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Preface

Volume III of the Transactions on Rough Sets (TRS) introduces advances in the
theory and application of rough sets. These advances have far-reaching implica-
tions in a number of research areas such as approximate reasoning, bioinformat-
ics, computer science, data mining, engineering (especially, computer engineering
and signal analysis), intelligent systems, knowledge discovery, pattern recogni-
tion, machine intelligence, and various forms of learning. This volume reveals the
vigor, breadth and depth in research either directly or indirectly related to the
rough sets theory introduced by Prof. Zdzis�law Pawlak more than three decades
ago. Evidence of this can be found in the seminal paper on data mining by
Prof. Pawlak included in this volume. In addition, there are eight papers on the
theory and application of rough sets as well as a presentation of a new version
of the Rough Set Exploration System (RSES) tool set and an introduction to
the Rough Set Database System (RSDS).

Prof. Pawlak has contributed a pioneering paper on data mining to this vol-
ume. In this paper, it is shown that information flow in a flow graph is governed
by Bayes’ rule with a deterministic rather than a probabilistic interpretation.
A cardinal feature of this paper is that it is self-contained inasmuch as it not
only introduces a new view of information flow but also provides an introduction
to the basic concepts of flow graphs. The representation of information flow in-
troduced in this paper makes it possible to study different relationships in data
and establishes a basis for a new mathematical tool for data mining.

In addition to the paper by Prof. Pawlak, new developments in rough set the-
ory are represented by five papers that investigate the validity, confidence and
coverage of rules in approximation spaces (Anna Gomolińska), decision trees con-
sidered in the context of rough sets (Mikhail Ju. Moshkov), study of approxima-
tion spaces and information granulation (Andrzej Skowron, Roman Świniarski
and Piotr Synak), a new interpretation of rough sets based on inverse proba-
bilities and the foundations for a rough Bayesian model (Dominik Ślȩzak), and
formal concept analysis and rough set theory considered relative to topological
approximations (Marcin Wolski). The theory papers in this volume are accom-
panied by four papers on applications of rough sets: knowledge extraction from
electronic devices for power system substation event analysis and decision sup-
port (Ching-Lai Hor and Peter Crossley), processing of musical data using rough
set methods, RSES and neural computing (Bożena Kostek, Piotr Szczuko, Pawe�l
Żwan and Piotr Dalka), computational intelligence in bioinformatics (Sushmita
Mitra), and an introduction to rough ethology, which is based on a biologically
inspired study of collective behavior and reinforcement learning in intelligent
systems using approximation spaces (James Peters).

This volume also celebrates two landmark events: a new version of RSES and
the availability of a Rough Set Database System (RSDS). The introduction of
a new version of the Rough Set Exploration System (RSES 2.2) is given in a
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paper by Jan G. Bazan and Marcin Szczuka. This paper gives an overview of the
basic features of the new version of RSES: improved graphical user interface as
well as production of decomposition trees and rules based on training samples.
The decomposition tree and rules resulting from training can be used to classify
unseen cases. The paper by Zbigniew Suraj and Piotr Grochowalski gives an
overview of RSDS, which now includes over 1900 entries and over 800 authors.
RSDS includes a number of useful utilities that make it possible for authors to
update the database via the web, namely, append, search, download, statistics
and help. In addition, RSDS provides access to biographies of researchers in the
rough set community.

This issue of the TRS has been made possible thanks to the efforts of a great
many generous persons and organizations. We express our thanks to the many
anonymous reviewers for their heroic efforts in providing detailed reviews of the
articles in this issue of the TRS. The editors and authors of this volume also
extend an expression of gratitude to Alfred Hofmann, Ursula Barth, Christine
Günther and the other LNCS staff members at Springer for their support in
making this volume of the TRS possible. The Editors of this volume have been
supported by the Ministry of Scientific Research and Information Technology
of the Republic of Poland, Research Grant No. 3T11C00226, and the Natural
Sciences and Engineering Research Council of Canada (NSERC), Research Grant
No. 185986.

January 2005 James F. Peters
Andrzej Skowron



LNCS Transactions on Rough Sets

This journal subline has as its principal aim the fostering of professional ex-
changes between scientists and practitioners who are interested in the founda-
tions and applications of rough sets. Topics include foundations and applications
of rough sets as well as foundations and applications of hybrid methods combin-
ing rough sets with other approaches important for the development of intelligent
systems.

The journal includes high-quality research articles accepted for publication
on the basis of thorough peer reviews. Dissertations and monographs up to 250
pages that include new research results can also be considered as regular papers.
Extended and revised versions of selected papers from conferences can also be
included in regular or special issues of the journal.

Honorary Editor: Zdzis�law Pawlak
Editors-in-Chief: James F. Peters, Andrzej Skowron

Editorial Board

M. Beynon
G. Cattaneo
M.K. Chakraborty
A. Czyżewski
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Flow Graphs and Data Mining

Zdzis�law Pawlak1,2

1 Institute for Theoretical and Applied Informatics,
Polish Academy of Sciences,

ul. Ba�ltycka 5, 44-100 Gliwice, Poland
2 Warsaw School of Information Technology,

ul. Newelska 6, 01-447 Warsaw, Poland
zpw@ii.pw.edu.pl

Abstract. In this paper we propose a new approach to data mining
and knowledge discovery based on information flow distribution in a flow
graph. Flow graphs introduced in this paper are different from those pro-
posed by Ford and Fulkerson for optimal flow analysis and they model
flow distribution in a network rather than the optimal flow which is used
for information flow examination in decision algorithms. It is revealed
that flow in a flow graph is governed by Bayes’ rule, but the rule has an
entirely deterministic interpretation without referring to its probabilistic
roots. Besides, a decision algorithm induced by a flow graph and depen-
dency between conditions and decisions of decision rules is introduced
and studied, which is used next to simplify decision algorithms.

Keywords: flow graph, data mining, knowledge discovery, decision al-
gorithms.

Introduction

In this paper we propose a new approach to data analysis (mining) based on
information flow distribution study in a flow graph.

Flow graphs introduced in this paper are different from those proposed by
Ford and Fulkerson [4] for optimal flow analysis and they model rather flow
distribution in a network, than the optimal flow.

The flow graphs considered in this paper are not meant to model physical
media (e.g., water) flow analysis, but to model information flow examination
in decision algorithms. To this end branches of a flow graph can be interpreted
as decision rules. With every decision rule (i.e., branch) three coefficients are
associated: the strength, certainty and coverage factors.

These coefficients have been used under different names in data mining (see,
e.g., [14, 15]) but they were used first by �Lukasiewicz [8] in his study of logic
and probability.

This interpretation, in particular, leads to a new look at Bayes’ theorem. Let
us also observe that despite Bayes’ rule fundamental role in statistical inference
it has led to many philosophical discussions concerning its validity and meaning,
and has caused much criticism [1, 3, 13].

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets III, LNCS 3400, pp. 1–36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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This paper is a continuation of some of the authors’ ideas presented in [10, 11],
where the relationship between Bayes’ rule and flow graphs has been introduced
and studied (see also [6, 7]).

This paper consists of two parts. Part one introduces basic concepts of the
proposed approach, i.e., flow graph and its fundamental properties. It is re-
vealed that flow in a flow graph is governed by Bayes’ rule, but the rule has
an entirely deterministic interpretation that does not refer to its probabilistic
roots. In addition, dependency of flow is defined and studied. This idea is based
on the statistical concept of dependency but in our setting it has a deterministic
meaning.

In part two many tutorial examples are given to illustrate how the introduced
ideas work in data mining. These examples clearly show the difference between
classical Bayesian inference methodology and the proposed one.

The presented ideas can be used, among others, as a new tool for data mining,
and knowledge representation. Besides, the proposed approach throws new light
on the concept of probability.

1 Flow Graphs

1.1 Overview

In this part the fundamental concepts of the proposed approach are defined and
discussed. In particular flow graphs, certainty and coverage factors of branches
of the flow graph are defined and studied. Next these coefficients are extended
to paths and some classes of sub-graphs called connections. Further a notion of
fusion of a flow graph is defined.

Further dependences of flow are introduced and examined. Finally, depen-
dency factor (correlation coefficient) is defined.

Observe that in many cases the data flow order, represented in flow graphs,
explicitly follows from the problem specification. However, in other cases the
relevant order should be discovered from data. This latter issue will be discussed
elsewhere.

1.2 Basic Concepts

A flow graph is a directed, acyclic, finite graph G = (N,B, ϕ), where N is a set
of nodes, B ⊆ N ×N is a set of directed branches, ϕ : B → R+ is a flow function
and R+ is the set of non-negative reals.

Input of a node x ∈ N is the set I(x) = {y ∈ N : (y, x) ∈ B}; output of a
node x ∈ N is defined by O(x) = {y ∈ N : (x, y) ∈ B}.

We will also need the concept of input and output of a graph G, defined, re-
spectively, as follows: I(G) = {x ∈ N : I(x) = ∅}, O(G) = {x ∈ N : O(x) = ∅}.

Inputs and outputs of G are external nodes of G; other nodes are internal
nodes of G.

If (x, y) ∈ B, then ϕ(x, y) is a throughflow from x to y.
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With every node x of a flow graph G we associate its inflow

ϕ+(x) =
∑

y∈I(x)

ϕ(y, x), (1)

and outflow
ϕ−(x) =

∑
y∈O(x)

ϕ(x, y). (2)

Similarly, we define an inflow and an outflow for the whole flow graph, which
are defined by

ϕ+(G) =
∑

x∈I(G)

ϕ−(x), (3)

ϕ−(G) =
∑

x∈O(G)

ϕ+(x). (4)

We assume that for any internal node x we have ϕ+(x) = ϕ−(x) = ϕ(x), where
ϕ(x) is a throughflow of node x.

Then, obviously, ϕ+(G) = ϕ−(G) = ϕ(G), where ϕ(G) is a throughflow of
graph G.

The above formulas can be considered as flow conservation equations [4].

Example
We will illustrate the basic concepts of flow graphs by an example of a group of
1000 patients put to the test for certain drug effectiveness.

Assume that patients are grouped according to presence of the disease, age
and test results, as shown in Fig. 1.

For example, ϕ(x1) = 600 means that these are 600 patients suffering from
the disease, ϕ(y1) = 570 means that there are 570 old patients ϕ(z1) = 471
means that 471 patients have a positive test result; ϕ(x1, y1) = 450 means that
there are 450 old patients which suffer from disease etc.

Thus the flow graph gives clear insight into the relationship between different
groups of patients.

Let us now explain the flow graph in more detail.
Nodes of the flow graph are depicted by circles, labeled by x1, x2, y1, y2, y3, z1,

z2. A branch (x, y) is denoted by an arrow from node x to y. For example, branch
(x1, z1) is represented by an arrow from x1 to z1.

For example, inputs of node y1 are nodes x1 and x2, outputs of node x1 are
nodes y1, y2 and y3.

Inputs of the flow graph are nodes x1 and x2, whereas the outputs of the
flow graph are nodes z1 and z2.

Nodes y1, y2 and y3 are internal nodes of the flow graph. The throughflow
of the branch (x1, y1) is ϕ(x1, y1) = 450. Inflow of node y1 is ϕ+(y1) = 450 +
120 = 570. Outflow of node y1 is ϕ−(y1) = 399 + 171 = 570. Inflow of the flow
graph is ϕ(x1) + ϕ(x2) = 600 + 400 = 1000, and outflow of the flow graph is
ϕ(z1) + ϕ(z2) = 471 + 529 = 1000.
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Fig. 1. Flow graph.

Throughflow of node y1 is equal to ϕ(y1) = ϕ(x1, y1)+ϕ(x2, y1) = ϕ(y1, z1)+
ϕ(y2, z2) = 570. ��
We will now define a normalized flow graph.

A normalized flow graph is a directed, acyclic, finite graph G = (N,B, σ),
where N is a set of nodes, B ⊆ N × N is a set of directed branches and
σ : B → < 0, 1 > is a normalized flow of (x, y) and

σ(x, y) =
ϕ(x, y)
ϕ(G)

(5)

is a strength of (x, y). Obviously, 0 ≤ σ(x, y) ≤ 1. The strength of the branch
(multiplied by 100) expresses simply the percentage of a total flow through the
branch.

In what follows we will use normalized flow graphs only, therefore by flow
graphs we will understand normalized flow graphs, unless stated otherwise.

With every node x of a flow graph G we associate its inflow and outflow
defined by

σ+(x) =
ϕ+(x)
ϕ(G)

=
∑

y∈I(x)

σ(y, x), (6)

σ−(x) =
ϕ−(x)
ϕ(G)

=
∑

y∈O(x)

σ(x, y). (7)
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Obviously for any internal node x, we have σ+(x) = σ−(x) = σ(x), where σ(x)
is a normalized throughflow of x.

Moreover, let

σ+(G) =
ϕ+(G)
ϕ(G)

=
∑

x∈I(G)

σ−(x), (8)

σ−(G) =
ϕ−(G)
ϕ(G)

=
∑

x∈O(G)

σ+(x). (9)

Obviously, σ+(G) = σ−(G) = σ(G) = 1.

Example (cont.) The normalized flow graph of the flow graph presented in
Fig. 1 is given in Fig. 2.

In the flow graph, e.g., σ(x1) = 0.60, that means that 60% of total inflow is
associated with input x1. The strength σ(x1, y1) = 0.45 means that 45% of total
flow of x1 flows through the branch (x1, y1) etc. ��
Let G = (N,B, σ) be a flow graph. If we invert direction of all branches in G,
then the resulting graph G = (N,B′, σ′) will be called an inverted graph of G.
Of course, the inverted graph G′ is also a flow graph and all inputs and outputs
of G become inputs and outputs of G′, respectively.

Example (cont.) The inverted flow graph of the flow graph from Fig. 2 is
shown in Fig. 3. ��

Fig. 2. Normalized flow graph.



6 Zdzis�law Pawlak

Fig. 3. Inverted flow graph.

1.3 Certainty and Coverage Factors

With every branch (x, y) of a flow graph G we associate the certainty and the
coverage factors.

The certainty and the coverage of (x, y) are defined by

cer(x, y) =
σ(x, y)
σ(x)

, (10)

and

cov(x, y) =
σ(x, y)
σ(y)

. (11)

respectively.
Evidently, cer(x, y) = cov(y, x), where (x, y) ∈ B and (y, x) ∈ B′.

Example (cont.) The certainty and the coverage factors for the flow graph
presented in Fig. 2 are shown in Fig. 4.

For example, cer(x1, y1) = σ(x1,y1)
σ(x1) = 0.45

0.60 = 0.75, and cov(x1, y1) = σ(x1,y1)
σ(y1)

= 0.45
0.57 ≈ 0.79. ��
Below some properties of certainty and coverage factors, which are immediate

consequences of definitions given above, are presented:∑
y∈O(x)

cer(x, y) = 1, (12)
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Fig. 4. Certainty and coverage.

∑
x∈I(y)

cov(x, y) = 1, (13)

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y), (14)

σ(y) =
∑

x∈I(y)

cov(x, y)σ(y) =
∑

x∈I(y)

σ(x, y), (15)

cer(x, y) =
cov(x, y)σ(y)

σ(x)
, (16)

cov(x, y) =
cer(x, y)σ(x)

σ(y)
. (17)

Obviously the above properties have a probabilistic flavor, e.g., equations (14)
and (15) have a form of total probability theorem, whereas formulas (16) and
(17) are Bayes’ rules. However, these properties in our approach are interpreted
in a deterministic way and they describe flow distribution among branches in
the network.

1.4 Paths, Connections and Fusion

A (directed) path from x to y, x 
= y in G is a sequence of nodes x1, . . . , xn such
that x1 = x, xn = y and (xi, xi+1) ∈ B for every i, 1 ≤ i ≤ n − 1. A path from
x to y is denoted by [x . . . y].
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The certainty of the path [x1 . . . xn] is defined by

cer[x1 . . . xn] =
n−1∏
i=1

cer(xi, xi+1), (18)

the coverage of the path [x1 . . . xn] is

cov[x1 . . . xn] =
n−1∏
i=1

cov(xi, xi+1), (19)

and the strength of the path [x1 . . . xn] is

σ[x1 . . . xn] = σ(x1)cer[x1 . . . xn] = σ(xn)cov[x1 . . . xn]. (20)

The set of all paths from x to y (x 
= y) in G, denoted by < x, y >, will be
called a connection from x to y in G. In other words, connection < x, y > is a
sub-graph of G determined by nodes x and y.

The certainty of the connection < x, y > is

cer < x, y >=
∑

[x...y]∈<x,y>

cer[x . . . y], (21)

the coverage of the connection < x, y > is

cov < x, y >=
∑

[x...y]∈<x,y>

cov[x . . . y], (22)

and the strength of the connection < x, y > is

σ < x, y > =
∑

[x...y]∈<x,y>

σ[x . . . y] =

= σ(x)cer < x, y >= σ(y)cov < x, y > . (23)

If we substitute simultaneously any sub-graph < x, y > of a given flow graph
G, where x and y are input and output nodes of G respectively, by a single
branch (x, y) such that σ(x, y) = σ < x, y >, then in the resulting graph G′,
called the fusion of G, we have cer(x, y) = cer < x, y >, cov(x, y) =cov < x, y >
and σ(G) = σ(G′).

Example (cont.) In the flow graph presented in Fig. 3 for the path p =
[x1, y1, z1] we have cer(p) = 0.75× 0.70 ≈ 0.53, cov(p) = 0.85× 0.79 ≈ 0.67.

The connection < x1, z1 > in the flow graph consists of paths [x1, y1, z1] and
[x1, y2, z1]. This connection is shown in Fig. 5 by bold lines.

For this connection we have cer < x1, z1 >= 0.75×0.70+0.20×0.60≈ 0.65;
cov < x1, z1 >= 0.85× 0.79 + 0.15× 1.00 ≈ 0.82.

The strength of the connection x1, z1 is 0.68 × 0.60 ≈ 0.85 × 0.47 ≈ 0.40.
Connections < x1, z2 >,< x2, z1 >, and < x2, z2 > are presented in Fig. 6, Fig. 7
and Fig. 8, respectively. ��
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Fig. 5. Connection < x1, z1 >.

Fig. 6. Connection < x1, z2 >.



10 Zdzis�law Pawlak

Fig. 7. Connection < x2, z1 >.

Fig. 8. Connection < x2, z2 >.
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Fig. 9. Fusion of the flow graph.

Example (cont.) The fusion of the flow graph shown in Fig. 3 is given in Fig. 9.
The fusion of a flow graph gives information about the flow distribution

between input and output of the flow graph, i.e., it leads to the following con-
clusions:

– if the disease is present then the test result is positive with certainty 0.65,
– if the disease is absent then the test result is negative with certainty 0.79.

Explanation of the test results is as follows:

– if the test result is positive then the disease is present with certainty 0.83,
– if the test result is negative then the disease is absent with certainty 0.60.

��

1.5 Dependences in Flow Graphs

Let x and y be nodes in a flow graph G = (N,B, σ), such that (x, y) ∈ B. Nodes
x and y are independent in G if

σ(x, y) = σ(x)σ(y). (24)

From (24) we get
σ(x, y)
σ(x)

= cer(x, y) = σ(y), (25)

and
σ(x, y)
σ(y)

= cov(x, y) = σ(x). (26)

If
cer(x, y) > σ(y), (27)

or
cov(x, y) > σ(x), (28)

then x and y are positively dependent on x in G.
Similarly, if

cer(x, y) < σ(y), (29)
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or
cov(x, y) < σ(x), (30)

then x and y are negatively dependent in G.
Let us observe that relations of independency and dependences are symmetric

ones, and are analogous to those used in statistics.
For every branch (x, y) ∈ B we define a dependency (correlation) factor η(x, y)

defined by

η(x, y) =
cer(x, y) − σ(y)
cer(x, y) + σ(y)

=
cov(x, y) − σ(x)
cov(x, y) + σ(x)

. (31)

Obviously −1 ≤ η(x, y) ≤ 1; η(x, y) = 0 if and only if cer(x, y) = σ(y) and
cov(x, y) = σ(x); η(x, y) = −1 if and only if cer(x, y) = cov(x, y) = 0; η(x, y) = 1
if and only if σ(y) = σ(x) = 0.

It is easy to check that if η(x, y) = 0, then x and y are independent, if
−1 ≤ η(x, y) < 0 then x and y are negatively dependent and if 0 < η(x, y) ≤ 1
then x and y are positively dependent. Thus the dependency factor expresses
a degree of dependency, and can be seen as a counterpart of the correlation
coefficient used in statistics.

Example (cont.) Dependency factors for the flow graph shown in Fig. 9 are
given in Fig. 10.

Thus, there is a positive dependency between the presence of the disease and
the positive test result as well as between absence of the disease and negative test
result. However, there is a much stronger negative dependency between presence
of the disease and negative test result or similarly – between absence of the
disease and positive left test result. More specifically:

– there is slight positive correlation between presence of the disease and posi-
tive test result (η = 0.16),

– there is low positive correlation between absence of the disease and negative
test result (η = 0.20),

– there a negative correlation between presence of the disease and negative
test result (η = −0.19),

– there is high negative correlation between absence of the disease and positive
test result (η = −0.38). ��

Fig. 10. Fusion of the flow graph.
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1.6 Flow Graph and Decision Algorithms

Flow graphs can be interpreted as decision algorithms [5].
Let us assume that the set of nodes of a flow graph is interpreted as a set

of logical formulas. The formulas are understood as propositional functions and
if x is a formula, then σ(x) is to be interpreted as a truth value of the formula.
Let us observe that the truth values are numbers from the closed interval [0, 1],
i.e., 0 ≤ σ(x) ≤ 1.

According to [3] these truth values can be also interpreted as probabilities.
Thus σ(x) can be understood as flow distribution ratio (percentage), truth value
or probability. We will stick to the first interpretation.

With every branch (x, y) we associate a decision rule x→ y, read if x then y;
x will be referred to as condition, whereas y – decision of the rule. Such a rule
is characterized by three numbers, σ(x, y), cer(x, y) and cov(x, y).

Let us observe that the inverted flow graph gives reasons for decisions.
Every path [x1 . . . xn] determines a sequence of decision rules x1 → x2, x2 →

x3, . . . , xn−1 → xn.
From previous considerations it follows that this sequence of decision rules

can be interpreted as a single decision rule x1x2 . . . xn−1 → xn, in short x∗ → xn,
where x∗ = x1x2 . . . xn−1, characterized by

cer(x∗, xn) =
σ(x∗, xn)
σ(x∗)

, (32)

cov(x∗, xn) =
σ(x∗, xn)
σ(xn)

, (33)

and

σ(x∗, xn) = σ(x1, . . . , xn−1, xn), σ(x∗) = σ(x1, . . . , xn−1). (34)

From (32) we have

cer(x∗, xn) =
cer[x1, . . . , xn−1, xn]
cer[x1, . . . , xn−1]

.

The set of all decision rules xi1xi2 . . . xin−1 → xin associated with all paths
[xi1 . . . xin ] such that xi1 and xin are input and output of the graph respectively
will be called a decision algorithm induced by the flow graph.

If x→ y is a decision rule, then we say that the condition and decision of the
decision rule are independent if x and y are independent, otherwise the condition
and decision of the decision rule are dependent (positively or negatively).

To measure the degree of dependency between the condition and decision of
the decision rule x→ y, we can use the dependency factor η(x, y).

Let us observe that if the conditions and decisions of a decision rule x → y
are independent, then the decision rule is, in certain sense, useless, because such
a decision rule indicates that there is no relationship between conditions and
decisions and the decision can be eliminated from the decision algorithm.
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On the other hand, the most important decision rules are those having the
highest dependency factor and strength, for they indicate a strong relationship
in substantial portion of the data. This property can be used to simplify the
decision algorithms, because we can eliminate less relevant decision rules from
the algorithm, at the cost of its lower classification power.

With every subset of decision rules δ1, . . . , δn of the decision algorithm we
can associate its strength equal to the sum of strengths of the decision rules,

i.e.,
n∑

i=1

σ(δi), which can be used as a measure of the classification power of the

algorithm.

Example (cont.) The decision algorithm induced by the flow graph shown in
Fig. 4 is given in the table:

certainty coverage strength
x1, y1 → z1 0.71 0.67 0.32
x1, y1 → z2 0.31 0.25 0.14
x1, y2 → z1 0.58 0.15 0.07
x1, y2 → z2 0.42 0.09 0.05
x1, y3 → z2 1.00 0.06 0.03
x2, y1 → z1 0.40 0.18 0.08
x2, y1 → z2 0.20 0.01 0.04
x2, y3 → z2 1.00 0.53 0.28

The corresponding flow graph is presented in Fig. 11.
From the flow graph we can see, e.g., that 71% ill and old patients have a

positive test result, whereas 100% young healthy patients have a negative test
result. From the inverse flow graph we can conclude that positive test result have
mostly (67%) ill and old patients and negative test result display mostly (53%)
young healthy patients.

Consequently, for the decision rule x1, y1 → z1 (and the inverse decision rule
z1 → x1, y1) we have the dependency factor η ≈ 0.19,whereas for the decision
rule x2, y3 → z2 (and its inverse decision rule), we have η ≈ 0.31.

That means that the relationship between young healthy patients and nega-
tive test results is more substantial then – between ill old patients and positive
test result.

The strength of the corresponding decision rules is 0.32 and 0.28, respectively.
Thus they are rather strong decision rules. As the result if we drop all remaining
decision rules from the decision algorithm, we obtain a very simple decision
algorithm consisting of two decision rules, with strength 0.32 + 0.28 = 0.60.
This means that two decision rules instead eight suffices for previous proper
classification of initial data in 60% cases. Adding the next strongest decision
rule x1, y2 → z2 with σ = 0.14, we get a decision algorithm with strength
0.60 + 0.14 = 0.74, which can classify properly of 74% cases.

1.7 Flow Graphs and Rough Sets

In this section we show that some flow graphs can be treated as representations
of approximation spaces. To explain this let us consider an example based on
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Fig. 11. Flow graph for the decision algorithm.

approximation spaces for information systems. Let us consider an information
system IS = (U,A) where U is the universe of objects and A is the set of
attributes of the form a : U −→ Va [9]. Any such information system defines an
approximation space AS = (U,R, ν) [12] where R is a family of sets generated
by descriptors over A, i.e.,

R = {X ⊆ U : X = {u ∈ U : a(u) = v} for some a ∈ A, v ∈ Va} (35)

and ν : P (U)× P (U) −→ [0, 1] is the standard rough inclusion function defined
by

ν (X,Y ) =

{
|X∩Y |
|X| if X 
= ∅
1 if X = ∅. (36)

Hence, ν(X,Y ) is a degree to which X is included in Y , for any X,Y ∈ R.
Assume that A = {a1, . . . , am} and a1 < . . . < am, i.e., A is linearly ordered

by <.
Then one can construct a flow graph G(AS) = (N,B, ϕ) representing the

approximation space AS = (U,R, ν) where
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1. N = {nX : X ∈ R};
2. nXBnY if and only if for some ai ∈ A, aj ∈ A, v ∈ Vai , v

′ ∈ Vaj we have
X = {u ∈ U : ai(u) = v}, Y = {u ∈ U : aj(u) = v′}, and aj is the
immediate successor of ai in the linear order a1, . . . , am;

3. For any nodes nX , nY ∈ N :
(a) ϕ(nX , nY ) = |X ∩ Y |/|U |;
(b) cer(nX , nY ) = |X ∩ Y |/|X |;
(c) cov(nX , nY ) = |X ∩ Y |/|Y |.
Hence, the flow graph G(AS) can be treated as a view of the approximation

space AS relative to the given order < of attributes from A. Such views as well
as their fusions can be used in inducing patterns for concept approximations.

2 Applications

2.1 Introduction

In this section we give several tutorial examples showing how the presented ideas
can be used in data analysis.

The examples have been chosen in such a way that various aspects of the
proposed methodology are revealed.

In the example shown in section 2.2 (Smoking and Cancer) the probabilistic
nature of data analysis is pointed out and relationship between statistical and
flow diagram based methodology is revealed.

In the next example discussed in Section 2.3 (Hair, Eyes and Nationality)
relationship between different sets of data is examined and the result need not
to be necessarily interpreted in probabilistic terms.

Similar remark is valid for the next two examples.
Example given in Section 2.9 (Paint Demand and Supply) has entirely deter-

ministic character and describes simply proportion between various ingredients.
In the remaining examples probabilistic character of data is rather immaterial

and results can be understood as relationship between proportion of various
features in the corresponding data sets.

Observe also that the numerical values of discussed coefficients may not sat-
isfy exactly formulas given in the first chapter due to the round off errors in the
computations.

2.2 Smoking and Cancer

In this section we show an application of the proposed methodology on the
example taken from [5].

In Table 1 data concerning 60 people who do or do not smoke and do or do
not have cancer are shown.

In Fig. 12 data given in Table 1 are presented as flow graph.
Normalized flow graph for the flow graph given in Fig. 12 is shown in Fig. 13.
From the flow graph we arrive at the following conclusions:
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Table 1. Smoking and Cancer.

Not smoke Smoke Total

Not cancer 40 10 50
Cancer 7 3 10

Total 47 13 60

Fig. 12. Flow graph for Table 1.

– 85% non-smoking persons do not have cancer (cer(x0, y0) = 40/47 ≈ 0.85),
– 15% non-smoking persons do have cancer (cer(x0, y1) = 7/47 ≈ 0.15),
– 77% smoking persons do not have cancer (cer(x1, y0) = 10/13 ≈ 0.77),
– 23% smoking persons do have cancer (cer(x1, y1) = 3/13 ≈ 0.23).

From the flow graph we get the following reason for having or not cancer:

– 80% persons having not cancer do not smoke (cov(x0, y0) = 4/5 = 0.80),
– 20% persons having not cancer do smoke (cov(x1, y0) = 1/5 = 0.20),
– 70% persons having cancer do not smoke (cov(x0, y1) = 7/10 = 0.70),
– 30% persons having cancer do smoke (cov(x1, y1) = 3/10 = 0.30).

That means that not smoking persons mostly do not have cancer but smoking
is mostly not associated with having cancer.

From the inverse flow graph, we conclude that the reason for having not
cancer is not smoking but having cancer is not associated with smoking.

Fig. 13. Normalized flow graph for Table 1.
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For the flow graph we have the following dependences: η(x0, y0) = 0.01, η(x0,
y0) = −0.06, η(x1, y0) = −0.09 and η(x1, y1) = 0.15. These means that there
is slight positive dependency between x0 and y0 and much stronger positive
dependency between x1 and y1; x0 and y1 are negatively related and so are x1

and y0.
Let us also observe that in statistical terminology σ(x0), σ(x1) are priors,

σ(x0, y0), . . . , σ(x1, y1) are joint distributions, cov(x0, y0), . . . , cov(x1, y1) are
posteriors and σ(y0), σ(y1) are marginal probabilities.

2.3 Hair, Eyes and Nationality

In Fig. 14 the relationship between color of eyes, color of hair and nationality is
presented in the form of a flow graph.

That means that in this population there are 60% blond, 30% dark and 10%
red haired; 80% blond haired have blue eyes whereas 20% blond haired have
hazel eyes, etc. Similarly we see from the flow graph that 20% persons having
blue eyes are Italian, and 80% persons with blue eyes are Swede, etc.

First let us compute “flow” in the graph and the result is shown in Fig. 15.
We can see from the flow graph that the strongest decision rules showing the

relationship between color of hair and eyes are x1 → y1 (σ = 0.48) and x2 → y2

(σ = 0.27) with η = 0.14 and η = 0.38 respectively. These two decision rules
have strength 0.48+0.27 = 0.75. The dependency factors of these decision rules
indicate that the relationship between dark hair and hazel eyes is much stronger
then the dependency between blond hair and blue eyes.

Similarly the strongest decision rules showing the relationship between color
of eyes and nationality are y1 → z2 (σ = 0.48) and x2 → z1 (σ = 0.36) with
η = 0.21 and η = 0.30, respectively and strength 0.84. This shows that hazel
eyes are more characteristic for Italians, then blue eyes for Swede.

The relationship between color of hair and nationality is computed using the
concept of fusion and the result is shown in Fig. 16.

Fig. 14. Initial data.
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Fig. 15. Relationship between color of eyes, color of hair and nationality.

Fig. 16. Fusion of color of hair and nationality.

In this flow graph also degree of independence is given. We can see from
the dependency coefficients that, e.g., there is a relatively strong negative de-
pendency between dark hair and Swede (η = −0.55) blond hair and Italian
(η = −0.17), but there is a positive dependency between dark hair and Ital-
ian (η = 0.25), however the first dependency has very low strength (σ = 0.05),
whereas the second one has much higher strength (σ = 0.20). This means that
in the first case 5% of the population display this property in contrast to the
second case where 20% of the population support the dependency.

Let us also observe that the three decision rules x1 → z1 (σ = 0.20), x2 → z1
(σ = 0.25) and x1 → z1 (σ = 0.40) have very high strength 0.85.

The decision algorithm induced by the flow graph shown in Fig. 15 is pre-
sented in table below:
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certainty coverage strength
x1, y1 → z1 0.20 0.20 0.10
x1, y1 → z2 0.81 0.74 0.39
x1, y2 → z1 0.92 0.23 0.11
x1, y2 → z2 0.08 0.02 0.01
x2, y1 → z1 0.33 0.05 0.01
x2, y1 → z2 0.67 0.04 0.02
x2, y2 → z1 0.89 0.51 0.24
x2, y2 → z2 0.11 0.05 0.03
x3, y1 → z1 0.22 0.05 0.02
x3, y1 → z2 0.78 0.14 0.07
x3, y2 → z1 1.00 0.02 0.01
x3, y2 → z2 0.00 0.00 0.00

Flow graph associated with the decision algorithm is shown in Fig. 17.

Fig. 17. Hair, eyes and nationality.
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One can conclude from the flow graph that the most significant decision rules
are (x1, y1) → z2 (σ = 0.39) and (x2, y2) → z1 (σ = 0.24) with the corresponding
dependency factors η = 0.10 and 0.26, and strength 0.39 + 0.24 = 0.63. That
means that two decision rules enable us to classify correctly of the 63% cases.

Dependency factors indicate that dark hair and hazel eyes are more charac-
teristic for Italians then blond hair and blue eyes for Swede.

Let us also mention that if the data are representative for a larger universe
(form a proper sample of the universe), then the results can be also considered
as promising hypotheses in this extended world. That is, we employ in this
case inductive reasoning, i.e., induce from properties of a part of the universe
properties of the whole universe.

2.4 Production Quality

Consider three industrial plants x1, x2 and x3 producing three kinds of appli-
ances y1, y2 and y3. Some of the produced appliances are defective. The situation
is presented in Fig. 18.

We want to find the relationship between plant and quality of products.
First we compute flow in the flow graph and the result is shown in Fig. 19.
Similarly as in the previous example we can find from the flow graph that

the most significant decision rules describing the relationship between plant and
product are x2 → y2, x3 → y2 and x3 → y3 having together strength 0.18 +
0.10 + 0.40 = 0.68, whereas the relationship between products and quality is
best described by the decision rules y2 → z1, y3 → z1 and y3 → z2 with strength
0.25 + 0.44 + 0.19 = 0.88

In order to find relationship between producers and quality of their products,
we compute the corresponding fusion and the result is given in Fig. 20. It is seen
from the dependency coefficient that all decision rules except the rule x2 → z2
have rather low rather low dependency factor. Because η(x2, z2) = −0.17 plant
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Fig. 18. Relationship between plant, product, and quality.
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Fig. 19. Relationship between plants, products and quality.

x2 produces the lowest ratio of defective products but the corresponding decision
rule has a rather weak strength (σ = 0.05); that is, it has 5% support. In other
words it is the best of all plants. It is interesting to observe that the four strongest
decision rules provide 90% accuracy of classification.

The corresponding decision algorithm is shown below:

certainty coverage strength
x1, y1 → z1 0.83 0.06 0.05
x1, y1 → z2 0.17 0.05 0.01
x1, y3 → z1 0.71 0.13 0.10
x1, y3 → z2 0.29 0.15 0.04
x2, y1 → z1 0.00 0.21 0.00
x2, y1 → z2 0.00 0.03 0.00
x2, y2 → z1 0.89 0.21 0.16
x2, y2 → z2 0.11 0.08 0.02
x2, y3 → z1 0.67 0.08 0.06
x2, y3 → z2 0.33 0.15 0.03
x3, y2 → z1 0.90 0.13 0.09
x3, y2 → z2 0.10 0.05 0.01
x3, y3 → z1 0.70 0.37 0.28
x3, y3 → z2 0.30 0.45 0.12

Flow graph associated with the decision algorithm is given in Fig. 21.
We leave discussion of the flow graph for the interested reader.
Let us observe that in this example we do not have inductive reasoning, what-

soever. The world (universe) we are interested in is “closed” and we search only
for relationships valid in this specific universe. There is no reason to generalize
the obtained results.
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Fig. 20. Fusion between plant and quality.

Fig. 21. Production quality.
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Fig. 22. Initial data.

2.5 Play Blocks

Suppose we are given a set of play blocks of different, shapes (square, round,
triangular), colors (red, blue green) and size (large, small).

Initial data are shown in Fig. 22.
Corresponding flow graph is presented in Fig. 23.
In order to find relationship between shape and size, and size color we have

to compute the corresponding dependency factors but we will omit this com-
putation here. For finding the relationship between shape and color we have to
compute first fusion of shape and color, which is shown in Fig. 24.

Almost all dependency coefficients are very low, which means that there is a
very low relationship between shape and color of blocks, nevertheless there are
strong decision rules in the flow graph, e.g., x3 → z3(σ = 0.22), x3 → z2(σ =

Fig. 23. Relationship between features of play blocks.
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Fig. 24. Fusion of shape and color.

0.12), x2 → x3(σ = 0.19) and x2 → z2(σ = 0.14), which all together yields 67%
accuracy of classification.

Analogously to the example discussed before (see Fig. 21) one can search for
relationship between other features of play blocks.

Also in this example, similarly as in the previous one, we are not interested
in inducing general rules. We are searching only here for relationships in a given
data set, i.e., relations between various properties of a given set of objects.

2.6 Preference Analysis

Suppose that three models of cars x1, x2 and x3 are sold to three disjoint groups
of customers z1, z2 and z3 through four dealers y1, y2, y3 and y4.

Moreover, let us assume that car models and dealers are distributed as shown
in Fig. 25.

Computing strength and coverage factors for each branch we get results
shown in Fig. 26.

In order to find consumer preferences in buying cars we have to compute
fusion between car models and consumer group. The result is shown in Fig. 27.

From the flow graph we can see that consumer group z1 mostly bought car x3

(45%), consumer group x2 mostly bought car x3 (38%) and consumer group z3
mostly bought cars x3 too (69%). We can also conclude from the flow graph that
car x1 was mostly bought by consumer group z2 (57%), car x2 – by consumer
group z2 (60%) and car x3 – by consumer group z2 (39%).

The dependency coefficients reveal that the strangest negative dependency is
between car model x1 and consumer group z3(η = −0.37), whereas car model x1

and consumer group z1 shows the highest positive correlation (η = 0.17), with
corresponding strengths σ = 0.02 and σ = 0.06.

Let us also notice that the five strongest decision rules provided 77% accuracy
of classification.
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Fig. 25. Car and dealer distribution.

Fig. 26. Strength, certainty and coverage factors.

We can also ask how consumer preferences are related to car model and
dealer. To this end we have to find the corresponding decision algorithm but we
postpone this task here.

If this data set is representative for a greater universe then the obtained
results can be induced for the whole universe.
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Fig. 27. Fusion of consumer preferences.

2.7 Voting Analysis

Consider three disjoint age groups of voters y1 (old), y2 (middle aged) and y3

(young) – belonging to three social classes x1 (high), x2 (middle) and x3 (low).
The voters voted for four political parties z1 (Conservatives), z2 (Labor), z3
(Liberal Democrats) and z4 (others).

Social class and age group votes distribution is shown in Fig. 28.
First we want to find votes distribution with respect to age group. The result

is shown in Fig. 29.

Fig. 28. Social class and age group votes distribution.
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Fig. 29. Party votes distribution.

From the flow graph presented in Fig. 29 we can see that, e.g., party z1
obtained 19% of total votes, all of them from age group y1; party z2 – 44%
votes, which 82% are from age group y2 and 18% – from age group y3, etc.

If we want to know how votes are distributed between parties with respect to
social classes, we have to compute fusion of the corresponding graph. Employing
the algorithm presented previously we get the results shown in Fig. 30.

Fig. 30. Fusion of social class and party.
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From the flow graph presented in Fig. 30, we can see that party z1 obtained
22% votes from social class x1 and 78% – from social class x2, etc.

The strongest positive dependency occurs between social class x1 (high) and
party z1 (Conservatives) η = 0.40 and social class x3 (low) and party z4 (others)
η = 0.41, with corresponding strengths σ = 0.04 and σ = 0.02, which are rather
low.

The highest negative correlation (η = −0.28) is between social class x1 (high)
and political party z2 (Labor), with strength σ = 0.02, which is also low.

If we want to know how votes for political parties are distributed in relation
to social class and age of voters, we have to derive the decision algorithm from
the flow graph given in Fig. 30, but we will drop this here. Let us observe only,
e.g., that old members of high social class voted mostly for Conservatives, middle
aged members of middle social class voted mostly for Labor and young members
of low social class voted mostly for Labor.

Let us also observe that the four strongest decision rules yields 0.78 strength,
i.e., these four rules gives 78% accuracy of classification of party members with
respect to social class.

A similar remark about induction as in the previous case of voting analysis
applies here.

2.8 Promotion Campaign

Suppose we have three groups of customers classified with respect to age: young
(students), middle aged (workers) and old (pensioners). Moreover, suppose we
have data concerning place of residence of customers: town, village and country.

Let us assume that the customers are asked whether they will buy certain
advertised product (e.g., a new tooth paste) in a promotion campaign.

The initial data are presented in Fig. 31.
That means that there are 25% young customers, 60% – middle aged and

15% old – in the data base. Moreover, we know that 75% of young customers
live in towns, 20% – in villages and 5% – in the country, etc. We also have from
the database that 75% town customers answered yes, 25% – no, etc.

We want to find a relationship between various customers’ group and the
final result of the promotion.

First, applying the ideas presented previously, we get the results shown in
Fig. 32.

Fig. 32 shows the general structure of patterns between various customers
groups and promotion results.

Suppose we are interested in finding the relationship between age group and
final result of the promotion. To this end we have to compute fusion between
age groups and the promotion result, or – the relationship between input and
output of the flow graph. The result is shown in Fig. 33.

Fig. 33 contains also dependency factors between age groups and the promo-
tion result.

It can be seen from the flow graph that all the dependency factors are very
low and almost close to zero. That means, that in view of the data, practically,
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Fig. 31. Initial data.

Fig. 32. Relationship between customers group and promotion.

there is no relationship between age group of customers and the final result of
promotion, but there are three strong decision rules which provide all together
79% of classification accuracy.

We might be also interested in the relationship between customer’s residence
and promotion results. This relationship is shown in Fig. 34. We can see from
the flow graph that there is relatively high negative dependency (η = −0.38)
with strength σ = 0.03 between country customers group y3 and answer z1
(yes). Similarly there is high positive dependency (η = 0.35) with strength σ =
0.16 between country customers group y3 and answer z2 (no). There is also a
substantial degree of negative dependency (η = −0.16) between town customers
group y1 and answer z2 (no), with σ = 0.16.
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Fig. 33. Fusion of age group and promotion.

Fig. 34. Fusion of residence and promotion.

We can conclude from the flow graph in Fig. 34, e.g., that independently of
age town customers mostly give positive answer to the promotion campaign and
country customers give mostly negative answer to the promotion campaign.

Certainly, the results are valid only for the considered data. For another data
(population), the results can be different.

2.9 Paint Demand and Supply

Suppose that cars are painted in two colors y1 and y2 and that 60% of cars
have color y1, whereas 40% cars have color y2. Moreover, assume that colors y1

and y2 can be obtained by mixing three paints x1, x2 and x3 in the following
proportions:
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– y1 contains 20% of x1, 70% of x2 and 10% of x3,
– y2 contains 30% of x1, 50% of x2 and 20% of x3.

We have to find the demand for each paint and supply among cars y1 and y2.
Employing terminology introduced in previous section, we can represent our

problem by means of the flow graph shown in Fig. 35.
Thus, in order to solve our task, first we have to compute strength of each

branch. Next, we compute the demand for each paint. Finally, we compute paint
supply for each car. The final result is presented in Fig. 36.

Suppose now that the cars are produced by three manufacturers z1, z2 and
z3, in proportions shown in Fig. 37.

That means:

– 50% of cars y1 are produced by manufacturer z1
– 30% of cars y1 are produced by manufacturer z2
– 20% of cars y1 are produced by manufacturer z3

Fig. 35. Paint demand.

Fig. 36. Paint supply.
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Fig. 37. Car production distribution.

and

– 40% of cars y2 are produced by manufacturer z1
– 30% of cars y2 are produced by manufacturer z2
– 30% of cars y2 are produced by manufacturer z3

Employing the technique used previously, we can compute car production dis-
tribution among manufacturers as shown in Fig. 38.

For example, manufacturer z1 produces 65% of cars y1 and 35% of cars y2,
etc. Finally, the manufacturer z1 produces 46% cars, manufacturer z2 – 30% cars
and manufacturer z3 – 24% of cars.

We can combine graphs shown in Fig. 36 and Fig. 38 and we obtain the flow
graph shown in Fig. 39.

Fig. 38. Manufacturer distribution.
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Fig. 39. Paint supply demand flow.

In order to find paint demand and supply by each manufacturer, we have to
compute fusion between each paint and manufacture. The corresponding flow
graph is presented in Fig. 40.

The meaning of the obtained results is the following.
Suppose that paints are delivered in the same units, say kg.
Thus manufacturer, e.g., z1, demands 120 kg, 290 kg and 60 kg of paints x1,

x2 and x3, respectively. Whereas paint x1 is delivered to manufacturer z1, z2
and z3 in amounts 120 kg, 80 kg and 70 kg, respectively.

Consequently, we need 270 kg of paint x1, 630 kg of paint x2 and 140 kg of
paint x3.

Observe that this example has an entirely deterministic character and there
is no probabilistic interpretation of the results needed whatsoever. Besides, we
do not need to employ a decision algorithm to solve this task.

Fig. 40. Fusion of paint demand and supply flow.
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In the examples in the previous sections, we considered sets of different ob-
jects, e.g., patients, customers, voters, play blocks, cars, etc. In this example we
have an entirely different situation. We analyze various paints which are not sets
but substances not consisting of elements but having various ingredients (which
are also substances), e.g., blue, red paint etc. Thus we cannot use here set the-
oretical language, and define union, intersection or inclusion of sets (paints).
Therefore we cannot say that blue paint is a subset of green paint, but that blue
paint is an ingredient of green paint. Consequently, a flow graph can be in this
case understood as a language for description of the relationship between various
ingredients (substances), where (x, y) ∈ B means that x is ingredient of y. In
this language cer(x, y) expresses the ratio of substance y to substance x, in x,
whereas cov(x, y) is the ratio of x to y in y. This resembles somewhat the rela-
tion of being a part in a degree introduced in rough mereology by Polkowski and
Skowron (see Section 1.7) but parts and ingredients are two different concepts.
The concept of a part has set theoretical flavor, but ingredient has not.

Also inductive reasoning is not involved here. This example shows simply the
relationship between demand and supply of some goods.

3 Conclusions

We propose in this paper a new approach to knowledge representation and data
mining based on flow analysis in a new kind of flow network.

We advocate in this paper to represent relationships in data by means of flow
graphs. Flow in the flow graph is meant to capture the structure of data rather
than to describe any physical material flow in the network. It is revealed that
the information flow in a flow graph is governed by Bayes’ formula; however, the
formula can be interpreted in an entirely deterministic way without referring
to its probabilistic character. This representation allows us to study different
relationships in data and can be used as a new mathematical tool for data
mining.
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set approach, In: S. Tsumoto, R. S�lowiński, J. Komorowski, J. Grzyma�la-Busse
(eds.), Rough Sets and Current Trends in Computing (RSCTC 2004), Lecture
Notes in Artificial Intelligence 3066, Springer Verlag, Berlin, 2004, pp. 261-270.

8. J. �Lukasiewicz, Die logishen Grundlagen der Wahrscheinilchkeitsrechnung. Kraków
(1913), in: L. Borkowski (ed.), Jan �Lukasiewicz - Selected Works, North Holland
Publishing Company, Amsterdam, London, Polish Scientific Publishers, Warsaw,
1970, pp. 16-63.

9. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer,
Dordrecht, 1991.

10. Z. Pawlak, Rough sets, decision algorithms and Bayes’ theorem. European Journal
of Operational Research 136, 2002, pp. 181-189.

11. Z. Pawlak, Flow graphs, their fusion and data analysis, 2003, to appear.
12. A. Skowron, J. Stepaniuk, Tolerance approximation spaces, Fundamenta Informat-

icae 27(2-3), 1996, pp. 245-253.
13. R. Swinburne (ed.), Bayes’ Theorem, Oxford University Press, 2002.
14. S. Tsumoto, H. Tanaka, Discovery of Functional Components of Proteins Based

on PRIMEROSE and Domain Knowledge Hierarchy, Proceedings of the Workshop
on Rough Sets and Soft Computing (RSSC-94), 1994: Lin, T.Y., and Wildberger,
A.M. (Eds.), Soft Computing, SCS, 1995, pp. 280-285.

15. S.K.M. Wong, W. Ziarko, Algorithm for inductive learning. Bull. Polish Academy
of Sciences 34, 5-6, 1986, pp. 271-276.



The Rough Set Exploration System

Jan G. Bazan1 and Marcin Szczuka2

1 Institute of Mathematics, University of Rzeszów,
Rejtana 16A, 35-310 Rzeszów, Poland

bazan@univ.rzeszow.pl
2 Institute of Mathematics, Warsaw University,

Banacha 2, 02-097, Warsaw, Poland
szczuka@mimuw.edu.pl

Abstract. This article gives an overview of the Rough Set Exploration
System (RSES). RSES is a freely available software system toolset for
data exploration, classification support and knowledge discovery. The
main functionalities of this software system are presented along with a
brief explanation of the algorithmic methods used by RSES. Many of
the RSES methods have originated from rough set theory introduced by
Zdzis�law Pawlak during the early 1980s.

1 Introduction

This paper introduces the latest edition of the Rough Set Exploration System
(RSES) software system toolset that makes it possible to analyze tabular datasets
utilizing various methods. In particular, many RSES methods are based on rough
set theory (see, e.g., [20–28, 30–32]). The first version of RSES and its companion
RSESlib became available over a decade ago. After a number of modifications,
improvements, and removal of detected bugs, RSES has been used in many ap-
plications (see, e.g., [5, 11, 14, 15, 29, 34, 41]).

The RSESlib library of tools for rough set computations was successfully used
for data analysis with encouraging results. Comparison with other classification
systems (see, e.g., [2, 19, 29]) proves its value. The early version of RSESlib was
also used in construction of the computational kernel of ROSETTA, an advanced
system for data analysis (see,e.g, [12, 42]).

At the moment of this writing RSES version 2.2 is the most current. This
version was prepared by the research team supervised by Professor Andrzej
Skowron. Currently, the RSES R&D team consists of: Jan Bazan, Rafa�l
Latkowski, Micha�l Miko�lajczyk, Nguyen Hung Son, Nguyen Sinh Hoa, Dominik
Ślȩzak, Piotr Synak, Marcin Szczuka, Arkadiusz Wojna, Marcin Wojnarski, and
Jakub Wróblewski.

The RSES ver. 2.2 software and its computational kernel – the RSESlib 3.0
library – maintains all advantages of previous versions. The algorithms have been
redesigned to provide better flexibility, extended functionality and the ability
to process massive data sets. New algorithms added to the library reflect the
current state of our research in classification methods originating in rough sets

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets III, LNCS 3400, pp. 37–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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theory. Improved construction of library allows further extensions and supports
augmentation of RSESlib into different data analysis tools.

Today RSES is freely distributed for non-commercial purposes. Anybody can
download it from the Web site [40].

The RSES software and underlying computational methods have been suc-
cessfully applied in many studies and applications. A system based on LTF-C
(see Subsection 8.3) won the first prize in the EUNITE 2002 World Competition
“Modeling the Bank’s Client behavior using Intelligent Technologies” (see [41]).
Approaches based on rule calculation have been successfully used in areas such
as gene expression discovery (see, e.g., [34]), survival analysis in oncology (see,
e.g., [5]), software change classification (see, e.g., [29]), classification of biomedi-
cal signal data (see, e.g., [15]), and classification of musical works and processing
musical data (see, e.g, [11, 14]).

In this paper we attempt to provide quite a general description of capabili-
ties of our software system. We also present a handful of basic facts about the
underlying computational methods. The paper starts with introduction of basic
notions (Section 2) that introduces the vocabulary for the rest of this article.
Next, we describe, in general terms, main functionalities of RSES (Section 3) and
architecture of the system (Section 4). Rest of the paper presents computational
methods in the order introduced in Figure 1. Starting from input management
(Section 5) we go through data preprocessing (Section 6) and data reduction
(Section 7), to conclude with description of methods for classifier construction
and evaluation (Section 8).

2 Basic Notions

In order to provide clear description further in the paper and avoid any mis-
understandings we bring here some essential definitions from Rough Set theory.
We will frequently refer to the set of notions introduced in this section. Quite
comprehensive description of notions and concepts related to classical rough sets
may be found in [13].

The structure of data that is central point of our work is represented in the
form of information system [28] or, more precisely, the special case of information
system called decision table.

Information system is a pair of the form A = (U,A) where U is a finite
universe of objects and A = {a1, ..., am} is a set of attributes, i.e., mappings of
the form ai : U → Va , where Va is called value set of the attribute ai. The
decision table is also a triple of the form A = (U,A, d) where the major feature
that is different from the information system is the distinguished attribute d.
In case of decision table the attributes belonging to A are called conditional
attributes or simply conditions while d is called decision (sometimes decision
attribute). The cardinality of the image d(U) = {k : d(s) = k for some s ∈ U} is
called the rank of d and is denoted by rank(d).

One can interpret the decision attribute as a kind of classifier on the universe
of objects given by an expert, a decision-maker, an operator, a physician, etc.
This way of looking at data classification task is directly connected to the general
idea of supervised learning (learning with a “teacher”).
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Decision tables are usually called training sets or training samples in machine
learning.

The i−th decision class is a set of objects Ci = {o ∈ U : d(o) = di}, where di

is the i−th decision value taken from decision value set Vd = {d1, ..., drank(d)}.
For any subset of attributes B ⊂ A indiscernibility relation IND(B) is de-

fined as follows:

xIND(B)y ⇔ ∀a∈Ba(x) = a(y) (1)

where x, y ∈ U. If a pair (x, y) ∈ U × U belongs to IND(B) then we say that x
and y are indiscernible by attributes from B.

Having indiscernibility relation we may define the notion of reduct. B ⊂ A
is a (global) reduct of information system if IND(B) = IND(A) and no proper
subset ofB has this property. There may be many reducts for a given information
system (decision table). We are usually interested only in some of them, in
particular those leading to good classification models.

As the discernibility relation and reducts (reduction) are the key notions in
classical rough sets we want to dwell a little on these notions and their variants
used in RSES.

A relative (local) reduct for an information system A = (U,A) and an object
o ∈ U is an irreducible subset of attributes B ⊂ A that suffices to discern o from
all other objects in U . Such reduct is only concerned with discernibility relative
to the preset object.

In case of decision tables the notion of decision reduct is handy. The deci-
sion reduct is a set B ⊂ A of attributes such that it cannot be further reduced
and IND(B) ⊂ IND(d). In other words, decision reduct is a reduct that only
cares about discernibility of objects that belong to different decision classes. This
works under assumption that the table is consistent. If consistency is violated,
i.e., there exist at least two objects with identical attribute values and differ-
ent decision, the notion of decision reduct can still be utilized, but the notion
generalized decision has to be used.

As in general case, there exists a notion of a decision reduct relative to an
object. For an object o ∈ U the relative decision reduct is a subset B ⊂ A
of attributes such that it cannot be further reduced and suffices to make o
discernible from all objects that have decision value different from d(o).

Dynamic reducts are reducts that are calculated in a special way. First, from
the original information system a family of subsystems is selected. Then, for
every member of this family (every subsystem) reducts are calculated. Reducts
(subsets of attributes) that appear in results for many subtables are chosen.
They are believed to carry essential information, as they are reducts for many
parts of original data. For more information on dynamic reducts please refer
to [2].

The set BX is the set of all elements of U which can be classified with
certainty as elements of X , having the knowledge about them represented by
attributes from B; the set BNB(X) is the set of elements which one can classify
neither to X nor to −X having knowledge about objects represented by B.
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If C1, . . . , Cr(d) are decision classes of A then the set BC1 ∪ · · · ∪BCrank(d)

is called the B-positive region of A and is denoted by POSB(d). The relative
size of positive region, i.e., the ratio |POSB(d)|

|U| , is an important indicator used in
RSES.

Decision rule r is a formula of the form

(ai1 = v1) ∧ ... ∧ (aik
= vk) ⇒ d = vd (2)

where 1 ≤ i1 < ... < ik ≤ m, vi ∈ Vai . Atomic subformulae (ai1 = v1) are
called descriptors or conditions. We say that rule r is applicable to object, or
alternatively, the object matches rule, if its attribute values satisfy the premise
of a rule.

With the rule we can associate some characteristics. SuppA(r) denotes Sup-
port, and is equal to the number of objects from A for which rule r applies
correctly, i.e., the premise of rule is satisfied and the decision given by rule is
similar to the one preset in decision table. MatchA(r) is the number of objects
in A for which rule r applies in general. Analogously the notion of matching set
for a rule or collection of rules may be introduced (see [2–4]).

The notions of matching and supporting set are common to all classifiers,
not only decision rules. For a classifier C we will denote by SuppA(C ) the set of
objects that support classifier, i.e., the set of objects for which classifier gives the
answer (decision) identical to that we already have. Similarly, MatchA(C ) is a
subset of objects in A that are recognized by C . Support and matching make it
possible to introduce two measures that are used in RSES for classifier scoring.
These are Accuracy and Coverage, defined as follows:

AccuracyA(C ) =
|SuppA(C )|
|MatchA(C )|

CoverageA(C ) =
|MatchA(C )|

|A|
By cut for an attribute ai ∈ A, such that Vai is an ordered set we will denote

a value c ∈ Vai . Cuts mostly appear in the context of discretization of real-valued
attributes. In such situation, the cut is a a value for an attribute such that it
determines a split of attribute domain (interval) into two disjoint subintervals.

With the use of cut we may replace original attribute ai by a new, binary
attribute which tells as whether actual attribute value for an object is greater
or lower than c (more in [17]).

Template of A is a propositional formula
∧

(ai = vi) where ai ∈ A and
vi ∈ Vai . A generalized template is the formula of the form

∧
(ai ∈ Ti) where

Ti ⊂ Vai . An object satisfies (matches) a template if for every attribute ai

occurring in the template the value of this attribute on considered object is equal
to vi (belongs to Ti in case of generalized template). The template induces in
natural way the split of original information system into two distinct subtables.
One of those subtables contains objects that satisfy the template, the other those
that do not.
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Decomposition tree is a binary tree, whose every internal node is labeled
by some template and external node (leaf) is associated with a set of objects
matching all templates in a path from the root to a given leaf (see [16] for more
details).

3 Main Functionalities

RSES is a computer software system developed for the purpose of analyzing data.
The data is assumed to be in the form of information system or decision table.
The main step in the process of data analysis with RSES is the construction and
evaluation of classifiers.

Classification algorithms, or classifiers, are algorithms that permit us to re-
peatedly make a forecast in new situation on the basis of accumulated knowl-
edge. In our case the knowledge is embedded in the structure of classifier which
itself is constructed (learned) from data (see [19]). RSES utilizes classification
algorithms using elements of rough set theory, instance based learning, artificial
neural networks and others. Types of classifiers that are available in RSES are
discussed in Section 8.

The construction of classifier is usually preceded by several initial steps. First,
the data for analysis has to be loaded/imported into RSES. RSES can accept
several input formats as described in Section 5. Once the data is loaded, the user
can examine it using provided visualization and statistics tools (see Figures 3F3
and 3F4).

In order to have a better chance for constructing (learning) a proper classifier,
it is frequently advisable to transform the initial data set. Such transformation,
usually referred to as preprocessing may consist of several steps. RSES supports
preprocessing methods which make it possible to manage missing parts in data,
discretize numeric attributes, and create new attributes. Preprocessing methods
are further described in Section 6.

Once the data is preprocessed we may be interested in learning about its
internal structure. By using classical rough set concepts such as reducts, dynamic
reducts and positive region one may pinpoint dependencies that occur in our data
set. Knowledge of reducts may lead to reduction of data by removing some of the
redundant attributes. Reducts can also provide essential hints for the parameter
setting during classifier construction. Calculation of reducts and their usage is
discussed in Section 7.

The general scheme of data analysis process with use of RSES functionalities
in presented in Figure 1.

4 The Architecture of RSES

To simplify the use of RSES algorithms and make it more intuitive the RSES
graphical user interface was constructed. It is directed towards ease of use and vi-
sual representation of workflow. Project interface window consists of two parts.
The visible part is the project workspace with icons representing objects cre-
ated during blue computation. Behind the project window there is the history
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• Missing value completion 
• Discretization 
• Attribute creation 

• Reduct calculation 
• Dynamic reducts 
• Reducts’ evaluation 

• Train-and-test 
• Cross-validation 
• Classifcation of new objects 

Fig. 1. RSES data analysis process.

window, reachable via tab, and dedicated to messages, status reports, errors
and warnings. While working with multiple projects, each of them occupies a
separate workspace accessible via tab at the top of workplace window.

It was designers’ intention to simplify the operations on data within project.
Therefore, the entities appearing in the process of computation are represented
in the form of icons placed in the upper part of workplace. Such an icon is created
every time the data (table, reducts, rules,...) is loaded from the file. Users can
also place an empty object in the workplace and further fill it with results of
operation performed on other objects. Every object appearing in the project
has a set of actions associated with it. By right-clicking on the object the user
invokes a context menu for that object. It is also possible to invoke an action from
the general pull-down program menu in the main window. Menu choices make it
possible to view and edit objects as well as include them in new computations. In

 

Operating System 
MS-Windows, Linux 

Java Virtual Machine 

RSES-lib 2.0 
C++ 

RSES-lib 3.0 
Java 

RSES  GUI 
Java Swing 

Fig. 2. The architecture of RSES.
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many cases a command from context menu causes a new dialog box to open. In
this dialog box the user can set values of parameters used in desired calculation.
If the operation performed on the object leads to creation of a new object or
modification of existing one then such a new object is connected with edge
originating in object(s) which contributed to its current state. Placement of
arrows connecting icons in the workspace changes dynamically as new operations
are being performed. The user has the ability to align objects in workspace
automatically, according to his/her preferences (eg. left, horizontal, bottom).

An important, recently added GUI feature is the possibility to display some
statistical information about tables, rules and reducts in a graphical form. The
look of various components of RSES interface is shown in Figure 3.

Behind the front-end that is visible to the user, there is RSES computational
kernel. This most essential part of the system is built around the library of
methods known as RSESlib ver. 3.0. The library is mostly written in Java but,
it also uses a part that was implemented using C++. The C++ part is the
legacy of previous RSESlib versions and contains those algorithms that could
only lose optimality if re-implemented in Java. The layout of RSES components
is presented in Figure 2. Currently, it is possible to install RSES in Microsoft
Windows 95/98/2000/XP and in Linux/i386. The computer on which the RSES
is installed has to be equipped with Java Runtime Environment.

5 Managing Input and Output

During operation certain functions in RSES may read and write information
to/from files. Most of the files that can be read or written are regular ASCII
text files. A particular sub-types can be distinguished by reviewing the contents
or identifying file extensions (if used). Description of RSES formats can be found
in [40].

As the whole system is about analyzing tabular data, it is equipped with
abilities to read several tabular data formats. At the time of this writing the
system can import text files formatted for old version of RSES (RSES1 format),
Rosetta, and Weka systems. Naturally, there exists native RSES2 file format
used to store data tables.

The old RSES1 format is just a text file that stores data table row by row.
The only alternation is in the first row, which defines data dimension – number
of rows and columns (attributes and objects). All the other input formats are
more complex. The file in these formats consist of the header part and the
data part. The header part defines structure of data, number and format of
attributes, attribute names etc. Additional information from the header proved
to be very useful during analysis, especially in interpretation of results. For
detailed definition of these formats please refer to [42] for Rosetta, [43] for Weka,
and [40] for RSES.

The RSES user can save and retrieve data entities created during experiment,
such as rule sets, reduct sets etc. The option of saving the whole workspace
(project) in a single file is also provided. The project layout together with un-
derlying data structures is stored using dedicated, optimized binary file format.
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Fig. 3. RSES interface windows: A. Project window; B. Decomposition tree; C.
Reduct/rule calculation; D. Classification results; E. Set of cuts; F1–F4. Graphical
statistics for rules, reducts and attributes; G. Decision rules.
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6 Data Preprocessing

The data that is an input to analysis with use of RSES can display several fea-
tures that negatively influence quality and generality of classification model we
want to construct. There may be several such problems with data, depending
on classification paradigm we want to apply. Some of the RSES classifier con-
struction methods require data (attributes) to be represented with use of specific
value sets, e.g., only symbolic attributes are allowed. There may be other prob-
lems, such as missing information (missing values) or inconsistencies in the table.
Finally, we may want to alter the original data by introducing new attributes
that are better suited for classification purposes.

RSES provides users with several functionalities that make it possible to
preprocess original data and prepare a training sample which more likely to lead
to a good classifier.

6.1 Examining Data Statistics

Not a preprocessing method per se, RSES functions for producing data statistics
may serve as a handy tool. By using them the user can get familiar with the
data as well as compare some crucial data characteristics before and after data
modification.

In RSES the user may examine distribution of a single attribute, in particular
the decision distribution. The RSES system is capable of presenting numerical
measurements for distribution of values of a single attribute as well as displaying
the corresponding histogram (see Figure 3 F3). The information gathered for a
single attribute includes range, mean value, and standard deviation. It is also
possible to compare distribution of two attributes on a single plot as shown in
Figure 3 F4.

6.2 Missing Value Completion

The missing elements in data table, so called NULL values, may pose a prob-
lem when constructing classifier. The lack of some information may be due to
incomplete information, error or the constraints embedded in data collection
process.

RSES offers four approaches to the issue of missing values. These are as
follows:

– removal of objects with missing values,
– filling the missing part of data in one of two ways (see [10]):

• filling the empty (missing) places with most common value in case of
nominal attributes and filling with mean over all attribute values in
data set in case of numerical attribute.

• filling the empty (missing) places with most common value for the de-
cision class in case of nominal attributes and filling with mean over all
attribute values in the decision class in case of numerical attribute.
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– analysis of data without taking into account those objects that have incom-
plete description (contain missing values). Objects with missing values (and
their indiscernibility thereof) are disregarded during rule/reduct calculation.
This result is achieved by activating corresponding options in the RSES di-
alog windows for reduct/rule calculation.

– treating the missing data as information (NULL is treated as yet another
regular value for attribute).

6.3 Discretization

Suppose we have a decision table A = (U,A ∪ {d}) where card(Va) is high for
some a ∈ A. Then there is a very low chance that a new object is recognized
by rules generated directly from this table, because the attribute value vector
of a new object will not match any of these rules. Therefore for decision tables
with real (numerical) value attributes some discretization strategies are built
into RSES in order to obtain a higher quality of classification.

Discretization in RSES is a two-fold process. First, the algorithm generates
a set of cuts (see Figure 3 E). These cuts can be then used for transforming
a decision table. As a result we obtain the decision table with the same set of
attributes, but the attributes have different values. Instead of a(x) = v for an
attribute a ∈ A and object x ∈ U we rather get a(x) ∈ [c1, c2], where c1 and
c2 are cuts generated for attribute a by discretization algorithm. The cuts are
generated in a way that the resulting intervals contain possibly most uniform
sets of objects w.r.t decision.

The discretization method available in RSES has two versions, code-named
global and local. Both methods are using a bottom-up approach which adds
cuts for a given attribute one-by-one in subsequent iterations of algorithm. The
difference between these two is in the way the candidate for new cut is scored.
In the global method we consider in scoring all the objects in data table at every
step. In the local method we only take part of objects that are concerned with
this candidate cut, i.e., which have value of the currently considered attribute
in the same range as the cut candidate. Naturally, the second (local) method is
faster as less objects have to be examined at every step. In general, the local
method is producing more cuts. The local method is also capable of dealing with
nominal (symbolic) attributes. The grouping (quantization) of nominal attribute
domain with use of local method always results in two subsets of attribute values.

6.4 Creation of New Attributes

RSES makes it possible to add an attribute to decision table. This new attribute
is created as a weighted sum of selected existing (numerical) attributes. We may
have several such attributes for different weight settings and different attributes
participating in weighted sum. These attributes are carrying agglomerated in-
formation and are intended as a way of simplifying classifier construction for a
given data set.
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Linear combinations are created on the basis of collection of attribute sets
consisting of k elements. These k-element attribute sets as well as parameters
of combination (weights) are generated automatically by adaptive optimization
algorithm implemented in RSES. As a measure for optimization we may use one
of three possibilities. The measures take into account potential quality of decision
rules constructed on the basis of newly created linear combination attribute. For
details on these measures please turn to [33]. The user may specify the number
(k) of new attributes to be constructed and the number of original attributes to
be used in each linear combination.

7 Reduction and Reducts

As mentioned before (Section 2) there are several types of reducts that may be
calculated in RSES for a given information system (decision table). The purposes
for performing reduct calculation (reduction) may vary. One of advantages that
reducts offer is better insight into data. By calculating reducts we identify this
part of data (features) which carries most essential information. Reducts are also
canvas for building classifiers based on decision rules.

Inasmuch as calculation of interesting, meaningful and useful reducts may
be a complicated and computationally costly task, there is a necessity for larger
flexibility when setting up an experiment involving reducts. For that reason there
are several different methods for discovering reducts implemented in RSES.

7.1 Calculating Reducts

In Section 2 we mentioned four general types of reducts. All four of them can be
derived in RSES by selecting appropriate settings for algorithms implemented
(see Figure 3 C). It is important to mention that in most cases selecting object-
related indiscernibility relation (local reducts) leads to creation of much larger
set of reducts. On the other hand, selection of decision-dependant indiscernibility
usually reduces computational cost.

There are two algorithms for reducts calculation available in RSES. First of
them is an exhaustive algorithm. It examines subsets of attributes incrementally
and returns those that are reducts of required type. This algorithm, although
optimized and carefully implemented, may lead to very extensive calculations in
case of large and complicated information systems (decision tables). Therefore,
should be used with consideration.

To address problems with sometimes unacceptable cost of exhaustive, de-
terministic algorithm for reduct calculation, an alternative evolutionary method
is implemented in RSES. This method is based on an order-based genetic algo-
rithm coupled with heuristic. Theoretical foundations and practical construction
of this algorithm are presented in [37] and [3].

The user, when invoking this method, has some control over its behavior since
the population size and convergence speed may be set from the RSES interface
(see Figure 3 C).
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7.2 Calculating Dynamic Reducts

Dynamic reducts are reducts that remain to be such for many subtables of the
original decision table (see [2], [3]). The process of finding the dynamic reduct
is computationally more costly, as it requires several subtables to be examined
in order to find the frequently repeating minimal subsets of attributes (dynamic
reducts). Such dynamic reducts may be calculated for general or decision-related
indiscernibility relation.

The purpose of creating dynamic reducts is that in many real-life experiments
they proved to be more general and better suited for creation of meaningful and
applicable decision rules. Examples of solutions and results obtained with use of
dynamic reduct approach may be found in [2, 3].

The dynamic reduct calculation process involves sampling several subtables
from original table and is controlled by number of options such as: number of
sampling levels, number of subtables per sampling level, smallest and largest
permissible subtable size, and so on. We also decide right on the start if we are
interested in general or decision-related reducts.

As mentioned before, calculation of reducts may be computationally expen-
sive. To avoid overly exhaustive calculation it is advisable to carefully select
parameters for dynamic reduct calculation, taking into account size of data,
number of samples, and size of attribute value sets.

7.3 From Reducts to Rules

Reducts in RSES are, above all, used to create decision rule sets. Equipped with
collection of reducts (reduct set) calculated beforehand, the user may convert
them into a set of decision rules. That may be achieved in two ways, as there
are two methods for creating rules from reducts implemented in RSES.

First option is to calculate so called global rules. The algorithm scans the
training sample object by object and produces rules by matching object against
reduct. The resulting rule has attributes from reducts in conditional part with
values of currently considered object, and points at decision that corresponds to
the decision for this training object. Note, that for large tables and large reduct
set the resulting set of rules may be quite large as well.

Another alternative is to generate all local rules. For each reduct a subtable,
containing only the attributes present in this reduct, is selected. For this sub-
table algorithm calculates a set of minimal rules (rules with minimal number of
descriptors in conditional part – see, e.g., [3]) w.r.t decision. Finally, the rule
sets for all reducts are summed up to form result.

Sets of reducts obtained in RSES may be examined with use of included
graphical module. This module makes it possible to find out how the attributes
are distributed among reducts and how reducts overlap (see Figure 3 F2). In
case of decision reduct it is also possible to verify the size of positive region.

Sets of decision rules obtained as a result may be quite large and some of
the rules may be of marginal importance. This can be, among other things, the
result of using reducts that are of mediocre quality.
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The quality of reducts may be improved after they are calculated. One way to
do that is by shortening. The user may specify the shortening threshold (between
0 and 1) and the algorithm will attempt to remove some attributes from reducts.
The shortening is performed as long as the relative size of positive region for
shortened reduct exceeds the threshold. Note, that in the process of shortening
the resulting subset of attributes may no longer be a proper reduct but it is
shorter and results in more general rules.

In case of dynamic reduct there is even more room for improvement here. We
may perform reduct filtering, eliminating reducts of lower expected quality. To
filter dynamic reducts in RSES the user has to set a value of stability coefficient
(between 0 and 1). This coefficient is calculated for each dynamic reduct during
the process of its creation. We will not bring here the entire theory behind
the stability coefficient. Interested reader may find detailed explanation in [2]
and [3]. Important thing to know is that stability coefficient keeps the record of
appearances of a reduct for subtables sampled in reduct calculation process. The
more frequent occurrence of the reduct (the greater stability) the higher stability
coefficient. High stability (coefficient) of a dynamic reducts strongly suggest that
it contains vital piece of information. Naturally, there is no point in considering
stability coefficient filtering in case on non-dynamic (regular) reducts, as there
in no sampling involved in their creation, and their stability coefficients always
equal 1.

8 Construction and Utilization of Classifiers

Several types of classifiers are represented in RSES, and we present them in
some detail in subsequent parts of this section. All of them follow the scheme of
construction, evaluation and usage.

The classifier in RSES is constructed on the basis of training set consisting
of labeled examples (objects with decisions). Such a classifier may be further
used for evaluation with use of test/validation set or applied to new, unseen
and unlabeled cases in order to establish the value of decision (classification) for
them.

The evaluation of the classifier’s performance in RSES may be conducted
in two ways. We can either apply a train-and-test (also known as hold-out) or
cross-validation procedure.

In train-and-test scenario the (labeled) data is split into two parts of which
first becomes the training, second the testing/validation set. The classifier is
build on the basis of the training set and then evaluated with use of testing one.
The choice of method for splitting data into training and testing set depends on
the task at hand. For some tasks this split is imposed by the task, the nature of
data or the limitations of the methods to be applied. If there are no constraints
on the data split, the training and testing sample is chosen by random. The
responses given by the classifier for test table are compared with desired answers
(known for our data set) and the classification errors are calculated. The results
of such procedure are stored in dedicated object in RSES project interface. The
set of results, when displayed (see Figure 3D), provide the user with values
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of accuracy and coverage of classifier for the entire testing data as well as for
particular decision classes. The distribution of errors made by classifier on test
data set is shown in detail using the typical confusion matrix (see, e.g., [19]).

In the k-fold cross-validation approach the data is split into k possibly equal
parts (folds). Then the train-and-test procedure described above is applied re-
peatedly k times in such a way that each of k parts becomes the test set while
the sum of remaining k− 1 parts is used as a training set to construct classifier.
In each run classification errors are calculated for the current test set. As a result
the RSES returns the same set of results as in train-and-test approach but, the
values of errors are averages over k iterations. The cross-validation approach to
classifier evaluation is commonly used and has a good theoretical background
(see [19]), especially for data sets with no more than 1000 objects. In RSES the
application of cross-validation scheme is controlled with use of dedicated window
which makes it possible to select number of folds and all important parameters
for a classifier to be constructed and evaluated.

When using a previously constructed classifier for establishing decision for
previously unseen, unlabeled objects, the user have to take care of the proper
format of the examples. If during construction of classifier the training set was
preprocessed (e.g., discretized) then the same procedure has to be repeated for
the new data table. If the format of data and the classifier match, the result is
created as a new column in the data table. This column contains the value of
decision predicted by classifier for each object.

8.1 Decision Rules

Classifiers based on a set of decision rules are the most established methods in
RSES. Several methods for calculation of the decision rule sets are implemented.
Also, various methods for transforming and utilizing rule sets are available (see
parts C, F1 and G of Figure 3).

The methods for retrieving rules, given a set of reducts, have been already
described in Subsection 7.3. These methods produce set of rules by matching
training objects against selected set of reducts. In RSES it is possible to calculate
such rules instantly, without outputting the set of reducts. But, it has to be stated
that the reduct calculation is performed in background anyway.

The two methods for rule calculation that use reducts, i.e., the exhaustive
and GA algorithms, are accompanied with another two that are based on slightly
different approach. These two are applying a covering approach. First of the two
utilizes subsets of attributes that are likely to be local (relative) reducts. The
details of this method are described in [38]. Second of the covering algorithm is a
customized implementation of the LEM2 concept introduced by Jerzy Grzyma�la-
Busse in [9]. In LEM2 a separate-and-conquer technique is paired with rough set
notions such as upper and lower approximation. Both covering-based methods
for rule calculation tend to produce less rules than algorithms based on explicit
reduct calculation. They are also (on average) slightly faster. On the downside,
the covering methods sometimes return too few valuable and meaningful rules.

In general, the methods used by RSES to generate rules may produce quite
a bunch of them. Naturally, some of the rules may be marginal, erroneous or
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redundant. In order to provide better control over the rule-based classifiers some
simple techniques for transforming rule sets are available in RSES. Note, that
before any transformation of rule set it is advisable to examine the statistics
produced in RSES for such an entity (see Figure 3 F1). The simplest way to
alter the set of decision rules is by filtering them. It is possible to eliminate from
rule set these rules that have insufficient support on training sample, or those
that point at decision class other than desired.

More advanced operations on rule sets are shortening and generalization.
Rule shortening is a method that attempts to eliminate descriptors from the
premise of the rule. The resulting rule is shorter, more general (apply to more
training objects) but, it may lose some of its precision. The shortened rule may
be less precise, i.e., may give wrong answers (decision) for some of the matching
training objects. The level to which we accept decrease of quality in favor of
improved generality of rules is known as shortening ratio and may be set by
the user of RSES. Generalization is the process which attempts to replace single
descriptors (conditions) in the rule with more general ones. Instead of a unary
condition of the form a(x) = v, where a ∈ A, v ∈ Va, x ∈ U , the algorithm
tries to use generalized descriptors of the form a(x) ∈ Vc, where Vc ⊂ Va. Note,
that in generalization process the implicit assumption about manageable size of
Va for each a ∈ A is crucial for the algorithm to be computationally viable. A
descriptor (condition) in a rule is replaced by its generalized version if such a
change do not decrease size of positive region by the ratio higher than a threshold
set by the user.

When we attempt to classify an object from test sample with use of generated
rule set it may happen that various rules suggest different decision values. In
such conflict situations we need a strategy to resolve controversy and reach a
final result (decision). RSES provides a conflict resolution strategy based on
voting among rules. In this method each rule that matches the object under
consideration casts a vote in favor of the decision value it points at. Votes are
summed up and the decision that got majority of votes is chosen. This simple
method (present in RSES) may be extended by assigning weights to rules. Each
rule then votes with its weight and the decision that has the highest total of
weighted votes is the final one. In RSES this method (also known as Standard
voting) assigns each rule the weight that is equal to the number of training
objects supporting this rule.

8.2 Instance Based Method

As an instance based method we implemented the special, extended version
of the k nearest neighbors (k-nn) classifier [7]. First the algorithm induces a
distance measure from a training set. Then for each test object it assigns a
decision based on the k nearest neighbors of this object according to the induced
distance measure.

The distance measure ρ for the k-nn classifier is defined as the weighted sum
of the distance measures ρa for particular attributes a ∈ A:
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ρ(x, y) =
∑
a∈A

wa · ρa(a(x), a(y)).

Two types of a distance measure are available to the user. The City-SVD
metric [6] combines the city-block Manhattan metric for numerical attributes
with the Simple Value Difference (SVD) metric for symbolic attributes.

The distance between two numerical values ρa(a(x), a(y)) is the difference
|a(x) − a(y)| taken either as an absolute value or normalized with the range
amax − amin or with the doubled standard deviation of the attribute a on the
training set. The SVD distance ρa(a(x), a(y)) for a symbolic attribute a is the
difference between the decision distributions for the values a(x) and a(y) in
the whole training set. Another metric type is the SVD metric. For symbolic
attributes it is defined as in the City-SVD metric and for a numerical attribute a
the difference between a pair of values a(x) and a(y) is defined as the difference
between the decision distributions in the neighborhoods of these values. The
neighborhood of a numerical value is defined as the set of objects with similar
values of the corresponding attribute. The number of objects considered as the
neighborhood size is the parameter to be set by a user.

A user may optionally apply one of two attribute weighting methods to im-
prove the properties of an induced metric. The distance-based method is an
iterative procedure focused on optimizing the distance between the training ob-
jects correctly classified with the nearest neighbor in a training set. The detailed
description of the distance-based method is described in [35]. The accuracy-based
method is also an iterative procedure. At each iteration it increases the weights
of attributes with high accuracy of the 1-nn classification.

As in the typical k-nn approach a user may define the number of nearest
neighbors k taken into consideration while computing a decision for a test object.
However, a user may use a system procedure to estimate the optimal number
of neighbors on the basis of a training set. For each value k in a given range
the procedure applies the leave-one-out k-nn test and selects the value k with
the optimal accuracy. The system uses an efficient leave-one-out test for many
values of k as described in [8].

When the nearest neighbors of a given test object are found in a training set
they vote for a decision to be assigned to the test object. Two methods of nearest
neighbors voting are available. In the simple voting all k nearest neighbors are
equally important and for each test object the system assigns the most frequent
decision in the set of the nearest neighbors. In the distance-weighted voting each
nearest neighbor vote is weighted inversely proportional to the distance between
a test object and the neighbor. If the option of filtering neighbors with rules
is checked by a user, the system excludes from voting all the nearest neighbors
that produce a local rule inconsistent with another nearest neighbor (see [8] for
details).

The k-nn classification approach is known to be computationally expensive.
The crucial time-consuming task is searching for k nearest neighbors in a training
set. The basic approach is to scan the whole training set for each test object. To
make it more efficient an advanced indexing method is used [35]. It accelerates
searching up to several thousand times and allows to test datasets of a size up
to several hundred thousand of objects.
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8.3 Local Transfer Function Classifier

Local Transfer Function Classifier (LTF-C) is a neural network solving classifi-
cation problems [36]. LTF-C was recently added to RSES as yet another classifi-
cation paradigm. Its architecture is very similar to this of Radial Basis Function
neural network (RBF) or Support Vector Machines (SVM) – the network has
a hidden layer with gaussian neurons connected to an output layer of linear
units. The number of inputs corresponds to the number of attributes while the
number of linear neurons in output layers equals the number of decision classes.
There are some additional restrictions on values of output weights that enable
to use an entirely different training algorithm and to obtain very high accuracy
in real-world problems.

The training algorithm of LTF-C comprises four types of modifications of
the network, performed after every presentation of a training object:

1. changing positions (means) of gaussians,
2. changing widths (deviations) of gaussians, separately for each hidden neuron

and attribute,
3. insertion of new hidden neurons,
4. removal of unnecessary or harmful hidden neurons.

As one can see, the network structure is dynamical. The training process starts
with an empty hidden layer, adding new hidden neurons when the accuracy
is insufficient and removing the units which do not positively contribute to the
calculation of correct network decisions. This feature of LTF-C enables automatic
choice of the best network size, which is much easier than setting the number
of hidden neurons manually. Moreover, this helps to avoid getting stuck in local
minima during training, which is a serious problem in neural networks trained
with gradient-descend. The user is given some control over the process of network
construction/trainig. In particular, it is for user to decide how rigid are the
criteria for creating and discarding neurons in the hidden layer. Also, the user
may decide whether to perform data (attribute) normalization or not.

8.4 Decomposition Trees

Decomposition trees are used to split data set into fragments not larger than
a predefined size. These fragments, after decomposition represented as leafs in
decomposition tree, are supposed to be more uniform and easier to cope with
decision-wise.

The process of constructing a decomposition tree is fully automated, the user
only has to decide about the maximal size of subtable corresponding to the leaf.
The algorithm generates conditions one by one on subsequent levels of the tree.
The conditions are formulated as a constraints for value of particular attribute.
In this way, each node in the tree have an associated template as well as subset
of training sample that corresponds to this template. It is possible to generate
decomposition trees for data with numerical attributes. In this case discretization
is performed during selection of conditions in tree nodes. A dedicated display
method for presenting decomposition trees is implemented in RSES GUI, so that
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the user can examine interactively the resulting decomposition (see Figure 3B).
For more information on underlying methods please turn to [16] and [18].

The decomposition tree is mostly used in RSES as a special form of classi-
fier. Usually the subsets of data in the leafs of decomposition tree are used for
calculation of decision rules (cf. [3]). The set of data in the leaf is selected by the
algorithm in such a way, that (almost) all objects it contains belong to the same
decision class. If such a set of objects is used to generate rules, there is a good
chance of obtaining some significant decision rules for the class corresponding to
the leaf.

The tree and the rules calculated for training sample can be used in clas-
sification of unseen cases. The rules originating in decomposition tree may be
managed in the same manner as all other decision rules in RSES. It is possible
to generalize and shorten them, although such modified rule sets may not be
reinserted into original tree.

9 Conclusion

We have presented main features of the Rough Set Exploration system (RSES)
hoping that this paper will attract more attention to our software. Interested
reader, who wants to learn more about RSES, may download the software and
documentation form the Internet (cf. [40]).

RSES will further grow, as we intend to enrich it by adding newly developed
methods and algorithms. We hope that many researchers will find RSES an
useful tool for experimenting with data, in particular using methods related to
rough sets.
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Abstract. From the granular computing perspective, the existing no-
tions of validity, confidence, and coverage of rules in approximation
spaces may be viewed as too crisp since granularity of the space is not,
in general, taken into account in their definitions. In this article, an ex-
tension of the classical approach to a general rough case is discussed.
We introduce and investigate graded validity, confidence, and coverage
of rules as examples of rough validity, confidence, and coverage, respec-
tively. The graded notions are based on the concepts of graded meaning
of formulas and sets of formulas, studied in our earlier works. Among oth-
ers, the notions of graded validitity, confidence, and coverage refine and
extend the classical forms by taking into account granules of information
drawn toward objects of an approximation space.

To Andrzej

1 Introduction

In this article, broadly speaking, we are interested in the relationships between
satisfiability of premises (preconditions) and satisfiability of conclusions (post-
conditions) of rules in approximation spaces (ASs). Our main objectives are
(i) to introduce rough granular versions of the notions of validity, confidence,
and coverage of rules in approximation spaces as well as (ii) to grasp and em-
phasize various aspects and relationships between such purely logical concepts
like entailment or validity of rules and the notions of partial validity of rules,
confidence, and coverage which are much more practically oriented.

In logic, inference rules enjoying the property that every object satisfying the
premises satisfies the conclusions of the rules are of high value for a practical use
in reasoning. Such rules are called valid. Actually, many rules applied in practice
are not valid in the logical sense. An index, called confidence, is used to estimate
the degree of validity of rules. The standard confidence measures the fraction of
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objects satisfying both the premises and the conclusions of rules in the set of all
objects satisfying the premises of rules. The higher the confidence of a rule, the
more valid is the rule. Confidence is not the only characteristic used to measure
the quality of rules. There are many such indices known to the KDD and soft
computing communities [1–3]. Examples are coverage of rules working as the
converse of confidence, a combination of both the confidence and the coverage,
and the support of rules.

As suggested by the name itself, association rules, generated whether from
the Pawlak information systems or from databases, are intended to describe for-
mally the relationships (associations) between two finite collections of facts. For
instance, an association rule may state that an occurrence of events e1, . . . , em

is associated with an occurrence of events e′1, . . . , e′n, or that purchasing goods
g1, . . . , gm is associated with purchasing goods g′1, . . . , g

′
n. Decision rules, gener-

ated from decision tables, may be viewed as particular association rules which
specify relationships between a finite set of conditions and a finite set of decisions.
Confidence measures the degree to which the conclusions are associated with the
premises, whereas coverage estimates the converse relationship. In an informa-
tion system, the (standard) support of a rule is the set of objects of the universe,
satisfying both the premises and the conclusions of the rule. In databases, the
support of an association rule is the fraction of transactions containing both the
premises and the conclusions of the rule. In decision (or classification) rules, the
roles of premises and conclusions are not symmetric, and therefore both confi-
dence as well as coverage are of interest. Nevertheless, premises and conlusions
play symmetric roles in many cases of ordinary association rules. Since the cover-
age of a rule is the confidence of the converse rule, provided that the latter value
is defined, the notion of coverage may be eliminated as being derivative in such
cases. Usually, a great number of rules may be generated from an information
system or a database. However, only rules having required properties such as a
satisfactory quality are of importance in practice. The typical tasks concerning
the confidence, the coverage, and the support of rules are (i) to compute all (as-
sociation, decision, and other) rules, possibly with given premises or conclusions,
such that the confidence and/or the coverage exceed some threshold values, and
the support satisfies some conditions and (ii) to classify a new object by means
of rules of a sufficient quality.

It is characteristic of an approximation space that one can measure the degree
of inclusion of a set of objects in a set of objects of the universe by a rough
inclusion function and that the universe is granulated into clusters of similar
objects by an uncertainty mapping (see, e.g., [4, 5]). In the definitions of the
classical notions of confidence and coverage of rules, only the first aspect is
reflected. Thus, the classical approach is too crisp from the granular computing
perspective. In [6–8], Polkowski and Skowron proposed a calculus of information
granules, based on rough mereology [9–11]. According to their framework which
comprises both the rough case and the fuzzy case, rules are labels for pairs of
granules of information from the semantical perspective. Next, confidence and
coverage of rules are obtained by measuring the degree of inclusion of a granule



Rough Validity, Confidence, and Coverage of Rules in Approximation Spaces 59

of information in a granule of information. Polkowski and Skowron’s idea is
profound, very general, yet simple.

In this article, in accordance with the Polkowski – Skowron framework, we
discuss an extension of the classical individualistic approach to the concepts of
validity, confidence, and coverage of rules to a general rough case. The general
rough notions of satisfiability and meaning of sets of formulas, entailment, as well
as applicability, validity, confidence, and coverage of rules, introduced in the pa-
per, are pretty abstract. To be more concrete, we define rough graded forms of
validity, confidence and coverage, and we investigate them in detail. These con-
cepts, based on the notions of graded meaning of formulas and their sets which
we introduced and studied in [12], are entirely grounded on the approximation
space framework. The classical case is comprised by the graded one. From the
technical point of view, the modification consists in replacement of the classical
crisp meanings of formulas and sets of formulas by their graded versions and
in dropping the assumption the rough inclusion function be standard. Unlike in
the classical case, the rough graded meaning of a finite set of formulas X is, in
general, different from the corresponding graded meaning of the conjunction of
elements of X . Therefore, rules which are pairs of finite sets of formulas in our
approach cannot be reduced to pairs of formulas in general.

In this paper, the cardinality of a set X is denoted by #X , the power set of X
by ℘(X), and the Cartesian product of n > 0 copies of X by Xn, remembering
that X1 = X . Let n > 0, i = 0, . . . , n, (Xi,≤i) be non-empty partially ordered
sets, ≥i – the converse relation of ≤i, <i, >i – the strict versions of ≤i,≥i,
respectively, and s, t ∈ X0× . . .×Xn. Then, πi(t) is the i-th element of t, � is a
partial ordering such that s � t if and only if ∀i = 0, . . . , n.πi(s) ≤i πi(t), and �
is its converse relation. For 0 ≤ j ≤ n−1, a mapping f : X0×. . .×Xn−1 �→ Xn is
called co-monotone in the j-th variable if for any s, t ∈ X0× . . .×Xn−1 such that
πj(s) ≤j πj(t) and s, t being equal on the remaining places, it holds f(t) ≤n f(s).
For example, f : (℘(U))2 �→ ℘V is co-monotone in the second variable if and
only if for any X,Y, Z ⊆ U , Y ⊆ Z implies f(X,Z) ⊆ f(X,Y ). Given a relation

 ⊆ X0 × X1 and X ⊆ X0, the image of X is denoted by 
→(X). The result
of concatenation of arbitrary tuples t1, t2, composed in this order, is denoted
by t1t2. Thus, (1, a, 3)(2, 3) = (1, a, 3, 2, 3). For any a, (a) denotes the “tuple”
consisting of a only. For simplicity, parentheses will be dropped in formulas if
no confusion results.

In Sect. 2, the Pawlak information systems and decision tables are briefly
recalled. A concise overview of approximation spaces is given in Sect. 3. Section 4
is devoted to such notions as satisfiability, meaning of formulas and their sets,
and entailment. We recall graded forms of these notions and introduce their
formal rough versions. Applicability and validity of rules, in the classical, graded,
and general rough forms are briefly discussed in Sect. 5. The standard confidence
and the standard coverage of rules are overviewed in Sect. 6. Their general rough
forms are introduced in Sect. 7. As a particular case, a graded confidence and
a graded coverage are proposed and investigated. Section 8 is devoted to the
related problem of confidence of association rules in databases. The last section
contains concluding remarks.



60 Anna Gomolińska

2 The Pawlak Information Systems

An information system (IS) in the sense of Pawlak [13–15] may be viewed as
a pair A = (U,A), where U (the universe of A) is a non-empty finite set of
objects and A is a non-empty finite set of attributes. With every attribute a,
there is associated a set of values Va and a is itself a mapping a : U �→ Va

assigning values to objects. Along the standard lines, A is visualized by a table,
where each and every object is described by a row of values of attributes. By
assumption, objects are known by their description in terms of these values only.
Objects having the same description are indiscernible. Every B ⊆ A induces an
indiscernibility relation on U , indB ⊆ U2, which is an equivalence relation such
that for any u, u′,

(u, u′) ∈ indB iff ∀a ∈ B.a(u) = a(u′). (1)

For any object u, its equivalence class given by indB is called an elementary gran-
ule of information drawn toward u. Every equivalence relation 
 on U induces a
partition of U which is the family of all elementary granules given by 
. Sets of
objects are viewed as concepts. Set-theoretical unions of families of elementary
granules are called definable concepts. The remaining concepts may be approxi-
mated by definable concepts only. Let Γu denote the equivalence class of u given
by 
. Any concept X ⊆ U may be approximated in the rough sense [16, 17] by
its lower and upper rough approximations, low∪X, upp∪X , respectively, given by

low∪X =
⋃
{Γu | Γu ⊆ X} and upp∪X =

⋃
{Γu | Γu ∩X 
= ∅}. (2)

If low∪X = upp∪X , then X is exact ; and it is rough otherwise.
In practice, many attributes work as binary relations a ⊆ U×Va. For simplic-

ity, let us consider the case, where each and every object is assigned a non-empty
set of values a→{u}. It can happen that an attribute a is actually a mapping
but due to some circumstances (uncertainty, incompleteness of information), its
precise values are not available. For instance, the only information about a(u)
can be that a(u) ∈ V ⊆ Va. Another variant is that several (or more) values
of a on u are provided. This situation may be explained as either contradictory
or non-deterministic. In the latter case, all values of a on u are collected into
a set V , and a(u) ∈ V is stated. To capture such and similar cases, the notion
of an IS was generalized to a multi-valued information system (MVIS) [13–15].
Any MVIS may be viewed as a pair A as above except that every attribute a is
perceived as a mapping a : U �→ ℘Va, assigning sets of values to objects. If for
every a and u, #a(u) = 1, the MVIS becomes an ordinary IS.

A decision table (DT) [18–21] is an IS with the set of attributes split into
two disjoint sets of condition attributes and decision attributes, respectively.
Typically, the latter set consists of one decision attribute only. Multi-valued ver-
sions of DTs are called multi-valued decision tables (MVDTs). Broadly speaking,
(MV)DTs are used in approximate classification of objects. They provide us with
decision rules supporting classification of new objects.
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Example 1. As an illustration, let us consider a fragment of a database on
second-hand cars, represented in the form of an IS A = (U,A), where U =
{1, . . . , 57} consists of 57 objects (cars) and A = {a1, . . . , a6} consists of 6 at-
tributes (1 continuous, 1 integer, and 4 nominal). Every car (object) is specified
in terms of such characteristics (attributes) as: make (a1), model (a2), body
type (a3), age (a4), colour (a5), and price (a6). The range (the set of values) of
a1 is Va1 = {C,D,F,O,P}, where C is for citroën, D – daewoo, F – fiat, O –
opel, P – peugeot; Va2 = {as, as2, br, la, ne, nu, ve, xs, 306, 406}, where as is for
astra, as2 – astra II, br– brava, la – lanos, ne – nexia, nu – nubira, ve – vectra,
xs – xsara; Va3 = {H, S,W}, where H is for hatchback, S – sedan, W – station
wagon; Va4 = {1991, . . . , 2003}; Va5 = {bla, bl, bu, gre, gr, re, si,wh}, where bla
is for black, bl – blue, bu – burgundy, gre – green, gr – grey, re – red, si – silver,
wh – white; and Va6 = [10, 76] (prices are in thousands of the Polish monetary
units (PLN)). System A is presented in the form of Tabl. 1.

Table 1. The information system A.

u a1 a2 a3 a4 a5 a6 u a1 a2 a3 a4 a5 a6

1 C xs W 2003 gr 36.0 30 O as2 H 1998 wh 31.5
2 C xs H 1998 bl 18.0 31 O as2 W 2000 bl 36.2
3 C xs H 1998 gr 25.9 32 O as H 1998 bl 21.8
4 D la S 1998 gre 17.3 33 O as W 1996 re 19.2
5 D la H 2000 bl 17.4 34 O as W 1997 si 19.3
6 D la H 1999 gre 18.0 35 O as2 H 1999 bl 33.8
7 D la H 1999 bl 18.0 36 O as H 1998 wh 17.2
8 D la S 2002 wh 23.6 37 O as2 H 1998 bla 31.3
9 D la S 1999 gre 18.0 38 O ve S 2003 si 74.0

10 D la H 1998 si 16.4 39 O ve S 1996 gre 27.9
11 D la H 2000 gr 19.0 40 O ve S 1996 bla 27.2
12 D la S 1999 si 17.8 41 O ve S 1995 re 22.5
13 D la H 1999 bla 17.0 42 O ve S 1991 re 11.5
14 D ne S 1997 bla 13.4 43 O ve S 1996 gre 26.5
15 D ne H 1996 bu 12.3 44 O ve S 1998 si 16.0
16 D ne H 1996 re 13.2 45 O ve S 1997 gre 30.0
17 D nu W 1999 gre 16.8 46 P 306 H 1995 re 22.0
18 D nu S 1998 re 19.0 47 P 306 H 1997 bl 18.0
19 D nu W 1999 bl 23.5 48 P 306 H 1995 re 14.0
20 D nu S 1999 gr 23.5 49 P 306 W 1998 bu 22.4
21 D nu W 1999 re 21.0 50 P 306 W 1996 si 17.5
22 F br H 1997 gre 16.9 51 P 306 H 1994 bl 14.3
23 F br H 1997 bl 16.9 52 P 406 S 1996 re 23.5
24 F br H 2001 bl 14.9 53 P 406 S 1997 gr 27.4
25 O as W 2000 si 22.5 54 P 406 W 1997 re 26.5
26 O as2 H 2001 bl 30.3 55 P 406 S 1997 bu 27.0
27 O as W 1999 re 22.1 56 P 406 S 1996 gre 24.7
28 O as W 2000 si 22.1 57 P 406 S 1996 bl 29.0
29 O as H 1999 bl 27.0
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3 Approximation Spaces

The notion of an approximation space (AS) was introduced by Skowron and
Stepaniuk in [22], and elaborated in [4, 5, 23–25]. Any such space is a triple M =
(U, Γ, κ), where U is a non-empty set, Γ : U �→ ℘U is an uncertainty mapping,
and κ : (℘U)2 �→ [0, 1] is a rough inclusion function (RIF). In accordance with the
original notation, Γ and κ should be equipped with lists of tuning parameters —
dropped for simplicity here — to secure a satisfactory quality of approximation
of concepts. The prototype of an AS is the rough approximation space induced
by an IS (U,A), where for any u, u′ ∈ U , u′ ∈ Γu if and only if u, u′ are
indiscernible in a considered sense as mentioned in the preceding section. Since
κ is not explicitly used, it may be omitted in this case.

Elements of U are called objects and are denoted by u with sub/superscripts
if needed. Objects are known by their properties only. Some objects can be
similar from an observer’s perspective. Indiscernibility is viewed as a special
case of similarity, hence every object is necessarily similar to itself. The notion
of a granule of information was introduced by Zadeh [26]. Taking into account
the modification proposed by Lin [27], we can say that a granule of information
is a set of objects of some space, drawn together and/or toward some object on
the basis of similarity or functionality. The uncertainty mapping Γ assigns to
every object u, an elementary granule Γu of objects similar to u. By assumption,
u ∈ Γu. In this way, the universe U is covered by a family of elementary granules
of information being clusters of objects assigned to elements of U by Γ .

Example 2 (Continuation of Example 1). We granulate the universe U of the
system A by defining an uncertainty mapping Γ as follows1. First, for any u, u′,
let u′ ∈ Γ1,2u if and only if a1(u), a1(u′) ∈ {D,F} and a2(u), a2(u′) ∈ {br, la, ne}
or a1(u), a1(u′) ∈ {C,D,O,P} and a2(u), a2(u′) ∈ {as, as2, nu, ve, xs, 306, 406}.
Thus, Γ1,2 generates a partition of U into two classes, one of which consists
of such cars as fiat brava, daewoo lanos, and daewoo nexia, whereas the re-
maining class is formed of the rest of cars. Next, let u′ ∈ Γ3u if and only if
a3(u), a3(u′) = W or a3(u), a3(u′) 
= W. Also in this case, U is partitioned into
two classes. According to Γ3, the station wagons form one class and the remain-
ing cars constitute the second class. In the sequel, let u′ ∈ Γ4u if and only if
a4(u), a4(u′) ≤ 1994 or a4(u), a4(u′) ≥ 2002, or 1995 ≤ a4(u), a4(u′) ≤ 2001 and
|a4(u) − a4(u′)| ≤ 1. Γ→

4 U is a covering but not a partition of U . The binary
relation on U induced by Γ4 is reflexive and symmetric but not transitive, i.e.,
it is a proper tolerance relation. For instance, car 22 is similar to car 18 which,
in the sequel, is similar to car 21. However, car 22 is not similar to car 21. More
generally, cars produced in 1994 and earlier are similar to one another, cars
from 2002 − 2003 constitute another class of cars being mutually similar, cars
from 1995 are similar to the cars from 1995− 1996, cars from 1996 are similar
to the cars from 1995 − 1997, . . . , cars from 2000 are similar to the cars from
1999−2001, and finally, cars from 2001 are similar to the cars from 2000−2001.
Next, let u′ ∈ Γa6u if and only if |a6(u) − a6(u′)| < 1.5. Like in the preceding
1 That is, we determine which objects of A are similar to one another.
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case, Γ→
6 U is merely a covering of U , and the binary relation induced by Γ6 is a

tolerance relation on U . According to Γ6, cars with prices differing by less than
1500 PLN are similar to one another. Finally, a global uncertainty mapping Γ
is defined by

Γu
def= Γ1,2u ∩ Γ3u ∩ Γ4u ∩ Γ6u, (3)

and its values are presented in Tabl. 2.

The notion of a RIF goes back to �Lukasiewicz [28] in connection with estima-
tion of probability of implicative formulas. In line with �Lukasiewicz’s approach,
for a finite U and any X,Y ⊆ U , the standard RIF, κ£, is defined by

κ£(X,Y ) =

{
#(X∩Y )

#X if X 
= ∅
1 otherwise.

(4)

Given an arbitrary non-empty U , we call a RIF quasi-standard if it is defined
as the standard one for finite first arguments. The idea underlying a general
notion of RIF is that a RIF is a function, defined for pairs (X,Y ) of sets of
objects into the unit interval [0, 1], measuring the degree of inclusion of X in
Y . Polkowski and Skowron formulated a formal theory of being-a-part-in-degree,
called rough mereology, which axiomatically describes a general notion of a RIF
[8–11]. In our approach, every RIF κ : (℘U)2 �→ [0, 1] is supposed to satisfy
(A1)–(A3) for any X,Y, Z ⊆ U : (A1) κ(X,Y ) = 1 if and only if X ⊆ Y ; (A2) If
X 
= ∅, then κ(X,Y ) = 0 if and only if X ∩ Y = ∅; (A3) If Y ⊆ Z, then
κ(X,Y ) ≤ κ(X,Z). In ASs, sets of objects may be approximated by means of

Table 2. Values of Γ .

u Γu u Γu u Γu

1 1 20 20 39 39,40,43,53,55,57
2 2,18,36,47 21 21,27,28,49 40 39,40,43,53,55
3 3,29,55 22 4,10,22,23 41 41,46,52
4 4,6,7,9,10,12,13,22,23 23 4,10,22,23 42 42
5 5-7,9,12,13 24 24 43 39,40,43,53,55
6 4-7,9,11-13 25 19,25,27,28 44 36,44
7 4-7,9,11-13 26 26 45 37,45,57
8 8 27 19,21,25,27,28,49 46 41,46
9 4-7,9,11-13 28 19,21,25,27,28 47 2,18,36,47

10 4,10,12,13,22,23 29 3,29 48 48
11 6,7,9,11,12 30 30,37 49 19,21,27,49
12 4-7,9-13 31 31 50 50
13 4-7,9,10,12,13 32 32 51 51
14 14-16 33 33,34 52 41,52,56
15 14-16 34 33,34 53 39,40,43,53,55
16 14-16 35 35 54 54
17 17 36 2,36,44,47 55 3,39,40,43,53,55
18 2,18,47 37 30,37,45 56 52,56
19 19,25,27,28,49 38 38 57 39,45,57
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uncertainty mappings and RIFs in a number of ways. For instance, the lower
and upper rough approximations of a concept X ⊆ U may be defined by (2), or
in line with [4] by

lowX = {u | κ(Γu,X) = 1} and uppX = {u | κ(Γu,X) > 0}. (5)

It follows from (A1)–(A3) that low∪X =
⋃
Γ→lowX and upp∪X =

⋃
Γ→uppX .

In [29], we investigate various alternative ways of approximation of concepts in
more detail.

4 The Meaning of Formulas and Entailment

We briefly recall the idea of introducing degrees into the notions of meaning
of formulas and sets of formulas as well as the notion of entailment in an AS,
described in detail in [12]. Given an approximation spaceM = (U, Γ, κ), consider
a formal language L in which we can express properties of M. Formulas of L are
denoted by α, β, γ with subscripts if needed. All formulas of L form a set FOR.
Assume that a commutative conjunction (∧) and a commutative disjunction (∨)
are among the connectives of L. For any non-empty finite X ⊆ FOR,

∧
X,
∨
X

denote the conjunction and the disjunction of all elements of X , respectively.
Suppose that a crisp relation of satisfiability of formulas for objects of U ,

denoted by |=c, is given. We use the symbol “c” to denote “crisp” as a synonym
of “precise” and as opposite to “soft” or “rough”. As usual, u |=c α reads as “α
is c-satisfied for u” (see, e.g., [30–33])2. The c-meaning of α is understood as
the set ||α||c = {u | u |=c α}. Along the standard lines, α is c-satisfiable if its
c-meaning is non-empty; otherwise α is c-unsatisfiable. For simplicity, c will be
dropped if no confusion results.

Example 3. Given a DT A = (U,A), where A = C ∪D and C ∩D = ∅. C,D are
sets of condition and decision attributes, respectively. Values of attributes, i.e.,
elements of W =

⋃{Va | a ∈ A} are denoted by v with subscripts if needed. A
logical language to express properties of A may be defined as in [6, 7, 34]. For
simplicity, entities (objects) are identified with their names. Constant symbols,
being elements of A∪W , are the only terms. The parentheses (, ) and commas are
auxiliary symbols. Atomic formulas are pairs of terms of the form (a, v), called
descriptors, where a ∈ A and v ∈W . Primitive connectives are ∧ (conjunction)
and ¬ (negation). ∨ (disjunction), → (material implication), and ↔ (double
implication) are classically defined by means of ∧,¬. Compound formulas are
formed from the atomic formulas along the standard lines. For any formula α
and a set of formulas X , the sets of attribute symbols occurring in α and X are
denoted by Atα and AtX , respectively. Notice that AtX =

⋃{Atα | α ∈ X}. A
formula α is a template if it is a conjunction of descriptors with distinct attribute
symbols, i.e., if there is a natural number n > 0, a1, . . . , an ∈ A, and v1, . . . , vn ∈
W such that α = (a1, v1)∧ . . .∧(an, vn) and ∀i, j = 1, . . . , n.(ai = aj → vi = vj).

2 Also, α is c-true of u or c-holds for u.
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The relation of c-satisfiability (or, simply, satisfiability) of formulas for objects,
|=, is defined for any formulas (a, v), α, β and an object u, as follows:

u |= (a, v) iff a(u) = v.

u |= α ∧ β iff u |= α and u |= β.

u |= ¬α iff u 
|= α.

Hence, ||(a, v)|| = {u | a(u) = v};
||α ∧ β|| = ||α|| ∩ ||β||;
||¬α|| = U − ||α||. (6)

Example 4. Consider a MVDT A differing from the DT from the example above
by that, instead of single values, attributes assign sets of values to objects. Sets
of values of attributes are denoted by V with subscripts if needed. A logical
language may be defined in lines with Example 3. In this case however, constant
symbols are elements of A ∪ ℘W . Atomic formulas are pairs of the form (a, V ),
called (generalized) descriptors, where a ∈ A and V ∈ ℘W . A (generalized) tem-
plate is a conjunction of generalized descriptors with distinct attribute symbols.
Satisfiability of formulas is defined as in the preceding example except for atomic
formulas, where for any descriptor (a, V ) and an object u,

u |= (a, V ) iff a(u) ∈ V. (7)

Finally, let us combine the language above with the language described in Ex-
ample 3. Then, one can easily see that u |= (a, v) if and only if u |= (a, {v}) or,
in other words, u |= (a, v) ↔ (a, {v}). Moreover, if V is finite, then u |= (a, V )
if and only if u |= ∨{(a, v) | v ∈ V }. Next, for a finite family X ⊆ ℘W , u |=∨{(a, V ) | V ∈ X} if and only if u |= (a,

⋃
X). Similarly, u |= ∧{(a, V ) | V ∈ X}

if and only if u |= (a,
⋂
X).

The crisp satisfiability and meaning are converted into rough graded forms
by introducing degrees t ∈ [0, 1]:

u |=t α iff κ(Γu, ||α||) ≥ t, and ||α||t = {u | u |=t α}. (8)

u |=t α reads as “α is t-satisfied for u”3, and ||α||t is called the t-meaning of α.
As earlier, α is t-satisfiable if and only if ||α||t 
= ∅. Notice that the t-satisfiability
of a formula α for an object u entirely depends on the crisp satisfiability of α
for objects similar to u.

Example 5 (Continuation of Example 1). Let the RIFs, considered in this ex-
ample and its further extensions, be the standard ones. In this way, we ar-
rive at an AS M = (U, Γ, κ£), where Γ is defined by (3). Consider formulas
α = (a5, bl)∨ (a5, gr)∨ (a5, si), β = (a3, S), and γ = (a4, 1999)∨ . . .∨ (a4, 2003).
Notice that α and γ may be rewritten in line with the MVIS-convention as
(a5, {bl, gr, si}) and (a4, [1999, 2003]), respectively. Formula α may informally
3 Equivalently, α is true of u or holds for u in degree t.
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read as “the colour (of a car) is blue, grey, or silver”, β – “the body type is
sedan”, and γ – “a car was produced in 1999− 2003”. The crisp meaning ||α||
of α consists of all blue, grey, or silver cars from the database, ||β|| is the set of
all cars that their body type is sedan, and ||γ|| is constituted by all cars of U ,
produced in 1999 or later. Thus,

||α|| = {1− 3, 5, 7, 10− 12, 19, 20, 23− 26, 28, 29, 31, 32, 34, 35, 38,
44, 47, 50, 51, 53, 57};

||β|| = {4, 8, 9, 12, 14, 18, 20, 38− 45, 52, 53, 55− 57};
||γ|| = {1, 5− 9, 11− 13, 17, 19− 21, 24− 29, 31, 35, 38}.

In the next step, the degrees of satisfiability of α, β, γ for objects of U are cal-
culated (Tabl. 3). For instance,

||α||0.5 = {1− 3, 5− 7, 9− 13, 18− 20, 22− 29, 31− 36, 38, 44, 47, 50, 51};
||β||0.5 = {8, 20, 38− 46, 52, 53, 55− 57};
||γ||0.5 = {1, 4− 9, 11− 13, 17, 19− 21, 24− 29, 31, 35, 38, 49}.

The 0.5-meaning ||α||0.5 of α contains every such car u ∈ U that at least 50% of
cars similar to u are blue, grey, or silver. For instance, car 10 is in ||α||0.5 since
from six cars similar to the car 10, two cars are silver and one is blue. Next, a
car u is in ||β||0.5 if and only if at least 50% of cars similar to u are sedan. For
instance, all cars similar to the car 39 are sedan and, hence, it belongs to ||β||0.5.
Finally, a car u is in ||γ||0.5 if and only if at least 50% of cars similar to u were
produced in 1999 or later. As a negative example take car 3 produced in 1998.
Only one third of cars similar to 3 satisfies γ, viz., car 29.

Table 3. Degrees of inclusion of Γu in the crisp meanings of α, β, γ.

u 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

κ£(Γu, ||α||) 1 1
2

2
3

4
9

1
2

1
2

1
2

0 1
2

1
2

3
5

5
9

1
2

0 0
κ£(Γu, ||β||) 0 1

4
1
3

1
3

1
3

3
8

3
8

1 3
8

1
3

2
5

1
3

3
8

1
3

1
3

κ£(Γu, ||γ||) 1 0 1
3

5
9

1 7
8

7
8

1 7
8

1
3

1 7
9

3
4

0 0

u 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

κ£(Γu, ||α||) 0 0 2
3

3
5

1 1
4

1
2

1
2

1 3
4

1 1
2

3
5

1 0
κ£(Γu, ||β||) 1

3
0 1

3
0 1 0 1

4
1
4

0 0 0 0 0 0 0

κ£(Γu, ||γ||) 0 1 0 4
5

1 3
4

0 0 1 1 1 5
6

1 1
2

0

u 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

κ£(Γu, ||α||) 1 1 1
2

1
2

1 3
4

0 1 1
3

1
5

0 0 1
5

1
2

1
3

κ£(Γu, ||β||) 0 0 0 0 0 1
4

1
3

1 1 1 2
3

1 1 1
2

2
3

κ£(Γu, ||γ||) 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0

u 46 47 48 49 50 51 52 53 54 55 56 57

κ£(Γu, ||α||) 0 1
2

0 1
4

1 1 0 1
5

0 1
3

0 1
3

κ£(Γu, ||β||) 1
2

1
4

0 0 0 0 1 1 0 5
6

1 1

κ£(Γu, ||γ||) 0 0 0 3
4

0 0 0 0 0 0 0 0
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The crisp satisfiability and meaning as well as their graded forms are com-
bined into one case, where t ∈ T

def= [0, 1] ∪ {c}. The natural ordering of reals,
≤, is extended to a partial ordering on T by assuming c ≤ c. Thus, the set of all
formulas t-satisfied for an object u is denoted by |u|t:

|u|t = {α | u |=t α}. (9)

Assume that the crisp satisfiability of formulas is generalized to sets of for-
mulas along the classical lines, i.e., a set of formulas X is satisfied for u, u |= X ,
if and only if ∀α ∈ X.u |= α. Then, the crisp meaning of X is defined as the set
||X || = {u | u |= X}. Hence, ||X || = ⋂{||α|| | α ∈ X}. As usual, X is satisfiable
if ||X || is non-empty, and it is unsatisfiable in the remaining case. The crisp con-
cept of meaning is refined by introducing degrees t ∈ T1

def= T × [0, 1]. Consider
a RIF κ∗ : (℘FOR)2 �→ [0, 1]. Then,

u |=t X iff κ∗(X, |u|π1t) ≥ π2t, and ||X ||t = {u | u |=t X}. (10)

u |=t X reads as “X is t-satisfied for u”, and ||X ||t is the t-meaning ofX . Next,X
is referred to as t-satisfiable if ||X ||t 
= ∅; otherwise it is t-unsatisfiable. Observe
that ||X ||(c,1) = ||X ||. It is worth noticing that the graded form of satisfiability of
a set of formulas X is parameterized by two, formally independent parameters.
The first one (i.e., π1t) may serve for switching between the basic (crisp) mode
(π1t = c) and the graded mode (π1t ∈ [0, 1]). In the latter case, π1t may be
tuned for achieving a satisfactory degree of satisfiability of single formulas. The
second parameter (i.e., π2t) may be used in the control of the risk of error caused
by the fact of disregarding of some elements of X . For instance, if κ∗ is quasi-
standard and π2t = 0.9, then at least 90% of formulas of X have to be satisfied
in a required sense.

Example 6 (Continuation of Example 1). Consider sets of formulas X = {α, β}
and Y = {γ}, where α, β, γ are as in Example 5. Observe that X is satisfied in
the crisp sense by any sedan from the database which is blue, grey, or silver. The
meaning of Y is the same as the meaning of γ. Thus, we arrive at the following
sets of objects satisfying X,Y , respectively:

||X || = ||α|| ∩ ||β|| = {12, 20, 38, 44, 53, 57}.
||Y || = ||γ|| = {1, 5− 9, 11− 13, 17, 19− 21, 24− 29, 31, 35, 38}.

Now, we compute the graded (0.5, t)-meanings of X,Y for t ∈ [0, 1]. Clearly,
||X ||(0.5,0) = ||Y ||(0.5,0) = U . In the remaining cases, we obtain

||X ||(0.5,t) = ||α||0.5 ∪ ||β||0.5 = {1− 3, 5− 13, 18− 20, 22− 29, 31− 36,
38− 47, 50− 53, 55− 57} if 0 < t ≤ 0.5;

||X ||(0.5,t) = ||α||0.5 ∩ ||β||0.5 = {20, 38, 44} if t > 0.5;
||Y ||(0.5,t) = ||γ||0.5 = {1, 4− 9, 11− 13, 17, 19− 21, 24− 29, 31, 35, 38, 49}.

Thus, if 0 < t ≤ 0.5, then X is satisfied by u in degree (0.5, t) if and only if
u satisfies either α or β, or both formulas in degree 0.5. If t > 0.5, then X is
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(0.5, t)-satisfied by exactly these objects which satisfy both α and β in degree
0.5. The (0.5, t)-satisfiability of Y is the same as the 0.5-satisfiability of γ.

The graded meaning is an example of a soft (or, more precisely, rough) mean-
ing. As a matter of fact, a large number of examples of rough meaning of for-
mulas/sets of formulas may be defined [35]. For instance, a rough meaning of a
formula α may be defined as upp||α||. In this case, α is satisfied for u if and only
if α is c-satisfied for some object similar to u. In the case of sets of formulas,
the meaning of X may be defined, e.g., as upp||X ||t, where t ∈ T1. Then, X is
satisfied for u if and only if X is t-satisfied for some object similar to u. In yet
another example, let the meaning of X be low||X1||∩upp||X2||, where {X1, X2}
is a partition of X . In this case, X is satisfied for u if and only if X1 and X2 are
satisfied in the crisp sense for all objects similar to u and for some object simi-
lar to u, respectively. Consider a general case, where a set of relations of rough
satisfiability of sets of formulas for objects of an AS M is given. Every such
relation, |≈, uniquely determines a rough-meaning mapping ν|≈ : ℘FOR �→ ℘U
such that for any set of formulas X ,

ν|≈X
def= {u | u|≈ X}. (11)

On the other hand, given a rough-meaning mapping ν, the corresponding relation
of rough satisfiability of sets of formulas for objects, |≈ν, may be defined for any
set of formulas X and an object u, by

u|≈ν X
def↔ u ∈ νX. (12)

Observe that
|≈ν|≈= |≈ and ν|≈ν

= ν. (13)

Let |≈ and ν correspond to each other. Then, u|≈ X reads as “X is satisfied for
u in the sense of |≈”, and νX is the meaning of X in the sense of ν4. As usual,
X is satisfiable in the sense of |≈ (or ν) if and only if νX is non-empty.

The notion of entailment in an AS M is closely related to the notion of
meaning of a set of formulas. In the crisp case, we can say along the standard
lines that a set of formulas X entails a set of formulas Y in M, X |= Y , if
and only if satisfaction of X implies satisfaction of Y for every object u, i.e.,
||X || ⊆ ||Y ||. In [12], a graded form of entailment, relativized to an AS, was
introduced. For t = (t1, t2, t3), t1, t2 ∈ T1, and t3 ∈ [0, 1], X t-entails Y in M5,
written X |=t Y , if and only if for sufficiently many objects of U , a sufficient
degree of satisfaction of X implies a sufficient degree of satisfaction of Y , where
sufficiency is determined by t. Formally,

X |=t Y iff κ(||X ||t1 , ||Y ||t2) ≥ t3. (14)

4 We can also say that X is satisfied for u in the sense of ν, and νX is the meaning
of X in the sense of |≈.

5 In other words, X entails Y in degree t.
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Observe that X |=((c,1),(c,1),1) Y if and only if X |= Y . For simplicity, we can
write X |=t β and α |=t Y instead of X |=t {β} and {α} |=t Y , respectively.
The above forms of entailment are merely special cases of a general notion of
entailment in M. Given rough-meaning mappings ν1, ν2 and t ∈ [0, 1], we say
that X t-entails Y in M in the sense of ν1, ν2 if and only if κ(ν1X, ν2Y ) ≥ t.

Example 7 (Continuation of Example 1). Let X,Y be sets of formulas from
Example 6. Observe that X does not entail Y in M. The counterexample is car
44 being a silver sedan produced in 1998. Formally, 44 |= X but 44 
|= Y . Let
t1 ∈ (0, 0.5], t2 ∈ (0, 1], and t3 ∈ [0, 1]. In the graded case, X entails Y in degree
((0.5, t1), (0.5, t2), t3) if t3 ≤ 10/23. That is, for any t3 ≤ 10/23, the fraction of
cars, produced in 1999 or later in degree 0.5, in the class of all cars of U which
are blue, grey, or silver in degree 0.5 and/or their body type is sedan in degree
0.5, is not less than t3. The fact that Y entails X in degree ((0.5, t2), (0.5, t1), t3),
where t3 ≤ 5/6, may be described similarly.

5 Rules, Their Applicability and Validity

In our approach, a rule over L is a pair r = (X,Y ) of finite sets of formulas
of L, where Y is non-empty in addition6. X is called the set of premises (pre-
conditions) and Y – the set of conclusions (postconditions) of r. Rules without
premises are axiomatic. The set of all rules over L is denoted by RUL. Whenever
convenient, the sets of premises and conclusions of r will be denoted by Pr and
Cr, respectively. If X is non-empty as well, the rule r−1 = (Y,X) is the converse
of r. For simplicity, rules (X, {β}) and ({α}, Y ) may be written as (X, β) and
(α, Y ), respectively.

Example 8. Association rules, known also as local dependencies of attributes,
are of interest within the framework of (MV)ISs. Association rules over the
languages from Examples 3, 4 are of the form r = (X,Y ), where X,Y are non-
empty sets of formulas such that AtX ∩AtY = ∅. An association rule r expresses
a local dependency between sets of attributes AtX , AtY in a given (MV)IS. We
call r simple if X,Y are sets of descriptors and for every distinct α, β ∈ X ∪ Y ,
Atα 
= Atβ

7. In a given (MV)DT, an association rule r is called a decision
(classification) rule if AtX consists of condition attributes and AtY consists of
decision attributes only.

Given an AS M and a rough-meaning mapping ν : ℘FOR �→ ℘U , we can
say along the standard lines that r is applicable (resp., applicable to u) if and
only if νPr 
= ∅ (resp., u ∈ νPr) which means satisfiability (satisfiability for u)
of Pr in the sense of ν. In the graded case introduced and studied in [36], where
ν = || · ||t and t ∈ T1, a rule r is said to be t-applicable (resp., t-applicable to u)

6 Suppose that for some natural numbers m, n, X = {α1, . . . , αm} and Y =
{β1, . . . , βn}. r may be written equivalently in the “if – then” form as α1, . . . , αm ⇒
β1, . . . , βn.

7 More generally, one might require
∧

X,
∧

Y be templates.
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if and only if ||Pr||t 
= ∅ (resp., u ∈ ||Pr||t). Let us note that (c, 1)-applicability
coincides with the crisp applicability since || · ||(c,1) = || · ||.

In the crisp case, we say that a rule r is valid (true) in M if and only if r
is applicable and the set of premises Pr entails the set of conclusions Cr, i.e.,
∅ 
= ||Pr || ⊆ ||Cr ||. In other words, r is valid in M if and only if there is at least
one object of U satisfying all premises of r and for every such object u, u satisfies
all conclusions as well. Thus, our notion of crisp validity of rules is obtained from
the classical concept (see Example 9) by excluding the counterintuitive cases,
where inapplicable rules are nevertheless true. If M is known, the reference to
it will be omitted for simplicity. First, observe that an axiomatic rule r is valid
if and only if ||Cr|| = U , i.e., |= Cr. Recall that for any non-empty finite set
of formulas X , ||X || = ||∧X ||. Hence, r and the rule (

∧
Pr,

∧
Cr) may be

used interchangeably as long as the crisp form of validity of rules is regarded
provided that r is non-axiomatic. In the remaining case, validity of r is equivalent
with validity of (∅,∧Cr). In particular, if ¬ (negation) and → (implication),
understood classically, occur in L, Pr = {α}, and Cr = {β}, then r is valid if
and only if ∅ 
= ||α|| ⊆ ||β|| if and only if 
|= ¬α and |= α→ β.

Example 9. In the Hilbert-style logical systems, a rule r is defined as a non-
empty, possibly infinite set of pairs of the form (X, β) called sequents of r. In
the classical propositional logic [37], two kinds of validity of rules are considered:
validity in a proper sense (or, simply, validity) and truth-preservingness8. Thus,
r is valid (true) if and only if for every (X, β) ∈ r, X entails β, i.e., for every truth
assignment f , f |= X implies f |= β. On the other hand, r is truth-preserving
if and only if for every (X, β) ∈ r, |= X implies |= β. Every valid rule is also
truth-preserving, but not vice versa. Modus ponens is a well-known example of a
valid rule. The uniform substitution rule is truth-preserving, yet it is not valid.

From the perspective of approximate reasoning and decision making, the
claim rules be valid in the crisp sense is usually too restrictive. Rules which
are only true to some extent can be valuable as well. Having this motivation
in mind and taking granulation of the universe of M into account, we arrive
at the notion of graded validity with degrees of the form t = (t1, t2, t3), where
t1, t2 ∈ T1 and t3 ∈ [0, 1]. Thus, a rule r is t-valid (true)9 in M if and only if
r is t1-applicable (i.e., ||Pr||t1 
= ∅) and the set of premises Pr t-entails the set
of conclusions Cr in M (i.e., κ(||Pr ||t1 , ||Cr ||t2) ≥ t3). It is worthy to note that
the ((c, 1), (c, 1), 1)-validity and the crisp validity coincide. In a general case, for
t ∈ [0, 1], r is said to be t-valid (true) in the sense of ν1, ν2 as earlier if and only
if r is applicable in the sense of ν1 (i.e., ν1Pr 
= ∅) and Pr t-entails Cr in the
sense of ν1, ν2 (i.e., κ(ν1Pr, ν2Cr) ≥ t).

Example 10 (Continuation of Example 1). Consider an association rule r =
(X,Y ), where the set of premises X and the set of conlusions Y are from Ex-
ample 6. Rule r formally expresses the intuition that the property of cars of
being produced in years 1999 − 2003 is associated with the property of being
8 Pogorzelski distinguishes normal and unfailing rules, respectively.
9 Equivalently, r is valid (true) in degree t.
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blue, grey, or silver and the property of being sedan. Let t2 ∈ (0, 1]. First, ob-
serve that r is both applicable as well as (0.5, t1)-applicable for any t1 ∈ [0, 1]
since ||X ||, ||X ||(0.5,t1) 
= ∅. That is, there is at least one car in our database
which satisfies the premises of r in the crisp sense and at least one car which
satisfies the premises of r in degree (0.5, t1). r is not valid in the crisp sense
because X 
|= Y (see Example 7). In other words, not every blue, grey, or sil-
ver sedan in U was produced in 1999 or later. In the graded case, r is valid in
degree ((0.5, t1), (0.5, t2), t3) if (i) t1 = 0 and t3 ∈ [0, 8/19] or (ii) t1 ∈ (0, 0.5]
and t3 ∈ [0, 10/23], or (iii) t1 ∈ (0.5, 1] and t3 ∈ [0, 2/3]. For the comments on
case (ii), which was presented equivalently in terms of the graded entailment,
see Example 7.

6 Confidence and Coverage of Rules

The confidence (accuracy) and the coverage of a rule are examples of indices
intended to measure the quality of rules in databases, (MV)ISs, and ASs [1–3].
Assume that U is finite, and the crisp satisfiability and the crisp meaning of
formulas are defined as in Example 3 or Example 4. The set of objects satisfying
both the premises and the conclusions of a rule r is called the support of r and
it is denoted by S(r). That is, S(r) = ||Pr|| ∩ ||Cr || = ||Pr ∪Cr ||. The confidence
and the coverage of r, q£1 r and q£2 r, respectively, are defined as follows:

q£1 r
def=

#S(r)
#||Pr|| if ||Pr|| 
= ∅;

q£2 r
def=

#S(r)
#||Cr|| if ||Cr|| 
= ∅. (15)

Let us note that

q£1 r = κ£(||Pr ||, ||Cr||) if ||Pr|| 
= ∅;
q£2 r = κ£(||Cr ||, ||Pr||) if ||Cr|| 
= ∅. (16)

Henceforth, we shall call these forms of confidence and coverage standard. The
notion of standard confidence of a rule may be traced back to �Lukasiewicz [28]
who first used this index to estimate the probability of implicative formulas. The
standard confidence and the standard coverage of rules are commonly known in
the rough-set and KDD communities. Among others, they were used by Tsumoto
to investigate medical diagnostic rules [38]. As argued earlier, a non-axiomatic
rule r may be represented by (

∧
Pr,

∧
Cr). An interesting observation, noted

already in [38], is that the confidence of r may serve as a measure of sufficiency
of the condition

∧
Pr for

∧
Cr, whereas the coverage of r may be a measure

of necessity of the condition
∧
Cr for

∧
Pr. It is worth emphasizing that confi-

dence is defined for applicable rules only and coverage – for rules with satisfiable
sets of conclusions. If for an arbitrary, unnecessarily applicable rule r, the con-
fidence were defined as κ£(||Pr||, ||Cr ||), then inapplicable rules would be given
the greatest degree of confidence. Indeed, if ||Pr|| = ∅, then κ£(||Pr||, ||Cr||) = 1.
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Such an approach would be in accordance with the philosophy of classical logic,
where implication with a false antecedent is true and, hence, inapplicable rules
are valid10. In our opinion, however, such a view is far from being intuitive. As
regarding confidence, q£1 r > 0 is a minimal requirement to be satisfied by a
“valuable” applicable rule r, which means that S(r) 
= ∅. Clearly, the higher the
value q£1 r the more trustworthy is the rule. In the limit case, where q£1 r = 1, r
is simply valid in the sense defined in the preceding section.

Mollestad [39] proposed a framework for discovery of rough-set default rules
in DTs, where the notion of a default rule is based on the concept of standard
confidence.

Example 11. Reasoning by default in the absence of knowledge that a given
case is exceptional is relatively common in real life. In [40], Reiter proposed a
formalism called default logic, based on the notion of a default rule, to model such
forms of commonsense reasoning. Serving as inference rules to derive conclusions
under incomplete and/or uncertain knowledge, default rules have two sets of
preconditions: one of them consists of ordinary premises and the other specifies
exceptions making a given rule inapplicable. Within the rough set framework,
Mollestad introduced another notion of a default rule, yet the general motivation
was similar:

Default reasoning is a framework which is well suited to modelling [. . . ]
common-sense reasoning, making uncertain decisions, i.e. drawing con-
clusions in absence of knowledge. Indeterminism in information systems
lends itself quite naturally to a model using default rules, that capture
the general patterns that exist in the data, at the expense of making an
incorrect decision in certain cases.

A decision rule r is called a default rule with respect to a threshold value 0 <
t ≤ 1 if and only if the standard confidence of r is at least t. Hence, an applicable
rule r is a default rule with respect to t if and only if r is ((c, 1), (c, 1), t)-valid.

Example 12 (Continuation of Example 1). Consider the rule r from Example 10.
The support of r, S(r), consists of all blue, grey, or silver cars of U of type sedan,
produced in 1999 or later. That is, S(r) = ||X || ∩ ||Y || = {12, 20, 38}. It also
holds

κ£(||X ||, ||Y ||) =
1
2

and κ£(||Y ||, ||X ||) =
3
22
.

Hence, the standard confidence of r equals q£1 r = 0.5. In other words, 50% of all
cars of U which are blue, grey, or silver sedan were produced in 1999 or later.
Next, the standard coverage of r equals q£2 r = 3/22, and this is the fraction of
blue, grey, or silver cars of type sedan in the class of all cars of U produced in
1999 or later. Clearly, the standard coverage of r may be viewed as the standard
confidence of the converse rule r−1 = (Y,X).

10 Recall remarks from Sect. 5.
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7 Confidence and Coverage: A Rough Granular Approach

The characteristics q£1 , q£2 estimate the quality of rules by measuring the de-
gree of containment of a set of objects in a set of objects of an AS M. In the
crisp case, objects are treated as individuals, non-connected with one another.
In other words, the semantical structure of the universe U of M, granulated by
Γ , is disregarded. Being motivated by the granular computing ideas [6–8], we
propose to eliminate this apparent drawback by replacing the crisp meanings of
sets of formulas in (16) by their rough counterparts, serving a particular pur-
pose. Moreover, arbitrary (i.e., unnecessarily standard) RIFs may be assumed. In
what follows, we first define general abstract notions of rough confidence, rough
coverage, and rough support of rules. In the next step, we investigate a special,
so-called “graded” case in detail. To start with, let us consider rough-meaning
mappings ν1, ν2 and a RIF κ : (℘U)2 �→ [0, 1] as earlier. We define partial map-
pings of rough confidence and rough coverage, q1, q2 : RUL ◦�→ [0, 1], respectively,
where for any rule r,

q1r
def= κ(ν1Pr, ν2Cr) if ν1Pr 
= ∅;

q2r
def= κ(ν1Cr, ν2Pr) if ν1Cr 
= ∅. (17)

q1r, called the rough confidence (accuracy) of r, is defined for the rules applicable
in the sense of ν1 only. On the other hand, q2r, the rough coverage of r, is defined
only for the rules with sets of conclusions satisfiable in the sense of ν1. Given
t ∈ [0, 1] and a rule r applicable in the sense of ν1, let us observe that q1r ≥ t
if and only if r is t-valid in the sense of ν1, ν2. On the other hand, if r is non-
axiomatic and its set of conclusions is satisfiable in the sense of ν1, then q2r ≥ t
if and only if the converse rule r−1 is t-valid in the sense of ν1, ν2. Finally, the
rough support of r in the sense of ν1, ν2 may be defined as the set

Sν1,ν2r = ν1Pr ∩ ν2Cr. (18)

That is, an object u supports the rule r in the sense of ν1, ν2 if and only if u
satisfies the premises of r in the sense of ν1 and the conclusions of r in the sense
of ν2. It is easy to show that for finite U and κ = κ£,

q1r =
#Sν1,ν2r

#ν1Pr
if ν1Pr 
= ∅;

q2r =
#Sν2,ν1r

#ν1Cr
if ν1Cr 
= ∅. (19)

A particular case of rough confidence, rough coverage, and rough support
is obtained by taking ν1 = || · ||t1 and ν2 = || · ||t2 , where t1, t2 ∈ T1. In this
case, the partial mappings of confidence and coverage are denoted by q1,t, q2,t,
respectively, and the rough support of r is denoted by Str, where t = (t1, t2).
The t-confidence of r, q1,tr, is defined for the t1-applicable rules only, and

q1,tr = κ(||Pr||t1 , ||Cr||t2). (20)
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Table 4. The graded supports Str of r.

t1\t2 {0} (0, 1]

{0} U ||γ||0.5

(0, 0.5] ||α||0.5 ∪ ||β||0.5 (||α||0.5 ∪ ||β||0.5) ∩ ||γ||0.5

(0.5, 1] ||α||0.5 ∩ ||β||0.5 ||α||0.5 ∩ ||β||0.5 ∩ ||γ||0.5

On the other hand, the t-coverage of r, q2,tr, is defined for the rules with t1-
satisfiable sets of conclusions only, and

q2,tr = κ(||Cr||t1 , ||Pr||t2). (21)

An object u t-supports a rule r11, u ∈ Str, if and only if u ∈ ||Pr||t1∩||Cr||t2 , i.e.,
if and only if the set of premises of r is t1-satisfied and the set of conlusions of r is
t2-satisfied for u. It is easy to see that for finite U , κ = κ£, and t = ((c, 1), (c, 1)),
the t-confidence, the t-coverage, and the t-support of r coincide with the standard
confidence, coverage, and support of this rule, respectively.

Example 13 (Continuation of Example 1). For the rule r from Example 10,
t1, t2 ∈ [0, 1], and t = ((0.5, t1), (0.5, t2)), we compute the graded t-supports and
values of the t-confidence and the t-coverage of r12. In Tabl. 4, the t-supports of
r (i.e., the intersections ||X ||(0.5,t1) ∩ ||Y |(0.5,t2)) are given for various values of
t1, t2. In particular, for any t2 > 0,

S((0.5,0.5),(0.5,t2))r = {1, 5− 9, 11− 13, 19, 20, 24− 29, 31, 35, 38};
S((0.5,1),(0.5,t2))r = {20, 38}.

In other words, the ((0.5, 0.5), (0.5, t2))-support of r consists of cars 1, 5−9, 11−
13, 19, 20, 24− 29, 31, 35, 38 being the only cars in our database which are blue,
grey, or silver in degree 0.5 (i.e., for every car u, at least 50% of cars similar
to u are blue, grey, or silver) AND/OR their type is sedan in degree 0.5 (i.e.,
for every car u, the body type is sedan for at least 50% of cars similar to u),
AND they were produced in 1999 or later in degree 0.5 (i.e., for every car u,
at least 50% of cars similar to u are from 1999− 2003). The ((0.5, 1), (0.5, t2))-
support of r consists of cars 20, 38. This case differs from the previous one in
that “AND/OR” is strengthened to “AND”.

Next, we calculate degrees of the standard rough inclusion of ||X ||(0.5,t1) in
||Y ||(0.5,t2), and vice versa (Tabl. 5). Hence, we immediately obtain values of the
graded t-confidence and t-coverage of r, q1,tr and q2,tr, respectively (Tabl. 6).
For example, for t = ((0.5, 0.7), (0.5, 0.8)), q1,tr = 2/3 and q2,tr = 1/12. The first
result means that two third of cars of U being blue, grey, or silver in degree 0.5
and sedan in degree 0.5 were produced in 1999 or later in degree 0.5. The latter
result is understood as “1/12 of cars of U , produced in 1999 or later in degree
0.5, are blue, grey, or silver in degree 0.5 and their type is sedan in degree 0.5”.

11 Equivalently, u supports r in degree t.
12 In connection with our previous remarks on coverage of association rules which are

not decision rules, the notion of graded coverage is of minor importance. We compute
its values for the sake of illustration.
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Table 5. Degrees of inclusion of ||X||(0.5,t1) in ||Y ||(0.5,t2), and vice versa.

κ£(||X||(0.5,t1), ||Y ||(0.5,t2)) κ£(||Y ||(0.5,t2), ||X||(0.5,t1))

t1\t2 {0} (0, 1] {0} (0, 1]

{0} 1 8
19

1 1
(0, 0.5] 1 10

23
46
57

5
6

(0.5, 1] 1 2
3

1
19

1
12

Table 6. Values of q1,tr and q2,tr.

q1,tr q2,tr

t1\t2 {0} (0, 1] {0} (0, 0.5] (0.5, 1]

{0} 1 8
19

1 46
57

1
19

(0, 0.5] 1 10
23

1 5
6

1
12

(0.5, 1] 1 2
3

1 5
6

1
12

If the crisp meaning is classical, then for any non-empty finite set of formulas
X , ||∧X || = ||X ||. In the graded case, it holds ||∧X ||t ⊆ ||X ||(t,1), where
t ∈ T but the converse is not true in general. The situation does not improve
if some 0 ≤ s < 1 is taken instead of 1, either. Thus, rules r and (

∧
Pr,

∧
Cr)

are not interchangeable as regarding the graded confidence and coverage. Below,
we present properties of the rough graded form of confidence. In the sequel,
properties of the rough graded coverage are given as well.

Theorem 1. For any formulas α,β, finite sets of formulas X,Y ,Z, where Y 
= ∅,
a t1-applicable rule r, s = (s1, s2), t = (t1, t2), s, t ∈ T1 × T1, and t3 ∈ [0, 1], we
have:

(a) q1,tr ≥ t3 iff Pr |=t(t3) Cr.

(b) q1,tr > 0 iff ∃s ∈ (0, 1].Pr |=t(s) Cr.

(c) If α |= β, ||α||π1t1 
= ∅, and π2t2 = 0 ∨ (π2t1 > 0 ∧ π1t2 ≤ π1t1),
then q1,t(α, β) = 1.

(d) If α |= β and ||X ||t1 
= ∅, then q1,t(X,α) ≤ q1,t(X, β).
(e) If Cr ⊆ Pr, π2t1 = 1, and π1t2 ≤ π1t1, then q1,tr = 1.
(f) If ||Y ||t1 
= ∅ and t2 � t1, then q1,t(Y, Y ) = 1.
(g) If ||X ||t1 
= ∅, Y ⊆ Z, and π2t2 = 1, then q1,t(X,Z) ≤ q1,t(X,Y ).
(h) If X ⊆ Z, ||Z||t1 
= ∅, and π2t1 = 1, then q1,t(X,Y ) = 1 implies

q1,t(Z, Y ) = 1, and q1,t(X,Y ) = 0 implies q1,t(Z, Y ) = 0.
(i) If π2t2 = 1, then q1,tr = 1 iff ∀α ∈ Cr.q1,t(Pr, α) = 1.
(j) If s1 = t1 and s2 � t2, then q1,tr ≤ q1,sr.

(k) If ||X ||t1 
= ∅, ||X ∩ Z||t1 = U, and π2t1 = 1, then
q1,t(X − Z, Y ) = q1,t(X,Y ).

(l) If ||X ∪ Z||t1 
= ∅, ||Z −X ||t1 = U, and π2t1 = 1, then
q1,t(X ∪ Z, Y ) = q1,t(X,Y ).
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Proof. We prove (b), (d), and (h) only. In case (b), q1,tr > 0 if and only if
κ(||Pr||t1 , ||Cr||t2) > 0 (by the definition of q1,t) if and only if there is s ∈ (0, 1]
such that κ(||Pr||t1 , ||Cr||t2) ≥ s if and only if there is s ∈ (0, 1] such that
Pr |=t(s) Cr (by (14)). For (d) assume (d1) α |= β and (d2) ||X ||t1 
= ∅. By the
latter assumption, (X,α), (X, β) are t1-applicable rules for which

q1,t(X,α) = κ(||X ||t1 , ||{α}||t2) and q1,t(X, β) = κ(||X ||t1 , ||{β}||t2).
If π2t2 = 0, then ||{α}||t2 = ||{β}||t2 = U by (10). Hence,

κ(||X ||t1 , ||{α}||t2) = κ(||X ||t1 , ||{β}||t2) = 1.

In the remaining case, where π2t2 > 0,

||{α}||t2 = ||α||π1t2 and ||{β}||t2 = ||β||π1t2

by (8)–(10). By (d1), ||α|| ⊆ ||β||. Hence, for any object u,

κ(Γu, ||α||) ≤ κ(Γu, ||β||)
in virtue of (A3). As a consequence, ||α||π1t2 ⊆ ||β||π1t2 by (8). In the sequel,

κ(||X ||t1 , ||α||π1t2) ≤ κ(||X ||t1 , ||β||π1t2)

by (A3). Thus, q1,t(X,α) ≤ q1,t(X, β). For (h) assume that (h1) X ⊆ Z,
(h2) ||Z||t1 
= ∅, and (h3) π2t1 = 1. We first show that (h4) ||Z||t1 ⊆ ||X ||t1 .
Let u be an object such that u ∈ ||Z||t1 . By (10) and (h3), Z ⊆ |u|π1t1 . Hence,
X ⊆ |u|π1t1 by (h1). As a consequence, u ∈ ||X ||t1 . By (h4), ||X ||t1 ⊆ ||Y ||t2
implies ||Z||t1 ⊆ ||Y ||t2 , and ||X ||t1 ∩ ||Y ||t2 = ∅ implies ||Z||t1 ∩ ||Y ||t2 = ∅.
By the definition of q1,t and (h2), q1,t(X,Y ) = 1 implies q1,t(Z, Y ) = 1, and
q1,t(X,Y ) = 0 implies q1,t(Z, Y ) = 0. ��
Some comments on the properties above are in order. Recall that t(t3) denotes
the result of concatenation of t with the “tuple” consisting of t3 only. The graded
validity and the graded entailment are closely related to each other, viz., a t1-
applicable rule is t(t3)-valid if and only if the set of premises of the rule t(t3)-
entails the set of its conclusions in virtue of (a). Properties (c), (e), and (f)
provide us with sufficient conditions for the t(1)-validity in some cases of rules.
By (d), the degree of t-confidence of a t1-applicable rule with only one conclusion
α will not decrease after replacing the conclusion by a formula entailed by α.
It follows from (g) that the degree of t-confidence of a t1-applicable rule will
not decrease in case some conlusions are deleted and π2t2 = 1 (which means
that t2 = (s, 1) for some s ∈ T ). Now assume that π2t1 = 1. In virtue of (h),
extending the set of premises of a t1-applicable rule in such a way the resulting
rule be still t1-applicable does not change the degree of t-confidence if this degree
equals 0 or 1. Where π2t2 = 1, it follows from (i) that the sufficient and necessary
condition for the t(1)-validity of a t1-applicable rule r is that every rule, having
the same premises as r and some conclusion of r as the only conclusion, is t(1)-
valid. Taking the partial mapping of t-confidence q1,t as a partial mapping of
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three variables t1, t2, and r, property (j) may read as co-monotonicity of the
graded confidence in the second variable (i.e., t2). For π2t1 = 1, properties
(k), (l) may be concisely read as “the degree of t-confidence of a rule does not
change by removing or, respectively, adding premises which are t1-satisfiable for
all objects”.

Theorem 2. For any formulas α, β, finite sets of formulas X,Y, Z, where Y 
=
∅, a rule r such that Cr is t1-satisfiable, s = (s1, s2), t = (t1, t2), s, t ∈ T1 × T1,
and t3 ∈ [0, 1], it holds that:

(a) q2,tr ≥ t3 iff Cr |=t(t3) Pr.

(b) If Pr, ||Pr||t1 
= ∅, then q1,tr
−1 = q2,tr and q2,tr

−1 = q1,tr.

(c) q2,tr > 0 iff ∃s ∈ (0, 1].Cr |=t(s) Pr.

(d) If Pr ⊆ Cr, π2t1 = 1, and π1t2 ≤ π1t1, then q2,tr = 1.
(e) If ||Y ||t1 
= ∅ and t2 � t1, then q2,t(Y, Y ) = 1.
(f) If ||Z||t1 
= ∅, Y ⊆ Z, and π2t1 = 1, then q2,t(X,Y ) = 1 implies

q2,t(X,Z) = 1, and q2,t(X,Y ) = 0 implies q2,t(X,Z) = 0.
(g) If ||Y ||t1 
= ∅, Z ⊆ X, and π2t2 = 1, then q2,t(X,Y ) ≤ q2,t(Z, Y ).
(h) If π2t2 = 1, then q2,tr = 1 iff ∀α ∈ Pr.q2,t(α,Cr) = 1.
(i) If s1 = t1 and s2 � t2, then q2,tr ≤ q2,sr.

(j) If ||Y ||t1 
= ∅, ||X ∩ Z||t2 = U, and π2t2 = 1, then
q2,t(X − Z, Y ) = q2,t(X,Y ).

(k) If ||Y ||t1 
= ∅, ||Z −X ||t2 = U, and π2t2 = 1, then
q2,t(X ∪ Z, Y ) = q2,t(X,Y ).

Observe that the degree of t-coverage of a rule r with a t1-satisfiable set of
conclusions equals 1 if and only if ||Cr ||t1 ⊆ ||Pr ||t2 . Hence, if Pr = ∅ (i.e., r
is axiomatic), then the t-coverage of r equals 1 since ||∅||t2 = U . The graded
coverage is closely related to the graded entailment, viz., it holds by (a) that
the t-coverage of a rule with a t1-satisfiable set of conclusions is equal or greater
than t3 if and only if the set of conclusions of the rule t(t3)-entails the set of
its premises. In virtue of (b), for a non-axiomatic t1-applicable rule r with a t1-
satisfiable set of conclusions, the t-coverage and the t-confidence coincide with
the t-confidence and the t-coverage of the converse rule, respectively. Except for
decision rules, the roles of premises and conlusions are symmetric in the case of
association rules. Therefore, the notion of coverage of an association rule may
be treated less seriously, and the stress is laid on the concepts of support and
confidence. Properties (d), (e) provide us with sufficient conditions for a rule
be given the greatest degree of t-coverage in some cases. (f), (g) correspond
to Theorem 1(h), (g), respectively. By (h), where π2t2 = 1, the t-coverage of
a rule r with a t1-satisfiable set of conclusions equals 1 if and only if the t-
coverage of every rule with the same conclusions as r and some premise of r as
the only premise equals 1. Like in the case of Theorem 1(j), property (i) may
be expressed as co-monotonicity of q2,t in the second variable if q2,t is viewed
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as a partial mapping of three variables t1, t2, and r. Thanks to (j), (k), the
degree of t-coverage of a rule, where π2t2 = 1, does not change by removing or,
respectively, adding premises which are t2-satisfiable for all objects.

8 Confidence of Association Rules in Databases

Confidence of association rules in databases is related to the topics of our arti-
cle. The problem of mining association rules in large databases was introduced
in [41] for sales transaction databases. Since then, it has attracted quite a lot
of attention among the KDD community (see, e.g., [41–45]). Discovery of inter-
esting association rules is of importance. For instance, association rules may be
used for prediction of consumers’ behaviour since they describe which bundles of
commodies to purchase are associated with one another. An exemplary associa-
tion rule may state that 30% of transactions which purchase sausage, mustard,
and bread also purchase beer and charcoal.

The starting point is a finite non-empty set I of positive literals called items.
Sets of items are referred to as itemsets. The itemsets observed actually are called
transactions. A database D of size n on I consists of n transactions and may
be defined as a pair D = (U, τ), where U = {1, . . . , n} and τ : U �→ ℘I. Thus,
elements of U may be viewed as labels (names) of transactions. An association
rule is an expression of the form X ⇒ Y , where X,Y are non-empty disjoint
itemsets. For any itemset X ⊆ I, the support of X , written s(X), is defined
as the fraction of transactions containing X . By the support of X ⇒ Y we
understand the support of X ∪ Y . Where s(X) > 0, the confidence of X ⇒ Y is
then defined as the ratio s(X ∪ Y )/s(X). The main task concerning association
rules consists in generating rules for which support and confidence are not less
than some threshold values.

Association rules in D, defined above, may be viewed as simple association
rules in an IS, where objects are elements of U . With every item i, we can
associate an attribute ai : U �→ {0, 1} such that for any u ∈ U , ai(u) = 1 if
and only if i ∈ τu (i.e., item i belongs to the transaction τu). Every itemset X
is described by its characteristic function fX : I �→ {0, 1} as usual, i.e., for any
item i, fX(i) = 1 if and only if i ∈ X . In our case, ai(u) = 1 if and only if
fτu(i) = 1. For any itemsets X,Y , it holds that X ⊆ Y if and only if for every
i ∈ I, fX(i) = 1 implies fY (i) = 1. The crisp meaning of X , ||X ||, may be defined
as the set of labels of transactions containing X , i.e., ||X || def= {u ∈ U | X ⊆ τu}.
Observe that ||X || ∩ ||Y || = ||X ∪ Y || and, moreover,

s(X) =
#||X ||
n

and s(X ∪ Y ) =
#(||X || ∩ ||Y ||)

n
. (22)

Where ||X || 
= ∅, the confidence of X ⇒ Y is exactly the standard confidence of
r = (X,Y ) since

s(X ∪ Y )
s(X)

=
#(||X || ∩ ||Y ||)

#||X || . (23)

We can go a step further and define a graded form of meaning of an itemset, e.g.,
by replacing the crisp inclusion by a RIF in the definition of || · ||. Next, rough
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graded forms of support and confidence of association rules may be introduced.
Such soft association rules would take into account granulation of the space of
items I. Clearly, it is important the semantical structure of I be considered since
items are hardly ever independent from one another in real life.

9 Concluding Remarks

The classical notions of validity, confidence, and coverage of rules disregard the
granular structure of ASs. Being motivated by ideas of rough granular comput-
ing, we extend the classical approach to a general rough case. As exemplary
rough validity, confidence, and coverage of rules we take rough graded notions of
validity, confidence, and coverage which we define and investigate in detail. From
the technical point of view, the modification of the classical notions, resulting
in the graded versions, consists in replacement of the crisp meaning of a set of
formulas by its rough graded counterpart and in dropping the assumption the
RIF be standard. As a consequence, granulation of the universe of an AS is more
seriously taken into account in the definitions of the notions mentioned above.

In the future, the aim will be at practical applications of the graded and
other rough forms of confidence and coverage in estimation of the quality of
rules. Apart from the typical tasks like computation of association rules (and,
in particular, decision rules), possibly given some premises or conclusions and
rough forms of support, confidence, and coverage satisfying required conditions,
a rough classifier will be constructed, where the quality of classification rules will
be determined in terms of the rough support, confidence, and coverage of rules.

In this paper, the relationship between our approach and the fuzzy one has
not been explored, and this may be another direction for the future research.
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Abstract. Most substations today contain a large number of Intelligent
Electronic Devices (IEDs), each of which captures and stores locally mea-
sured analogue signals, and monitors the operating status of plant items.
A key issue for substation data analysis is the adequacy of our knowl-
edge available to describe certain concepts of power system states. It may
happen sometimes that these concepts cannot be classified crisply based
on the data/information collected in a substation. The paper therefore
describes a relatively new theory based on rough sets to overcome the
problem of overwhelming events received at a substation that cannot be
crisply defined and for detecting superfluous, conflicting, irrelevant and
unnecessary data generated by microprocessor IEDs. It identifies the
most significant and meaningful data patterns and presents this concise
information to a network or regionally based analysis system for decision
support. The operators or engineers can make use of the summary of re-
port to operate and maintain the power system within an appropriate
time. The analysis is based on time-dependent event datasets generated
from a PSCAD/EMTDC simulation. A 132/11 kV substation network
has been simulated and various tests have been performed with a realistic
number of variables being logged to evaluate the algorithms.

1 Introduction

Advances in communication and microprocessor technologies have largely con-
tributed to a significant increase in real time data and information that are
now readily collected at various points in the network. An important require-
ment to fulfill our future information needs is our ability to extract knowledge
from intelligent electronic devices (IEDs). Lacking this ability could lead to an
ever-widening gap between what we understand and what we think we should
understand. A better way to manage information is necessary in order to help
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operators utilise the available data to monitor the status of the power system.
An overabundance of data may cause a serious inconvenience to the operators at
the critical moment. By improving how we retrieve information, our information
overload and anxiety will be reduced and our confidence in making a correct
decision increases. The motto of data analysis is to allow the data to speak for
themselves. It is also very essential for us to understand how a river changes
over time than to memorise facts about how and when it changed. The more
we understand the process, the richer our learning experience would be and the
more we find new ways to address our problem.

2 Intelligent Electronic Devices

An IED is a device incorporating one or more processors that has the capability
to receive or send data/control from or to an external source. With its enhanced
microprocessor and communication technology, this new unit not only provides
a self and external circuit monitoring, real-time synchronisation for event re-
porting, but also increases the possibilities for remote and local control and data
acquisition for use in network analysis [1]. In addition to the metering and status
information, it also provides current and voltage phasors [2]. IEDs can be re-
garded as the eyes and ears of any remote power management systems and how
they see or hear reality will have a significant impact on the system reliability,
effectiveness and cost of a solution. Many utilities are discovering significant eco-
nomic benefits through the use of IEDs, consequently they are rapidly becoming
the mainstream product [3]. Figure 1 depicts the structure of a single package
IED with all the functions associated with a conventional relaying scheme.

Fig. 1. Functional overview of an Intelligent Electronic Device.
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3 Data Impact of IEDs

The growth in the number of IEDs has resulted a significant increase in the
volume of substation data. This data is usually primitive and stored in a digital
form. It has to be processed and analysed before any user is able to utilise the
benefit of it.

Figure 2 shows a conventional protection system in which the data and con-
trol signal from the relay are sent via an RTU1 to the SCADA2 system. Extensive
and costly cables may be required between various bays in the substation and
the control room.

Fig. 2. Conventional protection system.

Figure 3 shows a modern protection system utilising an IED relay. The con-
nection diagrams of Figure 2 and 3 may look similar except that the intercon-
nection wiring between transducers and meters is no longer required for the IED
relay. The data and control signals from the IED relay are sent directly to the
SCADA system via the high-speed dedicated communication network. The vol-
ume of data increases drastically when an IED is used as the control element
and data source.

Table 1 presents a comparison of the data quantities between a conventional
RTU and an IED in a 10-feeder substation. Considering real time values only and
not including data from incoming lines or transformers, it can be seen that the
SCADA system and substation data is a factor of 10 larger when IEDs are used

1 Remote Terminal Unit (RTU) is a device installed at a remote location that collects
data, processes and codes the data into a format that is transmittable and transmits
the data back to a central or master station.

2 Supervisory Control and Data Acquisition (SCADA) is the system that collects data
from IEDs in the network and utilises it for control and monitoring. It also provides
a remote access to substation data and devices to the control centre.



Knowledge Extraction from Intelligent Electronic Devices 85

Fig. 3. Modern protection system.

Table 1. Comparison of RTU basis and IED basis.

Quantities RTU IED

Analogue 53 430
Status Quantities 20 270
Control Quantities 20 180

as a data source [4]. With the wealth of information that an IED can produce,
engineers are no longer facing the lack of data problem [5].

In each IED, there are two types of data namely, operational and non-
operational [6]. Operational data is instantaneous values of volts, amps, MW,
MVAR and etc. It is typically conveyed to the SCADA system using the com-
munications protocol. This operational data path from the substation to the
SCADA system is continuous. Non-operational data, on the other hand, is the
IED data that is used for analysis and historical archiving, and is not in a point
format as operational data e.g. fault event logs, metering records and oscillogra-
phy. This data is more difficult to extract from the IEDs since the IED vendor’s
proprietary ASCII commands are required for extraction of this non-operational
data [7]. Operational data is critical for SCADA dispatchers to effectively mon-
itor and control the utility’s power system. However, the non-operational data
has also tremendous value to the utility [8]. In this substation data analysis, only
the operational data from IEDs has been considered. The proposed algorithm
can however identify the certain IED relays that carry the crucial information.
This not only reduces our attention span, but also saves our time in selecting
which IEDs may contain the non-operational data we need for detailed post-fault
analysis.



86 Ching-Lai Hor and Peter A. Crossley

4 Future Information Needs

Figure 4 shows a future digital control system (DCS) integrated with an Infor-
mation Management Unit (IMU) to deliver useful information to appropriate
manpower groups in a utility. Each group uses the monitored data for a different
purpose and consequently has varied information requirements that need to be
satisfied.

Fig. 4. Future DCS with Information Management Unit(IMU).

Our advances in communication and microprocessor technologies have largely
contributed to a significant increase in real time data and information that are
now readily collected at various points in the network. Therefore, an impor-
tant requirement to fulfill our future information needs is the ability to extract
knowledge from intelligent electronic devices (IEDs).

5 Discretisation

The power system operational state changes over time as the event evolves.
It is thus important to determine the condition of the system based on the
real time data collected from IEDs. This normally requires manipulating and
processing a large volume of data/information before the status of the system
could be verified. Therefore, to extract useful information, these numerical and
continuous data values must be discretised into a range of thresholds [9].

The discretisation determines how coarsely we want to view the raw data.
It can be formulated as P : D → C assigning a class c ∈ C (c is the member of
class C) to each value d ∈ D (d is the member of attribute D) in the domain of the
attribute being discretised. The classification engine effectively summarises key
information about the power system condition and classifies the operational state
in the decision attribute into four transition states: normal, alert, emergency and
safe. Figure 5 shows the operational state of a power system and changing of
operation points. At the operational point A, the system continues at the normal
state whereas, at the operational point B, the system moves from the normal
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Fig. 5. The changing of operational points in power system.

to an alert/abnormal state [10]. The operational point C however indicates that
the system, which is already at the alert condition transits to an emergency
state. The operational point at B’ may or may not be considered in an unsafe
condition. C’ is definitely in an unsafe operation. Both operational points A and
D are in a safe operation.

6 Limit Supervision and Deadband Suppression

Sometimes the real time data received may oscillate a lot. If this happens close
to the threshold, it will lead to a flood of events. The problem can be reduced
by defining a hysteresis values represented as a dotted line and shaded area in
Figure 6.

If the current threshold is exceeded, the classification engine will define the
state as abnormal or emergency depending on the value of current and voltage
drop on that feeder. This is because the magnitude of high current will justify
different levels of instability and damage to the system. The state is classified as
a normal condition if the value of data is lower than the hysteresis value below
the threshold limit. If the feeder is taken out of operation, the current becomes
zero and is below any low current limit. The engine will mistakenly classify the
state as abnormal even though the system is still operating normally or safely.
To overcome this problem in the classification, a zero dead band suppression has
been used to exempt the value from the abnormal zone if the range is around
zero [11].

The concept of hysteresis and zero deadband can also be applied in the volt-
age supervision. If the voltage sag threshold is exceeded, the classification engine
will classify the state as abnormal. The state is only classified as a normal con-
dition if the value of data is higher than the hysteresis value above the threshold
limit. The system voltage is normally kept within a narrow range around the
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Fig. 6. Measurand limit supervision.

nominal value (90%). A zero dead band suppression is used to avoid any mis-
takes made by the classification engine when the feeder is taken out of operation
and the voltage value becomes zero and is below any low voltage limit.

The normal operating range for the voltage in a power system is typically
from 0.90pu to 1.10pu of the nominal value. Therefore, the threshold for each
voltage and current signals are set as follows: –

1. The thresholds of the nominal voltage:
– Low (L) ≤ 0.90pu.

The voltage must drop to or below 0.90pu before it is classified as Low(L).
– 0.90pu < Normal (N) < 1.10pu

The hysteresis value M is set at 0.91pu and 1.05pu (≈1%). This means
that if the voltage recovers from a sag, it must exceed at least 0.91pu
before it can be safely classified as Normal(N). If the voltage drops from
its high value, it must be below 1.05pu before it can be classified as
Normal (N).

– High (H) ≥ 1.10pu.
The voltage must exceed or at least must be equal to 1.10pu before it is
classified as High(H).

2. The thresholds of the nominal current:
– Low (L) ≤ 0.50pu.

The current must drop to or at least must be below 0.5pu before it is
classified as Low(L).

– 0.5pu < Normal (N) < 1.50pu
The hysteresis value M is set at 0.6pu and 1.40pu (≈10%). This means
that if the current recovers from its low value, it must exceed at least
0.6pu before it can be classified as Normal (N). If the current drops from
its high value, it must be below 1.40pu before it can be classified as
Normal (N).
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– High (H) ≥ 1.50pu.
The current must exceed or at least must be equal to 1.50pu before it is
classified as High(H).

As the current varies significantly more than the voltage, a wider range of
threshold is used. The nominal current range is considered to be between 0.50pu
and 1.50pu. The pattern depends on how the threshold value has been set. If the
current threshold is set reasonably high, then it may become less susceptible to
the changes. This means that the voltage would respond earlier to a disturbance
than current.

Figure 7 demonstrates how these continuous values are transformed into dis-
crete data. Let x1 = (0.96, 5.10) and x2 = (0.88, 34.14).

The information from all relays are gathered in a common database and cat-
egorised into four different states that characterise the operational condition of
the system seen by the relays. Normal (N) indicates that all the constraints and
loads are satisfied, the voltages are close to the nominal values and the currents
are either close to the nominal or low values. Alert (A) indicates one or more
currents are high and the voltage is normal (≈ nominal), or the currents are nor-
mal (≈ nominal or low) but one or more voltages are high or low. Emergency (E)
indicates at least two physical operating limits are violated (e.g. under voltages
and over currents). Safe (S) is when the remaining partial system is operating in
a normal state, but one or more loads are not satisfied – partial blackout after
a breaker opened [12].

7 Types of Extraction

In this paper, an unsupervised extraction and a supervised extraction techniques
based on rough sets are discussed. The former discovers patterns within the
data without any pre-defined classes to improve the form in which the data and
information are presented to network operators. It is self-organising and can
perform data clustering to discover new relations between data. Such system is

Fig. 7. Transform a continuous data into a range of intervals.



90 Ching-Lai Hor and Peter A. Crossley

applied to an area in which the (event) classification is difficult to perform or
simply unknown to human beings. It is useful where the relations governing a
domain are yet to be discovered [13]. The later however relies on a pre-classified
dataset (by expert) for training the algorithm. The dataset provides the system
with a class of decisions and the number of time stamped events for each decision
class. It is useful when the systems are intended to perform tasks that have
previously been performed or encountered by human operators with a certain
degree of success. This type of extraction suits most power system applications
today particularly in the control centre because an outcome of state classification
in the power system is usually known.

8 Rough Set Approach

Rough set approach hinges on two approximation concepts; lower and upper
approximations, which defines a crisp and vague manner in the sets. If any
concept of the universe can be formed as a union of some elementary sets, it
is referred as crisp, otherwise it is vague. The fundamentals of rough sets are
omitted as the knowledge is already available in the literatures found in the
references: [14][15][16].

Let X denotes the subset of elements of the universe U (X ⊆ U), attribute
B⊆A and [x]B as the set of all objects x that are the equivalence class of the
attribute B indiscernible with X. The lower approximation of X in B can be
represented in Equation 1 as follows: –

B∗X = {X ∈ U, [x]B ∈ U/IND(B) : [x]B ⊆ X} (1)

where [x]B ⊆ X is the lower approximation of X in B.
The upper approximation of X in B can be represented in Equation 2 as

follows: –
B∗X = {x ∈ U, [x]B ∈ U/IND(B) : [x]B ∩X 
= ∅} (2)

where [x]B ∩X 
= ∅ means that some upper approximations of X are the element
of X.

The upper approximation always includes the lower approximation. The dif-
ference of the upper and lower approximation, BNB(X) = B∗X− B∗X is a B-
Boundary of X in U. Set X is crisply definable in U with respect to B, if and
only if BNB(X) = 0. Set X is indefinable or rough in U with respect to B, if
and only if B∗X 
= B∗X when BNB(X) 
= 0. The lower and upper approxima-
tions further define three regions: positive region, POSB(X) = B∗X, negative re-
gion, NEGB(X) = U− B∗X and boundary region, BNB(X) = B∗X− B∗X. Figure
8 displays the notion of set approximations graphically.

8.1 Reducts and Core

Reducts and core are the two major concepts in Rough Set Theory used in the
knowledge base reduction. A reduct is defined as a minimal set of attributes
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Fig. 8. Schematic view of the upper and lower approximations.

that preserves the indiscernibility relation computed on the basis of the full
set of attributes. The core is defined as the set of relations that appears in all
reducts, i.e. the set of all the indispensable relations required to characterise the
equivalence relation [17].

9 Discernibility Matrix

The concept of a discernibility matrix is important when it comes to compute
reducts and core. This matrix is a symmetric n×n where n denotes the number
of elementary sets [18].

9.1 Information System

Let an information system be an ordered pair, A = (U,A). Every subset of at-
tributes B ⊆ A defines a discernibility matrix M(B). Each entry m(xi, xj) con-
sists of the set of attributes that can be used to discern between objects xi and
xj where {xi, xj} ∈ U.

M (B) = {mB (xi, xj)}n×n

mB (xi, xj) = {b ∈ B : b (xi) 
= b (xj)} (3)

where i, j = {1, ..., n} and n = |U/IND (B)|

If the b(xi) and b(xj) are symmetric and reflexive for all xi and xj , then
mB (xi, xj) = mB (xj , xi) and that mB (xi, xi) = ∅. This means that only half
the matrix entries is necessary for computing when constructing M(B) [18].

9.2 Decision System

A single decision attribute, d is used to represent a n-size decision attribute set
D, i.e. D = {d}. Assume the attribute B ⊆ A and the decision table is represented
as D = (U,B ∪ {d}). The discernibility matrix of a decision system, Md (B) can
be defined as: –
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Md(B) = {mB(xi, xj)}n×n ,

md
B(xi, xj)

⎧⎨
⎩
∅ if ∀ d ∈ D [d(xi) = d(xj)]
{r ∈ B : r(xi) 
= r(xj)}

if ∃d ∈ D [d(xi) 
= d(xj)]

(4)

where i, j = {1, ..., n} and n = |U/IND (B)|. The notion r (x) denotes the set of
possible decisions for a given class x ∈ U/IND (B). The entry md

B (xi, xj) in the
discernibility matrix is the set of all (condition) attributes from B that classify
objects xi and xj into different classes in U/IND(B) if r (xi) 
= r (xj). Empty set
∅ denotes that this case does not need to be considered. All disjuncts of minimal
disjunctive form of this function define the reducts of B [16].

10 Discernibility Functions

A discernibility function f (B) is a boolean function that expresses how an object
(or a set of objects) can be discerned from a certain subset of the full universe
of objects [19]. A boolean expression normally consists of Boolean variables and
constants, linked by disjunction (

∨
) operators.

Let b̄ be a unique Boolean function of m Boolean variables
{
b̄1, b̄2, ......, b̄m

}
associated with the corresponding attribute b = {b1, b2, ......, bm} ∈ B. Each ele-
ment mB(xi,xj) of the discernibility matrix corresponds a boolean set m̄B(xi,xj)
=
{
b̄ : b ∈ mB (xi, xj)

}
. For a set of Boolean variables, S̄ =

{
b̄1, b̄2, ......, b̄m

}
,

then
∨
S̄ =

{
b̄1 ∨ b̄2 ∨ ..... ∨ b̄m

}
[18].

10.1 Information System

Given an information system A = (U, A) for a set of attributes B ⊆ A. Let
m = | B | and n = |U/IND (B) |. The discernibility function of attribute B is a
Boolean function of m variables: –

f (B) =
∧{∨

m̄B (xi, xj) : 1 ≤ j ≤ i ≤ n
}

(5)

∨
m̄B (xi, xj) is the disjunction taken over the set of Boolean variables m̄B(xi,xj)

corresponding to the discernibility matrix element mB (xi, xj) which is not equal
to ∅.

10.2 Decision System

Given a decision system D = (U,B ∪ {d}), the discernibility function of D is: –

fd
B (xi) =

∧{∨
m̄d

B (xi, xj) : 1 ≤ j ≤ i ≤ n
}

(6)

where n = |U/IND (B)|, and
∨
m̄d

B (xi, xj) is the disjunction taken over the
set of Boolean variables m̄d

B (xi, xj) corresponding to the discernibility matrix
md

B (xi, xj) which is not equal to ∅ [16].
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11 Knowledge Representation Systems

11.1 Protection Data

The substation data consists of both the protection data given in Table 2 and
the measurement data given in Table 3 recorded by a number of intelligent
electronic devices installed in the network. Some situations in the event dataset
may occur in more than one decision class can specify. For instance, a new
event might occur at the same time as an existing event and consequently the
decision classes overlap [20]. To overcome such problem and prevent the loss
of information, the dataset is split into two different tables. The measurement
data table is reduced using rough sets and the final result is merged with the
protection data to produce a summary of the events.

Table 2 shows that the IED1 relay has operated whilst the other relays remain
stable. The auto-recloser (AR) has been disabled to simplify the example. The
IED1 relay picked up the fault at 1.004s, tripped at 1.937s and the breaker BRK1
opened at 2.007s.

11.2 Information and Decision System

Table 3 can be regarded as a decision system. It consists of a time series data
collected from the simulation and a set of pre-classified decision values. The

Table 2. Protection status of IED1.

Time IED1

t/s Pickup Trip AR 52A 52B

0.139 0 0 0 0 1
1.004 1 0 0 0 1
1.937 1 1 0 0 1
2.007 1 1 0 1 0
2.010 0 0 0 1 0

IED: IED relay, Pickup: pickup time, Trip: trip time, 52A and 52B: Circuit breaker
auxiliary contacts in which 52A and 52B: ‘01’ close; ‘10’ open.

Table 3. Decision system.

Time IED1 IED2 IED3 IED4 Decision

t/s V1 I1 V2 I2 V3 I3 V4 I4 d

0.139 N N N N N N N N N
1.003 N H N N N N N N A
1.004 L H N N N N N H E
1.005 L H N L N H L H E
1.006 L H L L L H L H E
2.007 L N L L L H L H E
2.011 L N L N L H L N E
2.012 L L N N N N N N S
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information system is identical to the decision system except that it does not
include the decision attribute d . The table presents a simple dataset, which is
composed of a set of discrete voltages and currents over a time period of 0.139s
to 2.012s. The voltage and current are used because they are the fundamental
components in the power systems. U is the universe of events and B is the set
of condition attributes {IED1, IED2, IED3, IED4}.

12 Experiment

Real time data is the main asset for a substation control system but often very
difficult to obtain for research purposes. Because of the complexity of a power
network, it is almost impossible to anticipate or provide an infinite case of prob-
lems to investigate every scenario in a substation. To partially solve the problems,
primary and secondary system of a 132/11kV substation given in Figure 9 and
10 have been modelled using PSCAD/EMTDC [21].

Observing the above set of events in Table 3, we may easily identify that
the problem is actually within the supervised region of the IED1 relay. However,
given that there are n number of events and m number of relays, this may become
impractical in an actual problem. Additionally, the dataset is given in a perfect
pattern, which may not be always the case with the real time data received from
the control system. The irregularity in data pattern makes it much harder for a
human to handle a complex situation. The following example utilises both the
information system and decision system to extract knowledge from a substation.
The data were collected from the 132/11kV substation model with a single bus
arrangement given in Figure 9.

12.1 Supervised Extraction

Table 4 shows the discernibility matrix for Table 3. Due to the lack of space, the
columns of the discernibility matrix in the table have been simplified such that
IED1 is given as “1”, IED2 as “2” and etc. The discernibility function is calcu-
lated using an absorption law in each column of Table 4 shown in Equation 6.

For better interpretation, the Boolean function attains the form ‘+’ for the
operator of disjunction (

∨
) and ‘·’ for the operator of conjunction (

∧
). The final

discernibility function is: –

f(B) = f(0.139) · f(1.003) · f(1.004) · f(1.005) · ... · f(2.011)
= 1 · 1 · (1 + 4) · (1 + 2 + 3 + 4) · ... · (1 + 2 + 3 + 4)
= 1 ⇒ {IED1}

The example shows that the IED1 relay is the main source of information to
justify the outcomes of interest. Table 3 can thus be reduced to Table 5.

Table 2 showed that the IED1 relay tripped at 1.937s and reset at 2.010s
after the current has dropped below the threshold value. To generate a concise
report that can assist the operators in their decision-making, the information
given in Table 5 may be excessive for inclusion in the report. Thus, we have to
condense the table. The solution is to retain the change of state information as
shown in Table 6 since it provides useful information.
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Fig. 9. 132/11kV substation model with a single bus arrangement.

Table 4. Discernibility matrix for the decision system.

Time 0.139 1.003 1.004 1.005 1.006 2.007 2.011 2.012

0.139 ∅
1.003 1 ∅
1.004 1,4 1,4 ∅
1.005 1,2,3,4 1,2,3,4 ∅ ∅
1.006 1,2,3,4 1,2,3,4 ∅ ∅ ∅
2.007 1,2,3,4 1,2,3,4 ∅ ∅ ∅ ∅
2.011 1,2,3,4 1,2,3,4 ∅ ∅ ∅ ∅ ∅
2.012 1 1 1,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 ∅

Notation 1,2,3,4: {IED1, IED2, IED3, IED4} and 1,4: {IED1, IED4}

The load feeder L1 experienced both a high current and voltage sag at ap-
proximately 1.003s. This indicates that a fault has occurred in that region, which
can be further confirmed by the protection data from that region. Combining
the Table 2 with the Table 6, various reports can be produced for respective op-
erators, protection engineers and maintenance engineers. The reports are used
mainly as an example. The format presented may not reflect the actual substa-
tion reports used in the power industries. The change of state within 5 ms should
be combined as one event. For instance, the high current occurred at 1.003s and
the voltage sag at 1.004s should be grouped as one event.
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Table 5. Reduced decision table.

Time IED1 Decision

t/s V1 I1 d

0.139 N N N
1.003 N H A
1.004 L H E
2.007 L N E
2.012 L L S

Table 6. Change of states.

Time IED1 Decision

t/s V1 I1 d

0.139 N N N
1.003 • H A
1.004 L • E
2.007 • N E
2.012 • L S

Report for Operators
Location
Station name: Manchester
Station number: M111
Event date: 14th August 2003
Event time: 9:20:12pm
Event number: 001

Description
Load Feeder L1: voltage sag, current high ≈ 1.003s
IED1: tripped at 1.937s
Breaker status: BRK1 (2.007s – open)
Disconnection: Load Feeder L1
Faulted section: Load Feeder L1
System restored after 2.012s

Report for Protection Engineers
Location
Station name: Manchester
Station number: M111
Event date: 14th August 2003
Event time: 9:20:12pm
Event number: 001

Description
Load Feeder L1: voltage sag, current high ≈ 1.003s
IED1: picked up at 1.004s, tripped at 1.937s, Reset at 2.010s
Disconnection: Load Feeder L1
System restored after 2.012s
Faulted section: Load Feeder L1
Fault inception: 1.0s
Fault duration: 1.007s
Fault type: single phase to earth fault (A-G), permanent
Maximum fault magnitude: 17.78kA
Breaker status: BRK1 (2.007s – open)
Relay condition: healthy
Breaker condition: healthy
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Report for Maintenance Engineers
Location
Station name: Manchester
Station number: M111
Event date: 14th August 2003
Event time: 9:20:12pm
Event number: 001

Description
Disconnection: Load Feeder L1
Faulted section: Load Feeder L1
Fault inception: 1.0s
Fault duration: 1.007s
Fault type: single phase to earth fault (A-G), permanent
Breaker status: BRK1 (2.007s – open)
Relay condition: healthy
Breaker condition: healthy

The relay trip duration = 2.007 – 1.004 = 1.003s.

12.2 Unsupervised Extraction

Table 7 shows the discernibility matrix for the information system in Table 3
(without the decision attribute d). Due to the lack of space, the columns of the
discernibility matrix in the table have been simplified such that IED1 is given
as “1”, IED2 as “2” and etc. The discernibility function is calculated using an
absorption law in each column of Table 7 using Equation 5.

Table 7 shows how the result can be computed in the discernibility matrix.
The final discernibility function obtained is:

f(B) = f(0.139) · f(1.003) · f(1.004) · ... · f(2.011)
= (1) · (1) · ((1 + 4) · (2 + 3 + 4)) · ... · (1 + 2 + 3 + 4)
= 1 · (2 + 3) · (2 + 4)
= 1 · (2 + (3 · 4))

Table 7. Discernibility matrix for the information system.

Time 0.139 1.003 1.004 1.005 1.006 2.007 2.011 2.012

0.139 ∅
1.003 1 ∅
1.004 1,4 1,4 ∅
1.005 1,2,3,4 1,2,3,4 2,3,4 ∅
1.006 1,2,3,4 1,2,3,4 2,3,4 2,3 ∅
2.007 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3 1 ∅
2.011 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,4 2,4 ∅

Notation 1,2,3,4: {IED1, IED2, IED3, IED4} and 1,4: {IED1, IED4}
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The example shows that the relays {IED1,IED2} or {IED1,IED3,IED4} are
identified as the main source of information. We chose the solution of {IED1,IED2}
as it contains the least number of IEDs, which appeared in Table 8 as the min-
imal set of relations or reducts. Like the previous case, to generate a concise
report for a decision support, the information given in Table 8 have to be con-
densed. This can be done by retaining the change of state information as shown
in Table 9.

Table 8. Reduced information system.

Time IED1 IED2

t/s V1 I1 V2 I2

0.139 N N N N
1.003 N H N N
1.004 L H N N
1.005 L H N L
1.006 L H L L
2.007 L N L L
2.011 L N L N
2.012 L L N N

Table 9. Change of states.

Time IED1 IED2

t/s V1 I1 V2 I2

0.139 N N N N
1.003 • H • •
1.004 L • • •
1.005 • • • L
1.006 • • L •
2.007 • N • •
2.011 • • • N
2.012 • L N •

The load feeder L1 experienced both a high current and voltage sag at ap-
proximately 1.003s. This indicates that a fault has occurred in that region which
can be confirmed also by the feeder L2 data and the protection data from that
region. Combining the Table 2 with the Table 9, various reports can be produced
for respective operators, protection engineers and maintenance engineers.

Report for Operators
Location
Station name: Manchester
Station number: M111
Event date: 14th August 2003
Event time: 9:20:12pm
Event number: 001

Description
Load Feeder L1: voltage sag, current high ≈ 1.003s
Load Feeder L2: voltage sag, current low ≈ 1.005s
IED1: tripped at 1.937s
Breaker status: BRK1 (2.007s – open)
Disconnection: Load Feeder L1
Faulted section: Load Feeder L1
System restored after 2.012s
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Report for Protection Engineers
Location
Station name: Manchester
Station number: M111
Event date: 14th August 2003
Event time: 9:20:12pm
Event number: 001

Description
Load Feeder L1: voltage sag, current high ≈ 1.003s
Load Feeder L2: voltage sag, current low ≈ 1.005s
IED1: picked up at 1.004s, tripped at 1.937s, Reset at 2.010s
Disconnection: Load Feeder L1
System restored after 2.012s
Faulted section: Load Feeder L1
Fault inception: 1.0s
Fault duration: 1.007s
Fault type: single phase to earth fault (A-G), permanent
Maximum fault magnitude: 17.78kA
Breaker status: BRK1 (2.007s – open)
Relay condition: healthy
Breaker condition: healthy

Report for Maintenance Engineers
Location
Station name: Manchester
Station number: M111
Event date: 14th August 2003
Event time: 9:20:12pm
Event number: 001

Description
Disconnection: Load Feeder L1
Faulted section: Load Feeder L1
Fault inception: 1.0s
Fault duration: 1.007s
Fault type: single phase to earth fault (A-G), permanent
Breaker status: BRK1 (2.007s – open)
Relay condition: healthy
Breaker condition: healthy

The IED1, IED3 and IED4 indicate that the fault is at the load feeder L1
because the IED1 has tripped. The upstream feeders 3 and 4 also experience
a high current similar to the faulty feeder L1. Alternatively, since there are
only two load feeders in the substation (see Figure 10), if IED1 relay detects a
fault, the feeder L2 shall experience a voltage sag and current drop. Therefore,
IED1 and IED2 tell us also that the fault is at the feeder L1. This means that the
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Fig. 10. 132/11kV substation model with a double bus arrangement.

reducts {IED1, IED2} and {IED1, IED3, IED4} both share the same information
and one is considered redundant. {IED1, IED2} is chosen since it contains the
least number of IEDs. This reduces the attention span because the operators
can only concentrate on the IED1 and IED2 rather than all the IEDs to decide
which one is useful for detailed analysis.

13 Substation Network Modelling

For further verification, a larger and more realistic network shown in Figure 10
has been developed using PSCAD/EMTDC [21]. A selection of fault scenar-
ios were applied to the network and the operating response of the relays, cir-
cuit breakers, voltage and current sensors were collected and stored in an event
database. The network model is protected by several types of relay models [22],
each of which includes one or more of the protection functions in Table 10. The
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Table 10. List of relay models in the 132/11kV double bus substation.

IED Plate numbers 1,2,3,4 5,6 7,8 9,10 11,12

Instantaneous Overcurrent, 50
√ √ √ × ×

Instantaneous Earth Fault, 50N
√ √ √ × ×

Time delayed Overcurrent, 51
√ √ √ × ×

Time delayed Earth Fault, 51N
√ √ √ × ×

Balanced Earth Fault, 51G × × √ × ×
Standby Earth Fault, 51NB × × × × √
Directional Phase Overcurrent, 67 × √ × × ×
Directional Earth Fault, 67N × √ × × ×
Auto-recloser, 79

√ × × × ×
Restricted Earth Fault, 87N × × × × √
Transformer Differential, 87T × × × √ ×

√
: available, ×: not available

Table 11. Protection trip status of IED6 and IED8.

Time IED6 IED8

t/s 67 50/51 52A 52B 50/51 52A 52B

0.139 0 0 0 1 0 0 1
1.039 1 1 0 1 0 0 1
1.119 1 1 1 0 0 1 0
1.133 0 1 1 0 0 1 0
1.139 0 0 1 0 0 1 0

set of collected situations for this example are approximately 7,000–10,000 cases
and more than 300 conditions attributes are available but only 35 attributes are
chosen. The case covers a wide range of typical voltage and current situations
that occur in each scenario. Due to its large size, only change of state data is
presented.

The bus-coupler BC is assumed closed prior to the fault. To prevent both
transformers from tripping as the result of a fault on the 11kV terminal, the
IED5 and IED6 are set to look into their respective transformers in accordance
with IEEE nomenclature 67. Both 132/11kV transformers are protected by a
differential unit protection, restricted earth fault protection and balanced earth
fault protection [23]. The sensitive earth fault protection is not required since
the neutral of the transformer is solidly earthed.

13.1 Supervised Extraction

The result obtained based on Table 12, 13 and 14, shows that there are two reduct
sets in the considered set of attributes, which means that the decision table
can be reduced and presented in two alternative ways; {IED1, IED5, IED6} and
{IED1, IED5, IED8}. We select the {IED1, IED5, IED6} as our main source of
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Table 12. Directional A-B fault on the transformer T1 feeder 6 – Part I.

Time IED1 IED2 IED3

t/s V1 IA1 IB1 IC1 V2 IA2 IB2 IC2 V3 IA3 IB3 IC3

0.139 N N N N N N N N N N N N
1.002 L N N N L N N N L N N N
1.003 L N N N L N N N L N N N
1.005 L N N N L N N N L N N N
1.007 L N N N L N N N L N N N
1.008 L N N N L N N N L N N N
1.015 L N L N L N L N L N L N
1.019 L L L N L L L N L L L N
1.129 L N L N L N L N L N L N
1.133 L N L N L N L N L N L N
1.134 L N N N L N N N L N N N
1.135 L N N N L N N N L N N N
1.137 L N N N L N N N L N N N
1.138 L N N N L N N N L N N N
1.139 L N N N L N N N L N N N
1.140 L N N N L N N N L N N N
1.142 L N N N L N N N L N N N
1.153 N N N N N N N N N N N N
1.172 N N N N N N N N N N N N

Table 13. Directional A-B fault on the transformer T1 feeder 6 – Part II.

Time IED4 IED5 IED6

t/s V4 IA4 IB4 IC4 V5 IA5 IB5 IC5 V6 IA6 IB6 IC6

0.139 N N N N N N N N N N N N
1.002 L N N N N N N N N N N N
1.003 L N N N L N N N L N N N
1.005 L N N N L H H N L N N N
1.007 L N N N L H H N L H H N
1.008 L N N N L H H N L H H N
1.015 L N L N L H H N L H H N
1.019 L L L N L H H N L H H N
1.129 L N L N L H H N L H H N
1.133 L N L N L H H N L H H L
1.134 L N N N L H H N L H H L
1.135 L N N N L H H N L H H L
1.137 L N N N L H H N L H H L
1.138 L N N N L H H N L H H L
1.139 L N N N L H N N L N N L
1.140 L N N N L N N N L N N L
1.142 L N N N L N N N L L L L
1.153 N N N N L N N N L L L L
1.172 N N N N N N N N L L L L
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Table 14. Directional A-B fault on the transformer T1 feeder 6 – Part III.

Time IED7 IED8 T1 T2 Decision

t/s V7 IA7 IB7 IC7 V8 IA8 IB8 IC8 NTRL NTRL d

0.139 N N N N N N N N L L N
1.002 N N N N N N N N L L A
1.003 N N N N N N N N L L A
1.005 N N H N N N H N L L E
1.007 N N H H N N H H L L E
1.008 N H H H N H H H L L E
1.015 N H H H N H H H L L E
1.019 N H H H N H H H L L E
1.129 N H H H N H H H L L E
1.133 N H H H N H H H L L E
1.134 N H H H N H H H L L E
1.135 N H H H N H H N L L E
1.137 N H H N N H H N L L E
1.138 N H H N N N H N L L E
1.139 N H H N L N N N L L E
1.140 N N N N L N N L L L A
1.142 N N N N L L L L L L A
1.153 N N N N L L L L L L A
1.172 N N N N L L L L L L S

IEDx : IED number X, V: voltage of the IEDx, IA, IB and IC: the respective Phase A,
Phase B and Phase C current recorded by the IEDx.

information for the fault F1 on the transformer feeder 6. Owing to the incoherent
values caused by each changing phase current, we combine all phases of current
e.g. IA, IB and IC into one current magnitude e.g. Ix, in which x = {1, 2, ...., 7, 8}.

13.2 Reduct

Table 15 shows the reduct table computed from the indiscernibility functions.
Identical situations happened at multiple times in the reducts table, consequently
they are grouped into similar classes.

To generate a summary of report, the information given in Table 15 may
still include some condition attributes, which can be considered redundant. It is
necessary to identify a concise but informative message for the system operators
at the emergency. To make the given table more condensed, we have to find out,
which elements in the table that can safely be removed.

Change of states can provide us the crucial information and thus it is selected.
The revised result is presented in Table 16 that describes the general overview
of the events taken place.

In Table 16, any information about the normal operation is ignored as it
is not important during the emergency. Combining with the information from
the Table 11, various reports can be produced for respective operators, protec-
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Table 15. Results from the decision sys-
tem.

Time IED1 IED5 IED6 Decision

t/s V1 I1 V5 I5 V6 I6 d

0.139 N N N N N N N
1.002 L N N N N N A
1.003 L N L N L N A
1.005 L N L H L N E
1.007 L N L H L H E
1.015 L L L H L H E
1.134 L N L H L H E
1.139 L N L H L L E
1.140 L N L N L L A
1.153 N N L N L L A
1.172 N N N N L L S

Table 16. Change of states in the reduced
decision system.

Time IED1 IED5 IED6 Decision

t/s V1 I1 V5 I5 V6 I6 d

0.139 N N N N N N N
1.002 L • • • • • A
1.003 • • L • L • A
1.005 • • • H • • E
1.007 • • • • • H E
1.015 • L • • • • E
1.134 • N • • • • E
1.139 • • • • • L E
1.140 • • • N • • A
1.153 N • • • • • A
1.172 • • N • • • S

tion engineers and maintenance engineers. System operators need a summary
of report whereas protection engineers require detailed and specific information
regarding the operation of protection system and its related equipment. Mainte-
nance engineers however require a summary of the fault classification to diagnose
the fault type and the cause of the event.

Report for Operators
Location
Station name: Manchester
Station number: M117
Event date: 16th August 2003
Event time: 11:12:11am
Event number: 002

Description
Feeder L1: voltage sag = 1.002s, current low = 1.015s
Feeder 5 and 6: voltage sag, current high ≈ 1.003s
IED6: tripped
Breaker status: BRK6, BRK8 (1.119s – open)
Disconnection: Transformer T1
Faulted section: Transformer T1 feeder 6
System restored after 1.172s
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Report for Protection Engineers
Location
Station name: Manchester
Station number: M117
Event date: 16th August 2003
Event time: 11:12:11am
Event number: 002

Description
Feeder L1: voltage sag = 1.002s, current low = 1.015s.
Feeder 5 and 6: voltage sag, current high ≈ 1.003s
IED6: picked up = 1.007s, tripped = 1.049s, reset = 1.138s
Disconnection: Transformer T1
Faulted section: Transformer T1 feeder 6
Fault inception: 1.0s
Fault duration: 0.119s
Fault type: directional A-B, permanent
Maximum fault magnitude: 13.70kA
Breaker status: BRK6, BRK8 (1.119s – open)
Relay condition: healthy
Breaker condition: healthy

Report for Maintenance Engineers
Location
Station name: Manchester
Station number: M117
Event date: 16th August 2003
Event time: 11:12:11am
Event number: 002

Description
Disconnection: Transformer T1
Faulted section: Transformer T1 feeder 6
Fault inception: 1.0s
Fault duration: 0.119s
Fault type: directional A-B, permanent
Breaker status: BRK6, BRK8 (1.119s – open)
Relay condition: healthy
Breaker condition: healthy

13.3 Unsupervised Extraction

The result obtained based on Table 12, 13 and 14, indicated that apart of the
redundant data sources e.g. IED2, IED3 and IED4, the algorithm selects all the
remaining attributes i.e. {IED1, IED5, IED6, IED7, IED8} as our main source of
information for the fault F1 on the transformer load feeder 6. Owing to the
incoherent values caused by each changing phase current, we combine all phases



106 Ching-Lai Hor and Peter A. Crossley

of current e.g. IA, IB and IC into one current magnitude e.g. Ix, in which x =
{1, 2, ...., 7, 8}. In this case study, a fault was applied to the transformer feeder
and theoretically, we expected to see a significant pattern change recorded by
IED1, IED5, IED6, IED7 and IED8 (as IED1, IED2, IED3 and IED4 are carrying
the same information, only IED1 is selected).

13.4 Reduct

Table 17 shows the reduct table computed from the indiscernibility functions.
Identical situations happened at the multiple and consecutive times are elimi-
nated or grouped into similar classes. The events at t = 1.007s and t = 1.134s
are similar but occurred at two different times. For better description, they are
displayed chronologically. These two time events indicate the intermediate steps
between the fault period and the recovery period.

Attribute Vx in Table 17 represents a three-phase r.m.s voltage. Ix merged all
the phase A, B, C r.m.s current of IEDx together with the priority of information
set to be in the order of High, Low and Normal. This is to reduce the incoherent
pattern change for all the three phase currents. t = 0.139s is the time at which
the simulation attains a steady state condition e.g. voltage = normal, current =
normal.

The information given in Table 17 may be excessive for inclusion in the
report. Thus, the table must be condensed. The solution is to retain the change
of state information as it provides useful information. Table 18 shows the change
of state derived from Table 17 that can be used to describe the overview of
events in the substation. The message received about the normal operation is
ignored because it is not important during the emergency. Combining with the
information from the Table 11, a summary of report can be produced respectively

Table 17. Results from the information
system.

Time IED1 IED5 IED6 IED7 IED8

t/s V1 I1 V5 I5 V6 I6 V7 I7 V8 I8

0.139 N N N N N N N N N N
1.002 L N N N N N N N N N
1.003 L N L N L N N N N N
1.005 L N L H L N N H N H
1.007 L N L H L H N H N H
1.015 L L L H L H N H N H
1.134 L N L H L H N H N H
1.139 L N L H L L N H L N
1.140 L N L N L L N N L L
1.153 N N L N L L N N L L
1.172 N N N N L L N N L L

Table 18. Change of states in the reduced
information system.

Time IED1 IED5 IED6 IED7 IED8

t/s V1 I1 V5 I5 V6 I6 V7 I7 V8 I8

0.139 N N N N N N N N N N
1.002 L • • • • • • • • •
1.003 • • L • L • • • • •
1.005 • • • H • • • H • H
1.007 • • • • • H • • • •
1.015 • L • • • • • • • •
1.134 • N • • • • • • • •
1.139 • • • • • L • • L N
1.140 • • • N • • • N • L
1.153 N • • • • • • • • •
1.172 • • N • • • • • • •
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for operators, protection engineers and maintenance engineers. These reports are
used mainly as an example. The format presented may not reflect the actual
substation reports used in the power industries.

Report for Operators
Location
Station name: Manchester, Station number: M117
Event date: 16th August 2003, Event time: 11:12:11am
Event number: 002

Description
Feeder L1: voltage sag = 1.002s, current low = 1.015s
Feeder 5 and 6: voltage sag, current high ≈ 1.005s
Feeder 7 and 8: current high = 1.005s
IED6: tripped = 1.049s
Breaker status: BRK6, BRK8 (1.119s – open)
Disconnection: Transformer T1
Faulted section: Transformer T1 feeder 6
System restored after 1.172s

Report for Protection Engineers
Location
Station name: Manchester
Station number: M117
Event date: 16th August 2003
Event time: 11:12:11am
Event number: 002

Description
Feeder L1: voltage sag = 1.002s, current low = 1.015s.
Feeder 5 and 6: voltage sag, current high ≈ 1.005s
Feeder 7 and 8: current high = 1.005s
IED6: pickup = 1.007s, tripped = 1.049s, reset = 1.138s
Disconnection: Transformer T1
Faulted section: Transformer T1 feeder 6
Fault inception: 1.0s
Fault duration: 0.119s
Fault type: directional A-B, permanent
Maximum fault magnitude: 13.70kA
Breaker status: BRK6, BRK8 (1.119s – open)
Relay condition: healthy
Breaker condition: healthy
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Report for Maintenance Engineers
Location
Station name: Manchester
Station number: M117
Event date: 16th August 2003
Event time: 11:12:11am
Event number: 002

Description
Disconnection: Transformer T1
Faulted section: Transformer T1 feeder 6
Fault inception: 1.0s
Fault duration: 0.119s
Fault type: directional A-B, permanent
Relay condition: healthy
Breaker status: BRK6, BRK8 (1.119s – open)
Breaker condition: healthy

Comparing the two set of results obtained in the example, it shows that
the unsupervised extraction is less efficient than the supervised extraction. It
produces less concise result; 7 attributes are selected compare to only 2 attributes
for the supervised extraction. However, the advantage is that it does not require
any pre-defined classes and is entirely based on the relation between data. This
helps minimise the human errors in classifying the events. Both techniques have
their cons and pros, therefore it is difficult to generalise which method is better.
It depends on the area of application in the power system.

13.5 Station Report

A station report can also be formed using the information available. During the
emergency, the operators may not require a detailed report. Thus the information
provided must be concise. An expert system can be used to process the facts
given in Table 16 and 18 and the protection trip data in Table 11. A sample of
station report can be generated as shown in Table 19.

The time of fault or disturbance inception can be estimated using the ab-
normal condition status flag or emergency condition status flag if the abnormal
condition on the fault inception is not available. The duration of the fault is de-
termined by measuring the time period from the relay pickup to breaker opening.
The magnitude of fault current can be used to estimate the I2t contact-wear and
other conditions associated with circuit breakers. Evaluation of the time at which
the trip is applied until all the main contacts are open gives a good check on
the breaker operation with the knowledge of the circuit breaker type and its
operating characteristics.
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Table 19. Station report.

STATION REPORT

Date of event 16th August 2003 Time of event 11:12:11am

Event Number 002 Sample rate 1ms

EVENT DESCRIPTION

Both Transformer Feeders 5 and 6: Voltage sags and high current at approximately 1.003s
Load Feeder L1: Voltage sag at 1.002s and low current at 1.015s
Relay IED6: Tripped at 1.049s; Reset at 1.138s; Directional element (67) was set.
Circuit Breakers: BRK6 and BRK8 opened at 1.119s.

PROTECTION SYSTEM OPERATION ANALYSIS

Directional (67) Yes Non-Directional No

Primary relay Start Time 1.049s End Time 1.138s

Backup relay Start Time N/A End Time N/A

Auto Recloser No Number of operations N/A

Recloser Duration N/A N/A N/A N/A

Relay First Pickup 1.039s Avg. Trip Time 0.010s

Breaker Operation 1.119s No. Breakers 2 (BRK6, BRK8)

Breaker Time 0.080s Breaker Status 52A(1) 52B(0)

Relay Condition Healthy Breaker Condition Healthy

ESTIMATED FAULT DATA

Fault Inception 1.000s Fault Types Phase A-B, Permanent

Faulted Section Transformer Feeder T1 Fault Duration 0.119s

Maximum Fault Magnitude Approximate: 13.700kA

Breaker Contact Wear, I2t (Max IFault)
2 × tFault Duration 24.21 × 106As

LINE CURRENTS AND VOLTAGES ON FAULTED SECTION

RMS Value Pre-fault Max. Fault Post Fault Unit

In 0.00 0.00 0.00 [kA]

Ia 1.03 12.24 0.00 [kA]

Ib 1.03 12.97 0.00 [kA]

Ic 1.03 1.03 0.00 [kA]

Va 6.17 3.49 0.00 [kV]

Vb 6.14 3.49 0.00 [kV]

Vc 6.30 6.12 0.00 [kV]

Vab 10.58 3.55 0.00 [kV]

Vbc 10.80 9.32 0.00 [kV]

Vca 10.86 9.33 0.00 [kV]

14 Conclusion

The large quantities of data generated by processor-based relays and IEDs have
created both a demand and opportunity for extracting knowledge. Superfluous
data may confuse an operator and result in a slower response to the emergency.
The challenge is to interpret the data correctly from IEDs. The essential con-
sideration of achieving highly recallable and concise information is to determine
the most relevant attributes in the dataset and eliminate irrelevant/unimportant
attributes without losing crucial information.

This paper presented two approaches; supervised and unsupervised extrac-
tion based on rough sets to assist our substation event analysis and decision sup-
port. The simulation models are used to generate an event database for various
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fault scenarios. Though the model used in our experiment may look simplified,
it is however believed to be adequate for a pilot study and the results obtained
are consistent and satisfactory. Rough set approach allows us to explore about
the data. It is generic and independent of substation topology. Thus, it can be
applied to any form of substations for knowledge extraction. The summary of
events identified by rough sets can yield significant benefits to utilities by helping
engineers and operators respond to a fault condition correctly in a limited time
frame.

The analysis of substation data using rough classification is a new research
area that would certainly benefit energy utilities especially the threat from
data/information overload during the emergency.
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Abstract. This article presents experiments aiming at testing the effec-
tiveness of the implemented low-level descriptors for automatic recogni-
tion of musical instruments and musical styles. The paper discusses first
some problems in audio information analysis related to MPEG-7-based
applications. A short overview of the MPEG-7 standard focused on audio
information description is also given. System assumptions for automatic
identification of music and musical instrument sounds are presented. A
discussion on the influence of descriptor selection process on the classi-
fication accuracy is included. Experiments are carried out basing on a
decision system employing Rough Sets (RS) and Artificial Neural Net-
works (ANNs).

1 Introduction

The aim of this study is to automatically classify musical instrument sounds or
a musical style on the basis of a limited number of parameters, and to test the
quality of musical sound parameters that are included in the MPEG-7 standard.
Recently defined MPEG-7 standard is designed to describe files containing dig-
ital representations of sound, video, images and text information allowing the
content to be automatically queried in multimedia databases that can be ac-
cessed via the Internet. MPEG-7 standard specifies the description of features
related to the audio-video (AV) content as well as information related to the
management of the AV content. In order to guarantee interoperability for some
low-level features, MPEG-7 standard also specifies part of the extraction process.
MPEG-7 descriptions take two possible forms: a textual XML form (high-level
descriptors) suitable for editing, searching, filtering, and browsing and a binary
form (low-level descriptors) suitable for storage, transmission, and streaming.
For many applications, the mapping between low-level descriptions and high-
level queries has to be done during the description process. The search engine or
the filtering device have to analyze the low-level features, and on this basis, per-
form the recognition process. This is a very challenging task for audio analysis
research [12]. The technology related to intelligent search and filtering engines
using low-level audio features, possibly together with high-level features, is still
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very limited. A major question remains open what is the most efficient set of
low-level descriptors that have to be used to allow a certain class of recognition
tasks to be performed on the description itself. Of importance is the fact that
the parameters of MPEG-7 musical sounds were selected based on many but
separately carried on experiments, examples of which may be found in many
publications [3, 5–7, 11, 13, 15, 22, 32], hence the need to test the quality of
the parameters in the process of automatic identification of musical instrument
classes. Especially interesting is material presented by Wieczorkowska et al., in
which authors try to identify the most significant temporal musical sound fea-
tures and descriptors. Their main goal was to verify whether temporal patterns
observed for particular descriptors would facilitate classification of new cases
introduced to the decision system [32], however conclusions are not yet definite.

The experiments presented in this article are based on a decision-making sys-
tem employing learning algorithms. The paper discusses a number of parametri-
zation methods that are used for describing musical objects. The starting point
in the experiments is engineering a music database. Among others, problems
discussed in the paper are related to how musical objects are saved and searched
in the constructed sound database. Despite the standard relatively clear-cut in-
structions on how musical objects should be described (e.g. using the feature
vector), it mostly covers the indexing of files in databases rather than focusing
on the algorithmic tools for searching these files.

In general, music can be searched using a so-called “query-by-example”
scheme. Such a scheme includes musical signals (single, polyphonic sounds, au-
dio files), human voice sounds (both speech and singing), music scores (graphical
form), and MIDI (Musical Instrument Digital Interface) code (encoded music)
or verbal description. Each signal comes as a different representation. The paper
shows examples of feature vectors (FVs) based on time, spectral, time-frequency
musical signals representations. In addition, the problem of how to query effec-
tively multimedia contents applies to search tools as well. To address that, many
research centers focus on this problem (see International Music Retrieval Sym-
posia website [11]). Earlier research at the Department of Multimedia Systems
(former Sound and Vision Department) of the Gdansk University of Technol-
ogy showed that for automatic search of musical information, learning decision-
making systems work much better than typical statistical or topological meth-
ods. For instance, rough set-based decision systems allow for searching databases
with incomplete information and inconsistent entries. This theory, founded by
Pawlak [25] is now extremely well developed, and one can find applications based
on rough sets in many domains [1, 2, 4, 14, 15, 19, 24, 26–30]. The rough set the-
ory proposed by Pawlak provides an effective tool for extracting knowledge from
data tables. The rough set decision system is also very valuable in the feature
selection process. Another example of learning algorithms is the Artificial Neu-
ral Network (ANN). ANNs are computing structures that adjust themselves to
the specific application by training rather than by having a defined algorithm.
The network is trained by minimizing the error of the network classification.
When a specific threshold error is reached, the learning process is considered as
completed. ANN may serve as both pattern classifier and feature selectors.
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For the purpose of experiments the Rough Set Exploration System (RSES)
system developed by the Warsaw University [1, 2, 8] is used. RSES has been cre-
ated to enable multi-directional practical investigations and experimental veri-
fication of research in decision support systems and classification algorithms, in
particular to applications of rough set theory [1, 2]. On the other hand, the ANN
employed is a toolbox working in the Matlab environment. The use of rough sets
and artificial neural networks allows for identifying musical objects even if dur-
ing the training process only a limited number of examples is presented to the
decision system.

2 Low-Level MPEG-7 Descriptors

Development of streaming media on the Internet has caused a huge demand for
making audio-visual material searchable in the same way as text is. Audio and
video contain a lot of information that can be used in indexing and retrieval ap-
plications. Many research efforts have been spent to describe the content of audio
and video signals, using specific indexing parameters and extraction techniques.
The MPEG-7 standard provides a uniform and standardized way of describing
the multimedia content. A part of this standard is specifically dedicated to the
description of the audio content. The MPEG-7 Audio framework consists of two
description levels: low-level audio descriptors, and high-level ones related to se-
mantic information and metadata. Metadata are compiled from collections of
low-level descriptors that are the result of detailed analysis of the content ac-
tual data samples and signal waveforms. MPEG-7 expresses these descriptions in
XML, thereby providing a method of describing the audio or video samples of the
content in textual form [9, 12, 21]. The MPEG-7 standard defines six categories
of low-level audio descriptors. In addition a so-called “silence” parameter is also
defined. Generally, it may be said that such a categorization of parameters is re-
lated to the need to visualize sound, and to extract significant signal parameters
regardless of the audio signal type (e.g. musical sounds, polyphonic signals, etc.).
The MPEG-7 low-level descriptors can be stored as an XML file that serves as a
compact representation of the analyzed audio. These six categories contain the
following parameters [9]:

1. Basic: Audio Waveform, Audio Power
2. Basic Spectral: Audio Spectral Envelope, Audio Spectral Centroid, Audio

Spectrum Spread, Audio Spectrum Flatness
3. Signal Parameters: Audio Fundamental Frequency, Audio Harmonicity
4. Timbral Temporal: Attack Time, Temporal Centroid
5. Timbral Spectral: Harmonic Spectrum Centroid, Harmonic Spectral Devia-

tion, Harmonic Cepstral Spread, Harmonic Spectral Variation, Spectral Cen-
troid

6. Spectral Basis: Audio Spectrum Basis, Audio Spectrum Projection
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3 System Assumptions

A very interesting example of musical databases is CDDB that contains over 1
million CDs [10]. However, apart from world-wide known databases there exist
many local databases. An example of such a musical database is the one created
at the Multimedia Systems Department of the Gdansk University of Technology.
This musical database consists of three sub-databases, each related to different
format of music. Therefore, the first one contains musical sounds [15, 20], the
second one – MIDI files [4], and the third one fragments of music from CDs [19].
Searching for music, MIDI-based recording or a sound signal (audio type) in a
music database includes the following tasks:

– audio registrating – employing an audio card
– uploading the pattern file
– playing back the pattern file
– automatic parameterizing the pattern file
– defining query criteria (metadata description)
– searching in the parameter database based on the metadata description and

vector parameter similarity with the following options:
• searching for the specific file and not downloading it
• script compiling in the server environment/downloading the file with

parameters from the server
• reviewing and playing query results
• downloading the file selected

Fig. 1 shows the system operational principle presenting in which way new
files are introduced into the system and how the query is done. Within this
scheme all other categories of musical files can also be searched. When sound
signals are introduced into the system, it applies preprocessing, then generates
feature vectors by extracting low-level descriptors defined for this procedure [18].

A database record consists of the following components: category, [feature
vector], metadata description and resource link. The parameter file for each
database objectincludes a parametric description along with metadata. The
query process does not require parameterizing all database objects, this is done
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116 Bożena Kostek et al.

when introducing a new object to the database. The search is for a file that
matches the description. In this way, an audio file can be specifically described
in a standardized form that can be stored in a database. This provides a reliable
way of identifying a particular item of content without actually analyzing its
waveform or decoding its essence data, but rather by scanning its description.

4 MPEG-7 Based Parameters Applied to Musical Sounds

Before automatic parameter extraction of musical sounds can be done, the sound
fundamental frequency must be estimated. A modified Schroeder’s histogram is
applied for this purpose [20]. As was earlier reported the effectiveness of detec-
tion of the musical sound fundamental frequency is very high for the selected
instruments (98 %), thus the calculation of signal parameters do not suffer from
the erroneous pitch detection [20]. In the next step parametrization process is
performed. The following MPEG-7 descriptors are taken for this study [31]. It
should be noted, that features, parameters, and features vectors are standard
terminology in audio processing and refer to sound descriptors, thus these terms
are often used interchangeably.

– Audio Spectrum Envelope (ASE ) describes the short-term power spectrum
of the waveform as a time series of spectra with logarithmic frequency axis.
According to MPEG-7 recommendation, the spectrum consists of one coef-
ficient representing power between 0 Hz and 62.5 Hz, a series of coefficients
representing power in 1/4-octave resolution sized bands between 62.5 Hz and
16 kHz, and a coefficient representing power beyond 16 kHz. This results in
34 coefficients for each spectral frame. The mean values and variance of each
coefficient over time are denoted as ASE1...ASE34 and ASEv1...ASEv34,
respectively.

– Audio Spectrum Centroid (ASC ) describes the center of gravity of the log-
frequency power spectrum. Power spectrum coefficients below 62.5 Hz are
replaced by a single coefficient, with power equal to their sum and a nominal
frequency of 31.25 Hz. Frequencies of all coefficients are scaled to an octave
scale with its zero point set to 1 kHz. The spectrum centroid is calculated
as follows:

C =
∑

n

(log2(
f(n)
1000

) · Px(n)/
∑

n

Px(n)) (1)

where Px(n) is the power associated with frequency f(n). The mean value
and the variance of spectrum centroid over time are denoted as ASC and
ASCv, respectively.

– Audio Spectrum Spread (ASS ) is defined as the RMS deviation of the log-
frequency power spectrum with respect to its center of gravity:

S =

√∑
n(log2((

f(n)
1000 − C)2 · Px(n)))∑

n Px(n)
(2)

where C is the spectrum centroid. The mean value and the variance of S
over time are denoted as ASS and ASSv, respectively.
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– Audio Spectrum Flatness (SFM) describes the properties of the short-term
power spectrum of an audio signal. For each frequency band, the spectrum
flatness measure is defined as the ratio of the geometric and the arithmetic
mean of the power spectrum coefficients c(i) within the band b (i.e. from
coefficient index il to coefficient index ih, inclusive:

SFMb =
ih(b)−il(b)+1

√∏ih(b)
i=il(b) c(i)

1
ih(b)−il(b)+1 ·

∑ih(b)
i=il(b) c(i)

(3)

The mean values and the variance of each SFMb over time are denoted as
SFM1... SFM24 and SFMv1...SFMv24, respectively.

– Log Attack Time (LAT ) is defined as the logarithm (decimal basis) of the
time difference between when the signal starts (T0) and when it reaches its
sustained part (T1):

LAT = log10(T1 − T0) (4)

– Temporal Centroid (TC ) is defined as the time averaged over the energy
envelope SE :

TC =
∑length(SE)

n=1 (n/sr · SE(n))∑length(SE)
n=1 (SE(n))

(5)

where sr is the sampling rate.
– Spectral Centroid (SC ) is the average of the Instantaneous Spectral Cen-

troid (ISC ) values computed in each frame. They are defined as the power
weighted average of the frequency of bins in the power spectrum:

ISC =
∑length(S)

k=1 (f(k) · S(k))∑length(S)
k=1 (S(k))

(6)

where S(k) is the kth power spectrum coefficient and f(k) stands for the fre-
quency of the kth power spectrum coefficient. The mean value and variance
of IHSC over time are denoted as SC and SCv, respectively.

– Harmonic Spectral Centroid (HSC ) is the average of the Instantaneous Har-
monic Spectral Centroid IHSC values computed in each frame. They are
defined as the amplitude (linear scale) weighted mean of the harmonic peaks
of the spectrum:

IHSC =
∑nbh

h=1(f(h) · A(h))∑nbh

h=1(A(h))
(7)

where nbh is the number of harmonics taken into account, A(h) is the am-
plitude of the harmonic peak number h and f(h) is the frequency of the
harmonic peak number h. The mean value and the variance of IHSC over
time are denoted as HSC and HSCv, respectively.

– Harmonic Spectral Deviation (HSD) is the average of the Instantaneous
Harmonic Spectral Deviation IHSD values computed in each frame. They
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are defined as the spectral deviation of log-amplitude components from the
global spectral envelope:

IHSD =
∑nbh

h=1(|log10(A(h)− log10(SE(h))|)∑nbh

h=1(log10A(h))
(8)

where SE(h) is the local spectrum envelope (mean amplitude of the three
adjacent harmonic peaks) around the harmonic peak number h. To evaluate
the ends of the envelope (for h = 1 and h = nbh) the mean amplitude of two
adjacent harmonic peaks is used. The mean value and the variance of IHSD
over time are denoted as HSD and HSDv, respectively. Mean values and
variation denoted as HSD and HSDv, respectively.

– Harmonic Spectral Spread (HSS ) is the average of the Instantaneous Har-
monic Spectral Spread (IHSS ) values computed in each frame. They are
defined as the amplitude weighted standard deviation of the harmonic peaks
of the spectrum, normalized by the harmonic spectral centroid:

IHSS =
1

IHSC
·
√√√√∑nbh

h=1 A
2(h) · (f(h)− IHSC)2∑nbh

h=1 A
2(h)

(9)

where IHSC is the harmonic spectrum centroid defined by Eq. 7. The mean
value and the variance of harmonic spectrum spread over time are denoted
as HSS and HSSv, respectively.

– Harmonic Spectral Variation (HSV ) is the average of is Instantaneous Har-
monic Spectral Variation (IHSV ) values computed in each frame. They are
defined as the normalized correlation between the amplitude of the harmonic
peaks of two adjacent frames:

IHSV = 1−
∑nbh

h=1 A−1(h) · A(h)√∑nbh

h=1 A
2
−1(h) ·

√∑nbh

h=1 A
2(h)

(10)

where A(h) is the amplitude of the harmonic peak number h at the current
frame and A−1(h) is the amplitude of the harmonic peak number h at the
preceding frame. The mean value and the variance of harmonic spectrum
variation over time are denoted as HSV and HSVv, respectively.

Besides MPEG-7-based descriptors, a few additional parameters were used:

– KeyNumber (KeyNum) expresses the pitch of a sound according to the MIDI
standard:

KeyNum = 69 + 12 · log2(
f0

440
) (11)

– Content of even harmonics in spectrum (hev)

hev =

√∑�N/2�
k=1 A2

2k√∑N
n=1 A

2
n

(12)

The number of all attributes derived from MPEG-7 analysis was 139.
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4.1 Sound Descriptor Analysis

A number of parameters describing a musical instrument sound should be as
low as possible because of the limited computer system resources. The process
of decreasing the feature vector length means removing redundancy from the set
describing an audio signal. Therefore, evaluation criteria of the effectiveness of
particular parameters for the sound classification have to be used.

Fisher statistic is often used as such a criterion. It is defined for a parameter
A and two classes X and Y , in the case analyzed two classes of instruments
[15, 16]:

V =
ĀX − ĀY√

S2
AX/nX + S2

AY /nY

(13)

where AX and AY are mean values of parameter A for instruments X and Y ;
nX , nY are the cardinalities of two sets of sound parameters; and S2

AX and S2
AY

are variance estimators:

S2
AX =

1
(nX − 1)

·
nX∑
i=1

(AXi − ĀX)2 (14)

S2
AY =

1
(nY − 1)

·
nY∑
i=1

(AY i − ĀY )2 (15)

The bigger the absolute values |V | of Fisher statistics, the easier it is to divide
a multidimensional parameter space into areas representing different classes. It is
much easier to differentiate between two musical instruments based on the given
parameter if its mean values for both instruments are clearly different, variances
are small and the quantity of audio samples is large.

Values of the calculated Fisher statistic for selected parameters and for the
selected pair of instruments are shown in Table 1. It was found for example
that HSD and HSS parameters are useful for the separation of musical sounds
of different groups (brass, woodwinds, strings). Figure 2 shows an example of
distribution of these parameters values for instruments of similar musical scales.

High value of the Fisher statistic of hev parameter for the pair bassoon-
clarinet proves its usefulness for separation of a clarinet sounds from other musi-
cal instruments. Initial experiments show that Timbre Descriptors are insufficient
for the separation of musical instruments from the same group with satisfactory
effectiveness. Therefore, the feature vector needs to be complemented by some
additional descriptors of a musical signal.

Table 1. Analysis of parameter separability based on Fisher statistics.

instrument pairs hev LAT SC ... HSV ASE1 ASE2 ... SFM24

bassoon – clarinet 28.79 3.22 15.73 ... 10.72 9.10 10.56 ... 14.18
bassoon – oboe 3.02 0.13 53.78 ... 1.36 8.31 8.75 ... 17.71

bassoon – trombone 1.22 0.34 12.78 ... 0.33 8.42 9.54 ... 5.46
bassoon – F. horn 1.94 5.43 4.48 ... 0.58 6.90 7.26 ... 1.85

... ... ... ... ... ... ... ... ... ...
cello – tuba 4.31 15.82 12.51 ... 5.22 4.72 0.72 ... 22.55



120 Bożena Kostek et al.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

HSD

H
S

S

Bassoon
French Horn
Cello

Fig. 2. Example of two parameter value distribution for three instruments.

More effective sound description is provided by the parameters connected
directly with the power spectrum density: Audio Spectrum Descriptors, partic-
ularly Audio Spectrum Envelope (ASE) and Audio Spectrum Flatness (SFM).
It has been noticed that ASE and ASEv descriptors calculated for low- and
high-frequency bands allows for distinguishing between instrument classes; mid-
frequency band values are less useful for musical instrument classification. On
the other hand, SFM descriptors are the most accurate in mid-frequency bands.
SFMv descriptors prove to be redundant, thus they have not been included in
FVs. In addition, the Pearson’s correlation analysis has been performed, and
some other parameters have been eliminated. After a thorough analysis, a fi-
nal content of the feature vector used in experiments with neural networks (31)
attributes was as follows:

{ASE2, ..., ASE5, ASE8, ASE9, ASE18, ASE21, ASE23, ..., ASE31, ASE33,
ASE34, ASEv5, ..., ASEv9, ASEv21, ASEv31, ASEv34, ASC,ASS,ASSv,
SFM13, ..., SFM19, SFM21, SFM22, SFM24, HSC,HSD,HSDv,HSS,HSSv,
KeyNum, hev, LAT}

4.2 ANN-Based Classification Results
A three-layer neural network (NN) of the feed-forward type was used in the
experiments. Its structure has been defined as follows:
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– number of neurons in the initial layer is equal to the number of elements of
the feature vector

– number of neurons in the hidden layer is twice as large as the number of
neurons in the initial layer

– each neuron in the output layer is matched to the different class of the
instrument, thus the number of neurons in the output layer is equal to the
number of classes of instruments being identified

– neurons in the initial and the output layers have log-sigmoid transfer func-
tions, while neurons in the hidden layer have tan-sigmoid transfer functions.

The initial stage of experiments started with the training phase of the neural
network. Sounds samples come from two sources, those recorded at the Mul-
timedia Systems Department of the Gdansk University of Technology [15, 16],
contained in the Catalogue, and those from MUMS (McGill University Master
Samples) from the McGill University [23]. Vectors of parameters were randomly
divided into two independent sets: training and testing. Such a technique of esti-
mating error rates was used in all experiments presented in this article. Each set
consisted in 50% of vectors contained in the database. This means that it was
possible for the training set to contain only a few FVs of some instruments while
the test set might include much larger number of FVs of the same instrument.
Error back-propagation algorithm was used to train the neural network. The
process of training was considered as finished when the value of the cumulative
error of network responses for the set of test vectors had dropped below the as-
sumed threshold value or when the cumulative error of network responses for the
test set of vectors had been rising for more than 10 consecutive cycles. The recog-
nized class of the instrument was determined by the highest value of the output
signals of neurons in the output layer. The training procedure was repeated 10
times and the best-trained network was chosen for further experiments.

Detailed results of the musical sound classification with the neural network
algorithms are presented in Tables 2 and 3. Confusion Matrix of Neural Network
Classifier is shown in Table 2. The ANN results for the MPEG-7-based repre-
sentation are given by the diagonal of Tab. 2 – correctly recognized class of an
instrument. The test set accuracy denotes the ratio of the number of correctly
classified objects from the test set and all objects in the test set. Other values in
Table 2 refer to errors done in the recognition process. Table 3 gives the number
of sound samples tested in experiments.

As shown in Tables 2 and 3 tuba sound recognition effectiveness was 100%.
Other instrument sounds were recognized with lower accuracy, for instance some
mix-up between tenor trombone and French horn sounds occurred. Trombone
sounds that were incorrectly recognized were classified by the system as French
horn sounds, and vice versa; also clarinet and oboe sounds were confused with
each other (a few cases of erroneous system answers). Therefore the total test
set accuracy for these 10 musical instrument classes was 92.35%. The total test
set accuracy is meant here as average of all test set accuracy values.
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Table 2. Recognition effectiveness of the MPEG-7-based descriptors with the NN
classifier.

Instrument BA CL Oboe TT FH AS VI TR TU CE

bassoon(BA) 95.5 0.0 1.5 0.5 .15 0.0 0.0 0.0 0.5 0.5
B flat clarinet (CL) 0.5 93.0 5.4 0.0 0.0 0.0 0.5 0.0 0.0 0.5

oboe 0.0 4.4 91.2 0.0 0.0 0.0 1.9 2.5 0.0 0.0
tenor trombone 3.2 0.5 0.0 86.8 6.9 0.5 0.0 1.1 1.1 0.0

French horn (FH) 1.2 1.2 0.0 7.4 87.7 0.0 0.6 0.6 0.0 1.2
alto saxophone (AS) 0.0 0.8 0.0 0.8 0.8 93.2 0.8 1.7 0.8 0.8

violin (VI) 0.0 0.6 1.7 1.1 0.0 0.6 91.2 0.0 1.7 3.3
trumpet (TR) 0.0 2.8 1.4 2.1 0.0 1.4 0.7 91.6 0.0 0.0

F flat tuba(TU) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
cello (CE) 0.0 1.0 0.0 0.5 0.0 0.0 5.2 0.0 0.0 93.3

Table 3. Summary of results obtained by the neural network algorithm tested on the
MPEG-7-based FVs.

Musical Instrument No. of samples No. of errors Effectiveness [%]

bassoon 200 9 95.5
B fat clarinet 186 13 93.0

oboe 159 14 91.2
tenor trombone 189 25 86.8

French horn 162 20 87.7
alto saxophone 118 8 93.2

violin 181 16 91.2
trumpet 143 12 91.6

F Flat tuba 143 12 100
cello 143 12 93.3

4.3 MPEG-7 and Wavelet-Based
Joint Representation Quality Testing

MPEG-7 parameters were calculated for the whole sound, however, a decision
has been done to enhance the description by adding descriptors based on the
sound transient phase, only. Earlier research on wavelet parameters for the tran-
sient state of musical sounds allowed for an easy calculation of such parameters
[16]. One of the main advantages of wavelets is that they offer a simultaneous
localization in time and frequency domain. Frames consisting of 2048 samples
taken from the transient of a sound were analyzed. In earlier experiments per-
formed by one of the authors [16], it was found that Daubechies filters (2nd
order) have the computational load considerably lower than that of other types
of filters, therefore they were used in the analysis.

For the purpose of this study several parameters were calculated. They were
derived by observing both energy and time relations within the wavelet sub-
bands. Energy-related parameters are based on energy coefficients computed for
the wavelet spectrum subbands normalized over the whole energy of the param-
eterized frame corresponding to the starting transient. On the other hand, time-
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related wavelet parameters refer to the number of coefficients that have exceeded
the given threshold. Such a threshold helps to differentiate between “tone-like”
and “noise-like” characteristics of the wavelet spectrum [16]. Wavelet-based pa-
rameters were as follows: cumulative energy (Ecn) related to the nth subband,
energy of nth subband En, energy ratio of nth subband to (n− 1)th subband,
en – time-related parameter allowing for characterization of the wavelet pattern,
calculated for each wavelet spectrum subband, and referring to the number of
coefficients that have exceeded the given threshold and fn – variance of the first
derivative of the absolute value of the wavelet coefficient sequence [16, 17]. By
means of the Fisher statistic the number of wavelet coefficients was reduced from
50 to a few most important (13), thus forming the following feature vector:

{E5, E6, E8, (E10/E9), e6, e7, e8, e10, f7, f10, Ec7, Ec8, Ec10}.
To assess the quality of the expanded feature vectors, musical instrument

sounds underwent recognition for a combined representation of the steady and
transient states (simultaneous MPEG-7 and wavelet parametrization resulting in
44 parameters). To that end, ANNs were used again. Confusion Matrix of Neural
Network classifier resulting from the testing process is shown in Table 4. The
system results for the wavelet-based representation are given by the diagonal
of Tab. 4 (correctly recognized class of instrument). Other values denote errors
done in the classification process.

As seen from Tab. 4 and 5 the system recognition effectiveness is better
than while employing FVs containing only MPEG-7 descriptors. For example,
accuracy of alto saxophone sounds increases up to 98.2%. Still, some musical
instrument sounds are recognized incorrectly. It can be seen that the wavelet-
based parametrization help to better differentiate between French horn and tenor
trombone sounds, thus much better results for this instrument are obtained.
Fewer errors occur for other instruments, while tuba does not do that well.
In overall, the combined MPEG-7 and wavelet representation ensures better
classification results, thus the total test set accuracy is equal to approx. 94%.
The number of errors diminishes from 131 to 106, a reduction of 20%. This is
because the parametrization process covers both the transient and steady state

Table 4. Recognition effectiveness of the MPEG-7+wavelet-based FVs.

Instrument BA CL Oboe TT FH AS VI TR TU CE

bassoon(BA) 96.7 1.1 0.0 1.1 0.5 0.0 0.0 0.0 0.0 0.5
B flat clarinet (CL) 0.5 91.4 6.5 0.0 0.5 0.0 1.1 0.0 0.0 0.0

oboe 0.0 3.6 91.7 0.0 0.0 0.0 3.0 1.2 0.0 0.6
tenor trombone 2.3 0.0 0.0 86.8 6.3 0.0 1.1 0.0 2.9 0.6

French horn (FH) 2.0 0.7 0.0 2.6 94.8 0.0 0.0 0.0 0.0 0.0
alto saxophone (AS) 0.0 0.0 0.9 0.0 0.0 98.2 0.0 0.9 0.0 0.0

violin (VI) 0.5 0.5 2.2 0.0 0.0 0.0 92.4 0.0 0.0 4.3
trumpet (TR) 0.0 1.8 0.6 0.6 0.0 1.2 0.6 95.2 0.0 0.0

F flat tuba(TU) 0.0 0.0 1.9 3.2 0.0 0.0 0.0 0.0 94.8 0.0
cello (CE) 0.0 0.0 0.0 0.5 0.0 0.0 2.8 0.5 0.0 96.8
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Table 5. Effectiveness of the ANN for MPEG-7+wavelet-based FVs.

Musical Instr. No. of samples No. of errors Effectiveness [%]

bassoon 183 6 96.7
B flat clarinet 185 16 91.4

oboe 169 14 91.7
tenor trombone 174 23 86.8

French horn 153 8 94.8
alto saxophone 112 2 98.2

violin 184 14 92.39
trumpet 165 8 95.15

F flat tuba 155 8 94.8
cello 216 7 96.76

Table 6. Recognition effectiveness for instrument groups based on NNs.

Instrument group No. of sounds Erroneous recognition Effectiveness[%]

string 411 6 98.54
woodwinds 902 17 98.12

brass 712 18 97.47

of a sound, and the features resulting form this process of the parameter vector
complement each other.

Further, another experiment based on ANNs, was carried out. Instruments
were assigned to three classes and classification was performed once again. Re-
sults obtained were gathered in Table 6. As seen from Table 6 the system accu-
racy is very good (approx. 98%), even if in this case more sound samples have
been classified. Therefore, it can be said that the FV representation containing
both MPEG-7- and wavelet-based parameters is more effective than while using
MPEG-7 features only.

4.4 Rough Set-Based Feature Vector Quality Testing

For the purpose of experiments based on the rough set method, the RSES system
was employed. The RSES is a system containing functions for performing various
data exploration tasks such as: data manipulation and edition, discretization of
numerical attributes, calculation of reducts. It allows for generation of decision
rules with use of reducts, decomposition of large data into parts that share
the same properties, search for patterns in data, etc. Data are represented as a
decision table in RSES, which contains condition attribute values and decisions.
A standard term used in the rough set theory is ’attribute’ instead of feature,
but in the research presented we use also ’feature vector’ term since it may apply
to both ANNs and rough sets. Since the system was presented very thoroughly
at the rough set society forum, thus no details are to be shown here, however, a
reader interested in the system may visit its homepage [8].

It is common to divide a database in two parts to create a training and a test
set. During training phase the rough set system tries to extract knowledge from
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Table 7. Format of the decision table.

KeyNum hev LAT HSC ... ASE4 ASE5 ... SFM22 SFM24 Decision

57.64 0.9272 0.1072 914 ... –0.1761 –0.1916 ... 0.0971 0.0707 cello
57.68 0.9178 0.1140 818 ... –0.1634 –0.1727 ... 0.0927 0.0739 cello

... ... ... ... ... ... ... ... ... ... ...
53.03 0.7409 –0.758 875 ... –0.2115 –0.2115 ... 0.1108 0.0775 t. tromb.

data contained in the training set. The goal is to gain knowledge which will be
valid not only in the database considered. Then, it is tested against a test set to
check whether the knowledge acquired from the training set is of general nature.

In the case of experiments presented data were divided into 50%/50% train-
ing and test sets (1695 samples in each set). Since a rough set-based system al-
lows for analyzing significance of attributes to the recognition process, therefore
all 139 attributes derived from the MPEG-7 analysis were used in the decision
table (Table 7). To generalize the problem and to classify unknown objects in-
duced rules operate only on subintervals. Subinterval ranges were obtained as
a result of discretization algorithm. MD-heuristic was used for finding cuts in
the attribute domain, which discerned largest numbers of pairs of objects [2, 8].
The same cuts were then applied to discretize attribute values of test objects. A
global discretization method was used first. In further experiments also local dis-
cretization was employed. Once the discretization process has been completed,
rule generation is performed. The RSES system uses genetic algorithm to induce
rules [8].

Each rule has an implication form, conditioning decision on attribute values:

[ASE9 ∈ (−∞,−0.15525)∧ASE10 ∈ (−0.16285,+∞)∧
∧ASE11 ∈ (−0.16075,+∞)∧ASE13 ∈ (−0.18905,+∞)∧
∧ASE26 ∈ (+∞,−0.18935) +∞)] ⇒ [decision = violin]

Rules were used to classify unknown objects from the test set. All results
were obtained during classification of test sets only. Attributes of a new object
were discretized with required cuts, and then, all rules were applied. If more
that one rule was matching object, then the final decision was based on a voting
method. Test set and total test set accuracy measures are defined for the RSES
system as follows:

Ai{with D=d1} =
# of correctly classified obj.{with D=d1}

Total # of classified obj.{with D=d1} in the test set
(16)

– where Ai denotes Test Set Accuracy

Total T est Set Accuracy =
D∑

i=1

Ai · bi (17)

– where bi is the total # of classified objects{with D=d1} in the test set.
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The total test set classification accuracy was approximately 84%. The worst
results were obtained for bassoon and strings, instruments belonging to this
group were most often confused with each other. The best result obtained was
for an oboe.

In the next step a local discretization method was employed, and results ob-
tained are presented in Fig. 3 and Table 8. Over 27000 rules were induced in tests,
the principle of which was to classify a set of ten musical instruments. Rules of
the length equals 4 cover more than 12000 cases, rules of length equals 3 support
more than 7000 cases, and 5 – correspondingly, 6400 cases. Maximum length of
the induced rule (i.e. number of attributes in implication) is 7, minimum 2, the
average being 4 (Fig. 3). Results of the system classification employing MPEG-
7-based descriptors are given in Table 8. Denotations in Table 8 are as follows:
bassoon (BA), B flat clarinet (CL), oboe (OB), tenor trombone (TT), French
horn (FH), alto saxophone (AS), violin (VI), trumpet (TR), F flat tuba (TU),
cello (CE), Accuracy (Acc.), coverage (Cov). The total test set accuracy is ap-
prox. 88.4%. The best system performance was found for sound samples of a
tuba (98%).

Table 8. Effectiveness of the RSES system while testing MPEG-7 descriptors.

Mus. Instr. BA CL OB TT FH SA VI TR TU CE No. of obj. Acc. Cov

BA 160 6 6 1 2 1 0 2 8 0 186 0.86 1
CL 0 159 13 0 3 1 8 2 0 1 187 0.85 1
OB 0 5 147 1 0 0 10 1 0 0 164 0.895 1
TT 6 0 1 142 16 1 0 3 8 0 177 0.802 1
FH 5 0 1 11 133 2 0 0 11 0 163 0.816 1
SA 0 1 0 0 0 116 3 5 0 0 125 0.928 1
VI 1 3 12 1 0 2 167 3 0 4 193 0.865 1
TR 0 1 1 1 0 2 3 137 0 0 145 0.945 1
TU 0 0 0 2 0 1 0 0 145 0 148 0.98 1
CE 0 3 3 0 1 3 12 0 0 188 210 0.895 1

Another classification scheme included wavelet-based parameters into fea-
ture vectors. Data were again divided into 50%/50% training and test sets (1695
samples contained in each set). The length of rules generated was limited to 10,
in total 27321 rules were derived. The total test set accuracy was 89% (see Ta-
ble 9), thus comparing with results obtained for FVs containing MEPG-7-based
descriptors only, the system classification performance generally improved, how-
ever, not significantly. Denotations in Table 9 are the same as before. Table 9
represents the confusion matrix for the rough set classifier. Results for the com-
bined representation are given by the diagonal of Tab. 9 (number of sound cor-
rectly recognized). Other values denote the erroneous system answer made in
the recognition process. The classification accuracy for each musical instrument
class is also shown in this table. As seen from Table 9, the maximum number of
errors occurred again for French horn sounds, whereas the best identification was
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Fig. 3. Histogram of the rule length.

once more for tuba sounds. Overall, all results were better apart from the identi-
fication accuracy for French horn, which was lower than in the case while using
MPEG-7 descriptors, only. French horn sound samples were often confused with
trombone samples. This means that wavelet-based descriptors are not suitable
for discerning between French horn and trombone sound samples.

It is also interesting to apply the rough set-based system in the context of
feature vector redundancy search. As expected, reducts obtained in the anal-
ysis consist of a fraction of the whole feature vector (70 of 139 features). For
the MPEG-7-based descriptors the following 70 features were employed in the
analysis:

{KeyNum,Br, hev, LAT, TC, SC, SCv,HSC,HSCv,HSD,HSDv,HSS,
HSSv,HSV,HSV v,ASE1...5,7...9,11,13,17,19,21,24...28,31,33,34, ASEv2,7,11,16,17,19,
ASEv20,22,23,28,31...34, ASC,ASS,ASSv, SFM2,9,13,14,15,17,19,20,21,22,23,
SFMv4,6,14,18,23.

On the other hand, for the MPEG-7-and wavelet-based feature vectors, the
following attributes (8) were found as the most significant: {HSD, TC, E8,
KeyNum, SC, E5, ASE14 and Ec10} in the sense that they were the most
frequent descriptors used in rules.

Comparing with the Fisher analysis it may be said that many descriptors
used previously were also recognized by the RSES system as the significant ones.
However, in the rough set-based analysis a smaller number of descriptors were
eliminated from FVs, and this may be one of advantages of the rough system
over ANNs. In the case, when instruments that were not seen by the system are
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Table 9. Classification accuracy (local discretization method, 1695 samples in training
and testing).

Mus. Instr. BA CL OB TT FH SA VI TR TU CE No. of obj. Acc. Cov

BA 162 0 2 1 2 4 3 2 0 0 186 0.871 1
CL 0 168 12 0 0 1 1 3 2 0 187 0.898 1
OB 0 2 147 0 0 2 10 3 0 0 164 0.896 1
TT 4 0 1 146 12 3 0 2 8 1 177 0.825 1
FH 11 3 0 19 120 0 0 2 8 0 163 0.736 1
SA 0 0 1 0 0 118 1 4 0 1 125 0.944 1
VI 2 4 6 0 0 1 172 2 0 6 193 0.891 1
TR 0 0 0 1 0 6 0 138 0 0 145 0.952 1
TU 0 0 0 3 0 0 0 0 145 0 148 0.98 1
CE 0 3 1 0 0 4 11 0 0 191 210 0.91 1

tested, there is a better chance that this instrument is correctly recognized by
such a decision system.

After redundancy elimination in FVs, MPEG-7- and wavelet-based resulted
in 65 attributes that were used in the rule derivation. They are gathered in
Table 10, other descriptors were disregarded while creating a set of rules for this
classification task. For comparison, Table 11 provides most significant descriptors
indicated by Fisher analysis.

In another experiment the division ratio of training and test samples was 2 to
3 (2370 training samples and 1020 test samples). The analysis resulted in 34508
rules, and classification accuracy reached 91.93%. Table 12 provides a summary
of results obtained.

It was also decided that the experiment be extended to include 24 musical
instrument classes. They were as follows: alto trombone (1), altoflute (2), Bach
trumpet (3), bass clarinet (4), bass trombone (5), bassflute (6), bassoon (7),
Bb clarinet (8), C trumpet, (9), CB (10), cello (11), contrabass clarinet (12),
contrabassoon (13), Eb clarinet (14), English horn (15), flute (16), French horn
(17), oboe (18), piccolo (19), trombone (20), tuba (21), viola (22), violin (23),
violin ensemble (24) (see Table 13). Recognition effectiveness for the rough set-
based decision system is shown in Table 13. Most errors were due to similarity
in timbre of instruments, for example: such pairs of instruments as: clarinet and
bass clarinet, trombone and bass trombone, and also contrabass (CB) and cello
were often misclassified due to their timbre similarity. The worst results were
obtained for flute sound samples. This may signify that some descriptors which
were redundant for other instruments and were therefore skipped in the classi-
fication process are needed to be contained in FVs for flute sound samples. On
the other hand, some instruments such as piccolo, tuba and violin ensemble were
recognized perfectly (100% accuracy). In overall, in the case of 24 instruments
the system accuracy was equal to 0.78.

Results of musical instrument classification based on rough sets are very satis-
fying. The classification accuracy on an average is greater than 90% for a dozen of
instrument classes. It must be also stressed that the algorithm worked under very
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Table 10. Most significant attributes generated by the RSES system.

Num. Attribute Signif. Num. Attribute Signif. Num. Attribute Signif.

1 SC 0.321 11 ASSv 0.085 21 SFM19 0.060
2 TC 0.184 12 ASE17 0.071 22 ASE3 0.059
3 HSD 0.168 13 HSV v 0.071 23 ASE1 0.055
4 KeyNum 0.146 14 ASE19 0.070 24 ASEv22 0.055
5 LAT 0.131 15 ASE34 0.069 25 SFM23 0.054
6 Br 0.118 16 ASE2 0.068 26 HSV 0.054
7 hev 0.107 17 SFMv14 0.065 27 SFMv18 0.054
8 ASEv23 0.094 18 ASE4 0.064 28 ASE28 0.053
9 ASC 0.087 19 ASE33 0.062 29 ASE25 0.051
10 HSC 0.085 20 SFM21 0.062 30 ASEv16 0.051

Table 11. Most significant descriptors derived from Fisher analysis; FS – the average
value of the Fisher statistics of all instrument pairs.

No. Attr. Name FS No. Attr. Name FS No. Attr. Name FS

1 SFM16 21.34 11 SFM17 18.17 21 ASE5 14.38
2 SFM15 20.73 12 ASE26 18.06 22 KeyNum 13.99
3 ASC 20.30 13 SFM19 17.49 23 SFM13 13.81
4 ASE24 20.15 14 ASE27 17.32 24 ASE9 13.46
5 SFM14 19.32 15 ASE28 15.89 25 ASE4 13.20
6 SC 19.06 16 HSD 14.64 26 SFM20 13.19
7 HSC 19.02 17 ASE8 14.58 27 ASE29 12.90
8 ASE23 18.75 18 ASE22 14.57 28 SFM24 12.67
9 SFM18 18.65 19 ASE6 14.51 29 ASE21 12.57
10 ASE25 18.61 20 ASE7 14.41 30 SFM23 12.13

demanding conditions: audio samples originated from two different sources and
in most experiments only 50% of the samples were included in the training/test
sets. It should be also remembered that these classes contained sound samples
of differentiated articulation. Classification results are instrument-dependent. In-
struments having very similar timbre (e.g. tuba – trombone) or the same scale
range (e.g. trombone – bassoon) were most often confused with each other.

Also, results obtained are close to those acquired with artificial neural net-
works. However, a very essential feature of the rough set-based decision system
is that the system supplies the researcher with a set of transparent rules.

5 Musical Style Classification

Apart from the experiments regarding musical instrument sound classification,
an attempt to use parameters contained in the MPEG-7 standard for a musical
style classification was carried out. A set of 162 musical pieces was used in
the experiment. Each of them was categorized to be classical music, jazz or
rock. Approximately 15 one-second-long samples, starting one minute from the
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Table 12. Classification accuracy (local discretization method, 2370 training and 1020
test samples).

Musical Instrument No. of samples Accuracy

bassoon 112 0.964
B flat clarinet 112 0.938

oboe 99 0.889
tenor trombone 106 0.858

French horn 98 0.878
alto saxophone 75 0.907

violin 116 0.905
trumpet 87 0.92

F flat tuba 89 0.989
cello 126 0.944

Table 13. Recognition effectiveness for instruments based on rough sets.

No. 1 2 3 4 5 6 7 8 9 10 11 12

Eff. 0.67 0.71 0.88 0.57 0.5 0.83 0.88 0.8 0.88 0.79 0.81 0.83

No. 13 14 15 16 17 18 19 20 21 22 23 24

Eff. 0.75 0.63 0.88 0.44 0.74 0.75 1 0.59 1 0.87 0.81 1

beginning of a piece, were extracted from every piece, forming musical samples.
Randomly chosen eight samples from every piece were added to the training
set, depending on the classification algorithm; other samples were included in
the test set. Parameters contained in the MPEG-7 standard that are applicable
for such an analysis were included in the feature vector. Therefore, the feature
vector consisted of only Audio Spectrum Descriptors. Results of the musical style
classification are shown in Table 14. The results of musical style classification are
lower by approximately 10% than the results of musical instrument identification.
It is believed that an extension of the feature vector by the specialized parameters
describing rhythm would improve the classification effectiveness significantly.

Nearly the same effectiveness was obtained by both the neural network (ap-
prox. 80%) and the rough set-based classification system (82.43% and 81.37%).
In the latter case, global discretization was slightly better suited to classification
tasks than a local discretization method. It can be noticed that the difference
between the results obtained by these three algorithms is nearly negligible, how-
ever, results obtained are not yet satisfactory.

6 Conclusions

In the paper it is shown that it is possible to classify automatically musical
instrument sounds and a musical style on the basis of a limited number of pa-
rameters. In addition, it is noticed that some MPEG-7-based low-level audio
descriptors are better suited than others for the automatic musical sound classi-
fication. Parameters derived directly from the audio spectrum (i.e. Audio Spec-
trum Descriptors) seem to be the most significant ones in the recognition process.
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Table 14. Effectiveness of musical style classification.

Classification Style No. of samples No. of errors Effectiveness [%]
system

classical 412 57 86.2
Neural network jazz 505 99 80.4

rock 176 48 72.7

TOTAL 79.77

RSES classical 474 63 86.7
global jazz 573 147 74.3

discretization rock 306 42 86.3

Total 82.43

RSES classical 474 88 81.4
local jazz 573 141 75.4

discretization rock 306 39 87.3

TOTAL 81.37

Moreover, they are much more universal than Timbre Descriptors because they
may be used for the classification of musical signals of every type. Among Audio
Spectrum Descriptors, the simplest parameter seems to be the most important
one, such as for example Audio Spectrum Envelope descriptor which consists of
coefficients describing power spectrum density in the octave bands. It has also
been presented that combining the MPEG-7 and wavelet-based features has led,
in general, to better classification system performance. This is because each set
of features complemented the other, and the two combined covered both the
transient and steady state of the sounds being analyzed. These conclusions are
derived on the basis of experiments employing neural networks and rough sets as
decision systems. Both classifiers are adequate for identification tasks, however,
the rough set-based system gives information about tasks performed. This may
be the starting point for more deep analysis of attributes that should be used in
the description of musical signals and musical styles.

Rough Set classification is performing better than the ANN classification in
terms of accuracy, although, RS uses a larger number of attributes to achieve
good results. Smaller size of a feature vector means shorter analysis time, and
faster classification, but at the same time lower accuracy. More attributes may
also signify less sensitivity to any particular characteristics of musical instru-
ments.

Classification system performance for automatic identification of a musical
style is lower than for musical instrument classes, thus in such a case FVs should
be extended by some additional attributes. Therefore, there is a continuing need
for further work on the selection and effectiveness of parameters for the descrip-
tion of musical sounds, and audio signals in general.
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Abstract. Computational intelligence poses several possibilities in Bio-
informatics, particularly by generating low-cost, low-precision, good solu-
tions. Rough sets promise to open up an important dimension in this di-
rection. The present article surveys the role of artificial neural networks,
fuzzy sets and genetic algorithms, with particular emphasis on rough
sets, in Bioinformatics. Since the work entails processing huge amounts
of incomplete or ambiguous biological data, the knowledge reduction ca-
pability of rough sets, learning ability of neural networks, uncertainty
handling capacity of fuzzy sets and searching potential of genetic algo-
rithms are synergistically utilized.

Keywords: Rough sets, soft computing, biological data mining, pro-
teins, gene expression, artificial neural networks, genetic algorithms.

1 Introduction

Bioinformatics [1, 2] involves the application of computer technology to the
management of biological information, encompassing a study of the inherent
genetic information, underlying molecular structure, resulting biochemical func-
tions, and the exhibited phenotypic symptoms. One needs to decode, analyze
and interpret the vast amount of genetic data that are available. Biological data
mining is an emerging field of research and development for further progress in
this direction [3], involving tasks like classification, clustering, rule mining and
visualization.

Proteins constitute an important ingredient of living beings and are made
up of a sequence of amino acids. There can be a large number of 3D states
for a protein. The determination of an optimal conformation constitutes protein
folding. It is a highly complex process, providing enormous information on the
presence of active sites and possible drug interaction.

Proteins in different organisms, that are related to one another by evolution
from a common ancestor, are called homologues. This relationship can be recog-
nized by multiple sequence comparisons. Since the traditional dynamic program-
ming method for local alignment is too slow, Basic Local Alignment Search Tool
(BLAST) [4] is often found to be more efficient. BLAST is a heuristic method
to find the highest locally optimal alignments between a query sequence and a
database. Although BLAST does not allow the presence of gaps in between, its
extension Gapped BLAST [5] allows insertions and deletions to be introduced
into alignments. BLAST improves the overall speed of search while retaining
good sensitivity, by breaking the query and database sequences into fragments
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(words) and initially seeking matches between these fragments. An efficient ex-
tension to BLAST is Position-specific iterative BLAST (Psi-BLAST) [5], that
includes gaps while searching for distant homologies by building a profile (general
characteristics).

Unlike a genome, which provides only static sequence information, microarray
experiments produce gene expression patterns that provide dynamic information
about cell function. Gene expression data being typically high-dimensional, it
requires appropriate data mining strategies like clustering for further analysis.

In addition to the combinatorial approach, there also exists scope for com-
putational intelligence, especially for generating low-cost, low-precision, good
solutions. Soft computing is another terminology, often used in lieu of compu-
tational intelligence. It entails a consortium of methodologies that works syn-
ergistically and provides flexible information processing capability for handling
real life ambiguous situations [6]. The main constituents of computational intel-
ligence (soft computing), at this juncture, include fuzzy logic, neural networks,
genetic algorithms and rough sets.

Soft computing tools like artificial neural networks (ANNs), fuzzy sets, ge-
netic algorithms (GAs) and rough sets have been used for analyzing the different
genomic sequences, protein structures and folds, and gene expression microar-
rays [7]. Since the work involves processing huge amounts of incomplete or am-
biguous data, the knowledge reduction capability of rough sets, learning ability
of neural networks, uncertainty handling capacity of fuzzy sets and the search-
ing potential of genetic algorithms are utilized in this direction. We do not go
into the basics fuzzy sets, ANNs and GAs here, as these are widely available in
literature [6, 8, 9]. Rough sets are described briefly in Section 5.

In this article we provide a survey on the role of computational intelligence in
modeling various aspects of Bioinformatics involving genomic sequence, protein
structure and gene expression microarray. Major tasks of pattern recognition and
data mining, like clustering, classification and rule generation, are considered.
Section 2 introduces the relevant basics from biology. The different tools of soft
computing covered include artificial neural networks (ANNs), neuro-fuzzy com-
puting and genetic algorithms (GAs), with particular emphasis on rough sets.
These are described in Sections 3–5, categorized on the basis of their domain
and function. Finally, Section 6 concludes the article.

2 Preliminaries

In this section we provide a basic understanding of the protein structure, fold-
ing, and microarray data. The nucleus of a cell contains chromosomes that are
made up of the double helical deoxyribonucleic acid (DNA) molecules. The DNA
consists of two strands, consisting of a string of four nitrogenous bases, viz., ade-
nine (A), cytosine (C), guanine (G), thymine (T ). DNA in the human genome is
arranged into 24 distinct chromosomes. Each chromosome contains many genes,
the basic physical and functional units of heredity. However, genes comprise only
about 2% of the human genome; the remainder consists of noncoding regions,
whose functions may include providing chromosomal structural integrity and
regulating where, when, and in what quantity proteins are made.



136 Sushmita Mitra

The DNA is transcribed to produce messenger (m)-RNA, which is then trans-
lated to produce protein. The m-RNA is a single-stranded chain of ribose groups
(one for each base), which are linked together by phosphates. There exist ‘Pro-
moter ’ and ‘Termination’ sites in a gene, responsible for the initiation and ter-
mination of transcription. Translation consists of mapping from triplets (codons)
of four bases to the 20 amino acids building block of proteins.

A gene is primarily made up of sequence of triplets of the nucleotides (exons).
Introns (non coding sequence) may also be present within gene. The coding zone
indicates that it is a template for a protein. As an example, in the human genome
only 3%–5% of the sequence are used for coding, or constitute the gene. There
are sequences of nucleotides within the DNA that are spliced out progressively in
the process of transcription and translation. In brief, the DNA consists of three
types of non-coding sequences. These are (i) intergenic regions between genes
that are ignored during the process of transcription, (ii) intragenic (or introns)
regions within the genes that are spliced out from the transcribed RNA to yield
the building blocks of the genes, referred to as exons, and (iii) pseudogenes that
are transcribed into the RNA and stay there, without being translated, due to
the action of a nucleotide sequence.

An amino acid is an organic molecule consisting of an amine (NH) and a
carboxylic (CO) acid group (backbone), together with a side-chain (hydrogen
atom and residue R) that differentiates between them. Proteins are polypeptides,
formed within cells as a linear chain of amino acids. Chemical properties that
distinguish the 20 different amino acids cause the protein chains to fold up into
specific three-dimensional structures that define their particular functions in the
cell.

An alignment is a mutual arrangement of two or more sequences, that exhibits
where the sequences are similar and where they differ. An optimal alignment is
one that exhibits the most correspondence and the least difference. It is the
alignment with the highest score, but may or may not be biologically meaning-
ful. Basically there are two types of alignment methods, viz., global alignment
and local alignment. While global alignment maximizes the number of matches
between the sequences along the entire length of the sequence, local alignment
gives the highest score to a local match between a pair of sequences.

Given the primary structure of a protein, in terms of a linear sequence of
amino acids, folding attempts to predict its stable 3D structure. However, con-
sidering all interactions governed by the laws of physics and chemistry to predict
3D positions of different atoms in the protein molecule, a reasonably fast com-
puter would need one day to simulate 1 ns of folding.

The 2D secondary structure can involve an α helix (with the CO group of
the ith residue hydrogen (H)-bonded to the NH group of the (i + 4)th one)
or a β sheet (corrugated or hairpin structure) formed by the H-bonds between
the amino acids. The parts of the protein that are not characterized by any
regular H-bonding patterns are called random coils or turns. Fig. 1(a) depicts
the different secondary structures of proteins, generated using RasMol1.

1 http://www.umass.edu/microbio/rasmol/
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The tertiary structure refers to the 3D conformation of the protein, as il-
lustrated in Fig. 1(b). The objective is to determine the minimum energy state
for a polypeptide chain folding. The process of protein folding involves mini-
mization of an energy function, that is expressed in terms of several variables
like bond lengths, bond angles and torsional angles. The major factors affecting
folding include (i) hydrogen bonding, (ii) hydrophobic effect, (iii) electrostatic
interactions, (iv) Van der Waals’ forces, and (v) conformational entropy.

(a) (b)

Fig. 1. Protein structures: (a) 2D secondary, and (b) 3D tertiary.

Protein binding sites exhibit highly selective recognition of small organic
molecules, utilizing features like complex three-dimensional lock (active sites)
into which only specific keys (drug molecules or enzymes) will dock. Any solu-
tion to the docking problem requires a powerful search technique to explore the
conformation space available to the protein and ligand, along with a good un-
derstanding of the process of molecular recognition to devise scoring functions
for reliably predicting binding modes.

Reverse transcribed m-RNA or cDNA microarrays (gene arrays or gene chips)
[2] usually consist of thin glass or nylon substrates containing specific DNA
gene samples spotted in an array by a robotic printing device. This measures
the relative m-RNA abundance between two samples, which are labeled with
different fluorescent dyes viz. red and green. The m-RNA binds (hybridizes) with
cDNA probes on the array. The relative abundance of a spot or gene is measured
as the logarithmic ratio between the intensities of the dyes, and constitutes the
gene expression data.

The data contains a high level of noise due to experimental procedures. More-
over, the expression values of single genes demonstrate large biological variance
within tissue samples from the same class. Gene expression levels can be de-
termined for samples taken (i) at multiple time instants of a biological process
(different phases of cell division) or (ii) under various conditions (e.g., tumor
samples with different histopathological diagnosis). Each gene corresponds to a
high-dimensional row vector of its expression profile.

Microarrays provide a powerful basis to simultaneously monitor the expres-
sion of thousands of genes, in order to identify the complex mechanisms that
govern the activation and interaction of genes in an organism. Short DNA pat-
terns (or binding sites) near the genes serve as switches that control gene expres-
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sion. Therefore, similar patterns of expression correspond to similar binding site
patterns. A major cause of coexpression of genes is their sharing of the regula-
tion mechanism (coregulation) at the sequence level. Clustering of coexpressed
genes, into biologically meaningful groups, helps in inferring the biological role
of an unknown gene that is coexpressed with a known gene(s). Cluster valida-
tion is essential, from both the biological and statistical perspectives, in order to
biologically validate and objectively compare the results generated by different
clustering algorithms.

In the following four sections we highlight the role of computational intelli-
gence, viz., ANNs [10–14], GAs [15–18] and rough sets [19], in different areas of
Bioinformatics including genomic sequence prediction, protein structure predic-
tion and microarrays.

3 Artificial Neural Networks

The learning capability of ANNs, typically in data-rich environments, come in
handy when discovering regularities from large datasets. This can be unsuper-
vised as in clustering, or supervised as in classification. The connection weights
and topology of a trained ANN are often analyzed to generate a mine of mean-
ingful (comprehensible) information about the learned problem in the form of
rules.

Hybridization with fuzzy sets results in neuro-fuzzy computing encompasses
the generic and application-specific merits of ANNs and fuzzy sets. This enables
better uncertainty handling and rule generation in a more human-understandable
form.

3.1 Microarray

Each DNA array contains the measures of the level of expression many genes,
and distances are obtained from pairwise comparison of the patterns. Let
genej(ej1, . . . , ejn) denote the expression pattern for the jth gene. The Euclidean
distance between the jth and kth genes, computed as

dj,k =
√∑

i

(eji − eki)2, (1)

is suitable when the objective is to cluster genes displaying similar levels of ex-
pression. The Pearson correlation coefficient −1 ≤ r ≤ 1 measures the similarity
in trend between two profiles. The distance is given as

dj,k = (1− r) = 1−
∑

i((eji − êj)(eki − êk))/n
σej ∗ σek

, (2)

where êj and σej indicate the mean and standard deviation, respectively, of all
points of the jth profile.
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Kohonen’s Self Organizing Map (SOM) has been applied to the clustering
of gene expression data [20, 21]. It provides a robust and accurate approach to
the clustering of large and noisy data. SOMs require a selected node in the gene
expression space (along with its neighbors) to be rotated in the direction of a
selected gene expression profile (pattern). However, the predefinition of a two-
dimensional topology of nodes can often be a problem considering its biological
relevance.

The Self-Organizing Tree Algorithm (SOTA) [13] is a dynamic binary tree
that combines the characteristics of SOMs and divisive hierarchical clustering.
As in SOMs, the gene expression profiles are sequentially and iteratively pre-
sented at the terminal nodes, and the mapping of the node that is closest (along
with its neighboring nodes) is appropriately updated. Upon convergence, the
node containing the most variable (measured in terms of distance) population of
expression profiles is split into sister nodes, causing a growth of the binary tree.
Unlike conventional hierarchical clustering, SOTA is linear in complexity to the
number of profiles. The number of clusters need not be known in advance, as in
c-means clustering. The algorithm starts from the node having the most hetero-
geneous population of associated input gene profiles. A statistical procedure is
followed for terminating the growing of the tree, thereby eliminating the need
for an arbitrary choice of cutting level as in hierarchical models. However, no
validation is provided to establish the biological relevance.

Classification of acute leukemia, having highly similar appearance in gene ex-
pression data, has been made by combining a pair of classifiers trained with mu-
tually exclusive features [14]. Gene expression profiles were constructed from 72
patients having acute lymphoblastic leukemia (ALL) or acute myeloid leukemia
(AML), each constituting one sample of the DNA microarray2. Each pattern
consists of 7129 gene expressions. A neural network combines the outputs of the
multiple classifiers. Feature selection with nonoverlapping correlation (such as
Pearson and Spearman correlation coefficients) encourages the classifier ensem-
ble to learn different aspects of the training data in a wide solution space.

An evolving modular fuzzy neural network, involving dynamic structure
growing (and shrinking), adaptive online learning and knowledge discovery in
rule form, has been applied to the leukemia and colon cancer3 gene expres-
sion data [22]. Feature selection improves classification by reducing irrelevant
attributes that do not change their expression between classes. The Pearson cor-
relation coefficient is used to select genes that are highly correlated with the
tissue classes. Rule generation provides physicians, on whom the final responsi-
bility for any decision in the course of treatment rests, with a justification about
how a classifier arrived at a judgement. Fuzzy logic rules, extracted from the
trained network, handle the inherent noise in microarray data while offering the
knowledge in a human-understandable linguistic form. These rules point to genes
(or their combinations) that are strongly associated with specific types of cancer,
and may be used for the development of new tests and treatment discoveries.

2 http://www.genome.wi.mit.edu/MPR
3 http://microarray.princeton.edu/oncology
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3.2 Primary Genomic Sequence

Eukaryotic4 genes are typically organized as exons (coding regions) and introns
(non-coding regions). Hence the main task of gene identification, from the pri-
mary genomic sequence, involves coding region recognition and splice junction5

detection. Fig. 2 illustrates the exons and introns in genes.

Fig. 2. Parts of a DNA.

A multilayer perceptron (MLP), with backpropagation learning, was used to
identify exons in DNA sequences [23]. Thirteen input features used include se-
quence length, exonGC composition, Markov scores, splice site (donor/acceptor)
strength, surrounding intron character, etc., calculated within a fixed 99-nucleo-
tide sequence window and scaled to lie between 0 and 1. A single output indi-
cated whether a specific base, central to the said window, was either coding or
non-coding.

Prediction of the exact location of transcription initiation site has been inves-
tigated [24] in mammalian promoter regions, using MLP with different window
sizes of input sequence. MLPs were also employed to predict the translation ini-
tiation sites [25], with better results being generated for bigger windows on the
input sequence. Again, some of the limitations of MLPs, like convergence time
and local minima, need to be appropriately handled in all these cases.

Promoter regions, in DNA and RNA sequences, were classified by using a
knowledge-based ANN [26] that encodes and refines expert knowledge about
the domain. This was extended by incorporating GAs to search through the
topology space of neural net ensembles, for recognizing and predicting E. coli6

promoter sequences [27]. Biosequence classification of DNA, using the expec-
tation maximization algorithm7 in conjunction with ANN, has been developed
for recognizing E. coli promoters [28]. Binding sites are located on the DNA
sequence, followed by their alignment, feature selection (based on information
content) and feature representation using orthogonal encoding. These features
are provided as input to an ANN for promoter recognition.

Identification of important binding sites, in a peptide involved in pain and
depression, has been attempted [29] using feedforward ANNs. Rules in M -of-N
4 Organisms (except viruses, bacteria and algae, that are prokaryotic) having well-

developed subcellular compartments, including a discrete nucleus.
5 Splice junctions are positions at which, after primary transcription of the DNA into

RNA, the introns of a gene are excised to form edited m-RNA.
6 Escherichia coli is a bacterium.
7 An iterative refinement clustering algorithm that is model-based.
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form are extracted by detecting positions in the DNA sequence where changes in
the stereochemistry give rise to significant differences in the biological activity.
Browne et al. also predict splice site junctions in human DNA sequences, that
has a crucial impact on the performance of gene finding programs. Donor sites
are nearly always located immediately preceding a GT sequence, while acceptor
sites immediately follow an AG sequence. Hence GT and AG pairs within a DNA
sequence are markers for potential splice junction sites, and the objective is to
identify which of these sites correspond to real sites followed by prediction of
likely genes and gene products. The resulting rules are shown to be reasonably
accurate and roughly comparable to those obtained by an equivalent C5 decision
tree, while being simpler at the same time.

Rules were also generated from a pruned MLP [30], using a penalty func-
tion for weight elimination, to distinguish donor and acceptor sites in the splice
junctions from the remaining part of the input sequence. The pruned network
consisted of only 16 connection weights. A smaller network leads to better gen-
eralization capability as well as easier extraction of simpler rules. Ten rules were
finally obtained in terms of AG and GT pairs.

Kohonen’s SOM has been used for the analysis of protein sequences [31],
involving identification of protein families, aligned sequences and segments of
similar secondary structure, in a highly visual manner. Other applications of
SOM include prediction of cleavage sites in proteins [32] and prediction of beta-
turns [33]. Clustering of human protein sequences were investigated [34] with
a 15 × 15 SOM, and the performance was shown to be better than that using
statistical non-hierarchical clustering.

SOTA has been employed for clustering protein sequences [35] and amino
acids [36]. However, if the available training data is too small to be adequately
representative of the actual dataset then the performance of the SOM is likely
to get affected.

3.3 Protein Secondary Structure

A step on the way to a prediction of the full 3D structure of protein is predicting
the local conformation of the polypeptide chain, called the secondary structure.
The whole framework was pioneered by Chou and Fasmann [37]. They used a
statistical method, with the likelihood of each amino acid being one of the three
(alpha, beta, coil) secondary structures being estimated from known proteins.

Around 1988 the first attempts were made by Qian and Sejnowski [10], to use
MLP with backpropagation to predict protein secondary structure. Three output
nodes correspond to the three secondary structures. Performance is measured
in terms of overall correct classification Q (64.3%) and Matthews Correlation
Coefficient (MCC). We have

Q =
l∑

i=1

wiQi =
C

N
(3)

for an l-class problem, with Qi indicating the accuracy for the ith class, wi

being the corresponding normalizing factor, N representing the total number of
samples, and C being the total number of correct classifications.
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MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (4)

where TP , TN , FP and FN correspond to the number of true positive, true
negative, false positive and false negative classifications, respectively. Here N =
TP + TN + FP + FN and C = TP + TN , and −1 ≤ MCC ≤ +1 with +1
(-1) corresponding to a perfect (wrong) prediction. The values for MCC for the
α-helix, β-strand and random coil were found to be 0.41, 0.31, 0.41, respectively.

The performance of this method was improved by Rost and Sander [11],
by using a cascaded three-level network with multiple-sequence alignment. The
three levels correspond to a sequence-to-structure net, a structure-to-structure
net, and a jury (combined output) decision, respectively. Correct classification
increased to 70.8%, with the MCC being 0.60, 0.52, 0.51, respectively, for the
three secondary classes.

Prediction of protein secondary structure has been further developed by Riis
and Krogh [12], with ensembles of combining networks, for greater accuracy in
prediction. The Softmax method is used to provide simultaneous classification of
an input pattern into multiple classes. A normalizing function at the output layer
ensures that the three outputs always sum to one. A logarithmic likelihood cost
function is minimized, instead of the usual squared error. A window is selected
from all the single structure networks in the ensemble. The output is determined
for the central residue, with the prediction being chosen as the largest of the three
outputs normalized by Softmax.

The use of ensembles of small, customized subnetworks is found to improve
predictive accuracy. Customization involves incorporation of domain knowledge
into the subnetwork structure for improved performance and faster convergence.

Fig. 3. Secondary protein structure prediction using ensemble of ANNs.
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For example, the helix-network has a built-in period of three residues in its
connections in order to capture the characteristic periodic structure of helices.
Fig. 3 provides the schematic network structure. Overall accuracy increased to
71.3%, with the MCC becoming 0.59, 0.50, 0.41, respectively, for the three
secondary classes.

3.4 Protein Tertiary Structure

One of the earliest ANN-based protein tertiary structure prediction in the back-
bone [38] used MLP, with binary encoding for a 61-amino acid window at the
input. There were 33 output nodes corresponding to the three secondary struc-
tures, along with distance constraints between the central amino acid and its 30
preceding residues.

Interatomic Cα distances between amino acid pairs, at a given sequence sepa-
ration, were predicted [39] to be above (or below) a given threshold corresponding
to contact (or non-contact). The input consisted of two sequence windows, each
with 9 or 15 amino acids separated by different lengths of sequence, and a single
output indicated the contact (or non-contact) between the central amino acids
of the two sequence windows.

4 Genetic Algorithms

Protein structure prediction typically uses experimental information stored in
protein structural databases, like the Brookhaven National Laboratory Protein
Data Bank. A common approach is based on sequence alignment with struc-
turally known proteins. However, these techniques are likely to encounter diffi-
culties for proteins with completely new sequences. The experimental approach
involving X-ray crystallographic analysis and nuclear magnetic resonance (NMR)
are very expensive and time-consuming. GAs [9] offer innovative approaches in
overcoming these problems. In this section, we review the application of GAs to
different aspects of Bioinformatics.

4.1 Primary Genomic Sequence

The simultaneous alignment of many amino acid sequences is one of the major
research areas of Bioinformatics. Given a set of homologous sequences, multiple
alignments can help predict secondary or tertiary structures of new sequences.
GAs have been used for this purpose [40]. Fitness is measured by globally scoring
each alignment according to a chosen objective function, with better alignments
generating a higher fitness. The cost of multiple alignment Ac is expressed as

Ac =
N−1∑
i=1

N∑
j=1

Wi,jcost(Ai, Aj), (5)

where N is the number of sequences, Ai is the aligned sequence i, cost(Ai, Aj)
is the alignment score between two aligned sequences Ai and Aj , and Wi,j is the
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weight associated with that pair of sequences. The cost function includes the sum
of the substitution costs, as given by a substitution matrix, and the cost of inser-
tions/deletions using a model with affine gap (gap-opening and gap-extension)
penalties. Roulette wheel selection is carried out among the population of possi-
ble alignments, and insertion/deletion events in the sequences are modeled using
a gap insertion mutation operator.

Given N aligned sequences A1 . . . AN in a multiple alignment, with Ai,j being
the pairwise projection of sequences Ai and Aj , length(Ai,j) the number of
ungapped columns in this alignment, score(Ai,j) the overall consistency between
Ai,j and the corresponding pairwise alignment in the library, andW ′

i,j the weight
associated with this pairwise alignment, the fitness function was modified [41]
to

F =

∑N−1
i=1

∑N
j=1 W

′
i,j ∗ score(Ai,j)∑N−1

i=1

∑N
j=1 W

′
i,j ∗ length(Ai,j)

. (6)

The main difference with eqn. (5) is the library, that replaces the substitution
matrix and provides position-dependent means of evaluation.

4.2 Protein Tertiary Structure and Folding

Tertiary protein structure prediction and folding, using GAs, has been reported
in Ref. [15, 16]. The objective is to generate a set of native-like conformations
of a protein based on a force field, while minimizing a fitness function based on
potential energy. Proteins can be represented in terms of (a) three-dimensional
Cartesian coordinates of its atoms and (b) the torsional angle Rotamers, which
are encoded as bit strings for the GA. The Cartesian coordinates representation
has the advantage of being easily convertible to and from the 3D conformation
of a protein. Bond lengths, b, are specified in these terms. In the torsional angles
representation, the protein is described by a set of angles under the assumption
of constant standard binding geometries. The different angles involved are the

1. Bond angle θ,
2. Torsional angle φ, between N (amine group) and Cα,
3. angle ψ, between Cα and C′ (carboxyl group),
4. Peptide bond angle ω, between C′ and N , and
5. Side-chain dihedral angle χ.

The potential energy U(r1, . . . , rN ) between N atoms is minimized. It is
expressed as

U(r1, . . . , rN ) =
∑

i Kb(bi − bi0)
2 +

∑
i Kθ(θi − θi

0)
2 +

∑
i Kφ[1− cos(nφi − δ)]

+
∑

i,j
qiqj

4πε0εrrij
+
∑

i,j ε

[(
σij

rij

)12

− 2
(

σij

rij

)6
]
,

(7)
where the first three harmonic terms on the right-hand side involve the bond
length, bond angle, and torsional angle of covalent connectivity, with bi0 and θi

0

indicating the down-state (low energy) bond length and bond angle, respectively
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for the ith atom. The effects of hydrogen bonding and that of solvents (for
nonbonded atom pairs i, j, separated by at least four atoms) is taken care of by
the electrostatic Coulomb interaction and Van der Waals’ interaction, modeled
by the last two terms of the expression. Here Kb, Kθ, Kφ, σij and δ are constants,
qi and qj are the charges of atoms i and j, separated by distance rij , and ε
indicates the dielectric constant.

Additionally, a protein acquires a folded conformation favorable to the solvent
present. The calculation of the entropy difference between a folded and unfolded
state is based on the interactions between a protein and solvent pair. Since it is
not yet possible to routinely calculate an accurate model of these interactions,
an ad hoc pseudo-entropic term Epe is added to drive the protein to a globular
state. Epe is a function of its actual diameter, which is defined to be the largest
distance between a pair of Cα carbon atoms in a conformation. We have

Epe = 4(actual diameter−expected diameter) kcal/mol, (8)

where expected diameter/m = 8 ∗ 3
√
len/m is the diameter in its native con-

formation and len indicates the number of residues. This penalty term ensures
that extended conformations have larger energy (or lower fitness) values than
globular conformations. It constitutes the conformational entropy constituent of
potential energy, in addition to the factors involved in eqn. (7).

An active site structure determines the functionality of a protein. A ligand
(enzyme or drug) docks into an active site of a protein. Genetic Optimization for
Ligand Docking (GOLD) [17] is an automated ligand docking program. It evalu-
ates nonmatching bonds while minimizing the potential energy (fitness function),
defined in terms of Van der Waals’ internal and external (or ligand-site) energy,
torsional (or dihedral) energy, and hydrogen bonds. Each chromosome in GOLD
encodes the internal coordinates of both the ligand and active protein site, and
a mapping between the hydrogen-bonding sites. Reproduction operators include
crossover, mutation, and a migration operator to share genetic material between
populations. The output is the ligand and protein conformations, associated
with the fittest chromosome in the population, when the GA terminates. The
files handled are the Cambridge Crystallographic Database, Brookhaven PDB,
and the Rotamer library8.

4.3 Microarray
The identification of gene subsets for classifying two-class disease samples has
been modeled as a multiobjective evolutionary optimization problem [18], in-
volving minimization of gene subset size to achieve reliable and accurate clas-
sification based on their expression levels. The Non-Dominated Sorting GA
(NSGA-II) [42], a multiobjective GA, is used for the purpose. This employs
elitist selection and an explicit diversity preserving mechanism, and emphasizes
the non-dominated solutions. It has been shown that this algorithm can con-
verge to the global Pareto front, while simultaneously maintaining the diversity
of population. The main steps of NSGA-II are as follows.
8 Provides the relationship between side-chain dihedral angles and backbone confor-

mation.
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1. Initialize the population.
2. Calculate the fitness.
3. Rank the population using the dominance criteria.
4. Calculate the crowding distance.
5. Do selection using crowding selection operator.
6. Do crossover and mutation to generate children population.
7. Combine parent and children population, and do non-dominated sorting.
8. Replace the parent population by the best members of the combined popu-

lation.
Initially, members of lower fronts replace the parent population. When it is
not possible to accommodate all the members of a particular front, then that
front is sorted according to the crowding distance. Then as many individu-
als are selected on the basis of higher crowding distance, which makes the
population of new parent population same as the old one.

Results are provided on three cancer samples, viz., Leukemia, Lymphoma9

and Colon. An l-bit binary string, where l is the number of selected (filtered)
genes in the disease samples, represents a solution. The major difficulties faced in
solving the optimization problem include the availability of only a few samples as
compared to the number of genes in each sample, and the resultant huge search
space of solutions. Moreover many of the genes are redundant to the classification
decision, and hence need to be eliminated. The three objectives minimized are
(i) the gene subset size, (ii) number of misclassifications in training, and (iii)
number of misclassifications in test samples.

5 Rough Sets

The theory of rough sets [43, 44] is a major mathematical tool for managing un-
certainty that arises from granularity in the domain of discourse – that is, from
the indiscernibility between objects in a set. The intention is to approximate a
rough (imprecise) concept in the domain of discourse by a pair of exact concepts,
called the lower and upper approximations. The lower approximation is the set
of objects definitely belonging to the vague concept, whereas the upper approx-
imation is the set of objects possibly belonging to the same. Figure 4 provides a
schematic diagram of a rough set [7].

A basic issue related to many practical applications of knowledge databases
is whether the whole set of attributes in a given information system is always
necessary to define a given partition of the universe. Many of the attributes
are superfluous, i.e., we can have ‘optimal’ subsets of attributes which define
the same partition as the whole set of attributes. These subsets are called the
reducts in rough set theory [43], and correspond to the minimal feature set that
are sufficient to represent a decision.

Rough sets have been applied mainly to microarray gene expression data, in
mining tasks like classification [45, 46] and clustering [19]. These are described
in this section.
9 http://llmpp.nih.gov/lymphoma/data/figure1/figure1.cdt
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Fig. 4. Lower and upper approximations in a rough set.

5.1 Clustering

In the rough c-means clustering algorithm, the concept of c-means is extended
by viewing each cluster as an interval or rough set [47]. A rough set Y is char-
acterized by its lower and upper approximations BY and BY respectively. This
permits overlaps between clusters. Here an object Xk can be part of at most one
lower approximation. If Xk ∈ BY of cluster Y , then simultaneously Xk ∈ BY .
If Xk is not a part of any lower approximation, then it belongs to two or more
upper approximations.

The centroid mi of cluster Ui is computed as

mi =

⎧⎪⎨
⎪⎩
wlow

∑
Xk∈BUi

Xk

|BUi| + wup

∑
Xk∈(BUi−BUi

)Xk

|BUi−BUi| if BUi −BUi 
= ∅

wlow

∑
Xk∈BUi

Xk

|BUi| otherwise,
(9)

where the parameters wlow and wup correspond to the relative importance of the
lower and upper approximations respectively. Here |BUi| indicates the number
of pattern points in the lower approximation of cluster Ui, while |BUi −BUi| is
the number of elements in the rough boundary lying between the two approx-
imations. It is to be noted that a major disadvantage of this algorithm is the
involvement of too many user-defined parameters.

An evolutionary rough c-means clustering algorithm has been applied to
microarray gene expression data [19]. Rough sets are used to model the clusters
in terms of upper and lower approximations. GAs are used to determine the
optimal values of the parameters wlow and threshold for each c (number of
clusters). Each parameter is encoded using ten bits in a chromosome. The value
of the corresponding Davies-Bouldin index is chosen as the fitness function to
be minimized while arriving at an optimal partitioning. Crossover and mutation
probabilities of pc = 0.8 and pm = 0.02 were selected for a population size of 20
chromosomes.

The Davies-Bouldin index is a function of the ratio of the sum of within-
cluster distance to between-cluster separation. The optimal clustering, for c = c0,
minimizes
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1
c

c∑
k=1

max
l =k

{
S(Uk) + S(Ul)

d(Uk, Ul)

}
, (10)

for 1 ≤ k, l ≤ c. In this process, the within-cluster distance S(Uk) is minimized
and the between-cluster separation d(Uk, Ul) is maximized. The distance can be
chosen as the traditional Euclidean metric for numeric features.

The parameter threshold measures the relative distance of an object Xk from
a pair of clusters having centroids mi and mj. The larger the value of threshold,
the more likely is Xk to lie within the rough boundary (between upper and
lower approximations) of a cluster. This implies that only those points which
definitely belong to a cluster (lie close to the centroid) occur within the lower
approximation. A small value of threshold implies a relaxation of this criterion,
such that more patterns are allowed to belong to any of the lower approximations.

The parameter wlow controls the importance of the objects lying within the
lower approximation of a cluster in determining its centroid. A lowerwlow implies
a higher wup, and hence an increased importance of patterns located in the rough
boundary of a cluster towards the positioning of its centroid. It is observed that
the performance of the algorithm is dependent on the choice of wlow , wup and
threshold. We allowed wup = 1−wlow, 0.5 < wlow < 1 and 0 < threshold < 0.5.

The main steps of the algorithm are provided below.

1. Choose the initial means mi for the c clusters.
2. Initialize the population of chromosomes encoding parameters threshold and

relative importance factor wlow.
3. Tune the parameters by minimizing the Davies-Bouldin index [eqn. (10)] as

the fitness function for the GA, considering objects lying within the lower
approximation of each cluster.

4. Assign each data object (pattern point) Xk to the lower approximation |BUi|
or upper approximation |BUi| of cluster Ui, by computing the difference in
its distance d(Xk,mi)− d(Xk,mj) from cluster centroid pairs mi and mj.

5. If the minimal distance pair d(Xk,mi)− d(Xk,mj) is less than threshold
then Xk ∈ BUi and Xk ∈ BUj and Xk cannot be a member of any

lower approximation,
else Xk ∈ BUi such that distance d(Xk,mi) is minimum over the c

clusters.
6. Compute new mean for each cluster Ui using eqn. (9).
7. Repeat Steps 3)-6) until convergence.

It was found that the algorithm performed particularly well over the Colon
cancer gene expression data, involving a collection of 62 measurements from
colon biopsy (22 normal and 40 colon cancer samples) with 2000 genes (features).

Gene expression data typically consists of a small number of samples with
very large number of features, of which many are redundant. We first did some
initial clustering on the expression values, to detect those genes that were highly
coexpressed (or correlated) in either of the two output cases. In this manner, we
selected 29 out of the existing 2000 genes for further processing. This was followed
by clustering on the samples. The optimum values of parameters generated by the
evolutionary rough c-means algorithm was wlow = 0.92 and threshold = 0.39.
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5.2 Classification
Classification rules (in If–Then form) have been extracted from microarray
data [45], using rough sets with supervised learning. The underlying assump-
tion is that the associated genes are organized in an ontology, involving super-
and sub-classes. This biological knowledge is utilized while generating rules in
terms of the minimal characteristic features (reducts) of temporal gene expres-
sion profiles. A rule is said to cover a gene if the gene satisfies the conditional
part, expressed as a conjunction of attribute-value pairs. The rules do not dis-
criminate between the super-and sub-classes of the ontology, while retaining as
much detail about the predictions without losing precision.

Gastric tumor classification in microarray data is made using rough set based
learning [46], implemented with ROSETTA involving genetic algorithms and dy-
namic reducts [48]. The fitness function incorporates measures involving the clas-
sification performance (discernibility) along with the size of the reduct. Thereby
precedence is provided to solutions having less number of attributes. A major
problem with microarray data being the smaller number of objects with a com-
paratively larger number of attributes, a preprocessing stage of feature selection
based on bootstrapping is made. In the absence of appropriate feature selection,
one may however end up with thousands of reducts that are simply artifacts of
the data having neither satisfactory prediction performance nor effective gen-
eralization ability. The dataset consists of 2504 human genes corresponding to
the conditional attributes, while the 17 tumor types are clubbed as six different
clinical parameters or the decision attributes.

6 Conclusions and Discussion

Bioinformatics is a new area of science where a combination of statistics, molec-
ular biology, and computational methods is used for analyzing and processing
biological information like gene, DNA, RNA, and proteins. Proteins play a very
important role in Bioinformatics. Improper folding of protein structure is re-
sponsible for causing many diseases. Therefore, accurate structure prediction of
proteins is an important area of study. Microarrays, sequenced genomes, and
the explosion of Bioinformatics research have led to astonishing progress in our
understanding of molecular biology. With the availability of huge volume of high-
dimensional data, it holds ample promise for the emergent field of biological data
mining.

Soft computing tools, like ANNs, GAs and rough sets, have been used for
analyzing the different protein sequences, structures and folds, as well as microar-
rays. Since the work entails processing huge amounts of incomplete or ambiguous
data, the learning ability of neural networks, uncertainty handling capacity of
rough sets, and the searching potential of GAs are utilized in this direction.

We have provided, in this article, a structured review on the role of com-
putational intelligence in different aspects of Bioinformatics, mainly involving
pattern recognition and data mining tasks. It is categorized based on the tool
used, the domain of operation, and the function modeled. Protein structures
have been considered at the primary, secondary and tertiary levels. Microarray
data, involving gene expressions, has been dealt with separately.
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The treatment of behavior patterns as organs
has not merely removed obstacles to analysis,
it has also positively facilitated causal analysis.

–N. Tinbergen, 1963.

Abstract. This article introduces an ethological approach to evaluat-
ing biologically-inspired collective behavior in intelligent systems. This
is made possible by considering ethology (ways to explain agent behav-
ior) in the context of approximation spaces. The aims and methods of
ethology in the study of the behavior of biological organisms were intro-
duced by Niko Tinbergen in 1963. The rough set approach introduced
by Zdzis�law Pawlak provides a ground for concluding to what degree a
particular behavior for an intelligent system is a part of a set of behav-
iors representing a norm or standard. A rough set approach to ethology
in studying the behavior of cooperating agents is introduced. Approx-
imation spaces are used to derive action-based reference rewards for a
swarm. Three different approaches to projecting rewards are considered
as a part of a study of learning in real-time by a swarm. The contribu-
tion of this article is the introduction of an approach to rewarding swarm
behavior in the context of an approximation space.

Keywords: Approximation space, behavior, ethology, intelligent sys-
tems, learning, rough sets, swarm.

1 Introduction

This paper introduces a biologically-inspired approach to observing the collective
behavior of intelligent systems, which is part of growing research concerning intel-
ligent systems in the context of rough sets (see,e.g., [16, 19], [25, 26, 29], [32–36],
[52–54]) with particular emphasis on approximation spaces. Considerable work
has been done on approximation spaces ([26, 32–35], [36, 44, 48, 51–53, 56, 58–
60, 64]) based on generalized approximation spaces introduced in [52, 53]). This
work on approximation spaces is an outgrowth of the original approximation
space definition in [26]. Approximation spaces constructed relative to patterns
gleaned from observations of the behavior of cooperating agents (e.g., swarm-
ing by bots [3, 5, 15, 36]) provide gateways to knowledge about how intelligent
systems learn. An agent itself is something that has observable behavior. There
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is growing interest in biology as a source of paradigms useful in the study of
intelligent systems (see, e.g., [2, 3, 5, 7–9, 15, 36, 70]). For example, a number
of the features of swarm behavior can be identified with methods used by ethol-
ogists in the study of the behavior of biological organisms [4, 12–14, 67, 68].
One can consider, for instance, the survival value of a response to a proximate
cause (stimulus) at the onset of a behavior by an agent interacting with its en-
vironment as well as cooperating with other agents in an intelligent system. In
addition, at any instance in time, behavior ontogeny (origin and development
of a behavior) and behavior growth (short term evolution) can be considered as
means of obtaining a better understanding of the interactions between agents
and the environment in a complex system. In the study of swarm behavior, it is
necessary for a swarm to choose its next action based on a projected reward if
an action is chosen. Three different approaches to projecting rewards for swarm
actions are considered in this article as part of a study of learning in real-time
by a swarm. First, a projected action-reward based on the average number of
times a swarm enters a state where it has sufficient energy (its high state) is
considered. For each proximate cause, there is usually more than one possible
response. Swarm actions with higher rewards tend to be favored. Second, two
forms of projected action rewards that depend on what is known as reference
rewards are considered. One form of reference reward is an average of all recent
rewards independent of the actions chosen (see, e.g., [66]). The second form of
reference reward is derived in the context of an approximation space. This form
of reference reward is pattern-based and action-specific. Each action has its own
reference reward which is computed within an approximation space that makes it
possible to measure the closeness of action-based blocks of equivalent behaviors
to a standard. The contribution of this article is the introduction of an approach
to rewarding swarm behavior in the context of an approximation space. This
paper has the following organization. Basic concepts from rough sets are briefly
presented in Sect. 2. A distinction between universes containing models of behav-
ior and universes of behaviors is also given in Sect. 2. An ethological perspective
on intelligent system behavior is given in Sect. 3. A concise overview of approxi-
mation spaces is presented in Sect. 4. A testbed for studying swarmbot behavior
is introduced in Sect. 5. A sample structure for what is known as an ethogram
viewed in the context of an approximation space is considered in Sect. 6. Ap-
proximation space-based rewards are introduced in Sect. 7. Reflections on an
ontology of behavior and hierarchical learning are given in Sect. 8.

2 Basic Concepts: Rough Sets

This section briefly presents some fundamental concepts in rough set theory
that provide a foundation for projecting rewards for actions by collections of
cooperating agents. This section also introduces a distinction between two types
of universes that are relevant to the study of the collective behavior in intelli-
gent systems. The rough set approach introduced by Zdzis�law Pawlak [20] and
elaborated in [21–31] provides a ground for concluding to what degree a set of
equivalent behaviors are a part of a set of behaviors representing a standard.
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For computational reasons, a syntactic representation of knowledge is pro-
vided by rough sets in the form of data tables. Informally, a data table is rep-
resented as a collection of rows each labeled with some form of input, and each
column is labeled with the name of an attribute (feature) that computes a value
using the row input. Traditionally, row labels have been used to identify a sample
element commonly called an object (see, e.g., [26]) belonging to some universe
(e.g., states, processes, entities like animals, persons, and machines). In this
work, the term sample element (i.e., member of a population) is used instead
of object because we want to consider universes with elements that are either
models of behavior or behaviors themselves observed in real-time. This distinc-
tion is explained later in this section. Formally, a data (information) table IS is
represented by a pair (U , A), where U is a non-empty, finite set of elements and
A is a non-empty, finite set of attributes (features), where a : U −→ Va for every
a ∈ A. For eachB ⊆ A, there is associated an equivalence relation IndIS(B) such
that IndIS(B) =

{
(x, x′) ∈ U2|∀a ∈ B.a(x) = a(x′)

}
. Let U/IndIS(B) denote a

partition of U , and let B(x) denote a set of B-indiscernible elements containing
x. B(x) is called a block, which is in the partition U/IndIS(B). For X ⊆ U , the
sample X can be approximated from information contained in B by constructing
a B-lower and B-upper approximation denoted by B∗X and B∗X , respectively,
where B∗X= {x ∈ U |B(x) ⊆ X} and B∗X = {x ∈ U |B(x) ∩ X 
= ∅}. The
B-lower approximation B∗X is a collection of sample elements that can be clas-
sified with full certainty as members of X using the knowledge represented by
attributes in B. By contrast, the B-upper approximation B∗X is a collection
of sample elements representing both certain and possible uncertain knowledge
about X . Whenever B∗X is a proper subset of B∗X , i.e., B∗X ⊂ B∗X , the
sample X has been classified imperfectly, and is considered a rough set [59].

2.1 Universes Containing Models of Behavior

In this section, we briefly consider universes containing models of behavior. A
model is high-level description of something such as a system, process or be-
havior. A model of behavior is a set containing interacting objects that define
the behavior of an agent. The term behavior in this work refers to the way an
agent responds to a stimulus that results in a change of state. Sets of interact-
ing objects are represented by what are known as collaboration diagrams (see,
e.g., [11, 18]). This sense of the term of object differs from the term commonly
used in rough set theory. In the context of a model of behavior, an object is
an instance of a type or class. For example, let X ∈ U , where X represents a
sample model of behavior and U is a collection of such models. This view of the
world befits the case where the behavior models belonging to U can be spliced
together to form a complex model of system behavior. In this sense, X ∈ U is a
higher-order object in the sense that each X is an instance of a type of model.
Consider, for example, a model of behavior for a physical system such as an
autobot (see Fig. 1).

Such a model of behavior would include objects of type Receiver (for re-
ceiving messages), Auto (for monitoring incoming messages and sensor measure-
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Fig. 1. Partial Collaboration Diagram for an AutoBot.

ments), Command (for communicating action requests), AR (for approximate
reasoning). The AR object periodically derives pattern-based reference rewards
during on-line learning. The ApproximationSpace interface prescribes methods
(e.g., lower for a lower approximation, upper for an upper approximation, include
for rough inclusion) that are implemented in the AR. The interaction between
objects that constitutes the behavior of an agent is defined by exchanges of mes-
sages, where a message sent by one object to another object plays the role of
a stimulus at an instant in time and closely resembles what Tinbergen calls a
proximate cause [67]. In the social behavior of animals, for example, a proximate
cause is some stimulus observed very close in time to an observed action by
something (e.g., collision-avoidance by a starling that is part of a flock of star-
lings spiraling overhead [68], which is a common occurrence during feeding time
at the bird sanctuary in Singapore). The response by an object that receives a
message will be some observable action. Internal actions by an object are not
observable.

For simplicity, consider, for example, the case of an AutoBot with a behavior
partially represented by four objects spread across two components (see Fig. 1).
The partial collaboration diagram for an AutoBot agent in Fig. 1 exhibits some
of the possible messages between four objects. The notation “rescue : Auto” in
Fig. 1 specifies that an object named “rescue” is an instance of an Auto type.
The notation 1.1 [. . .] : wait(k) in Fig. 1 specifies a message that repeatedly stim-
ulates a clientOfTxr (i.e., client of a transmitter) object of type Receiver. The
clientOfTxr object has been designed to receive messages from a transmitter
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Fig. 2. Collaboration Diagram with Interacting Objects for an Autobot.

object in a wireless network. A link between a pair of objects describes a com-
munication channel that makes message-passing between the objects possible.
The diagram in Fig. 2 is a expansion of the model of behavior shown in Fig. 1.
The object of type Command in Fig. 2 is linked to a state pattern (collections
of objects representing state-action combinations). Two objects in a state pat-
tern for a bot are shown in Fig. 2, namely, high and low of type LowState and
HighState, respectively. An agent is in a high state, if its battery has sufficient
charge for required actions. Otherwise an agent is in a low state. The heavy line
in the diagram in Fig. 2 highlights a link between the object named high and the
object named drive, which illustrates a possible interaction (exchange of mes-
sages) between two objects. The object named high in Fig. 2 passes a copy of
itself when it instantiates the drive object in message 4.1. Then the high object
stimulates the drive object with a d.move( ). The drive object responds to the
high object with a h.result(...) message numbered 5.1, provided the action re-
ward r is greater than threshold th (see, e.g., condition [r > th] for message 5.1).
In this work, the magnitude of reward r is a measure of survivability. Implicit in
the behavior modeled in Fig. 2 is a characterization of an an autobot that learns
based on action-rewards. A detailed explanation of models of behavior viewed
in the context of intelligent system models is given in [32, 34, 36].
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2.2 Universes Containing Behaviors

Intuitively, a behavior is the way an agent responds to a stimulus. Formally, the
term behavior denotes the observable effects of a sequence of events in the form
of observed stimulation of one or more entities (e.g., arrival of a message received
by an agent) and observed action-response during an interaction. A behavior x =
(pct, at) is a tuple containing an observed action at in response to a proximate
cause pct at time t. An interaction in a behavior can be viewed on different
levels (see, e.g., [36]). On an object level, an interaction between pairs of objects
is an exchange of messages (stimuli) and actions (responses) with identifiable
features. On an agent level, an interaction is the result of a collaboration between
collections of objects. Each observable agent is an instance of a type (a member
of a species of agents) and can be viewed as a composite object. On the collective
agent level, an interaction is an exchange of messages between cooperating agents
and concerted actions in response (“swarming”). Each collection of cooperating
agents is an instance of a type (a member of a species of society) and is, in effect,
a higher-level, very complex object. Notice, again, that behavior at each level
(object, agent, and swarm), has identifiable features (see, e.g., [36]). A record of
an observed behavior is a tabulation of feature values in what is known as an
ethogram.

Behavior is best understood in the context of a collaboration between enti-
ties in real-time. An entity in real-time belonging to a collaboration is a part of
a realization of a model of behavior for either an individual agent (e.g., a bot)
or for a collection of agents (e.g., cooperating bots in a swarm). Consider, for
example, the realization in real-time of the behavior of an agent described by the
collaboration diagram in Fig. 2. Notice that three message labeled 4.1 are sent
concurrently by the object of type HighState. In real-time, one might observe a
response (some action such as movement in some direction or change in speed,
color or shape) from any or all of the three stimulated objects. In an environment
where there is a certain amount of unpredictability (e.g., selection of the best
camera angle needed to inspect some structure or the best angle needed to turn
left or right to navigate around an obstacle), an observed behavior resulting from
the implementation of a model of behavior for an agent engaged in learning in
real-time may not conform to what a designer expects. In such an environment,
an agent that learns in real-time considers action probability, action preference,
and action reward, and the choice between two or more possible actions by an
agent is not always clear, if one considers the results of recent actions. Similarly,
a swarm that learns in real-time considers action probabilities, action preferences
and action rewards as a guide in choosing an action in response to a stimulus.
If one considers the collective behavior of cooperating agents (swarm), then the
choice of actions by a swarm is influenced by actions that improve the surviv-
ability of the swarm (sustaining cooperation). The choice of the next action by
a swarm is not always clear, and can vary from one situation to the next. It is
this variability in observed behavior that motivates the consideration of what
are known as ethograms in the context of rough sets.



Rough Ethology: Towards a Biologically-Inspired Study 159

3 Intelligent System Behavior:
An Ethological Perspective

In a hierarchical model of the behavior of an intelligent system, features can be
identified for each layer of the hierarchy (see, e.g., [26]). A number of features of
the behavior of an agent in an intelligent system can be discovered with etholog-
ical methods. Ethology is the study of the behavior and interactions of animals
(see, e.g., [4, 12–14, 67, 68]). The biological study of behavior provides a rich
source of features useful in modeling and designing intelligent systems in general
(see, e.g., [36]). It has been observed that animal behavior has patterns with a bi-
ological purpose and that these behavioral patterns have evolved. Similarly, pat-
terns of behavior can be observed in various forms of intelligent systems, which
respond to external stimuli and which evolve. In the search for features of intelli-
gent system behavior, one might ask Why does a system behave the way it does?
Tinbergen’s four whys [67] are helpful in the discovery of some of the features in
the behavior of intelligent systems, namely, (1) proximate cause (stimulus), (2)
action response together with survival value, (3) recent behavior growth (evo-
lution over short periods of time), and (4) behavior ontogeny (origin of current
behavior).

A proximate cause (e.g., excitation, recognized pattern, arrival of a message)
triggers a behavior occurring currently. The survival value of a behavior corre-
lates with proximate cause. A principal proximate cause for a behavior is the
availability of sufficient energy to sustain the life of an organism. In this work,
behavior growth gt at time t is measured using two reference values, namely,
r̄t−1 (average reward) and l̄t−1 (average number of times a bot or a swarm
enters a low state) at time t -1. Being in a high state is necessary for survival.
Hence, it is reasonable to associate gt with the frequency that a swarm is in a
high state. A decline in growth level (i.e., bot population decline) serves as an
indicator of a deterioration in a behavior (e.g., a bot failing to recharge its bat-
tery when its energy level is low, where low energy level defines a pattern that
is part of a recovery strategy in the behavior of a bot). Behavior ontogeny (ori-
gin of a behavior) is associated with the action that has the highest frequency.
The assumption made here is that a predominant action will have the greatest
influence on the currect behavior.

4 Approximation Spaces

The classical definition of an approximation space given by Zdzis�law Pawlak
in [25] is represented as a pair (U , Ind), where the Indiscernibility relation
Ind is defined on a universe of objects U . As a result, any subset X of U has
an approximate characterization in an approximation space [64]. A generalized
approximation space was introduced by Skowron and Stepaniuk in [52, 53]. A
generalized approximation space is a system GAS = ( U , I, ν ) where

• U is a non-empty set of objects, and P(U) is the powerset of U .
• I : U → P(U) is an uncertainty function.
• ν : P(U) x P(U) → [0, 1] denotes rough inclusion
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The uncertainty function I defines a neighborhood of every sample element x
belonging to the universe U . That is, I(x) can be interpreted as a neighborhood
of x (see,e.g., [41]). The neighborhood of a sample element x can be defined using
the indiscernibility relation Ind, where I(x) = [x]Ind. The sets computed with
the uncertainty function I(x) can be used to define a covering of U [46]. The
rough inclusion function ν computes the degree of overlap between two subsets
of U. Let P(U) denote the powerset of U . In general, rough inclusion ν : P(U) x
P(U) → [0, 1] can be defined in terms of the relationship between two sets where

ν(X,Y ) =

{
|X∩Y |
|Y | , if Y 
= ∅
1 , otherwise

for any X , Y ⊆ U . In the case where X ⊆ Y , then ν(X , Y ) = 1. The minimum
inclusion value ν(X , Y ) = 0 is obtained when X ∩ Y = ∅ (i.e., X and Y have
no elements in common). In a hierarchical model of an intelligent system, one
or more approximation spaces would be associated with each layer [36], which
is related to recent research on layered learning (see,e.g., [16, 65]), information
granulation (see,e.g., [57, 61]) and informorphisms (see,e.g., [58]).

4.1 Example: Approximation Space for a Swarmbot

To set up an approximation space for a swarmbot, let DTsbot = (Ubeh, A, {d})
be a decision system, where Ubeh is a non-empty set of behaviors, A is a set
of swarmbot behavior features, and d is a distinguished attribute representing
a decision. Assume that IB : Ubeh → P(Ubeh) is an uncertainty function that
computes a subset of Ubeh relative to parameterB (subset of attributes in A). For
example, IB(x) for x ∈ Ubeh, B ⊆ A can be used to compute B∗D of D ⊆ Ubeh.
Further, let B∗D represent a standard for swarmbot behaviors, and let Ba(x)
be a block in the partition of Ubeh containing x relative to action a (i.e., Ba(x)
contains behaviors for a particular action a that are equivalent to x). The block
Ba(x) is defined in (1).

Ba(x) = {y ∈ Ubeh : xInd (B ∪ {a}) y} (1)

Then we can measure the closeness of Ba(x) to B∗D as in (2):

νB(Ba(x), B∗D) =
|Ba(x) ∩B∗D|

|B∗D| (2)

B∗D represents certain knowledge about the behaviors in D. For this reason,
B∗D provides a useful behavior standard or behavior norm in gaining knowledge
about the proximity of behaviors to what is considered normal. The term normal
applied to a set of behaviors denotes forms of behavior that have been accepted.
The introduction of some form of behavior standard makes it possible to measure
the closeness of blocks of equivalent action-specific behaviors to those behaviors
that are part of a standard.
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5 Swarmbot Behavior Testbed

This section gives an overview of a testbed for studying the behavior of individual
bots as well as the collective behavior of cooperating bots (called swarmbot or
sbot). A bot such as the one shown in Fig. 31 that has been designed to crawl
along powerlines during inspection of various structures (e.g., towers, conductors,
vibration dampers, insulators) is given in this section. Cooperating bots form
swarms for various reasons (e.g., obstacle navigation, inspection, security, and
acquiring energy) as illustrated in Fig. 41.

Fig. 3. Inspection bot.

The swarmbot paradigm has been chosen because it leads to a simplified
design of individual bots. A snapshot showing part of a sample swarmbot testbed
run is shown in Fig. 5. To facilitate the study of swarm behavior, the current
version of the testbed generates ethograms that make it possible track learning
by an sbot. The obstacle navigation and inspection capabilities are the result of
cooperation between a number of bots. The cooperative behavior of a collection
of bots working together give the bots the appearance of a super individual.

Various forms of on-line and off-line learning are commonly found in what
is known as layered learning are currently being considered in the design of the
testbed. On-line learning occurs in real-time during the operation of cooperating
bots. For example, the survivability feature provides a basis for a form of on-line
reinforcement learning in a swarmbot (i.e., as a result of exchange of information
between bots in a swarmbot, the swarmbot learns to improve its survivability).
The design of the swarmbot testbed is based on a rough mereological approach,
which is built on the basis of an inclusion relation to be a part to a degree that
generalizes the rough set approach (see,e.g., [44, 45, 49]) and provides a basis
for a pattern-based form of on-line learning. Off-line learning is for fixed tasks
that can be trained beforehand. For example, this form of learning is useful in
1 Patent pending
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Fig. 4. Caterpillar sbot.

robotic inspection of power system structures that have fairly uniform patterns
(e.g.,electromagnetic fields,configuration of obstacles). Various forms of off-line
learning using neural networks (see, e.g., [6, 10, 19]) and C4.5 decision tree
learning (see, e.g., [47]) are being incorporated in the testbed, but not considered
in this article.

Each line-crawling bot has been designed so that it cannot navigate by itself
around an obstacle such as a vibration damper. This simplifies the design of a
bot. Such a bot must have help from another bot. In other words, inspection and
complete navigation is only possible by cooperating bots. A sample snapshot of
the individual and collective behavior of inspect bots in a line-crawling swarmbot
testbed is shown in Fig. 5. The principal testbed display symbols are shown in
Fig. 6. Briefly, this testbed makes it possible to experiment with various off- and
on-line learning algorithms and various swarm behaviors such as cooperation
between bots where one bot requires the help of another bot to crawl past
an obstacle, message-passing between bots using wireless communication, and
responding to various adversaries such as wind, rain, lightning, hunters and birds.

Also included in the sbot testbed is a provision for tracking feature values
for individual bots as well as swarms (see sample feature window in Fig. 5) over
time (e.g., energy level). Feature tracking by the testbed is useful in behavior
survivability estimates. A bot that encounters an obstacle enters standby mode,
and attempts to send a call for help to neighboring bots. The appendages of
an inspection bot give the bot the ability to hang onto and roll along an un-
obstructed length of line. The survivability of a bot in standby mode decreases
over time (the longer it waits, the less chance it has to renew its energy).

A bot in standby mode learns to cope with its decreasing energy problem and
no response from another bot, by exiting standby mode and searching for a means
to renewing its energy (this usually means the bot adjusts its angle of rotation
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Fig. 5. Swarmbot Testbed.

Fig. 6. Testbed Symbols.

so that its solar panels can absorb the sun’s rays). Cooperation between bots
begins by one bot responding to a wireless communication from another bot. This
marks the birth of a swarmbot. A responding bot docks or connects itself to a bot
asking for help. Then the responding bot provides stability and support while
the other bot opens its calipers at the tips of its appendages (closed calipers hold
onto a line). After this, the responding bot pushes the other bot past an obstacle.
Such cooperation between bots is one of the hallmarks of swarmbot behavior (see,
e.g., [15]), and in multiagent systems containing independent agents that exhibit
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some degree of coordination (see, e.g., [65]). Many of the details concerning this
sbot have been already been reported (see, e.g., [39, 40]). It should be noted that
the work on line-crawling sbots with a vision system used to monitor and detect
faults in power system structures is to some extent related to recent research
on unmanned aerial vehicles that classify vehicles from image sequence data
and track moving vehicles over time (see,e.g., [17, 71]). That is, the line-crawling
sbots and the UAVs are autonomous, above-ground vehicles and both have vision
systems. However, the UAV has more freedom of movement and monitors moving
vehicles, whereas the line-crawling sbots are restricted to movement along a wire
and are limited to monitoring stationary objects.

6 Ethograms

Feature values of observed collective behavior of cooperating agents in an intel-
ligent system are tabulated in what is known as an ethogram (see Table 1). In
this work, an ethogram is represented by a table, where each row of the table
contains the feature values for an observed patterns of behavior. At this writ-
ing, the production of ethograms has been automated for swarms. Let Ubeh be
a universe of behaviors, and let x ∈ Ubeh. Let st, pct, at, ot, gt, rt, dt denote
behavior features, namely, state, proximate cause (stimulus), action, ontogeny
(origin of behavior), growth, reward and action decision at time t, respectively.
For example, let st, dt ∈ {0, 1}, and let pct ∈ PC, where PC is a set of proximate
cause codes (see Fig. 7, e.g.,where pt ∈ {3, 9, 6, 13}) and at ∈ AC, which AC is
a set of action codes (see Fig. 7, e.g., where at ∈ {4, 5, 10, 11, 12, 7, 8, 16, 14, 15}).
Further, let rt, gt ∈ � (reals). It is also the case that PC ∩ AC = �. For a
swarm, s = 0 indicates that the average charge on bot batteries in a swarm is
low, whereas s = 1 indicates high average charge. The projected action reward
r̄t+1 at time t + 1 is computed in different ways. In this section, r̄t+1 equals
the average number of number of times the swarm enters a high state up to the
current state. The decision dt = 1 indicates that a swarm chooses an action at

at time t, and dt = 0 indicates that the swarm rejects (refuses) action at. A set
of sample codes for proximate causes and actions is given in Fig. 7.

A partial list of proximate causes and corresponding responses are also given
in Fig. 7. For example, a swarm is endowed with curiosity (proximate cause
code 3), which means that when a swarm has no special task to perform, it
wanders in search of features of its environment and learns to recognize environ-
mental patterns. This proximate cause triggers either a wander (action code 4) if
it has sufficient charge on its batteries or a fast wander (action code 5) if it has a
near maximum charge on its batteries. A low average charge for a swarm (prox-
imate cause code 9) means that a swarm enters an alarm state, where two or
more of its members have low batteries. The response to this proximate cause is
some form of battery recovery operation: get battery (action code 10) if a swarm
requests a battery replacement, or recharge (action code 11) if a swarm begins
recharging its batteries, or wait for sunshine (action code 12), if a swarm with
solar panels begins waiting for sunshine to charge its batteries. The adversary
proximate cause (proximate cause code 6) occurs whenever the existence of a
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Fig. 7. Proximate Cause and Action-Response Codes.

swarm is threatened by some identified source (e.g., high electromagnetic field,
high wind, rain, attacking birds, lightning and so). The response by a swarm to
an adversary will be, for example, to flee from or to avoid the adversary (action
code 7) or to change color (action code 8) or to change shape (action code 16).
For example, if a swarmbot is threatened by high wind, its individual bots will
change shape by doing such things as retracting their arms (code 16). During
normal operation, the bots in an sbot hanging from a wire have an oblong, par-
allelepiped shape. When each bot retracts its arms and partially folds its camera
platform inward, it is possible for the shape of the bots in a swarm to approx-
imate either a sphere or an ellipsoid (ideal shapes during the buffeting of high
wind). A proximate cause in the form of low charge on a bot battery (proximate
cause code 13) is a threat to the survival of a swarm. The response to proximate
cause 13 is some form of a rescue operation by an sbot. This has different forms
such as the one suggested in Fig. 7, namely, moving a bot to sunlight (action
code 14) or waiting for sunshine (action code 15). Behavior ontogeny ot at time
t equals the code for the recent action with the highest frequency. If all recent
actions have the same frequency, ot = 0. Let gt, gt−1 , rt−1 , lt−1 , γ be behavior
growth at time t (current state), average behavior growth, average action reward,
average number of times recent behaviors are in a low state at time t−1 and step
size, respectively. Then a proposed model for behavior growth gt is given in (3).

gt = gt−1 + γ(rt−1 − lt−1) (3)

The model for behavior growth gt in (3) is based on the intuition that growth
tends to diminish as lt−1 (average number of times a behavior enters its low
state) increases. In effect, lt−1 plays the role of a reference value for growth. An
ethogram will have the form shown in Table 1. A trial value of step size γ equal
to 0.01 has been used. In choosing its response to a proximate cause, an agent
learns to adapt its behavior so that its behavior growth does not decline and its
projected reward is acceptable. In the sample behaviors represented by Table 1,
gt values tend not to change after a certain point in time while behavior rewards
tend to fluctuate.
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Table 1. Sample Ethogram for a swarm (γ = 0.01).

X\A st pct at ot gt rt dt

x0 0 9 11 0 0.1 0.0 0
x1 0 9 11 11 0.1 0.0 1
x2 0 9 11 11 0.1 0.0 1
x3 1 3 4 11 0.2 0.3 1
x4 0 9 10 0 0.6 0.2 0
x5 0 9 11 11 0.6 0.2 1
x6 1 3 4 11 0.6 0.3 1
x7 1 3 5 11 0.6 0.4 0
x8 0 9 10 11 0.6 0.3 1
x9 0 9 11 11 0.6 0.3 1
x10 1 3 4 11 0.6 0.4 1
x11 1 3 5 11 0.6 0.4 1
x12 0 9 10 11 0.6 0.4 1
x13 0 9 11 11 0.6 0.4 1
x14 0 9 10 11 0.6 0.3 0
x15 0 9 11 11 0.6 0.3 0
x16 1 3 4 11 0.6 0.4 0
x17 1 3 5 11 0.6 0.4 1
x18 1 3 4 11 0.6 0.5 1
x19 1 3 4 11 0.6 0.5 1

As this swarm ages, the rewards for its actions tend to diminish. One might
wonder how well the overall sample behavior of a swarm matches what one would
expect. A step towards the solution to this problem is examined in this article
where one considers sample behaviors in the context of an approximation space.

6.1 Example: Approximation Space for an Ethogram

Consider an approximation space (Ubeh, IB, νB), where Ubeh is a universe of co-
operating agent (swarm) behaviors, and B is a behavior feature set. The mapping
IB : Ubeh −→ P(Ubeh) where IB(x) = [x]IND(B) for x ∈ Ubeh is used to derive a
lower approximation B∗D, where D is a decision class. In effect, B∗D contains
those blocks of equivalent behaviors which are subsets of D. The set B∗D will
serve as a norm or standard useful in measuring the acceptability of blocks of
equivalent behaviors relative to a specific action. The lower approximation has
been chosen as a standard because it provides certain knowledge about blocks of
equivalent behaviors contained in D. Next, consider the reduct B, decision class
D, and lower approximation B∗D extracted from Table 1 and shown in (4).

B = {at, ot, gt, rt}
Decision D = {x ∈ Ubeh : dt(x) = 1} =
{x1, x10, x11, x12, x13, x17, x18, x19, x2, x3, x5, x6, x8,x9}

B∗D= {x1, x12, x13, x18, x19,x2, x3, x5, x6}
(4)
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Recall that a reduct is a minimal set of attributes B ⊆ A that can be used
to discern (i.e., distinguish) all objects obtainable by all of the attributes of
an information system. In a decision system DT = (U,A ∪ {d}), it is the case
that IndDT (B) = IndDT (A) for reduct B. In effect, a reduct is a subset B of
attributes A of a decision system that preserves the partitioning of the universe
U . For the sample DT in Table 1, we have chosen reduct B to highlight the
importance of certain sbot features such as action at and reward rt in discerning
the sample elements of the decision system. This is consistent with what we
have found in other decision tables representing sample behaviors of a swarm.
The action-blocks extracted from the ethogram represented by Table 1 as well
as rough inclusion values are given in Table 2.

Table 2. Action Block Rough Inclusion Values.

Action Blocks νB(Ba(x),B∗D)

at = 10(get battery) inclusion value
[0, 9, 10, 0, 0.6, 0.2] : B(10) (x4)= x4 0.0
[0, 9, 10, 11, 0.6, 0.3] : B(10) (x14) = {x14, x8} 0.0
[0, 9, 10, 11, 0.6, 0.4] : B(10) (x12) = {x12} 0.11
at = 11(recharge) inclusion value
[0, 9, 11, 0, 0.1, 0.0] : B(11) (x0) = {x0} 0.0
[0, 9, 11, 11, 0.1, 0.0] : B(11) (x1) = {x1, x2} 0.22
[0, 9, 11, 11, 0.6, 0.2] : B(11) (x5) = {x5} 0.11
[0, 9, 11, 11, 0.6, 0.3] : B(11) (x15) = {x15, x9} 0.0
[0, 9, 11, 11, 0.6, 0.4] : B(11) (x13) = {x13} 0.11
at = 4(wander) inclusion value
[1, 3, 4, 11, 0.2, 0.3] : B(4) (x3) = {x3} 0.11
[1, 3, 4, 11, 0.6, 0.3] : B(4) (x6) = {x6} 0.11
[1, 3, 4, 11, 0.6, 0.4] : B(4) (x10) = {x10, x16} 0.0
[1, 3, 4, 11, 0.6, 0.5] : B(4) (x18) = {x18, x19} 0.22
at = 5(fast wander) inclusion value
[1, 3, 5, 11, 0.6, 0.4] : B(5) (x11) = {x11, x17, x7} 0.0

7 Approximation Space-Based Rewards

In this section, two approaches to deriving a reference reward rt needed to es-
timate a projected action reward rt+1 are considered. A reference reward serves
as a basis for measuring the difference between the reward in the current state
and rewards for recent actions. One approach to deriving rt is to compute the
average action reward up to time t [66]. A second approach is to derive rt pe-
riodically (e.g., every 500 ms) within an approximation space and to compute
the average degree of inclusion of action blocks in a standard. In both cases,
rt is computed periodically on-line (in real-time). The computation of reference
rewards is part of a framework for reinforcement learning by either an individual
or by a swarm. In this paper, the focus is on reinforcement learning by a swarm.
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Let α, rt , rt , denote step size in (0, 1], reward and average reference reward at
time t, respectively, and let rt+1 denote the projected reference reward at time
t + 1. Then a model for projected reference reward rt+1 at time t + 1 is given
in (5).

rt+1 = rt + α(rt − rt) (5)

The projected reward rt+1 at time t + 1 suggested by [66] does not take into
account the patterns associated with each of the action rewards leading up to
the current state. If we consider the computation of average rewards in the
context of an approximation space, then it is possible to arrive at action-based
reference rewards relative to action blocks belonging to a decision class. Let
Ubeh/IndDT (B) denote a partition of Ubeh relative to the set of attributes B in
the decision system DT . Let Ba(x) denote a block in partition Ubeh/IndDT (B)
with respect to action a. In what follows, the feature set B would always include
feature a (action). In addition, notice that the inclusion values for each block
Ba(x) are independent of the decision class. This is the case in Table 2, where,
for example, the inclusion values for B(a=11)(x0) with d(x0) = 0 are B(a=11)(x1)
with d(x1) = 1 are computed. The degree of inclusion of each of the blocks
for a particular action yields useful information in reinforcement learning by a
swarm. For example, the rough inclusion values of the action blocks for at =
11(recharge) relative to B∗D in Table 2 give us an indication of the closeness
of the recharge behaviors to the standard. We are interested in viewing this
information collectively as a means of guiding the distribution of near-future
rewards for recharge-behavior. One way to do this is by averaging the closeness
values for each of the recharge blocks represented in Table 2. In general, in the
context of an approximation space, a reference reward r̄t for each action a is
computed as shown in (6).

rt =

n∑
i=1

νB(Ba(x)i, B∗D)

n
(6)

where n is the number of blocks Ba(x) in Ubeh/IndDT (B). The action-based
reference rewards derived from Table 2 are given in Table 3.

The values in Table 3 match the intuition that the recharge and get battery
actions have low reference rewards because a swarm is most vulnerable at times
when it has low energy. By contrast, wandering actions by a swarm occur when
a swarm has higher energy. Hence the reference rewards in Table 3 also match

Table 3. Action-Based Reference Rewards (d = 1).

Action reference reward r̄t

at = 4 (wander) 0.11
at = 5 (fast wander) 0.0
at = 10 (get battery) 0.0367
at = 11 (recharge) 0.088
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Fig. 8. Comparison of Behavior Action Rewards.

our intuition. That is, one can expect that projected rewards will increase if we
use the behavior standard represented by the lower approximation derived from
Table 1. A comparison of the three types of rewards computed with and without
a reference reward is shown in Fig. 8.

Over time, one can expect that projected rewards will gradually increase
while a swarm is learning. This is the case for all three types of rewards shown
in Fig. 8. However, for either of the projected rewards with a reference reward
for the choice of an action, the two sample behaviors follow each other closely.
Swarm behavior rewards are slightly better when reference rewards are derived
within the framework of an approximation space. The drawback to the approx-
imation space approach to deriving reference rewards is that it is necessary to
recompute the reference reward periodically to reflect changes in the environ-
ment of a swarm. The way to combat this problem is to identify a standard drawn
from a comprehensive representation of proximate causes of swarm behavior.

8 Ontology of Behavior and Hierarchical Learning

In this section, we briefly consider the basis for an ontology of behavior. An
ontology of behavior is a study of what it means for a behavior to be a part
of the life of an entity. A complete ontology of behavior for a collection of co-
operating agents would consider a hierarchy of behaviors. Families, societies,
insect colonies, flocks of birds, and collections of cooperating bots (swarms) are
sources of examples of hierarchies of behavior. There are obvious dependencies
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between the behavior of individual agents that contribute to social behavior (i.e.,
behavior on a higher level).

It is beneficial to ask the question, “How is a hierarchy of behaviors pos-
sible?” Until now, we have deliberately focused attention on swarm behavior.
This is made possible by considering a swarm as a super individual. The idea
of a super individual comes from studies of the social behavior of animals. It
has been observed that when cooperation between agents is nearly perfect, then
such cooperation by a team of bots in a robocup competition [65] or by dancing
Orio bots from Sony [8] or by a flock geese flying in v-formation has a singular
character. In effect, it is possible to view a collection of cooperating agents as
a single individual. For example, it has been observed that flight manoeuvers
of a flock of Starlings flying round a roost have the appearance of a super indi-
vidual [68]. In that case, observed behavior is understood relative to proximate
causes and action-responses by a swarm as opposed to observing the behavior of
a member of a swarm. A collection of cooperating agents (swarm) survives and
is “held together” by effective interaction between members of a swarm.

Cooperation at the social level depends on the ability of a society or swarm
to learn from the rewards of its own behavior as well as the rewards of behavior
of individual behavior. Hence, it is reasonable to consider frameworks for behav-
ior knowledge-sharing within a society. It has been suggested that this can be
accomplished by introducing approximation spaces at each level in a behavior
hierarchy (see, e.g., [36] as well as [50, 61]). A principal advantage in considering
behavior in the context of an approximation space is that one can then consider
what it means for blocks of equivalent behaviors to be a part of a set of behaviors
that provide a standard for learning. In effect, approximation spaces provide the
basis for an ontology of behavior.

It is understood that whenever two agents begin communicating with each
other, learning occurs at the individual level (action choices based on local be-
havior rewards) as well as at the social level (concerted action choices based on
social behavior rewards). In a behavior hierarchy, a model of exchange of knowl-
edge in the context of approximation spaces of agents has been proposed (see,
e.g., [58]). A basic idea in learning on a particular level is deciding when an action
in response to a stimulus belongs to a particular decision class. This means that
either an individual agent or a collection of cooperating agents (swarm) must
recognize a behavior pattern relative to a decision class. One way to do this in
real time is to consider learning in the context of an approximation space, where
a judgment about membership of a behavior in a decision class is influenced by
pattern-based rewards.

9 Conclusion

The end result of viewing intelligent systems behavior within an approximation
space is to derive a norm or standard that can be used to compute projected
action rewards. Ultimately, it is important to consider ways to evaluate the be-
havior of an intelligent system as it unfolds. Rather than take a rigid approach
where a system behavior is entirely predictable based on its design, there is
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some benefit in relaxing the predictability requirement and considering how one
might gain approximate knowledge about evolving patterns of behavior in an
intelligent system in real-time. The studies of animal behavior by ethologists
provide a number of features useful in the study of changing intelligent systems
behavior in response to environmental changes (sources of stimuli) as well as in-
ternal influences (e.g., image classification results, battery energy level, response
to behavior pattern recognition, various forms of learning). Behavior decision
tables (called ethograms in this article) constantly change during the life of an
intelligent system because of changing proximate causes and changing rewards
of corresponding action responses. As a result, there is a need for a cooperating
system of agents to gain, measure, and share knowledge about changing behavior
patterns. Part of the future work in this research is a consideration of an ontol-
ogy of behavior that takes into account knowledge-sharing as well as learning on
different levels in a hierarchy of behaviors. This future work will include a study
of various forms of action preferences, action-probabilities and action-rewards in
the context of approximation spaces useful in on-line learning by either a swarm
or an individual.
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Abstract. In this paper, we discuss approximation spaces in a granu-
lar computing framework. Such approximation spaces generalise the ap-
proaches to concept approximation existing in rough set theory. Approx-
imation spaces are constructed as higher level information granules and
are obtained as the result of complex modelling. We present illustrative
examples of modelling approximation spaces that include approximation
spaces for function approximation, inducing concept approximation, and
some other information granule approximations. In modelling of such
approximation spaces we use an important assumption that not only
objects but also more complex information granules involved in approx-
imations are perceived using only partial information about them.

1 Introduction

The rough set approach is based on the concept of approximation space. Approx-
imation spaces for information systems [1] are defined by partitions or coverings
defined by attributes of a pattern space. One can distinguish two basic compo-
nents in approximation spaces: an uncertainty function and an inclusion func-
tion [2]. This approach has been generalised to the rough mereological approach
(see, e.g., [3–5]). The existing approaches are based on the observation that the
objects are perceived via information about them and due to the incomplete
information they can be indiscernible. Hence, with each object one can asso-
ciate an indiscernibility class, called also (indiscernibility) neighbourhood [6].
In the consequence, testing if a given object belongs to a set is substituted by
checking a degree to which its neighbourhood is included into the set. Such an
approach covers several generalisations of set approximations like those based
on the tolerance relation or the variable precision rough set model [7].
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In real-life applications approximation spaces are complex information gran-
ules that are not given directly with data but they should be discovered from
available data and domain knowledge by some searching strategies (see, e.g., [5,8]).
In the paper we present a general approach to approximation spaces based on
granular computing. We show that the existing approaches to approximations
in rough sets are particular cases of our approach. Illustrative examples include
approximation spaces with complex neighbourhoods, approximation spaces for
function approximation and for inducing concept approximations. Some other
aspects of information granule construction, relevant for approximation spaces,
are also presented. Furthermore, we discuss one more aspect of approximation
spaces based on the observation that the definition of approximations does not
depend only on perception of partial information about objects but also of more
complex information granules.

The presented approach can be interpreted in a multi-agent setting [5, 9].
Each agent is equipped with its own relational structure and approximation
spaces located in input ports. The approximation spaces are used for filtering
(approximating) information granules sent by other agents. Such agents are per-
forming operations on approximated information granules and sending the re-
sults to other agents, checking relationships between approximated information
granules, or using such granules in negotiations with other agents. Parameters of
approximation spaces are analogous to weights in classical neuron models. Agents
are performing operations on information granules (that approximate concepts)
rather than on numbers. This analogy has been used as a starting point for the
rough-neural computing paradigm [10] of computing with words [11].

2 Concept Approximation

In this section we consider the problem of concepts approximation over a uni-
verse U∞ (concepts that are subsets of U∞). We assume that the concepts
are perceived only through some subsets of U∞, called samples. This is a typ-
ical situation in machine learning, pattern recognition, and data mining ap-
proaches [12–14]. We explain the rough set approach to induction of concept
approximations.

Let U ⊆ U∞ be a finite sample. By ΠU we denote a perception function
from P (U∞) into P (U) defined by ΠU (C) = C ∩ U for any concept C ⊆ U∞.
The problem we consider is how to extend the approximations of ΠU (C) to
approximation of C over U∞. In the rough set approach the approximation
of a concept is defined by means of a so called approximation space AS =
(U, I, ν), where I : U → P (U) is an uncertainty function such that x ∈ I(x)
for any x ∈ U , and ν : P (U)× P (U) → [0, 1] is a rough inclusion function (for
details see Section 4). We show that the problem can be described as searching
for an extension ASC = (U∞, IC , νC) of the approximation space AS, relevant
for approximation of C. This makes it necessary to show how to extend the
inclusion function ν from U to relevant subsets of U∞ that are suitable for the
approximation of C. Observe (cf. Definition 5) that for the approximation of C
it is enough to induce the necessary values of the inclusion function νC without
knowing the exact value of IC(x) ⊆ U∞ for x ∈ U∞.
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Let AS be a given approximation space for ΠU (C) and let us consider a
language L in which the neighbourhood I(x) ⊆ U is expressible by a formula
pat(x), for any x ∈ U . It means that I(x) = ‖pat(x)‖U ⊆ U , where ‖pat(x)‖U

denotes the meaning of pat(x) restricted to the sample U . In the case of rule
based classifiers patterns of the form pat(x) are defined by feature value vectors.

We assume that for any new object x ∈ U∞\U we can obtain (e.g., as a result
of sensor measurement) a pattern pat(x) ∈ L with semantics ‖pat(x)‖U∞ ⊆ U∞.
However, the relationships between information granules over U∞ like sets:
‖pat(x)‖U∞ and ‖pat(y)‖U∞ , for different x, y ∈ U∞ (or between ‖pat(x)‖U∞

and y ∈ U∞), are, in general, known only if they can be expressed by relation-
ships between the restrictions of these sets to the sample U , i.e., between sets
ΠU (‖pat(x)‖U∞) and ΠU (‖pat(y)‖U∞).

The set of patterns {pat(x) : x ∈ U} is usually not relevant for approxi-
mation of the concept C ⊆ U∞. Such patterns are too specific or not general
enough, and can directly be applied only to a very limited number of new ob-
jects. However, by using some generalisation strategies, one can search, in a
family of patterns definable from {pat(x) : x ∈ U} in L, for such new patterns
that are relevant for approximation of concepts over U∞. Let us consider a subset
PATTERNS(AS,L,C) ⊆ L chosen as a set of pattern candidates for relevant
approximation of a given concept C. For example, in the case of a rule based
classifier one can search for such candidate patterns among sets definable by
subsequences of feature value vectors corresponding to objects from the sample
U . The set PATTERNS(AS,L,C) can be selected by using some quality mea-
sures checked on meanings (semantics) of its elements restricted to the sample
U (like the number of examples from the concept ΠU (C) and its complement
that support a given pattern). Then, on the basis of properties of sets definable
by those patterns over U we induce approximate values of the inclusion function
νC on subsets of U∞ definable by any of such pattern and the concept C.

Next, we induce the value of νC on pairs (X,Y ) where X ⊆ U∞ is definable
by a pattern from {pat(x) : x ∈ U∞} and Y ⊆ U∞ is definable by a pattern
from PATTERNS(AS,L,C).

Finally, for any object x ∈ U∞ \ U we induce the approximation of the
degree νC(‖pat(x)‖U∞ , C) applying a conflict resolution strategy Conflict res
(a voting strategy, in the case of rule based classifiers) to two families of degrees:

{νC(‖pat(x)‖U∞ , ‖pat‖U∞) : pat ∈ PATTERNS(AS,L,C)}, (1)

{νC(‖pat‖U∞ , C) : pat ∈ PATTERNS(AS,L,C)}. (2)

Values of the inclusion function for the remaining subsets of U∞ can be chosen
in any way – they do not have any impact on the approximations of C. Moreover,
observe that for the approximation of C we do not need to know the exact values
of uncertainty function IC – it is enough to induce the values of the inclusion
function νC . Observe that the defined extension νC of ν to some subsets of
U∞ makes it possible to define an approximation of the concept C in a new
approximation space ASC by using Definition 5.

In this way, the rough set approach to induction of concept approximations
can be explained as a process of inducing a relevant approximation space.
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3 Granule Approximation Spaces

Using the granular computing approach (see, e.g., [5]) one can generalise the ap-
proximation operations for sets of objects, known in rough set theory, to arbitrary
information granules. The basic concept is the rough inclusion function ν [3–5].

First, let us recall the definition of an information granule system [5].
Definition 1. An information granule system is any tuple GS = (E,O,G, ν)
where E is a set of elements called elementary information granules, O is a
set of (partial) operations on information granules, G is a set of information
granules constructed from E using operations from O, and ν : G × G −→ [0, 1]
is a (partial) function called rough inclusion.

The main interpretation of rough inclusion is to measure the inclusion degree
of one granule in another.

In the paper we use the following notation: νp(g, g′) denotes that ν(g, g′) ≥ p
holds; Gran(GS) = G; G denotes a given family of granule systems. For every
non-empty set X, let P (X) denote the set of all subsets of X.

We begin with the general definition of approximation space in the context
of a family of information granule systems.
Definition 2. Let G be a family of information granule systems. A granule ap-
proximation space with respect to G is any tuple

ASG = (GS,G, T r), (3)

where GS is a selected (initial) granule system from G; G ⊆ Gran(GS) is some
collection of granules; a transition relation Tr is a binary relation on information
granule systems from G, i.e., Tr ⊆ G × G.

Let GS ∈ G. By Tr[GS] we denote the set of all information granule systems
reachable from GS:

Tr[GS] = {GS′ ∈ G : GS Tr∗ GS′}, (4)

where Tr∗ is the reflexive and transitive closure of the relation Tr. By Tr[GS,G]
we denote the set of all Tr-terminal granule systems reachable from GS that
consist of information granules from G:

Tr[GS,G] =
{GS′ : (GS,GS′) ∈ Tr∗ and G ⊆ Gran(GS′) and Tr[GS′] = {GS′}}. (5)

The elements of Tr[GS,G] are called the candidate granule systems for approxi-
mation of information granules from G, generated by Tr from GS (G-candidates,
for short). For any system GS∗ ∈ Tr[GS,G] we define approximations of gran-
ules from G by information granules from Gran(GS∗)\G. Searching for granule
systems from Tr[GS,G] that are relevant for approximation of given information
granules is one of the most important tasks in granular computing.

By using granule approximation space ASG = (GS,G, T r), for a family of
granule systems G, we can define approximation of a given granule g ∈ G in terms
of its lower and upper approximations1. We assume that there is additionally
1 If there is no contradiction we use AS instead of ASG .
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given a “make granule” operation ⊕ : P (G∗) −→ G∗, where G∗ = Gran(GS∗),
for any GS∗ ∈ Tr(GS,G), that constructs a single granule from a set of granules.
A typical example of ⊕ is set theoretical union, however, it can be also realised
by a complex classifier. The granule approximation is thus defined as follows:

Definition 3. Let 0 ≤ p < q ≤ 1, AS = (GS,G, T r) be a granule approximation
space, and GS∗ ∈ Tr[GS,G]. The (AS,GS∗,⊕, q)-lower approximation of g ∈ G
is defined by

LOW (AS,GS∗,⊕, q)(g) = ⊕({g′ ∈ Gran(GS∗) \G : ν∗(g′, g) ≥ q}) (6)

where ν∗ denotes the rough inclusion of GS∗.
The (AS,GS∗,⊕, p)-upper approximation of g is defined by

UPP (AS,GS∗,⊕, p)(g) = ⊕({g′ ∈ Gran(GS∗) \G : ν∗(g′, g) > p}) (7)

where ν∗ denotes the rough inclusion of GS∗.

The numbers p, q can be interpreted as inclusion degrees that make it possible
to control the size of the lower and upper approximations. In the case when p = 0
and q = 1 we have the case of full inclusion (lower approximation) and any non-
zero inclusion (upper approximation).

One can search for optimal approximations of granules from G defined by
GS∗ ∈ Tr[GS,G] using some optimisation criteria or one can search for relevant
fusion of approximations of granules from G defined by GS∗ ∈ Tr[GS,G].2

In the following sections we discuss illustrative examples showing that the
above scheme generalises several approaches to approximation spaces and set
approximations. In particular, we include examples of information granules G
and their structures, the rough inclusion ν as well as the ⊕ operation.

4 Approximation Spaces

Let us recall the definition of an approximation space from [1, 2]. For simplicity
of reasoning we omit parameters that label components of approximation spaces.

Definition 4. An approximation space is a system AS = (U, I, ν), where

– U is a non-empty finite set of objects,
– I : U → P (U) is an uncertainty function such that x ∈ I(x) for any x ∈ U ,
– ν : P (U)× P (U) → [0, 1] is a rough inclusion function.

A set X ⊆ U is definable in AS if and only if it is a union of some values of
the uncertainty function.

The standard rough inclusion function νSRI defines the degree of inclusion
between two subsets of U by

νSRI (X,Y ) =

{
card(X∩Y )

card(X) if X 
= ∅
1 if X = ∅. (8)

2 This problem will be investigated elsewhere.
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The lower and the upper approximations of subsets of U are defined as fol-
lows.

Definition 5. For any approximation space AS = (U, I, ν) , 0 ≤ p < q ≤ 1, and
any subset X ⊆ U the q-lower and the p-upper approximation of X in AS are
defined by

LOWq (AS,X) = {x ∈ U : ν (I (x) , X) ≥ q} , (9)

UPPp (AS,X) = {x ∈ U : ν (I (x) , X) > p} , (10)

respectively.

Approximation spaces can be constructed directly from information systems
or from information systems enriched by some similarity relations on attribute
value vectors. The above definition generalises several approaches existing in
the literature like those based on equivalence or tolerance indiscernibility re-
lation as well as those based on exact inclusion of indiscernibility classes into
concepts [1, 7].

Let us observe that the above definition of approximations is a special case of
Definition 3. The granule approximation space AS = (GS,G, T r) corresponding
to AS = (U, I, ν) can be defined by

1. GS consisting of information granules being subsets of U (in particular,
containing neighbourhoods that are values of the uncertainty function I)
and of rough inclusion ν = νSRI .

2. G = P (U).
3. Tr[GS,G] consisting of exactly two systems: GS and GS∗ such that

– Gran(GS∗) = G ∪ {(x, I(x)) : x ∈ U};
– the rough inclusion ν is extended by ν((x, I(x)), X) = ν(I(x), X) for
x ∈ U and X ⊆ U .

Suppose the “make granule” operation ⊕ is defined by

⊕({(x, ·) : x ∈ Z}) = Z for any Z ⊆ U.

Then for the approximation space AS and granule approximation space AS we
have the following:

Proposition 1. Let 0 ≤ p < q ≤ 1. For any X ∈ P (U) we have:

LOWq (AS,X) = LOW (AS,GS∗,⊕, q)(X), (11)
UPPp (AS,X) = UPP (AS,GS∗,⊕, p)(X). (12)

5 Approximation Spaces with Complex Neighbourhoods

In this section we present approximation spaces that have more complex uncer-
tainty functions. Such functions define complex neighbourhoods of objects, e.g.,
families of sets. This aspect is very important from the point of view of complex
concepts approximation. A special case of complex uncertainty functions is such
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with values in P 2(U), i.e., I : U −→ P 2(U). Such uncertainty functions appear,
e.g., in the case of the similarity based rough set approach. One can define I(x)
to be a family of all maximal cliques defined by the similarity relation which x
belongs to (for details see Section 8).

We obtain the following definition of approximation space:

Definition 6. A k-th order approximation space is any tuple AS =
(
U, Ik, ν

)
,

where

– U is a non-empty finite set of objects,
– Ik : U → P k (U) is an uncertainty function,
– ν : P (U)× P (U) → [0, 1] is a rough inclusion function.

Let us note that up to the above definition there can be given different
uncertainty functions for different levels of granulation. The inclusion function
can be also defined in this way, however, in most cases we induce it recursively
from ν. For example, in the case of set approximation by means of given ap-
proximation space AS =

(
U, Ik, ν

)
we are interested in an inclusion function

νk : P k (U) × P (U) → [0, 1], defined recursively by the corresponding relation
νk

p as follows

– νk
p (Y, X) iff ∃Y ∈ Y νk−1

p (Y,X),
– ν1

p(Y,X) iff νp(Y,X),

for X ⊆ U and Y ⊆ P k(U).
The definition of set approximations for the k-th order approximation spaces

depends on the way the values of uncertainty function are perceived. To illus-
trate this point of view we consider the following two examples: the complete
perception of neighbourhoods and the perception defined by the intersection of
the family I(x). In the former case we consider a new definition of set approxi-
mations.

Definition 7. Let 0 ≤ p < q ≤ 1. For any k-th order approximation space
AS =

(
U, Ik, ν

)
, νk induced from ν, and any subset X ⊆ U the q-lower and the

p-upper approximation of X in AS are defined by

LOWq (AS,X) =
{
x ∈ U : νk

(
Ik(x), X

) ≥ q
}
, (13)

UPPp (AS,X) =
{
x ∈ U : νk

(
Ik(x), X

)
> p

}
, (14)

respectively.

We can observe, that the approximation operations for those two cases are,
in general, different.

Proposition 2. Let us denote by AS∩ = (U, I∩, ν) the approximation space
obtained from the second order approximation space AS =

(
U, I2, ν

)
assuming

I∩(x) = ∩I2(x) for x ∈ U . We also assume that x ∈ Y for any Y ∈ I2(x) and
x ∈ U . Then, for X ⊆ U we have

LOW (AS,X) ⊆ LOW (AS∩, X) ⊆ X ⊆ UPP (AS∩, X) ⊆ UPP (AS,X). (15)

One can check (in an analogous way as in Section 4) that the above definition
of approximations is a special case of Definition 3.
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6 Relation and Function Approximation

One can directly apply the definition of set approximation to relations. For
simplicity, but without loss of generality, we consider binary relations only. Let
R ⊆ U × U be a binary relation. We can consider approximation of R by an
approximation space AS = (U ×U, I, ν) in an analogous way as in Definition 5:

LOWq (AS,R) = {(x, y) ∈ U × U : ν (I (x, y)) , X) ≥ q} , (16)
UPPp (AS,R) = {(x, y) ∈ U × U : ν (I (x, y) , X) > p} , (17)

for 0 ≤ p < q ≤ 1. This definition can be also easily extended to the case of
complex uncertainty function as in Definition 7. However, the main problem is
how to construct relevant approximation spaces, i.e., how to define uncertainty
and inclusion functions. One of the solutions is the following uncertainty function

I(x, y) = I(x)× I(y), (18)

(assuming that one dimensional uncertainty function is given) and the standard
inclusion, i.e., ν = νSRI .

Now, let us consider an approximation space AS = (U, I, ν) and a function
f : Dom −→ U , where Dom ⊆ U . By Graph(f) we denote the set {(x, f(x)) :
x ∈ Dom}. We can easily see that if we apply the above definition of relation
approximation to f (it is a special case of relation) then the lower approximation
is almost always empty. Thus, we have to construct the relevant approximation
space AS∗ = (U × U, I∗, ν∗) in different way, e.g., by extending the uncertainty
function as well as the inclusion function on subsets of U × U . We assume that
the value I∗(x, y) of the uncertainly function, called the neighbourhood (or the
window) of (x, y), for (x, y) ∈ U × U , is defined by

I∗(x, y) = I(x)× I(y). (19)

Next, we should decide how to define values of the inclusion function on pairs
(I∗(x, y), Graph(f)), i.e., how to define the degree r to which the intersection
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I∗(x, y) ∩ Graph(f) is included into Graph(f). If I(x) ∩ Dom 
= ∅, one can
consider a ratio r of the fluctuation in I(y) of the function f � I(x) to the
fluctuation in I(x), where by f � I(x) we denote the restriction of the function f
to I(x). If r = 1 then the window is in the lower approximation of Graph(f); if
0 < r ≤ 1 then the window I∗(x, y) is in the upper approximation of Graph(f).
If I(x) ∩Dom = ∅ then the degree r is equal to zero. Using the above intuition,
we assume that the inclusion holds to degree one if the domain of Graph(f)
restricted to I(x) is equal to I(x). This can be formally defined by the following
condition:

π1(I∗(x, y) ∩Graph(f)) = π1(I∗(x, y)) (20)

where π1 denotes the projection on the first coordinate. Condition (20) is equiv-
alent to:

∀x′ ∈ I(x) ∃y′ ∈ I(y) y′ = f(x′). (21)

Thus, the inclusion function ν∗ for subsets X,Y ⊆ U × U is defined by

ν∗ (X,Y ) =

{
card(π1(X∩Y ))

card(π1(X)) if π1(X) 
= ∅
1 if π1(X) = ∅. (22)

Hence, the relevant inclusion function in approximation spaces for function
approximations is such a function that does not measure the degree of inclusion
of its arguments but their perceptions, represented in the above example by
projections of corresponding sets. Certainly, one can chose another definition
based, e.g., on the density of pixels (in the case of images) in the window that
are matched by the function graph.

We have the following proposition:

Proposition 3. Let AS∗ = (U×U, I∗, ν∗) be an approximation space with I∗, ν∗

defined by (19), (22), respectively, and let f : Dom −→ U where Dom ⊆ U . Then
we have

1. (x, y) ∈ LOW1 (AS∗, Graph(f))
if and only if ∀x′ ∈ I(x) ∃y′ ∈ I(y) y′ = f(x′);

2. (x, y) ∈ UPP0 (AS∗, Graph(f))
if and only if ∃x′ ∈ I(x) ∃y′ ∈ I(y) y′ = f(x′).

In the case of arbitrary parameters p, q satisfying 0 ≤ p < q ≤ 1 we have

Proposition 4. Let AS∗ = (U×U, I∗, ν∗) be an approximation space with I∗, ν∗

defined by (19), (22), respectively, and let f : Dom −→ U where Dom ⊆ U . Then
we have

1. (x, y) ∈ LOWq (AS∗, Graph(f)) if and only if
card ({x′ ∈ I(x) : ∃y′ ∈ I(y) : y′ = f(x′)}) ≥ q · card(I(x));

2. (x, y) ∈ UPPp (AS∗, Graph(f)) if and only
card ({x′ ∈ I(x) : ∃y′ ∈ I(y) : y′ = f(x′)}) > p · card(I(x)).
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In our example, we define the inclusion degree between two subsets of Carte-
sian product using, in a sense, the inclusion degree between their projections.
Hence, subsets of Cartesian products are perceived by projections.

Again, one can consider the definition of approximation space for function
approximation as a special case of the granule approximation space introduced
in Definition 2 with the non standard rough inclusion introduced in this section.

7 Concept Approximation
by Granule Approximation Space

The granule approximation space AS = (GS,G, T r) modelling the described
process of concept approximations under fixed U∞, C ⊆ U∞, sets of formulas
(patterns) {pat(x) : x ∈ U}, PATTERNS(AS,L,C) and their semantics ‖·‖U∞

can be defined by

1. GS consisting of the following granules: C ∈ P (U∞), the sample U ⊆ U∞,
C∩U , U \C, sets ‖pat(x)‖U , defined by pat(x) for any x ∈ U , and the rough
inclusion ν = νSRI .

2. G = {C}.
3. The transition relation Tr extending GS to GS′ andGS′ to GS∗.Gran(GS′)

is extended from Gran(GS) by the following information granules: the sets
‖pat(x)‖U∞ , defined by pat(x) for any x ∈ U∞, sets ‖pat‖U∞ , for pat ∈
PATTERNS(AS,L,C). The rough inclusion is extended using estimations
described above. GS∗ is constructed as follows:
– Gran(GS∗) = G ∪
∪{(x, ‖pat(x)‖U∞ , ‖pat‖U∞) : x ∈ U∞∧pat ∈ PATTERNS(AS,L,C)};

– The rough inclusion ν is extended by:

ν((x,X, Y ), C) =
Conflict res({νC(X,Y ) : Y ∈ Y}, {νC(Y,C) : Y ∈ Y}) (23)

where X,Y ⊆ U∞, Y ⊆ P (U∞) are sets and the family of sets on which
values of νC have been estimated in (1) and (2);

– The operation “make granule” ⊕ satisfies the following constraint:

⊕{(x, ·, ·) : x ∈ Z} = Z for any Z ⊆ C∞.

8 Relational Structure Granulation

In this section we discuss an important role that the relational structure granu-
lation [5], [8] plays in searching for relevant patterns in approximate reasoning,
e.g., in searching for relevant approximation patterns (see Section 2 and Fig-
ure 2).

Let us recall, that the uncertainty (neighbourhood) function of an approx-
imation space forms basic granules of knowledge about the universe U . Let us
consider the case where the values of neighbourhood function are from P 2(U).
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Assume that together with an information system A = (U,A) [1] there is also
given a similarity relation τ defined on vectors of attribute values. This relation
can be extended to objects. An object y ∈ U is similar to a given object x ∈ U
if the attribute value vector on x is τ -similar to the attribute value vector on y.
Now, consider a neighbourhood function defined by IA,τ (x) = {[y]IND(A) : xτy}.

Neighbourhood functions cause a necessity of further granulation. Let us
consider granulation of a relational structure R by neighbourhood functions. We
would like to show that due to the relational structure granulation we obtain
new information granules of more complex structure and, in the consequence,
more general neighbourhood functions than those discussed above. Hence, basic
granules of knowledge about the universe corresponding to objects become more
complex.

Assume that a relational structure R and a neighbourhood function I are
given. The aim is to define a new relational structureRI called the I–granulation3

of R. This is done by granulation of all components of R, i.e., relations and func-
tions (see Section 6), by means of I.

The relational structure granulation defines new patterns that are created
for pairs of objects together with some inclusion and closeness measures defined
among them. Such patterns can be used for approximation of a target concept
(or a concept on an intermediate level of hierarchical construction) over objects
composed from pairs (x, y) interpreted, e.g., as parts of some more compound
objects. Such compound objects are often called structured or complex objects.

Certainly, to induce approximations of high quality it is necessary to search
for relevant patterns for concept approximation expressible in a given language.
This problem, known as feature selection, is widely discussed in machine learning,
pattern recognition, and data mining (see, e.g., [12–14]).

Let us consider an exemplary degree structure D = ([0, 1],≤) and its gran-
ulation DI0 = (P ([0, 1]),≤I0) by means of an uncertainty function I0 : [0, 1] →
P ([0, 1]) defined by I0(x) = {y ∈ [0, 1] : [10kx] = [10ky]}, for some integer k,
where for X,Y ⊆ [0, 1] we assume X ≤I0 Y iff ∀x ∈ X, ∀y ∈ Y x ≤ y. Let
{Xs, Xm, Xl} be a partition of [0, 1] satisfying x < y < z for any x ∈ Xs,
y ∈ Xm, z ∈ Xl. Let AS0 = ([0, 1], I0, ν) be an approximation space with
the standard inclusion function ν. We denote by S,M,L the lower approxi-
mations of Xs, Xm, Xl in AS0, respectively, and by S–M , M–L the bound-
ary regions between Xs, Xm and Xm, Xl, respectively. Moreover, we assume
S,M,L 
= ∅. In this way we obtain restriction of DI0 to the structure (Deg, ≤I0),
where Deg = {S, S–M,M,M–L,L}. Now, for a given (multi-sorted) structure
(U,P (U), [0, 1],≤, I0, ν), where ν : P (U)×P (U) → [0, 1] is an inclusion function,
we can define its I0–granulation by

(U,P (U), Deg,≤I0, {νd}d∈Deg) (24)

where Deg = {S, S–M,M,M–L,L} and νd(X,Y ) iff νp(X,Y ) for some p, d′,
such that p ∈ d′ and d ≤I0 d

′.
3 In general, granulation is defined using the uncertainty function and the inclusion

function from a given approximation space AS. For simplicity, we restrict our initial
examples to I–granulation only.
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Fig. 2. Relational structure granulation.

Thus, for any object there is defined a neighbourhood specified by the value of
uncertainty function from an approximation space. From those neighbourhoods
some more relevant ones (e.g., for the considered concept approximation), should
be discovered. Such neighbourhoods can be extracted by searching in a space
of neighbourhoods generated from values of uncertainty function by applying to
them some operations like generalisation operations, set theoretical operations
(union, intersection), clustering, and operations on neighbourhoods defined by
functions and relations in an underlying relational structure4. Figure 2 illus-
trates an exemplary scheme of searching for neighbourhoods (patterns, clusters)
relevant for concept approximation. In this example, f denotes a function with
two arguments from the underlying relational structure. Due to the uncertainty,
we cannot perceive objects exactly but only by using available neighbourhoods
defined by the uncertainty function from an approximation space. Hence, instead
of the value f(x, y) for a given pair of objects (x, y) one should consider a family
of neighbourhoods F = {I(f(x′, y′)) : (x′, y′) ∈ I(x)×I(y)}. From this family F
a subfamily F ′ of neighbourhoods can be chosen that consists of neighbourhoods
with some properties relevant for approximation (e.g., neighbourhoods with suf-
ficiently large support and/or confidence with respect to a given target concept).
Next, the subfamily F ′ can be generalised to clusters that are relevant for the
concept approximation, i.e., clusters sufficiently included into the approximated
concept (see Figure 2). Observe also that the inclusion degrees can be measured
by granulation of the inclusion function from the relational structure.

Now, let us present some examples illustrating information system granula-
tion on searching for concept approximation.

Let A = (U,A) be an information system with universe U of objects described
by some features from an attribute set A. In many cases, there are also given

4 Relations from such structure may define relations between objects or their parts.



Approximation Spaces and Information Granulation 187

some additional relational structures on Va, e.g., relations ra defined for each
attribute a ∈ A. Using {ra}a∈A one can define relational structures over U in
many different ways. For example, ra ⊆ Va × Va can be a similarity relation
for any a ∈ A. Such relations can be used to define similarity between objects
Sim ⊆ U × U , e.g., by xSimy iff ra(a(x), a(y)) for any a ∈ A. Then, for each
x ∈ U one can consider a relational structure Rx defined by a tolerance class
Sim(x) = {y ∈ U : xSimy} with relation Sim reduced to Sim(x). In this way
we obtain a new universe URel = {Rx : x ∈ U}.

The trajectories of objects in time, o(t), are basic objects in spatio-temporal
reasoning and time series analysis. By restricting o(t) to some time window of
fixed length one can construct the basic relational structures forming objects of
a new information system.

In the case of decision problems, i.e., when the initial information system A is
a decision table, the task is to define relevant decisions for the considered prob-
lems and to define conditions making it possible to approximate new decision
classes. These new decisions can be related to different tasks, e.g., to predic-
tion in time series [13, 14], decision class approximations (robust with respect
to deviations defined by similarities) [13, 14], and preference analysis [15]. For
solving such tasks, the methods searching for relevant granulation of relational
structures representing objects are very important.

Relational structures also arise in many pattern recognition problems as the
result of (perception) representation of the object structure or data dimension
reduction. Information granules considered in such applications are equal to
elementary granules (indiscernibility classes) of information systems determined
by some relational structures. Below we discuss this kind of granulation in more
detail.

Let A = (U,A) be an information system where a : U −→ Va for any a ∈ A.
Assume that f : X −→ U and ba(x) = a(f(x)) for any x ∈ X and a ∈ A. Any
such pair (A, f) defines a relational structure R on Y = X ∪ U ∪⋃a∈A Va with
unary relations rU , rX , rVa and binary relations rf and ra, for a ∈ A, where
y ∈ rX iff y ∈ X , y ∈ rU iff y ∈ U , y ∈ rVa iff y ∈ Va, for any y ∈ Y and a ∈ A;
rf ⊆ Y × Y is a partial function defined by f , ra ⊆ Y × Y is a partial function
defined by a for any a ∈ A. Information granules over such a relational structure
R are B-indiscernibility classes (elementary granules) of the information system
B = (X,B) where B = {ba : a ∈ A}. Elementary granules [x]IND(B) for x ∈ X ,
where IND(B) is the B-indiscernibility relation, have the following property:

[x]IND(B) = f−1(Inf−1
A (InfA(f(x))))

=
⋃
{y ∈ [f(x)]IND(A) : f−1({y})} (25)

where f−1(Z) denotes the counter-image of the set Z with respect to the func-
tion f .

The function f is used in pattern recognition [12, 14] applications to extract
relevant parts of classified objects or to reduce the data dimension. Searching
for relevant (with respect to some target concepts) granules of the form defined
in (25) is performed by tuning f and A.
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9 Conclusions

We discussed the problems of approximation space modelling for concept approx-
imation. We presented consequences of the assumption that information granules
involved in concept approximations are perceived by partial information about
them. Illustrative examples of approximation spaces were also included. We em-
phasised the role of relational structure granulation in searching for relevant
approximation spaces.

In our further work we would like to use the presented approach for modelling
of searching processes for relevant approximation spaces using data and domain
knowledge represented, e.g., in a natural language.
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Abstract. The paper describes the “Rough Sets Database System”
(called in short the RSDS system) for the creation of a bibliography
on rough sets and their applications. This database is the most com-
prehensive online rough sets bibliography currently available and is ac-
cessible from the RSDS website at http://www.rsds.wsiz.rzeszow.pl.
This service has been developed to facilitate the creation of a rough sets
bibliography for various types of publications. At the moment the bib-
liography contains over 1900 entries from more than 815 authors. It is
possible to create the bibliography in HTML or BibTeX format. In or-
der to broaden the service contents it is possible to append new data
using a specially dedicated online form. After appending data online the
database is updated automatically. If one prefers sending a data file to
the database administrator, please be aware that the database is up-
dated once a month. In the present version of the RSDS system, we
have broadened information about the authors as well as the Statistics
sections, which facilitates precise statistical analysis of the service. In
order to widen the abilities of the RSDS system we added new features
including:

– Detailed information concerning the software connected with the
rough sets methodology.

– Scientific biographies of the outstanding people who work on rough
sets.

Keywords: rough sets, fuzzy systems, neural networks, evolutionary
computing, data mining, knowledge discovery, pattern recognition, ma-
chine learning, database systems.

1 Introduction

Rough set theory introduced by Professor Zdzis�law Pawlak in 1981 [4] is a rapidly
developing discipline of theoretical and applied computer science. It has become
apparent during recent years that a bibliography on this subject is urgently
needed as a tool for both the efficient research, and the use of the rough set
theory.

The aim of this paper is to present the RSDS system for the creation of
a bibliography on the rough sets and their applications; papers on other topics

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets III, LNCS 3400, pp. 190–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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have been included whenever the rough sets play a decisive role for the presented
matters, or in case outstanding applications of the rough set theory are discussed.
In compiling the bibliography for the database we faced the fact that many
important ideas and results are contained in reports, theses, memos, etc.; we
have done our best to arrive at a good compromise between the completeness of
the bibliography and the restriction to generally available publications.

Another difficulty we had to cope with was sometimes a completely different
spelling of the authors’ names. The following served among others as the sources
for the bibliography database:

– The publications in the journal Fundamenta Informaticae and others.
– Books on the rough set theory and applications as well as proceedings of the

international conferences on the rough sets mentioned in the references at
the end of this article.

– Other materials available at the International Rough Set Society.
– Queries for the “rough sets” on the website of the database.

The service has been developed in order to facilitate the creation of the rough
sets bibliography, for various types of publications. At present, it is possible to
create the bibliography in HTML or BibTeX format. In order to broaden the
service contents, it is possible to append new data using a specially dedicated
form. After appending data online, the database is updated automatically. If one
prefers sending a data file to the database administrator, please be aware that
the database is updated once a month.

The following types of publications are available in the service: an arti-
cle, book, booklet, inbook, incollection, inproceedings, manual, mastersthesis,
phdthesis, proceedings, techreport, unpublished.

This paper is organized as follows. Section 2 presents an overview of infor-
mation used to characterize the RSDS system. The future plans for the RSDS
system are discussed in section 3. Conclusions are given in section 4.

2 A Description of the RSDS System

2.1 Home Page

Having the system activated, the English version of the home page appears on a
display. The service menu comprises several options making it possible to move
around the whole system. The menu includes the following: Home page, Login,
Append, Search, Download, Send, Write to us, Statistics, Help, Software, People.

2.2 Appending Data

In order to append new data to the bibliographic database at first one should
go to the Append section. Before appending new data, a user must log into the
system using a special form. That form includes the fields allowing to insert a
user’s id and user’s password. If a user inserts a wrong user’s id or password
then a message describing the mistake displays on the screen. If a user wants
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Fig. 1. The starting page of the RSDS system.

Fig. 2. A screenshot for appending (online) new data to the RSDS system.

to log in at first, then one must use another special form, by clicking the First
login button. That form includes the fields allowing to insert: a user’s name and
user’s surname, e-mail, user’s id and user’s password. Next, the entered data is
verified in the database. If all data is correct, the account for the user is created
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at once, and then one is logged into the system automatically with new data
number in the database. This information helps to implement the existing data
changes. After logging in, a special form displays, and it is then possible to type
new data (excluding data about the authors; another form is used for to entering
the authors’ data). After providing information concerning the publication type,
the form is updated with fields which require inputting specific data. The fields
required for proceeding with data input are marked with a star symbol (*). The
required fields are described by the BibTeX format specification. After entering
the required data, it is possible to proceed with the next step – which is inputting
the authors’ or editors’ data. The authors’ data inputting form will be reloaded
until the last author’s data is entered. A user decides when to stop entering the
authors’ data by clicking the End button. For the entered data verification, all
the data is displayed prior to sending to the database. After accepting, the data
is sent.

There follows the list concerning the publication types together with descrip-
tions of the fields required.

Publication Description
article An article from a journal.

Fields required: author, title, journal, year.
Optional fields: volume, number, pages, month, note.

book A book with the known, given publisher.
Fields required: author or editor, title, publisher, year.
Optional fields: volume, series, address, edition, month,
note.

booklet Printed and bound matter, whilst the publisher is unknown.
Fields required: title.
Optional fields: author, address, month, year, note.

inbook A part of a book, could be a chapter or given pages.
Fields required: author or editor, title, chapter or pages,
publisher, year.
Optional fields: volume, series, address, edition, month,
note.

incollection A part of a book with its own title.
Fields required: author, title, book title, publisher, year.
Optional fields: editor, chapter, pages, address, month,
note.

inproceedings An article published in the conference proceedings.
Fields required: author, title, book title, year.
Optional fields: author, organization, publisher, address,
month, note.

manual Manual or documentation.
Fields required: title.
Optional fields: author, organization, address, edition,
month, year, note.
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mastersthesis M.Sc. thesis.
Fields required: author, title, school, year.
Optional fields: address, month, note.

phdthesis Ph.D. thesis.
Fields required: author, title, school, year.
Optional fields: address, month, note.

proceedings Proceedings.
Fields required: title, year.
Optional fields: editor, publisher, organization, address,
month, note.

techreport Report, usually with a given number, being periodically
issued.
Fields required: author, title, institution, year.
Optional fields: number, address, month, note.

unpublished A document with a given author and title data, unpub-
lished.
Fields required: author, title, note.
Optional fields: month, year.

Explanation on existing fields.

address Publisher’s address.
author Forename and surname of an author (or authors).
booktitle Title of a quoted in part book.
chapter The chapter number.
edition Issue, edition.
editor Forenames and surnames of editors.

If there also exists the field “author”, the “editor” denotes
the editor of a larger entity, of which the quoted work is a
part.

institution Institution publishing the printed matter.
journal Journal’s name.
month Month of issue or completion of the manuscript.
note Additional information useful to a reader.
number The journal or the report number.

Usually journals are being identified by providing their year
and a number within the year of issue. A report, in general,
has only a number.

organization Organization supporting a conference.
pages One or more page numbers; for example 42–11, 7,41,73–97.
publisher Publisher’s name.
school University, college, where the thesis be submitted.
series The name of a book series.

If one quotes a book from a given series, then the “title”
field denotes the title of a book, whilst the “series” field
should contain the entire series’ name.
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title The title of the work.
volume The periodical’s or the book’s volume.
year Year of issue. In case of unpublished work, the year of com-

pleting writing. Year only in number format e.g. 1984.
URL The WWW Universal Resource Locator that points to the

item being referenced.
This often is used for technical reports to point to the ftp
site where the postscript source of the report is located.

ISBN The International Standard Book Number.
ISSN The International Standard Serial Number. Used to identify

a journal.
abstract An abstract of a publication.
keywords Key words attached to a publication. This can be used for

searching a publication.

Note: All data must be appended in the Latin alphabet – without national
marks.

2.3 Searching Data

In order to search the database search go to the Search section. An alphabetical
search and advanced search options are possible. An advanced search allows to
find the bibliographic data according to different combinations of the following
fields: a title, author, editor, journal’s name, conference’s name, publisher, key-
words and abstract. The searched data can be even more precisely defined, using
the options of narrowing the search according to a year and type of a publica-
tion. When using an alphabetic search (according to authors) we can see three
icons, next to the author’s name, which mean:

– An icon representing a magnifier – information about an author.
– An icon representing an envelope – e-mail address of an author.
– An icon representing a house – www site of an author.

The required data can be sent to a user in two formats: at first HTML format
data is displayed and then, after clicking the BibTeX link, the BibTeX format
file is created. It is then possible to download the created file with the *.tex
extension (with an entered file’s name). There are two file downloading methods
that have been applied for a user’s comfort:

– Saving directly to a user’s local hard drive.
– Sending the file as an e-mail attachment.

Before editing data into the database, a user must log in the system and
then, using the Search option, display HTML format chosen data on the screen.
After clicking the Edit button, a special form displays with existing data and it
is then possible to edit this data. A user decides when to stop editing the data
by clicking the Submit entry button. After that, the data is sent to a database
administrator. If a user logs in as an administrator, then there is possibility of
deleting the redundant data from the database.
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Fig. 3. A screenshot for an advanced search data.

2.4 Downloading a File

Before saving the data to a file, one must specify the operating system for which
the file with the entered file’s name and the *.tex extension should be created.
The two methods for downloading the file in the RSDS system have been imple-
mented:
– Save to a user’s local hard drive.
– Send as an e-mail attachment.

2.5 Sending a File

It is possible to submit a file with the bibliographic data to the database admin-
istrator, who has the software allowing to append automatically large data to
the database. In order to do it, one can use a special dedicated form. Submissions
in the form of BibTeX files are preferred. Please note that submissions are not
immediately available, as the database is updated in batches once a month.

2.6 Write to Us

This section allows to write and send the comments concerning the service to us
by using a special dedicated form. This form includes a field for comments and
the Send button. Any comments about our service will be helpful and greatly
appreciated. Please post them to the database administrator who permanently
carries out work on improving the service and broadening its possibilities.

2.7 Statistics

The section Statistics includes statistical information concerning the system.
This section has been divided into three pages:
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– Page 1 contains information describing: the number of users’ visits to the
site, number of the authors in a database, as well as the dynamic diagrams
related to: the number and types of publications in a database, number and
years of published works.

– Page 2 contains the statistics depicting the countries from which the users
of the service come.

– Page 3 contains the monthly and yearly statistics of visits to the service.

Fig. 4. Some statistics of the RSDS system.

2.8 Software

In this section there is an opportunity to search for information concerning
the software connected with the rough sets. There are two ways of searching
demanded information:

– A search through submitting an application’s name.
– An alphabetic search.

Apart from a description of the searched software, the RSDS system allows to
download a searched application.

2.9 People

This section, entitled People, allows to find the biographies of outstanding people
concerned with the rough sets methodology. After having found a person, this
person’s biography, e-mail, the name and address of the academy the person
works at, is available.



198 Zbigniew Suraj and Piotr Grochowalski

3 The Future Plans for the RSDS System

We plan to extend the RSDS system possibilities to the following, among others:

– Implementation of new methods of a search data.
– Adding the database FAQ.
– Updating the bibliographic database.
– To create an “intelligent” advisor for the users.
– To create a mechanism which would allow to search the Internet in order to

gain new data for the base, using different mechanisms.

4 Conclusions

We have created the RSDS system by applying some of the basic possibilities of
computer tools, which are needed in the bibliography database systems. These
tools support a user in searching for the rough sets publications as well as down-
loading files in a natural and very effective way.

The main point of the RSDS system is its extensibility: it is easy to connect
other methods and tools to the system.

It seems that our system presented in the paper is a professional database
system which offers a stable platform for extensions.

Using the RSDS system is an opportunity for an information exchange be-
tween the scientists and practitioners who are interested in the foundations and
applications of the rough sets.

The developers of the RSDS system hope that the increase in the dissem-
ination of the results, methods, theories and applications based on the rough
sets, will stimulate the further development of the foundations and methods for
real-life applications in the intelligent systems.

For future updating of the bibliography we will appreciate receiving all forms
of help and advice. In particular, we would like to become aware of any relevant
contributions which are not referred to in this bibliography database. All sub-
mitted material will also be included in the RSDS system.

The RSDS system has been designed and implemented at Rzeszow Univer-
sity, and installed at University of Information Technology and Management in
Rzeszow.

The RSDS system runs on any computer with any operating system con-
nected to the Internet. The service is based on the Internet Explorer 6.0, Opera
7.03 as well as Mozilla 1.3 (correct operation requires the web browser with the
accepting cookie option enabled).
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Abstract. We present a novel approach to understanding the concepts
of the theory of rough sets in terms of the inverse probabilities derivable
from data. It is related to the Bayes factor known from the Bayesian
hypothesis testing methods. The proposed Rough Bayesian model (RB)
does not require information about the prior and posterior probabilities
in case they are not provided in a confirmable way. We discuss RB with
respect to its correspondence to the original Rough Set model (RS) in-
troduced by Pawlak and Variable Precision Rough Set model (VPRS)
introduced by Ziarko. We pay a special attention on RB’s capability to
deal with multi-decision problems. We also propose a method for dis-
tributed data storage relevant to computational needs of our approach.

Keywords: Rough Sets, Probabilities, Bayes Factor.

1 Introduction

The theory of rough sets, introduced by Pawlak in 1982 (see [10] for references),
is a methodology of dealing with uncertainty in data. The idea is to approximate
the target concepts (events, decisions) using the classes of indiscernible objects
(in case of qualitative data – the sets of records with the same values for the
features under consideration). Every concept X is assigned the positive, negative,
and boundary regions of data, where X is certain, impossible, and possible but
not certain, according to the data based information.

The above principle of rough sets has been extended in various ways to deal
with practical challenges. Several extensions have been proposed as related to the
data based probabilities. The first one, Variable Precision Rough Set (VPRS )
model [24] proposed by Ziarko, softens the requirements for certainty and im-
possibility using the grades of the posterior probabilities. Pawlak [11, 12] begins
research on the connections between rough sets and Bayesian reasoning, in terms
of operations on the posterior, prior, and inverse probabilities. In general, one
can observe a natural correspondence between the fundamental notions of rough
sets and statistics, where a hypothesis (target concept X1) can be verified posi-
tively, negatively (in favor of the null hypothesis, that is a complement concept
X0), or undecided, under the given evidence [4, 15].

Decision rules resulting from the rough set algorithms can be analyzed both
with respect to the data derived posterior probabilities (certainty, accuracy)

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets III, LNCS 3400, pp. 202–229, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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and the inverse probabilities (coverage), like in machine learning methods [8, 9].
However, only the posterior probabilities decide about membership of particular
cases to the positive/negative/boundary regions – the inverse probabilities are
usually used just as the optimization parameters, once the posterior probabilities
are good enough (cf. [16, 21]). Several rough set approaches to evaluation of
“goodness” of the posterior probabilities were developed, like, for example, the
above-mentioned parameter-controlled grades in VPRS. In [25] it is proposed
to relate those grades to the prior probabilities of the target concepts. This
is, actually, an implicit attempt to relate the rough set approximations with
the Bayesian hypothesis testing, where comparison of the posterior and prior
probabilities is crucial [1, 20].

In [18] a simplified probabilistic rough set model is introduced, where a given
new object, supported by the evidence E, is in the positive region of X1, if and
only if the posterior probability Pr(X1|E) is greater than the prior probability
Pr(X1). It is equivalent to inequality Pr(E|X1) > Pr(E|X0), which means
that the observed evidence is more probable assuming hypothesis X1 than its
complement X0 (cf. [19]). This is the first step towards handling rough sets in
terms of the inverse probabilities. Its continuation [17] points at relevance to the
Bayes factor [4, 6, 15, 20], which takes the form of the following ratio:

B1
0 =

Pr(E|X1)
Pr(E|X0)

(1)

The Bayes factor is a well known example of comparative analysis of the in-
verse probabilities, widely studied not only by philosophers and statisticians but
also within the domains of machine learning and data mining. Such analysis is
especially important with regards to the rule confirmation and interestingness
measures (cf. [5, 7]), considered also in the context of the rough set based decision
rules [3, 12, 21]. In this paper we develop the foundations for Rough Bayesian
(RB) model, which defines the rough-set-like positive/negative/boundary re-
gions in terms of the Bayes factor. In this way, the inverse probabilities, used
so far in the analysis of the decision rules obtained from the rough set model,
become to be more directly involved in the specification of this model itself.

Operating with B1
0 provides two major advantages, similar to those related to

its usage in Bayesian reasoning and probabilistic data mining methods. Firstly,
the posterior probabilities are not always derivable directly from data, in a re-
liable way (see e.g. Example 3 in Subsection 2.2). In such cases, information is
naturally represented by means of the inverse probabilities corresponding to the
observed evidence conditioned by the states we want to verify, predict, or ap-
proximate. Within the domain of statistical science, there is a discussion whether
(and in which cases) the inverse probabilities can be combined with the prior
probabilities using the Bayes rule. If it is allowed, then the proposed RB model
can be rewritten in terms of the posterior probabilities and starts to work sim-
ilarly as VPRS. However, such translation is impossible in case we can neither
estimate the prior probabilities from data nor define them using background
knowledge. Then, the data based inverse probabilities remain the only basis for
constructing the rough-set-like models.
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The second advantage of basing a rough set model on the Bayes factor is
that the inverse probabilities provide clearer ability of comparing likelihoods of
concepts. In the probabilistic rough set extensions proposed so far, the posterior
probabilities Pr(X1|E) are compared to constant parameters [24, 25] or to the
prior probabilities Pr(X1) of the same target concepts [18, 19]. A direct com-
parison of probabilities like Pr(X1|E) and Pr(X0|E) would not have too much
sense, especially when the prior probabilities of X1 and X0 differ significantly.
Comparison of the inverse probabilities Pr(E|X1) and Pr(E|X0) is more nat-
ural, as corresponding to relationship between the ratios of the posterior and
prior probabilities for different concepts:

Pr(E|X1)
Pr(E|X0)

=
Pr(X1|E)/Pr(X1)
Pr(X0|E)/Pr(X0)

(2)

It shows that the analysis of the Bayes factor is equivalent to comparison of the
ratios of the gain in probabilistic belief for X1 and X0 under the evidence E (cf.
[18]). Therefore, the RB model can be more data sensitive than the approaches
based on the posterior probabilities, especially for the problems with more than
two target concepts to be approximated. RB is well comparable to Bayesian
hypothesis testing methods, where B1

0 is regarded as a summary of the evidence
for X1 against X0 provided by the data, and also as the ratio of the posterior and
prior odds. Finally, RB may turn out to be applicable to the problems where
the prior probabilities are dynamically changing, remain unknown, or simply
undefinable. Although we do not discuss such situations, we refer to the reader’s
experience and claim that it may be really the case for real-life data sets.

The article is organized as follows: Section 2 presents non-parametric prob-
abilities derivable from data, with their basic intuitions and relations. It also
contains basic information about the way of applying the Bayes factor in deci-
sion making. Section 3 presents the original rough set approach in terms of the
posterior and, what is novel, the inverse data based probabilities. Then it focuses
on foundations of the VPRS model and corresponding extensions of rough sets.
Section 4 introduces the Rough Bayesian approach related to the Bayes factors
calculated for the pairs of decision classes. The proposed model is compared
with VPRS, both for the cases of two and more target concepts. In particu-
lar, it requires extending the original formulation of VPRS onto the multi-target
framework, which seems to be a challenging task itself. Section 5 includes a short
note on an alternative, distributed way of representing the data for the needs
of the Rough Bayesian model. Section 6 summarizes the article and discusses
directions for further research.

2 Data and Probabilities

2.1 Data Representation

In [10] it was proposed to represent the data as an information system A =
(U,A), where U denotes the universe of objects and each attribute a ∈ A is
identified with function a : U → Va, for Va denoting the set of values of a.
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U a1 a2 a3 a4 a5 d

u1 1 1 0 1 2 0
u2 0 0 0 2 2 0
u3 2 2 2 1 1 1
u4 0 1 2 2 2 1
u5 2 1 1 0 2 0
u6 2 2 2 1 1 1
u7 0 1 2 2 2 0
u8 2 2 2 1 1 1
u9 2 2 2 1 1 1
u10 0 0 0 2 2 0

U a1 a2 a3 a4 a5 d

u11 1 2 0 0 2 0
u12 1 1 0 1 2 1
u13 0 1 2 2 2 1
u14 2 1 1 0 2 0
u15 2 2 2 1 1 0
u16 1 1 0 1 2 1
u17 1 1 0 1 2 0
u18 2 1 1 0 2 0
u19 2 2 2 1 1 1
u20 2 2 2 1 1 1

Fig. 1. Decision system A = (U, A ∪ {d}), U = {u1, . . . , u20}, A = {a1, . . . , a5}.
Decision d induces classes X0 = {u1, u2, u5, u7, u10, u11, u14, u15, u17, u18} and X1 =
{u3, u4, u6, u8, u9, u12, u13, u16, u19, u20}.

Each subset B ⊆ A induces a partition over U with classes defined by grouping
together the objects having identical values of B. We obtain the partition space
U/B, called the B-indiscernibility relation INDA(B), where elements E ∈ U/B
are called the B-indiscernibility classes of objects.

Information provided by A = (U,A) can be applied to approximate the target
events X ⊆ U by means of the elements of U/B, B ⊆ A. We can express such
targets using a distinguished attribute d /∈ A. Given Vd = {0, . . . , r − 1}, we
define the sets Xk = {u ∈ U : d(u) = k}. We refer to such extended information
system A = (U,A ∪ {d}) as to a decision system, where d is called the decision
attribute, and the sets Xk are referred to as the decision classes.

Elements of U/B correspond to B-information vectors w ∈ VB – collections
of descriptors (a, v), a ∈ B, v ∈ Va. They are obtained using B-information
function B : U → VB where B(u) = {(a, a(u)) : a ∈ B}.
Example 1. Consider A = (U,A∪{d}) in Fig. 1 and B = {a1, a3}. B-information
vector {(a1, 2), (a3, 2)} corresponds to conjunction of conditions a1 = 2 and
a3 = 2, which is satisfied by the elements of E = {u3, u6, u8, u9, u15, u19, u20}.
In other words, B(ui) = {(a1, 2), (a3, 2)} holds for i = 3, 6, 8, 9, 15, 19, 20. �

2.2 Types of Probabilities

Let us assume that events Xk are labelled with the prior probabilities Pr(Xk),∑r−1
l=0 Pr(Xl) = 1, r = |Vd|. It is reasonable to claim that anyXk is likely to occur

and that its occurrence is not certain – otherwise, we would not consider such
an event as worth dealing with. The same can be assumed about indiscernibility
classes E ∈ U/B, B ⊆ A, in terms of probabilities of their occurrence in data
A = (U,A ∪ {d}). We can express such requirements as follows:

0 < Pr(Xk) < 1 and 0 < Pr(E) < 1 (3)

Let us also assume that each class E is labelled with the posterior probabil-
ities Pr(Xk|E),

∑r−1
l=0 Pr(Xl|E) = 1, which express beliefs that Xk will occur

under the evidence corresponding to E.
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Remark 1. We can reconsider probabilities in terms of the attribute-value con-
ditions. For instance, if k = 1 and E ∈ U/B groups the objects satisfying
conditions a1 = 2 and a3 = 2, then we can write Pr(d = 1) instead of Pr(X1),
and Pr(d = 1|a1 = 2, a3 = 2) instead of Pr(X1|E). �

In machine learning and data mining [5, 8, 9], the posterior probabilities corre-
spond to the certainty (accuracy, precision) factors. One can also compare prior
and posterior knowledge to see whether a new evidence (satisfaction of condi-
tions) increases or decreases the belief in a given event (membership to a given
decision class). This is, actually, the key idea of Bayesian reasoning [1, 20], re-
cently applied also to rough sets [18, 19]. The easiest way of the data based prior
and posterior probability estimation is the following:

Pr(Xk|E) =
|Xk ∩ E|
|E| and Pr(Xk) =

|Xk|
|U | (4)

Example 2. In case of Fig. 1, we get Pr(d = 1|a1 = 2, a3 = 2) = 6/7, which
estimates our belief that objects satisfying a1 = 2 and a3 = 2 belong to X1. It
seems to increase the belief in X1 with respect to Pr(d = 1) = 1/2. �

One can also use the inverse probabilities Pr(E|Xk),
∑

E∈U/B Pr(E|Xk) = 1,
which express a likelihood of the evidence E under the assumption about Xk

[20]. The posterior probabilities are then derivable by using the Bayes rule. For
instance, in case of A = (U,A ∪ {d}) with two decision classes, we have:

Pr(X1|E) =
Pr(E|X1)Pr(X1)

Pr(E|X0)Pr(X0) + Pr(E|X1)Pr(X1)
(5)

Remark 2. If we use estimations Pr(E|Xk) = |Xk ∩ E|/|Xk|, then (5) provides
the same value of Pr(Xk|E) as (4). For instance, Pr(d = 1|a1 = 2, a3 = 2) =
(3/5 · 1/2)/(1/10 · 1/2 + 3/5 · 1/2) = 6/7. �

In some cases estimation (4) can provide us with invalid values of probabili-
ties. According to the Bayesian principles, it is then desirable to combine the
inverse probability estimates with the priors expressing background knowledge,
not necessarily derivable from data. We can see it in the following short study:

Example 3. Let us suppose that X1 corresponds to a rare but important tar-
get event like, e.g., some medical pathology. We are going to collect the cases
supporting this event very accurately. However, we are not going to collect in-
formation about all the “healthy” cases as X0. In the medical data sets we can
rather expect the 50:50 proportion between positive and negative examples. It
does not mean, however, that Pr(X1) should be estimated as 1/2. It is question-
able whether the posterior probabilities Pr(X1|E) should be derived from such
data using estimation with |E| in denominator – it is simply difficult to accept
that |E| is calculated as the non-weighted sum of |E ∩X0| and |E ∩X1|. �
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2.3 Bayes Factor

Example 3 shows that in some situations the posterior probabilities are not
derivable from data in a credible way. In this paper, we do not claim that this
is a frequent or infrequent situation and we do not focus on any specific real-
life data examples. We simply show that it is still possible to derive valuable
knowledge basing only on the inverse probabilities, in case somebody cannot
trust or simply does not know priors and posteriors.

Our idea to refer to the inverse probabilities originates from the notion of
Bayes factor, which compares the probabilities of the observed evidence E (in-
discernibility class or, equivalently, conjunction of conditional descriptors) under
the assumption concerning a hypothesis Xk (decision class) [4, 6, 15, 20]. In case
of systems with two decision classes, the Bayes factor takes the form ofB1

0 defined
by equation (1). It refers to the posterior and prior probabilities, as provided by
equation (2). However, we can restrict to the inverse probabilities, if we do not
know enough about the priors and posteriors occurring in (2).

The Bayes factor can be expressed in various ways, depending on the data
type [15]. In case of decision table real valued conditional attributes, it would be
defined as the ratio of probabilistic densities. For symbolic data, in case of more
than two decision classes, we can consider pairwise ratios

Bk
l =

Pr(E|Xk)
Pr(E|Xl)

(6)

for l 
= k, or ratios of the form

Bk
k =

Pr(E|Xk)
Pr(E|¬Xk)

where ¬Xk =
⋃

l =k Xl (7)

In [6], it is reported that twice of the logarithm of B1
0 is on the same scale as the

deviance test statistics for the model comparisons. The value of B1
0 is then used

to express a degree of belief in hypothesis X1 with respect to X0, as shown in
Fig. 2. Actually, the scale presented in Fig. 2 is quite widely used by statisticians
while referring to the Bayes factors. We can reconsider this way of hypothesis
verification by using the significance threshold ε01 ≥ 0 in the following criterion:

X1 is verified ε01-positively, if and only if Pr(E|X0) ≤ ε01Pr(E|X1) (8)

For lower values of ε01 ≥ 0, the positive hypothesis verification under the evidence
E ∈ U/B requires more significant advantage of Pr(E|X1) over Pr(E|X0). Ac-
tually, it is reasonable to assume that ε01 ∈ [0, 1). This is because for ε01 = 1, we
simply cannot decide between X1 and X0 (cf. [18]) and for ε01 > 1 one should
rather consider X0 instead of X1 (by switching X0 with X1 and using possibly
different ε10 ∈ [0, 1) in (8)). Another special case, ε01 = 0, corresponds to infinitely
strong evidence for hypothesis X1, yielding Pr(E|X0) = 0. This is the reason
why we prefer to write Pr(E|X0) ≤ ε01Pr(E|X1) instead of B1

0 ≥ 1/ε01 in (8).
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The B1
0 ranges Corresponding Corresponding ε0

1 Evidence for X1

proposed in [6] 2 log B1
0 ranges ranges based on (8) described as in [6]

less than 1 less than 0 more than 1 negative (support X0)
1 to 3 0 to 2 0.3 to 1 barely worth mentioning
3 to 12 2 to 5 0.1 to 0.3 positive

12 to 150 5 to 10 0.01 to 0.1 strong
more than 150 more than 10 less than 0.01 very strong

Fig. 2. The Bayes factor significance scale proposed in [6], with the corresponding
ranges for ε0

1 ≥ 0 based on criterion (8). The values in the third column are rounded
to better express the idea of working with inequality Pr(E|X0) ≤ ε0

1Pr(E|X1).

3 Rough Sets

3.1 Original Model in Terms of Probabilities

In Subsection 2.1 we mentioned that decision systems can be applied to approx-
imation of the target events by means of indiscernibility classes. A method of
such data based approximation was proposed in [10], as the theory of rough sets.
Given A = (U,A ∪ {d}), B ⊆ A, and Xk ⊆ U , one can express the main idea
of rough sets in the following way: The B-positive, B-negative, and B-boundary
rough set regions (abbreviated as RS-regions) are defined as

POSB(Xk) =
⋃{E ∈ U/B : Pr(Xk|E) = 1}

NEGB(Xk) =
⋃{E ∈ U/B : Pr(Xk|E) = 0}

BNDB(Xk) =
⋃{E ∈ U/B : Pr(Xk|E) ∈ (0, 1)}

(9)

POSB(Xk) is an area of the universe where the occurrence of Xk is certain.
NEGB(Xk) covers an area where the occurrence of Xk is impossible. Finally,
BNDB(Xk) defines an area where the occurrence of Xk is possible but uncertain.
The boundary area typically covers large portion of the universe, if not all. If
BNDB(Xk) = ∅, then Xk is B-definable. Otherwise, Xk is a B-rough set.

Example 4. For A = (U,A ∪ {d}) from Fig. 1 and B = {a1, a3}, we obtain

POSB(X1) = ∅
NEGB(X1) = {u2, u5, u10, u14, u18}
BNDB(X1) = {u1, u3, u4, u6, u7, u8, u9, u11, u12, , u13, u15, u16, u17, u19, u20}

As we can see, X1 is a B-rough set in this case. �
The following basic result emphasizes the decision-making background behind
rough sets. To be sure (enough) aboutXk we must be convinced (enough) against
any alternative possibility Xl, l 
= k. This is a feature we would like to keep in
mind while discussing extensions of the original rough set model, especially when
the word “enough” becomes to have a formal mathematical meaning.

Proposition 1. Let A = (U,A ∪ {d}), Xk ⊆ U , and B ⊆ A be given. We have
equality

POSB(Xk) =
⋂

l:l =kNEGB(Xl) (10)
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Proof. This is because Pr(Xk|E) = 1 holds, if and only if for every Xl, l 
= k,
there is Pr(Xl|E) = 0. �

The RS-regions can be interpreted also by means of the inverse probabilities,
which was not discussed so far in the literature. We formulate it as a theorem
to emphasize its intuitive importance, although the proof itself is trivial. In
particular, this result will guide us towards drawing a connection between rough
sets and the Bayes factor based testing described in Subsection 2.3.

Theorem 1. Let A = (U,A∪{d}) and B ⊆ A be given. Let the postulate (3) be
satisfied. Consider the k-th decision class Xk ⊆ U . For any E ∈ U/B we obtain
the following characteristics:

E ⊆ POSB(Xk) ⇔ ∀l: l =kPr(E|Xl) = 0
E ⊆ NEGB(Xk) ⇔ Pr(E|Xk) = 0
E ⊆ BNDB(Xk) ⇔ Pr(E|Xk) > 0 ∧ ∃l: l =kPr(E|Xl) > 0

(11)

Proof. Beginning with the positive region, we have

∀l: l =kPr(E|Xl) = 0 ⇔ ∀l: l =kPr(Xl|E) =
Pr(E|Xl)Pr(Xl)

Pr(E)
= 0

Since
∑r−1

l=0 Pr(Xl|E) = 1, the above is equivalent to Pr(Xk|E) = 1. For the
negative region we have

Pr(E|Xk) = 0 ⇔ Pr(Xk|E) =
Pr(E|Xk)Pr(Xk)

Pr(E)
= 0

Finally, for the boundary region, we can see that

Pr(E|Xk) > 0 ⇔ Pr(Xk|E) > 0
∃l: l =kPr(E|Xl) > 0 ⇔ ∃l: l =kPr(Xl|E) > 0 ⇔ Pr(Xk|E) < 1

All the above equivalences follow from the postulate (3), the Bayes rule, and the
fact that probability distributions sum up to 1. �

Remark 3. The formula for POSB(Xk) can be also rewritten as follows:

E ⊆ POSB(Xk) ⇔ Pr(E|Xk) > 0 ∧ ∀l: l =kPr(E|Xl) = 0 (12)

Pr(E|Xk) > 0 is redundant since conditions (3) and equalities Pr(E|Xl) = 0,
l 
= k, force it anyway. However, the above form including Pr(E|Xk) > 0 seems
to be more intuitive. �

Theorem 1 enables us to think about the rough set regions as follows (please
note that interpretation of the positive region is based on characteristics (12)):

1. Object u belongs to POSB(Xk), if and only if the vector B(u) ∈ VB is likely
to occur under the assumption that u supports the event Xk and unlikely to
occur under the assumption that it supports any alternative event Xl, l 
= k.
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2. Object u belongs to NEGB(Xk), if and only if the vector B(u) ∈ VB is
unlikely to occur under the assumption that u supports the event Xk.

3. Object u belongs to BNDB(Xk), if and only if the vector B(u) ∈ VB is likely
to occur under the assumption that u supports Xk but this is also the case
for some alternative events Xl, l 
= k.

As a conclusion, the rough set model can be formulated without using the prior
and posterior probabilities. It means that in case of rough sets we do not need
any kind of background knowledge even if the only probabilities reasonably rep-
resented in data are the inverse ones. The rough set regions are not influenced
by the changes of the prior probabilities. We do not even need the existence
of those probabilities – postulate (3) could be then read as a requirement that
every decision class under consideration is supported by some objects and that
some alternative decisions are supported as well.

3.2 Variable Precision Rough Set Model

Although presented by means of probabilities in the previous subsection, the
rough set regions were originally defined using simple set theoretic notions,
namely inclusion (for positive regions) and empty intersection (for negative re-
gions). Probabilities then occurred in various works [2, 13, 18, 21–24] to enable
the initial rough set model to deal more flexibly with the indiscernibility classes
almost included and almost excluded from the target events. In other words, one
can use the probabilities to soften the requirements for certainty and impossibil-
ity in the rough set model. It provides better applicability to practical problems,
where even a slight increase or decrease of probabilities can be as important as
expecting them to equal 1 or 0.

The first method using non-0-1 posterior probabilities in rough sets is the
Variable Precision Rough Set (VPRS ) model [24]. It is based on parameter-
controlled grades of the posterior probabilities in defining the approximation
regions. The most general asymmetric VPRS model definition relies on the values
of the lower and upper limit certainty thresholds α and β1. To deal with systems
with many decision classes, we will understand α and β as vectors

α = (α0, . . . , αr−1) and β = (β0, . . . , βr−1) (13)

where αk and βk refer to decision classes Xk, k = 0, . . . , r − 1, r = |Vd|. Let
system A = (U,A∪ {d}) and B ⊆ A be given. The VPRS-regions are defined as
follows:

POSβ
B(Xk) =

⋃{E ∈ U/B : Pr(Xk|E) ≥ βk}
NEGα

B(Xk) =
⋃{E ∈ U/B : Pr(Xk|E) ≤ αk}

BNDα,β
B (Xk) =

⋃{E ∈ U/B : Pr(Xk|E) ∈ (αk, βk)}
(14)

1 Originally, the notation l, u was proposed for the lower and upper certainty thresh-
olds. We use α, β instead to avoid coincidence with notation for decision classes,
where l may occur as the index, and with notation for elements of the universe,
often denoted by u ∈ U .
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The β-positive region POSβ
B(Xk) is defined by the upper limit parameter βk,

which reflects the least acceptable degree of Pr(Xk|E). Intuitively, βk represents
the desired level of improved prediction accuracy when predicting the event
Xk based on the information that event E occurred. The α-negative region
NEGα

B(Xk) is controlled by the lower limit parameter αk. It is an area where
the occurrence of the set Xk is significantly, as expressed in terms of αk, less
likely than usually. Finally, the (α, β)-boundary region BNDα,β

B (Xk) is a ”gray”
area where there is no sufficient bias towards neither Xk nor its complement.

As proposed in [25], we suggest the following inequalities to be satisfied while
choosing the VPRS parameters for particular decision systems:

0 ≤ αk < Pr(Xk) < βk ≤ 1 (15)

The reason lays in interpretation of the VPRS-regions. In case of POSβ
B(Xk),

the improvement of prediction accuracy is possible only if βk > Pr(Xk). In case
of NEGα

B(Xk), the word “usually” should be understood as the prior proba-
bility Pr(Xk). Therefore, we should be sure to choose αk < Pr(Xk) to obtain
practically meaningful results.

Another explanation of (15) is that without it we could obtain E ∈ U/B con-
tained in negative or positive VPRS-regions of all decision classes in the same
time. This is obviously an extremely unwanted situation since we should not be
allowed to verify negatively all hypotheses in the same time. We could be un-
certain about all the decision classes, which would correspond to the boundary
regions equal to U for all decision classes, but definitely not negatively (posi-
tively) convinced about all of them.

Remark 4. The above explanation of postulate (15) should be followed by re-
calling the meaning of Proposition 1 in the previous subsection. Here, it should
be connected with the following duality property of the VPRS regions [24, 25]:
For A = (U,A∪ {d}), Vd = {0, 1}, let us consider the limits satisfying equalities

α0 + β1 = α1 + β0 = 1 (16)

Then we have the following identities:

POSβ
B(X0) = NEGα

B(X1) and POSβ
B(X1) = NEGα

B(X0) (17)

Further, equations (16) can be satisfied consistently with (15). This is because
0 ≤ α0 < Pr(X0) < β0 ≤ 1 is equivalent to 1 ≥ β1 > Pr(X1) > α1 ≥ 0. �
Identities (17) are important for understanding the nature of rough-set-like
decision-making and its correspondence to the statistical hypothesis testing. It
would be desirable to extend them onto the case of more than two decision
classes, although it is not obvious how to approach it.

3.3 Further Towards the Inverse Probabilities

In the context of machine learning, the VPRS model’s ability to flexibly control
approximation regions’ definitions allows for efficient capturing probabilistic re-
lations existing in data. However, as we discussed before, the estimates of the
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posterior probabilities are not always reliable. Below we rewrite VPRS in terms
of the inverse probabilities, just like we did in case of the original RS-regions.

Proposition 2. Let A = (U,A ∪ {d}), Vd = {0, 1}, and B ⊆ A be given. Con-
sider parameters α = (α0, α1), β = (β0, β1) such that conditions (15) and (16)
are satisfied. Then we have inequalities

POSβ
B(X0) = NEGα

B(X1) =
⋃{E ∈ U/B : Pr(E|X1) ≤ ε10Pr(E|X0)}

POSβ
B(X1) = NEGα

B(X0) =
⋃{E ∈ U/B : Pr(E|X0) ≤ ε01Pr(E|X1)} (18)

where coefficients ε10, ε
0
1 defined as

ε10 =
α1Pr(X0)
β0Pr(X1)

and ε01 =
α0Pr(X1)
β1Pr(X0)

(19)

belong to the interval [0, 1).

Proof. Consider α0 and β1 such that α0 +β1 = 1 (the case of α01 and β0 can be
shown analogously). We want to prove

Pr(X1|E) ≥ β1 ⇔ α0 ≥ Pr(X0|E) ⇔ Pr(E|X0) ≤ α0Pr(X1)
β1Pr(X0)

Pr(E|X1) (20)

We know that two first above inequalities are equivalent. By combining them
together, we obtain the third equivalent inequality (its equivalence to both
Pr(X1|E) ≥ β1 and Pr(X0|E) ≤ α0 can be easily shown by contradiction):

Pr(X1|E) ≥ β1 ⇔ α0 ≥ Pr(X0|E) ⇔ α0Pr(X1|E) ≥ β1Pr(X0|E) (21)

It is enough to apply identity (2) to realize that the third inequalities in (20)
and (21) are actually the same ones. It remains to show that ε10, ε

0
1 ∈ [0, 1).

It follows from the assumption (15). For instance, we have inequality ε10 < 1
because α1 < Pr(X1) and Pr(X0) < β0. �
The above correspondence can be used to draw a connection between VPRS and
the statistical reasoning models. It is possible to refer inequality Pr(E|X0) ≤
ε01Pr(E|X1), rewritten as

B1
0 ≥

β1Pr(X0)
α0Pr(X1)

(22)

to the Bayes factor based statistical principles discussed e.g. in [20]. However,
the remaining problem is that we need to use Pr(X0) and Pr(X1) explicitly in
(22), which is often too questionable from practical point of view.

In [18], another version of VPRS is considered. The idea is to detect any
decrease/increase of belief in decision classes. The rough set region definitions
proposed in [18] look as follows:

POS∗
B(X1) =

⋃{E ∈ U/B : Pr(X1|E) > Pr(X1)}
NEG∗

B(X1) =
⋃{E ∈ U/B : Pr(X1|E) < Pr(X1)}

BND∗
B(X1) =

⋃{E ∈ U/B : Pr(X1|E) = Pr(X1)}
(23)

which can be equivalently expressed as follows (cf. [19]):
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POS∗
B(X1) =

⋃{E ∈ U/B : Pr(E|X1) > Pr(E|X0)}
NEG∗

B(X1) =
⋃{E ∈ U/B : Pr(E|X1) < Pr(E|X0)}

BND∗
B(X1) =

⋃{E ∈ U/B : Pr(E|X1) = Pr(E|X0)}
(24)

This simple interpretation resembles the VPRS characteristics provided by Pro-
position 2, for ε10 and ε01 tending to 1. It also corresponds to the limit ε01 → 1
applied to inequality Pr(E|X0) ≤ εPr(E|X1) in the Bayes factor criterion (8).
We could say that according to the scale illustrated by Fig. 2 in Subsection 2.3 the
region POS∗

B(X1) gathers any, even barely worth mentioning but still positive,
evidence for X1. It is completely opposite to the original rough set model. Indeed
POSB(X1) gathers, according to Theorem 1, only infinitely strong evidence for
X1. Let us summarize it as follows:

1. Object u belongs to POSB(X1) (to POS∗
B(X1)), if and only if X1 can be

positively verified under the evidence of B(u) at the maximal (minimal) level
of statistical significance, expressed by (8) for ε01 = 0 (ε01 → 1).

2. Object u belongs to NEGB(X1) (to NEG∗
B(X1)), if and only if X1 can be

negatively verified under the evidence of B(u) at the maximal (minimal)
level of significance (we replace X0 and X1 and use ε10 instead of ε01 in (8)).

3. Object u belongs to BNDB(X1) (to BND∗
B(X1)), if and only if it is not suffi-

cient to verify X1 neither positively nor negatively at the maximal (minimal)
level of significance under the evidence of B(u).

As a result, we obtain two models – the original rough set model and its modi-
fication proposed in [18] – which refer to the Bayes factor scale in two marginal
ways. They also correspond to special cases of VPRS, as it is rewritable by means
of the inverse probabilities following Proposition 2. They both do not need to
base on the prior or posterior probabilities, according to characteristics (11) and
(24). From this perspective, the main challenge of this article is to fill the gap
between these two opposite cases of involving the Bayes factor based methodol-
ogy into the theory of rough sets. An additional challenge is to extend the whole
framework to be able to deal with more than two target events, as it was stated
by Theorem 1 in case of the original RS-regions.

4 Rough Bayesian Model

4.1 RB for Two Decision Classes

After recalling basic methods for extracting probabilities from data and the
VPRS-like extensions of rough sets, we are ready to introduce a novel extension
based entirely on the inverse probabilities and the Bayes factor. To prepare
the background, let us still restrict to systems with two decision classes. Using
statistical terminology, we interpret classes X1 and X0 as corresponding to the
positive and negative verification of some hypothesis.

Let us refer to the above interpretation of the RS-regions originating from
substitution of ε01 = 0 to the criterion (8). By using positive values of ε01, we
can soften the requirements for the positive/negative verification. In this way
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ε01 ∈ [0, 1) plays a role of a degree of the significance approximation. We propose
the following model related to this degree. We will refer to this model as to the
Rough Bayesian model because of its relationship to Bayes factor (cf. [17]).

Definition 1. Let A = (U,A ∪ {d}), Vd = {0, 1}, and B ⊆ A be given. For any
parameters ε = (ε10, ε

0
1), ε

1
0, ε

0
1 ∈ [0, 1), we define the B-positive, B-negative, and

B-boundary rough Bayesian regions (abbreviated as RB-regions) as follows (the
regions for X0 are defined analogously):

BAYPOS ε
B(X1) =

⋃{E ∈ U/B : Pr(E|X0) ≤ ε01Pr(E|X1)}
BAYNEG ε

B(X1) =
⋃{E ∈ U/B : Pr(E|X1) ≤ ε10Pr(E|X0)}

BAYBND ε
B(X1) =

⋃{E ∈ U/B : Pr(E|X0) > ε01Pr(E|X1)∧
Pr(E|X1) > ε10Pr(E|X0)}

(25)

Remark 5. The choice of ε10 and ε01 is a challenge comparable to the case of
other parameter-controlled models, e.g. VPRS based on the threshold vectors
α and β. It is allowed to put ε10 = ε01 and use a common notation ε ∈ [0, 1)
for both coefficients. It obviously simplifies (but does not solve) the problem of
parameter tuning. Further discussion with that respect is beyond the scope of
this particular article and should be continued in the nearest future. �

Remark 6. As in Subsection 2.3, we prefer not to use the Bayes factor ratio
explicitly because of the special case of zero probabilities. However, if we omit
this case, we can rewrite the RB positive/negative/boundary regions using in-
equalities B1

0 ≥ 1/ε01, B0
1 ≥ 1/ε10, and max{B0

1ε
1
0, B

1
0ε

0
1} < 1, respectively, where

B0
1 = Pr(E|X0)/Pr(E|X1) and B0

1 = Pr(E|X1)/Pr(E|X0). �

Proposition 3. For ε = (0, 0), the RB-regions are identical with the RS-regions.

Proof. Derivable directly from Theorem 12. �

Below we provide possibly simplest way of understanding the RB-regions:

1. Object u belongs to BAYPOS ε
B(X1), if and only if B(u) is significantly (up

to ε01) more likely to occur under X1 than under alternative hypothesis X0.
2. Object u belongs to BAYNEG ε

B(X1), if and only if the alternative hypothesis
X0 makes B(u) significantly more likely (up to ε10) than X1 does.

3. Object u belongs to BAYBND ε
B(X1), if and only if it is not significantly

more likely under X1 than under X0 but also X0 does not make B(u) sig-
nificantly more likely than X1 does.

Another interpretation refers to identity (2). It shows that by using condition (8)
we actually require that the increase of belief in X0 given E, expressed by
Pr(X0|E)/Pr(X0), should be ε-negligibly small with respect to the increase of
belief in X1, that is that Pr(X0|E)/Pr(X0) ≤ ε01Pr(X1|E)/Pr(X1). According

2 Although we refer here to the special case of two decision classes, the reader can
verify that this proposition is also true for more general case discussed in the next
subsection.
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to yet another, strictly Bayesian interpretation, we are in BAYPOS ε
B(X1), if

and only if the posterior odds Pr(X1|E)/Pr(X0|E) are ε01-significantly greater
than the prior odds Pr(X1)/Pr(X0). Identity (2) also shows that we do not need
neither Pr(Xk|E) nor Pr(Xk) while comparing the above changes in terms of
the belief gains and/or the prior and posterior odds.

The Rough Bayesian model enables us to test the target events directly
against each other. For ε01 tending to 1, we can replace Pr(E|X0) ≤ ε01Pr(E|X1)
by Pr(E|X0) < Pr(E|X1), as considered in Subsection 3.3. Also, across the
whole range of ε01 ∈ [0, 1), we obtain the following characteristics, complemen-
tary to Proposition 2:

Proposition 4. Let ε = (ε10, ε01), ε10, ε01 ∈ [0, 1), and A = (U,A ∪ {d}) with
Vd = {0, 1} be given. The RB-regions are identical with the VPRS-regions for
the following parameters:

αε
0 =

ε01Pr(X0)
ε01Pr(X0) + Pr(X1)

and βε
0 =

Pr(X0)
Pr(X0) + ε10Pr(X1)

αε
1 =

ε10Pr(X1)
ε10Pr(X1) + Pr(X0)

and βε
1 =

Pr(X1)
Pr(X1) + ε01Pr(X0)

Proof. Let B ⊆ A and E ∈ U/B be given. We have to show the following:

Pr(E|X0) ≤ ε01Pr(E|X1) ⇔ Pr(X1|E) ≥ βε
1 ⇔ Pr(X0|E) ≤ αε

0

Pr(E|X1) ≤ ε10Pr(E|X0) ⇔ Pr(X1|E) ≤ αε
1 ⇔ Pr(X0|E) ≥ βε

0
(26)

Let us show, for example (the rest is analogous), that

Pr(E|X0) ≤ ε01Pr(E|X1) ⇔ Pr(X1|E) ≥ Pr(X1)
Pr(X1) + ε01Pr(X0)

(27)

Using the Bayes rule we rewrite the right above inequality as follows:

Pr(E|X1)Pr(X1)
Pr(E|X1)Pr(X1) + Pr(E|X0)Pr(X0)

≥

≥ Pr(E|X1)Pr(X1)
Pr(E|X1)Pr(X1) + ε01Pr(E|X1)Pr(X0)

The only difference is now between the term Pr(E|X0) at the left side and the
term ε01Pr(E|X1) at the right side. Hence, (27) becomes clear. �

Example 5. Let us consider the data table from Fig. 1, for B = {a1, a3} and
ε10 = ε01 = 1/5. We obtain the following RB-regions:

BAYPOS1/5
B (X1) = {u3, u6, u8, u9, u15, u19, u20}

BAYNEG1/5
B (X1) = {u2, u5, u10, u14, u18}

BAYBND1/5
B (X1) = {u1, u4, u7, u11, u12, u13, u16, u17}
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In comparison to the original RS-regions, the case of a1 = 2 and a3 = 2 starts to
support the B-positive RB-region of X1. If we can assume that Pr(X1) = 1/2,
as derivable from the considered data table, then we obtain analogous result in
terms of the VPRS-regions for

α
1/5
1 =

1/5 · 1/2
1/5 · 1/2 + (1 − 1/2)

=
1
6

and β
1/5
1 =

1/2
1/2 + 1/5(1− 1/2)

=
5
6

In particular, for E = {u ∈ U : a1(u) = 2 ∧ a3(u) = 2}, we get Pr(X1|E) = 6/7
which is more than β

1/5
1 = 5/6. �

In this way, the Rough Bayesian model refers to the VPRS idea of handling
the posterior probabilities. We can see that coefficients αε

k, β
ε
k, k = 0, 1, satisfy

assumption (15). For instance we have

0 ≤ ε01Pr(X0)
ε01Pr(X0) + Pr(X1)

< Pr(X0) <
Pr(X0)

Pr(X0) + ε10Pr(X1)
≤ 1

where inequalities hold, if and only if ε10, ε
0
1 ∈ [0, 1). The property (17) is satisfied

as well, e.g.:

ε01Pr(X0)
ε01Pr(X0) + Pr(X1)

+
Pr(X1)

Pr(X1) + ε01Pr(X0)
= 1

We can summarize the obtained results as follows:

Theorem 2. Let A = (U,A∪{d}), Vd = {0, 1}, and B ⊆ A be given. The VPRS
and RB models are equivalent in the following sense:

1. For any α = (α0, α1) and β = (β0, β1) satisfying (15) and (16), there exists
ε(α, β) ∈ [0, 1)× [0, 1) such that for k = 0, 1 we have

BAYPOS ε(α,β)
B (Xk) = POS β

B(Xk)
BAYNEG ε(α,β)

B (Xk) = NEG α
B(Xk)

BAYBND ε(α,β)
B (Xk) = BND α,β

B (Xk)

2. For any ε ∈ [0, 1)× [0, 1), there exist α(ε) and β(ε) satisfying (15) and (16)
such that for k = 0, 1 we have

POS β(ε)
B (Xk) = BAYPOS ε

B(Xk)
NEG α(ε)

B (Xk) = BAYNEG ε
B(Xk)

BND α(ε),β(ε)
B (Xk) = BAYBND ε

B(Xk)

Proof. Derivable directly from Propositions 2 and 4. �

It is important to remember that Theorem 2 holds only for Vd = {0, 1}. We will
address more general case in the next subsections. For now, given Vd = {0, 1},
let us note that the advantage of the RB model with respect to VPRS is that
any change of Pr(X1) results in automatic change of the lower and upper VPRS
thresholds. It can be illustrated as follows:
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Example 6. Let us continue the previous example but for Pr(X1) = 1/1000, as if
X1 corresponded to a rare medical pathology discussed in Example 3. There is no
sense to keep the upper limit for Pr(X1|E) equal to 5/6, so the VPRS parameters
should be changed. However, there is no change required if we rely on the RB-
regions. With the same ε10 = ε01 = 1/5 we simply get different interpretation in
terms of the posterior probabilities. Namely, we recalculate the VPRS degrees
as

α
1/5
1 =

1/5 · 1/1000
1/5 · 1/1000 + (1− 1/1000)

�
1

5000
and β

1/5
1 �

1
200

One can see that this time β1/5
1 would have nothing in common with previously

calculated Pr(X1|E) = 6/7. However, using standard estimation Pr(X1|E) =
|Xk ∩E|/|E| is not reasonable in this situation. We should rather use the Bayes
rule leading to the following result:

Pr(d = 1|a1 = 2, a3 = 2) =
3/5 · 1/1000

1/10 · (1− 1/1000) + 3/5 · 1/1000
=

2
335

The posterior probability becomes then to be referrable to β
1/5
1 . �

As a result, we obtain a convenient method of defining the rough-set-like regions
based on the inverse probabilities, which – if necessary – can be translated onto
the parameters related to more commonly used posterior probabilities. However,
the Rough Bayesian model can be applied also when such translation is impos-
sible, that is when the prior probabilities are unknown or even undefinable. The
RB-regions have excellent statistical interpretation following from their connec-
tions with the Bayes factor. Actually, we obtain a kind of variable significance
rough set model, as it is parameterized by the significance thresholds ε = (ε10, ε01).
The choice of ε refers to the choice of significance levels illustrated by Fig. 2,
Subsection 2.3. We can draw a direct connection between the RB-regions and
particular states of the statistical verification process. We can also base on sta-
tistical apparatus while tuning ε = (ε10, ε

0
1), with two important special cases –

the original rough set model for ε10 = ε01 = 0 and the model introduced in [18]
for ε10, ε

0
1 tending to 1.

4.2 RB for More Decision Classes

The way of comparing the inverse probabilities in Definition 1 has a natural
extension onto the case of more decision classes. Below we reconsider the Rough
Bayesian model for such a situation. Please note that the regions from Definition
1 are the special cases of the following ones.

Definition 2. Let A = (U,A ∪ {d}), Vd = {0, . . . , r − 1}, and B ⊆ A be given.
Consider matrix

ε =

⎡
⎢⎢⎣

∗ ε01 ... ε0r−1

ε10 ∗ :
: ∗ εr−2

r−1

εr−1
0 ... εr−1

r−2 ∗

⎤
⎥⎥⎦ (28)
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U a1 a2 a3 a4 a5 d

u1 1 1 0 1 2 0
u2 0 0 0 2 2 2
u3 2 2 2 1 1 1
u4 0 1 2 2 2 1
u5 2 1 1 0 2 0
u6 2 2 2 1 1 1
u7 0 1 2 2 2 2
u8 2 2 2 1 1 1
u9 2 2 2 1 1 1
u10 0 0 0 2 2 0

U a1 a2 a3 a4 a5 d

u11 1 2 0 0 2 0
u12 1 1 0 1 2 1
u13 0 1 2 2 2 1
u14 2 1 1 0 2 0
u15 2 2 2 1 1 2
u16 1 1 0 1 2 1
u17 1 1 0 1 2 2
u18 2 1 1 0 2 2
u19 2 2 2 1 1 1
u20 2 2 2 1 1 1

Fig. 3. A = (U,A ∪ {d}), U = {u1, . . . , u20}, A = {a1, . . . , a5}. Decision classes:
X0 = {u1, u5, u10, u11, u15}, X1 = {u3, u4, u6, u8, u9, u12, u13, u16, u19, u20}, and X2 =
{u2, u7, u14, u17, u18}.

where εl
k ∈ [0, 1), for k 
= l. We define the B-positive, B-negative, and B-

boundary RB-regions as follows:

BAYPOS ε
B(Xk) =

⋃{E ∈ U/B : ∀l: l =kPr(E|Xl) ≤ εl
kPr(E|Xk)}

BAYNEG ε
B(Xk) =

⋃{E ∈ U/B : ∃l: l =kPr(E|Xk) ≤ εk
l Pr(E|Xl)}

BAYBND ε
B(Xk) =

⋃{E ∈ U/B : ∃l: l =kPr(E|Xl) > εl
kPr(E|Xk)∧

∀l: l =kPr(E|Xk) > εk
l Pr(E|Xl)}

(29)

Remark 7. As in Remark 6, we could use respectively conditions minl:l =k B
k
l ≥

1/εl
k, maxl:l =k B

l
k ≥ 1/εk

l , and max
{
minl:l =k B

k
l ε

l
k,maxl:l =k B

l
kε

k
l

}
< 1, where

the ratios Bk
l are defined by (6). The only special case to address would corre-

spond to the zero inverse probabilities. �

Let us generalize the previous interpretation of the RB-regions as follows:

1. Object u belongs to BAYPOS ε
B(Xk), if and only if B(u) is significantly

more likely to occur under Xk than under any other hypothesis Xl, l 
= k.
2. Object u belongs to BAYNEG ε

B(Xk), if and only if there is an alternative
hypothesis Xl, which makes B(u) significantly more likely than Xk does.

3. Object u belongs to BAYBND ε
B(Xk), if and only if B(u) is not significantly

more likely under Xk than under all other Xl but there is also no alternative
hypothesis, which makes B(u) significantly more likely than Xk does.

Remark 8. As in case of two decision classes, we can consider a simplified model
with εl

k = ε, for every k, l = 0, . . . , r − 1, k 
= l. Appropriate tuning of many
different parameters in the matrix (28) could be difficult technically, especially
for large r = |Vd|. The examples below show that the multi-decision RB model
has a significant expressive power even for one unified ε ∈ [0, 1). Therefore, we
are going to put a special emphasis on this case in the future applications. �

Example 7. Fig. 3 illustrates decision system A = (U,A ∪ {d}) with Vd =
{0, 1, 2}. Actually, it results from splitting the objects supporting X0 in Fig. 1
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onto two 5-object parts, now corresponding to decision classes X0 and X2. For
B = {a1, a3}, we have five B-indiscernibility classes. We list them below, with
the corresponding inverse probabilities.

U/B Conditions P (Ei|X0) P (Ei|X1) P (Ei|X2)
E1 a1 = 1, a3 = 0 2/5 1/5 1/5
E2 a1 = 0, a3 = 0 1/5 0 1/5
E3 a1 = 2, a3 = 2 0 3/5 1/5
E4 a1 = 0, a3 = 2 0 1/5 1/5
E5 a1 = 2, a3 = 1 2/5 0 1/5

Let us start with the RS-regions. We obtain the following characteristics:

Decisions POSB(Xk) NEGB(Xk) BNDB(Xk)
X0 ∅ E3 ∪E4 E1 ∪ E2 ∪E5

X1 ∅ E2 ∪E5 E1 ∪ E3 ∪E4

X2 ∅ ∅ U

Now, let us consider ε = 1/3. We obtain the following RB-regions:

Decisions BAYPOS1/3
B (Xk) BAYNEG1/3

B (Xk) BAYBND1/3
B (Xk)

X0 ∅ E3 ∪ E4 E1 ∪ E2 ∪ E5

X1 E3 E2 ∪ E5 E1 ∪ E4

X2 ∅ E3 U \ E3

While comparing to the RS-regions, we can see that:

1. BAYPOS1/3
B (X1) and BAYNEG1/3

B (X2) start to contain E3.
2. BAYBND1/3

B (X1) and BAYBND1/3
B (X2) do not contain E3 any more.

This is because we have both P (E3|X0) ≤ 1/3 ∗ P (E3|X1) and P (E3|X2) ≤
1/3∗P (E3|X1). It means that E3 at least three times more likely given hypothesis
X1 than given X0 and X2. According to the scale proposed in [4] and presented
in Subsection 2.3, we could say that E3 is a positive evidence for X1. �

As a conclusion for this part, we refer to Proposition 1 formulated for the original
rough set model as an important decision-making property. We can see that the
Rough Bayesian model keeps this property well enough to disallow intersections
between the positive and negative RB-regions of different decision classes. We
will go back to this topic in the next subsection, while discussing the VPRS
model for more than two decision classes.

Proposition 5. Let A = (U,A ∪ {d}), Xk ⊆ U , and B ⊆ A be given. Consider
matrix ε given by (28) for εl

k ∈ [0, 1), k 
= l. We have the following inclusion:

BAYPOS ε
B(Xk) ⊆ ⋂l:l =k BAYNEG ε

B(Xl) (30)

Moreover, if inequalities
εl

k ≥ εm
k ε

l
m (31)

hold for every mutually different k, l,m, then the equality holds in (30).



220 Dominik Ślȩzak

Proof. Assume E ⊆ BAYPOS ε
B(Xk) for a given k = 0, . . . , r − 1. Consider any

Xm, m 
= k. We have E ⊆ BAYNEG ε
B(Xm) because there exists l 
= m such

that Pr(E|Xm) ≤ εm
l Pr(E|Xl). Namely, we can choose l = k.

Now, let us assume that E ⊆ BAYNEG ε
B(Xl) for every Xl, l 
= k. Then,

for any Xl0, l0 
= k there must exist Xl1, l1 
= l0, such that Pr(E|Xl0) ≤
εl0

l1Pr(E|Xl1). There are two possibilities: If l1 = k, then we reach the goal – we
wanted to show that Pr(E|Xl0) ≤ εl0

k Pr(E|Xk) for any Xl0, l0 
= k. If l1 
= k,
then we continue with l1. Since l1 
= k, there must exist Xl2, l2 
= l1, such that
Pr(E|Xl1) ≤ εl1

l2Pr(E|Xl2). Given inequalities (31), we get

Pr(E|Xl0) ≤ εl0
l1Pr(E|Xl1) ≤ εl0

l1ε
l1
l2Pr(E|Xl2) ≤ εl0

l2Pr(E|Xl2)

Therefore, we can apply the same procedure to every next l2 as we did with
l1 above. At each next step we must select a brand new decision class – this is
because the ε-matrix takes the values within [0, 1). Since the number of decisions
is finite, we must eventually reach the moment when a new l2 equals k. �
Corollary 1. Let A = (U,A∪{d}) and B ⊆ A be given. Consider the RB model
with unified parameter ε ∈ [0, 1), that is εl

k = ε for every k, l = 0, . . . , r−1, k 
= l.
Then we have always BAYPOS ε

B(Xk) =
⋂

l:l =k BAYNEG ε
B(Xl).

Proof. Directly from Proposition 5. �

4.3 VPRS for More Decision Classes

The question is whether the Rough Bayesian model is still rewritable in terms of
the posterior probabilities, similarly to the case of two decision classes described
by Theorem 2. Let us first discuss requirements for a posterior probability based
rough set model in such a case. In Subsection 3.2, we used the parameter vectors
α = (α0, . . . , αr−1) and β = (β0, . . . , βr−1) satisfying condition (15). One would
believe that if a unique Xk is supported strongly enough, then the remaining
classes cannot be supported in a comparable degree. However, this is the case
only for two complementary decision classes. If |Vd| > 2, then there might be
two different classes Xk and Xl, k 
= l, satisfying inequalities Pr(Xk|E) ≥ βk

and Pr(Xl|E) ≥ βl. It would lead to supporting two decisions in the same time,
which is an unwanted situation.

Example 8. Consider the decision system illustrated in Fig. 3. Please note that
Pr(X0) = Pr(X2) = 1/4 and Pr(X1) = 1/2. Let us choose parameters α =
(1/10, 1/4, 1/10) and β = (13/20, 3/4, 13/20). One can see that inequalities (15)
are then satisfied. For B = {a1, a3}, we have five B-indiscernibility classes, as in
Example 7. Their corresponding posterior probabilities look as follows:

U/B Conditions P (X0|Ei) P (X1|Ei) P (X2|Ei)
E1 a1 = 1, a3 = 0 2/5 2/5 1/5
E2 a1 = 0, a3 = 0 1/2 0 1/2
E3 a1 = 2, a3 = 2 0 6/7 1/7
E4 a1 = 0, a3 = 2 0 2/3 1/3
E5 a1 = 2, a3 = 1 2/3 0 1/3
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We obtain the following characteristics, if we keep using conditions (14):

Decisions POSβ
B(Xk) NEGα

B(Xk) BNDα,β
B (Xk)

X0 E5 E3 ∪E4 E1 ∪ E2

X1 E3 E2 ∪E5 E1 ∪ E4

X2 ∅ ∅ U

Luckily enough, we do not obtain non-empty intersections between positive
regions of different decision classes. However, there is another problem visible: E5

(E3) is contained in the positive region of X0 (X1) but it is not in the negative
region of X2. It is a lack of a crucial property of the rough-set-like regions,
specially emphasized by Propositions 1 and 5. �
Obviously, one could say that α and β in the above example are chosen artifi-
cially to yield the described non-empty intersection situation. However, even if
this is a case, it leaves us with the problem how to improve the requirements
for the VPRS parameters to avoid such situations. We suggest embedding the
property analogous to those considered for the RS and RB models directly into
the definition. In this way, we can also simplify the VPRS notation by forgetting
about the upper grades β. This is a reason why we refer to the following model
as to the simplified VPRS model.

Definition 3. Let A = (U,A ∪ {d}) and B ⊆ A be given. Consider vector
α = (α0, . . . , αr−1) such that inequalities

0 ≤ αk < Pr(Xk) (32)

are satisfied for every k = 0, . . . , r−1. The simplified VPRS-regions are defined
as follows:

POSα
B(Xk) =

⋃{E ∈ U/B : ∀l: l =kPr(Xl|E) ≤ αl}
NEGα

B(Xk) =
⋃{E ∈ U/B : Pr(Xk|E) ≤ αk}

BNDα
B(Xk) =

⋃{E ∈ U/B : Pr(Xk|E) > αk ∧ ∃l: l =kPr(Xl|E) > αl}
(33)

Proposition 6. Let A = (U,A∪{d}), Xk ⊆ U , B ⊆ A, and α = (α0, . . . , αr−1)
be given. We have the following equality:

POS α
B(Xk) =

⋂
l:l =kNEG α

B(Xl) (34)

Proof. Directly from (33). �
The form of (33) can be compared with the way we expressed the original RS-
regions by (11). There, we defined the positive region by means of conditions for
the negative regions of all other classes, exactly like for simplified VPRS above.
Further, we can reformulate the meaning of Remark 3 as follows:

Proposition 7. Let A = (U,A∪{d}), B ⊆ A, E ∈ U/B, and α = (α0, ..., αr−1)
satisfying (32) be given. Let us define vector β = (β0, . . . , βr−1) in the following
way, for every k = 0, . . . , r − 1:

βk = 1−
∑
l:l =k

αk (35)
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Then, for any Xk, we have the following equivalence:

E ⊆ POSα
B(Xk) ⇔ Pr(Xk|E) ≥ βk ∧ ∀l: l =kPr(Xl|E) ≤ αl}

Moreover, vectors α and β satisfy together the assumption (15).

Proof. Directly based on the fact that
∑r−1

l=0 Pr(Xl|E) = 1. �

In this way one can see that by removing β = (β0, . . . , βr−1) from the definition
of VPRS we do not change its meaning. Vector β is fully recoverable from α
using equations (35), which actually generalize postulate (16). In particular, for
a special case of two decision classes, we obtain the following result.

Proposition 8. Let Vd = {0, 1} and let equalities (16) be satisfied. Then Defi-
nition 3 is equivalent to the original VPRS model.

Proof. For two decision classes, given (16), conditions Pr(Xk|E) ≥ βk and
∀l: l =kPr(Xl|E) ≤ αl are equivalent – there is only one different l = 0, 1 and
one of equalities (17) must take place. Therefore, POSα

B(Xk) takes the same
form as in (14). Negative regions are formulated directly in the same way as in
(14). Hence, the boundary regions must be identical as well. �

Example 9. Let us go back to the three-decision case illustrated by Fig. 3 and
consider parameters α = (1/10, 1/4, 1/10), as in Example 8. Let us notice that
the vector β = (13/20, 3/4, 13/20) from that example can be calculated from
α using (35). Now, let us compare the previously obtained regions with the
following ones:

Decisions POSα
B(Xk) NEGα

B(Xk) BNDα
B(Xk)

X0 ∅ E3 ∪E4 E1 ∪ E2 ∪E5

X1 ∅ E2 ∪E5 E1 ∪ E3 ∪E4

X2 ∅ ∅ U

Although, on the one hand, the crucial property (34) is now satisfied, we do
not get any relaxation of conditions for the positive regions with respect to the
original RS-regions analyzed for the same system in Example 7. The problem
with Definition 3 seems to be that even a very good evidence for Xk can be
ignored (put into boundary) because of just one other Xl, l 
= k, supported by
E to a relatively (comparing to Xk) low degree. The RB-regions presented in
Example 7 turn out to be intuitively more flexible with handling the data based
probabilities. We try to justify it formally below. �

After introducing a reasonable extension (and simplification) of VPRS for the
multi-decision case, we are ready to compare it – as an example of the posterior
probability based methodology – to the Rough Bayesian model. Since it is an
introductory study, we restrict ourselves to the simplest case of RB, namely to
the unified ε-matrix (28), where εl

k = ε for every k, l = 0, . . . , r − 1, k 
= l, for
some ε ∈ [0, 1). It refers to an interesting special case of simplified VPRS, where

α0(1− Pr(X0))
(1 − α0)Pr(X0)

= . . . =
αr−1(1− Pr(Xr−1))
(1− αr−1)Pr(Xr−1)

(36)
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According to (36) the parameters for particular decision classes satisfy inequal-
ities (32) in a proportional way. Its advantage corresponds to the problem of
tuning vectors α = (α0, . . . , αr−1) for large values of r = |Vd|. Given (36) we can
handle the whole α using a single parameter:

Proposition 9. Let A = (U,A∪{d}), B ⊆ A, and α = (α0, . . . , αr−1) satisfying
both (32) and (36) be given. There exists ε ∈ [0, 1), namely

ε =
αk(1− Pr(Xk))
(1− αk)Pr(Xk)

for arbitrary k = 0, . . . , r − 1 (37)

such that for every k = 0, . . . , r − 1 the value of αk is derivable as

αk =
εPr(Xk)

εPr(Xk) + (1− Pr(Xk))
(38)

Proof. It is enough to substitute the right side of (37) as ε to the right side (38)
and check that it indeed equals αk. �

The following result shows that at the one-parameter level the Rough Bayesian
model can be potentially more data sensitive than the simplified VPRS model.
Obviously, similar comparison of more general cases is a desired direction for
further research.

Theorem 3. Let A = (U,A ∪ {d}) and B ⊆ A be given. Consider vector α =
(α0, . . . , αr−1) satisfying (32) and (36). Consider ε ∈ [0, 1) given by (37) as the
unified parameter for the RB model, that is εl

k = ε for every k, l = 0, . . . , r − 1.
Then we have the following inclusions, for every k = 0, . . . , r − 1:

POS α
B(Xk) ⊆ BAYPOS ε

B(Xk)
NEG α

B(Xk) ⊆ BAYNEG ε
B(Xk)

BND α
B(Xk) ⊇ BAYBND ε

B(Xk)
(39)

Proof. Using the same technique as in the proof of Proposition 4, we can show

Pr(Xk|E) ≤ αk ⇔ εPr(E|¬Xk) ≥ Pr(E|Xk)

where ¬Xk =
⋃

l =k Xl. Further, using a simple translation, we can observe that

Pr(E|¬Xk) =

∑
l =k Pr(Xl)Pr(E|Xl)∑

l =k Pr(Xl)

Now, we are ready to show inclusions (39). Let us begin with the second one.
Assume that a given E ∈ U/B is not in BAYNEGε

B(Xk), that is

∀l:l =k εPr(E|Xl) < Pr(E|Xk)

Then we get ε
∑

l:l =k Pr(Xl)Pr(E|Xl) <
∑

l:l =k Pr(Xl)Pr(E|Xk), further equi-
valent to

Pr(E|Xk) > ε ·
∑

l:l =k Pr(Xl)Pr(E|Xl)∑
l:l =k Pr(Xl)
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Hence, E is outside NEG α
B(Xk) and the required inclusion is proved. To show

the first inclusion in (39), assume E ⊆ POS α
B(Xk). According to (34), we then

have E ⊆ NEG α
B(Xl), for every Xl, l 
= k. Using just proved inclusion, we get

E ⊆ BAYNEG α
B(Xl). By Corollary 1 we then obtain E ⊆ BAYPOS α

B(Xk),
what we wanted to prove. The third inclusion in (39) is now derivable directly
from the other two ones. �

Example 10. Let us recall the decision system from Fig. 3, where Pr(X0) =
Pr(X2) = 1/4 and Pr(X1) = 1/2. It turns out that the parameters α =
(1/10, 1/4, 1/10) considered in Example 8 are derivable using (38) for ε = 1/3.
According to Theorem 3, the RB-regions presented in Example 7 for ε = 1/3 are
referrable to the simplified VPRS-regions from Example 9. It is an illustration for
(39) – one can see that we should expect strict inclusions in all those inclusions.
The specific problem with putting E3 to the positive simplified VPRS-region
of X1 is that it is blocked by too high value of Pr(X2|E3) although this value
seems to be much lower than Pr(X1|E3). We should avoid comparing these two
posterior probabilities directly because it would be unfair with respect to X2 for
its prior probability is twice lower than in case of X1. However, direct compar-
ison of the inverse probabilities Pr(E3|X1) and Pr(E3|X2) shows that we can
follow X1 since E3 is three times more likely given X1 than given X2. �

An interesting feature of the Rough Bayesian model is that it can use a single
parameter ε ∈ [0, 1) to produces valuable results, as illustrated by the above
example. On the other hand, asymmetric extensions of RB are possible, even
for r(r−1) different parameters εl

k corresponding to comparison of εl
kPr(E|Xk)

and Pr(E|Xl). Further research is needed to understand expressive power of
such extensions and their relevance to the other rough set approaches.

5 Distributed Decision Systems

In the examples considered so far, we referred to decision systems gathering
objects supporting all decision classes together. On the other hand, while deal-
ing with the Bayes factors and the RB-regions, we calculate only the inverse
probabilities, which do not require putting the whole data in a single table.
We propose a data storage framework, where the objects supporting the target
concepts corresponding to different decision classes are stored in separate data
sets. It emphasizes that in some situations data supporting particular events are
uncombinable and the only probability estimates we can use are of the inverse
character, that is they are naturally conditioned by particular decisions.

Definition 4. Let the set of r mutually exclusive target events be given. By a
distributed decision system A we mean the collection of r information systems

A = {A0 = (X0, A), . . . ,Ar−1 = (Xr−1, A)} (40)

where Xk denotes the set of objects supporting the k-th event, k = 0, . . . , r − 1,
and A is the set of attributes describing all the objects in X0, . . . , Xr−1.
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Any information derivable from Ak is naturally conditioned by Xk, for k =
0, . . . , r − 1. Given B-information vector w ∈ VB , B ⊆ A, we can set up

Prk(B = w) =
|{u ∈ Xk : B(u) = w}|

|Xk| (41)

as the probability that a given object will have the values described by w on B
conditioned by its membership to Xk.

Example 11. Let us consider A consisting of two information systems illustrated
in Fig. 4. For instance, Pr0(a1 = 2, a3 = 2) = 1/10 and Pr1(a1 = 2, a3 = 2) =
3/5 are estimates of probabilities that a given object will satisfy a1 = 2 and
a3 = 2, if it supports the events X0 and X1, respectively.

One can see that if we use estimation

Pr(B = w|d = k) = Prk(B = w) (42)

then the inverse probabilities derivable from Fig. 4 are identical with those deriv-
able from Fig. 1. Actually, we created Fig. 1 artificially by doubling the objects
from A1 and merging them with A0 from Fig. 4. Therefore, if we assume that
due to our knowledge we should put Pr(X0) = Pr(X1) = 1/2, then systems
illustrated by Figures 1 and 4 will provide the same posterior probabilities. �

X0 a1 a2 a3 a4 a5

u1 1 2 0 0 2
u2 1 1 0 1 2
u3 0 0 0 2 2
u4 2 1 1 0 2
u5 2 1 1 0 2
u6 2 2 2 1 1
u7 0 1 2 2 2
u8 1 1 0 1 2
u9 2 1 1 0 2
u10 0 0 0 2 2

X1 a1 a2 a3 a4 a5

o1 2 2 2 1 1
o2 0 1 2 2 2
o3 1 1 0 1 2
o4 2 2 2 1 1
o5 2 2 2 1 1

Fig. 4. Distribute decision system A =
{A0 = (X0, A), A1 = (X1, A)}, where A =
{a1, . . . , a5}, and X0 = {u1, . . . , u10}, X1 =
{o1, . . . , o5}.

Distributed decision systems do not provide a means for calculation of the pos-
terior probabilities unless we know the priors of all decision classes. On the other
hand, we get full flexibility with respect to the changes of the prior probabil-
ities, which can be easily combined with the estimates (42). For instance, let
us go back to the case study from the end of Subsection 2.2 and assume that
the objects in A1 = (X1, A) are very carefully chosen cases of a rare medical
pathology while the elements of X0 describe a representative sample of human
beings not suffering from this pathology. Let us put Pr(X1) = 1/1000. Then, as
in Example 6, we get Pr(d = 1|a1 = 2, a3 = 2) = 2/335. It shows how different
posterior probabilities can be obtained from the same distributed decision sys-
tem for various prior probability settings. Obviously, we could obtain identical
results from appropriately created classical decision systems (like in case of the
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system in Fig. 1). However, such a way of data translation is unnecessary or even
impossible, if the prior probabilities are not specified.

From technical point of view, it does not matter whether we keep the data
in the form of distributed or merged decision system, unless we use estimations
(4). However, we find Definition 4 as a clearer way to emphasize the nature of
the data based probabilities that we can really believe in. Indeed, the inverse
probabilities (42) are very often the only ones, which can be reasonably estimated
from real-life data sets. This is because the process of the data acquisition is
often performed in parallel for various decisions and, moreover, the experts can
(and wish to) handle the issue of the information representativeness only at the
level of separate decision classes. Following this argumentation, let us reconsider
the original RS-regions for distributed data, without the need of merging them
within one decision system.

Definition 5. Let the system A = {A0 = (X0, A), . . . ,Ar−1 = (Xr−1, A)} be
given. For any Xk and B ⊆ A, we define the B-positive, B-negative, and B-
boundary distributed rough set regions (abbreviated as DRS-regions) as follows:

DPOSB(Xk) = {w ∈ VB : ∀l: l =kPrl(B = w) = 0}
DNEGB(Xk) = {w ∈ VB : Prk(B = w) = 0}
DBNDB(Xk) = {w ∈ VB : Prk(B = w) > 0 ∧ ∃l: l =kPrl(B = w) > 0}

(43)

The difference between (43) and (9) is that the distributed rough set regions are
expressed in terms of B-information vectors, regarded as the conditions satisfi-
able by the objects. Besides, both definitions work similarly if they refer to the
same inverse probabilities.

Example 12. The DRS-regions obtained for B = {a1, a3} from Fig. 4 look as
follows:

DPOSB(X1) = ∅
DNEGB(X1) = {{(a1, 0), (a3, 0)}, {(a1, 2), (a3, 1)}}
DBNDB(X1) = {{(a1, 0), (a3, 2)}, {(a1, 1), (a3, 0)}, {(a1, 2), (a3, 2)}}

(44)

One can see that the supports of the above B-information vectors within the
decision system from Fig. 1 correspond to the RS-regions in Example 4. �
The rough set extensions referring in a non-trivial way to the posterior and
prior probabilities, like e.g. VPRS, cannot be rewritten in terms of distributed
decision systems. However, it is possible for the Rough Bayesian model. Actually,
it emphasizes that RB does not need to assume anything about the prior and
posterior probabilities. We believe that in this form our idea of combining rough
sets with the Bayes factor based approaches is possibly closest to the practical
applications.

Definition 6. Let A = {A0 = (X0, A), . . . ,Ar−1 = (Xr−1, A)} be given. Con-
sider matrix ε given by (28) for εl

k ∈ [0, 1), k 
= l. For any k = 0, . . . , r − 1
and B ⊆ A, we define the B-positive, B-negative, and B-boundary distributed
rough Bayesian regions (abbreviated as DRB-regions) as follows:
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DBAYPOS ε
B(Xk) =

{
w ∈ VB : ∀l: l =kPrl(B = w) ≤ εl

kPrk(B = w)
}

DBAYNEG ε
B(Xk) =

{
w ∈ VB : ∃l: l =kPrk(B = w) ≤ εk

l Prl(B = w)
}

DBAYBND ε
B(Xk) =

{
w ∈ VB : ∃l: l =kPrl(B = w) > εl

kPrk(B = w)
∧ ∀l: l =kPrk(B = w) > εk

l Prl(B = w)
} (45)

Example 13. Fig. 5 illustrates a distributed system for three target events. They
result from splitting A0 = (X0, A) from Fig. 4 onto equally large A0 = (X0, A)
and A2 = (X2, A), similarly as we did in the previous sections with our exemplary
non-distributed decision system. Let us start with calculation of the regions
introduced in Definition 5. As usual, consider B = {a1, a3}. The DRS-regions
for X1 do not change with respect to (44). The remaining regions look as follows:

DPOSB(X0) = ∅ DPOSB(X2) = ∅
DNEGB(X0) = {{(a1, 0), (a3, 2)}, {(a1, 2), (a3, 2)}} DNEGB(X2) = ∅
DBNDB(X0) = VB \ DNEGB(X0) DBNDB(X2) = VB

(46)

X0 a1 a2 a3 a4 a5

u1 1 2 0 0 2
u2 1 1 0 1 2
u3 0 0 0 2 2
u4 2 1 1 0 2
u5 2 1 1 0 2

X2 a1 a2 a3 a4 a5

e1 2 2 2 1 1
e2 0 1 2 2 2
e3 1 1 0 1 2
e4 2 1 1 0 2
e5 0 0 0 2 2

X1 a1 a2 a3 a4 a5

o1 2 2 2 1 1
o2 0 1 2 2 2
o3 1 1 0 1 2
o4 2 2 2 1 1
o5 2 2 2 1 1

Fig. 5. System A = {A0 = (X0, A), A1

= (X1, A), A2 = (X2, A)}, where A =
{a1, . . . , a5}, X0 = {u1, . . . , u5}, X1 =
{o1, . . . , o5}, X2 = {e1, . . . , e5}.

The B-boundary DRS-region for X2 corresponds to the whole VB . It means
that any so far recorded B-information vector is likely to occur for a given
object under the assumption that that object supports X2, as well as under the
assumption that it supports X0 and/or X1. Now, consider the DRB-regions for
ε = 1/3. We obtain the following changes with respect to the (44) and (46):

1. DBAYPOS1/3
B (X1), DBAYNEG1/3

B (X2) start to contain {(a1, 2), (a3, 2)}.
2. DBAYBND1/3

B (Xk), k = 1, 2, do not contain {(a1, 2), (a3, 2)} any more.

The obtained DRB-regions are comparable with the RB-regions obtained previ-
ously for the corresponding non-distributed decision system from Fig. 3. �
Introduction of distributed decision systems has rather a technical than theoret-
ical impact. It illustrates possibility of handling decomposed data, which can be
especially helpful in case of many decision classes with diversified or unknown
prior probabilities. Distributed systems provide the exact type of information
needed for extracting the RB-regions from data. Hence, we plan implementing
the algorithms referring to the Rough Bayesian model mainly for such systems.
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6 Final Remarks

We introduced the Rough Bayesian model – a parameterized extension of rough
sets, based on the Bayes factor and the inverse probabilities. We compared it
with other probabilistic extensions, particularly with the VPRS model relying on
the data based posterior probabilities. We considered both the two-decision and
multiple-decision cases, where the direct comparison of the inverse probabilities
conditioned by decision classes turns out to be more flexible than handling their
posterior probabilities. Finally, we proposed distributed decision systems as a
new way of storing data, providing estimations for the Rough Bayesian regions.

We believe that the framework based on the Rough Bayesian model is well
applicable to the practical data analysis problems, especially if we cannot rely on
the prior/posterior probabilities derivable from data and/or background knowl-
edge. The presented results are also helpful in establishing theoretical founda-
tions for correspondence between the theory of rough sets and Bayesian reason-
ing. Several basic facts, like, e.g., the inverse probability based characteristics of
the original rough set model, support an intuition behind this correspondence.
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16. Ślȩzak, D.: Approximate Entropy Reducts. Fundamenta Informaticae, 53/3-4
(2002) pp. 365–390.
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Abstract. The paper examines Formal Concept Analysis (FCA) and
Rough Set Theory (RST) against the background of the theory of finite
approximations of continuous topological spaces. We define the operators
of FCA and RST by means of the specialisation order on elements of a
topological space X which induces a finite approximation of X. On this
basis we prove that FCA and RST together provide a semantics for tense
logic S4.t. Moreover, the paper demonstrates that a topological space X
cannot be distinguished from its finite approximation by means of the
basic temporal language. It means that from the perspective of topology
S4.t is a better account of approximate reasoning then unimodal logics,
which have been typically employed.

1 Introduction

Formal Concept Analysis (FCA) and Rough Set Theory (RST), introduced in the
early 80’s by Wille [14] and Pawlak [13] respectively, have become today leading
theories of knowledge acquisition from data tables. This fact has resulted in a
rapid growth of interest in their formal relationships and possible unifications.
Generally, both theories are based on Galois connections and cluster data into
coherent and meaningful entities called concepts. Concepts express knowledge
about a given domain, which is represented by means of a data table. Some
sets of objects may be directly defined by concepts but others may be only
approximated. Basically, FCA is concerned with the formal structure of concepts
whereas RST is engaged with approximations. Although we know today quite a
lot about both theories and even about their relationships [3, 4, 15, 17], there
is serious lack of results on logics reflecting their formal connexions. This paper
aims at providing such logic, which – as we demonstrate – should be considered
as a good tool for approximate reasoning.

Going into detail, the present article establishes certain formal relationships
between FCA and RST on the ground of the theory of finite topological ap-
proximations. The idea of finite approximations (aslo called finitary substitutes)
preserving important topological features of continuous topologies (such as man-
ifolds) has been introduced by Sorkin in [12]. We are concerned here only with
pure mathematical content of this idea, leaving aside its physical interpretations.
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c© Springer-Verlag Berlin Heidelberg 2005



Formal Concept Analysis and Rough Set Theory 231

The article shows that the composition of derivation operators from FCA and
the upper approximation as well as the lower approximation operators of RST
naturally emerge from the so called specialisation order, which expresses incom-
pletness of information about a given domain. It brings us a few new insights into
the nature of these operators and relationships between FCA and RST. Notably,
the composition of derivation operators of FCA is the opposite operator with
respect to the specialisation order to the upper approximation of RST. It fol-
lows that FCA and RST taken together bring a semantics to tense logic S4.t. To
our best knowledge it is the first strictly logical result concerning relationships
between FCA and RST.

As we have said, a finite approximation preserves important topological fea-
tures of an approximated space. Hence a logic of approximate reasoning should
be sufficiently strong to guarantee that these important features will be main-
tained. RST is expressed by unimodal normal logics [2, 16], what in case of finite
models means that RST is as strong as bisimilarity. But – as we prove it – a
topological space and its finitary substitute are temporally bisimilar. Therefore,
in the light of topology, S4.t interpreted by RST and FCA is a better account
of approximate reasoning than unimodal logics provided with RST semantics.

2 Finitary Approximations

We begin this section with recalling a few basic definitions from general topol-
ogy. Having that done we shall introduce the idea of finite topological approxi-
mations [12].

Definition 1 (Topological Space). A topological space is a pair (X, ) where
X is a nonempty set and  is a family of subsets of X, which contains the empty
set ∅ and X, and is closed under finite intersections and infinite unions.

Elements of  are called open sets. A set A is called closed if its complement is
open. It is often convenient to single out some special subsets of  which are
more flexible than the topology itself.

Definition 2 (Basis and Subbasis). A collection B of open sets is a basis
of a topological space (X, ) if each open set in X is a union of some elements
of B. A collection E of open sets is a subbasis of a topological space (X, ) if
the family BE of all elements of E together with ∅ and X closed under finite
intersections is a basis of (X, ).

Both concepts have many formal advantages; for example a topology  might be
uncountable, but have a countable base allowing the use of countable procedures.
Their main advantage from the perspective of data analysis follows from the fact
that elements of a basis or a subbasis might admit very concrete and desired
description.

Definition 3 (Continuous Map, Open Map and Closed Map). A map
f : X1 �→ X2 between two topological spaces (X1, 1) and (X2, 2) is continuous
if A ∈  2 implies f−1(A) ∈  1. The continuous map f is open if it preserves
open sets and closed if it preserves closed sets.
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Let (X,F) be a topological space, where the family F is finite. We introduce
the following equivalence:

xRy iff x ∈ U ⇔ y ∈ U, for all U ∈ F . (1)

Let XF = X/F be a set of equivalence classes of R and f : X �→ XF be the
natural projection taking x ∈ X to the equivalence class to which x belongs. The
space XF is given the quotient topology F , where A ∈  F iff f−1(A) ∈ F . Since
F is finite, the topological space (XF , F) consists of a finite number of points;
in Sorkin’s terminology  F would be a finitary approximation of F . Finiteness
of  F reflects the fact that we have only coarse information (expressed by  )
about X and therefore we must work with a (finite) number of “information
granules”.

By definition a finite space is a finite set X equipped with a topology  .
Since X is finite,  is closed under arbitrary intersections and arbitrary unions.
A space which satisfies this condition is called in the literature an Alexandroff
space. A good deal of what applies to finite spaces applies to Alexandroff spaces as
well and all results presented in this paper may be easily proved for Alexandroff
spaces too. However, finite spaces are more essential in computer science (for
example they admit matrix representations [8]) and even in physics (one usually
starts with finite approximations representing finite observations and seeks their
inverse limit to understand an infinite space [12]). That is why we put emphasis
on finite topological spaces and finite topological approximations.

If topology  is closed under arbitrary intersections then for each set A ⊆ X
there exists the smallest (with respect to ⊆) member of  which includes A. In
consequence, each x ∈ X has the smallest neighbourhood defined as follows:

! x =
⋂
{A ∈  : x ∈ A}. (2)

It allows us to convert the relation of set inclusion on  into a preorder on
elements of X :

x � y iff ! y ⊆ !x. (3)

It is often convenient to express � by means of neighbourhood systems; let Ox

denote the neighbourhood system of x (i.e. the family of all open sets which
includes x), then

x � y iff Ox ⊆ Oy. (4)

In any case it holds that x ∈ !(x) and therefore (3) means that every open set
containing x contains y as well. Consequently, x � y iff the constant sequence
(y, y, y, . . .) converges to x or x ∈ {y}, where {y} denotes the closure of {y}, i.e.
{y} is the smallest closed set which includes {y}.

There is a bijective correspondence between preorders (i.e. reflexive and tran-
sitive relations) and Alexandroff topologies. Given a topological space (X, ) by
(3) we get a preorder �. Given a preorder � on X , we may produce a topology
 � induced by a basis consisting of the following sets:

! x = {y ∈ X : x � y} for all x ∈ X . (5)
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Therefore a set A is open iff A is a union of sets of the form (5). It is also easy
to define a closure by means of �:

" x = {y ∈ X : y � x} for all x ∈ X. (6)

A set A is closed iff A is a sum of sets of the form (6). It follows that

x � y iff x ∈ "y. (7)

Let us emphasize again, that as long as the space (X, ) is Alexandroff,
locally finite (i.e. for every point x ∈ X the family Ox is finite) or finite, its
topology will be equivalent to a preorder.

3 Data Analysis and Modal Logics

In [15] we have introduced the theory of Galois connections as a general frame-
work for data analysis, within which both FCA and RST may be interpreted.
Now we examine FCA and RST together with their Galois connections within a
topological setting. Firstly, we recall some basic definitions and then show how
FCA and RST may be interpreted by means of specialisation order. There is an-
other correspondence, studied in [6], which is related to our discussion. Namely,
the correspondence between preorders (Alexandroff topologies) and RST. As
we have said there is on-to-one correspondence between Alexandroff spaces and
preorders. We have associated every preordered set (X,�) with a topological
space (X, �) whose open sets are exactly the up-sets of (X,�), i.e. invariant
sets under !. In [6] authors take another approach, which is based on down-sets
as opens. Although these structures are mathematically very much the same,
the modal models built on them are quite different. In consequence only up-sets
allow one to prove the (standard) topological completness theorem of S4.

Most results concerning Galois connections are well-known and may be found
in course books. Our presentation is based on Erne et al. [5]. At the end of this
section we show how RST and FCA are related to modal logics. Surprisingly, the
topological setting of a finitary substitute brings tense logic S4.t as the account
of relationships between RST and FCA.

The context (or data table) is a triple 〈A,B,R〉, where A is a set of objects,
B is a set of attributes or properties and R ⊆ A× B. 〈a, b〉 ∈ R, for a ∈ A and
b ∈ B, reads as a has a property b. Any context gives rise to a Galois connection,
which in turn induces a complete lattice of concepts.

Definition 4 (Galois Connection). Let (P,≤) and (Q,�) be partially ordered
sets (posets). If π∗ : P �→ Q and π∗ : Q �→ P are functions such that for all p ∈ P
and q ∈ Q, p ≤ π∗q iff π∗p � q, then the quadruple π = 〈(P,≤), π∗, π∗, (Q,�)〉 is
called a Galois connection, where π∗ and π∗ are called the coadjoint and adjoint
part of π, respectively.

Since π∗(p) = inf{q ∈ Q : p ≤ π∗(q)} and π∗(q) = sup{p ∈ P : π∗(p) � q} we
often call π∗ the lower adjoint of π∗, whereas π∗ is called the upper adjoint of
π∗ – that is why we use * as a subscript or a superscript, respectively.
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Given two posets (PA,⊆) and (PB,⊆), where PA is the power set of A, a
polarity is a (contravariant) Galois connection π between (PA,⊆) and (PB,⊆)op

= (PB,⊇). It follows that both π∗ and π∗ reverse order, and both π∗ ◦ π∗ and
π∗ ◦π∗ form (algebraic) closure operators on (PA,⊆) and (PB,⊆), respectively.
The basic proposition is as follows1:

Proposition 1. Any relation R ⊆ A × B induces a contravariant Galois con-
nection – polarity R+

+ = 〈(PA,⊆), R+, R
+, (PB,⊆)〉, where R+ and R+ are

defined as follows: for any U ⊆ A and V ⊆ B,

R+U = {b ∈ B : (∀a ∈ U)〈a, b〉 ∈ R},
R+V = {a ∈ A : (∀b ∈ V )〈a, b〉 ∈ R}.

Polarities give rise to complete lattices, which are often called Galois lattices. Ga-
lois lattices constitute the formal foundation of Formal Concept Analysis (FCA),
a mathematical theory of concepts and conceptual hierarchies introduced by
Wille [14] in the early 80’s. Elements of a Galois lattice – called concepts – con-
sist of two parts: extension and intension. The extension of a concept consists of
all objects belonging to the concept, whereas the intension consists of attributes
which belong to all these objects.

Definition 5 (Concept). A concept of a given context 〈A,B,R〉 is a pair
(U, V ), where U ⊆ A and V ⊆ B such that U = R+V and V = R+U .

Operators R+ and R+ are called by Wille derivation operators. The collection of
all concepts of a given context is ordered by a subconcept – superconcept relation
defined as follows: (U1, V1) ≤ (U2, V2) iff U1 ⊆ U2 (equivalently, V1 ⊇ V2). The
set of all concepts of a given context 〈A,B,R〉 together with the defined order ≤
is denoted by C〈A,B,R〉 = {(U, V ) : U = R+V ∧ V = R+U}. The fundamental
theorem of FCA states that:

Proposition 2 (Wille). For any formal context 〈A,B,R〉, C〈A,B,R〉 is a
complete lattice, called the concept lattice of 〈A,B,R〉, for which infima (meet)
and suprema (join) are respectively:∧

t∈T (Ut, Vt) = (
⋂

t∈T Ut, R+R
+
⋃

t∈T Vt),∨
t∈T (Ut, Vt) = (R+R+

⋃
t∈T Ut,

⋂
t∈T Vt).

A covariant Galois connection between power sets is called an axiality.

Proposition 3. Any relation R ⊆ A×B induces a covariant Galois connection
– axiality R∃∀ = 〈(PA,⊆), R∃, R∀, (PB,⊆)〉, where R∃ and R∀ are defined as
follows: for any U ⊆ A and V ⊆ B,

R∃U = {b ∈ B : (∃a ∈ A)〈a, b〉 ∈ R ∧ a ∈ U},
R∀V = {a ∈ A : (∀b ∈ B)〈a, b〉 ∈ R⇒ b ∈ V }.

The theoretical dual of R∃∀, defined as R∃∀ = 〈R∃, R∀〉 = (R−1)∃
∀, is also an

axiality but from (PB,⊆) to (PA,⊆). R−1 means the converse relation of R,
that is, bR−1a iff aRb. Now, we recall basic concepts of RST.
1 A detailed presentation may be found in [4, 14].
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Definition 6 (Approximation Operators). Let A be a set, E an equivalence
relation on A, and [a]E – the equivalence class containing a. With each U ⊆
A, we can associate its E-lower and E-upper approximations, EU and EU ,
respectively, defined as follows:

EU = {a ∈ A : [a]E ⊆ U},
EU = {a ∈ A : [a]E ∩ U 
= ∅}.

Definition 7 (Information System). An information system is a structure
I = 〈A,Ω, {Bω : ω ∈ Ω}, f〉, where:

– A is a finite set of objects,
– Ω is a finite set of attributes,
– For each ω ∈ Ω, Bω is a set of attributes values of attribute ω; we let
B =

⋃
ω∈Ω Bω,

– f : A×Ω �→ B is a function such that f(a, ω) ∈ Bω for all a ∈ A and ω ∈ Ω,
– If Q = {ω1, ..., ωn} ⊆ Ω then fQ(a) = 〈f(a, ω1), ..., f(a, ωn)〉, i.e. fQ : A �→
BQ = Bω1 × ...×Bωn .

Intuitively fQ(a) represents a description of an object a, i.e. a certain amount
of knowledge about the object a, whereas fΩ(a) may be viewed as the full de-
scription of this object. Let R ⊆ A×BΩ be a relational version of fΩ (i.e. aRd
iff d ∈ fΩ(a)) and let θ be a kernel of fΩ (i.e. a1θa2 iff fΩ(a1) = fΩ(a2)), then
(A, θ) is an approximation space. The following result – dressed differently – was
proved by Düntsch and Gediga [3, 4].

Proposition 4 (Düntsch and Gediga). R∀R∃U = θU and R∃R∀U = θU .

Düntsch and Gediga [3, 4] have also proved that the operators of FCA and
RST are mutually definable: theoretically, it suffices to have only one theory, for
example FCA, because the second one, in this case RST, may be easily derived.
However, we advocate here and in [15] that both theories should be kept in
their original form not only for practical reasons (what Düntsch and Gediga
explicitly admit as well) but also for theoretical one. As we have pointed out
in [15] covariant Galois connections give rise to a number of interesting lattices.
Especially, in the fashion of FCA two complete lattices of concepts might be
formed: the lattice of upper-concepts and the lattice of lower concepts. Recently
Yao in [17] has introduced another interpretation of concept lattices of FCA and
RST, which shows that concepts in FCA and RST have different meanings. On
the other hand FCA might produce its own approximation operators by taking
X \ R+R+X \ U as the FCA-lower approximation of U and R+R+U as the
FCA-upper approximation of U . Hence FCA gives rise to an alternative theory
of rough set with respect to RST and RST allows building a theory of formal
concepts alternative to FCA. The present paper provides another and much
stronger argument: it proves on the base of the theory of finite approximations
that well-known temporal system S4.t may be supplied with a new semantics
given by FCA and RST together. Moreover, from the perspective of general
topology S4.t is much better account for approximate reasoning then unimodal
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logics with RST semantics. Therefore we need the operators of FCA and RST
simultaneusly!

Firstly, we convert a context 〈A,B,R〉 into a topological space. Each attribute
b ∈ B may be interpreted as a set of objects which possess it. Under natural
assumption that each object a ∈ A is described at least by one attribute, our
knowledge forms a covering of A. The covering (i.e. the set of attributes) is
usually finite, so is the topology generated by it. According to Sect. 2 we can
relax this condition and assume that the covering is locally finite. In this setting
R means ∈. Hence a context 〈A,B,R〉 may be viewed as the set A equipped
with a family of its subsets B. In a very natural way, it brings us a topological
space (A, B), where  B is generated by the subbasis B.

In Sect. 2 the specialisation order� has been defined by: x � y iffOx ⊆ Oy. It
means that we have better knowledge about y than about x. It is possible only in
the case of incomplete information about a given domain. In the case of complete
information any two objects x and y are incomparable by � or Ox = Oy. There-
fore the following theorem relates RST to incomplete information expressed by
means of �.

Proposition 5. For any context 〈A, B, R〉 and its topological space (A, B),

(i) R∀R∃U = {a ∈ A : (∃a′ ∈ U)a � a′} = "U ,
(ii) R∃R∀U = {a ∈ U : (∀a′ ∈ A)a � a′ ⇒ a′ ∈ U}.

Proof. (i) R∃U = {b ∈  B : (∃a ∈ A)a ∈ b∧a ∈ U}, and hence R∃U =
⋃

a∈U Oa.
R∀V = {a ∈ A : (∀b ∈  B)a ∈ b ⇒ b ∈ V }. It follows that R∀V = {a ∈ A :
Oa ⊆ V }. Thus, R∀R∃U = {a ∈ A : (∀Oa)(∃a′ ∈ U)a′ ∈ Oa} = {a ∈ A :
(∃a′ ∈ U)a′ ∈ !a}. Since in our case the intersection of any open sets is open,
R∀R∃U = {a ∈ A : !a′ ⊆ !a}, and by definition R∀R∃U = {a ∈ A : (∃a′ ∈
U)a � a′} = "U .

(ii) R∀U = {b ∈  B : (∀a ∈ A)a ∈ b ⇒ a ∈ U} and R∃V = {a ∈ A :
(∃b ∈  B)a ∈ b ∧ b ∈ V }. Since !a is the smallest open set containing a,
R∃R∀U = {a ∈ U : (∀a′ ∈ A)a′ ∈ !a ⇒ a′ ∈ U}. By definition we get that
R∃R∀U = {a ∈ U : (∀a′ ∈ A)a � a′ ⇒ a′ ∈ U}. ��
Obviously, R∀R∃U is the topological closure of U , whereas R∃R∀U is its topo-
logical interior. It is well known result. More important here is the fact that the
upper approximation operator may be defined by means of ". Now we prove a
similar result for FCA.

Proposition 6. Let be given a context 〈A, B,R〉 and its topological space (A, ),
then

R+R+U = {a ∈ A : (∃a′ ∈ U)a′ � a} = !U
Proof. R+U = {b ∈  B : (∀a ∈ U)a ∈ b}, and R+V = {a ∈ A : (∀b ∈  B)a ∈ b}.
Hence R+R+U =

⋂{b ∈  B : U ⊆ b}. It is the smallest open set contain-
ing U and therefore R+R+U = {a ∈ A : a ∈ !a′ for some a′ ∈ U} = {a ∈ A :
a′ � a for some a′ ∈ U} = !U . ��
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From both theorems it follows that the composition of derivation operators of
FCA and the upper approximation operator of RST are mutually opposite with
respect to the specialization order. It is a crucial fact for supplying temporal logic
S4.t with a new semantics, which is the main objective of the present section.

There is a well known connection between RST and modal logics. Before we
state it, let us recall a few basic definitions. The standard modal language is
given by the following rule:

φ = p | & | ¬φ | φ ∧ ϕ | �φ | ♦φ

where p ranges over the set of proposition letters. A frame for the standard
modal language is a pair Fr = (W, θ) where W is a nonempty set and θ is a
binary relation on W . A model for the standard modal language is a pair (Fr, V )
where Fr is a frame and V is a valuation function assigning to each proposition
letter p a subset V (p) of W . A valuation V can be extended to the set of all
modal formulas. The part for pure Boolean formulas is as usual:

V (&) = W,

V (φ ∧ ϕ) = V (φ) ∩ V(ϕ),
V (¬φ) = W \ V (φ).

The key part (for modal operators) may be given by means of approximation
operators of RST.

V (♦φ) = θ(V (φ)),
V (�φ) = θ(V (φ)).

Hence RST provides semantics for normal modal systems. For example, when
θ is an equivalence relation the corresponding logic is S5. There have been exten-
sive studies concerned with non-classical logics and RST. In consequence, modal
logics with modal operators interpreted by the lower and upper approximations
have been regarded as leading logics of approximate reasoning [2, 10].

Now we focus on modal logic S4 and its topological model.

Definition 8 (Topological Model). A topological model is a triple (X, , V )
where (X, ) is a topological space and the valuation V assigns propositional
letters subsets of X. The definition of truth is as follows:

x � p iff x ∈ V (p)
x � & always

x � φ ∧ ψ iff x � φ and x � ψ

x � ¬φ iff x � φ

x � �φ iff (∃O ∈  )x ∈ O � φ

The last part of the truth definition says that �φ is true at x when φ is true in
some open neighourhood of x. Given that a finite (or Alexandroff) topological
space (X, ) gives rise to a preordered set (X,��), it follows that �φ is true at
x just when φ is true at all �-successors of x. That is why we have used up-sets
of � as opens of (X, �) in (3). Let us recall now, that
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Proposition 7. S4 is strongly complete with respect to the class of all topological
spaces.

In contrast to the standard modal language, the basic temporal language
has two primitive unary operators F and P. Each primitive operator has its
dual operator F = ¬G¬ and P = ¬H¬. These traditional a la Prior temporal
modalities express temporal aspects of truth:

Fϕ reads as “sometime in the Future it will be the case that ϕ ”,
Gϕ reads as “always in the future it is Going to be the case that ϕ ”,
Pϕ reads as “sometime in the Past it was the case that ϕ ”,
Hϕ reads as “it always Has been the case that ϕ ”.

The basic temporal logic K.t is axiomatized by the following schemata:

(KG) G(φ→ ψ) → (Gφ→ Gψ),
(KH) H(φ→ ψ) → (Hφ→ Hψ),

(GP) φ→ GPφ,

(HF) φ→ HFφ,
and the rules of inference

(NECG) if ' φ then ' Gφ,

(NECH) if ' φ then ' Hφ.

Temporal semantics is given by a bidirectional frame F = (W, θ, θ−1) where θ−1

is the converse of θ. Since the converse relation θ−1 is directly given by θ, one
typically writes only (W, θ) instead of (W, θ, θ−1). Adding to K.t the transivity
axiom we get tense logic S4.t.

(TRAN) Gφ→ GGφ.

Let us come back to a finite (or Alexandroff) topological space (X, ) and its
preordered set (W,��). Of course (W,��,��) is a bidirectional frame. Accord-
ing to the standard Kripke semantics of temporal logics Gφ is true at x when φ
is true at all ��-successors of x, whereas Hφ is true at x just when φ is true at
all ��-successors of x. It follows from (3) and (7) that

x � G(φ) iff there exists an open set X′ ⊆ X such that x ∈ X′ � φ (8)
x � H(φ) iff there exists a closed set X′ ⊆ X such that x ∈ X′ � φ (9)

However, all temporal intuitions in this case should be left aside. Hence we
get the following proposition:

Proposition 8. S4.t is strongly complete with respect to the class of all pre-
ordered bidirectional frames and their topological spaces. Definition of truth is
given by (8) and (9). If V is a valuation function then:

(i) V (Pφ) = R+R+V (φ) = !V (φ),
(ii) V (Fφ) = R∀R∃V (φ) = "V (φ),
(iii) V (Gφ) = R∃R∀V (φ).
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The proof of Proposition 8 is immediate from propositions 5, 6 and 7. However,
let us take a closer look at the valuation function. According to Kripke semantics
V (Gφ) is defined as a set of points whose all �-successors make φ true. That is
nothing than the set of points having an open neighbourhoodO ⊆ V (φ). It is the
interior of V (φ) and hence V (Gφ) = R∃R∀V (φ). V (Fφ) is just a set of points,
which have a �-successor satisfying φ. By (7) it is the set of points belonging to
the closure of some element of V (φ). Since the underlying space is Alexandroff
it follows that V (Gφ) is the closure of V (φ). Hence V (Fφ) = "V (φ). Similarly
V (Hφ) is defined as a set of points whose all �-successors make φ true. By (7) it
is a set of points whose closure is contained in V (φ). That is the biggest closed
subset of V (φ). Since R+ and R+ form a contravariant Galois connection the
operator H cannot be expressed directly by FCA derivation operators, but only
can be defined as the dual operator to P. V (Pφ) is defined as a set of points,
which have a �-successor making φ true. By (3) it is the set of points belonging
to the smallest neighbourhood of some element of V (φ). That isnothing but the
smallest open set containing V (φ). Hence V (Pφ) = !V (φ).

Both FCA and RST are very popular and attract a lot of scientific attention
today. Many efforts have been made in order to establish their relationships
and dependencies. But there is a lack of results on logics reflecting connexions
between FCA and RST. Let us recall that such logical investigations into rough
set aspects has been very fruitful [7, 10, 11, 16] what should enqurage us to make
similar effort in the case of FCA . Proposition 9 brings not only the first logic
of relationships between RST and FCA but also provides a modal unification
of both theories. In the next section we prove that the modal fusion of RST
and FCA is – from the perspectiove of general topology – a better account for
approximate reasoning than so popular unimodal logics interpreted by RST.

4 Modal View of a Finitary Approximation

As we have just said, this section aims at proving that S4.t is a better account
of approximate reasoning than unimodal logics interpreted by means of RST.
Firstly, an approximation is closely related with its approximated space. In what
follows, we prove that they are homotopy equivalent. Secondly, each language
has its own expressive power. Given these two premises we look for a language
which has expressive power as close to the concept of homotopy equivalence as
possible.

As it is well known the crucial semantic concept for modal logics is a bisim-
ilarity:
Definition 9 (Bisimulation). Let M = (W, θ, V ) and M′ = (W ′, θ′, V ′) be
two models, a nonempty relation Z ⊆ W ×W ′ is called a bisimulation between
M and M′ iff

(i) if wZw′ then w ∈ V (p) iff w′ ∈ V (p) for any proposition letter p,
(ii) if wZw′ and wθv then there exists v′ ∈ W ′ such that w′θ′v′ and vZv′ (the

forth condition),
(iii) if wZw′ and w′θ′v′ then there exists v ∈ W such that wθv and vZv′ (the

back condition).
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Bisimulations may be viewed as relational generalizations of bounded morphisms,
which are more convenient for us, since we work with topological spaces and
continuous maps. However a bounded morphism is a stronger concept than a
bisimulation: if there exists a bounded morphism between two models then these
models are bisimilar.

Definition 10 (Bounded Morphism). Let M=(W,θ,V )andM′=(W ′,θ′,V ′)
be two models, a map f : M �→M′ is a bounded morphism iff

(i) w ∈ V (p) iff f(w) ∈ V (p) for any proposition letter p,
(ii) f is a homomorphism with respect to θ,
(iii) if f(w)θ′v′ then there exists v ∈ W such that wθv and f(v) = v′ (the back

condition).

Let us recall that there is a bijective correspondence between preorders and
Alexandroff spaces. Given a finite topological space (X, ) by (4) we get a pre-
order �. Given a preorder � on X we may produce a topology  �. Given this
correspondence we get that the condition (ii) of Definition 10 translates to con-
tinuity while the condition (iii) means that f takes open sets to open sets. Hence
a bounded morphism is just a continuous open map. The case of bisimulation is
a bit more complicated.

Definition 11 (Topological Bisimulation). Let be given two topological mod-
els (X, , V ) and (X ′, ′, V ′) then a topological bisimulation is a nonempty re-
lation Z ⊆ X ×X ′ such that

(i) if wZw′ then w ∈ V (p) iff w′ ∈ V (p) for any proposition letter p,
(ii) if wZw′ and w ∈ O ∈  then there exists O′ ∈  ′ such that w′ ∈ O′ and

for all v′ ∈ O′ there exists v ∈ O such that vZv′ (the forth condition),
(iii) if wZw′ and w′ ∈ O′ ∈  ′ then there exists O ∈  such that w ∈ O and

for all v ∈ O there exists v′ ∈ O′ such that vZv′ (the back condition).

The notion of topological bisimulation has been introduced by Aiello and van
Benthem in [1], where it has been proved that modal formulas are invariant
under continuous open maps and topological bisimulations:

Proposition 9 (Aiello, van Benthem). Let (X, ) and (X ′, ′) be topological
spaces and let Z ⊆ X ×X ′ be a topological bisimulation between them. If wZw’
then for any modal formula α, (X, ), w |= α iff (X ′, ′), w′ |= α.

Proposition 10 (Aielo, van Benthem). Let (X, ) and (X ′, ′) be topolog-
ical spaces and f : (X, ) �→ (X ′, ′) a continuous open map. For any modal
formula α, (X, ) |= α iff (X ′, ′) |= α.

In the case of the basic temporal language we work with bidirectional frames
and models. Therefore a temporal bisimulation needs take into account also θop.

Definition 12 (Temporal Bisimulation). Let M = (W, θ, V ) and M′ =
(W ′, θ′, V ′) be two models, a nonempty relation Z ⊆W×W ′ is called a temporal
bisimulation between M and M′ iff it satisfies the conditions of Definition 9 and
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(iv) if wZw′ and vθw then there exists v′ ∈ W ′ such that v′θ′w′ and vZv′ (the
forth condition),

(v) if wZw′ and v′θ′w′ then there exists v ∈ W such that vθw and vZv′ (the
back condition).

The similar change must be made in Definition 10 so as to get a temporal bounded
morphism.

Definition 13 (Temporal Bounded Morphism). Let M = (W, θ, V ) and
M′ = (W ′, θ′, V ′) be two bidirectional models, a map f : M �→M′ is a temporal
bounded morphism iff it satisfies the conditions of Definition 10 and

(iv) f is a homomorphism with respect to θop,
(v) if v′θ′f(w) then there exists v ∈ W such that vθw and f(v) = v′ (the back

condition).

It means that a temporal bounded morphism must be additionally a closed map.
Similarly we must change Definition 11.

Definition 14 (Topological Temporal Bisimulation). Given two topolog-
ical models (X, , V ) and (X ′, ′, V ′) a topological temporal bisimulation is a
nonempty relation Z ⊆ X ×X ′ such that Z satsfies conditions of Definition 11
and

(iv) if wZw′ and w ∈ S, where S is a closed subset of X, then there exists a
closed subset S′ of W ′ such that w′ ∈ S′ and for all v′ ∈ S′ there exists
v ∈ S such that vZv′ (the forth condition),

(v) if wZw′ and w′ ∈ S′, where S′ is a closed subset of X ′ then there exists a
closed subset S of X such that w ∈ S and for all v ∈ S there exists v′ ∈ S′

such that vZv′ (the back condition).

Proposition 11. Let (X, ) and (X ′, ′) be topological spaces and let Z ⊆ X×
X ′ be a topological temporal bisiumulation between them. If wZw′ then for any
temporal formula α, (X, ), w |= α iff (X ′, ′), w′ |= α.

Proposition 12. Let (X, ) and (X ′, ′) be topological spaces and f : (X, ) �→
(X ′, ′) a continuous open and closed map. For any temporal formula α,
(X, ) |= α iff (X ′, ′) |= α.

Both theorems are simple generalizations of propositions 9 and 10 respectively
and therefore we leave them without proofs. Now let us come back to a fini-
tary approximation. The following theorem connects it with the basic temporal
language.

Proposition 13. Let (X,F) be a (locally) finite topological space and let
(XF , F) be its finitary substitution, then

(i) The natural projection f : (X,F) �→ (XF , F ) is a temporal bounded mor-
phism.

(ii) (X,F) and (XF , F) are (topologically) temporally bisimilar.
(iii) For any temporal formula α, (X,F) |= α iff (XF , F) |= α.
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Proof. Obviously (i) implies (ii), which in turn implies (iii). So it suffices to prove
only (i). Firstly the natural projection as a quotient map takes saturated open
sets into opens and saturated closed sets into closed sets. Since, by the method
of construction, each open or closed set is saturated, f is a continuous open and
closed map. It means that f is a temporal bounded morphism. ��
If we consider modal logics as reasoning about spaces of objects and their prop-
erties 13 claims that S4.t is much better account of approximate reasoning then
unimodal systems. Also in spatial reasoning, which has attracted much of atten-
tion in computer science, S4.t should find a lot of applications. However, when
considering modal logics as reasoning about binary relations, S4.t is as good as
any other modal system – it applies to a certain class of relations.

Although a topological space and its finite approximation are temporally
bisimilar, it does not mean that S4.t is sufficently strong.
Definition 15 (Homotopy). Let X and X ′ be topological spaces and let f, g :
X �→ X ′ be continuous maps. A homotopy from f to g is a continuous map
H : X × [0, 1] �→ X ′ such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

Definition 16 (Homotopy Type). Let X and X ′ be a topological spaces and
let f : X �→ X ′ and g : X ′ �→ X be continuous maps. If g ◦ f is homotopic to
identity on X and f ◦ g i homotopic to identity X ′ then we say that X and X ′

are homotopy equivalent or have the same homtopy type.

Proposition 14. A topological space (X,F) and its finitary substitute (approx-
imation) (XF , F ) are homotopy equivalent.

Proof. The proof is exactly the same as the proof of McCord’s theorem [9], which
claims that if X is a finite space then there exists a quotient T0 space such that
the quotient map is a homotopy equivalence. The proof is valid also in the case
when X is an Alexandroff space.

Homotopy is much more flexible than homeomorphism (two spaces may be ho-
motopy equivalent though not homeomorphic), yet it preserves many algebraic-
topological properties (for example homology groups). However, neither a ho-
motopy nor conditions which imply a homotopy may be defined by means of
(standard) modal concepts such as open, closed and continuous maps. The au-
thor consulted this problem with topologists who said that there is no theorem
about homotopy, open and closed map since there is no direct connection among
them. However, none has provided a proof. McCord’s theorem suggests that two
spaces X and Y are homotopic if there is a closed and open map from X to
Y and additionaly Y has at least as many points as there are elements of the
minimal basis of X . Of course the latter condition is not modally definable.

5 Summary

In the course of this paper, we have established relationships between topologi-
cal approximations on one hand and theories of data analysis, namely RST and
FCA, on the other hand. Both RST and FCA have been interpreted by means
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of the specialisation order and proved together to provide a semantics to tense
logic S4.t. As it is well-known, tense logics are stronger than unimodal systems.
The semantic counterpart of their expressive power is the concept of temporal
bisimilarity. We have proved that a (finite) topological space and its finite ap-
proximation are indistinguishable by means of the standard temporal language.
It means that in the case of (topological or spatial) approximate reasoning we
should employ (at least) S4.t interpreted by RST and FCA instead of popular
unimodal systems with RST semantics.
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Abstract. The research monograph is devoted to the study of bounds
on time complexity in the worst case of decision trees and algorithms for
decision tree construction. The monograph is organized in four parts. In
the first part (Sects. 1 and 2) results of the monograph are discussed in
context of rough set theory and decision tree theory. In the second part
(Sect. 3) some tools for decision tree investigation based on the notion of
decision table are described. In the third part (Sects. 4–6) general results
about time complexity of decision trees over arbitrary (finite and infi-
nite) information systems are considered. The fourth part (Sects. 7–11)
contains a collection of mathematical results on decision trees in areas of
rough set theory and decision tree theory applications such as discrete
optimization, analysis of acyclic programs, pattern recognition, fault di-
agnosis and probabilistic reasoning.

Keywords: decision tree, rough set theory, test theory, time complexity

1 Introduction

Decision trees are widely used in different applications. The theory of decision
trees continues to be a source of rich mathematical problems. This theory is
closely connected with rough set theory created by Z. Pawlak (cf. [153]–[162]),
and developed by many authors (cf. [37, 150, 168, 169, 194–196, 201]).

1.1 Crisp and Rough Classification Problems

To better explain the role of decision trees among the models of algorithms in
rough set theory, and to place the results discussed in this monograph in the
context of rough set theory, let us consider the notion of decision system which
is a special kind of information system [44]. Any decision system is specified by
a number of conditional attributes that divide a set of objects into domains on
which these attributes have fixed values. Our aim is to find the value of a decision
attribute using only values of conditional attributes. If the decision attribute is
constant on each domain, this classification problem is called crisp, otherwise
the classification problem is considered rough. Rough set theory gives us some
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tools to work with rough problems, for example, tools for measurement of the
degree of the roughness.

In the case of a crisp classification problem we can always find the exact
value of the decision attribute using only values of conditional attributes. In
the case of the rough classification problem we can sometimes find only some
information on the decision attribute value. For example, instead of the value of
the decision attribute on an object from a domain we can find the set of values
of the decision attribute on all objects from the domain. In this case, we have in
some sense a reduction of a rough problem to a crisp problem. Various types of
such reductions are considered in [193, 195, 199, 200].

1.2 Three Approaches to Classification Problem Solving

Typically, in rough set theory, three approaches to solving the problem of classi-
fication are used. These approaches are based on the notions of: relative reduct,
complete (applicable to any object) decision rule system and decision tree. A
relative reduct is a subset of conditional attributes which gives the same infor-
mation on decision attribute value as a whole set of conditional attributes. The
first two approaches are usual for rough set theory [146, 193, 199, 200]. Sev-
eral efficient methods for construction of reducts and rule systems have been
developed [5, 145, 147, 197]. The third approach is used in rough set theory
investigations to a smaller degree.

There are three main types of characteristics of relative reducts, complete
decision rule systems and decision trees that are of interest to us: complexity of
description, precision and time complexity.

Two sources of decision systems are known: experimental data (in this case,
usually we know only a part of the set of objects) and data derived from com-
pletely described problems in areas such as discrete optimization and fault di-
agnosis [77, 115].

If we have a decision system connected with results of experiments we can see
on reducts, rule systems and trees as on ways for knowledge representation or
as on predictors of the decision attribute value. In the first case the complexity
of description of reducts, rule systems and trees is the most important for us. In
the second case we try to find a reduct, a rule system or a tree which will work
with existing and new objects in the most precise way.

If we have a decision system corresponding to a completely described prob-
lem we see usually on reducts, rule systems and trees as on algorithms for this
problem solving. In this case we are interesting in algorithms with small time
complexity.

This research monograph is devoted mainly to the study of the role of decision
trees as algorithms for completely described problems. We consider only crisp
problems of classification and assume that we know values of all attributes on
all objects. This setting is very close to the setting of classification problems in
test theory created by S.V. Yablonskii and I.A. Chegis [14, 216]. However, most
of the results presented in this monograph can be used for investigation of rough
problems, especially if we consider a reduction of rough problems to crisp ones.
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1.3 Comparison of Approaches

Now we compare possibilities of relative reducts, complete decision rule systems
and decision trees as algorithms for solving problems involving classification.

Any partition of the set of objects generated by a relative reduct can be sim-
ulated by the decision tree which computes sequentially, values of all attributes
from the considered reduct. In general, the class of partitions generated by deci-
sion trees is essentially broader than the class of partitions generated by relative
reducts. This makes it possible sometimes to construct decision trees which are
faster than algorithms based on sequential computation of values of attributes
from a relative reduct.

For example, for any natural n there exists a decision system with binary
conditional attributes such that the minimal cardinality of relative reduct is
equal to 2n−1 and there exists a decision tree for which the depth (the maximal
length of a path from the root to a terminal node) is equal to n.

Furthermore, any partition of the set of objects generated by a decision tree
can be simulated by the complete system of decision rules corresponding to all
paths from the root to terminal nodes in the considered tree. In general, the class
of coverings generated by complete decision rule systems is essentially broader
than the class of partitions generated by decision trees. This makes it possi-
ble sometimes to construct algorithms based on complete decision rule systems
which are faster than decision trees, especially in a multi-processor computing
environment.

For example, for any natural n there exists a decision system with binary
conditional attributes such that the minimal depth of decision tree is equal to
n and there exists a complete decision rule system for which the number of
conditions in the left-hand side of each rule is equal to 1. In order to realize
this advantage of the decision rule system we must have sufficient number of
processors.

Thus, decision trees as algorithms for solving of completely described prob-
lems in some sense lie between algorithms based on relative reducts and algo-
rithms based on complete decision rule systems. The consideration of decision
trees is completely justified if we use either a uni-processor computing or multi-
processor computing (with a small number of processors) environment.

Of course, there are also another important distinctions among reducts, trees
and rule systems, especially if we consider partially described problems. For
example, let we have new object which was not used under the construction of
a decision tree and a decision rule system. For this object the decision tree will
give us at most one value of the decision attribute, but the decision rule system
can give us several values, even if the considered classification problem is crisp.
This peculiarity allows to create new types of classification algorithms based on
the use of decision rule systems and conflict resolution strategies.

1.4 On Contents of Monograph

This monograph is devoted to study of depth and weighted depth of determin-
istic decision trees over both finite and infinite information systems. Decision
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trees over finite information systems are investigated in rough set theory, test
theory, theory of questionnaires, in machine learning, etc. The notion of infinite
information system is useful in discrete optimization, pattern recognition, com-
putational geometry. However, decision trees over infinite information systems
are investigated to a lesser degree than over finite information systems.

The monograph consists of 11 sections and appendix. In Sect. 2 results of the
monograph are discussed in context of decision tree theory. In Sect. 3 bounds
on time complexity and algorithms for construction of decision trees for deci-
sion tables are considered. Sects. 4 and 5 are devoted to the development of
local and global approaches to the investigation of the decision trees over ar-
bitrary (finite and infinite) information systems. In Sect. 6 decision trees over
quasilinear information systems are studied. Some applications of results from
Sect. 6 are considered in Sects. 7 and 8. In Sect. 7 six classes of problems of
discrete optimization, sorting and recognition over quasilinear information sys-
tems are studied. In Sect. 8 the complexity of acyclic programs in the basis
{x + y, x − y, 1; sign(x)} is investigated. In Sect. 9 the depth of decision trees
for recognition of words of regular languages is studied. In Sect. 10 the problem
of diagnosis of constant faults in combinatorial circuits is considered. Sect. 11
is devoted to study of decision trees for computation of values of observable
variables in Bayesian networks. In the appendix, the structure of all classes of
Boolean functions, closed relatively the substitution operation and the opera-
tions of insertion and deletion of unessential variable, is described. Definitions,
notation and results contained in appendix are used in Sects. 3 and 10.

The major part of this monograph consists of the author’s own results. The
monograph is essentially revised and extended version of [79] containing many
new results and two new sections devoted to problems of fault diagnosis and
probabilistic reasoning.

2 Results of Monograph in Context
of Decision Tree Theory

This section consists of two subsections. In the first subsection a review of several
parts of decision tree theory is given. This will allow the reader to understand the
nature of the results presented in this monograph. The outline of these results
is contained in the second subsection.

We denote by IN the set {0, 1, 2, . . .} of natural numbers including 0. The set
of integers, the set of rational numbers and the set of real numbers are denoted
by ZZ, Q and IR.

Let f and g be partial functions from IN to IN. Later we will use the following
notation.

The equality g(n) = O(f(n)) means that there exist positive constants c and
n0 such that for any integer n ≥ n0 the values of f(n) and g(n) are definite and
the inequality g(n) ≤ cf(n) holds.

The equality g(n) = Ω(f(n)) means that there exist positive constants c and
n0 such that for any integer n ≥ n0 the values of f(n) and g(n) are definite and
the inequality g(n) ≥ cf(n) holds.
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The equality g(n) = Θ(f(n)) means that there exist positive constants c1,
c2 and n0 such that for any integer n ≥ n0 the values f(n) and g(n) are definite
and the inequalities c1f(n) ≤ g(n) ≤ c2f(n) hold.

2.1 On Decision Tree Theory

Basic notions of decision tree theory and also several of its structural parts are
discussed in this subsection. These parts comprise the investigation of decision
trees over finite and infinite information systems and some applications.

Basic Notions. Let A be a nonempty set, B be a finite nonempty set of integers
with at least two elements and F be a nonempty set of functions from A to B.
Functions from F are called attributes and the triple U = (A,B, F ) is called
an information system. If F is a finite set then U is called a finite information
system. If F is an infinite set then U is called an infinite information system.

We will consider problems over the information system U . A problem over
U is an arbitrary (n + 1)-tuple z = (ν, f1, . . . , fn) where ν : Bn → ZZ, and
f1, . . . , fn ∈ F . The tuple (ν, f1, . . . , fn) is called the description of the problem
z, and the number dim z = n is called the dimension of the problem z. The
problem z may be interpreted as a problem of searching for the value z(a) =
ν(f1(a), . . . , fn(a)) for an arbitrary a ∈ A. Note that one can interpret f1, . . . , fn

as conditional attributes and z as a decision attribute. Different problems of
pattern recognition, discrete optimization, fault diagnosis and computational
geometry can be represented in such form. The set of all problems over the
information system U is denoted by ProblU .

A decision tree over U is a finite tree with the root in which each terminal
node is labelled by a number from ZZ (a result of the tree work); each nonterminal
node is labelled by an attribute from F ; each edge is labelled by a number from
B (the value of the attribute for which the jump is realized along this edge).
Edges starting in a nonterminal node are labelled by pairwise different numbers.
A complete path in a decision tree is an arbitrary directed path from the root to
a terminal node of the tree.

A weight function for the information system U is a function ψ : F → IN\{0}.
The value ψ(f) for an attribute f ∈ F is called the weight of the attribute f ,
and can be interpreted as the complexity of the computation of the attribute
value. Let Γ be a decision tree over the information system U . The weight of
a complete path in Γ is the sum of weights of attributes attached to nodes of
this path. We denote by ψ(Γ ) the maximal weight of a complete path in Γ .
The number ψ(Γ ) is called the weighted depth of Γ . We denote by h the weight
function such that h(f) = 1 for any attribute f ∈ F . The number h(Γ ) is called
the depth of Γ . Note that h(Γ ) is the maximal length of a complete path in Γ .

The investigation of decision trees solving the problem z = (ν, f1, . . . , fn)
and using only attributes from the set {f1, . . . , fn} is based on the study of the
decision table T (z) associated with the problem z. The table T (z) is a rectangular
table with n columns which contains elements from B. The row (δ1, . . . , δn) is
contained in the table T (z) if and only if the equation system

{f1(x) = δ1, . . . , fn(x) = δn}
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is compatible (has a solution) on the set A. This row is labelled by the number
ν(δ1, . . . , δn). For i = 1, . . . , n the i-th column is labelled by the attribute fi.

The notions introduced above may be defined in variety of ways and some
alternatives will be mentioned here. Researchers in the area of rough set theory
[162] investigate not only exact (crisp) but also approximate (rough) settings
of the problem z. In some works, for example in [166], the definition of the
information system U = (A,B, F ) includes a probability distribution on a class of
subsets of the set A. Not only deterministic decision trees such as those discussed
in this monograph, but also different types of nondeterministic decision trees
are studied in [80, 81, 83, 84, 90, 93, 100, 101, 107, 109, 113, 118, 120, 127].
Different representations of decision trees are considered, for instance, branching
programs computing Boolean functions [149, 213]. Besides the weighted depth
considered in this paper, different types of worst-case-time complexity measures
[70, 78, 84, 93, 97, 136] and average-time complexity measures [16–19, 35, 129–
133, 136, 166] have been studied. In addition, space complexity measures such
as the number of nodes in a tree or in its representation [20, 127, 149, 176] have
been investigated.

Example 2.1. (Problem on tree cups.) Consider the three inverted cups and a
small ball under one of these cups shown in Fig. 1. The problem under consid-
eration is to find the number of the cup under which the ball lies.

� ���
� ���

� ����
f1 f2 f3

Cup 1 Cup 2 Cup 3

Fig. 1. Three cups and a small ball.

To solve this problem, we use three attributes f1, f2, f3. These attributes are
defined on the set {a1, a2, a3} where ai is i-th cup which gives the location of
the ball. If the ball lies under the i-th cup then the value of fi is 1, otherwise
the value of fi is equal to 0.

We can represent our problem in the following form: z = (ν, f1, f2, f3) where
ν(1, 0, 0) = 1, ν(0, 1, 0) = 2, ν(0, 0, 1) = 3, and ν(δ1, δ2, δ3) = 0 for each
(δ1, δ2, δ3) ∈ {0, 1}3 \ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. This is a problem over the
information system U = (A,B, F ) where A = {a1, a2, a3}, B = {0, 1} and
F = {f1, f2, f3}.

The decision tree represented in Fig. 2(a) solves the considered problem.
This is a decision tree over U with a depth equal to 2. The decision table T (z)
is represented in Fig. 2(b).

Finite Information Systems. Considerable work has been done in the inves-
tigation of finite information systems. These include: rough set theory [37, 150],
[153, 154, 162], [164, 165, 168, 169], and [193–195, 198, 201], test theory [14, 45],
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Fig. 2. Decision tree and decision table for the three-cup problem.

[68, 70, 74, 79], [202, 203], and [214, 216, 220], theory of questionnaires [151, 166,
167], theory of decision tables [35, 170], machine learning [3, 21, 33, 34, 119, 124],
and search theory [1, 206].

In particular, numerous papers are devoted to heuristic methods for decision
tree construction [11–13, 25, 32, 50, 141–144, 174–177], and to feature selection
and construction [48, 49, 179, 205].

In papers relating to finite information systems not only deterministic de-
cision trees over the information system U = (A,B, F ) which solve a prob-
lem z over U are studied, but also certain objects like them are investigated.
Among them there are finite subsets of the set F sufficient for the problem z
solving (known as relative reducts and tests [14, 162, 197, 199]), decision rules
[5, 36, 58, 147, 162] for the problem z which are true in U expressions of the
kind

fi1(x) = δ1 ∧ . . . ∧ fip(x) = δp ⇒ z(x) = δ ,

and nondeterministic decision trees [84, 127] (decision rule systems is most simple
kind of nondeterministic decision trees). Not only exact but also approximate
settings of the problem z are considered [162], both time and space complexity
measures are investigated [18, 102, 149, 166].

It is our view that these threads of research have so far been developed in
isolation. The distinctions between them lie not only in nature of the problems
under consideration but also in the character of the mathematical methods ap-
plied. The comparative analysis of the accumulated stock of problems, methods
and results obtained in these areas would be useful for the progress of the decision
tree theory.

Bounds on complexity and algorithms for construction of decision trees over
finite information systems (represented in the form of decision tables) will be
considered in Sect. 3. So-called Shannon functions for finite information systems
will be studied in Sects. 4.3 and 5.2.

Infinite Information Systems. The principal results in decision tree theory
related to infinite information systems have been achieved in the study of linear
and algebraic decision trees.

Let A ⊆ IRn, D ⊆ IR and Fn(D) = {sign(
∑n

i=1 dixi + dn+1) : di ∈ D, 1 ≤
i ≤ n + 1} where for any r ∈ IR
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sign(r) =

⎧⎨
⎩
−1, if r < 0 ,
0, if r = 0 ,

+1, if r > 0 .

The information system (A,E, Fn(D)), where E = {−1, 0,+1}, will be called
linear information system. Decision trees over (A,E, Fn(D)) are called linear
decision trees.

In [23, 24, 60, 61] for certain problems z = (ν,f1, . . . ,fm) over (IRn,E,Fn(IR))
the lower bounds near to n log2 m have been obtained for the minimal depth
of decision trees over (IRn, E, Fn(IR)) solving these problems. Subsequently, the
methods of proofs of the lower bounds have been generalized on algebraic decision
trees which use attributes of the kind sign(p(x1, . . . , xn)) where p is a polynomial
with real coefficients [6, 31, 204, 218, 219].

In [22] the upper bound (3 · 2n−2 + n− 2)(log2 m+ 1) for the minimal depth
of a decision tree over (IRn, E, Fn(IR)) solving a problem z = (ν, f1, . . . , fm)
over (IRn, E, Fn(IR)) have been found for n ≥ 2. In [68] the upper bound
(2(n+ 2)3 log2(m+ 2n+ 2))/ log2(n + 2) of the minimal depth for decision trees
and for problems over (Qn, E, Fn(ZZ)) is contained. The complete proof of weaker
bound of the kind 4(n + 2)3 ln(m + 2n + 2) is contained in [69]. Similar upper
bound had been obtained in [56] for decision trees over (IRn, E, Fn(IR)) and
for problems over (IRn, E, Fn(ZZ)). In [77] decision trees over quasilinear infor-
mation systems, which are generalization of linear and algebraic decision trees,
were studied. The upper bounds on complexity were obtained for these which
are similar to the bounds for the linear decision trees contained in [68]. This
yields, in particular, positive solution of the problem set up in [57] of the exis-
tence of medium-value upper bounds on the minimum depth of decision trees
over (IRn, E, Fn(IR)) solving problems over (IRn, E, Fn(IR)).

In our view, the problems of complexity of decision trees over arbitrary in-
finite information systems were not considered prior to [78, 79]. These studies
develop the two approaches to decision trees over arbitrary information system
U = (A,B, F ) based on the methods of test theory and rough set theory. One
of the approaches is a local approach, where for a problem z = (ν, f1, . . . , fn)
over U , the decision trees are considered using only attributes from the set
{f1, . . . , fn}. The second approach is a global one where arbitrary attributes
from F are used by decision trees.

Bounds on minimal depth and weighted depth of decision trees over arbitrary
information systems will be considered in Sects. 4 and 5 in the framework of both
local and global approaches. Decision trees over quasilinear information systems
will be considered in Sect. 6. Also in these sections, some problems will be studied
connected with algorithms for decision tree construction.

Applications of Decision Tree Theory. Applications of decision tree theory
can be classified into four groups: applications in the field of the non-procedural
programming languages; applications to analysis of algorithms which are not
decision trees; applications in fields of research with their own specific math-
ematical models for infinite classes of problems and, at lastly, applications in
fields where mathematical models for infinite classes of problems have not yet
been developed.
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The intrinsic feature of non-procedural programming is that the definition
of the order of execution of the program instructions is not the programmer’s
but the compiler’s duty. In [35] the use of decision tables and decision trees in
non-procedural programming is studied in detail. The essence of the suggested
approach consists of transformation of a non-procedural program from the deci-
sion table form into the decision tree by compiling system.

The results obtained in investigations of decision trees can be applied to the
analysis of algorithms of different types. For example, the above-mentioned upper
bounds on the complexity of linear decision trees are used in [73] to analyze the
relationship between the depth of deterministic and nondeterministic acyclic
programs in the basis {x + y, x − y, 1; sign(x)}. Analogous upper bounds are
obtained in [57] for simulation of parallel acyclic programs in the similar basis
with the help of decision trees. In [8–10] high values of lower bounds on the depth
of linear decision trees of special kind are used in proofs of non-polynomial lower
bounds on time complexity of several known methods for solving NP-complete
problems. In [96, 99] time complexity of deterministic and nondeterministic tree-
programs in an arbitrary finite basis is considered.

In decision tree theory at least five application fields have been developed
which have given rise to their own mathematical models for some infinite classes
of problems. These are discrete optimization, computational geometry, discrete
geometric pattern recognition, diagnosis of faults in circuits, and probabilistic
reasoning. For the considered classes of problems specific research methods can
be developed.

Different mathematical models are applied to different classes of discrete
optimization problems. For example, the class of problems of a linear form min-
imization on finite subset of the set IRn is often considered. The research in the
field of the linear decision trees has resulted in non-linear lower bounds [23, 60]
and polynomial upper bounds [56, 68] on the depth of linear decision trees for
some NP-complete problems of fixed dimension. Non-polynomial lower bounds
on complexity of some known methods for solving NP-complete problems have
also been found [9].

In the area of computational geometry, one of the most thoroughly explored
problems is the localization problem. Let we have a partition of the geometrical
space into finite number of domains. For a given point in the space it is required
to find the domain containing this point. To define the class of localization prob-
lems it is sufficient to introduce the class of surfaces bounding the space domains.
A systematic discussion of computational geometry can be found in [173].

The family of problems of fixed-length word recognition in some infinite lan-
guage can be placed among known models for classes of problems of discrete
geometric pattern recognition. Each attribute in a problem of this class entails
the recognition of certain letter in a word. For example, the word of the length n
in the k-letter alphabet corresponds to the k-color image on a screen containing
n cells, and the recognition of the value of the i-th letter corresponds to the
recognition of the color of the i-th screen cell [203, 214].

The field of the circuit fault diagnosis is the oldest application area initiated
by [4, 14, 27, 59, 180, 216]. To describe a class of problems in this field it is
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sufficient to define the circuit class and the fault class. Many researchers have
explored these problems studying both circuits with memory and memory-less
circuits [52, 152, 178, 211, 212, 215].

Bayesian networks [39, 163] are useful tools for representation of joint proba-
bility distribution of variables. Some of these variables are hidden (unobservable).
Using values of open (observable) variables and information about probability
distribution from Bayesian network we can draw some conclusions about values
of hidden variables. Use of decision trees can accelerate the process of recogni-
tion of all open variable values. For the description of a class of such problems
the definition of a class of Bayesian networks is sufficient.

There are several fields of research in which decision trees are applied as
algorithms, as a way of knowledge representation, or as predictors, but little
or nothing is known of specific models for infinite classes of problems. These
are fields such as medical diagnosis, geology, marketing, sociology, ecology, etc.
Either common research schemes or specific ad hoc methods for solving separate
problems would be appropriate in these areas.

This monograph does not deal directly with the problems concerning non-
procedural programming languages, computational geometry and those areas
without developed mathematical models for infinite classes of problems. For
other mentioned application areas in Sects. 7–11 some problems of interest will
be studied which illustrate the research features and instruments intrinsic to
these areas.

2.2 On Results of Monograph

In this subsection the results from Sects. 3–11 of the monograph are discussed
briefly.

Decision Trees for Decision Tables. Decision table is a rectangular table
filled by integers. Rows of the table are pairwise different, and each row is labelled
by an integer (a decision). We associate a two-person game to illustrate the
concept of a decision table. The first player would choose a row of the table, and
the second player would guess the decision corresponding to this row. In order
to guess the decision, the second player can choose columns of the table and ask
what is in the intersection of the chosen row and these columns. The strategies
of the second player can be represented in the form of decision trees.

In Sect. 3 we consider decision tables as an independent object for inves-
tigations, and study bounds on complexity and algorithms for construction of
decision trees for decision tables.

Lower bounds on complexity of decision trees based on different parameters
of decision table (such as number of different decisions or minimal cardinality of
relative reduct) are considered. An approach to the proof of lower bounds based
on the “proof-tree” notion is considered. A proof-tree can be interpreted as a
fragment of a strategy of the first player in the game which is modified in the
following way: first player does not choose a row at the beginning of the game,
but at least one row must satisfy his answers on questions of the second player.
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Upper bounds on minimal complexity and algorithms for construction of de-
cision trees considered in this section, are based on the use of uncertainty mea-
sures of decision tables such as the number of rows in the table or the number
of pairs of rows with different decisions. To construct a decision tree, we either
choose the question (attribute) which reduces the uncertainty to the greatest
extent under certain constraints on the weight of the attribute (“greedy” algo-
rithms), or minimize the total weight of the sequence of attributes (questions)
which either reduces the uncertainty by half or gives the solution of the prob-
lem (“dichotomous” approach for decision tree construction). Upper bounds on
complexity of decision trees based on “dichotomous” approach are studied in
Sect. 3. In the case of depth these bounds can not be improved essentially. For
the greedy algorithms the complexity and the precision are estimated. Based
on results from [28, 51] we will show that under some assumptions on the class
NP, one of algorithms performs nearly as well as best approximate polynomial
algorithms for minimization of decision tree depth. In addition, we consider an
algorithm which allows to construct for a given decision table a decision tree
with minimal weighted depth. In Sect. 4.8 we describe all infinite information
systems such that the algorithm has polynomial time complexity depending on
number of columns in tables over the information system.

A decision table can be interpreted as a tabular representation of a partial
function, and decision trees for this table can be interpreted as algorithms for
this function computation. For decision tables corresponding to functions from
arbitrary closed class of Boolean functions [217], unimprovable upper bounds
were achieved for the minimal depth of decision trees depending on the number
of variables of the functions. Proofs of these bounds illustrate methods of decision
table study.

Sect. 3 contains mostly the results of [68, 70, 79, 80, 85, 89, 92]. Exact
algorithm for minimization of decision tree weighted depth was considered in
[133, 134] (see [19, 20, 136] for similar algorithms for another complexity mea-
sures, and [135] for some applications). It is impossible to establish the author-
ship of the lower bound on decision tree complexity depending on the number of
different decisions in decision table. The approach to the proof of lower bounds
based on the notion of proof-tree is similar to methods of analysis of search
problems developed in [206]. The precision of “greedy” algorithms for decision
tree construction have been investigated in [68, 70, 97, 106, 111, 126]. Appar-
ently, the first publication suggesting the similar algorithm for decision tree
construction was [174]. The early publications [38, 45, 148, 181] should be men-
tioned in which certain “greedy” algorithms for set cover problems of different
type had been studied (see also [111, 125] for additional comments). Upper and
lower bounds on decision tree complexity were used for study of problems of
discrete optimization, pattern recognition, and fault diagnosis. Note that in [33]
the “dichotomous” approach created in [70] was used for investigation of ma-
chine learning problems (see also [34] where results similar to [33] were obtained
independently).



Time Complexity of Decision Trees 255

Two Approaches to the Study of Decision Trees. Let U = (A,B, F )
be an information system and ψ be a weight function for U . In Sects. 4 and
5 two approaches are developed to study the arbitrary pair of the kind (U,ψ):
the local approach in Sect. 4 where for problem z = (ν, f1, . . . , fm) over U the
decision trees are considered using only attributes from the set {f1, . . . , fm} and
the global one in Sect. 5 where for problem z solving all attributes from the set
F can be used.

The main difficulty in the global approach is the necessity to choose appro-
priate attributes in large or infinite set F . However, in the framework of the
global approach we can often construct more simple decision trees rather than
in the framework of the local approach.

The first group of problems studied in Sects. 4 and 5 is associated with com-
plexity bounds for decision trees. Let us define three parameters of a problem
z = (ν, f1, . . . , fm) over U . Denote ψl

U (z) the minimal weighted depth of a de-
cision tree over U which solves the problem z and uses only attributes from the
set {f1, . . . , fm}. Denote ψg

U (z) the minimal weighted depth of a decision tree
over U which solves the problem z. Denote ψ(z) =

∑m
i=1 ψ(fi). The value ψ(z) is

the complexity of the decision tree which solves the problem z in trivial way by
computing sequentially the values of the attributes f1, . . . , fm. Let us consider
the local and the global Shannon functions which allow to compare the values
ψl

U (z) and ψg
U (z) with the value ψ(z) which is the obvious upper bound on the

former two. For n ∈ IN the values of local and global Shannon functions are
defined in the following way:

H l
U,ψ(n) = max{ψl

U (z) : z ∈ ProblU , ψ(z) ≤ n} ,

Hg
U,ψ(n) = max{ψg

U (z) : z ∈ ProblU , ψ(z) ≤ n} .

It is shown that either the local Shannon function H l
U,ψ is bounded from

above by a constant, or H l
U,ψ(n) = Θ(log2 n), or H l

U,ψ(n) = n for infinitely
many n ∈ IN.

The variety of ways in which the global Shannon function Hg
U,ψ may behave

is much wider. Let ϕ : IN → IN be a nondecreasing function such that for any n,
n ≥ 7, the inequalities

(log2 n)+ 2 ≤ ϕ(n) ≤ n− 3

hold. Then there exists a pair (U,ψ) such that for any n, n ≥ 7, the value of
Hg

U,ψ(n) is definite and the inequalities

ϕ(n) ≤ Hg
U,ψ(n) ≤ ϕ(n) + 2

hold.
The information system U is called ψ-compressible if Hg

U,ψ(n) < n for large
enough n. We describe all pairs (U,ψ) such that U is ψ-compressible.

If the depth h is taken in the context of complexity measure then either
the global Shannon function Hg

U,h is bounded from above by a constant, or
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Hg
U,h(n) = Ω(log2 n) and Hg

U,h(n) = O((log2 n)ε) for any ε > 0, or Hg
U,h(n) = n

for any natural n.
For finite information systems and for the depth the behavior of local and

global Shannon functions is studied in more detail.
The problems of the second group which are considered in Sects. 4 and 5

are connected with the conditions of solvability of decision tree optimization
problems. We assume here that F = {fi : i ∈ IN} and ψ is a computable function
which is defined not on attributes from the set F but on the set IN of their
numbers. So ψ is a general recursive function which does not take the value 0.

Three algorithmic problems can be defined:

Problem of Local Optimization for the Pair (U,ψ): for a given problem z =
(ν, fi1 , . . . , fim) over U it is required to construct a decision tree over U which
solves the problem z, uses only attributes from the set {fi1 , . . . , fim} and which
complexity is equal to ψl

U (z).

Problem of Global Optimization for the Pair (U,ψ): for a given problem z over
U it is required to construct a decision tree over U which solves the problem z
and which complexity is equal to ψg

U (z).

Compatibility Problem for the Information System U : for a given equation sys-
tem of the kind

{fi1(x) = δ1, . . . , fim(x) = δm} ,

where fi1 , . . . , fim ∈ F and δ1, . . . , δm ∈ B, it is required to determine whether
this system is compatible on the set A.

The local optimization problem for the pair (U,ψ) is solvable if and only if
the compatibility problem for the information system U is solvable.

If the compatibility problem for the information system U is unsolvable, then
the global optimization problem for the pair (U,ψ) is also unsolvable. The inverse
statement is true not for all pairs (U,ψ). The necessary and sufficient conditions
on weight function ψ are found, under which for any information system U the
compatibility problem for U and the global optimization problem for the pair
(U,ψ) are solvable or unsolvable simultaneously. These conditions imply that
for any i ∈ IN the set INψ(i) = {j : j ∈ IN, ψ(j) = i} should be finite and the
algorithm should exist which computes for an arbitrary i ∈ IN the cardinality of
the set INψ(i). Such complexity measures are called proper.

The third group of considered problems is concerned with study of ways of
constructing decision trees. In the case of local approach, when the compatibil-
ity problem for the information system U is solvable, the following method of
the decision tree construction has been studied in depth. For a given problem
z we construct the decision table T (z) and apply to it algorithms of decision
tree construction described in Sect. 3. We consider bounds on complexity and
precision of this method. In the case of global approach, when the compatibility
problem for the information system U is solvable, one of ways of decision tree
construction is to use proper weight functions. Other methods can be extracted
from proofs of upper bounds on decision tree complexity (see Sects. 5 and 6).



Time Complexity of Decision Trees 257

Essential part of results of Sects. 4 and 5 had been first published in [79].
Other results can be found in [66, 75], [86]–[88], [93]–[95], [98], [103]–[105], [108],
[112, 114], [117, 123], [127, 128, 133, 134].

Decision Trees over Quasilinear Information Systems and Related
Topics. Quasilinear information systems are studied in Sect. 6. Let A be a
nonempty set, ϕ1, . . . , ϕn be functions from A to IR, and K be a subset of
IR containing 1 and closed relative to the operations of addition, subtraction
and multiplication. Denote F (A,K,ϕ1, .., ϕn) = {sign(

∑n
i=1 aiϕi(x) + an+1) :

a1, .., an+1 ∈ K}, where sign is the function defined in Sect. 2.1. For any at-
tribute f = sign(

∑n
i=1 aiϕi(x) + an+1) from F (A,K,ϕ1, . . . , ϕn) let

r(f) = max{0,max{log2 |ai| ai 
= 0, 1 ≤ i ≤ n+ 1}}
(if a1 = . . . = an+1 = 0, then r(f) = 0). The information system U =
(A, {−1, 0,+1}, F (A,K,ϕ1, . . . , ϕn)) will be called a quasilinear information sys-
tem. The main result of Sect. 6 is that for any problem z = (ν, f1, . . . , fm) over
U there exists a decision tree over U solving z for which the depth is at most
(2(n+2)3 log2(m+2n+2))/ log2(n+2), and for any attribute f used by this deci-
sion tree the inequality r(f) ≤ 2(n+1)2(1+log2(n+1)+max{r(fi) : 1 ≤ i ≤ m})
holds. If the set K coincides with the set ZZ then there exists an algorithm which
for arbitrary problem z over U constructs a decision tree over U which solves z
and possesses the mentioned properties. Also in this section, for some informa-
tion systems and weight functions the behavior of the global Shannon function
is studied.

In Sect. 7 six classes of problems over quasilinear information systems are
considered: three classes of discrete optimization problems and three classes of
recognition and sorting problems. For each class, examples and corollaries of the
results of Sect. 6 are given. It is shown, for example, that for traveling salesman
problem with n ≥ 4 cities there exists a decision tree over linear information
system solving it and satisfying the following conditions: the depth of the decision
tree is at most n7/2 and any attribute f used in it has integer coefficients and
satisfies the inequality r(f) ≤ n4 log2 n.

The idea of application of test theory to the analysis of linear decision trees for
discrete optimization problems can be attributed to Al.A. Markov. The idea was
further developed by [69], whose tutors were Al.A. Markov and S.V. Yablonskii.
Proof of the main result of Sect. 6 is like the proof of similar bound on complexity
of the linear decision trees in [69]. Sects. 6 and 7 describe the results of [68, 69,
77, 79, 102, 116].

Acyclic programs in the basis B0 = {x+ y, x− y, 1; sign(x)}, which recognize
membership of an element to a set, are studied in Sect. 8 based on the results
obtained in Sect. 6. The depth h(P ), which is the maximal number of the opera-
tions made by program P , is used as the complexity measure. The comparison of
the depth of deterministic and nondeterministic programs is made. It is shown
that for any nondeterministic acyclic program P1 with n input variables there
exists a deterministic acyclic program P2 which recognizes the same set as P1

and for which the inequality
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h(P2) ≤ 8(n+ 2)7(h(P1) + 2)2

holds. Sect. 8 contains results of [73].
As it was mentioned in Sect. 2.1, results similar to some results from Sects. 6–8

were obtained in [56, 57].

Applications to Pattern Recognition, Fault Diagnosis and Probabilis-
tic Reasoning. In this section, we briefly discuss the results presented in
Sects. 9–11 and concerned with three important application areas having their
own store of mathematical models for corresponding infinite classes of problems.

In Sect. 9 the problem of recognition of words of fixed length in a regular
language is considered. The word under consideration can be interpreted as a
description of certain screen image in the following way: the i-th letter of the
word encodes the color of the i-th screen cell. Let L be a regular language and
L(n) be the set of words in the language L of the length n. The minimal depth
of a decision tree which recognizes the words from L(n) and uses only attributes
which recognize the i-th letter of the word, i ∈ {1, . . . , n}, will be denoted by
hL(n). If L(n) = ∅ then hL(n) = 0. We will consider a “smoothed” analog of
the function hL(n) which is the function HL(n) defined in the following way:

HL(n) = max{hL(m) : m ≤ n} .

In Sect. 9 all regular languages are classified according to the complexity of the
word recognition problem. It is shown that either HL(n) = O(1), or HL(n) =
Θ(log2 n), or HL(n) = Θ(n). Results of Sect. 9 had been published in [79, 82,
110].

Similar results for languages generated by some types of linear grammars and
context-free grammars were obtained in [26, 41–43]. In [100] the classification of
all regular languages depending on the depth of nondeterministic decision trees
recognizing words of the language is obtained.

Different lines of investigation of applications of decision trees to constant
fault diagnosis in combinatorial circuits are considered in Sect. 10. The faults
under consideration are represented in the form of Boolean constants on some
inputs of circuit gates. The diagnosis problem consists of recognition of the
function realized by the circuit with a fixed tuple of constant faults from a given
set of tuples. Each attribute is the result of observing the output of the circuit
when the input (which is a binary tuple) is given.

Let B be a nonempty finite set (a basis) of Boolean functions and let Circ(B)
be the set of one-output combinatorial circuits in the basis B. The number of
gates in a circuit S ∈ Circ(B) will be denoted by L(S), and the minimal depth
of a decision tree which solves the problem of diagnosis of the circuit S relative
to the set of all possible tuples of constant faults on gate inputs will be denoted
by h(S).

The first line of investigation comprises the study of complexity of fault
diagnosis algorithms for arbitrary circuits in the basis B. Let us consider for this
purpose the function h

(1)
B which characterizes the worst-case dependency of h(S)

on L(S) on the set Circ(B) of circuits:
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h
(1)
B (n) = max{h(S) : S ∈ Circ(B), L(S) ≤ n} .

The basis B will be called primitive if at least one of the following conditions
holds:

a) every function from B is either a disjunction x1 ∨ . . . ∨ xn or a constant;
b) every function from B is either a conjunction x1 ∧ . . . ∧ xn or a constant;
c) every function from B is a linear function or a constant.

We will show that h(1)
B (n) = O(n) for primitive basis B, and log2 h

(1)
B (n) =

Ω(n1/2) for non-primitive basis B.
As opposed to the first one, the second line of research explores complexity

of diagnostic algorithms for best (from the point of view of solution for the
diagnosis problem) circuits realizing the Boolean functions given as formulas over
B. Let Φ(B) be the set of formulas over the basis B. For a formula ϕ ∈ Φ(B)
we will denote by L(ϕ) the number of functional symbols in ϕ. Let h(ϕ) =
minh(S), where the minimum is taken over all possible combinatorial circuits S
(not necessarily in the basis B) which realize the same function as the formula ϕ.
We will study the behavior of a function h

(2)
B which characterizes the worst-case

dependency of h(ϕ) on L(ϕ) on the set of formulas over B and is defined as
follows:

h
(2)
B (n) = max{h(ϕ) : ϕ ∈ Φ(B), L(ϕ) ≤ n} .

We will show that h(2)
B (n) = O(n) for primitive basis B, and log2 h

(2)
B (n) =

Ω(nc) for non-primitive basis B, where c is a positive constant depending only
on B.

The third line of research is to study the complexity of algorithms for the
following problem Con(B): for a given circuit S from Circ(B) and an arbitrary
set W of tuples of constant faults on inputs of gates of the circuit S, it is required
to construct a decision tree which solves the diagnosis problem for the circuit
S relative to the faults from W . Note that there exists a decision tree with at
most 2 |W |−1 nodes which solves the diagnosis problem for the circuit S relative
to the faults from W . If B is a primitive basis then there exists an algorithm
which solves the problem Con(B) with polynomial time complexity. If B is a
non-primitive basis then the problem Con(B) is NP-hard.

From the point of view of the diagnosis problem solving for arbitrary tuples
of constant faults on inputs of gates of arbitrary circuits, only primitive bases
seem to be admissible. The extension of the set of such bases is possible by
the substantial restriction on the class of the circuits under consideration. The
fourth line of research is the study of complexity of fault diagnosis algorithms for
iteration-free circuits in the basis B. A combinatorial circuit is called iteration-
free if each node (input or gate) of it has at most one issuing edge. Denote by
Circ1(B) the set of iteration-free circuits in the basis B with only one output.
Consider the function h

(3)
B which characterizes the worst-case dependency of

h(S) on L(S) for circuits from Circ1(B) and is defined as follows:

h
(3)
B (n) = max{h(S) : S ∈ Circ1(B), L(S) ≤ n} .
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A Boolean function f(x1, . . . , xn) is quasimonotone if there exist numbers
σ1, . . . , σn ∈ {0, 1} and a monotone Boolean function g(x1, . . . , xn) such that

f(x1, . . . , xn) = g(xσ1
1 , . . . , xσn

n )

where xσ = x if σ = 1, and xσ = ¬x if σ = 0. The basis B will be called
quasiprimitive if at least one of the following conditions holds:

a) each function from B is a linear function or a constant;
b) each function from B is a quasimonotone function.

We will show that h(3)
B (n) = O(n) if B is quasiprimitive, and log2 h

(3)
B (n) =

Ω(n) if B is not quasiprimitive.
Note that there exist decision trees satisfying the bounds for quasiprimitive

bases and possessing an effective description of the work.
The fifth line of research deals with circuit construction and effective diag-

nosis of faults based on the results obtained for the iteration-free circuits. Two
functions are equal if one of them can be obtained from the other by operations
of insertion and deletion of unessential variable. Based on the results of [209]
one can show for each basis B1, the existence of a quasiprimitive basis B2 with
the following properties:

a) the set of functions realized by circuits in the basis B2 coincides with the set
of functions realized by circuits in the basis B1;

b) there exists a polynomial p such that for each formula ϕ1 ∈ Φ(B1) there exists
a formula ϕ2 ∈ Φ(B2) which realizes the function equal to that realized by
ϕ1, and such that L(ϕ2) ≤ p(L(ϕ1)).

Our approach to circuit construction and fault diagnosis is as follows. Let
ϕ1 ∈ Φ(B1) be a formula realizing certain function f , f /∈ {0, 1}, and let us
construct a formula ϕ2 ∈ Φ(B2) realizing the function equal to f and satisfying
the inequality L(ϕ2) ≤ p(L(ϕ1)). Next a circuit S in the basis B2 is constructed
according to the formula ϕ2 realizing the function f , satisfying the equality
L(S) = L(ϕ2) and the condition that at most one edge results from each gate
of the circuit S. In addition to the usual work mode of the circuit S there exists
the diagnostic mode in which the inputs of the circuit S are “split” so that it
becomes the iteration-free circuit S̃. The inequality h(S̃) ≤ cp(L(ϕ1)), where c
is a constant depending only on the basis B2, holds for the circuit S̃.

The results of Sect. 10 are taken from [72, 76, 91, 115]. Problems connected
with complexity of algorithms for diagnosis of constant faults in combinatorial
circuits have been studied by different authors [14, 178, 203, 215]. As a rule,
the dependency of the algorithm’s complexity on the number of inputs of the
circuit were studied. Consider three series of publications which are most similar
to approach taken in this section. From the results obtained in [30, 40] the
bound h

(3)
B (n) = O(n) can be derived immediately for arbitrary basis B with

the following property: each function from B is realized by some iteration-free
circuit in the basis {x ∧ y, x ∨ y,¬x}. In [184–191] for circuits over an arbitrary
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finite basis and faults of different type (not only the constant) the dependence
is investigated of the minimal depth of a decision tree, which diagnoses circuit
faults, on total number of inputs and gates in the circuit. In [137–140, 192]
effective methods for diagnosis of faults of different types are considered.

In Sect. 11 the depth of decision trees which recognize values of all open
variables from Bayesian Network (BN for short) is considered. BN ia a convenient
tool for representation of joint probability distribution of variables. Some of
these variables are hidden (unobservable). Using values of open (observable)
variables and information about probability distribution from BN we can draw
some conclusions about values of hidden variables.

The investigation of decision trees for recognition of all open variable values
lends itself to the use of BN. Assume that the process of computation of open
variable values is rather expensive (it may be connected with use of remote
sensors, carrying out of experiments, etc.), there exists a decision tree whose
depth is essentially less than the number of open variables, and there exists an
efficient algorithm for simulation of the decision tree work. In such a case, it is
appropriate to use this decision tree instead of the sequential computation of all
open variable values.

We consider (1, 2)-BN in which each node has at most 1 entering edge, and
each variable has at most 2 values. For an arbitrary (1, 2)-BN we obtain lower
and upper bounds on minimal depth of decision tree that differ by not more than
a factor of 4, and can be computed by an algorithm which has polynomial time
complexity. The number of nodes in such decision trees can grow exponentially
depending on number of open variables in BN. We will develop a polynomial
algorithm for simulation of the decision trees whose depth lies between the stated
bounds. Results discussed in this section are from [121, 122].

3 Decision Trees for Decision Tables

In this section upper and lower bounds on complexity of decision trees for deci-
sion tables and algorithms of decision tree construction are considered.

This section consists of seven subsections. The first subsection contains def-
initions of basic notions. In the second subsection, lower bounds on complexity
of decision trees are considered. The third subsection contains upper bounds on
decision tree complexity. In the fourth subsection greedy algorithm for decision
tree construction is discussed. The fifth subsection contains an algorithm for
construction of an optimal decision tree. Problems related to the complexity of
decision tree optimization are considered in the sixth subsection. In the seventh
subsection, the depth of decision trees for computation of Boolean functions from
an arbitrary closed class is studied.

3.1 Basic Definitions and Notation

The notions of signature, decision table, decision tree, weight function, weighted
depth and depth are introduced in this subsection.

For an arbitrary nonempty set (alphabet) D, the set of all finite words over
D containing the empty word λ will be denoted by D∗.
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Let IN = {0, 1, 2, . . .} and ZZ denote the set of integers. We define two partial
functions min and max from 2IN to IN as follows. Let C ⊆ IN. If C = ∅ then the
value of minC is indefinite, otherwise minC is the minimal number from C. If
C is an empty or an infinite set then the value of maxC is indefinite, otherwise
maxC is the maximal number from C.

A pair ρ = (F,B), where F is a nonempty set and B is a finite nonempty set
of integers with at least two elements, will be called a signature. Elements of the
set F will be called attributes. We will consider decision tables filled by numbers
from B, and we will associate columns of decision tables with attributes from
F . Later we will assume that a signature ρ = (F,B) is fixed, and |B| = k.

Let Ωρ = {(f, δ) : f ∈ F, δ ∈ B}∗. A pair (f, δ) will be interpreted as the
following condition for rows of a decision table: a row must have the number δ
on the intersection with the column labelled by the attribute f . A word from
Ωρ will be interpreted as a system (conjunction) of such conditions.

Decision Tables. A decision table of the signature ρ is a rectangular table
filled by numbers from the set B. Rows of the table are pairwise different. Each
row is labelled by a number from ZZ. This number is interpreted as the decision.
The columns of the table are labelled by attributes from F . If some columns are
labelled by the same attribute then these columns coincide.

It is possible that a decision table does not contain rows. Such tables will be
called empty.

Let T be a decision table of the signature ρ. Denote by Row(T ) the set of
rows of the decision table T . For any row δ̄ of the table T we denote by νT (δ̄)
the number (decision) corresponding to this row. Denote by At(T ) the set of
attributes from F which are labels of the table T columns.

If a table T ′ can be obtained from the table T by deletion of some rows then
we will say that T ′ is a subtable of T .

Let Ωρ(T ) = {(f, δ) : f ∈ At(T ), δ ∈ B}∗. We will use words from the
set Ωρ(T ) for description of subtables of the table T . Let u ∈ Ωρ(T ). Let us
define the subtable Tu of the table T . If u = λ then Tu = T . Let u 
= λ and
u = (f1, δ1) . . . (fm, δm). Then Tu consists of such and only such rows of T which
on the intersection with columns labelled by f1, . . . , fm have numbers δ1, . . . , δm

respectively. It is clear that Tu is a decision table of the signature ρ. It is possible
that Tu is an empty table. A nonempty subtable T ′ of the table T will be called
separable if there exists a word u ∈ Ωρ(T ) such that T ′ = Tu.

Let Tabρ be the set of all decision tables of the signature ρ, and let Dtabρ be
the set of all decision tables T ∈ Tabρ possessing the following property: either
T is an empty table or all rows of T are labelled by the same number (decision).
Decision tables from the set Dtabρ will be called degenerate.

The special signature ρ0 = (F0, {0, 1}), where F0 = {fi : i ∈ IN}, will be used
in several of the examples.

Example 3.1. Consider the decision table T of the signature ρ0 depicted in
Fig. 3(a). For this table Row(T ) = {δ̄i : i = 1, . . . , 5} where δ̄1 = (1, 1, 1),
δ̄2 = (0, 1, 0), δ̄3 = (1, 1, 0), δ̄4 = (0, 0, 1), δ̄5 = (1, 0, 0), and νT (δ̄1) = 1,
νT (δ̄2) = 2, νT (δ̄3) = 2, νT (δ̄4) = 3, νT (δ̄5) = 3.
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Fig. 3. Decision table and decision tree.

Decision Trees. A finite directed tree containing exactly one node with no
entering edges will be called a finite rooted directed tree. This singular node is
called the root of the finite rooted directed tree. The nodes of the tree having no
issuing edges will be called terminal nodes. The nonterminal nodes of the tree
will be called working nodes. Let ξ = w1, d1, . . . , wm, dm, wm+1 be a sequence of
nodes and edges of finite rooted directed tree G such that w1 is the root, wm+1

is a terminal node, and for i = 1, . . . ,m the edge di issues from the node wi

and enters the node wi+1. Then ξ will be called a complete path in finite rooted
directed tree G.

A labelled finite rooted directed tree will be called a decision tree of the
signature ρ if it satisfies the following conditions:

a) every working node is labelled by an attribute from F ;
b) every edge is labelled by a number from B, while the edges issuing from one

and the same node are labelled by distinct numbers;
c) every terminal node is labelled by a number from ZZ.

Denote by Treeρ the set of all decision trees of the signature ρ. For a decision
tree Γ ∈ Treeρ denote At(Γ ) the set of attributes from F used as labels at the
working nodes of Γ , Ωρ(Γ ) = {(f, δ) : f ∈ At(Γ ), δ ∈ B}∗, and Path(Γ ) the set
of all complete paths in Γ .

Let us put into correspondence to a complete path ξ in Γ a word π(ξ) from
Ωρ(Γ ). If the path ξ does not contain working nodes then π(ξ) = λ. Let the
path ξ contain m > 0 working nodes, ξ = w1, d1, . . . , wm, dm, wm+1, and for
i = 1, . . . ,m the node wi be labelled by the attribute fi, and the edge di be
labelled by the number δi. Then π(ξ) = (f1, δ1) . . . (fm, δm).
Example 3.2. In Fig. 3(b) a decision tree of the signature ρ0 is depicted. Denote
this tree by Γ . For i = 1, 2, 3 denote by ξi the complete path in the thee Γ
terminating at the node labelled by the number i. Then Path(Γ ) = {ξ1, ξ2, ξ3},
π(ξ1) = (f2, 1)(f3, 1), π(ξ2) = (f2, 1)(f3, 0) and π(ξ3) = (f2, 0).

Let T ∈ Tabρ and Γ ∈ Treeρ. We will say that Γ is a decision tree for the
decision table T if Γ satisfies the following conditions:

a) At(Γ ) ⊆ At(T );
b) if T is a nonempty table then for any row δ̄ of the table T there exists a

complete path ξ in Γ such that δ̄ is a row of the subtable Tπ(ξ), and the
terminal node of the path ξ is labelled by the number νT (δ̄).
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The condition a) means that during the work of Γ we can ask questions only
about columns of T . The subtable Tπ(ξ) consists of all rows of the table T for
which the work of Γ finishes in the terminal node of the path ξ. The condition
b) means that for each row of T the result of decision tree Γ work coincides with
the decision corresponding to this row.
Example 3.3. It is easily to show that the decision tree depicted in Fig. 3(b) is
a decision tree for the decision table depicted in Fig. 3(a).

Weight Functions. A function ψ : F → IN\{0} will be called a weight function
of the signature ρ. The value ψ(f) sometimes will be called the weight of the
attribute f ∈ F . We denote by h the weight function of the signature ρ for which
h(f) = 1 for any f ∈ F .

Extend a weight function ψ of the signature ρ on the sets F ∗, Ωρ and Treeρ.
Let α ∈ F ∗. If α = λ then ψ(α) = 0. Let α 
= λ and α = f1 . . . fm. Then

ψ(α) =
∑m

i=1 ψ(fi).
Let β ∈ Ωρ. If β = λ then ψ(β) = 0. Let β 
= λ and β = (f1, δ1) . . . (fm, δm).

Then ψ(β) =
∑m

i=1 ψ(fi).
For Γ ∈ Treeρ let ψ(Γ ) = max{ψ(π(ξ)) : ξ ∈ Path(Γ )}. The value ψ(Γ )

will be called the weighted depth of the decision tree Γ . The value h(Γ ) will be
called the depth of the decision tree Γ . Note that h(Γ ) is the maximal length of
a complete path in Γ .

Put into correspondence to a weight function ψ the function ψρ : Tabρ → IN.
Let T ∈ Tabρ. Then ψρ(T ) = min{ψ(Γ ) : Γ ∈ Treeall

ρ (T )} where Treeall
ρ (T ) is

the set of all decision trees of the signature ρ for the table T . In other words,
ψρ(T ) is the minimal weighted depth of a decision tree for the table T . A decision
tree Γ for the table T such that ψ(Γ ) = ψρ(T ) will be called optimal.
Example 3.4. Let T be the decision table depicted in Fig. 3(a), and Γ be the
decision tree depicted in Fig. 3(b). It is easily to see h(Γ ) = 2. Taking into
account that Γ is a decision tree for T we obtain hρ0(T ) ≤ 2.

Diagnostic Tables. A nonempty decision table T ∈ Tabρ will be called di-
agnostic if its rows are labelled by pairwise different numbers (decisions). The
study of diagnostic tables is a question of special interest in the present section
for the reason that the diagnostic tables are, in a sense, the tables of maximal
complexity. Namely, if two tables T1, T2 ∈ Tabρ are differ only by numbers as-
signed to rows then ψρ(T1) ≤ ψρ(T2) if T2 is diagnostic (see Lemma 3.6). The
other reason is that diagnostic tables are frequently met in applications.

3.2 Lower Bounds on Complexity of Decision Trees
Lower bounds on complexity of decision trees for decision tables are studied in
this subsection. An approach to proof of lower bounds based on the “proof-tree”
notion is considered.

Lower Bounds on Complexity. Let ρ = (F,B), |B| = k and ψ be a weight
function of the signature ρ. For any word α ∈ Ωρ we denote by Alph(α) the set
of letters from the alphabet {(f, δ) : f ∈ F, δ ∈ B} contained in α.
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Define a mapping Mρ,ψ : Tabρ → IN as follows. Let T be a table from
Tabρ with n columns which are labelled by attributes f1, . . . , fn. For any δ̄ =
(δ1, . . . , δn) ∈ Bn denote Mρ,ψ(T, δ̄) = min{ψ(α) : α ∈ Ωρ(T ),Alph(α) ⊆
{(f1, δ1), . . . , (fn, δn)}, Tα ∈ Dtabρ}. Then Mρ,ψ(T )=max{Mρ,ψ(T, δ̄) : δ̄∈Bn}.

Let δ̄ = (δ1, . . . , δn) ∈ Bn. Denote α = (f1, δ1) . . . (fn, δn). Obviously, α ∈
Ωρ(T ),Alph(α) ⊆ {(f1, δ1), . . . , (fn, δn)} and Tα ∈ Dtabρ, i.e. T is a degenerate
table. Therefore the value of Mρ,ψ(T, δ̄) is definite. Hence the value of Mρ,ψ(T )
is also definite.

Consider one more definition of the value Mρ,ψ(T, δ̄). The weight of a column
in T is the weight of the corresponding attribute. Let δ̄ be a row of T . Then
Mρ,ψ(T, δ̄) is the minimal total weight of columns which distinguish the row δ̄
from all rows with other decisions. Let δ̄ be not a row of T . Then Mρ,ψ(T, δ̄) is
the minimal total weight of columns which distinguish the row δ̄ from all rows
with the exception, possibly, of some rows with the same decision.

Theorem 3.1. Let ψ be a weight function of the signature ρ, and T ∈ Tabρ.
Then ψρ(T ) ≥Mρ,ψ(T ).

Example 3.5. Let T be the table depicted in Fig. 3(a). Evidently, T (fi, 1) is a
nondegenerate table for any i ∈ {1, 2, 3}. Hence Mρ0,h(T, (1, 1, 1)) ≥ 2. One
can show that T (f2, δ2)(f3, δ3) is a degenerate table for any triple (δ1, δ2, δ3) ∈
{0, 1}3. Therefore for any triple δ̄ ∈ {0, 1}3 we have Mρ0,h(T, δ̄) ≤ 2. Thus,
Mρ0,h(T ) = 2. From Theorem 3.1 it follows that hρ0(T ) ≥ 2. Using this inequal-
ity and the inequality hρ0(T ) ≤ 2 from Example 3.4 we obtain hρ0(T ) = 2.

Define mappings S : Tabρ → IN and N : Tabρ → IN. Let T ∈ Tabρ. Then
S(T ) =

∣∣{νT (δ̄) : δ̄ ∈ Row(T )}∣∣ and N(T ) = |Row(T )|. In other words, S(T ) it
the number of different decisions corresponding to rows of T , and N(T ) is the
number of rows in the table T . For any diagnostic table T (see Sect. 3.1) we
have Row(T ) 
= ∅ and S(T ) = N(T ).

For real number a we denote by *a+ the minimal integer which is at least a.
We denote by (a) the maximal integer which is at most a.

Recall that ρ = (F,B) is a signature for which |B| = k.

Theorem 3.2. Let ψ be a weight function of the signature ρ, and T be a non-
empty table from Tabρ. Then ψρ(T ) ≥ *logk S(T )+.
Corollary 3.1. Let ψ be a weight function of the signature ρ, and T be a diag-
nostic table from Tabρ. Then ψρ(T ) ≥ *logk N(T )+.
Example 3.6. For the table T depicted in Fig. 3(a) the equality S(T ) = 3 holds.
Using Theorem 3.2 we obtain hρ0(T ) ≥ *log2 3+ = 2.

Let T ∈ Tabρ and let D be a subset of the set At(T ). The set D will be called
a test for the table T if it satisfies the following conditions:

a) if D = ∅, then T ∈ Dtabρ, i.e. T is a degenerate table;
b) if D 
= ∅ and D = {fi(1), . . . , fi(m)} then T (fi(1), δ1) . . . (fi(m), δm) ∈ Dtabρ

for any δ1, . . . , δm ∈ B.
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In other words, a subset D of the set At(T ) is a test for the table T if and
only if any two rows of T with different decisions are distinct on columns of T
corresponding to attributes from D.

Note that each relative reduct [162] of the table T is a test for the table T ,
and a test D for the table T is a relative reduct of the table T if and only if each
proper subset of the set D is not a test for T .

Denote by Testρ(T ) the set of all tests of the table T .
Let D be a finite subset of the set F . Define the value ψ(D) as follows.

If D = ∅, then ψ(D) = 0. Let D 
= ∅ and D = {f1, . . . , fm}. Then ψ(D) =∑m
i=1 ψ(fi).
Next define a mapping Jψ : Tabρ → IN. Let T ∈ Tabρ. Then Jψ(T ) =

min{ψ(D) : D ∈ Testρ(T )}. Obviously At(T ) ∈ Testρ(T ). Hence the value
Jψ(T ) is definite. It is clear that Jh(T ) is the minimal cardinality of a test for
the table T , and it is the minimal cardinality of a relative reduct of the table T .
Later we will write J(T ) instead of Jh(T ).

Theorem 3.3. Let ψ be a weight function of the signature ρ, and T ∈ Tabρ.
Then ψρ(T ) ≥ *logk((k − 1)J(T ) + 1)+.
Example 3.7. It is easily to show that the table T depicted in Fig. 3(a) has
exactly two tests: {f1, f2, f3} and {f2, f3}. Hence J(T ) = 2. Using Theorem 3.3
we obtain hρ0(T ) ≥ *log2(2 + 1)+ = 2.

Approach to Proof of Lower Bounds on Complexity. Let C be a non-
empty subset of the set F and C = {f1, . . . , fn}. A labelled finite rooted directed
tree will be called (C, ρ)-tree if it satisfies the following conditions. The nodes
of the tree are not labelled. Every edge of the tree is labelled by a pair from the
set {(fi, δ) : fi ∈ C, δ ∈ B}. The root of the tree either is a terminal node or
has n edges issuing from it and labelled by pairs of the kind (f1, δ1), . . . , (fn, δn)
respectively. Let w be a node of the tree which is not the root, and let C(w) be
the set of elements from C, not present in pairs used as labels at the edges in
the path connecting the root with the node w. If C(w) = ∅ then w is a terminal
node. Let C(w) 
= ∅ and C(w) = {fi(1), . . . , fi(m)}. Then either w is a terminal
node or there are m edges issuing from w which are labelled by pairs of the kind
(fi(1), σ1), . . . , (fi(m), σm) respectively.

Let G be an (C, ρ)-tree. For every node w of the tree G we define a word
ζ(w) ∈ {(fi, δ) : fi ∈ C, δ ∈ B}∗. If w is the root of the tree G then ζ(w) = λ.
Let an edge issuing from a node w1 and entering a node w2 be labelled by a pair
(fi, δ). Then ζ(w2) = ζ(w1)(fi, δ).

Let ψ be a weight function of the signature ρ, T ∈ Tabρ, r ∈ ZZ and G be an
(At(T ), ρ)-tree. The tree G will be called a proof-tree for the bound ψρ(T ) ≥ r if
ψ(ζ(w)) ≥ r and Tζ(w) is a nonempty table for any terminal node w of G, and
Tζ(w) is a nondegenerate table for any nonterminal node w of G.

A proof-tree can be interpreted as a fragment of a strategy of the first player
in the game which is modified in the following way: first player does not choose a
row at the beginning of the game, but at least one row must satisfy his answers
on questions of the second player.
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(f2, 1)
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(f1, 1)

Fig. 4. ({f1, f2, f3}, ρ0)-tree.

Theorem 3.4. Let ψ be a weight function of the signature ρ, T be a nonempty
table from Tabρ, and r ∈ ZZ. Then a proof-tree for the bound ψρ(T ) ≥ r exists
if and only if the inequality ψρ(T ) ≥ r holds.

Example 3.8. Denote by G the ({f1, f2, f3}, ρ0)-tree depicted in Fig. 4. Let T be
the decision table depicted in Fig. 3(a), and Γ be the decision tree depicted in
Fig. 3(b). Define the weight function ψ of the signature ρ0 in the following way:
ψ(f0) = 1 and ψ(fi) = i for any i ∈ IN\{0}. One can show that G is a proof-tree
for the bound ψρ0(T ) ≥ 5. From Theorem 3.4 it follows that ψρ0(T ) ≥ 5. Taking
into account that Γ is a decision tree for the table T , and ψ(Γ ) = 5 we obtain
ψρ0(T ) ≤ 5. Hence ψρ0(T ) = 5.

Auxiliary Statements. This subsubsection contains lemmas which will be
used later in proofs of Theorems 3.1–3.4.

Lemma 3.1. Let ψ be a weight function of the signature ρ, and T ∈ Tabρ. Then
the value of ψρ(T ) is definite and satisfies the inequality ψρ(T ) ≤ Jψ(T ).

Proof. Let D be a test for the table T such that ψ(D) = Jψ(T ). Consider a
decision tree Γ from Treeρ described as follows. If D = ∅ then Γ contains only
one node. Let D 
= ∅ and D = {f1, . . . , fm}. In this case the set of nodes of the
tree Γ is divided into m + 1 layers, where the j-th layer contains kj−1 nodes,
j = 1, . . . ,m+ 1. For j = 1, . . . ,m every node of the j-th layer is labelled by the
attribute fj, and from every node of the j-th layer k edges are issuing each of
which enters a node of the (j + 1)-th layer. These edges are labelled by pairwise
different numbers from the set B. Let w be an arbitrary terminal node of the
tree Γ , and let ξ be the complete path in Γ terminating at the node w. Taking
into account that D is a test for the table T we conclude that Tπ(ξ) ∈ Dtabρ.
If Row(Tπ(ξ)) = ∅ then node w is labelled by 0. Let Row(Tπ(ξ)) 
= ∅. Then
the node w is labelled by the number r ∈ IN such that νT (δ̄) = r for any
δ̄ ∈ Row(Tπ(ξ)).



268 Mikhail Ju. Moshkov

One can show that the tree Γ is a decision tree for the table T . Therefore
the value of ψρ(T ) is definite and, obviously, ψρ(T ) ≤ ψ(Γ ). It is clear that
ψ(Γ ) = ψ(D). Using the equality ψ(D) = Jψ(T ) we obtain ψρ(T ) ≤ Jψ(T ). ��
Lemma 3.2. Let T ∈ Tabρ and Γ be a decision tree for the table T . Then
following statements hold:

(a) for any ξ1, ξ2 ∈ Path(Γ ) if ξ1 
= ξ2 then Row(Tπ(ξ1)) ∩Row(Tπ(ξ2)) = ∅;
(b) for any ξ ∈ Path(Γ ) the table Tπ(ξ) is degenerate.

Proof. a) Let ξ1, ξ2 ∈ Path(Γ ) and ξ1 
= ξ2. Then, obviously, there exist an
attribute f ∈ At(Γ ) and numbers δ1, δ2 ∈ B such that δ1 
= δ2, (f, δ1) ∈
Alph(π(ξ1)) and (f, δ2) ∈ Alph(π(ξ2)). Hence Row(Tπ(ξ1)) ∩ Row(Tπ(ξ2))
= ∅.

b) Assume that there exists ξ ∈ Path(Γ ) such that Tπ(ξ) is nondegenerate. Then
there exist δ̄1, δ̄2 ∈ Row(Tπ(ξ)) such that νT (δ̄1) 
= νT (δ̄2). It follows from the
statement (a) that ξ is the only path in Path(Γ ) such that δ̄1 ∈ Row(Tπ(ξ)).
Since Γ is a decision tree for the table T , we conclude that the terminal node
of the path ξ is labelled by the number νT (δ̄1). Considering the row δ̄2 in
the same way we see that the terminal node of the path ξ is labelled by the
number νT (δ̄2) which is impossible. Hence Tπ(ξ) ∈ Dtabρ. ��

Lemma 3.3. Let T ∈ Tabρ, and Γ be a decision tree for the table T . Then the
set At(Γ ) is a test for the table T .

Proof. If T ∈ Dtabρ then, obviously, the set At(Γ ) is a test for the table T . Con-
sider the case when T /∈ Dtabρ. Using Lemma 3.2 one can show that At(Γ ) 
= ∅.
Let At(Γ ) = {f1, . . . , fm}. Assume the set At(Γ ) is not a test for the table
T . Then there exist numbers σ1, . . . , σm ∈ B such that T (f1, σ1) . . . (fm, σm)
is a nondegenerate table. Denote β = (f1, σ1) . . . (fm, σm). Choose certain row
δ̄ ∈ Row(Tβ). Since Γ is a decision tree for the table T , there exists a com-
plete path ξ ∈ Path(Γ ) such that δ̄ ∈ Row(Tπ(ξ)). It is easily to show that
Alph(π(ξ)) ⊆ Alph(β). Hence Row(Tβ) ⊆ Row(Tπ(ξ)). From Lemma 3.2 it fol-
lows that Tπ(ξ) ∈ Dtabρ. Hence Tβ ∈ Dtabρ too which is impossible. Therefore
At(Γ ) is a test for the table T . ��

For Γ ∈ Treeρ denote Lt(Γ ) the number of terminal nodes in the tree Γ , and
Lw(Γ ) the number of working nodes in Γ .

Lemma 3.4. Let Γ∈Treeρ. Then Lt(Γ )≤kh(Γ ) and Lw(Γ ) ≤ (kh(Γ )−1)/(k−1).

Proof. If h(Γ ) = 0 then the considered inequalities hold. Let h(Γ ) ≥ 1. Denote
by G a decision tree from Treeρ in which exactly k edges issue from every working
node and every complete path contains exactly h(Γ ) + 1 nodes. It is easily
to show that Lt(Γ ) ≤ Lt(G) = kh(Γ ) and Lw(Γ ) ≤ Lw(G) =

∑h(Γ )−1
i=0 ki =

(kh(Γ ) − 1)/(k − 1). ��
Let T be a nonempty table from Tabρ. Denote by Treeρ(T ) the set of all

decision trees Γ from Treeρ satisfying the following conditions:
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a) At(Γ ) ⊆ At(T );
b) in every complete path in Γ working nodes are labelled by pairwise different

attributes;
c) terminal nodes of the tree Γ are labelled by numbers from the set {νT (δ̄) :

δ̄ ∈ Row(T )}.
Lemma 3.5. Let T be a nonempty table from Tabρ. Then there exists a decision
tree Γ for the table T such that Γ ∈ Treeρ(T ) and ψ(Γ ) = ψρ(T ).

Proof. By Lemma 3.1, there exists a decision tree Γ1 for the table T such that
ψ(Γ1) = ψρ(T ). Remove from the tree Γ1 all the edges and nodes not contained
in at least one complete path ξ in the tree Γ1 such that Row(Tπ(ξ)) 
= ∅. As a
result obtain certain tree from Treeρ which will be denoted by Γ2. It is easily to
show that Γ2 is a decision tree for the table T and ψ(Γ2) ≤ ψ(Γ1). Let w be a
working node in the tree Γ2. If at least two edges issue from the node w then the
node w is left untouched. Let exactly one edge (entering the node u) issue from
w. We remove from the tree the node w together with the edge issuing from it.
Edge entering node w is at that re-oriented so as to enter the node u. Having
overlooked in such a way all the working nodes in tree Γ2 we produce certain tree
from Treeρ which will be denoted by Γ . As is easily to show Γ is a decision tree
for the table T and ψ(Γ ) ≤ ψ(Γ2). Taking into account that ψ(Γ2) ≤ ψ(Γ1) and
ψ(Γ1) = ψρ(T ) obtain ψ(Γ ) = ψρ(T ). Obviously, At(Γ ) ⊆ At(T ). It is easily to
show that in the tree Γ2 every terminal node is labelled by a number from the
set {νT (δ̄) : δ̄ ∈ Row(T )}, and in every complete path if any two working nodes
are labelled by the same attribute then at least from one of these nodes exactly
one edge is issuing. From these properties of the tree Γ2 one can easily deduce
Γ ∈ Treeρ(T ). ��
Lemma 3.6. Let T1, T2 be tables from Tabρ which are differ only by numbers
assigned to rows, and T2 be a diagnostic table. Then ψρ(T1) ≤ ψρ(T2).

Proof. By Lemma 3.1, there exists a decision tree Γ2 for the table T2 such that
ψ(Γ2) = ψρ(T2). Since Γ2 is a decision tree for the table T2, for any δ̄ ∈ Row(T2)
there exists a complete path ξ(δ̄) in tree Γ2 such that δ̄ ∈ Row(T2π(ξ(δ̄))),
and the terminal node of the path ξ(δ̄) is labelled by a number νT2(δ̄). Let
δ̄1, δ̄2 ∈ Row(T2) and δ̄1 
= δ̄2. Since T2 is a diagnostic table, ξ(δ̄1) 
= ξ(δ̄2). For
every δ̄ ∈ Row(T2) the terminal node of the path ξ(δ̄) will be labelled by the
number νT1(δ̄) instead of the number νT2(δ̄). Denote the obtained tree by Γ1. It
is clear that Γ1 is a decision tree for the table T1 and ψ(Γ1) = ψ(Γ2). Therefore
ψρ(T1) ≤ ψρ(T2). ��

Proofs of Theorems 3.1–3.4

Proof (of Theorem 3.1). Let the table T contain n columns labelled by attributes
f1, . . . , fn. From Lemma 3.1 it follows that there exists a decision tree Γ for the
table T such that ψ(Γ ) = ψρ(T ). We denote by E(w) the set of numbers by
which the edges issuing from certain working node w in tree Γ are labelled.
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Consider the following process of transformation of the tree Γ . Each working
node w in tree Γ , for which E(w) = B, is left untouched. Suppose E(w) 
= B
for some working node w in tree Γ . For every δ ∈ B \ E(w) add to the tree Γ
a new terminal node wδ and an edge dδ issuing from the node w and entering
the node wδ. The node wδ will be labelled by 0 and the edge dδ by δ. All the
working nodes of the tree Γ will be processed like that. As a result a new tree
from Treeρ will be obtained. Denote this tree by G. One can show that G is a
decision tree for the table T and ψ(G) = ψ(Γ ).

Let δ̄ = (δ1, . . . , δn) be an n-tuple from Bn such that Mρ,ψ(T, δ̄) = Mρ,ψ(T ).
It is not difficult to prove that there exists a complete path ξ in the tree G
such that Alph(π(ξ)) ⊆ {(f1, δ1), . . . , (fn, δn)}. Taking into account that G is a
decision tree for the table T and using Lemma 3.2 we obtain Tπ(ξ) ∈ Dtabρ.
Evidently, ψ(π(ξ)) ≤ ψ(G). Hence Mρ,ψ(T, δ̄) ≤ ψ(G). Taking into account that
Mρ,ψ(T ) = Mρ,ψ(T, δ̄) and ψ(G) = ψ(Γ ) = ψρ(T ) we obtain Mρ,ψ(T ) ≤ ψρ(T ).

��
Proof (of Theorem 3.2). From Lemma 3.1 it follows the existence of a decision
tree G for the table T such that ψ(G) = ψρ(T ). Obviously, S(T ) ≤ Lt(G). Using
Lemma 3.4 we obtain Lt(G) ≤ kh(G). Therefore kh(G) ≥ S(T ). Bearing in mind
that T is a nonempty table we obtain S(T ) > 0 and hence h(G) ≥ logk S(T ).
One can easily show that ψ(G) ≥ h(G). Hence ψ(G) ≥ logk S(T ). Taking into
account that ψ(G) = ψρ(T ) and ψρ(T ) ∈ IN we obtain ψρ(T ) ≥ *logk S(T )+. ��
Proof (of Theorem 3.3). Using Lemma 3.1 we obtain that there exists a decision
tree G for the table T such that ψ(G) = ψρ(T ). By Lemma 3.3, the set At(G) is
a test for the table T . Therefore J(T ) ≤ |At(G)|. Evidently, |At(G)| ≤ Lw(G).
Therefore J(T )≤Lw(G). Using Lemma 3.4 we obtain Lw(G)≤(kh(G)−1)/(k−1).
Therefore J(T ) ≤ (kh(G)−1)/(k−1) and kh(G) ≥ (k−1)J(T )+1. Hence h(G) ≥
logk((k−1)J(T )+1). It is easily to show that ψ(G) ≥ h(G). Taking into account
that ψ(G) = ψρ(T ) and ψρ(T ) ∈ IN we obtain ψρ(T ) ≥ *logk((k − 1)J(T )+ 1)+.

��
Let T be a table from Tabρ with n > 1 columns, f ∈ At(T ) and t ∈ B.

Denote by T [f, t] the table from Tabρ which is obtained from the table T (f, t)
by removal of all columns labelled by the attribute f .

Let Γ be a finite rooted directed tree and d be an edge in the tree Γ entering
the node w of the tree Γ . Let G be the subtree of the tree Γ which root is the
node w. We will say that the edge d determines the subtree G of the tree Γ .

Proof (of Theorem 3.4). We prove by induction on n that for any nonempty
table T ∈ Tabρ with at most n columns and for any r ∈ ZZ if a proof-tree for
the bound ψρ(T ) ≥ r exists then the inequality ψρ(T ) ≥ r holds.

Let us show that the considered statement is true for n = 1. Let T contain
one column, which is labelled by the attribute f , r ∈ ZZ and G be a proof-tree for
the bound ψρ(T ) ≥ r. If r ≤ 0 then, evidently, the inequality ψρ(T ) ≥ r holds.
Let r > 0. It is not difficult to show that the tree G consists of two nodes joined
by an edge labelled by the pair of the kind (f, δ), where δ ∈ B. Hence T /∈ Dtabρ
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and ψ(f) ≥ r. Using Lemma 3.1 we conclude that there exists a decision tree
Γ for the table T such that ψ(Γ ) = ψρ(T ). Since T /∈ Dtabρ, at least one of
the nodes of Γ is labelled by the attribute f . Hence ψ(Γ ) ≥ ψ(f) ≥ r. Taking
into account that ψ(Γ ) = ψρ(T ) we obtain ψρ(T ) ≥ r. Thus, the considered
statement is true for n = 1.

We assume now that the statement is true for certain n ≥ 1. Show that it is
true also for n + 1. Let T contain n + 1 columns, and G be a proof-tree for the
bound ψρ(T ) ≥ r. If r ≤ 0 then, obviously, the inequality ψρ(T ) ≥ r holds. Let
r > 0. Then the root of the tree G, evidently, is not a terminal node, and hence
T /∈ Dtabρ. Using Lemma 3.5 we conclude that there exists a decision tree Γ for
the table T such that Γ ∈ Treeρ(T ) and ψ(Γ ) = ψρ(T ). Taking into account that
T /∈ Dtabρ and using Lemma 3.2 we conclude that the root of the tree Γ is not a
terminal node. Let the root of Γ be labelled by the attribute f . Obviously, there
exists an edge issuing from the root of the treeG and labelled by a pair of the kind
(f, δ) where δ ∈ B. Denote by G′ the subtree of the tree G determined by this
edge. One can show that G′ is a proof-tree for the bound ψρ(T [f, δ]) ≥ r−ψ(f).
Obviously, T [f, δ] is a nonempty table with at most n columns. By inductive
hypothesis, ψρ(T [f, δ]) ≥ r−ψ(f). Obviously, Row(T (f, δ)) 
= ∅. Hence the tree
Γ contains an edge issuing from the root which is labelled by the number δ.
Denote by Γ ′ the subtree of the tree Γ determined by this edge. Taking into
account that Γ ∈ Treeρ(T ) it is not difficult to show that Γ ′ is a decision tree
for the table T [f, δ]. Bearing in mind that ψρ(T [f, δ]) ≥ r − ψ(f) we obtain
ψ(Γ ′) ≥ r − ψ(f). Hence ψ(Γ ) ≥ r. From this inequality and from the choice of
Γ the inequality ψρ(T ) ≥ r follows. Thus, the considered statement is proved.

We prove by induction on n that for any nonempty table T ∈ Tabρ with at
most n columns and for any r ∈ ZZ if the inequality ψρ(T ) ≥ r holds then a
proof-tree for the bound ψρ(T ) ≥ r exists.

Let us show that this statement is true for n = 1. Let T contain one column
which is labelled by the attribute f . Let r ≤ 0. Denote by G0 the tree having only
one node with no label. It is easily to see that G0 is a proof-tree for the bound
ψρ(T ) ≥ 0 and hence a proof-tree for the bound ψρ(T ) ≥ r. Let now r > 0. Then,
obviously, T /∈ Dtabρ. Let Γ1 be an arbitrary decision tree for the table T . Since
T /∈ Dtabρ, the tree Γ1 contains at least one working node. This node, evidently,
is labelled by the attribute f . Therefore ψ(Γ1) ≥ ψ(f), and hence ψρ(T ) ≥ ψ(f).
It is not difficult to show that there exists a decision tree Γ2 for the table T such
that ψ(Γ2) = ψ(f). Hence ψρ(T ) = ψ(f) and ψ(f) ≥ r. Since T /∈ Dtabρ, there
exists δ ∈ B such that Row(T (f, δ)) 
= ∅. Denote by G1 the tree consisting of
two non-labelled nodes and the edge joining them which is labelled by the pair
(f, δ). Obviously, G1 is a proof-tree for the bound ψρ(T ) ≥ ψ(f), and hence also
a proof-tree for the bound ψρ(T ) ≥ r. So the considered statement is true for
n = 1.

Let this statement be true for certain n ≥ 1. Let us show that it is true also
for n + 1. Let T contain n + 1 columns, and the inequality ψρ(T ) ≥ r hold.
Let r ≤ 0. In this case the above-introduced tree G0 is a proof-tree for the
bound ψρ(T ) ≥ r. Let now r > 0. Then, obviously, T /∈ Dtabρ. Let At(T ) =
{f1, . . . , fn+1}. It is not difficult to show that ψρ(T ) ≤ ψ(fi)+max{ψρ(T [fi, δ]) :
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δ ∈ B,Row(T [fi, δ]) 
= ∅} for any fi ∈ At(T ). Hence for every fi ∈ At(T ) there
exists δi ∈ B such that Row(T [fi, δi]) 
= ∅ and ψρ(T [fi, δi]) ≥ ψρ(T )− ψ(fi) ≥
r − ψ(fi). Evidently, for any fi ∈ At(T ) the table T [fi, δi] contains at most n
columns. Using the inductive hypothesis we conclude that for every fi ∈ At(T )
there exists a proof-tree for the bound ψρ(T [fi, δi]) ≥ r − ψ(fi). Denote this
tree by Gi. Denote by G the following labelled finite rooted directed tree: for
every fi ∈ At(T ) an edge labelled by the pair (fi, δi) issues from the root of G
and enters the root of Gi, and no other edges issue from the root of the tree G.
Taking into account that T /∈ Dtabρ one can show that the tree G is a proof-tree
for the bound ψρ(T ) ≥ r. Thus, the considered statement is proved. ��

3.3 Upper Bounds on Complexity of Decision Trees

Let ρ = (F,B) be a signature, |B| = k, ψ be a weight function of the signature ρ,
and T be a table from Tabρ. In this subsection we consider upper bounds on the
value ψρ(T ) (which is the complexity of optimal decision tree for the table T )
depending on the values N(T ) and Mρ,ψ(T ) defined in Sect. 3.2. The case, when
the depth h is used in the capacity of decision tree complexity, is considered
more explicitly.

In order to obtain the upper bounds we study the following process of decision
tree construction. At each step we find a set of questions (columns, attributes)
with minimal total weight satisfying the following condition: for any answers on
these questions we either solve the problem (recognize the decision corresponding
to the chosen row) or reduce the number of rows by half.

Bounds

Theorem 3.5. Let ψ be a weight function of the signature ρ, and T ∈ Tabρ.
Then

ψρ(T ) ≤
{

0, if T ∈ Dtabρ ,
Mρ,ψ(T ) log2 N(T ), if T /∈ Dtabρ .

Corollary 3.2. Let ψ be a weight function of the signature ρ, and T be a diag-
nostic table from Tabρ. Then

max{Mρ,ψ(T ), logk N(T )} ≤ ψρ(T ) ≤ log2 kMρ,ψ(T ) logk N(T ) .

In case the depth h is used as decision tree complexity a more precise bound
is possible.

Theorem 3.6. Let T ∈ Tabρ. Then

hρ(T ) ≤
⎧⎨
⎩

Mρ,h(T ), if Mρ,h(T ) ≤ 1 ,
2 log2 N(T ) +Mρ,h(T ), if 2 ≤Mρ,h(T ) ≤ 3 ,

Mρ,h(T ) log2 N(T )/ log2 Mρ,h(T ) +Mρ,h(T ), if Mρ,h(T ) ≥ 4 .

Denote C(Mρ,h, N) = {(Mρ,h(T ), N(T )) : T ∈ Tabρ}. From results of [70]
the next statement follows immediately.
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Theorem 3.7. Let ρ = (F,B) be a signature with infinite set F . Then

C(Mρ,h, N) = {(0, 0)} ∪ {(m,n) : m,n ∈ IN, n ≥ m+ 1}
and for any pair (m,n) from C(Mρ,h, N) there exists a table T (m,n) from Tabρ

for which Mρ,h(T (m,n)) = m, N(T (m,n)) = n and

hρ(T (n,m)) ≥

⎧⎪⎨
⎪⎩

m, if 0 ≤ m ≤ 1 ,
log2 n, if m = 2 ,

(m− 2)
⌊

log2 n−log2 m
log2(m−1)

⌋
+m− 1, if m ≥ 3 .

It follows from Theorem 3.7 that for signature ρ = (F,B) with infinite set F
the bound obtained in Theorem 3.6 cannot be essentially improved.

Process Yρ,ψ of Decision Tree Construction. Let ψ be a weight function
of the signature ρ. In this subsubsection a process Yρ,ψ is studied which for an
arbitrary table T from Tabρ constructs a decision tree Yρ,ψ(T ) for the table T .
The bounds considered in Theorems 3.5 and 3.6 are the result of investigation
of decision trees constructed by this process.

The set F may be uncountable and the function ψ may be non-computable.
Hence generally speaking the process Yρ,ψ is not an algorithm but only the way
of description of the tree Yρ,ψ(T ).

Process Yρ,ψ includes the subprocess Xρ,ψ which for an arbitrary nondegen-
erate table T from Tabρ constructs a decision tree Xρ,ψ(T ) ∈ Treeρ.

Description of the Subprocess Xρ,ψ

Let us apply the subprocess Xρ,ψ to a nondegenerate table T ∈ Tabρ con-
taining n columns which are labelled by attributes f1, . . . , fn.

1-st Step. Let σi for any i ∈ {1, . . . , n} be equal to the minimal number σ from
B such that

N(T (fi, σ)) = max{N(T (fi, δ) : δ ∈ B} .

Denote σ̄ = (σ1, . . . , σn). Choose a word β ∈ Ωρ(T ) such that Alph(β) ⊆
{(f1, σ1), . . . , (fn, σn)}, Tβ ∈ Dtabρ and ψ(β) = Mρ,ψ(T, σ̄). Since T /∈ Dtabρ,
we have β 
= λ. Let β = (fi(1), σi(1)) . . . (fi(m), σi(m)). Set I1 = {fi(1), . . . , fi(m)}.
Construct a tree with exactly one node labelled by the word λ. Denote the
obtained tree by G1. Proceed to the second step.

Suppose t ≥ 1 steps have already been made and the tree Gt and the set It
have been built.

(t+ 1)-th Step. Find the only node w in the tree Gt which is labelled by a word
from Ωρ(T ). Let w be labelled by the word α.

If It = ∅ then mark the node w by the number 0 instead of the word α.
Denote the obtained tree by Xρ,ψ(T ). The subprocess Xρ,ψ is completed.

Let It 
= ∅. Let j be the minimal number from the set {1, . . . , n} with
the following properties: fj ∈ It and max{N(Tα(fj, σ)) : σ ∈ B \ {σj}} ≥
max{N(Tα(fl, σ)) : σ ∈ B \ {σl}} for any fl ∈ It. Mark the node w by the
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attribute fj instead of the word α . For any σ ∈ B add to the tree Gt a node
wσ and an edge issuing from the node w and entering the node wσ. Mark this
edge by the number σ. If σ 
= σj then we mark the node wσ by the number 0. If
σ = σj then we mark the node wσ by the word α(fj , σj). Denote the obtained
tree by Gt+1. Set It+1 = It \ {fj}. Proceed to the (t+ 2)-th step.

Example 3.9. Denote by T the table depicted in Fig. 3(a). Then the tree Xρ0,h(T )
is depicted in Fig. 5.
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Fig. 5. Decision tree constructed by subprocess Xρ0,h.

Description of the Process Yρ,ψ

Let the process Yρ,ψ be applied to a table T ∈ Tabρ.
1-st Step. Let us construct a tree containing the only node w.

Let T ∈ Dtabρ. If T is an empty table then mark the node w by the number 0.
If T is a nonempty table then the node w will be labelled by the number νT (δ̄),
where δ̄ is a row from Row(T ). Denote the obtained tree by Yρ,ψ(T ). The process
Yρ,ψ is completed.

Let T /∈ Dtabρ. Mark the node w by the word λ and proceed to the second
step.

Suppose t ≥ 1 steps have already been made. Denote by G the tree con-
structed at the step t.
(t + 1)-th Step. If no one node in the tree G is labelled by a word from Ωρ(T )
then denote by Yρ,ψ(T ) the tree G. The process Yρ,ψ is completed.

Otherwise, choose a node w in the tree G which is labelled by a word from
Ωρ(T ). Let the node w be labelled by the word α.

Let Tα ∈ Dtabρ. If Row(Tα) = ∅ then we mark the node w by the number
0 instead of the word α. If Row(Tα) 
= ∅ then instead of the word α we mark
the node w by the number νT (δ̄) where δ̄ is a row from Row(Tα). Proceed to
the (t+ 2)-th step.

Let Tα /∈ Dtabρ. Construct the tree Xρ,ψ(Tα) with the help of the subprocess
Xρ,ψ . For any complete path ξ in the tree Xρ,ψ(T ) replace the number 0 as the
label of the terminal node of this path with the word απ(ξ). Denote the obtained
tree by Γ . Remove the node w from the tree G and add the tree Γ to the tree
G. If there was an edge entering the node w then we join it to the root of the
tree Γ . Proceed to the (t+ 2)-th step.

Example 3.10. Denote by T the table depicted in Fig. 3(a). The tree Yρ0,h(T )
is depicted in Fig. 3(b).
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Proof of Theorem 3.5

Lemma 3.7. Let ψ be a weight function of the signature ρ, and T be a nonde-
generate table from Tabρ. Then for any complete path ξ in the tree Xρ,ψ(T ) the
following statements hold:

(a) ψ(π(ξ)) ≤Mρ,ψ(T );
(b) if Tπ(ξ) is a nondegenerate table then

N(Tπ(ξ)) ≤ N(T )/max{2, h(π(ξ))} .

Proof. Let T contain n columns which are labelled by attributes f1, . . . , fn.
For every i ∈ {1, . . . , n} denote by σi the minimal number from B such that
N(T (fi, σi)) = max{N(T (fi, σ)) : σ ∈ B}. Denote σ̄ = (σ1, . . . , σn). Let β
be a word from Ωρ(T ) which was chosen during the work of the subprocess
Xρ,ψ and for which Alph(β) ⊆ {(f1, σ1), . . . , (fn, σn)}, Tβ ∈ Dtabρ and ψ(β) =
Mρ,ψ(T, σ̄). Obviously, all the letters in the word β are pairwise distinct. Using
this property of the word β and the description of the subprocess Xρ,ψ we can
easily conclude that there exists a complete path ξ0 in the tree Xρ,ψ(T ) such
that Alph(π(ξ0)) = Alph(β) and the words π(ξ0) and β are of the same length.
Hence Tπ(ξ0) ∈ Dtabρ and ψ(π(ξ0)) = ψ(β). Taking into account the choice of
the word β we obtain

ψ(π(ξ0)) = Mρ,ψ(T, σ̄) . (1)

Let π(ξ0) = (fj(1), σj(1)) . . . (fj(m), σj(m)). Denote α0 = λ and for i = 1, . . . ,m
denote αi = (fj(1), σj(1)) . . . (fj(i), σj(i)). For i = 1, . . . ,m denote by δj(i) the
minimal number from the set B \ {σj(i)} such that

N(Tαi−1(fj(i), δj(i))) = max{N(Tαi−1(fj(i), σ)) : σ ∈ B \ {σj(i)}} .

Let ξ be an arbitrary complete path in the tree Xρ,ψ(T ). Let ξ = ξ0. Using
(1) we obtain ψ(π(ξ0)) = Mρ,ψ(T, σ̄) ≤ Mρ,ψ(T ). Let now ξ 
= ξ0. One can
show that in this case there exist numbers r ∈ {1, . . . ,m} and δ ∈ B such that
π(ξ) = αr−1(fj(r), δ). Hence ψ(π(ξ)) ≤ ψ(π(ξ0)) and ψ(π(ξ)) ≤Mρ,ψ(T ). Thus,
the statement (a) of the lemma is proved.

Let ξ be a complete path in the tree Xρ,ψ(T ) such that Tπ(ξ) /∈ Dtabρ.
Taking into account that Tπ(ξ0) ∈ Dtabρ we obtain ξ 
= ξ0. It is not difficult
to show that there exist numbers r ∈ {1, . . . ,m} and δ ∈ B such that δ 
= σj(r)

and π(ξ) = αr−1(fj(r), δ).
We will show that N(Tπ(ξ)) ≤ N(T )/2. Obviously,

N(Tπ(ξ)) ≤ N(T (fj(r), δ)) .

Taking into account the choice of the number σj(r) we obtain

2N(T (fj(r), δ)) ≤ N(T (fj(r), δ)) +N(T (fj(r), σj(r))) .

Using the relation δ 
= σj(r) we have

N(T (fj(r), δ)) +N(T (fj(r), σj(r))) ≤ N(T ) .

Hence N(Tπ(ξ)) ≤ N(T )/2.
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Obviously, h(π(ξ)) = r. Let r ≥ 2. We will show that N(Tπ(ξ)) ≤ N(T )/r.
Bearing in mind that δj(i+1) 
= σj(i+1) for i = 0, . . . , r−2 we obtain N(Tαi+1)+
N(Tαi(fj(i+1), δj(i+1))) ≤ N(Tαi) for i = 0, . . . , r − 2. Summing these inequali-
ties over i from 0 to r − 2 obtain

N(Tαr−1) +
r−2∑
i=1

N(Tαi(fj(i+1), δj(i+1))) ≤ N(T ) . (2)

Let us show that the inequality

N(Tπ(ξ)) ≤ N(Tαi(fj(i+1), δj(i+1))) (3)

holds for any i ∈ {0, . . . , r − 2}. The inequality

N(Tαi(fj(r), δ)) ≤ N(Tαi(fj(i+1), δj(i+1)))

follows from the choice of the attribute fj(i+1) (see the description of the sub-
process Xρ,ψ) and from the definition of the number δj(i+1). The inequality
N(Tπ(ξ)) ≤ N(Tαi(fj(r), δ)) is obvious. The inequality (3) follows from the last
two inequalities. The inequality N(Tπ(ξ)) ≤ N(Tαr−1) is obvious. From this
inequality and from (2), (3) follows rN(Tπ(ξ)) ≤ N(T ). Taking into account
that r ≥ 2 we obtain N(Tπ(ξ)) ≤ N(T )/r. So the statement (b) of the lemma
is proved. ��

Using descriptions of the process Yρ,ψ and of the subprocess Xρ,ψ, and also
Lemma 3.7 it is not difficult to prove the following statement.

Proposition 3.1. Let ψ be a weight function of the signature ρ. Then for any
table T ∈ Tabρ the process Yρ,ψ completes after realization of finite sequence of
steps. The constructed tree Yρ,ψ(T ) is a decision tree for the table T .

Proof (of Theorem 3.5). Let T ∈ Dtabρ. From the description of the process
Yρ,ψ it follows that ψ(Yρ,ψ(T )) = 0. From this equality and from Proposition
3.1 it follows that ψρ(T ) ≤ 0.

Let T /∈ Dtabρ. Consider an arbitrary complete path ξ in the tree Yρ,ψ(T ).
From the description of the process Yρ,ψ and from the relation T /∈ Dtabρ it
follows that π(ξ) = π(ξ1) . . . π(ξm) for certain m ≥ 1, where ξ1 is a complete
path in the tree Xρ,ψ(T ), and if m ≥ 2 then the path ξi is a complete path in
the tree Xρ,ψ(Tπ(ξ1) . . . π(ξi−1)) for i = 2, . . . ,m.

By the assumption, T /∈ Dtabρ. From the description of the process Yρ,ψ it
follows that if m ≥ 2 then Tπ(ξ1) . . . π(ξi−1) /∈ Dtabρ for i = 2, . . . ,m. Using the
part (a) of the statement of Lemma 3.7 we obtain ψ(π(ξ1)) ≤ Mρ,ψ(T ) and if
m ≥ 2 then ψ(π(ξi)) ≤Mρ,ψ(Tπ(ξ1) . . . π(ξi−1)) for i = 2, . . . ,m. One can show
that Mρ,ψ(Tα) ≤ Mρ,ψ(T ) for any α ∈ Ωρ(T ). Therefore ψ(π(ξi)) ≤ Mρ,ψ(T )
for i = 1, . . . ,m. Hence

ψ(π(ξ)) =
m∑

i=1

ψ(π(ξi)) ≤ mMρ,ψ(T ) . (4)
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Let us show that m ≤ log2 N(T ). Since T /∈ Dtabρ, the inequality N(T ) ≥ 2
holds. Hence if m = 1 the considered inequality holds. Let m ≥ 2. From the
part (b) of the statement of Lemma 3.7 it follows that N(Tπ(ξ1) . . . π(ξm−1)) ≤
N(T )/2m−1. Taking into account that Tπ(ξ1) . . . π(ξm−1) /∈ Dtabρ we obtain
N(Tπ(ξ1) . . . π(ξm−1)) ≥ 2. Hence 2m ≤ N(T ) and m ≤ log2 N(T ). Using (4)
we have ψ(π(ξ)) ≤Mρ,ψ(T ) log2 N(T ). Since ξ is an arbitrary complete path in
the tree Yρ,ψ(T ), we conclude that ψ(Yρ,ψ(T )) ≤Mρ,ψ(T ) log2 N(T ). From this
inequality and from Proposition 3.1 it follows that ψρ(T ) ≤Mρ,ψ(T ) log2 N(T ).

��
Proof (of Corollary 3.2). The lower bounds follow from Theorem 3.1 and Corol-
lary 3.1. The upper bound follows from Theorem 3.5 and from obvious inequality
N(T ) ≥ 1. ��

Proof of Theorem 3.6

Lemma 3.8. Let T ∈ Tabρ. Then

a) Mρ,h(T ) = 0 if and only if hρ(T ) = 0;
b) Mρ,h(T ) = 1 if and only if hρ(T ) = 1;
c) if Mρ,h(T ) = 1 then there exists an attribute fi ∈ At(T ) such that T (fi, δ) ∈

Dtabρ for any δ ∈ B.

Proof. Let Mρ,h(T ) = 0. Then, obviously, T ∈ Dtabρ. It is easily to show that
in this case hρ(T ) = 0. Let hρ(T ) = 0. Using Theorem 3.1 obtain Mρ,h(T ) = 0.

Let Mρ,h(T ) = 1. We will show that there exists an attribute fi ∈ At(T )
such that T (fi, δ) ∈ Dtabρ for any δ ∈ B. Assume the contrary. Let the table T
contain n columns which are labelled by attributes f1, . . . , fn, and for any fi ∈
At(T ) there exists δi ∈ B such that T (fi, δi) /∈ Dtabρ. Denote δ̄ = (δ1, . . . , δn).
It is easily to show that Mρ,h(T, δ̄) ≥ 2 which is impossible since Mρ,h(T, δ̄) ≤
Mρ,h(T ) = 1. Therefore there exists fi ∈ At(T ) such that T (fi, δ) ∈ Dtabρ for
any δ ∈ B. Using this fact it is not difficult to show that there exists a decision
tree Γ for the table T such that h(Γ ) = 1. Hence hρ(T ) ≤ 1. Using the equality
Mρ,h(T ) = 1 and Theorem 3.1 we obtain hρ(T ) = 1.

Let hρ(T ) = 1. Using Theorem 3.1 obtainMρ,h(T ) ≤ 1. AssumeMρ,h(T ) = 0.
Then, by proved above, hρ(T ) = 0 which is impossible. Hence Mρ,h(T ) = 1. ��
Proof (of Theorem 3.6). For Mρ,h(T ) ≤ 1 the statement of the theorem follows
from Lemma 3.8.

Let Mρ,h(T ) ≥ 2. From this inequality it follows that T /∈ Dtabρ. Consider an
arbitrary complete path ξ in the tree Yρ,h(T ). From the description of the process
Yρ,h and from the relation T /∈ Dtabρ it follows that π(ξ) = π(ξ1) . . . π(ξm) for
certain m ≥ 1, where ξ1 is a complete path in the tree Xρ,h(T ), and if m ≥ 2 then
ξi is a complete path in the tree Xρ,h(Tπ(ξ1) . . . π(ξi−1)) for i = 2, . . . ,m. For
i = 1, . . . ,m denote ri = h(π(ξi)). Let us estimate the value h(π(ξ)) =

∑m
i=1 ri.

We will show that
m∑

i=1

ri ≤
{

2 log2 N(T ) +Mρ,h(T ), if 2 ≤Mρ,h(T ) ≤ 3 ,
Mρ,h(T ) log2 N(T )

log2 Mρ,h(T ) +Mρ,h(T ), if Mρ,h(T ) ≥ 4 .
(5)
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Let m = 1. From Lemma 3.7 it follows that r1 ≤ Mρ,h(T ). Since T /∈ Dtabρ,
we obtain N(T ) ≥ 2. Hence the inequality (5) holds for m = 1. Let m ≥ 2.
For i = 1, . . . ,m denote zi = max{2, ri}. By assumption, T /∈ Dtabρ. From
the description of the process Yρ,h it follows that Tπ(ξ1) . . . π(ξi) /∈ Dtabρ for
i = 1, . . . ,m− 1. Using Lemma 3.7 and the inequality m ≥ 2 we obtain

N(Tπ(ξ1) . . . π(ξm−1)) ≤ N(T )/
m−1∏
i=1

zi .

Taking into account that Tπ(ξ1) . . . π(ξm−1) /∈ Dtabρ we obtain N(Tπ(ξ1) . . .
π(ξm−1)) ≥ 2. Hence

∏m−1
i=1 zi ≤ N(T ). Taking the logarithm of both sides of

this inequality we obtain
∑m−1

i=1 log2 zi ≤ log2 N(T ). From the last inequality it
follows that ∑m

i=1 ri = rm +
∑m−1

i=1 (log2 zi · ri/ log2 zi)

≤ rm + (
∑m−1

i=1 log2 zi)max{ri/ log2 zi : i ∈ {1, . . . ,m− 1}} (6)
≤ rm + log2 N(T )max{ri/ log2 zi : i ∈ {1, . . . ,m− 1}} .

Consider the function q(x) = x/ log2 max{2, x} defined on the set of real num-
bers. One can show that q(0) = 0, q(1) = 1, q(2) = 2, q(3) < 2, q(4) = 2 and
that q(x) is a monotone increasing function for x ≥ 3. Hence for any natural n
the following equality holds:

max{q(i) : i ∈ {0, . . . , n}} =

⎧⎨
⎩

1, if n = 1 ,
2, if 2 ≤ n ≤ 3 ,

n/ log2 n, if n ≥ 4 .
(7)

Using Lemma 3.7 and the inequality Mρ,h(Tα) ≤Mρ,h(T ), which is true for any
α ∈ Ωρ(T ), we obtain

ri ≤Mρ,h(T ) . (8)

From (7), (8) and from the inequality Mρ,h(T ) ≥ 2 it follows that

max{ri/ log2 zi : i ∈ {1, . . . ,m− 1}} ≤ max{q(i) : i ∈ {0, . . . ,Mρ,h(T )}}
=
{

2, if 2 ≤Mρ,h(T ) ≤ 3 ,
Mρ,h(T )/ log2 Mρ,h(T ), if Mρ,h(T ) ≥ 4 .

From these relations and from inequalities (6), (8) the inequality (5) follows.
Taking into account that ξ is an arbitrary complete path in tree Yρ,h(T ) and
using Proposition 3.1 we conclude that the statement of the theorem holds also
for Mρ,h(T ) ≥ 2. ��

3.4 Greedy Algorithm for Decision Tree Construction

A signature ρ = (F,B) will be called enumerated if F is a denumerable set,
elements of which are enumerated by numbers from IN, i.e. F = {fi : i ∈ IN}.
Let us fix an enumerated signature ρ = (F,B), |B| = k.
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A weight function ψ of the signature ρ will be called computable if there
exists a general recursive function ϕ : IN → IN \ {0} such that ψ(fi) = ϕ(i) for
any i ∈ IN.

Let ψ be a computable weight function of the signature ρ. In this subsection
we consider an algorithm Vρ,ψ which for a given table T ∈ Tabρ constructs a
decision tree Vρ,ψ(T ) for this table. Accuracy and complexity of the algorithm
Vρ,ψ are estimated. The case, when the depth h is used in the capacity of decision
tree complexity, is considered more explicitly.

The algorithm Vρ,ψ is a greedy algorithm. As the uncertainty measure of
a table we use the number of pairs of rows with different decisions. At each
step we choose a question (column, attribute) which reduces the uncertainty to
the greatest extent under certain constraints on the complexity (weight) of the
question.

Algorithm Vρ,ψ. Define a function R : Tabρ → IN. For any T ∈ Tabρ let
R(T ) be the number of unordered pairs of rows δ̄1, δ̄2 of the table T such that
νT (δ̄1) 
= νT (δ̄2).

Description of the Algorithm Vρ,ψ

Let us apply the algorithm Vρ,ψ to a table T ∈ Tabρ.

1-st Step. Construct a tree consisting of a single node w.
Let T ∈ Dtabρ. If Row(T ) = ∅ then the node w will be labelled by the

number 0. If Row(T ) 
= ∅ then the node w will be labelled by the number νT (δ̄),
where δ̄ ∈ Row(T ). Proceed to the second step.

Let T /∈ Dtabρ. Mark the node w by the word λ ∈ Ωρ(T ) and proceed to the
second step.

Suppose t ≥ 1 steps have already been made. The tree obtained in the step
t will be denoted by G.

(t+1)-th Step. If no one node of the tree G is labelled by a word from Ωρ(T ) then
we denote by Vρ,ψ(T ) the tree G. The work of the algorithm Vρ,ψ is completed.

Otherwise we choose certain node w in the tree G which is labelled by a word
from Ωρ(T ). Let the node w be labelled by the word α.

If Tα ∈ Dtabρ then instead of the word α we mark the node w by the number
νT (δ̄), where δ̄ ∈ Row(Tα), and proceed to the (t+ 2)-th step.

Let Tα /∈ Dtabρ. For any fi ∈ At(T ) let σi be the minimal number from the
set B such that R(Tα(fi, σi)) = max{R(Tα(fi, σ)) : σ ∈ B}. Set

Iα = {fi : fi ∈ At(T ), R(Tα) > R(Tα(fi, σi))} .

For any fi ∈ Iα set d(fi) = max{ψ(fi), R(Tα)/(R(Tα)−R(Tα(fi, σi)))}. Let p
be the minimal number from IN for which fp ∈ Iα and d(fp) = min{d(fi) : fi ∈
Iα}. Instead of the word α we mark the node w by the attribute fp. For every
δ ∈ B such that Row(Tα(fp, δ)) 
= ∅ add a node w(δ) to the tree G and draw
an edge from the node w to the node w(δ). This edge will be labelled by the
number δ, while the node w(δ) will be labelled by the word α(fp, δ). Proceed to
the (t+ 2)-th step.



280 Mikhail Ju. Moshkov

Note that in the description of the algorithm Vρ,h instead of the value d(fi)
we can use the value R(Tα(fi, σi)). The output of the algorithm remains the
same.

Example 3.11. Denote by T the table from Tabρ0 depicted in the Fig. 3(a). The
tree Vρ0,h(T ) is depicted in Fig. 3(b).

Consider the work of the algorithm Vρ,ψ constructing the tree Vρ,ψ(T ). Let us
show that the set Iα (see the description of the (t+ 1)-th step of the algorithm)
is not empty.

Lemma 3.9. Let T be a nondegenerate table from Tabρ. Then there exists an
attribute fi ∈ At(T ) such that R(T ) > max{R(T (fi, δ)) : δ ∈ B}.
Proof. Since T /∈ Dtabρ, there exist two rows δ̄1 and δ̄2 of the table T such
that νT (δ̄1) 
= νT (δ̄2). Consider an arbitrary column in which these rows are
distinct. Let this column be labelled by the attribute fi. Then, obviously,R(T ) >
max{R(T (fi, δ)) : δ ∈ B}. ��

Using the description of the algorithm Vρ,ψ and Lemma 3.9 it is not difficult
to prove the following statement.

Proposition 3.2. Let ψ be a computable weight function of the signature ρ.
Then for any table T ∈ Tabρ the work of the algorithm Vρ,ψ is completed in
finite number of steps. The constructed tree Vρ,ψ(T ) is a decision tree for the
table T .

Bounds on Accuracy and Complexity of Algorithm Vρ,ψ. Consider upper
bounds on the complexity of decision trees constructed by the algorithm Vρ,ψ.

Theorem 3.8. Let ψ be a computable weight function of the signature ρ, and
T ∈ Tabρ. Then

ψ(Vρ,ψ(T )) ≤
{

0, if T ∈ Dtabρ ,
Mρ,ψ(T )2 lnR(T ) +Mρ,ψ(T ), if T /∈ Dtabρ .

Corollary 3.3. Let ψ be a computable weight function of the signature ρ, and
T ∈ Tabρ. Then

ψ(Vρ,ψ(T )) ≤
{

0, if T ∈ Dtabρ ,
ψρ,ψ(T )2 lnR(T ) + ψρ,ψ(T ), if T /∈ Dtabρ .

If the depth h is taken as decision tree complexity then the following state-
ment holds.

Theorem 3.9. Let T ∈ Tabρ. Then

h(Vρ,h(T )) ≤
{

Mρ,h(T ), if Mρ,h(T ) ≤ 1 ,
Mρ,ψ(T )(lnR(T )− lnMρ,ψ(T ) + 1), if Mρ,h(T ) ≥ 2 .



Time Complexity of Decision Trees 281

Corollary 3.4. Let T ∈ Tabρ. Then

h(Vρ,h(T )) ≤
{

hρ(T ), if hρ(T ) ≤ 1 ,
hρ(T )(lnR(T )− lnhρ(T ) + 1), if hρ(T ) ≥ 2 .

Denote
C(Mρ,h, R) = {(Mρ,h(T ), R(T )) : T ∈ Tabρ}

and
C(hρ, R) = {(hρ(T ), R(T )) : T ∈ Tabρ} .

The next statement follows immediately from results of [70].

Theorem 3.10. Let ρ = (F,B) be an enumerated signature. Then

C(Mρ,h, R) = C(hρ, R) = {(0, 0)} ∪ {(m, r) : m, r ∈ IN \ {0},m ≤ r}
and for any pair (m, r) ∈ C(Mρ,h, R) there exists a table T (m, r) ∈ Tabρ such
that Mρ,h(T (m, r)) = hρ(T (m, r)) = m, R(T (m, r)) = r and

h(Vρ,h(T (m, r)) ≥
{

m, if m < 2 or r < 3m ,
((m− 1)(ln r − ln 3m))+m, if m ≥ 2 and r ≥ 3m .

From Theorem 3.10 it follows that bounds from Theorem 3.9 and Corollary
3.4 do not allow essential improvement.

From Theorem 3.10 also follows that there is no function f : IN → IN such
that for any table T ∈ Tabρ the inequality

h(Vρ,h(T )) ≤ f(hρ(T ))

holds. The situation with diagnostic tables is remarkably different.

Proposition 3.3. Let ψ be a computable weight function of the signature ρ, and
T be a diagnostic table from Tabρ. Then

(a) ψ(Vρ,ψ(T )) ≤ 2ψρ(T )3 ln k + ψρ(T );
(b) h(Vρ,h(T )) ≤ 2hρ(T )2 ln k + hρ(T ).

Consider a bound on the number of steps made by algorithm Vρ,ψ under the
construction of the tree Vρ,ψ(T ). Recall that N(T ) denotes the number of rows
in the table T .

Theorem 3.11. Let ψ be a computable weight function of the signature ρ, and
T ∈ Tabρ. Then under the construction of the tree Vρ,ψ(T ) the algorithm Vρ,ψ

makes at most 2N(T ) + 2 steps.

Note that the algorithm Vρ,ψ has polynomial time complexity if there exists
a polynomial algorithm which for a given i ∈ IN computes the value ψ(fi). In
particular, the algorithm Vρ,h has polynomial time complexity.

Later in Sect. 3.6 we will show that under some assumption on the class
NP the algorithm Vρ,h is close to best approximate polynomial algorithms for
minimization of decision tree depth.
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Proofs of Theorems 3.8 and 3.9. The following lemma states certain prop-
erties of the function R.

Lemma 3.10. Let T ∈ Tabρ. Then

(a) for any fi ∈ At(T ), δ ∈ B and α ∈ Ωρ(T ) the inequality R(T )−R(T (fi, δ)) ≥
R(Tα)−R(Tα(fi, δ)) holds;

(b) the equality R(T ) = 0 holds if and only if T ∈ Dtabρ.

Proof. Denote by D (respectively Dα) the set of unordered pairs of rows δ̄1, δ̄2
from Row(T ) (respectively Row(Tα)) such that νT (δ̄1) 
= νT (δ̄2) and at least
one of the rows from the pair does not belong to the set Row(T (fi, δ)). One can
show that Dα ⊆ D, |D| = R(T )−R(T (fi, δ)) and |Dα| = R(Tα)−R(Tα(fi, δ)).
From these relations the statement (a) of the lemma follows.

The statement (b) of the lemma is obvious. ��
The following statement characterizes properties of the tree constructed by

the algorithm Vρ,ψ.

Lemma 3.11. Let T ∈ Tabρ \ Dtabρ and ξ = w1, d1, . . . , wm, dm, wm+1 be an
arbitrary complete path in the tree Vρ,ψ(T ). Let for j = 1, . . . ,m the node wj

be labelled by the attribute ft(j) and the edge dj be labelled by the number δj.
Let α0 = λ and αj = (ft(1), δ1) . . . (ft(j), δj) for j = 1, . . . ,m. Then for j =
0, . . . ,m− 1 the following inequalities hold:

ψ(ft(j+1)) ≤Mρ,ψ(Tαj) ,

R(Tαj+1) ≤ R(Tαj)(Mρ,ψ(Tαj)− 1)/Mρ,ψ(Tαj) .

Proof. Let T contain n columns which are labelled by attributes fv(1), . . . , fv(n).
For j = 0, . . . ,m denoteMj = Mρ,ψ(Tαj). Fix certain number j ∈ {0, . . . ,m−1}.
For every fi ∈ At(T ) denote by σi the minimal number from B possessing the
following property: R(Tαj(fi, σi)) = max{R(Tαj(fi, σ)) : σ ∈ B}. Let β be a
word from Ωρ(T ) such that Alph(β) ⊆ {(fv(1), σv(1)), . . . , (fv(n), σv(n))}, Tαjβ ∈
Dtabρ, and ψ(β) = Mρ,ψ(Tαj, (σv(1), . . . , σv(n))). Let β = (fl(1), σl(1)) . . .
(fl(r), σl(r)). From the description of the algorithm Vρ,ψ follows Tαj /∈ Dtabρ.
Since Tαjβ ∈ Dtabρ, obtain

1 ≤ r . (9)

Obviously,
r ≤ ψ(β) . (10)

From the choice of the word β and from the definition of the value Mj follows

ψ(β) ≤Mj . (11)

Since Tαjβ ∈ Dtabρ, we have R(Tαjβ) = 0. Therefore

R(Tαj)− (R(Tαj)−R(Tαj(fl(1), σl(1))))
− (R(Tαj(fl(1), σl(1)))−R(Tαj(fl(1), σl(1))(fl(2), σl(2)))) (12)

− . . .− (R(Tαj(fl(1), σl(1)) . . . (fl(r−1), σl(r−1)))−R(Tαjβ)) = 0 .
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Let us choose certain q ∈ {l(1), . . . , l(r)} such that

R(Tαj(fq, σq)) = min{R(Tαj(fl(s), σl(s))) : s ∈ {1, . . . , r}} .

Using Lemma 3.10 we conclude that for s = 2, . . . , r the following inequality
holds:

R(Tαj(fl(1), σl(1)) . . . (fl(s−1), σl(s−1)))−R(Tαj(fl(1), σl(1)) . . . (fl(s), σl(s)))

≤ R(Tαj)−R(Tαj(fl(s), σl(s))) .

The choice of q implies

R(Tαj)−R(Tαj(fl(s), σl(s))) ≤ R(Tαj)−R(Tαj(fq, σq))

for s = 1, . . . , r. These inequalities and (12) imply

R(Tαj)− r(R(Tαj)−R(Tαj(fq, σq))) ≤ 0 .

From this inequality and from (9) it follows that

R(Tαj(fq, σq)) ≤ R(Tαj)(r − 1)/r .

This last inequality together with (10) and (11) implies

R(Tαj(fq, σq)) ≤ R(Tαj)(Mj − 1)/Mj . (13)

Since q ∈ {l(1), . . . , l(r)}, we have ψ(fq) ≤ ψ(β). From this inequality and from
(11) it follows that

ψ(fq) ≤Mj . (14)

The description of algorithm Vρ,ψ shows that the attribute ft(j+1) is defined as
follows. Let

Iαj = {fi : fi ∈ At(T ), R(Tαj) > R(Tαj(fi, σi))} .

For every fi ∈ Iαj denote

d(fi) = max{ψ(fi), R(Tαj)/(R(Tαj)−R(Tαj(fi, σi)))} .

Let p be the minimal number from IN such that fp ∈ Iαj and d(fp) = min{d(fi) :
fi ∈ Iαj}. Then ft(j+1) = fp. Since Tαj /∈ Dtabρ, we obtain R(Tαj) > 0. From
this inequality and from (9), (10), (11), (13) it follows that fq ∈ Iαj . One can
show that for any fi ∈ Iαj the number d(fi) is the minimum among all the
numbers d such that ψ(fi) ≤ d and R(Tαj(fi, σi)) ≤ R(Tαj)(d − 1)/d. From
here, from (13) and from (14) it follows that d(fq) ≤Mj . Therefore d(ft(j+1)) ≤
Mj . This inequality and the definition of the value d(ft(j+1)) imply ψ(ft(j+1)) ≤
Mj andR(Tαj(ft(j+1), σt(j+1))) ≤ R(Tαj)(Mj−1)/Mj. Finally, the statement of
the lemma follows from these inequalities and from the choice of σt(j+1) according
to which R(Tαj+1) ≤ R(Tαj(ft(j+1), σt(j+1))). ��
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Proof (of Theorem 3.8). Let T ∈ Dtabρ. It is easily to notice that in this case
ψ(Vρ,ψ(T )) = 0.

Let T be a nondegenerate table containing n columns which are labelled by
attributes fv(1), . . . , fv(n). Consider an arbitrary complete path ξ = w1, d1, . . . ,
wm, dm, wm+1 in the tree Vρ,ψ(T ). From Proposition 3.2 it follows that the tree
Vρ,ψ(T ) is a decision tree for the table T . Since T /∈ Dtabρ, we obtain m ≥ 1.
Let for j = 1, . . . ,m the node wj be labelled by the attribute ft(j) and the edge
dj be labelled by the number δj. Denote α0 = λ and for j = 1, . . . ,m denote
αj = (ft(1), δ1) . . . (ft(j), δj). Let us obtain the following upper bound on the
value m:

m ≤Mρ,ψ(T ) lnR(T ) + 1 . (15)

Since T /∈ Dtabρ, we obtain R(T ) ≥ 1. Obviously, Mρ,ψ(T ) ≥ 0. Hence the
inequality (15) holds for m = 1. Let m ≥ 2. From Lemma 3.11 it follows that

R(Tαm−1) ≤ R(T )
m−2∏
j=0

((Mρ,ψ(Tαj)− 1)/Mρ,ψ(Tαj)) . (16)

According to the description of the algorithm Vρ,ψ we have Tαm−1 /∈ Dtabρ.
Therefore R(Tαm−1) ≥ 1. Using Lemma 3.11 we conclude that Mρ,ψ(Tαj) ≥
1 for j = 0, . . . ,m − 2. From these inequalities and from (16) it follows that
Mρ,ψ(Tαj) ≥ 2 for j = 0, . . . ,m− 2, and the next inequality holds:

m−2∏
j=0

(Mρ,ψ(Tαj)/(Mρ,ψ(Tαj)− 1) ≤ R(T ) . (17)

One can show that the inequality

Mρ,ψ(Tαj) ≤Mρ,ψ(T ) (18)

holds for j = 0, 1, . . . ,m. From (17) and (18) it follows that

(m− 1) ln(1 + 1/(Mρ,ψ(T )− 1)) ≤ lnR(T ) . (19)

The inequalities Mρ,ψ(T ) ≥ 2 and ln(1 + 1/n) > 1/(n + 1) (the last inequality
holds for any natural n) imply

ln(1 + 1/(Mρ,ψ(T )− 1)) > 1/Mρ,ψ(T ) .

The inequality (15) follows from this inequality and from (19). From Lemma
3.11, from (15) and from (18) it follows that

ψ(π(ξ)) =
m∑

j=1

ψ(ft(j)) ≤Mρ,ψ(T )2 lnR(T ) +Mρ,ψ(T ) .

Taking into account that ξ is an arbitrary complete path in the tree Vρ,ψ(T ) we
obtain ψ(Vρ,ψ(T )) ≤Mρ,ψ(T )2 lnR(T ) +Mρ,ψ(T ). ��
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Proof (of Corollary 3.3). If T ∈ Dtabρ then the considered statement follows
immediately from Theorem 3.8. Let T /∈ Dtabρ. Using Theorem 3.1 we obtain
Mρ,ψ(T ) ≤ ψρ(T ). From Lemma 3.10 it follows that R(T ) ≥ 1. Using these
inequalities and Theorem 3.8 we conclude that considered statement holds also
for the case T /∈ Dtabρ. ��
Proof (of Theorem 3.9). Let Mρ,h(T ) = 0. Then, obviously, T ∈ Dtabρ. Using
Theorem 3.8 we obtain h(Vρ,h(T )) ≤ 0.

Let Mρ,h(T ) = 1. Then, obviously, T /∈ Dtabρ and R(T ) ≥ 1. Using Lemma
3.8 we conclude that there exists an attribute fi ∈ At(T ) such that T (fi, δ) ∈
Dtabρ for any δ ∈ B. Hence max{h(fi), R(T )/(R(T ) − max{R(T (fi, δ)) : δ ∈
B})} = 1. The obtained equality and the description of the algorithm Vρ,h show
that the root of the tree Vρ,h(T ) is labelled by certain attribute fj ∈ At(T )
such that max{h(fj), R(T )/(R(T ) − max{R(T (fj, δ)) : δ ∈ B})} = 1. Hence
R(T (fj, δ)) = 0 for any δ ∈ B. Therefore T (fj, δ) ∈ Dtabρ for any δ ∈ B. From
here and from the description of the algorithm Vρ,h it follows that all the nodes
of tree Vρ,h(T ) except the root are terminal nodes. Therefore h(Vρ,h(T )) = 1.

Let Mρ,h(T ) ≥ 2. Let ξ = w1, d1, . . . , wm, dm, wm+1 be a longest complete
path in the tree Vρ,h(T ). Obviously, h(Vρ,h(T )) = m. Using Proposition 3.2 we
conclude that Vρ,h(T ) is a decision tree for the table T . Hence m ≥ hρ(T ). From
this inequality, from the inequality Mρ,h(T ) ≥ 2 and from Theorem 3.1 it follows
that m ≥ 2. Let for j = 1, . . . ,m the node wj be labelled by the attribute ft(j)

and the edge dj be labelled by the number δj . Denote α0 = λ and for j = 1, . . . ,m
denote αj = (ft(1), δ1) . . . (ft(j), δj). Denote Mj = Mρ,h(Tαj) for j = 0, . . . ,m.
Let us show that for i = 0, . . . ,m the following inequality holds:

Mm−i ≤ i . (20)

Let Γi be a subtree of the tree Vρ,h(T ) defined by the edge dm−i. One can
show that Γi is a decision tree for the table Tαm−i. Taking into account that ξ is
a longest complete path in tree Vρ,h(T ) we obtain h(Γi) = i. Since Γi is a decision
tree for the table Tαm−i, the inequalities hρ(Tαm−i) ≤ h(Γi) ≤ i hold. Using
Theorem 3.1 we obtain Mρ,h(Tαm−i) ≤ hρ(Tαm−i). Therefore Mρ,h(Tαm−i) ≤
i. Thus, the inequality (20) holds. From inequality m ≥ 2 and from Lemma 3.11
it follows that

R(Tαm−1) ≤ R(T )
m−2∏
j=0

((Mj − 1)/Mj) . (21)

From the description of the algorithm Vρ,h it follows that Tαm−1 /∈ Dtabρ.
Therefore R(Tαm−1) ≥ 1. The last inequality and (21) imply

m−2∏
j=0

(Mj/(Mj − 1)) ≤ R(T ) . (22)

It is not difficult to show that
Mj ≤M0 (23)

for j = 1, . . . ,m. From (20), (22) and (23) it follows that
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(M0/(M0 − 1))m−M0

M0−2∏
j=0

(M0 − j)/(M0 − j − 1) ≤ R(T ) .

Taking the logarithm of both sides of this inequality we obtain

(m−M0) ln(1 + 1/(M0 − 1)) ≤ lnR(T )− lnM0 . (24)

Taking into account the inequality ln(1 + 1/n) > 1/(n+ 1), which holds for any
n ∈ IN \ {0}, and also M0 = Mρ,h(T ) ≥ 2 we obtain ln(1 + 1/(M0− 1)) > 1/M0.
From this inequality and from (24) it follows that m < M0(lnR(T )− lnM0 + 1).
Taking into account that m = h(Vρ,h(T )) and M0 = Mρ,h(T ) we obtain
h(Vρ,h(T )) < Mρ,h(T )(lnR(T )− lnMρ,h(T ) + 1). ��
Proof (of Corollary 3.4). Let hρ(T ) ≤ 1. Using Theorem 3.1 obtainMρ,h(T ) ≤ 1.
From this inequality and from Theorem 3.9 it follows that h(Vρ,h(T )) ≤Mρ,h(T ).
Using Theorem 3.1 we have h(Vρ,h(T )) ≤ hρ(T ).

Let hρ(T ) ≥ 2. Using Lemma 3.8 we obtain Mρ,h(T ) ≥ 2. This inequality
and Theorem 3.9 imply

h(Vρ,h(T )) ≤Mρ,h(T )(lnR(T )− lnMρ,h(T ) + 1) . (25)

Using Theorem 3.1 we have Mρ,h(T ) ≤ hρ(T ). One can show that J(T ) ≤ R(T ).
Using Lemma 3.1 we obtain hρ(T ) ≤ J(T ). Hence

2 ≤Mρ,h(T ) ≤ hρ(T ) ≤ R(T ) . (26)

Let r ∈ IN and r ≥ 2. One can show that the function x(ln r− lnx+1) of the real
variable x is a nondecreasing function on the interval [1, r]. Using inequalities
(25) and (26) we obtain h(Vρ,h(T )) ≤ hρ(T )(lnR(T )− lnhρ(T ) + 1). ��
Proof (of Proposition 3.3). Using Corollary 3.1 we obtain ψρ(T ) ≥ logk N(T ).
Obviously, R(T ) ≤ N(T )2. Therefore lnR(T ) ≤ 2 lnk logk N(T ) and lnR(T ) ≤
2 ln k ·ψρ(T ). Using this inequality and Corollaries 3.3 and 3.4 one can show that
the inequalities (a) and (b) hold. ��

Proof of Theorem 3.11. Let Γ be a finite rooted directed tree. Denote the
number of nodes in the tree Γ by La(Γ ) and the number of terminal nodes in Γ
by Lt(Γ ).

Lemma 3.12. Let Γ be a finite rooted directed tree in which at least two edges
are issuing from any nonterminal node. Then La(Γ ) ≤ 2Lt(Γ ).

Proof. Let us prove the statement of the lemma by induction on the value La(Γ ).
Obviously, if La(Γ ) = 1 then La(Γ ) ≤ 2Lt(Γ ). One can show that there exists
no tree which satisfies the conditions of the lemma and for which La(Γ ) = 2.

Let for certain n ≥ 2 the considered inequality hold for any tree which satisfies
the conditions of the lemma and for which the number of nodes is at most n. Let
a tree Γ satisfy the conditions of the lemma and La(Γ ) = n+1. Let us show that
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La(Γ ) ≤ 2Lt(Γ ). One can prove that there exists a nonterminal node w in the
tree Γ such that each edge issuing from it enters a terminal node. Let m edges
issue from w. Denote by Γ1 the tree obtained from the tree Γ by deletion of all
the edges issuing from the node w as well as all the nodes which these edges
are entering. Obviously, m ≥ 2. It is easily to see that La(Γ1) = La(Γ ) − m,
Lt(Γ ) = Lt(Γ1)−m+1 and the tree Γ1 satisfies the condition of the lemma. By
the inductive hypothesis, La(Γ1) ≤ 2Lt(Γ1). Therefore La(Γ )−m ≤ 2(Lt(Γ )−
m+ 1) = 2Lt(Γ )− 2m+ 1. Hence La(Γ ) ≤ 2Lt(Γ )−m+ 2 ≤ 2Lt(Γ ). ��
Proof (of Theorem 3.11). Let T ∈ Dtabρ. From the description of the algorithm
Vρ,ψ it follows that under the construction of the tree Vρ,ψ(T ) this algorithm
makes exactly two steps. Therefore if T ∈ Dtabρ then the statement of the
theorem holds.

Let T /∈ Dtabρ. Denote by Γ the tree Vρ,ψ(T ). Define for every node w of the
tree Γ a word πΓ (w) ∈ Ωρ(Γ ). If w is the root of the tree Γ then πΓ (w) = λ. Let
an edge issue from a node w1 and enter a node w2. Let this edge be labelled by
the number δ, and the node w1 be labelled by the attribute fi. Then πΓ (w2) =
πΓ (w1)(fi, δ).

Let w be an arbitrary nonterminal node of the tree Γ . Let the node w be
labelled by the attribute fi. From the description of the algorithm Vρ,ψ it follows
that

R(TπΓ (w)) > max{R(TπΓ (w)(fi, δ)) : δ ∈ B} .

Therefore the cardinality of the set {δ : δ ∈ B,Row(TπΓ (w)(fi, δ)) 
= ∅} is at
least two. Hence at least two edges are issuing from the node w. From the de-
scription of the algorithm Vρ,ψ it follows that Row(Tπ(ξ)) 
= ∅ for any complete
path ξ in the tree Γ . Obviously, Row(Tπ(ξ1)) ∩ Row(Tπ(ξ2)) = ∅ for any two
distinct complete paths ξ1 and ξ2 in tree Γ . Therefore the number of complete
paths in the tree Γ is at most N(T ). Hence Lt(Γ ) ≤ N(T ). Using Lemma 3.12 we
obtain La(Γ ) ≤ 2N(T ). Finally, one can show that the number of steps making
by the algorithm Vρ,ψ under construction of the tree Γ is equal to La(Γ )+2. ��

3.5 Algorithm for Optimal Decision Tree Construction

In this subsection an algorithm is considered which for a given decision table T
constructs a decision tree for the table T with minimal weighted depth (optimal
decision tree). This algorithms enumerates all separable subtables of the table
T and, obviously, has in general case exponential complexity depending on the
number of columns in T . In Sect. 4.8 the class of all infinite information systems
will be described for each of which the number of separable subtables of deci-
sion tables over the considered information system is bounded from above by a
polynomial on the number of columns.

Let ρ = (F,B) be an enumerated signature, F = {fi : i ∈ IN}, |B| = k, and
ψ be a computable weight function of the signature ρ.

Recall the notion of separable subtable given in Sect. 3.1. Let T ∈ Tabρ.
A nonempty subtable T ′ of the table T is called separable if there exists a
word u ∈ Ωρ(T ) such that T ′ = Tu. Denote by Sep(T ) the set of all separable
subtables of the table T . It is clear that T ∈ Sep(T ).
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Consider an algorithm Wρ,ψ which for a given table T ∈ Tabρ constructs a
decision tree Wρ,ψ(T ) for the table T . Let T contain n columns which, for the
definiteness, are labelled by attributes f1, . . . , fn.

Description of the Algorithm Wρ,ψ

Step 0. Construct the set Sep(T ) and proceed to the first step.
Suppose t ≥ 0 steps have already been made.

Step (t+ 1). If the table T in the set Sep(T ) is labelled by a decision tree then
this decision tree is the result of the algorithm Wρ,ψ work. Otherwise choose in
the set Sep(T ) a table D satisfying the following conditions:

a) the table D is not labelled by a decision tree;
b) either D ∈ Dtabρ or all separable subtables of the table D are labelled by

decision trees.

If D ∈ Dtabρ then we mark the table D by the decision tree consisting of one
node which is labelled by the number νT (δ̄), where δ̄ ∈ Row(D). Otherwise
for i ∈ {1, . . . , n} denote by E(D, i) the set of numbers contained in the i-th
column of the table D. Denote K(D) = {i : i ∈ {1, . . . , n}, |E(D, i)| ≥ 2}. For
any i ∈ K(D) and δ ∈ E(D, i) denote by Γ (i, δ) the decision tree assigned to the
table D(fi, δ). Let i ∈ K(D) and E(D, i) = {δ1, . . . , δr}. Define a decision tree
Γi. The root of Γi is labelled by the attribute fi. The root is the initial node of
exactly r edges d1, . . . , dr which are labelled by numbers δ1, . . . , δr respectively.
The roots of the decision trees Γ (i, δ1), . . . , Γ (i, δr) are terminal nodes of the
edges d1, . . . , dr respectively. Mark the table D by one of the trees Γi, i ∈ K(D),
having minimal complexity relatively to the weight function ψ, and proceed to
the (t+ 2)-th step.

It is not difficult to prove the following statement.

Theorem 3.12. For any decision table T ∈ Tabρ the algorithm Wρ,ψ constructs
a decision tree Wρ,ψ(T ) for the table T such that ψ(Wρ,ψ(T )) = ψρ(T ), and
makes exactly |Sep(T )|+1 steps. The time of the algorithm Wρ,ψ work is bounded
from below by |Sep(T )|, and bounded from above by a polynomial on |Sep(T )|,
on the number of columns in the table T , and on the time for computation of
weights of attributes attached to columns of the table T .

3.6 On Complexity of Optimization Problems for Decision Trees

In this subsection two algorithmic problems connected with the computation
of the minimal complexity of decision tree for a table and with construction of
decision tree with minimal complexity are investigated. The solvability of these
problems is shown. For the depth of decision trees the NP-hardness of problems
under consideration is proved.

Moreover, in this subsection the question on accuracy of approximate poly-
nomial algorithms for minimization of decision tree depth is discussed.
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Optimization Problems. In this subsection we assume that an enumerated
signature ρ = (F,B) with F = {fi : i ∈ IN} and |B| = k is fixed. Let ψ be a
computable weight function of the signature ρ.

Define two algorithmic problems of optimization of decision trees for decision
tables.

The Problem Com(ρ, ψ): for a given table T ∈ Tabρ it is required to compute
the value ψρ(T ).

The Problem Des(ρ, ψ): for a given table T ∈ Tabρ it is required to construct a
decision tree Γ for the table T such that ψ(Γ ) = ψρ(T ).

Solvability of Problems Com(ρ, ψ) and Des(ρ, ψ)

Proposition 3.4. Let ψ be a computable weight function of the signature ρ.
Then the problems Com(ρ, ψ) and Des(ρ, ψ) are solvable.

Proof. In Sect. 3.2 a subset Treeρ(T ) of the set Treeρ was defined for an arbitrary
table T ∈ Tabρ. From Lemma 3.5 it follows that this set contains at least one
optimal decision tree for the table T . One can show that the set Treeρ(T ) is finite,
and there exists an algorithm for enumeration of all trees from Treeρ(T ) for an
arbitrary table T ∈ Tabρ. Using this algorithm it is not difficult to construct an
algorithm which solves the problems Com(ρ, ψ) and Des(ρ, ψ). ��

NP-Hardness of Problems Com(ρ, h) and Des(ρ, h). A pair G = (V,R),
where V is a nonempty finite set and R is a set of two-element subsets of the
set V , will be called an undirected graph without loops and multiple edges. The
elements of the set V are called vertices, and the elements of the set R are called
edges of the graph G. Let V = {v1, . . . , vn}. A set W ⊆ U will be called a vertex
cover of the graph G if the following conditions hold:

a) if W = ∅ then R = ∅;
b) if R 
= ∅, then for any edge {vi, vj} ∈ R at least one of the relations vi ∈ W

or vj ∈ W holds.

Denote by cv(G) the minimal cardinality of vertex cover of G.
Let r ∈ R and r = {vi, vj}. Denote by δ̄(r) the n-tuple from {0, 1}n in which

the i-th and j-th digits are equal to 1 while all the other digits are equal to 0.
Consider the matrix in which the set of rows coincides with the set {δ̄(r) :

r ∈ R} and transpose it. The so obtained matrix is called the incidence matrix
of the graph G.

Define the table T (G) ∈ Tabρ as follows. Denote by 0̃n the n-tuple from
{0, 1}n all the digits of which are equal to 0. Then the table T (G) contains n
columns which are labelled by attributes f1, . . . , fn, Row(T (G)) = {0̃n}∪{δ̄(r) :
r ∈ R}, νT (G)(0̃n) = 0 and νT (G)(δ̄(r)) = 1 for any r ∈ R.

Lemma 3.13. Let G be an undirected graph without loops and multiple edges.
Then cv(G) = hρ(T (G)).
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Proof. Let G have n vertices. One can show that cv(G) = Mρ,h(T (G), 0̃n).
Therefore Mρ,h(T (G)) ≥ cv(G). Using Theorem 3.1 we obtain hρ(T (G)) ≥
cv(G).

Let β be a word from Ωρ(T ) such that Alph(β) ⊆ {(f1, 0), . . . , (fn, 0)},
T (G)β ∈ Dtabρ and h(β) = Mρ,h(T (G), 0̃n). Describe a tree Γ from Treeρ.
Let β = λ. Then the tree Γ contains the only node which is labelled by the
number 0. Let β 
= λ and β = (fi(1), 0) . . . (fi(m), 0). Then Γ contains the com-
plete path ξ = w1, d1, . . . , wm, dm, wm+1 in which the node wm+1 is labelled by
the number 0 while for j = 1, . . . ,m the node wj is labelled by the attribute
fi(j), and the edge dj is labelled by 0. For j = 1, . . . ,m an edge labelled by 1
is issuing from the node wj . This edge enters a terminal node which is labelled
by 1. The tree Γ does not contain any other nodes or edges. It is clear that Γ
is a decision tree for the table T (G), and h(Γ ) = h(β). Since h(β) = cv(G), we
obtain hρ(T (G)) ≤ cv(G). Hence hρ(T (G)) = cv(G). ��
Proposition 3.5. Let ρ be an enumerated signature. Then problems Com(ρ, h)
and Des(ρ, h) are NP-hard.

Proof. Define the vertex cover problem as follows: for a given undirected graph
G without loops and multiple edges, represented by incidence matrix, and a
number m ∈ IN it is required to verify whether the inequality cv(G) ≤ m holds.
This problem is NP-complete [29].

Assume a polynomial algorithm exists for at least one of problems Com(ρ, h)
and Des(ρ, h). Then using Lemma 3.13 we conclude that there exists a polyno-
mial algorithm for the vertex cover problem. Hence the problems Com(ρ, h) and
Des(ρ, h) are NP-hard. ��

Note that in [29] NP-completeness is proved for certain problems slightly
different from Com(ρ, h) and Des(ρ, h).

On Accuracy of Approximate Polynomial Algorithms for Problem
Des(ρ, h). Let we have a problem which consists of the choice of a solution
with minimal cost among the set of admissible solutions. Such solution is called
optimal. Let r be a parameter of the problem which is a real number, and let
ϕ be a partial function of real variable with real values. We will say that an
algorithm solves the considered problem with the multiplicative accuracy ϕ(r) if
the following conditions hold:

a) if the value ϕ(r) is indefinite or ϕ(r) < 1 then the algorithm finds an optimal
solution;

b) if ϕ(r) ≥ 1 then the cost of the obtained solution is at most the cost of
optimal solution multiplied on ϕ(r).

First, we consider some known results on the accuracy of solving of the set cover
problem by approximate polynomial algorithms.

Let S be a set containing N > 0 elements, and F = {S1, . . . , Sm} be a family
of subsets of the set S such that S =

⋃m
i=1 Si. A subfamily {Si1 , . . . , Sit} of the

family F will be called an F-cover if S =
⋃t

j=1 Sij . The problem of searching
for an F -cover with minimal cardinality is called the set cover problem.
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In [28] it was proved that if NP 
⊆ DTIME(nO(log2 log2 n)) then for any ε,
0 < ε < 1, there is no polynomial algorithm which solves the set cover problem
with the multiplicative accuracy (1− ε) lnN .

Similar statement holds for the problem of minimization of decision tree
depth.

Proposition 3.6. If NP 
⊆ DTIME(nO(log2 log2 n)) then for any ε, 0 < ε < 1,
there is no polynomial algorithm which solves the problem Des(ρ, h) with the
multiplicative accuracy (1− ε) lnR(T ).

Proof. Assume the contrary: let NP 
⊆ DTIME(nO(log2 log2 n)), 0 < ε < 1, and
there exists a polynomial algorithm A1 which solves the problem Des(ρ, h) with
the multiplicative accuracy (1− ε) lnR(T ). Let us show that there exists a poly-
nomial algorithm A2 which solves the set cover problem with the multiplicative
accuracy (1− ε) lnN . Describe the algorithm A2 work.

Let S = {a1, . . . , aN}, F = {S1, . . . , Sm} and S =
⋃m

i=1 Si. If (1−ε) lnN < 1
then enumerating all subfamilies of the family F we find an F -cover with minimal
cardinality. Let (1 − ε) lnN ≥ 1. Then at polynomial time we can construct a
decision table T (F) ∈ Tabρ corresponding to the family F . Denote by δ̄0 the m-
tuple from {0, 1}m in which all digits are equal to 0. For j = 1, . . . , N we denote
by δ̄j the m-tuple (δj1, . . . , δjm) from {0, 1}m in which δji = 1 if and only if
aj ∈ Si, i = 1, . . . ,m. Then the table T (F) contains m columns which are
labelled by attributes f1, . . . , fm, Row(T (F)) = {δ̄0, δ̄1, . . . , δ̄N}, νT (F)(δ̄0) = 0
and νT (F)(δ̄j) = 1 for any j ∈ {1, . . . , N}. One can show that R(T (F)) = N and
hρ(T (F)) = c(F) where c(F) is the minimal cardinality of an F -cover.

Evidently, (1 − ε) lnR(T (F)) ≥ 1. Applying the algorithm A1 to the table
T (F) we obtain a decision tree Γ for the table T (F) such that

h(Γ ) ≤ hρ(T (F))(1 − ε) lnR(T (F)) = c(F)(1 − ε) lnN .

There is a complete path in the tree Γ in which every edge is labelled by the
number 0. Let fi1 , . . . , fit be attributes which are labels of nodes in this path.
One can show that the set {Si1 , . . . , Sit} is an F -cover. It is clear that

t ≤ h(Γ ) ≤ c(F)(1 − ε) lnN .

Thus, the algorithm A2 solves the set cover problem at polynomial time
with the multiplicative accuracy (1− ε) lnN under the assumptions that NP 
⊆
DTIME(nO(log2 log2 n)) and 0 < ε < 1 which, by the results from [28], is impos-
sible. ��

Algorithm Vρ,h has polynomial time complexity. Using Corollary 3.4 we con-
clude that for any table T ∈ Tabρ with hρ(T ) ≥ 3 the depth of the decision
tree for the table T constructed by the algorithm Vρ,h is at most the depth
of optimal decision tree for the table T multiplied on lnR(T ). Therefore if
NP 
⊆ DTIME(nO(log2 log2 n)) then the algorithm Vρ,h is close to best (with re-
spect to accuracy) approximate polynomial algorithms for the problem Des(ρ, h)
solving.
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It is not difficult to modify the algorithm Vρ,h such that we obtain a polyno-
mial algorithm V∗

ρ,h which solves the problem Des(ρ, h) with the multiplicative
accuracy lnR(T ).

For a given table T ∈ Tabρ the algorithm V∗
ρ,h enumerates at polynomial

time all trees Γ ∈ Treeρ such that h(Γ ) ≤ 2, At(Γ ) ⊆ At(T ), and terminal
nodes of Γ are labelled by numbers from the set {νT (δ̄) : δ̄ ∈ Row(T )} ∪ {0}.
Among these trees the algorithm V∗

ρ,h looks for decision trees for the table T .
If such trees exist the algorithm V∗

ρ,h finds among them a decision tree for the
table T with minimal depth. This tree is the result of the algorithm V∗

ρ,h work.
If among the considered trees there are no decision trees for the table T then
the algorithm V∗

ρ,h works later as the algorithm Vρ,h. In this case the result of
the algorithm V∗

ρ,h work coincides with the result of the algorithm Vρ,h work.
Denote by V∗

ρ,h(T ) the result of the algorithm V∗
ρ,h work.

It is clear that the algorithm V∗
ρ,h has polynomial time complexity. The fol-

lowing statement shows that V∗
ρ,h solves the problem Des(ρ, h) with the multi-

plicative accuracy lnR(T ).

Proposition 3.7. Let T ∈ Tabρ. Then

h(V∗
ρ,h(T )) ≤

{
hρ(T ), if R(T ) ≤ 2 ,

hρ(T ) lnR(T ), if R(T ) ≥ 3 .

Proof. One can show that if hρ(T ) ≤ 2 then h(V∗
ρ,h(T )) = hρ(T ).

Let R(T ) ≤ 2. From Theorem 3.10 it follows that hρ(T ) ≤ R(T ). Therefore
hρ(T ) ≤ 2 and h(V∗

ρ,h(T )) = hρ(T ).
LetR(T ) ≥ 3. If hρ(T ) ≤ 2 then h(V∗

ρ,h(T )) = hρ(T ), and hence h(V∗
ρ,h(T )) ≤

hρ(T ) lnR(T ). Let hρ(T ) ≥ 3. Then, obviously, V∗
ρ,h(T ) = Vρ,h(T ). Using Corol-

lary 3.4 obtain h(Vρ,h(T )) ≤ hρ(T ) lnR(T ). Hence h(V∗
ρ,h(T )) ≤ hρ(T ) lnR(T ).

��
3.7 Complexity of Computation of Boolean Functions

from Closed Classes

A decision table T may be interpreted as a way to define partial function νT :
Row(T )→ IN. In this case the attribute, which is the label of i-th column, is the
i-th variable of the function νT . Decision trees for the table T may be interpreted
as algorithms for the function νT computation.

The unimprovable upper bounds on minimal depth of decision trees for de-
cision tables corresponding to functions from arbitrary closed class of Boolean
functions are studied in this subsection. These bounds depend on the number
of variables of functions under consideration. The obtained results are of certain
independent interest. Simple proofs of these results illustrates methods consid-
ered in this section. Mainly, the techniques for lower bound proving are used.
The definitions, notation and results from appendix “Closed Classes of Boolean
Functions” are used in this section without special notice.

Definitions and Bounds. Let X = {xi : i ∈ IN} be the set of variables. Denote
by ρ1 the signature (X, {0, 1}). Let C1 be the set of all Boolean functions with
variables from X containing constants 0 and 1. Let n ≥ 1. Denote by C1(n)
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the set of all functions of n variables from C1. Let f(xi(1), . . . , xi(n)) ∈ C1(n).
Associate with the function f the table T (f) from Tabρ1 : the table T (f) contains
n columns which are labelled by variables xi(1), . . . , xi(n), Row(T (f)) = {0, 1}n,
and νT (f)(δ̄) = f(δ̄) for any δ̄ ∈ Row(T (f)). Define the function h : C1 → IN.
Let f ∈ C1. If f ≡ const then h(f) = 0. If f 
≡ const then h(f) = hρ1(T (f)).

Example 3.12. Let f = x1∨x2. The table T (f) is depicted in Fig. 6(a). A decision
tree for the table T (f) is depicted in Fig. 6(b). One can show that h(f) = 2.

x1 x2

0 0 0
0 1 1
1 0 1
1 1 1

��
	


�
�� �

��

��
	


�
�� �

��
��
	


��
	


��
	


x1

x2

0 1

0 1

0 1

1

(a) (b)

Fig. 6. Decision table T (x1 ∨ x2) and decision tree for this table.

Let V be a closed class of Boolean functions. For n ≥ 1 denote V (n) =
V ∩ C1(n). Define the function hV : IN \ {0} → IN as follows:

hV (n) = max{h(f) : f ∈ V (n)} .

The function hV is the unimprovable upper bound on minimal depth of deci-
sion trees for tables, which correspond to functions from the class V , depending
on number of variables of functions.

Theorem 3.13. Let V be a closed class of Boolean functions, and n ≥ 1. Then

(a) if V ∈ {O2, O3, O7} then hV (n) = 0;
(b) if V ∈ {O1, O4, O5, O6, O8, O9} then hV (n) = 1;

(c) if V ∈ {L4, L5} then hV (n) =
{

n, if n is odd,
n− 1, if n is even;

(d) if V ∈ {D1, D2, D3} then hV (n) =
{
n, if n ≥ 3,
1, if n ≤ 2;

(e) if the class V coincides with neither of above-mentioned classes then hV (n)=n.

Auxiliary Statements. Define the function EV : C1 → IN. Let f ∈ C1. If
f ≡ const then EV(f) = 0. If f 
≡ const then EV(f) is the number of essential
variables of the function f .

Lemma 3.14. Let n ≥ 1 and f ∈ C1(n). Then h(f) ≤ EV(f) ≤ n.

Proof. If f ≡ const then the statement of lemma, obviously, holds. Let f 
≡ const.
Obviously, EV(f) ≤ n. Show that h(f) ≤ EV(f). Let f = f(xi(1), . . . , xi(n)).
Show that for any n-tuples δ̄, σ̄ ∈ {0, 1}n such that f(σ̄) 
= f(δ̄) there exists a
variable xi(t) with following properties:
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a) xi(t) is an essential variable of the function f ;
b) n-tuples σ̄ and δ̄ differ in the t-th digit.

Let D be the set of numbers of digits in which the n-tuples δ̄ and σ̄ differ.
One can easily show that for certain m ≥ 2 there exists a sequence δ̄1, . . . , δ̄m of
n-tuples from {0, 1}n in which δ̄1 = δ̄, δ̄m = σ̄, for j = 1, . . . ,m − 1 the tuples
δ̄j and δ̄j+1 differ in exactly one digit, and the number of this digit is contained
in the set D. Since f(δ̄1) 
= f(δ̄m), there exists j ∈ {1, . . . ,m − 1} such that
f(δ̄j) 
= f(δ̄j+1). Let t be the number of the digit in which the tuples δ̄j and
δ̄j+1 differ. Obviously, t ∈ D and xi(t) is an essential variable of the function
f . Thus, the statement under consideration is proved. Using this statement it is
not difficult to show that the set of essential variables of the function f is a test
for the table T (f). Therefore J(T (f)) ≤ EV(f). From Lemma 3.1 it follows that
hρ1(T (f)) ≤ J(T (f)). Therefore hρ1(T (f)) ≤ EV(f). Hence h(f) ≤ EV(f). ��
Corollary 3.5. Let V be a closed class of Boolean functions and n ≥ 1. Then
the value hV (n) is definite and the inequality hV (n) ≤ n holds.

Proof. Obviously, V (n) 
= ∅. Using Lemma 3.14 obtain that the value hV (n) is
definite, and the considered inequality holds. ��

Let n ≥ 1 and δ̄ ∈ {0, 1}n. Denote by O(δ̄) the set of all n-tuples from
{0, 1}n which differ from the n-tuple δ̄ in exactly one digit. Let f ∈ C1(n).
Denote o(f, δ̄) =

∣∣{σ̄ : σ̄ ∈ O(δ̄), f(δ̄) 
= f(σ̄)}∣∣.
Lemma 3.15. Let n ≥ 1, f ∈ C1(n) and δ̄ ∈ {0, 1}n. Then h(f) ≥ o(f, δ̄).

Proof. If f ≡ const then the considered inequality, obviously, holds. Let f 
≡
const, f = f(xi(1), . . . , xi(n)) and δ̄ = (δ1, . . . , δn). Show that Mρ1,h(T (f), δ̄) ≥
o(f, δ̄). Let Mρ1,h(T (f), δ̄) = m. Then there exists a word α ∈ Ωρ1(T (f)) of the
length m such that Alph(α) ⊆ {(xi(1), δ1), . . . , (xi(n), δn)} and T (f)α ∈ Dtabρ1 .
Obviously,

∣∣Row(T (f)α) ∩O(δ̄)
∣∣ ≥ n−m. One can show that δ̄ ∈ Row(T (f)α).

Since T (f)α ∈ Dtabρ1 , we obtain n − m ≤ n − o(f, δ̄). Hence m ≥ o(f, δ̄).
Therefore Mρ1,h(T (f), δ̄) ≥ o(f, δ̄) and Mρ1,h(T (f)) ≥ o(f, δ̄). Using Theorem
3.1 we obtain hρ1(T (f)) ≥ o(f, δ̄). Hence h(f) ≥ o(f, δ̄). ��

Let n ≥ 1 and t ∈ {0, 1}. Denote by t̃n the n-tuple from {0, 1}n all the digits
of which are equal to t.

Define certain Boolean functions. For n ≥ 1 denote kn = kn(x1, . . . , xn) =
x1 ∧ . . . ∧ xn, dn = dn(x1, . . . , xn) = x1 ∨ . . . ∨ xn, ln = ln(x1, . . . , xn) = x1 +
. . . + xn(mod 2), ¬ln = ¬ln(x1, . . . , xn) = x1 + . . . + xn + 1(mod 2) and πn =
πn(x1, . . . , xn) = x1. For n ≥ 2 denote by mn = mn(x1, . . . , xn) the function
obtained from the function ln−1 by insertion the unessential variable xn. For
n ≥ 3 denote rn = rn(x1, . . . , xn) = (x1 ∧ (x2 ∨ . . . ∨ xn)) ∨ (x2 ∧ . . . ∧ xn).

Lemma 3.16. For any n ≥ 1 the inequalities h(kn) ≥ n, h(dn) ≥ n, h(ln) ≥ n,
h(¬ln) ≥ n and h(πn) ≥ 1 hold. For any n ≥ 2 the inequality h(mn) ≥ n − 1
holds.
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Proof. Let n ≥ 1. Then o(kn, 1̃n) = n, o(dn, 0̃n) = n, o(ln, 0̃n) = n, o(¬ln, 0̃n) =
n, o(πn, 1̃n) = 1. Using Lemma 3.15 we obtain h(kn) ≥ n, h(dn) ≥ n, h(ln) ≥ n,
h(¬ln) ≥ n and h(πn) ≥ 1.

Let n ≥ 2. Then o(mn, 0̃n) = n − 1. Using Lemma 3.15 we obtain h(mn) ≥
n− 1. ��
Lemma 3.17. Let n ≥ 3. Then h(rn) ≥ n.

Proof. Define an ({x1, . . . , xn}, ρ1)-tree Hn. Every complete path in this tree
contains exactly n + 1 nodes. Let ξ = w1, d1, . . . , wn, dn, wn+1 be an arbitrary
complete path in the tree Hn, i ∈ {1, . . . , n} and let the edge di be labelled by
the pair (xj , σ). If j = 1 then σ = 0. If j 
= 1 and i 
= n − 1 then σ = 1. Let
j 
= 1 and i = n− 1. If no pair (x1, 0) is present among the pairs assigned to the
edges in the path from w1 to wn−1 then σ = 0. Otherwise σ = 1.

We will show that the tree Hn is a proof-tree for the bound hρ1(T (rn)) ≥ n.
Define for an arbitrary node w of the tree Hn the word ζ(w) ∈ Ωρ1(T (rn))
according to the rule introduced in Sect. 3.2. Let w be an arbitrary terminal
node in the tree Hn. One can see that h(ζ(w)) = n and Row(T (rn)ζ(w)) 
= ∅.
Let us show that T (rn)ζ(w) 
∈ Dtabρ1 for any nonterminal node w of the tree Hn.
To do this it is sufficient to consider all nonterminal nodes possessing following
property: each edge issuing from the node enters some terminal node of the tree
Hn. Let w be one of such nodes. It is not difficult to show that there exists
i ∈ {2, . . . , n} for which

Alph(ζ(w)) = {(x1, 0)} ∪ {(xj , 1) : j ∈ {2, . . . , n} \ {i}} (27)

or
Alph(ζ(w)) = {(xi, 0)} ∪ {(xj , 1) : j ∈ {2, . . . , n} \ {i}} . (28)

Denote by γ̄ the n-tuple from {0, 1}n in which the first digit equals 0 while all
other digits equal 1. Denote by δ̄ the n-tuple from {0, 1}n in which the first and
the i-th digits equal 0 while all other digit equal 1. Denote by σ̄ the n-tuple from
{0, 1}n in which the i-th digit equals 0 while all other digits equal 1. Let the
equality (27) hold. Then the n-tuples γ̄ and δ̄ belong to the set Row(T (rn)ζ(w)),
νT (rn)(γ̄) = 1 and νT (rn)(δ̄) = 0. Let the equality (28) hold. Then the n-tuples
δ̄ and σ̄ belong to the set Row(T (rn)ζ(w)), νT (rn)(δ̄) = 0 and νT (rn)(σ̄) = 1.
Therefore T (rn)ζ(w) 
∈ Dtabρ1 . Hence the tree Hn is a proof-tree for the bound
hρ1(T (rn)) ≥ n. Using Theorem 3.4 we obtain hρ1(T (rn)) ≥ n. Hence h(rn) ≥ n.

��

Proof of Theorem 3.13. We obtain here certain bounds for individual closed
classes.

Lemma 3.18. Let V ∈ {O2, O3, O7} and n ≥ 1. Then hV (n) = 0.

Proof. Obviously, f ≡ const for any function f ∈ V (n). Hence hV (n) = 0. ��
Lemma 3.19. Let V ∈ {O1, O4, O5, O6, O8, O9} and n ≥ 1. Then hV (n) = 1.
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Proof. One can easily see that πn ∈ V (n). Using Lemma 3.16 we obtain hV (n) ≥
1. Obviously, EV(f) ≤ 1 for any function f ∈ V (n). From Lemma 3.14 it follows
that hV (n) ≤ 1. ��
Lemma 3.20. Let V ∈ {L4, L5} and n ≥ 1.Then

hV (n) =
{

n, if n is odd ,
n− 1, if n is even .

Proof. Let n be odd. Then it is easily to see that ln ∈ V (n). Using Lemma 3.16
and Corollary 3.5 we obtain hV (n) = n.

Let n be even. One can see that mn ∈ V (n). Using Lemma 3.16 obtain
hV (n) ≥ n− 1. It is easily to show that EV(f) ≤ n− 1 for any function f from
V (n). From Lemma 3.14 it follows that hV (n) ≤ n− 1. ��
Lemma 3.21. Let V ∈ {D1, D2, D3} and n ≥ 1. Then

hV (n) =
{
n, if n ≥ 3 ,
1, if n ≤ 2 .

Proof. Let n ≤ 2. Obviously, πn ∈ V (n). Using Lemma 3.16 we obtain hV (n) ≥
1. It is easily to show that EV(f) ≤ 1 for any function f ∈ V (n). From Lemma
3.14 it follows that hV (n) ≤ 1.

Let n ≥ 3. One can show that rn ∈ V (n). Using Lemma 3.17 we obtain
h(rn) ≥ n. Hence hV (n) ≥ n. From Corollary 3.5 it follows that hV (n) = n. ��
Lemma 3.22. Let V ∈ {S1, L2, L3, P1} and n ≥ 1. Then hV (n) = n.

Proof. It is easily to see that at least one of the functions dn, ln, ¬ln, kn belongs
to the set V (n). Using Lemma 3.16 we obtain hV (n) ≥ n. From Corollary 3.5 it
follows that hV (n) = n. ��
Proof (of Theorem 3.13). Part (a) of the statement of the theorem follows from
Lemma 3.18, part (b) follows from Lemma 3.19, part (c) follows from Lemma
3.20, and part (d) follows from Lemma 3.21. Let V coincide with neither of
classes listed in items (a)–(d). Then it is easily to show that at least one of the
following relations holds: S1 ⊆ V , L2 ⊆ V , L3 ⊆ V , P1 ⊆ V . Using Lemma 3.22
and Corollary 3.5 we obtain that hV (n) = n. ��

4 Local Approach to Investigation of Decision Trees

Local approach to investigation of decision trees considered in this section is
based on the assumption that only attributes contained in a problem description
are used by decision trees solving the problem. Bounds on complexity of decision
trees are obtained and algorithms constructing decision trees are studied.

An information system U = (A,B, F ) consists of a set A (the universe) and
a set of attributes F which are defined on A and have values from finite set B.
A weight function ψ assigns a weight (a natural number) to each attribute. This
weight characterizes the complexity of attribute value computation.
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The notion of a problem over the information system defines as follows. We
take finite number of attributes f1, . . . , fn from F . These attributes create a
partition of the set A into classes (for each class values of the attributes are
constant on elements from the class). These classes are numbered such that
different classes can have the same number. The number of a class is the decision
corresponding to elements of the class. For a given element a from A it is required
to recognize the number of a class which contains a. Problems from various areas
of applications can be represented in such form. The weight of a problem is the
total weight of attributes from the problem description.

As algorithms for problem solving we consider decision trees which use at-
tributes from the set {f1, . . . , fn}. As time complexity measure we consider
weighted depth of decision trees. It is clear that for each problem there ex-
ists trivial decision tree which solves this problem and which weighted depth is
equal to the problem weight.

A decision table corresponds to the considered problem. The table has n
columns labelling by attributes f1, . . . , fn. Rows of this table are n-tuples of
attribute f1, . . . , fn values corresponding to classes of partition. Each row is
labelled by the number of corresponding class.

The section consists of eight subsections. First subsection contains definitions
of basic notions. In the second subsection two statements are proved which allow
use methods, created for decision tables, for study of problems. In the third
subsection for each pair (information system, weight function) we investigate the
behavior of local Shannon function which characterizes the growth in the worst
case of minimal weighted depth of decision trees with the growth of problem
weight. The criterion of solvability for problems of decision tree optimization
is considered in fourth subsection. In the last four subsections the following
way for construction of decision trees is considered: we construct the decision
table corresponding to a problem, and then construct a decision tree for this
table. In fifth subsection for an arbitrary information system we investigate the
growth of the number of rows in decision tables over this system with the grows
of the number of columns. In sixth subsection we study an algorithm which
for a given problem constructs corresponding decision table. In sevenths and
eights subsections we study approximate and exact algorithms for decision tree
optimization.

4.1 Basic Notions

The notions of information system, problem, decision table corresponding to a
problem, decision tree solving a problem, and weight function are considered in
this subsection. We repeat here some definitions from the previous section.

Information Systems. Let A be a nonempty set, B be a finite nonempty set
of integers with at least two elements, and F be a nonempty set of functions
from A to B. Functions from F will be called attributes and the triple U =
(A,B, F ) will be called an information system. In this section we will assume
that different attributes from F (attributes with different names) are different
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as functions. If F is an infinite set then U will be called an infinite information
system. Otherwise U will be called a finite information system. The signature
ρ = (F,B) corresponds to the information system U . Sometimes we will say that
U = (A,B, F ) is an information system of the signature ρ = (F,B).

An equation system over U is an arbitrary system of the kind

{f1(x) = δ1, . . . , fm(x) = δm}
where f1, . . . , fm ∈ F and δ1, . . . , δm ∈ B. It is possible that the considered
system does not have equations. Such system will be called empty. The set
of solutions of the empty system coincides with the set A. There is one-to-
one correspondence between equation systems over U and words from the set
Ωρ = {(f, δ) : f ∈ F, δ ∈ B}∗: the word (f1, δ1) . . . (fm, δm) corresponds to
the considered equation system, the empty word λ corresponds to the empty
equation system. For any α ∈ Ωρ we denote by SolU (α) the set of solutions on
A of the equation system corresponding to the word α.

An information system U = (A,B, F ) will be called enumerated if F = {fi :
i ∈ IN}.

Problems and Corresponding Decision Tables. We will consider problems
over the information system U . A problem over U is an arbitrary (n + 1)-tuple
z = (ν, f1, . . . , fn) where ν : Bn → ZZ, and f1, . . . , fn ∈ F . The problem z may
be interpreted as a problem of searching for the value z(a) = ν(f1(a), . . . , fn(a))
for an arbitrary a ∈ A. Denote At(z) = {f1, . . . , fn}. The tuple (ν, f1, . . . , fn) is
called the description of the problem z. The number n is called the dimension
of the problem z and is denoted by dim z. Different problems of pattern recogni-
tion, discrete optimization, fault diagnosis and computational geometry can be
represented in such form. We denote by ProblU the set of problems over U .

We denote by TU (z) the decision table of the signature ρ = (F,B) satisfying
the following conditions:

a) the table TU (z) contains n columns labelling by attributes f1, . . . , fn;
b) an n-tuple (δ1, . . . , δn) ∈ Bn is a row of the table TU (z) if and only if the sys-

tem of equations {f1(x) = δ1, . . . , fn(x) = δn} is compatible (has a solution)
on the set A;

c) each row (δ1, . . . , δn) of TU (z) is labelled by the decision ν(δ1, . . . , δn).

Denote TabU = {TU(z) : z ∈ ProblU}. Later, if an information system U is
fixed, we will write sometimes T (z) instead of TU (z).

Decision Trees. As algorithms for problem solving we will consider decision
trees. A decision tree over U is a labelled finite rooted directed tree in which each
terminal node is labelled by a number from ZZ; each node which is not terminal
(such nodes are called working) is labelled by an attribute from F ; each edge is
labelled by a number from B, and edges starting in a working node are labelled
by pairwise different numbers. Denote by TreeU the set of decision trees over U .
It is clear that any decision tree over U is a decision tree of the signature ρ.
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Let Γ be a decision tree over U . Denote by At(Γ ) the set of attributes assigned
to working nodes of Γ . A complete path ξ in Γ is an arbitrary path from the
root to a terminal node. Let us define a word π(ξ) from the set Ωρ(Γ ) = {(f, δ) :
f ∈ At(Γ ), δ ∈ B}∗ associated with ξ. If there are no working nodes in ξ then
π(ξ) = λ. Note that in this case the set SolU (π(ξ)) coincides with the set A. Let
ξ = v1, d1, . . . , vm, dm, vm+1 wherem > 0, v1 is the root, vm+1 is a terminal node,
and vi is the initial and vi+1 is the terminal node of the edge di for i = 1, . . . ,m.
Let the node vi be labelled by the attribute fi, and the edge di be labelled by
the number δi from B, i = 1, . . . ,m. Then π(ξ) = (f1, δ1) . . . (fm, δm). Note that
in this case the set SolU (π(ξ)) coincides with the set of solutions on A of the
equation system {f1(a) = δ1, . . . , fm(a) = δm}. Remind that Path(Γ ) is the set
of all complete paths in Γ .

We will say that a decision tree Γ over U solves a problem z over U if for
each a ∈ A there exists a complete path ξ in Γ such that a ∈ SolU (π(ξ)), and
the terminal node of the path ξ is labelled by the number z(a).

Complexity Measures. A function ψ : F → IN \ {0} will be called a weight
function for U . It is clear that any weight function for U is a weight function
of the signature ρ. The value ψ(f) sometimes will be called the weight of the
attribute f ∈ F . We denote by h the weight function for which h(f) = 1 for any
f ∈ F .

Extend a weight function ψ for U on the sets F ∗, Ωρ, TreeU and ProblU .
Let α ∈ F ∗. If α = λ then ψ(α) = 0. Let α 
= λ and α = f1 . . . fm. Then

ψ(α) =
∑m

i=1 ψ(fi).
Let β ∈ Ωρ. If β = λ then ψ(β) = 0. Let β 
= λ and β = (f1, δ1) . . . (fm, δm).

Then ψ(β) =
∑m

i=1 ψ(fi).
For Γ ∈ TreeU let ψ(Γ ) = max{ψ(π(ξ)) : ξ ∈ Path(Γ )}. The value ψ(Γ ) will

be called the weighted depth of the decision tree Γ . The value h(Γ ) will be called
the depth of the decision tree Γ .

Let z = (ν, f1, . . . , fn) ∈ P (U). Then ψ(z) =
∑n

i=1 ψ(fi). The value ψ(z) will
be called the weight of the problem z. Note that h(z) = dim z = n.

Put into correspondence to the weight function ψ the function ψl
U : ProblU →

IN. Let z ∈ ProblU . Then ψl
U (z) = min{ψ(Γ ) : Γ ∈ Treel

U (z)} where Treel
U (z)

is the set of all decision trees over U which solves the problem z and for which
At(Γ ) ⊆ At(z). In other words, ψl

U (z) is the minimal weighted depth of a decision
tree over U which solves z and uses only attributes from the description of z.
Such decision trees will be called locally optimal for the problem z.

Examples of Information Systems. We define here some information sys-
tems which will be used in examples in this and following sections.

Let m, t be natural numbers. We denote by Pol(m) be the set of all poly-
nomials which have integer coefficients and depend on variables x1, . . . , xm. We
denote by Pol(m, t) the set of all polynomials from Pol(m) such that the degree
of each polynomial is at most t.

We define information systems U(IR,m), U(IR,m, t) and U(ZZ,m, t) in the
following way: U(IR,m) = (IRm, E, F (m)), U(IR,m, t) = (IRm, E, F (m, t)) and
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U(ZZ,m, t) = (ZZm, E, F (m, t)) where E = {−1, 0,+1}, F (m) = {sign(p) : p ∈
Pol(m)} and F (m, t) = {sign(p) : p ∈ Pol(m, t)}.

In the considered information systems we will not distinguish attributes
which coincide as functions.

4.2 Use of Decision Tables

This subsection contains two statements which allow to use decision tables for
analysis of decision trees solving problems.

Theorem 4.1. Let U = (A,B, F ) be an information system, z be a problem
over U , Γ be a decision tree over U , and At(Γ ) ⊆ At(z). Then the decision tree
Γ solves the problem z if and only if Γ is a decision tree for the table TU (z).

Proof. Let z = (ν, f1, . . . , fn). For an arbitrary a ∈ A denote δ̄(a) = (f1(a), . . . ,
fn(a)). Denote T = TU (z). Then, obviously, Row(T ) = {δ̄(a) : a ∈ A} and
νT (δ̄(a)) = z(a) for any a ∈ A. One can show that for any a ∈ A and for any
ξ ∈ Path(Γ ) we have a ∈ SolU (π(ξ)) if and only if δ̄(a) ∈ Row(Tπ(ξ)).

Let Γ be a decision tree for the table T , and let a ∈ A. Then δ̄(a) ∈ Row(T )
and there exists a complete path ξ ∈ Path(Γ ) such that δ̄(a) ∈ Row(Tπ(ξ)) and
the terminal node of the path ξ is labelled by the number νT (δ̄(a)). Obviously,
a ∈ SolU (π(ξ)) and νT (δ̄(a)) = z(a). Therefore Γ solves the problem z.

Assume that the decision tree Γ solves the problem z. Let δ̄ ∈ Row(T ). Then
there exists a ∈ A such that δ̄ = δ̄(a). There exists also a complete path ξ ∈
Path(Γ ) such that a ∈ SolU (π(ξ)), and the terminal node of ξ is labelled by the
number z(a). Obviously, δ̄ = δ̄(a) ∈ Row(Tπ(ξ)) and z(a) = νT (δ̄(a)) = νT (δ̄).
Besides, At(Γ ) ⊆ At(z). Therefore Γ is a decision tree for the table T . ��
Corollary 4.1. Let U = (A,B, F ) be an information system, ρ = (F,B), and ψ
be a weight function for U . Then ψl

U (z) = ψρ(TU (z)) for any problem z over U .

The statement of Theorem 4.1 allows easy generalization for the case when
the set At(Γ ) is not necessarily a subset of At(z).

Let Γ ∈ TreeU and z = (ν, f1, . . . , fn) ∈ ProblU . Define the problem z ◦ Γ ∈
ProblU . Let m ≥ n and let f1, . . . , fm be pairwise distinct attributes from F
such that {f1, . . . , fm} = At(z)

⋃
At(Γ ). Then z ◦ Γ = (γ, f1, . . . , fm) where

γ : Bm → ZZ and for any m-tuple δ̄ = (δ1, . . . , δm) ∈ Bm the equality γ(δ̄) =
ν(δ1, . . . , δn) holds.

Theorem 4.2. Let U = (A,B, F ) be an information system, z be a problem
over U and Γ be a decision tree over U . Then the decision tree Γ solves the
problem z if and only if Γ is a decision tree for the table TU (z ◦ Γ ).

Proof. Denote y = z ◦ Γ . Obviously, z(a) = y(a) for any a ∈ A. Hence the
decision tree Γ solves the problem z if and only if Γ solves the problem y. From
Theorem 4.1 it follows that the decision tree Γ solves the problem y if and only
if Γ is a decision tree for the table TU (z ◦ Γ ). ��
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4.3 Local Shannon Functions

Notion of Local Shannon Function. Let U = (A,B, F ) be an information
system and ψ be a weight function for U . Remind that for a problem z =
(ν, f1, . . . , fn) over U we denote by ψl

U (z) the minimal weighted depth of a
decision tree over U which solves the problem z and uses only attributes from the
set {f1, . . . , fn}, and we denote by ψ(z) the total weight of attributes f1, . . . , fn

from the problem z description. We will consider the relationships between the
parameters ψl

U (z) and ψ(z). One can interpret the value ψ(z) for the problem
z = (ν, f1, . . . , fn) as the weighted depth of the decision tree which solves the
problem z in trivial way by computing sequentially the values of the attributes
f1, . . . , fn. So we will consider relationships between weighted depth of locally
optimal and trivial decision trees. To this end we define the function H l

U,ψ :
IN \ {0} → IN in the following way:

H l
U,ψ(n) = max{ψl

U (z) : z ∈ ProblU , ψ(z) ≤ n}
for any n ∈ IN \ {0}, where ProblU is the set of problems over U . The value
H l

U,ψ(n) is the unimprovable upper bound on the value ψl
U (z) for problems z ∈

ProblU such that ψ(z) ≤ n. The functionH l
U,ψ(n) will be called the local Shannon

function for the information system U and the weight function ψ. Denote by
Dom(H l

U,ψ) the domain of the function H l
U,ψ. It is clear that Dom(H l

U,ψ) = {n :
n ∈ IN, n ≥ m0} where m0 = min{ψ(f) : f ∈ F}.
Possible Types of Local Shannon Functions. We will show that for arbi-
trary information system U and weight function ψ for U either H l

U,ψ(n) = O(1),
or H l

U,ψ(n) = Θ(log2 n), or H l
U,ψ(n) = n for infinitely many n ∈ IN \ {0}.

The first type of behavior (H l
U,ψ(n) = O(1)) realizes only for finite informa-

tion systems.
The second type of behavior (H l

U,ψ(n) = Θ(log2 n)) is most interesting for us
since there exist two natural numbers c1 and c2 such that for any problem z over
U with sufficiently large value of ψ(z) the inequality ψl

U (z) ≤ c1 log2 ψ(z) + c2
holds.

The third type of behavior (H l
U,ψ(n) = n for infinitely many n ∈ IN \ {0}) is

bad for us: for infinitely many natural n there exists a problem z over U such
that ψl

U (z) = ψ(z) = n.
Thus, we must have possibility to discern the types of behavior. Now we

consider the criterions of the local Shannon function H l
U,ψ behavior.

We will say that the information system U = (A,B, F ) satisfies the condition
of reduction relatively ψ if there exists a number m ∈ IN \ {0} such that for each
compatible on A system of equations

{f1(x) = δ1, . . . , fr(x) = δr} ,

where r ∈ IN \ {0}, f1, . . . , fr ∈ F and δ1, . . . , δr ∈ B, there exists a subsystem

{fi1(x) = δi1 , . . . , fit(x) = δit}
of this system which has the same set of solutions and for which

∑t
j=1 ψ(fij )≤m.
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In the following theorem the criterions of the local Shannon function behavior
are considered.

Theorem 4.3. Let U be an information system and ψ be a weight function for
U . Then the following statements hold:

a) if U is a finite information system then H l
U,ψ(n) = O(1);

b) if U is an infinite information system which satisfies the condition of reduc-
tion relatively ψ then H l

U,ψ(n) = Θ(log2 n);
c) if U is an infinite information system which does not satisfy the condition of

reduction relatively ψ then H l
U,ψ(n) = n for infinitely many natural n.

d) if U is an infinite information system which does not satisfy the condition of
reduction relatively ψ and ψ = h then H l

U,ψ(n) = n for any natural n.

Examples. Let m, t be natural numbers. The infinite information systems
U(IR,m) = (IRm, E, F (m)) and U(IR,m, t) = (IRm, E, F (m, t)) were defined
in Sect. 4.1. Denote x̄ = (x1, . . . , xm).

Consider an information system U(IR, 1, 1). One can show that for any com-
patible system of equations over U(IR, 1, 1) there exists an equivalent subsystem
with at most two equations. Therefore U(IR, 1, 1) satisfies the condition of re-
duction relatively h. Using Theorem 4.3 we obtain H l

U(IR,1,1),h(n) = Θ(log2 n).
Consider an information system U(IR,m, t) such that m ≥ 2 or t ≥ 2. Let us

show that U(IR,m, t) does not satisfy the condition of reduction relatively h.
Let m ≥ 2 and n be an arbitrary natural number. It is clear that there

exists integers a1, b1, c1, . . . , an, bn, cn such that the set of solutions on IR2 of the
inequality system

{a1x1 + b1x2 + c1 ≤ 0, . . . , anx1 + bnx2 + c1 ≤ 0}
is a polygon with n sides. For i = 1, . . . , n denote fi(x̄) = sign(aix1 + bix2 + ci).
It is clear that fi(x̄) ∈ F (m, t). One can show that on the set IR2 the system of
equations

{f1(x̄) = −1, . . . , fn(x̄) = −1}
is not equivalent to any its proper subsystem. Taking into account that n is
an arbitrary natural number we conclude that U(IR,m, t) does not satisfy the
condition of reduction relatively h.

Let t ≥ 2 and n be an arbitrary natural number. Let a1 < b1 < a2 < b2 <
. . . < an < bn be integers. For i = 1, . . . , n denote gi(x̄) = sign((x1−ai)(x1−bi)).
It is clear that gi(x̄) ∈ F (m, t). One can show that on the set IR2 the system of
equations

{g1(x̄) = +1, . . . , gn(x̄) = +1}
is not equivalent to any its proper subsystem. Taking into account that n is
an arbitrary natural number we conclude that U(IR,m, t) does not satisfy the
condition of reduction relatively h.

Using Theorem 4.3 we obtain H l
U(IR,m,t),h(n) = n for any natural n.

One can show that H l
U(IR,m,t),h(n) ≤ H l

U(IR,m),h(n) ≤ n for any natural n.
Therefore H l

U(IR,m),h(n) = n for any natural n.
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Local Shannon Functions for Finite Information Systems. Theorem 4.3
gives us some information about the behavior of local Shannon functions for
infinite information systems. But for a finite information system U we have
only the relation H l

U,ψ(n) = O(1). However finite information systems are very
important for different applications.

Now we consider the behavior of the local Shannon function for an arbitrary
finite information system U = (A,B, F ) such that f 
≡ const for any f ∈ F , and
for the depth h.

A set {f1, . . . , fn} ⊆ F will be called dependent if n ≥ 2 and there exist
i ∈ {1, . . . , n} and μ : Bn−1 → B such that

fi(a) = μ(f1(a), . . . , fi−1(a), fi+1(a), . . . , fn(a))

for each a ∈ A. If the set {f1, . . . , fn} is not dependent then it will be called
independent. We denote by in(U) the maximal number of attributes in an inde-
pendent subset of the set F .

A systems of equations S = {f1(x) = δ1, . . . , fn(x) = δn} over U will be
called cancellable if n ≥ 2 and there exists a number i ∈ {1, . . . , n} such that
the system

{f1(x) = δ1, . . . , fi−1(x) = δi−1, fi+1(x) = δi+1, . . . , fn(x) = δn}

has the same set of solutions just as the system S. If the system S is not can-
cellable then it will be called uncancellable. We denote by un(U) the maximal
number of equations in an uncancellable compatible system over U .

One can show that
1 ≤ un(U) ≤ in(U) .

The values un(U) and in(U) will be called the first and the second local critical
points of the information system U = (A,B, F ). Now we describe the behavior
of the local Shannon function H l

U,h in terms of local critical points of U and the
cardinality of the set B.

Theorem 4.4. Let U = (A,B, F ) be a finite information system such that f 
≡
const for any f ∈ F , and n ∈ IN \ {0}. Then the following statements hold:

a) if n ≤ un(U) then H l
U,h(n) = n;

b) if un(U) ≤ n ≤ in(U) then

max{un(U), logk(n + 1)} ≤ H l
U,h(n) ≤ min{n, 2un(U)2 log2(kn)}

where k = |B|;
c) if n ≥ in(U) then H l

U,h(n) = H l
U,h(in(U)).

Of course, the problem of computing the values un(U) and in(U) for a given
finite information system U is very complicated problem. But obtained results
allow us to constrict essentially the class of possible types of local Shannon
functions for finite information systems.
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Example 4.1. Denote by A the set of all points in the plane. Consider an ar-
bitrary straight line l, which divides the plane into positive and negative open
half-planes, and the line l itself. Assign a function f : A → {0, 1} to the line l.
The function f takes the value 1 if a point is situated on the positive half-plane,
and f takes the value 0 if a point is situated on the negative half-plane or on
the line l. Denote by F the set of functions which correspond to certain r mutu-
ally disjoint finite classes of parallel straight lines. Consider a finite information
system U = (A, {0, 1}, F ). One can show that in(U) = |F | and un(U) ≤ 2r.

Auxiliary Statements. Let U = (A,B, F ) be an information system, and ψ
be a weight function for U . Denote ρ = (F,B). Let |B| = k.

Let us define the function Qψ : Tabρ → IN. Let T ∈ Tabρ. If T is an
empty table then Qψ(T ) = 0. Let T be a nonempty table and δ̄ ∈ Row(T ).
Then Qψ(T, δ̄) = min{ψ(α) : α ∈ Ωρ(T ),Row(Tα) = {δ̄}} and Qψ(T ) =
max{Qψ(T, δ̄) : δ̄ ∈ Row(T )}. Note thatQψ(T, δ̄) is the minimal total weight of a
set of columns on which the row δ̄ differs from all other rows. Define the function
mψ : Tabρ → IN as follows: mψ(T ) = max{ψ(f) : f ∈ At(T )} for any T ∈ Tabρ.
In other words, mψ(T ) is the maximal weight of a column in the table T .

One can show that the information system U is finite if and only if there
exists a natural r such that N(T ) ≤ r for any table T ∈ TabU .

One can show also that U satisfies the condition of reduction relatively ψ if
and only if there exists natural m such that the inequality Qψ(T ) ≤ m holds for
any table T ∈ TabU .

Later we will denote by dim T the number of columns in the table T .

Lemma 4.1. Let z ∈ ProblU . Then the value ψl
U (z) is definite and the inequal-

ity ψl
U (z) ≤ ψ(z) holds.

Proof. Let z = (ν, f1, . . . , fn). Consider a decision tree Γ from TreeU possessing
following properties: from every working node of Γ exactly k edges are issuing
and every complete path in the tree Γ contains exactly n working nodes. Let
ξ = v1, d1, . . . , vn, dn, vn+1 be an arbitrary complete path in the tree Γ . Then
for j = 1, . . . , n the node vj is labelled by the attribute fj and, if for j = 1, . . . , n
the edge dj is labelled by the number δj , then the node vn+1 is labelled by the
number ν(δ1, . . . , δn). One can show that the decision tree Γ solves the problem
z, At(Γ ) ⊆ At(z) and ψ(Γ ) = ψ(f1 . . . fn). Therefore the value ψl

U (z) is definite
and the inequality ψl

U (z) ≤ ψ(z) holds. ��
Define the function Q̂U,ψ : TabU → IN. Let T ∈ TabU . Then

Q̂U,ψ(T ) = max{Qψ(T ′) : T ′ ∈ TabU ,At(T ′) ⊆ At(T )} .

Lemma 4.2. Let T ∈ TabU . Then Mρ,ψ(T ) ≤ 2Q̂U,ψ(T ).

Proof. Let T contain n columns labelling by attributes f1, . . . , fn. Let δ̄ =
(δ1, . . . , δn) ∈ Bn. Let us show that Mρ,ψ(T, δ̄) ≤ 2Q̂U,ψ(T ).

For an arbitrary γ̄ = (γ1, . . . , γn) ∈ Row(T ) let β(γ̄) be a word from Ωρ(T )
such that Row(Tβ(γ̄)) = {γ̄} and ψ(β(γ̄)) = Qψ(T, γ̄). Obviously, ψ(fi) ≤
Qψ(T, γ̄) ≤ Qψ(T ) for any pair (fi, γi) ∈ Alph(β(γ̄)).
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Let there exist γ̄ ∈ Row(T ) such that Alph(β(γ̄)) ⊆ {(f1, δ1), . . . , (fn, δn)}.
It is clear that Tβ(γ̄) ∈ Dtabρ and ψ(β(γ̄)) ≤ Qψ(T ) ≤ 2Q̂U,ψ(T ). Hence
Mρ,ψ(T, δ̄) ≤ 2Q̂U,ψ(T ).

Let the set Alph(β(γ̄)) be not a subset of {(f1, δ1), . . . , (fn, δn)} for any
γ̄ ∈ Row(T ). Then there exists a subset {fi(1), . . . , fi(m)} of the set {f1, . . . , fn}
with following properties: Row(T (fi(1), δi(1)) . . . (fi(m), δi(m))) = ∅ and ψ(fi(j)) ≤
Qψ(T ) for j = 1, . . . ,m. If Row(T (fi(1), δi(1))) = ∅ then, evidently, Mρ,ψ(T, δ̄) ≤
Qψ(T ) ≤ 2Q̂U,ψ(T ). Let Row(T (fi(1), δi(1))) 
= ∅. Then there exists a num-
ber t ∈ {1, . . . ,m − 1} for which Row(T (fi(1), δi(1)) . . . (fi(t), δi(t))) 
= ∅ and
Row(T (fi(1), δi(1)) . . . (fi(t), δi(t))(fi(t+1), δi(t+1))) = ∅. Consider the problem z =
(ν, fi(1), . . . , fi(t)) such that ν : Bt → {0}. Denote T ′ = TU (z) and δ̄′ =
(δi(1), . . . , δi(t)). Obviously, T ′ ∈ TabU and δ̄′ ∈ Row(T ′). Let α be a word
from the set Ωρ(T ′) such that Row(T ′α) = {δ̄′} and ψ(α) = Qψ(T ′, δ̄′). Bear-
ing in mind that At(T ′) ⊆ At(T ) we obtain ψ(α) ≤ Qψ(T ′) ≤ Q̂U,ψ(T ).
One can show that Row(Tα) = Row(T (fi(1), δi(1)) . . . (fi(t), δi(t))). Denote κ =
α(fi(t+1), δi(t+1)). Then Alph(κ) ⊆ {(f1, δ1) . . . (fn, δn)} and Row(Tκ) = ∅. Tak-
ing into account that ψ(α) ≤ Q̂U,ψ(T ) and ψ((fi(t+1), δi(t+1))) ≤ Qψ(T ) ≤
Q̂U,ψ(T ) we obtain ψ(κ) ≤ 2Q̂U,ψ(T ). Hence Mρ,ψ(T, δ̄) ≤ 2Q̂U,ψ(T ). Bearing in
mind that δ̄ is an arbitrary n-tuple from Bn obtain Mρ,ψ(T ) ≤ 2Q̂U,ψ(T ). ��
Lemma 4.3. Let T ∈ TabU . Then N(T ) ≤ (k dim T )Qψ(T ).

Proof. If N(T ) = 1 then, evidently, Qψ(T ) = 0 and the statement of the lemma
holds. Let N(T ) > 1. One can show that Qψ(T ) > 0. Denote m = Qψ(T ). It is
easily to show that for any δ̄ ∈ Row(T ) there exist attributes f1, . . . , fm ∈ At(T )
and numbers γ1, . . . , γm ∈ B for which Row(T (f1, γ1) . . . (fm, γm)) = {δ̄}. Hence
there exists a one-to-one mapping of the set Row(T ) onto certain set D of pairs of
m-tuples of the kind ((f1, . . . , fm), (γ1, . . . , γm)) where f1, . . . , fm ∈ At(T ) and
γ1, . . . , γm ∈ B. Obviously, |D| ≤ (dim T )mkm. Therefore N(T ) ≤ (k dim T )m

where m = Qψ(T ). ��
Lemma 4.4. Let T ∈ TabU and Qψ(T ) = n > 0. Then the following statements
hold:

a) there exists a problem z ∈ ProblU such that ψl
U (z) = n and ψ(z) = n;

b) if ψ = h and n > 1 then there exists a table T ′′ ∈ TabU such that Qh(T ′′) =
n− 1.

Proof. Let T contain r columns which are labelled by attributes f1, . . . , fr. Let
δ̄ = (δ1, . . . , δr) ∈ Row(T ), Qψ(T, δ̄) = Qψ(T ) and let α be a word of minimal
length fromΩρ(T ) such that ψ(α) = Qψ(T, δ̄) and Row(Tα) = {δ̄}. Since ψ(α) =
n > 0, we obtain α 
= λ. Let α = (fi(1), δi(1)) . . . (fi(m), δi(m)). Obviously, for any
j, l ∈ {1, . . . ,m} if j 
= l then fi(j) 
= fi(l). Denote δ̄′ = (δi(1), . . . , δi(m)). Let
z = (ν, fi(1), . . . , fi(m)) where ν : Bm → {0, 1} and for any γ̄ ∈ Bm if γ̄ = δ̄′

then ν(γ̄) = 0, and if γ̄ 
= δ̄′ then ν(γ̄) = 1. Denote T ′ = TU (z). Obviously,
δ̄′ ∈ Row(T ′). One can show that Qψ(T ′, δ̄′) = n and Mρ,ψ(T ′, δ̄′) = n. Therefore
Mρ,ψ(T ′) ≥ n. Using Theorem 3.1 we obtain ψρ(T ′) ≥ n. Using this inequality
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and Corollary 4.1 we conclude that ψl
U (z) ≥ n. Obviously, ψ(z) = n. From

Lemma 4.1 it follows that ψl
U (z) = n.

Let ψ = h and n > 1. Then m = n. Denote z′ = (ν′, fi(1), . . . , fi(m−1)), where
ν′ : Bm−1 → {0}, T ′′ = TU (z′) and δ̄′′ = (δi(1), . . . , δi(m−1)). It is easily to show
that dimT ′′ = m−1 and Qh(T ′′, δ̄′′) = m−1. Therefore Qh(T ′′) = m−1 = n−1.

��
Lemma 4.5. Let U be a finite information system. Then H l

U,ψ(n) = O(1).

Proof. It is not difficult to prove that ψl
U (z) ≤ ∑

f∈F ψ(f) for any problem
z ∈ ProblU . Therefore H l

U,ψ(n) = O(1). ��
For t ∈ IN denote SpectrU,ψ(t) = {N(T ) : T ∈ TabU ,mψ(T ) ≤ t}.

Lemma 4.6. Let U be an infinite information system satisfying the condition of
reduction relatively ψ. Then there exists natural t such that the set SpectrU,ψ(t)
is infinite.

Proof. Since U satisfies the condition of reduction relatively ψ, there exists nat-
ural t such that Qψ(T ) ≤ t for any table T ∈ TabU . We will show that the set
SpectrU,ψ(t) is infinite. Assume the contrary: let there exist a number m ∈ IN
such that for any table T ∈ TabU if mψ(T ) ≤ t then N(T ) ≤ m. Since U is an
infinite information system, there exists a table T ∈ TabU such that N(T ) > m.
Let {fi : fi ∈ At(T ), ψ(fi) ≤ t} = {f1, . . . , fn}. Denote z′ = (ν, f1, . . . , fn),
where ν : Bn → {0}, and T ′ = TU (z′). Taking into account that Qψ(T ) ≤ t
one can show that N(T ′) = N(T ). Therefore mψ(T ′) ≤ t and N(T ′) > m. The
obtained contradiction shows that the set SpectrU,ψ(t) is infinite. ��
Lemma 4.7. Let there exists natural t such that the set SpectrU,ψ(t) is infinite.
Then H l

U,ψ(n) = Ω(log2 n).

Proof. Let n > t. Denote m = (n/t). Since the set SpectrU,ψ(t) is infinite,
there exists a table T ∈ TabU such that mψ(T ) ≤ t and N(T ) ≥ km. Let
{f1, . . . , fp} be a subset of the set At(T ) of minimal cardinality such that
|Row(T (f1, δ1) . . . (fp, δp))| ≤ 1 for any δ1, . . . , δp ∈ B. Since N(T ) ≥ km, we
have p ≥ m. Denote z = (ν, f1, . . . , fm) where ν : Bm → IN and for any
δ̄1, δ̄2 ∈ Bm if δ̄1 
= δ̄2 then ν(δ̄1) 
= ν(δ̄2). Denote T ′ = T (z). From the
choice of the set {f1, . . . , fp} it follows that for any i ∈ {1, . . . ,m} there ex-
ist rows δ̄1, δ̄2 ∈ Row(T ′) which differ only in i-th digit. Therefore J(T ′) = m.
From Theorem 3.3 it follows that ψρ(T ′) ≥ logk(m + 1) ≥ logk(n/t). Using
Corollary 4.1 we obtain ψl

U (z) = ψρ(T ′). Obviously, ψ(z) ≤ mt ≤ n. Hence
H l

U,ψ(n) ≥ logk n− logk t. Therefore H l
U,ψ(n) = Ω(log2 n). ��

Lemma 4.8. Let U be an infinite information system satisfying the condition
of reduction relatively ψ. Then H l

U,ψ(n) = O(log2 n).

Proof. Since U satisfies the condition of reduction relatively ψ, there exists nat-
ural m such that Qψ(T ) ≤ m for any table T ∈ TabU . Therefore Q̂U,ψ(T ) ≤ m
for any table T ∈ TabU . Let n ∈ Dom(H l

U,ψ) and let z be an arbitrary problem
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from ProblU for which ψ(z) ≤ n. Obviously, n ≥ 1. Denote T = TU (z). Since
ψ(z) ≤ n, we have dimT ≤ n. Besides, Qψ(T ) ≤ m and Q̂U,ψ(T ) ≤ m. Using
Lemma 4.2 we obtain Mρ,ψ(T ) ≤ 2Q̂U,ψ(T ) ≤ 2m. Using Lemma 4.3 obtain
N(T ) ≤ (k dimT )Qψ(T ) ≤ (nk)m. From these inequalities and from Theorem
3.5 it follows that ψρ(T ) ≤ 2m2 log2 n+ 2m2 log2 k. Using Corollary 4.1 we con-
clude that ψl

U (z) ≤ 2m2 log2 n + 2m2 log2 k. Taking into account that n is an
arbitrary number from the set Dom(H l

U,ψ) and that z is an arbitrary problem
from ProblU with ψ(z) ≤ n we obtain H l

U,ψ(n) = O(log2 n). ��
For any natural n denote

NU (n) = max{N(T ) : T ∈ TabU , dimT ≤ n} .

Lemma 4.9. Let U be a finite information system such that f 
≡ const for any
f ∈ F , n ∈ IN \ {0} and n ≤ in(U). Then

n + 1 ≤ NU (n) ≤ (kn)un(U) .

Proof. One can show thatQh(T ) ≤ un(U) for any table T ∈ TabU . Using Lemma
4.3 we conclude that NU (n) ≤ (kn)un(U).

Let us prove that NU (n) ≥ n + 1. Let {f1, . . . , fin(U)} be an independent
set of attributes from F , i ∈ {1, . . . , in(U)}, and zi = (ν, f1, . . . , fi) be the
problem from ProblU such that ν ≡ {0}. Since f1 
≡ const we have N(T (z1)) ≥
2. Let us prove that if in(U) > 1 then N(T (zi)) < N(T (zi+1)) for any i ∈
{1, . . . , in(U) − 1}. Assume the contrary: N(T (zi)) = N(T (zi+1)) for some i ∈
{1, . . . , in(U) − 1}. It is not difficult to prove that in this case there exists μ :
Bi → B such that fi+1(a) = μ(f1(a), . . . , fi(a)) for any a ∈ A, but this is
impossible. Thus, N(T (z1)) ≥ 2 and if in(U) > 1 then N(T (zi)) < N(T (zi+1))
for any i ∈ {1, . . . , in(U)− 1}. Therefore N(T (zn)) ≥ n+ 1. Since h(zn) = n we
obtain NU (n) ≥ n+ 1. ��
Lemma 4.10. Let U be a finite information system such that f 
≡ const for any
f ∈ F , n ∈ IN \ {0} and n ≥ in(U). Then

H l
U,h(n) = H l

U,h(in(U)) .

Proof. Evidently, H l
U,h(n) ≥ H l

U,h(in(U)).
Let us prove by induction on m, m ≥ in(U), that for any problem z ∈ ProblU

with h(z) = m there exists a problem z′ ∈ ProblU such that h(z′) = in(U),
At(z′) ⊆ At(z), and z′(a) = z(a) for any a ∈ A. Evidently, the considered
statement holds for m = in(U). Let it hold for some m, m ≥ in(U). Let us show
that this statement holds for m+1 too. Let z = (ν, f1, . . . , fm+1) ∈ ProblU . It is
clear that the set {f1, . . . , fm+1} is dependent set of attributes. Therefore there
exist i ∈ {1, . . . ,m+ 1} and μ : Bm → B such that

fi(a) = μ(f1(a), . . . , fi−1(a), fi+1(a), . . . , fm+1(a))
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for any a ∈ A. Let γ : Bm → B and γ(δ1, . . . , δm) = ν(δ1, . . . , δi−1, μ(δ1, . . . , δm),
δi+1, . . . , δm) for any (δ1, . . . , δm) ∈ Bm. Let us consider the problem z1 =
(γ, f1, . . . , fi−1, fi+1, . . . , fm+1) from ProblU . Evidently, h(z1) = m, At(z1) ⊆
At(z) and z1(a) = z(a) for any a ∈ A. Using the inductive hypothesis we
conclude that there exists a problem z′ ∈ ProblU such that h(z′) = in(U),
At(z′) ⊆ At(z1) and z′(a) = z1(a) for any a ∈ A. It is clear that h(z′) =
in(U),At(z′) ⊆ At(z) and z′(a) = z(a) for any a ∈ A. Thus, the considered
statement holds.

Let us prove that H l
U,h(n) ≤ H l

U,h(in(U)). Let z ∈ ProblU and h(z) ≤ n. If
h(z) ≤ in(U) then hl

U (z) ≤ H l
U,h(in(U)). Let h(z) > in(U). Then there exists

a problem z′ ∈ ProblU such that h(z′) = in(U), At(z′) ⊆ At(z), and z′(a) =
z(a) for any a ∈ A. One can show that hl

U (z) ≤ hl
U (z′). Evidently, hl

U (z′) ≤
H l

U,h(in(U)). Therefore hl
U (z) ≤ H l

U,h(in(U)). Since z is an arbitrary problem
over U such that h(z) ≤ n we obtain H l

U,h(n) ≤ H l
U,h(in(U)). Thus, H l

U,h(n) =
H l

U,h(in(U)). ��

Proofs of Theorems 4.3 and 4.4

Proof (of Theorem 4.3). Statement a) follows from Lemma 4.5. Statement b)
follows from Lemmas 4.6–4.8.

Let us prove the statement c). Since U does not satisfy the condition of
reduction relatively ψ, the set D = {Qψ(T ) : T ∈ TabU} is infinite. Let n ∈
D \ {0} and T be a table from TabU for which Qψ(T ) = n. Using Lemma 4.4 we
conclude that there exists a problem z ∈ ProblU such that ψl

U (z) = ψ(z) = n.
Therefore H l

U,ψ(n) = n.
Let us prove the statement d). Using the equality ψ = h it is not difficult to

prove that Dom(H l
U,ψ) = IN\{0}. Let n be a natural number. Taking into account

that U does not satisfy the condition of reduction relatively h we conclude that
there exists a table T ∈ TabU such that Qh(T ) ≥ n. Using Lemma 4.4 we
conclude that there exists a problem z ∈ ProblU such that hl

U (z) = h(z) = n.
Therefore H l

U,h(n) = n. ��
Proof (of Theorem 4.4)

a) Let n ≤ un(U). It is clear that H l
U,h(n) ≤ n. Let us show that H l

U,h(n) ≥ n.
By definition of the parameter un(U), there exists a compatible uncancellable
system of equations over U of the kind {f1(x) = δ1, . . . , fun(U)(x) = δun(U)}.
It is clear that the system of equations {f1(x) = δ1, . . . , fn(x) = δn} is a
compatible uncancellable system too. Let z = (ν, f1, . . . , fn) where ν : Bn →
{0}. Denote δ̄ = (δ1, . . . , δn). It is not difficult to prove that Qh(T (z), δ̄) = n.
Therefore Qh(T (z)) = n. Using Lemma 4.4 we conclude that there exists
a problem z′ ∈ ProblU such that h(z′) = n and hl

U (z′) = n. Therefore
H l

U,h(n) ≥ n. Hence H l
U,h(n) = n.

b) Let un(U) ≤ n ≤ in(U). It is clear that H l
U,h(n) ≤ n. Using statement a) we

obtain H l
U,h(n) ≥ un(U).

Let us show that H l
U,h(n) ≥ logk(n + 1). Using Lemma 4.9 we obtain that

there exists a problem z = (ν, f1, . . . , fm) over U such that m ≤ n and
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N(T (z)) ≥ n + 1. Consider the problem z′ = (ν′, f1, . . . , fm) such that
ν′(δ̄1) 
= ν′(δ̄2) if δ̄1 
= δ̄2. It is clear that T (z′) is a diagnostic table and
N(T (z′)) ≥ n + 1. Using Corollary 3.1 we obtain hρ(T (z′)) ≥ logk(n + 1).
From Theorem 4.1 it follows that hU (z′) ≥ logk(n+ 1). Taking into account
that m ≤ n we obtain H l

U,h(n) ≥ logk(n + 1).
Let us show that H l

U,h(n) ≤ 2un(U)2 log2(kn). Let z ∈ Probl(U) and dim z ≤
n. Denote T = T (z). From Lemma 4.9 follows that N(T ) ≤ (kn)un(U). One
can show that Q̂U,h(T ) ≤ un(U). Using Lemma 4.2 we obtain Mρ,h(T ) ≤
2Q̂U,h(T ). Therefore Mρ,h(T ) ≤ 2un(U). From the obtained inequalities and
from Theorem 3.5 it follows hρ(T ) ≤Mρ,h(T ) log2 N(T ) ≤ 2un(U)2 log2(kn).
Taking into account that z is an arbitrary problem from ProblU with dim z ≤
n we obtain H l

U,h(n) ≤ 2un(U)2 log2(kn).
c) Let n ≥ in(U). Using Lemma 4.10 we obtain H l

U,h(n) = H l
U,h(in(U)). ��

4.4 Local Optimization Problems for Decision Trees

The relationships among three algorithmic problems are considered in this sec-
tion: the problem of compatibility of equation system, the problem of construc-
tion of locally optimal decision tree, and the problem of computation of locally
optimal decision tree complexity.

Relationships Among Algorithmic Problems. Let U = (A,B, F ) be an
enumerated information system, where F = {fi : i ∈ IN}, and ψ be a com-
putable weight function for U . Denote ρ = (F,B). We formulate the following
three algorithmic problems: the problem Ex(U) of compatibility of equation sys-
tem over U and the two problems of local optimization denoted respectively by
Desl(U,ψ) and Coml(U,ψ).

The Problem Ex(U) of Compatibility of Equation System: for a given word α ∈
Ωρ it is required to determine whether the set SolU (α) is the empty set.

The Problem Desl(U,ψ): for a given problem z ∈ ProblU it is required to find
a decision tree Γ ∈ TreeU which solves z and for which At(Γ ) ⊆ At(z) and
ψ(Γ ) = ψl

U (z).

The Problem Coml(U,ψ): for a given problem z ∈ ProblU it is required to
compute the value ψl

U (z).

Theorem 4.5. Let U = (A,B, F ) be an enumerated information system, and
ψ be a computable weight function for U . Then the following statements hold:

a) if the problem Ex(U) is solvable then problems Coml(U,ψ) and Desl(U,ψ)
are also solvable;

b) if Ex(U) is unsolvable then Coml(U,ψ) and Desl(U,ψ) are unsolvable.

Example 4.2. Let m, t be natural numbers and U(ZZ,m, t), U(IR,m, t) be infor-
mation systems defined in Sect. 4.1. From results of [55] it follows that there
exist natural m0 and t0 such that for any m ≥ m0 and t ≥ t0 the problem
Ex(U(ZZ,m, t)) is unsolvable. From results of [207] it follows that the problem
Ex(U(IR,m, t)) is solvable for any m and t.
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In this subsection we consider only infinite (enumerated) information sys-
tems. It should be pointed out that for any finite information system U the
problem Ex(U) is solvable.

Let ρ = (F,B) be a signature and α ∈ Ωρ. The word α will be called
inconsistent if there exist an attribute f ∈ F and numbers δ, γ ∈ B such that
(f, δ) ∈ Alph(α), (f, γ) ∈ Alph(α) and δ 
= γ, and consistent otherwise.

Proof (of Theorem 4.5). Let U = (A,B, F ). Denote ρ = (F,B).

a) Let the problem Ex(U) be solvable. One can show that there exists an al-
gorithm which for a given problem z ∈ ProblU constructs the table TU (z).
From Proposition 3.4 it follows that the problems Com(ρ, ψ) and Des(ρ, ψ)
are solvable. Using Theorem 4.1 we conclude that the problems Coml(U,ψ)
and Desl(U,ψ) are solvable too.

b) Let the problem Ex(U) be unsolvable. Let us show that the problem
Coml(U,ψ) is unsolvable. Assume the contrary. Let us show that in this
case the problem Ex(U) is solvable. Since U is an infinite information sys-
tem, there exists an attribute fi(0) ∈ F which is not constant. Let α ∈ Ωρ.
If α = λ then, obviously, SolU (α) 
= ∅. Let now α 
= λ. For inconsistent
α the equality SolU (α) = ∅ is evident. Let α be a consistent word and let
Alph(α) = {(fi(1), δ1), . . . , (fi(n), δn)} where i(1) < . . . < i(n).
Let i(0) /∈ {i(1), . . . , i(n)}. For any t ∈ B define a problem zt ∈ ProblU as
follows: zt = (νt, fi(0), fi(1), . . . , fi(n)), where νt : Bn+1 → {0, 1} and for any
γ̄ ∈ Bn+1 if γ̄ = (t, δ1, . . . , δn) then νt(γ̄) = 1, and if γ̄ 
= (t, δ1, . . . , δn) then
νt(γ̄) = 0. Since the problem Coml(U,ψ) is solvable, the value of ψl

U (zt) can
be found for every t ∈ B. Taking into account that the attribute fi(0) is not
constant one can show that SolU (α) = ∅ if and only if ψl

U (zt) = 0 for any
t ∈ B.
Let i(0) ∈ {i(1), . . . , i(n)}. Define a problem z ∈ ProblU as follows: z =
(ν, fi(1), . . . , fi(n)), where ν : Bn → {0, 1} and for any γ̄ ∈ Bn if γ̄ =
(δ1, . . . , δn) then ν(γ̄) = 1 and if γ̄ 
= (δ1, . . . , δn) then ν(γ̄) = 0. From
solvability of the problem Coml(U,ψ) it follows the possibility of computa-
tion of the value ψl

U (z). It is easily to show that SolU (α) = ∅ if and only if
ψl

U (z) = 0. So the problem Ex(U) is solvable which is impossible. Therefore
the problem Coml(U,ψ) is unsolvable. Since ψ is a computable function, we
conclude that the problem Desl(U,ψ) is unsolvable too. ��

4.5 Cardinality Characteristics of Test Tables

Let ρ = (F,B) be a signature and U = (A,B, F ) be an information system.
In the first subsubsection of this subsection upper and lower bounds on the

value N(T ) for a table T ∈ Tabρ are considered.
The second subsubsection is devoted to investigation of a function NU :

IN \ {0} → IN defined as follows:

NU (n) = max{N(T ) : T ∈ TabU , dimT ≤ n} ,
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where dimT is the number of columns in the table T . This function will be
used later for analysis of complexity of decision trees and also for analysis of
complexity of algorithms for decision tree construction.

The third subsubsection deals with examples.
The results contained in this subsection are similar to results from [2, 182,

183]. The notions close to Vapnik-Chervonenkis dimension [7, 210] and indepen-
dent dimension or I-dimension [47] are applied in the analysis of the function NU .

Bounds on Value N(T ). Let T be a table from Tabρ with n columns la-
belling by attributes f1, . . . , fn. Denote by RO(T ) the set of all nonempty words
fi(1) . . . fi(m) from the set At(T )∗ such that i(1) < i(2) < . . . < i(m). Let β =
fi(1) . . . fi(m) ∈ RO(T ). Denote Row(T, β) = {(δi(1), . . . , δi(m)) : (δ1, . . . , δn) ∈
Row(T )}. Define the value I(T ) as follows. If N(T ) ≤ 1 then I(T ) = 0. Let
N(T ) ≥ 2. Then I(T ) is the maximal number m ∈ {1, . . . , n} for which there
exist a word β ∈ RO(T ) and sets G1, . . . , Gm ⊆ B possessing the following
properties: the length of the word β is equal to m, |G1| = . . . = |Gm| = 2 and
G1 × . . .×Gm ⊆ Row(T, β).

Theorem 4.6. Let ρ = (F,B) be a signature such that F is an infinite set and
|B| = k. Let T be a nonempty table from Tabρ. Then

2I(T ) ≤ N(T ) ≤ (k2 dim T )I(T ) .

Proof. Let n, t ∈ IN and n ≥ 1. Denote

Nρ(n, t) = max{N(T ) : T ∈ Tabρ, dim T ≤ n, I(T ) ≤ t} .

It is easily to notice that the value Nρ(n, t) is definite and the following inequal-
ities hold:

Nρ(n, 0) ≤ 1 , (29)
Nρ(1, t) ≤ k . (30)

Let us prove that for any n ∈ IN \ {0} and t ∈ IN the inequality

Nρ(n + 1, t+ 1) ≤ Nρ(n, t+ 1) + k2Nρ(n, t) (31)

holds. It is clear that there exists a table T ∈ Tabρ which contains n+1 columns
and for which I(T ) ≤ t + 1 and N(T ) = Nρ(n + 1, t+ 1). Let columns of T be
labelled by attributes f1, . . . , fn+1. Denote β = f1 . . . fn. Let δ̄ = (δ1, . . . , δn) ∈
Row(T, β). Denote κ(δ̄) = {δ : δ ∈ B, (δ1, . . . , δn, δ) ∈ Row(T )}. Let l,m ∈ B
and l 
= m. Define tables T (1) and T (l,m) as follows: each of the tables T (1) and
T (l,m) contains n columns labelling by attributes f1, . . . , fn; Row(T (1)) = {δ̄ :
δ̄ ∈ Row(T, β),

∣∣κ(δ̄)
∣∣ = 1}; Row(T (l,m)) = {δ̄ : δ̄ ∈ Row(T, β), l ∈ κ(δ̄),m ∈

κ(δ̄)}; all rows of the considered tables are labelled by the same number 0. It is
not difficult to show that

N(T ) ≤ N(T (1)) +
∑

l,m∈B,l =m

N(T (l,m))
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and I(T (1)) ≤ t + 1. Let l,m ∈ B and l 
= m. Let us show that I(T (l,m)) ≤ t.
Assume the contrary. One can prove that in this case I(T ) ≥ t + 2 which is
impossible. Therefore I(T (l,m)) ≤ t. Taking into account that N(T ) = Nρ(n+
1, t+1) we obtain Nρ(n+1, t+1) ≤ Nρ(n, t+1)+k2Nρ(n, t). Hence the inequality
(31) holds.

Prove now that
Nρ(n, t) ≤ k2tnt (32)

for any n ∈ IN \ {0} and t ∈ IN. The inequality (32) will be proven by induction
on n+ t. From inequalities (29) and (30) it follows that the inequality (32) holds
if n = 1 or t = 0. Therefore the inequality (32) holds if n + t ≤ 2. Assume
(32) holds if n + t ≤ r where r ∈ IN and r ≥ 2. Let n′ ∈ IN \ {0}, t′ ∈ IN and
n′ + t′ = r + 1. The inequality (32) holds if n′ = 1 or t′ = 0. Let n′ = n+ 1 and
t′ = t+1, where n ∈ IN\{0} and t ∈ IN. Using (31) and the inductive hypothesis
obtain

Nρ(n+ 1, t+ 1) ≤ k2(t+1)nt+1 + k2(t+1)nt ≤ k2(t+1)(n + 1)t+1 .

Hence the inequality(32) holds.
Let T be a nonempty table from Tabρ. The inequality N(T ) ≥ 2I(T ) is

obvious. The inequality N(T ) ≤ (k2 dimT )I(T ) follows from (32). ��

Bounds on Function NU . Let U = (A,B, F ) be an information system, z =
(ν, f1, . . . , fn) ∈ ProblU and T = TU (z). Let us give one more definition of the
parameter I(T ) which is equivalent to the stated above. If N(T ) ≤ 1 then I(T ) =
0. Let N(T ) ≥ 2. Then I(T ) is the maximal m ∈ {1, . . . , n} such that there
exist numbers i(1), . . . , i(m) ∈ {1, . . . , n} and sets G1, . . . , Gm ⊆ B possessing
following properties: |G1| = . . . = |Gm| = 2 and for any δ1 ∈ G1, . . . , δm ∈ Gm

the equation system

{fi(1)(x) = δ1, . . . , fi(m)(x) = δm}

is compatible on the set A.

Theorem 4.7. Let U = (A,B, F ) be an information system and |B| = k. Then
the following statements hold:

a) if there exists a constant c ∈ IN such that I(T ) ≤ c for any table T ∈ TabU

then NU (n) ≤ (k2n)c for any n ∈ IN \ {0};
b) if there exists no constant c ∈ IN such that I(T ) ≤ c for any table T ∈ TabU

then NU (n) ≥ 2n for any n ∈ IN \ {0}.
Proof. a) Let c ∈ IN and let I(T ) ≤ c for any table T ∈ TabU . Let n ∈ IN \ {0},

T ∈ TabU and dimT ≤ n. Using Theorem 4.6 we obtain N(T ) ≤ (k2n)c.
Hence NU (n) ≤ (k2n)c.

b) Assume that no constant c ∈ IN exists such that I(T ) ≤ c for any table T ∈
TabU . Let n∈IN \ {0}. Then there exists a table T∈TabU such that I(T )≥n.
Let I(T ) = m. Then there exist a word β = fi(1) . . . fi(m) ∈ RO(T ) and sets
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G1, . . . , Gm ⊆ B such that |G1| = . . . = |Gm| = 2 and G1 × . . . × Gm ⊆
Row(T, β). Define a problem z ∈ ProblU as follows: z = (ν, fi(1), . . . , fi(n))
where ν : Bn → {0}. Denote T ′ = TU (z). One can show that dim T ′ =
I(T ′) = n. Using Theorem 4.6 we obtain N(T ′) ≥ 2n. Therefore NU (n) ≥ 2n.

��
Example 4.3. Let m, t be natural numbers, and U(IR,m), U(IR,m, t) be infor-
mation systems defined in Sect. 4.1. We will show in Sect. 6.5 (see Note 6.2)
that the function I is not bounded from above on the set of tables TabU(IR,m),
but it is bounded from above on the set TabU(IR,m,t).

4.6 Algorithm of Decision Table Construction

In this subsection an algorithm of decision table construction is considered and
their complexity characteristics are studied.

Let U = (A,B, F ), where F = {fi : i ∈ IN} and |B| = k, be an enumerated
information system. Denote ρ = (F,B). Let the problem Ex(U) be solvable, and
E be an algorithm solving the problem Ex(U).

Description of Algorithm of Decision Table Construction. Describe an
algorithm IE which for a given problem z ∈ ProblU constructs the table IE(z) =
T (z). Let z = (ν, fi(1), . . . , fi(n)).

1-st Step. Construct the tree containing only one node. Label this node by the
word λ and proceed to the second step.

Suppose t steps have already been made. Denote by D the labelled finite
rooted directed tree built on the step t.

(t + 1)-th Step. Let every terminal node in the tree D be labelled by n-tuple
from Bn. Define the table T ∈ Tabρ as follows: T contains n columns labelling
by attributes fi(1), . . . , fi(n), the set Row(T ) coincides with the set of n-tuples
attached to terminal nodes of the tree D, and νT is the restriction of the mapping
ν to the set Row(T ). Set IE(z) = T . Algorithm IE stops.

Let not all terminal nodes in the tree D be labelled by n-tuples from Bn.
Choose a terminal node w in the tree D which is labelled by a word from Ωρ.
Let the node w be labelled by the word α. Let the length of α be equal to n
and let α = (fi(1), δ1) . . . (fi(n), δn). Instead of the word α we mark the node
w by n-tuple (δ1, . . . , δn) and proceed to the (t + 2)-th step. Let the length r
of the word α be less than n and α = (fi(1), δ1) . . . (fi(r), δr). (If r = 0 then
α = λ.) By applying k times the algorithm E we construct the set B(α) = {δ :
δ ∈ B,SolU (α(fi(r+1), δ)) 
= ∅}. Erase the label α at node w. For every δ ∈ B(α)
add to the tree D a node w(δ). Draw the edge from the node w to the node w(δ)
and mark the node w(δ) by the word α(fi(r+1), δ). Proceed to the (t+2)-th step.

Complexity Parameters of Decision Table Construction Algorithm.
For z ∈ ProblU denote by SIE(z) the number of steps made by algorithm IE to
construct the table IE(z), and by CIE(z) the number of calls of algorithm E by
algorithm IE while constructing the table IE(z).
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Consider dependencies of values SIE(z) and CIE(z) on the value dim z and
on the value of N(T (z)). Note that dim z = dimT (z).

Proposition 4.1. Let U = (A,B, F ), where F = {fi : i ∈ IN} and |B| = k,
be an enumerated information system, the problem Ex(U) be solvable, and E be
an algorithm solving the problem Ex(U). Then IE(z) = T (z) for any problem
z ∈ ProblU , and the following inequalities hold:

2 +N(T (z)) ≤ SIE(z) ≤ 2 + (dim z + 1)N(T (z)) ,

N(T (z)) ≤ CIE(z) ≤ k(dim z + 1)N(T (z)) .

Proof. Let z ∈ ProblU . Simple analysis of the algorithm IE shows that IE(z) =
T (z).

Let t be the number of steps made by algorithm IE in process of construction
of the table IE(z). Denote by D the tree constructed on the (t− 1)-th step, and
by La(D) the number of nodes in the tree D. One can show that t = La(D)+2.
Obviously, the number of terminal nodes in the tree D is equal to N(T (z)), and
every complete path in D contains exactly dim z + 1 nodes. Therefore

N(T (z)) ≤ La(D) ≤ (dim z + 1)N(T (z)) .

Hence
2 + N(T (z)) ≤ SIE(z) ≤ 2 + (dim z + 1)N(T (z)) .

Obviously, every step of the algorithm IE , with the exception of the first
and the last, includes at most k calls of the algorithm E . The first and the
last steps of algorithm IE do not contain calls of algorithm E . Hence CIE(z) ≤
k(dim z + 1)N(T (z)). Let Lw(D) be the number of nonterminal nodes in D.
Obviously, the number of steps containing exactly k calls of algorithm E by
algorithm IE is equal to Lw(D). Let Lt(D) be the number of terminal nodes
in the tree D. One can show that Lt(D) ≤ kLw(D). Taking into account that
Lt(D) = N(T (z)) we obtain Lw(D) ≥ N(T (z))/k. Therefore CIE(z) ≥ N(T (z)).

��
Consider dependence of values SIE(z) and CIE(z) on dim z.
Define the functions SIE

U : IN \ {0} → IN and CIE
U : IN \ {0} → IN as follows:

SIE
U (n) = max{SIE(z) : z ∈ ProblU , dim z ≤ n} ,

CIE
U (n) = max{CIE(z) : z ∈ ProblU , dim z ≤ n} .

From Proposition 4.1 it follows that for any n ≥ 1 the values SIE
U (n) and

CIE(z) are definite.
Using Theorem 4.7 and Proposition 4.1 it is not difficult to prove the following

statement.

Theorem 4.8. Let U = (A,B, F ), where |B| = k, be an enumerated informa-
tion system, the problem Ex(U) be solvable, and E be an algorithm solving the
problem Ex(U). Then the following statements hold:
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a) if there exists a constant c ∈ IN such that for any table T ∈ TabU the in-
equality I(T ) ≤ c holds then SIE

U (n) ≤ 2 + k2cnc(n + 1) and CIE
U (n) ≤

k2c+1nc(n + 1) for any natural n;
b) if there does not exist a constant c ∈ IN such that I(T ) ≤ c for any table

T ∈ TabU then SIE
U (n) ≥ 2n and CIE

U (n) ≥ 2n for any natural n.

Corollary 4.2. Let U be an enumerated information system, the problem Ex(U)
be solvable, and E be an algorithm solving the problem Ex(U). Then the following
three statements are equivalent:

a) there exists a constant c ∈ IN such that for any table T ∈ TabU the inequality
I(T ) ≤ c holds;

b) there exists a polynomial p0 such that for any problem z ∈ ProblU the number
of steps made by algorithm IE is bounded from above by p0(dim z);

c) there exists a polynomial p1 such that for any problem z ∈ ProblU the number
of calls of algorithm E by algorithm IE is bounded from above by p1(dim z).

4.7 Greedy Algorithm of Decision Tree Construction

Let U = (A,B, F ) be an enumerated information system, ρ = (F,B), the prob-
lem Ex(U) be solvable, and E be an algorithm solving the problem Ex(U). Let
ψ be a computable weight function for U . In this subsection we consider the al-
gorithm VEψ which for a given problem z ∈ ProblU constructs the decision tree
VEψ(z) with following properties: the decision tree VEψ(z) solves the problem z
and At(VEψ(z)) ⊆ At(z).

Describe the work of the algorithm VEψ. Let z ∈ ProblU .
Using algorithm IE from Sect. 4.6 we construct the decision table T (z). Next,

using algorithm Vρ,ψ from Sect. 3.4 we construct the decision tree Vρ,ψ(T (z)) for
the table T (z). Then VEψ(z) = Vρ,ψ(T (z)).

Obviously, At(VEψ(z)) ⊆ At(z). From Theorem 4.1 it follows that the deci-
sion tree VEψ(z) solves the problem z.

Bounds on Complexity of Algorithm VEψ. Complexity of algorithm IE
which for a given problem z ∈ ProblU constructs the decision table T (z) was
investigated in previous subsection. In this subsection we consider bounds on
the number of steps made by algorithm Vρ,ψ in process of the tree Vρ,ψ(T (z))
construction.

For z ∈ ProblU we denote by SV,ψ(z) the number of steps which the algorithm
Vρ,ψ makes in the process of the tree Vρ,ψ(T (z)) construction. The function
SV,ψ

U : IN \ {0} → IN is defined as follows:

SV,ψ
U (n) = max{SV,ψ(z) : z ∈ ProblU , dim z ≤ n} .

Theorem 3.11 allows to conclude that the value SV,ψ
U (n) is definite for any n ∈

IN \ {0}.
Theorem 4.9. Let U = (A,B, F ) be an enumerated information system for
which |B| = k, ρ = (F,B), the problem Ex(U) be solvable, and ψ be a computable
weight function for U . Then the following statements hold:
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a) if there exists a constant c ∈ IN such that I(T ) ≤ c for any table T ∈ TabU

then SV,ψ
U (n) ≤ 2(k2n)c + 2 for any n ∈ IN \ {0};

b) if there does not exist a constant c ∈ IN such that I(T ) ≤ c for any table
T ∈ TabU then SV,ψ

U (n) ≥ 2n for any n ∈ IN \ {0}.

Proof. a) Let there exists a constant c ∈ IN such that I(T ) ≤ c for any table
T ∈ TabU . Let n ∈ IN \ {0}, z ∈ ProblU and dim z ≤ n. From Theorem
3.11 it follows that SV,ψ

U (n) ≤ 2N(T (z)) + 2. Using Theorem 4.7 we ob-
tain N(T (z)) ≤ (k2n)c. Therefore SV,ψ(z) ≤ 2(k2n)c + 2. Hence SV,ψ

U (n) ≤
2(k2n)c + 2.

b) Let there do not exist a constant c ∈ IN such that I(T ) ≤ c for any table
T ∈ TabU . Let n ∈ IN\{0}. Using Theorem 4.7 we conclude that there exists
a table T ∈ TabU such that dimT ≤ n and N(T ) ≥ 2n. Let z ∈ ProblU ,
z = (ν, fi(1), . . . , fi(m)) and T = T (z). Obviously, dim z = m ≤ n. Let ν1 :
Bm → IN be a mapping such that for any δ̄1, δ̄2 ∈ Bm from δ̄1 
= δ̄2 follows
ν1(δ̄1) 
= ν1(δ̄2). Denote z1 = (ν1, fi(1), . . . , fi(m)) and T1 = T (z1). Obviously,
the tree Vρ,ψ(T1) contains at least 2n terminal nodes. It was noted in the
proof of Theorem 3.11 that the number of steps made by the algorithm Vρ,ψ

to construct the tree Vρ,ψ(T1) is equal to La(Vρ,ψ(T1))+2, where La(Vρ,ψ(T1))
is the number of nodes in the tree Vρ,ψ(T1). Therefore SV,ψ(z1) ≥ 2n. Taking
into account that dim z1 ≤ n we obtain SV,ψ

U (n) ≥ 2n. ��

Bounds on Accuracy of Algorithm VEψ. Define partial function H l,V
U,ψ :

IN → IN as follows:

H l,V
U,ψ(n) = max(ψ(VE(z)) : z ∈ ProblU , ψ(z) ≤ n} .

Comparison of functions H l,V
U,ψ and H l

U,ψ allows to estimate the accuracy of the
algorithm VEψ.

Theorem 4.10. Let U = (A,B, F ) be an enumerated information system for
which the problem Ex(U) is solvable, and ψ be a computable weight function
for U . Then the following statements hold:

a) Dom(H l,V
U,ψ) = Dom(H l

U,ψ) and H l
U,ψ(n) ≤ H l,V

U,ψ(n) ≤ n for any n ∈
Dom(H l

U,ψ);
b) if U is a finite information system then H l

U,ψ(n) = O(1) and H l,V
U,ψ(n) = O(1);

c) if U is an infinite information system satisfying the condition of reduction
relatively to ψ then H l

U,ψ(n) = Θ(log2 n) and H l,V
U,ψ(n) = Θ(log2 n);

d) if U is an infinite information system which does not satisfy the condition of
reduction relatively to ψ then H l

U,ψ(n) = n for infinitely many natural n and
H l,V

U,ψ(n) = O(H l
U,ψ(n)3);

e) if U is an infinite information system which does not satisfy the condition of
reduction relatively to ψ and ψ = h then H l,V

U,ψ(n) = H l
U,ψ(n) = n for any

natural n.
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Proof. Let ρ = (F,B) and F = {fi : i ∈ IN}. Using Theorem 3.8 one can show
that for any nonempty table T from Tabρ the following inequality holds:

ψ(Vρ,ψ(T )) ≤ 2(Mρ,ψ(T ))2 log2 N(T ) . (33)

a) Let n /∈ Dom(H l
U,ψ). One can show that n /∈ Dom(H l,V

U,ψ). Let n∈Dom(H l
U,ψ),

z ∈ ProblU and ψ(z) ≤ n. Denote T = T (z). Using description of the algo-
rithm Vρ,ψ it is not difficult to show that working nodes of any complete path
in the tree Vρ,ψ(T ) are labelled by pairwise distinct attributes from the set
At(T ). Therefore ψ(Vρ,ψ(T )) ≤ n. Hence the value H l,V

U,ψ(n) is definite and
H l,V

U,ψ(n) ≤ n. The inequality H l
U,ψ(n) ≤ H l,V

U,ψ(n) is obvious.
b) Let U be a finite information system, and z ∈ ProblU . Since working nodes of

any complete path in the tree Vρ,ψ(T (z)) are labelled by pairwise distinct at-
tributes, we have ψ(Vρ,ψ(T (z))) ≤∑fi∈F ψ(fi). Therefore H l,V

U,ψ(n) = O(1).
From Theorem 4.3 it follows that H l

U,ψ(n) = O(1).
c) Let U be an infinite information system satisfying the condition of reduction

relatively to ψ. Then there exists a constant m ∈ IN such that Qψ(T ) ≤ m

for any table T ∈ TabU . Therefore Q̂ψ(T ) ≤ m for any table T ∈ TabU . Let
n ∈ Dom(H l

U,ψ). Let z ∈ ProblU and ψ(z) ≤ n. Denote T = T (z). Using
Lemma 4.2 obtain Mρ,ψ(T ) ≤ 2m. Since ψ(z) ≤ n, the inequality dimT ≤ n
holds. Using Lemma 4.3 we obtain N(T ) ≤ (kn)m. From the inequality (33)
it follows that ψ(Vρ,ψ(T )) ≤ 8m3 log2 n + 8m3 log2 k. Therefore H l,V

U,ψ(n) =
O(log2 n). From Theorem 4.3 it follows that H l

U,ψ(n) = Θ(log2 n). Taking
into account that H l

U,ψ(n) ≤ H l,V
U,ψ(n) we obtain that H l,V

U,ψ(n) = Θ(log2 n).
d) Let U be an infinite information system which does not satisfy the condition

of reduction relatively to ψ. From Theorem 4.3 it follows that H l
U,ψ(n) = n

for infinitely many natural n. Let n ∈ Dom(H l
U,ψ), z ∈ ProblU , ψ(z) ≤ n

and z = (ν, fi(1), . . . , fi(m)). Denote T = T (z). Using Corollary 4.1 we obtain
ψρ(T ) = ψl

U (z). Hence ψρ(T ) ≤ H l
U,ψ(n). From Theorem 3.1 it follows that

Mρ,ψ(T ) ≤ ψρ(T ). Therefore

Mρ,ψ(T ) ≤ H l
U,ψ(n) . (34)

Let us show that
log2 N(T ) ≤ (log2 k)H

l
U,ψ(n) . (35)

Let ν1 : Bm → IN be a mapping such that for any δ̄1, δ̄2 ∈ Bm from δ̄1 
= δ̄2
follows ν1(δ̄1) 
= ν1(δ̄2). Denote z1 = (ν1, fi(1), . . . , fi(m)) and T1 = T (z1).
Obviously, ψ(z1) ≤ n. Using Corollary 4.1 obtain ψρ(T1) ≤ H l

U,ψ(n). Ev-
idently, T1 is a diagnostic table. Using Corollary 3.1 obtain logk N(T ) ≤
ψρ(T1). Evidently, N(T ) = N(T1). Therefore logk N(T ) ≤ H l

U,ψ(n). From
the last inequality the inequality (35) follows. From (33)–(35) the inequality
ψ(Vρ,ψ(T ))≤(2 log2 k)(H l

U,ψ(n))3 follows. Therefore H l,V
U,ψ(n)=O(H l

U,ψ(n)3).
e) Let U be an infinite information system which does not satisfy the condition

of reduction relatively to ψ and ψ = h. Let n ∈ Dom(H l
U,ψ). From the

statement a) and Theorem 4.3 it follows that H l,V
U,ψ(n) = H l

U,ψ(n) = n. ��
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4.8 Algorithm of Decision Tree Optimization

Let U = (A,B, F ) be an enumerated information system, ρ = (F,B), the prob-
lem Ex(U) be solvable, and E be an algorithm solving the problem Ex(U). Let
ψ be a computable weight function for U . In this subsection we consider the al-
gorithm WEψ which for a given problem z ∈ ProblU constructs the decision tree
WEψ(z) with following properties: the decision tree WEψ(z) solves the problem
z, At(WEψ(z)) ⊆ At(z) and ψ(WEψ(z)) = ψl

U (z).
Describe the work of the algorithm WEψ . Let z ∈ ProblU .

Using algorithm IE from Sect. 4.6 we construct the decision table T (z). Next,
using algorithm Wρ,ψ from Sect. 3.5 we construct the decision tree Wρ,ψ(T (z))
for the table T (z). Then WEψ(z) = Wρ,ψ(T (z)).

Obviously, At(WEψ(z)) ⊆ At(z). From Theorem 3.12 follows ψ(WEψ(z)) =
ψρ(T (z)). Using Theorem 4.1 we conclude that the decision tree WEψ(z) solves
the problem z and ψ(WEψ(z)) = ψl

U (z).

Bounds on Complexity of Algorithm WEψ. Complexity of algorithm IE
which for a given problem z ∈ ProblU constructs the decision table T (z) was
investigated in Sect. 4.6. In this subsection we consider bounds on the number
of steps made by algorithmWρ,ψ in process of the tree Wρ,ψ(T (z)) construction.

For z ∈ ProblU we denote by SW,ψ(z) the number of steps which the algo-
rithm Wρ,ψ makes in process of the tree Wρ,ψ(T (z)) construction. The function
SW,ψ

U : IN \ {0} → IN is defined as follows:

SW,ψ
U (n) = max{SW,ψ(z) : z ∈ ProblU , dim z ≤ n} .

A compatible system of equations over U is called uncancellable if each proper
subsystem of this system is not equivalent to the system.

Theorem 4.11. Let U = (A,B, F ) be an enumerated information system for
which |B| = k, ρ = (F,B), the problem Ex(U) is solvable, and ψ be a computable
weight function for U . Then the following statements hold:

a) if the information system U satisfies the condition of reduction relatively to
h, and each compatible equation system over U has an equivalent subsystem
with at most r equations then SW,ψ

U (n) ≤ (nk)r + 2 for any natural n;
b) if the information system U does not satisfy the condition of reduction rela-

tively to h then SW,ψ
U (n) ≥ 2n + 1 for any natural n.

Proof. Let, for the definiteness, B = {0, . . . , k − 1}. Let n ∈ IN \ {0},m ≤ n
and z = (ν, f1, . . . , fm) ∈ ProblU . From Theorem 3.12 it follows that for deci-
sion table T (z) the algorithmWρ,ψ makes exactly |Sep(T (z))|+1 steps. One can
show that the value |Sep(T (z))| coincides with the number of pairwise nonequiv-
alent compatible subsystems of the system of equations {f1(x) = 0, . . . , fm(x) =
0, . . . , f1(x) = k − 1, . . . , fm(x) = k − 1} including the empty system (the set of
solutions of the empty system is equal to A).
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a) Let U satisfy the condition of reduction relatively to h, and each compat-
ible equation system over U have an equivalent subsystem with at most r
equations. Then |Sep(T (z))| ≤ mrkr + 1, and hence SW,ψ

U (n) ≤ (nk)r + 2.
b) Let U do not satisfy the condition of reduction. Then there exists an un-

cancellable system of equations over U with at least n equations. Evidently,
each subsystem of this system is uncancellable. Therefore there exists an un-
cancellable system over U with n equations. Denote this system by Δ. We
prove that every two different subsystems Δ1 and Δ2 of the system Δ are
nonequivalent. Assume the contrary. Then subsystems Δ \ (Δ1 \ Δ2) and
Δ \ (Δ2 \Δ1) are equivalent to Δ, and at least one of them is a proper sub-
system of Δ which is impossible. Let Δ = {f1(x) = δ1, . . . , fn(x) = δn}. Let
z = (ν, f1, . . . , fm) where ν : Bn → ZZ and ν(δ̄1) 
= ν(δ̄2) if δ̄1 
= δ̄2. Then
|Sep(T (z))| ≥ 2n. Hence SW,ψ

U (n) ≥ 2n + 1. ��

5 Global Approach to Investigation of Decision Trees

Global approach to investigation of decision trees considered in this section is
based on the assumption that any attributes from information system can be
used by decision trees solving a problem.

Remind basic notions defined in the previous section.
An information system U = (A,B, F ) consists of a set A (the universe) and

a set of attributes F which are defined on A and have values from finite set B.
In this section we will assume that different attributes from F (attributes with
different names) are different as functions.

A weight function ψ assigns a weight (a natural number) to each attribute.
This weight characterizes the complexity of attribute value computation.

The notion of a problem over the information system defines as follows. We
take finite number of attributes f1, . . . , fn from F . These attributes create a
partition of the set A into classes (for each class values of the attributes are
constant on elements from the class). These classes are numbered such that
different classes can have the same number. The number of a class is the decision
corresponding to elements of the class. For a given element a from A it is required
to recognize the number of a class which contains a. The weight of a problem is
the total weight of attributes from the problem description.

As algorithms for problem solving we consider decision trees which use any
attributes from the set F . As time complexity measure we consider weighted
depth of decision trees.

The global Shannon function corresponds to each pair (information system,
weight function) which characterizes the growth in the worst case of minimal
weighted depth of decision trees with the growth of problem weight.

The section consists of five subsections. In the first subsection global Shannon
functions for infinite information systems and depth are considered. In the second
subsection global Shannon functions for finite two-valued information systems
and depth are investigated. In the third subsection global Shannon functions
for infinite information systems and arbitrary weight functions are studied. In
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the fourth subsection relationships among three algorithmic problems are con-
sidered: the problem of compatibility of equation system and two problems of
decision tree global optimization (the problem of construction of globally opti-
mal decision tree and the problem of computation of globally optimal decision
tree complexity). In the fifth subsection all computable weight functions are de-
scribed for each of which for any enumerated information system the problem
of compatibility of equation system is solvable if and only if two problems of
decision tree global optimization are solvable.

5.1 Global Shannon Functions for Infinite Information Systems
and Depth

Let U = (A,B, F ) be an information system. For a problem z = (ν, f1, . . . , fn)
over U we denote by hg

U (z) the minimal depth of a decision tree over U which
solves the problem z. We will consider the relationships between the parameters
hg

U (z) and dim z = n. Recall that one can interpret the value dim z for the
problem z as the depth of the decision tree which solves the problem z in trivial
way by computing sequentially the values of the attributes f1, . . . , fn. We define
the function Hg

U,h : IN \ {0} → IN in the following way:

Hg
U,h(n) = max{hg

U (z) : z ∈ ProblU , dim z ≤ n}

for any n ∈ IN\{0}. The value Hg
U,h(n) is the unimprovable upper bound on the

value hg
U (z) for problems z ∈ ProblU such that dim z ≤ n. The function Hg

U,h

will be called the global Shannon function for the information system U and the
weight function h.

We will show that for an arbitrary information system U either Hg
U,h(n) =

O(1), or Hg
U,h(n) = Ω(log2 n) and Hg

U,h(n) = O((log2 n)1+ε) for any ε > 0, or
Hg

U,h(n) = n for any n ∈ IN \ {0}.
The first type of behavior (Hg

U,h(n) = O(1)) realizes only for finite in-
formation systems. The second type of behavior (Hg

U,h(n) = Ω(log2 n) and
Hg

U,h(n) = O((log2 n)1+ε)) is most interesting for us: for an arbitrary prob-
lem with large enough dimension the depth of the globally optimal decision tree
is essentially less than the depth of the trivial decision tree. The third type of
behavior (Hg

U,h(n) = n for each n ∈ IN \ {0}) is bad for us: for problems of
arbitrary dimension in the worst case the depth of the globally optimal decision
tree is equal to the depth of the trivial decision tree.

Now we consider the criterions of the global Shannon function Hg
U,h behav-

ior. Define the notion of I-dimension of information system U . A finite subset
{f1, . . . , fp} of the set F is called an I-set if there exists two-element subsets
B1, . . . , Bp of the set B such that for any δ1 ∈ B1, . . . , δp ∈ Bp the system of
equations

{f1(x) = δ1, . . . , fp(x) = δp} (36)

is compatible on the set A (has a solution from A). If for any natural p there
exists a subset of the set F , which cardinality is equal to p and which is an
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I-set, then we will say that the information system U has infinite I-dimension.
Otherwise, I-dimension of U is the maximal cardinality of a subset of F , which is
an I-set. Relationships between I-dimension and Vapnik-Chervonenkis dimension
were discussed in [47].

Now we consider the condition of decomposition for the information system
U . Let p ∈ IN. A nonempty subset D of the set A will be called (p, U)-set if
D coincides with the set of solutions on A of a system of the kind (36) where
f1, . . . , fp ∈ F and δ1, . . . , δp ∈ B (we admit that among the attributes f1, . . . , fp

there are identical ones).
We will say that the information system U satisfies the condition of decom-

position if there exist numbers m, t ∈ IN such that every (m + 1, U)-set is a
union of t sets each of which is (m,U)-set (we admit that among the considered
t sets there are identical ones). If the last statement holds we will say that the
information system U satisfies the condition of decomposition with parameters
m and t.
Theorem 5.1. Let U be an information system. Then the following statements
hold:

a) if U is a finite information system then Hg
U,h(n) = O(1);

b) if U is an infinite information system which has finite I-dimension and satis-
fies the condition of decomposition then Hg

U,h(n) = Ω(log2 n) and Hg
U,h(n) =

O((log2 n)1+ε) for any ε > 0;
c) if U is an infinite information system which has infinite I-dimension or does

not satisfy the condition of decomposition then Hg
U,h(n) = n for any n ∈

IN \ {0}.
In the following theorem bounds are considered in which instead of ε a func-

tion stands that decreases with the growth on n.
Theorem 5.2. Let U be an infinite information system which has finite I-
dimension and satisfies the condition of decomposition. Then there exists positive
constant c such that Hg

U,h(n) = O
(
(log2 n)

1+ c√
log2 log2 n

)
.

Now we consider an example.
Example 5.1. Let m, t ∈ IN. We denote by Pol(m) the set of all polynomials
which have integer coefficients and depend on variables x1, . . . , xm. We denote
by Pol(m, t) the set of all polynomials from Pol(m) such that the degree of each
polynomial is at most t. We define information systems U(IR,m) and U(IR,m, t)
as follows: U(IR,m) = (IRm, E, F (m)) and U(IR,m, t) = (IRm, E, F (m, t)) where
E = {−1, 0,+1}, F (m) = {sign(p) : p ∈ Pol(m)} and F (m, t) = {sign(p) : p ∈
Pol(m, t)}. One can prove that the system U(IR,m) has infinite I-dimension,
but the system U(IR,m, t) has finite I-dimension and satisfies the condition of
decomposition.

The proofs of the theorems are divided into a sequence of lemmas. Sub-
subsection “Special Lemmas” consists of lemmas connected with the study of
infinite information systems, which has finite I-dimension and satisfies the condi-
tion of decomposition, on the basis of notions of system saturation and covering
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of attributes. All the other lemmas are gathered into subsubsection “Common
Lemmas”.

Common Lemmas. Let U = (A,B, F ) be an information system, and f1, ..., fn

∈ F . Denote by NU (f1, . . . , fn) the number of n-tuples (δ1, . . . , δn) ∈ Bn for
which the system of equations

{f1(x) = δ1, . . . , fn(x) = δn}
is compatible on A. For an arbitrary natural n let

NU (n) = max{NU (f1, . . . , fn) : f1, . . . , fn ∈ F} .

The next statement follows immediately from Theorem 4.7.

Lemma 5.1. Let U = (A,B, F ) be an information system. Then the following
statements hold:

a) if the system U has finite I-dimension, which is at most v, then NU (n) ≤
(|B|2 n)v for any natural n;

b) if the system U has infinite I-dimension then NU (n) ≥ 2n for any natural n.

Lemma 5.2. Let U = (A,B, F ) be an infinite information system with finite
I-dimension. Then NU (n) ≥ n+ 1 for any natural n.

Proof. It is clear that NU (n) ≥ 2. Let us show that NU (n+ 1) ≥ NU (n) + 1 for
any natural n. It is clear that NU (n + 1) ≥ NU (n) for any natural n. Assume
that there exists natural n such that NU (n + 1) = NU (n). Using this equality
one can prove that F is a finite set which is impossible. Therefore NU (n) ≥ n+1
for any natural n. ��
Lemma 5.3. Let U = (A,B, F ) be an information system and n be a natural
number. Then there exists a problem z over U with dim z = n such that h(Γ ) ≥
log|B|NU (n) for any decision tree Γ over U which solves the problem z.

Proof. Let f1, . . . , fn be such attributes from F that NU (f1, . . . , fn) = NU (n).
Let ν : Bn → IN and ν(δ1) 
= ν(δ2) if δ1 
= δ2. Consider the problem z =
(ν, f1, . . . , fn). Evidently, there exist elements a1, . . . , aNU (n) ∈ A such that the
values z(a1), . . . , z(aNU (n)) are mutually distinct.

Let Γ be a decision tree over U which solves the problem z. It is clear
that the number of terminal nodes in Γ is at least NU (n). It is not difficult
to show that the number of terminal nodes in Γ is at most |B|h(Γ ). Therefore
h(Γ ) ≥ log|B|NU (n). ��
Lemma 5.4. Let U = (A,B, F ) be an infinite information system with finite I-
dimension. Then for any natural n there exists a problem z over U with dim z =
n such that for each decision tree Γ over U , which solves the problem z, the
inequality h(Γ ) ≥ log|B|(n + 1) holds.

Proof. The statement of the lemma follows from Lemmas 5.2 and 5.3. ��
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Lemma 5.5. Let U = (A,B, F ) be an infinite information system for which
there exists natural m such that Hg

U,h(m+ 1) ≤ m. Then Hg
U,h((m + 1)t) ≤ mt

for any natural t.

Proof. By induction on t we will show that Hg
U,h((m + 1)t) ≤ mt for any t ∈

IN \ {0}. Evidently, this inequality holds if t = 1. Assume that the considered
inequality holds for certain t ≥ 1. Let us prove that Hg

U,h((m+ 1)t+1) ≤ mt+1.
Using the inequality Hg

U,h(m + 1) ≤ m one can show that for any problem
z ∈ ProblU with dim z = m+ 1 there exists a decision tree Γz over U such that
the decision tree Γz solves the problem z and every complete path in Γz has
exactly m working nodes.

Let z = (ν, f1, . . . , f(m+1)t+1) ∈ ProblU . For i = 1, . . . , (m+ 1)t denote zi =
(νi, f(m+1)(i−1)+1, . . . , f(m+1)(i−1)+m+1) where νi : Bm+1 → IN and νi(δ̄1) 
=
νi(δ̄2) for any δ̄1, δ̄2 ∈ Bm+1 such that δ̄1 
= δ̄2. Let us describe the work of
a decision tree Γ over U which simulates parallel work of the decision trees
Γz1 , . . . , Γz(m+1)t

on arbitrary element a ∈ A and solves the problem z. Let
j ∈ {1, . . . ,m}. Let at the j-th step decision trees Γ1, . . . , Γ(m+1)t compute
values on the element a of the attributes g1, . . . , g(m+1)t respectively. According
to the inductive hypothesis, Hg

U,h((m + 1)t) ≤ mt. Using this inequality we
can easily show that there exists a decision tree Γ ′ over U which depth is at
most mt and which for a given b ∈ A recognizes the values g1(b), . . . , g(m+1)t(b).
When the decision tree Γ simulates the j-th step of work of the decision trees
Γz1 , . . . , Γz(m+1)t

on the element a, it works like the decision tree Γ ′ on the
element a. Evidently, the results of the work of decision trees Γz1 , . . . , Γz(m+1)t

on the element a are sufficient to recognize the value z(a) which will be attached
to the corresponding terminal node of the decision tree Γ . Thus, the decision
tree Γ over U solves the problem z, and the depth of Γ is at most m ·mt = mt+1.
Therefore hg

U (z) ≤ mt+1. Since hg
U (z) ≤ mt+1 for an arbitrary problem z from

ProblU with dim z = (m + 1)t+1, one can show that hg
U (z) ≤ mt+1 for any

problem z ∈ ProblU with dim z ≤ (m + 1)t+1. Therefore Hg
U,h((m + 1)t+1) ≤

mt+1. ��
Lemma 5.6. Let U = (A,B, F ) be an infinite information system for which
there exists natural m such that Hg

U,h(m+1) ≤ m. Then U has finite I-dimension
and satisfies the condition of decomposition.

Proof. Let us show that U has finite I-dimension. Assume the contrary. Using
Lemmas 5.1 and 5.3 we conclude that for any natural n there exists a problem z
over U with dim z = n such that h(Γ ) ≥ log|B| 2n = n

log2|B| for any decision tree

Γ over U which solves z. Therefore Hg
U,h((m+1)t) ≥ (m+1)t

log2|B| for any natural t. By
Lemma 5.5, Hg

U,h((m+1)t) ≤ mt for any natural t. It is clear that for sufficiently

large t the inequality mt < (m+1)t

log2|B| holds, which is impossible. Therefore the
information system U has finite I-dimension.

Let us show that U satisfies the condition of decomposition with parameters
m and |B|m. Let D be an arbitrary (m+ 1, U)-set. We show that D is a union
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of |B|m sets each of which is an (m,U)-set. Let D be the set of solutions on A
of the system {f1(x) = δ1, . . . , fm+1(x) = δm+1} where f1, . . . , fm+1 ∈ F and
δ1, . . . , δm+1 ∈ B. Let ν : Bm+1 → IN and ν(σ1) 
= ν(σ2) if σ1 
= σ2. Consider
the problem z = (ν, f1, . . . , fm+1). By assumption, there exists a decision tree
Γ over U which solves this problem and for which h(Γ ) < m + 1. Denote by
Π the set of all complete paths of Γ in which terminal nodes are labelled by
the number ν(δ1, . . . , δm+1). Using definition of decision tree, which solves the
problem z, one can show that D is the union of the sets of solutions on A of
equation systems SolU (π(ξ)), ξ ∈ Π . It is clear that each system SolU (π(ξ))
has at most m equations. One can show that |Π | ≤ |B|m. Using these facts we
conclude that D is the union of |B|m sets each of which is an (m,U)-set. Hence
U satisfies the condition of decomposition with parameters m and |B|m. ��
Lemma 5.7. Let U = (A,B, F ) be a finite information system. Then Hg

U,h(n) =
O(1).

Proof. It is clear that hg
U (z) ≤ |F | for any problem z over U . Hence Hg

U,h(n) =
O(1). ��

Special Lemmas. Everywhere in this subsubsection we assume that some in-
finite information system U , which has finite I-dimension and satisfies the con-
dition of decomposition, is fixed. Let U = (A,B, F ) and U satisfy the condition
of decomposition with parameters m and t. It is not difficult to show that if U
satisfies the condition of decomposition with parameters m and t then U satisfies
the condition of decomposition with parameters m+ 1 and t. Later we assume
that m ≥ 2. Choose a natural v such that v ≥ m and I-dimension of U is at
most v. Set r = max{v + 1,m+ t+ 1}. Denote k = |B|.
Notions of Saturation and Covering. Let Φ be a nonempty finite subset of the set
F and Φ = {f1, . . . , fp}. Denote by Σr(A,Φ) the set of all p-tuples (σ1, . . . , σp) ∈
Bp such that all subsystems of equation system

{f1(x) = σ1, . . . , fp(x) = σp}
that contain at most r equations are compatible on A. Define values of attributes
from Φ on elements of the set Σr(A,Φ). Let σ = (σ1, . . . , σp) ∈ Σr(A,Φ). Then
f1(σ) = σ1, . . . , fp(σ) = σp. The information system W = (Σr(A,Φ), B, Φ) will
be called r-saturation of the information system V = (A,B,Φ).

Let Y ∈ {V,W}, z be a problem over Y , and Γ be a decision tree over Y .
We will say about z and Γ that there are a problem and a decision tree with
attributes from Φ. With a view to distinguishing of information systems V and
W we will say that Γ solves z on the set A (for the system V ) or Γ solves z on
the set Σr(A,Φ) (for the system W ).

An arbitrary equation system of the kind {fi1(x) = δ1, . . . , fid
(x) = δd},

where fi1 , . . . , fid
∈ Φ and δ1, . . . , δd ∈ B, will be called d-system of equations

with attributes from Φ.
Let f1, . . . , fn ∈ F and d be a natural number. Let Φ1, Φ2 be nonempty finite

subsets of the set F , Φ1 ⊆ Φ2 and C be a nonempty set of d-systems of equations
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with attributes from Φ1. The pair (Φ1, C) will be called d-covering of attributes
f1, . . . , fn on the set Σr(A,Φ2) if the following conditions hold:

a) f1, . . . , fn ∈ Φ1;
b) each element from Σr(A,Φ2) is a solution of an equation system from C;
c) for each system of equations S from C there exist elements δ1, . . . , δn ∈ B for

which the set of solutions of S on Σr(A,Φ2) is a subset of the set of solutions
on Σr(A,Φ2) of the equation system {f1(x) = δ1, . . . , fn(x) = δn}.

Properties of Saturations

Lemma 5.8. Let Φ = {f1, . . . , fp} be a nonempty finite subset of the set F , d
be a natural number and S be a d-system of equations with attributes from Φ.
Then

a) if the system S is compatible on A then S is compatible on Σr(A,Φ);
b) if d ≤ r then the system S is compatible on A if and only if S is compatible

on Σr(A,Φ).

Proof. a). Let S be compatible on A and a be an element of A which is a solution
of S. It is clear that σ(a) = (f1(a), . . . , fp(a)) belongs to Σr(A,Φ) and σ(a)
is a solution of S.

b). Let d ≤ r, S be compatible on Σr(A,Φ), and σ = (σ1, . . . , σp) be an ele-
ment of Σr(A,Φ) which is a solution of S. Consider the system of equations
{f1(x) = σ1, . . . , fp(x) = σp}. By definition, each subsystem of this system
with at most r equations is compatible on A. It is clear that S is a subsystem
of the considered system, and contains at most r equations. Therefore S is
compatible on A. ��

Lemma 5.9. Let Φ1 and Φ2 be nonempty finite subsets of the set F , Φ1 ⊆ Φ2

and S be a system of equations with attributes from Φ1. If the system S is
incompatible on the set Σr(A,Φ1) then S is incompatible on the set Σr(A,Φ2).

Proof. Let, for the definiteness, Φ1 = {f1, . . . , fp}, Φ2 = {f1, . . . , fq} and S =
{f1(x) = δ1, . . . , fn(x) = δn}, where n ≤ p ≤ q. Let S be incompatible on
Σr(A,Φ1). Assume that S is compatible on Σr(A,Φ2). Then there exists q-tuple
σ = (σ1, . . . , σq) ∈ Σr(A,Φ2) such that σ1 = δ1, . . . , σn = δn. By definition, all
subsystems of the system of equations

{f1(x) = σ1, . . . , fq(x) = σq}

with at most r equations are compatible on A. Therefore all subsystems of the
system of equations

{f1(x) = σ1, . . . , fp(x) = σp}
with at most r equations are compatible on A. Hence the p-tuple (σ1, . . . , σp)
belongs to the set Σr(A,Φ1), and the system S is compatible on Σr(A,Φ1) which
is impossible. Consequently, S is incompatible on Σr(A,Φ2). ��
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Lemma 5.10. Let Φ be a nonempty finite subset of the set F . Then I-dimension
of the information system W = (Σr(A,Φ), B, Φ) is at most v.

Proof. Assume that I-dimension of the information system W is at least v + 1.
Then there exist attributes f1, ..., fv+1 ∈ Φ and two-element subsets B1, ..., Bv+1

of the set B such that for any δ1 ∈ B1, . . . , δv+1 ∈ Bv+1 the system of equations

{f1(x) = δ1, . . . , fv+1(x) = δv+1}
is compatible on the set Σr(A,Φ). Taking into account that v+1 ≤ r, and using
Lemma 5.8 we conclude that the considered equation system is compatible on A.
Consequently, I-dimension of the information system U is at least v+1, which is
impossible. Therefore I-dimension of the information system W is at most v. ��
Lemma 5.11. Let Φ be a nonempty finite subset of the set F . Then |Σr(A,Φ)| ≤
(k2 |Φ|)v.

Proof. Let Φ = {f1, . . . , fp} and σ = (σ1, . . . , σp) ∈ Bp. Let us show that σ ∈
Σr(A,Φ) if and only if the system of equations

S = {f1(x) = σ1, . . . , fp(x) = σp} (37)

is compatible on Σr(A,Φ). Let σ ∈ Σr(A,Φ). Then f1(σ) = σ1, . . . , fp(σ) = σp.
Therefore the system S is compatible on the set Σr(A,Φ). Let now the system S
be compatible on the setΣr(A,Φ) and δ = (δ1, . . . , δp) be a p-tuple fromΣr(A,Φ)
which is a solution of S. Then δ1 = σ1, . . . , δp = σp. Therefore σ ∈ Σr(A,Φ).

Using Lemma 5.10 we conclude that I-dimension of the information system
(Σr(A,Φ), B, Φ) is at most v. From here and from Lemma 5.1 follows that the
number of systems of the kind (37), which are compatible on the set Σr(A,Φ),
is at most (k2p)v. Therefore |Σr(A,Φ)| ≤ (k2 |Φ|)v. ��
Lemma 5.12. Let Φ be a nonempty finite subset of the set F , S, S1, . . . , St be
equation systems with attributes from Φ which are compatible on A, S contain
m + 1 equations, each of systems S1, . . . , St contain m equations, and the set
of solutions on A of the system S coincide with the union of sets of solutions
on A of systems S1, . . . , St. Then the systems S, S1, . . . , St are compatible on
Σr(A,Φ), and the set of solutions on Σr(A,Φ) of the system S coincides with
the union of sets of solutions on Σr(A,Φ) of systems S1, . . . , St.

Proof. Using Lemma 5.8 and the inequality r > m+1 we conclude that systems
of equations S, S1, . . . , St are compatible on Σr(A,Φ). Let D ∈ {A,Σr(A,Φ)}
and P (D), P1(D), . . . , Pt(D) be sets of solutions on D of systems S, S1, . . . , St.
Let, for the definiteness, S = {f1(x) = δ1, . . . , fm+1(x) = δm+1} and for i =
1, . . . , t let Si = {fi1(x) = δi1, . . . , fim(x) = δim}.

It is not difficult to show that the condition P (D) ⊆ P1(D) ∪ . . . ∪ Pt(D) is
equivalent to the following condition: each system of equations of the kind

S ∪ {f1j1(x) = σ1, . . . , ftjt(x) = σt} , (38)

where ji ∈ {1, . . . ,m} and σi ∈ B \ {δiji} for i = 1, . . . , t, is incompatible on D.
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It is not difficult to show that the condition P1(D) ∪ . . . ∪ Pt(D) ⊆ P (D) is
equivalent to the following condition: each system of equations of the kind

Si ∪ {fj(x) = σ} , (39)

where i ∈ {1, . . . , t}, j ∈ {1, . . . ,m+ 1} and σ ∈ B \ {δj}, is incompatible on D.
By assumption, P (A) = P1(A)∪. . .∪Pt(A). Therefore all systems of equations

of the kind (38) and (39) are incompatible on A. Each of these systems contains
at most m+ t+ 1 equations. Taking into account that m+ t+ 1 ≤ r and using
Lemma 5.8 we conclude that all systems of equations of the kind (38) and (39)
are incompatible on Σr(A,Φ). Therefore P (Σr(A,Φ)) = P1(Σr(A,Φ)) ∪ . . . ∪
Pt(Σr(A,Φ)). ��
Lemma 5.13. Let Φ be a nonempty finite subset of the set F , z be a problem
over U with attributes from Φ, and Γ be a decision tree over U with attributes
from Φ which solves z on the set Σr(A,Φ). Then Γ solves z on the set A.

Proof. Let Φ = {f1, . . . , fp} and z = (ν, f1, . . . , fn). For an arbitrary a ∈
A denote σ(a) = (f1(a), . . . , fp(a)). Since the system of equations {f1(x) =
f1(a), . . . , fp(x) = fp(a)} is compatible on A, the p-tuple σ(a) belongs to the
set Σr(A,Φ). Since f1, . . . , fn ∈ Φ, the equality z(a) = z(σ(a)) holds. Let ξ be a
complete path in the decision tree Γ . Since Γ is a decision tree with attributes
from Φ, the element a is a solution of the equation system SolU (π(ξ)) if and only
if the element σ(a) is a solution of the system SolU (π(ξ)). Taking into account
that Γ solves z on Σr(A,Φ) we conclude that there exists a complete path ξ in
Γ such that σ(a) is a solution of the system SolU (π(ξ)), and the terminal node
of ξ is labelled by the number z(σ(a)). Therefore there exists a complete path ξ
in Γ such that a is a solution of the system SolU (π(ξ)), and the terminal node
of ξ is labelled by the number z(a). Taking into account that a is an arbitrary
element from the set A we obtain Γ solves the problem z on A. ��
Properties of Coverings

Lemma 5.14. Let Φ1 and Φ2 be nonempty finite subsets of the set F , Φ1 ⊆ Φ2,
d be a natural number, C be a nonempty set of d-systems of equations with
attributes from Φ1, f1, . . . , fn ∈ F , and the pair (Φ1, C) be a d-covering of at-
tributes f1, . . . , fn on the set Σr(A,Φ1). Then the pair (Φ1, C) is a d-covering of
attributes f1, . . . , fn on the set Σr(A,Φ2).

Proof. Since (Φ1, C) is a d-covering of attributes f1, . . . , fn on the set Σr(A,Φ1)
and Φ1 ⊆ Φ2, we have f1, . . . , fn ∈ Φ2. Let C = {S1, . . . , Sw} and for i = 1, . . . , w
let Si = {fi1(x) = δi1, . . . , fid(x) = δid}.

Let q ∈ {1, 2}. It is not difficult to show that any element from Σr(A,Φq) is
a solution of some system from C if and only if each system of equations of the
kind

{f1j1(x) = σ1, . . . , fwjw(x) = σw} , (40)

where ji ∈ {1, . . . , d} and σi ∈ B \ {δiji} for i = 1, . . . , w, is incompatible
on Σr(A,Φq). Since the pair (Φ1, C) is a d-covering of attributes f1, . . . , fn on
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the set Σr(A,Φ1), any element from Σr(A,Φ1) is a solution of some system
from C. Therefore all systems of the kind (40) are incompatible on Σr(A,Φ1).
Using Lemma 5.9 we conclude that all systems of the kind (40) are incompatible
on Σr(A,Φ2). Hence any element from Σr(A,Φ2) is a solution of some system
from C.

Consider an arbitrary system of equations Si from C. Since the pair (Φ1, C)
is a d-covering of attributes f1, . . . , fn on the set Σr(A,Φ1), there exist elements
δ1, . . . , δn ∈ B such that the set of solutions on Σr(A,Φ1) of the system Si

is a subset of the set of solutions on Σr(A,Φ1) of the system S = {f1(x) =
δ1, . . . , fn(x) = δn}.

Let q ∈ {1, 2}. We denote by Pi(q) and P (q) the sets of solutions on Σr(A,Φq)
of systems Si and S respectively. It is not difficult to show that Pi(q) ⊆ P (q) if
and only if each system of equations of the kind

Si ∪ {fj(x) = σ} (41)

where j ∈ {1, . . . , n} and σ ∈ B \ {δj} is incompatible on Σr(A,Φq). Since
Pi(1) ⊆ P (1), all systems of the kind (41) are incompatible on Σr(A,Φ1). Using
Lemma 5.9 we conclude that all systems of the kind (41) are incompatible on
Σr(A,Φ2). Therefore Pi(2) ⊆ P (2).

Thus, the pair (Φ1, C) is a d-covering of attributes f1, . . . , fn on the set
Σr(A,Φ2). ��
Lemma 5.15. Let Φ be a nonempty finite subset of the set F , C be a nonempty
set of m-systems of equations with attributes from Φ, z = (ν, f1, . . . , fn) be a
problem over U , and (Φ,C) be an m-covering of attributes f1, . . . , fn on the set
Σr(A,Φ). Then there exists a decision tree Γ over U with attributes from Φ which
solves the problem z on the set Σr(A,Φ) and for which h(Γ ) ≤ rv log2(k2 |Φ|).
Proof. Let, for the definiteness, Φ = {f1, ..., fp}, where p ≥ n. Let σ = (σ1, ..., σp)
∈ Σr(A,Φ). Then z(σ) = ν(σ1, . . . , σn). If the function z is constant on Σr(A,Φ)
then in the capacity of Γ we can take the decision tree with one node which is
labelled by the value of z on p-tuples from Σr(A,Φ). It is clear that Γ solves
the problem z on the set Σr(A,Φ) and h(Γ ) = 0. So for the considered case the
statement of the lemma is true.

Let the function z be not constant on the set Σr(A,Φ). Consider a decision
tree Γ with attributes from Φ which solves z on the set Σr(A,Φ). In order to
define Γ we describe its work on an arbitrary p-tuple b from Σr(A,Φ).

Define a linear ordering on the set B. For i ∈ {1, . . . , p} and δ ∈ B we denote
by N(i, δ) the number of p-tuples from Σr(A,Φ) which in the i-th digit have the
element δ. For i = 1, . . . , p we denote by δi the minimal element from the set B
such that N(i, δi) = max{N(i, δ) : δ ∈ B}. Denote δ = (δ1, . . . , δp).

First, we consider the case when δ ∈ Σr(A,Φ). Since (Φ,C) is an m-covering
of attributes f1, . . . , fn on the set Σr(A,Φ), there exists an equation system S ∈
C such that δ is a solution of this system, and there exist elements γ1, . . . , γn ∈ B
for which the set of solutions on Σr(A,Φ) of the system S is a subset of the set
of solutions on Σr(A,Φ) of the system {f1(x) = γ1, . . . , fn(x) = γn}. It is clear
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that the function z is constant on the set of solutions on Σr(A,Φ) of last system.
Therefore the function z is constant on the set of solutions on Σr(A,Φ) of the
system S.

Let S = {fi1(x) = σ1, . . . , fim(x) = σm}. It is clear that σ1 = δi1 , . . . , σm =
δim . In the considered case the work of described decision tree Γ on the p-tuple
b is beginning with the computation of values of attributes fi1 , . . . , fim on b. As
a result the p-tuple b will be localized in the set P of solutions on Σr(A,Φ) of
the equation system S′ = {fi1(x) = fi1(b), . . . , fim(x) = fim(b)}.

If fi1(b) = δi1 , . . . , fim(b) = δim then S′ coincides with S, and the function z
is constant on P . So, we know the value z(b).

Let fij (b) 
= δij for some j ∈ {1, . . . ,m}. It is clear that in this case the
cardinality of the set P is at most one-half of the cardinality of the set Σr(A,Φ).

Consider now the case when δ /∈ Σr(A,Φ). In this case the system of equations
{f1(x) = δ1, . . . , fp(x) = δp} has a subsystem with r equations S = {fi1(x) =
δi1 , . . . , fir(x) = δir} which is incompatible on A (we admit that among the
equations fi1(x) = δi1 , . . . , fir(x) = δir there are identical ones). Using Lemma
5.8 we conclude that S is incompatible on Σr(A,Φ). In the considered case
the work of described decision tree Γ on the p-tuple b is beginning with the
computation of values of attributes fi1 , . . . , fir on b. As a result the p-tuple b
will be localized in the set P of solutions on Σr(A,Φ) of the equation system
S′ = {fi1(x) = fi1(b), . . . , fir (x) = fir(b)}. Since S is incompatible on Σr(A,Φ),
there exists j ∈ {1, . . . ,m} for which fij (b) 
= δij . Therefore the cardinality of
the set P is at most one-half of the cardinality of the set Σr(A,Φ).

Later the tree Γ works similarly, but in the definition of the value N(i, δ)
instead of the set Σr(A,Φ) we consider its subset P in which the p-tuple b is
localized. The process described above will be called a big step of decision tree
Γ work. During a big step we compute values of at most r attributes (note that
m < r). As a result of a big step we either recognize the value z(b) and finish
the work of Γ , or reduce the cardinality of a set, in which b is localized, in at
least 2 times.

Let during the work on the p-tuple b the decision tree Γ make q big steps.
After the big step with the number q−1 we obtain a set Q in which b is localized.
Since we must make additional big step in the order to recognize the value z(b),
|Q| ≥ 2. It is clear that |Q| ≤ |Σr(A,Φ)|

2q−1 . Therefore 2q ≤ |Σr(A,Φ)| and q ≤
log2 |Σr(A,Φ)|. Taking into account that during each big step we compute values
of at most r attributes, and b is an arbitrary p-tuple from Σr(A,Φ) we obtain
h(Γ ) ≤ r log2 |Σr(A,Φ)|. From Lemma 5.11 follows that |Σr(A,Φ)| ≤ (k2 |Φ|)v.
Therefore h(Γ ) ≤ rv log2(k

2 |Φ|). ��
Construction of Coverings

Lemma 5.16. If n ≤ m then for any f1, . . . , fn ∈ F there exist an n-covering
(Φ,C1) of attributes f1, . . . , fn on Σr(A,Φ) and an m-covering (Φ,C2) of at-
tributes f1, . . . , fn on Σr(A,Φ) such that |Φ| = n and |C1| = |C2| ≤ (k2n)v.

Proof. Set Φ = {f1, . . . , fn}. Denote by C1 the set of all compatible on Σr(A,Φ)
systems of equations of the kind {f1(x) = δ1, ..., fn(x) = δn} where δ1, ..., δn ∈ B.
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If n = m then C2 = C1. Let n < m. Then in each system from C1 we re-
peat the last equation m − n times. We denote by C2 the obtained family of
systems of equations. One can show that the pair (Φ,C1) is an n-covering of
attributes f1, . . . , fn on Σr(A,Φ), and the pair (Φ,C2) is an m-covering of at-
tributes f1, . . . , fn on Σr(A,Φ). It is clear that |Φ| = n. From Lemma 5.10 follows
that I-dimension of the information system (Σr(A,Φ), B, Φ) is at most v. Using
Lemma 5.1 we obtain |C1| = |C2| ≤ (k2n)v. ��
Lemma 5.17. For any f1, . . . , fm+1 ∈ F there exists an m-covering (Φ,C) of
attributes f1, . . . , fm+1 on Σr(A,Φ) such that |Φ| ≤ k2v(m + 1)v+1t and |C| ≤
k2v(m+ 1)vt.

Proof. Denote by D the set of all compatible on A equation systems of the
kind {f1(x) = δ1, . . . , fm+1(x) = δm+1} where δ1, . . . , δm+1 ∈ B. Let D =
{S1, . . . , Sp}. Let i ∈ {1, . . . , p}. Since the information system U satisfies the
condition of decomposition with parameters m and t, there exist compatible on
A m-systems of equations Si1, . . . , Sit with attributes from F such that the set
of solutions on A of the system Si coincides with the union of sets of solutions
on A of systems Si1, . . . , Sit. Denote C =

⋃p
i=1{Si1, . . . , Sit}. We denote by

Φ the union of the set {f1, . . . , fm+1} and the set of all attributes which are
contained in equations from systems belonging to C. Taking into account that
I-dimension of the information system U is at most v and using Lemma 5.1 we
obtain p ≤ k2v(m+1)v. Therefore |C| ≤ k2v(m+1)vt and |Φ| ≤ k2v(m+1)vtm+
m+ 1 ≤ k2v(m+ 1)v+1t.

Let us show that the pair (Φ,C) is anm-covering of attributes f1, . . . , fm+1 on
Σr(A,Φ). It is clear that m+1 ≤ r. From Lemma 5.8 follows that the set of com-
patible on Σr(A,Φ) systems of equations of the kind {f1(x) = δ1, . . . , fm+1(x) =
δm+1}, where δ1, . . . , δm+1 ∈ B, coincides with D. Let i ∈ {1, . . . , p}. Using
Lemma 5.12 we conclude that the set of solutions on Σr(A,Φ) of equation sys-
tem Si coincides with the union of sets of solutions on Σr(A,Φ) of systems
Si1, . . . , Sit. Let σ ∈ Σr(A,Φ). Then, evidently, σ is a solution of a system Sij

for some i ∈ {1, . . . , p} and j ∈ {1, . . . , t}. It is clear that the set of solutions on
Σr(A,Φ) of the system Sij is a subset of the set of solutions on Σr(A,Φ) of the
system Si. Therefore the pair (Φ,C) is an m-covering of attributes f1, . . . , fm+1

on Σr(A,Φ). ��
Lemma 5.18. Let n ≥ m+1, n = (m+1)p+q, 0 ≤ q ≤ m, and f1, . . . , fn ∈ F .
Then there exists an (mp+q)-covering (Φ,C) of attributes f1, . . . , fn on Σr(A,Φ)
such that |Φ| ≤ ntk2v(m+ 1)v+1 and |C| ≤ nvtvk2v(v+1)(m+ 1)v(v+1).

Proof. Let, for the definiteness, q > 0. The case q = 0 can be considered in the
same way. Divide the sequence f1, . . . , fn into p blocks of the lengthm+1 and one
block of the length q. From Lemma 5.17 follows that for i = 1, . . . , p there exists
an m-covering (Φi, Ci) of i-th block on Σr(A,Φi) such that |Φi| ≤ k2v(m+1)v+1t.
From Lemma 5.16 follows that there exists an q-covering (Φp+1, Cp+1) of (p+1)-
th block on Σr(A,Φp+1) such that |Φp+1| ≤ q. Set Φ = Φ1∪ . . .∪Φp∪Φp+1. Then
|Φ| ≤ pk2v(m+ 1)v+1t+ q ≤ nk2v(m+ 1)v+1t. Using Lemma 5.11 we obtain
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|Σr(A,Φ)| ≤ (k2 |Φ|)v ≤ k2vnvk2v2
(m+ 1)v(v+1)tv

(42)
≤ nvtvk2v(v+1)(m+ 1)v(v+1) .

It is clear that f1, . . . , fn ∈ Φ. Using Lemma 5.14 we conclude that for i =
1, . . . , p the pair (Φi, Ci) is an m-covering of i-th block on Σr(A,Φ), and the
pair (Φp+1, Cp+1) is an q-covering of (p + 1)-th block on Σr(A,Φ). Let σ ∈
Σr(A,Φ). Denote S = {f1(x) = f1(σ), . . . , fn(x) = fn(σ)}. Divide the system
of equations S into p + 1 parts S1, . . . , Sp+1 according to the partition of the
sequence f1, . . . , fn into blocks. Denote by P the set of solutions on Σr(A,Φ) of
the system S. For i = 1, . . . , p+ 1 denote by Pi the set of solutions on Σr(A,Φ)
of the system Si. It is clear that for i = 1, . . . , p+ 1 the tuple σ is a solution of
the system Si. Also, it is clear that S = S1 ∪ . . .∪Sp+1 and P = P1 ∩ . . .∩Pp+1.
Since for i = 1, . . . , p + 1 the pair (Φi, Ci) is an m-covering or an q-covering of
i-th block on Σr(A,Φ), there exists a system of equations S′

i ∈ Ci such that σ
is a solution of S′

i. Denote by P ′
i the set of solutions on Σr(A,Φ) of the system

S′
i. Using the definition of covering and the fact that σ ∈ P ′

i and σ ∈ Pi it is not
difficult to prove that P ′

i ⊆ Pi. Denote Sσ = S′
1∪ . . .∪S′

p+1. Denote by P ′ the set
of solutions on Σr(A,Φ) of the system Sσ. It is clear that P ′ = P ′

1 ∩ . . . ∩ P ′
p+1

and σ ∈ P ′. Taking into account that P = P1 ∩ . . . ∩ Pp+1 and P ′
i ⊆ Pi for

i = 1, . . . , p + 1 we obtain P ′ ⊆ P . Evidently, the system Sσ contains mp + q
equations. Denote C = {Sσ : σ ∈ Σr(A,Φ)}. It is clear that the pair (Φ,C) is
an (mp+ q)-covering of attributes f1, . . . , fn on Σr(A,Φ). Using (42) we obtain
|C| ≤ nvtvk2v(v+1)(m+ 1)v(v+1). ��
Lemma 5.19. Let f1, . . . , fn ∈ F . Then there exists an m-covering (Φ,C) of at-
tributes f1, . . . , fn on Σr(A,Φ) such that |Φ| ≤ n2(v+1)2 ln n(k2t(m+1))2(v+1)3 ln n

and |C| ≤ (k2 |Φ|)v.

Proof. We prove the statement of the lemma by induction on n. If n ≤ m then
by Lemma 5.16 the statement of the lemma is true. Let this statement be true
for all tuples with at most n − 1 attributes, n − 1 ≥ m. Let us show that the
statement of the lemma is true for any tuple with n attributes.

Let f1, . . . , fn ∈ F , n ≥ m + 1 and n = (m + 1)p + q where 0 ≤ q ≤ m.
Using Lemma 5.18 we obtain that there exists an (mp + q)-covering (Φ′, C′)
of attributes f1, . . . , fn on Σr(A,Φ′) such that |Φ′| ≤ ntk2v(m + 1)v+1 and
|C′| ≤ nvtvk2v(v+1)(m + 1)v(v+1). Denote d = mp + q. Let S ∈ C′ and S =
{fi1(x) = δ1, . . . , fid

(x) = δd}. Since n ≥ m+1, d < n. By inductive hypothesis,
there exists an m-covering (Φ(S), C(S)) of attributes fi1 , . . . , fid

on Σr(A,Φ(S))
such that |Φ(S)| ≤ d2(v+1)2 ln d(k2t(m+ 1))2(v+1)3 ln d. Set Φ = Φ′ ∪⋃S∈C′ Φ(S).
Denote c = 2m

2m+1 . It is not difficult to show that d ≤ cn. Therefore

|Φ| ≤ ntk2v(m+ 1)v+1

+ nvtvk2v(v+1)(m+ 1)v(v+1)d2(v+1)2 ln d(k2t(m+ 1))2(v+1)3 ln d

≤ nv(k2t(m+ 1))(v+1)2d2(v+1)2 ln d(k2t(m+ 1))2(v+1)3 ln d

≤ nv+2(v+1)2 ln cn(k2t(m+ 1))(v+1)2+2(v+1)3 ln cn .
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It is known that for any natural w the inequality ln(1 + 1
w ) > 1

w+1 holds.
Therefore ln(1

c ) = ln(1 + 1
2m ) > 1

2m+1 . Taking into account that v ≥ m we
obtain ln(1

c ) > 1
2m+1 > 1

2(m+1) ≥ 1
2(v+1) . Therefore ln c < − 1

2(v+1) . From this
inequality follows that

v + 2(v + 1)2 ln cn < v + 2(v + 1)2 lnn− (v + 1) < 2(v + 1)2 lnn

and

(v + 1)2 + 2(v + 1)3 ln cn < (v + 1)2 + 2(v + 1)3 lnn− (v + 1)2 = 2(v + 1)3 lnn .

Therefore |Φ| ≤ n2(v+1)2 lnn(k2t(m+ 1))2(v+1)3 ln n.
Let σ ∈ Σr(A,Φ). Denote S0 = {f1(x) = f1(σ), . . . , fn(x) = fn(σ)}. It is

clear that σ is a solution of the system S0. Using Lemma 5.14 we conclude that
the pair (Φ′, C′) is a d-covering of attributes f1, . . . , fn on Σr(A,Φ). Therefore
there exists an equation system S ∈ C′ such that σ is a solution of S. Taking
into account that σ is a solution of S0 we conclude that the set of solutions
on Σr(A,Φ) of the system S is a subset of the set of solutions on Σr(A,Φ)
of the system S0. Let S = {fi1(x) = δ1, . . . , fid

(x) = δd}. From Lemma 5.14
follows that the pair (Φ(S), C(S)) is an m-covering of attributes fi1 , . . . , fid

on
Σr(A,Φ). Therefore there exists an m-system of equations Sσ ∈ C(S) such that
σ is a solution of Sσ. Taking into account that σ is a solution of S we conclude
that the set of solutions on Σr(A,Φ) of the system Sσ is a subset of the set of
solutions on Σr(A,Φ) of the system S. Therefore the set of solutions on Σr(A,Φ)
of the system Sσ is a subset of the set of solutions on Σr(A,Φ) of the system
S0. Denote C = {Sσ : σ ∈ Σr(A,Φ)}. It is clear that the pair (Φ,C) is an
m-covering of attributes f1, . . . , fn on Σr(A,Φ). Using Lemma 5.11 we obtain
|Σr(A,Φ)| ≤ (k2 |Φ|)v. Therefore |C| ≤ (k2 |Φ|)v. ��
Lemma 5.20. Let s be a natural number. Then for any f1, . . . , fn ∈ F there
exists an m-covering (Φ,C) of attributes f1, . . . , fn on Σr(A,Φ) such that |Φ| ≤
2c(s)(log2 n)1+

1
s and |C| ≤ (k2 |Φ|)v where c(s) = 8(v + 1)s+2(log2(8ktm))2s−1.

Proof. We prove the statement of the lemma by induction on s. We denote by
St(s) the statement of lemma for fixed natural number s. Let us show that
St(1) is true. From Lemma 5.19 follows that for any f1, . . . , fn ∈ F there ex-
ists an m-covering (Φ,C) of attributes f1, . . . , fn on Σr(A,Φ) such that |Φ| ≤
n2(v+1)2 ln n(k2t(m+ 1))2(v+1)3 ln n and |C| ≤ (k2 |Φ|)v. It is clear that

|Φ| ≤ 22(v+1)2(log2 n)2+2(v+1)3 log2 n log2(k2t(m+1))

≤ 28(v+1)3 log2(ktm)(log2 n)2 ≤ 28(v+1)3 log2(8ktm)(log2 n)1+
1
1 .

Therefore St(1) is true. Assume that St(s) is true for some natural s. Let us
show that St(s+1) is true. We prove the statement St(s+1) by induction on n.

First, we consider the case when n ≤ 2(log2 4m)s+1
. We have assumed that

St(s) is true. Therefore there exists anm-covering (Φ′, C′) of attributes f1, . . . , fn
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on Σr(A,Φ′) such that |Φ′| ≤ 2c(s)(log2 n)1+
1
s and |C′| ≤ (k2 |Φ′|)v. Taking into

account that n ≤ 2(log2 4m)s+1
we obtain

c(s)(log2 n)1+
1
s = c(s)(log2 n)

1
s(s+1) (log2 n)1+

1
s+1

≤ c(s)(log2 4m)
1
s (log2 n)1+

1
s+1 ≤ c(s+ 1)(log2 n)1+

1
s+1 .

Hence, |Φ′| ≤ 2c(s+1)(log2 n)
1+ 1

s+1 . Therefore the statement St(s + 1) is true if
n ≤ 2(log2 4m)s+1

.
Let n > 2(log2 4m)s+1

, and the statement St(s + 1) be true for any sequence
of attributes f1, . . . , fl ∈ F where l ≤ n − 1. Let us show that the statement
St(s+ 1) is true for an arbitrary sequence of attributes f1, . . . , fn ∈ F .

Set b = 2
⌈
(log2 n)

s
s+1 +log2 m+1

⌉
. It is clear that b ≥ m + 1. Let us show that

b < n. Evidently, log2 b ≤ (log2 n)
s

s+1 + log2 4m. Let us show that (log2 n)
s

s+1 +
log2 4m < log2 n. This inequality is equivalent to the inequality log2 4m <

log2 n−(log2 n)
s

s+1 . Since log2 n−(log2 n)
s

s+1 = (log2 n)
s

s+1 ((log2 n)
1

s+1 −1), the
last inequality is equivalent to the inequality log2 4m<(log2 n)

s
s+1 ((log2 n)

1
s+1−1).

Since n > 2(log2 4m)s+1
, the inequalities

(log2 n)
s

s+1 ((log2 n)
1

s+1 − 1) > (log2 4m)s(log2 4m− 1) > log2 4m

hold. Therefore b < n.
Let n = pb + q where 0 ≤ q < b. Divide the sequence f1, . . . , fn into p

blocks of the length b and one block of the length q. Assume, for the def-
initeness, that q > 0. The case q = 0 can be considered in the same way.
We have assumed that the statement St(s) is true. Therefore for i = 1, . . . , p
there exists an m-covering (Φi, Ci) of i-th block on Σr(A,Φi) such that |Φi| ≤
2c(s)(log2 b)1+

1
s and |Ci| ≤ (k2 |Φi|)v. If q ≥ m then there exists an m-covering

(Φp+1, Cp+1) of (p+1)-th block on Σr(A,Φp+1) such that |Φp+1| ≤ 2c(s)(log2 q)1+
1
s

and |Cp+1| ≤ (k2 |Φp+1|)v. If q < m then by Lemma 5.16 there exists an q-
covering (Φp+1, Cp+1) of (p + 1)-th block on Σr(A,Φp+1) such that |Φp+1| ≤ q

and |Cp+1| ≤ (k2 |Φp+1|)v. It is clear that |Φp+1| ≤ 2c(s)(log2 b)1+
1
s . Set w = m

if q ≥ m, and w = q if q < m. Set Φ′ = Φ1 ∪ . . . ∪ Φp ∪ Φp+1. Then |Φ′| ≤
(p + 1)2c(s)(log2 b)1+

1
s . Since b < n, p + 1 =

⌊
n
b

⌋
+ 1 ≤ n

b + 1 < 2n
b . Therefore

|Φ′| ≤ 2n
b

2c(s)(log2 b)1+
1
s . (43)

Using Lemma 5.11 we obtain

|Σr(A,Φ′)| ≤ (k2 |Φ′|)v ≤
(
k2 2n

b
2c(s)(log2 b)1+

1
s

)v

. (44)

From Lemma 5.14 follows that for i = 1, . . . , p the pair (Φi, Ci) is an m-
covering of i-th block on Σr(A,Φ′), and the pair (Φp+1, Cp+1) is an w-covering
of (p+ 1)-th block on Σr(A,Φ′).
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Let σ ∈ Σr(A,Φ′). Denote S′ = {f1(x) = f1(σ), . . . , fn(x) = fn(σ)}. Divide
the system S′ into p + 1 parts S′

1, . . . , S
′
p+1 according to the partition of the

sequence f1, . . . , fn into blocks. Denote by P ′ the set of solutions on Σr(A,Φ′)
of the system S′. For i = 1, . . . , p+1 denote by P ′

i the set of solutions onΣr(A,Φ′)
of the system S′

i. It is clear that for i = 1, . . . , p+1 the tuple σ is a solution of the
system S′

i. Also, it is clear that S′ = S′
1∪. . .∪S′

p+1 and P ′ = P ′
1∩. . .∩P ′

p+1. Since
for i = 1, . . . , p+1 the pair (Φi, Ci) is an m-covering or an q-covering of i-th block
on Σr(A,Φ′), there exists a system of equations S′′

i ∈ Ci such that σ is a solution
of S′′

i . Denote by P ′′
i the set of solutions on Σr(A,Φ′) of the system S′′

i . Using
the definition of covering and the fact that σ ∈ P ′′

i and σ ∈ P ′
i it is not difficult

to prove that P ′′
i ⊆ P ′

i . Denote S′
σ = S′′

1 ∪ . . . ∪ S′′
p+1. Denote by P ′′ the set of

solutions on Σr(A,Φ′) of the system S′
σ. It is clear that P ′′ = P ′′

1 ∩ . . . ∩ P ′′
p+1.

Taking into account that P ′ = P ′
1 ∩ . . . ∩ P ′

p+1 and P ′′
i ⊆ P ′

i for i = 1, . . . , p+ 1
we obtain P ′′ ⊆ P ′. Denote d = mp + w. We see that the system S′

σ contains d
equations. Denote C′ = {S′

σ : σ ∈ Σr(A,Φ′)}. It is clear that the pair (Φ′, C′) is
a d-covering of attributes f1, . . . , fn on Σr(A,Φ′). Using (44) we obtain

|C′| ≤
(
k2 2n

b
2c(s)(log2 b)1+

1
s

)v

. (45)

Let S ∈ C′ and S = {fi1(x) = δ1, . . . , fid
(x) = δd}. Denote by F (S) the

sequence of attributes fi1 , . . . , fid
. Since b ≥ m + 1, the inequality d ≤ n − 1

holds. By inductive hypothesis, the statement St(s+ 1) is true for d. Therefore
there exists an m-covering (Φ(S), C(S)) of the sequence of attributes F (S) on

Σr(A,Φ(S)) such that |Φ(S)| ≤ 2c(s+1)(log2 d)
1+ 1

s+1 and |C(S)| ≤ (k2 |Φ(S)|)v.
It is clear that d ≤ (p + 1)m. Since p + 1 < 2n

b , the inequality d ≤ 2nm
b holds.

Therefore
|Φ(S)| ≤ 2c(s+1)(log2( 2nm

b ))1+ 1
s+1

. (46)

Set Φ = Φ′ ∪⋃S∈C′ Φ(S). From (43), (45) and (46) follows that

|Φ| ≤ 2n
b 2c(s)(log2 b)1+

1
s +

(
k2 2n

b 2c(s)(log2 b)1+
1
s

)v

2c(s+1)(log2( 2nm
b ))1+ 1

s+1

≤
(
k2 2n

b 2c(s)(log2 b)1+
1
s

)v+1

2c(s+1)(log2( 2nm
b ))1+ 1

s+1

≤ 2
(v+1)

(
2 log2 k+1+log2 n−(log2 n)

s
s+1 −log2 m−1+c(s)

(
(log2 n)

s
s+1 +log2 m+2

) s+1
s

)

× 2c(s+1)
(
1+log2 n+log2 m−(log2 n)

s
s+1 −log2 m−1

)1+ 1
s+1

≤ 2
(v+1)

(
2 log2 k+log2 n+c(s)

(
(log2 n)

s
s+1 +log2 m+2

) s+1
s

)

× 2c(s+1)
(
log2 n−(log2 n)

s
s+1
)1+ 1

s+1

. (47)

It is clear that (log2 n)
s

s+1 ≥ 1. Hence

(log2 n)
s

s+1 + log2 m+ 2 ≤ (log2 n)
s

s+1 log2 8m .
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Also, it is clear that

(
log2 n− (log2 n)

s
s+1
)1+ 1

s+1 =
(
log2 n− (log2 n)

s
s+1
) (

log2 n− (log2 n)
s

s+1
) 1

s+1

≤ (log2 n− (log2 n)
s

s+1
)
(log2 n)

1
s+1 = (log2 n)1+

1
s+1 − log2 n .

Using obtained inequalities and (47) we have

|Φ| ≤ 2
(v+1)

(
2 log2 k+log2 n+c(s) log2 n(log2 8m)

s+1
s

)
+c(s+1)(log2 n)

1+ 1
s+1 −c(s+1) log2 n

≤ 2(v+1)(2 log2 k+1+c(s)(log2 8m)2) log2 n+c(s+1)(log2 n)
1+ 1

s+1 −c(s+1) log2 n . (48)

It is clear that

(v + 1)
(
2 log2 k + 1 + c(s)(log2 8m)2

) ≤ c(s)(v + 1)(log2 8km)2

≤ c(s)(v + 1)(log2 8ktm)2 = c(s+ 1) .

Using (48) we obtain

|Φ| ≤ 2c(s+1) log2 n+c(s+1)(log2 n)
1+ 1

s+1 −c(s+1) log2 n = 2c(s+1)(log2 n)
1+ 1

s+1
.

From Lemma 5.14 follows that the pair (Φ′, C′) is a d-covering of attributes
f1, . . . , fn onΣr(A,Φ), and for any S ∈ C′ the pair (Φ(S), C(S)) is anm-covering
of the sequence of attributes F (S) on Σr(A,Φ).

Let σ ∈ Σr(A,Φ). Then σ is a solution of the equation system S0
σ = {f1(x) =

f1(σ), . . . , fn(x) = fn(σ)}. Denote by P 0 the set of solutions on Σr(A,Φ) of the
system S0

σ. Since the pair (Φ′, C′) is a d-covering of attributes f1, . . . , fn on
Σr(A,Φ), there exists a system of equations S1

σ ∈ C′ such that σ is a solution of
S1

σ. Denote by P 1 the set of solutions on Σr(A,Φ) of the system S1
σ. Using the

definition of d-covering it is not difficult to show that P 1 ⊆ P 0. Since the pair
(Φ(S1

σ), C(S1
σ)) is an m-covering of the sequence of attributes F (S1

σ) onΣr(A,Φ),
there exists an m-system of equations S2

σ ∈ C(S1
σ) such that σ is a solution of

S2
σ. Denote by P 2 the set of solutions on Σr(A,Φ) of the system S2

σ. Using
the definition of m-covering it is not difficult to show that P 2 ⊆ P 1. Therefore
P 2 ⊆ P 0. Denote C = {S2

σ : σ ∈ Σr(A,Φ)}. It is clear that the pair (Φ,C) is an
m-covering of attributes f1, . . . , fn on Σr(A,Φ). Using Lemma 5.11 we obtain
|Σr(A,Φ)| ≤ (k2 |Φ|)v. Therefore |C| ≤ (k2 |Φ|)v. So the statement St(s+ 1) is
true for any n. Therefore the statement of the lemma is true for any s. ��
Lemma 5.21. Let α =

√
2 log2(2(v + 1) log2(8ktm)) and n be natural number

such that log2 log2 n ≥ 9α2. Then for any f1, . . . , fn ∈ F there exists an m-
covering (Φ,C) of attributes f1, . . . , fn on Σr(A,Φ) such that |C| ≤ (

k2 |Φ|)v
and |Φ| ≤ 2(log2 n)

1+ 2.5α√
log2 log2 n

.

Proof. Set s =
⌊√

log2 log2 n

α

⌋
. It is clear that s is a natural number and s ≥ 3.

From Lemma 5.20 follows that there exists an m-covering (Φ,C) of attributes
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f1, . . . , fn on Σr(A,Φ) such that |Φ| ≤ 2c(s)(log2 n)1+
1
s and |C| ≤ (k2 |Φ|)v where

c(s) = 8(v+1)s+2(log2(8ktm))2s−1. Since s ≥ 3, the inequality c(s) ≤ 2α2s holds.

Taking into account that
√

log2 log2 n ≥ 3α we obtain s ≥
√

log2 log2 n

α − 1 =√
log2 log2 n−α

α ≥ 2
√

log2 log2 n

3α . Therefore 1
s ≤ 3α

2
√

log2 log2 n
. Using these inequali-

ties we obtain

|Φ| ≤ 2c(s)(log2 n)1+
1
s = 2(log2 n)

1+ 1
s
+

log2 c(s)
log2 log2 n ≤ 2(log2 n)

1+ 3α

2
√

log2 log2 n
+ α2s

log2 log2 n

≤ 2(log2 n)
1+ 3α

2
√

log2 log2 n
+ α√

log2 log2 n

= 2(log2 n)
1+ 2.5α√

log2 log2 n

. ��
Bounds on Complexity

Lemma 5.22. Let s ∈ IN, s ≥ 1 and d(s) = 8(v+1)s+3(log2(8ktm))2s−1. Then
for any problem z = (ν, f1, . . . , fn) over U there exists a decision tree Γ over U
which solves z on A and for which h(Γ ) ≤ rd(s)(log2 n)1+

1
s + 1.

Proof. First, we consider the case when n = 1 and z = (ν, f1). Let B =
{b1, . . . , bk}. Denote by Γ the decision tree over U which consists of the root
v0, terminal nodes v1, . . . , vk and edges that connect the node v0 with the nodes
v1, . . . , vk. The node v0 is labelled by the attribute f1. The nodes v1, . . . , vk are
labelled by numbers ν(b1), . . . , ν(bk) respectively. The edges connecting v0 with
v1, . . . , vk are labelled by numbers b1, . . . , bk respectively. It is clear that Γ solves
the problem z on A and h(Γ ) = 1. So the statement of the lemma holds if n = 1.

Consider now the case when n > 1. From Lemma 5.20 follows that there
exists an m-covering (Φ,C) of attributes f1, . . . , fn on Σr(A,Φ) such that |Φ| ≤
2c(s)(log2 n)1+

1
s and |C| ≤ (k2 |Φ|)v where c(s) = 8(v + 1)s+2(log2(8ktm))2s−1. It

is clear that
|C| ≤ 2vc(s)(log2 n)1+

1
s +log2 k2v

. (49)

Using Lemma 5.15 we conclude that there exists a decision tree Γ over U
with attributes from Φ which solves the problem z on the set Σr(A,Φ) and
for which h(Γ ) ≤ rv log2(k2 |Φ|) and L(Γ ) ≤ kh(Γ )+1. It is clear that h(Γ ) ≤
rv
(
2 log2 k + c(s)(log2 n)1+

1
s

)
≤ r(v + 1)c(s)(log2 n)1+

1
s = rd(s)(log2 n)1+

1
s <

rd(s)(log2 n)1+
1
s + 1. From Lemma 5.13 follows that the decision tree Γ solves

the problem z on A. ��
Lemma 5.23. Let α =

√
2 log2(2(v + 1) log2(8ktm)) and n be natural number

such that log2 log2 n ≥ 9α2. Then for any problem z = (ν, f1, . . . , fn) over U
there exists a decision tree Γ over U which solves z on A and for which h(Γ ) ≤
3rv log2 k(log2 n)

1+ 2.5α√
log2 log2 n .

Proof. From Lemma 5.21 follows that there exists an m-covering (Φ,C) of at-

tributes f1, . . . , fn on Σr(A,Φ) such that |Φ| ≤ 2(log2 n)
1+ 2.5α√

log2 log2 n

and |C| ≤(
k2 |Φ|)v. It is clear that
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|C| ≤ 2v(log2 n)
1+ 2.5α√

log2 log2 n +log2 k2v

. (50)

Using Lemma 5.15 we conclude that there exists a decision tree Γ over U with
attributes from Φ which solves the problem z on Σr(A,Φ) and for which h(Γ ) ≤
rv log2(k2 |Φ|). It is clear that h(Γ ) ≤ rv

(
2 log2 k + (log2 n)

1+ 2.5α√
log2 log2 n

)
≤

3rv log2 k(log2 n)
1+ 2.5α√

log2 log2 n . From Lemma 5.13 follows that the decision tree
Γ solves the problem z on A. ��

Proofs of Theorems

Proof (of Theorem 5.1). Statement a) of the theorem follows from Lemma 5.7.
Statement b) of the theorem follows from Lemma 5.4 and Lemma 5.22 if we set
s =

⌈
1
ε

⌉
. Statement c) of the theorem follows from Lemma 5.6. ��

Proof (of Theorem 5.2). Statement of the theorem follows from Lemma 5.23. ��

5.2 Global Shannon Functions for Two-Valued
Finite Information Systems and Depth

An information system U = (A,B, F ) will be called two-valued if |B| = 2. Now
we consider the behavior of the global Shannon function for an arbitrary two-
valued finite information system U = (A,B, F ) such that f 
≡ const for any
f ∈ F .

Recall that by in(U) we denote the maximal number of attributes in an
independent subset of the set F (see Sect. 4.3).

A problem z ∈ ProblU will be called stable if hg
U (z) = dim z. We denote by

st(U) the maximal dimension of a stable problem over U .
One can show that

1 ≤ st(U) ≤ in(U) .

The values st(U) and in(U) will be called the first and the second global
critical points of the information system U . Now we describe the behavior of the
global Shannon function Hg

U,h in terms of global critical points of U .

Theorem 5.3. Let U = (A,B, F ) be a two-valued finite information system
such that f 
≡ const for any f ∈ F . Then for any natural n the following state-
ments hold:

a) if n ≤ st(U) then Hg
U,h(n) = n;

b) if st(U) < n ≤ in(U) then

max {st(U), log2(n + 1)} ≤ Hg
U,h(n)

≤ min
{
n− 1, 4(st(U) + 1)4(log2 n)2 + 4(st(U) + 1)5 log2 n

}
;

c) if n ≥ in(U) then Hg
U,h(n) = Hg

U,h(in(U)).
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The problem of computing the values st(U) and in(U) for given two-valued
finite information system U is complicated problem. However obtained results
allow us to constrict the class of possible types of global Shannon functions.

Example 5.2. Denote by A the set of all points in the plane. Consider an ar-
bitrary straight line l, which divides the plane into positive and negative open
half-planes, and the line l itself. Assign a function f : A → {0, 1} to the line l.
The function f takes the value 1 if a point is situated on the positive half-plane,
and f takes the value 0 if a point is situated on the negative half-plane or on
the line l. Denote by F the set of functions which correspond to certain r mutu-
ally disjoint finite classes of parallel straight lines. Consider a finite information
system U = (A, {0, 1}, F ). One can show that in(U) = |F | and st(U) ≤ 2r.

First, we prove some auxiliary statements.

Lemma 5.24. Let U = (A,B, F ) be a two-valued finite information system
such that f 
≡ const for any f ∈ F . Then for any natural n ≥ 2 the following
inequality holds:

Hg
U,h(n) ≤ 4(st(U) + 1)4(log2 n)2 + 4(st(U) + 1)5 log2 n .

Proof. Denote ρ = (F,B) and m = st(U). Let, for the definiteness, B = {0, 1}.
It is clear that Hg

U,h(m + 1) ≤ m. For an arbitrary p ∈ IN \ {0} denote by νp

the mapping of the set {0, 1}p into the set IN such that νp(δ̄1) 
= νp(δ̄2) for any
δ̄1, δ̄2 ∈ {0, 1}p, δ̄1 
= δ̄2.

Let us show that I(T ) ≤ m for any table T ∈ TabU . Assume the contrary:
let there exists a table T ∈ TabU such that I(T ) = t > m. Then there exist
attributes f1, . . . , ft ∈ F such that the system of equations

{f1(x) = δ1, . . . , ft(x) = δt}
is compatible on A for any δ1, ..., δt∈{0, 1}. Consider a problem z=(νt, f1, ..., ft).
It is not difficult to prove that hg

U (z) ≥ t. Since dim z = t, we conclude that
z is a stable problem which is impossible. Therefore I(T ) ≤ m for any table
T ∈ TabU . Using Theorem 4.6 we obtain that for any problem z over U the
following inequality holds:

N(T (z)) ≤ 22m(dim z)m . (51)

Let f1, ..., fm+1 be pairwise distinct attributes from F . Denote z(f1, ..., fm+1)
= (νm+1, f1, . . . , fm+1). From Hg

U,h(m + 1) ≤ m follows the existence of a de-
cision tree Γ (f1, . . . , fm+1) over U such that h(Γ (f1, . . . , fm+1)) ≤ m and the
decision tree Γ (f1, . . . , fm+1) solves the problem z(f1, . . . , fm+1). Evidently, for
any δ1, . . . , δm+1 ∈ {0, 1} and for any complete path ξ in the tree Γ (f1, . . . , fm+1)
either SolU (π(ξ)) ∩ SolU ((f1, δ1) . . . (fm+1, δm+1)) = ∅ or

SolU (π(ξ)) ⊆ SolU ((f1, δ1) . . . (fm+1, δm+1)) .

Using Lemma 3.4 obtain

Lw(Γ (f1, . . . , fm+1)) ≤ 2m . (52)
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Let f1, . . . , fq be pairwise distinct attributes from F and let q ≤ m. Define a
decision tree Γ (f1, . . . , fq) over U in the following way. Let every working node
of the tree Γ (f1, . . . , fq) have exactly two edges issuing from it, and let every
complete path in the tree Γ (f1, . . . , fq) contain exactly q working nodes. Let ξ =
v1, d1, . . . , vq, dq, vq+1 be an arbitrary complete path in the tree Γ (f1, . . . , fq).
Then for i = 1, . . . , q the node vi is labelled by the attribute fi, and the node
vq+1 is labelled by the number 0.

For every problem z over U we define by induction a subset J(z) of the
set F . If dim z ≤ m then J(z) = At(z). Assume that for some n, n ≥ m + 1,
for any problem z′ over U with dim z′ < n the set J(z′) has already been
defined. Define the set J(z) for a problem z = (ν, f1, . . . , fn) over U . Let n =
t(m + 1) + q, where t ∈ IN \ {0} and 0 ≤ q ≤ m. For i = 1, . . . , t denote
Γi = Γ (f(m+1)(i−1)+1, . . . , f(m+1)(i−1)+m+1). Define a decision tree Γt+1 over U .
If q = 0 then the tree Γt+1 contains only the node labelled by the number 0. If q >
0 then Γt+1 = Γ (f(m+1)t+1, . . . , f(m+1)t+q). Define decision trees G1, . . . , Gt+1

from TreeU in the following way: G1 = Γ1 and for i = 1, . . . , t the tree Gi+1

is obtained from the tree Gi by replacing of every terminal node v in the tree
Gi with the tree Γi+1 (the edge which had entered the node v will be entered
the root of the tree Γi+1). Denote by Γ (z) the decision tree that consists of all
nodes and edges of the tree Gt+1 for each of which there exists a complete path
ξ containing it and satisfying the condition SolU (π(ξ)) 
= ∅. One can show that⋃

ξ∈Path(Γ (z)) SolU (π(ξ)) = A. Denote c = 2m/(2m + 1). One can easily show
h(Gt+1) ≤ mt+ q ≤ cn. Therefore

h(Γ (z)) ≤ cn . (53)

From (52) and from the description of the tree Γt+1 it follows that |At(Gt+1)| ≤
t2m + q ≤ n2m. Using these inequalities and the inequality (51) we conclude
that the tree Gt+1 contains at most 22m(n2m)m = nm2m2+2m complete paths ξ
such that SolU (π(ξ)) 
= ∅. Therefore

|Path(Γ (z))| ≤ nm2m2+2m . (54)

We correspond to every complete path ξ in the tree Γ (z) a problem zξ over U .
Let {fi1 , . . . , fip} be the set of attributes from F attached to working nodes
of the path ξ. Then zξ = (νp, fi1 , . . . , fip). From (53) it follows that for any
ξ ∈ Path(Γ (z)) the inequality

dim zξ ≤ cn (55)

holds. Hence, by assumption, the set J(zξ) has already been determined for any
ξ ∈ Path(Γ (z)). Set

J(z) = At(z) ∪
⎛
⎝ ⋃

ξ∈Path(Γ (z))

J(zξ)

⎞
⎠ . (56)

For n ∈ IN \ {0} denote

JU (n) = max{|J(z)| : z ∈ ProblU , dim z ≤ n} .
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The inequality
JU (n) ≤ n2(m+1)2 lnn22(m+1)3 lnn (57)

will be proven by induction on n ≥ 1. It is clear that if n ≤ m then JU (n) ≤
n. Hence for n ≤ m the inequality (57) holds. Let for some n, n ≥ m +
1, for any n′, 1 ≤ n′ < n, the inequality (57) hold. Let us show that it
holds also for n. Let z ∈ ProblU and dim z ≤ n. If dim z < n then us-
ing inductive hypothesis one can show |J(z)| ≤ n2(m+1)2 ln n22(m+1)3 ln n. Let
dim z = n. Evidently, 1 ≤ (cn) < n and JU ((cn)) ≥ 1. Using (54)–(56) obtain
|J(z)| ≤ n + nm2m2+2mJU ((cn)) ≤ nm2m2+2m+1JU ((cn)). Using the induc-
tive hypothesis obtain |J(z)| ≤ nm2(m+1)2((cn))2(m+1)2 ln�cn�22(m+1)3 ln�cn� ≤
nm+2(m+1)2 ln cn2(m+1)2+2(m+1)3 ln cn.

Using the inequality ln(1 + 1/r) > 1/(r + 1) which is true for any natural r
we obtain ln c < −1/(2m+ 1) < −1/2(m+ 1). Hence

|J(z)| ≤ n2(m+1)2 ln n22(m+1)3 ln n .

Taking into account that z is an arbitrary problem over U such that dim z ≤ n
we conclude that the inequality (57) holds.

The following statement will be proven by induction in n. Let z=(ν, f1, ..., fn)
∈ ProblU , J(z) = {f1, . . . , fp}, δ̄ = (δ1, . . . , δp) ∈ {0, 1}p, let α(z, δ̄) = (f1, δ1) . . .
(fp, δp) and β(z, δ̄) = (f1, δ1) . . . (fn, δn). Then there exists a word γ(z, δ̄) from
the set Ωρ such that Alph(γ(z, δ̄)) ⊆ Alph(α(z, δ̄)), SolU (γ(z, δ̄)) ⊆ SolU (β(z, δ̄))
and the length of the word γ(z, δ̄) is at most 2(m+1). Recall that Ωρ = {(f, δ) :
f ∈ F, δ ∈ {0, 1}}∗ and Alph(w) is the set of letters from the alphabet {(f, δ) :
f ∈ F, δ ∈ {0, 1}} contained in the word w ∈ Ωρ.

For n ≤ 2(m+1) this statement is true since we can take the word β(z, δ̄) in
the capacity of the word γ(z, δ̄). Suppose that for certain n, n ≥ 2(m+ 1) + 1,
the statement is true for any problem z over U with dim z < n. We will show
that the considered statement holds for an arbitrary problem z = (ν, f1, . . . , fn)
over U . Let J(z) = {f1, . . . , fp} and δ̄ = (δ1, . . . , δp) ∈ {0, 1}p. One can show
that At(Γ (z)) ⊆ J(z). Consider a directed path κ = v1, d1, . . . , vr, dr, vr+1 in
the tree Γ (z) starting in the root and possessing the following properties:
1) if the node vi, i ∈ {1, . . . , r}, is labelled by an attribute fl, then the edge di

is labelled by the number δl;
2) if vr+1 is a working node in the tree Γ (z) which is labelled by the attribute

fl then from vr+1 can not issue an edge labelled by the number δl.
First, assume that κ is a complete path in the tree Γ (z). Let n = t(m+1)+q

where t ≥ 1 and 0 ≤ q ≤ m. For i = 1, . . . , t denote

Γi = Γ (f(m+1)(i−1)+1, . . . , f(m+1)(i−1)+m+1) .

Define a decision tree Γt+1 over U . If q = 0 then Γt+1 consists of the root
labelling by 0. If q > 0 then Γt+1 = Γ (f(m+1)t+1, . . . , f(m+1)t+q). Define words
β1, . . . , βt+1. For i = 1, . . . , i let

βi = (f(m+1)(i−1)+1, δ(m+1)(i−1)+1) . . . (f(m+1)(i−1)+m+1, δ(m+1)(i−1)+m+1) .

If q = 0 then βt+1 = λ. If q > 0 then

βt+1 = (f(m+1)t+1, δ(m+1)t+1) . . . (f(m+1)t+q, δ(m+1)t+q) .



Time Complexity of Decision Trees 341

Evidently, β(z, δ̄) = β1 . . . βt+1. One can show that the word π(κ) can be
represented in the form π(κ) = π(ξ1) . . . π(ξt+1) where ξi is a complete path in
the tree Γi, i = 1, . . . , t+ 1.

Let there exist i ∈ {1, . . . , t} such that SolU (βi) ∩ SolU (π(ξi)) = ∅. Denote
γ = βiπ(ξi). It is clear that Alph(γ) ⊆ Alph(α(σ, δ̄)) and SolU (γ) = ∅. Hence
SolU (γ) ⊆ SolU (β(z, δ̄)) and the length of the word γ is at most m + 1 + m <
2(m+ 1). Thus, in the considered case the word γ can be taken in the capacity
of the word γ(z, δ̄).

Let SolU (βi) ∩ SolU (π(ξi)) 
= ∅ for i = 1, . . . , t. Then, as mentioned above,
we have SolU (π(ξi)) ⊆ SolU (βi) for i = 1, . . . , t. Evidently, SolU (π(ξt+1)) =
SolU (βt+1) and hence

SolU (π(κ)) ⊆ SolU (β(z, δ̄)) . (58)

Consider the problem zκ. Let zκ = (νl, fj1 , . . . , fjl
) and J(zκ) = {fj1 , . . . , fju}.

From (56) follows J(zκ) ⊆ J(z). Denote δ̄′ = (δj1 , . . . , δju). Using (55) obtain
dim zκ < n. From this inequality and from the inductive hypothesis follows that
there exists a word γ(zκ, δ̄

′) ∈ Ωρ such that Alph(γ(zκ, δ̄
′)) ⊆ Alph(α(zκ, δ̄

′)),
SolU (γ(zκ, δ̄

′)) ⊆ SolU (β(zκ, δ̄
′)), and the length of the word γ(zκ, δ̄

′) is at most
2(m+ 1). It is clear that Alph(α(zκ, δ̄

′)) ⊆ Alph(α(z, δ̄)) and Alph(γ(zκ, δ̄
′)) ⊆

Alph(α(z, δ̄)). One can easily show SolU (π(κ)) = SolU (β(zκ, δ̄
′)). Using (58)

obtain SolU (γ(zκ, δ̄
′)) ⊆ SolU (β(z, δ̄)). Hence in this case the word γ(zκ, δ̄

′) can
be taken in the capacity of the word γ(z, δ̄).

Suppose now that the path κ is not a complete path in the tree Γ (z). Evi-
dently, there exists a complete path ξ in the tree Γ (z) containing the node vr+1.
Consider the problem zξ. Let zξ = (νl, fj1 , . . . , fjl

) and J(zξ) = {fj1 , . . . , fju}.
From (56) follows J(zξ) ⊆ J(z). Denote δ̄′ = (δj1 , . . . , δju). Recalling that the
path κ is not a complete path in the tree Γ (z) we can show SolU (β(zξ, δ̄

′)) = ∅.
Using (55) obtain dim zξ < n. From this inequality and from the inductive hy-
pothesis follows that there exists word γ(zξ, δ̄

′) ∈ Ωρ such that Alph(γ(zξ, δ̄
′)) ⊆

Alph(α(zξ, δ̄
′)), SolU (γ(zξ, δ̄

′)) ⊆ SolU (β(zξ, δ̄
′)) and the length of the word

γ(zξ, δ̄
′) is at most 2(m + 1). It is clear that Alph(α(zξ, δ̄

′)) ⊆ Alph(α(z, δ̄)).
Therefore Alph(γ(zξ, δ̄

′)) ⊆ Alph(α(z, δ̄)). From the relation SolU (γ(zξ, δ̄
′)) ⊆

SolU (β(zξ, δ̄
′)) = ∅ follows SolU (γ(zξ, δ̄

′)) ⊆ SolU (β(z, δ̄)). Thus, in the consid-
ered case the word γ(zξ, δ̄

′) may be taken in the capacity of the word γ(z, δ̄).
Let n ≥ 2. Consider an arbitrary problem z over U with dimσ ≤ n. Let

z = (ν, f1, . . . , fr) and J(z) = {f1, . . . , fp}. Consider also the problem z′ =
(ν′, f1, . . . , fp) where ν′ : {0, 1}p → ZZ and the equality ν′(δ̄) = ν(δ1, . . . , δr)
holds for any tuple δ̄ = (δ1, . . . , δp) ∈ {0, 1}p. Denote T = T (z′). Using (51) and
(57) obtain

N(T ) ≤ 22m(n2(m+1)2 ln n22(m+1)3 ln n)m

= n2m(m+1)2 ln n22m+2m(m+1)3 ln n (59)

≤ 22(m+1)3(log2 n)2+2(m+1)4 log2 n .

Let us show that
Mρ,h(T ) ≤ 2(m+ 1) . (60)
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Let δ̄ = (δ1, . . . , δp) ∈ {0, 1}p. Then, by proved above, there exists a word
γ(z, δ̄) from the set Ωρ such that Alph(γ(z, δ̄)) ⊆ Alph(α(z, δ̄)), SolU (γ(z, δ̄)) ⊆
SolU (β(z, δ̄)), and the length of the word γ(z, δ̄) is at most 2(m+ 1). It is clear
that Alph(γ(z, δ̄)) ⊆ {(f1, δ1), . . . , (fp, δp)}. Taking into account SolU (γ(z, δ̄)) ⊆
SolU (β(z, δ̄)) we can easily show Tγ(z, δ̄) ∈ Dtabρ. Therefore Mρ,h(T, δ̄) ≤
2(m+1). Recalling that δ̄ is an arbitrary tuple from {0, 1}p we conclude that the
inequality (60) holds. From Theorem 3.5 and from inequalities (59) and (60) it
follows that hρ(T ) ≤Mρ,h(T ) log2 N(T ) ≤ 4(m+1)4(log2 n)2 +4(m+1)5 log2 n.
Using Theorem 4.1 obtain hl

U (z′) = hρ(T ). Evidently, for any element a ∈ A the
equality z(a) = z′(a) holds. Therefore hg

U (z) = hg
U (z′). It is clear that hg

U (z′) ≤
hl

U (z′). Thus, hg
U (z) ≤ hρ(T ). Taking into account that z is an arbitrary problem

over U with dim z ≤ n we obtain Hg
U,h(n) ≤ 4(m+1)4(log2 n)2+4(m+1)5 log2 n.

��
Proof (of Theorem 5.3). Let n ≥ 1.

a). Let n ≤ st(U). Let z = (ν, f1, . . . , fst(U)) be a problem over U such that
hg

U (z) = st(U). Consider the problem z′ = (νn, f1, . . . , fn) over U . Assume
that hg

U (z′) < n. One can show that in this case hg
U (z) ≤ st(U) which is

impossible. Therefore hg
U (z′) = n andHg

U,h(n) ≥ n. It is clear that Hg
U,h(n) ≤

n. Thus, Hg
U,h(n) = n.

b). Let st(U) < n ≤ in(U). It is clear that st(U) ≤ Hg
U,h(n). Let us show that

log2(n + 1) ≤ Hg
U,h(n).

From the inequality n ≤ in(U) it follows that there exists an independent
subset {f1, . . . , fn} of the set F . It is clear that n ≥ 2. For i = 1, . . . , n
denote zi = (νi, f1, . . . , fi) and Ti = T (zi). Since f1 
≡ const, N(T1) = 2. Let
us show that N(Ti) < N(Ti+1) for i = 1, . . . , n− 1. Assume the contrary: let
N(Ti) = N(Ti+1) for some i ∈ {1, . . . , n−1}. One can show that in this case
there exists a mapping μ : Bi → B such that fi+1(a) = μ(f1(a), . . . , fi(a))
for any a ∈ A which is impossible. Thus, N(T1) = 2 andN(Ti) < N(Ti+1) for
i = 1, . . . , n−1. Therefore N(Tn) ≥ n+1. Let Γ be an arbitrary decision tree
over U which solves the problem zn. Denote z = zn ◦ Γ and T = T (zn ◦ Γ ).
Since N(Tn) ≥ n + 1 and Tn is a diagnostic table, we have S(T ) ≥ n + 1.
From Theorem 3.2 it follows that hρ(T ) ≥ log2(n + 1). Using Theorem 4.2
we conclude that h(Γ ) ≥ log2(n + 1). Since Γ is an arbitrary decision tree
over U which solves the problem zn, we obtain hg

U (zn) ≥ log2(n+ 1). Using
the equality h(zn) = n we conclude that log2(n+ 1) ≤ Hg

U,h(n).
It is clear that Hg

U,h(n) ≤ n − 1. The inequality Hg
U,h(n) ≤ 4(st(U) +

1)4(log2 n)2 + 4(st(U) + 1)5 log2 n follows from Lemma 5.24.
c). Let n ≥ in(U). Consider an arbitrary problem z over U such that dim z ≤ n.

Let {f1, . . . , ft} be an independent subset of the set At(z) with maximal
cardinality. It is clear that t ≤ in(U). One can show that there exists a
mapping ν : Bt → ZZ such that for the problem z′ = (ν, f1, . . . , ft) the
equality z(a) = z′(a) holds for any a ∈ A. It is clear that hg

U (z) = hg
U (z′).

Therefore hg
U (z) ≤ Hg

U,h(t) ≤ Hg
U,h(in(U)). Since z is an arbitrary problem

over U such that dim z ≤ n, we obtain Hg
U,h(n) ≤ Hg

U,h(in(U)). It is clear
that Hg

U,h(n) ≥ Hg
U,h(in(U)). Thus, Hg

U,h(n) = Hg
U,h(in(U)). ��
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5.3 Global Shannon Functions for Infinite Information Systems
and Arbitrary Weight Function

Let U = (A,B, F ) be an information system and ψ be a weight function for
U . Let z = (ν, f1, . . . , fn) be a problem over U . Denote ψ(z) =

∑n
i=1 ψ(fi). We

denote by ψg
U (z) the minimal weighted depth of a decision tree over U which

solves the problem z. We will consider the relationships between the parameters
ψg

U (z) and ψ(z). One can interpret the value ψ(z) for the problem z as the
weighted depth of the decision tree which solves the problem z in trivial way
by computing sequentially the values of the attributes f1, . . . , fn. We define the
function Hg

U,ψ : IN \ {0} → IN in the following way:

Hg
U,ψ(n) = max{ψg

U (z) : z ∈ ProblU , ψ(z) ≤ n}

for any n ∈ IN\{0}. The value Hg
U,ψ(n) is the unimprovable upper bound on the

value ψg
U (z) for problems z ∈ ProblU such that ψ(z) ≤ n. The function Hg

U,ψ is
called the global Shannon function for the information system U and the weight
function ψ.

If U is a finite information system then, evidently, ψg
U (z) ≤ ∑

f∈F ψ(f) for
any problem z over U . Therefore Hg

U,ψ(n) = O(1) for any finite information
system U .

Let U be an infinite information system. It is clear that either Hg
U,ψ(n) = n

for infinitely many natural n or Hg
U,ψ(n) < n for sufficiently large n.

The first type of behavior (Hg
U,ψ(n) = n for infinitely many natural n) is bad

for us: for problems with arbitrarily large total weight of attributes in problem
description in the worst case the weighted depth of the globally optimal decision
tree is equal to the weighted depth of the trivial decision tree. The second type
of behavior (Hg

U,ψ(n) < n for sufficiently large n) is most interesting for us:
for an arbitrary problem with sufficiently large total weight of attributes in the
problem description the weighted depth of the globally optimal decision tree is
less than the weighted depth of the trivial decision tree.

The information system U will be called ψ-compressible if there exists n0

such that for any n ≥ n0 the inequality Hg
U,ψ(n) < n holds.

The information systems, which are h-compressible, were investigated in
Sect. 5.1: the system U is h-compressible if and only if it has finite I-dimension
and satisfies the condition of decomposition

In this subsection we consider arbitrary weight functions. We describe all
pairs (U,ψ) of information systems and weight functions such that the informa-
tion system U is ψ-compressible. For each such pair we investigate the behavior
of the global Shannon function Hg

U,ψ.
Let f ∈ F and Γ be a decision tree over U . We will say that Γ simulates

f if Γ solves the problem zf = (ν, f) where ν(δ) = δ for any number δ ∈ B.
Let Φ ⊆ F . We will say that Γ is a decision tree with attributes from Φ if each
working node of Γ is labelled by an attribute from Φ. For p ∈ IN \ {0} denote
F1(ψ, p) = {f : f ∈ F, ψ(f) ≤ p} and F2(ψ, p) = F \ F1(ψ, p).
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We will say that U is a two-layer information system regarding to the weight
function ψ if there exists p ∈ IN \ {0} such that the information system

(A,B, F1(ψ, p))

is h-compressible, and for any attribute f ∈ F2(ψ, p) there exists a decision tree
Γ over U with attributes from F1(ψ, p) which simulates the attribute f and for
which ψ(Γ ) < ψ(f). If U is a two-layer information system regarding to ψ, and
p is the minimal number, for which the considered conditions hold, then the
system U will be called a (ψ, p)-two-layer information system.

Let U be a (ψ, p)-two-layer system. For any f ∈ F2(ψ, p) denote by ψU,p(f)
the minimal weighted depth of a decision tree over U with attributes from
F1(ψ, p) which simulates f . Define a function KU,ψ : IN\{0} → IN. If F2(ψ, p) = ∅
then KU,ψ ≡ 0. Let F2(ψ, p) 
= ∅ and q = min{ψ(f) : f ∈ F2(ψ, p)}. Let
n ∈ IN \ {0}. If n < q then KU,ψ(n) = 0. If n ≥ q then

KU,ψ(n) = max{ψU,p(f) : f ∈ F2(ψ, p), ψ(f) ≤ n} .

Define a function PU,ψ : IR → IR as follows:

PU,ψ(n) = max
{
KU,ψ(n), log|B| n− log|B| p

}
.

The following theorem characterizes ψ-compressible information systems.

Theorem 5.4. Let U be an infinite information system and ψ be a weight func-
tion for U . Then the following statements hold:

a) the system U is ψ-compressible if and only if U is a two-layer system regarding
to ψ;

b) if U is ψ-compressible then for any ε > 0 the following equalities hold:
Hg

U,ψ(n) = Ω(PU,ψ(n)) and Hg
U,ψ(n) = O(PU,ψ(n)1+ε).

The following theorem illustrates the variety of the function Hg
U,ψ behavior

for pairs (U,ψ) such that U is ψ-compressible information system.

Theorem 5.5. Let ϕ : IN \ {0} → IN \ {0} be a non-decreasing function such
that (log2 n) + 2 ≤ ϕ(n) ≤ n − 3 for any n ≥ 7. Then there exist an infinite
information system U and a weight function ψ for U such that ϕ(n) ≤ Hg

U,ψ(n) ≤
ϕ(n) + 2 for any n ≥ 7.

Proofs of Theorems 5.4 and 5.5. The proof of Theorem 5.4 is divided into
a sequence of lemmas.

Lemma 5.25. Let U = (A,B, F ) be an infinite information system, ψ be a
weight function for U , p be a natural number, and U be a (ψ, p)-two-layer system.
Then the set F1(ψ, p) is an infinite set.

Proof. Assume the contrary: let the set F1(ψ, p) be a finite set. Since for any
attribute f ∈ F2(ψ, p) there exists a decision tree over U with attributes from
F1(ψ, p), which simulates f , and F1(ψ, p) is a finite set, the set F2(ψ, p) is a finite
set. Therefore F is a finite set, which is impossible. Thus, the set F1(ψ, p) is an
infinite set. ��
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Lemma 5.26. Let U = (A,B, F ) be an infinite information system, ψ be a
weight function for U , p be a natural number, and U be a (ψ, p)-two-layer system.
Then for any natural n, n ≥ p, the inequality Hg

U,ψ(n) ≥ log|B| n− log|B| p holds.

Proof. Let n ≥ p. Set t =
⌊

n
p

⌋
. From Lemma 5.25 follows that F1(ψ, p) is an

infinite set. Using this fact it is not difficult to prove that there exist attributes
f1, . . . , ft ∈ F1(ψ, p) such that the system of equations

{f1(x) = δ1, . . . , ft(x) = δt}

is compatible on A for at least t+1 tuples (δ1, . . . , δt) ∈ Bt. Consider a problem
z = (ν, f1, . . . , ft) over U such that ν(σ1) 
= ν(σ2) if σ1 
= σ2. Let Γ be a decision
tree over U which solves z. It is clear that Γ has at least t+1 terminal nodes. One
can show that the number of terminal nodes in Γ is at most |B|h(Γ ). Therefore
h(Γ ) ≥ log|B|(t + 1) = log|B|(

⌊
n
p

⌋
+ 1) ≥ log|B| n − log|B| p. It is clear that

ψ(Γ ) ≥ h(Γ ). Taking into account that Γ is an arbitrary decision tree over U ,
which solves z, we obtain ψg

U (z) ≥ log|B| n− log|B| p. It is clear that ψg
U (z) ≤ n.

Therefore Hg
U,ψ(n) ≥ log|B| n− log|B| p. ��

Let U = (A,B, F ) be an infinite information system, ψ be a weight function
for U , and U be a ψ-compressible system. Let n0 be the minimal natural number
such that for any n > n0 the inequality Hg

U,ψ(n) < n holds. Then we will say
that U is ψ-compressible with the threshold of compressibility n0. For any f ∈ F
denote zf = (ν, f) where ν(δ) = δ for any number δ ∈ B.

Lemma 5.27. Let U = (A,B, F ) be an infinite information system, ψ be a
weight function for U , U be ψ-compressible with the threshold of compressibility
n0, and f ∈ F2(ψ, n0). Then ψg

U (zf ) < ψ(f) and there exists a decision tree Γf

over U with attributes from F1(ψ, n0) which solves the problem zf (i.e. simu-
lates f) and for which ψ(Γf ) = ψg

U (zf ).

Proof. Taking into account that ψ(zf ) = ψ(f) > n0 we obtain ψg
U (zf ) < ψ(f).

We prove the existence of Γf , satisfying the statement of lemma, by induction
on the value ψ(f). Let ψ(f) = n0 + 1 and Γ be a decision tree over U which
solves zf and for which ψ(Γ ) = ψg

U (zf ). By proved above, ψ(Γ ) ≤ n0. Therefore
Γ is a decision tree with attributes from F1(ψ, n0), and in the capacity of Γf we
can take the decision tree Γ .

Assume that an appropriate decision tree Γf exists for any attribute f ∈ F
such that n0 < ψ(f) ≤ n, where n ≥ n0 + 1. Let f ∈ F and ψ(f) = n + 1. Let
us prove that there exists a decision tree Γf satisfying the statement of lemma.
Let Γ be a decision tree over U which solves zf and for which ψ(Γ ) = ψg

U (zf ).
It is clear that ψ(Γ ) ≤ n. Therefore all working nodes of Γ are labelled by
attributes which weight is at most n. By inductive hypothesis, for each attribute
g ∈ F2(ψ, n0) used in Γ there exists a decision tree Γg satisfying the statement
of lemma. For each attribute g ∈ F2(ψ, n0) used in Γ we substitute Γg for g in
the following way. Let v be a working node in Γ which is labelled by an attribute
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g ∈ F2(ψ, n0). Denote by D the set of numbers from B which are labels of edges
starting in v. For each δ ∈ D we denote by Gδ the subtree of Γ which root is the
node connected with v by the edge starting in v and labelled by δ. We remove
from Γ all edged starting in v and all subtrees Gδ, δ ∈ D, connected with v
by these edges. We substitute Γg for the node v. For each δ ∈ D we substitute
the subtree Gδ for each terminal node of Γg which is labelled by δ. Denote Γ ′

the decision tree obtained from Γ by change of all attributes g ∈ F2(ψ, n0).
It is clear that ψ(Γ ′) ≤ ψ(Γ ), Γ ′ solves the problem zf , and Γ ′ is a decision
tree over U with attributes from F1(ψ, n0). Since ψ(Γ ) = ψg

U (zf ), we conclude
that ψ(Γ ′) = ψg

U (zf ). Therefore we can take in the capacity of Γf the decision
tree Γ ′. ��
Lemma 5.28. Let U = (A,B, F ) be an infinite information system, ψ be a
weight function for U , U be ψ-compressible with the threshold of compressibility
n0, and z be a problem over U . Then there exists a decision tree Γ over U
with attributes from F1(ψ, n0) which solves the problem z and for which ψ(Γ ) =
ψg

U (z).

Proof. Let Γ ′ be a decision tree over U which solves z and for which ψ(Γ ′) =
ψg

U (z). From Lemma 5.27 follows that for any attribute f from F2(ψ, n0) there
exists a decision tree Γf over U with attributes from F1(ψ, n0) which solves the
problem zf (i.e. simulates f) and for which ψ(Γf ) = ψg

U (zf ) < ψ(f). For each
attribute f ∈ F2(ψ, n0) used in Γ ′ we substitute Γf for f in the same way as in
the proof of Lemma 5.27. As a result we obtain a decision tree Γ over U with
attributes from F1(ψ, n0). One can show that Γ solves z and ψ(Γ ) ≤ ψ(Γ ′).
Therefore ψ(Γ ) = ψg

U (z). ��
Lemma 5.29. Let U = (A,B, F ) be an infinite information system, ψ be a
weight function for U , and U be ψ-compressible with the threshold of compress-
ibility n0. Then W = (A,B, F1(ψ, n0)) is ψ-compressible infinite information
system.

Proof. Let n > n0, z ∈ ProblW and ψ(z) ≤ n. From Lemma 5.28 follows that
ψg

W (z) = ψg
U (z). Taking into account that U is ψ-compressible with the threshold

of compressibility n0 we obtain ψg
W (z) < n. Since z is an arbitrary problem over

W with ψ(z) ≤ n, we conclude that ψg
W (n) < n. Therefore W is ψ-compressible

system.
Assume that F1(ψ, n0) is a finite set. Using Lemma 5.27 it is not difficult to

prove that the set F2(ψ, n0) is a finite set too, which is impossible since F is an
infinite set. ��
Lemma 5.30. Let U = (A,B, F ) be an infinite information system, ψ be a
weight function for U , U be ψ-compressible, and there exists natural p such that
ψ(f) ≤ p for any f ∈ F . Then U is h-compressible information system.

Proof. Let U be ψ-compressible with the threshold of compressibility n0. If p = 1
then the statement of the lemma holds. Let p ≥ 2. Denote m0 = n0 + p. Let us
show that for any natural n ≥ 2m0 the following inequality holds:
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Hg
U,ψ(n) ≤ n− n

m0
+ 1 . (61)

Since n > p, the value Hg
U,ψ(n) is definite. Let z be a problem over U such

that ψ(z) ≤ n. Let ψ(z) = b and z = (ν, f1, . . . , fr). Let us show that ψg
U (z) ≤

n− n
m0

+1. If b ≤ m0 then, evidently, the considered inequality holds. Let b > m0.
Divide the sequence f1, . . . , fr into blocks such that the total weight of attributes
in each block (with the exception of the last block) is at least n0 +1 and at most
m0. The total weight of attributes from the last block can be less than n0+1. Let
the number of blocks for which the total weight of attributes is at least n0 +1 is
equal to q. For i = 1, . . . , q we denote by yi the total weight of attributes in i-th
block. One can show that q ≥

⌊
b

m0

⌋
. It is clear that for i = 1, . . . , q there exists

a decision tree which recognizes values of attributes from i-th block and which
weighted depth is at most yi − 1. Using this fact it is not difficult to prove that
there exists a decision tree over U which solves z and which weighted depth is
at most b− q. Therefore ψg

U (z) ≤ b− q ≤ b−
⌊

b
m0

⌋
≤ b− b

m0
+ 1 ≤ n− n

m0
+ 1.

Thus, ψg
U (z) ≤ n − n

m0
+ 1. Since z is an arbitrary problem over U such that

ψ(z) ≤ n, the inequality (61) holds.
Set c = 2m0−1

2m0
. One can show that if n ≥ 2m0 then n− n

m0
+ 1 ≤ cn. Using

the inequality (61) we conclude that if n ≥ 2m0 then

Hg
U,ψ(n) ≤ cn . (62)

Denote m = 4m0(1 + p). Let us prove by induction on t that for any natural
t the following inequality holds:

Hg
U,ψ(mt) ≤ (m− 1)t . (63)

First, consider the case t = 1. Let z be a problem over U and ψ(z) ≤ m.
If ψ(z) < m then ψg

U (z) ≤ m − 1. Let ψ(z) = m. Since m > n0, we have
ψg

U (z) ≤ m− 1. Taking into account that z is an arbitrary problem over U with
ψ(z) ≤ m we obtain ψg

U (z) ≤ m−1. Therefore the inequality (63) holds if t = 1.
Assume that (63) holds for some t ≥ 1. Let us prove that (63) holds for t+1.

Let z = (ν, f1, . . . , fr) be a problem over U and ψ(z) ≤ mt+1. If ψ(z) < mt+1

then we add attributes fr+1, . . . , fr′ such that the total weight of attributes
f1, . . . , fr′ is at least mt+1 − p + 1 and at most mt+1. Later on we will solve
the problem of recognition of values of attributes f1, . . . , fr′ . If this problem
will be solved, the problem z will be solved too. Divide the sequence f1, . . . , fr′

into m + 1 blocks. Denote by yi the total weight of attributes from i-th block.
We choose the division such that mt − p + 1 ≤ yi ≤ mt for i = 1, . . . ,m. The
(m+ 1)-th block contains all the other attributes from the sequence f1, . . . , fr′ .
Since m > p, we have ym+1 ≤ (p− 1)m ≤ p(m− 1).

By inductive hypothesis, for j = 1, . . . ,m there exists a decision tree Γj

over U which recognizes values of all attributes from j-th block and for which
ψ(Γj) ≤ (m− 1)t. It is clear that h(Γj) ≤ (m− 1)t.

Let us describe the work of a decision tree Γ over U which simulates parallel
work of decision trees Γ1, . . . , Γm on an element a ∈ A, and after that computes
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the values of attributes from (m + 1)-th block on a. Let i ∈ {1, . . . , (m − 1)t}.
Let at the i-th step decision trees Γ1, . . . , Γm compute values of attributes which
total weight is equal to wi. If wi < 2m0 then at the i-th step Γ computes the
values of the considered attributes directly. If wi ≥ 2m0 then we can recognize
values of the considered attributes with the help of a decision tree Gi over U
for which ψ(Gi) ≤ cwi. The existence of Gi follows from (62). In this case at
the i-th step Γ works as Gi. After the simulation of Γ1, . . . , Γm the decision tree
Γ computes the values of attributes from (m + 1)-th block. It is clear that Γ
recognizes values of attributes f1, . . . , fr′. Therefore ψg

U (z) ≤ ψ(Γ ).
Since the weight of each complete path in decision trees Γ1, . . . , Γm is at

most (m−1)t, we have
∑(m−1)t

i=1 wi ≤ m(m−1)t. Denote M = {1, . . . , (m−1)t},
I = {i : i ∈M,wi < 2m0} and D =

∑
i∈I wi. Then D < 2m0(m− 1)t and

ψ(Γ ) ≤ c
∑

i∈M\I wi +
∑

i∈I wi + p(m− 1)

≤ c (m(m− 1)t −D) + D + p(m− 1)
= cm(m− 1)t + (1 − c)D + p(m− 1)

≤ (1− 1
2m0

)m(m− 1)t + (m− 1)t + p(m− 1)

= (1− 1
4m0

)m(m− 1)t − 1
4m0

m(m− 1)t + (m− 1)t + p(m− 1)

= (1− 1
4m0

)m(m− 1)t − (p + 1)(m− 1)t + (m− 1)t + p(m− 1)

≤ (1− 1
4m0

)m(m− 1)t = (4m0 − 1)(1 + p)(m− 1)t

= (4m0(1 + p)− p− 1)(m− 1)t < (m− 1)t+1 .

Thus, ψ(Γ ) < (m− 1)t+1 and ψU (z) < (m − 1)t+1. Taking into account that z
is an arbitrary problem over U such that ψ(z) ≤ mt+1 we obtain ψg

U (mt+1) ≤
(m− 1)t+1. Therefore the inequality (63) holds for any natural t.

Denote bt = mt

(m−1)t . It is known that the inequality ln(1+ 1
s ) > 1

s+1 holds for
any natural s. Therefore ln bt = t ln(1+ 1

m−1 ) > t
m . Hence the sequence b1, b2, . . .

is not bounded from above. Choose a natural t such that mt

(m−1)t > 3p. Denote

r =
⌊

mt

p

⌋
. Let us show that

hU (r) ≤ r − 1 . (64)

Let z be a problem over U and h(z) ≤ r. If h(z) < r then hg
U (z) ≤ r − 1. Let

h(z) = r. Then ψ(z) ≤ rp ≤ mt. Therefore ψg
U (z) ≤ (m − 1)t. It is clear that

hg
U (z) ≤ (m− 1)t. Assume that hg

U (z) ≥ r. Then (m− 1)t ≥ r and

mt

(m− 1)t
≤ mt

r
=

mt⌊
mt

p

⌋ ≤ mt

mt

p − 1
≤ mt

mt

2p

= 2p

which is impossible. Therefore hg
U (z) ≤ r − 1. Since z is an arbitrary problem

over U with h(z) ≤ r, we conclude that the inequality (64) holds.
Assume that U is not h-compressible. In this case from Theorem 5.1 follows

that Hg
U,h(r) = r which is impossible. Thus, U is h-compressible information

system. ��
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Lemma 5.31. Let U = (A,B, F ) be an infinite information system, ψ be a
weight function for U , and U be ψ-compressible. Then U is a two-layer infor-
mation system regarding to the weight function ψ.

Proof. Let U be ψ-compressible with the threshold of compressibility n0. From
Lemma 5.27 follows that for any attribute f ∈ F2(ψ, n0) there exists a decision
tree Γ over U with attributes from F1(ψ, n0) which simulates f and for which
ψ(Γ ) < ψ(f). From Lemma 5.29 follows that the information system W =
(A,B, F1(ψ, n0)) is ψ-compressible infinite information system. Using Lemma
5.30 we conclude that W is h-compressible information system. Therefore U is
a two-layer information system regarding to the weight function ψ. ��

Lemma 5.32. Let U = (A,B, F ) be an infinite information system, ψ be a
weight function for U , and U be a two-layer information system regarding to the
weight function ψ. Then U is ψ-compressible information system.

Proof. Let U be a (ψ, p)-two-layer system. Then the information system W =
(A,B, F1(ψ, p)) is h-compressible information system. From Lemma 5.25 follows
that F1(ψ, p) is an infinite set. ThereforeW is h-compressible infinite information
system. From Theorem 5.1 follows that there exist positive constants c1 and c2
such that Hg

W,h(n) ≤ c1(log2 n)2 + c2 for any natural n. It is clear that there
exists natural m such that p

(
c1(log2 n)2 + c2

)
< n for any natural n, n ≥ m.

Let us show that for any n ≥ m the following inequality holds:

Hg
U,ψ(n) < n . (65)

Let n ≥ m, z = (ν, f1, . . . , ft) ∈ ProblU and ψ(z) ≤ n. Let us show that
ψU (z) < n.

First, consider the case when f1, . . . , ft ∈ F1(ψ, p). In this case z ∈ ProblW .
Evidently, h(z) ≤ n. Therefore there exists a decision tree Γ over W which
solves z and for which h(Γ ) ≤ c1(log2 n)2 + c2. It is clear that Γ is a decision
tree over U and ψ(Γ ) ≤ p

(
c1(log2 n)2 + c2

)
. Since n ≥ m, we have ψ(Γ ) < n

and ψg
U (z) < n.

Consider now the case when there exists an attribute fi ∈ {f1, . . . , ft} such
that fi ∈ F2(ψ, p). Then there exists a decision tree Γfi over U with attributes
from F1(ψ, p) which simulates fi and for which ψ(Γfi) < ψ(fi). Describe the
work of a decision tree Γ on an element a ∈ A. At the beginning Γ works
as the decision tree Γfi and recognizes the value of fi(a). Later Γ computes
values f1(a), . . . , fi−1(a), fi+1(a), . . . , ft(a) directly and as the final result finds
the value z(a) = ν(f1(a), . . . , ft(a)). It is clear that Γ is a decision tree over
U that solves the problem z. Since ψ(Γfi) < ψ(fi), we conclude that ψ(Γ ) <
ψ(z) ≤ n. Therefore ψg

U (z) < n.
Taking into account that z is an arbitrary problem over U , for which ψ(z) ≤

n, we conclude that the inequality (65) holds if n ≥ m. Thus, U is ψ-compressible
information system. ��
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Lemma 5.33. Let U = (A,B, F ) be an infinite information system, ψ be a
weight function for U , and U be a (ψ, p)-two-layer system. Then for any natural
n, n ≥ p, the following inequality holds:

Hg
U,ψ(n) ≥ PU,ψ(n) .

Proof. From Lemma 5.25 follows that F1(ψ, p) is a nonempty set. Therefore for
n ≥ p the value Hg

U,ψ(n) is definite and Hg
U,ψ(n) ≥ 0. From Lemma 5.26 follows

that the inequality
Hg

U,ψ(n) ≥ log|B| n− log|B| p (66)

holds for any natural n, n ≥ p. Let us show that for any n ≥ p the inequality

Hg
U,ψ(n) ≥ KU,ψ(n) (67)

holds. If F2(ψ, p) = ∅ then KU,ψ ≡ 0, and (67) holds. Let F2(ψ, p) 
= ∅ and
q = min{ψ(f) : f ∈ F2(ψ, p)}. If n < q then KU,ψ(n) = 0, and (67) holds.
Let n ≥ q. Then KU,ψ(n) = max{ψU,p(f) : f ∈ F2(ψ, p), ψ(f) ≤ n}, where
ψU,p(f) is the minimal weighted depth of a decision tree over U with attributes
from F1(ψ, p) which simulates f . Let y ∈ F2(ψ, p), ψ(y) ≤ n and ψU,p(y) =
KU,ψ(n). Let zy = (ν, y) where ν(δ) = δ for any δ ∈ B. It is clear that
ψ(zy) = ψ(y) ≤ n. From Lemma 5.27 follows that ψg

U (zy) = ψU,p(y) = KU,ψ(n).
Therefore Hg

U,ψ(n) ≥ KU,ψ(n). Thus, the inequality (67) holds. By definition,
PU,ψ(n) = max{KU,ψ(n), log|B| n − log|B| p}. Using (66) and (67) we obtain
Hg

U,ψ(n) ≥ PU,ψ(n). ��
Lemma 5.34. Let U = (A,B, F ) be an infinite information system, ψ be a
weight function for U , and U be a (ψ, p)-two-layer system. Then for any ε > 0
there exists positive constant c such that for any natural n, n ≥ p2 |B|, the
following inequality holds:

Hg
U,ψ(n) ≤ cPU,ψ(n)1+ε .

Proof. Denote W = (A,B, F1(ψ, p)). Using Lemma 5.25 we conclude that W
is an h-compressible infinite information system. Let ε > 0. From Theorem
5.1 follows that there exist positive constant d such that for any natural n the
following inequality holds:

Hg
W,h(n) ≤ d (log2 n)1+ε + 1 . (68)

Let n ∈ IN \ {0} and n ≥ p2 |B|. Let z ∈ ProblU , ψ(z) ≤ n and, for the def-
initeness, z = (ν, f1, . . . , fm, fm+1, . . . , fm+t) where f1, . . . , fm ∈ F1(ψ, p) and
fm+1, . . . , fm+t ∈ F2(ψ, p). It is clear that ψ(fm+i) ≤ n for i = 1, . . . , t. There-
fore ψU,p(fm+i) ≤ KU,ψ(n) for i = 1, . . . , t. Hence for i = 1, . . . , t there exists
a decision tree Γi over U with attributes from F1(ψ, p) which simulates the
attribute fm+i and for which h(Γi) ≤ ψ(Γi) ≤ KU,ψ(n). Denote k = |B|. It
is not difficult to prove that for i = 1, . . . , t the decision tree Γi has at most
kKU,ψ(n) working nodes. Therefore for i = 1, . . . , t the decision tree Γi uses at
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most kKU,ψ(n) attributes from F1(ψ, p). Values of these attributes are sufficient
for recognition of the value of the attribute fm+i. It is clear that t ≤ n − m
and KU,ψ(n) ≥ 0. Thus, for the problem z solving it is sufficient to recognize
values of at most m+(n−m)kKU,ψ(n) ≤ nkKU,ψ(n) attributes from F1(ψ, p). De-
note u = nkKU,ψ(n). Estimate the value log2 u = log2 n + log2 kKU,ψ(n). Let us
show that log2 n ≤ 2 log2 k(logk n− logk p). This inequality is equivalent to the
inequality log2 n ≤ 2 log2 n− 2 log2 p. The last inequality is equivalent to the in-
equality p2 ≤ n which is true. Therefore log2 n ≤ 2 log2 k(logk n− logk p). Taking
into account that logk n− logk p ≤ PU,ψ(n) we obtain log2 n ≤ 2 log2 kPU,ψ(n). It
is clear that log2 kKU,ψ(n) ≤ log2 kPU,ψ(n). Therefore log2 u ≤ 3 log2 kPU,ψ(n).
Using (68) we conclude that there exists a decision tree over U with attributes
from F1(ψ, p) which solves z and which depth is at most

d (3 log2 kPU,ψ(n))1+ε + 1 ≤
(
d (3 log2 k)

1+ε + 1
)
PU,ψ(n)1+ε .

The last inequality holds since PU,ψ(n)1+ε ≥ 1. Denote c1 = pd (3 log2 k)
1+ε +p.

Then ψg
U (z) ≤ cPU,ψ(n)1+ε. Taking into account that z is an arbitrary problem

from ProblU such that ψ(z) ≤ n we obtain Hg
U,ψ(n) ≤ cPU,ψ(n)1+ε. ��

Proof (of Theorem 5.4). Statement a) of the theorem follows from Lemmas 5.31
and 5.32. Statement b) of the theorem follows from Lemmas 5.33 and 5.34. ��

For i ∈ IN define a function fi : IR → {0, 1} in the following way:

fi(a) =
{

0, if a < i ,
1, if a ≥ i ,

for any a ∈ IR. Denote W = (IR, {0, 1}, F ) where F = {fi : i ∈ IN}.
For any natural n define a problem zn over the information system W in

the following way: zn = (νn, f1, . . . , fn) where νn : {0, 1}n → {0, 1}. Let δ̄ =
(δ1, . . . , δn) ∈ {0, 1}n, δ1 = . . . = δk = 1 (if δ1 = 0 then k = 0) and if k < n then
δk+1 = 0. Then

νn(δ̄) =
{

0, if k is even ,
1, if k is odd .

Define a function q : IN\{0} → IN as follows: q(n) = (log2 n)+1 for n ∈ IN\{0}.
Lemma 5.35. For the information system W = (IR, {0, 1}, F ) the equalities
Hg

W,h(n) = q(n) and hg
W (zn) = q(n) hold for any natural n.

Proof. Denote ρ = (F, {0, 1}). By induction on m it is not difficult to prove that
Hg

W,h(2m− 1) ≤ m for any natural m. Hence Hg
W,h(n) ≤ q(n) for any natural n.

Let n ≥ 1 and Γn be a decision tree over W such that h(Γn) = hg
W (zn) and

the decision tree Γn solves the problem zn. Denote T = TW (zn ◦Γn). It is easily
to show that the set {f1, . . . , fn} is a test for the table T of minimal cardinality.
Therefore J(T ) = n. Using Theorem 3.3 we obtain hρ(T ) ≥ *log2(n+1)+ = q(n).
Using Theorem 4.2 we conclude that the tree Γn is a decision tree for the table T .
Therefore h(Γn) ≥ q(n) and hg

W (zn) ≥ q(n). Taking into account that h(zn) = n
and Hg

W,h(n) ≤ q(n) obtain Hg
W,h(n) = q(n) and hg

W (zn) = q(n). ��
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In the proof of Theorem 5.5 we will use notation which were defined before
Lemma 5.35.

Proof (of Theorem 5.5). It is easily to notice that for any natural n the function
q(n) takes the value n on exactly 2n−1 natural numbers 2n−1, . . . , 2n − 1.

Denote IN(7) = {n : n ∈ IN, n ≥ 7}. Let n ≥ 1. Let us show that the function
ϕ(n) takes the value n on at most 2n−1 numbers from IN(7). Let m ∈ IN(7) and
ϕ(m) = n. Then n ≥ (log2 m)+ 2 and n > log2 m+ 1. Therefore m < 2n−1.

Denote D = {ϕ(n) : n ∈ IN(7)}. Let d ∈ D. Let i1, . . . , im be all numbers
from IN(7) in ascending order on which the function ϕ takes the value d. Let
n(1), . . . , n(k) be all numbers from IN \ {0} in ascending order on which the
function q takes the value d. As we have noticed above, m ≤ k. For any natural
i let yi be a function such that yi(r) = zi(r) for any r ∈ IR. Denote G(d) =
{yn(1), . . . , yn(m)}. Define on the set G(d) the function ψ in the following way:
ψ(yn(1)) = i1, . . . , ψ(yn(m)) = im. Let j ∈ {1, . . . ,m}. Since ϕ(ij) = d, ij ∈ ω(7)
and ϕ(n) < n for any n ∈ IN(7), we have ij > d. Therefore ψ(yn(j)) > d. Using
Lemma 5.35 obtain

ψ(yn(j)) > hg
W (zn(j)) . (69)

Denote G =
⋃

d∈D G(d). The function ψ had already been defined on the set G.
Extend it to the set F in the following way: ψ(fi) = 1 for any fi ∈ F . Denote
V = (IR, {0, 1}, F ∪G).

Let Γ be a decision tree over V , z be a problem over V , and the decision tree
Γ solves the problem z. Using (69) we conclude that for any attribute yi ∈ G
there exists a decision tree Γi over W for which ψ(Γi) < ψ(yi) and the decision
tree Γi solves the problem zi. Therefore all attributes yi ∈ G in the tree Γ may
be “replaced” by the corresponding trees Γi such that we obtain a decision tree
Γ ′ over W for which ψ(Γ ′) ≤ ψ(Γ ) and the decision tree Γ ′ solves the problem
z. That implies, in particular, that ψg

V (zn) = hg
W (zn) for any n ≥ 1.

Let n ∈ IN(7). One can show that the value Hg
V,ψ(n) is definite.

We will show that Hg
V,ψ(n) ≥ ϕ(n). Let ϕ(n) = d. By construction, there

exists an attribute yi ∈ G such that ψ(yi) = n and q(i) = d. Consider the
problem z = (γ, yi) where γ : {0, 1} → {0, 1} and γ(δ) = δ for any δ ∈ {0, 1}.
Evidently, ψ(z) = n and ψg

V (z) = ψg
V (zi). By proved above, ψg

V (zi) = hg
W (zi).

Using Lemma 5.35 obtain hg
W (zi) = q(i) = d. Hence Hg

V,ψ(n) ≥ ϕ(n).
Let us show that Hg

V,ψ(n) ≤ ϕ(n) + 2. Let z be a problem over V and
ψ(z) ≤ n. For the definiteness, let z = (ν, fi(1), . . . , fi(m), yj(1), . . . , yj(s)). Show
that ψg

V (z) ≤ ϕ(n) + 2.
Let s = 0. Using Lemma 5.35 one can easily show that ψg

V (z) ≤ q(n) ≤
ϕ(n)− 1.

Let s > 0. Denote k = max{j(1), . . . , j(s)}. Let

fi(1), . . . , fi(m), fi(m+1), . . . , fi(p)

be pairwise different attributes from F such that

{fi(1), . . . , fi(p)} = {fi(1), . . . , fi(m)} ∪ {f1, . . . , fk} .
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One can show that there exists a mapping γ : {0, 1}p → {0, 1} such that for the
problem ϑ = (γ, fi(1), . . . , fi(p)) the equality z(r) = ϑ(r) holds for any real r.
Therefore ψg

V (z) = ψg
V (ϑ). Obviously, p ≤ m + k. Using Lemma 5.35 one can

show that ψg
V (ϑ) ≤ q(m+ k). Hence

ψg
V (z) ≤ q(m+ k) . (70)

Let us evaluate the value of k. Evidently, m + ψ(yk) ≤ n. Let ψ(yk) = a.
Therefore ϕ(a) = q(k). Obviously, a ≤ n−m. Since ϕ is a nondecreasing function,
q(k) ≤ ϕ(n−m). Therefore (log2 k) ≤ ϕ(n−m)−1. Hence log2 k < ϕ(n−m) and
k < 2ϕ(n−m). Taking into account that q is a nondecreasing function and using
(70) obtain ψg

V (z) ≤ (log2(m+ 2ϕ(n−m)))+ 1. Let c = max{m, 2ϕ(n−m)}. Then
ψg

V (z) ≤ (log2(2c))+ 1. Let c = m. Then ψg
V (z) ≤ (log2 m)+ 2 ≤ (log2 n)+ 2 ≤

ϕ(n). Let c = 2ϕ(n−m). Then ψg
V (z) ≤ (log2 2ϕ(n−m)+1)+ 1 = ϕ(n−m) + 2 ≤

ϕ(n) + 2. Thus, Hg
V,ψ(n) ≤ ϕ(n) + 2. ��

5.4 Global Optimization Problems for Decision Trees

Relationships among three algorithmic problems are considered in this subsec-
tion: the problem of compatibility of equation system, the problem of construc-
tion of globally optimal decision tree, and the problem of computation of globally
optimal decision tree complexity.

Relationships Among Algorithmic Problems. Let U = (A,B, F ) be an
enumerated information system where F = {fi : i ∈ IN}, and ψ be a computable
weight function for U . Denote ρ = (F,B). Let us describe two algorithmic prob-
lems of global optimization.

The Problem Desg(U,ψ): for a given problem z over U it is required to find a
decision tree Γ over U which solves z and for which ψ(Γ ) = ψg

U (z).

The Problem Comg(U,ψ): for a given problem z over U it is required to compute
the value ψg

U (z).

Theorem 5.6. Let U = (A,B, F ) be an enumerated information system, and
ψ be a computable weight function for U . Then the following statements hold:

a) if the problem Ex(U) is unsolvable then the problems Comg(U,ψ) and
Desg(U,ψ) are unsolvable;

c) if the problem Ex(U) is solvable then either both problems Comg(U,ψ) and
Desg(U,ψ) are solvable or both of them are unsolvable.

In the next subsection we will consider computable weight functions ψ for
each of which there is no enumerated information system V such that the prob-
lem Ex(V ) is solvable but the problems Comg(V, ψ) and Desg(V, ψ) are unsolv-
able.
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Proof of Theorem 5.6. Let U = (A,B, F ) be an enumerated information
system, |B| = k, F = {fi : i ∈ IN}, and ψ be a computable weight function for
U . Denote ρ = (F,B).

Lemma 5.36. Let Γ be a decision tree over U . Then the following statements
hold:

a) ψ(Γ ) ≥ h(Γ );
b) ψ(Γ ) ≥ max{ψ(fi) : fi ∈ At(Γ )};
c) ψ(Γ ) ≥ 0;
d) ψ(Γ ) = 0 if and only if the tree Γ consists of the only node.

Proof. Let α ∈ F ∗. One can show that ψ(α) ≥ h(α), ψ(α) ≥ ψ(fi) for any letter
fi of the word α, ψ(α) ≥ 0, and ψ(α) = 0 if and only if α = λ. Using these
relations it is not difficult to prove the statements of the lemma. ��
Corollary 5.1. Let z be a problem over U . Then ψg

U (z) = 0 if and only if
z ≡ const.

Define an algorithmic problem R(U).

Problem R(U): for a given problem z over U and a decision tree Γ over U it is
required to recognize whether the decision tree Γ solves the problem z.

Lemma 5.37. The problem R(U) is solvable if and only if the problem Ex(U)
is solvable.

Proof. Let the problem Ex(U) be solvable. Using Theorem 4.2 one can show
that the problem R(U) is solvable.

Let the problem R(U) be solvable. Let us show that the problem Ex(U) is
solvable. Let α ∈ Ωρ. If α = λ then, evidently, SolU (α) 
= ∅. Let α 
= λ and
α = (fi(1), δ1) . . . (fi(n), δn). Denote z = (ν, fi(1), . . . , fi(n)) where ν : Bn →
{0, 1} and for any tuple γ̄ ∈ Bn the equality ν(γ̄) = 1 holds if and only if
γ̄ = (δ1, . . . , δn). Denote by Γ the decision tree containing the only node. Let
this node be labelled by the number 0. It is easily to notice that the decision tree
Γ solves the problem z if and only if SolU (α) = ∅. Taking into account that the
problem R(U) is solvable we conclude that the problem Ex(U) is solvable. ��
Lemma 5.38. If problem Desg(U,ψ) is solvable then problem Comg(U,ψ) is
solvable too.

Proof. Let the problem Desg(U,ψ) be solvable. Obviously, the function ψ is
computable on the set of decision trees over U . Hence the problem Comg(U,ψ)
is solvable. ��
Lemma 5.39. If the problems Ex(U) and Comg(U,ψ) are solvable then the
problem Desg(U,ψ) is also solvable.

Proof. One can show that there exists an algorithm which consequently enumer-
ates all decision trees over U .
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Let the problems Ex(U) and Comg(U,ψ) be solvable. Using Lemma 5.37
we conclude that the problem R(U) is solvable. Evidently, the function ψ is
computable on the set of decision trees over U .

Describe an algorithm which solves the problem Desg(U,ψ). Let z be a prob-
lem over U . First, we compute the value ψg

U (z) with the help of algorithm solving
the problem Comg(U,ψ). Then we will consequently scan the decision trees over
U , using the algorithm for enumeration of the decision trees over U , the algo-
rithm for computation of the function ψ and the algorithm for solution of the
problem R(U), until find a decision tree Γ such that ψ(Γ ) = ψg

U (z), and the
decision tree Γ solves the problem z. This tree is a solution of the problem
Desg(U,ψ) for the problem z. ��
Proof (of Theorem 5.6). Let ρ = (F,B) and F = {fi : i ∈ IN}.
a) Let the problem Ex(U) be unsolvable. Let us show that the problem

Comg(U,ψ) is unsolvable. Assume the contrary. Let us prove that in this
case the problem Ex(U) is solvable. It is clear that there exists an attribute
fi(0) ∈ F such that fi(0) 
≡ const. Let α ∈ Ωρ. If α = λ then, obviously,
SolU (α) 
= ∅. Let α 
= λ and α = (fi(1), δ1) . . . (fi(n), δn). For any r ∈ B
consider a problem zr = (νr, fi(0), fi(1), . . . , fi(n)) over U where νr : Bn+1 →
{0, 1} and for any γ̄ ∈ Bn+1 if γ̄ = (r, δ1, . . . , δn) then νr(γ̄) = 1 and if
γ̄ 
= (r, δ1, . . . , δn) then νr(γ̄) = 0. Find for any r ∈ B the value ψg

U (zr)
using the solvability of the problem Comg(U,ψ). Taking into account that
fi(0) 
≡ const and using Corollary 5.1 one can easily show that SolU (α) = ∅ if
and only if ψg

U (zr) = 0 for any r ∈ B. So the problem Ex(U) is solvable which
contradicts the assumption. Therefore the problem Comg(U,ψ) is unsolvable.
Using Lemma 5.38 we conclude that the problem Desg(U,ψ) is unsolvable.

b) Let the problem Ex(U) be solvable. Using Lemmas 5.38 and 5.39 we conclude
that the problems Desg(U,ψ) and Comg(U,ψ) either both are solvable or both
are unsolvable. ��

5.5 Proper Weight Functions

Definitions and Main Result. Let ρ = (F,B) be an enumerated signature,
|B| = k and F = {fi : i ∈ IN}. Let, for the definiteness, B = {0, . . . , k − 1}.

A computable weight function ψ of the signature ρ will be called proper if for
any information system U = (A,B, F ), such that the problem Ex(U) is solvable,
the problems Comg(U,ψ) and Desg(U,ψ) are also solvable.

In this subsection we consider a criterion for a computable weight function
to be proper.

Let ψ be a weight function of the signature ρ. For i ∈ IN denote INψ(i) = {j :
j ∈ IN, ψ(fj) = i}. Define a partial function Kψ : IN → IN as follows. Let i ∈ IN.
If INψ(i) is a finite set then Kψ(i) = |INψ(i)|. If INψ(i) is an infinite set then the
value of Kψ(i) is indefinite. Denote by Dom(Kψ) the domain of Kψ.

Theorem 5.7. Let ψ be a computable weight function of the signature ρ. Then
ψ is a proper weight function if and only if Kψ is a general recursive function.
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Consider examples of proper weight functions of the signature ρ. Let ϕ :
IN → IN \ {0} be a general recursive nondecreasing function which is unbounded
from above. Then the weight function ψϕ such that ψϕ(fi) = ϕ(i) for any i ∈ IN
is a proper weight function.

Proof of Theorem 5.7. The proof of Theorem 5.7 is divided into a sequence
of lemmas.

Let ψ be a computable weight function of the signature ρ. Obviously, the
weight function ψ satisfies exactly one of the three following conditions:
(a) Kψ is a general recursive function;
(b) Dom(Kψ) = IN and the function Kψ is not a general recursive function;
(c) Dom(Kψ) 
= IN.

Lemma 5.40. Let ψ satisfy the condition (a). Then the weight function ψ is
proper.

Proof. Let U = (A,B, F ) be an information system for which the problem Ex(U)
is solvable. Using Lemma 5.37 we conclude that the problem R(U) is solvable.

Taking into account that the function ψ satisfies the condition (a) one can
show that there exists an algorithm which for a given number r ∈ IN constructs
the set {fi : fi ∈ F, ψ(fi) ≤ r}. Using this fact it is not difficult to prove that
there exists an algorithm which for a given number r ∈ IN and a finite nonempty
subset M of the set ZZ constructs the set Tree(r,M) of all decision trees Γ over
U satisfying the following conditions: h(Γ ) ≤ r, ψ(fi) ≤ r for any attribute
fi ∈ At(Γ ), and each terminal node of the tree Γ is labelled by a number from
the set M .

Let z be a problem over U and z = (ν, fi(1), . . . , fi(n)). Denote by M(z) the
range of values of the mapping ν. Let us show that the set Tree(ψ(z),M(z))
contains a tree which is a solution of the problem Desg(U,ψ) for the problem z.
It is easily to notice that there exists a decision tree Γ over U which is a solution
of the problem Desg(U,ψ) for the problem z and in which all terminal nodes are
labelled by numbers from the set M(z). It is clear that ψ(Γ ) ≤ ψ(z). Using this
inequality obtain h(Γ ) ≤ ψ(z) and ψ(fi) ≤ ψ(z) for any attribute fi ∈ At(Γ ).
Therefore Γ ∈ Tree(ψ(z),M(z)).

Describe an algorithm which solves the problem Desg(U,ψ). Let z be a prob-
lem over U . Compute the value ψ(z) and construct the set M(z). Construct
the set Tree(ψ(z),M(z)). With the help of algorithm which solves the problem
R(U) we find a decision tree Γ ∈ Tree(ψ(z),M(z)) such that the tree Γ solves
the problem z and ψ(Γ ) = min{ψ(G) : G ∈ Tree(ψ(z),M(z)), G ∈ Treeg

U (z)}
where Treeg

U (z) is the set of all decision trees over U solving z. The tree Γ is a
solution of the problem Desg(U,ψ) for the problem z. So the problem Desg(U,ψ)
is solvable. Using Lemma 5.38 we conclude that the problem Comg(U,ψ) is also
solvable. Taking into account that U is an arbitrary information system of the
signature ρ such that the problem Ex(U) is solvable obtain ψ is proper weight
function. ��
Lemma 5.41. Let ψ satisfy the condition (b). Then the weight function ψ is
not proper.
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Proof. Define a function γ : IN → IN possessing the following property: for any
i ∈ IN there exists t ∈ IN such that

{γ(0), . . . , γ(i)} = {0, . . . , t} . (71)

Let γ(0) = 0. Assume that the values γ(0), . . . , γ(i) have been already defined
and the equality (71) holds. Define the value γ(i+ 1). For j = 0, . . . , t compute
the values m(j) = min{ψ(fk) : p ∈ IN, p ≤ i, γ(p) = j}. If there exists a number
l ∈ {0, . . . , t} such that ψ(fi+1) < m(l), and the inequality ψ(fi+1) ≥ m(j) holds
for any j ∈ {0, . . . , t} such that j < l then γ(i + 1) = l. If ψ(fi+1) ≥ m(j) for
j = 0, . . . , t then γ(i + 1) = t + 1. It is not difficult to show that γ is a general
recursive function, and {γ(i) : i ∈ IN} = IN.

Define an information system U = (IN, B, F ) of the signature ρ as follows:
let for any i, j ∈ IN

fi(j) =
{

1, if j = γ(i) ,
0, if j 
= γ(i) .

Let us show that the problem Ex(U) is solvable. Let α ∈ Ωρ. If α = λ then,
evidently, SolU (α) 
= ∅. Let α 
= λ and α = (fi(1), δ1) . . . (fi(n), δn). One can show
that SolU (α) = ∅ if and only if there exists numbers s, p ∈ {1, . . . , n} such that
one of the following two conditions holds:

a) γ(i(s)) = γ(i(p)) and δs 
= δp;
b) γ(i(s)) 
= γ(i(p)) and δs = δp = 1.

Taking into account that the function γ is computable we conclude that the
problem Ex(U) is solvable.

Define a function r : IN → IN in the following way: for any i ∈ IN let r(i) =
min{j : j ∈ IN, γ(j) = i}. One can show that r is a general recursive function.
For i ∈ IN define a problem zi over U in the following way: zi = (νi, fr(i)) where
νi : B → B and νi(δ) = δ for any δ ∈ B.

Let j ∈ IN. Define a decision tree Γj over U as follows. The root of the tree
Γj is labelled by the attribute fj . For any δ ∈ {0, 1} there exists an edge dδ

issuing from the root of Γj and entering the node vδ. Both the edge dδ and the
node vδ are labelled by the number δ. There are no other edges or nodes in the
tree Γj . A decision tree Γ over U will be called a tree of the kind Γj if Γ = Γj or
the tree Γj can be obtained from the tree Γ by removal certain terminal nodes
and the edges which enter them. Let Γ be a tree of the kind Γj . One can easily
notice that the decision tree Γ solves the problem zi if and only if γ(j) = i.

Let i ∈ IN and let Γ be a decision tree over U which is a solution of the
problem Desg(U,ψ) for the problem zi. Let us show that there exists j ∈ IN such
that the tree Γ is a tree of the kind Γj . Obviously, there exists a complete path ξ
in the tree Γ such that i ∈ SolU (π(ξ)). The terminal node of this path is labelled
by the number 1. Therefore SolU (π(ξ)) = {i}. Based on this equality one can
easily show that the word π(ξ) contains the letter (fj , 1) where γ(j) = i. Assume
that π(ξ) 
= (fj , 1). Then ψ(Γ ) > ψ(Γj) which is impossible since the decision
tree Γj solves the problem zi. Therefore π(ξ) = (fj , 1). Hence the root of Γ is
labelled by the attribute fj. Based on the obvious inequality ψ(Γ ) ≤ ψ(Γj), one
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can easily show that the tree Γ is a tree of the kind Γj . Thus, for any i ∈ IN the
following equality holds:

ψg
U (zi) = min{ψ(fj) : j ∈ IN, γ(j) = i} . (72)

Let us show that the problem Desg(U,ψ) is unsolvable. Assume the contrary.
Let us show that in this case the function Kψ is computable.

Define a function ϕ : IN → IN in the following way: ϕ(i) = ψg
U (zi) for any

i ∈ IN. Using Lemma 5.38 we conclude that the problem Comg(U,ψ) is solvable.
Taking into account that r is a general recursive function we conclude that
ϕ is also a general recursive function. From the equality (72) it follows that
ϕ(i) = min{ψ(fj) : j ∈ IN, γ(j) = i} for any i ∈ IN. Using the definition of the
function γ obtain ϕ is a nondecreasing function and ϕ(0) = min{ψ(fj) : j ∈ IN}.
Taking into account that Dom(Kψ) = IN one can easily show that ϕ is an
unbounded above function. From these properties of the function ϕ follows that
there exists an algorithm which for a given t ∈ IN, t ≥ ϕ(0), finds the maximal
number i ∈ IN such that ϕ(i) ≤ t.

Describe an algorithm which computes the function Kψ. Let t ∈ IN. Compute
the value Kψ(t). If t < ϕ(0) then Kψ(t) = 0. Let t ≥ ϕ(0). Find the maximal i ∈
IN such that ϕ(i) ≤ t. Find a tree Γ which is a solution of the problem Desg(U,ψ)
for the problem zi. Let Γ be a tree of the kind Γj . One can show that if p > j
then ψ(fp) 
= t for any p ∈ IN. Therefore Kψ(t) = |{p : p ∈ IN, p ≤ j, ψ(fp) = t}|.
Thus, the function Kψ is computable which is impossible. Therefore the problem
Desg(U,ψ) is unsolvable, and the function ψ is not proper. ��
Lemma 5.42. Let ψ satisfy the condition (c). Then the weight function ψ is
not proper.

Proof. Let m be a minimal number from set IN \Dom(Kψ). One can show that
there exists a general recursive function r : IN → IN such that {r(i) : i ∈ IN} =
{j : j ∈ IN, ψ(fj) = m} and r(i) < r(i+1) for any i ∈ IN. Evidently, there exists
an algorithm which for a given j ∈ IN, such that ψ(fj) = m, finds i ∈ IN such
that j = r(i).

For any i ∈ IN define the functions α, βi, γi and ε from IN to {0, 1}. Let
j ∈ IN. Then

α(j) =
{

1, if j is even ,
0, if j is odd ,

βi(j) =
{

0, if j 
= 2i and j 
= 2i+ 1 ,
1, if j = 2i or j = 2i+ 1 ,

γi(j) =
{

0, if j 
= 2i+ 1 ,
1, if j = 2i+ 1 ,

ε(j) = 0 .

Let g : IN → IN be a general recursive function with nonrecursive range.
Define an information system U = (IN, B, F ) of the signature ρ: for any

j ∈ IN
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a) if ψ(fj) 
= m then fj = ε;
b) if j = r(0) then fj = α;
c) if j = r(2i + 1) for some i ∈ IN then fj = βi;
d) if j = r(2i + 2) for some i ∈ IN then fj = γg(i).

Let us show that the problem Ex(U) is solvable. Let μ ∈ Ωρ. If μ = λ
then, obviously, SolU (μ) 
= ∅. Let μ 
= λ and μ = (fi(1), δ1) . . . (fi(n), δn). Denote
S = {fi(1)(x) = δ1, . . . , fi(n)(x) = δn}. One can show that the equation system
S is incompatible on IN if and only if it contains a subsystem of at least one of
the following kinds:

– {fi(x) = δ} where i ∈ IN and δ ∈ B \ {0, 1};
– {fi(x) = 0, fi(x) = 1} where i ∈ IN;
– {ε(x) = 1};
– {α(x) = 0, γi(x) = 1} where i ∈ IN;
– {γi(x) = 1, γj(x) = 1} where i, j ∈ IN and i 
= j;
– {βi(x) = 1, βj(x) = 1} where i, j ∈ IN and i 
= j;
– {γi(x) = 1, βj(x) = 1} where i, j ∈ IN and i 
= j;
– {γi(x) = 1, βi(x) = 0} where i ∈ IN;
– {α(x) = 1, βi(x) = 1, γi(x) = 0} where i ∈ IN.

Thus, the problem Ex(U) is solvable.
Let i ∈ IN. Denote zi = (νi, fr(0), fr(2i+1)) where νi : B2 → {0, 1} and

νi(δ1, δ2) = 1 if and only if δ1 = δ2 = 1. One can show that

zi(j) = γi(j) (73)

for any j ∈ IN. Let Γ be a decision tree over U which is a solution of the problem
Desg(U,ψ) for the problem zi. From the equality (73) follows that zi 
≡ const.
Hence there exists an attribute fj ∈ At(Γ ) such that ψ(fj) = m. Using Lemma
5.36 obtain ψ(Γ ) ≥ m.

Assume ψ(Γ ) = m. Bearing in mind the relation fj ∈ At(Γ ) obtain h(Γ ) = 1
and see that the root of Γ is labelled by the attribute fj . Using the equality (73)
one can show that fj = γi.

Let for certain j ∈ IN the equality fj = γi hold. Then one can easily see that
ψg

U (zi) = m.
Thus, ψg

U (zi) = m if and only if the number i belongs to the set of values of
the function g.

Assume that the problem Comg(U,ψ) is solvable. Then the range of the
function g is recursive which is impossible. Thus, the problem Comg(U,ψ) is
unsolvable. Therefore the function ψ is not proper. ��
Proof (of Theorem 5.7). The statement of the theorem follows from Lemmas
5.40–5.42. ��

6 Decision Trees over Quasilinear Information Systems

The notion of linear information system was introduced in Sect. 2. Each problem
over linear information system can be represented in the following form. We take
finite number of hyperplanes in the space IRn. These hyperplanes divide the space
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into domains. These domains are numbered such that different domains can have
the same number. For a given point of the space it is required to recognize the
number of a domain which contains the point. Decision trees over the considered
information system used attributes of the kind sign (

∑n
i=1 aixi + an+1). This

attribute allows to recognize the position of a point relatively the hyperplane
defined by the equality

∑n
i=1 aixi + an+1 = 0.

Quasilinear information systems is simple and useful generalization of linear
information systems: instead of attributes of the kind sign (

∑n
i=1 aixi + an+1)

we consider attributes of the kind sign (
∑n

i=1 aiϕi(x) + an+1) where ϕ1, . . . , ϕn

are functions from a set A to IR. Upper bounds on complexity of decision trees
and algorithms for construction of decision trees over quasilinear information
systems are considered in the section.

This section consists of five subsections. The first subsection contains main
definitions and results. In the second subsection preliminary lemmas and in the
third subsection principal lemmas are proved. The forth subsection contains
proofs of main theorems of the section. In the fifth subsection for some pairs
(information system, weight function) the behavior of global Shannon functions
is studied.

6.1 Bounds on Complexity and Algorithms for Construction
of Decision Trees over Quasilinear Information Systems

In this subsection we define the notion of quasilinear information system and
formulate main results of the section.

Quasilinear Information Systems. We will call a set K a numerical ring
with unity if K ⊆ IR, 1 ∈ K and for any a, b ∈ K the relations a + b ∈ K,
a · b ∈ K and −a ∈ K hold. For instance, IR, Q, ZZ and {a+ b

√
2 : a, b ∈ ZZ}

are numerical rings with unity. Let K be a numerical ring with unity, A be a
nonempty set, and ϕ1, . . . , ϕn be functions from A to IR. Denote

F (A,K,ϕ1, . . . , ϕn) =

{
sign

(
n∑

i=1

aiϕi(x) + an+1

)
: a1, . . . , an+1 ∈ K

}
.

The information system (A, {−1, 0,+1}, F (A,K,ϕ1, . . . , ϕn)) will be denoted by
U(A,K,ϕ1, . . . , ϕn) and will be called a quasilinear information system.

Let f ∈ F (A,K,ϕ1, . . . , ϕn) and f = sign (
∑n

i=1 aiϕi(x) + an+1). We define
the parameter r(f) of the attribute f as follows. If (a1, . . . , an+1) = (0, . . . , 0)
then r(f) = 0. Otherwise

r(f) = max{0,max{log2 |ai| : i ∈ {1, . . . , n+ 1}, ai 
= 0}} .

For a problem z = (ν, f1, . . . , fk) over U(A,K,ϕ1, . . . , ϕn) denote r(z) =
max{r(fi) : i = 1, . . . , k}. For a decision tree Γ over U(A,K,ϕ1, . . . , ϕn) denote
r(Γ ) = max{r(f) : f ∈ At(Γ )} (if At(Γ ) = ∅ then r(Γ ) = 0).
Note 6.1. In contrast to Sects. 4 and 5 we assume in this section that differ-
ent attributes (attributes with different names) can coincide as functions. For
example, different attributes sign(x+ 1) and sign(2x+ 2) coincide as functions.
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Main Results

Theorem 6.1. Let U = U(A,K,ϕ1, . . . , ϕn) be a quasilinear information sys-
tem. Then for any problem z over U there exists a decision tree Γ over U which
solves z and for which

h(Γ ) ≤ (2(n+ 2)3 log2(dim z + 2n+ 2))/(log2(n + 2)) (74)

and
r(Γ ) ≤ 2(n+ 1)2(r(z) + 1 + log2(n + 1)) . (75)

Theorem 6.2. Let U = U(A,ZZ, ϕ1, . . . , ϕn) be a quasilinear information sys-
tem. Then there exists an algorithm which for a given problem z over U con-
structs a decision tree Γ over U such that Γ solves the problem z and the in-
equalities (74) and (75) hold.

The proofs of Theorems 6.1 and 6.2 are contained in Sect. 6.4. The prelimi-
nary lemmas are proven in Sect. 6.2 and the principal ones on which the proofs
of the theorems are based can be found in Sect. 6.3. In Sect. 6.5 some corollaries
of Theorem 6.1 are considered.

6.2 Preliminary Lemmas

In this subsection certain statements are considered relating mainly to the theory
of linear inequalities.

Introduce some notation which will be used in the present section. Let K be
a numerical ring with unity. For n ≥ 1 denote Ln(K) = {∑n

i=1 aixi +an+1 : ai ∈
K, 1 ≤ i ≤ n + 1} and denote Sn(K) = {sign(g) : g ∈ Ln(K)}. Functions from
the sets Ln(K) and Sn(K) are defined on IRn. Extend the mapping r on the set
Ln(K) in the following way: r(

∑n
i=1 aixi + an+1) = r(sign(

∑n
i=1 aixi + an+1)).

The symbol ′ will be used for notation of the operation of matrix transposition.
Let f1, . . . , fk ∈ Ln(IR) and fj(x̄) =

∑n
i=1 ajixi + ajn+1 = qj(x̄) + ajn+1,

1 ≤ j ≤ k. The maximal number of linearly independent (over IR) functions in
the set {q1, . . . , qk} will be called the rank of each of the following systems:

{f1(x̄) = 0, . . . , fk(x̄) = 0} , (76)
{f1(x̄) ≥ 0, . . . , fk(x̄) ≥ 0} , (77)
{f1(x̄) > 0, . . . , fk(x̄) > 0} . (78)

Lemma 6.1. ([46], pp. 83, 85, 88). Let V1 be the set of solutions of the compat-
ible system (76) of the rank t, V2 be the set of solutions of the system

{q1(x̄) = 0, . . . , qk(x̄) = 0} (79)

corresponding to the system (76), and ȳ0 ∈ V1. Then V1 = {ȳ0 + ȳ : ȳ ∈ V2} and
the maximal number of linearly independent elements in the set V2 is equal to
n− t.

Lemma 6.2. ([46], pp. 57, 75, 83, 84). Let aij ∈ IR, 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1,
and let the elements (a11, . . . , a1n), . . . , (an1, . . . , ann) be linearly independent.
Then
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a) the system ⎧⎨
⎩
a11x1 + . . .+ a1nxn = a1n+1

. . . . . . . . . . . . . . . . . . . .
an1x1 + . . .+ annxn = ann+1

has the unique solution (d1/d0, . . . , dn/d0) where d0 =

∣∣∣∣∣∣
a11 . . . a1n

. . . . . . .
an1 . . . ann

∣∣∣∣∣∣, d0 
= 0,

and dj , 1 ≤ j ≤ n, is an n-th order determinant obtained from the determi-
nant d0 by substitution the column (a1n+1, . . . , ann+1)′ for the j-th column of
d0;

b) if Mj, 1 ≤ j ≤ n, is an (n−1)-th order determinant obtained from the deter-
minant d0 by deletion of the last row and the j-th column then the element
(M1,−M2,M3,−M4, . . . , (−1)n−1Mn) is a solution of the system⎧⎨

⎩
a11x1 + . . .+ a1nxn = 0

. . . . . . . . . . . . . . . . . . . .
an−11x1 + . . .+ an−1nxn = 0 ,

any other solution of this system is proportional to it, and
∑n

i=1 |Mi| > 0.

Any two equation systems or inequality systems will be called equivalent if
their sets of solutions coincide.
Lemma 6.3. Any compatible system (76) of the rank t contains a subsystem of
the rank t which is equivalent to (76) and consists of t equations. Any incom-
patible system (76) of the rank t contains an incompatible subsystem with t + 1
equations.

Proof. Consider the system (76). Denote

A =

∣∣∣∣∣∣
a11 . . . a1n

. . . . . . .
ak1 . . . akn

∣∣∣∣∣∣ ,

Ā =

∣∣∣∣∣∣
a11 . . . a1na1n+1

. . . . . . . . . . .
ak1 . . . aknakn+1

∣∣∣∣∣∣ .

We denote by rank(A) (respectively by rank(Ā)) the maximal number of linearly
independent rows of the matrix A (respectively Ā). It is known ([46], pp. 74,
78) that the system (76) is compatible if and only if rank(Ā) = rank(A), and
is incompatible if and only if rank(Ā) = rank(A) + 1 (the Kronecker-Capelli
theorem).

Let the system (76) of the rank t be compatible. Then it follows from the
Kronecker-Capelli theorem that the maximal number of linearly independent
functions in the set {f1, . . . , fk} is equal to t. Let for i1, . . . , it ∈ {1, . . . , k} the
functions fi1 , . . . , fit be linearly independent. One can show that in this case
the equation system {fi1(x̄) = 0, . . . , fit(x̄) = 0} is equivalent to the equation
system (76).
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Let the equation system (76) of the rank t be incompatible. Then it fol-
lows from the Kronecker-Capelli theorem that there exist numbers i1, . . . , it+1 ∈
{1, . . . , k} such that the functions fi1 , . . . , fit+1are linearly independent. Using
the Kronecker-Capelli theorem one can show that the equation system {fi1(x̄) =
0, . . . , fit+1(x̄) = 0} is incompatible. ��

A plane of the space IRn is the set of solutions of a compatible on IRn equation
system of the kind (76) where f1, . . . , fk ∈ Ln(IR). If t is the rank of this equation
system then the number n−t is called the dimension of the plane. A set V ⊆ IRn

will be called t-dimensional set if there exists a t-dimensional plane of the space
IRn containing V , and if t ≥ 1 then there does not exist an (t− 1)-dimensional
plane containing V .

Lemma 6.4. A finite set {b̄1, . . . ., b̄m}, m ≥ 2, of elements of the space IRn is
of the dimension t if and only if the maximal number of linearly independent
elements in the set {b̄1 − b̄2, . . . , b̄1 − b̄m} is equal to t.

Proof. Let the maximal number of linearly independent elements in the set {b̄1−
b̄2, . . . , b̄1 − b̄m} be equal to t.

Assume that t 
= 0. Consider the equation systems⎧⎨
⎩

b11x1 + . . .+ b1nxn + xn+1 = 0
. . . . . . . . . . . . . . . . . . . . . .

bm1x1 + . . .+ bmnxn + xn+1 = 0 ,
(80)

⎧⎨
⎩

(b11 − b21)x1 + . . .+ (b1n − b2n)xn = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

(b11 − bm1)x1 + . . .+ (b1n − bmn)xn = 0
(81)

where (bj1, . . . , bjn) = b̄j , 1 ≤ j ≤ m. Let the set {b̄1, . . . , b̄m} be contained in a
plane of the space IRn and let this plane be the set of solutions of the system (76).
Then the element (aj1, . . . , ajn, ajn+1), 1 ≤ j ≤ k, is a solution of the equation
system (80), while the element (aj1, . . . , ajn) is a solution of the system (81).
By assumption, the rank of the system (81) is equal to t. From this and from
Lemma 6.1 follows that the maximal number of linearly independent solutions
of the system (81) is equal to n − t. Hence the rank of the system (76) is at
most n− t. Therefore there is no an (t− 1)-dimensional plane containing the set
{b̄1, . . . , b̄m}.

Let us show that the set {b̄1, . . . , b̄m} is contained in an t-dimensional plane.
It is clear that this statement holds if t = n. Assume that t 
= n. Then by Lemma
6.1 there exist n− t linearly independent solutions

(c11, . . . , c1n), . . . , (cn−t1, . . . , cn−tn)

of the system (81). Consider the equation system⎧⎨
⎩

c11x1 + . . .+ c1nxn =
∑n

i=1 b1ic1i

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn−t1x1 + . . .+ cn−tnxn =

∑n
i=1 b1icn−ti .
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It is easily to notice that the rank of this system is equal to n−t, and the element
b̄j , 1 ≤ j ≤ m, is a solution of it. Hence the set {b̄1, . . . , b̄m} is contained in a
t-dimensional plane. Therefore the dimension of the set {b̄1, . . . , b̄m} is equal to t.

Let the dimension of the set {b̄1, . . . , b̄m} be equal to t. Assume that the max-
imal number of linearly independent elements in the set {b̄1 − b̄2, . . . , b̄1 − b̄m}
is equal to t1 and t1 
= t. Then, by proved above, the dimension of the set
{b̄1, . . . , b̄m} is equal to t1 which is impossible. Therefore the maximal number
of linearly independent elements in the set {b̄1− b̄2, . . . , b̄1− b̄m} is equal to t. ��

Lemma 6.5. Let {b̄1, . . . , b̄n}, n ≥ 2, be an (n − 1)-dimensional subset of IRn

and let each of two (n − 1)-dimensional planes in the space IRn, defined by
equations a1x1 + . . . + anxn + an+1 = 0 and c1x1 + . . . + cnxn + cn+1 = 0,
contain the elements b̄1, . . . , b̄n. Then there exists a number p ∈ IR such that
(a1, . . . , an+1) = p(c1, . . . , cn+1).

Proof. Let b̄j = (bj1, . . . , bjn), 1 ≤ j ≤ n. The equation systems obtained from
(80) and (81) by the substitution n for m will be denoted by (80a) and (81a)
respectively. It follows from Lemma 6.4 that the rank of the system (81a) is
equal to n − 1. Since the elements (a1, . . . , an) and (c1, . . . , cn) are solutions of
the system (81a), from Lemma 6.2 follows that there exists a number p ∈ IR
such that (a1, . . . .an) = p(c1, . . . , cn). From the fact that (a1, . . . , an+1) is a
solution of the system (80a) it follows an+1 = −∑n

i=1 aib1i. In the same way
we obtain cn+1 = −∑n

i=1 cib1i. Therefore an+1 = pcn+1, and (a1, . . . , an+1) =
p(c1, . . . , cn+1). ��

Lemma 6.6. ([15], p. 92) If the set of solutions of the compatible system (77)
with a nonzero rank is bounded then the rank of the system (77) is equal to n.

A set of the kind {∑k
i=1 piāi : pi ∈ IR, pi ≥ 0, 1 ≤ i ≤ k,

∑k
i=1 pi = 1},

where ā1, . . . , āk ∈ IRn and k < ∞, is called a finitely generated centroid in
the space IRn. We will say that the centroid is generated by the set of elements
{ā1, . . . , āk} which are generating elements of the centroid. An element āj , j ∈
{1, . . . , k}, will be called a vertex of the centroid if the centroid generated by
the set {ā1, . . . , āk} \ {āj} does not contain the element āj . A finite set V ⊂ IRn

all elements of which are vertices of the centroid generated by it will be called
centroidally independent.

Lemma 6.7. ([15], pp. 197) A finitely generated centroid V of the space IRn has
unique centroidally independent set of generating elements.

A solution of the system (77) of the rank t > 0 will be called nodal solution
if the inequalities of the system (77), which are equalities on this solution, form
a system of the rank t.

Lemma 6.8. ([15], pp. 194, 196) If the set V of solutions of the compatible sys-
tem (77) is bounded then the set of nodal solutions of it is finite and centroidally
independent. The centroid generated by this set coincides with V .
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The set of solutions of an inequality of the kind f(x̄) ≥ 0, where f(x̄) is a
function from Ln(IR) which is not constant, will be called a half-space of the space
IRn. The plane defined by the equations f(x̄) = 0 will be called the boundary
plane of this half-space.

Let V be a finitely generated n-dimensional centroid in IRn. An extreme
support of the centroid U is any half-space of the space IRn containing the set
V which boundary plane includes at least n vertices of the centroid U .

Lemma 6.9. ([15], pp. 197) Any finitely generated n-dimensional centroid U of
the space IRn coincides with the intersection of its extreme supports.

Lemma 6.10. ([15], pp. 124) Let f ∈ Ln(IR) and let the inequality f(x̄) ≥ 0 be a
consequence of the compatible system (77). Then there exist nonnegative numbers
p1, . . . , pk+1 ∈ IR such that f(ā) =

∑k
i=1 pifi(ā) + pk+1 for any ā ∈ IRn.

The inequality fj(x̄) ≥ 0, j ∈ {1, . . . , k}, from the compatible system (77)
will be called unstable if the inequality fj(x̄) ≤ 0 is a consequence of the system
(77), and stable otherwise.

Lemma 6.11. If in the system (77) the function fj is not constant for any
j ∈ {1, . . . , k} then the set of solutions of this system is n-dimensional if and
only if the system (78), corresponding to the system (77), is compatible.

Proof. Let the set V of solutions of the system (77) be n-dimensional. We will
prove that for any j ∈ {1, . . . , k} there exists an element āj ∈ V such that
fj(āj) > 0. Assume that a number j ∈ {1, . . . , k} exists such that the equality
fj(b̄) = 0 holds for any b̄ ∈ V . Then, since the function fj is not constant
on IRn, the dimension of the set V is at most n − 1 which is impossible. Set
ā = (1/k)

∑k
i=1 āi. Then fj(ā) = (1/k)

∑k
i=1 fj(āi) ≥ fj(āj)/k > 0 for any

j ∈ {1, . . . , k}. Hence the system (78) corresponding to (77) is compatible.
It is known ([15], pp. 306, 311) that if the system (77) is compatible, and

for any j ∈ {1, . . . , k} the function fj is not constant then the set of solutions
of this system is n-dimensional if and only if the system (77) does not contain
unstable inequalities.

Let the system (78) corresponding to (77) be compatible. Then the system
(77) is compatible and does not contain unstable inequalities. Besides, by the
assumption the function fj , 1 ≤ j ≤ k, is not constant. Therefore the set of
solutions of the system (77) is n-dimensional. ��

The system (77) will be called stably compatible if the system (78) corre-
sponding to it is compatible.

A compatible inequality system will be called uncancellable if the deletion of
any inequality from it implies a change in the set of solutions of the system.

Lemma 6.12. ([15], p. 288) The stably compatible system (77) is uncancellable
if and only if the system (78) corresponding to it is uncancellable.

Lemma 6.13. ([15], p. 288) If the system (78) is compatible and uncancellable
then for any j ∈ {1, . . . , k} the system obtained from (78) by substitution of the
equation fj(x̄) = 0 for the inequality fj(x̄) > 0 is compatible.
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Lemma 6.14. ([15], p. 111) The incompatible system (78) of the rank t contains
an incompatible subsystem of the rank t consisting of t+ 1 inequalities.

Lemma 6.15. Let P be the set of solutions of the compatible system (76) of rank
t. Then there exists a one-to-one mapping ρ from P onto IRn−t with following
properties:

1◦) for any function f ∈ Ln(IR) there exists a function f∗ ∈ Ln−t(IR) such that
f(ā) = f∗(ρ(ā)) for any ā ∈ P ;

2◦) if ā0, ā1, . . . , āk ∈ P and λ1, . . . , λk are nonnegative numbers from IR such
that

∑k
i=1 λi = 1 then ā0 =

∑k
i=1 λiāi if and only if ρ(ā0) =

∑k
i=1 λiρ(āi);

3◦) a finite nonempty set {ā1, . . . , āk} ⊂ P is m-dimensional in IRn if and only
if the set {ρ(ā1), . . . , ρ(āk)} is m-dimensional in IRn−t.

Proof. Let t = n. Then from Lemma 6.1 follows that the system (76) has the
unique solution. One can show that in this case the statement of the lemma is
true.

Let t < n. In this case from Lemma 6.1 follows that there exist linearly inde-
pendent solutions ȳ1, . . . , ȳn−t of the system (79), corresponding to the system
(76), and a solution ȳ0 of the system (76) such that

P = {
n−t∑
i=1

αiȳi + ȳ0 : α1, . . . , αn−t ∈ IR} . (82)

Define a mapping ρ : P → IRn−t. From (82) follows that if ā ∈ P then there
exists a tuple (α1, . . . , αn−t) ∈ IRn−t such that ā =

∑n−t
i=1 αiȳi + ȳ0. In this

case set ρ(ā) = (α1, . . . , αn−t). From the linear independence of the elements
ȳ1, . . . , ȳn−t and from (82) it follows that the mapping ρ is a one-to-one mapping
from P onto IRn−t. Let f ∈ Ln(IR) and f(x̄) =

∑n
i=1 bixi + bn+1 = q(x̄) + bn+1.

Consider the function f∗ ∈ Ln−t(IR) where f∗(x̄) =
∑n−t

i=1 q(ȳi)xi +q(ȳ0)+bn+1.
Let ā ∈ P and ā =

∑n−t
i=1 αiȳi + ȳ0. Then f(ā) = q(

∑n−t
i=1 αiȳi + ȳ0) + bn+1 =∑n−t

i=1 αiq(ȳi)+q(ȳ0)+bn+1 = f∗(ρ(ā)). Hence the mapping ρ has the property 1◦.
Let ā0, ā1, . . . , āk ∈ P , āj =

∑n−t
i=1 αjiȳi + ȳ0, 0 ≤ j ≤ k, and λ1, . . . , λk be

nonnegative numbers from IR such that
∑k

i=1 λi = 1. Let ρ(ā0) =
∑k

i=1 λiρ(āi).
Then ā0 =

∑k
i=1 λiāi. Let now ā0 =

∑k
i=1 λiāi. From linear independence of

the elements ȳ1, . . . , ȳn−t follows α0i =
∑k

j=1 λjαji, 1 ≤ i ≤ n − t. Therefore

ρ(ā0) =
∑k

i=1 λiρ(āi). Hence the mapping ρ has the property 2◦.
Let ā1, . . . , ām be arbitrary elements from P and m ≥ 2. From linear indepen-

dence of the elements ȳ1, . . . , ȳn−t it follows that the elements ā1−ā2, . . . , ā1−ām

are linearly independent if and only if the elements ρ(ā1) − ρ(ā2), . . . , ρ(ā1) −
ρ(ām) are linearly independent. Using this fact and Lemma 6.4 we conclude that
the mapping ρ has the property 3◦. ��

Let W be a finitely generated centroid and let V be the set of its vertices. A
set D ⊆ V t+1 will be called a vertex (t+1)-covering of the set W if D possesses
the following properties:
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1) if (v̄1, . . . , v̄t+1) ∈ D then the set {v̄1, . . . , v̄t+1} is t-dimensional;
2) for any element ā ∈ W there exist a tuple (v̄1, . . . , v̄t+1) ∈ D such that ā is

contained in the centroid generated by the set {v̄1, . . . , v̄t+1}.
Lemma 6.16. If the set of solutions of the system (77) is an n-dimensional,
n ≥ 1, finitely generated centroid in the space IRn then it has a vertex (n + 1)-
covering which cardinality is at most kn−1.

Proof. We prove the statement of the lemma by induction on n. One can show
that any one-dimensional finitely generated centroid in IR1 has exactly two ver-
tices. Hence the statement of the lemma is true for n = 1.

Let n ≥ 2 and let the statement of the lemma hold for the spaces of the
dimension 1, . . . , n− 1. Let us show that it also hods for the space of dimension
n. Let W be the set of solutions of the system (77), and W be an n-dimensional
finitely generated centroid in IRn. Denote by V the set of the vertices of the
centroid W . Choose an uncancellable subsystem of the system (77) such that
the set of the solutions of it coincides with W . Without loss of generality we
can assume that the system (77) is uncancellable. From the fact that the system
(77) is compatible and uncancellable it follows for any j ∈ {1, . . . , k} that the
function fj is not constant on IRn. Let i ∈ {1, . . . , k}. Denote by Pi the set of
solutions on IRn of the system

{fi(x̄) = 0} . (83)

Since the function fi is not constant on IRn, the rank of the system (83) is
equal to 1. Consider a one-to-one mapping ζ from Pi onto IRn−1 having the
properties 1◦−3◦ from Lemma 6.15. From the property 1◦ it follows that for any
j ∈ {1, . . . , k} there exists a function f∗

j ∈ Ln−1(IR) such that fj(ā) = f∗
j (ζ(ā))

for any ā ∈ Pi. Denote by Wi the set of solutions on IRn of the system

{f1(x̄) ≥ 0, . . . , fi−1(x̄) ≥ 0, fi(x̄) ≥ 0,
(84)

− fi(x̄) ≥ 0, fi+1(x̄) ≥ 0, . . . , fk(x̄) ≥ 0} ,

and let W ∗
i be the set of solutions on IRn−1 of the system

{f∗
1 (x̄) ≥ 0, . . . , f∗

i−1(x̄) ≥ 0, f∗
i+1(x̄) ≥ 0, . . . , f∗

k (x̄) ≥ 0} . (85)

Let us show that the set W ∗
i is an (n − 1)-dimensional finitely generated

centroid in the space IRn−1.
First, verify that the dimension of the set W ∗

i is equal to n − 1. From the
fact that the function fj is not constant on IRn for any j ∈ {1, . . . , k}, from
the fact that the set W is n-dimensional and from Lemma 6.11 follows that the
system (78) corresponding to (77) is compatible on IRn. From here, from the
fact that the system (77) is uncancellable and from Lemma 6.12 follows that the
system (78) is uncancellable. Using the fact that the system (78) is compatible
and uncancellable, and using Lemma 6.13 we conclude that the system

{f1(x̄) > 0, . . . , fi−1(x̄) > 0, fi(x̄) = 0, fi+1(x̄) > 0, . . . , fk(x̄) > 0} (86)
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is compatible on IRn. From the compatibility of this system and from the choice
of the functions f∗

j , 1 ≤ j ≤ k, follows that the system

{f∗
1 (x̄) > 0, . . . , f∗

i−1(x̄) > 0, f∗
i+1(x̄) > 0, . . . , f∗

k (x̄) > 0} (87)

is compatible on IRn−1. From here follows that the system (85) is compatible.
Denote by (85a) and (87a) the systems obtained from the systems (85) and
(87) by deletion of the inequalities in which functions f∗

j are constant on IRn−1.
From the compatibility of systems (85) and (87) follows that the set of solutions
of (85a) coincides with the set of solutions of the system (85), and the set of
solutions of (87a) coincides with the set of solutions of (87). Since the system
(87a) is compatible and the functions in the inequalities of this system are not
constant on IRn−1, it follows from Lemma 6.11 that the set of solutions of (85a)
on IRn−1 is (n− 1)-dimensional. Hence the set W ∗

i is (n− 1)-dimensional.
Verify now that the set W ∗

i is a finitely generated centroid. First, let us show
that the set Wi is a finitely generated centroid. From the compatibility of the
system (86) on IRn it follows that the set Wi is a nonempty set. From the fact
that the set W is a finitely generated centroid follows that the set Wi is bounded.
Since the system (84) is compatible and the set of its solutions is bounded, from
Lemma 6.8 follows that the set Wi is a finitely generated centroid. Denote by Vi

the set of vertices of the centroid Wi. Denote V ∗
i = {ζ(v̄) : v̄ ∈ Vi}.

Let us show that the centroid generated by the set V ∗
i coincides with the

set W ∗
i . From the choice of the functions f∗

j , 1 ≤ j ≤ k, follows that V ∗
i ⊆ W ∗

i .
Using this fact one can show that the centroid generated by the set V ∗

i is a subset
of the set W ∗

i . We will demonstrate that any element ā from W ∗
i is contained

in this centroid. Denote by ζ−1 the inverse mapping for the mapping ζ. From
the choice of the functions f∗

j , 1 ≤ j ≤ k, it follows that the element ζ−1(ā) is
contained in the centroid Wi. From this and from the property 2◦ of the mapping
ζ follows that the element ā is contained in the centroid generated by the set
V ∗

i . Hence W ∗
i is an (n− 1)-dimensional finitely generated centroid in the space

IRn−1, and V ∗
i is the set of its generating elements.

By the inductive hypothesis, for the centroid W ∗
i there exists an vertex n-

covering the cardinality of which is at most (k − 1)n−2. Denote this covering
by D∗

i . Denote Di = {(ζ−1(v̄1), . . . , ζ−1(v̄n)) : (v̄1, . . . , v̄n) ∈ D∗
i }. Let us show

that the set Di is a vertex n-covering of the centroid Wi. By definition, the
set Vi is centroidally independent. From here and from the property 2◦ of the
mapping ζ it follows that the set V ∗

i is centroidally independent. Therefore the
set V ∗

i is a centroidally independent set of generating elements of the centroid
W ∗

i . Using Lemma 6.7 we conclude that the set V ∗
i is the set of all vertices of

the centroid W ∗
i . From here, from the choice of the set D∗

i , from the equality
Vi = {ζ−1(v̄) : v̄ ∈ V ∗

i } and from properties 2◦ and 3◦ of the mapping ζ follows
that the set Di is a vertex n-covering of the centroid Wi. Note that

|Di| ≤ (k − 1)n−2 . (88)

Choose a vertex v̄0 of the centroid W . Let, for the definiteness, the vertex v̄0

do not belong to the planes P1, . . . , Pm, and belong to the planes Pm+1, . . . , Pk.
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For any i ∈ {m+ 1, . . . , k} choose a vertex v̄i of the centroid W which does not
belong to the plane Pi. Such a vertex exists since the set W is n-dimensional.
Denote

D =
(⋃m

i=1{(v̄0, v̄1, . . . , v̄n) : (v̄1, . . . , v̄n) ∈ Di}
)

∪
(⋃k

i=m+1{(v̄i, v̄1, . . . , v̄n) : (v̄1, . . . , v̄n) ∈ Di}
)

.

Let us show that the set D is a vertex (n + 1)-covering of the centroid W .
Let (v̄1, . . . , v̄n+1) be an arbitrary element of the set D. We will demonstrate
that the set {v̄1, . . . , v̄n+1} is n-dimensional. Let, for the definiteness, v̄1 = v̄0,
(v̄2, . . . , v̄n+1) ∈ D1 and f1(x̄) =

∑n
i=1 a1ixi + a1n+1 = q1(x̄) + a1n+1. Then, by

definition of the set D1, the elements v̄2, . . . , v̄n+1 are solutions of the equation
f1(x̄) = 0. Hence the elements v̄2− v̄3, . . . , v̄2− v̄n+1 are solutions of the equation
q1(x̄) = 0.

The set {v̄2, . . . , v̄n+1}, by definition of D1, is (n−1)-dimensional. From here
and from Lemma 6.4 follows that the elements v̄2− v̄3, . . . , v̄2− v̄n+1 are linearly
independent. Assume that the elements v̄2− v̄0, v̄2− v̄3, . . . , v̄2− v̄n+1 are linearly
dependent. Then the element v̄2− v̄0 and hence the element v̄0− v̄2 are solutions
of the equation q1(x̄) = 0. Therefore the element v̄0 − v̄2 + v̄2 = v̄0 is a solution
of the equation f1(x̄) = 0 which is impossible since the element v̄0 does not
belong to the plane P1. Therefore the elements v̄2 − v̄0, v̄2 − v̄3, . . . , v̄2 − v̄n+1

are linearly independent. From here and from Lemma 6.4 follows that the set
{v̄0, v̄2, . . . , v̄n+1} is n-dimensional. Let us show that for any element ā ∈ W
there exists a tuple (v̄1, . . . , v̄n+1) ∈ D such that ā belongs to the centroid
generated by the set {v̄1, . . . , v̄n+1}. Let ā ∈ W and ā /∈ Pm+1 ∪ . . . ∪ Pk. Then
ā 
= v̄0. From here and from Lemma 6.4 follows that the set {ā, v̄0} is one-
dimensional. Therefore functions g1, . . . , gn−1 ∈ Ln(IR) exist such that P is the
set of solutions on IRn of the system {g1(x̄) = 0, . . . , gn−1(x̄) = 0}, and P is an
one-dimensional plane containing the elements ā and v̄0. It is easily to show that
the set of solutions on IRn of the system

{g1(x̄) ≥ 0,−g1(x̄) ≥ 0, . . . , gn−1(x̄) ≥ 0,−gn−1(x̄) ≥ 0,
(89)

f1(x̄) ≥ 0, . . . , fk(x̄) ≥ 0}

is a nonempty bounded set. From here and from Lemma 6.8 follows that the
set W , which is the set of solutions of the system (89) on IRn, is a finitely
generated centroid. Since W is contained in the one-dimensional plane P and
ā, v̄0 ∈ W , we conclude that W is one-dimensional set. Using Lemma 6.4 one
can show that any one-dimensional finitely generated centroid has exactly two
vertices. From the compatibility of (77), from the fact that the set W is bounded
and from Lemmas 6.7 and 6.8 follows that v̄0 is a nodal solution of the system
(77). From the fact that W is a bounded set and from Lemma 6.6 follows that
the rank of the system (77) is equal to n. Hence the rank of (89) is also equal
to n. Therefore the element v̄0 is a nodal solution of the system (89). Using
Lemmas 6.7 and 6.8 we conclude that v̄0 is a vertex of the centroid W . Let v̄
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be a vertex of the centroid W which is different from v̄0. From Lemmas 6.7 and
6.8 and from the fact that W is bounded follows that v̄ is a nodal solution of
the system (89). Taking into account that the rank of the system (89) is equal
to n we conclude that there exists i0 ∈ {1, . . . , k} for which fi0(v̄) = 0. We see
that i0 ∈ {1, . . . ,m} since otherwise ā ∈ Pm+1 ∪ . . . ∪ Pk which contradicts the
assumption. Therefore there exists i0 ∈ {1, . . . ,m} such that v̄ ∈ Wi0 . From the
properties of the set Di0 it follows that there exists a tuple (v̄1, . . . , v̄n) ∈ Di0

such that the element v̄ belongs to the centroid generated by the set {v̄1, . . . , v̄n}.
Since the element ā is contained in the centroid generated by the set {v̄0, v̄}, we
obtain that ā is contained in the centroid generated by the set {v̄0, v̄1, . . . , v̄n}.
Finally, (v̄0, v̄1, . . . , v̄n) ∈ D by the definition of D.

The case ā ∈ Pi, i ∈ {m+ 1, . . . , k}, can be considered in the same way, but
instead of v̄0 we must take v̄i. Hence the set D is a vertex (n + 1)-covering of
the centroid W . From the definition of the set D and from (88) follows that the
cardinality of the set D is at most kn−1. ��

6.3 Principal Lemmas

In this subsection four lemmas will be proved which are used immediately in the
proof of Theorem 6.1.

Lemma 6.17. Any incompatible equation system of the kind

{f1(x̄) = δ1, . . . , fk(x̄) = δk} (90)

where f1, . . . , fk ∈ Sn(IR) and δ1, . . . , δk ∈ {−1, 0,+1} contains an incompatible
subsystem with at most n+ 1 equations.

Proof. Let, for definiteness, δ1 = δ2 = . . . = δm = 0, δm+1 = . . . = δm+p = −1
and δm+p+1 = . . . = δk = +1. Let the equality fj(x̄) = sign(gj(x̄)), where
gj ∈ Ln(IR), hold for any j ∈ {1, . . . , k}. Let the rank of the system

{g1(x̄) = 0, . . . , gm(x̄) = 0} (91)

be equal to t. Assume that the system (91) is incompatible. Then from Lemma
6.3 follows that the system (91) contains an incompatible subsystem with at most
t+ 1 equations. Hence the system (90) also contains an incompatible subsystem
with at most t+ 1 equations. Since t ≤ n, the statement of the lemma holds in
the considered case. Assume that the system (91) is compatible. From Lemma
6.3 follows that in this case (91) contains a subsystem of the rank t

{gj1(x̄) = 0, . . . , gjt(x̄) = 0} (92)

which contains t equations and is equivalent to the system (91). Denote by P the
set of solutions of the system (92). From Lemma 6.15 follows that there exists
one-to-one mapping ζ from P onto IRn−t and the functions g∗1 , . . . , g∗k ∈ Ln−t(IR)
such that gj(ā) = g∗j (ζ(ā)) for any ā ∈ P and j ∈ {1, . . . , k}. From the incom-
patibility of the system (90) and from the choice of the functions g∗j , 1 ≤ j ≤
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k, follows that the system {−g∗m+1(x̄) > 0, . . . ,−g∗m+p(x̄) > 0, g∗m+p+1(x̄) >

0, . . . , g∗k(x̄) > 0} is incompatible on IRn−t. From Lemma 6.14 follows that this
system contains an incompatible subsystem with at most n − t + 1 inequali-
ties. Let this system be of the kind {−g∗i1(x̄) > 0, . . . ,−g∗is

(x̄) > 0, g∗is+1
(x̄) >

0, . . . , g∗ir
(x̄) > 0} where r ≤ n − t + 1. We can then easily see that the sub-

system {fj1(x̄) = 0, . . . , fjt(x̄) = 0, fi1(x̄) = −1, . . . , fis(x̄) = −1, fis+1(x̄) =
+1, . . . , fir(x̄) = +1} of the system (90) containing at most n + 1 equations is
incompatible on IRn. ��
Lemma 6.18. Let f1, . . . , fk ∈ Sn(IR). Then there exist at most 2kn+1 pairwise
different tuples (δ1, . . . , δk) ∈ {−1, 0,+1}k for each of which the equation system
{f1(x̄) = δ1, . . . , fk(x̄) = δk} is compatible on IRn.

Proof. For arbitrary f1, . . . , fk ∈ Sn(IR) denote by N(f1, . . . , fk) the number
of different tuples (δ1, . . . , δk) ∈ {−1, 0,+1}k such that the equation system
{f1(x̄) = δ1, . . . , fk(x̄) = δk} is compatible on IRn. Set

N(n, k) = max{N(f1, . . . , fk) : f1, . . . , fk ∈ Sn(IR)} .

Let us show that for any natural n and k the inequality

N(n, k) ≤ 2kn + 1 (93)

holds. First, verify that for any natural n and k the inequality

N(n + 1, k + 1) ≤ N(n+ 1, k) + 2N(n, k) (94)

holds. From the definition of the value N(n + 1, k + 1) follows that functions
f1, . . . , fk+1 ∈ Sn+1(IR) exist such that N(f1, . . . , fk+1) = N(n + 1, k + 1).
Obviously, among the functions f1, . . . , fk+1 there exists a function which is not
constant on IRn+1. Without loss of generality, we can assume that the function
fk+1 is not constant.

For any δ̄ = (δ1, . . . , δk) ∈ {−1, 0,+1}k and σ ∈ {−1, 0,+1} denote by B(δ̄)
the system of equations {f1(x̄) = δ1, . . . , fk(x̄) = δk}, and by Bσ(δ̄) denote the
system of equations {f1(x̄) = δ1, . . . , fk(x̄) = δk, fk+1(x̄) = σ}. Let B ∈ {B(δ̄) :
δ̄ ∈ {−1, 0,+1}k} ∪ {Bσ(δ̄) : δ̄ ∈ {−1, 0,+1}k, σ ∈ {−1, 0,+1}}. Set

C(B) =
{

0, if the system B is incompatible on IRn+1 ,
1, otherwise .

Let δ̄ ∈ {−1, 0,+1}k. Let us show that if C(B0(δ̄)) + C(B2(δ̄)) ≥ 1 then
C(B(δ̄)) = 1, and if C(B0(δ̄)) + C(B2(δ̄)) = 2 then C(B1(δ̄)) = 1. Let, for
instance, C(B0(δ̄)) = 1, and ā be a solution of the system B0(δ̄). Then the ele-
ment ā is a solution of the system B(δ̄), and hence C(B(δ̄)) = 1. Let C(B0(δ̄))+
C(B2(δ̄)) = 2, ā0 be a solution of the system B0(δ̄) and ā2 be a solution of the
system B2(δ̄). Let fk+1(x̄) = sign(g(x̄)) where g ∈ Ln+1(IR). Then the element
−ā0(g(ā2)/(g(ā0) − g(ā2))) + ā2(1 + g(ā2)/(g(ā0) − g(ā2))) is a solution of the
system B1(δ̄). Therefore C(B1(δ̄)) = 1.
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From the obtained relations it follows that for any δ̄ ∈ {−1, 0,+1}k the
inequality ∑

σ∈{−1,0,+1}
C(Bσ(δ̄)) ≤ C(B(δ̄)) + 2C(B1(δ̄))

holds. Therefore ∑
δ̄∈{−1,0,+1}k

∑
σ∈{−1,0,+1} C(Bσ(δ̄))

(95)
≤∑δ̄∈{−1,0,+1}k C(B(δ̄)) + 2

∑
δ̄∈{−1,0,+1}k C(B1(δ̄)) .

From the choice of functions f1, . . . , fk+1 follows that∑
δ̄∈{−1,0,+1}k

∑
σ∈{−1,0,+1}

C(Bσ(δ̄)) = N(n + 1, k + 1) . (96)

One can easily see that
∑

δ̄∈{−1,0,+1}k C(B(δ̄)) = N(f1, . . . , fk). Hence

∑
δ̄∈{−1,0,+1}k

C(B(δ̄)) ≤ N(n + 1, k) . (97)

Let us show that ∑
δ̄∈{−1,0,+1}k

C(B1(δ̄)) ≤ N(n, k) . (98)

Let for any j ∈ {1, . . . , k + 1} the equality fj(x̄) = sign(gj(x̄)) holds where
gj ∈ Ln+1(IR). Denote by P the set of solutions of the system {gk+1(x̄) = 0}.
Since the function fk+1 is not constant on IRn+1, the rank of this system is equal
to 1. Consider a mapping ζ : P → IRn satisfying the conditions of Lemma 6.15.
From the property 1◦ of the mapping ζ follows that for any j ∈ {1, . . . , k} there
exists a function g∗j ∈ Ln(IR) such that gj(ā) = g∗j (ζ(ā)) for any ā ∈ P . Let
f∗

j = sign(g∗j ),1 ≤ j ≤ k. Then
∑

δ̄∈{−1,0,+1}k C(B1(δ̄)) = N(f∗
1 , . . . , f

∗
k ). Since

N(f∗
1 , . . . , f

∗
k ) ≤ N(n, k), (98) holds. From (95)–(98) follows (94). Let us prove

the inequality (93) by induction on the value n+ k. One can show that for any
natural n and k the following equalities hold:

N(1, k) = 2k + 1 , (99)
N(n, 1) = 3 . (100)

Hence (93) is true for n + k ≤ 3. Let t ≥ 4. Assume that (93) holds for any
natural n and k such that n+k < t. Let n∗ and k∗ be arbitrary natural numbers
such that n∗ + k∗ = t. Let us show that (93) also holds for n∗ and k∗. From (99)
and (100) follows that if n∗ = 1 or k∗ = 1 then (93) holds. Therefore we can
assume that n∗ = n+1 and k∗ = k+1 for some natural n and k. From (94) and
from the inductive hypothesis follows that N(n+1, k+1) ≤ 2kn+1+1+4kn+2 ≤
2(kn+1 + (n+ 1)kn + 1) + 1 ≤ 2(k + 1)n+1 + 1. Thus, the inequality (93) holds.
The statement of the lemma follows from (93). ��
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Let U = (A,B, F ) be an information system, Γ be a decision tree over U
and z be a problem over U . Let us define a partial function Γ : A → ZZ (later
we will say that the decision tree Γ realizes this function). Let a ∈ A. If there
is no a complete path ξ in Γ such that a ∈ SolU (π(ξ)) then the value Γ (a) is
indefinite. Let ξ be a complete path in Γ such that a ∈ SolU (π(ξ)), and let the
terminal node of ξ be labelled by the number m. Then Γ (a) = m. It is clear that
Γ solves z if and only if Γ (a) = z(a) for any a ∈ A.

Denote by Cn the set of solutions on IRn of the inequality system

{x1 + 2 > 0, 2− x1 > 0, . . . , xn + 2 > 0, 2− xn > 0} .

Let U = U(IRn,K, x1, . . . , xn) be a quasilinear information system. Denote
Uκ = U(Cn+1,K, x1, . . . , xn+1). Put into correspondence to any attribute f ∈
F (IRn,K, x1, . . . , xn) an attribute fκ ∈ F (Cn+1,K, x1, . . . , xn+1) in the follow-
ing way: if f = sign(a1x1+ . . .+anxn +an+1) then fκ = sign(a1x1 + . . .+anxn +
an+1xn+1). Put into correspondence to any problem z over U a problem zκ over
Uκ in the following way: if z = (ν, f1, . . . , fk) then zκ = (ν, fκ

1 , . . . , f
κ
k ).

Lemma 6.19. Let U = U(IRn,K, x1, . . . , xn) be a quasilinear information sys-
tem, Uκ = U(Cn+1,K, x1, . . . , xn+1), z be a problem over U , and Γ1 be a de-
cision tree over Uκ which solves the problem zκ. Then there exists a decision
tree Γ over U which solves the problem z and for which h(Γ ) ≤ h(Γ1) + 2n and
r(Γ ) ≤ r(Γ1) + 1.

Proof. Denote by Γm,δ, 1 ≤ m ≤ n+1, δ ∈ {−1, 1}, a decision tree over U which
is obtained from the tree Γ1 in the following way: if a working node w of the tree
Γ1 is labelled by an attribute sign(a1x1 + . . . an+1xn+1 + an+2) then the node w
in the tree Γm,δ is labelled by the attribute sign(a1x1 + . . . anxn +an+1 +an+2) if
m = n+ 1, or by the attribute sign(a1x1 + . . .+ am−1xm−1 + (am + δan+2)xm +
am+1xm+1 + . . .+ anxn + an+1) if m 
= n + 1.

Define a function q : IRn → IN. Let (a1, . . . , an) ∈ IRn, an+1 = 1 and let m
be the minimal number from {1, . . . , n+ 1} such that |am| = max{|ai| : 1 ≤ i ≤
n + 1}. Then q(a1, . . . , an) = 2m3sign(am)+1. We can easily see that there exists
a decision tree Γ0 over U which realizes the function q and for which h(Γ0) = 2n
and r(Γ0) = 0.

A decision tree Γ over U will be obtained from the tree Γ0 and the trees
Γm,δ in the following way. The root of Γ is the root of the tree Γ0. Each terminal
node of the tree Γ0 is replaced by the root of a decision tree. Let w be a terminal
node of the tree Γ0 and w be labelled by the number 2m3σ. Then the node w is
replaced by the root of the tree Γm,σ−1. One can show that

h(Γ ) ≤ h(Γ1) + 2n , (101)
r(Γ ) ≤ r(Γ1) + 1 . (102)

Let us show that the decision tree Γ solves the problem z. Define a mapping
κ : IRn → Cn+1 in the following way: if ā = (a1, . . . , an) ∈ IRn, an+1 = 1 and
v = max{|ai| : 1 ≤ i ≤ n+1} then κ(ā) = (a1/v, . . . , an/v, 1/v). It is not difficult
to see that
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z(ā) = zκ(κ(ā)) (103)

for any ā ∈ IRn. One can show that for any ā ∈ IRn if the value Γ1(κ(ā)) is
definite then the value Γ (ā) is also definite and the equality

Γ (ā) = Γ1(κ(ā)) (104)

holds. Since the decision tree Γ1 solves the problem zκ, for any b̄ ∈ Cn+1 the
value Γ1(b̄) is definite and the equality Γ1(b̄) = zκ(b̄) holds. Using this fact and
the fact that κ(ā) ∈ Cn+1 for any ā ∈ IRn we conclude that Γ1(κ(ā)) = zκ(κ(ā))
for any ā ∈ IRn. From here and from (103) and (104) follows that Γ (ā) = z(ā)
for any ā ∈ IRn. Using this fact and (101), (102) obtain the statement of the
lemma. ��

Let K be a numerical ring with unity and let W ⊆ IRn. A finite set of
functions F ⊂ Sn(K) will be called a functional (m,K)-covering of the set W
if for any ā ∈ W there exist functions f1, . . . , fm ∈ F and numbers σ1, . . . , σm ∈
{−1, 0,+1} such that ā is a solution of the equation system

{f1(x̄) = σ1, . . . , fm(x̄) = σm}

and the set of solutions of this system on IRn is a subset of W .

Lemma 6.20. Let K be a numerical ring with unity, f1, ..., fk∈Sn(K), δ1, ..., δk

∈ {−1, 0,+1} and W be the nonempty set of solutions on Cn of the equation
system {f1(x̄) = δ1, . . . , fk(x̄) = δk}. Then there exists a functional (n + 1,K)-
covering F of the set W such that |F| ≤ (n+ 1)(k+ 2n)n−1 and max{r(f) : f ∈
F} ≤ 2n2(log2 n + 1 + max{r(fj) : j = 1, . . . , k})− 1.

Proof. Let fj = sign(g0
j ), where 1 ≤ j ≤ k and g0

j ∈ Ln(K). Let, for the
definiteness, δ1 = . . . = δm = 0, δm+1 = . . . = δp = +1 and δp+1 = . . . = δk =
−1. Let gj = g0

j for j = 1, . . . , p, gj = −g0
j for j = p+ 1, . . . , k, gj = xj−k + 2 for

j = k + 1, . . . , k + n and gj = 2 − xj−k−n for j = k + n + 1, . . . , k + 2n. Then
the set of solutions on IRn of the system

S0 = {g1(x̄) = 0, . . . , gm(x̄) = 0, gm+1(x̄) > 0, . . . , gk+2n(x̄) > 0}

coincides with the set W . Let U be the set of solutions on IRn of the system

{g1(x̄) ≥ 0,−g1(x̄) ≥ 0, . . . , gm(x̄) ≥ 0,−gm(x̄) ≥ 0,
(105)

gm+1(x̄) ≥ 0, gm+2(x̄) ≥ 0, . . . , gk+2n(x̄) ≥ 0} .

Denote by P the set of solutions on IRn of the system

{g1(x̄) = 0, . . . , gm(x̄) = 0} . (106)

Since the set W is nonempty, P is also nonempty. Let the rank of the system
(106) be equal to t.
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If t = n then from the compatibility of the system (106) and from Lemma
6.1 follows that the set P is one-element. Since the set W is nonempty and
W ⊆ P , we have W = P . From the compatibility of the system (106) and from
Lemma 6.3 follows that there exists a subsystem of (106) of the rank n which is
equivalent to (106) and contains exactly n equations. Let, for the definiteness, it
be of the kind {g1(x̄) = 0, . . . , gn(x̄) = 0}. Then the set of solutions on IRn of the
system {f1(x̄) = 0, . . . , fn(x̄) = 0} is equal to W . Using this fact one can show
that the set F = {f1, . . . , fn} is a functional (n + 1,K)-covering of the set W ,
and this covering satisfies the conditions of the lemma. Therefore the statement
of the lemma is true if t = n.

Let t < n. Consider a mapping ζ : P → IRn−t possessing the properties
1◦–3◦ from Lemma 6.15. From the property 1◦ of the mapping ζ follows that
for any j ∈ {m+ 1, . . . , k + 2n} there exists a function g∗j ∈ Ln−t(IR) such that
gj(ā) = g∗j (ζ(ā)) for any element ā ∈ P . Denote by U∗ the set of solutions on
IRn−t of the system

{g∗m+1(x̄) ≥ 0, . . . , g∗k+2n(x̄) ≥ 0} . (107)

One can show that U is a bounded nonempty set. From here and from Lemma
6.8 it follows that U is a finitely generated centroid. Denote by V the set of
vertices of the centroid U . Denote V ∗ = {ζ(v̄) : v̄ ∈ V }. In the same way as in
the proof of Lemma 6.16 we can show that U∗ is a finitely generated centroid
and V ∗ is the set of vertices of the centroid U∗.

From the compatibility on IRn of the system S0 and from the choice of the
functions g∗j , m+ 1 ≤ j ≤ k + 2n, it follows that the system

{g∗m+1(x̄) > 0, . . . , g∗k+2n(x̄) > 0} (108)

is compatible on IRn−t. The systems obtained from (107) and (108) by the dele-
tion of the inequalities in which functions g∗j are constant on IRn−t will be
denoted by (107a) and (108a). From the compatibility of the systems (107) and
(108) it follows that the set of solutions of the system (107a) coincides with the
set of solutions of the system (107), and the set of solutions of the system (108a)
coincides with the set of solutions of the system (108). Functions from inequali-
ties of the system (108a) are not constant on IRn−t. Therefore from compatibility
of (108a) and from Lemma 6.11 follows that the set of solutions on IRn−t of the
system (107a) is (n− t)-dimensional. Hence U∗ is an (n− t)-dimensional finitely
generated centroid in the space IRn−t. From here and from Lemma 6.16 follows
that there exists a vertex (n− t+1)-covering D∗ of the set U∗ which cardinality
is at most (k+2n−m)n−t−1. Since the rank of the system (106) is equal to t, we
have m ≥ t. Therefore the cardinality of the set D∗ is at most (k+2n− t)n−t−1.

Let ζ−1 be the mapping which is inverse to the mapping ζ andD = {(ζ−1(v̄1),
. . . , ζ−1(v̄n−t+1)) : (v̄1, . . . , v̄n−t+1) ∈ D∗}. In the same way as in the proof of
Lemma 6.16 we can show that the set D is a vertex (n− t + 1)-covering of the
centroid U . Notice that

|D| ≤ (k + 2n− t)n−t−1 . (109)
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Let a = 2max{1,max{r(fj):j=1,...,k}} and let v̄ be an arbitrary vertex of the centroid
U . Let us show that v̄ = (d1/d0, . . . , dn/d0) where dj ∈ K, |dj | ≤ ann! for any
j ∈ {0, . . . , n} and d0 
= 0. From the boundedness of the set U and from Lemmas
6.7 and 6.8 follows that v̄ is a nodal solution of the system (105). Since the set U is
bounded, from Lemma 6.6 follows that the rank of the system (105) is equal to n.
Therefore there exist numbers i1, . . . , in ∈ {1, . . . , k+ 2n} such that the element
v̄ is a solution of the system {gi1(x̄) = 0, . . . , gin(x̄) = 0}, and the rank of this
system is equal to n. From Lemma 6.2 follows that v̄ = (d1/d0, . . . , dn/d0) where
dj is an n-th order determinant constructed from coefficients of the functions
gi1 , . . . , gin , 0 ≤ j ≤ n, and d0 
= 0. Coefficients of the functions gi1 , . . . , gin

are numbers from the ring K, and the absolute value of each coefficient is at
most a. Therefore dj ∈ K and |dj | ≤ ann! for any j ∈ {0, . . . , n}. Consider an
arbitrary tuple (v̄1, . . . , v̄n−t+1) ∈ D. Since the set D is a vertex (n − t + 1)-
covering of the centroid U , the dimension of the set {v̄1, . . . , v̄n−t+1} is equal
to n− t. Let Δ ⊆ IRn and Δ = {(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}. From
Lemma 6.4 follows that the dimension of the set Δ is equal to n. If t > 0 we
will add to the set {v̄1, . . . , v̄n−t+1} elements ū1, . . . , ūt ∈ Δ and obtain the set
{v̄1, . . . , v̄n−t+1, ū1, . . . , ūt} of the dimension n. Let us show that such elements
ū1, . . . , ūt ∈ Δ exist. First, we show that there exists an element ū1 ∈ Δ such that
the dimension of the set {v̄1, . . . , v̄n−t+1, ū1} is equal to n− t+ 1. From Lemma
6.4 follows that for any ū ∈ Δ the dimension of the set {v̄1, . . . , v̄n−t+1, ū}
is either n − t or n − t + 1. Assume that for any ū ∈ Δ the dimension of
the set {v̄1, . . . , v̄n−t+1, ū} is equal to n − t. Using Lemma 6.4 we conclude
that in this case Δ is contained in the same (n − t)-dimensional plane as the
set {v̄1, . . . , v̄n−t+1}. Then the dimension of the set Δ is less than n which is
impossible. Hence there exists an element ū1 ∈ Δ such that the dimension of
the set {v̄1, . . . , v̄n−t+1, ū1} is equal to n − t + 1. In the similar way we can
prove that there exist elements ū2, . . . , ūt ∈ Δ such that the dimension of the
set {v̄1, . . . , v̄n−t+1, ū1, . . . , ūt} is equal to n.

Denote
D(v̄1, . . . , v̄n−t+1) = {(v̄2, v̄3 . . . , v̄n−t+1, ū1, . . . , ūt),

(v̄1, v̄3, . . . , v̄n−t+1, ū1, . . . , ūt), . . . , (v̄1, v̄2, . . . , v̄n−t, ū1, . . . , ūt)} .

Correspond to each tuple from the set D(v̄1, . . . , v̄n−t+1) a function from
Sn(K) which is not constant on P and which is equal to 1 on all elements
from the tuple. Consider, for instance, the tuple (v̄1, v̄2, . . . , v̄n−t, ū1, . . . , ūt). By
proved above, for j = 1, . . . , n− t the equality v̄j = (dj1/dj0, . . . , djn/dj0) holds
where dji ∈ K,

|dji| ≤ ann! , (110)

0 ≤ i ≤ n, and dj0 
= 0. One can show that the element ūj, 1 ≤ j ≤ t, can be
represented in the form

ūj = (dn−t+j1/dn−t+j0, . . . , dn−t+jn/dn−t+j0)

where dn−t+ji ∈ K,
|dn−t+ji| ≤ ann! (111)

for any i ∈ {0, . . . , n} and dn−t+j0 
= 0. Consider the equation systems
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⎧⎨
⎩

(d11/d10)x1 + . . .+ (d1n/d10)xn + xn+1 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(dn1/dn0)x1 + . . .+ (dnn/dn0)xn + xn+1 = 0 ,
(112)

⎧⎨
⎩

(d11/d10 − d21/d20)x1 + . . .+ (d1n/d10 − d2n/d20)xn = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d11/d10 − dn1/dn0)x1 + . . .+ (d1n/d10 − dnn/dn0)xn = 0 ,
(113)

⎧⎨
⎩

(d11d20 − d21d10)x1 + . . .+ (d1nd20 − d2nd10)xn = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d11dn0 − dn1d10)x1 + . . .+ (d1ndn0 − dnnd10)xn = 0 .
(114)

Since the set {v̄1, . . . , v̄n−t+1, ū1, . . . , ūt} is n-dimensional, from Lemma 6.4 fol-
lows that the set {v̄1, . . . , v̄n−t, ū1, . . . , ūt} is (n−1)-dimensional. From here and
from Lemma 6.4 it follows that the rank of the system (113) is equal to n − 1.
It is clear that the system (114) is equivalent to the system (113), and the rank
of (114) is also n − 1. From here and from Lemma 6.2 it follows that there
exist determinants M1, . . . ,Mn of the order n − 1 which are constructed from
coefficients of equations of the system (114) and which satisfy the following con-
ditions:

∑n
i=1 |Mi| > 0 and the element (M1,−M2,M3,−M4, . . . , (−1)n−1Mn)

is a solution of the system (114). From (110) and (111) follows that for any
j ∈ {1, . . . , n} the following inequality holds:

|Mj | ≤ 2n−1a2n(n−1)(n!)2(n−1)(n− 1)! . (115)

One can show that the element

(M1d10,−M2d10, . . . , (−1)n−1Mnd10,−
n∑

i=1

(−1)i−1Mid1i) (116)

is a solution of the system (112). Denote by g a function from Ln(K) such that

g(x̄) =
n∑

i=1

(−1)i−1Mid10xi −
n∑

i=1

(−1)i−1Mid1i .

Since the element (116) is a solution of the system (112), we have g(v̄1) =
. . . = g(v̄n−t) = g(ū1) = . . . = g(ūt) = 0. Since

∑n
i=1 |Mi| > 0 and d10 
= 0,

the function g is not constant on IRn. Let us show that g(v̄n−t+1) 
= 0. Assume
that g(v̄n−t+1) = 0. Then an n-dimensional set {v̄1, . . . , v̄n−t+1, ū1, . . . , ūt} is
contained in the set of solutions of the equation g(x̄) = 0, which is an (n − 1)-
dimensional plane, but it is impossible. Correspond to the tuple (v̄1, . . . , v̄n−t,
ū1, . . . , ūt) ∈ D(v̄1, . . . , v̄n−t+1) the function q = sign(g). This function is not
constant on P since q(v̄1) = . . . = q(v̄n−t) = 0 and q(v̄n−t+1) 
= 0. From (110),
(111), (115) and from the definition of the value a follows that

r(q) ≤ 2n2(log2 n+ 1 + max{r(fj) : j = 1, . . . , k})− 1 . (117)

To each of other tuples from the setD(v̄1, . . . , v̄n−t+1) we correspond in the same
way a function from Sn(K) which is not constant on P and equals to 0 on all
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elements from the tuple. Denote by F(v̄1, . . . , v̄n−t+1) the set of functions from
Sn(K) corresponded to tuples of D(v̄1, . . . , v̄n−t+1). From Lemma 6.3 follows
that there exists a subsystem of the system (106) which is equivalent to the
system (106) and contains t equations. Let this subsystem be of the kind {g1(x̄) =
0, . . . , gt(x̄) = 0}. Denote

F = {f1, . . . , ft} ∪
⎛
⎝ ⋃

(v̄1,...,v̄n−t+1)∈D

F(v̄1, . . . , v̄n−t+1)

⎞
⎠ .

From (109) follows that

|F| ≤ (n+ 1)(k + 2n)n−1 . (118)

From (117) follows that

max{r(q) : q ∈ F} ≤ 2n2(log2 n+ 1 + max{r(fj) : j = 1, . . . , k})− 1 . (119)

Let us show that the set F is a functional (n + 1,K)-covering of the set W .
Let ā0 ∈ W . Since the set D is a vertex (n − t + 1)-covering of the set U ,
there exists a tuple (v̄1, . . . , v̄n−t+1) ∈ D such that the element ā0 belongs to
the centroid generated by the set {v̄1, . . . , v̄n−t+1}. Let F(v̄1, . . . , v̄n−t+1) =
{q1, . . . , qn−t+1} and qj = sign(hj), 1 ≤ j ≤ n−t+1, where hj ∈ Ln(K). Let, for
the definiteness, the inequality hj(v̄i) ≥ 0 hold for any j ∈ {1, . . . , n− t+1} and
i ∈ {1, . . . , n− t+ 1}. From the property 1◦ of the mapping ζ follows that there
exists a function h∗j ∈ Ln−t(IR), 1 ≤ j ≤ n − t + 1, such that hj(ā) = h∗j (ζ(ā))
for any ā ∈ P .

Consider the centroid U∗
0 generated by the set {ζ(v̄1), . . . , ζ(v̄n−t+1)}. From

the property 2◦ of the mapping ζ and from the definition of the set D follows
that the elements ζ(v̄1), . . . , ζ(v̄n−t+1) are centroidally independent. From here
and from Lemma 6.7 follows that the set {ζ(v̄1), . . . , ζ(v̄n−t+1)} coincides with
the set of vertices of the centroid U∗

0 . Since the set {v̄1, . . . , v̄n−t+1} is (n − t)-
dimensional, from the property 3◦ of the mapping ζ follows that the dimension
of the set {ζ(v̄1), . . . , ζ(v̄n−t+1)} is equal to n − t. Therefore the dimension of
the centroid U∗

0 is also equals to n− t. Since the functions q1, . . . , qn−t+1 are not
constant on P , the functions h∗1, . . . , h

∗
n−t+1 are not constant on IRn−t. From

the properties of the functions qj , 1 ≤ j ≤ n − t + 1, and from the (n − t)-
dimensionality of U∗

0 we conclude that the half-space defined by the inequality
h∗j (x̄) ≥ 0, 1 ≤ j ≤ n− t+ 1, is an extreme support of the centroid U∗

0 . Let us
show that the centroid U∗

0 has no other extreme supports. Consider an arbitrary
extreme support of the centroid U∗

0 . Let it be given by the inequality h(x̄) ≥ 0
where h is a function from Ln−t(IR) which is not constant on IRn−t. Then there
exist n − t vertices of the centroid U∗

0 contained in the (n − t − 1)-dimensional
plane defined by the equation h(x̄) = 0. Let, for the definiteness, this plane
contains the vertices ζ(v̄1), . . . , ζ(v̄n−t). Besides, from the choice of the functions
qj , 1 ≤ j ≤ n − t + 1, follows that for some j ∈ {1, . . . , n − t + 1} the vertices
ζ(v̄1), . . . , ζ(v̄n−t) are contained in the plane defined by the equation h∗j (x̄) = 0.
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Since the set {ζ(v̄1), . . . , ζ(v̄n−t+1)} is (n − t)-dimensional, from Lemma 6.4
follows that the set {ζ(v̄1), . . . , ζ(v̄n−t)} is (n− t−1)-dimensional. Using Lemma
6.5 we conclude that there exists c ∈ IR such that h∗j (ā) = c · h(ā) for any ā ∈
IRn−t. Hence the extreme support, defined by the inequality h(x̄) ≥ 0, coincides
with the extreme support defined by the inequality h∗j (x̄) ≥ 0. Therefore the set
of half-spaces defined by the inequalities h∗1(x̄) ≥ 0, . . . , h∗n−t+1(x̄) ≥ 0 coincides
with the set of the extreme supports of the centroid U∗

0 . From here, from Lemma
6.9 and from the (n − t)-dimensionality of the centroid U∗

0 follows that the set
of solutions of the system {h∗1(x̄) ≥ 0, . . . , h∗n−t+1(x̄) ≥ 0} on IRn−t coincides
with U∗

0 . From here, from the choice of the functions h∗j , 1 ≤ j ≤ n− t+ 1, and
from the properties of the mapping ζ follows that the set of solutions on P of the
system {h1(x̄) ≥ 0, . . . , hn−t+1(x̄) ≥ 0} coincides with the centroid U0 generated
by the set {v̄1, . . . , v̄n−t+1}. Therefore the set of solutions on IRn of the system

{g1(x̄) = 0, . . . , gt(x̄) = 0, h1(x̄) ≥ 0, . . . , hn−t+1(x̄) ≥ 0} (120)

coincides with U0 and is a subset of the set U .
Let ηj = gj for j = 1, . . . , t and ηt+j = hj for j = 1, . . . , n − t + 1.

Let, for the definiteness, ηt+1(ā0) = . . . = ηt+p(ā0) = 0 and ηt+p+1(ā0) >
0, . . . , ηn+1(ā0) > 0. Denote by W0 the set of solutions on IRn of the sys-
tem {η1(x̄) = 0, . . . , ηt+p(x̄) = 0, ηt+p+1(x̄) > 0, . . . , ηn+1(x̄) > 0}. Evidently,
ā0 ∈ W0. Let us show that W0 ⊆ W . It is sufficient to show that for any
ā1 ∈ W0 and for any j ∈ {m + 1, . . . , k + 2n} the inequality gj(ā1) > 0 holds.
Evidently, the set of solutions of the system

{η1(x̄) = 0, . . . , ηt+p(x̄) = 0, ηt+p+1(x̄) ≥ 0, . . . , ηn+1(x̄) ≥ 0} (121)

is a subset of the set of solutions of the system (120). Hence the set of solutions of
the system (121) is a subset of the set U . Therefore for any j ∈ {m+1, . . . , k+2n}
the inequality gj(x̄) ≥ 0 is a consequence of the system (121). Let j ∈ {m +
1, . . . , k+2n}. From Lemma 6.10 follows that there exist numbers λ1, . . . , λt+p ∈
IR and the nonnegative numbers λt+p+1, . . . , λn+1, λ0 ∈ IR such that gj(x̄) =∑n+1

i=1 λiηi(x̄) + λ0. Let ā1 ∈ W0. Then
∑t+p

i=1 λiηi(ā1) = 0, and if there exists at
least one i ∈ {0, t+ p+ 1, t+ p+ 2, . . . , n+ 1} such that λi > 0 then gj(ā1) > 0.
Assume that λi = 0 for any i ∈ {0, t+p+1, t+p+2, . . . , n+1}. Then gj(ā1) = 0
for any ā1 ∈ W0. This contradicts to the fact that gj(ā0) > 0 and ā0 ∈ W0.
Therefore W0 ⊆ W . Hence the element ā0 belongs to the set of solutions on
IRn of the system {f1(x̄) = 0, . . . , ft(x̄) = 0, q1(x̄) = 0, . . . , qp(x̄) = 0, qp+1(x̄) =
+1, . . . , qn−t+1(x̄) = +1}, and the set of solutions of this system is a subset of
the set W . Thus, F is a functional (n+ 1,K)-covering of the set W . From here,
from (118) and from (119) follows the statement of lemma. ��

6.4 Proofs of Theorems

This subsection contains proofs of Theorems 6.1 and 6.2.

Proof (of Theorem 6.1). Let U = U(A,K,ϕ1, . . . , ϕn) be a quasilinear informa-
tion system, z be a problem over U , dim z = k, z = (ν, f1, . . . , fk) and r(z) = t.
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Denote V = U(IRn,K, x1, . . . , xn). Correspond to arbitrary attribute f ∈
F (A,K,ϕ1, . . . , ϕn) attribute f τ ∈ F (IRn,K, x1, . . . , xn). Let f = sign(a1ϕ1 +
. . . + anϕn + an+1). Then f τ = sign(a1x1 + . . . + anxn + an+1). Denote zτ =
(ν, f τ

1 , . . . , f
τ
k ).

Denote Y = U(Cn+1,K, x1, . . . , xn+1) and zτκ = (ν, f τκ
1 , . . . , fτκ

k ). Corre-
sponding definitions are presented before Lemma 6.19. Note that

f τκ = sign(a1x1 + . . .+ anxn + an+1xn+1)

for the considered attribute f = sign(a1ϕ1 + . . .+ anϕn + an+1).
First, we consider decision trees for the problem zτκ over Y . Obtained results

will then be applied consequently to the problem zτ over V and to the problem
z over U .

For j = 1, . . . , k set gj = f τκ
j . Denote by H(g1, . . . , gk) the set of all tuples

(δ1, . . . , δk) ∈ {−1, 0,+1}k for each of which the equation system {g1(x̄) =
δ1, . . . , gk(x̄) = δk} is compatible on Cn+1. Let

H(g1, . . . , gk) = {(δ11, . . . , δ1k), . . . , (δm1, . . . , δmk)} .

Let us denote by Wj , 1 ≤ j ≤ m, the set of solutions on Cn+1 of the equation
system {g1(x̄) = δj1, . . . , gk(x̄) = δjk}. It is easily to see that r(gj) = r(fj) for
any j ∈ {1, . . . , k}. Therefore max{r(gj) : j = 1, . . . , k} = t. From here and from
Lemma 6.20 follows that there exists a functional (n+ 2,K)-covering Fj of the
set Wj , 1 ≤ j ≤ m, such that

|Fj| ≤ (n + 2)(k + 2n+ 2)n , (122)
max{r(f) : f ∈ Fj} ≤ 2(n+ 1)2(t+ 1 + log2(n+ 1))− 1 . (123)

Let j ∈ {1, . . . ,m} and Fj = {q1, . . . , ql} where qi ∈ Sn+1(K), 1 ≤ i ≤ l. Let us

denote F0
j = {q1, . . . , ql}. Set F = {g1, . . . , gk} ∪

(⋃m
j=1 F0

j

)
. Denote p = |F|.

Since m ≤ 2kn+1 + 1 according to Lemma 6.18, using (122) we obtain

p ≤ k + (2kn+1 + 1)(n+ 2)(k + 2n+ 2)n

(124)
≤ (k + 2n+ 2)2(n+1) − 1 .

Let F = {g1, . . . , gp} and let ν1 : {−1, 0,+1}p → ZZ be a mapping such
that ν1(δ1, . . . , δp) = ν(δ1, . . . , δk) for any (δ1, . . . , δp) ∈ {−1, 0,+1}p. Denote
z1 = (ν1, g1, . . . , gp). It is clear that for any ā ∈ Cn+1 the equality

zτκ(ā) = z1(ā) (125)

holds. Denote T = TY (z1) and ρ = (F (Cn+1,K, x1, . . . , xn+1), {−1, 0,+1}).
(The definition of the decision table TY (z1) can be found in Sect. 4.2. The def-
initions of the parameters N(T ) and Mρ,h(T ) can be found in Sect. 3.2.) From
(124) and from Lemma 6.18 follows that

N(T ) ≤ 2(k + 2n+ 2)2(n+1)2 . (126)
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To verify the inequality
Mρ,h(T ) ≤ n+ 2 (127)

it is sufficiently to show that for any tuple (δ1, . . . , δp) ∈ {−1, 0,+1}p there exist
numbers i1, . . . , iq ∈ {1, . . . , p} such that q ≤ n+ 2 and T (gi1 , δi1) . . . (giq , δiq) ∈
Dtabρ. Verify this statement. Let (δ1, . . . , δp) ∈ {−1, 0,+1}p and the equation
system

{g1(x̄) = δ1, . . . , gp(x̄) = δp} (128)

be incompatible on Cn+1. Then the equation system

{g1(x̄) = δ1, . . . , gp(x̄) = δp, sign(x1 + 2) = 1,
(129)

sign(2− x1) = 1, . . . , sign(xn+1 + 2) = 1, sign(2− xn+1) = 1}
is incompatible on IRn+1. From Lemma 6.17 follows that the system (129) con-
tains a subsystem which consists of at most n+2 equations and is incompatible on
IRn+1. By deletion from this subsystem the equations from the last 2n+2 equa-
tions of the system (129) we obtain an incompatible on Cn+1 subsystem of the
system (128) containing at most n+2 equations. Let this subsystem be of the kind
{gi1(x̄) = δi1 , .., giq(x̄) = δiq} where q ≤ n + 2 and i1, . . . , iq ∈ {1, . . . , p}. Then
Row(T (gi1 , δi1) . . . (giq , δiq)) = ∅ and hence T (gi1 , δi1) . . . (giq , δiq) ∈ Dtabρ. Let
the system (128) be compatible on Cn+1, and let ā0 be a solutions of this sys-
tem from Cn+1. Then for some j ∈ {1, . . . ,m} we have ā0 ∈ Wj . Let, for the
definiteness, ā0 ∈ W1. Then, by definition of the set F1, there exist functions
gi1 , . . . , gin+2 ∈ F1 and numbers σ1, . . . , σn+2 ∈ {−1, 0,+1} such that the ele-
ment ā0 is a solution of the equation system

{gi1(x̄) = σ1, . . . , gin+2(x̄) = σn+2} ,

and the set W of solutions of this system on IRn+1 is a subset of the set W1.
Since gi1 , . . . , gin+2 ∈ F , we have σ1 = δi1 , . . . , σn+2 = δin+2 . It is clear that
the function zτκ(x̄) is constant on the set W1. From here and from (125) fol-
lows that the function z1(x̄) is constant on the set W1. Hence the function
z1(x̄) is constant on the set W . Using this fact it is not difficult to show that
T (gi1 , δi1) . . . (gin+2 , δin+2) ∈ Dtabρ. Thus, the inequality (127) holds.

Let a, b ∈ IN, a ≥ 4, b ≥ 1, T ∗ ∈ Tabρ, Mρ,h(T ∗) ≤ a and Nρ(T ∗) ≤ b. Then
using Theorem 3.6 one can show that

hρ(T ∗) ≤ a+ (a log2 b)/ log2 a .

From here and from (126) and (127) follows

hρ(T ) ≤ (n+ 3) + (n+ 3)(1 + 2(n+ 1)2 log2(k + 2n+ 2))/ log2(n + 3)
(130)

≤ 2(n+ 2)3 log2(k + 2n+ 2)/ log2(n+ 2)− 2n .

Let Γ1 be a decision tree for the table T such that

h(Γ1) = hρ(T ) . (131)
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Using the inequality (123) we obtain

r(Γ1) ≤ 2(n + 1)2(t+ 1 + log2(n+ 1))− 1 . (132)

From Theorem 4.1 and from (125) follows that the decision tree Γ1 over Y solves
the problems z1 and zτκ. From here and from Lemma 6.19 follows that there
exists a decision tree Γ2 over V which solves the problem zτ over V and for
which h(Γ2) ≤ h(Γ1)+2n and r(Γ2) ≤ r(Γ1)+1. From the two last inequalities,
from (130)–(132) and from the equalities k = dim z and t = r(z) follows

h(Γ2) ≤ 2(n+ 2)3 log2(dim z + 2n+ 2)/ log2(n+ 2)

and
r(Γ2) ≤ 2(n+ 1)2(r(z) + 1 + log2(n+ 1)) .

For each working node w of the tree Γ2 instead of an attribute sign(a1x1 +
. . .+ anxn + an+1) attached to it we mark w by the attribute sign(a1ϕ1 + . . .+
anϕn + an+1). Denote the obtained decision tree by Γ . It is clear that Γ is a
decision tree over U , h(Γ ) = h(Γ2) and r(Γ ) = r(Γ2). One can show that Γ
solves the problem z. ��
Proof (of Theorem 6.2). Describe an algorithm which for a given problem z over
U constructs a decision tree Γ over U such that the decision tree Γ solves the
problem z, and the inequalities (74) and (75) hold.

Denote V = U(IRn, ZZ, x1, . . . , xn) and ρ = (F (IRn, ZZ, x1, . . . , xn), {−1, 0,
+1}). We correspond to an arbitrary attribute f ∈ F (A,ZZ, ϕ1, . . . , ϕn) an at-
tribute f τ ∈ F (IRn, ZZ, x1, . . . , xn). Let f = sign(a1ϕ1 + . . . + anϕn + an+1).
Then f τ = sign(a1x1 + . . .+ anxn + an+1).

Let z = (ν, g1, . . . , gk). For i = 1, . . . , k denote fi = gτ
i . Find a number

q ∈ IN such that r(z) = log2 q. Construct the set B = {sign(a1x1 + . . . +
anxn + an+1) ∈ Sn(ZZ) : |ai| ≤ (2q(n + 1))2(n+1)2 , 1 ≤ i ≤ n + 1}. Denote
t = 2(n+ 1)2(r(z) + 1 + log2(n+ 1)). Evidently, B = {f : f ∈ Sn(ZZ), r(f) ≤ t}.
Let B = {f1, . . . , fm}. Denote z1 = (ν, f1, . . . , fk) and z∗ = (ν∗, f1, . . . , fm)
where ν∗ : {−1, 0,+1}m → ZZ and ν∗(δ1, . . . , δm) = ν(δ1, . . . , δk) for any tuple
(δ1, . . . , δm) ∈ {−1, 0,+1}m.

Theory of the algebra (IR;x + y, x · y, 0, 1) is solvable [207]. Using this fact
one can show that there exists an algorithm which for a given problem y over V
constructs the decision table TV (y). Using this algorithm construct the decision
table T ∗ = TV (z∗). As in the proof of Proposition 3.4 we can show that there
exists an algorithm which for a given decision table T ∈ Tabρ constructs a
decision tree Γ0 for the table T such that h(Γ0) = hρ(T ). Using this algorithm
construct a decision tree Γ1 for the table T ∗ such that h(Γ1) = hρ(T ∗). From
Theorem 6.1 follows that there exists a decision tree G over V which solves the
problem z1 over V and for which the inequalities

h(G) ≤ (2(n+ 2)3 log2(dim z1 + 2n+ 2))/(log2(n + 2))

and
r(G) ≤ 2(n+ 1)2(r(z1) + 1 + log2(n + 1))
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hold. Evidently, the decision tree G solves the problem z∗, and At(G) ⊆ B =
At(z∗). From Theorem 4.1 follows that G is a decision tree for the table T ∗.
Hence h(Γ1) ≤ h(G). Therefore the inequality (74) holds if in the capacity of
Γ we take Γ1. Since At(Γ1) ⊆ B, the inequality (75) holds if in the capacity
of Γ we take Γ1. From Theorem 4.1 follows that the decision tree Γ1 solves the
problem z∗. Hence Γ1 solves also the problem z1.

For each working node w of the tree Γ1 instead of an attribute sign(a1x1 +
. . .+ anxn + an+1) attached to it we mark w by the attribute sign(a1ϕ1 + . . .+
anϕn + an+1). Denote the obtained decision tree by Γ . It is clear that Γ is a
decision tree over U , h(Γ ) = h(Γ1) and r(Γ ) = r(Γ1). One can show that Γ
solves the problem z. It is clear that (74) and (75) hold for Γ . ��

6.5 Global Shannon Functions for Some Information Systems
and Weight Functions

This subsection is devoted to the study of global Shannon functions for pairs
(information system, weight function) belonging to the three families. The first
of them consists of pairs of the kind (U, h), where U is a quasilinear information
system. The second one contains pairs (U,ψ), where U is a quasilinear infor-
mation system of the kind U(IR,K, x1, . . . , xm) and ψ is a weight function for
U . The third family consists of pairs (U, h) in which U is either a system with
attributes of the kind sign(p) where p is a polynomial of variables x1, . . . , xm

with integer coefficients, or U is a system with attributes of the kind sign(q)
where q is a polynomial of variables x1, . . . , xm with integer coefficients which
degree is at most t.

Study of Pairs from First Family

Theorem 6.3. Let U = U(A,K,ϕ1, . . . , ϕm) be a quasilinear information sys-
tem. Then the following statements hold:

(a) if the set of functions F (A,K,ϕ1, . . . , ϕm) is finite (i.e. contains only finite
number of pairwise different functions) then Hg

U,h(n) = O(1);
(b) if the set of functions U(A,K,ϕ1, ..., ϕm) is infinite then Hg

U,h(n)=Θ(log2 n).

Proof. a) Let the set of functions F (A,K,ϕ1, . . . , ϕm) be finite. Then from The-
orem 5.1 follows that Hg

U,h(n) = O(1).
b) Let the set of the functions F (A,K,ϕ1, . . . , ϕm) be infinite. From Theorem

6.1 follows that Hg
U,h(n) = O(log2 n). Using Theorem 5.1 we conclude that

Hg
U,h(n) = Ω(log2 n). Therefore Hg

U,h(n) = Θ(log2 n). ��

Study of Pairs from Second Family. Let U = U(IR,K, x1, . . . , xm) be a
quasilinear information system and ψ be a weight function for U . Two attributes
f, g ∈ F = F (IR,K, x1, . . . , xm) will be called IR-equivalent if there exist a
number c ∈ IR \ {0} and numbers a1, . . . , am+1 ∈ K such that f = sign(a1x1 +
. . .+ amxm + am+1) and g = sign(ca1x1 + . . .+ camxm + cam+1). If c > 0 then
we will say that f and g are positively IR-equivalent. If c < 0 then we will say
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that f and g are negatively IR-equivalent. The weight function ψ will be called
IR-bounded if there exists a number t ∈ IN with the following property: for any
attribute f ∈ F there exists an attribute g ∈ F such that ψ(g) ≤ t and the
attributes f and g are IR-equivalent.

Theorem 6.4. Let U = U(IR,K, x1, . . . , xm) be a quasilinear information sys-
tem and ψ be a weight function for U . Then the following statements hold:

(a) if the weight function ψ is IR-bounded then Hg
U,ψ(n) = Θ(log2 n);

(b) if the weight function ψ is not IR-bounded then Hg
U,ψ(n) = n for infinitely

many natural n.

Proof. It is clear that Dom(Hg
U,ψ) = {n : n ∈ IN, n ≥ min{ψ(f) : f ∈ F}}.

a) Let the weight function ψ be IR-bounded, t ∈ IN and for any attribute f ∈ F
there exists an attribute g ∈ F such that ψ(g) ≤ t and the attributes f and
g are IR-equivalent.
Let n ∈ Dom(Hg

U,ψ), z be a problem over U and ψ(z) ≤ n. Evidently, dimσ ≤
n. From Theorem 6.1 follows that there exists a decision tree Γ over U which
solves the problem z and for which h(Γ ) ≤ 2(m+ 2)3 log2(n + 2m+ 2). Let
us denote by Γ ∗ the decision tree obtained from the tree Γ by replacement
of attributes attached to working nodes and numbers attached to edges of
Γ according to the following conditions. If some working node v of the tree
Γ is labelled by an attribute f then we replace it by an attribute g ∈ F
such that ψ(g) ≤ t and the attributes f and g are IR-equivalent. If f and
g are negatively IR-equivalent then for every edge issuing from the node v
substitute the number −δ for the number δ attached to it. If f and g are
positively IR-equivalent then the numbers attached to the edges issuing from
v will be left untouched. Evidently, the decision tree Γ ∗ solves the problem
z, h(Γ ∗) = h(Γ ) and ψ(Γ ∗) ≤ t ·h(Γ ∗). Set c1 = t2(m+2)3 and c2 = t2(m+
2)3 log2(2m+3). Then ψ(Γ ∗) ≤ c1 log2 n+c2 and hence ψg

U (z) ≤ c1 log2 n+c2.
Since n is an arbitrary number from the set Dom(Hg

U,ψ) and z is an arbitrary
problem over U with ψ(z) ≤ n, we conclude that for any n ∈ Dom(Hg

U,ψ) the
inequality

Hg
U,ψ(n) ≤ c1 log2 n + c2

holds. From this inequality follows that U is ψ-compressible information sys-
tem. It is clear that F contains an infinite set of pairwise distinct functions.
Using these facts and Theorem 5.4 we obtain Hg

U,ψ(n) = Ω(log2 n). Thus,
Hg

U,ψ(n) = Θ(log2 n).
b) Let the weight function ψ be not IR-bounded. To show that Hg

U,ψ(n) = n
for infinitely many natural n it is sufficiently to show that for any p ∈ IN
there exists n ∈ IN such that n ≥ p, n ∈ Dom(Hg

U,ψ) and Hg
U,ψ(n) ≥ n.

Let p ∈ IN. Since the weight function ψ is not IR-bounded, there exists an
attribute f ∈ F possessing the following properties: f 
≡ const, ψ(f) ≥ p
and for any attribute g ∈ F which is IR-equivalent to the attribute f the
inequality ψ(g) ≥ ψ(f) holds. Set n = ψ(f). Evidently, n ∈ Dom(Hg

U,ψ).
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Define a function ϕ : IRm → {{−1}, {+1}, {−1,+1}} in the following way.
Let ā ∈ IRm. Then

ϕ(ā) =

⎧⎨
⎩

{−1}, if f(ā) = −1 ,
{−1,+1}, if f(ā) = 0 ,
{+1}, if f(ā) = +1 .

Let z = (ν, f), where ν : {−1, 0,+1} → ZZ, ν(−1) = −1, ν(0) = −1 and
ν(1) = +1, Γ be a decision tree over U and the decision tree Γ solve the
problem z. Let At(Γ ) = {f1, . . . , fk}. Obviously, there exists a mapping γ :
{−1, 0,+1}k → ZZ such that the equality

γ(f1(ā), . . . , fk(ā)) = z(ā)

holds for any ā ∈ IRm. Evidently, z(ā) ∈ ϕ(ā) for any ā ∈ IRm and hence
γ(f1(ā), . . . , fk(ā)) ∈ ϕ(ā) for any ā ∈ IRm. From here and from the main
result (Theorem 1) of [67] follows that for some i ∈ {1, . . . , k} the attributes
f and fi are IR-equivalent. Therefore ψ(fi) ≥ n. Since fi ∈ At(Γ ), we have
ψ(Γ ) ≥ n. Taking into account that Γ is an arbitrary decision tree over U
which solves the problem z we obtain ψg

U (z) ≥ n. From this inequality and
from the obvious equality ψ(z) = n follows that Hg

U,ψ(n) ≥ n. Therefore
Hg

U,ψ(n) = n for infinitely many natural n. ��

Study of Pairs from Third Family. Remind some definitions from Sect. 4.1.
Let m, t be natural numbers. We denote by Pol(m) the set of all polynomials
which have integer coefficients and depend on variables x1, . . . , xm. We denote
by Pol(m, t) the set of all polynomials from Pol(m) such that the degree of each
polynomial is at most t.

Define information systems U(IR,m) and U(IR,m, t) as follows: U(IR,m) =
(IRm, E, F (m)) and U(IR,m, t) = (IRm, E, F (m, t)) where E = {−1, 0,+1},
F (m) = {sign(p) : p ∈ Pol(m)} and F (m, t) = {sign(p) : p ∈ Pol(m, t)}.
Theorem 6.5. Let m, t be natural numbers. Then the following statements hold:

(a) Hg
U(IR,m),h(n) = n for any natural n;

(b) Hg
U(IR,m,t),h(n) = Θ(log2 n).

Proof. a) One can show that for any natural n there exist polynomials π1, . . . , πn

which have integer coefficients and depend on variable x1, and for which for
any δ1, . . . , δn ∈ {−1,+1} the equation system

{sign(π1(x1)) = δ1, . . . , sign(πn(x1)) = δn}

is compatible on IR. From this fact follows that the information system
U(IR,m) has infinite I-dimension. It is clear that U(IR,m) is an infinite
information system. Using Theorem 5.1 obtain Hg

U(IR,m),h(n) = n for any
natural n.
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b) Consider the quasilinear information system U = U(IRm, ZZ, ϕ1, ..., ϕk) where
{ϕ1, . . . , ϕk} = {xl1

1 · . . . · xlm
m : li ∈ IN, 1 ≤ i ≤ m, 1 ≤ ∑m

i=1 li ≤ t}. De-
note F = U(IRm, ZZ, ϕ1, . . . , ϕk). Obviously, F = F (m, t) = {sign(p) : p ∈
Pol(m, t)}. Using this equality one can show that Hg

U(IR,m,t),h(n) = Hg
U,h(n)

for any natural n. Evidently, the set F contains infinite set of pairwise differ-
ent attributes. From Theorem 6.3 follows that Hg

U,h(n) = Θ(log2 n). There-
fore Hg

U(IR,m,t),h(n) = Θ(log2 n). ��
Note 6.2. Let m, t be natural numbers. In the proof of Theorem 6.5 it was shown
that the information system U(IR,m) has infinite I-dimension. Therefore the
function I is not bounded from above on the set TabU(IR,m). From Theorems 5.1
and 6.5 follows that the information system U(IR,m, t) has finite I-dimension.
Therefore the function I is bounded from above on the set TabU(IR,m,t).

7 Classes of Problems
over Quasilinear Information Systems

In this section six classes of problems over quasilinear information systems (three
classes of discrete optimization problems and three classes of recognition and
sorting problems) are considered. For each class examples and corollaries of
Theorem 6.1 are given. Some definitions and notation from Sect. 6 are used
without special stipulations.

7.1 Definitions and Auxiliary Statement

Let U = U(A,K,ϕ1, . . . , ϕm) be a quasilinear information system. A pair (A, φ)
where φ is a function from A to a finite subset of the set ZZ will be called a
problem over the set A. The problem (A, φ) may be interpreted as a problem of
searching for the value φ(a) for arbitrary a ∈ A. Let k ∈ IN, k ≥ 1, and t ∈ IR,
t ≥ 0. The problem (A, φ) will be called (m, k, t)-problem over U if there exists a
problem z over U such that φ(a) = z(a) for each a ∈ A, dim z ≤ k and r(z) ≤ t.
Let φ(a) = z(a) for each a ∈ A and z = (ν, f1, . . . , fp). Then the set {f1, . . . , fp}
will be called a separating set for the problem (A, φ). We will say that a decision
tree Γ over U solves the problem (A, φ) if Γ solves the problem z.

Denote
L(A,K,ϕ1, . . . , ϕm) = {∑m

i=1 diϕi(x) + dm+1 : d1, . . . , dm+1 ∈ K} ,
F (A,K,ϕ1, . . . , ϕm) = {sign(g) : g ∈ L(A,K,ϕ1, . . . , ϕm)} .

Let g ∈ L(A,K,ϕ1, . . . , ϕm) and g =
∑m

i=1 diϕi(x)+dm+1. We define parameters
r(g) and r(sign(g)) of the functions g and sign(g) as follows. If (d1, . . . , dm+1) =
(0, . . . , 0) then r(g) = r(sign(g)) = 0. Otherwise

r(g) = r(sign(g)) = max{0,max{log2 |di| : i ∈ {1, . . . ,m+ 1}, di 
= 0}} .

In what follows we will assume that elements of the set {−1, 1}n, of the set
{−1, 0,+1}n, of the set Πn of all n-degree permutations, and of the set {0, 1}n

are enumerated by numbers from 1 to 2n, by numbers from 1 to 3n, by numbers
from 1 to n!, and by numbers from 1 to 2n respectively.
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The following statement allows to proof for a problem over the set A that it
is a problem over the information system U .

Proposition 7.1. Let U = U(A,K,ϕ1, . . . , ϕn) be a quasilinear information
system, (A, φ) be a problem over A, D be a finite subset of the set ZZ such
that {φ(a) : a ∈ A} ⊆ D, {f1, . . . , fk} be a nonempty finite subset of the set
F = F (A,K,ϕ1, . . . , ϕn) such that for any i ∈ D the set W (i) = {a : a ∈
A, φ(a) = i} is the union of the sets of solutions on A of some equation systems
of the kind {fi1(x) = σ1, . . . , fim(x) = σm} where i1, . . . , im ∈ {1, . . . , k} and
σ1, . . . , σm ∈ {−1, 0,+1}. Then the set {f1, . . . , fk} is a separating set of the
problem (A, φ) and the problem (A, φ) is a problem over U .

Proof. For any δ̄ = (δ1, . . . , δk) ∈ {−1, 0,+1}k denote by A(δ̄) the set of solu-
tions on A of the equation system {f1(x) = δ1, . . . , fk(x) = δk}. Let C be the
equation system {fi1(x) = σ1, . . . , fim(x) = σm}, where i1, . . . , im ∈ {1, . . . , k}
and σ1, . . . , σm ∈ {−1, 0,+1}. Denote H(C) = {(δ1, . . . , δk) : (δ1, . . . , δk) ∈
{−1, 0,+1}k, δi1 = σ1, . . . , δim = σm}. One can show that the set of solutions on
A of the system C coincides with the set

⋃
δ̄∈H(C) A(δ̄).

Let i ∈ D and the set W (i) be the union of sets of solutions on A of t
equation systems of the kind C. Denote these systems by C1, . . . , Ct, and denote
H(i) =

⋃t
j=1 H(Cj). It is clear that W (i) =

⋃
δ̄∈H(i) A(δ̄).

Define a mapping ν : {−1, 0,+1}k → ZZ in the following way. Let δ̄ ∈
{−1, 0,+1}k. If δ̄ /∈ ⋃i∈D H(i) then ν(δ̄) = 1, but if δ̄ ∈ ⋃i∈D H(i) then ν(δ̄) =
min{j : j ∈ D, δ̄ ∈ H(j)}.

Let us show that φ(a) = ν(f1(a), . . . , fk(a)) for any a ∈ A. Let δ̄ = (f1(a), . . . ,
fk(a)) and φ(a) = i. Then a ∈W (i). Therefore there exists a tuple σ̄ ∈ H(i) such
that a ∈ A(σ̄). Obviously, σ̄ = δ̄. Therefore δ̄ ∈ H(i). Assume that there exists a
number j ∈ D such that j 
= i and δ̄ ∈ H(j). Then φ(a) = j which is impossible.
Hence {j : j ∈ D, δ̄ ∈ H(j)} = {i}, ν(δ̄) = i and ν(f1(a), . . . , fk(a)) = i. Thus,
the set {f1, . . . , fk} is a separating set for the problem (A, φ) and the problem
(A, φ) is a problem over U . ��

7.2 Problems of Discrete Optimization

In this subsection three classes of discrete optimization problems are considered.

Problems of Unconditional Optimization. Let k ∈ IN \ {0}, t ∈ IR, t ≥ 0,
and g1, . . . , gk be functions from L(A,K,ϕ1, . . . , ϕm) such that r(gj) ≤ t for
j = 1, . . . , k.

Problem 7.1. (Unconditional optimization of values of functions g1, . . . , gk on an
element of the set A.) For a given a ∈ A it is required to find the minimal number
i ∈ {1, . . . , k} such that gi(a) = min{gj(a) : 1 ≤ j ≤ k}.

For this problem set D = {1, . . . , k}. Let i ∈ D. One can show that for
this problem the set W (i) is the union of sets of solutions on A of all equation
systems of the kind {sign(gi(x) − gj(x)) = δj : 1 ≤ j ≤ k, j 
= i} where δj = −1
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for j ∈ {1, . . . , i− 1} and δj ∈ {−1, 0} for j ∈ {i + 1, . . . , k}. Using Proposition
7.1 we conclude that the set {sign(gi(x) − gj(x)) : i, j ∈ {1, . . . , k}, i 
= j} is
a separating set for this problem, and the considered problem is (m, k2, t + 1)-
problem over the information system U(A,K,ϕ1, . . . , ϕm).

Example 7.1. (n-City traveling salesman problem.) Let n ∈ IN, n ≥ 4, and let
Gn be the complete undirected graph with n nodes. Assume that edges in Gn are
enumerated by numbers from 1 to n(n−1)/2, and Hamiltonian circuits in Gn are
enumerated by numbers from 1 to (n−1)!/2. Let a number ai ∈ IR be attached to
the i-th edge, i = 1, . . . , n(n−1)/2. We will interpret the number ai as the length
of the i-th edge. It is required to find the minimal number of a Hamiltonian circuit
in Gn which has the minimal length. For each j ∈ {1, . . . , (n − 1)!/2} we will
associate with the j-th Hamiltonian circuit the function gj(x̄) =

∑n(n−1)/2
i=1 δjixi

where δji = 1 if the i-th edge is contained in the j-th Hamiltonian circuit,
and δji = 0 otherwise. Obviously, the considered problem is the problem of
unconditional optimization of values of functions g1, . . . , g(n−1)!/2 on an element
of the set IRn(n−1)/2. Therefore the set {sign(gi(x̄) − gj(x̄)) : i, j ∈ {1, . . . , (n−
1)!/2}, i 
= j} is a separating set for the n-city traveling salesman problem,
and this problem is (n(n − 1)/2, ((n− 1)!/2)2, 0)-problem over the information
system U = U(IRn(n−1)/2, ZZ, x1, . . . , xn(n−1)/2). From Theorem 6.1 follows that
there exists a decision tree Γ over U which solves the n-city traveling salesman
problem, n ≥ 4, and for which h(Γ ) ≤ n7/2 and r(Γ ) ≤ n4 log2 n.

Example 7.2. (n-Dimensional quadratic assignment problem.) Let n ∈ IN and
n ≥ 2. For given aij , bij ∈ IR, 1 ≤ i, j ≤ n, it is required to find the minimal num-
ber of n-degree permutation π which minimizes the value

∑n
i=1

∑n
j=1 aijbπ(i)π(j).

Obviously, this problem is the problem of unconditional optimization of values
of functions from the set {∑n

i=1

∑n
j=1 xijyπ(i)π(j) : π ∈ Πn} on an element of the

set IR2n2
. Hence the set {sign(

∑n
i=1

∑n
j=1 xijyπ(i)π(j)−

∑n
i=1

∑n
j=1 xijyτ(i)τ(j)) :

π, τ ∈ Πn, π 
= τ} is a separating set for this problem, and the considered prob-
lem is (n4, (n!)2, 0)-problem over the information system U=U(IR2n2

, ZZ, x11y11,
. . . , xnnynn). From Theorem 6.1 follows that there exists a decision tree Γ over
U which solves the n-dimensional quadratic assignment problem and for which
h(Γ ) ≤ 3n(n4 + 2)3 and r(Γ ) ≤ 2(n4 + 1)2 log2(2n4 + 2).

Problems of Unconditional Optimization of Absolute Values. Let k ∈
IN \ {0}, t ∈ IR, t ≥ 0, and g1, . . . , gk be functions from L(A,K,ϕ1, . . . , ϕm) such
that r(gj) ≤ t for j = 1, . . . , k.

Problem 7.2. (Unconditional optimization of absolute values of functions g1, ..., gk

on an element of the set A.) For a given a ∈ A it is required to find the minimal
number i ∈ {1, . . . , k} such that |gi(a)| = min{|gj(a)| : 1 ≤ j ≤ k}.

For this problem set D = {1, . . . , k}. Let i ∈ D. One can show that |gi(a)| <
|gj(a)| if and only if (gi(a)+gj(a))(gi(a)−gj(a)) < 0, and |gi(a)| = |gj(a)| if and
only if (gi(a) + gj(a))(gi(a) − gj(a)) = 0. From here follows that the set W (i)
coincides with the union of the sets of solutions on A of all equation systems of
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the kind {sign(gi(x) + gj(x)) = δj1, sign(gi(x)− gj(x)) = δj2 : 1 ≤ j ≤ k, i 
= j},
where (δj1, δj2) ∈ {(−1,+1), (+1,−1)} for j ∈ {1, . . . , i − 1} and (δj1, δj2) ∈
{−1, 0,+1}2 \ {(−1,−1), (+1,+1)} for j ∈ {i + 1, . . . , k}. Using Proposition
7.1 we conclude that the set {sign(gi(x) + gj(x)), sign(gi(x) − gj(x)) : i, j ∈
{1, . . . , k}, i 
= j} is a separating set for the considered problem, and this problem
is (m, 2k2, t+ 1)-problem over the information system U(A,K,ϕ1, . . . , ϕm).

Example 7.3. (n-Stone problem.) Let n ≥ 1. For a given tuple (a1, . . . , an) ∈ IRn

it is required to find the minimal number of a tuple (δ1, . . . , δn) ∈ {−1, 1}n

which minimizes the value of |∑n
i=1 δiai|. Obviously, this problem is the prob-

lem of unconditional optimization of absolute values of functions from the set
{∑n

i=1 δixi : (δ1, . . . , δn) ∈ {−1, 1}n} on an element of the set IRn. There-
fore the set {sign(

∑n
i=1 δixi) : (δ1, . . . , δn) ∈ {−2, 0, 2}n} and hence the set

{sign(
∑n

i=1 δixi) : (δ1, . . . , δn) ∈ {−1, 0, 1}n} are separating sets for the con-
sidered problem, and this problem is (n, 3n, 0)-problem over the information
system U = U(IRn, ZZ, x1, . . . , xn). From Theorem 6.1 follows that there ex-
ists a decision tree Γ over U which solves the n-stone problem and for which
h(Γ ) ≤ 4(n+ 2)4/ log2(n+ 2) and r(Γ ) ≤ 2(n+ 1)2 log2(2n+ 2).

Problems of Conditional Optimization. Let k, p ∈ IN \ {0}, t ∈ IR, t ≥ 0,
D ⊆ IR, D 
= ∅ and g1, . . . , gk be functions from L(A,K,ϕ1, . . . , ϕm) such that
r(gj) ≤ t for j = 1, . . . , k.

Problem 7.3. (Conditional optimization of values of functions g1, . . . , gk on an el-
ement of the set A with p restrictions from A×D.) For a given tuple (a0, a1, ..., ap,
d1, . . . , dp) ∈ Ap+1×Dp it is required to find the minimal number i ∈ {1, . . . , k}
such that gi(a1) ≤ d1, . . . , gi(ap) ≤ dp and gi(a0) = max{gj(a0) : gj(a1) ≤
d1, . . . , gj(ap) ≤ dp, j ∈ {1, . . . , k}} or to show that such i does not exist. (In the
last case let k + 1 be the solution of the problem.)

For this problem set D = {1, . . . , k + 1}. The variables with values from
A will be denoted by x0, x1, . . . , xp and the variables with values from D will
be denoted by y1, . . . , yp. One can show that the set W (k + 1) coincides with
the union of the sets of solutions on Ap+1 × Dp of all equation systems of the
kind {sign(g1(xi1) − yi1) = +1, . . . , sign(gk(xik

) − yik
) = +1} where 1 ≤ ij ≤ p

for any j, 1 ≤ j ≤ k. Let i ∈ {1, . . . , k}. It is not difficult to see that the
set W (i) coincides with the union of the sets of solutions on Ap+1 × Bp of
all equation systems of the kind {sign(gi(x0) − gj(x0)) = δj : j ∈ C \ {i}} ∪(⋃

j∈C{sign(gj(xl)− yl) = σjl : 1 ≤ l ≤ p}
)
∪ {sign(gj(xij ) − yij ) = +1 : j ∈

{1, . . . , k}\C}, where C ⊆ {1, . . . , k}, i ∈ C; for j ∈ C\{i}, if j < i, then δj = +1,
but if j > i, then δj ∈ {0,+1}; σjl ∈ {−1, 0} for j ∈ C and l ∈ {1, . . . , p};
1 ≤ ij ≤ p for j ∈ {1, . . . , k} \ C. Using Proposition 7.1 we conclude that
the set {sign(gi(x0) − gj(x0)) : 1 ≤ i, j ≤ k} ∪ (

⋃p
j=1{sign(gi(xj) − yj) : 1 ≤

i ≤ k}) is a separating set for the considered problem, and this problem is
(p + m(p + 1), pk + k2, t + 1)-problem over the information system U(Ap+1 ×
Dp,K, ϕ1(x0), . . . , ϕm(x0), . . . , ϕ1(xp), . . . , ϕm(xp), y1, . . . , yp).
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Example 7.4. (Problem on 0-1-knapsack with n objects.) Let n ∈ IN \ {0}.
For a given tuple (a1, . . . , a2n+1) ∈ ZZ2n+1 it is required to find the minimal
number of a tuple (δ1, . . . , δn) ∈ {0, 1}n which maximizes the value

∑n
i=1 δiai

under the condition
∑n

i=1 δian+i ≤ a2n+1. This is the problem of conditional
optimization of values of functions from the set {∑n

i=1 δixi : (δ1, . . . , δn) ∈
{0, 1}n} on an element of the set ZZn with one restriction from ZZn × ZZ.
The set {sign(

∑n
i=1 δixi) : (δ1, . . . , δn) ∈ {−1, 0, 1}n} ∪ {sign(

∑n
i=1 δixn+i −

x2n+1) : (δ1, . . . , δn) ∈ {0, 1}n} is a separating set for the considered problem,
and this problem is (2n + 1, 3n + 2n, 0)-problem over the information system
U = U(ZZ2n+1, ZZ, x1, . . . , x2n+1). From Theorem 6.1 follows that there exists a
decision tree Γ over U which solves the problem on 0-1-knapsack with n objects
and for which h(Γ ) ≤ 2(2n+3)4/ log2(2n+3) and r(Γ ) ≤ 2(2n+2)2 log2(4n+4).

7.3 Problems of Recognition and Sorting

In this subsection three classes of problems of recognition and sorting are con-
sidered.

Problems of Recognition of Values of Functions. Let k ∈ IN \ {0},
f1, . . . , fk ∈ F (A,K,ϕ1, . . . , ϕm) and r(fj) ≤ t for any j, 1 ≤ j ≤ k.

Problem 7.4. (Recognition of values of functions f1, . . . , fk on an element of
the set A.) For a given a ∈ A it is required to find the number of the tuple
(f1(a), . . . , fk(a)).

For this problem set D = {1, . . . , 3k}. Let i ∈ D and let (δ1, . . . , δk) be the
tuple with the number i from {−1, 0,+1}k. One can show that for the considered
problem the set W (i) coincides with the set of solutions on A of the equation
system {f1(x) = δ1, . . . , fk(x) = δk}. Using Proposition 7.1 we conclude that the
set {f1, . . . , fk} is a separating set for this problem, and the considered problem
is (n, k, t)-problem over the information system U(A,K,ϕ1, . . . , ϕm).

Example 7.5. (Recognition of a threshold Boolean function depending on n vari-
ables.) Let n ∈ IN \ {0}. For a given tuple (a1, . . . , an+1) ∈ IRn+1 it is required
to find the value sign(

∑n
i=1 δiai − an+1) for each tuple (δ1, . . . , δn) ∈ {0, 1}n.

Obviously, this problem is the problem of recognition of values of functions
sign(

∑n
i=1 δixi − xn+1), (δ1, . . . , δn) ∈ {0, 1}n, on an element of the set IRn+1.

Hence the set {sign(
∑n

i=1 δixi−xn+1) : (δ1, . . . , δn) ∈ {0, 1}n} is a separating set
for this problem, and the considered problem is (n + 1, 2n, 0)-problem over the
information system U = U(IRn+1, ZZ, x1, . . . , xn+1). From Theorem 6.1 follows
that there exists a decision tree Γ over U which solves the problem of recog-
nition of a threshold Boolean function depending on n variables and for which
h(Γ ) ≤ 2(n+ 3)4/ log2(n+ 3) and r(Γ ) ≤ 2(n+ 2)2 log2(2n+ 4).

Problems of Recognition of Belonging. Let we have m ≥ 1 equation sys-
tems C1, . . . , Cm such that Cj = {fj1(x) = δj1, . . . , fjpj (x) = δjpj} for any
j, 1 ≤ j ≤ m, and fji ∈ F (A,K,ϕ1, . . . , ϕm), δji ∈ {−1, 0,+1} for any i,
1 ≤ i ≤ pj.
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Problem 7.5. (Recognition of belonging of an element from A to the union of sets
of solutions on A of equation systems C1, . . . , Cm.) For a given element a ∈ A
it is required to recognize whether a is a solution of at least one of the systems
C1, . . . , Cm. (If yes then the response is equal to 1, otherwise the response is
equal to 2.)

For this problem set D = {1, 2}. One can show that for this problem the
set W (1) coincides with the union of the sets of solutions on A of the systems
C1, . . . , Cm, and the set W (2) coincides with the union of the sets of solutions on
A of all equation systems of the kind {f1i1(x) = σ1, . . . , fmim(x) = σm} where
1 ≤ ij ≤ pj , σj ∈ {−1, 0,+1}, and σj 
= δjij for any j, 1 ≤ j ≤ m. From
Proposition 7.1 follows that the set F = {f11, . . . , f1p1 , . . . , fm1, . . . , fmpm} is a
separating set for this problem, and the considered problem is (n, |F |, l)-problem
over the information system U(A,K,ϕ1, . . . , ϕm) where l = max{r(f) : f ∈ F}.
Example 7.6. (((n+1)×m)-Dimensional problemof “0-1-integer programming”.)
Let n,m ∈ IN \ {0}. For given aij ∈ ZZ, 1 ≤ i ≤ m, 1 ≤ j ≤ n+ 1, it is required
to recognize whether exists a tuple (δ1, . . . , δn) ∈ {0, 1}n such that

∑n
j=1 aijδj =

ain+1 for any i, 1 ≤ i ≤ m. Obviously, this problem is the problem of recognition
of belonging of an element from ZZ(n+1)m to the union of sets of solutions on
ZZ(n+1)m of all equation systems of the kind {sign(

∑n
j=1 xijδj−xin+1) = 0 : 1 ≤

i ≤ m}, where (δ1, . . . , δn) ∈ {0, 1}n. Hence the set {sign(
∑n

j=1 xijδj − xin+1) :
1 ≤ i ≤ m, (δ1, . . . , δn) ∈ {0, 1}n} is a separating set for this problem, and the
considered problem is ((n + 1)m,m2n, 0)-problem over the information system
U = U(ZZ(n+1)m, ZZ, x11, . . . , xmn+1). From Theorem 6.1 follows that there ex-
ists a decision tree Γ over U which solves the ((n+1)×m)-dimensional problem
of “0-1-integer programming” and for which h(Γ ) ≤ 2(nm+m+2)4/ log2(nm+
m+ 2) and r(Γ ) ≤ 2(nm+m+ 1)2 log2(2nm+ 2m+ 2).

Example 7.7. (Problem on (n, d, k, t)-system of polynomial inequalities.) Let
n, d, k ∈ IN \ {0}, t ∈ IR, t ≥ 0 and let Pol(n, d) be the set of all polyno-
mials with integer coefficients which depend on variables x1, . . . , xn and which
degree is at most d. Let g1, . . . , gk ∈ Pol(n, d) and r(gj) ≤ t for any j, 1 ≤
j ≤ k. For a given ā ∈ IRn it is required to recognize whether ā is a so-
lution of the inequality system {g1(x̄) ≥ 0, . . . , gk(x̄) ≥ 0}. Obviously, this
problem is the problem of recognition of belonging of an element from IRn

to the union of sets of solutions on IRn of all equation systems of the kind
{sign(g1(x̄)) = δ1, . . . , sign(gk(x̄)) = δk}, where (δ1, . . . , δk) ∈ {0,+1}k. Hence
the set {sign(g1(x̄)), . . . , sign(gk(x̄))} is a separating set for this problem and the
considered problem is

(∑d
i=1

(
n+i−1

i

)
, k, t

)
-problem over the information system

U = U(IRn, ZZ, x1, . . . , x
d
n). From Theorem 6.1 follows that there exists a deci-

sion tree Γ over U which solves the problem on (n, d, k, t)-system of polynomial
inequalities and for which h(Γ ) ≤ 2(d(n+ d)d + 2)3 log2(k+ 2d(n+ d)d + 2) and
r(Γ ) ≤ 2(d(n+ d)d + 1)2(t+ 1 + log2(d(n + d)d + 1)).

Problems of Sorting. Let k ∈ IN \ {0}, t ∈ IR, t > 0, and g1, . . . , gk be
functions from L(A,K,ϕ1, . . . , ϕm) such that r(gj) ≤ t for j = 1, . . . , k.
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Problem 7.6. (Sorting of values of functions g1, . . . , gk on an element from A.)
For a given a ∈ A it is required to find the minimal number of an k-degree
permutation π such that gπ(1)(a) ≤ gπ(2)(a) ≤ . . . ≤ gπ(k)(a).

For this problem set D = {1, . . . , k!}. Denote by πj the k-degree permutation
with the number j where 1 ≤ j ≤ k!. Let i ∈ D. One can show that for the
considered problem the set W (i) coincides with the union of the sets of solutions
on A of all equation systems of the kind {sign(gπi(n)(x) − gπi(n+1)(x)) = δn :
1 ≤ n ≤ k − 1} ∪ {sign(gπj(nj)(x) − gπj(nj+1)(x)) = +1 : 1 ≤ j ≤ i− 1}, where
(δ1, . . . , δk−1) ∈ {−1, 0}k−1 and 1 ≤ nj ≤ k − 1 for any j, 1 ≤ j ≤ i− 1. From
Proposition 7.1 follows that the set {sign(gi(x) − gj(x)) : i, j ∈ {1, . . . , k}} is
a separating set of this problem, and the considered problem is (n, k2, t + 1)-
problem over the information system U(A,K,ϕ1, . . . , ϕm).

Example 7.8. (Problem of sorting of values of functions from set {∑n
j=1 δj sin jx:

(δ1, . . . , δn) ∈ {0, 1, . . . , q}n} on an element from the set IR). Obviously, the set
{sign(

∑n
j=1 δj sin jx) : (δ1, . . . , δn) ∈ {−q, . . . ,−1, 0, 1, . . . , q}n} is a separating

set for this problem and the considered problem is (n, (2q+ 1)n, log2 q)-problem
over the information system U = U(IR, ZZ, sinx, sin 2x, . . . , sinnx). From The-
orem 6.1 follows that there exists a decision tree Γ over U which solves the
problem of sorting of values of the functions from the set {∑n

j=1 δj sin jx :
(δ1, . . . , δn) ∈ {0, 1, . . . , q}n} on an element from the set IR and for which
h(Γ ) ≤ 2(n+2)4 log2(2q+1)/ log2(n+2) and r(Γ ) ≤ 2(n+1)2 log2(2q(n+1)).

8 On Depth of Acyclic Programs
in Basis {x + y, x − y, 1; sign(x)}

In this section relationships between depth of deterministic and nondeterministic
acyclic programs in the basis B0 = {x+y, x−y, 1; sign(x)} are considered. Proof
of the main result of this section is based on Theorem 6.1 and is an example
of the application of methods of decision tree theory to analysis of algorithms
which are not decision trees.

8.1 Main Definitions and Result

Letters from the alphabet X = {xi : i ∈ IN} will be called input variables, while
letters from the alphabet Y = {yi : i ∈ IN} will be called working variables.

A program in the basis B0 is a labelled finite directed graph which has nodes
of the following four kinds:

a) the only node without entering edges called the node “input”;
b) the only node without issuing edges called the node “output”;
c) functional nodes of the kinds yj := 1, yj := zl + zk and yj := zl − zk where

zl, zk ∈ X ∪ Y ;
d) predicate nodes of the kind sign(yj).

Each edge issuing from a predicate node is labelled by a number from the
set {−1, 0,+1}. The other edges are not labelled.
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Further we assume that in expressions assigned to nodes of a program at
least one input variable and hence at least one working variable are present.

A program in the basis B0 will be called acyclic if it contains no directed cy-
cles. A program will be called deterministic if it satisfies the following conditions:
the node “input” and each functional node have exactly one issuing edge, and
edges issuing from a predicate node are labelled by pairwise different numbers.
If a program is not deterministic we will call it nondeterministic.

Let P be an acyclic program in the basisB0 with the input variables x1, ..., xn

and the working variables y1, . . . , yt.
A complete path in P is an arbitrary directed path from the node “input”

to the node “output” in the program P . Let ξ = v1, d1, . . . , vm, dm, vm+1 be
a complete path in the program P . Define the set of elements from Qn ac-
cepted by the complete path ξ. For i = 1, . . . ,m we will attach to the node
vi of the path ξ a tuple β̄i = (βi1, . . . , βit) composed of functions from the
set L(Qn, ZZ, x1, . . . , xn) = {∑n

i=1 bixi + bn+1 : b1, . . . , bn+1 ∈ ZZ}. Let β̄1 =
(0, . . . , 0). Let the tuples β̄1, . . . , β̄i−1, where 2 ≤ i ≤ m, be already defined. If
vi is a predicate node then β̄i = β̄i−1. Let vi be a functional node and let,
for the definiteness, the node vi be of the kind yj := xl + yp. Then β̄i =
(βi−11, . . . , βi−1j−1, xl + βi−1p, βi−1j+1, . . . , βi−1t). For another kinds of func-
tional nodes the tuple β̄i is defined in the same way.

Let the nodes vi1 , . . . , vik
be all predicate nodes in the complete path ξ.

Let k > 0, let the nodes vi1 , . . . , vik
be of the kind sign(yj1), . . . , sign(yjk

), and
let the edges di1 , . . . , dik

be labelled by the numbers δ1, . . . , δk. Denote F (ξ) =
{βi1j1 , . . . , βikjk

} and Sol(ξ) the set of solutions on Qn of the equation system

Sξ = {sign(βi1j1(x̄)) = δ1, . . . , sign(βikjk
(x̄)) = δk} .

If k = 0 then F (ξ) = ∅ and Sol(ξ) = Qn. The set Sol(ξ) will be called the set of
elements from Qn accepted by the complete path ξ. The set of all complete paths
in the program P will be denoted by Path(P ). Evidently, Path(P ) 
= ∅. Denote
Rec(P ) =

⋃
ξ∈Path(P ) Sol(ξ). We will say that the program P recognizes the set

Rec(P ). Denote F (P ) =
⋃

ξ∈Path(P ) F (ξ).
Denote by h(ξ) the number of functional and predicate nodes in a complete

path ξ. The value h(P ) = max{h(ξ) : ξ ∈ Path(P )} will be called the depth of
the program P .

Acyclic programs P1 and P2 in the basis B0 will be called equivalent if the
sets of input variables of P1 and P2 coincide, and the equality Rec(P1) = Rec(P2)
holds.

Theorem 8.1. For each nondeterministic acyclic program P1 in the basis B0

with n input variables there exists a deterministic acyclic program P2 in the basis
B0 which is equivalent to P1 and for which the following inequality holds:

h(P2) ≤ 8(n+ 2)7(h(P1) + 2)2 .

Example 8.1. (Problem of partition of n numbers.) The set of tuples (q1, . . . , qn)
from Qn for each of which there exists a tuple (σ1, . . . , σn) ∈ {−1, 1}n such that∑n

i=1 σiqi = 0 will be denoted by Wn. The problem of recognition of belonging of
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a tuple from Qn to the set Wn is known as the problem of partition of n numbers.
Fig. 7 represents a nondeterministic acyclic program Pn in the basis B0 with
input variables x1, . . . , xn and working variable y1 for which Rec(Pn) = Wn and
h(Pn) = n+ 1. Using Theorem 8.1 we conclude that there exists a deterministic
acyclic program in the basis B0 which recognizes the set Wn and for which the
depth is at most 8(n+ 3)9.

input
����	

�����
y1 := y1 + x1 y1 := y1 − x1���������	

���������� 


y1 := y1 + x2 y1 := y1 − x2���������	

���������� 



���������� 


���������	

����������

y1 := y1 + xn y1 := y1 − xn




�����
����	

sign(y1)



output

� � � � � � � � � � �

0

Fig. 7. Nondeterministic program Pn in basis B0 which solves problem of partition of
n numbers.

8.2 Proof of Theorem 8.1

A functional program in the basis B0 is a deterministic acyclic program in the
basis B0 without predicate nodes. Let P be a functional program in the basis
B0 with the input variables x1, . . . , xn and the working variables y1, . . . , yt. Evi-
dently, P contains the only complete path ξ. Let ξ = v1, d1, . . . , vm, dm, vm+1 and
let (βm1, . . . , βmt) be the tuple of functions from the set L(Qn, ZZ, x1, . . . , xn)
attached to the node vm of this path. We will say that the program P realizes
functions βm1, . . . , βmt in the working variables y1, . . . , yt respectively.

Lemma 8.1. Let n, t ∈ IN, n ≥ 1, f ∈ L(Qn, ZZ, x1, . . . , xn) and r(f) ≤ t.
Then there exists a functional program P in the basis B0 with the input variables
x1, . . . , xn which realizes the function f in a working variable and for which the
following inequality holds:

h(P ) ≤ 2(n+ 1)(t+ 1) .

Proof. Let f(x̄) =
∑n

i=1 aixi + an+1. It is not difficult to construct a functional
program P1 in the basisB0 which realizes the functions 0, 20, 21, ..., 2t, 20x1, 21x1,
. . . , 2tx1, . . . , 20xn, 21xn, . . . , 2txn in certain working variables and for which
h(P1) ≤ (n+ 1)(t+ 1).
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Later, using the program P1 it is not difficult to construct a functional pro-
gram P2 in the basis B0 with the input variables x1, . . . , xn which realizes the
functions |a1|x1, . . . , |an|xn, |an+1| in certain working variables and for which
h(P2) ≤ h(P1) + (n + 1)t.

At last, using the program P1 one can construct a functional program P in
the basis B0 with the input variables x1, . . . , xn which realizes the function f in
some working variable and for which h(P ) ≤ h(P2)+(n+1) ≤ 2(n+1)(t+1). ��
Proof (of Theorem 8.1). Let P1 be a nondeterministic acyclic program in the
basis B0 with the input variables x1, . . . , xn. One can show that if Rec(P1) =
Qn then the statement of the theorem holds. Let Rec(P1) 
= Qn. Consider the
problem of recognition of belonging of an element q̄ ∈ Qn to the set Rec(P1)
(if q̄ ∈ Rec(P1) then the response is equal to 1, otherwise the response is equal
to 2). Evidently, this problem is the problem of recognition of belonging of an
element from Qn to the union of the sets of solutions of the equation systems Sξ,
ξ ∈ Path(P1) (see Problem 7.5). By proved in Sect. 7, the considered problem
is (n, |F (P1)|, l)-problem over the information system U = U(Qn, ZZ, x1, . . . , xn)
where l = max{r(f) : f ∈ F (P1)}.

Estimate values l and |F (P1)|. Let f1, f2 ∈ L(Qn, ZZ, x1, . . . , xn). Then, ob-
viously,

max{r(f1 − f2), r(f1 + f2)} ≤ 1 + max{r(f1), r(f2)} .

Using this inequality one can show that

l ≤ h(P1) . (133)

From (133) follows
|F (P1)| ≤ (2h(P1)+1 + 1)n+1 . (134)

Using (133) and (134) we conclude that the problem of recognition of belonging
of an element q̄ ∈ Qn to the set Rec(P1) is (n, (2h(P1)+1 +1)n+1, h(P1))-problem
over the information system U . From here and from Theorem 6.1 follows that
there exists a decision tree Γ over U which solves the considered problem and
for which

h(Γ ) ≤ 2(n+ 2)4(h(P1) + 2)/ log2(n + 2) , (135)
r(Γ ) ≤ 2(n+ 1)2(1 + h(P1) + log2(n+ 1)) . (136)

Transform the decision tree Γ into a program P2 in the basis B0. We add
to the tree Γ the node “input” and the edge issuing from the node “input” and
entering the root of Γ . Then we identify all terminal nodes of the tree Γ which
are labelled by the number 1 and replace this node by the node “output”. After
that we delete all nodes and edges such that there are no directed paths from
the node “input” to the node “output” passing through them. Denote by G the
obtained graph.

Every node v of the graph G, which is not neither “input” nor “output”,
will be replaced by a labelled graph Gv which is constructed in the following
way. Let the attribute sign(

∑n
i=1 aixi + an+1) be assigned to the node v. From
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(136) and from Lemma 8.1 follows that there exists a functional program Pv

in the basis B0 with the input variables x1, . . . , xn which realizes the function∑n
i=1 aixi + an+1 in certain working variable yj(v) and for which

h(Pv) ≤ 2(n+ 1)(*2(n+ 1)2(1 + h(P1) + log2(n + 1))++ 1) . (137)

Denote by u1 the node of the program Pv to which the edge enters, issuing from
the node “input” of Pv. Denote by Gv the graph obtained from Pv by deletion of
the node “input” and the edge, issuing from it, and by substitution of the node
sign(yj(v)) for the node “output”. Denote this node sign(yj(v)) by u2.

The replacement of the node v by the graph Gv is made in the following way:
we delete the node v and connect the edge, entering v, to the node u1 of the
graph Gv; all edges, issued from the node v, issue now from the node u2 of the
graph Gv.

We assume that the sets of working variables of the programs Pv1 and Pv2

for distinct nodes v1 and v2 are disjoint. Denote by P2 the graph obtained from
G by replacement of each node v, which is not neither “input” nor “output”, by
the graphs Gv.

One can show that P2 is a deterministic acyclic program in the basis B0

such that Rec(P2) = Rec(P1). Taking into account the sets of input variables of
the programs P2 and P1 coincide we conclude that the programs P2 and P1 are
equivalent. From (135) and (137) follows that

h(P2) ≤ (2(n+ 2)4(h(P1) + 2)/ log2(n + 2))
× (2(n+ 1)(*2(n+ 1)2(1 + h(P1) + log2(n+ 1))++ 1) + 1)

≤ 8(n+ 2)7(h(P1) + 2)2 .

��

9 Regular Language Word Recognition

In this section we consider the problem of recognition of words of fixed length
in a regular language. The word under consideration can be interpreted as a
description of certain screen image in the following way: the i-th letter of the
word encodes the color of the i-th screen cell. In this case a decision tree which
recognizes some words may be interpreted as an algorithm for the recognition of
images which are defined by considered words. We obtain a classification of all
regular languages depending on the growth of minimal depth of decision trees
for language word recognition with the growth of the word length.

Let L be a regular language, n be a natural number and L(n) be the set of all
words from L whose length is equal to n. Let L(n) 
= ∅. A two-person game can
be associated with the set L(n). The first player choose a word from L(n). The
second player must recognize this word. For this purpose he can ask questions to
the first player: he can choose a number i from the set {1, . . . , n} and ask what
is the i-th letter of the word. Strategies of the second player are represented in
the form of decision trees. We denote by hL(n) the minimal depth of a decision
tree which recognizes words from L(n) and uses only attributes each of which
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recognizes an i-th letter of a word, i ∈ {1, . . . , n}. If L(n) = ∅ then hL(n) = 0.
The graph of the function hL(n) may have saw-tooth form. Therefore we study
a smoothed analog of the function hL(n): we consider the function

HL(n) = max{hL(m) : m ≤ n} .

In this section we show that either HL(n) = O(1), or HL(n) = Θ(log2 n), or
HL(n) = Θ(n).

9.1 Main Definitions and Results

Problem of Recognition of Words. Let k ∈ IN, k ≥ 2 and Ek={0,1,...,k−1}.
By (Ek)∗ we denote the set of all finite words over the alphabet Ek, including
the empty word λ. Let L be a regular language over the alphabet Ek. For any
natural n we denote by L(n) the set of all words from L for which the length
is equal to n. Let us assume that L(n) 
= ∅. For i ∈ {1, . . . , n} we define a
function li : L(n) → Ek as follows: li(δ1 . . . δn) = δi for any δ1 . . . δn ∈ L(n).
Let us consider an information system U(L, n) = (L(n), Ek, {l1, . . . , ln}) and
a problem zL,n = (ν, l1, . . . , ln) over U(L, n) such that ν(δ̄1) 
= ν(δ̄2) for any
δ̄1, δ̄2 ∈ En

k , δ̄1 
= δ̄2. The problem zL,n will be called the problem of recognition
of words from L(n). We denote by hL(n) the minimal depth of a decision tree
over U(L, n) which solves the problem of recognition of words from L(n). Denote
by T (zL,n) the decision table TU(L,n)(zL,n) corresponding to the problem zL,n.
Denote ρ(L, n) = ({l1, . . . , ln}, Ek). From Theorem 4.1 follows that

hL(n) = hρ(L,n)(T (zL,n)) . (138)
If L(n) = ∅ then hL(n) = 0.

In this section we will consider the behavior of the function HL : IN\{0} → IN
which is defined as follows. Let n ∈ IN \ {0}. Then

HL(n) = max{hL(m) : m ∈ IN \ {0},m ≤ n} .

Example 9.1. Let L be the regular language which is generated by the source
represented in Fig. 9(b). Let us consider the problem zL,4 = (ν, l1, l2, l3, l4) of
recognition of words from L(4) = {0001, 0011, 0111, 1111}. Let ν(0, 0, 0, 1) = 1,
ν(0, 0, 1, 1) = 2, ν(0, 1, 1, 1) = 3 and ν(1, 1, 1, 1) = 4. The decision table T (zL,4)
is represented in Fig. 8(a). The decision tree in Fig. 8(b) solves the problem
of recognition of words from L(4). Note that instead of numbers of words the
terminal nodes in this tree are labelled by words. The depth of the considered
decision tree is equal to 2. Using Theorem 3.2 we obtain hL(4) = 2.

A-Sources. An A-source over the alphabet Ek is a triple I = (G, q0, Q) where
G is a directed graph, possibly with multiple edges and loops, in which each
edge is labelled by a number from Ek and any two different edges starting in a
node are labelled by pairwise different numbers; q0 is a node of G and Q is some
nonempty set of the graph G nodes.

A path of the source I is an arbitrary sequence ξ = v1, d1, . . . , vm, dm, vm+1

of nodes and edges of G such that vi is the initial and vi+1 is the terminal node
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l1 l2 l3 l4
0 0 0 1 1
0 0 1 1 2
0 1 1 1 3
1 1 1 1 4
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l3 l1

11110001 0011 0111
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(a) (b)

Fig. 8. Decision table and decision tree for problem of recognition of words from set
{0001, 0011, 0111, 1111}.

of the edge di for i = 1, . . . ,m. Now we define a word gen(ξ) from E∗
k in the

following way: if m = 0 then gen(ξ) = λ. Let m > 0, and let δj be the number
assigned to the edge dj , j = 1, . . . ,m. Then gen(ξ) = δ1 . . . δm. We will say that
the path ξ generates the word gen(ξ). Note that different paths which start in
the same node generate different words.

We denote by Path(I) the set of all paths of the source I each of which starts
in the node q0 and finishes in a node from Q. Let

Gen(I) = {gen(ξ) : ξ ∈ Path(I)} .

We will say that the source I generates the language Gen(I). It is well known
that Gen(I) is a regular language.

The A-source I will be called everywhere defined over the alphabet Ek if each
node of G is the initial node of exactly k edges which are labelled by pairwise
different numbers from Ek. The A-source I will be called reduced if for each
node of G there exists a path from Path(I) which contains this node. It is
known [53] that for each regular language over the alphabet Ek there exists an
everywhere defined over the alphabet Ek A-source which generates this language.
Therefore for each nonempty regular language there exists a reduced A-source
which generates this language. Further we will assume that a considered regular
language is nonempty and it is given by reduced A-source which generates this
language.

Types of Reduced A-Sources. Let I = (G, q0, Q) be a reduced A-source over
the alphabet Ek. A path of the source I will be called elementary if nodes of
this path are pairwise different. A path of the source I will be called a cycle
of the source I if there is at least one edge in this path, and the first node of
this path is equal to the last node of this path. A cycle of the source I will be
called elementary if nodes of this cycle, with the exception of the last node, are
pairwise different. As usual, paths and cycles of the source I will be considered
sometimes as subgraphs of the graph G. We will say that these subgraphs are
generated by corresponding paths and cycles.

The source I will be called simple if each two different (as subgraphs) ele-
mentary cycles of the source I do not have common nodes. Let I be a simple
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source and ξ be a path of the source I. The number of different (as subgraphs)
elementary cycles of the source I, which have common nodes with ξ, will be
denoted by cl(ξ) and will be called the cyclic length of the path ξ. The value

cl(I) = max{cl(ξ) : ξ ∈ Path(I)}
will be called the cyclic length of the source I.

Let I be a simple source, C be an elementary cycle of the source I, and
v be a node of the cycle C. Beginning with the node v the cycle C generates
an infinite periodic word over the alphabet Ek. This word will be denoted by
W(I, C, v). We denote by r(I, C, v) the minimal period of the word W(I, C, v).
The source I will be called dependent if there exist two different (as subgraphs)
elementary cycles C1 and C2 of the source I, nodes v1 and v2 of the cycles C1

and C2 respectively, and the path π of the source I from v1 to v2 which satisfy
the following conditions: W(I, C1, v1) = W(I, C2, v2) and the length of the path
π is a number divisible by r(I, C1, v1). If the source I is not dependent then it
will be called independent.

Main Result and Examples

Theorem 9.1. Let L be a nonempty regular language and I be a reduced A-
source which generates the language L. Then the following statements hold:

a) if I is an independent simple source and cl(I) ≤ 1 then HL(n) = O(1);
b) if I is an independent simple source and cl(I) ≥ 2 then HL(n) = Θ(log2 n);
c) if I is not independent simple source then HL(n) = Θ(n).

In the following figures containing a source I = (G, q0, Q) the node q0 will
be labelled by + and each node from Q will be labelled by ∗.
Example 9.2. Let I1 be the source in Fig. 9(a) and L1 be the regular language
which is generated by I1. The source I1 is an independent simple A-source with
cl(I1) = 1. One can show that HL1(n) = 0 for each n ∈ IN \ {0}.
Example 9.3. Let I2 be the source in Fig. 9(b) and L2 be the regular language
which is generated by I2. The source I2 is an independent simple A-source with
cl(I2) = 2. One can show that HL2(n) = *log2 n+ for each n ∈ IN \ {0}.
Example 9.4. Let I3 be the source in Fig. 10(a) and L3 be the regular language
which is generated by I3. The source I3 is a dependent simple A-source with
cl(I3) = 2. One can show that HL3(n) = n− 1 for each n ∈ IN \ {0}.

� ��
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1

(a) (b)

Fig. 9. Independent simple A-source I1 with cl(I1) = 1 and independent simple A-
source I2 with cl(I2) = 2.
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Fig. 10. Dependent simple A-source I3 and A-source I4 which is not simple.

Example 9.5. Let I4 be the source in Fig. 10(b) and L4 be the regular language
which is generated by I4. The source I4 is not a simple A-source. One can show
that HL4(n) = n for each n ∈ IN \ {0}.

9.2 Some Bounds on hL(n)

In this subsection we consider some simple corollaries of statements from Sect. 3
which are adapted for study of the problem of word recognition.

Let L be a regular language over the alphabet Ek. Now for any n ≥ 1 we
define a parameterML(n) of the language L. Denote by E∗

k(n) the set of all words
of the length n over the alphabetEk. Let α = α1 . . . αn be a word from E∗

k(n) and
J ⊆ {1, . . . , n}. Denote L(α, J) = {β1 . . . βn ∈ L(n) : βj = αj , j ∈ J} (if J = ∅
then L(α, J) = L(n)) and ML(n, α) = min{|J | : J ⊆ {1, . . . , n}, |L(α, J)| ≤ 1}.
Then ML(n) = max{ML(n, α) : α ∈ E∗

k(n)}. It is clear that ML(n) = 0 if
L(n) = ∅, and

ML(n) = Mρ(L,n),h(T (zL,n)) (139)

if L(n) 
= ∅.
Next statement follows immediately from (138), (139) and from Theorem 3.1.

Proposition 9.1. Let L be a regular language and n be a natural number. Then
hL(n) ≥ML(n).

Next statement follows immediately from Theorem 3.2, from obvious equality
|L(n)| = S(T (zL,n)) and from (138).

Proposition 9.2. Let L be a regular language over the alphabet Ek, n be a
natural number, and L(n) 
= ∅. Then hL(n) ≥ *logk |L(n)|+.

The following statement can be easily proved by induction on |L(n)|.
Proposition 9.3. Let L be a regular language over the alphabet Ek, n be a
natural number, and L(n) 
= ∅. Then hL(n) ≤ |L(n)| − 1.

Next statement follows immediately from (138), (139), from obvious equality
|L(n)| = N(T (zL,n)) and from Theorem 3.5.

Proposition 9.4. Let L be a regular language over the alphabet Ek, n be a
natural number, and L(n) 
= ∅. Then hL(n) ≤ML(n) log2 |L(n)|.

Note that Propositions 9.1, 9.2, 9.3 and 9.4 are formulated for regular lan-
guages but they are true for arbitrary languages over finite alphabets.
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9.3 Proof of Theorem 9.1

Auxiliary statements and proof of Theorem 9.1 are presented in this subsection.

Lemma 9.1. Let L be a nonempty regular language, and I be a reduced A-source
over the alphabet Ek which generates the language L and which is not simple.
Then HL(n) = Θ(n).

Proof. Let I = (G, q0, Q) and let C1, C2 be different (as subgraphs) elementary
cycles of the source I which have a common node v. Since I is a reduced source,
it contains a path ξ1 from the node q0 to the node v and a path ξ2 from the node
v to a node q1 ∈ Q. Let the length of the path ξ1 be equal to a, the length of the
path ξ2 be equal to b, the length of the cycle C1 be equal to c and the length of
the cycle C2 be equal to d. Consider the sequence of numbers ni = a+ b+ i · c ·d,
i = 0, 1, . . .. Let i ∈ IN. We can obtain a path of the length c · d from the
node v to the node v by passage d times along the cycle C1 or by passage c
times along the cycle C2. Using this fact one can show that |L(ni)| ≥ 2i. From
Proposition 9.2 follows that hL(ni) ≥ i/ log2 k = (ni − a − b)/(c · d · log2 k).
Therefore hL(ni) ≥ ni/c1 − n1, where c1 = n1 · log2 k. Let n ≥ n1 and let i be
the maximal number from IN such that n ≥ ni. Evidently, n − ni ≤ n1. Hence
HL(n) ≥ hL(ni) ≥ (n− n1)/c1 − n1 ≥ n/c1 − c2, where c2 = n1 + 1. Therefore
HL(n) ≥ n/2c1 for large enough n. The inequality HL(n) ≤ n is obvious. Thus,
HL(n) = Θ(n). ��

Let I = (G, q0, Q) be a simple A-source and let ξ ∈ Path(I). Denote by G(ξ)
the subgraph of the graph G generated by the path ξ. Define an equivalence
relation on the set Path(I). We will say that two paths ξ1 and ξ2 from Path(I)
are equivalent if G(ξ1) = G(ξ2). Evidently, for this equivalence relation there are
only finite number of equivalence classes. These classes will be called I-classes.

Note one important property of paths in simple source. Let ξ ∈ Path(I),
ξ = v1, d1, . . . , vm, dm, vm+1, 1 ≤ i < j ≤ m+1 and the nodes vi, vj belong to an
elementary cycle C of the source I. Since I is a simple source it is easily to show
that the nodes vi+1, . . . , vj−1 and the edges di, . . . , dj−1 belong to the cycle C.

Lemma 9.2. Let L be a nonempty regular language and I be a simple reduced A-
source over the alphabet Ek which generates the language L. Then the following
statements hold:

a) if cl(I) ≤ 1 then there exists a constant c1 ≥ 1 such that for any n ≥ 1 the
inequality |L(n)| ≤ c1 holds;

b) if cl(I) ≥ 2 then there exists a constant c2 ≥ 1 such that for any n ≥ 1 the
inequality |L(n)| ≤ c2 · ncl(I) holds.

Proof. Let I = (G, q0, Q).

a). Let cl(I) ≤ 1, n ≥ 1, B be some I-class and ξ ∈ B. It is clear that the
subgraph G(ξ) contains at most one elementary cycle. Using this fact and
taking into account that ξ is a path in a simple source one can show that in
the class B at most one path of the length n is contained. Denote by c1 the
number of I-classes. Then |L(n)| ≤ c1.
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b) Let cl(I) ≥ 2, n ≥ 1, B be some I-class and ξ ∈ B. Let the subgraph G(ξ)
contain exactly m different (as subgraphs) elementary cycles C1, . . . , Cm,
which are enumerated here in the same order as they are met in the path
ξ. It is clear that m ≤ cl(I). Taking into account that ξ is a path in simple
source one can show that the set of words generated by paths from B is of
the kind

{α1β
i1
1 . . . αmβ

im
m αm+1 : i1, . . . , im ∈ IN \ {0}} ,

where α1, . . . , αm+1 are some words over the alphabet Ek and βj , 1 ≤ j ≤ m,
is the word generated by single passage along the cycle Cj beginning with a
certain node. The notation αi designates the word α . . . α where the word α
repeats i times. It is clear that each word of the length n generated by a path
from B is of the kind α1β

i1
1 . . . αmβ

im
m αm+1 where i1, . . . , im ∈ {1, . . . , n}. It

is not difficult to see that the number of such words is bounded from above
by the value nm ≤ ncl(I). Thus, |L(n)| ≤ c2 · ncl(I) where c2 is the number
of I-classes. ��
Note that proofs of Lemmas 9.1 and 9.2 are close to proofs of some statements

from [208].

Lemma 9.3. Let L be a nonempty regular language and I be a simple reduced A-
source over the alphabet Ek which generates the language L. Then the following
statements hold:

a) if cl(I) ≤ 1 then HL(n) = O(1);
b) if cl(I) ≥ 2 then HL(n) = Ω(log2 n).

Proof. Let I = (G, q0, Q).

a). Let cl(I) ≤ 1. From Lemma 9.2 follows that there exists a constant c1 ≥ 1
such that for any n ≥ 1 the inequality |L(n)| ≤ c1 holds. Using Proposition
9.3 we obtain that for any n ≥ 1 the inequality hL(n) ≤ c1 − 1 holds.
Therefore HL(n) = O(1).

b). Let cl(I) ≥ 2. One can show that there exists a path ξ ∈ Path(I) such
that the subgraph G(ξ) contains m ≥ 2 different (as subgraphs) elementary
cycles. As it has been already mentioned in the proof of Lemma 9.2, the
set of words generated by paths from Path(I), which are equivalent to the
path ξ, is of the kind {α1β

i1
1 . . . αmβ

im
m αm+1 : i1, . . . , im ∈ IN \ {0}}, where

α1, β1, . . . αm, βm, αm+1 are certain words over the alphabet Ek. Let a be
the length of the word β1, b be the length of the word β2 and c be the
length of the word α1α2 . . . αm+1β3 . . . βm. It is clear that a > 0 and b >
0. Consider the sequence of numbers nj = a · b · j + c, j = 2, 3, . . .. Let
j ∈ IN, j ≥ 2 and t ∈ {1, . . . , j − 1}. Then the word α1β

i1
1 . . . αmβ

im
m αm+1

where i1 = bt, i2 = a(j − t) and i3 = . . . = im = 1 belongs to L(nj).
Hence |L(nj)| ≥ j − 1. From Proposition 9.2 follows that hL(nj) ≥ log2(j −
1)/ log2 k = log2((nj − c − a · b)/a · b)/ log2 k. Let nj ≥ 2 · (c + a · b). Then
hL(nj) ≥ log2(nj/2 · a · b)/ log2 k = (log2 nj)/c1 − c′2 where c1 = log2 k
and c′2 = (log2 2 · a · b)/ log2 k. Let j0 be the minimal number from IN such



Time Complexity of Decision Trees 403

that nj0 ≥ 2 · (c + a · b). Let n ∈ IN, n ≥ nj0 and let j be the maximal
number from IN such that n ≥ nj. It is clear that n − nj ≤ a · b. Hence
HL(n) ≥ hL(nj) ≥ log2(n−a·b)/c1−c′2 ≥ log2(n/2)/c1−c′2 = log2 n/c1−c2,
where c2 = 1/c1+c′2. ThereforeHL(n) ≥ log2 n/2c1 for large enough n. Thus,
HL(n) = Ω(log2 n). ��

Lemma 9.4. Let L be a nonempty regular language and I be a dependent simple
reduced A-source over the alphabet Ek which generates the language L. Then
HL(n) = Θ(n).

Proof. Let I = (G, q0, Q). Since I is a dependent source then in the source I
there exist different (as subgraphs) elementary cycles C1 and C2, nodes v1 and
v2 belonging to cycles C1 and C2 respectively, and a path ξ of the source I from
the node v1 to the node v2 such that W(I, C1, v1) = W(I, C2, v2) and the length
of the path ξ is a number divisible by r(I, C1, v1). Let the length of the cycle C1

be equal to a, the length of the cycle C2 be equal to b, and the length of the path
ξ be equal to c. Let t = a · b · c. Denote by β the word generated by passage the
path of the length t along the cycle C1 beginning with the node v1. Since I is a
reduced source then there exist a path ξ1 from the node q0 to the node v1 and a
path ξ2 from the node v2 to a node q1 ∈ Q. Let i, j ∈ IN. Consider a path from
the set Path(I). This path will be described as follows. First, we pass the path
ξ1 from the node q0 to the node v1 (denote by α1 the word generated by this
path). Then we pass along the cycle C1 the path of the length i ·t beginning with
the node v1 (this path generates the word βi and finishes in the node v1). After
that we pass the path ξ and then the path of the length t− c along the cycle C2

beginning with the node v2 (denote by γ the generated word, and denote by v3
the terminal node of this path which belongs to C2). Beginning with the node
v3 we pass along the cycle C2 the path of the length j · t (evidently, the word
βj is generated and the path finishes in the node v3). Finally, we pass along the
cycle C2 the path from the node v3 to the node v2 and the path ξ2 (denote by α2

the generated word). Thus, we obtain that for any i, j ∈ IN the word α1β
iγβjα2

belongs to the language L.
Denote by pi the length of the word αi, i ∈ {1, 2}. Let m ≥ 1 and i ∈

{0, . . . ,m}. Denote δi = α1β
iγβm−iα2 and nm = p1 + p2 + t · (m + 1). It is

clear that δi ∈ L(nm), 0 ≤ i ≤ m. Denote σ = α1β
m+1α2. Obtain a lower

bound on the value ML(nm, σ) = min{|J | : J ⊆ {1, . . . , nm}, |L(σ, J)| ≤ 1}. Let
J ⊆ {1, . . . , nm} and |L(σ, J)| ≤ 1. For i ∈ {0, . . . ,m} denote Bi = {p1 + i · t+
1, . . . , p1 + i · t+ t}. It is clear that for any i ∈ {0, . . . ,m} if J ∩Bi = ∅ then δi ∈
L(σ, J). Assume that |J | ≤ m− 1. Then for two distinct i1, i2 ∈ {0, . . . ,m} the
words δi1 and δi2 belong to the set L(σ, J) which is impossible. Therefore |J | ≥
m. From this inequality follows that ML(nm, σ) ≥ m and hence ML(nm) ≥ m.
Using Proposition 9.1 we obtain hL(nm) ≥ ML(nm) ≥ m. Therefore hL(nm) ≥
nm/c1 − c′2 where c1 = t and c′2 = (p1 + p2 + t)/t.

Let n ≥ n1 and let m be the maximal number from IN such that n ≥ nm. It
is clear that n− nm ≤ t. Hence HL(n) ≥ hL(nm) ≥ (n− t)/c1 − c′2 ≥ n/c1 − c2
where c2 = 1 + c′2. Therefore HL(n) ≥ n/2c1 for large enough n. The inequality
HL(n) ≤ n is obvious. Thus, HL(n) = Θ(n). ��
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Lemma 9.5. Let L be a nonempty regular language, I be an independent simple
reduced A-source over the alphabet Ek which generates the language L, and let
cl(I) ≥ 2. Then HL(n) = O(log2 n).

Proof. Let I = (G, q0, Q), d be the number of nodes in the graph G and t = 4 ·d.
Let C1 be an elementary cycle of the source I, a be the number of nodes in

C1, v1 be a node of the cycle C1, β be the word of the length a generated by
passage along the cycle C1 beginning with the node v1, and let r = r(I, C1, v1).
We will show that for any j ∈ IN there is no path ξ of the length (t+ j) · a from
the node v1 to a node not belonging to the cycle C1 which generates a word of
the kind σ = γβt. Assume the contrary. Let for some j ∈ IN there exists a path
ξ of the length (t+ j) · a from the node v1 to a node not belonging to the cycle
C1 which generates a word of the kind σ = γβt.

The terminal part of the path ξ which generates the suffix βt of the word σ
will be denoted by π. We will show that no node from the path π can belong
to the cycle C1. Assume the contrary. Let some node v of the path π belong to
the cycle C1. Since I is a simple source all the nodes and edges preceding v in
the path ξ also belong to the cycle C1. Hence γ = βj . If an A-source contains
two paths which start in the same node and generate the same word then these
paths are the same. Using this fact one can show that all nodes of the path π
following the node v also belong to the cycle C1 which is impossible. Therefore
the path π contains no nodes from the cycle C1.

It is clear that the length of the path π is equal to t · a = 4 · d · a. If we
assume that in the process of the path π passage each elementary cycle of the
source I will be passed less than 2 · a times then the length of the path π is at
most 3 · d · a which is impossible. Let C2 be an elementary cycle of the source
I which is passed at least 2 · a times in the process of the path π passage. It is
clear that the elementary cycles C1 and C2 are different (as subgraphs). Let b be
the number of nodes in the cycle C2. Then we obtain that the word βt contains
a certain segment ϕ of the length 2 · a · b generated both by passage 2 · b times
along the cycle C1 and by passage 2 · a times along the cycle C2. Hence the
cycles C1 and C2 beginning with some nodes generate the same infinite periodic
word over the alphabet Ek with the minimal period r. Divide the word σ into
segments of the length a. Since the length of the word ϕ is equal to 2 · a · b
then ϕ contains at least one such segment. Let v2 be the node of the cycle C2

such that beginning with this node the first segment generates which is wholly
contained in ϕ. Evidently, the length of the path ξ part from v1 to v2 is a number
divisible by a and hence it is a number divisible by r. Besides, β is a prefix of
the infinite word generated by the cycle C2 beginning with the node v2. Since
a is a number divisible by r, a is a period of this infinite word. Therefore the
infinite word generated by the cycle C2 beginning with the node v2 is of the kind
ββ . . . . Hence W(I, C1, v1) = W(I, C2, v2). Therefore the considered source is a
dependent one which is impossible. Thus, for any j ∈ IN there is no path ξ of the
length (t+ j) ·a from the node v1 to a node not belonging to the cycle C1 which
generates a word of the kind σ = γβt. From here follows that if a path κ, which
starts in the node v1, generates the word of the kind σ = γβt of the length i · a,
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i ≥ t, then this word is βi. Really, the initial and the terminal nodes of the path
κ belong to the cycle C1. Taking into account that I is a simple source we obtain
that all the nodes and edges of the path κ belong to the cycle C1. Therefore the
word generated by the path κ is βi and the path κ is uniquely determined by
the initial node and the suffix βt of the word generated by it.

Consider a path ξ of the source I. Let the subgraph G(ξ) contain exactly m
different elementary cycles C1, . . . , Cm, and the passage of the path ξ consists
of the sequential passage of the paths ξ1, κ1, ξ2, . . . , ξm, κm, ξm+1. The path ξj is
an elementary path from vj to vj+1, 1 ≤ j ≤ m+ 1. The path κj consists of the
passage ij times along the elementary cycle Cj beginning with the node vj+1

belonging to the cycle Cj , 1 ≤ j ≤ m. Here the paths ξj and κj have the only
common node vj+1, 1 ≤ j ≤ m. Let αj be the word generated by the elementary
path ξj , 1 ≤ j ≤ m + 1, and let βj be the word generated by single passage of
the cycle Cj beginning with the node vj+1, 1 ≤ j ≤ m. In this case the path ξ
generates the word

γ = α1β
i1
1 α2 . . . αmβ

im
m αm+1 .

Let us mark some letters in the word γ as follows. All the letters from the
subwords α1, α2, . . . , αm+1 will be marked. For j = 1, . . . ,m, if ij < t then all
the letters from the subword β

ij

j will be marked, and if ij ≥ t, then all the
letters from the suffix βt

j of the subword β
ij

j will be marked. It is clear that at
most d(t+ 1) letters will be marked. One can show that the marked letters and
the initial node v1 of the path ξ determine uniquely the path ξ and the word γ
generated by it. Really, the initial node of the path ξ1 and the word α1 determine
uniquely the path ξ1 and the initial node of the paths κ1 and ξ2. The initial node
of the path κ1 and the word β

ij

j in the case ij < t or the word βt
j in the case

ij ≥ t determine uniquely the path κ1 etc.
Let n ≥ 1 and let L(n) 
= ∅. Find an upper bound on the value ML(n). Let σ

be a word of the length n in the alphabet Ek. Let σ ∈ L(n) and let the word σ be
generated by the path ξ ∈ Path(I). It is known that the initial node of this path
is q0. Therefore this path and the word generated by it are uniquely determined
by at most d(t + 1) letters of the word σ. Using this fact it is not difficult to
show that ML(n, σ) ≤ d(t+1). Let now σ /∈ L(n). Let there exist a path ξ of the
source I which starts in the node q0 and generates the word σ (it is clear that the
terminal node of the path ξ does not belong to the set Q). Then the path ξ and
the word σ generated by it are determined uniquely by at most d(t+ 1) letters
of the word σ. Using this fact it is not difficult to show that ML(n, σ) ≤ d(t+1).
Let the source I contain no path which starts in the node q0 and generates
the word σ. Let ξ be the path of the source I which starts in the node q0 and
generates the prefix γ of the word σ with maximal length. Then there exist at
most d(t + 1) letters of the word γ which determine uniquely both the path ξ
and the word γ. Add to these letters the letter from the word σ, following the
prefix γ. Evidently, the set L(n) contains no words in which marked in the word
σ letters could be found in the same places. Using this fact one can show that
ML(n, σ) ≤ d(t+ 1) + 1. Hence ML(n) ≤ d(t+ 1) + 1. Denote s = d(t + 1) + 1.
Using Lemma 9.2 we obtain that there exists a constant m ≥ 1, depending only
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on the source I and such that |L(n)| ≤ m · ncl(I). From Proposition 9.4 follows
that hL(n) ≤ML(n) · log2 |L(n)| ≤ s · (cl(I) · log2 n+ log2 m) = c1 · log2 n + c2,
where c1 = s · cl(I) and c2 = s · log2 m. Evidently, in the case L(n) = ∅ the
inequality hL(n) ≤ c1 · log2 n + c2 also holds. Since the considered inequality
holds for any n ≥ 1, we conclude that the inequality HL(n) ≤ c1 · log2 n + c2
holds for any n ≥ 1. Therefore HL(n) = 2c1 log2 n for large enough n. Thus,
HL(n) = O(log2 n). ��
Proof (of Theorem 9.1). The statement of theorem follows immediately from
Lemmas 9.1, 9.3, 9.4 and 9.5. ��

10 Diagnosis of Constant Faults in Circuits

Different lines of investigation of applications of decision trees to the constant
fault diagnosis in combinatorial circuits are studied in this section. Faults under
consideration are represented in the form of Boolean constants on some inputs
of the circuit gates. The diagnosis problem consists in the recognition of the
function realized by the circuit with a fixed tuple of constant faults from given
set of tuples. For this problem solving we use decision trees. Each attribute of
a decision tree consists in observation of output of the circuit at the inputs of
which a binary tuple is given.

This section contains five subsections. In the first subsection basic notions are
defined. In the second subsection the complexity of decision trees for diagnosis of
arbitrary and specially constructed circuits is considered. In the third subsection
the complexity of algorithms for construction of decision trees for diagnosis of
faults is studied. In the fourth subsection so-called iteration-free circuits are
investigated. In the fifth subsection an approach to circuit construction and
diagnosis is considered.

Definitions, notation and results from appendix “Closed Classes of Boolean
Functions” are used in this section without special notice.

10.1 Basic Notions

The notions of combinatorial circuit, set of tuples of constant faults and diagnosis
problem are defined in this subsection.

Combinatorial Circuits. A basis is an arbitrarynonemptyfinite set of Boolean
functions. Let B be a basis.

A combinatorial circuit in the basis B (a circuit in the basis B) is a labelled
finite directed graph without directed cycles and, possibly, with multiple edges
which has nodes of the three types: inputs, gates and outputs.

Nodes of the input type have no entering edges, each input is labelled by a
variable, and distinct inputs are labelled by distinct variables. Every circuit has
at least one input.

Each node of the gate type is labelled by a function from the set B. Let v be
a gate and let a function g depending on t variables be attached to it. If t = 0
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(this is the case when g is one of the constants 0 or 1) then the node v has no
entering edges. If t > 0 then the node v has exactly t entering edges which are
labelled by numbers 1, . . . , t respectively. Every circuit has at least one gate.

Each node of the output type has exactly one entering edge which issues from
a gate. Let v be an output. Nothing is attached to v, and v has no issuing edges.
We will consider only circuits which have exactly one output.

Let S be a circuit in basis B which has n inputs labelled by variables
x1, . . . , xn. Let us correspond to each node v in the circuit S a Boolean func-
tion fv depending on variables x1, . . . , xn. If v is an input of S labelled by the
variable xi then fv = xi. If v is a gate labelled by a constant c ∈ {0, 1} then
fv = c. Let v be a gate labelled by a function g depending on t > 0 variables.
For i = 1, . . . , t let the edge di, labelled by the number i, issue from a node vi

and enter the node v. Then fv = g(fv1 , . . . , fvt). If v is an output of the circuit
S and an edge, issuing from a node u enters the node v, then fv = fu. The
function corresponding to the output of the circuit S will be denoted by fS . We
will say that the circuit S realizes the function fS.

Denote by L(S) the number of gates in the circuit S. The value L(S) char-
acterizes the complexity of the circuit S.

Denote by Circ(B) the set of circuits in the basis B. Denote F(B) = {fS :
S ∈ Circ(B)}. One can show that F(B) = [B] \ {0, 1} where [B] is the closure
of the set B relatively to operation of substitution and operations of insertion
and deletion of unessential variable.

Set of Tuples of Constant Faults on Inputs of Gates. Let S be a circuit
in basis B. Edges entering gates of the circuit S will be called inputs of gates.
Let the circuit S have m gate inputs. The circuit S will be called degenerate if
m = 0 and nondegenerate if m > 0. Let S be a nondegenerate circuit. Later we
will assume that the gate inputs in the circuit S are enumerated by numbers
from 1 to m. Thus, each edge entering a gate has a sequential number in the
circuit besides the number attached to it and corresponding to the gate.

We will consider the faults in the circuit S which consist in appearance of
Boolean constants on gate inputs. Each fault of such kind is defined by a tuple of
constant faults on inputs of gates of the circuit S which is an arbitrary m-tuple
of the kind w̄ = (w1, . . . , wm) ∈ {0, 1, 2}m. If wi = 2 then the i-th gate input in
the circuit S operates properly. If wi 
= 2 then the i-th gate input in the circuit
S is faulty and realizes the constant wi.

Define a circuit S(w̄) in the basis B ∪ {0, 1} which will be interpreted as the
result of action of the tuple of faults w̄ on the circuit S. Let us overlook all gate
inputs in the circuit S. Let i ∈ {1, . . . ,m}. If wi = 2 then the i-th gate input will
be left without changes. Let wi 
= 2 and the i-th gate input is the edge d issuing
from the node v1 and entering the node v2. Add to the circuit S new gate v(wi)
which is labelled by the constant wi. Instead of the node v1 connect the edge d
to the node v(wi).

A set of tuples of constant faults on inputs of gates of the circuit S is a subset
W of the set {0, 1, 2}m containing the tuple (2, . . . , 2). Denote Circ(S,W ) =
{S(w̄) : w̄ ∈ W}. Note that S((2, . . . , 2)) = S.
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Problem of Diagnosis. Let S be a nondegenerate circuit in the basis B with n
inputs and m gate inputs, and let W be a set of tuples of constant faults on gate
inputs of the circuit S. The diagnosis problem for the circuit S relative to the
faults from W : for a given circuit S′ ∈ Circ(S,W ) it is required to recognize the
function realized by the circuit S′. To solve this problem we will use decision trees
in which the computation of the value of each attribute consists in observation
of output of the circuit S′ at the inputs of which a tuple from the set {0, 1}n is
given.

Define the diagnosis problem for the circuit S relative to the faults from
the set W as a problem over corresponding information system. With each δ̄ ∈
{0, 1}n we associate the function δ̄ : Circ(S,W ) → {0, 1} such that δ̄(S′) =
fS′(δ̄) for any S′ ∈ Circ(S,W ). Let us consider an information system U(S,W ) =
(Circ(S,W ), {0, 1}, {0, 1}n) and a problem zS,W = (ν, δ̄1, . . . , δ̄2n) over U(S,W )
where {δ̄1, . . . , δ̄2n} = {0, 1}n and ν(σ̄1) 
= ν(σ̄2) for any σ̄1, σ̄2 ∈ {0, 1}2n

such
that σ̄1 
= σ̄2. The problem zS,W is a formalization of the notion of the diagnosis
problem for the circuit S relative to the faults from the set W . Denote ρ(S,W ) =
({0, 1}n, {0, 1}). Note that U(S,W ) is an information system of the signature
ρ(S,W ).

The mapping ν from zS,W numbers all Boolean functions of n variables. The
solution of the problem zS,W for a circuit S′ ∈ Circ(S,W ) is the number of the
function fS′ realizing by the circuit S′. In some cases it will be convenient for us
instead of the number of the function fS′ use a formula which realizes a function
equal to fS′ . As in appendix, two Boolean functions is called equal if one of
them can be obtained from the other by operations of insertion and deletion of
unessential variables.

Later, we will often consider the set {0, 1, 2}m of all possible tuples of constant
faults on inputs of gates of the circuit S. Denote U(S) = U(S, {0, 1, 2}m), ρ(S) =
ρ(S, {0, 1, 2}m), zS = zS,{0,1,2}m and h(S) = hg

U(S)(zS). Evidently, hg
U(S)(zS) =

hl
U(S)(zS). It is clear that h(S) is the minimal depth of a decision tree over U(S)

solving the diagnostic problem for the circuit S relative to the faults from the
set {0, 1, 2}m. If S is a degenerate circuit then h(S) = 0.

Example 10.1. Let S be a circuit with one gate represented in Fig. 11(a). For
this circuit L(S) = 1. We will admit all possible tuples of constant faults on
gate inputs. The circuit S (possible, with faults) realizes a function from the set
{x∧y, x, y, 0, 1}. In Fig. 11(b) one can see corresponding decision table TU(S)(zS)
and in Fig. 11(c) one can see a decision tree which solves the diagnosis problem
for S. Note that in the table and in the tree we use functions as labels instead
of its numbers. The depth of the considered decision tree is equal to 3. Using
Theorem 3.2 we obtain h(S) = 3.

10.2 Complexity of Algorithms for Diagnosis

In this subsection the complexity of decision trees for diagnosis of arbitrary and
specially constructed circuits is considered.
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Fig. 11. The circuit, the decision table and the decision tree for this circuit diagnosis
problem.

Arbitrary Circuits. The first line of investigation comprises the study of the
complexity of fault diagnosis algorithms for arbitrary circuits in the basis B. Let
us consider for this purpose the function h

(1)
B which characterizes the worst-case

dependency of h(S) on L(S) on the set Circ(B) of circuits. The function h
(1)
B

will be defined in the following way:

h
(1)
B (n) = max{h(S) : S ∈ Circ(B), L(S) ≤ n} .

The basis B will be called primitive if at least one of the following conditions
holds:

a) every function from B is either a disjunction x1 ∨ . . . ∨ xn or a constant;
b) every function from B is either a conjunction x1 ∧ . . . ∧ xn or a constant;
c) every function from B is either a linear function x1 + . . . + xn + c (mod 2),

c ∈ {0, 1}, or a constant.

Theorem 10.1. For any basis B the following statements hold:

a) if B is a primitive basis then h
(1)
B (n) = O(n);

b) b) if B is a non-primitive basis then log2 h
(1)
B (n) = Ω(n1/2).

Specially Constructed Circuits. As opposed to the first one, the second line
of research explores complexity of diagnostic algorithms for circuits which are not
arbitrary but chosen as the best from the point of view of solution of the diagnosis
problem for the circuits, realizing the Boolean functions given as formulas over
B. Let Φ(B) be the set of formulas over the basis B. For a formula ϕ ∈ Φ(B)
we will denote by L(ϕ) the number of functional symbols in ϕ. Let ϕ realize a
function which does not belong to the set {0, 1}. Set h(ϕ) = min h(S), where
the minimum is taken over all possible combinatorial circuits S (not necessarily
in the basis B) which realize the same function as the formula ϕ. If ϕ realizes
a function from the set {0, 1} then h(ϕ) = 0. We will study the behavior of a
function h

(2)
B which characterizes the worst-case dependency of h(ϕ) on L(ϕ) on

the set of formulas over B and is defined as follows:

h
(2)
B (n) = max{h(ϕ) : ϕ ∈ Φ(B), L(ϕ) ≤ n} .
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Theorem 10.2. For an arbitrary basis B the following statements hold:

a) if B is a primitive basis then h
(2)
B (n) = O(n);

b) if B is a non-primitive basis then the equality log2 h
(2)
B (n) = Ω(nc) holds for

certain positive constant c which depends only on B.

Auxiliary Statements. Let us prove three statements which are used in this
and following subsections.

Lemma 10.1. Let B be a basis, S be a circuit in the basis B with n inputs and
m > 0 gate inputs, w̄0, w̄1, . . . , w̄r be tuples from {0, 1, 2}m such that fS(w̄0) 
=
fS(w̄i) for i = 1, . . . , r, and p be the minimal cardinality of a set of tuples from
{0, 1}n on which the function fS(w̄0) is distinct from all functions fS(w̄1), . . . ,
fS(w̄r). Then h(S) ≥ p.

Proof. Let T = T (zS) be the decision table corresponding to the problem zS and
let γ̄ be the tuple of values of the function fS(w̄0) on elements of the set {0, 1}n.
One can show that Mρ(S),h(T, γ̄) ≥ p and hence Mρ(S),h(T ) ≥ p. Using Theorem
3.1 obtain hρ(S)(T ) ≥ p. From Theorem 4.1 follows hl

U(S)(zS) = hρ(S)(T ). Since
h(S) = hl

U(S)(zS), we conclude h(S) ≥ p. ��

Next statement is a simple corollary of a result from [209].

Lemma 10.2. Let B1 and B2 be bases such that [B1] ⊆ [B2]. Then there exist
constants c1, c2 ≥ 1 with the following property: for any formula ϕ1 over B1 there
exists a formula ϕ2 over B2 which realizes the function equal to the function
realized by the formula ϕ1 and for which L(ϕ2) ≤ c1(L(ϕ1))c2 .

Proof. Let ϕ be a formula over some basis. Denote by Λ(ϕ) the number of
symbols of variables and constants in the formula ϕ. It has been proven in [209]
that there exist constants d1, d2 ≥ 1 such that for any formula ϕ1 over B1

there exists a formula ϕ2 over B2 which realizes a function equal to the function
realized by the formula ϕ1 and for which Λ(ϕ2) ≤ d1(Λ(ϕ1))d2 .

Let ϕ1 be a formula over B1. Denote by ϕ2 a formula over B2, satisfying the
following conditions:

(a) ϕ2 realizes a function which is equal to the function realized by the formula
ϕ1;

(b) Λ(ϕ2) ≤ d1(Λ(ϕ1))d2 ;
(c) ϕ2 has minimal number of functional symbols among all formulas satisfying

the conditions (a) and (b).

The formula ϕ2 can be represented in a natural way as a finite rooted directed
tree D nodes of which are labelled by symbols of variables or functions. Denote
by Λ0 the number of nodes in D which are labelled by symbols of variables or
constants. Let Λ1 be the number of nodes in D which are labelled by symbols
of functions of one variable. Denote by Λ2 the number of nodes in D which are
labelled by symbols of functions of two and more variables. It is clear that the
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number of terminal nodes in the tree D is equal to Λ0. Using Lemma 3.12 one
can show that Λ0 +Λ2 ≤ 2Λ0 and hence Λ2 ≤ Λ0. Since the formula ϕ2 satisfies
the condition (c), the tree D does not contain three nodes consecutively linked
by edges such that they are labelled by symbols of monadic functions. Using
this fact one can show Λ1 ≤ 2(Λ0 + Λ2) ≤ 4Λ0. It is clear that Λ(ϕ2) = Λ0

and L(ϕ2) ≤ Λ0 + Λ1 + Λ2. Therefore L(ϕ2) ≤ 6Λ0 = 6Λ(ϕ2). Denote by
p the maximal number of variables in functions from B1. Evidently, Λ(ϕ1) ≤
(p + 1)L(ϕ1). Taking into account that ϕ2 satisfies the condition (b) obtain
L(ϕ2) ≤ 6Λ(ϕ2) ≤ 6d1(Λ(ϕ1))d2 ≤ 6d1((p+1)L(ϕ1))d2 = 6d1(p+1)d2(L(ϕ1))d2 .
Set c1 = 6d1(p + 1)d2 and c2 = d2. Then L(ϕ2) ≤ c1(L(ϕ1))c2 . Since ϕ1 is an
arbitrary formula over B1, the statement of the lemma holds. ��
Lemma 10.3. Let B be a non-primitive basis. Then there exist the functions
ψ1(x, y, z) and ψ2(x, y, z) in [B] such that ψ1(x, y, 1) = x ∨ y and ψ2(x, y, 0) =
x ∧ y.
Proof. From the results contained in appendix follows that at least one of the
relations F∞

2 ⊆ [B], D2 ⊆ [B] and F∞
6 ⊆ [B] holds where F∞

2 = [{x ∨ (y ∧ z)}],
D2 = [{(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}] and F∞

6 = [{x ∧ (y ∨ z)}]. If F∞
2 ⊆ [B] then

we can take functions x∨ (y ∧ z) and z ∨ (x∧ y) in the capacity of the functions
ψ1 and ψ2. If D2 ⊆ [B] then in the capacity of the functions ψ1 and ψ2 we can
take one and the same function (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). If F∞

6 ⊆ [B] then we
can take the functions z ∧ (x∨ y) and x∧ (y∨ z) in the capacity of the functions
ψ1 and ψ2. ��
Proofs of Theorems 10.1 and 10.2. The following statement characterizes
relationships between the functions h(1)

B and h
(2)
B .

Lemma 10.4. Let B be a basis. Then for any n ∈ IN \ {0} the values of h(1)
B (n)

and h
(2)
B (n) are definite and the inequality h

(2)
B (n) ≤ h

(1)
B (n) holds.

Proof. Let n ∈ IN \ {0}. It is clear that {S : S ∈ Circ(B), L(S) ≤ n} is a
nonempty set. Denote by p the maximal number of variables in functions from
B. Let S be a circuit in the basis B such that L(S) ≤ n. Assume that S is a
nondegenerate circuit. It is clear that the number of inputs of the circuit S which
are connected by edges with gates is at most pn. Using this fact one can show
that h(S) ≤ 2pn. If S is a degenerate circuit then h(S) = 0 < 2pn. Taking into
account that S is an arbitrary circuit in the basis B with L(S) ≤ n we obtain
that the value h(1)

B (n) is definite.
It is clear that {ϕ : ϕ ∈ Φ(B), L(ϕ) ≤ n} is a nonempty set. Let ϕ ∈ Φ(B)

and L(ϕ) ≤ n. If the formula ϕ realizes a function belonging to the set {0, 1}
then h(ϕ) = 0 ≤ h

(1)
B (n). Let ϕ realize a function which does not belong to

{0, 1}. It is not difficult to construct a circuit S in the basis B which realizes
the same function as the formula ϕ and for which L(S) = L(ϕ) ≤ n. It is clear
that h(ϕ) ≤ h(S) ≤ h

(1)
B (n). Since ϕ is an arbitrary formula over B for which

L(ϕ) ≤ n, we conclude that the value h(2)
B (n) is definite and that the inequality

h
(2)
B (n) ≤ h

(1)
B (n) holds. ��
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Let us study the behavior of the function h
(1)
B for an arbitrary primitive

basis B.

Lemma 10.5. Let B be a primitive basis. Then h
(1)
B (n) = O(n).

Proof. Since B is a primitive basis, at least one of the relations [B] ⊆ S6, [B] ⊆
P6, [B] ⊆ L1 holds where S6 = [{x ∨ y, 0, 1}], P6 = [{x ∧ y, 0, 1}] and L1 =
[{x+ y(mod 2), 1}].

Consider the case [B] ⊆ L1. Let n ∈ IN \ {0} and let S be a circuit from
Circ(B) with L(S) ≤ n. Assume that S is a nondegenerate circuit. Let the circuit
S have exactly r inputs labelled by variables x1, . . . , xr respectively. Denote by m
the number of gate inputs in the circuit S. Let exactly t inputs of the circuit S be
linked by edges to gates, and let these inputs be labelled by variables xi1 , . . . , xit

(possibly, t = 0). One can show that any circuit S′ from Circ(S, {0, 1, 2}m)
realizes a function of the kind (d1 ∧ x1) + . . . + (dr ∧ xr) + d0(mod 2) where
dj ∈ {0, 1}, 0 ≤ j ≤ r. It is clear that dj = 0 for any j ∈ {1, . . . , r} \ {i1, . . . , it}.

Let us describe the work of a decision tree solving the problem zS which
is the diagnosis problem for the circuit S relative to the faults from the set
{0, 1, 2}m. Let S′ ∈ Circ(S, {0, 1, 2}m). Give on the inputs of the circuit S′ the
tuple consisting of zeros. We obtain on the output of the circuit S′ the value
d0. For each j ∈ {1, . . . , t} give some tuple on inputs of the circuit S′. Let
j ∈ {1, . . . , t}. Give the unity on the input of the circuit S′ labelled by the
variable xij , and give zeros on the other inputs of the circuit. We obtain value
dij +d0(mod 2) on the output of the circuit. Thus, after the giving on the inputs
of the circuit S′ of the considered t + 1 tuples the coefficients d1, . . . , dr, d0 of
the formula (d1 ∧x1)+ . . .+(dr ∧xr)+ d0(mod 2) will be recognized. Hence the
considered decision tree solves the problem zS, and the depth of this decision
tree is at most t+ 1. Therefore h(S) ≤ t+ 1. Denote by p the maximal number
of variables in functions from B. It is clear that t ≤ pn. Set c1 = p + 1. Then
h(S) ≤ c1n. If S is a degenerate circuit then h(S) = 0 < c1n. Taking into
account that S is an arbitrary circuit in the basis B with L(S) ≤ n we obtain
h

(1)
B (n) ≤ c1n. Therefore h(1)

B (n) = O(n).
The cases [B] ⊆ S6 and [B] ⊆ P6 can be considered in the same way. ��

Let us study the behavior of the functions h(1)
B and h

(2)
B for a non-primitive

basis B.

Lemma 10.6. Let B be a non-primitive basis. Then following statements hold:

a) log2 h
(1)
B = Ω(n1/2);

b) there exists a constant c ≥ 0 such that log2 h
(2)
B = Ω(nc).

Proof. Using Lemma 10.3 obtain that there exist the functions ψ1(x, y, z) and
ψ2(x, y, z) ∈ [B] such that ψ1(x, y, 1) = x ∨ y and ψ2(x, y, 0) = x ∧ y. Denote
B1 = {ψ1, ψ2}. Let r ∈ IN \ {0}. It is easily to show that there exists a formula
ϕr over B1 with the following properties: ϕr realizes the function

gr = gr(x1, . . . , xr, y1, . . . , yr, z1, . . . , zr, t1, . . . , tr, u0, u1)
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such that gr(x1, . . . , xr, y1, . . . , yr, z1, . . . , zr, t1, . . . , tr, 0, 1) =
∨r

j=1((x1 ∨ y1) ∧
. . .∧(xj−1∨yj−1)∧(xj∧yj)∧(xj+1∨yj+1)∧...∧(xr∨yr))∨

∧r
i=1((xi∧zi)∨(yi∧ti))

and the inequality L(ϕr) ≤ 6r2 holds.
Let S be a circuit in an arbitrary basis realizing a function equal to the

function gr. Let us show that h(S) ≥ 2r. Let the circuit S have exactly n inputs.
One can show that the variables x1, . . . , xr , y1, . . . , yr, z1, . . . , zr, t1, . . . , tr are
essential variables of the function gr. Therefore the circuit S has inputs labelled
by these variables. If the variable ui, i ∈ {0, 1}, is an essential variable of the
function gr then S has an input labelled by this variable. Thus, the circuit S
realizes a function fS(x1, . . . , xr, y1, . . . , yr, z1, . . . , zr, t1, . . . , tr, . . .) depending
on m ≥ 4r variables and equal to the function gr. Let σ̄ = (σ1, . . . , σ2r) ∈
{0, 1}2r. Define a tuple w(σ̄) of constant faults on inputs of the circuit S. For
i = 1, . . . , r the constant σi is realized on all gate inputs connected to the input
zi of the circuit S. For i = 1, . . . , r the constant σr+i is realized on all gate
inputs connected to the input ti of the circuit S. For i = 0, 1 the constant i is
realized on all gate inputs connected to the input ui of the circuit S (if such
input exists). The other gate inputs in the circuit S operate correctly. Denote
by fσ̄ the function realized by the circuit S(w(σ̄)). It is clear that the function
fσ̄ is obtained from the function fS by substitution of the constants σ1, . . . , σ2r

for the variables z1, . . . , zr, t1, . . . , tr and of the constant i for the variable ui (if
S contains the input ui), i = 0, 1. Denote by Σ the set of all possible tuples
σ̄ = (σ1, . . . , σ2r) ∈ {0, 1}2r such that σi + σr+i = 1 for i = 1, . . . , r. Denote by
0̄ the tuple (0, . . . , 0) from {0, 1}2r. Let σ̄ = (σ1, . . . , σ2r) ∈ Σ. One can show
that the functions f0̄ and fσ̄ differ on a tuple (δ1, . . . , δm) ∈ {0, 1}m if and only
if the equalities δ1 = σ1, . . . , δ2r = σ2r hold. It is clear that |Σ| = 2r. Hence the
minimal cardinality of the set of tuples from {0, 1}m on which the function f0̄

differs from all functions fσ̄, σ̄ ∈ Σ, is equal to 2r. Using Lemma 10.1 obtain
h(S) ≥ 2r.

a) Using the relation B1 ⊂ [B] one can show that there exists a constant d1 ≥ 1
with the following property: for any r ∈ IN \ {0} there exists a circuit Sr

in the basis B which realizes the function gr and for which L(Sr) ≤ d1r
2.

Set c1 = 4d1. Let n ∈ IN and n ≥ c1. Denote r = ((n/d1)1/2). One can
show that L(Sr) ≤ d1r

2 ≤ n and h(Sr) ≥ 2r = 2�(n/d1)
1/2� ≥ 2n1/2/c1 . Hence

h
(1)
B (n) ≥ 2n1/2/c1 and log2 h

(1)
B = Ω(n1/2).

b) It is clear that [B1] ⊆ [B]. Using Lemma 10.2 we conclude that there exist
constants d2, d3 ≥ 1 with the following property: for any r ∈ IN \ {0} there
exists a formula πr over B which realizes a function equal to the function gr

and for which L(πr) ≤ d2r
d3 . Set c2 = 2d3d2 and c = 1/d3. Let n ∈ IN and

n ≥ c2. Denote r = ((n/d2)1/d3). One can show that L(πr) ≤ d2r
d3 ≤ n and

h(πr) ≥ 2r = 2�(n/d2)
1/d3� ≥ 2nc/c2 . Hence h

(2)
B (n) ≥ 2nc/c2 and log2 h

(1)
B =

Ω(nc). ��
Proof (of Theorem 10.1). The statement of the theorem follows from Lemmas
10.5 and 10.6. ��
Proof (of Theorem 10.2). The statement of the theorem follows from Lemmas
10.4, 10.5 and 10.6. ��
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10.3 Complexity of Construction of Algorithms for Diagnosis

The third line of research is to study the complexity of algorithms for construc-
tion of decision trees for diagnosis problem.

A basis B will be called degenerate if B ⊆ {0, 1}, and nondegenerate other-
wise. Let B be a nondegenerate basis. Define an algorithmic problem Con(B).
The problem Con(B): for a given circuit S from Circ(B) and a given set W
of tuples of constant faults on inputs of gates of the circuit S it is required to
construct a decision tree which solves the diagnosis problem for the circuit S
relative to the faults from W .

Note that there exists a decision tree which solves the diagnosis problem for
the circuit S relative to the faults from W and the number of nodes in which is
at most 2 |W | − 1.

Theorem 10.3. Let B be a nondegenerate basis. Then the following statements
hold:

a) if B is a primitive basis then there exists an algorithm which solves the prob-
lem Con(B) with polynomial time complexity;

b) if B is a non-primitive basis then the problem Con(B) is NP-hard.

Proof of Theorem 10.3. Study the complexity of the problem Con(B) solving
for a nondegenerate primitive basis B.

Lemma 10.7. Let B be a nondegenerate primitive basis. Then there exists an
algorithm with polynomial time complexity which solves the problem Con(B).

Proof. Since the basis B is primitive, at least one of the relations [B] ⊆ S6,
[B] ⊆ P6, [B] ⊆ L1 holds.

Consider the case [B] ⊆ S6. Let S be a circuit in the basis B with n inputs
labelled by variables x1, . . . , xn, and let W be a set of tuples of constant faults
on gate inputs of the circuit S. One can show that any circuit S′ ∈ Circ(S,W )
realizes a function of the kind

(c1 ∧ x1) ∨ ... ∨ (cn ∧ xn) ∨ c0 (140)

where c0, c1, . . . , cn ∈ {0, 1}. Denote by δ̄0 the n-tuple (0, . . . , 0). For i = 1, . . . , n
denote by δ̄i the n-tuple (0, . . . , 0, 1, 0, . . . , 0) in which 1 is in the i-th digit. One
can show that for the recognition of the coefficients c0, c1, . . . , cn in the formula
(140) which realizes the function fS′ it is sufficient to know the values of the
function fS′ on n-tuples δ̄0, δ̄1, . . . , δ̄n. In fact, fS′(δ̄0) = c0. If c0 = 1 then fS′ ≡ 1
and we may set c1 = . . . = cn = 1. If c0 = 0 then fS′(δ̄i) = ci for i = 1, . . . , n.

Let us show that there exists an algorithm which solves the problem Con(B)
with polynomial time complexity. Let us describe the work of this algorithm
for a circuit S and a set W of tuples of faults. Define a problem z over the
information system U = U(S,W ) in the following way: z = (ν, δ̄0, δ̄1, . . . , δ̄n)
where ν : {0, 1}n+1 → IN and for any ᾱ ∈ {0, 1}n+1 the value of ν(ᾱ) is a
number from IN, the binary representation of which is the n-tuple ᾱ. Denote
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T = TU (z). By simulation of work of the circuit S(w̄) on the n-tuple δ̄i for
any w̄ ∈ W and i ∈ {0, 1, . . . , n} we can construct the table T in polynomial
time. Using the algorithm Vρ(S),h, which has polynomial time complexity, we
can construct the decision tree Vρ(S),h(T ) for the table T . (The description of
the algorithm Vρ(S),h can be found in Sect. 3.4.) Each terminal node of the tree
Vρ(S),h(T ) is labelled by the number ν(ᾱ) of an n-tuple ᾱ ∈ {0, 1}n+1. Using
this number we can construct in polynomial time a formula of the kind (140)
which realizes a function f such that (f(δ̄0), f(δ̄1), . . . , f(δ̄n)) = ᾱ. For each
terminal node of the tree Vρ(S),h(T ) replace the number attached to it by the
corresponding formula. Denote by Γ the obtained decision tree. Using Theorem
4.1 one can show that the decision tree Γ solves the problem zS,W .

The cases [B] ⊆ P6 and [B] ⊆ L1 can be considered in the same way. ��
Study the complexity of the problem Con(B) solving for a nondegenerate

basis B which is not primitive.

Lemma 10.8. Let B be a nondegenerate basis which is not primitive. Then the
problem Con(B) is NP-hard.

Proof. Using Lemma 10.3 one can show that there exist circuits S1 and S2 in the
basis B which realizes functions ψ1(x, y, z) and ψ2(x, y, z) such that ψ1(x, y, 1) =
x ∨ y and ψ2(x, y, 0) = x ∧ y.

Assume that there exists an algorithm which solves the problem Con(B)
and has polynomial time complexity. Let us show that in this case there ex-
ists an algorithm which has polynomial time complexity and solves the ver-
tex cover problem which is NP-complete (see Sect. 3.6). In this problem for
a given undirected graph G without loops and multiple edges and a number
m ∈ IN it is required to establish whether the inequality cv(G) ≤ m holds
where cv(G) is the minimal cardinality of vertex cover of the graph G. Let
G = (V,R) where V = {v1, . . . , vn} is the set of vertices of the graph G and
R = {{vi1 , vj1}, . . . , {vit , vjt}} is the set of edges of the graph G. If m ≥ n
then the inequality cv(G) ≤ m holds. If m = 0 then the inequality cv(G) ≤ m
holds if and only if R = ∅. Assume 0 < m < n. Consider the Boolean function
ψG(x1, . . . , xn) = (xi1∨xj1)∧. . .∧(xit∨xjt). It is clear that inequality cv(G) ≤ m
holds if and only if the function ψG has the value 1 on an n-tuple from {0, 1}n

containing at most m numbers 1. Define a function ψm+1
n : {0, 1}n → {0, 1} in

the following way: ψm+1
n (x1, . . . , xn) = 1 if and only if

∑n
i=1 xi ≥ m+ 1.

Using the circuits S1 and S2 it is easily to construct in polynomial time a
circuit S in the basis B with n inputs, and two tuples w̄1, w̄2 of constant faults
on gate inputs of the circuit S such that the circuit S(w̄1) realizes the function
ψm+1

n (x1, . . . , xn) and the circuit S(w̄2) realizes the function ψG(x1, . . . , xn) ∨
ψm+1

n (x1, . . . , xn). It is clear that fS(w̄1) 
= fS(w̄2) if and only if the inequality
cv(G) ≤ m holds. Denote W = {w̄1, w̄2, (2, . . . , 2)}. Apply the algorithm, which
solves the problem Con(B) and has polynomial time complexity, to the circuit S
and to the set W . As a result we obtain a decision tree Γ over U(S,W )) which
solves the problem zS,W . Construct the circuits S(w̄1) and S(w̄2) and apply the
decision tree Γ to them. The results of the decision tree Γ work on circuits S(w̄1)
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and S(w̄2) will be different if and only if the inequality cv(G) ≤ m holds. Note
that the processes of construction of circuits S(w̄1) and S(w̄2) and of applying
to them the decision tree Γ can be carried out in polynomial time.

Thus, if an algorithm exists which solves the problem Con(B) with poly-
nomial time complexity then an algorithm exists which solves the vertex cover
problem in polynomial time. Hence the problem Con(B) is NP-hard. ��
Proof (of Theorem 10.3). The statement of the theorem follows from Lemmas
10.7 and 10.8. ��

10.4 Diagnosis of Iteration-Free Circuits

From the point of view of the solution of the diagnosis problem for arbitrary
tuples of constant faults on inputs of gates of arbitrary circuits only primitive
bases seem to be admissible. The extension of the set of such bases is possible by
the substantial restriction on the class of the circuits under consideration. The
fourth line of research is the study of the complexity of fault diagnosis algorithms
for iteration-free circuits.

Bounds on Complexity of Algorithms for Diagnosis. Let B be a basis.
A circuit in the basis B is called iteration-free if each node (input or gate) of it
has at most one issuing edge. Let us denote by Circ1(B) the set of iteration-free
circuits in the basis B with only one output. Let us consider the function h

(3)
B

which characterizes the worst-case dependency of h(S) on L(S) for circuits from
Circ1(B) and is defined in the following way:

h
(3)
B (n) = max{h(S) : S ∈ Circ1(B), L(S) ≤ n} .

Let us call a Boolean function f(x1, . . . , xn) quasimonotone if there exist
numbers σ1, . . . , σn ∈ {0, 1} and a monotone Boolean function g(x1, . . . , xn)
such that f(x1, . . . , xn) = g(xσ1

1 , . . . , xσn
n ) where xσ = x if σ = 1, and xσ = ¬x

if σ = 0.
The basis B will be called quasiprimitive if at least one of the following

conditions is true:

a) all functions from B are linear functions or constants;
b) all functions from B are quasimonotone functions.

The class of the quasiprimitive bases is rather large: we will show (see Propo-
sition 10.1) that for any basis B1 there exists a quasiprimitive basis B2 such that
[B1] = [B2].

Theorem 10.4. Let B be a basis. Then the following statements holds:

a) if B is a quasiprimitive basis then h
(3)
B (n) = O(n);

b) if B is not a quasiprimitive basis then log2 h
(3)
B (n) = Ω(n).

Quasiprimitive Bases. The following statement characterizes the class of
quasiprimitive bases.
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Proposition 10.1. For any basis B1 there exists a quasiprimitive basis B2 such
that [B1] = [B2].

Proof. In appendix for each closed class U of Boolean functions a basis BU is
considered such that U = [BU ]. One can show that for all classes U , with the
exception of the classes C2, C3 and C4, the basis BU is quasiprimitive. Denote
B

′
C2

= {x ∧ y, x ∨ ¬y}, B′
C3

= {x ∨ y, x ∧ ¬y} and B
′
C4

= {x ∨ y, x ∧ y, x ∨
(y ∧ ¬z)}. From Lemma 18 of [217] follows C2 = [B

′
C2

] and C3 = [B
′
C3

]. From
Lemma 17 of [217] follows that the equality C4 = [{x ∨ y, x ∧ y, g}] holds for
any nonmonotone α-function g. One can show that the function x ∨ (y ∧ ¬z) is
a nonmonotone α-function. Hence C4 = [B

′
C4

]. Evidently, bases B
′
C2

, B
′
C3

and
B

′
C4

are quasiprimitive. Thus, for any closed class U of Boolean functions there
exists a quasiprimitive basis B such that U = [B].

Let B1 be a basis. Denote U = [B1]. By proved above, for the closed class U
there exists a quasiprimitive basis B2 such that U = [B2]. ��

The following statement characterizes iteration-free circuits in a basis which
consists of quasimonotone functions.

Lemma 10.9. Let B be a nondegenerate basis consisting of quasimonotone
functions, and let S be an iteration-free circuit in the basis B with n inputs
and m > 0 gate inputs. Then there exist tuples σ̄0 and σ̄1 from {0, 1}n such
that for any circuit S′ ∈ Circ(S, {0, 1, 2}m) if fS′ 
≡ const then fS′(σ̄0) = 0 and
fS′(σ̄1) = 1.

Proof. We prove the statement of the lemma by induction on the parameter
t = L(S). Consider an arbitrary nondegenerate circuit S ∈ Circ1(B) for which
L(S) = 1. Let the circuit S have n inputs labelled by variables x1, . . . , xn. Let the
only gate v in the circuit S be labelled by the function g of m variables. Assume,
for the definiteness, that the inputs of the gate v are connected to the inputs
of the circuit S labelled by the variables x1, . . . , xm. Since g is a quasimonotone
function, there exists a monotone function q of m variables and the numbers
δ1, . . . , δm ∈ {0, 1} such that g(x1, . . . , xm) = q(xδ1

1 , . . . , xδm
m ). Define two tuples

σ̄0 and σ̄1 from {0, 1}n in the following way: σ̄0 = (¬δ1, . . . ,¬δm, 0, . . . , 0) and
σ̄1 = (δ1, . . . , δm, 0, . . . , 0). Let S′ ∈ Circ(S, {0, 1, 2}m). It is clear that a function
equal to the function fS′ can be obtained from the function g(x1, . . . , xm) by
substitution of constants from {0, 1} for some variables. Taking into account that
q is a monotone function one can show that either fS′ ≡ const or fS′(σ̄0) = 0
and fS′(σ̄1) = 1. Therefore the statement of the lemma holds if t = 1.

Assume that the statement of lemma is true for some t ≥ 1. Show that this
statement also holds for t + 1. Let S ∈ Circ1(B), L(S) = t + 1, the circuit S
have m > 0 gate inputs, and the output of the circuit S be linked by an edge
to a gate v labelled by a function g. If g ∈ {0, 1} then fS′ ≡ const for any
S′ ∈ Circ(S, {0, 1, 2}m) and the statement of the lemma holds for the circuit S.
Let g /∈ {0, 1} and edges d1, . . . , d, which issue from nodes v1, . . . , vr, enter the
node v. For i = 1, . . . , r let Si be a subcircuit of S consisting of nodes and edges
such that each of them is contained in a directed path terminating in vi. Let
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i ∈ {1, . . . , r}. If the subcircuit Si does not contain inputs of S then a constant
is realized on the i-th input of the gate v for any circuit S′ ∈ Circ(S, {0, 1, 2}m).
If the subcircuit Si does not contain gates then it consists of one input of the
circuit S. Let the subcircuit Si contain at least one input of the circuit S and
at least one gate. Add to the subcircuit Si a node u and an edge d issuing from
the node vi and entering the node u. Denote the obtained graph by Gi. It is
clear that Gi is a nondegenerate circuit from Circ1(B), and L(Gi) ≤ t. By the
inductive hypothesis, for the circuit Gi there exist tuples σ̄i

0 and σ̄i
1, satisfying

the statement of the lemma. Since g is a quasimonotone function, there exist
a monotone function q(x1, . . . , xr) and numbers δ1, . . . , δr ∈ {0, 1} such that
g(x1, . . . , xr) = q(xδ1

1 , . . . , xδr
r ). Define a tuple σ̄0 of values of inputs of S. Let

i ∈ {1, . . . , r}. If the subcircuit Si consists of the only input of the circuit S
then we give on this input the number ¬δi. Let the subcircuit Si contain at least
one input of the circuit S and at least one gate. Then we give on the inputs of
the circuit S, included into the subcircuit Si, the tuple σ̄i

0 if δi = 1, and the
tuple σ̄i

1 if δi = 0. We give zeros on the inputs of the circuit S not belonging
to any subcircuit Si, i ∈ {1, . . . , r}. Define a tuple σ̄1 of values of inputs of the
circuit S. Let i ∈ {1, . . . , r}. If the subcircuit Si consists of the only input of
the circuit S then we give on this input the number δi. Let the subcircuit Si

contain at least one input of the circuit S and at least one gate. Then we give
on the inputs of the circuit S, included into the subcircuit Si, the tuple σ̄i

0 if
δi = 0, and the tuple σ̄i

1 if δi = 1. We give zeros on the inputs of the circuit S
not belonging to any subcircuit Si, i ∈ {1, . . . , r}. Let S′ ∈ Circ(S, {0, 1, 2}m)
and let, for the definiteness, for any i ∈ {1, . . . , p} on the i-th input of the gate v
the function equal to the constant γi is realized, while for any i ∈ {p+ 1, . . . , r}
on the i-th input of the gate v a function is realized which is not constant. Then
fS′(σ̄0) = q(γδ1

1 , . . . , γ
δp
p , 0, . . . , 0) and fS′(σ̄1) = q(γδ1

1 , . . . , γ
δp
p , 1, . . . , 1). Since

q is a monotone function, either fS′ ≡ const, or fS′(σ̄0) = 0 and fS′(σ̄1) = 1.
Hence the statement of the lemma also holds for t+ 1. ��

Study the behavior of the function h
(3)
B for a quasiprimitive basis B.

Lemma 10.10. Let B be a quasiprimitive basis. Then h
(3)
B (n) = O(n).

Proof. Let all functions from B be linear. Then the basis B is primitive. Using
Theorem 10.1 we conclude that h(1)

B (n) = O(n). It is clear that h(3)
B (n) ≤ h

(1)
B (n)

for any natural n. Hence h(3)
B (n) = O(n).

Let all functions from B be quasimonotone. If B is a degenerate basis then
all functions from B are linear, and for the basis B the statement of the lemma is
true. Let us assume now that the basis B is nondegenerate. Let g be a function
from B depending on r > 0 variables, and let Sg be an iteration-free circuit
in the basis B with r inputs labelled by variables x1, . . . , xr and with one gate
labelled by the function g. For i = 1, . . . , r let the i-th gate input be linked to
the input of the circuit which is labelled by the variable xi. One can show that
there exists a decision tree Γg which solves the problem zSg and for which the
result of the work of Γ for any circuit S′ ∈ Circ(Sg, {0, 1, 2}r) consists of
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a) a formula ϕ = g(α1, . . . , αr) realizing a function equal to fS′ , where αi = xi

if xi is an essential variable of the function fS′ , and αi is a constant from
{0, 1} if xi is not an essential variable of the function fS′ ;

b) for any essential variable xi of the function fS′ a tuple (β1, . . . , βi−1, βi+1, . . . ,
βr) ∈ {0, 1}r−1 such that fS′(β1, . . . , βi−1, 0, βi+1, . . . , βr) 
= fS′(β1, . . . , βi−1,
1, βi+1, . . . , βr).

Let c = max{h(Γg) : g ∈ B \ {0, 1}}. Set c1 = max{1, c}. By induction on
the parameter t = L(S) we will prove that for any nondegenerate iteration-free
circuit S in B there exists a decision tree Γ which solves the problem zS and
for which h(Γ ) ≤ c1L(S). If the circuit S has m gate inputs then for any circuit
S′ ∈ Circ(S, {0, 1, 2}m) the result of Γ work is a formula realizing a function
equal to the function fS′ . Let S ∈ Circ1(B), L(S) = 1, the only gate of the circuit
S be labelled by a function g of r variables, and the i-th gate input be linked
to the input of the circuit S which is labelled by a variable xji , i = 1, . . . , r. For
the problem zS solving we will use the decision tree Γg modified in the following
way: we give tuples, generated by the decision tree Γg, on the inputs of the
circuit S linked to the gate while on the other inputs of the circuit S we give
zeros. In each formula attached to a terminal node of the decision tree Γg the
variables x1, . . . , xr are replaced by the variables xj1 , . . . , xjr respectively. One
can show that the modified in such a way decision tree Γg solves the problem zS .
The depth of this decision tree is at most c1. Hence if t = 1 then the considered
statement holds.

Assume that this statement holds for some t ≥ 1. Let us show that it holds for
t+ 1. Let S ∈ Circ1(B), L(S) = t+ 1, the circuit S have m > 0 gate inputs and
the output of the circuit S be linked by an edge to a gate v which is labelled by a
function g. Let g ∈ {0, 1}. Then fS′ ≡ g for any circuit S′ ∈ Circ(S, {0, 1, 2}m).
Denote by Γ the decision tree consisting of only one node labelled by the formula
g. It is clear that Γ solves the problem zS and h(Γ ) = 0 < c1L(S). Therefore
the considered statement holds for the circuit S. Assume now that g /∈ {0, 1}.
Let the edges d1, . . . , dr, issuing from nodes v1, . . . , vr respectively, enter the
gate v. For i = 1, . . . , r let Si be a subcircuit of S consisting of those nodes
and edges of the circuit S everyone of which is included into a directed path
terminating in vi. Let i ∈ {1, . . . , r}. If the subcircuit Si does not contain the
inputs of the circuit S then a constant is realized on the i-th input of the gate
v for any circuit S′ ∈ Circ(S, {0, 1, 2}m). If the subcircuit Si does not contain
gates, it consists of an only input of the circuit S. Let the subcircuit Si contain
at least one input of the circuit S and at least one gate. Add to the subcircuit
Si a node u and an edge d issuing from the node vi and entering the node
u. Denote by Gi the obtained graph. Evidently, Gi is a nondegenerate circuit
from Circ1(B) for which L(Gi) ≤ t. Let Gi have mi gate inputs. By inductive
hypothesis, there exists a decision tree Γi which solves the problem zGi and for
which h(Γi) ≤ c1L(Gi). Using Lemma 10.9 obtain that there exist input tuples
σ̄i

0 and σ̄i
1 of the circuit Gi such that for any circuit G′ ∈ Circ(Gi, {0, 1, 2}mi) if

fG′ 
≡ const then fG′(σ̄i
0) = 0 and fG′(σ̄i

1) = 1.
Let us describe the work of a decision tree Γ which solves the problem zS .

Let S′ ∈ Circ(S, {0, 1, 2}m). First, the decision tree Γ simulates in some way the
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work of the decision tree Γg. The gate v is analyzed at that. Let the decision
tree Γg generates the tuple (δ1, . . . , δr). Let i ∈ {1, . . . , r}. If the subcircuit Si

consists of an only input of the circuit S then we give the number δi on this
input. Let the subcircuit Si contain at least one input of the circuit S and at
least one gate. Then we give on the inputs of the circuit S′, belonging to the
subcircuit Si, the tuple σ̄i

0 if δi = 0, and the tuple σ̄i
1 if δi = 1. We give zeros

on the inputs of the circuit S′ not belonging to any subcircuit Si, i ∈ {1, . . . , r}.
Let the result of the work of the decision tree Γg be a formula g(α1, . . . , αr). Let,
for the definiteness, αi = xi for i = 1, . . . , q and αi be a constant from {0, 1}
for i = q + 1, . . . , r. Assume that for i = 1, . . . , p the subcircuit Si contains at
least one input of the circuit S and at least one gate, and for i = p + 1, . . . , q
the subcircuit Si consists of one input of the circuit S which is labelled by the
variable xli .

Later, the decision tree Γ consequently simulates the work of the deci-
sion trees Γ1, . . . , Γp. The subcircuits S1, . . . , Sp are analyzed at that. Let i ∈
{1, . . . , p}. Describe the work of the decision tree Γ when it simulates the decision
tree Γi. Let (β1, . . . , βi−1, βi+1, . . . , βr) be a tuple constructed by the decision
tree Γg for an essential variable xi of the function g′(x1, . . . , xr) = g(α1, . . . , αr).
For this tuple g′(β1, . . . , βi−1, 0, βi+1, . . . , βr) 
= g′(β1, . . . , βi−1, 1, βi+1, . . . , βr).
Let j ∈ {1, . . . , r} \ {i}. If the subcircuit Sj consists of the only input of the
circuit S then we give the number βj on this input. Let the subcircuit Sj con-
tain at least one input of the circuit S and at least one gate. On the inputs of
the circuit S′, belonging to the subcircuit Sj , we give the tuple σ̄j

0 if βj = 0,
and the tuple σ̄j

1 if βj = 1. On the inputs of S′, belonging to the subcircuit
Si, we give the tuples generated by the decision tree Γi. We give zeros on the
inputs of the circuit S′ not belonging to any subcircuit Sj , j ∈ {1, . . . , r}. If
g′(β1, . . . , βi−1, 0, βi+1, . . . , βr) = 1 then the value of the output of the circuit S′

is inverted before it is used by the decision tree Γi. Let the result of the work of
the decision tree Γi be a formula ϕi.

After the construction of formulas ϕ1, . . . , ϕp in the process of the simulation
by the decision tree Γ of the work of decision trees Γ1, . . . , Γp, the work of the
decision tree Γ is over. The formula g(ϕ1, . . . , ϕp, xlp+1 , . . . , xlq , αq+1, . . . , αr)
will be obtained as the result. One can show that this formula realizes a function
equal to the function fS′ . Denote by I the set of all i ∈ {1, . . . , r} such that the
subcircuit Si contains at least one input of the circuit S and at least one gate. It
is clear that h(Γ ) ≤ h(Γg) +

∑
i∈I h(Γi) ≤ c1 + c1

∑
i∈I L(Gi) ≤ c1L(S). Hence

the considered statement holds also for t+ 1.
Let n ∈ IN \ {0}, S ∈ Circ1(B) and L(S) ≤ n. If S is a degenerate circuit

then h(S) = 0 < c1n. If S is a nondegenerate circuit then h(S) ≤ c1L(S) ≤ c1n.
Hence h(3)

B (n) ≤ c1n and h
(3)
B (n) = O(n). ��

Non-quasiprimitive Bases. In this subsubsection the behavior of the function
h

(3)
B for a non-quasiprimitive basis B is studied. The subsubsection contains also

the proof of Theorem 10.4.
Let us prove some auxiliary statements.
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Lemma 10.11. Let B be a non-quasiprimitive basis. Then there exists iteration-
free circuit S¬ in the basis B and tuples w̄1 and w̄2 of constant faults on gate
inputs of the circuit S¬ such that circuit S¬(w̄1) realizes a function equal to x,
and the circuit S¬(w̄2) realizes a function equal to ¬x.
Proof. Since the basis B is non-quasiprimitive then there exists a function g(x1,
. . . , xn) ∈ B which is not quasimonotone. Let us show that there exist a number
i ∈ {1, . . . , n} and two tuples (α1, . . . , αi−1, αi+1, . . . , αn) and (β1, . . . , βi−1, βi+1,
. . . , βn) from {0, 1}n−1 such that

g(α1, . . . , αi−1, 0, αi+1, . . . , αn) = 0 ,

g(α1, . . . , αi−1, 1, αi+1, . . . , αn) = 1 ,
(141)

g(β1, . . . , βi−1, 0, βi+1, . . . , βn) = 1 ,

g(β1, . . . , βi−1, 1, βi+1, . . . , βn) = 0 .

Assume the contrary. In this case for any i ∈ {1, . . . , n} there exists a number
σi ∈ {0, 1} such that for any tuple (γ1, . . . , γi−1, γi+1, . . . , γn) ∈ {0, 1}n−1 the in-
equality g(γ1, . . . , γi−1, σi, γi+1, . . . , γn) ≥ g(γ1, . . . , γi−1,¬σi, γi+1, . . . , γn)
holds. One can show that the function g(xσ1

1 , . . . , xσn
n ) is monotone. There-

fore g(x1, . . . , xn) is a quasimonotone function which is impossible. Thus, for
an i ∈ {1, . . . , n} and some tuples

(α1, . . . , αi−1, αi+1, . . . , αn), (β1, . . . , βi−1, βi+1, . . . , βn) ∈ {0, 1}n−1

the equalities (141) hold. Using these equalities one can construct an iteration-
free circuit S¬ in the basis B, containing one gate labelled by the function g,
and the tuples w̄1 and w̄2 of constant faults on inputs of this gate such that the
circuit S¬(w̄1) realizes a function equal to x, while the circuit S¬(w̄2) realizes a
function equal to ¬x. ��

The proof of the following lemma is similar to the proof of Lemma 11 from
[217].

Lemma 10.12. Let B be a non-quasiprimitive basis. Then there exist an itera-
tion-free circuit S∧ in the basis B and a tuple w̄ of constant faults on gate
inputs of the circuit S∧ such that the circuit S∧(w̄) realizes a function equal to
the function x ∧ y.
Proof. Since B is non-quasiprimitive, it contains a nonlinear function q(x1,...,xn).
It is well known (see Theorem 6 with the consequent note in [217]) that the func-
tion q has the unique representation in the form of a Zhegalkin polynomial:

q(x1, . . . , xn) =
∑

{i1,...,is}⊆{1,...,n}
ai1...is · xi1 · . . . · xis(mod 2) ,

where · is the usual multiplication and ai1...is ∈ {0, 1}, {i1, . . . , is} ⊆ {1, . . . , n}.
Since q is nonlinear, the Zhegalkin polynomial for q contains a term with at
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least two variables. Without loss of generality, we can assume that x1 and x2

are among these variables. Then we can transform the considered polynomial as
follows:

q(x1, . . . , xn) = x1 · x2 · q1(x3, . . . , xn) + x1 · q2(x3, . . . , xn) +
x2 · q3(x3, . . . , xn) + q4(x3, . . . , xn)(mod 2) .

From uniqueness of the Zhegalkin polynomial follows that q1(x3, . . . , xn) 
≡ 0.
Let α3, . . . , αn be numbers from {0, 1} such that q1(α3, . . . , αn) = 1. Then
χ(x1, x2) = q(x1, x2, α3, . . . , αn) = x1·x2+α·x1+β·x2+γ(mod 2) where α, β, γ ∈
{0, 1}. Consider the function ψ(x1, x2) = χ(x1 + β(mod 2), x2 + α(mod 2)) +
γ + α · β(mod 2). One can show that ψ(x1, x2) = x1 · x2 = x1 ∧ x2. Denote
σ1 = ¬β, σ2 = ¬α and σ3 = ¬(γ + α · β(mod 2)). Then

(q(xσ1
1 , xσ2

2 , α3, . . . , αn))σ3 = x1 ∧ x2 . (142)

From Lemma 10.11 follows that there exist a circuit S¬ ∈ Circ1(B) and a tuple
ū of constant faults on gate inputs of the circuit S¬ such that the circuit S¬(ū)
realizes a function equal to the function ¬x. From the equality (142) follows that
based on the function q and on the circuit S¬ we can construct an iteration-free
circuit S∧ in the basis B and a tuple w̄ of constant faults on gate inputs of the
circuit S∧ such that the circuit S∧(w̄) realizes a function equal to the function
x ∧ y. ��
Lemma 10.13. Let B be a non-quasiprimitive basis. Then log2 h

(3)
B (n) = Ω(n).

Proof. Using Lemma 10.11 we conclude that there exist a circuit S¬ ∈ Circ1(B)
and tuples w̄1 and w̄2 of constant faults on gate inputs of the circuit S¬ such
that the circuit S¬(w̄1) realizes a function equal to the function x, while the
circuit S¬(w̄2) realizes a function equal to the function ¬x. Using Lemma 10.12
we obtain that there exist a circuit S∧ ∈ Circ1(B) and a tuple w̄ of constant
faults on gate inputs of the circuit S∧ such that the circuit S∧(w̄) realizes a
function equal to the function x ∧ y.

Using the circuits S¬ and S∧ one can construct for any r ∈ IN \ {0} an
iteration-free circuit Sr in the basis B with the following properties:

a) for any σ̄ = (σ1, . . . , σr) ∈ {0, 1}r there exists a tuple u(σ̄) of constant faults
on gate inputs of the circuit Sr such that the circuit Sr(u(σ̄)) realizes a
function equal to the function xσ1

1 ∧ . . . ∧ xσr
r ;

b) there exists a tuple v̄ of constant faults on gate inputs of the circuit Sr such
that the circuit Sr(v̄) realizes a function equal to the function 0;

c) L(Sr) ≤ dr, where d = L(S¬) + L(S∧).

Let us show that h(Sr) ≥ 2r. Let the circuit Sr have exactly m inputs labelled
by variables x1, . . . , xm. The function realized by the circuit Sr(v̄) will be denoted
by f , and for any tuple σ̄ ∈ {0, 1}r the function realized by the circuit Sr(u(σ̄))
will be denoted by fσ̄. Let σ̄ = (σ1, . . . , σr) ∈ {0, 1}r. One can show that the
functions f and fσ̄ have different values on a tuple (δ1, . . . , δm) ∈ {0, 1}m if and
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only if δ1 = σ1, . . . , δr = σr. Hence the minimal cardinality of a set of tuples from
{0, 1}m, on which the function f is different from any function fσ̄, σ̄ ∈ {0, 1}r,
is equal to 2r. Using Lemma 10.1 we obtain h(Sr) ≥ 2r.

Set c1 = 2d. Let n ≥ c1. Denote r = (n/d). One can show that L(Sr) ≤ dr ≤
n and h(Sr) ≥ 2r = 2�n/d� ≥ 2n/c1. Hence h

(3)
B (n) ≥ 2n/c1 and log2 h

(3)
B (n) =

Ω(n). ��
Proof (of Theorem 10.4). Statement of the theorem follows from Lemmas 10.10
and 10.13. ��

10.5 Approach to Circuit Construction and Diagnosis

The fifth line of research deals with the approach to the circuit construction and
to the effective diagnosis of faults based on the results obtained for the iteration-
free circuits. From Proposition 10.1 and Lemma 10.2 follows that for each basis
B1 there exists a quasiprimitive basis B2 with the following properties:

a) [B1] = [B2], i.e. the set of functions realized by circuits in the basis B2

coincides with the set of functions realized by circuits in the basis B1;
b) there exists a polynomial p such that for any formula ϕ1 over B1 there exists

a formula ϕ2 over B2 which realizes the function equal to that realized by
ϕ1, and such that L(ϕ2) ≤ p(L(ϕ1)).

The considered approach to the circuit construction and fault diagnosis con-
sists in the following. Let ϕ1 be a formula over B1 realizing certain function
f, f /∈ {0, 1}, and let us construct the formula ϕ2 over B2 realizing the function
equal to f and satisfying the inequality L(ϕ2) ≤ p(L(ϕ1)). Next a circuit S in
the basis B2 is constructed (according to the formula ϕ2) realizing the function
f , satisfying the equality L(S) = L(ϕ2) and the condition that from each gate
of the circuit S at most one edge issues. In addition to the usual work mode of
the circuit S there exists the diagnostic mode in which the inputs of the circuit
S are “split” so that it becomes the iteration-free circuit S̃. From Theorem 10.4
follows that the inequalities h(S̃) ≤ cL(S) ≤ cp(L(ϕ1)), where c is a constant
depending only on the basis B2, hold for the circuit S̃.

11 Decision Trees for (1, 2)-Bayesian Networks

Bayesian Networks (BN for short) are convenient tool for representation of joint
probability distribution of variables [39, 163]. Some of these variables are hid-
den (unobservable). Using values of open (observable) variables and information
about probability distribution from BN we can draw some conclusions about
values of hidden variables.

In this section we study time complexity of decision trees which compute
values of all open variables from BN. We consider (1, 2)-BN in which each node
has at most 1 entering edge, and each variable has at most 2 values. For an
arbitrary (1, 2)-BN we obtain lower and upper bounds on minimal depth of
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decision tree that differ not more than by a factor of 4, and can be computed
by an algorithm which has polynomial time complexity. The number of nodes in
considered decision trees can grow as exponential on number of open variables in
BN. We develop an polynomial algorithm for simulation of the work of decision
trees which depth lies between the obtained bounds.

The investigation of decision trees for computation of all open variable values
may be helpful for BN use. Let the process of computation of open variable values
be rather expensive (it may be connected with use of remote sensors, carrying
out of experiments, etc.), there exist a decision tree whose depth is essentially
less than the number of open variables, and there exist an efficient algorithm for
simulation of the decision tree work. Then it is appropriate to use this decision
tree instead of the sequential computation of all open variable values.

This section consists of six subsections. The first subsection contains defini-
tions of main notions. The second one contains preliminary bounds on complexity
of decision trees for (1, 2)-BN. In the third subsection we consider a decompo-
sition of an arbitrary (1, 2)-BN into a forest of so-called monotone increasing
BN and a forest of so-called monotone decreasing BN. The fourth subsection is
devoted to the study of monotone increasing and monotone decreasing BN. In
the fifth subsection bounds on minimal depth of decision trees for (1, 2)-BN are
obtained, and in the sixth subsection an algorithm for simulation of the work of
decision tree which depth is close to minimal is considered.

11.1 Main Notions

In this subsection we consider notions of (1, 2)-BN, decision tree for BN and
abridged description of BN.

(1,2)-BN. (1, 2)-BN is a directed acyclic graph in which each node has at most
one entering edge. Nodes of the graph are labelled by pairwise different variables
which have values from the set {0, 1}. Sometimes we will not distinguish nodes
and variables. A probability distribution is attached to each node (variable) y.
This is probability distribution Pr(y = a), a ∈ {0, 1}, if y has no entering edges,
or probability distribution Pr(y = a | x = b), a, b ∈ {0, 1}, if there is an edge
from x to y. Some variables are hidden or unobservable. The other variables are
open or observable. Further we will consider only (1, 2)-BN.

Let S be BN with n variables v1, . . . , vn. With each n-tuple ā = (a1, . . . , an) ∈
{0, 1}n of variable v1, . . . , vn values we will associate the probability of its ap-
pearance. This probability is equal to p(ā) = p1(ā) · . . . · pn(ā) where pi(ā) =
Pr(vi = ai) if vi has no entering edges, and pi(ā) = Pr(vi = ai | vj = aj) if there
is an edge from vj to vi. We will assume that the n-tuple ā of variable values is
realizable if p(ā) 
= 0.

Let v1, . . . , vm be open variables and vm+1, . . . , vn be hidden variables. The
m-tuple (b1, . . . , bm) of open variable values will be called realizable if there exists
a realizable n-tuple (a1, . . . , an) of variable v1, . . . , vn values such that b1 = a1,
..., bm = am. Denote by R(S) the set of all realizable m-tuples of open variable
values.
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We will associate with BN S the following problem P(S): for a given m-tuple
from R(S) we must recognize it. To this end we can ask questions about values
of open variables.

Of course, we can formulate the problem P(S) as a problem over an appro-
priate information system. However, in this case we must code m-tuples from
R(S) (solutions of the problem P(S)) by integers which is not convenient for
the proofs. So, we will consider original formulation of the problem P(S). For
this problem solving we will use decision trees in which each terminal node is
labelled by an m-tuple from R(S).

Decision Trees for BN. A decision tree over BN S is a finite rooted directed
tree in which each terminal node is labelled by an m-tuple from R(S); each
node which is not terminal (such nodes are called working) is labelled by an
open variable from S; there are exactly two edges starting in a working node,
and these edges are labelled by numbers 0 and 1 respectively.

Let Γ be a decision tree over S, b̄ = (b1, . . . , bm) ∈ R(S) and ξ be a directed
path from the root to a terminal node of Γ . We will say that the path ξ accepts
the m-tuple b̄ if the following conditions hold. If there are no working nodes in
ξ then ξ accepts b̄. Otherwise ξ accepts b̄ if and only if for an arbitrary working
node of ξ if this node is labelled by vi then the edge of ξ starting in the node is
labelled by bi. It is clear that Γ has exactly one directed path from the root to
a terminal node which accepts b̄.

We will say that the decision tree Γ solves the problem P(S) if for any
b̄ ∈ R(S) the terminal node of the path which accepts b̄ is labelled by b̄.

As time complexity measure for decision trees we will consider the depth of
decision tree. Denote by h(S) the minimal depth of a decision tree over S which
solves the problem P(S).

As space complexity measure we will consider the number of nodes in decision
tree. Denote by L(Γ ) the number of nodes in decision tree Γ . Denote by L(S)
the minimal number of nodes in a decision tree over S which solves the problem
P(S).

Abridged Description of BN. Let S be BN. The set of decision trees over S
which solve the problem P(S) is defined completely by the set R(S) and by the
list of open variables which are given in the right order. The belonging to the
set R(S) is defined completely by values of variables for which the probabilities
(from probability distributions attached to nodes) are positive.

For an arbitrary node y of S we change the distribution attached to y in the
following way. If y has no entering edges then, instead of probability distribution
Pr(y = a), a ∈ {0, 1}, we attach to y the set V = {a : a ∈ {0, 1},Pr(y = a) 
= 0}.
If there is an edge from x to y then instead of probability distribution Pr(y =
a | x = b), a, b ∈ {0, 1}, we attach to y a pair of sets V0, V1 where V0 = {a : a ∈
{0, 1},Pr(y = a | x = 0) 
= 0} and V1 = {a : a ∈ {0, 1},Pr(y = a | x = 1) 
= 0}.
The obtained abridged description of BN will be called BN too. Further we will
consider only such BN.
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11.2 Preliminary Bounds on Complexity of Decision Trees
for (1, 2)-BN

First, we consider bounds on minimal depth and minimal number of nodes in
decision trees depending on the number of open variables in (1, 2)-BN.

Lemma 11.1. For any (1, 2)-BN S the following equality holds:

L(S) = 2|R(S)| − 1 .

Proof. Consider an arbitrary decision tree over S. One can show that the number
of working nodes in this tree is equal to the number of terminal nodes minus
1. It is clear that each decision tree which solves the problem P(S) must have
at least |R(S)| terminal nodes. Therefore L(S) ≥ 2|R(S)| − 1. By induction on
|R(S)|, it is not difficult to prove that L(S) ≤ 2|R(S)| − 1. ��
Lemma 11.2. For any (1, 2)-BN S the following inequality holds:

h(S) ≥ *log2 |R(S)|+ .

Proof. Let Γ be a decision tree which solves the problem P(S), and for which
h(Γ ) = h(S). It is clear that Γ must have at least |R(S)| terminal nodes. One can
show that Γ has at most 2h(Γ ) terminal nodes. Therefore h(Γ ) ≥ *log2 |R(S)|+
and h(S) ≥ *log2 |R(S)|+. ��
Proposition 11.1. Let S be (1, 2)-BN with m open variables. Then

0 ≤ h(S) ≤ m , 1 ≤ L(S) ≤ 2m+1 − 1 .

Both lower and upper bounds on h(S) and L(S) are unimprovable in general
case.

Proof. It is clear that h(S) ≥ 0 and L(S) ≥ 1. Consider a decision tree which
computes sequentially values of all open variables of S. It is clear that the depth
of this tree is equal to m. Therefore h(S) ≤ m. Evidently, |R(S)| ≤ 2m. Using
Lemma 11.1 we conclude that L(S) ≤ 2m+1 − 1.

Now we prove that the considered bounds are unimprovable.
Let S1 be BN such that S1 is a directed path with m nodes, all nodes are

open, the set {0} is attached to the root, and the pair {0}, {0, 1} is attached
to an arbitrary node which is not root. It is clear that R(S1) = {(0, 0, . . . , 0)}.
Therefore there exists a decision tree with exactly one node which solves the
problem P(S1). Using this fact we obtain that h(S1) = 0 and L(S1) = 1. Thus,
lower bounds are unimprovable.

Let S2 be BN such that S2 is a directed path with m nodes, all nodes are
open, the set {0, 1} is attached to the root, and the pair {0, 1}, {0, 1} is attached
to an arbitrary node which is not root. It is clear that R(S2) = {0, 1}m. From
Lemmas 11.1 and 11.2 follows that h(S2) ≥ m and L(S2) ≥ 2m+1 − 1. Thus,
upper bounds are unimprovable too. ��
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More precise bounds can be found if instead of the set of open variables we
will consider such its subsets that the values of all open variables can be found
if we know values of variables from considered subset. Let S be BN with m
open variables v1, . . . , vm. A set B ⊆ {v1, . . . , vm} will be called a basis of S if
each two different m-tuples from R(S) are differed in a digit corresponding to
a variable from B. Denote by b(S) the minimal cardinality of a basis of B. Now
we consider bounds on minimal depth and minimal number of nodes in decision
trees depending on the parameter b(S).

Proposition 11.2. Let S be (1, 2)-BN. Then

*log2(b(S) + 1)+ ≤ h(S) ≤ b(S) , 2b(S) + 1 ≤ L(S) ≤ 2b(S)+1 − 1 .

Both lower and upper bounds on h(S) and L(S) are unimprovable in general
case.

Proof. By induction on |R(S)| it is not difficult to prove that b(S) ≤ |R(S)| − 1
and therefore |R(S)| ≥ b(S) + 1. Using Lemmas 11.1 and 11.2 we obtain that
h(S) ≥ *log2(b(S) + 1)+ and L(S) ≥ 2b(S) + 1.

Let B be a basis of S such that |B| = b(S). It is not difficult to construct a
decision tree over S which solves the problem P(S) by sequential computation
of values of all variables from B. It is clear that the depth of this tree is equal to
b(S). Therefore h(S) ≤ b(S). One can show that |R(S)| ≤ 2b(S). Using Lemma
11.1 we obtain that L(S) ≤ 2b(S)+1 − 1.

Now we show that the considered bounds are unimprovable.
Let S3 be a BN such that S3 is a directed path with m nodes, all nodes

are open, the set {0, 1} is attached to the root, and the pair {0}, {0, 1} is at-
tached to an arbitrary node which is not root. One can show that R(S3) =
{(0, . . . , 0), (1, 0, . . . , 0), . . . , (1, . . . , 1, 0), (1, . . . , 1)}, |R(S3)| = m+1 and b(S) =
m. From Lemma 11.1 follows that L(S3) = 2b(S3) + 1. It is not difficult to
prove (see Sect. 11.4) that h(S3) ≤ *log2(b(S3) + 1)+. Thus, lower bounds are
unimprovable.

Consider BN S2 which was described in the proof of Proposition 11.1. It is
clear that b(S2) = m and R(S2) = {0, 1}m. Using Lemmas 11.1 and 11.2 we
obtain that h(S2) ≥ b(S2) and L(S2) ≥ 2b(S2)+1 − 1. Thus, upper bounds are
unimprovable too. ��

From the considered propositions follows that lower and upper unimprov-
able bounds on minimal depth of decision trees depending on number of open
variables are essentially distinct (as constant and linear function). The same sit-
uation is with bounds depending on the parameter b(S). These bounds behave
as logarithm and linear function. So, if we want to have more precise bounds,
we must consider bounds which depend essentially on the structure of BN.

From Proposition 11.1 follows also that the minimal number of nodes in
decision trees can grow as exponential on the number of open variables. So,
instead of construction of decision tree we must try to simulate its work by
algorithms that have polynomial time complexity.
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11.3 Decomposition of (1,2)-BN

In this subsection we consider a process of decomposition of an arbitrary (1, 2)-
BN into a forest of so-called monotone increasing BN and a forest of so-called
monotone decreasing BN.

Structure of (1,2)-BN. Let S be an (1, 2)-BN. Graph S consists of connected
components. Denote the set of this components by F1(S).

Lemma 11.3. Let S be an (1, 2)-BN and P ∈ F1(S). Then P is a rooted directed
tree.

Proof. Since P is an acyclic graph it has a directed path of maximal length. It
is clear that the initial node of this path has no entering edges. Therefore P has
a node without entering edges. Show that such node is unique. Suppose that x
and y are different nodes of P each of which has no entering edges. Since P is a
connected graph, there is an undirected path in P from x to y. It is clear that
this path has a node with two entering edges which is impossible. Therefore P
has exactly one node v without entering edges. Each other node has exactly one
entering edge. So, the number of edges in P is equal to the number of nodes
minus one. Taking into account that P is a connected graph we obtain that P
is a tree.

Let x be an arbitrary node of P which is not equal to v. Consider an arbitrary
path in P from v to x with pairwise different edges. Assume that this path is not
directed. Then the path has a node with two entering edges which is impossible.
Hence P is a directed tree with the root v. ��

An (1, 2)-BN which is a rooted directed tree will be called tree-like BN. Thus,
an arbitrary (1, 2)-BN S is a forest of tree-like BN. One can prove the following
statement.

Lemma 11.4. Let S be an (1, 2)-BN. Then

h(S) =
∑

P∈F1(S)

h(P ) .

It is clear that the solution of the problem P(S) is the union of solutions of
problems P(P ), P ∈ F1(S).

From Tree-Like BN to Forest of Reduced BN. Consider an arbitrary
tree-like BN P ∈ F1(S). Describe a process of transformation of P . As a result
we obtain a forest of so-called reduced BN. A reduced BN is a tree-like BN in
which the set {0, 1} is attached to the root, and the pair {0, 1}, {1} or the pair
{0}, {0, 1} is attached to an arbitrary node which is not root.

First, we consider some informal reasons. Let P be not reduced BN. If the
set {0} or the set {1} is attached to the root v of BN P then v is a constant.
Variables, which are constants, will be removed from P . Let x, y be nodes of
P , there be an edge from x to y, and the pair of sets V0, V1 be attached to y.
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Let x be a constant a. If |Va| = 1 then y is a constant. If |Va| = 2 then y is
an “independent” variable (it can be equal to 0 or to 1 independently of values
of other variables). “Independent” variables will become roots of reduced BN.
Let now x be not constant. We consider all possible 7 pairs V0, V1 which are
different from {0, 1}, {1} and {0}, {0, 1}. If V0, V1 is {0}, {0} or {1}, {1} then y
is a constant. If V0, V1 is {0, 1}, {0, 1} then y is an “independent” variable. If
V0, V1 is {0}, {1} or {1}, {0} then y = x or y = ¬x (¬x is the negation of x).
Nodes (variables) which are equal to the same variable or to its negation will be
identified. If V0, V1 is {0, 1}, {0} or {1}, {0, 1} then we replace y by ¬y and pass
to the pair {0, 1}, {1} or to the pair {0}, {0, 1}. So we see a way to transform P
into a forest of reduced BN.

Now we describe the process of transformation in detail. In the beginning of
the process we create a list CP of all variables from P . We will use this list for
recording of current information on variables. The process consists of two phases.
First phase of transformation begins from the root of P and finishes in terminal
nodes. During each step we treat a node, predecessor of which is already treated
(if there is an edge from x to y then x is called predecessor of y, and y is called
successor of x).

If the set {0, 1} is attached to the root v of BN P then the root does not
change. If the set {0} or the set {1} is attached to the root then we mark the
root as 0- or 1-constant node respectively. We equate the variable v in the list
CP to 0 or to 1 respectively.

Let a node y be not treated, a node x be treated and there be an edge from
x to y. Let the pair of sets V0, V1 be attached to y.

Let x be a-constant node, a ∈ {0, 1}. If |Va| = 2 then we mark the node y as
“independent” node, and instead of the pair of sets V0, V1 we attach to y the set
{0, 1}. If |Va| = {b}, then we mark the node y as b-constant node, and equate
the variable y in the list CP to constant b.

Let x be not constant node.
If V0 = V1 = {0} or V0 = V1 = {1} then we mark y as 0- or 1-constant node

respectively. We equate the variable y in the list CP to 0 or to 1 respectively.
If V0 = V1 = {0, 1} then we mark y as “independent” node, and instead of

the pair of sets V0, V1 we attach to y the set {0, 1}.
If V0 = {0} and V1 = {1} then instead of the variable y we label the con-

sidered node by the variable x. We equate the variable y in the list CP to the
variable x.

If V0 = {1} and V1 = {0} then instead of the variable y we label the con-
sidered node by the variable x. We equate the variable y in the list CP to ¬x.
Instead of the pair of sets V0, V1 we attach to the considered node the pair
{0}, {1}. For each successor of the node we instead of a pair W0,W1, attached
to the successor, attach to it the pair W1,W0.

If V0 = {0, 1} and V1 = {0} then instead of the variable y we label the
considered node by the variable ¬y. We equate the variable y in the list CP to
¬¬y (here ¬y is new variable, and y is equal to the negation of this variable).
Instead of the pair of sets V0, V1 we attach to the considered node the pair
{0, 1}, {1}. For each successor of the node we instead of a pair W0,W1, attached
to the successor, attach to it the pair W1,W0.
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If V0 = {1} and V1 = {0, 1} then instead of the variable y we label the
considered node by the variable ¬y. We equate the variable y in the list CP to
¬¬y. Instead of the pair of sets V0, V1 we attach to the considered node the pair
{0}, {0, 1}. For each successor of the node we instead of a pair W0,W1, attached
to the successor, attach to it the pair W1,W0.

If V0 = {0, 1}, V1 = {1} or V0 = {0}, V1 = {0, 1} then the considered node
does not change.

We assume that for any variable x from P variables x and ¬x have the same
state: if x is open then ¬x is open, if x is hidden then ¬x is hidden.

After all nodes have been treated, the second phase of transformation is
beginning.

We remove each constant node with each edge which is incident to it.
We remove each edge which enters to an “independent” node.
After the first phase of transformation different nodes may be labelled by

the same variable. It is clear that the subgraph generated by these nodes is a
directed tree with root.

For each variable z which is met more than one time we carry out the fol-
lowing operations:

1. We identify all nodes which are labelled by z (in other words we collapse all
nodes marked with z to a single node).

2. We remove all edges each of which starts in the obtained node and enters to
it.

3. We attach to the obtained node the set or the pair of sets which was attached
to the root of identified tree.

4. If z is an open variable or all identified nodes were labelled in P by hidden
variables, then we label the obtained node by z.

5. Otherwise we choose an open variable x which was label in P of an identified
node. If the equality x = z belongs to CP then we label the obtained node by
x, instead of z put x in right parts of equalities from CP , remove the equality
x = x from CP , add variable x to CP , and equate the variable z in the list CP

to x. If the equality x = ¬z belongs to CP then we label the obtained node
by ¬x, instead of z put ¬x in right parts of equalities from CP , and equate
the variable z in the list CP to ¬x.

As a result we obtain a forest which consists of reduced BN. Denote the set
of BN from this forest by F2(P ). Denote F2(S) =

⋃
P∈F1(S) F2(P ).

It is not difficult to prove the following statement.

Lemma 11.5. Let S be an (1, 2)-BN and P ∈ F1(S). Then

h(P ) =
∑

Q∈F2(P )

h(Q) .

If we know solutions of problems P(Q), Q ∈ F2(P ), we can easily restore the
solution of the problem P(P ):

1. If in the list CP an open variable is not equated to constant or other variable,
or negation of other variable then the value of this variable was found during
the process of problem P(Q), Q ∈ F2(P ), solving.
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2. If in the list CP an open variable is equated to a constant then it is equal to
this constant.

3. If in the list CP an open variable is equated to other variable or to negation
of other variable then the value of the other variable was found during the
process of problem P(Q), Q ∈ F2(P ), solving, and the value of the consid-
ered variable is equal to the value of the other variable or to negation of it
respectively.

From Reduced BN to Forest of Monotone Increasing BN and Forest
of Monotone Decreasing BN. Let Q be one of a reduced BN from F2(S). A
node of Q will be called 0-node if it is the root, or the pair {0}, {0, 1} is attached
to this node. A node of Q will be called 1-node if the pair {0, 1}, {1} is attached
to this node.

Remove from BN Q all 1-nodes. As a result we obtain a forest which consists
of some directed trees with root. In each such tree instead of a set or a pair
of sets we attach to the root the set {0, 1}. As a result we obtain the forest of
tree-like BN. Each of these BN satisfies the following conditions: the set {0, 1}
is attached to the root; the pair {0}, {0, 1} is attached to an arbitrary node
which is not root. Such BN will be called monotone increasing BN. Denote the
set of monotone increasing BN from the considered forest by F3(Q). Denote
F3(S) =

⋃
Q∈F2(S) F3(Q).

One can consider a tree-like BN as a poset (partially ordered set) in which
the root is the maximal element. Therefore we can say about nodes which are
greater or less than given node.

If the value of some node (variable) v of monotone increasing BN is equal to
0 then the value of each node which is less than v is equal to 0. If the value of v
is equal to 1 then the value of each node which is greater than v is equal to 1.

Remove from BN Q all 0-nodes. As a result we obtain a forest which consists
of some directed trees with root. In each such tree instead of a set or a pair
of sets we attach to the root the set {0, 1}. As a result we obtain the forest of
tree-like BN. Each of these BN satisfies the following conditions: the set {0, 1}
is attached to the root; the pair {0, 1}, {1} is attached to an arbitrary node
which is not root. Such BN will be called monotone decreasing BN. Denote the
set of monotone decreasing BN from the considered forest by F4(Q). Denote
F4(S) =

⋃
Q∈F2(S) F4(Q).

If the value of some node (variable) v of monotone decreasing BN is equal to
1 then the value of each node which is less than v is equal to 1. If the value of v
is equal to 0 then the value of each node which is greater than v is equal to 0.

Lemma 11.6. Let S be an (1, 2)-BN and Q ∈ F2(S). Then

max{
∑

U∈F3(Q)

h(U),
∑

W∈F4(Q)

h(W )} ≤ h(Q) ≤
∑

U∈F3(Q)

h(U) +
∑

W∈F4(Q)

h(W ) .

Proof. If we know solutions of problems P(U), U ∈ F3(Q), and P(W ), W ∈
F4(Q), we can easily restore the solution of the problem P(Q): it is equal to the
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union of solutions of considered problems. Therefore h(Q) ≤ ∑U∈F3(Q) h(U) +∑
W∈F4(Q) h(W ).
Let us consider the following values of variables from Q: each 1-node (vari-

able) is equal to 1; for any U ∈ F3(Q) as tuple of values of variables from U we
take an arbitrary realizable for U tuple of values. One can show that the consid-
ered tuple of values of variables from Q is realizable for Q. Using this fact one
can show that h(Q) ≥∑U∈F3(Q) h(U). The inequality h(Q) ≥∑W∈F4(Q) h(W )
can be proved similarly. ��

11.4 Analysis of Monotone Increasing
and Monotone Decreasing BN

In this subsection we consider bounds on minimal depth of decision trees for
monotone increasing and monotone decreasing BN, algorithms for computation
of these bounds and algorithms for simulation of the work of decision trees.

Open Monotone Increasing BN. Let U be a monotone increasing BN from
F3(S). Remove from this BN all hidden nodes with incident edges. If a pair of
open nodes x, y was connected in U by a directed path from x to y containing
hidden nodes only then we add an edge from x to y. As a result we obtain a
directed tree with root. If a pair of sets is attached to the root of the tree then
instead of this pair we attach the set {0, 1} to the root. We denote the obtained
BN by U (1). It is clear that U (1) is a monotone increasing BN in which all nodes
are open. Such BN will be called open monotone increasing BN. One can prove
the following statement.
Lemma 11.7. Let S be an (1, 2)-BN and U ∈ F3(S). Then

h(U) = h(U (1)) .

Note that the solution of the problem P(U) coincides with the solution of
the problem P(U (1)). Note also that the problem P(U (1)) is equivalent to the
problem of deciphering of monotone 0-1 function on U (1). Such function f is
defined on nodes of U (1), has values from {0, 1}, and if there is an edge from x
to y then f(x) ≥ f(y).

Open Monotone Increasing Chains. Let Y be an open monotone increasing
BN such that Y is a directed path with t nodes. Such BN will be called open
monotone increasing chain.

Now we describe a dichotomous algorithm A1 which for a given open mono-
tone increasing chain Y simulates the work of a decision tree which solves the
problem P(Y ). Let Y has t nodes labelled by variables v1, . . . , vt, where v1 is
the root of Y , and vi+1 is a successor of vi, i = 1, . . . , t− 1.

Description of the Algorithm A1

Compute the value of vp where p = *t/2+.
If vp = 1 then v1 = . . . = vp−1 = 1. Compute the value of vp+�(t−p)/2�, and

so on.
If vp = 0 then vp+1 = ... = vt = 0. Compute the value of v�(p−1)/2�, and so on.
It is clear that the algorithm A1 has polynomial time complexity.
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Lemma 11.8. Let Y be an open monotone increasing chain with t nodes. Then
the algorithm A1 computes values of at most *log2(t+ 1)+ variables from Y .

Proof. By induction on m it is not difficult to prove that if t ≤ 2m − 1 then A1

computes values of at most m variables from Y . From this fact the statement of
the lemma follows. ��
Lemma 11.9. Let Y be an open monotone increasing chain with t nodes. Then

h(Y ) = *log2(t+ 1)+ .

Proof. One can show that |R(Y )| = t+1. From Lemma 11.2 follows that h(Y ) ≥
*log2(t+ 1)+. Using Lemma 11.8 we conclude that h(Y ) = *log2(t+ 1)+. ��

From Open Monotone Increasing BN to Compressed BN. Consider the
open monotone increasing BN U (1). The number of edges starting in a node
will be called the degree of the node. Remove from U (1) all nodes (with the
exception of the root) which degree is equal to 1. If a pair of remaining nodes
x, y was connected in U (1) by a directed path from x to y containing nodes
of degree 1 only then we add an edge from x to y. Denote the obtained open
monotone increasing BN by U (2). In this BN each node which is not root or
terminal has at least two edges starting in it. Such BN will be called compressed.

We attach to each edge of U (2) a number. Let d be an edge from x to y in
U (2). If there is edge from x to y in U (1) then we attach 0 to d. Let there be no
edge from x to y in U (1), and there be a directed path from x to y containing
nodes of degree 1 only. Let this path have exactly t nodes of degree 1. Then we
attach the number *log2(t+ 1)+ to the edge d.

A set of edges from U (2) will be called independent if any two different edges
from the set do not belong to the same directed path in U (2). The weight of a
set of edges is the sum of numbers attached to edges from the set. Denote by
M(U (2)) the maximal weight of an independent set of edges from U (2).

Later we will consider a polynomial algorithmA4 that for a given compressed
BN U (2) simulates the work of a decision tree which solves the problem P(U (2))
and which depth is equal to h(U (2)).

Now we describe an algorithm A2 that for a given open monotone increasing
BN U (1) simulates the work of a decision tree which solves the problem P(U (1)).

Description of the Algorithm A2

Using algorithm A4 we solve the problem P(U (2)). Further we construct the
set J of edges from U (2) each of which satisfies the following conditions:

1. The edge starts in a node (variable) which value is equal to 1.
2. The edge enters to a node which value is equal to 0.
3. Positive number is attached to the edge.

Let r ∈ J and r start in x and enter to y. Then there is a directed path
in U (1) from x to y containing nodes of degree 1 only (with the exception of
x and y). We remove nodes x and y from this path, and denote the obtained
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path by Xr. Let this path contain t nodes of degree 1. Then we transform it in
a natural way into the open monotone increasing chain Yr with t nodes. Using
the algorithm A1 we solve the problem P(Yr) for each r ∈ J .

Since algorithms A1 and A4 have polynomial time complexity, algorithm A2

has polynomial time complexity too.

Lemma 11.10. Let S be an (1, 2)-BN and U ∈ F3(S). Then for open monotone
increasing BN U (1) the algorithm A2 simulates the work of a decision tree which
solves the problem P(U (1)) and which depth is at most h(U (2)) +M(U (2)).

Proof. It is clear that after the problem P(U (2)) solving we do not know in BN
U (1) only values of nodes (variables) of degree 1 which belong to paths Xr, r ∈ J .
Therefore when the problems P(Yr), r ∈ J , will be solved we will know values
of all open variables from U (1). Thus, the algorithm A2 simulates the work of a
decision tree which solves the problem P(U (1)).

It is clear that J is an independent set of edges. Let w be the weight of J .
Using Lemma 11.8 we conclude that during the solving of problems P(Yr), r ∈ J ,
the algorithm A2 computes values of at most w variables from U (1). Evidently,
w ≤ M(U (2)). Algorithm A4 simulates the work of a decision tree which depth
is equal to h(U (2)). Therefore the algorithm A2 simulates the work of a decision
tree the depth of which is at most h(U (2)) +M(U (2)). ��
Lemma 11.11. Let S be an (1, 2)-BN and U ∈ F3(S). Then

max{h(U (2)),M(U (2))} ≤ h(U (1)) ≤ h(U (2)) +M(U (2)) .

Proof. At first we show that

h(U (1)) ≥ h(U (2)) . (143)

Consider a decision tree Γ which solves the problem P(U (1)) and which depth
is equal to h(U (1)). Transform this tree as follows:

1. From each tuple, which is label of a terminal node, we remove values of all
variables which do not belong to U (2).

2. If a working node is labelled by a variable y which does not belong to U (2),
then instead of y we label the considered node by minimal (relatively the
poset U (1)) variable from U (2) which is greater than y.

One can show that the obtained decision tree over U (2) solves the problem
P(U (2)), and has the same depth as Γ . Therefore the equality (143) holds.

Now we show that
h(U (1)) ≥M(U (2)) . (144)

Let J = {d1, . . . , ds} be an independent set of edges from U (2) such that the
weight of J is equal to M(U (2)), and a positive number is attached to each
edge from J . For i = 1, . . . , s we denote by Xi the directed path in U (1) which
corresponds to the edge di and consists of nodes of degree 1 only. For i = 1, . . . , s
we denote by Yi the open monotone increasing chain which corresponds to the
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path Xi in a natural way. Let D be the set of variables from U (1) which do not
belong to paths X1, . . . , Xs.

One can show that there exists such realizable tuple of values of variables
from D that for i = 1, . . . , s the value of node from which the edge di starts is
equal to 1, and the value of node to which di enters is equal to 0. For i = 1, . . . , s
we give to variables from Xi values from an arbitrary tuple belonging to R(Yi).
As a result we obtain a tuple of values of all variables from U (1). One can show
that this tuple belongs to R(U (1)). Using this fact it is not difficult to prove that

h(U (1)) ≥ h(Y1) + . . .+ h(Ys) .

From Lemma 11.9 and from the choose of the set J follows that h(Y1) + . . . +
h(Ys) = M(U (2)). Therefore the inequality (144) holds.

From (143), (144) and from Lemma 11.10 follows the statement of the lemma.
��

Analysis of Compressed BN. Let K be an open monotone increasing BN.
A node of K will be called preterminal if it is not terminal, and each successor
of this node is a terminal node. Denote by Lt(K) the number of terminal nodes
in K, and by Lp(K) we denote the number of preterminal nodes in K.

Open monotone increasing BN will be called proper BN if it has at least one
nonterminal node, and the degree of each nonterminal node is at least 2.

Now we describe an algorithm A3 which for a given proper open monotone
increasing BN K simulates the work of a decision tree which solves the problem
P(K). During the work of this algorithm some nodes which values are already
known will be marked as treated. Before the beginning of the algorithm work
there are no marked nodes.

Description of the Algorithm A3

(∗) We choose an untreated node v such that each successor of this node is
a treated or a terminal node (using description of the algorithm one can show
that such node exists).

If there is a treated successor of v which value is equal to 1, then v = 1. We
compute values of all successors of v which are terminal nodes.

Let there be no a treated successor of v which value is equal to 1. Then we
compute the value of v. If v = 1 then we compute values of all successors of v
which are terminal nodes. If v = 0 then values of all successors of v which are
terminal nodes are equal to 0.

We mark v and all successors of v which are terminal nodes as treated nodes.
If all nodes in K are marked as treated we finish the work of algorithm. If

there is node in K which is not marked as treated we return to (∗).
It is clear that the algorithm A3 simulates the work of a decision tree which

solves the problem P(K). One can show that this algorithm has polynomial time
complexity.

Each node v of BN K is the root of a subtree of the tree K. We denote this
subtree by Kv. The depth of Kv (the maximal length of a directed path from the
root to a terminal node of Kv) will be called the depth of the considered node v.
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Lemma 11.12. Let K be an arbitrary proper open monotone increasing BN.
Then for each nonterminal node v of K the algorithm A3 computes values of
at most Lt(Kv) + Lp(Kv) variables from Kv if v = 1, and values of at most
Lt(Kv) + Lp(Kv)− 1 variables from Kv if v = 0.

Proof. We prove the statement of lemma by induction on the depth of node.
Note that the depth of a nonterminal node is at least 1.

Let v be a node which depth is equal to 1. It is clear that v is a preterminal
node. Let v have r successors. Then Lt(Kv) + Lp(Kv) = r + 1. Evidently, the
considered algorithm computes values of at most r+1 variables from Kv if v = 1,
and value of one variable from Kv if v = 0.

Hence for each node from K which depth is equal to 1 the statement of
lemma is true.

Assume that the statement is true for any node from K which depth is at
most q, q ≥ 1. Let v be an arbitrary node from K which depth is equal to q+ 1.
We show that the considered statement is true for v too. Let v have exactly r
successors v1, . . . , vr which are roots of subtrees Kv1 , . . . ,Kvr . It is clear that
r ≥ 2. For the definiteness, let for i = 1, . . . , s graph Kvi have more than 1
node, and for i = s + 1, . . . , r graph Kvi have exactly 1 node (i.e. vs+1, . . . , vr

are terminal nodes). It is clear that s ≥ 1, and it is possible that s = r.
It is clear that the depth of the node vi, i = 1, . . . , s, is at most q. Using

inductive hypothesis we conclude that for i = 1, . . . , s the considered algorithm
computes values of at most Lt(Kvi) +Lp(Kvi) variables from Kvi if vi = 1, and
values of at most Lt(Kvi) + Lp(Kvi)− 1 variables from Kvi if vi = 0.

Denote z =
∑s

i=1(Lt(Ki)+Lp(Ki)). One can show that Lt(Kv)+Lp(Kv) =
z + r − s.

Consider the following phase of the algorithm A3 work: nodes v1, . . . , vs are
treated, nodes v, vs+1, . . . , vr are not treated, and we choose the node v.

If there is i ∈ {1, . . . , s} such that vi = 1, then v = 1. We compute values of
variables vs+1, . . . , vr (in this case algorithm computes values of at most z+r−s
variables from Kv).

Let v1 = . . . = vs = 0. Then we compute the value of v. If v = 1 then
we compute values of variables vs+1, . . . , vr (in this case algorithm computes
values of at most z − s + r − s + 1 ≤ z + r − s variables from Kv). If v = 0
then vs+1 = . . . = vr = 0 (in this case algorithm computes values of at most
z − s+ 1 ≤ z + r − s− 1 variables from Kv).

We see that the statement of lemma is true for v too. ��

Describe an algorithm A4 that for a given compressed BN U (2) simulates the
work of a decision tree which solves the problem P(U (2)).

Description of the Algorithm A4

If U (2) has at most 2 nodes then we compute values of all variables from
U (2).

Let U (2) have at least 3 nodes. If U (2) is proper then we apply the algorithm
A3 to BN U (2).
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Let U (2) be not proper. Denote by u the root of U (2). Then there is exactly
one edge which starts in u. This edge enters to the root of a subtree K. Denote
by v the root of K. Instead of the pair {0}, {0, 1} we attach to v the set {0, 1}.
Denote by K∗ the obtained BN. It is clear that K∗ is proper BN. We apply the
algorithm A3 to BN K∗. If v = 0 then we compute the value of u. If v = 1 then
u = 1.

Since the algorithm A3 has polynomial time complexity, the algorithm A4

has polynomial time complexity too.

Lemma 11.13. Let S be an (1, 2)-BN and U ∈ F3(S). Then for compressed
BN U (2) the algorithm A4 simulates the work of a decision tree which solves the
problem P(U (2)) and which depth is at most Lt(U (2)) + Lp(U (2)).

Proof. It is clear that A4 simulates the work of a decision tree which solves the
problem P(U (2)). Denote this decision tree by Γ , and denote z = Lt(U (2)) +
Lp(U (2)).

If U (2) has at most 2 nodes then, evidently, h(Γ ) ≤ z.
Let U (2) have at least three node. Let U (2) be proper BN. Using Lemma

11.12 we conclude that h(Γ ) ≤ z. Let U (2) be not proper. It is clear that z =
Lt(K∗) + Lp(K∗) (we use here notation from algorithm A4 description). Using
Lemma 11.12 we conclude that the algorithm A4 computes values of at most
z− 1 variables from K∗ and value of u if v = 0. If v = 1 then A4 computes only
values of at most z variables from K∗. Therefore h(Γ ) ≤ z. ��
Lemma 11.14. Let S be an (1, 2)-BN and U ∈ F3(S). Then

h(U (2)) = Lt(U (2)) + Lp(U (2)) .

Proof. From Lemma 11.13 follows that h(U (2)) ≤ Lt(U (2)) + Lp(U (2)).
Now we show that h(U (2)) ≥ Lt(U (2)) + Lp(U (2)). Let Γ be a decision tree

which solves the problem P(U (2)) and for which h(Γ ) = h(U (2)). Consider the
following realizable tuple b̄ of values of variables from U (2): all terminal nodes
(variables) are equal to 0, and all nonterminal nodes are equal to 1. Consider a
path ξ from the root to a terminal node of Γ which accepts b̄. We show that all
terminal and preterminal nodes (variables) of U (2) must be computed on this
path.

Assume that some terminal variable is not computed on the path. Instead of
0 we write 1 to the digit corresponding to this variable in the tuple b̄. Denote the
obtained tuple by b̄′. It is clear that b̄′ is realizable, and Γ can not distinguish
tuples b̄ and b̄′ which is impossible.

Assume that some preterminal variable is not computed on the path. Instead
of 1 we write 0 to the digit corresponding to this variable in the tuple b̄. Denote
the obtained tuple by b̄

′′
. It is clear that b̄′′ is realizable, and Γ can not distinguish

tuples b̄ and b̄
′′

which is impossible.
Therefore ξ has at least Lt(U (2)) + Lp(U (2)) working nodes. Taking into

account the choose of Γ , we obtain h(U (2)) ≥ Lt(U (2)) + Lp(U (2)). ��
From Lemmas 11.13 and 11.14 follows



438 Mikhail Ju. Moshkov

Corollary 11.1. Let S be an (1, 2)-BN and U ∈ F3(S). Then for compressed
BN U (2) the algorithm A4 simulates the work of a decision tree which solves the
problem P(U (2)) and which depth is equal to h(U (2)).

From Lemmas 11.7, 11.11 and 11.14 follows

Corollary 11.2. Let S be an (1, 2)-BN and U ∈ F3(S). Then

max{Lt(U (2)) +Lp(U (2)),M(U (2))} ≤ h(U) ≤ Lt(U (2)) +Lp(U (2)) +M(U (2)) .

It is clear that parameters Lt(U (2)) and Lp(U (2)) can be computed by an
algorithm which has polynomial time complexity. In the next subsubsection a
polynomial algorithm for parameter M(U (2)) computation is considered.

Algorithm for Computation of M(U(2)). Each node of BN U (2) is the root
of a subtree. The depth of this subtree will be called the depth of the considered
node.

Beginning with nodes which depth is equal to 0 we will attach to each node
a number that is equal to maximal weight of independent set of edges in subtree
corresponding to the node. We attach the number 0 to each node which depth is
equal to 0. Let for r, r ≥ 0, each node which depth is equal to r have an attached
number. Let v be a node which depth is equal to r+1. Let edges d1, . . . , dt start
in v and enter nodes v1, . . . , vt. Let numbers w1, . . . , wt be attached to edges
d1, . . . , dt, and numbers u1, . . . , ut be already attached to nodes v1, . . . , vt. Then
we attach to the node v the number

max{w1, u1}+ . . .+ max{wt, ut} .

After the finishing of the algorithm work a number will be attached to the root
of U (2). One can show that this number is equal to M(U (2)).

It is clear that the considered algorithm has polynomial time complexity.

From Monotone Decreasing to Monotone Increasing BN. Let W be a
monotone decreasing BN from F4(S). If instead of variables we label nodes of
W by negations of variables we obtain a monotone increasing BN. This allows
us to use results received earlier. To this end we transform each node of W as
follows:

1. If the node is labelled by a variable x then instead of x we label this node by
variable ¬x.

2. If the node is not root then instead of the pair of sets {0, 1}, {1} we attach
to this node the pair of sets {0}, {0, 1}.

3. The state of the node (it is hidden or open) does not change.

We denote the obtained BN by W . It is not difficult to prove the following
statement.
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Lemma 11.15. Let S be an (1, 2)-BN and W ∈ F4(S). Then W is a monotone
increasing BN such that

h(W ) = h(W ) .

From this lemma and from Corollary 11.2 follows

Corollary 11.3. Let S be an (1, 2)-BN and W ∈ F4(S). Then

max{Lt(W
(2)

) + Lp(W
(2)

),M(W
(2)

)} ≤ h(W )

≤ Lt(W
(2)

) + Lp(W
(2)

) +M(W
(2)

) .

If we know the solution of the problem P(W ) we can easily restore the
solution of the problem P(W ): values of open variables from W are equal to
negation of values of corresponding open variables from W .

11.5 Bounds on Minimal Depth of Decision Trees for (1,2)-BN

Let S be (1, 2)-BN. Then S is a forest which consists of tree-like BN (see
Sect. 11.3). We have denoted the set of tree-like BN from this forest by F1(S).

As it was described in Sect. 11.3, an arbitrary tree-like BN P ∈ F1(S) may
be transformed into a forest of reduced BN. We have denoted the set of reduced
BN from this forest by F2(P ), and denoted F2(S) =

⋃
P∈F1(S) F2(P ).

As it was described in Sect. 11.3, an arbitrary reduced BN Q ∈ F2(S) may be
transformed into a forest of monotone increasing BN and a forest of monotone
decreasing BN. We have denoted the set of monotone increasing BN from the first
forest by F3(Q), and the set of monotone decreasing BN from the second forest by
F4(Q). We have denoted F3(S) =

⋃
Q∈F2(S) F3(Q) and F4(S) =

⋃
Q∈F2(S) F4(Q).

As it was described in Sect. 11.4, an arbitrary monotone increasing BN U ∈
F3(S) may be transformed into an open monotone increasing BN U (1), and BN
U (1) may be transformed into a compressed BN U (2) in which numbers are
attached to edges. Denote

A(S) =
∑

U∈F3(S)

(
Lt(U (2)) + Lp(U (2))

)
, B(S) =

∑
U∈F3(S)

M(U (2)) .

The parameters M(U (2)), Lt(U (2)) and Lp(U (2)) were defined in Sect. 11.4.
As it was described in Sect. 11.4, an arbitrary monotone decreasing BN

W ∈ F4(S) may be transformed into a monotone increasing BN W . Denote

C(S) =
∑

W∈F4(S)

(
Lt(W

(2)
) + Lp(W

(2)
)
)

, D(S) =
∑

W∈F4(S)

M(W
(2)

) .

Theorem 11.1. For an arbitrary (1, 2)-BN S the following inequalities hold:

max{A(S), B(S), C(S), D(S)} ≤ h(S) ≤ A(S) +B(S) + C(S) +D(S) .
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Proof. One can show that |F2(S)| =∑
P∈F1(S) |F2(P )|. From this fact and from

Lemmas 11.4 and 11.5 follows that

h(S) =
∑

Q∈F2(S)

h(Q) . (145)

From Lemma 11.6 follows that for an arbitrary BN Q ∈ F2(S)

max
{∑

U∈F3(Q) h(U),
∑

W∈F4(Q) h(W )
}
≤ h(Q)

(146)
≤∑U∈F3(Q) h(U) +

∑
W∈F4(Q) h(W ) .

One can show |F3(S)| =
∑

Q∈F2(S) |F3(Q)| and |F4(S)| =
∑

Q∈F2(S) |F4(Q)|.
From this fact and from (145) and (146) follows that

max
{∑

U∈F3(S) h(U),
∑

W∈F4(S) h(W )
}
≤ h(S)

(147)
≤∑U∈F3(S) h(U) +

∑
W∈F4(S) h(W ) .

Using Corollary 11.2 we obtain

max{A(S), B(S)} ≤
∑

U∈F3(S)

h(U) ≤ A(S) +B(S) . (148)

Using Corollary 11.3 we obtain

max{C(S), D(S)} ≤
∑

W∈F4(S)

h(W ) ≤ C(S) +D(S) . (149)

The statement of the theorem follows from (147), (148) and (149). ��
It is clear that upper bound from Theorem 11.1 is at most four lower bounds

from Theorem 11.1. Therefore lower and upper bounds from Theorem 11.1 differ
not more than by a factor of 4.

One can show that there is a polynomial algorithm which for a given (1, 2)-BN
S constructs sets F3(S) and F4(S). It is clear that there is a polynomial algorithm
which for given U ∈ F3(S) and W ∈ F4(S) constructs compressed BN U (2) and
W

(2)
. The parameters Lt(U (2)), Lp(U (2)), Lt(W

(2)
) and Lp(W

(2)
), evidently, can

be computed by an algorithm which has polynomial complexity. From results of
Sect. 11.4 follows that there is an algorithm which has polynomial complexity,
and computes parameters M(U (2)) and M(W

(2)
). Hence bounds from Theorem

11.1 can be computed by an algorithm with polynomial time complexity.

11.6 Algorithm for Simulation of Decision Tree Work

Now we describe an algorithmA which for a given (1, 2)-BN S simulates the work
of a decision tree which solves the problem P(S) and which depth lies between
bounds from Theorem 11.1. The work of the algorithmA consists of three phases.
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During the first phase we decompose the BN S. During the second phase we
simulate the work of decision trees for obtained open monotone increasing BN.
During the third phase we restore the solution of the problem P(S). Note that
we compute values of variables from S only during the second phase.

Description of the Algorithm A

1. Decomposition of (1, 2)-BN S. At first, as it was described in Sect. 11.3, we
construct the set F1(S) of tree-like BN. Then for each P ∈ F1(S) we construct
(see details in Sect. 11.3 ) the list CP of all variables from P and the set F2(P )
of reduced BN. Also we construct the set F2(S) =

⋃
P∈F1(S) F2(P ).

Further, as it was described in Sect. 11.3, we construct for each BN Q ∈ F2(S)
the set F3(Q) of monotone increasing BN and the set F4(Q) of monotone
decreasing BN. Next we construct the sets F3(S) =

⋃
Q∈F2(S) F3(Q) and

F4(S) =
⋃

Q∈F2(S) F4(Q). For each monotone increasing BN U ∈ F3(S) we
construct open monotone increasing BN U (1) (see Sect. 11.4) and compressed
BN U (2) (see Sect. 11.4). For each monotone decreasing BN W ∈ F4(S)
we construct monotone increasing BN W (see Sect. 11.4), open monotone
increasing BN W

(1)
and compressed BN W

(2)
.

2. Simulation of Decision Tree Work for Open Monotone Increasing BN. Using
algorithm A2 (see Sect. 11.4) we simulate for each U ∈ F3(S) the work of
a decision tree which solves the problem P(U (1)). Using algorithm A2 we
simulate for each W ∈ F4(S) the work of a decision tree which solves the
problem P(W

(1)
).

Some variables of considered BN may be negations of variables from S. In this
case we compute values of corresponding variables from S and use negations
of these values.

3. Restoration of Problem P(S) solution. It is clear that the solution of P(U)
coincides with the solution of P(U (1)) for any U ∈ F3(S). The solution of
P(W ) coincides with the solution of P(W

(1)
) for any W ∈ F4(S). For each

W ∈ F4(S) the solution of P(W ) is digit by digit negation of the solution of
P(W ).
For each Q ∈ F2(S) the solution of P(Q) is the union of solutions of P(U),
U ∈ F3(Q), and P(W ), W ∈ F4(Q).
For each P ∈ F1(S) we can obtain the solution of P(P ) using solutions of
P(Q), Q ∈ F2(P ), and information from the list CP as it was described in
the end of Sect. 11.3.
The solution of P(S) is the union of solutions of P(P ), P ∈ F1(S).

Theorem 11.2. The algorithm A has polynomial time complexity. For any
(1, 2)-BN S the algorithm A simulates the work of a decision tree which solves
the problem P(S) and which depth is at most A(B) +B(S) + C(S) +D(S).

Proof. One can show that the first and the third phases of the algorithm A work
may be realized during polynomial time. Since the algorithm A2 has polynomial
time complexity, the second phase may be realized during polynomial time too.
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It is not difficult to see that A simulates the work of a decision tree which
solves the problem P(S). Using Lemma 11.10 we obtain that the depth of this
decision tree is bounded from above by

∑
U∈F3(S)

(h(U (2)) +M(U (2))) +
∑

W∈F4(S)

(h(W
(2)

) +M(W
(2)

)) .

From here and from Lemma 11.14 follows that the depth of the considered
decision tree is at most A(B) +B(S) + C(S) +D(S). ��

Conclusion

We have considered bounds on weighted depth of decision trees over finite and
infinite information systems, algorithms for decision tree construction, and some
examples of mathematical applications of decision tree theory and rough set
theory. We did not say anything about such an important subject as relationships
between time complexity of deterministic and nondeterministic decision trees.
However, it was possible to see that the considered fragments of the decision tree
theory have interesting mathematical problems and, partially, can be useful in
practice.

In Sect. 6 it was shown that for some NP-complete problems of fixed dimen-
sion there exist linear decision trees with small depth which use attributes with
small coefficients. Unfortunately, such trees may have large number of nodes.
This is the general problem for decision tree theory: let us have a decision tree
with small depth, then we must be able to describe effectively the work of this
decision tree.

We did not consider this complicated problem especially. Note, however, that
this general problem was solved for some discrete optimization problems (but
not for NP-complete problems) in [54, 62–65, 69, 71] and also for some problems
of pattern recognition (recognition of words from regular languages generated
by independent simple A-sources, Sect. 9), fault diagnosis (diagnosis of constant
faults in iteration-free circuits in quasiprimitive bases, Sect. 10), and probabilistic
reasoning (recognition of values of all open variables in (1, 2)-Bayesian networks,
Sect. 11).
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Appendix. Closed Classes of Boolean Functions

The structure of all classes of Boolean functions closed relatively the operation
of substitution has been described by E. Post in [171, 172]. In [217] S.V. Yablon-
skii, G.P. Gavrilov and V.B. Kudriavtzev considered the structure of all classes
of Boolean functions closed relatively the operation of substitution and the op-
erations of insertion and deletion of unessential variable. Appendix contains the
description of this structure which is slightly different from the Post structure.
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Some Definitions and Notation

A function f(x1, . . . , xn) with variables defined on the set E2 = {0, 1} and with
values from E2 will be called a Boolean function. The constants 0 and 1 also are
Boolean functions.

Let U be a set of Boolean functions, f(x1, . . . , xn) be a function from U ,
and gi be either function from U or variable, i = 1, . . . , n. We will say that
the function f(g1, . . . , gn) is obtained from functions from U by operation of
substitution.

Let f(x1, . . . , xn) be a Boolean function. A variable xi of the function f will
be called essential if there exist two n-tuples δ̄ and σ̄ from En

2 which differ only
in the i-th digit and for which f(δ̄) 
= f(σ̄). Variables of the function f which are
not essential will be called unessential. Let xj be an unessential variable of the
function f and g(x1, . . . , xj−1, xj+1, . . . , xn) = f(x1, . . . , xj−1, 0, xj+1, . . . , xn).
We will say that the function g is obtained from f by operation of deletion
of unessential variable. We will say that the function f is obtained from g by
operation of insertion of unessential variable.

Let U be a nonempty set of Boolean functions. We denote by [U ] the closure of
the set U relatively the operation of substitution and the operations of insertion
and deletion of unessential variable. The set U will be called a closed class if
U = [U ].

The notion of a formula over U will be defined inductively in the following
way:

a) The expression f(x1, . . . , xn), where f(x1, . . . , xn) is a function from U , is a
formula over U .

b) Let f(x1, . . . , xn) be a function from U and ϕ1, . . . , ϕn be expressions which
are either formulas over U or variables. Then the expression f(ϕ1, . . . , ϕn) is
a formula over U .

A Boolean function corresponds in natural way to any formula over U . We
will say that the formula realizes this Boolean function.

Denote by [U ]1 the closure of the set U relatively the operation of substi-
tution. One can show that [U ]1 coincides with the set of functions realized by
formulas over U . Denote by [U ]2 the closure of the set [U ]1 relatively operations
of insertion and deletion of unessential variable. One can show that [U ] = [U ]2.

The operation of negation will be denoted by the symbol ¬. Let n ∈ IN \ {0}
and t ∈ E2. Denote by t̃n the n-tuple from En

2 all the digits of which are equal
to t. Let f be a Boolean function depending on n variables. The function f will
be called α-function if f(t̃n) = t for any t ∈ E2, β-function if f(t̃n) = 1 for any
t ∈ E2, and γ-function if f(t̃n) = 0 for any t ∈ E2.

A function f will be called a linear function if f = c0 + c1x1 + . . . +
cnxn(mod 2), where ci ∈ E2, 0 ≤ i ≤ n. A function f will be called a self-
dual function if f(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn). A function f will be called
a monotone function if for any n-tuples δ̄ = (δ1, . . . , δn) and σ̄ = (σ1, . . . , σn)
from En

2 such that δi ≤ σi, 1 ≤ i ≤ n, the inequality f(δ̄) ≤ f(σ̄) holds.
Let μ ∈ IN and μ ≥ 2. We will say that a function f(x1, . . . , xn) satisfies

the condition 〈aμ〉 if for any μ tuples from En
2 on which f has the value 0 there
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exists a number j ∈ {1, . . . , n} such that in each of the considered tuples the
j-th digit is equal to 0. We will say that the function f satisfies the condition
〈a∞〉 if there exists a number j ∈ {1, . . . , n} such that in any n-tuple from En

2 on
which f has the value 0 the j-th digit is equal to 0. We will say that the function
f satisfies the condition 〈Aμ〉 if for any μ tuples from En

2 on which f has the
value 1 there exists a number j ∈ {1, . . . , n} such that in each of the considered
tuples the j-th digit is equal to 1. We will say that a function f satisfies the
condition 〈A∞〉 if there exists a number j ∈ {1, . . . , n} such that in any n-tuple
from En

2 on which f has the value 1 the j-th digit is equal to 1. The constant
1, by definition, satisfies the condition 〈a∞〉 and does not satisfy the condition
〈A2〉. The constant 0, by definition, satisfies the condition 〈A∞〉 and does not
satisfy the condition 〈a2〉.

Let μ ∈ IN and μ ≥ 2. Denote

hμ =
μ+1∨
i=1

(x1 ∧ x2 ∧ . . . ∧ xi−1 ∧ xi+1 ∧ . . . ∧ xμ+1)

and

h∗μ =
μ+1∧
i=1

(x1 ∨ x2 ∨ . . . ∨ xi−1 ∨ xi+1 ∨ . . . ∨ xμ+1) .

Description of All Closed Classes of Boolean Functions

In this subsection all closed classes of Boolean functions are listed. For each
class the Post notation is given, the description of functions contained in the
considered class is presented, and a finite set of Boolean functions is given such
that its closure relatively the operation of substitution and the operations of
insertion and deletion of unessential variable is equal to this class.

As in [217] two Boolean functions is called equal if one of them can be ob-
tained from the other by operations of insertion and deletion of unessential
variable.

The inclusion diagram for closed classes of Boolean functions [217] is depicted
in Fig. 12. Two points in this diagram corresponding to certain classes U and V
are connected by an edge if the class V is immediately included into the class U
(there are no intermediate classes between U and V ). The point corresponding
to the class U is placed at that above the point corresponding to the class V .

1. The classO1 = [{x}]. This class consists of all functions equal to the function
x, and all functions obtained from them by renaming of variables without
identification.

2. The class O2 = [{1}]. This class consists of all functions equal to the function
1.

3. The class O3 = [{0}]. This class consists of all functions equal to the function
0.

4. The class O4 = [{¬x}]. This class consists of all functions equal to functions
x or ¬x, and all functions obtained from them by renaming of variables
without identification.
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Fig. 12. Inclusion diagram for closed classes of Boolean functions.

5. The class O5 = [{x, 1}]. This class consists of all functions equal to func-
tions 1 or x, and all functions obtained from them by renaming of variables
without identification.

6. The class O6 = [{x, 0}]. This class consists of all functions equal to func-
tions 0 or x, and all functions obtained from them by renaming of variables
without identification.

7. The class O7 = [{0, 1}]. This class consists of all functions equal to functions
0 or 1.

8. The class O8 = [{x, 0, 1}]. This class consists of all functions equal to func-
tions 0, 1 or x, and all functions obtained from them by renaming of variables
without identification.

9. The class O9 = [{¬x, 0}]. This class consists of all functions equal to func-
tions 0, 1, ¬x, or x, and all functions obtained from them by renaming of
variables without identification.
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10. The class S1 = [{x ∨ y}]. This class consists of all disjunctions (that is
functions of the kind

∨n
i=1 xi, n = 1, 2, . . ., and all functions obtained from

them by renaming of variables without identification).
11. The class S3 = [{x ∨ y, 1}]. This class consists of all disjunctions, and all

functions equal to 1.
12. The class S5 = [{x ∨ y, 0}]. This class consists of all disjunctions, and all

functions equal to 0.
13. The class S6 = [{x ∨ y, 0, 1}]. This class consists of all disjunctions, and all

functions equal to functions 0 or 1.
14. The class P1 = [{x ∧ y}]. This class consists of all conjunctions (that is

functions of the kind
∧n

i=1 xi, n = 1, 2, . . ., and all functions obtained from
them by renaming of variables without identification).

15. The class P3 = [{x ∧ y, 0}]. This class consists of all conjunctions, and all
functions equal to 0.

16. The class P5 = [{x ∧ y, 1}]. This class consists of all conjunctions, and all
functions equal to 1.

17. The class P6 = [{x∧ y, 0, 1}]. This class consists of all conjunctions, and all
functions equal to 0 or 1.

18. The class L1 = [{x+y(mod 2), 1}]. This class consists of all linear functions.
19. The class L2 = [{x + y + 1(mod 2)}]. This class consists of all linear α-

functions and β-functions (that is functions of the kind
∑2k

i=1 xi +1(mod 2),∑2l+1
i=1 xi(mod 2), k, l = 0, 1, 2, . . ., and all functions obtained from them by

renaming of variables without identification).
20. The class L3 = [{x+y(mod 2)}]. This class consists of all linear α-functions

and γ-functions (that is the functions of the kind
∑l

i=1 xi(mod 2),
l = 0, 1, 2, . . ., and all functions obtained from them by renaming of variables
without identification).

21. The class L4 = [{x + y + z(mod 2)}]. This class consists of all linear α-
functions (that is functions of the kind

∑2l+1
i=1 xi(mod 2), l = 0, 1, 2, . . .,

and all functions obtained from them by renaming of variables without
identification).

22. The class L5 = [{x+y+z+1(mod 2)}]. This class consists of all linear self-
dual functions (functions of the kind

∑2l+1
i=1 xi+1(mod 2),

∑2l+1
i=1 xi(mod 2),

l = 0, 1, 2, . . ., and all functions obtained from them by renaming of variables
without identification).

23. The class D2 = [{(x∧y)∨(x∧z)∨(y∧z)}]. This class consists of all self-dual
monotone functions.

24. The class D1 = [{(x ∧ y) ∨ (x ∧ ¬z) ∨ (y ∧ ¬z)}]. This class consists of all
self-dual α-functions.

25. The class D3 = [{(x∧¬y)∨ (x∧¬z)∨ (¬y ∧¬z)}]. This class consists of all
self-dual functions.

26. The class A1 = M1 = [{x∧y, x∨y, 0, 1}]. This class consists of all monotone
functions.

27. The class A2 = M2 = [{x ∧ y, x ∨ y, 1}]. This class consists of all monotone
α-functions and β-functions.
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28. The class A3 = M3 = [{x ∧ y, x ∨ y, 0}]. This class consists of all monotone
α-functions and γ-functions.

29. The class A4 = M4 = [{x ∧ y, x ∨ y}]. This class consists of all monotone
α-functions.

30. The class C1 = [{¬(x ∧ y)}]. This class consists of all Boolean functions.
31. The class C2 = [{x ∨ y, x + y + 1(mod 2)}]. This class consists of all α-

functions and β-functions.
32. The class C3 = [{x∧y, x+ y(mod 2)}]. This class consists of all α-functions

and γ-functions.
33. The class C4 = [{x ∨ y, x ∧ (y + z + 1(mod 2))}]. This class consists of all

α-functions.
34. The class Fμ

1 = [{x ∨ (y ∧ ¬z), h∗μ}], μ = 2, 3, . . . . This class consists of all
α-functions satisfying the condition 〈aμ〉.

35. The class Fμ
2 , μ = 2, 3, . . . , where Fμ

2 = [{x ∨ (y ∧ z), h∗2}] if μ = 2,
and Fμ

2 = [{h∗μ}] if μ ≥ 3. This class consists of all monotone α-functions
satisfying the condition 〈aμ〉.

36. The class Fμ
3 = [{1, h∗μ}], μ = 2, 3, . . . . This class consists of all monotone

functions satisfying the condition 〈aμ〉.
37. The class Fμ

4 = [{x ∨ ¬y, h∗μ}], μ = 2, 3, . . . . This class consists of all
functions satisfying the condition 〈aμ〉.

38. The class Fμ
5 = [{x ∧ (y ∨ ¬z), hμ}], μ = 2, 3, . . . . This class consists of all

α-functions satisfying the condition 〈Aμ〉.
39. The class Fμ

6 , μ = 2, 3, . . . , where Fμ
6 = [{x ∧ (y ∨ z), h2}] if μ = 2,

and Fμ
6 = [{hμ}] if μ ≥ 3. This class consists of all monotone α-functions

satisfying the condition 〈Aμ〉.
40. The class Fμ

7 = [{0, hμ}], μ = 2, 3, . . . . This class consists of all monotone
functions satisfying the condition 〈Aμ〉.

41. The class Fμ
8 = [{x ∧ ¬y, hμ}], μ = 2, 3, . . . . This class consists of all

functions satisfying the condition 〈Aμ〉.
42. The class F∞

1 = [{x ∨ (y ∧ ¬z)}]. This class consists of all α-functions
satisfying the condition 〈a∞〉.

43. The class F∞
2 = [{x∨(y∧z)}]. This class consists of all monotone α-functions

satisfying the condition 〈a∞〉.
44. The class F∞

3 = [{1, x∨(y∧z)}]. This class consists of all monotone functions
satisfying the condition 〈a∞〉.

45. The class F∞
4 = [{x∨¬y}]. This class consists of all functions satisfying the

condition 〈a∞〉.
46. The class F∞

5 = [{x ∧ (y ∨ ¬z)}]. This class consists of all α-functions
satisfying the condition 〈A∞〉.

47. The class F∞
6 = [{x∧(y∨z)}]. This class consists of all monotone α-functions

satisfying the condition 〈A∞〉.
48. The class F∞

7 = [{0, x∧(y∨z)}]. This class consists of all monotone functions
satisfying the condition 〈A∞〉.

49. The class F∞
8 = [{x∧¬y}]. This class consists of all functions satisfying the

condition 〈A∞〉.
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