written by human soft-
ware developers). Just-in-time compilation, run-time type checking, and garbage
collection are the beginnings of more adaptive behaviour, which allow adaptive
changes with respect to the actively referenced part of the self-model and intro-
duce more frequent references to the self-model. The concept of ’re-start’ [65]
represent a new pathway that may lead to novel ways of adaptation in software
systems in response to errors (i.e., lack of continuation of communications as ex-
pected). Analysing natural self-aware systems suggests that a much wider range
of adaptive responses is needed in software-systems to achieve self-awareness.
Memories of runtime interactions between objects/processes need to be created.
These should generate new communications by referencing identity check com-
munications and other memory communications in order to check the identity
(validity) of these interactions, eliminating faulty communications when they ap-
pear. Identity check communications should reference frequently the self-model
of the system and should lead to changes in the self-model of the software system
(i.e., the software code) in response to errors and failures. These changes of the
self-model should manifest in new structural constraints imposed on communi-
cations between objects, possibly in simplification /standardisation of object
communications, in specialisation of communications between objects, leading
to the emergence of specialist subsystems of the software system, and possibly in
the generation or recruitment of new types of objects into the software system.

In general, comparison of software systems with natural self-aware systems
suggests that current software systems need many changes to become similar
to self-aware systems and possibly to become self-aware software systems. A
fundamental difference from current practice that seems to be needed is that
self-aware software systems need to be designed using a ’from within’ perspec-
tive, aiming to build a system that reproduces and expands itself and becomes

253

associated with externally perceived functions by adaptation to its environment.
The self-reproduction and expansion of the system should happen by generating
short-term memories of object communications and endless number of identity
checking communications that reference short- and long-term memory commu-
nications. The self-aware software system should be able to adapt to its environ-
ment by choosing appropriate actions and perceptions, and also by adapting its
own self-model contained in its long-term memories the software code. The adap-
tation of the self-model is critical for self-awareness, and should include changes
to the code, generation of new structures, and incorporation of new classes and
generation of new objects.

5 Will Self- ware Software Become a Reality?

In this section we discuss to what extent we expect that self-aware software that
satisfies our descriptions outlined in the previous section will become an existing
reality. We discuss aspects that we consider critical in terms of resources and
approaches.

In our view self-aware software systems will aim in principle to grow without
any limit. In practice the environmental constraints may limit this growth very
much as they do this in the case of existing natural self-aware systems (e.g.,
bacteria, animals, organizations). In most cases of natural systems the growth
limits of the system imposed by scarcity of resources needed for communication
units and communications do not limit the growth of the system in practical
sense, and the habitable environment of the system is apparently infinite from
the system’s point of view. We believe that in order to generate self-aware soft-
ware we need to achieve the state in which the habitable environment of the
software system becomes apparently infinite. The habitable environment of soft-
ware systems is provided by available hardware and software components (i.e.,
objects, processes run on the large amount of hardware). At the moment this
habitable environment is relatively small, which does not offer apparently limit-
less resources for the expansion of software systems. Simple replicating software,
like viruses spread on the Internet, are able to populate very rapidly the existing
available software/hardware environment, exhausting their resources for growth,
and collapsing as a system. In order to have the environmental conditions for
self-aware software we need many magnitudes increase of available software and
hardware resources, so that the environment provided by them allows practically
limitless growth for self-aware software systems.

As we noted earlier it is very critical that self-aware software is developed
using a ’from within’ approach. A similar approach can be seen in the case
of the Smalltalk [27] programming language, in which everything is an object,
including the development environment, and programs are built by combining
existing objects and building new objects [22], [61]. The main difference of the
proposed approach from most current software development approaches is that
it does not subordinate the development of the software system to the function
imposed on the system from outside. The proposed ’from within’ approach will

Self- ware Software – Will It Become a Reality?a

a

254 P. Andras and B.G. Charlton

allow to associate functions to the software system as it reproduces and expands
under environmental constraints. This does not mean that software components
(e.g., objects) or the software system is not developed to fulfil some specific role;
it rather means that components, communications, and the self-model of these
is selected and composed such that the system emerges to fulfil its designated
role. We do not know at the moment what would be the detailed features of
the software development ’from within’, but we think that current trends in
component-based programming and aspect-oriented programming are pointing
towards the ’from within’ approach to software development.

Self-aware software in our view will be the sum of communications between
objects that follow the rules described in the self-model of the software system
(i.e., the software code). We believe that such systems will be based on re-use of
many existing components (runtime objects, coded classes), and will recruit com-
munications involving such existing components. Similar to human organizations
or cells the focus of the system will be only partly to produce its communication
units (humans and proteins, respectively), but to a larger extent will be to use
the existing ones, involving them in communications according to the rules of
the system. This means that self-aware software systems will become a possibil-
ity when an apparently infinite number (obviously objectively this will be still
a finite number) of available software components will exist in an apparently
infinite supporting environment provided by computer hardware. The self-aware
software system may still produce many objects according to its own self-model
so it can build up itself, but it will be necessary for the software system to
be able to incorporate in itself communications with existing objects. Existing
objects of which code is not part of the software system may provide new seg-
ments for the adaptive self-model of the software system, making it better able
to reproduce and expand in its environment. Today we already can see begin-
nings of a hardware/software environment which might become able to support
the development of self-aware software according to our vision. The increasing
re-use of software components, the availability of template libraries [29], design
patterns [26], [56], and in some cases of their source code (i.e., open source ver-
sions of them or the bytecode of Java objects), the development of standardised
communication interfaces and communication protocols between objects, hint
that it might not be in the too distant future that building software by com-
bining existing objects and source code will be possible. An early step towards
self-aware software might be the building of software systems by specifying the
design of communication patterns between existing components, without adding
any new component or explicitly rewriting the behaviour of existing components
(see design patterns).

As we pointed out in the previous section natural self-aware systems exten-
sively use memory communications, and they create memories of many communi-
cations. Having these memory communications provides the foundation for their
self-monitoring by their information subsystem and for the adaptation of their
self-model. The critical missing component of software systems in this respect
is the lack of creating memories of communications between objects/processes,

255

however recent advances in aspect-oriented programming address this issue at
least at a basic level by allowing the logging of object communications [19].
Consequently, the analysis of natural self-aware systems suggests that in order
to develop self-aware software systems we need to have memories of communica-
tions between objects and these memory communications need to be referenced
frequently by communications constituting the software system. Although it is
not completely clear for us how the creation of object communication memories
should be implemented, we believe that such memory communications can be
realized in the form of creating new objects which generate repeatedly a repre-
sentation of the memorized communication (or combining simple existing objects
by creating re-occurring communications between them or by extension logging
communications implemented in the context of aspect-oriented programming).
These memories should work as short-term memories, implying that they can
be discarded after a relatively short time, making their sustaining components
(i.e., objects which produce the memory communications) available to store new
memory communications or to participate in other communications. The devel-
opment of these short-term memories will bring us closer to the method of ’from
within’ for software system development.

Natural self-aware systems grow to a large extent due to identity check com-
munications. In other words, due to the Popper principle, the asymmetry of true
and false decisions about the identity/validity of communications, systems that
are able to exist check their identity for infinity (at least in principle), systems
that cease to exist conclude at some moment that their identity does not exist by
ceasing the continuation of their communications. In our opinion self-aware soft-
ware systems should expand largely due to identity checking communications,
which check the identity/validity of communications between objects, generating
new communications between objects, including memory communications, and
guaranteeing the reproduction and expansion of the system according to its own
rules. We believe that the ’from within’ method of development of self-aware
software will include methodology that allows the expansion of the software sys-
tem by the generation of identity check communications. As we already noted,
the function of the self-aware software system will be achieved by adaptation to
its environmental constraints, which limit its growth and trigger the generation
of additional identity check communications by contributing to the generation of
some actual communications that differ to some extent from the expected com-
munications (at least in their distribution). We note that our view of growing
the software system by identity check communications is similar to the method
of development of programs by elaborating the proof of initial statements repre-
senting the problem and assumptions [32], [43], [60]. The main difference between
our approach and program development by proof is that in our view the proving
process should continue infinitely in case of self-aware software systems, while
in the context of program development by proof the proving process ends by
proving the correctness of the program. While program development by proof
operates in a world supposed to be static and completely known (i.e., represented
by the assumptions and the problem statement, of which validity is assumed to

Self- ware Software – Will It Become a Reality?a

256 P. Andras and B.G. Charlton

be provided), in our view self-aware software develops in a world that is infinitely
complex and variable, the software system being able to capture (i.e., describe
in a complementary sense) at any time a limited part of this world. In the con-
text of our assumption, if the proving process halts that means the end of the
software system, and the infinite continuation of the proving process means the
reproduction and possibly expansion of the software system.

Adaptation of the self-model of natural self-aware systems is their core critical
feature. Existing software systems are limited in adapting their self-model as we
discussed in the previous section. If the previously discussed issues will be solved
according to our expectations, the adaptation of the software code in response
to faults, errors and failures will become possible. The use of existing objects
and the access to their source code (their self-model) will allow the inclusion of
new parts into the self-model of the software system. Self-monitoring, memories
of runtime interactions, and frequent references to the self-model of the system,
and accessibility of new self-model components will make possible to search for
roots of errors, to find appropriate simplifications and standardisations, and to
find appropriate changes to the self-model of the system, which will increase its
reproduction and expansion ability.

Finally, an interesting question is whether the self-aware software will show
anything similar to human consciousness, including feelings and emotions. In
our view there is a wide variety of natural self-aware systems, which include
bacteria, plants, simple and complex animals, social animals like humans, hu-
man organizations, and possibly other natural self-aware systems. These systems
perform their self-awareness in many different ways, but all maintain the criti-
cal features of self awareness (including the adaptive change of their own self-
model). One of these systems, the humans, show consciousness, while others may
show similar features to some extent (e.g., animals), but others do not show any
behaviour that would resemble human consciousness (at least in terms of com-
munications/interactions with humans). This indicates that self-aware software
systems may not show any behaviour that would resemble human consciousness,
and in principle there is no reason why we should expect any such behaviour.
Our view is that self-aware software systems (if they become reality) will show
the critical features of self-awareness, but they will not behave like conscious
humans.

References

1. Agrawal, N, et al. (2003). RNA Interference: Biology, Mechanism, and Applica-
tions. Microbiology and Molecular Biology Reviews, 67: 657-685.

2. Alonso, E, Kudenko, D and Kazakov, D (eds.) (2003) Adaptive Agents and Multi-
Agent Systems. Springer-Verlag, Berlin,

3. Andras, P and Andras, CD (in press). Protein interaction world - an alternative
hypothesis about the origins of life. To appear in Medical Hypotheses.

4. Andras, P and Charlton, BG (2004). Management from the Perspective of Systems
Theory. In Proceedings of Practising Philosophy of Management - 2004.

257

5. Andras, P and Charlton, BG (2002). Democratic Deficit and Communication In-
flation in the Health Care System. Journal of Evaluation in Clinical Practice, 8:
291-298.

6. Appavoo et al. (2003). Enabling autonomic behavior in systems software with hot
swapping. IBM Systems Journal, 42: 60-76.

7. Ariola, ZM, Herbelin, H, and Sabry, A (2004). A type-theoretic foundation of
continuations and prompts. ACM SIGPLAN Notices, 39: 40-53.

8. Atkinson, MP and Morrison, R (1995). Orthogonally persistent object systems.
VLDB Journal, 4: 319-401.

9. Aviziensis, A, Laprie, JC, and Randell, B (2001). Fundamental concepts of de-
pendability. Newcastle University Report no. CS-TR-739.

10. Barnard, CI (1938). The Functions of the Executive. Harvard University Press,
Cambridge, MA.

11. Barr, A and Feigenbaum, EA (1989). The Handbook of Artificial Intelligence.
Volume II, 2nd printing, Addison-Wesley, Reading, MA.

12. Behnisch T, Matsushita S, and Knopfel T (2004). Imaging of gene expression during
long-term potentiation. Neuroreport, 15: 2039-2043.

13. Born, R (Ed.) (1989). Artificial Intelligence: The Case Against. Routledge, London,
UK.

14. Cazzola, W, Stroud, RJ, and Tisato, F (2000). Reflection and Software Engineer-
ing. Springer-Verlag, Heidelberg.

15. Charlton, BG and Andras, P (2004). The Nature and Function of Management -
a perspective from systems theory. Philosophy of Management, 3: 3-16.

16. Charlton, BG and Andras, P (2003). The Modernization Imperative, Imprint Aca-
demic, Exeter, UK.

17. Cohen, PR and Feigenbaum, EA (1989). The Handbook of Artificial Intelligence.
Volume III, 2nd printing, Addison-Wesley, Reading, MA.

18. DiStefano, A, Fragetta, M, and Tramontana, E (2003). Computational reflection
for embedded Java systems. LNCS 2889, Springer Verlag, Heidelberg, pp.437-450.

19. Douence, D, Fradet, P, and Sudholt, M (2004). Composition, reuse, and interaction
analysis of stateful aspects. In: Proceedings of AOSD 2004, ACM, pp.141-150.

20. Duba, B, Harper, R, and MacQueen, D (1991). Typing first-class continuations in
ML. In: Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, ACM, pp.163-173.

21. Ferber, J (1989). Computational reflection in class based object-oriented languages.
ACM SIGPLAN Notices, 24: 317-326.

22. Foote, B and Johnson, RE (1989). Reflective facilities in Smalltalk-80. ACM SIG-
PLAN Notices, 24: 327-335.

23. Frank, MR and Szekely, P (1997). Adaptive forms: an interaction paradigm for
entering structured data. In: Proceedings of the 3rd International Conference on
Intelligent User Interfaces, ACM, pp.153-160.

24. Furicht, R, Prahofer, H, Hofinger, T, and Altmann, J (2002). Components: A
component-based application framework for manufacturing execution systems in
C# and .NET. In: Proceedings of TOOLS Pacific 2002, ACM, pp.169-178.

25. Gacs, P (2001). Reliable cellular automata with self-organization. Journal of Sta-
tistical Physics, 103: 45-267.

26. Gamma, E, Helm, R, Johnson, R, and Vlissides, E (1995). Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.

27. Goldberg, A and Robson, D (1983). Smalltalk - 80. The Language and its Imple-
mentation. Addison-Wesley, Reading, MA.

Self- ware Software – Will It Become a Reality?a

258 P. Andras and B.G. Charlton

28. Grothoff, C (2003). Walkabout revisited: The runabout. In: LNCS 2743, pp. 103-
125.

29. Jarzabek, S (1995). From reuse library experiences to application generation ar-
chitectures. ACM SIGSOFT Software Engineering Notes, 20: 114-122.

30. Jarzabek, S and Knauber, P (1999). Synergy between component-based and gen-
erative approaches. ACM SIGSOFT Software Engineering Notes, 24: 429-445.

31. Jennings, NR, Sycara, K, and Woolridge, M (1998). A roadmap of agent research
and development. Autonomous Agents and Multi-Agent Systems, 1: 7-38.

32. Jones, CB (1972). Formal development of correct algorithms: An example based
on Earley’s recogniser. In: Proceedings of ACM Conference on Proving Assertions
about Programs, ACM, pp.150-169.

33. Katara, M and Katz, S (2003). Architectural views of aspects. In: Proceedings of
AOSD 2003, ACM, pp.1-10.

34. Killijian, M-O, Ruiz, J-C, and Fabre, J-C (2002). Portable serialization of CORBA
objects: a reflective approach. ACM SIGPLAN Notices, 37: 68-82.

35. Kinzle, DM and Elder, MC (2003). Internet WORMS: past, present, and future:
Recent worms: a survey and trends. In: Proceedings of the 2003 ACM workshop
on Rapid Malcode, ACM, pp.1-10.

36. Landauer, C and Bellman, KL (2001a). New architectures for constructed complex
systems. Applied Mathematics and Computation, 120: 149-163.

37. Landauer C and Bellman, KL (2001b) Self-modelling systems. In: LNCS 2614,
pp.238-256.

38. Lee, P.A. and Anderson, T. (1990). Fault Tolerance. Principles and Practice. Wien:
Springer-Verlag, 2nd ed.

39. Lee, Y et al. (2003). The nuclear RNase III Drosha initiates microRNA processing.
Nature, 425: 415-419.

40. Levine M and Tjian R (2003). Transcription regulation and animal diversity. Na-
ture, 424: 147-151.

41. Luhmann, N (1996). Social Systems. Stanford University Press, Palo Alto,
CA.Charlton, BG and Andras, P (2003). The Modernization Imperative, Imprint
Academic, Exeter, UK.

42. Maes, P (1987) Concepts and experiments in computational reflection. ACM SIG-
PLAN Notices, 22: 147-155.

43. Maghrabi, T and Golshani, F (1992). Automatic program generation using sequent
calculus. Proceedings of the 1992 ACM Annual Conference on Communications,
ACM, pp.73-81.

44. March ,JG and Simon, HA (1993). Organizations. Blackwell, Cambridge, MA.
45. Maturana HR, and Varela, FJ (1980). Autopoiesis and Cognition : the realization

of the living. D. Reidel Publishing Company, Boston.
46. Mattick, JS and Gagen, MJ (2001). The evolution of controlled multitasked gene

networks: The role of introns and other noncoding RNAs in the development of
complex organisms. Molecular Biology and Evolution, 18: 1611-1630.

47. Meister, G and Tuschl, T (2004). Mechanisms of gene silencing by double-stranded
RNA. Nature, 431: 343-349.

48. Miller, JG (1978). Living Systems. McGraw-Hill.
49. Newell, A (1990). Unified Theories of Cognition. Harvard University Press, Cam-

bridge, MA.
50. O Cinneide, M and Nixon, P (2001). Patterns and evolution structures: Automated

software evolution towards design patterns. In: Proceedings of the 4th International
Workshop on Principles of Software Evolution, ACM, pp.162-165.

259

51. Ortin, F and Cueva, JM (2003). Non-restrictive computational reflection. Com-
puter Standards & Interfaces, 25: 241-251.

52. Ortin, F, Lopez, B, and Perez-Schofield, JBG (2004). Separating adaptable persis-
tence attributes through computational reflection. IEEE Software, 21: 41-49.

53. Pokol, B. (1992) The Theory of Professional Institution Systems. Felsooktatasi
Koordinacios Iroda, Budapest.

54. Popovici, A, Alonso, G, and Gross, T (2003). Spontaneous container services. In:
LNCS 2743, pp. 29-53.

55. Raghavan, A et al., (2002). Genome-wide analysis of mRNA decay in resting and
activated primary human T lymphocytes. Nucleic Acids Research, 30: 5529-5538.

56. Rising, L (1998). The Patterns Handbook. Cambrdige University Press, Cam-
bridge, UK.

57. Rosenblat F (1962) Principles of Neurodynamics : Perceptrons and the Theory of
Brain mechanisms. Washington D.C., Spartan.

58. Simon, HA (1976). Administrative Behaviour. The Free Press, New York, NY.
59. Stunkel, CB, Sivaram, R, and Panda, DK (1997). Implementing multidestination

worms in switch-based parallel systems: architectural alternatives and their impact.
ACM SIGARCH Computer Architecture News, 25: 50-61.

60. Sun, Y-Q, Lu, R-Z, and Bi, H (1985). Program synthesis based on Boyer-Moore
theorem proving techniques. Proceedings of the ACM 13th Annual Conference on
Computer Science, ACM, pp.348-355.

61. Tanter, E, Noye, J, Caromel, D, and Cointe, P (2003). Partial behavioral reflection:
spatial and temporal selection of reification. ACM SIGPLAN Notices, 38: 27-46.

62. Uhrmacher AM, Rohl M, and Kullick B (2002). The role of reflection in simulating
and testing agents: An exploration based on the simulation system James. Applied
Artificial Intelligence, 16: 795-811.

63. Ungar, D and Smith, RB (1991). SELF: The power of simplicity. LISP and Sym-
bolic Computation, 4: 187-205.

64. Valetto, G and Kaiser, G (2002). A case study in software adaptation. In: Proceed-
ings of WOSS’02, ACM, pp.73-78.

65. Van Moorsel, A and Wolter, K (2004). Analysis and Algorithms for Restart. In:
Proceedings of the Quantitative Evaluation of Systems, QEST 2004, pp. 195-204.,
IEEE Computer Society.

Self- ware Software – Will It Become a Reality?a

A Case for Design Methodology Research
in Self-* Distributed Systems

Indranil Gupta�, Steven Ko, Nathanael Thompson, Mahvesh Nagda,
Chris Devaraj, Ramsés Morales, and Jay A. Patel

Dept. of Computer Science,
University of Illinois at Urbana-Champaign, Urbana IL 61801

{indy, sko, nathomps, nagda, devaraj, rvmorale, jaypatel}@cs.uiuc.edu

Abstract. We argue that “design methodology research” for self-* dis-
tributed systems needs to be recognized and enriched. Methodologies
encourage systematic design of distributed protocols. They augment the
creative activity of innovation, rather than stifle it. They enable easy
design of, and automatic code generation for, distributed systems with
predictable properties. Through a taxonomy, we show that methodology
research is growing slowly but steadily. As a case study, we present and
discuss a new methodology that concretely captures the design of a large
class of peer-to-peer distributed hash tables (p2p DHTs) and DHT-based
applications. We use this to show some advantages of methodology re-
search, such as effective exploration of the design space for protocols. We
also summarize some of our ongoing work in the direction of developing
methodologies for distributed protocols.

1 Introduction

Today, designing new protocols for self-* distributed systems such as peer-to-
peer (p2p) systems, autonomic distributed systems, Grid applications, etc., is
an extremely challenging task. Consider a researcher who is asked to design a
distributed protocol for a specific p2p application with certain properties. The
only resources available to the designer are 1. her basic distributed systems
knowledge, 2. prior research literature, and 3. designer’s experiences.

This is almost a “seat of pants” approach to protocol design. It has resulted
in long research project timelines, as well as long lag times to production and
deployment (anecdotes suggest 5 to 15 years). Resultant designs may also be
complex, with massive code line counts and inefficiencies when pieces are put
together [5, 16].

These shortcomings can be addressed for future systems by populating and
enriching a fourth resource for the protocol designer – Protocol Design Method-
ologies. A protocol design methodology can be loosely characterized as an orga-
nized, documented set of building blocks, rules and/or guidelines for design of a

� This research was partly supported by National Science Foundation Grant ITR-
0427089.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 260–272, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Case for Design Methodology Research in Self-* Distributed Systems 261

class of distributed protocols. It is possibly amenable to automated code genera-
tion.

Given a distributed computing problem then, a collection of methodologies
can be brought to bear, for either innovating novel protocols, or for composing
existing protocols. This would create a range of simple and efficient solutions
to the problem at hand, thus offering several choices for selecting the most ap-
propriate design. In general, the application of methodologies results in a more
systematic approach to design. They augment the creative activity of innova-
tion, rather than stifle it. In the long run, short design times, and compact and
efficient protocol designs, are possible side-effects.

Many disciplines have already used methodologies to systematize and mature
the creative design process. Since the early days of the Internet, TCP/IP lay-
ered architectures have helped decentralize design responsibility for infrastruc-
ture and applications among different research communities. Hardware design
uses automated synthesis [2], and software engineering uses Design Patterns and
Model-driven architectures [8]. Similar maturity for distributed systems research
requires creation of a critical mass of methodologies, and this can be achieved
through Design Methodology Research. As we show in this paper, the discovery
of design methodologies can go hand in hand with protocol design itself.

We make our case for methodology research in distributed systems by first
recognizing that there are already several methodologies for protocol classes. We
present a new taxonomy for classifying methodologies. Then, as a case study, we
present a new automatable methodology that retroactively fits a large class of
p2p DHTs and DHT-based applications. We show how this enables exploration
of design space of DHT-based applications, and present experimental results to
justify the benefits.

It will be evident from this paper that the elements of methodology research
are more challenging than, and different from, those of hardcore software engi-
neering. Developing a design methodology requires in-depth understanding of the
protocols being designed, or the desired properties from the protocol, or both. A
design methodology inherently captures the designer’s frame of mind and philos-
ophy, a goal that software engineering does not aspire to. The only connection
with software engineering lies in the development of automated toolkits that
enable a designer to generate working code for a new protocol. Although these
toolkits clearly have a very different aim than existing Integrated Development
Environments (IDEs), it is possible that the two might be consolidated in the
future.

Previous Work: We briefly summarize some of the design methodologies that
have emerged for distributed systems, not necessarily restricting discussion to
self-* systems. It should be noted that some of these methodologies have had
considerable impact, while others are less popular, and for many more, it is
too early for the jury to be called out. For example OSI-like architectures are
less popular than the omnipresent TCP/IP design methodology. On the other

262 I. Gupta et al.

hand, the new methodology for DHTs presented in this paper is too young to
be judged.

The set of existing design methodologies includes protocol families for surviv-
able storage systems [22], Internet routing protocols [23], peer-to-peer systems
[12, 15], extensible router and OS design (e.g., [13]), I/O automata [21], etc.

Strategy design patterns [9] can be used to construct object-oriented code for
a large class of deterministically reliable distributed protocols such as consensus.
Other tools in this class include ASX and Conduits+. These works have been
labeled as microprotocols, and include x-kernel based microprotocols and run-
time composable systems [20]. Stack-oriented distributed systems such as Horus
[19], and composable web services [17] are some other methodologies. However,
all of these systems have composition rules that are based on function calls - we
have discovered some methodologies that use more complex notions of compo-
sition (see Section 3). The above list is by no means comprehensive, and is only
a snapshot of the slowly growing body of methodology research.

A new methodology we present captures some popular DHTs and p2p ap-
plications. DHTs include Pastry, Chord, Tapestry, Kademlia, Kelips, etc., and
applications include CFS, PAST, Bayeux, Squirrel, etc. [1].

Section 2 presents a taxonomy of methodologies. Section 3 presents the p2p
methodology, and Section 4 discusses experimental data. Section 5 briefly details
our current work. We summarize in Section 6.

2 Taxonomy of Methodologies

In order to motivate an understanding of the features of methodologies, we
present a new taxonomy of classification for them.

Formal Versus Informal: We call a methodology that is specified using precise
rules or a stringent framework as a formal methodology, otherwise we say that
it is informal. These “rules” could either be mathematical/logical notation, or
the grammar of a high level programming language. Respective examples are the
probabilistic I/O automata [21], and the methodology of [11] that takes as input
a set of differential equations (satisfying certain conditions), and generates code
for a distributed protocol that is equivalent. Previous methodologies for DHT
design [12, 15] have been informal.

Due to their rigor (either through a formal framework or a compiler), for-
mal methodologies have the capability to create protocols with predictable or
provable properties, and also to generate protocol code automatically. For ex-
ample, the distributed protocols generated from differential equations in [11] are
provably equivalent to the original differential equation, and can be generated
by a toolkit called DiffGen [11]. On the other hand, informal methodologies
are less rigorous and more flexible, but can have multiple possible interpreta-
tions. An informal methodology could be converted into a formal one through
implementation of a specific interpretation. For example, an informal probabilis-
tic protocol composable methodology can be instantiated through a high level

A Case for Design Methodology Research in Self-* Distributed Systems 263

language called Proactive Protocol Composition Language (PPCL) [10, 18], thus
making it formal.

Innovative Versus Composable: Design methodologies must be capable of as-
sisting in innovation of new protocols, as well as in the ability to reuse and
adapt existing protocols. These are achieved respectively through innovative
methodologies and composable methodologies. An innovative methodology de-
scribes how completely novel protocols can be created, e.g., [8, 11]. A compos-
able methodology typically describes building blocks and composition rules or
guidelines. Building blocks are either standalone protocols or strategies, and
composition rules help combine the blocks to create new protocols with en-
hanced properties. For example, the informal methodology for DHT design
in [12] uses four types of building blocks - overlay, membership, routing, and
preprocessing. Strategy design patterns are another example of a composable
methodology [9].

Table 1. How Existing Methodologies Fit into the Proposed Taxonomy

Methodology
Types

Innovative Composable

Formal Protocols from TCP/IP layered architecture;
Differential Equations [11]; Extensible router and

OS designs (e.g., Click [13],
SPIN, x-kernel [3, 20]);

Bluespec for Routing [23];
hardware synthesis [2]. Probabilistic I/O automata [21];

Strategy Design Patterns [9];
Stacked architectures

(e.g., Horus [19]).

Informal Design Patterns [8]. DHT design methodologies [12, 15];
Protocol family for

survivable storage [22];
Probabilistic protocols [18].

Table 1 summarizes the above discussion.

Discovery of Methodologies: Different approaches are possible for the discovery
of these methodologies:

1. Retroactive: A methodology is discovered for an existing system or class of
protocols. Ex: methodologies for routing [23] and probabilistic protocols [10].

2. Progressive: A methodology is invented that creates a novel class of pro-
tocols. Ex: the design of protocols from differential equations can generate
new protocols for dynamic replication and majority voting [11].

264 I. Gupta et al.

3. Auxiliary: A methodology is discovered to assist and complement an exist-
ing methodology. Ex: protocol families for survivable storage architectures
[22] combine several auxiliary methodologies for differing system models.

3 A New Concrete Methodology for P2P Applications

During the past few years, p2p researchers have designed over 25 different DHTs
and DHT-based applications. Manku [15] and Iamnitchi et al [12] gave informal
design methodologies for DHTs. Here, we present the first formal composable
methodology for a large class of DHTs and DHT-based applications. The DHTs
covered include (but are not limited to) Chord, Pastry, Tapestry, Kademlia,
Gnutella, CAN, and Kelips1.

Routing

Heartbeating

[OR]

RTT−Spatial Distribution

ID
Overlay Rules

+Membership
 List

Membership
Maintenance

Protocol

Uniform
Epidemic

Dissemination

Insert Lookup

−− Periodic

FTP

Filetuple and other
meta−information

Distributed Ping

INDEX

Augmentation
(through
interfaces)

Template
(merge two
proactive
protocols)

{get,put} API

Object ReplicationAPP − 1 FTPAPP − 2

Fig. 1. A New Formal Composable Methodology for the design of a class
of DHTs and DHT-based applications. Covered DHTs include Chord, Pastry,
Tapestry, CAN, Kademlia, Kelips. Covered DHT applications include Scribe, PAST,
CFS, Squirrel (all App-1) and Kelips-based cooperative web caching (App-2). The
methodology consists of standalone building blocks, composed by either (i) (augmenta-
tion) simple function calls or (ii) (template) by merging two periodic/proactive blocks
together. Composition rules are shown in detail in Figure 2. Building blocks with dark
shaded bottom-left corners represent functions that directly talk to their peer functions
on other clients. This methodology is both retroactive (i.e., fits existing de-
signs) and progressive (i.e., can be used for completely new designs)

1 The proof discussion of this statement is omitted.

A Case for Design Methodology Research in Self-* Distributed Systems 265

Figure 1 summarizes the methodology. This methodology can be used to
create any of the system designs mentioned above. The figure shows several
standalone building blocks, both at the DHT layer and for two models of DHT-
based applications. The building blocks for DHTs include ID (assigns virtual
id’s to nodes), Overlay Rules and Membership List (encapsulates the overlay
structure and maintains neighbors), membership maintenance protocol, dissem-
ination protocol (for updating meta-information such as about files), routing,
insert and lookup, and a block that stores meta-information. Two applica-
tion models (App-1 and App-2) are shown, which we discuss shortly. Blocks
with dark corners communicate over the network with corresponding block on
peers.

These building blocks are composed by one of two rules - (i) augmentation
(i.e., a function call interface), or (ii) template (merges component protocols
that have periodically executed main functions). For example, the dissemination
protocol and proactive membership maintenance protocol can be merged by the
template rule so that one protocol’s message is piggybacked on top of the other,
saving on communication.

An application of the type App-1 uses the DHT through a {get(object),
put(object)} API [6]. This is used in a large class of DHT-based p2p applica-
tions including CFS, PAST, Squirrel, Ivy, etc. App-2 describes a model where
the application is “pushed down into the DHT layer” in the interests of protocol
efficiency. This fits the cooperative web caching application built over the Kelips
DHT [14]. The App-2 model may recode some blocks from the DHT.

The above two composition rules are borrowed from a different methodology
for probabilistic protocols [18]. Like that methodology, Figure 1 is also automat-
able, i.e., the high level language (PPCL) and toolkit described in [18] can be
used to generate code for DHTs and applications on the fly. Figure 2 shows
salient parts of the PPCL specification for the methodology of Figure 1.

The presented methodology thus encapsulates the philosophy behind a class
of DHTs and p2p applications. Besides this retroactive use, it has significant
progressive and auxiliary advantages.

In Section 4, we evaluate one progressive use of the methodology. Figure 1
showed an option of two different designs for membership maintenance proto-
cols (heartbeating or random ping-based [7]) - this is an example of auxiliary
methodologies brought to bear. Figure 3 shows possible benefits from four other
existing methodologies. Other properties such as security may also be introduced
through auxiliary composable security protocols.

4 Experimental Results

One benefit of a methodology is the assistance in exploring protocol design space.
Consider a designer asked to build a Pastry-based application for an existing
(legacy) overlay, where the neighbor relation among nodes may not obey the

266 I. Gupta et al.

Fig. 2. PPCL code (snapshot) for automating the Methodology of Figure 1:
This specification is derived from existing source code for individual components. The
toolkit in [18] generates code from this and the component source code

A Case for Design Methodology Research in Self-* Distributed Systems 267

Probabilistic Protocols

Methodology for

Composable

in Software Engineering

Design Patterns
Protocol Family for

Survivable Storage

Architectures

in Figure 1

for DHTs and apps

Composable Methodology

[9,17][10]

[21] [7,8]

Differential Equations

Protocols from

Fig. 3. The Power of Auxiliary Methodologies: Other methodologies that serve
as auxiliary methodologies for (i.e., either benefit, or benefit from) each other as well
as for the composable methodology of Figure 1

Pastry neighbor relation, but is specified by a different application. For in-
stance, this application might be a legacy one that closely relies on a pre-
existing membership protocol, but desires to augment itself with Pastry-like
search capabilities.

Viewed in the context of Figure 1, the designer’s challenge reduces to – the
designer can only change the implementation of the App-1, Insert, Lookup and
Routing blocks, but not the rest of the design.

Figures 4(a-c) show that if the overlay is just chosen by each node selecting
neighbors uniformly at random, the default Pastry routing is inappropriate due
to its low query success rate. However, our methodology allows us to explore
several alternative designs by modifying the Routing block of Figure 1. We con-
sider one such new routing protocol called multiflow routing. Here, a node first
finds all its neighbors with longer prefix matches to the destination ID than its
own. The query is then forwarded to only the top 2 among these neighbors, with
such multi-forwarding limited to 3 times per query per route.

The plots show that multiflow routing outperforms prefix routing on query
success rate (close to 100%) and latency. The traffic increase is moderate (a factor
of about 3) at 10% membership list size. This tradeoff would be acceptable to
an overlay running in medium-sized groups, and where the application requires
reliable querying.

268 I. Gupta et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700 800

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Number of Neighbors per Node (Total 4000 nodes)

Prefix Routing (Pastry)
Multiflow Prefix Routing

(a) Query Success Rate.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 100 200 300 400 500 600 700 800A
v
e
r
a
g
e

L
a
t
e
n
c
y

p
e
r

Q
u
e
r
y

(
H
o
p
s
)

Number of Neighbors per Node (Total 4000 nodes)

Prefix Routing (Pastry)
Multiflow Prefix Routing

(b) Query Reply Latency.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 200 300 400 500 600 700 800

A
v
e
r
a
g
e

M
e
s
s
a
g
e
s

p
e
r

Q
u
e
r
y

Number of Neighbors per Node (Total 4000 nodes)

Prefix Routing (Pastry)
Multiflow Prefix Routing

(c) Messages per Query.

Fig. 4. Default Pastry Routing versus new Multiflow Routing for random
overlays: Prefix routing is default Pastry routing; multiflow prefix is the new proposed
routing protocol within Figure 1. Each point on the plot is averaged from 1000 queries
over 10 different random overlays

5 Our Current Work

We are currently working on both new innovative and composable methodolo-
gies. Below, we briefly summarize two methodologies we have developed, along
with some of their uses.

A Case for Design Methodology Research in Self-* Distributed Systems 269

5.1 Innovative Methodology – Generating Self-* Protocols from
Differential Equations

We have discovered an innovative methodology that translates sets of differential
equations into equivalent distributed protocols [11]. An equation set generates
a state machine, with each variable mapped to a state, and terms mapped to
protocol actions. Stable equilibrium points in the original equations map to self-
stabilizing behavior (fractions of nodes in respective states), and simplicity of
terms maps to scalable communication.

In brief, consider a system of differential equations in the form ˙̄X = dX̄
dt =

f̄(X̄), where X̄ is a vector of variables, f is a vector of |X| functions, and the
left hand sides denote each of the variables differentiated with respect to time t.
An example with X = {x, y, z} is:

ẋ = −βxy + αz

ẏ = βxy − γy

ż = γy − αz (1)

Here, α, β, γ are parameters lying in the interval [0, 1]. When the methodology
of [11] is applied to the above equation, the protocol generated is equivalent to
the original equation system, viz., the fractions of processes in different states in
the distributed system, at equilibrium, is the same as the values of the variables
when the original equations are in equilibrium. We provide here a summary of the
translation techniques and the uses of the derived protocols - for more details,
the reader is encouraged to refer to [11].

Summary of Translation Techniques: In order to translate a system of dif-
ferential equations ˙̄X = dX̄

dt = f̄(X̄), the right hand sides of these equations
are required to each be a sum of polynomial terms ±T = ±cT Πy∈Xyiy,fx,T

(0 ≤ cT ≤ 1, iy,fx,T non-negative integers), each negative term occurring in ẋ
should have a power of x that is ≥ 1, and terms should be pair-able into match-
ing pairs of positive and negative terms so that each pair sums to zero. The
translation methodology then creates a state machine which has one state per
original variable in the set X̄. It also creates an action for each negative:positive
term pair – this action is executed periodically (once every protocol period, pro-
tocol period duration fixed) when a process is in the state x, where ẋ contains
the negative term. Without loss of generality, suppose that the positive part of
the pair occurs in ż.

Translating a simple term pair such as −c.x:+c.x requires the process in
state x to flip a coin with heads probability c, and transition to state z only
if this falls heads. Translating other polynomial terms is achieved by not only
flipping a local coin but also sampling a random selection of other processes,
and deciding whether to transition or not based on their states. For instance a
term pair −T : +T with −T = −x.y2 can be translated into an action where a
process in state x periodically (once every protocol period) samples two other
processes selected uniformly at random from across the group. If both sampled
processes happen to be in state y, then p transitions into state z.

270 I. Gupta et al.

Equation systems that do not satisfy the above conditions (e.g., in term
matching, or in the form of the basic equation system) may need to be normalized
or rewritten. Several equation rewriting techniques are discussed in [11].
Emergent Properties of Derived Protocols and their Uses: The methodology re-
tains the same equilibrium points as in the original differential equation, thus
providing the derived protocol with self-stabilizing behavior around the stable
equilibrium points. The stochastic behavior of the differential equations trans-
lates into fault-tolerance, churn-resistance, and other interesting properties such
as attacker resilience, as described below. Finally, the simplicity of the equa-
tions is reflected in the simplicity and constant (hence scalable) communication
overhead of the derived protocol.

Equations (1) above in fact represent the survival of endemic diseases (such as
influenza) in a fixed-size human population, with x, y, z respectively the fractions
of receptives, infected, and immune individuals. The protocol derived from it is
a new dynamic and migratory replication model. In this dynamic and migratory
replication scheme, once a given file is inserted into a distributed group of com-
puter hosts connected in an overlay, the emergent behavior of the protocol en-
sures that the file has a small number of replicas moving continuously among the
hosts in the distributed system (only “infected” hosts store a replica). Without
using too much network bandwidth, this scheme ensures attacker-resilience – an
attacker only has very short windows (typically tens of seconds) to guess the ex-
act number and location of the current replicas for a given file. This dynamic and
migratory replication model is currently being used to design a new distributed
file system called “Folklore”.

The above methodology can also be used to design a new protocol for majority
voting in large-scale distributed systems (derived from a model of biological
competition among ecosystem species) [11].

The protocols generated by this methodology are similar to Complex Adap-
tive Systems, and can be considered as a type of “Emergent Thinker” [4].

This differential equation translation methodology has been incorporated into
a design toolkit called DiffGen, which enables a designer to input differential
equations (in a Mathematica-like format), and outputs compilable and deploy-
able C code for the equivalent protocol.

5.2 Composable Methodology – Probabilistic Protocols for
Large-Scale Distributed Systems

In [18], we have developed a toolkit called PPCL that automates a composable
methodology for designing probabilistic protocols for large-scale distributed sys-
tems. This toolkit extends and implements the methodology of [10]. Multicast,
aggregation, leader election, failure detection, membership, are some of the prob-
lems solved.

The generated probabilistic protocols are self-adaptive to failures. The proto-
cols have very high reliability, per-process overheads that vary from being either
independent of or polylogarithmically dependent on the number of processes in the
distributed group, and protocol completion times that are also polylogarithmic.

A Case for Design Methodology Research in Self-* Distributed Systems 271

The methodology consists of seven classes of building blocks, each of which is
either a protocol or a strategy: epidemics, distributed ping, tree dissemination,
recovery and committee selection are protocols while non-protocol strategies
include weak overlays, and topology-aware probability distribution functions.
Each building block has well-understood scalability and reliability properties.
The composition techniques are either simple augmentations or template com-
positions. For example, an epidemic protocol that selects targets uniformly at
random can be made topologically aware by augmentation with a network round
trip-time-based probability distribution function for target choice. Another ex-
ample is that a failure detector protocol and a multicast protocol can be com-
posed through a template composition (see Figure 2) to generate a protocol for
decentralized membership maintenance.

For such composable design methodologies, one has to ensure that perfor-
mance properties such as correctness, reliability, scalability are either inherited
or preserved to an extent, in spite of the composition. For instance, in the above
methodology, template compositions inherit both correctness properties (e.g.,
eventual delivery of multicasts) as well as performance properties (e.g., over-
head, multicast latency, reliability) from components. Augmentation inherits
correctness, while preserving performance to a large extent – latency, overhead,
etc. degrades by a factor that is typically polylogarithmic in system size.

The reader is refered to [10, 18] for more details.

6 Summary

In this paper, we have presented a new taxonomy for design methodologies, and a
new concrete methodology for such self-* distributed systems as DHTs and p2p
applications. We have argued that design methodologies for self-* distributed
systems can capture the designer’s mindframe and the philosophy behind a class
of distributed protocols, thus enabling both exploration of the protocol design
space and systematic protocol reuse. Many methodologies can be automated to
generate ready-to-deploy code.

Methodologies are understood by theoreticians, practitioners, researchers,
and vendors alike, e.g., terms familiar to all these communities include “compos-
ability” [21, 22]. Cultivation of design methodologies is absolutely essential for
systematic protocol design to emerge for self-* distributed systems.

References

1. Proc. 1st-3rd IPTPS, 2002-2004.

2. Arvind. Bluespec: A language for hardware design, simulation, synthesis and ver-
ification. In Proc. MEMOCODE, page 249, Jun. 2003.

3. B. Bershad and S. Savage et al. Extensibility, safety and performance in the SPIN
operating system,. In Proc. ACM SOSP, pages 267–284, Dec. 1995.

4. S. Camorlinga and K. Barker. The emergent thinker. In Proc. SELF-STAR: Intnl.
Workshop on Self-* Properties in Complex Information Systems, May-Jun. 2004.

272 I. Gupta et al.

5. Computing Research Association (CRA). Grand Research Challenges in Dis-
tributed Systems. http://www.cra.org/reports/gc.systems.pdf.

6. F. Dabek, B. Zhao, and P. Druschel et al. Towards a common API for structured
peer-to-peer overlays. In Proc. IPTPS, pages 33–64, 2003.

7. A. Das, I. Gupta, and A. Motivala. SWIM: Scalable Weakly-consistent Infection-
style process group Membership protocol. In Proc. DSN, pages 303–312, 2002.

8. E. Gamma, R. Helm, R. Johnson, and Vlissides J. Design Patterns: elements of
reusable object-oriented software. Addison-Wesley, 1st edition, 1995.

9. B. Garbinato and R. Guerraoui. Using the strategy design pattern to compose
reliable distributed protocols. In Proc. USENIX Conf. Obj.-Or. Tech. and Sys.,
pages 221–232, Jun. 1997.

10. I. Gupta. Building Scalable Solutions to Distributed Computing Problems using
Probabilistic Components. PhD Thesis, Dept. of Computer Science, Cornell Uni-
versity, Jan. 2004.

11. I. Gupta. On the design of distributed protocols from differential equations. In
Proc. ACM PODC, pages 216–225, 2004.

12. A. Iamnitchi, M. Ripeanu, and I. Foster. Locating data in (small-world?) p2p
scientific collaborations. In Proc. IPTPS, pages 232–241, 2002.

13. E. Kohler and R. Morris et al. The Click modular router. ACM Tr. Comp. Sys.,
18(3), Aug. 2000.

14. P. Linga, I. Gupta, and K. Birman. A churn-resistant peer-to-peer web caching
system. In Proc. ACM Wshop. SSRS, Oct. 2003.

15. G. S. Manku. Balanced binary trees for id management and load balance in dis-
tributed hash tables. In Proc. ACM PODC, pages 197–205, 2004.

16. A. Spector. Plenary Talk. ACM SOSP, 2003.
17. B. Srivastava and J. Koehler. Web service composition - current solutions and

open problems. In Wshop. Planning for Web Serv., pages 28 – 35, 2003.
18. N. Thompson and I. Gupta. A composable methodology for proactive distributed

protocols, Sept. 2004. TR UIUCDCS-R-2004-2490,.
19. R. van Renesse, S. Maffeis, and K. P. Birman. Horus: a flexible group communi-

cations system. CACM, 39(4):76–83, April 1996.
20. J. Ventura, J. Rodrigues, and L. Rodrigues. Response time analysis of composable

micro-protocols. In Proc. 4th IEEE OORTDC, pages 335–342, 2001.
21. S.-H. Wu and S. A. Smolka et al. Composition and behaviors of probabilistic I/O

automata. TCS, 176(1-2):1–38, Apr. 1997.
22. J. Wylie and G.R. Goodson et al. A protocol family approach to survivable storage

infrastructures. In Proc. FUDICO, 2004.
23. G. Xie and J. Zhan et al. Routing design in operational networks: a look from the

inside. In Proc. ACM SIGCOMM Conf., pages 27–40, 2004.

Enabling Autonomic Grid Applications:
Requirements, Models and Infrastructure�

M. Parashar, Z. Li, H. Liu, V. Matossian, and C. Schmidt

The Applied Software Systems Laboratory,
Rutgers University, Piscataway NJ 08904, USA

Abstract. The increasing complexity, heterogeneity and dynamism of
emerging pervasive Grid environments and applications has necessitated
the development of autonomic self-managing solutions, which are based
on strategies used by biological systems to deal with similar challenges of
complexity, heterogeneity, and uncertainty. This paper introduces Project
AutoMate and describes its key components. The overall goal of Project
Automate is to investigate conceptual models and implementation ar-
chitectures that can enable the development and execution of such self-
managing Grid applications. Two applications enabled by AutoMate are
also described.

1 Introduction

The emergence of pervasive wide-area distributed computing, such as pervasive
information systems and computational Grid, has enabled a new generation of
applications that are based on seamless aggregation and interactions. For exam-
ple, it is possible to conceive of a new generation of scientific and engineering
simulations of complex physical phenomena that symbiotically and opportunis-
tically combine computations, experiments, observations, and real-time data,
and can provide important insights into complex systems such as interacting
black holes and neutron stars, formations of galaxies, and subsurface flows in
oil reservoirs and aquifers, etc. Other examples include pervasive applications
that leverage the pervasive information Grid to continuously manage, adapt,
and optimize our living context, crisis management applications that use perva-
sive conventional and unconventional information for crisis prevention and re-
sponse, medical applications that use in-vivo and in-vitro sensors and actuators
for patient management, and business applications that use anytime-anywhere
information access to optimize profits.

However, the underlying Grid computing environment is inherently large,
complex, heterogeneous and dynamic, globally aggregating large numbers of in-
dependent computing and communication resources, data stores and sensor net-

� The research presented in this paper is supported in part by the National Sci-
ence Foundation via grants numbers ACI 9984357, EIA 0103674, EIA 0120934, ANI
0335244, CNS 0305495, CNS 0426354 and IIS 0430826.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 273–290, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

274 M. Parashar et al.

works. Furthermore, emerging applications are similarly complex and highly dy-
namic in their behaviors and interactions. Together, these characteristics result
in application development, configuration and management complexities that
break current paradigms based on passive components and static compositions.
Clearly, there is a need for a fundamental change in how these applications are
developed and managed. This has led researchers to consider alternative pro-
gramming paradigms and management techniques that are based on strategies
used by biological systems to deal with complexity, dynamism, heterogeneity
and uncertainty. The approach, referred to as autonomic computing, aims at
realizing computing systems and applications capable of managing themselves
with minimal human intervention.

This paper has two objectives. The first is to investigate the challenges and
requirements of programming Grid applications and to present self-managing ap-
plications as a means for addressing these requirements. The second is to intro-
duce Project AutoMate, which investigates autonomic solutions to deal with the
challenges of complexity, dynamism, heterogeneity and uncertainty in Grid envi-
ronments. The overall goal of Project AutoMate is to develop conceptual models
and implementation architectures that can enable the development and execution
of such self-managing Grid applications. Specifically, it investigates programming
models, frameworks and middleware services that support definition of autonomic
elements, the development of autonomic applications as dynamic and opportunis-
tic compositions of these autonomic elements, and the policy, content and context
driven execution and management of these applications.

In this paper we introduce AutoMate and its key components, and describe
their underlying conceptual models and implementations. Specifically we de-
scribe the Accord programming system, the Rudder decentralized coordination
framework, and the Meteor content-based middleware providing support for
content-based routing, discovery and associative messaging. We also present two
autonomic Grid applications enabled by AutoMate. The first application inves-
tigates the autonomic optimization of an oil reservoir by enabling a systematic
exploration of a broader set of scenarios, to identify optimal locations based on
current operating conditions. The second application investigates the autonomic
simulations and management of a forest fire prop gation based on static and
dynamic environment and vegetation conditions.

The rest of this paper is organized as follows. Section 2 outlines the challenges
and requirements of Grid computing. Section 3 introduces Project AutoMate,
presents its overall architecture and describes its key components, i.e., the Accord
programming framework, the Rudder decentralized coordination framework and
the Meteor content-based middleware. Section 4 presents the two illustrative
Grid applications enabled by AutoMate. Section 5 presents a conclusion.

2 Grid Computing – Challenges and Requirements

The goal of the Grid concept is to enable a new generation of applications
combining intellectual and physical resources that span many disciplines and

a

Enabling Autonomic Grid Applications 275

organizations, providing vastly more effective solutions to important scientific,
engineering, business and government problems. These new applications must
be built on seamless and secure discovery, access to, and interactions among
resources, services, and applications owned by many different organizations.

Attaining these goals requires implementation and conceptual models [1].
Implementation models address the virtualization of organizations which leads
to Grids, the creation and management of virtual organizations as goal-driven
compositions of organizations, and the instantiation of virtual machines as the
execution environment for an application. Conceptual models define abstract
machines that support programming models and systems to enable application
development. Grid software systems typically provide capabilities for: (i) creating
a transient “virtual organization” or virtual resource configuration, (ii) creating
virtual machines composed from the resource configuration of the virtual orga-
nization (iii) creating application programs to execute on the virtual machines,
and (iv) executing and managing application execution. Most Grid software sys-
tems implicitly or explicitly incorporate a programming model, which in turn
assumes an underlying abstract machine with specific execution behaviors in-
cluding assumptions about reliability, failure modes, etc. As a result, failure to
realize these assumptions by the implementations models will result in brittle
applications. The stronger the assumptions made, the greater the requirements
for the Grid infrastructure to realize these assumptions and consequently its
resulting complexity. In this section we first highlight the characteristics and
challenges of Grid environments, and outline key requirements for programming
Grid applications. We then introduce autonomic self-managing Grid applications
that can address these challenges and requirements.

2.1 Characteristics of Grid Execution Environments and
Applications

The key characteristics of Grid execution environments and applications are:

Heterogeneity: Grid environments aggregate large numbers of independent
and geographically distributed computational and information resources, includ-
ing supercomputers, workstation-clusters, network elements, data-storages, sen-
sors, services, and Internet networks. Similarly, applications typically combine
multiple independent and distributed software elements such as components,
services, real-time data, experiments and data sources.

Dynamism: The Grid computation, communication and information environ-
ment is continuously changing during the lifetime of an application. This includes
the availability and state of resources, services and data. Applications similarly
have dynamic runtime behaviors in that the organization and interactions of the
components/services can change.

Uncertainty: Uncertainty in Grid environment is caused by multiple factors,
including (1) dynamism, which introduces unpredictable and changing behaviors
that can only be detected and resolved at runtime, (2) failures, which have an
increasing probability of occurrence and frequencies as system/application scales

276 M. Parashar et al.

increase; and (3) incomplete knowledge of global system state, which is intrinsic
to large decentralized and asynchronous distributed environments.

Security: A key attribute of Grids is flexible and secure hardware/software
resource sharing across organization boundaries, which makes security (authen-
tication, authorization and access control) and trust critical challenges in these
environments.

2.2 Requirements for Grid Programming Systems

The characteristics listed above impose requirements on the programming sys-
tems for Grid applications. Grid programming systems must be able to spec-
ify applications which can detect and dynamically respond during execution to
changes in both, the state of execution environment and the state and require-
ments of the application. This requirement suggests that: (1) Grid applications
should be composed from discrete, self-managing components which incorpo-
rate separate specifications for all of functional, non-functional and interaction-
coordination behaviors. (2) The specifications of computational (functional) be-
haviors, interaction and coordination behaviors and non-functional behaviors
(e.g. performance, fault detection and recovery, etc.) should be separated so that
their combinations are composable. (3) The interface definitions of these compo-
nents should be separated from their implementations to enable heterogeneous
components to interact and to enable dynamic selection of components.

Given these features of a programming system, a Grid application requiring a
given set of computational behaviors may be integrated with different interaction
and coordination models or languages (and vice versa) and different specifica-
tions for non-functional behaviors such as fault recovery and QoS to address the
dynamism and heterogeneity of applications and the environment.

2.3 Grid Computing Research

Grid computing research efforts over the last decade can be broadly divided into
efforts addressing the realization of virtual organizations and those addressing
the development of Grid applications. The former set of efforts have focused
on the definition and implementation of the core services that enable the spec-
ification, construction, operation and management of virtual organizations and
instantiation of virtual machines that are the execution environments of Grid
applications. Services include (1) security services to enable the establishment
of secure relationships between a large number of dynamically created subjects
and across a range of administrative domains, each with its own local security
policy, (2) resource discovery services to enable discovery of hardware, software
and information resources across the Grid, (3) resource management services
to provide uniform and scalable mechanisms for naming and locating remote
resources, support the initial registration/discovery and ongoing monitoring of
resources, and incorporate these resources into applications, (4) job management
services to enable the creation, scheduling, deletion, suspension, resumption, and
synchronization of jobs, (5) data management services to enable accessing, man-
aging, and transferring of data, and providing support for replica management

Enabling Autonomic Grid Applications 277

and data filtering. Efforts in this class include Globus [2], Unicore [3], Condor [4]
and Legion [5]. Other efforts in this class include the development of common
APIs, toolkits and portals that provide high-level uniform and pervasive access
to these services. These efforts include the Grid Application Toolkit (GAT) [6],
DVC [7] and the Commodity Grid Kits (CoG Kits) [8]. These systems often
incorporate programming models or capabilities for utilizing programs written
in some distributed programming model. For example, Legion implements an
object-oriented programming model, while Globus provides a capability for ex-
ecuting programs utilizing message passing.

The second class of research efforts, which is also the focus of this paper, deals
with the formulation, programming and management of Grid applications. These
efforts build on the Grid implementation services and focus on programming
models, languages, tools and frameworks, and application runtime environments.
Research efforts in this class include GrADS [9], GridRPC [10], GridMPI [11],
Harness [12], Satin/IBIS [13] [14], XCAT [15] [16], Alua [17], G2 [18], J-Grid [19],
Triana [20], and ICENI [21].

These systems have essentially built on, combined and extended existing mod-
els for parallel and distributed computing. For example, GridRPC extends the
traditional RPC model to address system dynamism. It builds on Grid system
services to combines resource discovery, authentication/authorization, resource
allocation and task scheduling to remote invocations. Similarly, Harness and
GridMPI build on the message passing parallel computing model, Satin sup-
ports divide-and-conquer parallelism on top of the IBIS communication system.
GrADS builds on the object model and uses reconfigurable object and perfor-
mance contracts to address Grid dynamics, XCAT and Alua extend the compo-
nent based model. G2, J-Grid, Triana and ICENI build on various service based
models. G2 builds on .Net [22], J-Grid builds on Jini [23] and current implemen-
tations of Tirana and ICENI build on JXTA [24]. While this is natural, it also
implies that these systems implicitly inherit the assumptions and abstractions
that underlie the programming models of the systems upon which they are based
and thus in turn inherit their assumptions, capabilities and limitations.

2.4 Self- anaging Applications on the Grid

As outlined above, the inherent scale, complexity, heterogeneity, and dynamism
of emerging Grid environments result in application programming and runtime
management complexities that break current paradigms. This is primarily be-
cause the programming models and the abstract machine underlying these mod-
els makes strong assumptions about common knowledge, static behaviors and
system guarantees that cannot be realized by Grid virtual machines and which
are not true for Grid applications. Addressing these challenges requires redefining
the programming framework to address the separations outlined above. Specif-
ically, it requires (1) static (defined at the time of instantiation) application
requirements and system and application behaviors to be relaxed, (2) the be-
haviors of elements and applications to be sensitive to the dynamic state of

m

278 M. Parashar et al.

the system and the changing requirements of the application and be able to
adapt to these changes at runtime, (3) required common knowledge be expressed
semantically (ontology and taxonomy) rather than in terms of names, addresses
and identifiers, and (4) the core enabling middleware services (e.g., discovery,
messaging) be driven by such a semantic knowledge. In the rest of this paper
we describe Project AutoMate, which attempts to address these challenges by
enabling autonomic self-managing Grid applications.

3 Project AutoMate: Enabling Self- anaging Grid
Applications

Project AutoMate [25] investigates autonomic solutions that are based on the
strategies used by biological systems to deal with similar challenges of complex-
ity, dynamism, heterogeneity and uncertainty. The goal is to realize systems
and applications that are capable of managing (i.e., configuring, adapting, op-
timizing, protecting, healing) themselves. Project AutoMate aims at developing
conceptual models and implementation architectures that can enable the de-
velopment and execution of such self-managing Grid applications. Specifically,
it investigates programming models, frameworks and middleware services that
support the definition of autonomic elements, the development of autonomic
applications as the dynamic and opportunistic composition of these autonomic
elements, and the policy, content and context driven definition, execution and
management of these applications.

A schematic overview of AutoMate is presented in Figure 1. Components of
AutoMate include the Accord [26] programming system, the Rudder [27] decen-
tralized coordination framework, and the Meteor [28] content-based middleware

m

Rudder
Coordination
M

iddlew
are

S
esam

e/D
AIS

 P
rotection Service

Autonomic Grid Applications

Programming System
Autonomic Components, Dynamic Composition,

 Opportunistic Interactions, Collaborative Monitoring/
Control

Decentralized Coordination Engine
Agent Framework,

Decentralized Reactive Tuple Space

Semantic Middleware Services
Content-based Discovery, Associative Messaging

Content Overlay
Content-based Routing Engine,
Self-Organizing Overlay

O
nt

ol
og

y,
 T

ax
on

om
y

M
et

eo
r/S

qu
id

Co

nt
en

t-b
as

ed

M
id

dl
ew

ar
e

A
cc

or
d

P
ro

gr
am

m
in

g
Fr

am
ew

or
k

Fig. 1. A schematic overview of AutoMate.

Enabling Autonomic Grid Applications 279

providing support for content-based routing, discovery and associative messag-
ing. Project AutoMate additionally includes the Sesame [29] context-based ac-
cess control infrastructure, the DAIS [30] cooperative-protection services and the
Discover collaboratory [31, 32] services for collaborative monitoring, interaction
and control, which are not described here.

3.1 Accord, a Programming Framework for Autonomic
Applications

The Accord programming system [26] addresses Grid programming challenges by
extending existing programming systems to enable autonomic Grid applications.
Accord realizes three fundamental separations: (1) a separation of computations
from coordination and interactions; (2) a separation of non-functional aspects
(e.g. resource requirements, performance) from functional behaviors, and (3)
a separation of policy and mechanism - policies in the form of rules are used
to orchestrate a repertoire of mechanisms to achieve context-aware adaptive
runtime computational behaviors and coordination and interaction relationships
based on functional, performance, and QoS requirements. The components of
Accord are described below.

Accord Programming Model: Accord extends existing distributed program-
ming models, i.e., object, component and service based models, to support au-
tonomic self-management capabilities. Specifically it extends the entities and
composition rules defined by the underlying programming model to enable com-
putational and composition/interaction behaviors to be defined at runtime using
high-level rules. The resulting autonomic elements and their autonomic compo-
sition are described below. Note that other aspects of the programming model,
i.e., operations, model of computation and rules for composition are inherited
and maintained by Accord.

Autonomic Elements: An autonomic element extends programming elements
(i.e., objects, components, services) to define a self-contained modular software
unit with specified interfaces and explicit context dependencies. Additionally,
an autonomic element encapsulates rules, constraints and mechanisms for self-
management, and can dynamically interact with other elements and the system.
An autonomic element is illustrated in Figure 2 and is defined by 3 ports:

Fig. 2. An autonomic component

The functional port (Γ) defines a set of functional behaviors γ provided
and used by the element. γ ∈ Ω × Λ, where Ω is the set of inputs and Λ is the
set of outputs of the element, and γ defines a valid input-output set.

280 M. Parashar et al.

The control port (
∑

) is the set of tuples (σ, ξ), where σ is a set of sensors
and actuators exported by the element, and ξ is the constraint set that controls
access to the sensors/actuators. Sensors are interfaces that provide information
about the element while actuators are interfaces for modifying the state of the
element. Constraints are based on state, context and/or high-level access polices.

The operational port (Θ) defines the interfaces to formulate, dynamically
inject and manage rules that are used to manage the runtime behavior of the
elements and the interactions between elements, between elements and their
environments, and the coordination within an application.

Each autonomic element is associated with an element manager (possibly
embedded) that is delegated to manage its execution. The element manager
monitors the state of the element and its context, and controls the execution of
rules. Note that element managers may cooperate with other element managers
to fulfill application objectives.

Rules in Accord: Rules incorporate high-level guidance and practical human
knowledge in the form of if-then expressions, i.e., IF condition THEN action,
similar to production rule, case-based reasoning and expert systems. Condition
is a logical combination of element (and environment) sensors, function inter-
faces and events. Action consists of a sequence of invocations of element actuators
and/or system actuators, and other interfaces. A rule fires when its condition
expression evaluates to be true and causes the corresponding actions to be ex-
ecuted. A priority based mechanism is used to resolve conflicts. Two classes
of rules are defined: (1) behavioral rules that control the runtime functional
behaviors of an autonomic element (e.g., the dynamic selection of algorithms,
data representation, input/output format used by the element), and (2)inter-
action rules that control the interactions between elements, between elements
and their environment, and the coordination within an autonomic application
(e.g., communication mechanism, composition and coordination of the elements).
Note that behaviors and interactions expressed by these rules are defined by the
model of computation and the rules for composition of the underlying program-
ming model.

Behavioral rules are executed by an element manager embedded within a
single element without affecting other elements. Interaction rules define interac-
tions among elements. For each interaction pattern, a set of interaction rules are
defined and dynamically injected into the corresponding elements. The coordi-
nated execution of these rules results in the desired interaction and coordination
behaviors between the elements.

Autonomic composition in Accord: Dynamic composition enables relationships
between elements to be established and modified at runtime. Operationally, dy-
namic composition consists of a composition plan or workflow generation and
execution. Plans may be created at runtime, possibly based on dynamically
defined objectives, policies, and the context and content of applications and sys-
tems. Plan execution involves discovering elements, configuring them and defin-
ing interaction relationships and mechanisms. This may result in elements being

Enabling Autonomic Grid Applications 281

added, replaced or removed or the interaction relationships between elements
being changed.

In Accord, composition plans may be generated using the Accord Composi-
tion Engine (ACE) [33] or using other approaches, and are expressed in XML.
Element discovery uses the Meteor content-based middleware and specifically
the Squid discovery service [34]. Plan execution is achieved by a peer-to-peer
control network of element managers and agents within Rudder [27]. A composi-
tion relationship between two elements is defined by the control structure (e.g.,
loop, branch) and/or the communication mechanism (e.g., RPC, shared-space)
used. A composition agent translates this into a suite of interaction rules, which
are then injected into corresponding element managers. Element managers exe-
cute the rules to establish control and communication relationships among these
elements in a decentralized and parallel manner. Rules can be similarly used for
addition or deletion of elements. Note that the interaction rules must be based on
the core primitives provided by the system. Accord defines a library of rule sets
for common control and communications relationships between elements. The
decomposition procedure will guarantee that the local behaviors of individual
elements will coordinate to achieve the application’s objectives. Runtime nego-
tiation protocols provided by Accord address runtime conflicts and conflicting
decisions caused by a dynamic and uncertain environment.

Accord Implementation Issues: The Accord abstract machine assumes the
existence of common knowledge in the form of an ontology and taxonomy that
defines the semantics for specifying and describing application namespaces, ele-
ment interfaces, sensors and actuators, and the context and content of systems
and applications. This common semantics is used for formulating rules for auto-
nomic management of elements and dynamic composition and interactions be-
tween the elements. Further, the abstract machine assumes time-asynchronous
system behavior with fail-stop failure modes. Finally, Accord assumes the ex-
istence of an execution environment that provides (1) an agent-based control
network, (2) support for associative coordination, (3) services for content-based
discovery and messaging, (4) support of context-based access control and (4)
services for constructing and managing virtual machines for a given virtual or-
ganization. These requirements are addressed respectively by Rudder, Meteor,
Sesame/DAIS and the underlying Grid middleware on which it builds.

Accord decouples interaction and coordination from computation, and en-
ables both these behaviors to be managed at runtime using rules. This en-
ables autonomic elements to change their behaviors, and to dynamically estab-
lish/terminate/change interaction relationships with other elements. Deploying
and executing rules does impact performance, however, it increases the robust-
ness of the applications and their ability to manage dynamism. Further, our
observations indicate that the runtime changes to interaction relationships are
infrequent and their overheads are relatively small. As a result, the time spent
to establish and modify interaction relationships is small as compared to typical
computation times. A prototype implementation and evaluation of its perfor-
mance overheads is presented in [35, 36].

282 M. Parashar et al.

3.2 Rudder Coordination Framework

Rudder [27] is a scalable coordination middleware for supporting self-managing
applications in decentralized distributed environments. The goal of Rudder is
to provide the core capabilities for supporting autonomic compositions, adapta-
tions, and optimizations. Rudder consists of two key components: (1) COMET,
a fully decentralized coordination substrate that enables flexible and scalable co-
ordination among agents and autonomic elements, and (2) an agent framework
composed of software agents and agent interaction and negotiation protocols.
The adaptiveness and sociableness of software agents provides an effective mech-
anism for managing individual autonomic elements and their relationships in an
adaptive manner. This mechanism enables appropriate application behaviors to
be dynamically negotiated and enacted by adapting classical machine learning,
control, and optimization models and theories. The COMET substrate provides
the core messaging and eventing services for connecting agent networks and
scalably supporting various agent interactions, such as mutual exclusion, con-
sensus, and negotiation. Rudder effectively supports the Accord programming
framework and enables autonomic self-managing applications.

The COMET Substrate: COMET provides a global virtual shared coordi-
nation space associatively accessible by all peer agents, and the access is in-
dependent of the physical location of the tuples or identifiers of the host. The
virtual coordination space builds on an associative messaging substrate and im-
plements a distributed hash table, where the index space is directly generated
from the semantic information space (ontology) used by the coordinating enti-
ties. COMET also supports dynamically constructed, transient spaces to enable
context locality to be explicitly exploited for improved performance.

COMET consists of layered abstractions prompted by a fundamental sepa-
ration of communication and coordination concerns. It provides an associative
communication abstraction and guarantees that content-based query messages,
specified using flexible content descriptors, are fully served with bounded costs.
This layer essentially maps the virtual information space in a deterministic way
to the dynamic set of currently available peer nodes in the system, while main-
taining content locality. The COMET coordination abstraction extends the tra-
ditional data-driven coordination model with event-based reactivity to changes
in system state and data access operations. It defines a reactive tuple abstraction,
which consists of additional components: a condition that associates reaction to
events, and a guard that specifies how and when the reaction will be executed
(e.g., immediately, once). The condition is evaluated on an access event. If it
evaluates to true, the corresponding reaction is executed. The COMET coor-
dination abstraction provides the basic Linda-like primitives, such as Out, In,
and Rd. These basic operations operate on regular as well as reactive tuples and
retain their Linda semantics.

The Agent Framework: The Rudder agent framework is composed of a dy-
namic network of software agents existing at different levels, ranging from in-
dividual system/application elements to the overall system/application. Agents

Enabling Autonomic Grid Applications 283

monitor the element states, manage element behaviors and dependencies, coor-
dinate element interactions, and cooperate to manage overall system/application
behaviors. An agent is a processing unit that perform actions based on rules,
which are dynamically defined to satisfy system/application requirements. Fur-
ther, agents use profiles which are used to identify and describe elements, in-
teract with them and control them. A profile consists of a set of (functional
and non-functional) attributes and operators, which are semantically defined
using an application-specific ontology. The framework additionally defines a set
of protocols for agent coordination and application/system management. Dis-
covery protocols support the registering, unregistering, and discovery of sys-
tem/application elements. Control protocols allow the agents to query element
states, control their behaviors and orchestrate their interactions. These protocols
include negotiation, notification, and mutual exclusion. The agent coordination
protocol are scalably and robustly implemented in using the abstractions and
service provided by COMET. COMET builds on an associative communication
middleware, Meteor, which is described below.

3.3 Meteor: A Content-Based Middleware

Meteor [28] is a scalable content-based middleware infrastructure that provides
services for content routing, content discovery and associative interactions. The
Meteor stack consists of 3 key components: (1) a self-organizing content overlay,
(2) a content-based routing engine and discovery service (Squid), and (3) the
Associative Rendezvous Messaging Substrate (ARMS). The Meteor overlay is
composed of Rendezvous Peer (RP) nodes, which may be any node on the Grid
(e.g., gateways, access points, message relay nodes, servers or end-user comput-
ers). RP nodes can join or leave the network at any time. The content overlay
provides a single operation, lookup(identifier), which requires an exact content
identifier (e.g., name). Given an identifier, this operation locates the peer node
where the content should be stored or fetched.

Squid [34] is the Meteor content-based routing engine and decentralized infor-
mation discovery service. It supports flexible content-based routing and complex
queries containing partial keywords, wildcards, and ranges. Squid guarantees
that all existing data elements that match a query will be found. The key in-
novation of Squid is the use of a locality preserving and dimension reducing
indexing scheme, based on the Hilbert Space Filling Curve (SFC), which effec-
tively maps the multidimensional information space to the peer identifier space.
Keywords can be common words or values of globally defined attributes, depend-
ing on the nature of the application that uses Squid, and are based on common
ontologies and taxonomies.

The ARMS layer [28] implements the Associative Rendezvous (AR) inter-
action paradigm. AR is a paradigm for content-based decoupled interactions
with programmable reactive behaviors. Rendezvous-based interactions provide
a mechanism for decoupling senders and receivers, in both space and time. Such
decoupled asynchronous interactions are naturally suited for large, distributed,

284 M. Parashar et al.

and highly dynamic systems such as pervasive Grid environments. AR extends
the conventional name/identifier-based rendezvous in two ways. First, it uses
flexible combinations of keywords (i.e, keyword, partial keyword, wildcards and
ranges) from a semantic information space, instead of opaque identifiers (names,
addresses) that have to be globally known. Interactions are based on content
described by these keywords. Second, it enables the reactive behaviors at the
rendezvous points to be encapsulated within messages, therefore increasing flex-
ibility and enabling multiple interaction semantics (e.g., broadcast multicast,
notification, publisher/subscriber, mobility, etc.).

3.4 Current Status

The core components of AutoMate have been prototyped and are currently be-
ing used to enable self-managing applications in science and engineering. The
initial prototype of Accord extended an object-oriented framework based on
C++ and MPI. The current implementation extends the DoE Common Compo-
nent Architecture (CCA) [37] and we are working on extending an OGSA-based
programming system. Current prototypes of Rudder and Meteor build on the
JXTA [24] platform and use existing Grid middleware services. Current applica-
tions include autonomic oil reservoir optimizations [31, 38], autonomic forest-fire
management [39], autonomic runtime management of adaptive simulations [40],
and enabling sensor-based pervasive applications [28]. The first two application
are briefly described below. Further information about AutoMate and its com-
ponents and applications can be obtained from http://automate.rutgers.edu/.

4 Autonomic Grid Applications

4.1 Autonomic Oil-Reservoir Optimization

One of the fundamental problems in oil reservoir production is determining the
optimal locations of the oil production and injection wells. However, the se-
lection of appropriate optimization algorithms, the runtime configuration and
invocation of these algorithms and the dynamic optimization of the reservoir
remains a challenging problem. In this research we use AutoMate to support au-
tonomic aggregations, compositions and interactions and enable an autonomic
self-optimizing reservoir application. The application consists of: (1) sophisti-
cated reservoir simulation components that encapsulate complex mathematical
models of the physical interaction in the subsurface, and execute on distributed
computing systems on the Grid; (2) Grid services that provide secure and co-
ordinated access to the resources required by the simulations; (3) distributed
data archives that store historical, experimental and observed data; (4) sensors
embedded in the instrumented oilfield providing real-time data about the cur-
rent state of the oil field; (5) external services that provide data relevant to
optimization of oil production or of the economic profit such as current weather
information or current prices; and (6) the actions of scientists, engineers and
other experts, in the field, the laboratory, and in management offices.

Enabling Autonomic Grid Applications 285

(a)

(b)

Fig. 3. Autonomic optimization of the well placement problem using (a) VFSA algo-

rithm (b) SPSA algorithm

The main components of the autonomic reservoir framework [31, 38] are (i)
instances of distributed multi-model, multi-block reservoir simulation compo-
nents, (ii) optimization services based on the Very Fast Simulated Annealing
(VFSA) [31] and Simultaneous Perturbation Stochastic Approximation (SPSA)
[38], (iii) economic modeling services, (iv) real-time services providing current
economic data (e.g. oil prices) and , (v) archives of data that has already been
computed, and (vi) experts (scientists, engineers) connected via pervasive col-
laborative portals.

The overall oil production process is autonomic in that the peers involved
automatically detect sub-optimal oil production behaviors at runtime and or-
chestrate interactions among themselves to correct this behavior. Further, the
detection and optimization process is achieved using policies and constraints
that minimize human intervention. Policies are used to discover, select, con-
figure, and invoke appropriate optimization services to determine optimal well
locations. For example, the choice of optimization service depends on the size
and nature of the reservoir. The SPSA algorithm is suited for larger reservoirs
with relatively smooth characteristics. In case of reservoirs with many randomly
distributed maxima and minima, the VFSA algorithm can be employed during
the initial optimization phase. Once convergence slows down, VFSA can be re-
placed by SPSA. Similarly, policies can also be used to manage the behavior of
the reservoir simulator, or may be defined to enable various optimizers to exe-
cute concurrently on dynamically acquired Grid resources, and select the best

286 M. Parashar et al.

well location among these based on some metric (e.g., estimated revenue, time
or cost of completion).

Figure 3 illustrates the optimization of well locations using the VFSA and
SPSA optimization algorithms for two different scenarios. The well positions
plots (on the left in 3(a) and (b)) show the oil field and the positions of the wells.
Black circles represent fixed injection wells and a gray square at the bottom of the
plot is a fixed production well. The plots also show the sequence of guesses for the
position of the other production well returned by the optimization service (shown
by the lines connecting the light squares), and the corresponding normalized cost
value (plots on the right in 3(a) and (b)).

4.2 Autonomic Forest Fire Management Simulation

The autonomic forest fire simulation, composed of DSM (Data Space Manager),
CRM (Computational Resource Manager), Rothermel, WindModel, and GUI el-
ements, predicts the speed, direction and intensity of the fire front as the fire
propagates using static and dynamic environment and vegetation conditions.
DSM partitions the forest represented by a 2D data space into sub spaces based
on current system resources information provided by CRM. Under the circum-
stance of load imbalance, DSM re-partitions the data space. Rothermel generates
processes to simulate the fire spread on each subspace in parallel based on cur-
rent wind direction and intensity simulated by the WindModel, until no burning
cells remain. Experts interact with the above elements using the GUI element.

DSM CRM

Wind
Model

Rothermel

Functional port
<function name=``getSpaceState’’>
 <out name=``space’’ type=``tns:SpaceDes’’/>
</function>
Control port
addSensor(``getDirection’’, ``string’’);
addActuator(``setCellState’’,``cellState’’, ``string’’,``void’’);

Operation port (behavior rule)
IF isMaxUsageDiff() > 0.5 THEN setLoadBalanced(false);

Operation port (behavior rule)
IF isSystemOverLoaded()==true THEN invoke graphAlgorith();

ELSE invoke greedyBlockAlgorithm();

Fig. 4. Examples of the port definition and rules

We use the Rothermel, DSM, and CRM as examples to illustrate the defini-
tion of the Accord functional, control and operational ports, as shown in Figure
4. Rothermel, for example, provides getSpaceState to expose space information
as part of its Functional Port, and provides the sensor getDirection to get
the fire spread direction and the actuator setCellState to modify the state of a

Enabling Autonomic Grid Applications 287

Application workflow

Interaction
rules

Interaction
rules

Interaction

rules

Composition Manager

Interaction
rules

DSM CRM
Wind

Model
Rothermel

Fire Fighter

Model

Rule2:
IF cellChangeMsg is received

THEN assign cellChangeMsg to input;
 invoke updateCell with input;

Rule1:
IF isFighterWork()==true

THEN send cellChangeMsg to Rothermel;

Rule3:
IF isSystemCongested()==true

THEN setThreshold(0.5); setThreshold(0.3);
Rule4:

IF isResourceBalanced()==false

THEN send loadMsg to DSM;

Fig. 5. Add a new component Fire Fighter Model and change the interaction relation-

ship between CRM and DSM

specified cell as part of its Control Port. The DSM and CRM receive rules to
manage their runtime behaviors through the Operation Port.

Behavior rules can be defined at compile time or at runtime and injected
into corresponding element managers to dynamically manage the computational
behaviors of elements. As illustrated in Figure 4, DSM dynamically selects an
appropriate algorithm based on the current system load and CRM will detect
load imbalance when the maximal difference among resource usage exceeds the
threshold according to the behavior rules shown.

The application workflow is decomposed by the Composition Manager into
interaction rules, which are injected into individual elements. Therefore, addi-
tion, deletion and replacement of elements can be achieved using corresponding
interaction rules. For example, a new element, Fire Fighter Model, modelling the
behaviors of the fire fighters, is added to the application as shown in Figure 5,
by inserting Rule1 into Fire Fighter Model and Rule2 into Rothermel. Similarly,
changing an interaction relationship can be achieved by replacing the existing
interaction rules with new rules. As shown in Figure 5, CRM dynamically de-
creases the frequency of notifications to DSM when the communication network
is congested based on Rule3 and Rule4.

5 Conclusion

In this paper, we presented Project AutoMate and described its key components.
Project AutoMate investigates solutions that are based on the strategies used by
biological systems to deal with similar challenges of complexity, dynamism, het-
erogeneity and uncertainty. This approach, referred to as Autonomic Computing,
aims at realizing systems and applications that are capable of managing (i.e.,
configuring, adapting, optimizing, protecting, healing) themselves. The overall
goal of Project AutoMate is to investigate conceptual models and implementa-
tion architectures that can enable the development and execution of such self-

288 M. Parashar et al.

managing Grid applications. Specifically, it investigates programming models,
frameworks and middleware services that support the definition of autonomic
elements, the development of autonomic applications as the dynamic and oppor-
tunistic composition of these autonomic elements, and the policy, content and
context driven definition, execution and management of these applications. Two
case-study applications, autonomic oil reservoir optimization and autonomic for-
est fire management, enabled by AutoMate were also presented.

References

1. Parashar, M., Browne, J.C.: Conceptual and implementation models for the grid.
Proceedings of the IEEE, Special Issue on Grid Computing (2005)

2. The globus alliance, http://www.globus.org.

3. Unicore forum, http://www.unicore.org.

4. Thain, D., Tannenbaum, T., Livny, M.: Condor and the Grid. John Wiley & Sons
Inc. (2002)

5. Grimshaw, A.S., Wulf, W.A.: The legion vision of a worldwide virtual computer.
Communications of the ACM 40 (1997) 39 – 45

6. Allen, G., Davis, K., Dolkas, K.N., Doulamis, N.D., Goodale, T., Kielmann, T.,
Merzky, A., Nabrzyski, J., Pukacki, J., Radke, T., Russell, M., Seidel, E., Shalf, J.,
Taylor, I.: Enabling applications on the grid: A Gridlab overview. International
Journal of High Performance Computing Applications: Special issue on Grid Com-
puting: Infrastructure and Applications (2003) to appear

7. Taesombut, N., Chien, A.: Distributed virtual computer (dvc): Simplifying the de-
velopment of high performance grid applications. In: Workshop on Grids and Ad-
vanced Networks (GAN ’04), IEEE Cluster Computing and the Grid (CCGrid2004)
Conference, Chicago, IL USA (2004)

8. Laszewski, G.v., Foster, I., Gawor, J.: Cog kits: A bridge between commodity
distributed computing and high-performance grids. In: ACM 2000 Conference on
Java Grande, San Francisco, CA USA, ACM Press (2000) 97 – 106

9. Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I., Gannon, D., Johns-
son, L., Kennedy, K., Kesselman, C., Mellor-Crummey, J., Reed, D., Torczon, L.,
Wolski, R.: The grads project: Software support for high-level grid application
development. International Journal of High Performance Computing Applications
15 (2001) 327–344

10. Nakada, H., Matsuoka, S., Seymour, K., Dongarra, J., Lee, C., Casanova, H.:
Gridrpc: A remote procedure call api for grid computing (2003)

11. Ishikawa, Y., Matsuda, M., Kudoh, T., Tezuka, H., Sekiguchi, S.: The design of a
latency-aware mpi communication library. In: Proceedings of SWOPP03. (2003)

12. Migliardi, M., Sunderam, V.: The harness metacomputing framework. In: Proceed-
ings of ninth SIAM Conference on Parallel Processing for Scientific Computing, San
Antonio, TX, SIAM (1999)

13. Nieuwpoort, R.V.v., Maassen, J., Wrzesinska, G., Kielmann, T., Bal, H.E.: Satin:
Simple and efficient java-based grid programming. Journal of Parallel and Dis-
tributed Computing Practices (2004)

14. Nieuwpoort, R.V.v., Maassen, J., Wrzesinska, G., Hofman, R., Jacobs, C., Kiel-
mann, T., Bal, H.E.: Ibis: A flexible and efficient java-based grid programming
environment. (Concurrency & Computation: Practice & Experience)

Enabling Autonomic Grid Applications 289

15. Govindaraju, M., Krishnan, S., Chiu, K., Slominski, A., Gannon, D., Bramley, R.:
Xcat 2.0: A component-based programming model for grid web services. Technical
Report Technical Report-TR562, Dept. of C.S., Indiana Univ (2002)

16. Krishnan, S., Gannon, D.: Xcat3: A framework for cca components as ogsa services.
In: Proceedings of HIPS 2004, 9th International Workshop on High-Level Parallel
Programming Models and Supportive Environments. (2004)

17. Ururahy, C., Rodriguez, N.: Programming and coordinating grid environments
and applications. In: Concurrency and Computation: Practice and Experience.
Number 5 (2004)

18. Kelly, W., Roe, P., Sumitomo, J.: G2: A grid middleware for cycle donation us-
ing .net. In: Proceedings of The 2002 International Conference on Parallel and
Distributed Processing Techniques and Applications. (2002)

19. Mathe, J., Kuntner, K., Pota, S., Juhasz, Z.: The use of jini technology in dis-
tributed and grid multimedia systems. In: MIPRO 2003, Hypermedia and Grid
Systems, Opatija, Croatia (2003) 148–151

20. Taylor, I., Shields, M., Wang, I., Philp, R.: Distributed p2p computing within
triana: A galaxy visualization test case. In: International Parallel and Distributed
Processing Symposium (IPDPS’03), Nice, France, IEEE Computer Society Press
(2003)

21. Furmento, N., Hau, J., Lee, W., Newhouse, S., Darlington, J.: Implementations of
a service-oriented architecture on top of jini, jxta and ogsa. In: Proceedings of UK
e-Science All Hands Meeting. (2003)

22. Microsoft .net. (http://www.microsoft.com/net/)
23. Jini network technology. (http://wwws.sun.com/software/jini/)
24. Project jxta. http://www.jxta.org (2001)
25. Agarwal, M., Bhat, V., Li, Z., Liu, H., Matossian, V., Putty, V., Schmidt, C.,

Zhang, G., Parashar, M., Khargharia, B., Hariri, S.: Automate: Enabling auto-
nomic applications on the grid. In: Autonomic Computing Workshop The Fifth
Annual International Workshop on Active Middleware Services (AMS 2003), Seat-
tle, WA USA (2003) 365–375

26. Liu, H., Parashar, M., Hariri, S.: A component-based programming framework
for autonomic applications. In: 1st IEEE International Conference on Autonomic
Computing (ICAC-04), New York, NY, USA, IEEE Computer Society Press (2004)
278 – 279

27. Li, Z., Parashar, M.: Rudder: A rule-based multi-agent infrastructure for sup-
porting autonomic grid applications. In: 1st IEEE International Conference on
Autonomic Computing (ICAC-04), New York, NY, USA, IEEE Computer Society
Press (2004) 278 – 279

28. Jiang, N., Schmidt, C., Matossian, V., Parashar, M.: Content-based decoupled
interactions in pervasive grid environments. In: First Workshop on Broadband
Advanced Sensor Networks, BaseNets’04, San Jose, California (2004)

29. Zhang, G., Parashar, M.: Dynamic context-aware access control for grid applica-
tions. In: 4th International Workshop on Grid Computing (Grid 2003), Phoenix,
AZ, USA, IEEE Computer Society Press (2003) 101 – 108

30. Zhang, G., Parashar, M.: Cooperative mechanism against ddos attacks. In: IEEE
International Conference on Information and Computer Science (ICICS 2004),
Dhahran, Saudi Arabia (2004)

31. Bhat, V., Matossian, V., Parashar, M., Peszynska, M., Sen, M., Stoffa, P., Wheeler,
M.F.: Autonomic oil reservoir optimization on the grid. Concurrency and Com-
putation: Practice and Experience, John Wiley and Sons (2003)

290 M. Parashar et al.

32. Mann, V., Matossian, V., Muralidhar, R., Parashar, M.: DISCOVER: An envi-
ronment for Web-based interaction and steering of high-performance scientific
applications. Concurrency and Computation: Practice and Experience 13 (2001)
737–754

33. Agarwal, M., Parashar, M.: Enabling autonomic compositions in grid environ-
ments. In: 4th International Workshop on Grid Computing (Grid 2003), Phoenix,
AZ, USA, IEEE Computer Society Press (2003) 34 – 41

34. Schmidt, C., Parashar, M.: Enabling flexible queries with guarantees in p2p sys-
tems. IEEE Internet Computing 8 (2004) 19 – 26

35. Liu, H.: A component-based programming framework for autonomic grid applica-
tions. Ph.D. Proposal (2004)

36. Liu, H., Parashar, M.: Rule-based monitoring and steering of distributed scientific
application. International Journal of High Performance Computing and Network-
ing (IJHPCN) (2005)

37. Allan, B.A., Armstrong, R.C., Wolfe, A.P., Ray, J., Bernholdt, D.E., Kohl, J.A.:
The cca core specifications in a distributed memory spmd framework. Concurrency
and Computing:Practice and Experience, John Wiley and Sons 14 (2002) 323 –
345

38. Matossian, V., Parashar, M., Bangerth, W., Klie, H., Wheeler, M.: An autonomic
reservoir framework for the stochastic optimization of well placement. Cluster
Computing: The Journal of Networks, Software Tools, and Applications, Special
Issue on Autonomic Computing, Kluwer Academic Press (to appear)

39. Khargharia, B., Hariri, S., Parashar, M.: vgrid: A framework for building auto-
nomic applications. In: 1st International Workshop on Heterogeneous and Adap-
tive Computing– Challenges of Large Applications in Distributed Environments
(CLADE 2003), Seattle, WA, USA, Computer Society Press (2003) 19–26

40. Chandra, S., Parashar, M., Hariri, S.: Gridarm: An autonomic runtime manage-
ment framework for samr applications in grid environments. In: New Frontiers in
High-Performance Computing, Proceedings of the Autonomic Applications Work-
shop, 10th International Conference on High Performance Computing (HiPC 2003).
Elite Publishing, Hyderabad, India (2003) 286 – 295

Pandora: An Efficient Platform for the
Construction of Autonomic Applications

Simon Patarin1 and Mesaac Makpangou2

1 University of Bologna,
Computer Science Department,

Bologna, Italy
patarin@cs.unibo.it

2 INRIA Rocquencourt,
Regal Group,

Rocquencourt, France
mesaac.makpangou@inria.fr

Abstract. Autonomic computing has been proposed recently as a way
to address the difficult management of applications whose complexity
is constantly increasing. Autonomic systems will have to diagnose the
problems they face themselves, devise solutions and act accordingly. In
consequence, they require a very high level of flexibility and the ability
to constantly monitor themselves. This work presents a framework, Pan-
dora, which eases the construction of applications that satisfy this double
goal. Pandora relies on an original application programming pattern —
based on stackable layers and message passing — to obtain a minimalist
model and architecture that allows control of the overhead imposed by
the full reflexivity of the framework. A prototype of the framework has
been implemented in C++, freely available for download on the Internet.
A detailed performance study is given, together with examples of use, to
assess the usability of the platform in real usage conditions.

1 Introduction

Large-scale distributed applications are being more and more used. Content-
delivery networks, computing grids, peer-to-peer file-sharing systems, distributed
hash tables, ubiquitous systems: there are many examples and the list keeps
growing. The environment in which these applications are deployed, Internet, is
characterized by its heterogeneity, the rapid evolution of its various components
(hardware, software, but also human) and its lack of reliability. The diversity
of the platforms makes it especially difficult to configure these applications.
Even if this first step is completed successfully, changes and failures may disturb
those choices and annihilate previous efforts. It is then required to ease these
operations by automating them as much as possible. Those observations are at
the origin of the development of autonomic computing [1]. Its objective is to
let the applications diagnose themselves the problems they are facing and solve
them without any external intervention. Of course, issues to be addressed are

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 291–306, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

292 S. Patarin and M. Makpangou

numerous before reaching a satisfying solution. Here, we focus on one of them: the
necessary system support for the development of such autonomic applications.

It is possible to identify several features that must be provided by a plat-
form enabling the construction of autonomic applications. The first and most
important one deals with the flexibility of the applications. It is useless to imag-
ine an application being autonomic if it cannot be modified and reconfigured
dynamically. Numerous kinds of reconfiguration may be considered, and all of
them will have to be supported: from the simple parameterization, to the ad-
dition of non-functional properties likely to drastically change the behavior of
the application. Besides, the application itself is often the best candidate to col-
lect the measurements that allow the analyze of its own behavior. The platform
must then provide the required mechanisms to disseminate these measurements.
It must also ease the interactions among the different components of the sys-
tem: in particular, the platform should be reflexive [2, 3] to give access to the
application current state and observed measurements.

This flexibility that we require should not hinder the performance. This,
however, has not been the approach chosen in current systems where only one of
those properties is developed, but not both. Thus, in the case of platforms specif-
ically tailored for the development of autonomic applications (e.g. AutoPilot [4]
or AutoMate [5]), application flexibility (and hence reconfiguration possibilities)
has not been emphasized and is insufficiently developed to address the diversity
of application needs that we anticipate. At the opposite, in the domains of aspect
programming [6] or component systems [7], a high flexibility is provided to the
applications built but overheads are introduced that greatly impact the achieved
level of performance.

The approach we propose to address this problem builds on an original com-
promise. We put forward an alternative programming model instead of imposing
the use of interpreted language or sacrificing the provided flexibility. This model
consists in the stacking of independent components that communicate by ex-
changing messages. This approach, which — to the best of our knowledge — has
never been applied in this context, is not new and several projects have experi-
mented with it, emphasizing its usefulness and expressiveness. Among the first
works in this domain are x -Kernel [8] and Ficus [9] (an operating system and a
framework for building file systems, respectively). More recently, two new archi-
tecture have been proposed: a modular router, Click [10], and SEDA [11] that
allows to build efficient Internet services. While most legacy systems provides
flexibility through low-level instrumentation (typically at the level of procedure
calls), this programming model allows the definition of a custom intervention
degree through the choice of component granularity. The platform presented,
Pandora, builds upon these techniques and provides a reflexive interface that al-
lows individual components and external applications to dynamically reconfigure
the entire system.

We are now going to present (Section 2) some related work pertaining to
this study. We describe next the architecture model proposed by Pandora (Sec-
tion 3). Deployment, execution and control of the applications built on top of

Constructing Autonomic Applications 293

it are presented next (Section 4). Next, the platform implementation and some
examples of use of the prototype are described (Section 5). An evaluation of the
performance of Pandora (Section 6) and a few concluding remarks (Section 7)
finish this paper.

2 Related Work

As mentioned before, there exist some platforms that pursue objectives compa-
rable to ours. We are going to detail their characteristics in a first step. Then,
we are going to look at software engineering techniques that relates to the ap-
proach we have followed for the design of Pandora. Specifically, we will consider
component systems and aspect-oriented programming.

2.1 Autonomic Application Platforms

Platforms explicitly dedicated to the construction of autonomic applications are
very few. The originality of AutoPilot [4] comes from its work on the definition
of sensors and the means to access them efficiently. Those same sensors are used
“back way” (to write a value, instead of reading it) to modify the application
parameterization. This is however the only reconfiguration feature provided by
the platform. Accord [12] and its predecessor AutoMate [5] target applications
deployed on grid computing systems. Both were built on top of DIOS [13] for
the construction of objects provided with sensors and actuators that allow them
to be parameterized dynamically. The main originality of this platform comes
from the specification of a language and of a rule execution engine that allow
reconfiguration triggering in response to captured events. Unity [14] also targets
grid applications. It promotes the use of “autonomic elements” and provides
a platform designed to help these elements interact with each others and their
environment. In its current state, however, monitoring facilities are rather limited
(polling values from OGSA [15] compatible services) and reconfiguration is not
supported by the platform itself (it is left to each element to devise their own
strategy).

This rapid panorama of autonomic computing platform shows the limits of
the reconfiguration mechanisms provided to applications. Dynamic parameteri-
zation consists, at best, in choosing between alternative implementations among
a set predefined functionalities. Extensibility and modification of non-functional
properties are barely addressed.

2.2 Software Engineering Techniques

This limited flexibility of existing platforms leads us to consider the approaches
currently in use to address this issue. Two kinds of techniques are clearly put
forward: component systems and aspect-oriented programming.

Component Systems. Legacy component systems — .NET, CCM (Corba
Component Model) and EJB (Enterprise Java Beans) — are actually rather

294 S. Patarin and M. Makpangou

poorly adapted to the design of flexible architectures. Coarse component granu-
larity, static component binding, and the limited predefined set of non-functional
properties provided by the component containers contribute largely to this fact.
This has lead to the development of more lightweight systems, with higher per-
formance. Thus, the OpenCOM [7] platform (that builds on the COM component
model) allows for both component and bindings dynamic reconfiguration. This
is made possible by a fully reflexive interface that enables the platform to access
the entire state of the system (the component graph).

The approach followed by Gravity [16] is more original. Each component pub-
lishes a list of interfaces it provides and a list of those it requires. As components
get in and out of the system, bindings are dynamically established so that all
dependencies are satisfied. For our purposes, the main limitation of this tech-
nique is the lack of support for “simple” reconfigurations, like the modification
of a single parameter value.

Aspect-Oriented Programming. Aspect-oriented programming [6] promotes
separation of concerns. Cross-cutting functionalities that are common to several
modules of the same program are isolated (those are the aspects) and “weaved”
with the rest of the application at compile-time or at run-time. The flexibility
of these architectures comes from the relative independence between the various
entities involved (modules and aspects). It is then possible to modify any of them
without disturbing the other elements of the program.

The JAC [17] (Java Aspect Components) platform is the one that is closer
to our objectives. In this case, aspects are encapsulated inside components and
weaved at run-time (which allows dynamic reconfiguration). These components
are also statically configurable to adapt diverse environments. The main limita-
tion of this platform is the lack of support for the reconfiguration of the modules
themselves (those whose functionalities cannot be seen as aspects).

3 Architecture Model for Autonomic Applications

Pandora proposes an original architecture model to build autonomic applica-
tions. This model builds upon the notion of component and event-based com-
munication to provide the flexibility and the adaptability required by such ap-
plications.

3.1 Fine-Grained Independent Components

Autonomic applications are usually considered to be made of a set of relatively
independent modules [18]. Each module is supposed to be able to configure
itself, detect problems when they occur, and — ideally — solve them. Naturally,
all these decisions depend on the state of the system as a whole and modules
cooperate with and monitor each other. In the most recent platforms [12, 14]
modules are the smallest entities manipulated by the system.

We believe, however, that there are advantages in considering a finer subdivi-
sion of modules. In each module, both “business” logic and “autonomic” logic are

Constructing Autonomic Applications 295

present. These two aspects are very different by nature and should be clearly sep-
arated from each other. Moreover, a large part of the autonomic logic is generic
(threshold triggered alarms, rule processing engine, etc.) and could be reused in
different modules. Even business code benefits from being further divided into
smaller, cleanly bounded, entities. Having an intermediate granularity (coarser
than raw instructions and finer than modules), such entities are much easier to
monitor. With adequate support from the platform, the programmer is able to
easily indicate what are the meaningful variables to monitor and which are the
means to modify the component behavior. Besides, parts of the business code
consists in the implementation of non-functional properties (the cross-cutting
concerns identified by the aspect-oriented programming community) that are
essentially reusable from one module to another.

These considerations have led us to propose an architecture model for auto-
nomic applications based on three layers:

1. components : components are the basic and self-contained building blocks in
the system. Functional and non-functional business code, as well as auto-
nomic machinery, are encapsulated within these objects.

2. stacks: components are assembled to form stacks. A stack defines the nature
of components to be used and the order in which they are chained. This
corresponds to the notion of modules we have mentioned previously.

3. tasks: cooperating stacks form a task, which matches the notion of an appli-
cation, made of several cooperating modules.

Interactions between these three elements are summarized in Figure 1.

Besides, each component may specify a set of parameters, that we name
options, identified by their name and whose value can be configured at run-time
to adapt the behavior of the component. These options may be of different types
(numerical, boolean and character strings). However, we cannot represent every
parameter type with such basic types (e.g. file handles, set of values, etc.). This
is why the model makes it possible to associate a specific pre-processing step
before the parameter is given to the component (e.g. transforming a literal host

Task

Stack

Comp.

Fig. 1. Interactions between Pandora’s elements. Tasks (applications) are made of

loosely-coupled stacks (modules). Stacks are made of tightly-coupled components

296 S. Patarin and M. Makpangou

name into a numerical IP address). Having this step performed outside of the
component avoids paying the overhead of these transformations each time a new
component instance is created.

The entire independence of the components is an important characteristic
of the model, and it is worth considering its implications. A component ignores
totally the context in which it is going to be used and interactions with other
components are made anonymously. Thus, the reusability of the component is
strongly guaranteed. However, the main benefit of this aspect of the model for
autonomic applications is simply the very absence of (explicit or hidden) inter-
dependencies between components. This helps simplifying the traditionally hard
problem of the dynamic reconfiguration of the application. In this case, each
component may be safely adapted and modified without having to fear breaking
other components that would depend on him. It must be noted that the problem
is simplified, not solved, as the component continues to interact with others and
radically modifying its behavior might still impact its peers.

The specification of the chaining of components within stacks, together with
their initial parameterization, is made through a dedicated language. In order
to ease its usage and comprehension by the platform end-users, a compact stack
representation has been preferred. However, it would have been possible to use
graph description languages (such as dot [19]) or markup languages (such as
XML) to achieve similar results. It is beyond the scope of this paper to explain
it in details, a full description is available in a previous work [20].

3.2 Event-Based Interactions

Components need to interact with each other. In most legacy component models,
communication is performed through direct procedure invocations. This estab-
lishes a two-way communication channel: the caller chooses the actual method
to call and its arguments and, in the other direction, the callee chooses the value
to return. However, our component model uses one-way event-passing commu-
nication.

Following this approach offers several advantages. The first one is its con-
ceptual simplicity, which contributes largely to the reduction of the component
complexity. A component needs only to define a single interface, the one used
to receive an event. This also contributes to the flexibility, the extensibility
and the modularity of the platform, which is a primary concern when deal-
ing with autonomic applications. Components may be easily inserted within an
established event flow, either to modify it, or, at the opposite to provide, non-
functional properties to the whole stack. This could not be easily achieved with
an interface-based design. In the latter case, such a generic component would
need to implement a large set of interfaces to be composed with all other existing
components. When components are added or removed, generic ones should be
modified.

By favoring the independence of the components, this communication model
is complimentary to the component model we have chosen and helps reinforcing
its objectives of flexibility and reusability.

Constructing Autonomic Applications 297

Event forwarding between components is one-way, synchronous, and operates
in continuous flow. This means that two components, once the communication
is established, are durably connected to each other. At the opposite, communi-
cations between stacks, seen as a whole, are asynchronous: events are buffered
and consumed whenever the receiving stack decides to do so. It must be noted
that a stack, in itself, does not “communicate” with another stack. Rather it is
a component that chooses to send an event to a stack, rather than to a com-
ponent. Similarly, an event sent to a stack is actually processed by a specific
component in that stack. Having both communication modes available lets the
developer freely choose the best compromise for its application. The number of
stacks in the system is not limited and it is perfectly legal to encapsulate a single
component within a stack. Synchronous communications are much more efficient
(in terms of performance) than asynchronous ones. This is easily explained by
the fact that asynchronous communications provide thread-safe buffering sup-
port, while synchronous ones obviously do not. Another parameter to take into
consideration when choosing between these two modes is that inter-component
communications are anonymous, while inter-stack ones are named. Being en-
tirely stand-alone, a component cannot choose which components to communi-
cate with. This is entirely determined in the stack configuration. In the general
case, a component willing to transmit an event transmits it to its successor, with-
out knowing its identity. At the opposite, stacks are named (different instances
of the same stack are identified by a unique handle or an explicit alias), and a
component chooses the name of the stack it wants to communicate with.

Each component has a single input port and an arbitrary number of output
ports. The usual case for a component is to have one output port. For those with
several output ports, two (mutually exclusive) possibilities exist:

1. switch: switch ports are identified by a rank number and it is possible to con-
figure the stack so that components of different nature correspond to each
port. This matches roughly the switch statement found in most imperative

3

12

45

3

2 1

A

B

(a) parallel

3 12 BA

(b) serial

5

14

78

3 2

A

A

A

6

(c) demux

1

56

3

2

A

B

4

(d) switch

Fig. 2. Representation of the different component connections modes. Event are rep-

resented by a circle and uniquely identified by a rank number (events with the same

number are then identical). In parallel mode, each event is sent to all components.

In serial mode, components are chained linearly, events sequentially flows from one

component to the next one. In demux mode, events are demultiplexed and sent to the

component instance that handles the category they belong to. In switch mode, events

are sent to one of several alternative components

298 S. Patarin and M. Makpangou

programming languages. The choice of the branch in which to forward a
specific event is determined by the component itself according to its internal
logic.

2. demultiplexing : demultiplexing ports allow a component to classify events.
As soon as a new category is identified, a new port is dynamically created,
while events belonging to an existing category are forwarded to the port with
which it had been previously associated. All demultiplexing branches are of
the same nature (components of the same type are found in the same order)
but made of distinct component instances.

This leads to a wide range of possible component connections when constructing
a stack which are summarized and illustrated in Figure 2.

In modes that create multiple branches (i.e. all but serial), the actual length
and definition of the branches is specified in the stack definition. Events flowing
out of related branches (that is, those stemming from the same branch point)
are naturally merged in the input of the next component in the stack.

3.3 Flexibility and Reconfiguration

Systems manipulated by Pandora exhibit two degrees of flexibility: first, in com-
ponent parameterization and, second, in the chaining of these components. Pa-
rameterization flexibility relates to option usage to modify variables at run-time:
this is rather classical. However, its impact may be of great importance as it is
possible to use options to specify an alternative demultiplexing algorithm or
change an output port in a switch component, modifying the behavior of the
whole application.

The second degree of flexibility exposed by Pandora lies in the specification
of component chaining (the stack definition). When several components provid-
ing different implementations of the same functionality are available, this allows
to choose the solution that best fits the current environment (algorithms trad-
ing CPU utilization for memory utilization are quite common). Moreover, the
model authorizes (and even promotes) using non-functional components. Their
insertion in the stack does not modify the general behavior of the system but
might alter the way further events are processed or induce side-effects. One can
mention the examples of components managing the balance of processing stages
across several machines, the persistence of events they receive, application mon-
itoring, failure detection, synchronization, etc. This last issue is very close to the
approach followed in aspect-oriented programming: by modifying the application
(components in the original definition), it is possible to weave some aspects (by
inserting specific components in the definition).

4 Deployment, Execution and Control

Pandora’s architecture is organized around a micro-kernel in charge of stack ex-
ecution. This notion of micro-kernel references works in the operating system

Constructing Autonomic Applications 299

domain which gave birth to several generations of minimal kernels, like Cho-
rus [21], L4 [22] or, more recently, Think [23]. In these systems, functionalities
(or services) take the form of independent servers, and live outside the kernel
itself. Similarly, functionalities provided by the kernel of Pandora are as limited
as possible: their implementation within components has always been preferred.
This is the case, for example, of event demultiplexing, inter-stack and inter-
machine communications, access control, event persistence, etc. In consequence,
the main attributions of micro-kernel are to manage the deployment of the ap-
plications, supervise the execution of the stacks and implement the reflexive
interface of the platform.

4.1 Libraries and Resources Management

Pandora components come within standard dynamic libraries. To deploy an ap-
plication in Pandora consists in deploying the libraries containing all components
in the stack, together with the appropriate configuration files. Pandora uses two
kinds of configuration files: stack definitions and library descriptions. The first
one contains any number of textual stack specifications expressed in Pandora
architecture description language. The second one deals with libraries: it lets
Pandora know in which library each component is, and the location of each li-
brary. This location may refer either to a file in the local file system or be an
URL, which allows its loading from a remote location. Having these different
schemes to access library code allows to build and maintain organization-wide
component repositories without requiring participating nodes to share a single
remotely mounted file system. Library description files also contain information
to specify inter-library dependencies, which are automatically taken care of by
the platform.

The different configuration files (stack and library descriptions) are named
“resources”. In order to ease their management (many such files may be required
to run a single application), Pandora uses “meta-resource” files (or simply re-
source files) that contain a list of locations (file or URL) of other resources. Each
such resource is accompanied by a priority which tells the order in which they
should be visited. These resource files are considered as resources themselves.
This makes it possible to organize resources hierarchically by inserting locations
of other (sub-)resources in a higher level resource file. Then, one can build an
entire resource tree whose leaves would be stack and library descriptions while
resource descriptions would be its nodes. In this end, this means that it is pos-
sible to boot strap a whole system from one URL.

4.2 Execution

Stacks are the base entities considered by the platform regarding application
execution. To guarantee the integrity of the system, the platform performs a
verification stage before starting the actual execution of a stack. It checks the
correctness of the stack definition, together with the compatibility of component
bindings according to the event types they declare supported for input and
output (respectively).

300 S. Patarin and M. Makpangou

The execution phase starts with the creation of a thread in which the stack
will be executed. Each stack is run in its own thread and, respectively, each
thread contains at most one stack. This one-to-one mapping between stacks and
threads has two advantages. The first one is conceptual: the notion of thread
is entirely abstracted and the programmer does not have to worry about it.
If she wants her application executed in concurrent threads, she just needs to
put her components in separate stacks. The second advantage comes from the
guaranty that all components within a stack are executed in a single thread.
There is no need, then, to synchronize accesses to stack scoped resources: they
are made sequentially. As the number of stacks in the system is not limited, and
because stacks can be connected in an arbitrary way, it is perfectly legal to split
a single logical module into multiple stacks to allow intra-module concurrency
and asynchrony.

Tasks are not explicitely defined by the programmer but dynamically created
and managed by the platform to be the connected components of the undirected
graph whose nodes are stacks and edges are communication channels established
between stacks. For example as stack A sends its first event to stack B, the tasks
of A and B are merged. This notion of task is used by the platform to allow
specific communication modes (see below, in the next section, sensors and mon-
itors) and to collect dead stack cycles (in the garbage collection terminology). It
is clear from this operational definition of tasks that, like stacks, their number
is not limited in the system.

The kernel is also responsible for the management of each component life-
cycle. As events are produced and transmitted, next components are created
lazily, only when they first appear as the destination of an event. Pandora main-
tains access counters for each component so that it can terminate every com-
ponent that has become inaccessible after the breaking of a connection. This
mechanism, which builds on the explicit termination of component bindings, is
complemented by a timeout-based mechanism which collects components after
a configurable (possibly infinite) period of inactivity.

4.3 Introspection and Dynamic Reconfiguration

We have said how much needed was flexibility for autonomic applications. This
is expressed both in the ability to tune such applications as finely as possible,
but also in the possibility to reconsider choices as the environment in which the
applications are executed evolves.

The entire configuration of the platform and its current state are exposed by
the micro-kernel through a reflexive interface. Stack definitions, option values,
resource lists: every aspect of the system that is configurable in a configuration
file is accessible through this interface. Furthermore, for each element, it is possi-
ble to choose whether to modify the stored definition or its active representation
(dynamically modifying the platform behavior). Stack management is also ex-
posed, so that it is possible to know the list of running stacks or request to start
a new one or stop another one.

Constructing Autonomic Applications 301

Among these operations, the dynamic reconfiguration of a running stack must
be given special consideration. Contrary to all the others, this manipulation
implies modifying running component instances and bindings between them. As
Pandora components are considered stateful, by default, the platform must pay
attention to avoid removing components if not strictly necessary. Pandora does
so by computing the minimal set of transformations needed to go from the old
definition to the new one in terms of component additions and removals. After
a removal stage, remaining component are re-linked to each other inserting new
component instances as required by the definition.

A meta-object protocol makes these various reconfiguration operations ac-
cessible from applications external to the platform. Pandora provides an in-
terface for this protocol in several programming languages, including C, C++,
Perl and Guile. Guile [24] is an implementation of the Scheme language and
may be used to write scripts with all the standard construction of the original
language (procedure definition, flow control, etc.) augmented by primitives ac-
cessing the kernel reflexive interface. The ability to write such “control scripts”
is original to Pandora and eases the rapid prototyping of (partially) autonomic
applications.

However, for autonomic applications to analyze and reconfigure themselves,
the utilization of the above protocol is not optimal in terms of performance, as
it is designed to allow external applications to interact with the platform. When
accesses are made from within the autonomic application (the task in Pandora’s
terminology), much of the overhead required to locate the targeted option in the
system and to serialize the results in the response can be avoided. We have then
introduced a specific mechanism that allows a component to “publish” values
and make them accessible to all other components within the same task. This
operation is made through a dedicated object that we have called a sensor. Each
sensor is given a name and several component instances may update a single
sensor. Accesses are made through another object, called a monitor. Monitors
are initialized with a set of sensor names they are related to and with a function
to apply to the values in order to process them. When this function is actually
called depends on the access mode that was chosen for the sensors. There exist
two different access modes: a passive mode where monitors pull the values from
the sensors when they need it, and an active mode where sensors push the values
to the monitors as soon as they are modified. Choosing the best appropriate
mode depends on the relative read and write frequencies of monitors and sensors,
respectively. Finally, an automatic mode is provided that let the platform do this
choice according to access counters it maintains.

5 Implementation

A prototype of this architecture has been developed and has been used in several
applications. We present them here briefly.

302 S. Patarin and M. Makpangou

5.1 Prototype

We have developed a software platform that implements the architecture we
have described. It represents more than 50 000 lines of C++ code and, besides
the kernel, is made of about 100 components. Approximately a third of those
are “base” components: these are components that implement non-functional
properties and that may be used in any stack.

Pandora has been ported and tested on a large number of systems, including
Linux, FreeBSD, NetBSD, Solaris, Digital Unix (Tru64) and, for the kernel and
base components only, Win32. The platform is distributed in its most recent
version under an open-source license by INRIA (free for non-commercial use) at
the following URL: http://www-sor.inria.fr/projects/relais/pandora/.

5.2 Applications

The Pandora platform has already been used in several projects [20, 25–27].
However, the application that emphasizes most the flexibility of Pandora and
the features it offers to build autonomic applications is C/SPAN [28]. C/SPAN
is an autonomic Web proxy cache that builds, for the one part, on C/NN [29], a
flexible Web cache, and, for the other part, on a HTTP monitoring stack on top
of Pandora. In this system, C/NN and Pandora are in a tight interaction loop:
C/NN, according to its environment (disk space, request rate, etc.), tunes the
behavior of Pandora using its reflexive interface. Respectively, Pandora recon-
figures C/NN according to the traffic patters it observes.

6 Performance Evaluation

In this evaluation of the performance of the platform, we have focused on two
specific points: the overhead related to the application slicing into components
and that related to introspection operations.

All tests have been performed on the same machine which uses a 2.4 GHz
Pentium IV processor, running the version 2.6 of the Linux operating system.
The measurements that we present are computed from the average of 50 succes-
sive runs. The standard error associated with these averages has never gone over
1%. The various procedure execution time have been measured with a loop that
executes each one million times. Total execution time expressed in milliseconds
gives then the cost a single iteration expressed in nanoseconds.

6.1 Component Traversal

To evaluate the overhead related to the slicing into components, we have mea-
sured the time needed for an event to flow through one component, i.e. the time
needed to go from one component to its successor. Results presented in Fig-
ure 3 show that this time is about 50 ns. Given the other measurements we have
performed, we see that this time is superior to the one needed to make simple
library calls, but inferior to the one required to make a floating-point division
or a system call. This indicates that for non-trivial applications (those that ac-

Constructing Autonomic Applications 303

tually do something between each event transmission), the overhead related to
the slicing is rather limited, if not negligible.

6.2 Introspection Primitives

To monitor its own behavior, an autonomic application must permanently watch
the sensors it is provided with. At the opposite, reconfigurations are supposed
to happen only in exceptional circumstances. Then, the most performance crit-
ical operation for those applications is the reading of a sensor value, and this is
the one we have chosen to evaluate. For the sake of comparison, we have also
measured the time needed to read a standard variable when using the reflexive
interfaces of two languages commonly used to build flexible applications: Java
and C#. In each language, we have reduced the operation to its most simple ex-
pression: reading the value of an integer field of an object instance. In both cases,
the code used is a one-liner. For Java, we have used different virtual machines,
with and without dynamic compilation (Just In Time). We have also statically

virtual
function

rand Pandora floating
division

getpid read log

E
xe

cu
tio

n
tim

e
(n

s)

1

10

100

1000

5.9

32.1
50.3

337.4
454.2 471.1

839.9

Fig. 3. Average execution time for various library functions, compared to Pandora

component traversal time

Pandora
monitor

Java
(compiled)

Pandora
option

C#
(compiled)

C#
Mono (JIT)

Java
IBM (JIT)

Java
Sun

E
xe

cu
tio

n
T

im
e

(n
s)

1

10

100

1000

10000

29.4

592.8 680.8
1065.4 1133.3

1704.0

8609.3

Fig. 4. Average execution time for several language-based introspection functions (Java

and C#) compared to those provided by Pandora

304 S. Patarin and M. Makpangou

compiled the program into native code using the GNU compiler [30]. For C#,
we have used the Mono [31] environment whose virtual machine supports both
static and dynamic compilation. The results of these experiments are shown Fig-
ure 4. Rather than studying the relative performance of compilers and virtual
machines compared to each other, what we would like to focus on are orders of
magnitude. Pandora sensors (in passive mode) are about 20 times more efficient
than natively compiled Java code. The latter, however, corresponds roughly to
the time spent when using Pandora options through its external interface. Un-
surprisingly, the use of true virtual machine (no static compilation) degrades
performance further and the absence of dynamic compilation makes them really
catastrophic. This shows how Pandora, for an equivalent CPU load, can support
a much higher number (one or two orders of magnitude) of sensors, and thus of
applications compared to languages that have been usually used in this domain.
It is Pandora specialization in these tasks (the platform has been designed and
optimized for this exact purpose), as opposed to the necessary generic approach
of a high-level programming language, that explains those differences.

7 Conclusion

We have presented Pandora, a platform for the construction of autonomic ap-
plications. Pandora builds on an original programming model, the stacking of
components communicating with message exchanges, that provides a compro-
mise between flexibility and performance. The resulting Pandora component
model is much simpler than legacy approaches that proceed with standard func-
tion calls. The architecture of the system is organized around a micro-kernel
that is responsible for managing the system resources (configuration files) whose
hierarchical organization eases large-scale deployments. It is also responsible for
the chaining of the components according to specified configurations. Its last
role is to expose a reflexive interface and propose the necessary abstractions for
an application programmer to dynamically configure and reconfigure the entire
system. This architecture has been implemented — the prototype is available
freely on the Internet — and several applications have already used it. A per-
formance evaluation of the system has shown that its implementation backs up
our initial objective to reconcile flexibility and performance.

With Pandora, autonomic application developers needs only to concentrate
in implementing the “business logic” of their application. The platform indeed
factorizes out most non-functional aspects of the application and provides useful
abstractions to deal with monitoring. After some initial effort required to design
the application according to Pandora’s programming model, easy and powerful
deployment and administration support is provided by the system. More im-
portantly, Pandora also makes the application highly flexible and dynamically
reconfigurable, basically for free.

Constructing Autonomic Applications 305

References

1. Kephart, J., Chess, D.: The vision of autonomic computing. Computer Magazine,
IEEE (2003)

2. Smith, B.C.: Reflection and semantics in lisp. In: Proceedings of the 11th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, ACM
Press (1984) 23–35

3. Maes, P.: Concepts and experiments in computational reflection. ACM SIGPLAN
Notices 22 (1987) 147–155

4. Ribler, R.L., Vetter, J.S., Simitci, H., Reed, D.A.: Autopilot: Adaptive control of
distributed applications. In: Proceedings of the The Seventh IEEE International
Symposium on High Performance Distributed Computing, IEEE Computer Society
(1998) 172

5. Agarwal, M., Bhat, V., Li, Z., Liu, H., Khargharia, B., Matossian, V., V.Putty,
Schmidt, C., Zhang, G., Hariri, S., Parashar, M.: Automate: Enabling autonomic
applications on the grid. In: Proceedings of the Autonomic Computing Workshop
(AMS 2003), Seattle, WA (2003)

6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Ir-
win, J.: Aspect-oriented programming. In Aksit, M., Matsuoka, S., eds.: ECOOP’97
— The 11th European Conference on Object-Oriented Programming. Volume 1241
of Lecture Notes in Computer Science., Jyväskylä, Finland, Springer-Verlag (1997)
220–242

7. Clarke, M., Blair, G.S., Coulson, G., Parlavantzas, N.: An efficient component
model for the construction of adaptive middleware. Lecture Notes in Computer
Science 2218 (2001)

8. Hutchinson, N.C., Peterson, L.L.: The x-Kernel: An architecture for implementing
network protocols. IEEE Transactions on Software Engineering 17 (1991) 64–76

9. Heidemann, J.S.: Stackable layers: An architecture for file system development.
Technical Report UCLA-CSD 910056, University of California, Los Angeles, CA
(USA) (1991)

10. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular
router. ACM Transactions on Computer Systems 18 (2000) 263–297

11. Welsh, M., Culler, D.E., Brewer, E.A.: SEDA: An architecture for well-conditioned,
scalable internet services. In: 18th Symposium on Operating Systems Principles,
Lake Louise, Canada (2001) 230–243

12. Liu, H., Parashar, M., Hariri, S.: A component-based programming model for au-
tonomic applications. In: Proceedings of the 1st International Conference on Au-
tonomic Computing (ICAC 2004), New-York, NY, IEEE Computer Society (2004)

13. Muralidhar, R., Parashar, M.: A Distributed Object Infrastructure for Interaction
and Steering. In R. Sakellariou, J. Keane, J.G., Freeman, L., eds.: Proceedings
of the 7th International Euro-Par Conference (Euro-Par 2001),Lecture Notes in
Computer Science. Volume 2150., Manchester, UK, Springer-Verlag (2001) 67–74

14. Chess, D.M., Segal, A., Whalley, I., White, S.R.: Unity: Experiences with a proto-
type autonomic computing system. In: Proceedings of the 1st International Con-
ference on Autonomic Computing (ICAC 2004), New-York, NY, IEEE Computer
Society (2004)

15. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The physiology of the
grid: An open grid services architecture for distributed systems integra-
tion. Open Grid Service Infrastructure WG, Global Grid Forum (2002)
http://www.globus.org/research/papers/ogsa.pdf.

306 S. Patarin and M. Makpangou

16. Hall, R.S., Cervantes, H.: Gravity: supporting dynamically available services in
client-side applications. In: Proceedings of the 9th European software engineering
conference held jointly with 10th ACM SIGSOFT international symposium on
Foundations of software engineering, ACM Press (2003) 379–382

17. Pawlak, R., Seinturier, L., Duchien, L., Florin, G., Legond-Aubry, F., Martelli,
L.: JAC: An aspect-based distributed dynamic framework. Software: Practice and
Experience (SPE) (2004)

18. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An architec-
tural approach to autonomic computing. In: Proceedings of the 1st International
Conference on Autonomic Computing (ICAC 2004), New-York, NY, IEEE Com-
puter Society (2004)

19. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz —
open source graph drawing tools. Lecture Notes in Computer Science 2265 (2002)

20. Patarin, S.: Pandora: support pour des services de métrologie à l’échelle d’Internet
(english title: Pandora: Support for Internet Scale Monitoring Services). PhD
thesis, Université Pierre et Marie Curie – Paris 6 (2003) In French.

21. Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M.,
Herrmann, F., Kaiser, C., Langlois, S., oñard, P.L., Neuhauser, W.: CHORUS
distributed operating system. Computing Systems 1 (1988) 305–370

22. Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S., Wolter, J.: The performance
of μ-Kernel-based systems. In: Proceedings of the 16th Symposium on Operating
Systems Principles (SOSP-97). Volume 31 of Operating Systems Review., Saint
Malo, France, ACM Press (1997) 66–77

23. Fassino, J.P., Stefani, J.B., Lawall, J., Muller, G.: THINK: a software framework
for component-based operating system kernels. In: 2002 USENIX Annual Technical
Conference, Monterey, CA (2002) 73–86

24. Jaffer, A., Carrette, G., Stachowiak, M., et al.: Guile, project gnu’s extension
language. software (2002) http://www.gnu.org/software/guile/.

25. Patarin, S., Makpangou, M.: On-line Measurement of Web Proxy Cache Efficiency.
Research Report RR-4782, INRIA (2003)

26. Fessant, F.L., Patarin, S.: MLdonkey, a Multi-Network Peer-to-Peer File-Sharing
Program. Research Report RR-4797, INRIA (2003)

27. Patarin, S., Salamatian, K., Friedman, T.: The Pandora network monitoring plat-
form (2004) Submitted for publication.

28. Ogel, F., Patarin, S., Piumarta, I., Folliot, B.: C/SPAN: a Self-Adapting Web
Proxy Cache. In: Proceedings of the Autonomic Computing Workshop (AMS
2003), Seattle, WA (2003)

29. Piumarta, I., Ogel, F., Baillarguet, C., Folliot, B.: Applying the vvm kernel to
flexible web caches. In: Proceedings of the IEEE Workshop on Hot Topics in
Operating Sy stems, HOTOS-VIII, Schloss Elmau, Germany (2001) 155

30. Bothner, P., Haley, A., Levy, W., et al.: The gnu compiler for the java programming
language. software (2004) http://gcc.gnu.org/java/.

31. de Icaza, M., Molaro, P., Pratap, R., Porter, D., et al.: The mono project. software
(2004) http://www.go-mono.com/.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 307 – 324, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Spatial Computing: The TOTA Approach

Marco Mamei and Franco Zambonelli

DISMI - Università di Modena e Reggio Emilia,
Via Allegri 13, 42100 Reggio Emilia – Italy

{mamei.marco, franco.zambonelli}@unimore.it

Abstract. Spatial abstractions promise to be basic necessary ingredients for a
novel “spatial computing” approach to distributed systems development and
management, suitable to tackle the complexity of modern distributed computing
scenarios and promoting self-organization and self-adaptation. In this paper, we
analyze the key concepts underlying spatial computing and show how they can
be organized around a sort of “spatial computing stack”, in which a variety of
apparently very diverse mechanisms and approaches can be properly framed.
Following, we present our current research work on the TOTA middleware as a
representative example of a general-purpose approach to spatial computing. In
particular, we discuss how TOTA can be exploited to support the development
and execution of self-organizing and self-adaptive spatial computing applications.

1 Introduction

During the nineties, most researches in distributed computing have focused on the
“network of workstations” scenario [7]. However, in the past few years, a number of
novel scenarios have emerged including: (i) micro-networks, i.e., networks of low-
end computing devices typically distributed over a geographically small area (e.g.,
sensor networks [9], smart dusts [19] and spray computers [26]); (ii) ubiquitous net-
works, i.e., networks of medium-end devices, distributed over a geographically
bounded area, and typically interacting with each other via short/medium range wire-
less connections (pervasive computing systems, smart environments and robot teams
[10]); (iii) global networks, characterized by high-end computing systems interacting
at a world-wide scale (the physical Internet, the Web, P2P networks [23] and multi-
agent systems [13]).

Despite clear dissimilarities in structure and goals, one can recognize some key com-
mon characteristics distinguishing the above scenarios from more traditional ones:

− Large Scale: the number of nodes and, consequently, the number of components
involved in a distributed application is typically very high and, due to decentraliza-
tion, hardly controllable. It is not possible to enforce a strict control over their con-
figuration (consider e.g., the nodes of a P2P network) or to directly control them
during execution (consider e.g., the nodes of a sensor network).

− Network dynamism: the activities of components will take place in network
whose structure derives from an almost random deployment process, likely to

308 M. Mamei and F. Zambonelli

change over time with unpredictable dynamics. This may be due to factors such as
environmental contingencies, failures (very likely e.g., in sensor networks and per-
vasive computing systems), and mobility of nodes (as e.g. in robot teams and in
networks of smart appliances). In addition, at the application level, software com-
ponents can be of an ephemeral or temporary nature (as e.g. the peers of a P2P
network).

− Situatedness: The activities of components will be strongly related to their loca-
tion in either a physical or a virtual environment. On the one hand, situatedness can
be at the very core of the application goal (as e.g. in sensor networks and pervasive
computing systems devoted to improve our interaction with the physical world).
On the other hand, situatedness can relate to the fact that components can take ad-
vantage of the presence of a structured virtual environment to organize the access
to distributed resources (as e.g., in P2P data sharing networks).

The first two characteristics compulsory require systems to exhibit – both at the
network and at the application level – properties of self-organization and self-
adaptation (or generally, “self-*” properties). In fact, if the dynamics of the network
and of the environment compulsory require dynamic adaptation, the impossibility of
enforcing a direct control over each component of the system implies that such adap-
tation must occur without any huma intervention, in an autonomic way. The last char-
acteristic calls for an approach that elects the environment, its spatial distribution, and
its dynamics, to primary design dimensions. In any case, the three aspects are strictly
inter-related, in that the enforcement of self-* properties cannot abstract from the
capability of the system to become “context-aware”, i.e., to have components perceive
the local properties of the environment in which they are situated and adapt their
behavior accordingly.

In the past few years, a variety of solutions exploiting specific self-* properties to
solve specific application problems for large-scale systems in dynamic networks are
being proposed [8]. The question of whether it is possible to devise a single unifying
conceptual approach, applicable with little or no adaptations to a variety of applica-
tion problems and to scenarios as diverse as P2P networks and networks of embedded
sensors, is still open. In this paper, we identify the role that will be played in that
process by spatial abstractions, and by their adoption as building blocks for a novel
general-purpose “spatial computing” approach for distributed system development. A
spatial computing approach – by providing application components with an explicit
representation of their operational environment in terms of a space encoding some
application-specific features, and by having application level activities expressed in
terms of sensing the properties of space and navigating in it – can effectively deal
with network dynamics in large scale systems, can facilitate the integration of variety
of self-* properties in distributed systems, and also suit systems whose activities are
situated in an environment.

The remainder of this paper elaborates on spatial computing and is organized as
follows. Section 2 introduces the basic concepts underlying spatial computing and
discusses their relations with self-* properties. Section 3 proposes a framework
around which to organize the basic abstractions and mechanisms involved in spatial
computing. Section 4 presents our current research work on the TOTA middleware, as

 Spatial Computing: The TOTA Approach 309

a representative example of a general-purpose approach to spatial computing. Section
5 concludes by sketching a rough research agenda in the area.

2 Spatial Computing

The key principles underlying spatial computing are that:

− the central role of the network – a discrete system of variously interconnected
nodes – evolves into a concept of space. Applications components perceive and
act on the basis of some spatial information, distributed across the network and en-
coding some properties of the components’ operational environment that are rele-
vant for a specific application task. Such spatial information decouples components
activities from the underlying network structure;

− all application-level activities are abstracted as taking place in such space, and rely
on the capability of application components of locally perceiving (and possibly in-
fluencing) the local properties of space;

In particular, in spatial computing, any type of networked environment is hidden
below some space, mapped as an overlay data structure over the physical network. A
space can in fact be represented as an overlay data structure encoding neighborhood
and metric relations between nodes. Overlay data structures, realizing the concept of
space, are distributed data structures that generalize the idea of overlay networks.
Overlay networks are basically routing distributed data structures providing applica-
tion components with a suitable application-specific view of the network (i.e. they
allow components to perceive a specific overlay topology of the network) [22, 24].
An overlay data structure generalizes an overlay network by encoding and providing
components with any kind of application-specific spatial representation. In particular,
the metric of the represented space defines neighborhood relation and spatial dis-
tances accordingly to some specific application need. The nodes of the network are
assigned a specific area of the space, and are logically connected to each other accord-
ingly to the spatial neighborhood relations. In this way, components in the network
become “space-aware”. On the one hand, they perceive their local position in space as
well as the local properties of space (e.g., the locally available data and services) and
possibly change them. On the other hand, the activities of components in that space
are related to some sort of “navigation” in that space, which may include moving
themselves to a specific different position of space or moving data and events in space
according to “geographical” routing algorithms. The primary way to refer to entities
in the network is thus by “position”, i.e., any entity is characterized by being situated
in a specific position in the physical space.

The above characteristics notably distinguish spatial computing from traditional
distributed computing models. In transparent distributed computing models [6,7],
components are identified by logical names, applications abstract from the presence
of a distributed environment, and only a priori known interaction patterns can be
effectively supported. This makes them unable to deal with large-scale systems and
with network dynamics. In network-aware models [25], components are typically

310 M. Mamei and F. Zambonelli

aware of executing in a network and are identified by their location in it (e.g.., the IP).
This enables dealing also with applications executing in large-scale networks, but still
call for an explicit and complex handling of dynamic changes in the network or in the
position of components. With regard to this point it is very important to emphasize
that the structure of IP networks, although having a well structured hierarchical topol-
ogy, cannot be considered a space. IPs, in fact, do not relate to each other in such a
way that it is possible to effectively exploit their structure for the sake of directing
components activities towards a specific application goal. From the application point
of view. IPs are just “random labels” attached to application components.

Neither of the two promotes suitable abstractions of environment. Spatial comput-
ing overcomes the above limitations in a very effective way:

− Large Scale: the size of a network does not influence the models or the mecha-
nisms, which are the same for a small network and for a dramatically large one.

− Network Dynamics: the presence of a dynamic network is not directly perceived
by components, being hidden behind a stable structure of space that is maintained
despite network dynamism. From this perspective, it is effective to set-up interac-
tions and assign tasks on the basis of some space encoding application-related
measures. In this way, network changes are automatically taken into account by a
changing space representation that shields the application from such low-level
events.

− Situatedness: the abstraction of space is a conceptually simple abstraction of envi-
ronment, which also perfectly matches the needs of those systems whose activities
are strictly intertwined with a physical or computational environment.

In addition, as discussed in the following sub-section, spatial computing promotes
and support self-* computing.

2.1 Self-* Properties in Spatial Computing

Self-* properties, including the capability of a distributed system of self-configuring
its activity, self-inspecting and self-tuning its behavior in response to changed condi-
tions, or self-healing it in the presence of faults, are necessary for enabling spatial
computing and, at the same time, are also promoted by the adoption of a spatial com-
puting model.

On the one hand, to enable a spatial computing model, it is necessary to envision
mechanisms to build the appropriate overlay spatial abstraction and to have such
spatial abstraction be coherently preserved despite network dynamics. In other words,
this requires the nodes of a network to be able to autonomously connect with each
other, set up some sort of common coordinate systems, and self-position themselves
in such space. In addition, this requires the nodes of the network to be able to self-
reorganize their distribution in the virtual space so as to (i) make room for new nodes
joining the network (i.e., allocate a portion of the virtual space to these nodes); (ii) fill
the space left by nodes that for any reason leave the network; (iii) re-allocate the spa-
tial distribution of nodes to react to node mobility. It is also worth outlining that, since
the defined spatial structure completely shields the application from the network, it is

 Spatial Computing: The TOTA Approach 311

also possible for a system to dynamically tune the structure of the space so as enforce
some sorts of self-management of the network, transparently to the higher application
levels. As an example, load unbalances in the network can be dynamically dealt,
transparently from the application level, by simply re-organizing the spatial structure
so as to have overloaded nodes occupy a more limited portion of the space. On the
other hand, the so defined spatial structure can be exploited by application level com-
ponents to organize their activities in space in an autonomous and adaptive way. First
of all, it is a rather assessed fact that “context-awareness” and “contextual activity”,
i.e., the capabilities of a component to perceive the properties of the operational envi-
ronment and of influencing them, respectively, are basic ingredients to enable any
form of adaptive self-organization and to establish the necessary feedback promoting
self-adaptation. In spatial computing, this simply translates in the capability of per-
ceiving the local properties of space, which in the end reflect some specific character-
istics of either the network or of some application-level characteristics and of chang-
ing them. Second, one should also recognize that the vast majority of known phenom-
ena of self-organization and self-adaptation in nature (from ant-foraging to reaction-
diffusion systems, just to mention two examples in biology and physics) are actually
phenomena of self-organization in space, emerging from the related effect of some
“component” reacting to some property of space and, by this reaction, influencing at
its turn the properties of space. Clearly, a spatial computing model makes it rather
trivial to reproduce in computational terms such types of self-organization phenom-
ena, whenever they may be of some use in a distributed system.

2.2 Examples of Spatial Computing Approaches

The shift towards spatial computing is an emerging trend in diverse scenarios.
As an example, consider a sensor network scenario with a multitude of wireless

sensors randomly deployed in a landscape to perform some monitoring of environ-
mental conditions [9]. There, all activities of sensors are intrinsically of a spatial na-
ture. First, each sensor is devoted to local monitoring a specific portion of the physi-
cal space (that it can reach with its sensing capabilities). Second, components must
coordinate with each other based on their local positions, rather than on their IDs, to
perform activities such as detecting the presence and the size of pollution clouds, and
the speed of their spreading in the landscape. All of this implies that components must
be made aware of their relative positions in the spatial environment by self-
constructing a virtual representation of the physical space [18]. Moreover, they can
take advantage of “geographical” communication and routing protocols: messages
and events flow towards specific position of the physical/virtual space rather than
towards specific nodes, thus surviving in an self-adaptive way the possible dismissing
of some nodes [21].

Another example in which spatial concepts appear in a less trivial way is world-
wide P2P computing. In P2P computing, an overlay network of peers is built over the
physical network and, in that networks, peers act cooperatively to search specific data
and services. In first generation P2P systems (e.g., Gnutella [23]), the overlay net-
work is totally unstructured, being built by having peers randomly connect to a lim-

312 M. Mamei and F. Zambonelli

ited number of other peers. Therefore, in these networks, the only effective way to
search for information is message flooding. More recent proposals [22] suggest struc-
turing the network of acquaintances into specific regular “spatial shapes”, e.g., a ring
or an N-dimensional torus. When a peer connects to the networks, it occupies a por-
tion of that spatial space, and networks with those other peers that are neighbors ac-
cordingly to the occupied position of space. Then, data and services are allocated in
specific positions in the network (i.e., by those peers occupying that position) depend-
ing on their content/description (as can be provided by a function hashing the content
into specific coordinates). In this way, by knowing the shape of the network and the
content/description of what data/services one is looking for, it is possible to effec-
tively navigate in the network to reach the required data/services. That is, P2P net-
works define a spatial computing scenario in which all activities of application com-
ponents are strongly related to self-positioning themselves and navigating in an ab-
stract overlay space. It is also worth outlining that recent researches promote mapping
such spatial abstractions over the physical Internet network so as to reflect the geo-
graphical distribution of Internet nodes (i.e., by mapping IP addressed into geographi-
cal physical coordinates [24]) and, therefore improve efficiency.

In addition to the above examples, other proposals in areas such as pervasive
computing [2] and self-assembly [14] explicitly exploit spatial abstractions (and,
therefore, a sort of spatial computing model) to organize distributed activities.

3 Framing Spatial Computing

Let us now have a more systematic look at the basic mechanisms that have been ex-
ploited so far in distributed computing to promote self-* properties in distributed
systems. We will show that most of these mechanisms can be easily interpreted and
mapped into very similar spatial concepts, and that they can be framed in a unifying
flexible framework.

3.1 A Spatial Computing Stack

In this section, we introduce the “space-oriented” stack of levels (see Figure 1) as a
framework for spatial computing mechanisms. In each level of the stack, by introduc-
ing a new paradigm rooted on spatial concepts, it is possible to interpret a lot of pro-
posed self-* approaches, in different scenarios, in terms of mechanisms to manage
and exploit the space (see Table 1). On this basis, it is likely that a simply unifying
model for self-* distributed computing – leading to a single programming model and
methodology and – can be actually identified. We want to point out that our stack is
not intended to compete with the standard ISO protocol stack, in that it is much more
application-oriented.

The “physical level” deals on how components start interacting – in a dynamic
and spontaneous way – with other components in the systems. This is a very basic
expression of self-organizing behavior which is a pre-requisite to support more
complex forms of autonomy and of self-organization at higher levels. To this end,
one of basic mechanism exploited is broadcast (i.e. communicate with whoever is

 Spatial Computing: The TOTA Approach 313

available). Radio broadcast is used in sensor networks and in pervasive computing
systems. P2P systems can relay on different forms of TCP/IP broadcast to find
nodes already belonging to the P2P network to initiate a join-protocol. Whatever the
case, this physical level can be considered as in charge of enabling a component of
a dynamic network application to get into existence and to start interacting with
each other.

The “structure level” is the level at which a spatial structure is built and main-
tained by components existing in the physical network. The fact that a system is able
to create a stable spatial structure capable of surviving network dynamics and adapt-
ing the working conditions of the network is an important expression of self-
organizing and self-adapting behavior per se. However, such spatial structure is not a
goal for the application, and it is instead used as the basic spatial arena to support
higher levels activities.

The various mechanisms that are used at the structure level in different scenarios
are – again – very similar to each other. Sensor networks as well as self-assembly
systems typically structure the space accordingly to their positions in the physical
space, by exploiting mechanisms of geographical self-localization. Pervasive comput-
ing systems, in addition to mechanisms of geographical localization, often exploit
logical spatial structures reflecting some sorts of abstract spatial relationships of the
physical world (e.g., rooms in a building) [2]. Global scale systems, as already antici-
pated, exploits overlay networks built over a physical communication network.

Fig. 1. A Spatial Computing Stack

The “navigation level” regards to the basic mechanisms that components exploit to
orient their activities in the spatial structure and to sense and affect the local proper-
ties of space. If the spatial structure is not associated to some kind of routing informa-
tion, the only navigation approaches are flooding and gossiping. However, if some
sort of routing structure is defined at the structure level (as, e.g., in the geographical

Physical
Level

Communication Services in
an Unstructured Network

Structure
Level

Provisioning of a Structured
(Adaptive) Space Abstraction

Mechanism of Spatial Localization
and Self-inspection

Navigation
Level

Services to Navigate in the
Spatial Abstraction

Mechanism of Local Spatial
Local Sensing and Effecting

Application
LevelSelf-* Spatial Computing

Applications

Mechanisms to get into
existence in a network

314 M. Mamei and F. Zambonelli

spatial structures of sensor networks or in overlay networks) navigation approaches
relate in following the routes defined at the structure level. For instance, navigation
can imply the capability of components to reach specific points (or of directing mes-
sages and data) in the space based on simple geometric considerations as in, e.g.,
geographical routing [3].

Table 1. Spatial Mechanisms in Modern Distributed Computing Scenarios

 MICRO NETWORKS
Nano Networks, Sensor
Networks, Smart Dust,
Self-Assembly, Modular
Robots

UBIQUITOUS NETWORKS
Home Networks, MANETs,
Pervasive Environments,
Mobile Robotics

GLOBAL NETWORKS
Internet, Web, P2P net-
works, multiagent sys-
tems

“Application”
Level
(exploiting the spatial
organization to achieve in a
self-organizing and adaptive
way specific app. goals)

Spatial Queries

Spatial Self-Organization
and Differentiation of
Activities

Spatial Displacement

Motion Coordination &
pattern formation

DATA: environmental data

Discovery of Services

Spatial Displacement

Coordination and Distribu-
tion of Task and Activities

Motion coordination &
pattern formation

DATA: local resources and
environmental data

P2P Queries as Spatial
Queries in the Overlay

Motion Coordination on the
Overlay

Pattern formation (e.g., for
network monitoring)

DATA: files, services,
knowledge

“Navigation”
Level
(dealing with the mecha-
nism exploited by the
entities living in the space to
direct activities and move-
ments in that space)

Flooding

Gossiping (random naviga-
tion)

Geographical Routing
(selecting and reaching
specific physical coordi-
nates)

Directed Diffusion (naviga-
tion following sorts of
computational fields)

Stigmergy (navigation
following pheromone
gradients)

Computational fields

Multi-hop routing based on
Spanning Trees

Pattern-matching and
Localized Tuple-based
systems

Flooding

Gossiping (random naviga-
tion)

Metric-based (moving
towards specific coordinates
in the abstract space)

Gossiping (random naviga-
tion)

Stigmergy (navigation
following pheromone
gradients distributed in the
overlay network)

“Structure”
Level
(dealing with mechanisms
and policies to adaptively
shape a metric space and
let components find their
position in that space)

Self-localization (beacon-
based triangulation)

Self-localization (Wi-Fi or
RFID triangulation)

Definition and Maintenance
of a Spanning Tree (as a
sort of navigable overlay)

Establishment and Mainte-
nance of an Overlay
Network (for P2P systems)

Referral Networks and e-
Institutions (for multiagent
systems)

“Physical”
Level
(dealing with the mecha-
nism to interact)

Radio Broadcast

Radar-like localization
Radio Broadcast

RF-ID identification

TCP broadcast – IP identifi-
cation

Directed TCP/UDP mes-
sages

Location-dependent
Directory services

Starting from the basic navigation capability, is also possible to enrich the structure
of the space by propagating additional information to describe “something” which is
happening in that space, and to differentiate the properties of the space in different
areas. One can say that the structure of space may be characterized by additional types
of spatial structures propagating in it, and that components may direct their activities
based on navigating these additional structures. In other words, the basic navigation
capabilities can be used to build additional spatial structures with different navigation
mechanisms.

 Spatial Computing: The TOTA Approach 315

Typical mechanisms exploited at these additional levels are computational fields
and pheromones. Despite the different inspiration of the two approaches (physical
versus biological), we emphasize that they can be modeled in a uniform way, e.g., in
terms of time-varying properties defined over a space [15]. The basic expression of
self-organization that arises here derives from the fact that the structures propagated in
the space – and thus the navigation activity of application components – are updated and
maintained to continuously reflect the actual structure and situation of the space.

At the “application level”, navigation mechanisms are exploited by application
components to interact and organize their activities. Applications can be conveniently
built on the following self-organizing feedback loop: (i) having components navigate
in the space (i.e., discriminating their activities depending on the locally perceived
structure and properties of the space) and (ii) having components, at the same time,
modifying existing structure due to the evolution of their activities.

Depending on the types of structures propagated in the space, and on the way
components react to them, different phenomena of self-organization can be achieved
and modeled. For example, processes of morphogenesis (as needed in self-assembly,
modular robots and mobile robotics), phenomena mimicking the behavior of ant-
colonies and of flocks, phenomena mimicking the behavior of granular media and of
weakly correlated particles, as well as a variety of social phenomena, can all be mod-
eled in terms of:

− entities getting to existence in a space explicitly representing some aspects of their
operational environment that are relevant for the application task;

− having a position in a structured space and possibly influencing its structure;
− capable of perceiving properties spread in that space;
− capable of directing their actions based on perceived properties of such space and

capable of acting in that space by influencing its properties at their turn.

3.2 Multiple Spaces and Nested Spaces

In general, different scenarios and different application problems may require differ-
ent perceptions of space and different spatial structures. For instance, a world-wide
resource-sharing P2P network over the Internet may require – for efficiency reason –
a 2-D spatial abstraction capable of reflecting the geographical distribution of Internet
nodes over the earth surface. On the other hand, a P2P network for social interactions
may require a spatial abstraction capable of aggregating in close regions of the virtual
space users with similar interests. Also, one must consider that in the near future, the
different network scenarios we have identified will be possibly part of a unique huge
network (consider that IPv6 addressing will make it possible to assign an IP address
to each and every square millimeter on the earth surface). Therefore, it is hard to
imagine that a unique flat spatial abstraction can be effectively built over such a net-
work and satisfy all possible management and application needs.

With this regard, the adoption of the spatial computing paradigm does not pre-
scribe at all to adopt the same set of mechanisms and the same type of spatial struc-
ture for all networks and for applications. Instead, being the spatial structure a virtual
one, it is possible to conceive both (i) the existence, over the same physical network,

316 M. Mamei and F. Zambonelli

of multiple complimentary spatial abstraction independently used by different types
of applications; and (ii) the existence of multiple layers of spatial abstractions, built
one over the other in a multi-layered system. With regard to the former point, in addi-
tion to the example of the different types of P2P networks calling for different types
of spatial abstractions, one could also think at how different problems such as Internet
routing, Web caching, virtual meeting points, introduce very different problems and
may require the exploitation of very different spatial concepts. With regard to the
latter point, one can consider two different possibilities. Firstly, one can think at ex-
ploiting a first-level spatial abstractions (and the services it provides) to offer a sec-
ond-level spatial abstraction enriching it with additional specific characteristics. For
examples, one can consider that a spatial abstraction capable of mapping the nodes of
the Internet into geographical coordinates can be exploited, within a campus, to build
an additional overlay spatial abstraction mapping such coordinates into logical loca-
tion (e.g., the library, the canteen, the Computer Science department and, within it,
the office of Prof. Zambonelli). Such additional spatial abstraction could then be used
to build semantically-enriched location dependent services. Secondly, one could think
at conceiving a hierarchy of spatial abstractions that provides different levels of in-
formation about the space depending on the level at which they are observed, the
same as the information we get on a geographical region are very different depending
on the scaling of the map on which we study it. As an example, we can consider that
the spatial abstraction of a wide-area network can map a sensor network – connected
to the large network via a gateway – as a “point” in that space, and that the distributed
nature of the sensor networks (with nodes having in turn a specific physical location
in space) becomes apparent only when some activity takes place in that point of space
(or very close to it).

4 TOTA: A Middleware Approach to Spatial Computing

The ambitious goal of a uniform modeling approach capable of effectively capturing the
basic properties of self-organizing computing, and possibly leading to practical and useful
general-purpose modeling and programming tools, is far from close. Earlier in this paper we
have strongly advocated the generality, flexibility, and modularity of a spatial computing
approach. Although we have do not have the ultimate proof that spatial computing can be
effectively put to practice and fulfill all its promises, our experience in spatial computing
with the TOTA [16] middleware can support in part our claims.

Upon the distributed space identified by the dynamic network of TOTA nodes,
each component is capable of locally storing tuples and letting them diffuse through
the network. Tuples are injected in the system from a particular node, and spread hop-
by-hop accordingly to their propagation rule. In fact, a TOTA tuple is defined in
terms of a “content”, and a “propagation rule”. T=(C,P). The content C is an ordered
set of typed fields representing the information carried on by the tuple. The propaga-
tion rule P determines how the tuple should be distributed and propagated across the
network. This includes determining the “scope” of the tuple (i.e. the distance at which
such tuple should be propagated and possibly the spatial direction of propagation) and
how such propagation can be affected by the presence or the absence of other tuples

 Spatial Computing: The TOTA Approach 317

in the system. In addition, the propagation rules can determine how the content of a
tuple should change while it is propagated. Tuples are not necessarily distributed
replicas: by assuming different values in different nodes, tuples can be effectively
used to build a distributed data structure expressing contextual and spatial informa-
tion. So, unlike traditional event based models, propagation of tuples is not driven by
a publish-subscribe schema, but it is encoded in tuples' propagation rule and, unlike
an event, can change its content during propagation (see figure 2).
 Distributed tuples must be maintained coherent despite network dynamism. To this
end, the TOTA middleware supports tuples propagation actively and adaptively: by
constantly monitoring the network local topology and the income of new tuples, the
middleware automatically re-propagates tuples as soon as appropriate conditions occur.
For instance, when new nodes get in touch with a network, TOTA automatically checks
the propagation rules of the already stored tuples and eventually propa- gates the tuples
to the new nodes. Similarly, when the topology changes due to nodes' movements, the
distributed tuple structure automatically changes to reflect the new topology.

High-level
interaction and
coordination

Application
Components

Navigation
Direction

Physical Level

TX

TX

TX
TX TX

TX
TX

TX

TX

Strucutre Level

TOTA Middleware

TX

Tuple

Tuple Sources

Tuple Propagation

Application Level

Navigation Level

Fig. 2. The General Scenario of TOTA in the spatial computing stack: at the physical level
there is the network, communication is broadcast of messages encoding TOTA tuples. At the
structure level, the space is represented by means of the TOTA distributed tuples. At the navi-
gation level spatial structures can provide navigation directions. At the Application level coor-
dination tasks can be achieved

318 M. Mamei and F. Zambonelli

 The TOTA middleware supports the spatial computing stack introduced in section
4. In fact, from the application components’ point of view, executing and interacting
basically reduces to create distributed spatial structures in the network (inject tuples),
navigate such spatial structures (sense tuples in a neighborhood), and act accordingly
to some application-specific policy.

To clarify and ground the discussion we introduce the following exemplary perva-
sive computing case study application: tourists with wireless PDAs visit a museum
provided with an embedded computer network. We suppose that the PDAs and the
embedded devices run the TOTA middleware and that they connect with each other
forming a multi-hop mobile wireless network. In the following subsections, working
on this case study application, we will detail how TOTA deals with all the levels in
the spatial computing.

4.1 Physical Level

The physical level deals with how components find and start communicating with
each other. At this level, the specific nature of the network scenario has an important
role. Since our primary focus is pervasive computing, we mainly consider a wireless
network scenario without long-range routing protocols available (like in a “bare”
mobile ad-hoc network). In such scenario, it is easy to identify the node's neighbor-
hood with the network local topology (e.g. all the nodes within 10m, for a Bluetooth
network). In this case, a TOTA node detects in-range nodes via one-hop message
broadcast.

Turning the attention to the case study, each PDA detects neighbor devices, by
broadcasting and receiving “here I am” messages. Such discovery operations is exe-
cuted periodically to take into account the possible movements of users. Upon inject-
ing a tuple, the TOTA middleware broadcasts the tuple to its current neighbors.

To support our experiments, we developed a first prototype of TOTA running on
HP IPAQs 36xx equipped with 802.11b wireless card, Familiar LINUX and J2ME-
CDC (Personal Profile). IPAQs connect locally in the MANET mode (i.e. without
requiring access points) creating the skeleton of the TOTA network. Tuples are being
propagated through multicast sockets to all the nodes in the one-hop neighborhood.
The use of multicast sockets has been chosen to improve the communication speed by
avoiding 802.11b unicast handshake. By considering the way in which tuples are
propagated, TOTA is very well suited for this kind of broadcast communication. We
think that this is a very important feature, because it will allow in the future imple-
menting TOTA also on really simple devices (e.g. micro mote sensors [19]) that can-
not be provided with sophisticate communication mechanisms.

It is important to remark that, despite our focus to wireless networks and pervasive
computing, the TOTA mechanisms are general and independent from the underlying
physical network. For example, in an Internet scenario (where a long-range routing
protocol is available), TOTA identifies the neighborhood of a node with the nodes
whose IP address is known (a node can communicate directly with another, only if it
knows the other node's address). To realize neighbors discovery, TOTA can either
download from a well-known server the list addresses representing its neighbors or it
can start an expanding-ring search to detect close nodes [23]). Given that, the multi-
hop propagation of a tuple proceeds as previously described.

 Spatial Computing: The TOTA Approach 319

4.2 Structure Level

TOTA tuples create a “structure of space” in the network. At the basic level, once a
tuple is injected from a node and propagates across the network, it creates a source-
centered spatial structure identifying some spatial features relative to the source.

For example, a tuple incrementing one of its fields as it gets propagated identifies a
spatial structure defining the network distances from the source. This kind of structure
of space provides spatial awareness to application agents. In fact, an agent is both able
to infer its approximate distance from the source (in terms of hops – i.e. network link
range), and the direction of the source by looking at where the gradient of the tuple
descends.

Moreover, TOTA allows to combine different tuples to create more complex spatial
representations. A particularly significant example of these mechanisms is the creation
of shared coordinate systems in the network on the basis of mere connectivity. Localiza-
tion, in general, can rely on the (geometrically intuitive) fact that the position of a point
on a surface can be uniquely determined by measuring its distance from at least three
non-aligned reference points (“beacons”), via a process of “triangulation” [18]. Imple-
menting such localization mechanism in TOTA is rather easy. (i) A leader election
algorithm can elect three beacons nodes. (ii) Each beacon “arbitrarily” locates at spe-
cific coordinates (without external location information the coordinate system can only
be internally coherent [18]). (iii) Each beacon injects a TOTA tuple, increasing its con-
tent hop-by-hop and marked with the beacon coordinates. As previously pointed out,
this tuple allows other nodes to estimate their distance from the beacon. (iv) After at
least three beacons had propagated their ranging tuples, nodes can apply a triangulation
algorithm to infer their coordinates. Moreover, since TOTA tuples self-maintain, the
coordinate system remains up to date and coherent despite network dynamism. If upon a
node movement the topology of the network changes, the tuples maintenance triggers an
update in the coordinate system, making the latter robust.

A shared coordinate system provides a powerful spatial structure in a network and
allows to realize complex navigation and coordination tasks (see later).

In addition, although at the primitive level the space is the network space and dis-
tances are measured in terms of hops between nodes, TOTA allows to exploit a much
more physically-grounded concept of space.

This may be required by several pervasive computing scenarios in which applica-
tion agents need to interact with and acquire awareness of the physical space. For
instance, one can bound the propagation of a tuple to a portion of physical space by
having the propagation procedure - as the tuple propagates from node to node - to
check the local spatial coordinates, so as to decide whether to further propagate the
tuple or not. In order to bound agents' and tuples' behavior to the physical space,
nodes must be provided with some kind of localization mechanism [11]. From our
perspective, such mechanisms can be roughly divided into two categories:

− A GPS-like localization mechanism provides absolute spatial information (e.g. it
provides latitude and longitude of a node in the network). An actual GPS (Global
Positioning System) getting spatial coordinates from satellites naturally belongs to
this category. Beacon-based signal triangulation (coupled with beacons actual

320 M. Mamei and F. Zambonelli

physical location) is anther example of this category (nodes get their coordinates in
an absolute coordinate-frame defined by the beacons [18]).

− A RADAR-like localization mechanism provides local information (e.g. relative
distances and orientations between nodes). An actual radar or sonar device belongs
to this category (radio and sound waves reflected by neighbor devices enable to in-
fer their distance and orientation). A videocamera installed on a node can serve the
same purpose (processing the image coming from the camera, a node can infer
where other nodes are). Also network roundtrip-time and signal-strength attenua-
tion may serve this purpose.

The kind of localization mechanism being available strongly influences how nodes
can express and use spatial information. GPS-like mechanism are more suitable at
defining “absolute” regions. For example, they allow to easily create tuples that
propagate across a region defined by means of the coordinates of its corners (e.g.
propagate in the square area defined by (0,0) and (100,100)). RADAR-like mecha-
nism are more suitable at defining “relative” regions, where for example tuples are
constrained to travel north form the source or within a specified distance.

It is fair to report that a similar idea has been developed and exploited in the con-
text of a recently proposed language to program a vast number of devices dispersed in
an environment [2]. The idea of this programming language is to identify a number of
spatial regions relevant for a given application and to access the devices through the
mediation of these regions (e.g. for all the devices on the “hill” do that). In [2], the
definition of the regions is performed adopting GPS devices and distributed data
structures similar to TOTA tuples.

Other than the network and the physical space, one could think at mapping the
peers of a TOTA network in any sort of virtual space. This space must be supported
by an appropriate routing mechanism allowing distant peers to be neighbors in the
virtual space. Such virtual spaces are particularly useful and enable the definition of
advanced application such as content-based routing, as in CAN [22]. TOTA con-
cretely supports the definition of these kinds of applications. Also in this case it is fair
to report that similar principles have been used in the Multilayered Multi Agent Situ-
ated System (MMASS) model [1]. In MMASS agents' actions take place in a multi-
layered environment. Each layer provides agents with some contextual information
supporting agents' activities. The MMASS environment is thus a hierarchy of virtual
spaces built upon one another, where lower layers provide the routing infrastructure
for upper ones.

4.3 Navigation Level

TOTA defines a set of API to allow application components to sense TOTA tuples in
their one-hop neighborhood and to locally perceive the space defined by them. Navi-
gation in the space consists in having agents act on the basis of the local shape of
specific tuples.

As a first simple example we can consider physical navigation. Turning the atten-
tion to our case study, it is clear that a PDA injecting a hop-increasing tuple in the
network, becomes immediately reachable by other users. Users, in fact, can move

 Spatial Computing: The TOTA Approach 321

following the gradient of the tuple downhill, to reach the tuple source. Moreover,
since the tuple shape is maintained despite network dynamism, users can reach the
source of a tuple even if it moves.

Navigation is not related to physical movement only. TOTA allows to relate the
propagation of a tuple to other tuples already propagated (e.g. a tuple can propagate
following another tuple). This can be at the basis of the routing algorithm detailed in
the following [20]. In very general terms, when a node “A” wants to send a message
to a node “B”, it actually injects the network with a TOTA tuple, that holds: the
source identifier i.e. “A”, the message, and the number of hops from the source of the
message to the current node. Such structure not only trivially hand-off the message to
“B”, but creates a path leading to “A” that can be exploited for further uses. If node “B”
wants to reply, it can just send a message that follows the “A”-field downhill towards
node “A”. In this case no flooding is involved. The field-like distributed data structures
created in this process, can be used further also by other peers to communicate.

Complex spaces enable advanced navigation strategies. A shared coordinate sys-
tem, like the one described in the previous section, allows, for example, to set-up
geographic routing algorithm [3]. A geographic routing algorithm is a mechanism that
takes advantage of the established coordinate frame to send messages to the node
closer to a specific location. Such algorithm is suitable in a lot of application scenar-
ios because it inherently supports communication decoupling in that senders and re-
ceivers are decoupled by the coordinate frame. For example, a sender can send a mes-
sage to an unknown receiver located at a specific location and the message will be
received by whoever is closer to that location.

4.4 Application Level

The spatial abstractions and tools promoted by TOTA enable to easily realize com-
plex coordination tasks in a robust and flexible way.

Our research, up to now, has mainly focused on the problem of enabling a group of
agents to coordinate their respective movements (i.e. distributed motion coordination).

Specifically, considering our case study, we focus on how tourists can be sup-
ported in planning their movements across a possibly large and unfamiliar museum
and in coordinating such movements with other, possible unknown, tourists. Such
coordination activities may include scheduling attendance at specific exhibitions oc-
curring at specific times, having a group of students split in the museum according to
teacher-specific laws, helping a tourist to avoid crowd or queues, letting a group of
tourist to meet together at a suitable location, and even helping to escape accordingly
to specific evacuation plans.

An intriguing possibility to realize motion coordination is to take inspiration from
the physical world, and in particular from the way masses in our universe move ac-
cordingly to the gravitational field. By interpreting (rather roughly) the General Rela-
tivity Theory, we can say that the gravitational field actually changes the structure of
the space letting particles to globally self-organize their movements. Under this inter-
pretation, particles achieve their “tasks” by simply following the structure of the
space.

322 M. Mamei and F. Zambonelli

Realizing this kind of idea with the spatial abstraction promoted by TOTA is
rather easy. Under the assumption that users spread hop-counting tuples in the net-
work, it is possible to realize several coordination tasks. A group of tourist following
downhill each other tuples will collapse in a single location allowing the tourists to
meet somewhere in the building. Analogously, museum’s guides could decide to
sense each other's tuples (i.e. spaces) so as to maintain a certain distance from each
other to improve their reachability by tourists. If a guide has to go away, the same
tuples would allows the others to automatically and adaptively re-shape their
formation.

Following this approach, agents achieve their goals not because of their capabili-
ties as single individuals, but because they are part of an auto-organized system that
leads them to the goal achievement. Such characteristics also imply that the agents’
activities are automatically adapted to the environmental dynamism, which is re-
flected in a changing spatial representation, without forcing agents to re-adapt them-
selves.

Motion coordination with spatial abstractions is by no means limited to the pre-
sented case study. It can be applied to a wide range of scenarios ranging from urban
traffic management, mobile software agents on Internet and even self-assembly in
modular robots (detailed in the following). A modular or self-reconfigurable robot is a
collection of simple autonomous mobile robots with few degrees of freedom. A dis-
tributed control algorithm is executed by all the robots that coordinate their respective
positions to let the robot assume a global coherent shape or a global coherent motion
pattern (i.e. gait).

From a methodological viewpoint, robots can exploit spatial abstraction and
TOTA tuples to self-organize their respective positions in space. In particular, starting
from any spatial configuration of robots: (i) robots start diffusing specific types
TOTA tuples; (ii) robots react to locally perceived tuples by trying to follow them
downhill/uphill, or by changing their activity state possibly depending on the per-
ceived values of the tuples (i.e. depending on their position in some abstract space);
(iii) changes in the activity state of robots can lead to inhibiting the propagation of
some tuples and/or to the diffusion of new types of tuples in the system, leading back
to point (i). One can then apply this process several times, with new types of tuples
being propagated in different phases, so as to incrementally have robots self-organize
into the required shape [14].

In all these application scenario, we verified that the spatial abstractions promoted
by TOTA effectively support robust and flexible self-organizing behaviors.

5 Conclusions

By abstracting the execution of distributed applications around spatial concepts, spa-
tial computing promises to be an effective approach towards the identification of
general and widely applicable self-* approaches to distributed systems development
and management. Our experiences with the TOTA middleware confirm the effective-
ness of the approach.

 Spatial Computing: The TOTA Approach 323

However, besides the claims of this paper and our personal experience, much
work is needed to asses the potentials of spatial abstractions in distributed computing,
and to verify whether they can actually pave the way to a sound and general-purpose
approach to self*- computing. In particular:

− Is the spatial computing stack depicted in Table 1 meaningful and useful, or a bet-
ter and more practical framing can be proposed?

− If and when such a unifying model will be found, will it be possible to translate it
into a limited set of programming abstractions and lead to the identification of a
practical methodology for developing self-organizing distributed computing sys-
tems?

− Is a middleware-centered approach like that of TOTA the best direction to follow?
− Several self-organization phenomena disregarded by this paper, deals with con-

cepts that can be hardly intuitively mapped into spatial concepts. Would exploring
some sorts of spatial mapping be still useful and practical? Would it carry advan-
tages?

− Possibly most important of all questions: is the search for a unifying model fueled
by enough applications? Or it is rather the search for specific solutions to specific
problems the best direction to follow?

In our hope, further researches and a larger variety of studies about self-* properties
in distributed systems will soon provide the correct answers to the above
questions.

References

1. S. Bandini, S. Manzoni, G. Vizzari, “Towards a Specification and Execution Environment
for Simulations based on MMASS: Managing at-a-distance Interaction”, Fourth Interna-
tional Symposium From Agent Theory to Agent Implementation (AT2AI'04), Vienna,
Austria, 2004.

2. C. Borcea, “Spatial Programming Using Smart Messages: Design and Implementation”,
24th Int.l Conference on Distributed Computing Systems, Tokio (J), May 2004.

3. P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, “Routing with Guaranteed Delivery in Ad
Hoc Wireless Networks”, Wirleless Networks 7:609-616, Kluwer Academic Publisher,
2001.

4. G. Cabri, L. Leonardi, M. Mamei, F. Zambonelli, Location-dependent Services for Mobile
Users, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems And Hu-
mans, Vol. 33, No. 6, pp. 667-681, November 2003

5. A. Carzaniga, D. Rosenblum, A. Wolf, “Design and Evaluation of a Wide-Area Event No-
tification Service”, ACM Transaction on Computer System, 19(3):332-383.

6. R. S. Chin, S. T. Chanson, “Distributed Object-Based Programming Systems”, ACM
Computing Surveys, 23(1), March 1991.

7. G. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems. Concepts and Design Ad-
dison-Wesley, second edition, 1994.

8. G. Di Marzo, A. Karageorgos, O. Rana, F. Zambonelli (Eds.), Engineering Self-organizing
Systems: Nature Inspired Approaches to Software Engineering, LNCS No. 2977, Springer
Verlag, May 2004.

324 M. Mamei and F. Zambonelli

9. D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting the Physical World with Perva-
sive Networks”, IEEE Pervasive Computing, 1(1):59-69, 2002.

10. H.W. Gellersen, A. Schmidt, M. Beigl, “Multi-Sensor Context-Awareness in Mobile De-
vices and Smart Artefacts”, Mobile Networks and Applications, 7(5): 341-351, Oct. 2002.

11. Hightower and G. Borriello, “Location Systems for Ubiquitous Computing,” Computer,
vol. 34, no. 8, Aug. 2001, pp. 57–66.

12. JINI, http://www.jini.org
13. J. Kephart, “Software Agents and the Route to the Information Economy”, Proceedings of

the National Academy of Science, 99(3):7207-7213, May 2002.
14. M. Mamei, M. Vasirani, F. Zambonelli, “Experiments of Morphogenesis in Swarm of

Simple Mobile Robots”, Journal of Applied Artificial Intelligence, 18(9-10):903 – 919,
Taylor & Francis, Philadelphia (PA), USA, 2004.

15. M. Mamei, L. Leonardi, F. Zambonelli, “Co-Fields: a Unifying Approach to Swarm Intel-
ligence”, 3rd Workshop on Engineering Societies in the Agents’ Word, LNCS No. 2677,
April 2003.

16. M. Mamei, F. Zambonelli, “Programming Pervasive and Mobile Computing Applications
with the TOTA Middleware”, 2nd IEEE Conference on Pervasive Computing and Com-
munications, Orlando (FL), IEEE CS Press, March 2004.

17. Mamei, M., and F. Zambonelli. 2004b. Co-Fields: a Physically Inspired Approach to Dis-
tributed Motion Coordination. IEEE Pervasive Computing, 3(2):52-60.

18. R. Nagpal, H. Shrobe, J. Bachrach, “Organizing a Global Coordinate System from Local
Information on an Ad Hoc Sensor Network”, 2nd International Workshop on Information
Processing in Sensor Networks, Palo Alto (CA), April, 2003.

19. K. Pister, “On the Limits and Applicability of MEMS Technology”, Defense Science
Study Group Report, Institute for Defense Analysis, Alexandria (VA), 2000.

20. R. Poor, Embedded Networks: Pervasive, Low-Power, Wireless Connectivity, PhD The-
sis, Massachusetts Institute of Technology, 2001.

21. A. Rao, C. Papadimitriou, S. Ratnasamy, S. Shenker, I. Stoica. “Geographic Routing
Without Location Information”. ACM Mobicom Conference. San Diego (CA), USA,
2003.

22. S. Ratsanamy,, P. Francis, M. Handley, R. Karp, ”A Scalable Content-Addressable Net-
work”, ACM SIGCOMM Conference 2001, Aug. 2001.

23. M. Ripeani, A. Iamnitchi, I. Foster, “Mapping the Gnutella Network”, IEEE Internet Com-
puting, 6(1):50-57, Jan.-Feb. 2002.

24. A. Rowstron et al., “PIC: Practical Internet Coordinates”, 24th International Conference
on Distributed Computing Systems, IEEE CS Press, Tokyo (J), May 2004.

25. J. Waldo et al., “A Note on Distributed Computing”, Mobile Object Systems, LNCS No.
1222, Feb. 1997.

26. F. Zambonelli, M.P. Gleizes, M. Mamei, R. Tolksdorf, Spray Computers: Explorations in
Self organization“, Journal of Pervasive and Mobile Computing 1(1), May 2005.

Towards Self- anaging QoS-Enabled
Peer-to-Peer Systems

Vana Kalogeraki, Fang Chen, Thomas Repantis,
and Demetris Zeinalipour-Yazti

Department of Computer Science and Engineering,
University of California, Riverside,

CA 92521
{vana, fchen, trep, csyiazti}@cs.ucr.edu

Abstract. Peer-to-peer systems that dynamically interact, collaborate
and share resources are increasingly being deployed in wide-area envi-
ronments. The inherent ad-hoc nature of these systems makes it difficult
to meet the Quality of Service (QoS) requirements of the distributed ap-
plications, thus having a direct impact on their scalability, efficiency and
performance. In this paper we propose adaptive algorithms to meet appli-
cations QoS demands and balance the load across multiple peers. These
comprise (a) resource management mechanisms to monitor resource loads
and application latencies and (b) self-organization algorithms to dynam-
ically select peers that maximize the probability of meeting the appli-
cations’ soft real-time and QoS requirements. Our algorithms use only
local knowledge and therefore scale well with respect to the size of the
network and the number of executing applications.

1 Introduction

In the last few years, the new emerging Peer-to-Peer (P2P) model has become
very attractive for developing large scale file systems [1, 2, 3, 4, 5, 6] and sharing
resources (i.e., CPU cycles, memory, storage space, network bandwidth) [7, 8]
over large scale geographical areas. This is achieved by constructing an overlay
network of many nodes (peers) built on top of heterogeneous operating systems
and networks. P2P systems present the evolution of the client-server model that
was primarily used to manage small-scale distributed environments. The most
distinct characteristic in the P2P overlays is that there is symmetric communi-
cation between the peers; each peer has both client and server role.

Many efforts have been made to improve resource usage, minimize network
latencies and reduce the volume of unnecessary traffic incurred in large-scale P2P
overlays. Two main approaches have emerged for constructing overlay networks:
Structured and Unstructured overlays. Structured overlay networks [4, 3, 5] are
organized in such a way that objects are located at specific nodes in the net-
work and nodes maintain some state information, to enable efficient retrieval of
the objects. These sacrifice atomicity by mapping objects to particular nodes
and assume that all nodes are equal in terms of resources, which can lead to

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 325–342, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

m

326 V. Kalogeraki et al.

bottlenecks and hot-spots. In unstructured overlay networks, on the other hand,
objects can be located at random nodes, and nodes are able to join the system
at random times and depart without a priori notification. Recent efforts have
shown that a self-organizing unstructured overlay protocol maintains an effi-
cient and connected topology when the underlying network fails, performance
changes, or nodes join and leave the network dynamically [9]. More advantages
of unstructured overlay networks include their ability for self-organization, for
adaptation to different loads, and for resiliency to node failures. Several efforts
have demonstrated that P2P systems can be used efficiently in the context of
multicast [10], distributed object-location [4, 3] and information retrieval [11].

However, hosting distributed, real-time applications with Quality of Service
(QoS) demands, such as predictable jitter and latency on P2P systems imposes
many challenges. These types of applications have distinctly different character-
istics from content-based or multicast applications traditional being deployed on
P2P systems. Examples of such applications include industrial process control
systems, avionics mission computing systems and mission-critical video process-
ing systems [12].

For example, consider a surveillance system that transfers public health, lab-
oratory, and clinical data over the Internet. In this example, both continuous
and discrete data (such as text, images, audio and video streams and control
information) needs to be collected from multiple nodes in the system. Person-
nel will then analyze the gathered data quickly and accurately to monitor dis-
ease trends, identify emerging infectious diseases or track potential bioterrorism
attacks. These have end-to-end soft real-time and QoS requirements on data
transmission, including fast and reliable transfer, and substantial throughput.
In addition, the audio and video streams may need to be transcoded to dif-
ferent formats or presentations (such as lower resolution) to transmit the data
over resource constrained links. To support the QoS demands of the distributed
applications, the P2P system must be flexible, predictable and adaptable.

Distributed and real-time applications have been successfully developed over
middleware technologies, such as OMG’s Common Object Request Broker Ar-
chitecture (CORBA)[13], Microsoft’s Distributed Component Object Model
(DCOM) [14]), Sun’s Java Remote Method Invocation (RMI) [15] and the Simple
Object Access Protocol (SOAP) [16]. These typically rely on local management
or the use of centralized managers that have a global view of the system [17],
[18], [19], [20], [21].

In our view, the inherent advantages of the P2P systems, including scala-
bility, decentralization and ease of use makes it feasible to develop large-scale
distributed and real-time applications. However, current P2P systems are lim-
ited in capability because of lack of automated and decentralized management
mechanisms. There are two main reasons for this limitation: (1) in a large scale
system, each node cannot have an accurate global view of the system at all
times, since the state of the system changes much faster than it can be commu-
nicated to the peers, and (2) the P2P infrastructure can encompass resources
with different processing and communication capabilities, therefore, distributed

Towards Self- anaging QoS-Enabled Peer-to-Peer Systems 327

applications that execute over wide-area environments are subject to greater
variations due to unpredictable communication latencies and changing resource
availability.

QoS properties in the P2P systems can be enabled in two ways: statically,
where we must ensure that adequate resources are available before the appli-
cation execution, or dynamically, where the resource usage is adjusted based
on runtime system monitoring. Examples of static QoS properties include peer
geographic location or specific platforms and hardware resources available at
the peers. Examples of dynamic QoS properties include runtime resource re-
allocation and re-prioritization to handle resource failures or changes in the
CPU and network load.

The objective of this work is to build self-managing large-scale P2P systems
that are able to meet application QoS requirements. To achieve this, we pro-
pose to use self-organization algorithms that revise peer connections dynamically
to minimize application latencies and distribute the resource load. These work
together with local resource management mechanisms for managing CPU and
network bandwidth and prioritizing application requests, and system-wide man-
agement mechanisms that run across multiple peers to improve task execution
latencies.

Towards this view we present an architecture with two important compo-
nents:

– A resource management framework to meet the end-to-end soft real-time
and QoS requirements of the distributed applications. The framework con-
sists of mechanisms for managing the local resources, prioritizing application
requests and propagating resource and timing measurements system-wide.
These mechanisms are decentralized, adaptive and use only local informa-
tion.

– Adaptive self-organization algorithms that improve application latencies and
balance the load across multiple peers to meet their end-to-end soft real-time
and QoS requirements. The decisions are made in a decentralized manner,
thus achieving system scalability.

We implemented the resource management mechanisms and the self organi-
zation algorithms in our P2P middleware that uses an unstructured communica-
tion protocol to establish connections between the peers. We present empirical
results over our P2P system that demonstrate the adaptability, predictability
and performance of our resource management mechanisms.

The rest of the paper is organized as follows. Section 2 gives an overview
of our P2P architecture and presents the system model and metrics. In Section
3 we describe our self-organization algorithms. In Section 4 we discuss the ex-
perimental results. Section 5 presents related work and Section 6 concludes the
paper.

m

328 V. Kalogeraki et al.

Local

Scheduler

Operating System

Resource

Manager

Connection

Manager

sched_priority requestreply

received_queue

reply_queue

resource loads

timing measurements

Peer

horizon

horizon-based

state graph

Fig. 1. Our P2P System Architecture

2 Design and Implementation Overview

A P2P system is modeled as an overlay network of nodes (peers1) in which
each peer comprises a Connection Manager, a Resource Manager and a Local
Scheduler, as shown in Figure 1.

The Connection Manager is responsible to manage the peer connections. Each
node keeps a small number of connections to other peers; the number of con-
nections is typically limited by the network bandwidth at the peer. Typically,
a XP 2000 Athlon PC workstation behind a 100Mbit/s network connection can
easily support 20 concurrent peer connections, while the same machine behind
a modem 56kbit/s connection can support 1-2 connections. As a result, remote
peer invocations may take a long time to complete due to nodes with high la-
tencies or limited network bandwidth, affecting the end-to-end performance of
the distributed applications. Peer connections are established as a result of new
peers joining the system or are triggered by the self-organization algorithms in
which each node tries to connect to better peers. For each peer connection q,
the Connection Manager at node p maintains the Locationq that consists of the
network address and port number of the peer {IP address, port number} and
Peer typeq: whether the peer is immediate or indirect. The Connection Manager
creates and manages a number of connection threads for each peer connection
used to handle request and response messages coming from that peer. All the
requests coming from the peers, enter the Connection Manager’s receiving queue.

1 Two nodes p and q are called immediate peers if there is a direct connection between
the nodes. Two nodes p and q are called indirect peers if there exists a commu-
nication path between the nodes. Two peers may not communicate if the graph is
disconnected or the shortest path between them is more hops than the maximum
allowed TTL.

329

The Connection Manager constructs and maintains a horizon-based state
graph that stores peer resource utilization and application timing measurements
and also captures the relationships between the peers. The Connection Manager
obtains this information either by propagating updates periodically between the
peers, or by recording the parameters carried along with the messages. Note,
that, because of the large scale and dynamic nature of the system, the state graph
is local at each node and captures only a partial (limited) view of the system.
This view is bound by the horizon of the peer. The state graph is constructed
and updated dynamically based on the applications executing in the system and
the connections established and torn down by the peers.

The Connection Manager works in concert with the Local Resource Manager
that controls and monitors the access to the node’s local resources (e.g., CPU,
memory and network bandwidth) and profiles the behavior of the applications as
they execute. For example, if the Resource Manager reports that the processor
is overloaded (receiving queue size is full), the Connection Manager does not
accept new requests. These requests will be propagated to the node’s peers. Our
previous measurements [22] indicate that such profiling can be done at run-time
with less than 1% overhead, by invoking the /proc interface, but (1) a history of
measurements must be maintained and (2) the profiling frequency must be care-
fully tuned dynamically to adequately capture the load fluctuations in the peer.

The Local Scheduler in the node is responsible for specifying a local ordered
list (schedule) for the application object invocations based on the scheduling
algorithm implemented in the system. Our scheduling algorithm is based on the
Least Laxity Scheduling (LLS) algorithm that allows us to capture timing delays
as the applications execute across multiple processors in the system [23, 24].

2.1 Application Tasks

Users request applications from the system that trigger the execution of tasks.
An application task is defined as a sequence of invocations of objects distributed
across multiple peers in the system. The execution of the task starts at the
user invocation and completes when a result is returned back to the user. A
task is executed by a single thread executing in sequence on one or more peers.
The execution times of the tasks are affected by the load on the peers and
the latencies on the communication links. If a node cannot execute the task
locally, it propagates the request to one of its peers. This process continues until
an appropriate node is found to execute the request. To provide a termination
condition so that requests are not propagated indefinitely in the network, we
associate a time to live (ttl) value with each task that determines the maximum
number of hops the task will propagate in the system. To avoid loops in task
propagation, we choose not to propagate requests that have previously arrived
at the same peer. When the execution finishes, a reply is generated that follows
the same path to be reported back to the user. Users may trigger the execution
of multiple tasks concurrently and asynchronously.

Each task t is characterized by the Task idt which is a unique identifier that
distinguishes each task from the others, generated by the peer initiator of the

Towards Self- anaging QoS-Enabled Peer-to-Peer Systemsm

330 V. Kalogeraki et al.

task. We represent as Task typet the type of task (to be executed), carried along
with the message. Deadlinet is the time interval, starting at user invocation
within which the task t must complete, specified by the user. Project latencyt

is the estimated amount of time required for the task to complete. This includes
queueing delays and the latencies on communication links. Laxityt is computed
as the difference between the deadline and the projected latency of the task. The
laxity value determines the order with which the task will be executed in the
system. The task with the smallest laxity value has the highest priority.

3 System Resource Management

In this section, we describe our self-organization algorithm that uses resource
and timing measurements monitored locally and collected from remote peers.

3.1 Resource and Timing Measurements

The Resource Managers at the processors monitor the execution of the tasks
across multiple peers and record the peer-to-peer messages exchanged. The P2P
communication protocol [2] enables interoperability across peers on different
nodes in a large scale system and implemented using different languages. The
Connection Managers communicate through five message types (ping, pong,
request, reply, update), of which the ping and pong messages are used to
establish connections with remote peers. Ping and pong messages act as the node
discovery service. The Connection Manager sends a ping message to discover
the IP address and port number of other nodes. Nodes receiving a ping message
forward it recursively to all their neighbors. If a node wants to accept new
connections it responds with a pong message. The decisions to which peers to
connect to or whether to accept an incoming connection, are made by our self-
organization algorithm.

For a remote task invocation, the Connection Manager constructs a request
message that carries the task operation. A request message includes the identifier
of the task task id, a descriptor id that uniquely characterizes the peer that
propagated the task last, and a hop count that determines the maximum number
of times the task will be propagated to the system before it expires. When the
task finishes execution, the Connection Manager will generate a reply message
that carries along the return value of the invocation. It uses the descriptor id
carried along with the messages, to propagate the result, through the same path,
back to the user. The Resource Manager attaches a timestamp with each of the
messages to measure peer connection times, local computation times and remote
task execution times.

The Resource Manager measures the local execution time of the tasks that
includes the processing time of the task at a peer and the queueing time at
the local Scheduler’s task queue. The processing time of the task depends on
the type of object to be executed, the parameters carried along with the task
and the speed of the processor. The queueing time is affected by the priority

331

(laxity value) of the task and the number of tasks currently being waiting at the
Scheduler’s queue.

Upon the receipt of a reply message, the Resource Manager measures the end-
to-end latency of the task, as the time required for the task to complete, starting
at user invocation until the reply message is received back at the user. Thus,
the projected latency of the task includes the transmission times to propagate
the task from one peer to another and the local execution time of the task. The
transmission times are affected by the number of hops the task is propagated
and the available bandwidth on the communication links. The Resource Manager
measures the percentage of the processing load and the amount of memory used
during the task execution. It obtains this information by using system calls to
the /proc interface.

3.2 Resource and Timing Measurement Propagation

Self-organization is greatly affected by the frequency with which tasks execute in
the system and resource and timing measurements are propagated to the peers.
The Connection Manager triggers propagation of such measurements in two
cases: (1) as a result of the Resource Manager feedback that measures new re-
source loads and timing measurements at the peer, and (2) when the Connection
Manager detects an incoming or withdrawn peer connection. For example, when
a connection with a new peer is established, the Connection Manager propagates
its current resource and timing measurements to that peer.

Assuming that node p has m immediate peers, the Connection Manager at
p constructs an update message that carries an array of length l for each of the
m immediate peers. The array is constructed based on the measurements stored
at p’s horizon-based state graph which capture resource and timing informa-
tion up to l hops away. By bounding l to a small number, we can control the
amount of information propagated to the peers. Each entry in the array includes
the following information: (IP address, port num, CPU load, network bandwidth,
immediate peers). Further, to regulate the rate of update propagation, the Con-
nection Manager can choose to send an update only if the resource measurements
have increased above an upper bound HIGH or if the peer is underutilized (below
LOW bound). The advantage is that the amount of network traffic is minimized.

Upon the receipt of an update message from an immediate peer p, node q
updates its local horizon-based state graph with p’s most recent resource and
timing measurements. The Connection Manager detects a new indirect peer, if
the array has a new entry and thus updates its state graph. Similarly, if a peer
has disconnected, the Connection Manager marks the peer as disconnected and
updates the corresponding connection times in the graph.

There are two importance observations in the measurement propagation.
First, there is a trade off between the accuracy of the resource utilization infor-
mation maintained by the Connection Manager peers and the frequency of the
update propagation. The higher the propagation frequency, the more accurate
the measurements stored. However, a high propagation frequency incurs a high
penalty due to the large number of messages that have to be sent. Second, the

Towards Self- anaging QoS-Enabled Peer-to-Peer Systemsm

332 V. Kalogeraki et al.

accuracy of the information decreases as the number of hops between the peers
increases. To remedy this, we introduce levels of confidence through weights
(w0, w2, ..., wl−1),

∑
i=0,..,l−1 wi = 1, where the higher confidence goes to peers

one hop away.

3.3 Self- rganization

The goal in the peer-based organization algorithm is to improve task execution
times by connecting to faster or less loaded peers.

The Connection Manager uses the resource load measurements collected at
its horizon-based state graph, to estimate the projected latency of the tasks at
the immediate and indirect peers. Let ρp be the average load on peer p and
τtp be the mean processing time of task t on peer p. Assuming that ρc is the
average load on the communication link c and σtc is the mean transmission
time on each communication link c, the Connection Manager (using an M/M/1
queueing model) computes the projected latency of the tasks at peer p as:

Projected Latencyp =
∑

t

σtc

1− ρc
+

τtp

1− ρp

Once the projected task latencies have been estimated, the Connection Manager
evaluates the relative benefit of its peers. It uses a utility function based on
the resource loads and the task computation and communication latencies. Each
node computes the utility of both its immediate and indirect peers and tries to
connect to indirect peers with the highest utility. These are the peers that have
the highest probability of meeting the soft real-time requirements of the tasks.

The Connection Manager at node p estimates the effects on the task latencies
by considering the effects of increased or decreased processor loads and commu-
nication latencies on the times required to execute the tasks. The Connection
Manager estimates the increased latencies of the tasks currently executed at p as
a result of the new peer connection. A similar estimate is made for the reduced
times of the tasks run in the vicinity.

Thus, the Utility value of both its immediate and indirect peers, as follows:

Peer Utilp(t) = α ∗ Peer Utilp(t− 1) + β ∗ e−Proj Latencyp

where α and β are used to balance between new and previously computed utility
values (α + β = 1). By using exponentially weighted averaging it allows us to
track current behavior with a large value yielding rapid response to changing
conditions, and a small value yielding more smoothing and less noise. If the
types of the executing tasks are stable, our algorithm approximates good peers
accurately. If the behavior changes dynamically, the stability of the system is
affected by the rate with which each node evaluates its peers and tries to connect
to better ones.

o

333

The peer-based algorithm determines important indirect peers as peers with
high utility values. It identifies immediate peers with low utility values as those
where the projected latency of the tasks propagated through those peers in-
creases and the tasks start missing their deadlines. Thus, the Connection Man-
ager at p identifies the peer q with the highest Peer Utilq value for node p and
peer s with the lowest Peer Utils as a candidate for replacement. Then, it probes
peer q for a connection, by generating and sending a ping message. If the re-
mote peer q accepts the connection, it replies with a pong message including its
geographical information {IP address, port number} to allow peer p to connect
to. If the maximum number of connections at p has exceeded, the Connection
Manager chooses to disconnect from the least important immediate peer.

3.4 Dynamic System Operation

In a large-scale system, the availability of the resources changes as a result
of new nodes becoming available, existing nodes failing or disconnecting, and
new tasks executing in the system. For example, the execution of a new task
increases the load on the processors and requires new projections of the task
latencies, triggering self-organization. If the relative utility of an indirect peer
increases over time, the node attempts to move closer to that peer and connect
to it directly. If the connection is acceptable, it is actually performed. As the
maximum number of connections allowed is exceeded or the latency on a peer is
too long, then immediate peers with less utility are removed.

One issue in self-organization is how to tear down connections from peers.
If a node disconnects from a peer whose tasks are currently being executed to
remote peers, the return path of the tasks may be disconnected and the re-
sult cannot be propagated back to the source. To avoid this problem, we define
a prior disconnection period, during which two node temporarily remain con-
nected until the results from currently executing tasks are propagated back to
the source. During this time, the disconnected peer does not accept new tasks
for propagation or execution. Although this will incur some additional overhead,
it will allow all the tasks to complete.

The effectiveness of the system is affected by the frequency with which each
peer executes the self-organization algorithm to find peers with better utility
values. This can affect the stability of our system. To address this issue we
choose to restrict the maximum number of times per time interval that a peer
can make re-connections. This time interval is determined by considering the
characteristics of the tasks in the system.

4 Implementation and Experimental Evaluation

4.1 Experimental Setup

To evaluate the working and performance of our self-organization algorithms
we performed empirical experiments. The platform for our implementation con-
sisted of Athlon XP2000 processors and Intel Pentium IV processors with 1GB

Towards Self- anaging QoS-Enabled Peer-to-Peer Systemsm

334 V. Kalogeraki et al.

memory, running Mandrake Linux 9.0, over a 100Mbit/s network. We built a
P2P system running on these machines. The peers are implemented using the
C++ language and are multi-threaded. To simulate peers of different bandwidth
capabilities we limited the sending and receiving speed of the peers. Figure 2
illustrates the initial topology of the system. The thin lines represent peers with
slow communication links. The bandwidth on those slow peers was restricted
to 200KBytes, the bandwidth on the remaining peers was set to 1MByte. Slow
communication links introduce higher transmission overhead, especially when
the source sends messages at a high transmission speed. In those cases, self-
organization would be beneficial to both peers sending and receiving messages.

2 6source
0

1

3

4

5

7

Fig. 2. System topology for the peer-based organization algorithm

4.2 Application Tasks

We used soft real-time distributed multimedia tasks to drive the empirical eval-
uation of our system. In our scenarios, video streams were generated from the
sources and transmitted over the network from one peer to the other until they
reach the destination, where individual streams received from different sources
are assembled and displayed separately. The multimedia tasks needed to be
transcoded into a different format to reach resource-constrained client machines.
Examples of transcoding operations include changing video compression formats,
reducing video playback bit-rate and adjusting picture resolution.

The multimedia streams consist of a sequence of independent media units,
in the case of MPEG-1 format these are called Group of Pictures (GOPs). For
the experiments, our sources generated video streams of MPEG-1 format with
a resolution of 320x240 and a variable bit rate (VBR) of about 900Kbps, each
Group of Picture (GOP) consists of 12-13 frames which correspond to a 0.5
second playback time. The inter-arrival time between successive GOPs is 0.5
seconds. Transcoding services were implemented using the libavcodec library
[25], which is an open source media library.

In the experiment, our transcoding task was to reduce the bit-rate from
900Kbit/s to 150Kbit/s. The request generator fetches a GOP, encapsulates it

335

into a request message and forwards it to a peer. When the task finishes execution
at a peer, the Connection Manager encapsulates the result in a reply message
and sends it back to the request generator, following the same path. The tasks
had to travel an average of 2 hops to get transcoded. The figure shows that the
average transmission time is 70ms and the average transcoding time is computed
to about 53 milliseconds. However, our experiments showed that the transmission
times increase rapidly when network connections are slow (e.g., 200Kbit/s) or
when the tasks have to propagate more hops in the system. For GOPs of larger
data size the transcoding time also increases, although the increase is small.

4.3 Performance Metrics

To evaluate the performance of our self-organization algorithms, we use the
following metrics:

– Miss ratio: represents the percentage of tasks that miss their deadlines. The
miss ratio is primarily affected by the utilization on the nodes and the com-
munication links. As the load on the nodes or the transmission times of the
tasks increase, the probability that the tasks miss their deadlines is higher.

– Task execution time: defined as the actual execution time of the task in the
system. The execution time depends on the computation time of the task that
includes transcoding time and queueing time, and the transmission latency
experienced at each hop along the path it travels.

– Estimated Projected Latency: this is the estimated amount of time for the
task to execute, projected by the Connection Manager at the peers. The
task’s projected latency depends on (1) the accuracy of the measurements
recorded by the Resource Managers, (2) the feedback they provide to the
Connection Manager and (3) the frequency with which Connection Man-
agers propagate these measurements to their peers. For example, if the up-
date frequency is low, the peers may not have recent resource information
about their peers and therefore fail to estimate the task projected latencies
accurately.

4.4 Self- rganization Algorithm

We conducted three experiments to measure the performance, accuracy and
predictability of our self-organization algorithm.

End-to-End Task Execution Times. In the first experiment, we measured
the average end-to-end task execution times as a function of the number of
transcoding tasks executed in the system. The initial topology is shown in Figure
2, where the dotted lines represent the connections established as a result of
the organization algorithm. In this experiment, each peer runs the peer-based
organization algorithm. Due to lack of space, we report results only for node
0. Note, that, node 0 is connected to one fast peer 2 and two slow peers 1, 3.
Transmission tasks are generated from node 0 with deadlines of 500ms. Resource

Towards Self- anaging QoS-Enabled Peer-to-Peer Systemsm

o

336 V. Kalogeraki et al.

 0

 200

 400

 600

 800

 1000

 5 10 15 20 25 30

Av
er

ag
e

en
d-

to
-e

nd
 ta

sk
 e

xe
cu

tio
n

tim
e(

m
s)

Tasks

measured
estimated

Fig. 3. Measured and estimated end-to-end task execution times as a function of the

number of tasks being executed in the system

and timing measurements are propagated at a rate of 200ms and self-organization
is triggered every 3-5 seconds.

Figure 3 shows the average end-to-end execution times of the tasks. The
solid graph in the figure represents the actual execution times of the tasks,
measured by the Resource Managers. The dotted graph in the figure represents
the projected latencies of the tasks, estimated by the Connection Managers.

As tasks are generated, the execution times of the tasks increase. The reason is
that because node 0 has two slow peers, the tasks are not accepted for execution
at those peers, they are propagated to their own peers in the system. As a
result, their transmission latencies increase. The Connection Manager at node
0 observes the increase in the task execution times, and triggers the peer-based
organization algorithm. This will compute the relative utility values of the peers
and will select the peer 4 with the highest utility to connect to (as shown with
the dotted line in Figure 2). At this point, the maximum number of connections

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

M
iss

 ra
tio

Tasks

200ms propagation period

Fig. 4. Task miss ratio as a function of the number of tasks being executed in the

system

337

for the node has being exceeded, and the node chooses to disconnect from peer
1 that has low utility value. This reduces the end-to-end execution times of the
tasks (shown by the decline in Figure 3). At a latter point during the execution,
the Connection Manager discovers another peer 5 with a high utility value and
chooses to connect to that peer directly and disconnect from its immediate peer
3. This will further improve the projected latencies of the tasks.

An important observation in this experiment is that the Connection Managers
accurately estimates the projected latencies of the tasks at all times, even after
organization. The reason is that the Connection Manager propagates the new
resource measurements to their peers, which are stored in their horizon-based
state graphs and are used to compute the new projected latencies for the tasks.

Miss Ratio. Figure 4 shows the corresponding improvement to the miss ratio
of the tasks as a result of running the peer-based self-organization algorithm.
The figure shows that when the execution times of the tasks increase, tasks start
missing their deadlines. This is attributed to two factors: (1) the queueing delays
in the local Schedulers’ queues due to the large number of transcoding tasks
concurrently being executed in the system, and (2) the transmission latencies
experienced by the slow communication links and the number of hops that the
tasks are being propagated. For example, when the execution times are 600ms,
60% of the tasks miss their deadlines. After the first organization, the task miss
ratio drops to 35%. The second organization improves the task miss ratio even
further and eventually very few tasks miss their deadlines.

Effect of Propagation Frequency to Task Execution Times. In the last
experiment of the peer-based organization algorithm, we evaluated the effective-
ness of the resource and timing measurement propagation frequency to the task
execution times (Figure 5). In these, we varied the frequency with which Con-
nection Managers propagate feedback information to their peers from 200ms to

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30

Av
er

ag
e

en
d-

to
-e

nd
 ta

sk
 e

xe
cu

tio
n

tim
e(

m
s)

Tasks

200ms propagation
2000ms propagation

Fig. 5. End-to-end task execution times as a function of different propagation

frequencies

Towards Self- anaging QoS-Enabled Peer-to-Peer Systemsm

338 V. Kalogeraki et al.

2000ms. Upon the receipt of new resource and timing measurements, the Con-
nection Managers will use the new measurements to decide to which peers to
propagate tasks that cannot be executed locally, or whether they need to run
the self-organization algorithm to connect to better peers.

When the frequency is high (200ms), the Connection Managers capture load
fluctuations at their peers accurately, and therefore the queueing and transmis-
sion latencies of the tasks does not increase further. However, if the frequency is
low, the Connection Managers do not accurately capture the load fluctuations at
their peers. As a result, the end-to-end execution times of the tasks increase, and
most of the tasks miss their deadlines. The frequency of propagation depends
on the characteristics of the tasks (such as number and distribution of requests,
and typical computation times) and resource and communication capabilities of
the peers. Our experiments indicate that a frequency of 200ms is adequate to
capture load fluctuations and transcode tasks end-to-end without missing their
deadlines.

5 Related Work

The task of organizing a large network of peers for efficient data access is a
very interesting problem that only recently has been addressed [26], [27], [28],
[29], [30], [31]. However, the majority of this work has focused on file sharing
applications.

The first wave of the P2P systems [1], [32], [2], [33], [34] perform poorly
either because they rely on a centralized manager or they propose simplistic
routing mechanisms. For example, Gnutella [2] relies on flooding the network
with messages. Limewire [35] organizes the peers on static interest groups based
on their preferred music category.

Distributed hash tables (DHTs) have been proposed as an alternative
approach for organizing peer-to-peer systems [36], [4], [5], [3], [37], [38], [39] that
improve performance by minimizing the number of hops to find the data. These
consist of two components: (1) a consistent hashing over a one-dimensional
space, and (2) an indexing mechanism to quickly navigate the space. These have
the disadvantage that (a) assume that all peers are inherently equal in terms of
resources, and (b) impose a a structure in the network by mapping objects to par-
ticular nodes and therefore may require a slow connection to be heavily utilized
in order to discover a popular item. To the best of our knowledge, ours is the first
work, that proposes self-organizing algorithms based on the dynamic properties
of the peers to meet the distributed applications end-to-end QoS requirements.

Recent efforts recognize the need to improve the performance of the overlay
network by partitioning peers into groups based on the round-trip time (RTT)
of the messages. In these, peers in the same group are closes to each other in
terms of latency. [40] presents a binning scheme based on landmark nodes to
determine the relative latencies for the peer partitioning. In [41], the authors
propose to construct an auxiliary network on top of the overlay network using
BGP information, and choose neighboring peers based on some random land-

339

mark nodes. Eugene et al [42] propose an approach that maps overlay peers
into individual points in Euclidean space and approximate the distances in IP
infrastructures using Euclidean distances. Other work proposes to incremen-
tally improve peer latencies by keeping a list of shortcuts in the routing table.
The shortcuts generally point to nodes with smaller latencies. These goals are
achieved either through interest-based locality [43], or through random sampling
techniques [44]. All of the above work only consider network connectivities and
may require extra services, such as node landmarks.

Several efforts have shown [45, 24, 46, 47] that to meet the applications’ end-
to-end QoS requirements, we need knowledge of real-time task information in-
cluding the task’s deadline, resource requirements and execution times. Most
of them have shown that least laxity scheduling is an effective algorithm for
distributed scheduling in soft real-time distributed systems.

6 Conclusions

In this paper we have proposed two self-organization algorithms that improve
task execution times and system scalability in P2P systems. When a peer is
discovered to frequently provide good execution times, the peer-based algorithm
attempts to connect directly to that peer. If an underutilized peer discovers slow
or overutilized processors, it attempts to move closer to those peers to improve
the task execution times and balance the load across multiple processors. The
experimental results show that our self-organization algorithms can effectively
reduce the task end-to-end execution times, improve task miss ratio, and are
able to dynamically adapt to changes in resource availability or peer connections
and disconnections.

Acknowledgements. This work is supported by NSF Award 0330481.

References

1. Napster, “Napster home page,” http://www.napster.com.

2. Gnutella, “Gnutella home page,” http://www.gnutella.com.

3. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “OceanStore:
An Architecture for Global-Scale Persistent Storage,” in Proceedings of ASPLOS,
Cambridge, MA, 2000.

4. A. Rowstron and P. Druschel, “Storage Management and Caching in PAST, a
Large-scale Persistent Peer-To-Peer Storage Utility,” in Proceedings of the 18th
SOSP, Toronto, Canada, 2001.

5. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, “Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications,” in Proceedings of
ACM SIGCOMM Conference, San Diego, CA, August 2001.

Towards Self- anaging QoS-Enabled Peer-to-Peer Systemsm

340 V. Kalogeraki et al.

6. L. Xiao, X. Zhang, and Z. Xu, “On reliable and scalable peer-to-peer web document
sharing,” in Proceedings of the International Parallel and Distributed Computing
Symposium, Fort Lauderdale, Florida, April 2002.

7. SETI Project Home Page, “SETI@home,” http://sethiathome.ssl.berkeley.edu.
8. Entropia, “Entropia home page,” http://www.entropia.com.
9. S. Jain, R. Mahajan, D. Wetherall, and G. Borriello, “Scalable self-organizing

overlays,” in Technical report UW-CSE 02-02-02, University of Washington, 2002.
10. Y-H Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,” in ACM

SIGMETRICS’00, Santa Clara, CA, 2000.
11. D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos, “Exploiting locality for

scalable information retrieval in peer-to-peer systems,” in Information Systems
Journal, 2004.

12. C. Gill, J. P. Loyall, R. E. Schantz, M. Atighetchi, J. M. Gossett, D. Corman, and
D. C. Schmidt, “Integrated Adaptive QoS Management in Middleware: A Case
Study,” in Proceedings of the 10th IEEE Real-Time and Embedded Technology and
Applications Symposium, Toronto, Canada, May 2004.

13. Object Management Group, “The Common Object Request Broker: Architecture
and Specification,” Edition 2.4, formal/00-10-01, October 2000.

14. D. Box, Essential COM, Addison-Wesley, January 1998.
15. A. Wollrath, R. Riggs, and J. Waldo, “A distributed object model for the Java

system,” Computing Systems, vol. 9, no. 4, pp. 265–290, Fall 1996.
16. SOAP, “Soap home page,” http://www.soap.org.
17. V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser, “Dynamic scheduling for soft

real-time distributed object systems,” in Proceedings of the IEEE Third Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing, Newport,
CA, March 2000, pp. 114–121.

18. H.-H. Chu and K. Nahrstedt, “A soft real-time scheduling server in unix operating
system,” 1995, pp. 381–406, Auerbach Publications.

19. Object Management Group, “Real-time CORBA,” Edition 1.0, formal/00-10-60,
May 1998.

20. Object Management Group, “Dynamic Scheduling,” Revised Submission,
orbos/00-08-12, August 2000.

21. Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny, “Condor –
a distributed job scheduler,” in Beowulf Cluster Computing with Linux, Thomas
Sterling, Ed. MIT Press, October 2001.

22. Vana Kalogeraki, Resource Management for Real-Time Fault-Tolerant Distributed
Systems, Ph.D. thesis, University of California, Santa Barbara, Dec. 2000.

23. V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser, “Dynamic scheduling of dis-
tributed method invocations,” in Proceedings of the 21st IEEE Real-Time Systems
Symposium, Orlando, Florida, November 2000, pp. 57–66.

24. M. L. Dertouzos and A. K.-L. Mok, “Multiprocessor on-line scheduling of hard
real-time tasks,” IEEE Transactions on Software Engineering, vol. 15, no. 12, pp.
1497–1506, December 1989.

25. The FFMPEG Homepage, “http://ffmpeg.sourceforge.net/,” .
26. A. Mohan and V. Kalogeraki, “Speculative Routing and Update Propagation:

A Kundali Centric Approach,” in International Conference on Communications,
Anchorage, Alaska, May 2003.

27. K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt, “Improving Data Ac-
cess in P2P Systems,” IEEE Internet Computing, vol. 6, no. 1, pp. 58–67, Jan-
uary/February 2002.

341

28. V. Kalogeraki, A. Delis, and D. Gunopulos, “Peer-to-Peer Architectures for Scal-
able, Efficient and Reliable Media Services,” in Proceedings of the International
Parallel and Distributed Computing Symposium, Nice, France, April 2003.

29. S. Waterhouse, D.M. Doolin, G. Kan, and Y. Faybishenko, “Distributed Search
in P2P Networks,” IEEE Internet Computing, vol. 6, no. 1, pp. 68–72, Jan-
uary/February 2002.

30. R. Lienhart, M. Holliman, Y-K. Chen, I. Kozintsev, and M. Yeung, “Improving
Media Services on P2P Networks,” IEEE Internet Computing, vol. 6, no. 1, pp.
73–77, January/February 2002.

31. V. Kalogeraki and F. Chen, “Managing distributed objects in peer-to-peer net-
works,” IEEE Network, special issue on Middleware Technologies for future Com-
munication Netowkrs, vol. 18, no. 1, pp. 22–29, January 2004.

32. Morpheus, “Morpheus home page,” http://www.musiccity.com.
33. Freenet, “Freenet home page,” http://freenet.sourceforge.com.
34. Kazaa, “Kazaa home page,” http://www.kazaa.com.
35. Limewire, “Limewire home page,” http://www.limewire.com.
36. S. Ratnasamy, P. Francis, M. Handley, and R. Karp, “A Scalable Content-

Addressable Network,” in Proceedings of the SIGCOMM’01, San Diego, CA, Au-
gust 2001.

37. Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam, “Taming Aggressive
Replication in the Pangaea Wide-Area File System ,” in Proceedings of OSDI 2002,
Boston, CA, 2002.

38. A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. How-
ell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer, “FARSITE: Federated,
Available, and Reliable Storage for an Incompletely Trusted Environment,” in
Proceedings of OSDI 2002, Boston, CA, 2002.

39. A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A Read/Write
Peer-to-Peer File System,” in Proceedings of OSDI 2002, Boston, CA, 2002.

40. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware overlay
construction and server selection,” in Proceedings of IEEE INFOCOM Conference,
June 2002.

41. Z. Xu, M. Mahalingam, and M. Karlsson, “Turning heterogeneity into an advantage
in overlay routing,” in Proceedings of IEEE INFOCOM Conference, April 2003.

42. T.S. Eugene and H. Zhang, “Predicting Internet Network Distance with
Coordinates-based Approaches,” in Proceedings of IEEE INFOCOM Conference,
2002.

43. K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient Content Location using
Interest-based Locality in Peer-to-Peer Systems,” in Proceedings of IEEE INFO-
COM Conference, April 2003.

44. H. Zhang, A. Goel, and R. Govindan, “Incrementally improving lookup latency in
distributed hash table systems,” in Proceedings of ACM SIGMETRICS Confer-
ence, 2003.

45. G. Manimaran and C. R. R. Murthy, “An efficient dynamic scheduling algorithm
for multiprocessor real-time systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 9, no. 3, pp. 312–319, March 1998.

Towards Self- anaging QoS-Enabled Peer-to-Peer Systemsm

342 V. Kalogeraki et al.

46. F. Sandrini, F. D. Giandomenico, A. Bondavalli, and E. Nett, “Scheduling so-
lutions for supporting dependable real-time applications,” in Proceedings of the
IEEE Third International Symposium on Object-Oriented Real-Time Distributed
Computing, 2000.

47. J. Hildebrandt, F. Golatowski, and D. Timmermann, “Scheduling coprocessor for
enhanced least-laxity-first scheduling in hard real-time systems,” in Proceedings of
11th Euromicro Conference on Real-Time Systems. Euromicro RTS’99.

Cooperative Content Distribution:
Scalability Through Self- rganization

Pascal Felber1,� and Ernst W. Biersack2

1 University of Neuchâtel, Switzerland
pascal.felber@unine.ch

2 Institut EURECOM, France
erbi@eurecom.fr

Abstract. Peer-to-peer networks have often been touted as the ulti-
mate solution to scalability. Although cooperative techniques have been
initially used almost exclusively for content lookup and sharing, one of
the most promising application of the peer-to-peer paradigm is to cap-
italize the bandwidth of client peers to quickly distribute large content
and withstand flash-crowds (i.e., a sudden increase in popularity of some
online content). Cooperative content distribution is based on the premise
that the capacity of a network is as high as the sum of the resources of
its nodes: the more peers in the network, the higher its aggregate band-
width, and the better it can scale and serve new peers. Such networks can
thus spontaneously adapt to the demand by taking advantage of avail-
able resources. In this paper, we evaluate the use of peer-to-peer networks
for content distribution under various system assumptions, such as peer
arrival rates, bandwidth capacities, cooperation strategies, or peer life-
times. We argue that the self-scaling and self-organizing properties of
cooperative networks pave the way for cost-effective, yet highly efficient
and robust content distribution.

1 Introduction

Peer-to-peer systems, in which peer computers form a cooperative network and
share their resources (storage, CPU, bandwidth), have attracted a lot of interest
lately. After the apparition of the first truly successful peer-to-peer systems [1,
2], and the significant amount of research conducted in Academia and in the
Industry, most researchers now agree that peer-to-peer systems are more than
just a fashion phenomenon. They offer great potential for building cooperative
networks that are self-organizing, efficient, scalable, and reliable.

Research in peer-to-peer networks has so far mainly focused on content stor-
age and lookup, but fewer efforts have been spent on its actual distribution. By
capitalizing the bandwidth of peer nodes, cooperative architectures offer great
potential for addressing some of the most challenging issue of today’s Internet:

� This work was performed while the author was at Institut EURECOM.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 343–357, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

o

344 P. Felber and E.W. Biersack

the cost-effective distribution of bandwidth-intensive content to thousands of si-
multaneous users both Internet-wide and in private networks, and the resilience
to “flash crowds”—a huge and sudden surge of request traffic that usually leads
to the collapse of the affected server, as happened to the Web sites of major
media companies during the events of 9/11.

Cooperative content distribution networks are inherently self-scalable, in that
the bandwidth capacity of the system increases as more peers arrive: each new
peer requests service from, but also provides service to, the other peers. The
network can thus spontaneously adapt to the demand by taking advantage of
the resources provided by every peer.

As an example of the self-scaling properties of cooperative content distribu-
tion, consider the situation where a server must replicate a critical file to a large
number of clients, e.g., an antivirus update, to all 100, 000 machines of a large
company. Given a file size of 4 MB, and a server (client) bandwidth capacity
of 100 Mb/s (10 Mb/s) with 90% link utilization, a classical client/server dis-
tribution protocol would distribute the file by iteratively serving groups of 10
simultaneous clients in u = 32 Mb

9 Mb/s = 3.55 seconds. Updating 100, 000 clients
would thus necessitate 100,000

10 u, i.e., almost 10 hours.
In contrast, cooperative distribution leverages the bandwidth of the nodes

that have already obtained the file, thus dynamically increasing the service ca-
pacity of the system as the file propagates to the clients. As each client that
has already received the file can serve another client while the server updates
10 new clients, we can compute the number of clients updated at time t as
n(t) = 2n(t−u)+10 = 2	t/u
10−10. Updating 100, 000 clients would thus neces-
sitate less than 1 minute, as can be observed in Figure 1. The exponential increase
of peer-to-peer distribution provides a sharp contrast with the linear progression
of traditional client/server distribution, and illustrates the self-scaling property
of cooperative networks.

We have studied in [3] the scalability of cooperative distribution architectures,
where each peer has equal upload and download rates of b, and there are no
failures. We have shown that it takes 1 + �logkN� · k

C rounds to serve N peers
organized in k spanning trees, where a round is the time needed to download
the complete file at rate b and c is the number of chunks the file is split into.
This result indicate that the number of peers that complete the download grows
exponentially in time and in the number of chunks (large numbers of chunks
allow all peers to busy most of the time). Obviously, such static and homogeneous
scenarios are rare in real-world systems, where the peers typically have different
(often asymmetric) bandwidth, can join and leave anytime, and have only a
limited view of the complete system insufficient for global optimizations.

In this paper, we discuss and evaluate the use of peer-to-peer networks for
content distribution under various system assumptions, such as peer arrival rates,
bandwidth capacities, cooperation strategies, or peer lifetimes. We argue that
a key property for the good scalability of content distribution architecture is
their ability to self-organize by letting each peer select dynamically which other
peers to cooperate with over time. This study exhibits the trade offs encountered

Cooperative Content Distribution 345

when deploying a content distribution network and emphasizes that the choice
of a specific strategy strongly depends on the considered optimization criteria.

2 Cooperative Content Distribution

In order to maximize the participation of each of the peers in the network,
large content is typically split into many blocks (or “chunks”) that are directly
exchanged between the peers—a technique also known as “swarming.” The large
number and small size of the chunks are key to quickly create enough diversity
in the network for each of the peers to be useful to some other peers.

Cooperative networks are usually build incrementally, with joining peers dy-
namically connecting to existing peers to eventually create complex mesh topolo-
gies. In practice, a peer usually knows only a subset of other peers, and actively
trades with an even smaller subset. In addition to the actual structure of the
mesh (i.e., which and how many neighbors each peers has), two factors are crucial
to the global effectiveness of the content distribution process:

– Peer selection strategy: which among our neighboring peers will we actively
trade with, i.e., serve or request chunks from?

– Chunk selection strategy: which chunks will we preferably serve to, or request
from, other peers?

The popular BitTorrent [4] tool, which we have studied extensively in [5],
empirically selects the peers that offer the best upload and download rates to
trade with (“tit-for-tat” strategy). When a new peers joins the system, it initially
requests random chunks in order to quickly receive some data and become useful
to the system; thereafter, it requests the rarest chunks among those owned by

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

0:00 0:10 0:20 0:30 0:40 0:50 1:00

N
um

be
r

of
 u

pd
at

ed
 c

lie
nt

s

Time (min.)

Client/Server
Cooperative

Fig. 1. Scalability of cooperative content

distribution: the number of clients that

successfully receive a file increases linearly

with client/server distribution, and expo-

nentially with cooperative distribution

0 0.2 0.4 0.6 0.8 1

di0
0.2

0.4
0.6

0.8
1

dj

0.2

0.4

0.6

0.8

1

rj

Fig. 2. Adaptive-missing peer selection

strategy: Peer i computes the rank rj of

every other peer j as a function of di and

dj (here, we have U(0, 1) = 0.5)

346 P. Felber and E.W. Biersack

its neighbors, because rare chunks have a higher “trading value” than common
chunks.

The main focus of our study is to evaluate several peer and chunk selection
strategies, and determine which ones perform best in various deployment sce-
narios. For the purpose of our evaluation, we only study the extreme case where
each peer knows all other peers (fully-connected mesh) and can potentially trade
with any of those peers during its lifetime, although we impose a limit on the
number of simultaneous active connections. This assumption allows us to observe
the asymptotic behavior of the various cooperative strategies.

2.1 Deployment Scenarios

We specifically focus on two deployment scenarios that correspond to real-world
applications of cooperative content distribution. In the first scenario, we assume
that some critical content need to be quickly replicated on a large number of
machines within the private network of a large company. This essentially corre-
sponds to a push model where all the peers are known beforehand and distribu-
tion stops once the content has been fully replicated on all the machines, which
typically have similar connectivity (homogeneous bandwidth).

The second scenario corresponds to the traditional Internet flash-crowd phe-
nomenon, where a large number of clients access almost simultaneously some
large popular content. This corresponds to a pull model with continuous ar-
rival of the peers. Distribution continues over several peer “generations,” with
some peers arriving well after the first peers have already left. The clients typ-
ically have heterogeneous bandwidth capacities, ranging from dial-up modems
to broadband access (asynchronous and synchronous).

2.2 Notation

We denote by C the set of all chunks in the file being distributed, and by Di and
Mi the set of chunks that peer i has already downloaded and is still missing,
respectively (with Mi ∪ Di = C and Mi ∩ Di = ∅). Similarly, di � |Di|/|C| and
mi � |Mi|/|C| correspond to the proportions of chunks that peer i has already
downloaded and is still missing, respectively. The function U(a, b) returns a
random number uniformly distributed in the interval [a, b].

2.3 Peer Selection

The peer selection strategy defines “trading relationships” between peers and
is the key factor to the network’s self-organization property. In our simplified
model, we assume that all the peers know one another. When a peer has some
chunks available and some free uplink bandwidth capacity, it will use a peer
selection strategy to locally determine which other peer it will serve next. In this
paper, we propose and evaluate the following peer selection strategies:

– Random: A peer is selected at random. This strategy is expected to achieve
good diversity in peer connectivity.

Cooperative Content Distribution 347

– Least missing: Preference is given to the peers that have many chunks, i.e.,
we serve in priority peer j with dj ≥ di, ∀i. This strategy is inspired by the
SRPT (shortest remaining processing time) scheduling policy that is known
to minimize the service time of jobs [6].

– Most missing: Preference is given to the peers that have few chunks (new-
comers), i.e., we serve in priority peer j with dj ≤ di, ∀i. The rationale
behind this strategy is to evenly spread chunks among all peers to allow
them to quickly serve other peers.

– Random least missing: Similar to least missing, but with a random compo-
nent added in the selection process. We serve in priority peer j with the
lowest rank, computed as U(0, |Mj |2).

– Random most missing: Similar to most missing, but with a random com-
ponent added in the selection process. We serve in priority peer j with the
lowest rank, computed as U(0, |Dj |2).

– Adaptive-missing: Peers that have many chunks serve peers that have few
chunks, and vice-versa, with more randomness introduced when download
tend to be half complete. A peer i will serve in priority peer j with the lowest
rank rj , computed as:

rRnd
j = U(0, 1)

rDet
j =

{
dj : di ≥ 0.5

mj : di < 0.5

f = (1− |2di − 1|)2
rj = frRnd

j + (1− f)rDet
j

where rRnd
j and rDet

j are the random and deterministic ranks of peer j,
respectively, and f ∈ [0, 1] is a weight factor that controls randomness and is
maximal when peer i is exactly half-way through the download. A graphical
representation of rj as a function of di and dj is shown in Figure 2. This
strategy is expected to give good chances to newcomers without artificially
slowing down peers that are almost complete.

Although not shown in this paper because of space constraints, we have also
experimented with additional peer selection strategies that take into account the
free bandwidth capacities of the peers.

2.4 Chunk Selection

The chunk selection strategy specifies which chunks should preferably be traded
between the peers. Chunk selection can be performed by the receiver (which
requests specific chunks from its neighbors) or by sender (which decides which
chunk it will send next on an active connection). With both interaction models,
obviously, the chosen chunk must be held by the sender and not by the receiver.
In our simplified model, we assume that every peer knows the list of chunks held
by its neighbors (i.e., all peers with a fully-connected mesh topology) and that
the chunk selection strategy is applied on the sender’s side. In this paper, we
evaluate the following chunk selection strategies:

348 P. Felber and E.W. Biersack

– Random: The sending peer i selects a chunk c ∈ (Di∩Mj) at random among
those that it holds and the receiving peer j needs. This strategy ensures good
diversity of the traded chunks.

– Rarest: The sending peer i selects the rarest chunk c ∈ (Di ∩Mj) among
those that it holds and the receiving peer j needs. Rarity is computed from
the number of instances of each chunk held by the peers known to the sender.
This strategy is expected to maximize the number of copies of the rarest
chunk in the system.

3 Experimental Setup

For the purpose of evaluating cooperative content distribution, we have devel-
oped a simulator that models various types of peer-to-peer networks and allows
us to observe step-by-step the distribution of large files among all peers in the
systems, according to several metrics. Although we have taken extra care to re-
produce realistic operating conditions, we have yet made some assumptions in
order to simplify and speed up the simulations. In particular, we do not consider
failures (peer or network) nor link congestion in any of the experiments, and
we do not favor long-running connections overt short connections as real sys-
tems usually do. We also intentionally present here the results of the simulations
of extreme scenarios (little heterogeneity, limited server bandwidth) that best
exhibit the differences between the various aforementioned strategies; more mod-
erate scenarios have shown the same general trends, albeit with lower intensity.

Our simulator is essentially event-driven, with events being scheduled and
mapped to real-time with a millisecond precision. The transmission delay of
each chunk is computed dynamically according the link capacities (minimum
of the sender uplink and receiver downlink) and the number of simultaneous
transfers on the links (bandwidth is equally split between concurrent
connections).

Once a peer i holds at least one chunk, it becomes a potential server. It first
sorts its neighboring peers according to the specified peer selection strategy. It
then iterates through the sorted list until it finds a peer j that (1) needs some
chunks from Di (Di∩Mj �= ∅), (2) is not already being served by peer i, and (3)
is not overloaded. We say that a peer is overloaded if it has reached its maximum
number of connections and has less than 128 kb/s bandwidth capacity left. Peer
i then applies the specified chunk selection strategy to choose the best chunk to
send to peer j. Peer i repeats this whole process until it becomes overloaded or
finds no other peer to serve.

Our simulator allows us to specify several parameters that define its gen-
eral behavior and operating conditions. The most important ones relate to the
content being transmitted (file size, chunk size), the peer properties (arrival
rates, bandwidth capacities, lifetimes, number of simultaneous active connec-
tions), and global simulation parameters (number of initial servers or “origin
peers,” simulation duration, peer selection strategy, chunk selection strategy).
Table 1 summarizes the values of the main parameters used in our simulations.

Cooperative Content Distribution 349

Table 1. Parameters used in the simulations

Parameter Value
Chunk size 256 kB
File size 200 chunks (i.e., 51.2 MB)
Peer arrival rate

Simultaneous (push) 5000 peers at t0
Continuous (flash-crowd) Poisson with rate λ = 1

2.5 s
Peer bandwidth (downlink/uplink)

Homogeneous, symmetric 100% peers: 128/128 kb/s
Homogeneous, asymmetric 100% peers: 512/128 kb/s
Heterogeneous, asymmetric 50% peers: 512/128 kb/s

50% peers: 128/64 kb/s
Peer lifetime

Selfish Disconnects when complete
Altruistic Remains 5 minutes online

Active connections per peer 5 inbound and 5 outbound
Number of origin peers 1 (bandwidth: 128/128 kb/s)
Duration of simulation 12 h or more
Peer selection strategy Varies
Chunk selection strategy Varies

We have considered several metrics in our evaluation of cooperative content
distribution. We briefly outline below the major properties that we have observed
during the simulations:

– Download times: The duration of the file download as experienced by in-
dividual peers. In general, shorter times are better and variance should be
minimized.

– Download progress: The progress of the file download over time by each of
the peers. In general, regular progress is desirable (i.e., peers should not be
stalled for long periods of time).

– Chunk capacity: The evolution over time of the number of chunks in the
system. Larger numbers of chunks usually correspond to greater “service
potential.”

– Chunk distribution: The evolution over time of the frequency of the chunks
in the system. The variance of chunk frequencies should be minimized.

– Overall efficiency: The ratio of the effective throughput of the system to its
optimal throughput, computed as the sum of the bandwidth capacities of all
active peers. Higher values are better.

4 Simulation Results

We now present our simulation results. Due to space constraints, we only discuss
here a small selected subset of these results.

350 P. Felber and E.W. Biersack

4.1 Simultaneous Arrivals

The chunk selection strategy can have a significant impact on the effectiveness
of cooperative content distribution, especially when considering selfish peers.
As shown in Figure 3, several of the peer selection strategies need a long time
to replicate the file on all clients. First consider that the transmission of all
200 chunks of the file over a 128 kb/s connection requires 200·256·8 kb

128 kb/s = 3200
seconds, i.e., slightly less than one hour. If we could construct a linear chain, with
each client receiving the file from the previous peer in the chain and serving it
simultaneously to the next one, we could theoretically approach this asymptotic
limit. In practice, because we only consider the transmission of complete chunks
and we share bandwidth capacities between several connections, we expect to
experience lower efficiency.

We can explain the low performance of the least missing peer selection strat-
egy by the fact that the server will initially only serve the same 5 peers that are
closest to completion. These peers will in priority exchange chunks with each
other and then slowly propagate some chunks to the other peers, which remain
mostly idle because they have no rare chunks to trade. As completed peers leave
immediately the system, we essentially have one server (the initial peer) that
iteratively serves batches of 5 peers at a time, which explains the low efficiency
of the least missing strategy. One should note, however, that this strategy min-
imizes the download time of the first complete peer. Figure 4 shows, indeed,
that the download times have the highest variance with the least missing strat-
egy (each point represents the completion of a peer and 9/10 of the samples
have been omitted for clarity; the points for the most missing strategy form a
horizontal line at the bottom of the graph).

At the other extreme, the most missing peer selection strategy tries to make
all clients progress simultaneously, thus making them quickly and equally use-
ful to others. This results in a better utilization of the available resources, as
can be seen in Figures 5 and 6. By “artificially” delaying the departure of the

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

N
um

be
r

of
 c

om
pl

et
e

pe
er

s

Time

Least missing
Most missing

Adaptive missing
Random least missing
Random most missing

Random

Fig. 3. Completion times for the random
chunk selection strategy, with simultane-

ous arrivals, homogeneous and symmetric

bandwidth, and selfish peers

00:00
02:00
04:00
06:00
08:00
10:00
12:00
14:00
16:00
18:00
20:00
22:00
00:00

 0 1000 2000 3000 4000 5000

D
ow

nl
oa

d
du

ra
tio

n

Peer number

Random Least missing Most missing

Fig. 4. Download duration for the ran-
dom chunk selection strategy, with simul-

taneous arrivals, homogeneous and sym-

metric bandwidth, and selfish peers

Cooperative Content Distribution 351

peers, we always keep a large service capacity and ensure that all peers complete
approximately at the same time. In the case of simultaneous arrivals, we can
observe that the most missing strategy minimizes the download time of the last
complete peer.

The random peer selection strategy is expected to let all peers progress at
approximately the same rate, and thus to behave roughly like the most missing
strategy. We observe, however, that only one third of the peers complete simul-
taneously and the rest essentially follow the same pattern as the least missing
strategy. This problem can be tracked down to the random chunk selection. In-
deed, the chunks that were injected first in the system exist in many instances,
while the latter chunks are very rare, with the server doing nothing to correct
this imbalance. Most of the peers quickly reach near completion, as shown in
Figure 7, but many require much time to obtain the few missing chunks—often
just one—that are only held by the origin server.

This problem can be observed more clearly in Figure 8, which shows the
evolution of the number of copies of each chunk in the system over time (3/4 of
the samples have been omitted for clarity and the first, last, and middle chunks
have highlighted). We remark that the very first chunk on the right reaches a
maximum frequency of approximately 1, 200 copies after 1 hour and falls back
to zero after the first batch of peers have left. Thereafter, that extremely rare
chunk is served only by the origin peer, because clients behave selfishly and leave
as soon as they have downloaded the chunk. In contrast, the most missing peer
selection strategy ensures regular progress of all the peers and a quick and even
dissemination of the chunks after they have been injected in the system, as can
be seen in Figures 9 and 10. Indeed, the server gives rare chunks to peers that
are expected to remain online for some time and help to their dissemination. In
similar settings but with altruistic peers that remain online for some time after

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

00:00 01:00 02:00 03:00 04:00 05:00 06:00

P
ot

en
tia

l (
to

p
lin

e)
 a

nd
 e

ffe
ct

iv
e

(b
ot

to
m

 li
ne

)
da

ta
 tr

an
sf

er
re

d
(k

B
)

Time

Least missing
Most missing

Adaptive missing
Random

Fig. 5. Potential and effective data trans-

ferred for the random chunk selection

strategy, with simultaneous arrivals, ho-

mogeneous and symmetric bandwidth,

and selfish peers (the four top lines are

all stacked initially)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

00:00 01:00 02:00 03:00 04:00 05:00 06:00

E
ffi

ci
en

cy
 (

ef
fe

ct
iv

e
/ p

ot
en

tia
l t

hr
ou

gh
pu

t)

Time

Least missing
Most missing

Adaptive missing
Random

Fig. 6. Overall efficiency ratio for the ran-
dom chunk selection strategy, with simul-

taneous arrivals, homogeneous and sym-

metric bandwidth, and selfish peers

352 P. Felber and E.W. Biersack

010002000300040005000

Peer 00:00

06:00

12:00

18:00

Time

0
20
40
60
80

100

Progress (%)

Fig. 7. Download progress for the random
peer selection strategy, with the random
chunk selection strategy, simultaneous ar-

rivals, homogeneous and symmetric band-

width, and selfish peers

00:00

06:00

12:00

18:00

 0 40 80 120 160 200

 0
 1000
 2000
 3000
 4000
 5000

Frequency

Time
Block

Frequency

Fig. 8. Chunk distribution for the random
peer selection strategy, with the random
chunk selection strategy, simultaneous ar-

rivals, homogeneous and symmetric band-

width, and selfish peers

completion, this pathologic situation does not arise anymore under random peer
selection.

As previously mentioned, the download times of the least missing strategy
have a high variance, with some peers progressing very fast and other very slowly.
This can be clearly observed in Figures 11 and 12. The random variants of the
least missing and most missing peer selection strategies exhibit some of the
trends of their deterministic counterpart, but with less intensity. We will not
discussed them further in this paper. Finally, the adaptive missing strategy is
interesting because it seems to inherit some of the good properties of each of
the extreme least missing and most missing strategies. It initially quickly and
evenly replicates blocks in the system and, at the same time, does not artificially

010002000300040005000

Peer 00:00

00:30

01:00

01:30

Time

0
20
40
60
80

100

Progress (%)

Fig. 9. Download progress for the most
missing peer selection strategy, with the

random chunk selection strategy, simulta-

neous arrivals, homogeneous and symmet-

ric bandwidth, and selfish peers

00:00

00:30

01:00

01:30

 0 40 80 120 160 200

 0
 1000
 2000
 3000
 4000
 5000

Frequency

Time
Block

Frequency

Fig. 10. Chunk distribution for the most
missing peer selection strategy, with the

random chunk selection strategy, simulta-

neous arrivals, homogeneous and symmet-

ric bandwidth, and selfish peers

Cooperative Content Distribution 353

010002000300040005000

Peer 00:00
06:00

12:00
18:00

00:00

Time

0
20
40
60
80

100

Progress (%)

Fig. 11. Download progress for the least
missing peer selection strategy, with the

random chunk selection strategy, simulta-

neous arrivals, homogeneous and symmet-

ric bandwidth, and selfish peers

00:00
06:00

12:00
18:00

00:00

 0
 40

 80
 120

 160
 200

 0
 1000
 2000
 3000
 4000
 5000

Frequency

Time
Block

Frequency

Fig. 12. Chunk distribution for the least
missing peer selection strategy, with the

random chunk selection strategy, simulta-

neous arrivals, homogeneous and symmet-

ric bandwidth, and selfish peers

prevent near-complete peers to finish their download (this problem is of greater
important in the case of continuous arrivals, as we shall see shortly).

When switching to the rarest chunk selection strategy, we observe in Fig-
ure 13 significant performance improvements, particularly for the random peer
strategy that becomes as efficient as most missing, and the least missing strategy
that shows a seven-fold improvement. In contrast to the random chunk selec-
tion strategy, we do not experience the pathological situation where the origin
sequentially serves the rare missing chunks to almost-complete peers.

If we consider heterogeneous bandwidths with 128 and 512 kb/s downlink
capacities, we can clearly see in Figure 14 the two distinct classes of peers on the
basis of their download durations, best visible with the random peer selection

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

01:0001:00 02:0002:00 03:0003:00

N
um

be
r

of
 c

om
pl

et
e

pe
er

s

Time

Least missing
Most missing

Adaptive missing
Random

Fig. 13. Completion times for the rarest
chunk selection strategy, with simultane-

ous arrivals, homogeneous and symmetric

bandwidth, and selfish peers

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

 0 1000 2000 3000 4000 5000

D
ow

nl
oa

d
du

ra
tio

n

Peer number

Random Least missing Most missing

Fig. 14. Download duration for peers

with heterogeneous and asymmetric

bandwidth, with the rarest chunk selec-

tion strategy, simultaneous arrivals, and

selfish peers

354 P. Felber and E.W. Biersack

strategy. The most missing strategy tends to diminish this gap by enforcing peers
to progress at approximately the same speed. Finally, the least missing strategy
behaves as for homogeneous bandwidths, with few peers completing very fast
and many peer much later.

4.2 Continuous Arrivals

We have studied the case of continuous arrivals and asymmetric bandwidth
(512/128 kb/s ADSL) with both selfish and moderately altruistic peers. We ob-
served interesting behaviors that were consistent across both settings but more
pronounced in the case of altruistic peers. We can see in Figures 15 and 17 that
the random and adaptive missing peer selection strategies keep up with the ar-
rival rate of the clients, with the latter looking empirically better initially. The
most missing strategy delays the completion of a first batch of clients, before

0

2000

4000

6000

8000

10000

12000

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

N
um

be
r

of
 c

om
pl

et
e

pe
er

s

Time

Arrivals
Least missing
Most missing

Adaptive missing
Random

Fig. 15. Completion times for continu-

ous arrivals, with the rarest chunk selec-

tion strategy, homogeneous and asymmet-

ric bandwidth, and selfish peers

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

N
um

be
r

of
 b

lo
ck

s
in

 th
e

sy
st

em

Time

Least missing
Most missing

Adaptive missing
Random

Fig. 16. Chunk capacity of the system,

with the rarest chunk selection strat-

egy, homogeneous and asymmetric band-

width, and selfish peers

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

00:00 02:00 04:00 06:00 08:00 10:00 12:00

N
um

be
r

of
 c

om
pl

et
e

pe
er

s

Time

Arrivals
Least missing
Most missing

Adaptive missing
Random

Fig. 17. Completion times for continu-

ous arrivals, with the rarest chunk selec-

tion strategy, homogeneous and asymmet-

ric bandwidth, and altruistic peers

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

00:00 02:00 04:00 06:00 08:00 10:00 12:00

N
um

be
r

of
 b

lo
ck

s
in

 th
e

sy
st

em

Time

Least missing
Most missing

Adaptive missing
Random

Fig. 18. Chunk capacity of the system,

with the rarest chunk selection strat-

egy, homogeneous and asymmetric band-

width, and altruistic peers

Cooperative Content Distribution 355

following the same slope as the arrivals but with small steps, most notable with
altruistic peers. Finally, the least missing strategy shows an odd behavior: the
number of complete peers is slow to “take off,” then makes a big step to overtake
all other strategies, then stalls again for a longer period of time before another
even higher step, and so on. To better understand this behavior, consider that
the origin peer will iteratively serve groups of 5 peers until they complete their
download. The peers of a group will exchange chunks with each other in priority,
but also slowly propagate some chunks to other less-complete peers, which will
quickly disseminate them among all remaining peers (they cannot indeed serve
more-complete peers as the least missing strategy would require, because they
only have blocks that the more-complete peers also hold). Therefore, we have
few peers that complete very fast, and a large majority of peers that progresses
slowly but steadily and eventually complete all together.

We can better understand the behavior of the peer selection strategies by
considering the chunk capacity of the system with respect to time, shown in
Figures 16 and 18. The random and adaptive missing strategies maintain a
nearly constant number of chunks in the system. We can note that the latter
looks more efficient than the former in this deployment scenario, as it achieves
the same completion rate with a lower average chunk capacity. The most missing
strategy creates a higher chunk capacity by delaying peers until the first batch

Distribution of chunks after 45 minutes

Least missing

Random least missing

Random

Random most missing

Most missing

Adaptive missing

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0−9%

10−19%

20−29%

30−39%

40−49%

50−59%

60−69%

70−79%

80−89%

90−99%

100%

Distribution of chunks after 90 minutes

Least missing

Random least missing

Random

Random most missing

Most missing

Adaptive missing

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0−9%

10−19%

20−29%

30−39%

40−49%

50−59%

60−69%

70−79%

80−89%

90−99%

100%

Distribution of chunks after 60 minutes

Least missing

Random least missing

Random

Random most missing

Most missing

Adaptive missing

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0−9%

10−19%

20−29%

30−39%

40−49%

50−59%

60−69%

70−79%

80−89%

90−99%

100%

Distribution of chunks after 105 minutes

Least missing

Random least missing

Random

Random most missing

Most missing

Adaptive missing

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0−9%

10−19%

20−29%

30−39%

40−49%

50−59%

60−69%

70−79%

80−89%

90−99%

100%

Distribution of chunks after 75 minutes

Least missing

Random least missing

Random

Random most missing

Most missing

Adaptive missing

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0−9%

10−19%

20−29%

30−39%

40−49%

50−59%

60−69%

70−79%

80−89%

90−99%

100%

Distribution of chunks after 120 minutes

Least missing

Random least missing

Random

Random most missing

Most missing

Adaptive missing

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0−9%

10−19%

20−29%

30−39%

40−49%

50−59%

60−69%

70−79%

80−89%

90−99%

100%

Fig. 19. Snapshot of the download progress of the peers after 45, 60, 75, 90, 105, and

120 minutes, with the rarest chunk selection strategy, homogeneous and asymmetric

bandwidth, and selfish peers. Each segment of a bar represents the proportion of the

peers that have the quantity of chunks specified by the associated color

356 P. Felber and E.W. Biersack

completes, which corresponds to the sharp drop of chunk capacity. Thereafter,
the capacity oscillates with a constant period, driven by the batches of peers that
progress and complete together. Finally, the least missing strategy exhibits the
highest volatility in chunk capacity. The system traverses phases during which
it builds an extremely large chunk capacity, and then completely empties it by
letting almost all peers terminate simultaneously. Interestingly, the frequency
and amplitude of the oscillations increase over time. This corresponds to the
steps that we have observed in Figures 15 and 17.

To better understand how each of the peer selection strategies lets the peers
progress through their download, one can consider Figure 19 that shows snap-
shots of the progress of the peers every 15 minutes from 45 to 120 minutes. We
see some clear trends: the random peer selection strategy lets all peers progress
uniformly; with the most missing strategy, a large proportion of peers are at the
same well advanced stage in their download; the least missing strategy pushes
a few peers quickly to completion, and maintains the majority of peers early
in their download; finally, with the adaptive missing strategies, we observe two
classes of peers with opposite completion status—early and late—and few peers
in between. The random variants of least and most missing are blends of the
random peer selection strategy and their deterministic counterpart.

4.3 Discussion

We can draw several conclusions from our simulation results. First, the peer
selection strategy, which drives the way the network self-organizes, has an huge
impact on the efficiency of content distribution. Further, the complexity of the
interactions between the peers, as well as the many factors to consider in real-
world networks (in particular dealing the dynamics and heterogeneity of the
peers) make it hard to develop analytical models. Our simulations raise many
open questions, and some of the observed behaviors will require further study
for being fully understood.

The peer selection strategies that we have studied have been kept intention-
ally very simple. In basic scenarios they can be shown to be optimal but, in more
complex environments, they need to be extended to take additional factors into
account. For instance, in homogeneous settings with simultaneous arrivals, the
most missing strategy will replicate content in the most efficient manner possi-
ble, with the number of copies of each chunk increasing exponentially in time
(see [7] for an in-depth analysis). If we now consider two populations of peers of
identical sizes but with widely different bandwidth capacities. It can easily be
shown that the fast peers should first replicate each chunk among them before
transferring it in parallel to the slow peers. This can be achieved by tuning the
most missing strategy so that it serves in priority, among the peers that have
fewest chunks, those with the highest bandwidth capacity. We should addition-
ally take into account dynamic factors such as the number of active connections
of each peer, the popularity of the chunks that it holds, or its age. BitTorrent, for
instance, uses a peer selection strategy that combines reciprocity (“tit-for-tat”)
and best experienced transmission rates, coupled with rarest chunk selection.

Cooperative Content Distribution 357

It is therefore necessary to adapt the strategies to the real complexity of the
peer-to-peer network in order to optimize content distribution.

5 Conclusion

The self-scaling and self-organizing properties of peer-to-peer networks offer the
technical capabilities to quickly and efficiently distribute large or critical content
to huge populations of clients. Cooperative distribution techniques capitalize the
bandwidth of every peer to dramatically increase the service capacity of the
system. Based on the extensive simulations that we have performed, and the
limited set of results shown in this paper, it appears clearly that the deployment
scenarios and the cooperative strategies in use have strong influence on the
effectiveness of content distribution. In particular, the chunk and peer selection
strategies directly impact the delay experienced by the clients and the global
throughput of the system. There is no clear “best” strategy, as each of them offers
various trade offs and may prove most adequate for specific deployment scenarios.
Overall, the random and adaptive missing peer selection strategies coupled with
rarest chunk selection consistently deliver good performance and may be safely
utilized as general-purpose cooperative strategies for content distribution.

References

1. Napster. (http://www.napster.com)
2. Gnutella. (http://gnutella.wego.com)
3. Biersack, E., Rodriguez, P., Felber, P.: Performance analysis of peer-to-peer net-

works for file distribution. In: Proceedings of the 5th International Workshop on
Quality of future Internet Services (QofIS’04). (2004)

4. Cohen, B.: Incentives to build robustness in BitTorrent. Technical report,
http://bitconjurer.org/BitTorrent/bittorrentecon.pdf (2003)

5. Izal, M., Urvoy-Keller, G., Biersack, E., Felber, P., Hamra, A.A., Garces-Erice, L.:
Dissecting BitTorrent: Five months in a torrent’s lifetime. In: Proceedings of the
5th Passive and Active Measurement Workshop. (2004)

6. Schrage, L.: A proof of the optimality of the shortest remaining service time disci-
pline. Operations Research 16 (1968) 670–690

7. Yang, X., de Veciana, G.: Service capacity of peer-to-peer networks. In: Proceedings
of INFOCOM. (2004)

Design and Analysis of a Bio-inspired Search
Algorithm for Peer to Peer Networks�

Niloy Ganguly, Lutz Brusch, and Andreas Deutsch

Center for High Performance Computing,
Dresden University of Technology, Dresden,

Germany
{niloy, brusch, deutsch}@zhr.tu-dresden.de

Abstract. Decentralized peer to peer (p2p) networks like Gnutella are
attractive for certain applications because they require no centralized di-
rectories and no precise control over network topology or data placement.
The greatest advantage is the robustness provided by them. However,
flooding-based query algorithms used by the networks produce enormous
amounts of traffic and substantially slow down the system. Recently,
flooding has been replaced by more efficient k-random walkers and differ-
ent variants of such algorithms. In this paper, we report immune-inspired
algorithms for searching peer to peer networks. The algorithms use the
immune-inspired mechanism of affinity-governed proliferation to spread
query message packets in the network. Through a series of experiments,
we compare the proliferation mechanism with different variants of ran-
dom walk algorithms. The detailed experimental results show message
packets undergoing proliferation spread much faster in the network and
consequently proliferation algorithms produce better search output in
p2p networks than random walk algorithms. Moreover, theoretical results
by calculating the packet spreading speeds are reported which provide
an understanding of the improved performance of the proliferation based
search algorithm.

1 Introduction

Among different desirable qualities of a search algorithm for peer to peer (p2p)
networks, robustness is a very important aspect. That is, the performance of
a search algorithm should not radically deteriorate in face of the dynamically
changing condition of the network. As is known, the big share of Internet users,
consequently participants in p2p networks, still use slow and unreliable dial-up
modems and also leave the community at very short intervals. Thus in order to
give robustness a high priority, precise routing algorithms for forwarding query
message packets are generally avoided. Instead random forwarding of the mes-
sage packets is preferred [8]. The goal of this paper is to study more efficient

� This work was partially supported by the Future & Emerging Technologies unit of
the European Commission through Project BISON (IST-2001-38923).

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 358–372, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Design and Analysis of a Bio-inspired Search Algorithm 359

Application Domain

Representation

Affinity Measure

P2P Network − Human Body

Searched Item − Antigen

Search in P2P Networks

Query Message − Antibody

Hamming Distance (Query Message, Searched Item)

Immune Mechanism
Proliferation−based Search Algorithm

Affinity−governed

Fig. 1. Immune system concepts used to develop search algorithms

alternatives to the existing k-random walk. In this connection, we draw our
inspiration from the immune system.

Our algorithm has been inspired by the simple and well known mechanism of
the humoral immune system where B cells upon stimulation by a foreign agent
(antigen) undergo proliferation generating antibodies. Proliferation helps in in-
creasing the number of antibodies while mutation implies a variety of generated
antibodies. Consequently the antibodies can efficiently track down the antigens
(foreign bodies). Fig. 1 provides an illustration explaining how we have mapped
immune system concepts to our search problem. In our problem, the query mes-
sage packet is conceived as antibody which is generated by the node initiating
a search whereas antigens are the searched items hosted by other constituent
members (nodes) of the p2p network. Like in the natural immune system, the
packets undergo proliferation based upon the affinity measure between the mes-
sage packets and the contents of the node visited which results in an efficient
search mechanism. The work presented here is further development of the works
reported in [1, 2, 3].

In the next section, we detail the modeling abstractions upon which the
algorithms are based. Moreover, we elaborate our algorithms as well as different
variants of k-random walk algorithms. Furthermore, the evaluation metrics used
to compare the different schemes is introduced. The experimental results are
noted next in Section 3. Section 4 provides a theoretical outline explaining the
rationale behind the experimental results.

2 Modeling and Evaluation Methodology

It is impossible to model the complete dynamics of a p2p system. In this paper,
we do not attempt to resolve small quantitative disparities between k-random
walk and proliferation algorithms, but instead are trying to reveal fundamental
qualitative differences. While our simple models do not capture all aspects of
reality, we hope they capture the essential features needed to understand the

360 N. Ganguly, L. Brusch, and A. Deutsch

fundamental qualitative differences between k-random walk and proliferation
algorithms.

2.1 Model Definition

P2p networks are networks formed through associations of computers, each pro-
viding equivalent services, eg. search facility, to the network. Thus, each peer
can be conceived as both client and server of a particular service [8]. To model
a search service, we focus on the two most important aspects of a p2p system:
p2p network topology, query and data distribution. For simplicity, we assume
the topology and distribution do not change during the simulation of our algo-
rithms. For the purpose of our study, if one assumes that the time to complete a
search is short compared to the time of change in network topology and change
in query distribution, results obtained from the fixed settings are indicative of
performance in real systems.

Network Topology : By network

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

No of Nodes

N
o

.
o

f
N

e
ig

h
b

o
rs

Random Topology

Fig. 2. Cumulative distribution of node

degrees in Random graph, 10000 nodes,

with μnd = 4

topology, we mean the graph formed
by the p2p overlay network; each p2p
member has a certain number of neigh-
bors and the set of neighbor connections
forms the p2p overlay network. For our
studies, we use random graphs. Ran-
dom graphs are considered as the best
type of topology to represent the ma-
jority of the realistic network topolo-
gies formed in the Internet [4, 8]. In
the experiments reported in this pa-
per, we have considered different ran-
dom graphs each having 10000 nodes.
However, their mean node indegree dif-
fers. The random graphs have been gen-
erated with the help of the topology generator BRITE[6]. In Fig. 2, we show the
node degree distribution followed by one of the representative graphs. This par-
ticular graph has 10000 nodes and mean node indegree μnd = 4.

Data and query distribution : Files are conceived as conglomeration of key-
words [5]. Hence the data distribution is represented in terms of keywords. It is
assumed that there are 2000 different keywords in the system. Each node hosts
some keywords. The number of keywords (not unique) in each node follows a
Poisson distribution with mean μkw = 1000. The data profile (D) of each node
can therefore be represented as

D = < (δ1, n1), (δ2, n2), · · · > & n1 + n2 + · · · = N

where δi are each individual keywords and ni indicates their weights (number of
times they are present in the node), N represents the total number of keywords.

Design and Analysis of a Bio-inspired Search Algorithm 361

The query comprises of single or multiple keywords and is represented as

M = < m1, m2, · · · >

where mi represents each individual keyword. For 95% of the cases, the query
length (say n) is ≤ 5 while it is between 6 to 10 in the rest 5% case. In the 95%
cases where the query length is ≤ 5, each length 1 to 5 is equiprobable. This is
similar for the rest 5% case.

Zipf’s distribution[10], is chosen to distribute each of the 2000 unique key-
words in the network. In Zipf’s distribution the frequency of occurrence of some
event (here keywords) t, as a function of the rank r, where the rank is deter-
mined by the above frequency of occurrence, follows a power-law ti ∝ 1

ra . In the
experimental setup, Zipf’s exponent (value of a) for both the query and the data
is 1. The ranking of keywords in terms of frequency is the same for both data
and query distribution.

2.2 Algorithms

In this section, we introduce two proliferation based as well as two random
walk based search algorithms. The important aspects of all these algorithms
are that although random walk or proliferation is exhibited by the message
packets, the algorithms are independently implemented by each node. And
coordinated behavior of the nodes produces the required packet dynamics. All
the algorithms can be expressed in terms of the following basic premise.

Basic Premise : The search in our p2p network is initiated from the user peer
(U). The user peer (U) emanates k (k ≥ 1) message packets (M) to its neighbors
- the packets are thereby forwarded to the surroundings. In the following we
present the search initiation process in algorithmic form.

Algorithm 1 InitiateSearch(U)
Input : Signal to initiate search.
Form Message Packet (M) = < m1, m2 · · · >; mi represents each individual keyword
Flood k message packets(M) to the neighbors of the user peer.

The message packets travel through the network and when a node (say A)
receives a message packet (M), it performs the following two functions.

Function 1 :- It checks whether any δi ∈ D of A is equal to any mi ∈ M
(incoming message). The number of successful matches Sm is represented by the
following equation.

Sm =
N∑

i=1

n∑
j=1

(mj ⊕ δi)× ni (1)

where mj ⊕ δi = 1, if mj = δi, else 0; N is the total number of keywords present
in the node while n represents the length of the search query. The node reports
the number of successful matches - Sm.

362 N. Ganguly, L. Brusch, and A. Deutsch

Function 2 :- It forwards the content of the message packet in some defined
manner to its neighbor(s).

In algorithmic form, we can represent the functions as Reaction p2p:

Algorithm 2 Reaction p2p(A)
Input : Message packet(M)

Calculate Sm from D & M /*Function 1*/
Algorithm Message Forward(A) /* Function 2*/

Each of the proliferation and random walk schemes defines Algorithm Mes-
sage Forward(A) differently. Elaboration of the algorithms corresponding to each
of the schemes follows.

Proliferation P : In the proliferation scheme, the packets undergo proliferation
at each node they visit. The proliferation is guided by a special function, whereby
a message packet visiting a node proliferates to form Np message packets which
are thereby forwarded to the neighbors of the node.

Algorithm 3 P(A)
Input : Message packet(M)
Produce Np message packets(M)
Spread the Np packets to Np randomly selected neighbors of A

The function determining the value of ‘Np’ ensures that Np is < η(A), where
η(A) is the number of neighbors of A and ≥ 1.

Restricted Proliferation (RP) : The restricted proliferation algorithm, sim-
ilar to P, produces Np messages. But these Np messages are forwarded only
if the node A has ≥ Np free neighbors. By ‘free’, we mean that the respective
neighbors haven’t been previously visited by message M . If A has Z ‘free’ neigh-
bors, where Z < Np, then only Z messages are forwarded, while the rest are
destroyed. However, if Z = 0, then one message is forwarded to a randomly
selected neighbor. The rationale behind the restricted movement is to minimize
the amount of message wastage. Because, two packets of message M visiting the
same peer essentially means wastage of the second packet.

Algorithm 4 RP (A)
Input : Message packet(M)
Produce Np message packets (M)
Z = No of ‘free’ neighbors
if (Z ≥ Np)

Spread the Np packets in Np randomly selected neighbors of A
else

if (Z > 0)
Spread Z packets in Z free neighbors of A
Discard the remaining (Np - Z) packets

else
Forward one message packet to a randomly selected neighbor of A
Discard the remaining (Np - 1) packets

Design and Analysis of a Bio-inspired Search Algorithm 363

We now elaborate the function which controls the amount of proliferation.

Proliferation Controlling Function : The proliferation of message packets
at any node A is heavily dependent on the similarity between the message packet
(M) and the data profile (D) of A. In this connection, we define the measure
of similarity between the data profile (D) of the node and the message packet
(M).

Sim =
Sm

N

where the value of Sm is calculated through Eq. (1). [Note Sm ≤ N, so the value
of Sim ≤ 1.] The number of packets Np proliferated is defined on the basis of
Sm in the following manner

Np = 1 + Sim× (η − 1)× ρ

where η represents the number of neighbors the particular node has; ρ represents
the proliferation constant, it is ≤ 1. (ρ is set to 0.5 in all our experiments.) The
above formula ensures that 1 < Np ≤ N .

k-random walk (RW) : In k-random walk, when a peer receives a message
packet after performing the task of comparison, as mentioned in Algo. 2, it
forwards the packet to a randomly selected neighbor.

Algorithm 5 RW (A)
Input : Message packet(M)
Send the packet M to a randomly chosen neighbor peer

Restricted Random Walk (RRW): InRRW , instead of passing the message
(M) to any random neighbor, we pass on the message to any randomly selected
‘free’ neighbor. However, if there is no ‘free’ neighbor, we then pass on the
message to any randomly selected neighbor.

Algorithm 6 RRW (A)
Input : Message packet(M)
Send the packet M to a randomly chosen ‘free’ neighbor peer

If (no ‘free’ neighbor)
Send the packet M to a randomly chosen neighbor peer

2.3 Metrics

In this paper we focus on efficiency aspects of the algorithms solely, and use the
following simple metrics in our abstract p2p networks. These metrics, though
simple, reflect the fundamental properties of the algorithms.

(a) Success rate: The number of similar items found by the query messages
within a given time period.

(b) Coverage rate: The amount of time required by the messages to cover a
percentage of the network.

(c) Effectivity per message: The number of search items produced by a single
message.

364 N. Ganguly, L. Brusch, and A. Deutsch

3 Simulation Results

The experimental results compare the efficiency of different algorithms (Algo.
3 - 6), with respect to the metrics defined in section 2.3.

As mentioned earlier, each of the above algorithms is distributed in nature
and the nodes perform the task independently of the others. However, to assess
the speed and efficiency of the algorithm, we have to ensure some sort of syn-
chronous operation among the peers. In this context we introduce the concept of
time whereby it is assumed that in one time unit, all the nodes in the network exe-
cute the algorithm once. That is, if a peer has some messages in its message queue,
it will process one message within that time frame. We believe although approxi-
mate, it is a fair abstraction of reality of p2p networks where each node is supposed
to provide equivalent services. The sequence of operation of the peers during one
time step is arbitrary. The length of the message queue is considered to be infinite.

In order to assess the efficiency of different algorithms, we have also to guarantee
fairness of ‘power’ among them which is explained next.

3.1 Fairness in Power

To ensure fair comparison among all the processes, we must ensure that each pro-
cess (P, RP , RW , RRW) participates in the network with the same ‘power’. To
provide fairness in ‘power’ for comparison of a proliferation algorithm (say P) and
a random algorithm (sayRW), we ensure that the total number of query packets
used is roughly the same in all the cases. Query packets determine the cost of the
search; toomanypackets causenetwork cloggingbringingdown the efficiency of the
system as a whole. It can be seen that the number of packets increase in the pro-
liferation algorithms over the generations, while it remains constant in the case of
random walk algorithms. Therefore the number of message packets - k in Algo. 1 is
chosen in a fashion so that the aggregate number of packets used by each individual
algorithm is roughly the same.

Besides the cost of themessage packets,during comparisonbetween a restricted
algorithm (sayRRW) and a non-restricted algorithm (sayP), we also have to keep
in mind that checking ‘whether a node was earlier visited or not’ involves a cost;
this also should be taken into consideration when defining ‘fairness’. Therefore,
the composite cost1 for a restricted algorithm can be defined as Ccomp = X + α ·
L, where X is the average number of message packets, L is the number of neighbor
lookup, while α is the ratio of cost of lookup to cost of actually sending the message;
α normally ≤ 1. However, in this case, since message length is small, we consider
the worst case scenario of α = 1 to depict our results.

To ensure fairness in ‘power’ between two proliferation algorithms (say [P &
RP]), we keep the proliferation constant ρ and the value of k the same for both
processes. The value of k for the proliferation algorithm is generally set as k = η(U),
where η(U) is the indegree of the initiator peer U .

1 Henceforth, cost or simple cost indicates the cost of message packets while composite
cost always means total cost of messages and neighbor lookup.

Design and Analysis of a Bio-inspired Search Algorithm 365

20 30 40 50 60 70 80 90
20

40

60

80

100

120

140

160

180

200

Percentage of Network Covered

T
im

e

P
RP
RRW
RW

a. Time taken to cover the network

20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

900

Percentage of Network Covered

#M
es

sa
ge

s

P
RP
RP − Composite Cost
RRW
RRW − Composite Cost

b. Cost incurred to cover network

Fig. 3. Graphs plotting the cost and network coverage time of P, RP , RRW , RW algo-

rithms in random network. The proliferation constant considered here is ρ = 0.5

3.2 Experimental Result – Network Coverage

As mentioned in Sec 2.1, we use a random graph, to evaluate the time taken by the
message packets to visit all the nodes of the network using different forwarding al-
gorithms. The particular random graph considered here has 10000 nodes and mean
node indegree μnd = 4. Its distribution is shown in Fig. 2. The experiment, network
coverage is detailed in the following two paragraphs.

COVERAGE : In this experiment, upon initiation of a search (Algo. 1), the
search operation (Algo. 2) is performed till the message packets cover the entire
network. The experiment is repeated 1000 times on randomly selected initial nodes.

During the experiment, we collect different statistic at every 10% of coverage of
the network that is, we collect statistic at [20%, 30% · · · 90%, 100%] of network cov-
erage. Since the message forwarding algorithms (Algo. 3 -6) are non-deterministic
in nature, message packets find it increasingly difficult to visit the last 10% of the
network. This is true for all the different variants ofmessage forwarding algorithms.
Consequently, in our results we avoid showing results from the last 10% as it only
depicts the aberration arising from the finite size of the network.

Fig. 3(a) shows the network coverage rate of different algorithmsP,RP ,RRW
and RW . The graph plots the % of network covered in the x-axis, while the time
taken to cover the corresponding % of network is plotted on the y-axis. It is seen
thatP andRP take almost identical time to cover up the network. The time taken
is,however,much less than that takenbyRRW andRW respectively.TheRRW is
much more efficient thanRW . We now assess the cost (both simple and composite)
incurred by each algorithm to produce the above mentioned performances.

Fig. 3(b) plots the increase in the average number of message packets present in
the network (also referred to as cost) in the y-axis with respect to the percentage
of network coverage for P, RP and RRW . For each RRW and RP , we show two
lines, one for simple and composite cost respectively. Comparing, RP and P, we
see thatRP uses a significantly smaller number of messages (about one-fifth) than

366 N. Ganguly, L. Brusch, and A. Deutsch

0 20 40 60 80 100
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

5

No of generation

N
o.

 o
f S

ea
rc

h
Ite

m
 (

S
)

RP
RP − average
RRW
RRW − average

a. Search efficiency of RP and RRW

20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

900

Percentage of Network Covered

#M
es

sa
ge

s

P
RP
RP − Composite Cost
RRW
RRW − Composite Cost

b. Cost incurred per item searched by
RP and RRW

Fig. 4. Graphs showing (a). search efficiency, and (b). cost incurred per item searched by

RP and RRW in random network

P and achieves the same performance. Even composite cost is significantly lower
forRP (657 forRP and 818 forP). To ensure the fairness criterion,RRW initially
starts with the number of packets which RP has used on the average to cover the
entire network (361), so it stays constant throughout the experiment; however the
composite cost steadily increases. It is the same as for RP at the 90% coverage
ratio. The number of messagesRW uses (not plotted) is 1881. 1881 is the average
composite cost incurred byRRW to cover the entire network.

It is found thatRRW is much more efficient thanRW . Similarly,RP is better
than P. So, in our subsequent discussions, we drop P andRW and concentrate on
a comparison betweenRP andRRW .

The next experimental results highlight the search efficiency ofRP andRRW .

3.3 Experimental Results - Search Efficiency

To compare the search efficiency ofRP &RRW , we perform the time-step experi-
ment on the random graph forRP andRRW , each spanning over 100 generations.
We use the same random graph as in Sec 3.2.

TIME-STEP : In this experiment, upon initiation of a search (algorithm (1)),
the search operation is performed for N (= 50) time steps. The number of search
items (s) found within 50 time steps from the commencement of the search is cal-
culated. From algorithm (2), we know each visited node returns Sm search items
(calculation done through Eq. (1)); s is the summation of Sm over all visited nodes.
The experiment is repeated for one generation where one generation is defined as
a sequence of 100 searches. The search output (s) is averaged over one generation

(100 different searches), whereby we obtain S, where S =
∑100

i=1
s

100 . The value of S is
used to draw the graphs explained next. In this experiment,RRW always performs
the experiment with k packets where k is the average number of packets used by
RP over 100 generations.

Design and Analysis of a Bio-inspired Search Algorithm 367

The graph of Fig. 4(a) shows the average value S against generation number
for RP and RRW . The x-axis of the graph shows the generation number while
the y-axis represents the average number of search items (S) found in the last 100
searches. In this figure, we see that the search results for bothRP andRRW show
fluctuations. The fluctuations occur due to the difference in the availability of the
searched items selected at each generation. However, we see that on the average,
search efficiency ofRP is almost 1.5-times higher than that ofRRW . (ForRP , the
number of hits ≈ 5 × 105, while it is ≈ 3.25 × 105 forRRW .)

Fig. 4(b) displays the effectivity per

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Mean Indegree of random graph (10000 nodes)

90
%

 c
ov

er
ag

e
tim

e

RP
P
RRW
RW

Fig. 5. Graphs illustrating the effect on

efficiency with varying indegree

messages (metrics defined in Sec. 2.3) of
each scheme. As expected, the effectivity
of message packets forRP is much higher
than RRW (keeping in mind the fair-
ness criterion we follow to generate ex-
perimental results). However, one more
important point to be noted is that the
standard deviation is particularly small
in the case of RP . Considering σE/μE

(Std. of effectivity/mean effectivity), it is
0.1 forRRW while it is just 0.08 forRP .
This is because inRP , thepackets arenot
generated blindly, but are instead regu-
lated by the availability of the searched
item. Therefore, if a particular searched
item is sparse in the network, RP produces a lower number of packets and vice
versa.

We now describe how efficiency of the different algorithms gets affected when
the indegree of the random graph is increased.

3.4 Experimental Results: Changing Indegree

In this experiment, we perform the coverage experiment on random graphs each
with 10000 nodes, but their mean indegree steadily increases.

Fig. 5 plots the time taken to cover the network (y-axis) byRP , P,RRW and
RW against different indegree configurations of the random graph (x-axis). The
figure shows that as indegree increases each algorithm becomes faster. However, it
is tobenoted that the speed of randomwalk algorithms accelerates at amuch faster
speed. In fact, from around node indegree 12, RRW and P take almost identical
time. This happens because as indegree of the random graph increases, in effect the
dimension (d) of the graph also increases. That is, each node can reach each other
node within a shorter time span. Random walk is particularly smart at higher di-
mensions which consequently provides the result. However, maintaining high in-
degree in p2p environment typically is a problem [9]. So, at lower indegree level
proliferation algorithms are much more effective than random walk algorithms.

We now summarize the results obtained through the above mentioned experi-
ments.

368 N. Ganguly, L. Brusch, and A. Deutsch

x1 x2

t > 00

t > t1 0

t > t
2 1

x ρ

u

a. Spreading of packet den-
sity u due to random walk
(diffusion).

0

1

1

x

t > t1 2

t

c

u

b. Movement of packet den-
sity u due to proliferation
(reaction-diffusion 1).

x1
x2 0

1

x

2 1t > t

1t

c

u

c. Movement of packet
density u due to restricted
proliferation (reaction-
diffusion 2)

Fig. 6. Packet movement with different algorithms in a continuous system with radial

coordinate x

3.5 Summary

The following is the summarization of the results.
(a).RP is more effective than P.
(b).RP is more effective than any random walk algorithm.
(c).RP has an in-built cost regulatory mechanism.
(d). The search efficiency ofRP is roughly one and a half times higher thanRRW.
(e).RRW becomes more effective as the indegree of the graph increases.

4 Theoretical Justification

In this section, we provide insights into the reasons behind the better performance
of proliferation compared to random walk algorithms. We provide our explanation
in the framework of a continuum model to derive the macroscopic behavior from
knowledge about the individual microscopic behavior of the packets. Unlike the
model described in the previous sections, for sake of analysis we assume that the
system is synchronous in the sense that all nodes operate at the same time. The
network is abstracted as a d-dimensional space where the dimension grows with
the average node indegree.

We relate the random walk algorithms to a simple diffusive system where the
diffusion starts from the origin. The proliferation algorithms can be conceived as
reaction-diffusion systems [7], where besides diffusion of packets, new packets are
continuously produced by the existing ones. Each of the two processes (diffusion
and reaction-diffusion) spreads the message packets through the network. The in-
sights which we will provide are based upon estimates of the speed of packet spread-
ing in the radial direction.

Fig. 6 illustrates the basic features of the two processes. Fig. 6(a) refers to
diffusion, Fig. 6(b) to a reaction-diffusion system with unrestricted proliferation,

Design and Analysis of a Bio-inspired Search Algorithm 369

whereas Fig. 6(c) corresponds to a reaction-diffusion system with restricted prolif-
eration. In all three graphs, we plot the density u(x, t) of message packets used to
conduct search versus the radial coordinate x. u can be conceived as a normalized
measure of the number of packets k. u and k is not quantitatively related in this
work, as that is not required to estimate the speed of packet spreading. Each of the
three systems is studied in detail below, here we discuss the figures one by one.

Fig. 6(a) shows three Gaussian curves at three different instances of time (t0,
t1, t2, where t0 < t1 < t2). As time increases, a particular density of packets (say ρ)
travels further away from the center. Moreover, since it follows a Gaussian distri-
bution, at time t→ 0, at distance x→∞, there is some concentration of packets u,
where u→ 0. However to cover all the nodes at distance x, a finite tangible concen-
tration of packets ρ should reach distance x. As can be seen from the figure, at time
t1, a concentration ρ covers distance x1 or more while at time t2 the same concen-
tration has covered ≥ x2 distance. Below we calculate the speed of diffusive packet
spreading for this finite density ρ.

On the other hand, in the case of reaction-diffusion systems (proliferation), the
movement of packets follows a traveling front pattern with a uniform front profile.
Figs. 6(b),(c) show such front profiles at time t1 and t2. For example, in Fig. 6(c),
we see that at time t1, till distance x2, the density u = 1, while beyond x1, it is zero.
The second curve at t2 is just a uniform shift of the first curve, hence characterized
by a front speed. We now elaborate each of the processes one by one.

A.RandomWalk(Diffusion):The randomwalkhas traditionallybeenmodeled
as diffusion in continuum systems for which the diffusion equation reads [7]

du

dt
= D · d2u

dx2
(2)

where D is the diffusion coefficient. We are considering a situation where at time
t = 0 all packets are concentrated at the origin from where they diffuse outwards.
Hence,u(x, t=0)= δ(x=0),where δ hasnon-zerovalueat0and0otherwise.There-
fore, solving the differential equation with the given initial condition, we obtain

u =
1

(2 · √D · π · t)d
· e− x2

4·D·t (3)

where d is the dimension of the system.
We transform this equation in order to express the position xρ of an arbitrarily

chosen fixed density ρ ! 1 as a function of time.

xρ(t) =

√
2 ·D · d · t · log

1
4 · ρ2/d ·D · π · t (4)

The speed c of diffusive packet spreading for any fixed density ρ is obtained by dif-
ferentiating xρ(t) with respect to time.

c =
2 ·D · d

2
√

2 ·D · d ·
log 1

4·ρ2/d·D·π·t − 1√
t · log 1

4·ρ2/d·D·π·t
(5)

370 N. Ganguly, L. Brusch, and A. Deutsch

For most of the time, the logarithm in the numerator is much larger than 1 and we
can neglect the 1, hence obtain simplified

c =

√
D · d

2
·
√

1
t

log
1

4 · ρ2/d ·D · π · t (6)

The result shows that packet spreading due to random walk becomes faster in

higher dimensions as c ∝ √d and is slowing down with time as c ∝
√

1
t · log 1

t .

B. Proliferation (Reaction-Diffusion 1): The proliferation algorithm can be
modeled as a system which is undergoing diffusion as well as gaining new packets
as copies of existing ones at the rate α at each time step. Therefore, the dynamics
can be expressed by the following equation

du

dt
= D · d2u

dx2
+ α · u (7)

This equation resembles a variation of a well-studied reaction-diffusion equation,
the Fisher equation [7]. We therefore utilize the standard result obtained for the
front speed in a generalized Fisher equation with reaction term f(u) [7].

du

dt
=

d2u

dx2
+ f(u) (8)

has a uniformly moving front as solution and this motion proceeds with the front
speed

c = 2 · [f ′(u1)]
1
2 , (9)

where f ′(u1) denotes the derivative of f(u) with respect to the packet density u at
the position u1. u1 = 0 is the state of the system that has now yet been visited by
the front.

Considering the equation (7), we can rescale it by

t∗ = α · t; x∗ = x · (α

D
)

1
2

dt∗ = α · dt; dx∗2
= dx2 · α

D
(10)

Therefore, the equation (7) becomes

α · [du

dt∗
=

d2u

dx∗2 + u] (11)

Hence f ′(u)=1,which implies f ′(u1)=1.Therefore, the front speed c of the system
is given by

c =
Δx

Δt
=

Δx∗ ·
√

D
α

Δt∗ · 1
α

= 2 ·
√

α ·D (12)

Design and Analysis of a Bio-inspired Search Algorithm 371

This result shows that the speed of packet spreading due to the proliferation
algorithm is constant, i.e. independent of time. The speed dependents on the pro-
liferation rate α and diffusion constant D but is independent of the dimension d.
Hence, the behavior of the proliferation algorithm drastically differs from that of
the random walk.

C. Restricted Proliferation (Reaction-Diffusion 2): In the model of re-
stricted proliferation, the number of packets initially increases at a rate α but the
packet production rate is lowered as packets encounter more and more packets,
i.e. density increases. We can conceive the function as logistic population growth
model, where f(u) can be modeled by the following equation

f(u) = α · u · (1− u) (13)

Therefore, the corresponding reaction-diffusion equation can be written as

du

dt
= D · d2u

dx2
+ α · u · (1− u) (14)

By using the same rescaling of space and time as above (10), we obtain

α · [du

dt∗
=

d2u

dx∗2 + u(1− u)] (15)

Therefore, f ′(u) = 1 - 2 u and u1 = 0. Hence f ′(u1) = 1 and following the same
arguments as in case B. we find c = 2 · √α ·D. This result implies the same speed
of packet spreading and dependence on parameters as in the case of unrestricted
proliferation.

To sum up, the above theoretical calculations of speeds of packet spreading due
todifferent algorithms can explain the following observations of the coverage exper-
iments (see Fig. 3(a)) and their dependence on the average indegree of the network
(see Fig. 5).

1. Proliferation algorithms propagate packets faster through the network as their
speed is independent of time whereas for random walks packet spreading slows

down with time c ∝
√

1
t · log 1

t . This explains the differences between the
curves P,RP andRW ,RRW in Fig. 3(a).

2. Restricted proliferation is as fast as the simple proliferation algorithm, for both
the same speed c = 2 ·√α ·D was calculated. This result is consistent with our
finding in Fig. 3(a) that the restricted proliferation scheme works as good as
the proliferation scheme and both curves P,RP coincide.

3. Random walk becomes faster as the effective dimension d of the network in-
creases, i.e. the indegree increases. This explains the strong dependence of per-
formance on the network indegree for both random walk algorithms in Fig. 5.

However, the calculations of the package spreading speeds do not account for the
differences in cost effectiveness between the different algorithms.

372 N. Ganguly, L. Brusch, and A. Deutsch

5 Conclusion

In this paper, we have produceddetailed experimental results showing that the sim-
ple immune-inspired concept of proliferation can be used to cover the network more
effectively than random walk. The proliferation algorithm can regulate the number
of packets to be produced during a search operation according to the availability
of the searched material, thus improving the efficiency of the search. Moreover, we
have provided theoretical results by calculating the packet spreading speeds which
explain many of the experimental observations and provide an understanding of
the improved performance of the immune-inspired search algorithm.

References

1. N Ganguly, G Canright, and A Deutsch. Design of a Robust Search Algorithm for
P2P Networks. In 11th International Conference on High Performance Computing,
December 2004.

2. NGanguly,GCanright, andADeutsch. DesignOfAnEfficient SearchAlgorithmFor
P2P Networks Using Concepts From Natural Immune Systems. In 8th International
Conference on Parallel Problem Solving from Nature, September 2004.

3. NGanguly andADeutsch. DevelopingEfficient SearchAlgorithms forP2PNetworks
Using Proliferation and Mutation. In 3rd International Conference on Artificial Im-
mune Systems, September 2004.

4. M. A. Jovanovic, F. S. Annexstein, and K. A. Berman. Scalability Issues in Large
Peer-to-peer Networks - A Case Study of Gnutella. Technical Report University of
Cincinnati, 2001.

5. Dik L. Lee, Huei Chuang, and Kent Seamons. Document ranking and the vector-
space model. IEEE Softw., 14(2):67–75, 1997.

6. A Medina, A Lakhina, I Matta, and J Byers. BRITE: An Approach to Universal
Topology Generation. In Proceedings of the International Workshop on Modeling,
Analysis andSimulation ofComputer andTelecommunications Systems-MASCOTS,
August 2001.

7. J. D. Murray. Mathematical Biology. Springer-Verlag, 1990.
8. A. (Ed) Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O

Reilly Books, 2001.
9. G. Pandurangan, P. Raghavan, and E. Upfal. Building low-diameter peer-to-peer

networks. IEEE Journal on Selected Areas in Communications (JSAC), 21(6), 2003.
10. G. K. Zipf. Psycho-Biology of Languages. Houghton-Mifflin, 1935.

Multifaceted Simultaneous Load Balancing in
DHT-Based P2P Systems: A New Game with

Old Balls and Bins�

Karl Aberer, Anwitaman Datta, and Manfred Hauswirth

Ecole Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences,

CH-1015 Lausanne, Switzerland
{karl.aberer, anwitaman.datta, manfred.hauswirth}@epfl.ch

Abstract. This paper presents and evaluates uncoordinated on-line al-
gorithms for simultaneous storage and replication load-balancing in DHT-
based peer-to-peer systems. We compare our approach with the classical
balls into bins model, and point out both the similarities as well as the
differences which call for new load-balancing mechanisms specifically tar-
geted at P2P systems. Some of the peculiarities of P2P systems, which
make our problem challenging are that both the network membership
and the data indexed in the network are dynamic, there is neither global
coordination nor global information to rely on, and the load-balancing
mechanism ideally should not compromise the structural properties and
thus the search efficiency of the DHT, while preserving the semantic
information of the data (e.g., lexicographic ordering to enable range
searches).

1 Introduction

Load balancing problems in P2P systems come along in many facets. In this
paper we report on our results on solving simultaneously a combination of two
important load balancing problems with conflicting requirements—storage and
replication load balancing–in the construction and maintenance of distributed
hash tables [1] (DHTs) to provide an efficient, distributed, scalable, and decen-
tralized indexing mechanism in P2P systems. The basic principle of distributed
hash tables is the association of peers with data keys and the construction of dis-
tributed routing data structures to support efficient search. Existing approaches
to DHTs mainly differ in the choice of topology (rings [2], multi-dimensional

� The work presented in this paper was supported (in part) by the National Com-
petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation under
grant number 5005-67322 and was (partly) carried out in the framework of the EPFL
Center for Global Computing and supported by the Swiss National Funding Agency
OFES as part of the European project Evergrow No 001935.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 373–391, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

374 K. Aberer, A. Datta, and M. Hauswirth

spaces[3], or hypercubes[4]), the specific rules for associating data keys to peer
keys (closest, closest in one direction), and the strategies for constructing the
routing infrastructure.

To use the available resources of peers best, a storage load balancing approach
is applied in all DHTs, i.e., associating keys to peers in a way so that the number
of data items each peer is associated with, is uniform in terms of storage con-
sumption. Most existing solutions achieve this by first mapping data keys and
peer identifiers into the same space using uniform hashing. Using this approach
storage load balancing essentially translates into the classical balls into bins prob-
lem [5], where peers are the bins (the peer identifier determines the data space)
and the data items are the balls. Adapting the classical load-balancing mech-
anisms in the context of P2P systems, such as load-stealing and load-shedding
schemes, in which peers share load with random peers, e.g., [6, 7], or power of
two choices [8], lead to the need of redirections which compromise the search ef-
ficiency, because keys become increasingly decoupled from the peers associated
with the corresponding key space and other structural properties are violated,
since routing needs additional redirections. The problem is further aggravated
with the growing recognition of the fact that uniform hashing to generate keys
which are uniformly distributed on the key space jeopardizes the possibility to
do searches on data using the data key semantics, typically the ordering of keys
to enable semantically rich queries like range queries.

The approach which we will follow in this paper is to have peers dynami-
cally change their associated key space (“bin adaptation”) decoupled from their
(unique and stable) identifier, and the routing between peers is based on the as-
sociated key space, rather than on the peer identifiers. Following this approach,
the partitioning of the key space dynamically adapts to any data distribution,
such that uniform distribution of data items over each partition of the key space
is achieved. This leads to uneven sizes of the partitions of the key space, which
can be viewed in the one-dimensional case analogously to having an unbalanced
search tree. This implies a risk of sacrificing search efficiency. However, we show
that due to the distributed and randomized routing process we propose (in P-
Grid), this risk can be contained, such that searches can be performed with
communication cost of O(log(|Π|)) with high probability where |Π| is the num-
ber of partitions of the key space, irrespective of the key space partitioning. This
satisfies the condition of efficient searches in the context of P2P systems under
the (standard) assumption that in a P2P network, local resources such as com-
putation and storage are cheap, but communication costs (messages or latency)
and network maintenance (routing) are expensive.

Beyond search efficiency, another important issue in P2P systems is resilience
against failures. The standard response to this problem is to introduce redun-
dancy. In the context of DHTs this corresponds to associating multiple peers
with the same partition of the search space, i.e., peers being replicas of each
other. A fair use of resources implies uniform replication of all data partitions,
which introduces the replication load balancing problem. Apart from providing
fault-tolerance, replication load balancing also provides query load distribution

Multifaceted Simultaneous Load Balancing in DHT-Based P2P Systems 375

over several peers. The initial approaches to balance replication used a prede-
fined global constant number of replicas for each data partition [2, 3, 9, 10]. These
approaches lack adaptivity to available resources and dynamics in the system.

The challenge is thus to determine adaptively an appropriate replication fac-
tor in absence of global knowledge (e.g., total peer population size, total storage
space, total data load) in order to distribute the resources in a dynamic environ-
ment (change in the peer membership, or the data in the network) in a fair way.

An alternative approach, which we pursue, is to determine the number of
replicas for each data space partition dynamically (resource adaptive replication
balancing) which again induces a load balancing problem, i.e., how to assure
that each partition is associated with approximately the same number of replica
peers1. Here, the key space partitions are the bins, and the peers are the balls.
This problem could again be solved by standard distributed load balancing al-
gorithms if the key space partitions were known. However, as mentioned before
in the context of storage load balancing, determining key space partitions by
itself is a dynamic load balancing problem to solve. This shows that the two
problems of storage load balancing and replication load balancing are inherently
intertwined.

In this paper we provide decentralized algorithms for both maintaining stor-
age load balance and resource adaptive replication load balance in a self-
organizing manner. For storage load balance we use recursive partitioning of
the key space performed during bilateral interactions among peers in order to
adapt the key space partitioning to the data distribution to ensure storage load
balancing. This mechanism also addresses dynamic changes, such that, if over
time the data distribution changes, the key space partitioning will change as
well. The partitioning process does not ensure replication balancing, and hence
we propose a complementary replication maintenance algorithm which decreases
imbalance in replication factors. Note that even if the partitioning algorithm
were to achieve perfect replication balancing, we would still need the replication
maintenance mechanism in order to cope with changes in the peer population,
due to node joins and leaves. Since global coordination and knowledge cannot be
assumed in a decentralized environment, the replication maintenance algorithm
relies on each peer obtaining an approximate local view of the system based on
sampling, for example, piggy-backed onto normal query-forwarding, and making
an autonomous probabilistic decision to replicate an overloaded key space pri-
oritized according to the load-imbalance between two sub-partitions of the key
space.

Though there are some sophisticated data aggregation schemes like Astro-
labe [12], the overheads and latency for acquiring a global view at each peer
are not amortized. Instead we use partial information gathered by peers in local
interactions, such that, both the latency and overheads of partial information

1 Resource adaptive uniform replication of all data items does not provide load-
balancing with respect to data item access. For that a complementary query-adaptive
replication strategy is necessary, which we discuss separately [11].

376 K. Aberer, A. Datta, and M. Hauswirth

aggregation are much lower, and still decent load-balancing characteristics are
achieved.

Our approach has several advantages: We address multifaceted load-balancing
concerns simultaneously in a self-organizing manner without assuming global
knowledge, or restricting the replication to a predetermined number. We preserve
key ordering which is important for range queries, while retaining the logarithmic
search complexity. And we do not compromise structural properties of DHT.
Our approach is implemented in our DHT-based P-Grid P2P system which is
available at http://www.p-grid.org/.

2 The P-Grid Data Structure

We use our DHT-based P-Grid P2P system [13, 14] to evaluate the approach
described in this paper. We assume that the reader is relatively familiar with
the standard distributed hash table (DHT) approach [1] and thus only provide
P-Grid’s distinguishing characteristics.

In P-Grid, peers refer to a common underlying tree structure in order to
organize their routing tables (other topologies in the literature include rings [2],
multi-dimensional spaces [3], or hypercubes [4]). In the following, for simplicity
of presentation, we will assume that the tree is binary. This is not a fundamental
limitation as a generalization of P-Grid to k-ary structures has been introduced
in [15]. Note that the underlying tree does not have to be balanced but may be
of arbitrary shape, thus facilitating to adapt the overlay network to unbalanced
data distribution [16].

Each peer p ∈ P is associated with a leaf of the binary tree. Each leaf corre-
sponds to a binary string π ∈ Π. Thus each peer p is associated with a path π(p).
For search, a peer stores for each prefix π(p, l) of π(p) of length l a set of refer-
ences ρ(p, l) to peers q with property π(p, l) = π(q, l), where π is the binary string
π with the last bit inverted. This means that at each level of the tree the peer has
references to some other peers that do not pertain to the peer’s subtree at that
level. This enables the implementation of prefix routing for search.

Each peer stores a set of data items δ(p). Ideally for d ∈ δ(p) the key κ(d)
of d has π(p) as prefix. However, we do not exclude that temporarily other data
items are also stored at a peer, that is, the set δ(p, π(p)) of data items whose key
matches π(p) can be a proper subset of δ(p). In addition, peers also maintain
references σ(p) to peers having the same path, i.e., their replicas.

In a stable state (i.e. where no more maintenance operations are applicable)
the set of paths of all peers is prefix-free and complete, i.e., no two peers p and
q exist such that π(p) ⊂ π(q), i.e., π(p) is a proper prefix of π(q) and if there
exists a peer p with path π(p), then there also exists a peer q with π(p) = π(q).
This guarantees full coverage of the search space and complete partitioning of the
search space among the peers. All data stored at a peer then matches its path.

For search, P-Grid uses a prefix routing strategy. When receiving a search
message for key κ from peer p, a peer q checks whether its path is a prefix of κ.

Multifaceted Simultaneous Load Balancing in DHT-Based P2P Systems 377

If yes, it checks whether it can return a query result from its data store. If not,
it randomly selects a peer r having a common prefix of maximal length with κ
from its routing table and forwards the request to peer r.

The algorithm always terminates successfully in the stable state: Due to the
definition of ρ(p, l), this prefix routing strategy will always find the location of a
peer at which the search can continue (use of completeness) and each time the
query if forwarded, the length of the common prefix of π(p) and κ increases. It is
obvious that this search algorithm is efficient (O(log(|Π|))) for a balanced tree,
i.e., all paths associated with peers are of equal length. Skewed data distributions
may imbalance the tree, so that it may seem that search cost may become non-
logarithmic in the number of messages. However, in [16] we show that due to the
probabilistic nature of the P-Grid approach this does not pose a problem. The
expected search cost measured by the number of messages required to perform
the the search remains logarithmic, independently how the P-Grid is structured.

Theorem 1. The expected search cost for the search of a specific key κ(d) using a
P-Grid network N that is randomly selected among all possible P-Grids, starting
at a randomly selected peer p with π(p) ∈ Π is less than log(|Π|).

Although this applies to the special case of prefix-free P-Grids, we have shown
by simulation that the result also applies to more general cases. A formal proof
of this theorem is given in [16]. Due to space limitations we can only provide
the intuition which is underlying the proof. Basically we show that the path
resolution in the forwarding process normally is not done bit by bit but for
longer bit sequences at the processing peers thus keeping the number of messages
required in the forwarding process logarithmic. Additionally, [16] shows that the
probability that a search does not succeed after k steps (1 ≤ k ≤ max(|π|, π ∈
Π)) is smaller than log(n|Π|)k−1

(k−1)! .

3 P-Grid Construction Algorithm

The construction and maintenance of P-Grid is based exclusively on local inter-
actions among peers in order to observe the principle of locality. In this section
we give an overview of the possible interactions that determine the behavioral
options of peers. As peers are autonomous they may use different strategies for
entering into such local interactions. The choice of concrete strategies will be
essential with respect to the global efficiency of the system and discussed later.

Interactions among peers are either performed actively by the peers (similar
to the peer discovery in Gnutella using the ping-pong messages) or are performed
reactively triggered by earlier interactions or search messages. For maintenance
purposes, the following interactions occur among two peers p and q:

– balancedSplit(p, q): The peers check whether their paths are identical. If
yes, they extend their paths by complementary bits, i.e., partition (split) the
key space they are responsible for. To maintain consistency they exchange
their data corresponding to their updated paths and add each other to their

378 K. Aberer, A. Datta, and M. Hauswirth

routing table. This enables the refinement of the indexing structure into
subspaces which are sufficiently populated with data.

– unbalancedSplit(p, q): The peers check whether π(p) is a proper prefix of
π(q). In the case π(p) is a proper prefix of π(q), p extends its path by one
bit complementary to the bit of π(q) at the same level. The peers exchange
their data corresponding to the updated paths and update their routing
table. This enables the refinement of the indexing structure into subspaces
as in the previous case, but covers the frequently occurring situation that
peers have already specialized to different degrees. The case where π(q) is a
proper prefix of π(p) is treated analogously.

– adoptPath(p, q): Peer p becomes a copy (replica) of peer q. In order to avoid
data loss peer p attempts to locate peers covering the same subspace and to
delegate any non-replicated data items there. If this is not possible it keeps
data items not matching the new path to delegate it at a later time.

– balancedDataExchange(p, q): The peers check whether their paths are iden-
tical. If yes, they replicate mutually all data pertaining to their common path
which increases resilience (availability of the data items).

– unbalancedDataExchange(p, q): The peers check whether π(p) is a proper
prefix of π(q) (or vice versa). If yes, data of p pertaining to π(q) is moved
to q.

– refExchange(p, q): The peers exchange entries from their routing tables up
to the level corresponding to the length of their common prefix randomly.
This interaction randomizes the contents of the routing tables which is essen-
tial to maintain routing efficiency, in particular in the unbalanced case [16].

– forwarding(p, q): If the peers’ paths are not in a prefix relationship the peer
q provides the peer p with an address of a peer r selected from its routing
table which shares a prefix of maximal length with π(p) (or vice versa). Then
peer p enters into an interaction with peer r.

The conditions under which these rules are applied determine the strategies
peers pursue in interactions. From these local interaction strategies a global
system behavior emerges. The following sequence of actions performed by peers
p and q entering into an interaction describes a possible strategy to construct
a P-Grid structure from an initial state where all peers store some initial data
and have empty paths and routing tables.

Algorithm 1
refExchange(p, q);
if |δ(p, π(p)) ∪ δ(q, π(q))| ≤ 2δmaxthen balancedDataExchange(p, q)
if |δ(p, π(p)) ∪ δ(q, π(q))| > 2δmax;then balancedSplit(p, q)
unbalancedSplit(p, q);
forwarding(p, q);

In this strategy, peers first exchange routing information if possible. Then
depending on the relationship among their paths and the current storage load
they select one of the four subsequent actions. (Note that we do not explicitly
repeat the necessary conditions on the path relationship for executing these

Multifaceted Simultaneous Load Balancing in DHT-Based P2P Systems 379

actions). We observe that due to the forwarding action any initial interaction
will eventually lead to the enabling of one of the balanced or unbalanced split or
data exchange operations. For a uniform data distribution and provided that the
total number of data items is less than δmaxn, where is the total number of peers,
this algorithm will end up in a state where each peer carries at most 2δmax data
items, the P-Grid structure is (approximately) balanced and all replica peers
store the same data.

Theorem 2. If the total number of data items is less than δmaxn and data keys
are uniformly distributed Algorithm 1 results in a steady state in which the P-
Grid is prefix-free and complete and each peer p with replicas has a data load
smaller than 2δmax, all replicas store the same data and in expectation all data
items are equally replicated.

Proof Sketch: First we have to show that the steady state is reached. Prefix-
freeness follows from the fact that whenever a peer has a path that is a prefix
of another peer’s path, it eventually will encounter this peer and perform an
unbalanced split. Completeness follows from the fact that new paths can only
occur as the result of a balanced split. If a peer has a replica and the data load
is larger than 2δmax, it will eventually perform a split with its replica. If peers
with the same path have different data items then they will eventually perform
a balanced data exchange. Second, it is easy to see that once the steady state
is reached none of the rules can induce further changes to the paths or data
associated with the peers. �

The problem is that with this strategy peers preferably adapt shorter paths
and therefore even though peers try to balance their storage load, the distribution
of replicas over the different paths becomes unbalanced in the case of non-uniform
distribution of data keys: In a balanced split the same number of peers decide
for each side of the data space independent of the actual distribution of data
among the two subspaces, and in an unbalanced split peers decide for one side
with a probability proportional to the number of peers already specialized for
each side of the data space, but independent of the number of data items present
in the two subspaces. This has the further effect that fewer peers specialize on
paths with higher data load, and sooner end up without replicas. They thus lack
the capacity to further refine the path and thus reduce their data load.

To address this problem we consider a different strategy to improve replica
balancing already during construction of the P-Grid structure.

Algorithm 2
refExchange(p, q);
if |δ(p, π(p))∪δ(q, π(q))|≤2δmax∧γ([0, 1])<αthen balancedDataExchange(p, q)
if |δ(p, π(p)) ∪ δ(q, π(q))| > 2δmax;then balancedSplit(p, q)
if γ([0, 1]) < βthen unbalancedSplit(p, q)else adoptPath(p, q);
forwarding(p, q);

In this strategy two mechanisms work together to improve replica balancing.
First, balanced splits are not always performed eagerly, but with reduced prob-
ability α, where α may depend on the locally observed load distribution. Thus

380 K. Aberer, A. Datta, and M. Hauswirth

more unbalanced split situations occur. In those situations peers only either ex-
tend their path opposite to the path of the encountered peer or adopt the path.
The decision is based on a control parameter β which again may depend on the
locally observed load distribution. As a result, if α and β are properly chosen,
those subspaces will be populated by more peers that contain more data. Even
though, this heuristic approach does not necessarily induce a perfectly uniform
replica distribution, it substantially improves the state reached after the P-Grid
construction. The remaining balancing is then achieved by the sampling-based
replication maintenance algorithm, that we will introduce subsequently. Hav-
ing a more uniform initial replica distribution substantially reduces the effort
required from the maintenance algorithms in order to rectify the distribution.

The construction algorithm can be extended to a maintenance algorithm
(path retraction). The path retraction is dual to the path extension, such that if
two partitions do not have enough data (< δmax/2), then such partitions would
be merged.

4 Replication Maintenance Algorithm

To address the balancing problems discussed in the previous sections, we use a
reactive randomized distributed algorithm which tries to achieve globally uni-
form replication adaptive to globally available resources based on locally avail-
able (gathered) information. Before introducing the algorithm we introduce the
principles underlying its design.

Consider a P-Grid of leaves as shown in Figure 1(a). Let N1 > N2 be the
actual number of replica peers with paths 0 and 1. To achieve perfect replication
balancing N1−N2

2 of the peers with path 0 would need to change their path
to 1. Since each of the peers has to make an autonomous decision whether to
change its path, we propose a randomized decision: Peers decide to change their
paths with probability p0→1 = max(N1−N2

2N1
, 0) (no 0 → 1 transition occurs if

N2 > N1).

N1 N2

If N1 > N2

Path = 0* Path = 1*

p = (N1-N2)/2(N1+N2)

If N1 < N2

State transition probability

N2

Path = 10*

N
1

Path = 0*

N3

Path = 11*

Local region

 for paths 1*

Global region

 for paths 1*

Bit wise (local)

statistics and
load-balancing

decisions

(N
2
+N

3
)/2

Replication for
path 1* as

perceived by
peers at 0*

Fig. 1. (a) P-Grid with two leaves, (b) P-Grid with three leaves

Now, if we set p0 = N1
N1+N2

as the probability that peers have path 0,
and similarly p1 = N2

N1+N2
, then the migration probability becomes p0→1 =

Multifaceted Simultaneous Load Balancing in DHT-Based P2P Systems 381

max(1
2 (1 − p1

p0
), 0). It is easy to see that with this transition probability on av-

erage an equal replication factor is achieved for each of the two paths after each
peer has taken the migration decision. In a practical setting peers do not know
N1 and N2, but they can easily determinate an approximation of the ratio N1

N2
by keeping statistics of the peer they encounter in (random) interactions.

Now consider the case of a P-Grid with three leaves, as shown in Figure 1(b),
with N1, N2 and N3 replicas for the paths starting with 0, 10 and 11 respectively.
This extension of the example captures the essential choices that have to be
made by individual peers in a realistic P-Grid. In an unbalanced tree, knowing
the count of peers for the two sides at any level is not sufficient because, even if
replication is uniform, the count will provide biased information, with a higher
value for the side of the tree with more leaves. On the other hand, knowledge of
the whole tree (shape and replication) at all peers is not practical but fortunately
not necessary either. For example, in the P-Grid with three leaves, peers with
path 0 will meet peers with paths 10 and 11. Essentially, they need to know
that there are on an average N2+N3

2 peers at each leaf of the other sub-tree,
but do not need to understand the shape of the sub-tree or the distribution of
replication factors.

Thus, while collecting the statistical information, any peer p counts the num-
ber of peers encountered with common prefix length l for all 0 ≤ l ≤ |π(p)|.
It normalizes the count by dividing it with 2|π(q)|−|π(p)∩π(q)|. Thus peers obtain
from local information an approximation of the global distribution of peers per-
taining to their own path. The latter aspect is important to maintain scalability.

In our example, peers with path 0 will count on an average N2+N3
N1

as many
occurrences of peers with path 10 or 11 than they will count with path 0, but
will normalize their count by a factor of 1

2 . Thus at the top level they will
observe replica balance exactly if on average N1 = 1

2 (N2 + N3). If imbalance
exists they will migrate with probability p0→1 = max(1

2 (1− p1
p0

), 0), where, now

p0 = N1
N1+

1
2 (N2+N3)

and p1 =
1
2 (N2+N3)

N1+
1
2 (N2+N3)

.
Once balance is achieved at the top level, peers at the second level with

paths 10 and 11 will achieve balance as described in the first example. Thus local
balancing propagates down the tree hierarchy till global balance is achieved. The
peers with longer paths may have multiple migration choices, such that balancing
is performed at multiple levels simultaneously. For example, if N1 = N2 < N3

peers with path 11 can choose migrations 11 → 0 and 11 → 10 with equal
probability.

Note that Ni changes over time, and thus the statistics have to be refreshed
and built from scratch regularly. Thus the algorithm has two phases, (1) gath-
ering statistics and (2) making probabilistic decisions to migrate. It is easy to
verify, e.g. by numerical simulation, that this approach is effective in the basic
scenario discussed. Now we introduce the algorithms extending the principle idea
to the general situation.

Collecting Statistical Information at Peer p: In a decentralized setting, a
peer p has to rely on sampling to obtain an estimate of the global load imbalance:

382 K. Aberer, A. Datta, and M. Hauswirth

Upon meeting any random peer q, peer p will gather statistical information for all
possible levels l ≤ |π(p)| of its path, and update the number of peers belonging
to the same subspace Σp(l) = |{q s.t. |π(p)∩ π(q)| ≥ l}| and the complimentary
subspace Σp(l) = |{q s.t. π(p, l) = π(q, l)}| at any level l. When peers p and q
interact, statistics gathering is performed as follows

l := |π(p) ∩ π(q)|;
Σp‖q(l) := Σp‖q(l) + 21+l−|π(q‖p)|;
∀0 ≤ i < l Σp‖q(i) := Σp‖q(i) + 21+i−|π(q‖p)|;

where the meta-notation p‖q denotes that the operations are performed sym-
metrically both for p and q.

Choosing Migration Path for Peer p: A path change of a peer only makes
sense if it reduces the number of replicas in an underpopulated subspace (data).
Therefore, as soon as a minimum number of samples have been obtained, the
peer tries to identify possibilities for migration. It determines the largest lmax

such that Σp(lmax)

Σp(lmax)
> ζ where ζ ≥ 1 is a dampening factor which avoids migration

if load-imbalance is within a ζ factor. We set lmax := ∞ if no level satisfies the
condition.

If all peers try to migrate to the least replicated subspace, we would induce
an oscillatory behavior such that the subspaces with low replication would turn
into highly replicated subspaces and vice versa. Consequently, instead of greedily
balancing load, peers essentially have to make a probabilistic choice proportional
to the relative imbalance between subspaces. Thus lmigration is chosen between
lmax and |π(p)| with a probability distribution proportional to the replication
load-imbalance Σp(i)

Σp(i)
, |π(p)| ≥ i ≥ lmax. Thus the migrations are prioritized to

the least populated subspace from the peer’s current view, yet ensuring that the
effect of the migrations is fair, and not all take place to the same subspace. There
are subtle differences in our approach to replication balancing in comparison to
the classical balls into bins load balancing approach, because in our case there
are no physical bins, which would share load among themselves, and it is rather
the balls themselves, which need to make an autonomous decision to migrate.
Moreover, the load sharing is not among bins chosen uniformly, but is prioritized
based on locally gathered approximate global imbalance knowledge.

To further reduce oscillatory behavior, the probability of migration is re-
duced by a factor ξ ≤ 1. As migration is an expensive operation—it leads to
increased network maintenance cost due to routing table repairs, apart from the
data transfer for replicating a new key space—it should only occur if long-term
changes in data and replication distribution are observed and not result from
short term variations or inaccurate statistics. The parameters ζ and ξ are design
parameters and the impact of their choice on the system behavior will be further
explored in Section 5.

Migrating Peer p: The last aspect of replication load balancing is the action of
changing the path. For that, peer p needs to find a peer from the complimentary
subspace and thus inspects its routing table ρ(p, lmigration) (s.t. π(p) ∩ π(q) =

Multifaceted Simultaneous Load Balancing in DHT-Based P2P Systems 383

lmigration). After identifying a peer q, p clones the contents of q, including data
and routing table, i.e., δ(p) := δ(q) and ρ(p, ∗) = ρ(q, ∗), and the statistical
information is reset in order to account for the changes in distribution.

5 Simulation Results

This section highlights some of the many experiments we performed using a simu-
lator implemented in Mathematica to evaluate the construction and maintenance
algorithms. The simulations aim at verifying the load balancing characteristics
of the algorithms, and do not model aspects related to the physical runtime
environment with different network topologies, communication latencies, or het-
erogeneity of resources of nodes.

Unless mentioned otherwise, simulations were performed with 256 peers. This
relatively low number was chosen to keep simulation time manageable. From the
design of the algorithms it is clear that the results will scale up to larger pop-
ulations. To support this, we will give one result for the complete maintenance
algorithm with changing peer population at the end. The data was chosen from
a Zipf distribution with parameter θ = 0.8614 such that the frequencies of keys
were monotonically increasing with decreasing size of the key. We set δmax = 50.

Replication Load Balancing Throughout Construction: In Section 3 we
discussed a possibility to maintain better replica load balancing while establish-
ing storage load balance during P-Grid construction, by reducing the probability
α of balanced splits of the key space (while choosing β = 1). In Table 1 we show
the results of an experiment in which each peer initially holds 15 data items.

Table 1. Influence of splitting probability α on distribution of replication factor

α Interactions Rμ Rσ2 Rmax

0.05 40,000 3.32 1.82 10
0.1 35,000 3.20 1.99 9
0.5 20,000 3.55 3.39 21
1.0 20,000 3.28 3.94 23

We see how a reduction of α reduces both the variance Rσ2 in the replication
factors for the key space partitions and the maximum replication factor Rmax,
where Rμ is the average replication factor with an expected value of 3.33.2 With
lower probabilities more interactions occur to reach a steady state.

Replication Load Balancing Throughout Maintenance: Given a P-Grid
that partitions the data space such that the storage load is (approximately) uni-
form for all partitions, migrations are used to establish simultaneous balancing

2 There are 256 ∗ 15 data items, on average 50 of them are stored at each peer. They
require 256∗15

50 partitions to be replicated among 256 peers, which results in 50
15 = 3.33

replicas on average.

384 K. Aberer, A. Datta, and M. Hauswirth

of replication factors for the different partitions without changing the data space
partitioning. For the experiments we chose the design parameters ζ = 1.1 (re-
quired imbalance for migration), ξ = 0.25 (attenuation of migration probability)
and a statistical sample size of 10. These parameters had been determined in
initial experiments as providing stable (non-oscillatory) behavior.

The performance of the migration mechanism depends on the number of key
space partitions and the initial number of peers associated with each partition.
Since the expected depth of the tree structure grows logarithmically in the num-
ber of partitions, and the maintenance is expected to grow linearly with the
depth of the tree (since each peer uses its local view for each level of its current
path), we expect the maintenance algorithm to have logarithmic dependency
between the number of partitions and the rate of convergence.

Figure 2 shows the reduction of the variance of the distribution of replication
factors compared with the initial variance as a function of the number of key
space partitions. The simulation was starting from an initially constructed, un-
balanced P-Grid network with replication factors chosen uniformly between 10
and 30 for each of the key space partitions. We compared the effect of an increas-
ing number of key space partitions (p = {10, 20, 40, 80}) on the performance of
the replication maintenance algorithm. One observed that the reduction of vari-
ance increases logarithmically with the number of partitions. For example, for
p = 80 the initial variance is reduced by approximately 80%. We conducted 5
simulations for each of the settings. The error bars give the standard deviation
of the experimental series.

The right part of Figure 2 shows the rate of the reduction of variance of
replication factors as a function of different numbers of peers associated with
each key partition. We used a P-Grid with p = 20 partitions and assigned to
each partition uniformly randomly between k and 3k peers, such that the average
replication factor was 2k. The other settings were as in the previous experiment.
Actually variance reduction appears to slightly improve for higher replication
factors. This results from the possibility of a more fine-grained adaptation with
higher replication factors.

1 2 3 4
10 2^ k 1 paths

0.2

0.4

0.6

0.8

1

variance red

1 2 3 4 5 6 7
k

0.1

0.2

0.3

0.4

0.5

variance red

Fig. 2. Maintenance of replication load-balance

Simultaneous Balancing of Storage and Replication Load in a Dynamic
Setting: In this experiment we studied the behavior of the system under dy-

Multifaceted Simultaneous Load Balancing in DHT-Based P2P Systems 385

namic changes of the data distribution. Both storage load balancing by restruc-
turing the key partitioning (i.e., extending and retracting paths) and replication
balancing by migration were performed simultaneously. We wanted to answer the
following two questions: (1) Is the maintenance mechanism adaptive to chang-
ing data distributions? (2) Does the combination of restructuring and migration
scale for large peer populations?

For the experimental setup we generated synthetic, unbalanced P-Grids with
p = 10, 20, 40, 80 paths and chose replication factors for each path uniformly
between 10 and 30. Thus, for example, for p = 80 the expected peer population
was 1600. The value δmax was set to 50 and the dataset consisted of approx-
imately 3000 unique Zipf-distributed data keys, distributed over the different
peers such that each peer held exactly those keys that pertained to its current
path. Since the initial key partition is completely unrelated to the data distribu-
tion the data load of the peers varies considerably, and some peers temporarily
hold many more data items than their accepted maximal storage 2δmax load
would be. Then the restructuring algorithms, i.e., path extension and retrac-
tion used for P-Grid construction and path migrations used for replication load
balancing, were executed simultaneously.

Table 2 shows the results of our experiments. We executed an average of 382
rounds in which each peer initiated interleaved restructuring and maintenance
operations, which was sufficient for the system to reach an almost steady state.
Rσ2 is the variance of the replication factors for the different paths and Dσ2 is
the variance of the number of data items stored per peer.

Table 2. Results of simultaneous balancing

Number of paths Rσ2 Dσ2
Number of peers

initial final initial final initial final

219 10 43 55.47 3.92 180,338 175

461 20 47 46.30 10.77 64,104 156

831 40 50 40.69 45.42 109,656 488

1568 80 62 35.80 48.14 3,837 364

The experiments show that the restructuring of the network as well as repli-
cation balancing was effective and scalable: (1) In all cases the data variance
dropped significantly, i.e., the key space partitioning properly reflects the
(changed) data distribution. Because of the randomized choices of the initial
P-Grid structure and the data set, the initial data variance is high and varies
highly. It actually depends on the degree to which the randomly chosen P-Grid
and the data distribution already matched. From the case p = 40 (number of
initial paths), we conclude that this has also a substantial impact on the conver-
gence speed since more restructuring has to take place. Actually, after doubling
the number of interactions, the replication variance dropped to 20.93, which is
an expected value. (2) With increasing number of replicas per key partition the
replication variance increases. This is natural as fewer partitions mean higher

386 K. Aberer, A. Datta, and M. Hauswirth

replication on average and thus higher variance. (3) With increasing peer popu-
lation the final data variance increases. This is expected as we used a constant
number of interactions per peer and the effort of restructuring grows logarith-
mically with the number of key partitions.

The algorithms do not require much computation per peer hence have a low
overhead. Simulating them, however takes considerable effort: A single experi-
ment with 3∗105 interactions for the results in this section took up to 1 full day.
Thus we had to limit the number and size of the experiments. Nevertheless they
indicate the feasibility, effectiveness and scalability of the algorithms.

6 Related Work

For data replication in P2P systems we can distinguish six different methods
(partially according to the classification from [17]): Owner replication replicates
a data object to the peer that has successfully located it through a query (Nap-
ster, Gnutella, Kazaa). Path replication replicates a data object along the search
path that is traversed as part of a search (Freenet, some unstructured P2P net-
works). Random replication replicates data objects as part of a randomized pro-
cess. [17] shows that for unstructured networks this is superior to owner and path
replication. Controlled replication replicates a data object a pre-defined number
of times upon insertion (Chord [2], CAN [3], and Pastry [9]). This approach
does not adapt replication to the changing environment with variable resource
availability. The replication balancing mechanism proposed in this paper (and
as used in P-Grid) is adaptive to the available resources in the system. This
mechanism tries to uniformly exploit the storage resources available at peers,
and thus achieve uniform distribution of the replicas of data objects. In addi-
tion, query adaptive replication [11] can be used in various structured overlays,
complementing controlled or available resource adaptive replication.

Replication of index information is applied in structured and hierarchical P2P
networks. For the super-peer approach it has been shown that having multiple
replicated super-peers maintaining the same index information increases system
performance [18]. Structured P2P networks maintain multiple routing entries to
support alternative routing paths if a referenced node fails. With respect to load
balancing in DHT based systems only a few recent works have been reported.
The application of uniform hashing and its limited applicability have already
been discussed in the introduction.

The load balancing strategy for Chord proposed in [7] uses multiple hash
functions instead of only one to select a number of candidate peers. Among those
the one with the least load stores the data item and the others store pointers to it.
This scheme does not scale in the number of data items due to the effort incurred
by redirection pointer maintenance. Moreover, using a predetermined number of
hash functions do not give any adaptivity according to the systems requirement.
Also Chord’s original search no longer works and essentially multiple Chord
overlays have to be maintained which are interconnected among themselves in a
possibly unpredictable manner.

Multifaceted Simultaneous Load Balancing in DHT-Based P2P Systems 387

Another scheme for load balancing for Chord is suggested in [19] based on
virtual servers. Nodes are responsible to split the data space to keep the load
of each virtual server bounded. The splitting strategy is similar to the splitting
used in our storage load balancing strategy, however, this work does not consider
the effects on replication nor on search efficiency.

Online load-balancing has been a widely researched area in the distributed
systems domain. It has often been modeled as balls into bins [5]. Traditionally
randomized mechanisms for load assignment, including load-stealing and load-
shedding and power of two choices [8] have been used, some of which can partly
be reused in the context of P2P systems as well [7, 6]. In fact, from storage load-
balancing perspective, [6] compares closest to our approach because it provides
storage load-balancing as well as key order preservation to support range queries,
but in doing so, they no more provide any guarantee for efficient searches of
isolated keys.

As mentioned earlier, load-balancing in DHTs poses several new challenges,
which call for new solutions. We need to deal with the dynamic membership
(off-online behavior of peers) and dynamic content, and there is neither global
coordination nor global information to rely on, and the load-balancing mech-
anism should ideally not compromise the structural properties and the search
efficiency of the DHT, while preserving the semantic information of the data.
In [20], storage load-balancing is achieved by reassignment of peer identifiers in
order to deal with network churn, but this scheme is designed specifically for
uniform load distribution only. The dynamic nature of P2P systems is also dif-
ferent from the online load-balancing of temporary tasks [21] because of the lack
of global knowledge and coordination. Moreover, for replication balancing, there
are no real bins, and actually the number of bins varies over time because of
storage load balancing, but the balls (peers) themselves have to autonomously
migrate to replicate overloaded key spaces. Also for storage load balancing, the
balls are essentially already present determined by the data distribution, and it
is essentially the bins that have to fit the balls by dynamically partitioning the
key space, rather than the other way round.

Substantial work on distributed data access structures has also been per-
formed in the area of distributed databases on scalable data access structures,
such as [22, 23]. This work is apparently relevant, but the existing approaches
apply to a different physical and application environment. Databases are dis-
tributed over a moderate number of fairly stable database servers and work-
station clusters. Thus reliability is assumed to be high and replication is used
only very selectively [24] for dealing with exceptional errors. Central servers for
realizing certain coordination functions in the network are considered as accept-
able and execution guarantees are mostly deterministic rather than probabilistic.
Distributed search trees [25] are constructed by a full partitioning, not using the
principle of scalable replication of routing information at the higher tree levels,
as originally published in [1] (with exceptions [26]). Nevertheless, we believe that
at the current stage the potential of applying principles developed in this area
to P2P systems is not yet fully exploited.

388 K. Aberer, A. Datta, and M. Hauswirth

7 Conclusions

Existing uncoordinated online load-balancing mechanisms do not address the
requirements of DHT-based P2P networks. In this paper we compared the new
load-balancing problems of such systems with the standard model of “balls into
bins” so that wherever possible we can apply existing solutions. But more im-
portantly, we identified the new and specific requirements of this family of P2P
systems, and proposed new algorithms to efficiently achieve simultaneous stor-
age and replication load-balancing relying only on local information. Some of the
important novelties of our solution in comparison to other proposed P2P load-
balancing mechanisms are: Our mechanism allows the access structure to adapt
and restructure dynamically, but preserves its structural properties, unlike other
mechanisms which require extrinsic mechanisms like redirection pointers, that
make queries inefficient. The effort incurred by our load-balancing approach is
low because it requires no extra communication but we gather statistic data from
normal interactions and “piggy-back” the load-balancing into the standard in-
formation exchanges required by the DHT. We also preserve key ordering, which
is vital for semantically rich queries like range queries. Using randomized routing
choices, search efficiency is guaranteed with high probability, irrespective of key
distribution. Additionally, unlike some other proposals, our solution does not
require the peers to change identity which allows us to retain existing knowledge
and semantics, that may be exploited by higher level applications. The approach
presented in this paper is implemented in our P-Grid system which is available
at http://www.p-grid.org/.

References

1. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing Nearby Copies of Repli-
cated Objects in a Distribute d Environment. In: Proceedings of the 9th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA). (1997)

2. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scal-
able Peer-To-Peer Lookup Service for Internet Applications. In: Proceedings of the
ACM SIGCOMM. (2001)

3. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proceedings of the ACM SIGCOMM. (2001)

4. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: Hypercup–hypercubes, ontologies,
and efficient search on peer-to-peer networks. LNCS 2530 (2003)

5. Raab, M., Steger, A.: “Balls into Bins” - A Simple and Tight Analysis. In:
RANDOM. (1998)

6. Karger, D.R., Ruhl, M.: New Algorithms for Load Balancing in Peer-to-Peer Sys-
tems (2003) IRIS Student Workshop (ISW).

7. Byers, J., Considine, J., Mitzenmacher, M.: Simple Load Balancing for Distributed
Hash Tables. In: 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03). (2003)

8. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems 12 (2001) 1094–1104

Multifaceted Simultaneous Load Balancing in DHT-Based P2P Systems 389

9. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science
2218 (2001)

10. Alima, L.O., El-Ansary, S., Brand, P., Haridi, S.: DKS(N,k,f): A Family of Low
Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications.
In: 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID). (2003)

11. Datta, A., Aberer, K., Nejdl, W.: Principles of Query-Adaptive Optimal Repli-
cation in DHTs. Technical Report IC/2004/110, Ecole Polytechnique Fdrale de
Lausanne (EPFL) (2004)

12. Renesse, R.V., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21 (2003) 164–206

13. Aberer, K.: P-Grid: A self-organizing access structure for P2P information systems.
In: Proceedings of the Sixth International Conference on Cooperative Information
Systems (CoopIS). (2001)

14. Aberer, K., Hauswirth, M., Punceva, M., Schmidt, R.: Improving Data Access in
P2P Systems. IEEE Internet Computing 6 (2002)

15. Aberer, K., Punceva, M.: Efficient Search in Structured Peer-to-Peer Systems:
Binary v.s. k-ary Unbalanced Tree Structures. In: International Workshop On
Databases, Information Systems and Peer-to-Peer Computing. Collocated with
VLDB 2003. (2003)

16. Aberer, K.: Efficient Search in Unbalanced, Randomized Peer-To-Peer Search
Trees. Technical Report IC/2002/79, Swiss Federal Institute of Technology, Lau-
sanne (EPFL) (2002) http://www.p-grid.org/Papers/TR-IC-2002-79.pdf.

17. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured peer-to-peer networks. In: International Conference on Supercomputing.
(2002)

18. Yang, B., Garcia-Molina, H.: Improving Search in Peer-to-Peer Networks. In: Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS’02). (2002)

19. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load Balancing
in Structured P2P Systems. In: Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS ’03). LNCS, Springer (2003)

20. Manku, G.S.: Randomized ID Selection for Peer-to-Peer Networks. Tech-
nical report, Stanford University (2004) http://dbpubs.stanford.edu:8090/aux/
index-en.html.

21. Azar, Y., Kalyanasundaram, B., Plotkin, S., Pruhs, K., Waarts, O.: On-line load
balancing of temporary tasks. Journal of Algorithms 22 (1997) 93–110

22. Litwin, W., Neimat, M., Schneider, D.A.: RP*: A Family of Order Preserving
Scalable Distributed Data Structures. In: VLDB. (1994) 342–353

23. Litwin, W., Neimat, M., Schneider, D.A.: LH* – A Scalable, Distributed Data
Structure. ACM Transactions on Database Systems 21 (1996) 480–525

24. Litwin, W., Schwarz, T.: LH*RS: A High-Availability Scalable Distributed Data
Structure using Reed Solomon Codes. In: SIGMOD Conference. (2000) 237–248

25. Kröll, B., Widmayer, P.: Distributing a Search Tree Among a Growing Number of
Processors. In: ACM SIGMOD Conference. (1994) 265–276

26. Yokota, H., Kanemasa, Y., Miyazaki, J.: Fat-Btree: An Update-Conscious Parallel
Directory Structure. In: International Conference on Data Engineering. (1999)
448–457

390 K. Aberer, A. Datta, and M. Hauswirth

A A Construction Scenario

In the following we provide an elementary example to illustrate constructing and
maintaining a P-Grid. We assume 6 peers, each of them being able to store two
data items. Let us assume that initially 6 data items are stored by the peers.
The states of the peers are represented by triples [a, π(a), δ(a)]. Each peer stores
some data and initially all paths are empty (ε), i.e., no P-Grid has been built yet.
For the data items we assume that their corresponding keys have the following
2-bit prefixes: κ(Ai, 2) = 00, κ(Bi, 2) = 10, κ(Ci, 2) = 11 (i = 1, 2).

Action Resulting state.

Initial state. [P1, ε, {A1, B1}] [P2, ε, {B1, C1}]
[P3, ε, {A2, B2}] [P4, ε, {B2, C2}]
[P5, ε, {A1, C1}] [P6, ε, {A2, C2}]

P1 initiates a P-Grid network N1. P2 joins the
network by contacting P1. We assume that when-
ever at least 1 data item pertaining to a subspace
is available a peer attempts to specialize to that
subspace. Thus P1 and P2 can split the search
space.

N1 : [P1, 0, {A1}], [P2, 1, {B1, C1}]

Independently P3 starts a P-Grid network N2 and
P4 joins this network.

N2 : [P3, 0, {A2}], [P4, 1, {B2, C2}]

Next P5 joins network N1 by contacting P2. Since
π(P2) = 1, P5 decides to take path 0.

N1 : [P1, 0, {A1}], [P2, 1, {B1, C1}],
[P5, 0, {A1}]

Now P6 enters network N1 by contacting P5. Since
π(P5) = 0, P6 decides to adopt 1 as its path and
sends {d ∈ δ(P6)|κ(d) = 0} = {A2} to P5 which
stores it.

N1 : [P1, 0, {A1}], [P2, 1, {B1, C1}],
[P5, 0, {A1, A2}], [P6, 1, {C2}]

Next P3 contacts P1 and thus the two networks
N1 and N2 merge into a common P-Grid network
N . This shows that P-Grids do not require to start
from a single origin, as assumed by standard DHT
approaches, but can dynamically merge, similarly
to unstructured networks. Since π(P3) = π(P1) =
0 and they still have extra storage space, they can
replicate their data to increase data availability.

N : [P1, 0, {A1, A2}],
[P2, 1, {B1, C1}],
[P3, 0, {A1, A2}],
[P4, 1, {B2, C2}],
[P5, 0, {A1, A2}],
[P6, 1, {C2}]

In order to explore the network P2 contacts P4.
Network exploration serves the purpose of net-
work maintenance and can be compared to the
ping/pong protocol used in Gnutella. π(P2) =
π(P4) = 1 they can now further refine the search
space by specializing their paths and exchange
their data according to the new paths.

N : [P1, 0, {A1, A2}],
[P2, 10, {B1, B2}],
[P3, 0, {A1, A2}],
[P4, 11, {C1, C2}],
[P5, 0, {A1, A2}],
[P6, 1, {C2}]

Apparently all peers except P6 have now special-
ized to the maximum possible degree. So what will
happen to P6? It may eventually contact first P2

and decide to specialize to π(P2) = 11 and later
encounter P4 and obtain the missing data item
pertaining to path 11. This is the final state.

N : [P1, 0, {A1, A2}],
[P2, 10, {B1, B2}],
[P3, 0, {A1, A2}],
[P4, 11, {C1, C2}],
[P5, 0, {A1, A2}],
[P6, 11, {C1, C2}]

Multifaceted Simultaneous Load Balancing in DHT-Based P2P Systems 391

The resulting P-Grid is now not only complete, but also prefix-free. The
storage load for all peers is perfectly balanced, as a result of the local decisions
made to exchange and replicate data and specialize paths. Globally, however, the
replication factors are not balanced. There exist three peers for path 0, two for
path 11, and only one for path 10. Consequently data items pertaining to path
0 are replicated more often and thus better available. This imbalance resulted
from the specific sequence of interactions performed. Other sequences would
have led to other, possibly more balanced replication. However, since no global
coordination can be assumed, we cannot exclude such “undesired” sequences of
events.

In the paper, we have introduced randomized algorithms requiring no central
coordination that reduce global imbalance of replication factors and at the same
time maintain local storage balance during construction of P-Grids. Moreover,
in case such imbalances occur as a result of the construction or due to changing
data distributions, they will re-balance the structure. In our example such re-
balancing could be achieved if one of the peers supporting path 0 decided to
replicate path 10 instead. The difficulty for the algorithms lies in determining
when and how to decide on such changes to the P-Grid structure, and how peers
can base their decisions only on locally available information. The heuristics
for taking these decisions need to be chosen very carefully so that the overall
load-balancing goal is supported and not hampered mistakenly.

Robust Locality-Aware Lookup Networks�

Ittai Abraham1 and Dahlia Malkhi2

1 School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Jerusalem, Israel

ittaia@cs.huji.ac.il
2 School of Computer Science and Engineering,

The Hebrew University of Jerusalem, Jerusalem, Israel
and Microsoft Research, Silicon Valley

dalia@microsoft.com

1 Introduction

Overlay networks that aim to share information are complex due to numerous
factors including scale, decentralization, dynamism, and failures. Deploying, op-
erating and maintaining such overlays can be not only very difficult, but also
very costly. In this paper we show how a dynamic overlay can be built and main-
tained in a cost efficient manner while achieving strong locality properties in a
decentralized, dynamic, and faulty environment. In our approach there is no cen-
tral entity that configures, organizes, and repairs the system. To the contrary, we
show that if each peer performs local cost efficient operations then by combining
the joint effort of all peers the network manages, configures, and repairs itself.

Building self-maintaining overlay networks for locating information in a man-
ner that exhibits locality-awareness is crucial for the viability of large internets.
It means that costs are proportional to the actual distance of interacting parties,
and in many cases, that load may be contained locally. At the same time, due to
scale and decentralization, these networks must cope with high dynamicity and
preserve their qualities in face of churn.

This paper presents the FTLAND approach for robust, locality-aware overlay
networks. It starts with a step-by-step decomposition of several locality-aware
networks that support distributed content-based location services. As a first con-
tribution of this paper, it explains their common principles and their variations
with simple and clear intuition on analysis. As the principles of locality-aware
solutions unravel, a significant drawback of all existing designs manifests itself:
These networks lose their locality properties in face of high churn. That is, pre-
vious overlay lookup schemes achieved either fault tolerance [15, 16, 12, 17, 20]
or provably good locality properties [18, 3] but not both. As a second contri-
bution, it presents FTLAND, a novel approach for robustifying locality-aware
overlays, that sustains locality qualities for participating nodes in face of high
churn. FTLAND deals extremely well with dynamic node departures, arrivals,
and temporary inavailabilities.

� This Research was supported in part by the EC Evergrow project.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 392–402, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Robust Locality-Aware Lookup Networks 393

Problem Statement. This paper considers the problem of forming a self-
organizing, self-maintaining overlay network that locates objects (possibly repli-
cated) placed in arbitrary network locations. Recent studies of scalable content
exchange networks, e.g., [11], indicate that up to 80% of Internet searches could
be satisfied by local hosts within one’s own organization. Therefore, in order for
the network to remain viable, it is crucial to consider locality awareness from
the outset when designing scalable, decentralized network tools.

More formally, consider that the network constitutes a metric space, with a
cost function c(x, y) denoting the “distance” from x to y. Let s = x0, x1, ..., xk =
t be the path taken by the search from a source node s to the object residing
on a target node t. The main design goal to achieve is constant stretch. Namely,
that the ratio c(x0,x1)+...+c(xk−1,xk)

c(s,t) is bounded by a (small) constant. Another
important goal is to keep node degree low, so as to prevent costly reconfigurations
when nodes join and depart. Thus, trivial solutions that connect all nodes to each
other are inherently precluded.

Bounded-Stretch Solutions. The problem of forming overlay routing networks
was considered by several recent works in the context of networks that are search-
able for content. Many of the prevalent overlay networks were formed for routing
search queries in peer-to-peer applications, and exhibit no locality awareness.

Bounded stretch network design is a fundamental problem [5], with several
important lower bounds [8, 21] and upper bounds [6, 7, 21, 4, 2, 1]. Recently, a
practical constant-bounded stretch design was proposed by Plaxton et al. [18] for
a limited class of networks. The approach was followed by several improvements
and deployments including [19, 22, 14, 3]. All of these solutions borrow heavily
from the PRR scheme [18], yet they vary significantly in their assumptions and
properties. Some of these solutions are designed for a uniform density space [14].
Others work for a class of metrics space whose growth rate is bounded both from
above and from below [18, 19, 22, 9], while others yet cope with an upper bound
only on the growth rate [3]. There is also variability in the guarantee provided on
the stretch: In [14], there is no bound on stretch (except the network diameter).
In [18], the stretch is an expected constant, a rather large one which depends on
the growth bound. And in [3], the stretch can be set arbitrarily small (1 + ε).
Diversity is manifested also in the node degree of the schemes.

A Step-by-Step Deconstruction. This paper offers a deconstruction of the prin-
ciples that underlie these locality-aware schemes step by step, and indicate how
and where they differ. It demonstrates the principles of locality awareness in a
simplistic, yet reasonable (see [9]) network model, namely, a network with power
law latencies. In our belief, the simplicity and the intuitive analysis may lead to
improved practical deployments of locality-aware schemes.

For clarity, our exposition describes the design of an N -node network.
It should be clear however, that this network design is intended to be self-
maintaining and incremental. In particular, it readily allows nodes to arrive
and depart with no centralized control whatsoever.

394 I. Abraham and D. Malkhi

Fault Tolerance. The main drawback of PRR-like networks is in their lack of
routing flexibility. In [10] it is shown that while hypercube and ring geometries
have about (log n)! different routes from a given source to a given target, PRR-
like networks have only one. Thus the basic architecture of [18, 22, 13, 19, 3] is
fragile and must be augmented with some form of robustness.

In a recent paper, Hildrum and Kubiatowicz [12] make an important con-
tribution for PRR like networks. They show how networks like Tapestry [22]
and Pastry [19] can be made robust against random failures. When there are no
failures, the construction in [12] can guarantee low stretch. However, when there
are random failures, their construction can guarantee reaching the destination,
but it cannot bound the stretch to a constant.

In this paper we present the first overlay network that has both a provable low
latency for paths and a high fault tolerance. Moreover, we show that these two
properties can be combined. Thus our low stretch is achieved even in the presence
of constant failure probability of all nodes. The novel technique for achieving the
combination of these two properties is general, but we exemplify it by augmenting
the basic LAND architecture of Abraham et al. [3]. Our techniques are based
on the goal of dramatically increasing the routing flexibility to (log n)log n while
still maintaining a provably good proximity selection mechanism.

2 Preliminaries

The network consists of N nodes, and an associated metric c(x, y) denoting the
“distance” from x to y. The set of nodes within distance r from x is denoted
N(x, r). We assume a network model with power law latencies, |N(x, r)| = Γr2 ,
for some known constant Γ . For convenience, we define neighborhoods Ak(x) =
N(x, 2k). Thus, we have that |Ak(x)| = Γ4k.

For the purpose of forming a routing structure among nodes, nodes need to
have addresses and links. We refer to a routing entity of a node as a router,
and say that the node hosts the router. Thus, each node u hosts an assembly of
routers.

Each router u.r has an identifier denoted u.r.id, and a level u.r.level. Iden-
tifiers are chosen uniformly at random. The radix for identifiers is selected for
convenience to be 4. This is done so that a neighborhood of radius 2k shall
contain in expectation constant number of routers with a particular length-k
identifier. Indeed, the probability of a finding a router with a specific level and
a particular prefix of length k is 1/4k. According to our density assumption, a
neighborhood of diameter 2k has Γ4k nodes. Hence, such a neighborhood con-
tains in expectation Γ routers matching a length-k prefix.

Assume a network of N nodes, and let M = log4 N . Identifier strings are
composed of M digits. The level is a number between 1 and M . A level-k router
has links allowing it to ‘fix’ its k’th identifier digit. Routers are interconnected in
a butterfly-like network, such that level-k routers are linked only to level-(k +1)
and level-(k − 1) routers.

Robust Locality-Aware Lookup Networks 395

Let d be a k-digit identifier. Denote d[j] as the prefix of the j most-significant
digits, and denote dj as the j’th digit of d. A concatenation of two strings d, d′

is denoted by d||d′.

3 Locality-Aware Solutions

3.1 Step 1: Geometric Routing

The first step builds geometric routing, whose characteristic is that the routing
steps toward a target increase geometrically in distance. This is achieved by
having large flexibility in the choice of links at the beginning of a route, and
narrowing it down as the route progresses. More specifically, each router r of
level k has four neighbor links, denoted L(b), b ∈ {0..3}. Each one of the links
L(b) is selected as the closest node within Cb(r), where Cb(r) = {u ∈ V |
∃s, u.s.id[k] = v.id[k − 1]||b, u.s.level = k + 1}. The link L(b) ‘fixes’ the k’th bit
to b, namely, it connects to the closest node that has a level-(k+1) router whose
identifier matches v.Rk[k − 1]||b.

Routing from a source to a target is done by fixing the target digits one by
one, making up to M hops to completion.

Geometric routing alone yields an expected routing cost which is proportional
to the network diameter: The expected distance of fixing one digit is 1. Fixing two
digits has expected cost 2. And in general, fixing k digits has expected distance
no more than 2k. The total cost of fixing all M digits of a targets is therefore
O(Δ), where Δ is the network diameter, and so a ball of radius Δ contains all
nodes. The designs in [14, 9] make use of this type of geometric routing to bound
their routing costs by the network diameter.

3.2 Step 2: Shadow Routers

The next step is unique to the design of LAND in [3]. Its goal is to turn the
expectation of geometric routing into a worst-case guarantee. This is done while
increasing node degree only by a constant expected factor. The technique to
achieve this is for nodes to emulate links that are missing in their close vicinity
as shadow nodes. In this way, the choice of links enforces a distance upper
bound on each stage of the route, rather than probabilistically maintaining it.
If no suitable endpoint is found for a particular link, it is emulated by a shadow
node.

The idea of bounding the distance of links is very simple: If a link does not
exist within a certain desired distance, it is emulated as a shadow router. More
precisely, for any level 1 ≤ k ≤ M let r be a level-k router hosted by node v
(this could itself be a shadow router, as described below). For b ∈ [0..3], if Cb(v)
contains no node within distance 2k, then node v emulates a level-(k+1) shadow
router s that acts as the v.r.L(b) endpoint. Router s’s id is s.id = v.r.id[k−1]||b
and its level is (k + 1).

Since a shadow router also requires its own neighbor links, it may be that the
j’th neighbor link of a shadow router s does not exist in Cj(s) within distance

396 I. Abraham and D. Malkhi

2k+1. In such a case v also emulates a shadow router that acts as the s.L(j)
endpoint.

Emulation continues recursively until all links of all the shadow routers em-
ulated by v are found (or until the limit of M levels is reached).

With shadow routers, we have a deterministic bound of 2k on the k’th hop of
a path, and a bound of

∑
i=1..k 2i = 2k+1 on the total distance of a k-hop path.

A different concern we have now is that a node might need to emulate many
shadow routers, thus increasing the node degree. Using a standard argument on
branching processes, we may obtain that hosting show routers increases a nodes
degree only by an expected constant factor.

Shadow emulation of nodes is employed in LAND [3]. In all other algorithms,
e.g., [18, 19, 22], a node’s out-degree is a priori set so that the stretch bound
holds with high probability (but is not guaranteed). Hence, there is a subtle
tradeoff between guaranteed out-degree and guaranteed stretch. We believe that
it is better to design networks whose outliers are in terms of out-degree than
in terms of stretch. Additionally, fixing a deterministic upper bound on link
distances results in a simpler analysis than working with links whose expected
distance is bounded.

3.3 Step 3: Publish Links

The final step in our deconstruction describes how to bring down routing costs
from being proportional to the network diameter (which could be rather large)
to being related directly to the actual distance of the target. This is done via a
technique suggested by Plaxton et al. in [18], that makes use of short-cut links
that increase the node degree by a constant factor. With a careful choice of the
short-cut links, as suggested by Abraham et al. in [3], this guarantees an optimal
stretch.

The technique that guarantees a constant stretch is to ‘publish’ references to
an object in a slightly bigger neighborhood than the regular links distance. The
intuition on how to determine the size of the enlarged publishing-neighborhood
is as follows. The route that locates obj on t from s starts with the source s,
and hops through nodes x1 . . .xk until a reference to obj is found on xk. The
length of the route from s to xk is bounded by 2k+1. The distance from xk to
t is bounded (by the triange inequality) by 2k+1 + c(s, t). In order to achieve a
stretch bound close to 1, we should therefore guarantee that a reference to obj
is found on xk, where 2k is proportional to εc(s, t). This will yield a total route
distance proportional to (1 + ε)c(s, t).

The outgoing publish links for a routing r are as follows: There are 4 sets
r.publish0, . . . , r.publish3. For each k, r.publishk contains all of the nodes within
distance 2k+δ+1 that host a router s such that s.level = r.level+1 and s.id[r.level]
= s.id[r.level − 1]||k. As explained above, the parameter δ is determined so as
to capture all relevant level-k routers xk (the exact formula is provided in [3]).

Therefore, by selecting the range of publish links from to cover xk, the stretch
of any search path is bounded by 1 + ε. The total number of outgoing links per
node increases only by an expected constant factor.

Robust Locality-Aware Lookup Networks 397

The increased neighborhood for publishing provides a tradeoff between out-
degree and stretch. Setting it large, so as to provide an optimal stretch bound,
is unique to the design of LAND [3]. The designs in [18, 19, 22] fix the size of
publish neighborhoods indepedently of the network density growth. This yields
a stretch bound that depends on the density growth rate of the network.

4 A Robust Low Stretch Lookup Network

Pervious lookup solutions achieved either fault tolerance [12, 17, 20] or provably
good locality properties [18, 3] but not both. In this section, we present a res-
olution of these two important goals. We provide FTLAND, the first lookup
network that has, with high probability, low stretch even in the presence of a
failure model, where all nodes may have a constant probability of failure. Al-
though our techniques are applicable to general PRR-like networks, FTLAND
instantiates them by augmenting the basic LAND architecture of Abraham et
al. [3] with novel, locality-aware fault tolerance techniques. The techniques are
based on the goal of dramatically increasing the routing flexibility to (log n)log n

while still maintaining a provably good proximity selection mechanism.

Overview. In order to have fault tolerance, a node must increase the number
of outgoing links it may use for routing. Doing so naively, e.g., as in [15, 16,
17, 12], by simply replicating each link to log n suitable destinations instead of
one, compromises locality. More specifically, in PRR-like networks, hops have
geometrically increasing distances. If the closest link happens to be down and a
replacement link is used, there is no guarantee on the distance, and locality is
lost.

The crucial difference in FTLAND from previous approaches is the use of
multiple routing entities per host. In FTLAND, every node hosts at each level
O(log n) routers (instead of one). Each router has links to appropriate routers
within its vicinity. However, because each host now has O(log n) routing iden-
tities, a router finds in its vicinity w.h.p. O(log n) outgoing links (instead of an
expected constant) for each desired destination.

Herein lies the main idea. Since each node in the network has log n routers at
each level, whose identifiers are independently and uniformly selected, a router
finds all O(log n) replicated destinations at a distance no greater than the dis-
tance to the closest router in the LAND scheme. Hence, locality is preserved
when using any of these links. The total number of links increases by a poly-log
factor (for each of the O(logn) levels there are O(log n) routers in place of one,
each of which has O(log n) replicated links w.h.p.).

Another important feature of FTLAND is that routing over the (log n)log n

possibilities is done deterministically, with no backtracking. At each hop, one
live link is followed, and with high probability, it can lead to the target.

Given the redundancy in links and paths, dealing with failures in FTLAND
can be done in a very lazy manner, since the network can maintain a successful,
locality-aware service in face of a linear fraction of unavailabilities. This prop-
erty is crucial for coping well with churn, as a sustained quality of service is

398 I. Abraham and D. Malkhi

guaranteed through transitions. It also serves well to cope with transient dis-
connections and temporary failures, since there is no need for the network to
reconfigure itself in response to small changes.

4.1 The FTLAND Scheme

Assume that every node has an independent probability f to fail. Given that
we would like our routing protocol to succeed with probability proportional to
1−n−α, we fix c such that c = O(1

− log4 f), as determined precisely by Equation 1
in Lemma 5. Each node v has three types of links: closest, publish, and next, as
follows:

Closest Links: Let v.closest be the set of the M24δ+2 nodes to v (recall that
δ is set in Step 3 of the deconstruction above).

The rest of the links of v depend on the routers it hosts. Each node v hosts
a set of cM(M + 1) routers. The routers are denoted v.r(i, j) for 1 ≤ i ≤
M + 1 , 1 ≤ j ≤ cM . Router v.r(i, j) has level i. The identifiers of routers are
all chosen uniformly and independently. For a given router r = r(i, j) and digit
k ∈ [0, . . . , 3] let SAMEk(r) be the set of all nodes that host a router s such
that s.level = r.level + 1 and s.id[r.level] = s.id[r.level − 1]||k.

Publish Links: Let r = r(i, j) be a router hosted by node v. The outgoing
publish links of r are divided into 4 sets r.publish0, . . . , r.publish3. For each k,
let r.publishk be the set of the 3

2cM4δ+2 closest nodes from SAMEk(r). In ad-
dition denote r.publish =

⋃
k r.publishk.

Next Links: The outgoing next links are defined as follows: Denote r.nextk as
the set of the 1

2cM closest nodes in r.publishk (thus r.nextk ⊆ r.publishk).

Every node hosts O(log2 n) routers, and every router has O(log n) links, there-
fore:

Lemma 1. Every node has O(log3 n) links.

Robust Routing Protocol. We now define the basic routing building block. The
Robust Routing Protocol (RRP) is given two parameters: An initial node u and
a target identifier id. The goal of RRP is to route in a fault tolerant manner
from u to a nearby node which hosts a router of level M + 1 and identifier id.
Routing is done in M − 2 log(cM) hops. Let x(2 log(cM)), . . . , xM+1 denote the
sequence of nodes taken, s.t. xM+1 hosts a level M + 1 router with identifier id.
Let xi.r denote the router in xi that is involved in the protocol. RRP maintains
the invariant that xi.r.level = i and xi.r.id[i − 1] = id[i − 1]. The first hop is
done by using u.closest to reach node x(2 log(cM)) that hosts a router r such
that r.id[2 log(cM)] = id[2 log(cM)]. We will later show that such a node exists
w.h.p. Then, at each intermediate node xi the router xi.r may use any link from
r.nextj such that j is the ith bit of the target identifier id (formally j = idi).
The analysis of the Robust Routing Protocol appears in Lemma 5.

Robust Locality-Aware Lookup Networks 399

Robust Publish Protocol. When a node t wants to store an object obj, it performs
the RPP protocol. In the first step, all nodes in t.closest are sent a message to
store a pointer of the form 〈obj; t〉 directly to t. In the second step, the publishing
of an object obj residing on a node t uses the basic RRP protocol as a building
block. Essentially, node t executes RRP with the target identifier being H(obj).
In addition, nodes along the route store references to obj. These references are
of the form 〈obj;U〉 where obj is the name of the object and U is a set of 1

2cM
different routers that are the next hop towards the location of the object. More
specifically, at each step i > 2 log(cM) of RRP, router xi.r stores a reference
on xi and on all the nodes in xi.r.publish. The reference is of the form 〈obj;U〉
where U is the 1

2cM nodes in xi−1.r.publish that are closest to t.

Lemma 2. The amount of auxiliary memory for each object is O(log2 n) refer-
ences each with a label of O(log2 n) bits.

Proof. An object is published to O(log2 n) closest nodes. In addition there are
O(log n) steps in RRP. At each step, every node in xi.r.publish stores a reference
this adds O(log n) references for every step. Each reference 〈obj;U〉 contains
O(log n) node names each requiring O(log n) bits.

Robust Lookup Protocol. A lookup operation of an object obj ∈ A can be ini-
tiated by any node in the system, and its purpose is to find the closest node
storing obj. The lookup operation from a node x proceeds in three stages:

1. Check if x contains a direct pointer to obj. If it does then use the pointer to
reach obj.

2. Otherwise, use RRP to route to H(obj) until a node with a reference to obj
is found.

3. Once a reference 〈obj;U〉 is found, go to a non-failed node in U . Continue
this process recursively until the object is found.

4.2 Analysis

The low stretch analysis of FTLAND is based on the analysis provided in [3],
and is explained in the simple model of this paper above. In this section, we
focus only on the differences.

First, in order to carry the stretch analysis, we need to show that the 1
2cM

links of a level-i router r all reside w.h.p. within Ai(r). Likewise, we need to
prove that the 3

2cM4δ+2 publish links of a r cover all suitable nodes within
Ai+δ+2(r). Second, we must show fault tolerance in face of independent failure
probability f of all nodes. We begin by analyzing the probability that a node
contains a relevant router.

Lemma 3. Given a node u the probability that u ∈ SAMEj(r) is at least

cM

4r.level
− cM(cM + 1)

2 (4r.level)2
.

400 I. Abraham and D. Malkhi

Proof. Node u has cM routers of level r.level. The probability that all of them
do not have a prefix r.id[r.level − 1]||j is (1 − 4−(r.level))cM . We can bound
this probability using the Taylor polynomial as follows: Pr[u ∈ SAMEj(r)] =
1− (1− 1

4r.level

)cM ≥ cM
Br.level − cM(cM+1)

2(4r.level)2
.

For any node v, router v.r of level i, digit j and integer x, Let Z(v, r, i, j, x) be
a random variable that equals |SAMEj(r)∩Ar.level+x(v)|. In words, Z(v, r, i, j, x)
counts the number of nodes suitable as r’s links within Ar.level+x(v). We now
show that Z is centered around its expected value.

Lemma 4. For r.level ≥ 2 log(cM) with high probability,

1
2
cM4x ≤ Z(v, r, i, j, x) ≤ 3

2
cM4x .

Proof. We begin by showing that when r.level ≥ 2 log(cM) the expected size
of Z is roughly cM4x. Note that Ar.level+x(v) contains 4r.level+x nodes. Us-
ing Lemma 3 and the linearity of expectation, for r.level ≥ 2 log(cM) we have
E[Z] ≥ cM4x − 1 and clearly E[Z] ≤ cM4x. Applying the Chernoff bounds
completes the proof of the Lemma: Pr

[|Z − E[Z]| > 1
2E[Z]

]
< 2e−cM4x/12.

Corollary 1. W.h.p. any node v, router v.r with r.level ≥ 2 log(cM), and digit
j ∈ [0, . . . , 3] :

(i) r.nextj ⊆ Ar.level(v).
(ii) SAMEj(r) ∩Ar.level+δ+2(v) ⊆ r.publishj.

The following lemma shows that RRP is a fault tolerant routing protocol.
Lemma 5. If each node has an independent probability f to fail, then with high
probability, RRP will reach its target.

Proof. For the first hop, note that there are M24δ+2 nodes in u.closest. Thus
using the same argument as in Lemma 4 there are at least 1

2cM nodes that have
a router with the same 2 log(cM) digits as the target. The probability that all
of them have failed is

f
1
2 cM = n

c log4 f
2 ≤ 1/n3α , (1)

where the last inequality follows by an appropriate choice of c. For the following
levels i, router xi.r may use 1

2cM different nodes. For a given i and j ∈ [0, . . . , 3],
the probability that all relevant nodes in xi.r.nextj have failed is again f

1
2 cM .

The Lemma is proven by choosing a large enough constant c, and using the union
bound for all sources, targets, and routing steps.

The following Lemma is proven in [3]. Using Corollary 1 the same proof shows
that the lemma holds in this network w.h.p.

Robust Locality-Aware Lookup Networks 401

Lemma 6. [3] Let xi be the ith step of RRP initiated at node u then xi ∈
Ai(xi−1) ⊆ Ai+1(u).

Lemma 7. If each node has an independent probability f to fail, then with high
probability, RLP will reach the desired object.

Proof. Let t denote the closest node containing the target object obj. Thus t
published obj with the RPP. Let xi denote the ith node in RPP, then from
Corollary 1 every node in Ai+δ+2(xi) that has a router r such that r.id[i] =
H(obj)[i] has a reference 〈obj;Ui〉. From Lemma 6 and the growth bounded
assumptions this means that every node in Ai+1(t) that has a router r such that
r.id[i] = H(obj)[i] has a reference 〈obj;Ui〉. In addition due to Corollary 1 the
set Ui that is written by xi is a set of nodes that are all inside Ai(t). Thus every
node in Ui will have a reference 〈obj;Ui−1〉. Therefore we have shown that once
a node containing 〈obj;U〉 is found then there is a path leading to t. In addition
at each step there is a flexibility of 1

2cM different nodes at each step thus a next
hop exists w.h.p. even in the presence of an independent probability f of failure
for every node.

The proof of the stretch factor and exact choice of δ is an adaptation of the
proof in [3] thus we only state the main theorem:

Theorem 1. The routing stretch is w.h.p. 1 + ε.

References

1. I. Abraham, C. Gavoille, and D. Malkhi. Routing with improved communication-
space trade-off. In Eighteenth International Symposium on Distributed Computing
(DISC 2004), 2004.

2. I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact name-
independent routing with minimum stretch. In The Sixteenth ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 04), 2004.

3. I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch (1 + ε) locality aware
networks for DHTs. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA04), 2004.

4. M. Arias, L. J. Cowen, K. A. Laing, R. Rajaraman, and O. Taka. Compact routing
with name independence. In Proceedings of the fifteenth annual ACM symposium
on Parallel algorithms and architectures, pages 184–192. ACM Press, 2003.

5. B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact distributed data
structures for adaptive routing. In Proceedings of the twenty-first annual ACM
symposium on Theory of computing, pages 479–489. ACM Press, 1989.

6. B. Awerbuch and D. Peleg. Sparse partitions. In Proceedings of the 31st IEEE
Symposium on Foundations of Computer Science (FOCS), pages 503–513, 1990.

7. B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-
off. SIAM J. Discret. Math., 5(2):151–162, 1992.

8. C. Gavoille and M. Gengler. Space-efficiency of routing schemes of stretch factor
three. Journal of Parallel and Distributed Computing, 61:679–687, 2001.

402 I. Abraham and D. Malkhi

9. A. Goal, H. Zhang, and R. Govindan. Incrementally improving lookup latency in
distributed hash table systems. In ACM Sigmetrics, 2003.

10. K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica.
The impact of DHT routing geometry on resilience and proximity. In Proceedings
of the 2003 conference on Applications, technologies, architectures, and protocols
for computer communications, pages 381–394. ACM Press, 2003.

11. K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan.
Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In
Proceedings of the nineteenth ACM symposium on Operating systems principles,
pages 314–329. ACM Press, 2003.

12. K. Hildrum and J. Kubiatowicz. Asymptotically efficient approaches to fault-
tolerance in peer-to-peer networks. In Proceedings of the 17th International Sym-
posium on DIStributed Computing (DISC 2003), 2003.

13. K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed object location
in a dynamic network. In Proceedings of the Fourteenth ACM Symposium on
Parallel Algorithms and Architectures, pages 41–52, Aug 2002.

14. X. Li and C. G. Plaxton. On name resolution in peer-to-peer networks. In Pro-
ceedings of the 2nd ACM Worskhop on Principles of Mobile Commerce (POMC),
pages 82–89, October 2002.

15. N. Lynch, D. Malkhi, and D. Ratajczak. Atomic data access in distributed hash
tables. In Proceedings of the International Peer-to-Peer Symposium, 2002.

16. D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emulation
of the butterfly. In Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing (PODC ’02), pages 183–192, 2002.

17. M. Naor and U. Wieder. A simple fault tolerant distributed hash table. In Pro-
ceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03),
2003.

18. C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of replicated
objects in a distributed environment. In Proceedings of the Ninth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA 97), pages 311–320,
1997.

19. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

20. J. Saia, A. Fiat, S. Gribble, A. R. Karlin, and S. Saroiu. Dynamically fault-tolerant
content addressable networks. In Proceedings of the First International Workshop
on Peer-to-Peer Systems, 2002.

21. M. Thorup and U. Zwick. Compact routing schemes. In Proceedings of the thir-
teenth annual ACM symposium on Parallel algorithms and architectures, pages
1–10. ACM Press, 2001.

22. B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications, 2003.

Power-Aware Distributed Protocol for a
Connectivity Problem in Wireless

Sensor Networks

R. Montemanni and L.M. Gambardella

Istituto Dalle Molle di Studi sull’Intelligenza (IDSIA),
Galleria 2, CH-6928 Manno-Lugano, Switzerland

{roberto, luca}@idsia.ch

Abstract. We consider the problem of assigning transmission powers
to the nodes of a wireless network in such a way that all the nodes
are connected by bidirectional links and the total power consumption is
minimized.

We present a distributed protocol, obtained by extending a con-
nectivity protocol recently appeared in the literature. The new ex-
tended protocol is obtained by using in a local, distributed fashion, well-
known centralized techniques for power minimization. The result is a
self-organization framework where a set of rules, implemented locally
at each node, guarantees global properties, i.e. connectivity and power
expenditure minimization.

Preliminary computational results are finally presented. They show
that the new extended protocol guarantees a substantial saving in the
total transmission power.

1 Introduction

Wireless sensor networks have received significant attention in recent years due
to their potential applications in battlefield, emergency disasters relief, and other
application scenarios (see, for example, Blough et al. [2], Chu and Nikolaidis [3],
Kirousis et al. [6], Lloyd et al. [8], Ramanathan and Rosales-Hain [13], Singh
et al. [15], Wan et al. [16] and Wieselthier et al. [17]). Unlike wired networks
of cellular networks, no wired backbone infrastructure is installed in wireless
sensor networks. A communication session is achieved either through single-hop
transmission if the recipient is within the transmission range of the source node,
or by relaying through intermediate nodes otherwise.

We consider wireless networks where individual nodes are equipped with om-
nidirectional antennae. Typically these nodes are also equipped with limited
capacity batteries and have a restricted communication radius. Topology con-
trol is one of the most fundamental and critical issues in multi-hop wireless
networks which directly affects the network performance. In wireless networks,
topology control essentially involves choosing the right set of transmitter power

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 403–416, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

404 R. Montemanni and L.M. Gambardella

Fig. 1. Communication model

to maintain adequate network connectivity. Incorrectly designed topologies can
lead to higher end-to-end delays and reduced throughput in error-prone chan-
nels. In energy-constrained networks where replacement or periodic maintenance
of node batteries is not feasible, the issue is all the more critical since it directly
impacts the network lifetime.

In a seminal paper on topology control using transmission power control in
wireless networks, Ramanathan and Rosales-Hain [13] approached the problem
from an optimization viewpoint and showed that a network topology which mini-
mizes the maximum transmitter power allocated to any node can be constructed
in polynomial time in a centralized fashion, i.e. with the assumption that the
network is fully known to the centralized optimizer. This is a critical criterion
in battlefield applications since using higher transmitter power increases the
probability of detection by enemy radar. In this paper, we attempt to solve the
minimum power topology problem in wireless networks. Minimizing the total
transmit power has the effect of limiting the total interference in the network.

For a given set of transmitters spatially located in the network’s area (nodes),
the minimum power topology (MPT) problem, sometimes also referred to as the
min-power symmetric connectivity problem, is to assign transmission powers to
the nodes of the network in such a way that all the nodes are connected by bidi-
rectional links and the total power consumption over the network is minimized.
Having bidirectional links simplifies one-hop transmission protocols by allowing
acknowledgement messages to be sent back for every packet (see Althaus et al.
[1]). It is assumed that no power expenditure is involved in reception/processing
activities.

Unlike in wired networks, where a transmission from i to m generally reaches
only node m, in wireless sensor networks with omnidirectional antennae it is
possible to reach several nodes with a single transmission (this is the so-called
wireless multi-cast advantage, see Wieselthier et al. [17]). In the example of Fig-
ure 1 nodes j and k receive the signal originated from node i and directed to
node m because j and k are closer to i than m, i.e. they are within the transmis-
sion range of a communication from i to m. This property is used to minimize
the total transmission power required to connect all the nodes of the network.

Power-Aware Distributed Protocol for a Connectivity Problem 405

Althaus et al. [1], Das et. al [4] and Montemanni and Gambardella [9], [10]
proposed exact algorithms for the problem. We refer the interested reader to
Montemanni et al. [12] for an overview, comprehensive of theoretical and ex-
perimental comparison, of these methods. All of these approaches are based on
mixed integer programming models, and all of them are designed to be run in a
centralized fashion, on a single computer with full knowledge of the network, i.e.
all the information about the network are assumed to be available at a central
processor (e.g. power required by each node to reach every other node of the
network). Turning into real world, it is very unlikely that all this knowledge is
available at the central processor, and even if this is true, there would be the
practical problem of transmitting optimal transmission powers to the nodes. For
these reasons distributed protocols, i.e. protocols that run at each node of the
network, with a partial knowledge of the network - namely the set of neighbors
of each node - have to be developed.

Some distributed protocols aiming to guarantee connectivity while minimiz-
ing the number of neighbors of each node (an indirect measure of the required
transmission power) have been proposed in the literature (see Glauche et al [5]
and Krause et al [7]). The aim of this paper is to extend these protocols (that
will be briefly described in Section 4.1) in order to preserve connectivity, while
directly minimizing the total transmission power over the network.

The MPT problem is formally described in Section 2. Section 3 summarizes
an efficient method to solve the problem in a centralized fashion. This method is
embedded in the distributed protocol proposed in Section 4. This new protocol
can be seen as the power-aware extension of the protocol described in Glauche
et al. [5]. Experimental comparison of the original and extended versions of the
protocol can be found in Section 5, while Section 6 contains conclusions and
future work.

2 Problem Description

To represent the MPT problem in mathematical terms, a model for signal prop-
agation has to be selected. We adopt the model presented in Rappaport [14], and
used in most of the papers appeared in the literature (see, for example, Wieselth-
ier et al. [17] and Montemanni et al. [11], [12]). According to this model, signal
power falls as 1

dκ , where d is the distance from the transmitter to the receiver
and κ is a environment-dependent coefficient, typically between 2 and 4. Under
this model, and adopting the usual convention (see, for example, Althaus et al.
[1]) that every node has the same transmission efficiency and the same detection
sensitivity threshold, the power requirement for supporting a link from node i
to node j, separated by a distance dij , is then given by

pij = (dij)κ (1)

Technological constraints on minimum and maximum transmission powers of
each node are usually present. In particular they state that for each node i, its
transmission power must be within the interval [Pmin

i , Pmax
i].

406 R. Montemanni and L.M. Gambardella

The MPT problem can be formally described as follows. Given the set V
of the nodes of the network, a range assignment is a function r : V → R+.
A bidirectional link between nodes i and j is said to be established under the
range assignment r if r(i) ≥ pij and r(j) ≥ pij . Let now B(r) denote the set
of all bidirectional links established under the range assignment r. The MPT
problem is the problem of finding a range assignment r minimizing

∑
i∈V r(i),

subject to constraints on minimum and maximum transmission powers and to
the constraint that the graph (V,B(r)) must be connected.

As suggested in Althaus et al. [1], a graph theoretical description of the MPT
problem can be given as follows. Let G = (V,E, p) be an edge-weighted graph,
where V is the set of vertices corresponding to the set of nodes of the network and
E is the set of edges containing all the possible pairs {i, j}, with i, j ∈ V , i �= j,
that do not violate technological constraints on transmission powers. A cost pij is
associated with each edge {i, j}. It corresponds to the power requirement defined
by equation (1).

For a node i and a spanning tree T of G, let {i, iT } be the maximum cost
edge incident to i in T , i.e. {i, iT } ∈ T and piiT

≥ pij ∀{i, j} ∈ T . The power
cost of a spanning tree T is then c(T) =

∑
i∈V piiT

. Since a spanning tree is
contained in any connected graph, the MPT problem can be described as the
problem of finding the spanning tree T with minimum power cost c(T).

3 Centralized Approach

The approach discussed in this section aims to solve the MPT problem in a
centralized fashion, i.e. the full network is supposed to be known. When the
problem has been solved, the results (and the respective transmission powers for
all the nodes) would have to be communicated all around the network. This is
clearly impractical.

Notwithstanding the assumption about the full network knowledge, that can
appear very strong, and somehow unrealistic, the method remains of our in-
terest since it will be embedded within the distributed protocol described in
Section 4.1.

3.1 An Integer Programming Formulation

A weighted, directed graph G′ = (V,A, p) is derived from G by defining A =
{(i, j), (j, i)|{i, j} ∈ E} ∪ {(i, i)|i ∈ V }, i.e. for each edge in E there are the
respective two (oriented) arcs in A, and a dummy arc (i, i) with pii = 0 is
inserted for each i ∈ V . Power pij is defined by equation (1) when i �= j. In
order to describe the new integer programming formulation for MPC, we also
need the following definition.

Given (i, j) ∈ A, we define the ancestor of (i, j) as

ai
j =

{
i if pij = min{i,k}∈E{pik}
arg maxk∈V {pik|pik < pij} otherwise

(2)

Power-Aware Distributed Protocol for a Connectivity Problem 407

According to this definition, (i, ai
j) is the arc originated in node i with the

highest cost such that piai
j

< pij . In case an ancestor does not exist for arc (i, j),
vertex i is returned, i.e. the dummy arc (i, i) is addressed.

In formulation IP a spanning tree (eventually augmented) is defined by z
variables: zij = 1 if edge {i, j} is on the spanning tree, zij = 0 otherwise.
Variable yij is 1 when node i has a transmission power which allows it to reach
node j, yij = 0 otherwise.

(IP) Min
∑

(i,j)∈A

cijyij (3)

s.t. yij ≤ yiai
j

∀(i, j) ∈ A, ai
j �= i (4)

zij ≤ yij ∀{i, j} ∈ E (5)
zij ≤ yji ∀{i, j} ∈ E (6)∑
i∈S,j∈V \S,{i,j}∈E

zij ≥ 1 ∀S ⊂ V (7)

yij = 1 ∀(i, j) ∈ A s.t. pij ≤ Pmin (8)
yij = 0 ∀(i, j) ∈ A s.t. pij ≥ Pmax (9)
zij ∈ {0, 1} ∀{i, j} ∈ E (10)
yij ∈ {0, 1} ∀(i, j) ∈ A (11)

In formulation IP an incremental mechanism is established over y variables
(i.e. transmission powers). The costs associated with y variables in the objective
function (3) are given by the following formula:

cij = pij − piai
j
∀(i, j) ∈ A (12)

cij is equal to the power required to establish a transmission from node i
to node j (pij) minus the power required by node i to reach node ai

j (piai
j
).

In Figure 2 a pictorial representation of the costs arising from the example of
Figure 1 is given.

Constraints (4) realize the incremental mechanism by forcing the variable
associated with arc (i, ai

j) to assume value 1 when the variable associated with
arc (i, j) has value 1, i.e. the arcs originated in the same node are activated in
increasing order of p. Inequalities (5) and (6) connect the spanning tree variables
z to transmission power variables y. Basically, given edge {i, j} ∈ E, zij can
assume value 1 if and only if both yij and yji have value 1. Equations (7) state
that all the vertices have to be mutually connected in the subgraph induced by z
variables, i.e. the (eventually augmented) spanning tree. Constraints (8) and (9)
model minimum and maximum possible transmission powers. Constraints (10)
and (11) define variable domains.

In Montemanni and Gambardella [10] a set of facet defining valid inequali-
ties is presented. These inequalities, that are strongly based on the incremental
mechanism described by equations (2), (3) and constraints (4), are able to better

408 R. Montemanni and L.M. Gambardella

Fig. 2. Costs for the mathematical formulation IP

define the polytope associated with the linear relaxation of IP , which is obtained
by substituting constraints (10) and (11) with the following ones:

0 ≤ zij ≤ 1 ∀{i, j} ∈ E (13)
0 ≤ yij ≤ 1 ∀(i, j) ∈ A (14)

Since methods to solve integer programs are based on the iterative refinement
of the solution of the linear relaxation, a tighter relaxation usually produces a
speed up. In Montemanni and Gambardella [10] it is shown that for the MPT
problem the speed up factor can reach 1200. For this reason it is convenient to
incorporate these extra inequalities into formulation (IP).

3.2 The Exact Algorithm IEX

In this section we describe an algorithm which efficiently solves to optimality the
integer program IP (i.e. the minimum power symmetric connectivity problem).

It is very difficult to deal with constraints (7) of formulation IP , because
they are in a huge number. For this reason some techniques which leave some of
them out have to be considered. We present an iterative exact algorithm (IEX)
which in the beginning does not consider constraints (7) at all, and then adds
them step by step only in case they are violated.

In order to speed up the approach, the following inequality should also be
added to the initial integer problem IP :∑

{i,j}∈E

zij ≥ |V | − 1 (15)

Inequality (15) forces the number of active z variables to be at least
|V | − 1 - this condition is necessary in order to have a spanning tree - already
at the very first iterations of the algorithm.

The integer program defined as IP without constraints (7) but with inequal-
ity (15), is solved and the values of the z variables in the solution are examined.
If the edges corresponding to z variables with value 1 form a spanning tree then

Power-Aware Distributed Protocol for a Connectivity Problem 409

the problem has been solved to optimality, otherwise constraints (16), described
below, are added to the integer program and the process is repeated.

At the end of each iteration, the last available solution is examined and, if
edges corresponding to z variables with value 1 generate a set CC of connected
components with |CC| > 1, then the following inequalities are added to the
formulation: ∑

i∈C,j∈V \C, {i,j}∈E

zij ≥ 1 ∀C ∈ CC (16)

Inequalities (16) force z variables with value 1 to connect the (elsewhere
disjoint) connected components in CC to each other.

The IEX algorithm is summarized by the pseudo-code presented in
Figure 3:

IEX()
Build integer program IP;
sol := optimal solution of IP;
CC := connected components defined by

variables z of sol;
While (|CC| > 1)

Add inequalities (16) to IP;
sol := optimal solution of IP;
CC := connected components defined by

variables z of sol;
EndWhile
return sol.

Fig. 3. Pseudo-code for the centralized exact algorithm IEX

It is important to observe that the exact method discussed in this section is
able to solve to optimality, in reasonable time, problems with up to 50 nodes.
When the method is used in a distributed fashion - e.g. when it is used within
the protocol we will describe in Section 4.2 - the practical problems of interests
are sensibly smaller.

4 Distributed Protocols

Glauche et al. [5] conducted a detailed study showing that there is a very close
correlation between the (minimum) number of neighbors of the nodes of a net-
work and the probability of the network to be fully connected. In particular
they observed that this indicator (number of neighbors) is more interesting than
transmission power when connectivity issues are studied. Following this observa-
tion they propose a simple protocol able to provide full connectivity (with high
probability) with a much smaller total transmission power expenditure than
methods working directly on power.

410 R. Montemanni and L.M. Gambardella

This protocol will be extended in order to locally optimize transmission pow-
ers while maintaining the good theoretical properties of the original protocol.
The original protocol is sketched in Section 4.1, while the new extended version
is presented in Section 4.2.

4.1 Protocol LMLD (Glauche et al. [5])

The LMLD (Local Minimum Link Degree) protocol has been originally proposed
in Glauche et al. [5]. It has been inspired by the following observation, motivated
by reasonings based on percolation theory. By exchanging so-called hello and
hello-reply messages each ad hoc node is able to access direct information only
from its immediate neighbors, defined by its links. The simplest local observable
for a node is the number of its links, which is equal to the number of its one-hop
neighbors. Based on this observable alone, a simple strategy for a node would
be to decrease/increase its transmission power once it has enough neighbors.
Consequently the target node degree should be defined by a parameter, that we
will refer to as ngb. A value of the latter has to be chosen such that all nodes
are part of one connected network and reflects the only external input to this
otherwise fully local link rule.

The simple protocol just lined out has two main drawbacks. The first one
is that the value of ngb must be very conservative in order to guarantee full
connectivity in case of clustered networks (with an undesired high density of
links in density populated areas as a side effect). The second drawback is that
the protocol does not take into account that links have to be bidirectional.

The idea introduced in Glauche et al. [5] elaborates on the protocol described
above, aiming to eliminate these drawbacks. In particular, upon setting up the
communication links to the other nodes, a node attaches to its hello message
information about its current link neighborhood list and its current transmis-
sion power. Starting with Pmin, the node increases its transmission power by a
small amount once it has not reached a minimum link degree ngbmin. Whenever
another node, which so far does not belong to the neighborhood list, hears the
hello message of the original node for the first time, it realizes that the latter
has too few neighbors, either sets its power equal to the transmission power of
the hello-sending node or leaves it as before, whichever is larger, and answers
the hello message. Now the original and new node are able to communicate back
and forth and have established a new link. The original node adds one new node
to its neighborhood list. Only once the required minimum link degree is reached,
the original node stops increasing its power for its hello transmissions. At the
end each node has at least ngbmin neighbors. Some have more because they have
been forced to answer nodes too low in ngb; their transmission power is larger
than necessary to obtain only ngbmin neighbors for themselves.

In Glauche et al. [5] it is shown that small values of parameter ngbmin (e.g.
10) already guarantee, from a theoretical and practical point of view, full con-
nectivity with probability almost 1 for very large networks (e.g. 1600 nodes).

Power-Aware Distributed Protocol for a Connectivity Problem 411

4.2 Protocol LMPT

Our aim here is to enrich the LMLD protocol described in the previous section
by introducing explicit transmission power minimization. In order to do this, we
need a little bit more of local information about neighbors, and a slightly more
articulated protocol. We will refer to this new protocol as the LMPT protocol,
which stands for Local Mimimum Power Topology protocol.

Similarly to the LMLD protocol sketched in Section 4.1, where each node is,
in turn, in charge of establishing links with ngbmin neighbors, here each node
is, in turn, in charge of local optimization. We will refer to this node as the
(temporarily) head node. It needs to know the list of neighbors (at the time
of the local optimization) for each of its ngbmin potential neighbors. Moreover,
each node has to send to the head node the power required to reach each one of
its neighbors (it collected these information while it incrementally increased its
power in order to reach a minimum number of neighbors or when it receives a
connection request by another node).

Once the head node has collected these information for the ngbmin nodes
(same parameter of LMLD protocol) closest to it, it solves the local optimization
problem involving itself and these nodes (details about the constructions of the
local problem are given below). In the meantime the nodes in its neighborhood
wait for the optimization to be concluded. At these point, according to the
solution of the optimization, the head node distributes the new neighbors lists
and the new transmission powers for its (current) neighbors. Once they receive
this information they update their state and lists.

The overhead introduced for information exchange (and for solving the local
optimization problem) is justified by the efficiency gained in terms of transmis-
sion power expenditure.

It is very important to stress that when the new protocol LMPT is applied, all
the theoretical results of Glauche et al, that guarantee connectivity “almost for
sure” for proper values of ngbmin, are still completely valid, since after the local
optimization has been concluded, each node is able to reach at least ngbmin

nodes, although now a multi-hop transmission could be necessary. The power
saving we guarantee is consequently directly related to the acceptance of multi-
hop transmission instead of direct one-hop transmissions only.

Figure 4 illustrates the algorithmic implementation of the distributed rule
in more detail. Initially, all nodes come with a minimum transmission power
Pi = Pmin and an empty neighborhood list Ni = ∅ (with the respective list of
required transmission powers Ii empty as well). All of them start in the receive
mode. Then, at random, one of the nodes switches into the discovery mode.
By subsequently sending Ask4Info messages and receiving replies, the picked
node increases its power until it has discovered enough neighbors to guarantee
connectivity with high probability. At this point it uses the collected information
to set up the optimization problem IP (see below) and solves it.

Once IP has been solved, the optimal solution of IP is distributed to the
set of neighbors that sent their information in order to set up problem IP . The

412 R. Montemanni and L.M. Gambardella

LMPT()
Pi := P min

i ;
Ni := ∅;
ReceiveMode();
DiscoveryMode();
ReceiveMode();

DiscoveryMode()

P disc
i := P min

i ;
N disc

i := ∅;
Ii := ∅;
While (P disc

i ≤ P max
i and |N disc

i | < ngbmin)

P disc
i := P disc

i (̇1 + Δ);
Ask4Info(i, P disc

i , N disc
i);

(j1, infoj1 , i), . . . := ReceiveInfo();
N disc

i := N disc
i ∪ {j1, . . . } ;

Update Ii according to infoj1, ...;
EndWhile
Create IP according to Ii;
Sol := Optimal solution of IP;
SendSol(i, N disc

i , sol);
Set Pi, Ni and Ii according to sol;

ReceiveMode()
(j, Pj , Nj) := ReceiveReq4Info();
If (i /∈ Nj)

Pi := max(Pi, Pj);
infoi := combination of Ni and Ii;
SendInfo(i, infoi, j);
sol := ReceiveSol();
Set Pi, Ni and Ii according to sol;

EndIf

Fig. 4. Pseudo-code for the Local Minimum Power Topology (LMPT) protocol

head node can now set up its new transmission power Pi, its set of neighbors Ni

with the respective required transmission powers Ii.
The other nodes will use the information received to set up their power and

their new neighbor lists. The node returns then into the receive mode.
For simplicity we assume that only one node at a time is in the discov-

ery mode; furthermore, we assume the maximum transmission power Pmax to
be sufficiently large, so that each node is able to discover at least ngbmin

neighbors.
In the receive mode a node listens to incoming Req4Info messages. Upon

receipt of such a message, the node first checks whether it already belongs to
the incoming neighborhood list. If yes, the requesting node has already asked
before with a smaller discovery power and there is no need for the receiving
node to react. Otherwise, it updates its transmission power to max(Pi, Pj). Then

Power-Aware Distributed Protocol for a Connectivity Problem 413

it sends back information about its neighbors and the respective transmission
powers required to reach them. The node then waits for the head node j to solve
IP and collects the results. These results are used to update transmission power
Pi, the set of neighbors Ni and the respective transmission powers Ii.

Construction of the local mixed integer program IP. The set of nodes V
of the local IP for head node i is given by the elements of N disc

i , while power
requirements between nodes are set according to the following rule: if j ∈ V ∩Ni

then pij is given by the respective power requirement (contained in Ii), otherwise
pij := +∞. This last assignment is equivalent to state that node i will never
reach node j in the optimal solution of IP (since they are not aware of each
other and do not know the required power to reach each other). Another issue
has to be taken into account while setting up problem IP . In case there exists
a node j ∈ Nk\V, k ∈ N disc

i (j is not a neighbor of i, but j is a neighbor of
k, that in turn is a neighbor of i), we have to force k to keep transmitting to
j in order to ensure global connectivity. This can happen when k has already
been replying to Ask4Info messages before the current round. In the situation
depicted we have to force node k to reach (at least) node j. We then add the
following constraints to IP .

ykl = 1 ∀(k, l) ∈ A s.t. pkl ≤ pkj (17)

Constraints (17) are enough to keep the valid global properties that guarantee
connectivity with high probability for appropriate values of parameter ngbmin. It
is interesting to observe that they also reduce the complexity of IP (new facets
are added), making it easier to solve.

5 Preliminary Experimental Results

In this section we aim to compare the results obtained by the distributed protocol
described in Glauche et al. [5] with those of the power-aware LMPT protocol,
discussed in Section 4.1.

The following three indicators are taken into account for the comparison:

– Total transmission power: the sum of the transmission power of all the
nodes of the network;

– Average number of neighbors: the average number of connections each
node has to maintain in the solution generated by the protocols. This indi-
cator is important because having too many neighbors leads to problematic
communications due to the resulting high noise over the network;

– Maximum number of neighbors: the maximum number of connections
a node within the network has to maintain.

Is is important to stress that in the comparison we do not take into account
the overhead generated by the extra operations carried out by the new LMPT
protocol. This overhead is however marginal, and can be reduced to the extra
transmission power dissipated when information about (old and new) neighbors

414 R. Montemanni and L.M. Gambardella

Table 1. Homogeneous networks. Averages over 50 networks

LMLD ([5]) LMPT Gain (%)

Total transmission power 2.547 1.403 44.92
Average number of neighbors 7.085 2.879 59.36

Maximum number of neighbors 12.317 7.683 37.62

Table 2. Multifractal networks. Averages over 50 networks

LMLD ([5]) LMPT Gain (%)

Total transmission power 4.311 2.047 52.44
Average number of neighbors 8.320 3.393 59.22

Maximum number of neighbors 14.146 9.334 34.02

Table 3. Manhattan networks. Averages over 50 networks

LMLD ([5]) LMPT Gain (%)

Total transmission power 3.417 0.618 81.91
Average number of neighbors 11.890 3.514 70.45

Maximum number of neighbors 24.789 12.684 48.83

are exchanged within the local neighborhood of each node. However this overhead
is very marginal, since the extra operations are carried out only once when the
network is established.

The network topologies considered are those already adopted in Glauche et
al. [5]. Namely, we consider homogeneous, multifractal and Manhattan topolo-
gies. We refer the interested reader to Glauche et al. [5] for details about these
topologies and how to generate the networks. All the networks considered here
have 1600 nodes, path loss exponent κ = 2 and are generated according to [5].
Parameter ngbmin, that defines the minimum number of neighbors of each node,
has been set to 6 for homogeneous networks, to 7 for multifractal networks and to
10 for Manhattan networks. These value are those suggested in [5] and guarantee
full connectivity with probability almost 1.

Average results of the indicators over 50 networks are summarized in Tables
1, 2 and 3 for the three families of networks considered. Percentage gains achieved
by the extended protocol LMPT also appear in the tables.

For all the experiments reported in Tables 1, 2 and 3 the use of the extended
protocol LMPT brings a substantial gain over protocol LMLD, in terms of
both the total transmission power and the number of neighbors (average and
maximum).

In particular the most impressive results have been obtained on Manhattan
networks (Table 3), where the gains for the three indicators are in the order of

Power-Aware Distributed Protocol for a Connectivity Problem 415

81.91 %, 70.45 % and 48.83 % respectively. These results are due to the intrinsic
characteristics of these networks, that in fact are critical cases for the original
protocol presented in [5].

We can conclude that the results are indeed very encouraging and they com-
pletely justify the marginal overhead generated by the extra operations carried
out by the extended protocol LMPT .

6 Conclusions and Future Work

In this paper we have considered the problem of assigning transmission powers
to the nodes of a wireless network in such a way that all the nodes are connected
by bidirectional links with probability almost 1 and the total power consumption
is minimized.

We have presented a distributed protocol, which can be seen as the power-
aware extension of a protocol recently appeared in the literature. The extended
protocol uses a well-known centralized technique for power minimization in a
local, distributed fashion. An important characteristic of the new protocol is
that all the nice theoretical and experimental properties about connectivity of
the original protocol, can be directly transferred to it.

Preliminary computational results are very encouraging, and our future work
will be in the direction of assessing more in detail the potentialities of the new
approach, both from a theoretical and experimental point of view. In particular
it will be very interesting to compare the quality, in terms of power consumption,
of the solution computed by the power-aware distributed protocol we propose,
with the theoretical optimal solution, obtained by assuming full knowledge of
the network at a centralized location.

Acknowledgements

The work was partially supported by the Future & Emerging Technologies unit
of the European Commission through Project “BISON: Biology-Inspired tech-
niques for Self Organization in dynamic Networks”(IST-2001-38923).

References

1. E. Althaus, G. Călinescu, I.I. Măndoiu, S. Prasad, N. Tchervenski, and A. Ze-
likovsky. Power efficient range assignment in ad-hoc wireless networks. In Proceed-
ings of the IEEE Wireless Communications and Networking Conference (WCNC
2003), pages 1889–1894, 2003.

2. D. Blough, M. Leoncini, G. Resta, and P. Santi. On the symmetric range as-
signment problem in wireless ad hoc networks. In Proceedings of the 2nd IFIP
International Conference on Theoretical Computer Science (TCS 2002), pages 71–
82, 2002.

3. T. Chu and I. Nikolaidis. Energy efficient broadcast in modile ad hoc networks.
In Proceedings of AD-HOC NetwOrks and Wireless Conference (AD-HOC NOW
2002), 2002.

416 R. Montemanni and L.M. Gambardella

4. A.K. Das, R.J. Marks, M. El-Sharkawi, P. Arabshani, and A. Gray. Optimiza-
tion methods for minimum power bidirectional topology construction in wireless
networks with sectored antennas. Submitted for publication.

5. I. Glauche, W. Krause, R. Sollacher, and M. Greiner. Continuum percolation of
wireless ad hoc communication networks. Physica A, 325:577–600, 2003.

6. L. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power consumption in packet
radio networks. Theoretical Computer Science, 243:289–305, 2000.

7. W. Krause, R. Sollacher, and M. Greiner. Self-� topology control in wireless mul-
tihop ad hoc communication networks. Submitted for publication.

8. E. Lloyd, R. Liu, M. Marathe, R. Ramanathan, and S. Ravi. Algorithmic aspects
of topology control problems for ad hoc networks. In Proceedings of the Third ACS
International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc
2002), pages 123–134, 2002.

9. R. Montemanni and L.M. Gambardella. Minimum power symmetric connectivity
problem in wireless networks: a new approach. In Mobile and wireless communica-
tions networks (E.M. Belding-Royer et al. eds.), pages 496–508. Springer, 2004.

10. R. Montemanni and L.M. Gambardella. Exact algorithms for the minimum power
symmetric connectivity problem in wireless networks. Computers and Operations
Research, 32(11):2891–2904, 2005.

11. R. Montemanni, L.M. Gambardella, and A.K. Das. The minimum power broadcast
problem in wireless networks: a simulated annealing approach. In Proceedings of the
IEEE Wireless Communication & Networking Conference (WCNC 2005), 2005, to
appear.

12. R. Montemanni, L.M. Gambardella, and A.K. Das. Mathematical models and
exact algorithms for the min-power symmetric connectivity problem: an overview.
In Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless,
and Peer-to-Peer Networks (J. Wu ed.). CRC Press, to appear.

13. R. Ramanathan and R. Rosales-Hain. Topology control of multihop wireless net-
works using transmit power adjustment. In Proceedings of the IEEE Infocom 2000
Conference, pages 404–413, 2000.

14. T. Rappaport. Wireless Communications: Principles and Practices. Prentice Hall,
1996.

15. S. Singh, C. Raghavendra, and J. Stepanek. Power-aware broadcasting in mobile ad
hoc networks. In Proceedings of the IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC 1999), 1999.

16. P.-J. Wan, G. Călinescu, X.-Y. Li, and O. Frieder. Minimum energy broadcast
routing in static ad hoc wireless networks. In Proceedings of the IEEE Infocom
2001 Conference, pages 1162–1171, 2001.

17. J. Wieselthier, G. Nguyen, and A. Ephremides. On the construction of energy-
efficient broadcast and multicast trees in wireless networks. In Proceedings of the
IEEE Infocom 2000 Conference, pages 585–594, 2000.

Self- anagement of Virtual Paths in
Dynamic Networks

Poul E. Heegaard1, Otto Wittner2, and Bjarne E. Helvik2

1 Telenor R&D� and Department of Telematics,
Norwegian University of Science and Technology, Norway

poulh@item.ntnu.no
2 Centre for Quantifiable Quality of Service in Communication Systems��

Norwegian University of Science and Technology, Trondheim, Norway
{bjarne, wittner}@q2s.ntnu.no

Abstract. Virtual path management in dynamic networks poses a num-
ber of challenges related to combinatorial optimisation, fault and traffic
handling. Ideally such management should react immediately on changes
in the operational conditions, and be autonomous, inherently robust
and distributed to ensure operational simplicity and network resilience.
Swarm intelligence based self management is a candidate potentially able
to fulfil these requirements. Swarm intelligence achieved by cross entropy
(CE) ants is introduced, and two CE ants based path management ap-
proaches are presented. A case study of a nation wide communication in-
frastructure is performed to demonstrate their abilities to handle change
in network traffic as well as failures and restoration of links.

Keywords: Cross-entropy, Swarm intelligence, Ant-based optimisation,
elite CE ants, Network management, Resilience.

1 Introduction

Paths between all source destination pairs in a communication network should
be chosen such that an overall good utilisation of network resources is ensured,
and hence high throughput, low loss and low latency achieved. At the same time
the set of paths chosen must enable utilisation of the available spare capacity in
the network in such a manner that a failure results in a minimum disturbance
of the directly affected traffic flows as well as other traffic flows in the network.
The combinatorial optimisation aspects of this task are typically NP-hard, see for
instance [1]. Nevertheless, considerable knowledge has been acquired for planning
paths in networks [2]. Establishment of virtual path layouts and deployment of
backup paths are issues discussed in this paper. Insight and practical methods

� This work was partially supported by the Future& Emerging Technologies unit of
the European Commission through ProjectBISON (IST-2001-38923).

�� Centre for Quantifiable Quality of Service in CommunicationSystems, Centre of Ex-
cellence appointed by The Research Council of Norway,funded by the Research Coun-
cil, NTNU and UNINETT. http://www.ntnu.no/Q2S/

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 417–432, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

m

418 P.E. Heegaard, O. Wittner, and B.E. Helvik

for obtaining such paths by mathematical programming are available. For an
overview, see the recently published book by Piro and Medhi [2] and references
therein. Several stochastic optimisation techniques which may be used to address
these kinds of problems, have been proposed [3, 4, 5, 6]. However, common to
these are that they deal with path finding as an optimisation problem where the
“solution engine” has a global overview of the problem and that the problem is
unchanged until a solution is found. This differs from the requirement that path
management should be truly distributed and adaptive. On the other hand, one
should be aware that applying truly distributed decision-making typically yields
solution which are less fine tuned with respect to optimal resource utilisation.

In addition to finding good paths, proper path management requires that: a)
the set of operational paths should be continuously updated as the traffic load
changes, b) new paths should become almost immediately available between
communication nodes when established paths are affected by failures, and c)
new or repaired network elements should be put into operation without unnec-
essary delays. Near immediate and robust fault handling advocates distributed
local decision-making on how to deal with failures. This is reflected by the com-
monly applied protection switching schemes in today’s telecommunication net-
works, e.g. in SDH and ATM [7, 8]. Typically two (or more) disjoint paths are
established, one serving as a backup for the other. Protection switching requires
preplanning, is rather inflexible and is not very efficient in utilising network re-
sources. Shortest path, distance vector and policy based routing as applied in the
Internet, is distributed, have local decision-making and applies to some degree
planning inherent in the network, see for instance [9]. However, routes (paths)
are restored after a failure, which may incur a substantial delay before traffic
flows along a route are fully reestablished. Furthermore, it is not unusual that
Internet operators use static link weights. This requires preplanning and lessens
the adaptivity. In general, making plans that are able to cope efficiently with
every combination of traffic load and network state is difficult, if at all possible.

Schoonderwoerd & al. introduced the concept of using multiple agents with a
behaviour inspired by ants to solve problems in telecommunication networks [10].
The concept is known as swarm intelligence [11] and has been pursued further
by others, see for instance [12, 13, 14] and references therein. Self-management by
swarm intelligence is a candidate to meet the aforementioned requirements and
to overcome some of the drawbacks of the current path and fault management
strategies. This is elaborated further in Section 2. For dealing with path manage-
ment in communication networks we have developed the CE ants (cross-entropy
ants) which are based on Rubinstein’s method for stochastic optimisation [6].
CE ants and their application in two path management approaches are presented
in Section 3. The first approach, adaptive paths, presented for the first time in
this paper, applies a stochastic routing scheme and is promising with respect
to robust and adaptive forwarding. In Section 4, a case study demonstrates the
adaptive abilities of the two CE ants based path management approaches. The
approaches are confronted with a changing traffic load as well as failures and
restorations of links in the network. This demonstration is one of the original
contributions of the paper. Some concluding remarks are given in Section 5.

Self- anagement of Virtual Paths in Dynamic Networks 419

2 Position on Path Management

Being able to transfer addressed information between sources and destinations
is the prime function of a communication network, and hence, how to find a way
for the information through the network is one of the most salient issues in net-
work architecture and operation. How this has been done throughout history is a
trade-off between requirements and available technology. We raise the question:
is self-management by emergent behaviour a viable approach to path finding in
future networks, meeting the requirement of an integrated multi-service trans-
port network? Paths are in this context both explicit paths as virtual connections
realized for instance by multiprotocol label switching (MPLS), [15], and implicit
paths given by for instance open shortest path first (OSPF) routing tables, [9].

To substantiate our position on this question we first introduce the main
objectives of routing/path management in networks, discuss basic architectural
issues and outline two alternative algorithms and their rationale with respect
to management. Details and the performance of these algorithms are presented
later in the paper.

By path management we address medium length temporal characteristics of
network, i.e., how to use the available network resources to establish paths that
best meet the requirements of the offered traffic on a time scale in the range
from 100 ms to some hours. Long term planning, involving installation and
rearrangement of physical equipment, is outside the scope of path management
together with the short term management issues dealing with the real time
characteristics of the individual flows. The objective of path management may
be summarised by the following obviously interrelated items.

Path Finding Ability. This is the obvious objective; if a path exists between
a source and a destination in a network, it should be found. There may be
additional objectives to find multiple node and/or link disjoint paths for better
resource utilisation and resilience.

Resource Utilisation. The network resources should be used efficiently. The
exact interpretation of efficiency will depend on the QoS objectives of the net-
work, e.g., be close to some optimal value with respect to traffic carried (or
operator income) when constrained by QoS requirements. The efficiency should
be maintained under changes in the loading of the network, in the topology
and in the capacities of the network elements, i.e., adaptivity is mandatory for
efficient resource utilisation.

Resilience. If feasible, the dependability requirements of the service provided
should be met in terms of availability, reliability and down time. In some services,
the temporal aspects, e.g. continuity of service or negligible down times, are
of great importance. A prerequisite for resilient services is the resilience of the
management system itself, i.e., it should be robust to failures of network elements
as well as loss of management information due to failures and overload.

Priorities and Fairness. Common to most networks is that they should pro-
vide a fair service, i.e., all users (or traffic flows) having the same “status”,

m

420 P.E. Heegaard, O. Wittner, and B.E. Helvik

should statistically receive the same QoS. Future networks will carry a vari-
ety of services with highly differing dependability requirements and importance
(end-users’ willingness to pay). In these networks, the management system has
to implement priorities to deal with an offered load exceeding the capacity and
with failures, while maintaining a generally high resource utilisation.

There are two major design axis for management systems, a spatial axis, i.e.,
degree of centralisation or distribution, and a temporal axis, i.e., the degree of
preplanning. It would be too lengthy to go into detail on various solutions, so
the discussion is limited to establishing the main pros and cons of the various
options.

Centralisation has the advantage that decisions may be based on a global
view, and hence, in theory, better decisions with respect to resource utilisation
and priorities may be made. Its drawback is that it is vulnerable since central-
isation yields a single point of failure, and since these systems have to rely on
a potentially partially overloaded or failed network for extraction of measure-
ments and status information, as well as for dissemination of control information.
Centralised decision-making may also be slow due to a long decision cycle. Dis-
tribution tends to yield poorer resource utilisation, but has a potentially better
resilience. preplanning is needed to be able to rapidly respond to network element
failures, e.g. by protection switching, and may be used to deal with anticipated
changes in the load, e.g. daily variations. For long term preplanning, it is im-
possible to plan for all eventualities making it necessary to plan for ranges of
eventualities which may result in more costly solutions. On the other end of the
scale, we have the reactive systems. Their drawback is the restoration time, i.e.
the inability to provide continuity of service shortly after a failure. To avoid
the extremes we advocate short term planning, dynamically making contingency
plans for the current network state and load, or a pro-active preparation for a
fast restoration, cf. Section 3.1.

In the public telecom networks, primarily designed for telephony, preplanned
protection switching schemes (with a distributed implementation) is typically
used to achieve fast fault management. This scheme is rather inflexible and
costly in terms of spare equipment. It is combined with otherwise centralised
management to obtain high resource utilisation and control of delays and loss.
The Internet, which has its architecture governed by the requirement to survive
a nuclear attack, has an inherent robustness in part achieved by distributed path
finding. Resilience is the prime objective, while QoS is less focused. The major
drawback of the Internet approach is the relative long time needed for restoration
after failures, which results in missing ability to provide continuity of service
when failures occur. Another issue is that fixed link costs are typically used in
the routing algorithms, and hence, the ability to adapt the flows in the network
to changes in the load is restricted. MPLS and the generalised multiprotocol label
switching (GMPLS) for management of underlaying circuit switched networks,
have been introduced as means that may be used to overcome these drawbacks.
However, the tendency is toward using (G)MPLS based on “off-line” centralised

421

preplanning and thereby missing some of Internet’s inherent robustness and
adaptivity.

It is our research hypothesis that self-management of path finding by emer-
gent behaviour has the potential to provide the advantages of both these ap-
proaches, inherent robustness and adaptivity, a good resource utilisation as well
as continuity of service by protection-like schemes or pro-active path routing
schemes. A drawback is that in order to achieve this, determinism is sacrificed. To
support this hypothesis we have developed an emergent path finding algorithm
based on the CE ants approach to stochastic optimisation [6], and performed
extensive experiments on two variants of self-management algorithms with de-
creasing “designedness” in order to meet the continuity of service objective. The
primary backup scheme has as its prime objective to establish disjoint pri-
mary and backup (MPLS) paths for (all) source destination pairs. The primary
and backup paths are to be established such that backup-paths reuse network
resources without preventing (due to overload) the scheme to provide continuity
of service when a network element fails. Its main pro is the explicit knowledge
of the immediately restorable traffic. Its scalability for increasing network sizes
and complex priority schemes is not yet investigated. The other approach is the
adaptive path scheme, which has stochastic paths for all source destination
pairs in all nodes of the network. This approach will pro-actively provide alter-
native paths in case of failure. Its main pros are simplicity and fast adaption
to major chances in the network. It lacks, however, the ability to give explicit
indication of the fraction of traffic that will experience continuity of service. Dif-
ferentiation or priority is also difficult to provide. In order to substantiate our
position, the remainder of the paper will present, compare and discuss these two
schemes in the context of the objectives listed at the beginning of this section.

3 Cross Entropy Ants (CE Ants)

The CE ant system which forms the foundation for the work presented in this
paper, is a swarm intelligent system originally inspired by the foraging behaviour
of ants, as outlined in the introduction. The overall idea is to have a number
of simple ant-like mobile agents iteratively search for paths in a network. An
ant, having found a path, backtracks and leaves markings, denoted pheromones,
resembling the chemicals left by real ants during ant trail development. The
strength of the change in markings depends on the quality of the path found.
Hence, nodes hold distributions of pheromones pointing toward their neighbour
nodes. A new ant in its searching phase visiting a node selects the next node
to visit stochastically based on the pheromone distribution seen in the visited
node. Using such trail marking ants, together with evaporation of pheromone, the
overall process converges quickly toward having the majority of the ants follow
a single trail that tends to be a near optimal path. The behaviour of the cross
entropy ants, to be presented in Sections 3.2 to 3.4, is in addition to mimicking
ants in nature, founded in Rubinstein’s method for stochastic optimisation [6].

Self- anagement of Virtual Paths in Dynamic Networksm

422 P.E. Heegaard, O. Wittner, and B.E. Helvik

Due to space limitation, the rest of this section presents only an outline of the
CE ant system. For details readers are referred to [14].

The path management strategy implemented by the ants is governed by how
the “quality of a path found” is determined. We denote this quality (or the
lack of quality) cost. Traffic streams between pairs of nodes in the network is
indexed by m. A path for this stream found by the t’th ant is denoted πm

t . A link
connecting two adjacent nodes i, j has a link cost Lij . The link cost is chosen
to a measure appropriate for the problem at hand. It may for instance be in
terms of incurred delay by using the path, ”fee” paid to the operator of the link,
a penalty for using a scare resource like free capacity, etc., or a combination of
such measures. The link cost may depend on the traffic stream to be carried and
when the cost is observed. If this is the case the cost observed by the t’th ant is
denoted Lm

t,ij . The cost function, L, of a path is the sum of the link costs, i.e.

L(πm
t) =

∑
ij∈πm

t

Lm
t,ij (1)

3.1 Management Strategies

The management strategy should be reflected in the cost function determining
the cost for the individual ants. Below two such strategies and their correspond-
ing cost functions are presented.

Primary Backup. This strategy is designed to provide soft guarantees for re-
taining service under single link failures. This is done by finding pairs of mutually
disjoint primary and back-up paths. Hence, the ants seeking primary paths and
backup paths should detest each other. The capacity of the primary paths will
be used in fault free operation, and ants finding primary paths should detest
each other if using a common link would cause overload. The capacity on the
back-up paths will be allocated and shared with other backup paths. Backup
paths having primary paths with common links should also avoid using common
links in the backup path that may be overloaded if the common primary link
fails. The cost function should give high penalty to the primary backup paths
where the accumulated traffic demand exceeds the capacity of at least one link.
Hence, a penalty related to the approximate expected potential link overload,
including the above mention detestation, is chosen as the link cost. The primary
backup link cost expression relating to stream mr,where r indicates rank of path
(r = 0 ⇒ primary and r = 1 ⇒ backup), has the following structure:

Lmr
t,ij = S

⎡⎣am +
∑

∀ns: ij∈πns
t

Pns
t,ij V ns

t,i Qns
t,mr

an − cij

⎤⎦ (2)

where am, and an represent the load put by streams m and n, and cij capacity
available on link ij. Pns

t,ij is the probability that an ant ns of rank s (s = 0 ⇒
primary and s = 1 ⇒ backup) for stream n will follow link ij when it visits
node i, and V ns

t,i is the probability that ant ns visits node i. The factor Pns
t,ijV

ns
t,i

423

indicates the likelihood, at the current state of the emerging process, that the
actual link will be chosen as a path for stream n. These quantities are derived
directly from pheromone levels in node i. Qns

t,mr
is a weight function controlling

the intensity of the detestation. S[...] is a smoothening function ensuring Lmr
t,ij >

0. For details see [13].

Adaptive Path. This strategy is designed for fast restoration and adaptivity
to both link failures and change in traffic loads. Hence, the cost function should
be sensitive to the carried traffic, which makes a delay based link cost measure a
natural choice. The link cost measure includes both the queueing and processing
delay in a node, and the transmission delay of a link. The link cost measure for a
link in a path for stream m is therefore Lm

t,ij = dm
t,ij , where dm

t,ij is average delay
induced by the link ij measured in the short time period between ant tand the
succeeding ant traversing linkij.

3.2 The Cross Entropy Method

In [6] Rubinstein presents an algorithm for iteratively finding optimal solutions
to hard combinatorial problems. It stems from the recognition of that finding the
optimal solution by random selection is an extremely rare event. For instance,
the probability of finding the shortest Hamiltonian cycle in a 26 node network is
1

25! ≈ 10−26. Hence, a successive importance-sampling-like technique is used to
increase the probabilities of finding good solutions. In our context, his approach
may be regarded as a centralised search for a single best path in a network. For
the sake of presentation, the cross entropy (CE) method is summarised with the
above “ant terminology” with the modification that t is now interpreted as a
batch of N ants rather than a single ant, cf. step 2 below. Hence Rubinstein’s
algorithm is batch oriented.

The total allocation of pheromones in a network is represented by a prob-
ability matrix Pt where an element Pt,ij reflects the normalised intensity of
pheromones pointing from node i toward node j. An ant’s stochastic search for
a sample path resembles a Markov Chain selection process based on Pt. By im-
portance sampling in multiple iterations Rubinstein alters the transition matrix
(Pt → Pt+1) and increases, as mentioned, certain probabilities such that ants
eventually find near optimal paths with high probabilities. Cross entropy is ap-
plied to ensure efficient alteration of the matrix. To speed up the process further,
a performance function weights the path qualities such that high quality paths
have greater influence on the alteration of the matrix, cf. step 2 below. Rubin-
stein’s CE algorithm has 4 steps. The indexes m and r are omitted since a single
path and single kind of ant is considered:
1. At the first iteration t = 0, select a start transition matrix Pt=0 (e.g. uni-

formly distributed).
2. Generate N paths from P t. Calculate the minimum parameter γt, denoted

temperature, to fulfil average path performance constraints, i.e.

min γt s.t. h(Pt, γt) =
1
N

N∑
k=1

H(πk, γt) > ρ (3)

Self- anagement of Virtual Paths in Dynamic Networksm

424 P.E. Heegaard, O. Wittner, and B.E. Helvik

where H(πk, γt) = exp(−L(πk)/γt) is the performance function returning
the quality of path πk. L(πk) is the cost of using path πk as in Section 3.1,
and 10−6 ≤ ρ ≤ 10−2 is a search focus parameter. The minimum solution
for γt implies a certain reinforcement (dependent on ρ) of high quality paths
and produces a minimum average h(Pt, γt) > ρ over all path qualities in the
current batch of N paths.

3. Using γt from step 2 and H(πk, γt) for k = 1, 2..., N , generate a new transi-
tion matrix Pt+1 which maximises the “closeness” (i.e. minimises distance)
to the optimal matrix, by solving

max
Pt+1

1
N

N∑
k=1

H(πk, γt)
∑

ij∈πk

lnPt+1,ij (4)

where Pt+1,ij is the transition probability from node i to j at iteration t+1.
The solution of (4) is shown in [6] to be

Pt+1,ij =
∑N

k=1 I({i, j} ∈ πk)H(πk, γt)∑N
l=1 I({i} ∈ πl)H(πl, γt)

(5)

where I(X) = 1 if X = true, 0 otherwise. (5) results in a minimised cross
entropy between Pt and Pt+1, and ensures an optimal shift in probabilities
with respect to γt and the performance function.

4. Repeat steps 2-3 until H(π̂, γt) ≈ H(π̂, γt+1) where π̂ is the best path found.

3.3 Distributed Cross Entropy Method

In [16] a distributed and asynchronous version of Rubinstein’s CE algorithm is
developed, today known as CE ants. By a few approximations, (5) and (3) may
be replaced by autoregressive counterparts based on

Pt+1,ij =
∑t

k=1 I({i, j} ∈ πk)βt−kH(πk, γt)∑t
l=1 I({i} ∈ πl)βt−lH(πl, γt)

(6)

and
min γt s.t. h

′
t(γt) > ρ (7)

where

h
′
t(γt) = h

′
t−1(γt)β + (1− β)H(πt, γt) =

1− β

1− βt

t∑
k=1

βt−kH(πk, γt)

and where β ∈ 〈0, 1〉 (typically close to 1) controls the history of paths re-
membered by the system (i.e. replaces N in step 2). See [16] for details on the
auto-regression. Step 2 and 3 in the algorithm can now be performed immedi-
ately after a single new path πt is found (i.e. t again represents the t’the ant),
and a new probability matrix Pt+1 can be generated. Hence CE ants may be

425

viewed as an algorithm where search ants evaluate a path found (and calculate
γt by (7)) right after they reach their destination node, and then immediately
return to their source node backtracking along the path. During backtracking,
pheromones are placed by updating the relevant probabilities in the transition
matrix, i.e applying H(πt, γt) through (6).

Due to the compact autoregressive schemas applied in a CE ant system,
the system becomes both computationally efficient, requires limited amounts of
memory and is simple to implement.

3.4 Elite CE Ants

In [17] elitism is introduced in the CE ants system. The new system, denoted elite
CE ants, performs significantly better in terms of the number on path traversals
required to converge toward a near optimal path. The kind of contribution an
ant makes depends on the cost of the path it has traversed relative to the cost
of paths found by other ants. All ants contribute in updating the temperature
γt as in (7). However, a limited set of ants, denoted the elite set, updates a
different temperature γ∗

t . Only ants belonging to the elite set backtrack their
paths and update pheromones applying H(πk, γ∗

t) in (6), and hence, reducing
the total number of backtracking traversals and pheromone updates.

The criterion for determining if an ant is in the elite set is based on the fact
that the best solutions in the CE ants method relates to ρ through e−L(πt)/γt > ρ,
cf. step 2 in Section 3.2. The elite criterium of (8) is a rearrangement of this
relationship. An ant is considered an elite ant if the cost of the path found by
the ant satisfies

L(πt) < −γt ln ρ (8)

Note that the temperate γt updated by all ants is applied in (8). Hence, when
removing parts of the search space which enables elite ants to find their paths,
e.g. by a link breakdown in the best path found, the temperature γt will increase
and allow ants with higher path costs to perform pheromone updates. Hence
dynamic network conditions are handled. Note also that the elite criterium does
not introduce any additional parameters. It is self-tuning.

4 Case Studies of a National-Wide Internet Topology

In order to demonstrate the effect of the swarm-based path management ap-
proaches, case studies are carried out based on a topology extracted from a
national-wide Norwegian Internet provider. In this section the simulation cases
are described, and results are given from the studies of adaptivity and robust-
ness of the primary-backup and adaptive path strategies. A few comments on
the efficiency, i.e. the management overhead relative to its reactiveness, are also
included. As previously mentioned, relative to more traditional centralised path
finding schemes under static conditions, we expect to loose some “performance”,
but not necessary too much [16].

Self- anagement of Virtual Paths in Dynamic Networksm

426 P.E. Heegaard, O. Wittner, and B.E. Helvik

Fig. 1. The network topology in case studies

4.1 The Simulation Case Description

The network in Figure 1 consists of a core network with 10 core nodes in a
sparsely meshed topology, ring based edge networks with a total of 46 edge nodes,
and dual homing access network with 160 access nodes. The relative transmission
capacities are 1, 1/4 and 1/16 for core, edge and access links, respectively. In
the processing delay in the nodes only includes the variable queueing delay as a
function of the load level.

The path management of 10 separate paths is studied in details. The paths are
exposed to network link failures, drops of management information, and changes
in offered traffic loads. The terminal nodes, i.e. the ingress and egress nodes, of
the 10 paths are all access nodes. Each path is routed through an edge and the
core network. The average load, ρ, is the link utilisation of every link of the
paths through the network. The traffic is routed according to the (multi) paths
provided by the management algorithm. This traffic represents the background
traffic and is added to study how the algorithm reacts to load variations. In
order to stress the algorithm and create instabilities, the load changes are in
significant steps, see Table 1. All results in the following are from 10 simulation
replications.

The objective is to study the transient behaviour, i.e. the adaptivity and ro-
bustness, of this distributed management approach. Hence, the dynamism sim-
ulated are specific, and abrupt, changes in the network environments. The main
observations from these experiments are given in the following.

427

4.2 Adaptivity

In order to test the adaptivity of the path management approach, a scenario
with changes in traffic pattern and load level, and changes in structure (link
failures and restorations) is defined. The details of the 9 phases of the scenario
are given in Table 1.

Adaptive Path Strategy. The results presented in Figure 2 are the average
cost values from 10 simulation replications over the 9 phases. The results are
from 3 of the 10 paths, selected from the paths that are affected by at least
one of the changes in network conditions given in Table 1. There are three main
observations from the series of simulation experiments.

1. The adaptive path strategy will switch to an alternative path almost im-
mediately. This will in some cases cause a transient decrease in the quality
(e.g. delay) but not necessary an interruption of the transport service. As
an example, follow the path VC1. When a core link fails (phase 5 to 6), a
sudden increase in the cost value of VC1 is observed because the preferred
path is no longer available. An alternative path is immediately available.
The elite CE ants continue to search for better paths. In this experiment the
alternative eventually found in phase 6 has the same cost value as the best
in phase 5. If a prescribed upper bound on the delay of the transport service
relying on the VC, the service will not be conform with the requirements
and hence unavailable. E.g. if this delay bound is 200 ms (see horizontal grid
line in Figure 2), the VC2 will at start of phase 3 and 5 experience a short
interruption of the transport service. Measuring the unavailability, U , as the
relative time with delay above 200, this gives UV C1 = 0.036, UV C2 = 0.022,
and UV C3 = 0.0 for this simulation experiment. This unavailability can be
reduced by increasing the number of updating messages per time unit, but
this will increase the overhead of the management function.

2. If the increase in traffic load causes an overload on a link, the load sharing
property of the adaptive path strategy will resolve this rather quickly. E.g.

Table 1. Dynamic scenario for testing of adaptivity

Phase Average load, ρ Link events Comments
- 0 - Exploration phase

1 0 - Initial topology

2 0.3 - Increased load

3 0.6 - Increased load

4 0.3 - Decreased load

5 0.9 - Sign. increase in load

6 0.9 Down [4,8], [6,8], [1,2] Core links failed

7 0.9 Down [3,20], [1,42], [7,55], [3,22] Edge links failed

8 0.9 Down [19,86] Access link failed

9 0.9 Restored [19,86] Access link restored

Self- anagement of Virtual Paths in Dynamic Networksm

428 P.E. Heegaard, O. Wittner, and B.E. Helvik

VC3
VC3

VC2

VC1

VC2

 0

 50

 100

 150

 200

 250

 300

 350

 400

phase 9phase 8phase 7phase 6phase 5phase 4phase 3phase 2phase 1

co
st

: d
el

ay

VC1: 91->118
VC2: 102->147
VC3: 164->66

VC1

Fig. 2. Adaptive path strategy: adaptivity in dynamic environment

the sudden increase in traffic load of VC2 from 30 to 90% (phase 4 to 5)
will cause a sudden peak in the cost value because one of the access links is
overloaded. But, after a while (during phase 5), a new and good solution is
found.

Primary Backup Strategy. Figure 3 shows the results from the most illustra-
tive simulation out of 10 replications applying the primary backup strategy for
the scenario describe above. The cost of the operational paths for three selected
VCs during the phases 5-9 are plotted. An operational path is either a primary
or a backup path. The cost value function for the primary backup strategy is
not sensitive to the carried load and hence the phases 1-5 from Table 1 are in-
distinguishable and represented by phase 5 in Figure 3. The cost value indicated
at the y-axis is the loss penalty, as specified in Section 3.1. Note that the loss
penalty is greater than 0 even if no traffic is lost. This is due to smoothening
function in (2). Two lessons learned from the experiments are emphasised.

1. A switch-over from a disconnected operational path to an alternative path,
either by protection switching (primary to backup) or by restoration (pri-
mary to a new primary), will cause an interruption of service. E.g. observe
the behaviour of VC2. After the core link failure at the beginning of phase 6,
the primary path of VC2 is disconnected and VC2 is broken (regarded as
down time). After a short period, the backup path takes over and is made
operational. The backup path, which has a higher cost value, is operational
until a new good primary path is found (primary is restored) at the end
of phase 6. For VC1, the failed primary path at the beginning of phase 6
is quickly restored to a new primary path of equal cost (hence no shift in

429

 0

 20

 40

 60

 80

 100

 120

 140

phase 9phase 8phase 7phase 6phase 5

co

st
: l

os
s

pe
na

lty

VC1: 91->118
VC2: 102->147

VC3: 164->66

VC1VC1

VC2

VC2 VC3
VC3

Fig. 3. Primary backup strategy: adaptivity in dynamic environment

the curve in Figure 3), i.e. the restoration mechanism reacts faster than the
protection switching mechanism. Again, from phase 7 to 8, the operational
primary path becomes unavailable, but is very quickly restored to a new
primary path (space between the vertical start-line of phase 8 and the cost
curve for VC1 is almost not observable). Again restoration is faster than
protection switching. The reason is that the nodes contains (in pheromone
values) alternative primary paths that are almost immediately available, at
least quicker than switching to the protection, or backup, path. The cost
value is increased because the new best path needs extra hops to establish
a path from the ingress to the egress node. Also for VC3 restoration works
faster than protection switching, however as observed in the beginning of
phase 7 a more significant (and visible) delay is experienced, i.e. a down
time, before a new primary path is found.

2. Explicit link failure notification will improve the path availability by making
the protection switching mechanism more reactive. In the current implemen-
tation, no explicit notification of link failure is given to the ingress node of
the path. The switch-over from primary to backup is triggered by a signif-
icant increase in the elite selection criterion from E.g.. (8) in Section 3.4.
This type of “ant driven” failure reporting is robust, but may be inefficient
because more than one ant is required to trigger and update. Even so, down
times for VC1, 2 and 3 are short. The unavailabilities are UV C1 = 0.0003,
UV C2 = 0.012 , and UV C3 = 0.018.

4.3 Robustness

To test the robustness of the strategies two critical kinds of events are studied.
First, loss of information packages (i.e. ants), and secondly, loss of information

Self- anagement of Virtual Paths in Dynamic Networksm

430 P.E. Heegaard, O. Wittner, and B.E. Helvik

(i.e. pheromone values) in a node Nc along a specific primary path. As in previous
experiments, we have studied the performance of the 10 paths using both the
adaptive and primary backup path strategies.

In the first series of experiments, the management information was lost in
all phases of the experiments, also in the exploration and transient phases. The
strategies performed as if the number of ants where reduced and therefore the
convergence rate was reduced, which is a desired and very robust behaviour in-
deed. The second series of experiments introduced failures after a path is estab-
lished. These results for both loss of information packages and loss of information
in a node are reported in this section.

Loss of Information Packages. The ants are dropped on a specific interface
that is a part of the preferred path for ingress node 194 and egress node 84. One
of the interfaces of this path drops packets with a probability pd. When pd = 1
this is similar to a link failure and the method reacts as described in previous
section. When pd < 1 at least some of the searching (forward) and updating
(backward) ants will get through and the pheromone values are updated. For
the adaptive path strategy, if a single best path exists, it will remain the best
even with pd > 0. The reason is that the cost function does not reflect this
performance degradation. However, when there are several paths with the same
best value, the paths with packet loss will be updated less frequent than the
paths without failure, and hence their pheromones will evaporate relative to the
paths with less, or no, loss of ants.

Loss of Information. The second simulated failure mode is deleting all the
pheromone values, i.e. removing all routing information in a specific node. This
means that all interfaces of this node are affected. The specific node studied is a
core node with 9 edges (interfaces). This node holds routing information about
the preferred paths for 2 out of 10 VCs. When the routing information is removed,
it means that an ant (and the data traffic) will be routed randomly according to
a uniform distribution over the 9 available interfaces. The probability of deleting
pheromones is pf = 0.05, which corresponds to that on average every 20th ants
will meet an empty routing tables in this node. The main observation is that
the best paths are retained and that loosing all routing information in one single
node only causes minor problems. After very few ants (less than the average
20 in between node failures) the routing table is restored. This is because the
neighbour nodes contain sufficient information to avoid an extensive exploration
to re-establish the routing tables again. The adaptive strategy is more robust
than the primary backup strategy because no explicit resource reservation and
establishment of path is necessary. The primary backup strategy will suffer from
the same problems as standard MPLS LSP management with respect to loss of
soft state establishment (LSP) messages.

Based on the experiments in this section, it seems that both methods are robust
to random loss of information packages (ants) and to loss of routing information
(pheromones). In both cases, the paths are retained or restored quickly, without
loss of consistency. As a general comment, the adaptive strategy seems robust to

431

the random loss of any management information. This strategy is less sensitive
to loss of specific control packets like the routing updates messaged, or LSP
establishment messages you find in primary backup path strategy and in MPLS.
The adaptive path strategy relies on small but redundant pieces of information.
However, this redundancy comes with a price, and good and adaptive rules for
managing the overhead must carefully be looked into.

5 Concluding Remarks

In this paper, we look at virtual path management in dynamic networks that
poses a number of challenges related to combinatorial optimisation, fault and
traffic handling. We claim that swarm intelligence based self-management is a
promising candidate which reacts immediately to changes in the operational con-
ditions, is autonomous, inherently robust and distributed, all necessary condi-
tions to achieve operational simplicity and network resilience. Swarm intelligence
achieved by elite CE ants is introduced and two path management strategies
based on these are presented, denoted adaptive path and primary backup. A case
study of a nation-wide communication infrastructure is presented to demonstrate
the ability to handle change in network traffic as well as failures and restoration
of links. The adaptive path strategy is designed to react quickly to loss and
overload of resources. This reaction is demonstrated through the case study, in
addition to a slower observable reaction when resources become available or un-
derloaded. The latter is dependent on the number of ants used, i.e. the overhead.
Note, however, that it is acceptable to operate on a sub-optimal solution for a
short period as long as the prescribed QoS requirements are fulfilled. The pri-
mary backup is designed to guarantee, by establishing link disjoint primary and
backup paths, that sufficient bandwidth is available if an arbitrary link fails. The
case study demonstrates that fast switch-over to backup paths as well as fast
restoration of primary paths is possible. The case study also demonstrated that
both methods are robust to loss of management state and updating information.

Further work includes continued work on the principles of applying emergent
behaviour for managing QoS in networks, as well as dealing with engineering
issues for introduction of these principles in operational networks.

References

1. M. O. Ball, Handbooks in Operation Research and Management Science, Network
Models, vol. 7. North Holland, 1995.

2. M. Pióro and D. Medhi, Routing, Flow and Capacity Design in Communication
and Computer Networks. ISBN 0125571895, Morgan Kaufmann Publishers, March
2004.

3. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated An-
nealing,” Science 220, pp. 671–680, 1983.

4. F. Glover, Tabu Search. Kluwer, 1996.
5. D. Goldberg, Genetic Algorithms in Search, Optimization and MachineLearn ing.

Addison Wesley, 1998.

Self- anagement of Virtual Paths in Dynamic Networksm

432 P.E. Heegaard, O. Wittner, and B.E. Helvik

6. R. Y. Rubinstein, “The Cross-Entropy Method for Combinatorial and Continuous
Optimization,” Methodology and Computing in Applied Probability, pp. 127–190,
1999.

7. ITU-T G.841 (10/98), “Types and characteristics of SDH network protection ar-
chitectures,” 1998.

8. ITU-T I.630 (02/99), “ATM protection switching,” 1999.
9. C. Huitema, Routing in the Internet. Prentice Hall PTR, 2 ed., November 1999.

10. R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz, “Ant-based Load
Balancing in Telecommunications Networks,” Adaptive Behavior, vol. 5, no. 2,
pp. 169–207, 1997.

11. E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to
Artifical Systems. Oxford University Press, 1999.

12. G. D. Caro and M. Dorigo, “AntNet: Distributed Stigmergetic Control for Commu-
nications Networks,” Journal of Artificial Intelligence Research, vol. 9, pp. 317–365,
Dec 1998.

13. O. Wittner and B. E. Helvik, “Distributed soft policy enforcement by swarm intel-
ligence; application to loadsharing and protection,” Annals of Telecommunications,
vol. 59, pp. 10–24, Jan/Feb 2004.

14. O. Wittner, Emergent Behavior Based Implements for Distributed Network Man-
agement. PhD thesis, Norwegian University of Science and Technology, NTNU,
Department of Telematics, November 2003.

15. E. Rosen, A. Viswanathan, and R. Callon, “RFC3031: Multiprotocol Label Switch-
ing Architecture.” IEFT, January 2001.

16. B. E. Helvik and O. Wittner, “Using the Cross Entropy Method to Guide/Govern
Mobile Agent’s Path Finding in Networks,” in Proceedings of 3rd International
Workshop on Mobile Agents for Telecommunication Applications, Springer Verlag,
August 14-16 2001.

17. P. E. Heegaard, O. Wittner, V. F. Nicola, and B. E. Helvik, “Distributed asyn-
chronous algorithm for cross-entropy-based combinatorial optimization,” in Rare
Event Simulation & Combinatorial Optimization [RESIM2004], (Budapest, Hun-
gary), September 7-8 2004.

Sociologically Inspired Approaches for Self-*:
Examples and Prospects

David Hales

The University of Bologna, Italy
dave@davidhales.com

http://davidhales.com

Abstract. One way of approaching the engineering of systems with
self-* properties is to examine naturally occurring systems that appear
to have such properties. One line of work examines biological theories
and phenomena. Ideas from the social sciences are less well explored as a
possible source of self-* techniques. We briefly overview some recent work
that follows this latter approach and consider some specific prospects for
future work.

1 Why Social Science?

Human social systems appear to be scalable, self-repairing and self-regulating
and often robust. They spontaneously form, and emerge apparently functional
structures, institutions and organisations.

Much social scientific research has been produced concerning why and how
social phenomena occur and social science itself has numerous sub-discplines,
sub-schools, methodologies and approaches.

We believe that many of the deep engineering problems inherent in the self-*
approach can be thought of as sociological questions.

Recently, new computational approaches have been applied to explore the
complex processes of emergence that often characterise social phenomena. This
approach forces a new kind of rigour on social theory construction and offers the
prospective self-* engineer a possible source of ideas to plunder.

2 Computational Social Science

It is only very recently, with the arrival of cheap, fast, desktop computers and
social science researchers who know how to program them, that a new area of
‘computational social science’ has begun to emerge.

There has been an explosion of published work concerning sociologically mo-
tivated computational models [5, 6, 7, 14]. In contrast to early equation-based
‘high-level’ models, in which there was no space of individual behaviours, much
of these models are described as ‘agent-based’.

O. Babaoglu et al. (Eds.): SELF-STAR 2004, LNCS 3460, pp. 433–445, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

434 D. Hales

Agent-based modelling in these contexts means a discreet, individual and
event-based approach. Individual behaviours of agents (representing people,
groups or institutions) are programmed explicitly as a computer program. A
population of such agents (or programs) inhabiting a shared environment are
then allowed to interact over time and the emergent results and outcomes are
observed. It is therefore a prerequisite of such work that agent behaviours must
be specified algorithmically.

The emphasis of much computational social science is on the emergent proper-
ties of these ‘artificial societies’. By experimentation and observation researchers
attempt to gain general insights into mechanisms of social emergence and then
to relate these to real human societies.

It should be noted that the relationship between real social systems and
computer models is, and probably always will be, highly controversial — human
social systems are so complex, fluid and political (by definition) that debates
about what constitutes adequate validation and verification of models rarely
converge to agreement. However, these kinds of debates do not need to trouble
an engineer looking for new techniques to construct self-* systems.

3 A Brief Note on Game Theory

Some branches of economics, particularly classical game theoretical approaches,
formalised their subject matter, analytically, some time ago. This was due, in
part, to the advances made by von Neumann and Morgenstern’s seminal work
[23] and early pioneers such as Nash [18].

However, due to the focus and strong assumptions of classical game
theory — quite proper for the original focus and application of the work —
a lot of results are hard to apply to typical self-* scenarios (e.g. noisy, dynamic
and with little information concerning the possible behaviour of other units in
the system). The classical approach gives analytical proofs of the ‘best’ way
to act in a given situation under the assumption that each actor or agent has
complete information and infinite computational resources.

Despite these qualifications, classical game theoretical analysis has many pos-
sible areas of application [3] — but we will not concentrate on these here. Also
the abstracted scenarios (games) constructed by game theorists to capture cer-
tain kinds of social interactions are useful as a basis for evaluating other kinds of
modelling techniques (as we shall see later with the Prisoner’s Dilemma game).

Interestingly, within economics there are now many researchers using agent-
based modelling to concentrate on issues, such as emergence, using agents em-
ploying simple heuristics or evolutionary learning algorithms — this area is often
termed ‘Agent-based Computational Economics’ (ACE) [16].

We contrast the ‘sociologically inspired’ approach we overview in this paper
with a classical game theoretic approach — specifically we are more interested
in dynamics than equilibrium and in the development of algorithms that can
function in noisy environments with incomplete information.

Sociologically Inspired Approaches for Self-*: Examples and Prospects 435

4 Example: BitTorrent and World War I

A general issue explored by much computational sociological work is that of max-
imising the collective performance of a group while allowing individual agents
reasonable levels of autonomy. In many situations there arises a contradiction
between these two aspects. This kind of thing happens in human societies all
the time, for example, when someone decides to not to pay on a short train ride
(free-ride) or evade tax by not declaring income.

One way to stop these anti-social behaviours is to impose draconian measures
via centralised government control — ensuring all individuals behave for the
common good stopping free-riders. However, this is costly and hard to police and
raises other issues such as: who polices the police? In the parlance of distributed
systems engineering — the method does not scale well, is sensitive to noise and
has a high computational overhead.

In the context of actually deployed massively distributed software systems,
Peer-2-Peer (P2P) file sharing applications (such as the KaZaA and eDonkey
systems) have similar problems — most users only download files rather than
sharing them [1]. This limits the effectiveness of such systems. Even when the
P2P client software is coded to force some level of sharing, users may modify
and redistribute a hacked client. It has been noted that P2P file sharing is one of
the applications in which only a small number of altruists are needed to support
a large number of free riders [1]. Consequently it can be argued that this might
be why popular P2P applications tend to be limited to only file sharing rather
than, say, processor or distributed storage for example.

These sort of cases can be seen as examples of a more fundamental issue:
how can one maintain cooperative (socially beneficial) interactions within an
open system under the assumption of high individual (person, agent or peer)
autonomy. An archetype of this kind of social dilemma has been developed in
the form of a minimal game called the Prisoner’s Dilemma (PD) game.

In the PD game two players each selected a move from two alternatives and
then the game ends and each player receives a score (or pay-off). Figure 1 shows
a so-called ‘pay-off matrix’ for the game. If both choose the ‘cooperate’ move
then both get a ‘reward’ — the score R. If both select the ‘defect’ move they
are ‘punished’ — they get the score P. If one player defects and the other co-
operates then the defector gets T (the ‘temptation’ score), the other getting S
(the ‘sucker’ score). When these pay-offs, which are numbers representing some
kind of desirable utility (for example, money), obey the following constraints:
T > R > P > S and 2R > T + S then we say the game represents a Prisoner’s
Dilemma (PD). When both players cooperate this represents maximising of the
collective good but when one player defects and another cooperates this repre-
sents a form of free-riding. The defector gains a higher score (the temptation)
at the expense of the co-operator (who then becomes the ‘sucker’).

A game theoretic analysis drawing on the Nash equilibrium solution concept
(as defined by the now famous John Nash [18]) captures the intuition that a util-
ity maximising player would always defect in such games because whatever the
other player does a higher score is never attained by choosing to cooperate. The

436 D. Hales

Cooperate Defect

Cooperate R, R S, T

Defect T, S P, P

Fig. 1. A payoff matrix for the two-player single round Prisoner’s Dilemma (PD)

game. Given T > R > P > S ∧ 2R > T +S the Nash equilibrium is for both players to

select Defect but both selecting Cooperate would produce higher social and individual

returns. However, if either player selects Cooperate they are exposed to Defection by

their opponent — hence the dilemma

Nash Equilibrium (NE) might be a partial explanation for why there is so much
free-riding on existing P2P file-sharing systems users are simply behaving to
maximise their utility. However, do we have any way to solve this problem with-
out going back to centralised control or closed systems? The NE analysis gives
us a good explanation for selfish behaviour but not for altruistic behaviour. As
stated earlier, even in P2P file sharing systems there are some altruists (keeping
the show on the road).

It has been argued by many researchers from the social and life sciences that
human societies produce much more cooperation than a Nash analysis would
predict. Consequently, various cooperation promoting mechanisms (often using
the PD as their test case) have been proposed by social scientists.

BitTorrent, designed by Bram Cohen [4], employs a strategy popularised in
the 1980’s by computer simulation tournaments applied to the PD. Researchers
were asked to submit programs (agents if you like) that repeatedly played the
PD against each other [2]. The result of all these tournaments was that a simple
strategy called ‘Tit-For-Tat’ did remarkably well against the majority of other
submitted programs.

Tit-for-tat (TFT) operates in environments where the PD is played repeat-
edly with the same partners for a number of rounds. The basic strategy is simple:
an agent starts by cooperating then in subsequent rounds copies the move made
in the previous round by its opponent. This means defectors are punished in
the future: the strategy relies on future reciprocity. To put it another way, the
”shadow” of future interactions motivates cooperative behaviour in the present.
In many populations and scenarios this simple strategy can outperform pure
defection in the repeated PD.

In the context of BitTorrent, while a file is being downloaded between peers,
each peer maintains a rolling average of the download rate from each of the
peers it is connected to. It then tries to match it’s uploading rate accordingly.
If a peer determines that another is not downloading fast enough then it may
‘choke’ (stop uploading) to that other. Additionally, peers periodically try new
peers randomly by uploading to them testing for better rates [4].

Axelrod used the TFT result to justify sociological hypotheses such as un-
derstanding how fraternisation broke out between enemies across the trenches
of World War I. Cohen has applied a modified form of TFT to produce a decen-
tralised file sharing system resistant to free-riding, robust against a number of
possible exploitative strategies and scalable.

Sociologically Inspired Approaches for Self-*: Examples and Prospects 437

However, TFT has certain limitations and it is not guaranteed to always
be the best way of avoiding free-riding strategies, but its simple to implement
and performs ‘well enough’ (currently at least) — BitTorrent traffic currently
constitutes a major portion of bandwidth usage on the Internet.

The Tit-For-Tat (TFT) strategy employed by BitTorrent works well when
agents exchange many file parts over a period of time (repeat the game interac-
tion many times) but is next to useless if interactions follow a single interaction
(such as a single game of the Prisoner’s Dilemma). This tends to limit it’s use
to the sharing of very large files where mutual co-operation can be established.

But how might ”strangers” who interact only once come to co-operate? We
discuss a recent technique developed from socially motivated computer models
in the next section.

5 Example: File Sharing and the ‘Old School Tie’

Recent work, drawing on agent-based simulations of cooperative group formation
based on ‘tags’ (surface features representing social labels or cues [13]) suggests
a novel co-operation mechanism which does not require reciprocal arrangements
[8, 19]. It is based on the idea of a kind of ‘cultural group selection’ and the
well known social psychological phenomena that people tend to favour those
believed to be similar to themselves even when this is based on seemingly
arbitrary criteria (e.g. wearing the same coloured tie). Like TFT, the mechanism
is refreshingly simple. Individuals interact in cliques (subsets of the population
sharing the same tags). Periodically, if they find another individual who is getting
higher utility than themselves they copy them — changing to their clique and
adopting their strategy. Also, periodically, individuals form new cliques and / or
randomly change their strategies.

Defectors can do well initially, suckering the co-operators in their clique —
but ultimately all the co-operators leave the clique for pastures new — leaving
the defectors alone with nobody to free-ride on. Those copying a defector (who
does well initially) will also copy their strategy, further reducing the free-riding
potential in the clique. So a clique containing any free-riders quickly dissolves
but those containing only co-operators grow.

Given an open system of autonomous agents all cliques will eventually be
invaded by a free-rider who will exploit and dissolve the clique. However, so long
as other new cooperative cliques are being created then co-operation will persists
in the population as a whole.

In the sociologically oriented models, cliques are defined as those individuals
sharing the same labels and their interpretation is as some kind of socially ob-
servable marking attached to individuals. There is no population structure other
than the cliques themselves and the population changes over time by employing
a population level evolutionary algorithm employing replication and mutation
[8, 19].

In the context of application to P2P systems the clique to which a node
belongs is defined by it’s immediate neighbourhood. Movement between cliques

438 D. Hales

Fig. 2. An illustration of ‘replication’ and ‘mutation’ as applied in the Evolutionary

Rewiring Algorithm (ERA) from [12]. Shading of nodes represents strategy. In (a) the

arrowed link represents a comparison of utility between A and F. Assuming F has

higher utility then (b) shows the state of the network after A copies Fs links and

strategy and links to F. A possible result of applying mutation to As links is shown in

(c) and the strategy is mutated in (d)

Fig. 3. The chart shows the number of cycles required before high file-sharing be-

haviour is attained. Ten independent runs for each network size are shown. Note that

increasing the network size does not increase the time to high performance — from [12]

and copying of strategies follows a process of network ‘re-wiring’ which brings
a form of evolutionary process into the network — an Evolutionary Rewiring
Algorithm (ERA). Figure 2 gives an example of this simple re-wiring process
followed by each node over time.

The adapted tag mechanisms have been shown to be effective in a simulated
P2P file-sharing scenario [12] based on that given by Sun et al [22]. The mech-
anism demonstrates high scalability with zero scaling cost i.e. it does not take
longer to establish cooperation in bigger populations (see figure 3). Although
there are outstanding issues to be addressed before the technique can be deployed

Sociologically Inspired Approaches for Self-*: Examples and Prospects 439

it offers applications beyond file sharing (such as load sharing or co-operative
routing). The ERA algorithm bears some comparison with the SLIC algorithm
[22] which makes use of incentives. The ERA appears to achieve similar results
by producing an emergent incentive structure.

The tag-based process has been likened to ‘old school tie’ in-group effects [20,
9] that appear to permeate many human societies. It offers a possible explanation
for why individuals may behave more altruistically towards perceived in-group
members, even if they have never met before — a puzzle for self-interest based
social theory. Here we have given an overview of how the same mechanism was
adapted and applied within a simulated file-sharing P2P scenario to control
free-riding when nodes act selfishly [12].

6 Prospect: Specialisation with ‘Foraging Tribes’

Specialisation between individuals is the basis of human society. Agents come
to specialise in particular tasks and then use methods of exchange or communal
ownership to meet the needs of the collective. But how can agents with only local
knowledge and simple learning rules come to specialise in this way — particularly
if they behave selfishly?

Some models have demonstrated how group processes similar to those dis-
cussed previously (i.e. tag-based) can produce internally specialised co-operative
groups [10, 11, 21]. Instead of agents evolving behaviours relating to just co-
operation or non-co-operation they evolve discreet skill-types in addition to al-
truistic giving behaviour.

In [10, 11] a resource foraging and harvesting scenario is modelled. Agents
forage for resources and then harvest them to gain energy. Different resources
require different skills but agents can only posses one skill at a time and are
therefore only able to harvest those resources that match their specific skill. An
agent may pass a resource it can not harvest to a fellow agent at a cost to itself
(an altruistic act) or it may simply ignore such resources (act selfishly). When
an agent harvests a resource it attains energy (utility) which can be considered
as a form of ‘fitness’. Figure 4 gives a schematic of the scenario.

If agents follow a tag-based evolutionary algorithm (similar to that previously
described) then they form groups (which can be thought of as cliques or ‘tribes’)
that contain a diversity of skills within them and sharing becomes high.

Figure 5 gives some results from [10]. The main result worth noting is that
donation rates are high even when the cost of giving is high to the donating
agent. The cost values given are as a proportion of the the harvest value of a
resource (one unit of energy).

As can be seen, even when donation costs half as much as a harvested re-
source, donation rates are still high if the environment is sufficiently ‘resource
rich’ and a ‘smart’ method of locating recipients is used (the smart method sim-
ply means that agents are able to locate others within their group directly rather
than search randomly in the population for them — we do not concern ourselves
hear with this issue).

440 D. Hales

Fig. 4. A schematic representation of how resources are passed to an in-group with the

required skill at a cost to the passing agent and hence making use of in-group altruism

(from [11])

Fig. 5. The chart shows averaged results from a number of runs where there are five

skills associated with five unique resource types. The x-axis indicates how ‘resource

rich’ the environment is. The y-axis indicates the amount of altruistic donation within

groups. The comparison of dumb and smart agents refers to the method of locating a

recipient for the donation and the cost indicates the cost to the donating agent (from

[10])

We can envisage prospects for application of this technique to the formation
of internally specialised cliques within P2P networks. The skills would become
different kinds of services that nodes could offer (e.g. processing, query answer-
ing, storage) and resources could represent job requests submitted at nodes.
Figure 6 shows a schematic of this.

The process of translation from the abstract sociologically oriented models
previously produced [10, 11] to a P2P type application is a non-trivial exercise —

Sociologically Inspired Approaches for Self-*: Examples and Prospects 441

Fig. 6. The specialisation mechanism could be applied within a peer-to-peer network.

The above schematic shows an example network fragment. Jobs are submitted at nodes

and may require services (or resources) from other nodes. Using a similar mechanism

to the ERA algorithm described previously, the network could be made to self-organise

into functional clusters to satisfy job requests

for example, the previous exercise of applying ‘tag’ models of co-operation to P2P
file-sharing involved a four stage process in which an abstract model was adapted
towards an application domain [12]. At each stage a simulation model needed
to be extensively explored to ensure that the desirable emergent properties had
not been lost.

However, we are given confidence that specialisation can be generated within
working systems since recent work, applied to simulated robotics, applying sim-
ilar techniques based on tags (combined with genetic programming) produced
specialised and altruistic behaviour within in-groups (or ‘tribes’) [21].

7 Prospect: Power, Leadership and Hierarchy

A major area of interest to social scientists is the concept of power — what kinds
of process can lead to some individuals and groups becoming more powerful
than others? Most explanations are tightly related to theories of inequality and
economic relationships, hence this is a vast and complex area.

Here we give just a brief very speculative sketch of recent computational
work, motivated by sociological questions, that could have significant import into
understanding and engineering certain kinds of properties (e.g. in peer-to-peer
systems), in which differential power relationships emerge and may, perhaps, be
utilised in a functional way.

Interactions in human society are increasing seen as being situated within
formal and informal networks [16]. These interactions are often modelled us-

442 D. Hales

Fig. 7. Forms of ‘hiearchy’, ‘leadership’ and unequal wealth distribution have been

observed to emerge in simulated interaction networks (from [24]). Nodes play PD-

like games with neighbours and break connections based on a simple satisfaction rule.

Hierarchies are produced in which some nodes are more connected and hence can effect

the network dramatically by their individual actions — a form of ‘topological power’

ing the abstraction of a game capturing interaction possibilities between linked
agents [24]. When agents have the ability to change their networks based on past
experience and some goals or predisposition, then, over time, networks evolve
and change.

Interstingly, even if agents start with more-or-less equal endowments and
freedom to act, and follow the same rules, vastly unequal outcomes can be pro-
duced. This can lead to a situation in which some nodes become objectively
more powerful that other nodes through topological location (within the evolved
network) and exploitative game interactions over time.

Zimmerman et al found this in their simulations of agents playing a version
of the Prisoner’s Dilemma on an evolving network [24]. Their motivation and
interpretation is socio-economic: agents accumulate ‘wealth’ from the payoffs of
playing games with neighbours and make or break connections to neighbours
based on a simple satisfaction heuristic (based on a rule discussed in [15]).

Figure 7 (from [24]) shows a an example of an emergent stable hierarchi-
cal network structure. Interestingly, it was found that, over time, some nodes
accumulate large amounts of ‘wealth’ (through exploitative game behaviour)
and other nodes become ‘leaders’ by being at the top of a hierarchy. These
unequal topological and wealth distributions emerge from simple self-interested
behaviour within the network. Essentially, leaders, through their own actions,
can re-arrange significantly the topology of the network — those on the bottom
of the hierarchy have little ‘topological power’.

Sociologically Inspired Approaches for Self-*: Examples and Prospects 443

The idea of explicitly recognising the possibility of differential power between
sub-units in self-* systems and harnessing this is an idea rarely discussed in
engineering contexts but could offer new ways to solve difficult co-ordination
problems.

Considering P2P applications, one can envisage certain kinds of task in which
differential power would be required for efficient operation — e.g. consider two
nodes negotiating an exchange on behalf of their ‘group’ or ‘follower’ nodes.
This might be more efficient than individual nodes having to negotiate with
each other every time they wished to interact. Or consider a node reducing
intra-group conflict by imposing a central plan of action.

We mention the notion of engineering emergent power structures, briefly and
speculatively here, because we consider power to be an under-explored phe-
nomena within evolving information systems. Agents, units or nodes are often
assumed to have equal power. It is rare for human societies to possess such egal-
itarian properties and perhaps many self-* like properties are facilitated by the
application of unequal power relationships. We consider this a fascinating area
for future work.

8 Conclusion and Summary

Here we have provided some examples and prospects of sociologically inspired
approaches to engineering self-* systems. Rather than attempt an extensive
overview we have focused on a few encouraging specific results and possible
P2P-type applications.

We believe that the computational social science literature can be a potential
source of new techniques and ideas for prospective self-* engineer because social
phenomena are generally self-organising, robust and scalable — all desirable
properties for self-organising information systems.

Computational social science tries to reverse engineer general properties at a
fairly abstract level whereas self-* engineers need to apply techniques to specific
concrete problem domains. As we have hoped to show, however, it is possible
to import useful techniques (see [12] for a case study in applying a technique to
realistic domain) from the one approach to the other.

The idea of using social metaphors and approaches for the construction of
smart information systems is far from new [17]. What is new is that distributed
systems engineers are increasing asking sociological questions (even if they are
unaware of it!) and social scientists are increasingly turning to algorithmic spec-
ification and computer simulation to explore their theories. We hope that ad-
vances from both areas can be brought together and used to reinforce each other.
Experience so far indicates this not to be an unreasonable hope.

Acknowledgements

This work partially supported by the EU within the 6th Framework Program
under contract 001907 (DELIS).

444 D. Hales

References

1. Adar, E. and Huberman, B.: Free Riding on Gnutella. First Monday Volume 5,
No. 10. (2000).

2. Axelrod, R.: The evolution of cooperation. N.Y.: Basic Books, (1984).
3. Binmore, K.: Game Theory and the Social Contract. Volume 2: Just Playing. Cam-

bridge, MA: The MIT Press, (1998).
4. Cohen, B.: Incentives Build Robustness in BitTorrent. Presented at the 1st Work-

shop on the Economics of Peer-2-Peer Systems, June 5-6, 2003, Berkley, CA. Avail-
able at: http://www.sims.berkeley.edu/research/conferences/p2pecon/

5. Epstein, J.M. and Axtell, R.: Growing Artificial Societies: Social Science From The
Bottom Up. London: MIT Press, (1996).

6. Gilbert, N. and Doran J., (eds.): Simulating Societies: the Computer Simulation of
Social Phenomena. London: UCL Press, (1994).

7. Gilbert, N. and Conte, R. (eds.): Artificial Societies: the Computer Simulation of
Social Life. London: UCL Press, (1995).

8. Hales, D.: Cooperation without Space or Memory: Tags, Groups and the Prisoner’s
Dilemma. In Moss, S., Davidsson, P. (eds.) Multi-Agent-Based Simulation. Lecture
Notes in Artificial Intelligence 1979. Berlin: Springer-Verlag, (2000).

9. Hales, D.: Tag Based Cooperation in Artificial Societies. Ph.D. Thesis, Department
of Computer Science, University of Essex, UK, (2001).

10. Hales, D.: Evolving Specialisation, Altruism and Group-Level Optimisation Using
Tags. In Sichman, J. S., Bousquet, F. Davidsson, P. (eds.) Multi-Agent-Based Sim-
ulation II. Lecture Notes in Artificial Intelligence 2581. Berlin: Springer-Verlag,
(2002).

11. Hales, D.: Searching for a Soulmate — Searching for Tag-Similar Partners Evolves
and Supports Specialization in Groups. In Lindemann, G., Moldt, D. and Paolucci,
M., (eds.) Regulated Agent-Based Social Systems — 1st Intnerational Workshop,
Lecture Notes in Artificial Intelligence 2934. Berlin: Springer-Verlag, (2004).

12. Hales, D. (2004) From selfish nodes to cooperative networks — emergent link
based incentives in peer-to-peer networks. In Proc. of the 4th IEEE International
Conference on Peer-to-Peer Computing (P2P2004). IEEE Computer Soc. Press,
(2004).

13. Holland, J.: The Effect of Labels (Tags) on Social Interactions. Santa Fe Institute
Working Paper 93-10-064. Santa Fe, NM, (1993).

14. The Journal of Artificial Societies and Social Simulation (JASSS). Available at:
http://jasss.soc.surrey.ac.uk

15. Kirman, A.: Ants, Rationality and Recruitment. Quarterly Journal of Economics,
108, 137156, (1993).

16. Kirman, A.P., and Vriend, N.J.: Evolving Market Structure: An ACE Model of
Price Dispersion and Loyalty. Journal of Economic Dynamics and Control, 25,
Nos. 3/4, 459-502, (2001).

17. Minsky, M.: Society of Mind. Simon & Schuster, (1988).
18. Nash, J. F.: Equilibrium Points in N-Person Games, Proc. Natl. Acad. Sci. USA

36, 48-49, (1950).
19. Riolo, R., Cohen, M. D. & Axelrod, R.: Cooperation without Reciprocity. Nature

414, 441-443, (2001).
20. Sigmund & Nowak: Tides of tolerance. Nature 414, 403-405, (2001).

Sociologically Inspired Approaches for Self-*: Examples and Prospects 445

21. Spector, L., J. Klein, C. Perry, and M. Feinstein.: Emergence of Collective Behavior
in Evolving Populations of Flying Agents. In E. Cantu-Paz, et al (Eds.), Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2003),
pp. 6173. Berlin: Springer-Verlag, (2003).

22. Sun Q. & Garcia-Molina, H.: SLIC: A Selfish Link-based Incentive Mechanism for
Unstructured Peer-to-Peer Networks. In Proceedings of the 24th IEEE international
Conference on Distributed Systems. IEEE computer Society, (2004).

23. von Neumann, J. and Morgenstern, O.: Theory of Games and Economic Behavior.
Princeton, (1944).

24. Zimmermann, M.G., Egufluz, V.M. and San Miguel.: Cooperation, adaptation and
the emergence of leadership. In A. Kirman and J.B. Zimmermann (eds.) Economics
with Heterogeneous Interacting Agents, pp. 73-86. Berlin: Springer, (2001).

Author Index

Abdelwahed, Sherif 174
Aberer, Karl 373
Abraham, Ittai 392
Andras, Peter 229

Barker, Ken 81
Bennani, Mohamed N. 128
Bentley, Peter 21
Biersack, Ernst W. 343
Brusch, Lutz 358

Cahill, Vinny 63
Camorlinga, Sergio 81
Charlton, Bruce G 229
Chen, Fang 325
Cheng, Shang-Wen 158
Cunningham, Raymond 63
Curran, Eoin 63

Datta, Anwitaman 373
de Lemos, Rogério 219
Deutsch, Andreas 358
Devaraj, Chris 260
Dowling, Jim 63

Eiben, A.E. 36

Felber, Pascal 343

Gambardella, Luca M. 403
Ganguly, Niloy 358
Garlan, David 158
Greiner, Martin 49
Gupta, Indranil 260

Hales, David 433
Harrington, Anthony 63
Hauswirth, Manfred 373
Hayes, John P. 174
Heegaard, Poul E. 417
Helvik, Bjarne E. 417
Hoffmann, Günther 143

Kalogeraki, Vana 325
Kandasamy, Nagarajan 174

Ko, Steven 260
Kontogiannis, Spyros 97
Krause, Wolfram 49

Laddaga, Robert 112
Li, Z. 273
Liu, H. 273

Makpangou, Mesaac 291
Malek, Miroslaw 143
Malkhi, Dahlia 392
Mamei, Marco 307
Matossian, V. 273
Menascé, Daniel A. 128
Montemanni, Roberto 403
Morales, Ramsés 260

Nagda, Mahvesh 260
Nowicki, Tomasz 204

Parashar, M. 273
Patarin, Simon 291
Patel, Jay A. 260

Repantis, Thomas 325
Robertson, Paul 112
Ruan, Honglei 128

Salfner, Felix 143
Schmerl, Bradley 158
Schmidt, C. 273
Sharp, Gregory C. 174
Sollacher, Rudolf 49
Spirakis, Paul 97
Squillante, Mark S. 204

Thompson, Nathanael 260

Wittner, Otto 417
Wolter, Katinka 189
Wu, Chai Wah 204

Zambonelli, Franco 307
Zeinalipour-Yazti, Demetris 325

	Frontmatter
	The Self-Star Vision
	Self-organization
	Evolving Fractal Gene Regulatory Networks for Graceful Degradation of Software
	Evolutionary Computing and Autonomic Computing: Shared Problems, Shared Solutions?
	Self-\star Topology Control in Wireless Multihop Ad Hoc Communication Networks
	Emergent Consensus in Decentralised Systems Using Collaborative Reinforcement Learning
	The Biologically Inspired Distributed File System: An Emergent Thinker Instantiation
	Evolutionary Games: An Algorithmic View

	Self-awareness
	Model Based Diagnosis and Contexts in Self Adaptive Software
	On the Use of Online Analytic Performance Models, in Self-Managing and Self-Organizing Computer Systems
	Prediction-Based Software Availability Enhancement
	Making Self-Adaptation an Engineering Reality
	An Online Control Framework for Designing Self-Optimizing Computing Systems: Application to Power Management
	Self-Management of Systems Through Automatic Restart
	Fundamentals of Dynamic Decentralized Optimization in Autonomic Computing Systems

	Self-awareness vs. Self-organization
	The Conflict Between Self-* Capabilities and Predictability
	Self-Aware Software -- Will It Become a Reality?

	Supporting Self-*
	A Case for Design Methodology Research in Self-* Distributed Systems
	Enabling Autonomic Grid Applications: Requirements, Models and Infrastructure
	Pandora: An Efficient Platform for the Construction of Autonomic Applications
	Spatial Computing: The TOTA Approach
	Towards Self-Managing QoS-Enabled Peer-to-Peer Systems

	Peer-to-Peer Algorithms
	Cooperative Content Distribution: Scalability Through Self-Organization
	Design and Analysis of a Bio-inspired Search Algorithm for Peer to Peer Networks
	Multifaceted Simultaneous Load Balancing in DHT-Based P2P Systems: A New Game with Old Balls and Bins
	Robust Locality-Aware Lookup Networks
	Power-Aware Distributed Protocol for a Connectivity Problem in Wireless Sensor Networks
	Self-Management of Virtual Paths in Dynamic Networks
	Sociologically Inspired Approaches for Self-*: Examples and Prospects

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

