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Preface

This book and its sister volumes constitute the proceedings of the 2nd International
Symposium on Neural Networks (ISNN 2005). ISNN 2005 was held in the beautiful
mountain city Chongqing by the upper Yangtze River in southwestern China during
May 30–June 1, 2005, as a sequel of ISNN 2004 successfully held in Dalian, China.
ISNN emerged as a leading conference on neural computation in the region with in-
creasing global recognition and impact. ISNN 2005 received 1425 submissions from
authors on five continents (Asia, Europe, North America, South America, and Ocea-
nia), 33 countries and regions (Mainland China, Hong Kong, Macao, Taiwan, South
Korea, Japan, Singapore, Thailand, India, Nepal, Iran, Qatar, United Arab Emirates,
Turkey, Lithuania, Hungary, Poland, Austria, Switzerland, Germany, France, Sweden,
Norway, Spain, Portugal, UK, USA, Canada, Venezuela, Brazil, Chile, Australia, and
New Zealand). Based on rigorous reviews, 483 high-quality papers were selected by
the Program Committee for presentation at ISNN 2005 and publication in the proceed-
ings, with an acceptance rate of less than 34%. In addition to the numerous contributed
papers, 10 distinguished scholars were invited to give plenary speeches and tutorials at
ISNN 2005.

The papers are organized into many topical sections under 20 coherent categories
(theoretical analysis, model design, learning methods, optimization methods, kernel
methods, component analysis, pattern analysis, signal processing, image processing,
financial analysis, system modeling, control systems, robotic systems, telecommunica-
tion networks, incidence detection, fault diagnosis, power systems, biomedical applica-
tions, and industrial applications, and other applications) spanning all major facets of
neural network research and applications. ISNN 2005 provided an international forum
for the participants to disseminate new research findings and discuss the state of the
art. It also created a pleasant opportunity for the participants to interact and exchange
information on emerging areas and future challenges of neural network research.

Many people made significant efforts to ensure the success of this event. The
ISNN 2005 organizers are grateful to Chongqing University, Southwest Normal Univer-
sity, Chongqing University of Posts and Telecommunications, Southwest Agricultural
University, and Chongqing Education College for their sponsorship; grateful to the Na-
tional Natural Science Foundation of China for the financial support; and to the Asia
Pacific Neural Network Assembly, the European Neural Network Society, the IEEE
Computational Intelligence Society, and the IEEE Circuits and Systems Society for
their technical co-sponsorship. The organizers would like to thank the members of the
Advisory Committee for their spiritual support, the members of the Program Committee
for reviewing the papers, and the members of the Publication Committee for checking
the papers. The organizers would particularly like to thank the publisher, Springer, for
their cooperation in publishing the proceedings as three volumes of the Lecture Notes
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in Computer Science series. Last but not least, the organizers would like to thank all
the authors for contributing their papers to ISNN 2005. Their enthusiastic contributions
and participation were essential parts of the symposium with which the organizers were
proud to be involved.

May 2005 Jun Wang
Xiaofeng Liao

Zhang Yi
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Adaptive Backstepping Neural Network Control
for Unknown Nonlinear Time-Delay Systems�

Weisheng Chen and Junmin Li

Department of Applied Mathematics, Xidian University, Xi’an, 710071, China
wshchen@126.com

Abstract. For a class of unknown nonlinear time-delay systems, an
adaptive neural network (NN) control design is proposed in this paper.
Bacsteppping, domination and adaptive bounding design technique are
combined to construct an adaptive NN controller. Unknown time-delay
functions are approximated by NNs. Based on the Lyapnov-Krasovikii
functional, the sem-globally uniformly ultimately boundedness (SGUUB)
of all the signals in the closed-loop systems is proved. The arbitrary out-
put tracking accuracy is achieved by tuning the design parameters. The
feasibility is investigated by an illustrative simulation example.

1 Introduction

Neural network control has made great progress in past decades[1-4]. In [1],
adaptive bounding technique is applied to adaptive NN control for a class of
strict-feedback nonlinear systems. By introducing an integral Lyapunov function
in [2], an adaptive NN control approach is proposed for strict-feedback nonlinear
systems with unknown nonlinearies, where the controller singularity problem is
avoided. In [3], the state feedback and output feedback adaptive NN controllers
are presented for a class of strict-feedback discrete-time nonlinear systems, where
long standing noncausal problem is avoided. Adaptive NN control approach is
extended to output-feedback nonlinear systems in [4].

Recently robust control of nonlinear systems with time delays has been ad-
dressed by many researchers. Some interesting results are obtained [5-6]. In [5],
output feedback stabilization algorithm for a class of time-delay nonlinear sys-
tems is presented. In [6], an adaptive NN control approach is presented for a
class of strict-feedback nonlinear time-delay systems with unknown virtual con-
trol coefficients, where the NNs are only used to approximate delay-independent
functions and the nonlinear time-delay functions are assumed to have known up-
per bound functions. However, to the author’s knowledge, it is merely considered
that the NNs are nonlinear functions in adaptive NN control.

Motivated by previous works on both adaptive NN control and robust control
for time-delay systems, we extend the adaptive NN control to a class of unknown
nonlinear time-delay systems in this paper. Unknown time-delay functions are
approximated by NNs. Based on Lyapunov-Krasovskii functional, the SGUUS of
all the signals in the closed-loop system is proved. The feasibility is investigated
by an illustrative simulation example.
� This work is supported by NSFC (60374015).
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2 Problem Statement and Preliminaries

Consider the following unknown nonlinear time-delay system with the structure⎧⎨⎩
ẋi = xi+1 + fi(x̄i) + hi(y(t− τ)) + μi(t), 1 ≤ i ≤ n− 1,
ẋn = g(x)u + fn(x) + hn(y(t− τ)) + μn(t),
y = x1.

(1)

where x ∈ Rn, u ∈ R and y ∈ R represent the system state, control input and
output respectively. x̄i = [x1, ..., xi]T ∈ Ri, (1 ≤ i ≤ n−1).g(x) is known smooth
function. fi(.), hi(.), (1 ≤ i ≤ n) are unknown smooth functions. The uncertain
terms μi(t), (1 ≤ i ≤ n) are bounded by an unknown constant. Time delay τ is
assumed to be known.

The control objective is to design an adaptive NN controller to track a given
reference signal yr(t).

On compact sets Ωi ⊂ Ri, (1 ≤ i ≤ n) and Ω1, fi(x̄i) and hi(y(t − τ))
can be approximated by the following linearly parameterized neural networks
respectively. {

fi(x̄i, θfi) = ξi(x̄i)T θfi + εfi(x̄i),
hi(y(t− τ), θhi) = ζi(y(t− τ))T θhi + εhi(y(t− τ)). (2)

where ξi(.) : Ωi → Rpi and ζi(.) : Ω1 → Rqi are known smooth basis function
vectors, pi, qi, (1 ≤ i ≤ n) are the NN node numbers. θfi∈Rpi and θhi∈Rqi are
the optimal weights defined as

θfi = arg min
θ̂fi

∈Rpi

{ sup
x̄i∈Ωi

|fi(x̄i) − ξi(x̄i)T θ̂fi |}

θhi = arg min
θ̂hi

∈Rqi

{ sup
y(t−τ))∈Ω1

|hi(y(t− τ)) − ζi(y(t− τ))T θ̂hi |}
(3)

Substituting (2) into (1), we obtain⎧⎨⎩ ẋi = xi+1 + φi(x̄i)T θ1 + ϕi(y(t− τ))T θ2 + υi, 1 ≤ i ≤ n− 1,
ẋn = g(x)u + φn(x)T θ1 + ϕn(y(t− τ))T θ2 + υn,
y = x1.

(4)

where, the network reconstruction errors are defined as υi := εfi + εhi + μi,

θ1 = [θT
f1
, ..., θT

fn
]T , θ2 = [θT

h1
, ..., θT

hn
]T ,

φi = [0
1×(
∑i−1

j=1
pj)

|ξT
i(1×pi)

|01×(
∑n

j=I+1
pj)]

T ,

ϕi = [0
1×(
∑

i−1

j=1
qj)

|ξT
i(1×qi)

|01×(
∑

n

j=I+1
qj)

]T .

In this paper, we make the following Assumptions
Assumption 1[1]: On the compact sets Ωi ⊂ Ri and Ω1, the network recon-
struction errors |υi| ≤ ψ, i = 1, ...n, where ψ ≥ 0 is the unknown constant.
Assumption 2[7]: The reference signal yr(t) and its first n derivatives are known
and uniformly bounded in the interval [−τ,+∞).
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Remark 2.1 According to the mean value theorem, the assumption 2 implies the
following inequality holds

|ϕi(y) − φi(y − yr)| ≤ |y − yr|si(y − yr), 1 ≤ i ≤ n. (5)

where si(.) are known smooth nonnegative functions. The inequality(5) will be
used to be deal with the nonlinear time delay terms.

Throughout this paper, ∗̂ denotes the estimate of *, and ∗̃ := ∗ − ∗̂, |x| :=
(
∑n

i=1 x
2
i )

1
2 , x ∈ Rn.

3 Adaptive NN Controller Design

In the section, we will employ backstepping, domination and adaptive bounding
technique to design the adaptive NN tracking controller.

We define a change of coordinates as follows{
z1 = y − yr,

zi = xi − αi−1 − y
(i−1)
r , i = 2, ..., n.

(6)

From (4) and (6), we select the stabilizing functions⎧⎨⎩
α1 = −a11z1 − ωT

θ1,1θ̂1 − ωT
θ2,1θ̂2 − ωψ,1ψ̂,

αi = −zi−1 − aiizi −Δi −
∑i−1

j=2 σj,izj − ωT
θ1,iθ̂1 − ωT

θ2,iθ̂2 − ωψ,iψ̂,

i = 2, ..., n.
(7)

where a11 = c1 +W (z1) + 1
2 Θ̂ωΘ,1, aii = ci + 1

2 Θ̂ωΘ,i, ci, di ≥ 0 are the design
parameters,W (z1) = 1

2

∑n
i=1(
∑i

j=1 s
2
j (z1)), Θ denotes |θ2|2, and

ωθ1,1 = φ1(x1), ωθ1,i = φi(x̄i) −
i−1∑
j=1

∂αi−1
∂xj

φj(x̄i), 2 ≤ i ≤ n,

ωθ2,1 = ϕ1(yr(t− τ)), ωθ2,i = ϕi(yr(t− τ)) −
i−1∑
j=1

∂αi−1
∂xj

ϕj(yr(t− τ)), 2 ≤ i ≤ n,

ωΘ,1 = 1, ωΘ,i = 1 +
i−1∑
k=1

(∂αi−1
∂xk

)2, 2 ≤ i ≤ n,

ωψ,1 = β1 tanh(β1z1
ε ), ωψ,i = βi tanh(βizi

ε ), ε > 0, 2 ≤ i ≤ n,

β1 = 1, , βi = 1 +
i−1∑
j=1

(1
2 + 1

2 (∂αi−1
∂xj

)2), 2 ≤ i ≤ n,

Δi = −
i−1∑
k=1

∂αi−1
∂xk

xk+1 −
i−1∑
j=1

∂αi−1

∂y
(j−1)
r (t−τ)

y
(j)
r (t− τ) −

i−1∑
j=1

∂αi−1

∂y
(j−1)
r (t)

y
(j)
r (t)

−
2∑

k=1

∂αi−1

∂θ̂k
Γθk

(τθk
− ιθ̂k) − ∂αi−1

∂ψ̂
γψ(τψ,i − ιψ̂) − ∂αi−1

∂Θ̂
γΘ(τΘ,i − ιΘ̂),

2 ≤ i ≤ n, Γθk
> 0, γψ > 0, γΘ > 0, ι > 0,

σi,j = −
2∑

k=1

∂αi−1

∂θ̂k
Γθk

ωθk,j − ∂αi−1

∂ψ̂
γψωψ,j − 1

2
∂αi−1

∂Θ̂
γΘωΘ,jzj, 2 ≤ i ≤ n,
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We select the tuning functions⎧⎪⎪⎨⎪⎪⎩
τθ1,1 = ωθ1,1z1, τθ1,i = τθ1,i−1 + ωθ1,izi, 2 ≤ i ≤ n,
τθ2,1 = ωθ2,1z1, τθ2,i = τθ2,i−1 + ωθ2,izi, 2 ≤ i ≤ n,
τψ,1 = ωψ,1z1, τψ,i = τψ,i−1 + ωψ,izi, 2 ≤ i ≤ n,
τΘ,1 = 1

2ωΘ,1z
2
1 , τΘ,i = τΘ,i−1 + 1

2ωΘ,iz
2
i , 2 ≤ i ≤ n.

(8)

and the last tuning functions τθ1,n, τθ2,n,τψ,n,τΘ,n are used in the adaptive law⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
˙̂
θ1 = Γθ1(τθ1,n − ιθ̂1),
˙̂
θ2 = Γθ2(τθ2,n − ιθ̂2),
˙̂
ψ = γψ(τψ,n − ιψ̂),
˙̂
Θ = γΘ(τΘ,n − ιΘ̂).

(9)

The last stabilizing function αn is used in the actual control law

u =
1

g(x)
(αn + y(n)

r (t)). (10)

From (4),(6),(7) and (10),the closed-loop system is written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ż1 = −a11 + z2 + ωT

θ1,1θ̃1 + ωT
θ2,1θ̃2 − ωψ,1ψ̃ + Λ1 + ς1

żi = −zi−1 − aiizi + zi+1 −
i−1∑
j=2

σj,izj +
n∑

j=i+1

σi,jzj

+
2∑

k=1

ωT
θk,iθ̃k − ωψ,iψ̂ + Λi + ςi, 2 ≤ i ≤ n.

(11)

where αn := g(x)u − yn
r , zn+1 := 0,

ς1 = υ1, ςi = υi −
i−1∑
j=1

∂αi−1
∂xj

υj , Λ1 = (ϕ1(y(t− τ)) − ϕ1(yr(t− τ)))T θ2,

Λi = [ϕi(y(t− τ)) − ϕi(yr(t− τ)) −
i−1∑
j=1

∂αi−1
∂xj

(ϕj(y(t− τ)) − ϕj(yr(t− τ)))]T θ2

Theorem 1 The cosed-loop adaptive system consisting of the plant (1), the
adaptive Laws (9) and the control law (10) has following properties:

(I) The tracking error satisfies

lim
t→∞[(

∫ t

0

z2
1(σ)dσ)/t] ≤ λ

c0
(12)

where λ = nκψε+ 1
2 ι(|θ1|2 + |θ2|2 +Θ2 + ψ2), c0 = min{c1, ..., cn}.

(II) All the signals are sem-glabally uniformly ultimately bounded.
Proof For system (11), by Young’Inequality, the time-delay terms Λi can be
dealt with as follows

ziΛi ≤
1
2
|θ2|2z2

i (1+
i−1∑
j=1

(
∂αi−1

∂xj
))+

1
2
z2
1(t−τ)

i∑
j=1

s2j(z1(t−τ)), 1 ≤ i ≤ 2. (13)

where ∂α0
∂xj

:= 0
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By using inequality |η| ≤ η tanh(η/ε) + κε [1],κ = 0.2785, ε > 0, the network
reconstruction terms ςi can be dealt with as follows

ziςi ≤ |zi|(|υi| +
i−1∑
j=1

|∂αi−1
∂xj

||υj |)

≤ ψziβi tanh(ziβi/ε) + ψκε
= ψziωψ,i + ψκε, 1 ≤ i ≤ n.

(14)

Defined a Lyapunov-Krasowiskii functional as

V =
1
2
zT z +

1
2
θ̃T
1 Γ

−1
θ1
θ̃1 +

1
2
θ̃T
2 Γ

−1
θ2
θ̃2 +

1
2
γ−1

ψ ψ̃2 + +
1
2
γ−1

Θ Θ̃2 +
∫ t

t−τ

S(z1(σ))dσ

(15)
where z = [z1, ..., zn, S(z1(σ)) = z2

1(σ)W (z1(σ)).
From (9),(11),(13),(14)and(15), and observing ιθ̃T

1 θ̂1 + ιθ̃T
2 θ̂2 + ιψ̃ψ+ ιΘ̃Θ̂ ≤

− 1
2 ι|θ̃1|2 −

1
2 ι|θ̃2|2 −

1
2 ιψ̃

2 − 1
2 ιΘ̃

2 + 1
2 ι|θ1|2 + 1

2 ι|θ2|2 + 1
2 ιψ

2 + 1
2 ιΘ

2 , we have

V̇ ≤ −
n∑

i=1

ciz
2
i − 1

2 ι|θ̃1|2 −
1
2 ι|θ̃2|2 −

1
2 ιψ̃

2 − 1
2 ιΘ̃

2

+ 1
2 ι|θ1|2 + 1

2 ι|θ2|2 + 1
2 ιψ

2 + 1
2 ιΘ

2 + nψκε
(16)

Let π := [zT , θ̃1, θ̃2, ψ̃, Θ̃],and we get

V̇ (π) ≤ −c̄||π||2 + λ (17)

where c̄ = min{c0, 1
2 ι}.

In the light of the Lyapunov stability theory, (17) implies that π is bounded.
From (6) and assumption 2, we can see that x, u are bounded. (14) can be
obtained by integrating (16).

4 Simulation Study

Consider the following unknown nonlinear time-delay system⎧⎪⎨⎪⎩
ẋ1 = x2 + x1x3

1
x4
1+1

+ 0.005 sin(t)

ẋ2 = u− sin(5y(t− τ))e−y2(t−τ) − 0.1 cos(t)
y = x1.

(18)

where time delay τ = 5. Reference signal is chosen as yr = sin(0.5t) sin(0.2t).
Based on the design method proposed in this paper, in our simulation, the

initial condition are set to x1(σ) = −0.2, − τ ≤ σ ≤ 0, x2(0) = 0.5, θ̂1(0) =
θ̂2(0) = ˆψ(0) = Θ̂(0) = 0. The adaptive gains and control parameters are chosen
as Γθ1 = 0.8I, Γθ2 = 1.6I, γθ = 0.01, γψ = 0.0003, c1 = c2 = 0.01, ι =
0.0001, ε = 0.01. The function approximators are RBF networks and the basis
function is chosen as φi = φ0

i (z)/
∑N

j=1 φ
0
j (z), where φ0

j (z) = e−(z−ηi)
2
ς̄ , ς̄ =

1
100 ln(2) , N = 11. ηi is a center of the ith basis function, Ω1 = [−1, 1]. Simulation
result are shown in figure 1.
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Fig. 1. The histories of the output y(t) , the reference signal yr(t) and the tracking
error curve z1(t).

5 Conclusions

In this paper, an adaptive NN controller is proposed for a class of unknown
nonlinear time-delay systems. NNs are used to approximate delay-free unknown
terms and delay-dependent unknown terms. The SGUUB of the closed-loop sys-
tems is obtained. The feasibility is investigated by an illustrative simulation
example.
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Multiple Models Adaptive Control  
Based on RBF Neural Network Dynamic Compensation 

Junyong Zhai and Shumin Fei 

Research Institute of Automation, Southeast University, Nanjing, Jiangshu 210096, China 

Abstract. A novel multiple models adaptive control method is proposed to im-
prove the dynamic performance of complex nonlinear systems under different 
operating modes. Multiple linearized models are established at each equilibrium 
point of the system. Each local linearized model is valid within a neighborhood 
of the point, and then an improved RBF algorithm is applied to compensate for 
modeling error. Simulation results are presented to demonstrate the validity of 
the proposed method. 

1  Introduction 

As it well known that conventional adaptive control algorithms are suitable to systems 
with slow change parameters. It takes long time after every drastic change in the sys-
tems to relearn model parameters and adjust controller parameters subsequently. One 
way to solve these problems is to use multiple models adaptive control (MMAC). The 
earliest MMAC appeared in the 70s last century [1],[2], where multiple Kalman Fil-
ter-based models were studied to improve the accuracy of the state estimate in estima-
tion and control problems. This kind of multi-model control is always produced as the 
probability-weighted average of elemental controller outputs, and the stability of closed 
loop system is difficult to prove, only some convergence results have been obtained. 
However actual industrial systems are characterized by different operating modes such 
as new batch of materials, variations in equipment performance, effect of weather 
conditions, changes in production schedule, etc. The concept of multiple models, 
switching and tuning was proposed in [3] including the use of multiple identification 
models and choice of the best model and the corresponding controller at every instant. 
Based on the idea to describe the dynamics of the system using different models for 
different operating modes and to devise a suitable strategy for finding a model that is 
closest to the current plant dynamics in some sense, the model is in turn used to gen-
erate the control signal that achieves the desired control objective. In [4] fixed models, 
adaptive models and switch strategy are applied to improve the transient response of 
the continuous-time linear systems. The above result is generalized to discrete-time 
linear systems in [5]. In recent years there has also been a great deal of research ac-
tivities in extending multiple models approach to the modeling and control of nonlinear 
systems. Nonlinear adaptive control using neural networks and multiple models is 
proposed in [6]. A multi-model predictive control scheme is proposed for nonlinear 
systems based on multi-linear-model representation in [7]. Some on exponential sta-
bility of delayed Neural Networks with a general class of activation functions can be 
found in [8]. 
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In this paper we develop a novel MMAC method to improve the dynamic per-
formance of nonlinear systems. Multiple linearized models are established at each 
equilibrium point of the system, and then an improved RBF algorithm is applied to 
compensate for modeling error. The multi-model control scheme depends on the mul-
tiple representation of a process using different models, which involves locating the 
model that best matched the process and generating the control signal that will drive the 
system to follow the desired trajectory according to the located model.  

The paper is organized as follows. A statement of the problem is given in section 2. 
Improved learning algorithm of RBF Neural Network is proposed in section 3. In 
section 4 switch control strategy is studied. A simulation study is described in section 5, 
which shows the validity of the proposed method. Finally conclusion is drawn in 
section 6. 

2  Problem Statement 

Let a class of nonlinear systems be described by 

( ) [ ( 1), , ( ), ( 1), , ( 1 )] ( )ζ= − − − − − +� �y t f y t y t n u t u t m t .           (1) 

where ( )f ⋅  is a nonlinear function with one order of derivative in succession. ( )u t , 

( )y t  and ( )tζ  are the system input, output and disturbance at time t  respectively. 

Assuming (1) has several different equilibrium points ( , ), {1,2, , }i iu y i N∈ � . It can 

be obtained N  linearized models using Taylor series expansion at different equilib-
rium point. The i th linearized model can be represented as  

1 1 1( ) ( ) ( ) ( ) {1, 2, , }− − −= + ∈ �i i iA q y t q B q u t d i N .               (2) 

where q–1 is the shift operator, i.e., q–i y(t) = y(t–i). Ai(q
–1) = 1+ai,1q

–1+…+ ai,nq
–n, 

1 1
,0 ,1 ,( ) m

i i i i mB q b b q b q− − −= + + +�  are polynomials of degrees n and m in q–1 

respectively. 

, ,1 0
( ) ( )

= =
= −∑ ∑n m

i i j i i k ij k
d a y b u ,

, ( , )
( )

∂
= −

∂ − i i
i j u y

f
a

y t j
,

, ( , )
( 1 )

∂
=

∂ − − i i
i k u y

f
b

u t k
,  

Since Taylor series expansion leaves out each high order items in [7], we introduce 
RBF Neural Network to compensate for modeling error and the i th linearized model 
can be represented as  

1 1 1( ) ( ) ( ) ( ) ( , ) {1, 2, , }− − −= + + ∈ �i i i nnA q y t q B q u t d f u y i N .    (3) 

where fm(u,y) is the output of the RBF neural network. In the following section an 
improved learning algorithm of RBF is proposed to approximate the modeling error. 

3  Improved Learning Algorithm of RBF 

We consider multiple inputs single output (MISO) systems without loss of generality. 
A structure of RBF comprises three layers. The hidden layer possesses an array of 



38      Junyong Zhai and Shumin Fei 

neurons, referred to as the computing nodes. Each hidden node in the network has two 

parameters called a center vector 1 2[ , , , ]Ti i i inC c c c= �  and a width σi associated with 

it. The activation function of the hidden nodes is Gaussian function in general. The 
output of each hidden node depends on the radial distance between the input vector 

1 2[ , , , ]Tn nX x x x= �  and the center vector Ci. The response of the i th hidden node to 

the network input is expressed as 

2

2
( ) exp

2
ϕ

σ
−

= −
⎛ ⎞
⎜ ⎟⎝ ⎠

n i

i n

i

X C
X  .                   (4) 

where || ||i  denotes the Euclidean norm. The response of each hidden node is scaled 

by its connecting weights ωi to the output node and then summed to produce the 
overall network output. The overall network output is expressed as 

0 1
( ) ( )ω ϕ

=
= + ∑ h

n i i ni
f X b X .                  (5) 

where h is the number of hidden nodes in the network. b0 is the bias term for the out-
put node. The learning process of RBF involves allocation of new hidden node as well 
as adaptation of network parameters. The network begins with no hidden node. As 
input-output (Xn, yn) data are received during training, some of them are used to gen-
erate new hidden nodes. The decision as to whether an input-output data should give 
rise to a new hidden node depends on the novelty in the data, which is decided on the 
following two conditions 

ε= − ≥ Δn n nrd X C  .                        (6) 

( )= − ≥ Δn n ne y f X e  .                       (7) 

where Cnr is the center vector which is nearest to Xn. dn is the Euclidean distance be-
tween Xn and Cnr Δε and Δe are thresholds to be selected appropriately. If the above 
two conditions are satisfied then the data is deemed to have novelty and a new hidden 
node is added. The parameters associated with the new hidden node are as follows 

1 1 1: , : , :ω σ λ+ + += = = ⋅h n h n h nC X e d .               (8) 

where λ is an overlap factor. When an observation (Xn, yn) does not satisfy the novelty 
criteria, a hidden node is not added but the network parameters Ci, σi, ωi are adapted 
to fit that observation. Platt [9] used the LMS algorithm for adapting Ci, ωi not in-
cluding σi. An enhancement to Resource Allocation Network (RAN) was proposed in 
[10], where used an EKF instead of the LMS algorithm for adjusting the network 
parameters Ci, σi, ωi. However the drawbacks of RAN or RAN+EKF is that once a 
hidden node is created it can never be removed and consequently produce networks in 
which some hidden nodes end up contributing little to the whole network output. In 
[11] a pruning strategy algorithm was proposed. The pruning strategy removes those 
hidden nodes, which make insignificant contribution to the overall network output 
consecutively over a number of training observations.  
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Except for the above cases, with the process of learning there may be some hidden 
nodes with the approximate center and width, these nodes are said to be redundant 
nodes, i.e., the following two conditions are satisfied  

− ≤ Δi jC C c .                            (9) 

{1, 2, , }σ σ σ− ≤ Δ ≠ ∈ �i j i j h .              (10) 

where Δc and Δσ are thresholds to be selected appropriately. We can incorporate 
these hidden nodes, i.e.  

: ( ) / 2, : ( ) / 2, :σ σ σ ω ω ω= + = + = +i i j i i j i i jC C C .       (11) 

4  Switch Control Strategy 

Each model performance index is evaluated over the sliding data window L 

2

1
( ) ( ( ) ( )) {1, 2, , }

= − +
= − ∈∑ �

t

i ij t L
J t y j y j i N .      (12) 

where yi(j) and y(j) are the output of the i th model and the actual plant at time j re-
spectively. The next question is how to switch among linearized models. After all 
linearized models are initiated; the performance indices (12) are calculated at every 
instant and the system switches to a controller corresponding to the minimum value of 
the performance indices. The controller corresponding to the minimum value of the 
performance indices has been designed and put in place by the switching mechanism. 
This will not yield improved performance if the system exhibits rapid switching be-
tween controllers and indeed it is possible that degraded performance could occur. To 
counter this undesirable effect, a hysteresis term is introduced into the control scheme 
[12]. Let Ji(t) be the minimum value of performance indices and denote the model 
used to design the current controller by Ji(t). Then under the added hysteresis term, a 

switch will only occur if ( ) ( ) ρ> +
i i

J t J t , where 0ρ >  is the hysteresis constant to 

be selected.  

5  Simulation Study 

In this section simulations are given to show the validity of the proposed method. Let 
the nonlinear system can be represented as 

2 2 2 2 2
( 2) ( 1) 2 ( 1) 2 ( 1) ( ) ( ) ( ) ( ) ( ) 0.05 sin( )+ = + + + − + + + − + +y t y t y t y t y t y t T y t y t T u t t  

where T is the sampling cycle, which value is one second. At the equilibrium point 
(ui, yi), the ith model can be described as 

2 2( 2) 2( ( 1) ) (2 1)( ( ) ) ( ( ) )+ = + − + − − + − + +
i i i i i nn

y t y t y y T y t y T u t u y f . 
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Fig. 1. The response of the system using con-
ventional control 

Fig. 2. The response of the system using the 
proposed method 

 
In the simulation we choose six equilibrium points as follows: (0.5, –0.25), (1.25, 

–1.5625), (2, –4), (2.75, –7.5625), (3.5, –12.25) and (4, –16). The reference input 
signal is the square wave with τ = 40 second and amplitude 0.5. Simulation parame-
ters are ε = 0.04, Δe = 0.05, λ = 0.96, L = 12, emin = 0.01, Δc = 0.01, Δσ = 0.01, δ = 
0.01, ρ = 0.08. The response of the system using conventional adaptive control is solid 
line and the reference signal is dotted line in Fig. 1, whereas that of the system using 
the proposed method is solid line in Fig. 2 with the same reference signal. Apparently, 
the conventional adaptive control algorithm cannot deal with this drastic change well. 
However the method proposed in this paper improves the dynamical response per-
formance. 

6  Conclusions 

In this paper a novel adaptive control algorithm based on multiple models is proposed 
to improve the dynamic performance. The main idea of the approach is to use multiple 
models, which correspond to different operating points. Multiple linearized models are 
established at respective equilibrium points of the plant. Since each local linear model 
is valid within a neighborhood of an operating point, and then an improved RBF neural 
network is applied to compensate modeling error. The simulation results are presented 
to demonstrate the validity of the proposed method. 
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Abstract. In this paper, a neural network based adaptive controller
is designed for a class of nonlinear systems. The offline neural network
training and on-line neural network tuning are integrated to assure that
not only the stability of the resulting closed-loop control system is guar-
anteed, but also the reasonable tracking performance is achieved. The
adaptation of the parameters of neural networks is handled based on the
robust adaptive control design methodology. The off-line training step in-
curs additional cost and maybe inconvenience compared to direct on-line
neural network parameters tuning. However, the stability analysis and
performance evaluation have a more solid basis; and the weight adap-
tation laws are different than those existing in the literature and bear
more practical meaning and significance.

1 Introduction

A new trend has been witnessed in the recent years that neural networks have
been introduced into nonlinear adaptive control design [1] to hopefully tackle
some of the difficult problems that conventional design approaches can not han-
dle. Direct use of offline trained neural networks for real time control may cause
instability. Under certain assumptions, a few results [2, 3] claim that neural net-
works can be directly trained on-line for real time control purpose. One of the
key assumptions is that initial values of the neural network parameters to be
tuned on-line are within a prespecified range of their optimal values, which can
not be verified. Further without the offline neural network training, it is difficult
to have a good choice of the size of the neural network. Based on this observa-
tion, we propose to incorporate the knowledge gained from offline neural network
training into on-line neural network tuning. As the optimal weights and biases
of a neural network are unknown for a particular application, the offline train-
ing process provides sub-optimal weights and biases, which are nearly perfect
from the practical application point of view. In addition, due to the availabil-
ity of the weights and biases of the offline trained neural network, the Taylor
series expansion of a neural network with ideal weights and biases around the
estimates of these parameters, a key step in deriving the parameter adaptation
laws and adaptive controller, allows certain terms, that contribute significantly

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 42–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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to the total sum and are included in the residual inappropriately [2, 3], to be
reorganized in an appropriate manner. As a result, first-order terms used in the
approximation are not included in the residual. Consequently, this makes the
on-line tuning of the weights and biases of a neural network more effective.

2 SMIB and Problem Formulation

The single-machine infinite-bus (SMIB) model [5] that has been studied takes
the following form:{

δ̇ = ωb(ω − 1)
ω̇ = 1

M (Pm − Pl −D(ω − 1) − VtV∞
Xd+(1−s)Xe sin δ) (1)

To make our control design applicable to a broader class of nonlinear uncer-
tain systems, we consider a general system characterized by

ẋi = xi+1, i = 1, · · · , n− 1
ẋn = a(X) + b(X)u+ c(X)τP (2)

and
y = x1 (3)

where the state vectorX =
[
x1 x2 · · · xn

]τ ∈ Ωx ⊂ Rn with Ωx being a compact
subset of Rn, a(X) and b(X) are continuous functions defined on Ωx, c(X) a
continuous vector field of dimension m, P a parameter vector of dimension m,
and y the output. Note that a(X) is the unknown nonlinearity involved in the
system characterization, b(X) 	= 0 for ∀X ∈ Ωx, and P is a vector of unknown
parameters. The control objective is to design a control law for u such that the
state X follows a desired state trajectory as closely as possible regardless of the
unknown nonlinearity and unknown parameters.

3 Neural Controller Design

3.1 Taylor Series Expansion of a Neural Network

As is known, a one-hidden layer neural network, when including sufficiently many
neurons in the hidden layer, can approximate any continuous function defined on
a compact domain at an arbitrary approximation accuracy. With this in mind,
we employ one-hidden layer neural networks for control purpose. Suppose that
a one-hidden neural network has an input layer of di inputs, an output layer
of single output, and a hidden layer of dh neurons. Let the activation function
for the hidden layer be σh(.), and the activation function for the output neuron
is a linear function. A neuron n in the hidden layer is connected to all the
inputs through di connections, each one associated with a weight wn,j

1 where
j = 1, 2, · · · , di. The threshold or the bias for this neuron n is bn1 . Similarly, the
output neuron is connected to the hidden layer through dh connections, each one
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associated with a weight wj
2 where j = 1, 2, · · · , dh. The threshold for the output

neuron is b2. Therefore, this neural network realizes a mapping from the input
space Ωi to R. Let the input vector be denoted by X . Then the realized function
can be given byNN(X) = W τ

2 Σ(W τ
1 X+B1)+b2 whereW2 =

[
w1

2 w
2
2 · · · wdh

2

]τ
,

W τ
1 =

⎡⎢⎢⎣
w1,1

1 w1,2
1 · · · w1,di

1

w2,1
1 w2,2

1 · · · w2,di

1

· · · · · · · · · · · ·
wdh,1

1 wdh,2
1 · · · wdh,di

1

⎤⎥⎥⎦, B1 =
[
b11 b

2
1 · · · bdh

1

]τ
.

The above equation can be rewritten in a more compact form as follows:
NN(X) = W τ

2aΣa(W τ
1aXa) where W1a, W2a and Σa are properly formed.

Remark 1: W2a ∈ Rdh+1, W1a ∈ R(di+1)×(dh+1).
Remark 2: For any function continuous function f(X) defined on a compact set
Ωx, then there exists a one-hidden layer neural network NN(X) such that for
any positive ε > 0, |f(X) −NN(X)| = |f(X) −W τ

2aΣa(W τ
1aXa)| < ε.

Remark 3: To make a distinction between different choices of neural network
parameters, a neural network NN(X) will be changed to NN(X,Θ) where Θ
is a vector which is composed of all the parameters of both W2a and W1a.
Hence, in the case of sub-optimal parameterization of the neural network, we
have NN(X,Θs) = W τ

2a,sΣa(W τ
1a,sXa); in the case of optimal parameteriza-

tion of the neural network, we have NN(X,Θ∗) = W τ
2a,∗Σa(W τ

1a,∗Xa); and in
the case of parameter estimation of the neural network, we have NN(X, Θ̂) =
Ŵ2a

τ
Σa(Ŵ1a

τ
Xa).

Assumption 1: Let the offline well-trained neural network be denoted by
NN(X,Θs), and the ideal neural network by NN(X,Θ∗). The approximation
of NN(X,Θs) to NN(X,Θ∗) is measured by two known positive numbers εW1a

and εW1a such that ||W ∗
1a −W1a,s||F ≤ εW1a and ||W ∗

2a −W2a,s|| ≤ εW2a , where
||(.)||F = tr{(.)τ (.)} with tr designating the trace of a matrix, representing the
Frobenius norm of a matrix.
Notation 1: For the convenience of further development, we define: W̃1a = Ŵ1a−
Ŵ1a,∗ and W̃2a = Ŵ2a − Ŵ2a,∗.

Theorem 1. The above defined optimal neural network NN(X,Θ∗) linearized
at its estimated parameter values Ŵ2a and Ŵ1a can be rewritten as:

NN(X,Θ∗) = NN(X, Θ̂) − Ŵ τ
2aΣ̂

′
aW̃

τ
1aXa

−W̃ τ
2a(Σ̂a − Σ̂

′
a(Ŵ1a −W1a,s)τXa) + rx (4)

where Σ̂a = Σa(Ŵ1a
τ
Xa), Σ̂

′
a = diag{DΣ̂a

} with
DΣ̂a

=
[
σ

′
((Ŵ 1

1a)τXa) σ
′
((Ŵ 2

1a)τXa) · · · σ′
((Ŵ di

1a)τXa) 0
]
, and

rx = W2a,∗o(W̃ τ
1aXa) − W̃ τ

2aΣ̂
′
a((Ŵ1a,∗ −W1a,s)τXa).

Furthermore, the residual rx satisfies the following inequality:

|rx| ≤ γ0 + γ1||W1a,∗||F + γ2||W2a,∗||F + γ3||W1a,∗||F ||W2a,∗||F (5)

where γ0, γ1, γ2, γ3 are properly chosen positive constants.
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Proof. Due to the limitation on the number of the paper pages, the proof details
are not presented. The proof can be done by using Taylor’s series expansion, ap-
plying appropriate norms, and inserting the weights/biases of the off-line trained
neural network. ��

3.2 Neural Control Design

The control objective is to design a neural network based controller that en-
ables the system output y(t) to follow the desired trajectory yd(t) asymptoti-
cally. Suppose that yd(t) is sufficiently smooth such that yn−1

d (t) exists. Define
Xd =

[
yd ẏd · · · yn−1

d

]τ
. Define X̃ = X − Xd =

[
X̃1 X̃2 · · · X̃n

]τ
. Define a

tracking error metric eX(t) = Λτ
xX̃ with Λx =

[
λ0 λ1 · · · λn−1

]τ . λn−1 is set to
1 for simplicity. The transfer function of this error system is given by H(s) =
X̃1(s)
EX(s) = 1

sn−1+λn−2sn−2+···+λ1s+λ0
. The coefficients λi’s (i = 0, 1, · · · , n − 1) are

properly chosen so that the denominator of the transfer is Hurwitz. As such, the
asymptotic output tracking can be accomplished by maintaining eX(t) = 0 which
defines a time-varying hyperplane in Rn on which X̃ vanishes exponentially.

3.3 Adaptive Controller Design
Based on the Modified Gradient Algorithm

In this section, instead of including a switching term in the control design, we
take a high-gain control approach. Consider the controller in the following form:

u = unn + ur (6)

where unn is the contribution to the total control effort by the neural network
based control, which is given by unn = NN(X, Θ̂) = Ŵ2a

τ
Σa(Ŵ1a

τ
Xa), and ur

is the additional control effort for achieving robustness.
Let er(t) = Λτ

0X̃ −X
(n)
d where Λ0 =

[
0 λ0 λ1 · · · λn−2

]τ , and

unn =
1

b(X)
(−NN(X, Θ̂) − er(t) − c(X)τ P̂ ) (7)

In order to derive the parameter adaptation laws, consider a positive definite
function as follows

V =
1
2
(e2X(t) + P̃ τΓ−1

P P̃ + tr{W̃ τ
1aΓ

−1
W1a

W̃1a} + W̃ τ
2aΓ

−1
W2a

W̃2a (8)

where ΓP = Γ τ
P > 0, ΓW1a = Γ τ

W1a
> 0, ΓW2a = Γ τ

W2a
> 0.

Differentiating V with respect to t and taking into account the equality
−eXŴ

τ
2aΣ̂

′
aW̃

τ
1aXa = tr{−eXŴ

τ
2aΣ̂

′
aW̃

τ
1aXa} = tr{−W̃ τ

1aXaeXŴ
τ
2aΣ̂

′
a}, we ob-

tain

V̇ = −P̃ τ(c(X)eX − Γ−1
P

˙̂
P ) − W̃ τ

2a(eX(Σ̂a − Σ̂
′
a(Ŵ1a −W1a,s)τXa)

−Γ−1
W2a

˙̂
W 2a) − tr{W̃ τ

1a(XaeXŴ
τ
2aΣ̂

′
a − Γ−1

W1a

˙̂
W 1a)}

−(rx + rnn,a)eX + b(X)eXur (9)
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In order to ensure the boundedness of the weight estimates and bias es-
timates, modifying terms are introduced. There are a number of modification
schemes available, to cite a few, σ-modification [6], switching σ-modification,
e-modification [4], and parameter projections, that may be used to achieve ro-
bustness. In this paper, we choose to apply e-modification based scheme.

Let

˙̂
P = ΓP c(X)eX − ΓP (1 + |eX |)σP P̂

˙̂
W 2a = ΓW2aeX(Σ̂a − Σ̂

′
a(Ŵ1a −W1a,s)τXa)) − ΓW2a (1 + |eX |)σW2aŴ2a

˙̂
W 1a = ΓW1aXaeXŴ

τ
2aΣ̂

′
a − ΓW1a(1 + |eX |)σW1aŴ1a (10)

Then

V̇ = −(rx + rnn,a)eX + b(X)eXur − σP P̃
τ P̂ (1 + |eX |)

−σW2aW̃
τ
2aŴ2a(1 + |eX |) − σW1atr{W̃ τ

1aŴ1a}(1 + |eX |) (11)

Let

ur =
1

b(X)
eX(−kr −

(γs + γw)2

4εu
) (12)

where kr > 0, εu > 0 and γw is a properly defined constant.
After some algebraic operations, we obtain

V̇ ≤ −kre
2
X − 1

2
σP ||P̃ ||2 −

1
2
σW2a ||W̃2a||2 −

1
2
σW1a ||W̃1a||2F + εu + γw (13)

In what follows, we now formally state the above results in a theorem.

Theorem 2. With the control expressed in (6), (7) and (12), and the parameter
updating laws (10),

(a) All signals in the closed-loop are bounded.
(b) The filtered error signal eX converges to a predesignated arbitrarily small

neighborhood of zero.
(c) The integrated tracking performance satisfies

1
t

∫ t

0

X̃2
1 (t)dt ≤ 1

tkr
(C1V (0) + krC0) +

εu + γw

kr
(14)

where t > 0, C0 and C1 are positive constants, kr > 0, εu > 0 and γw > 0
are all design parameters, and V (0) = 1

2 (e2X(0) + ˜P (0)
τ
Γ−1

P
˜P (0) +

tr{ ˜W (0)
τ

1aΓ
−1
W1a

˜W (0)1a}+ ˜W (0)
τ

2aΓ
−1
W2a

˜W (0)2a where X(0), eX(0), W̃1a, W̃2a

and P̃ represent the system initial conditions.
(d) The tracking error is bounded from above.

||X̃1(t)|| ≤ ||e(t)|| ≤ C2||e(0)|| + C2

C3

√
εu + γw

kr
(15)

where C2 and C3 are positive constants.
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Proof. Define a Lyapunov-like function (8). Apply the control expressed in (6),
(7) and (12), and the parameter updating laws (10), we arrive at the inequality
(13).

Due to the limit imposed on the number of pages of the paper, only a sketch
of the proof is provided as follows: Applying the Lyapunov theory and properly
choosing εu and kr lead to the filtered error convergence, which in turn leads
to the boundedness of all signals in the closed-loop. By proper integration and
application of appropriate norms, the rest of the theorem can be proved. ��

4 Conclusions

In this paper, an adaptive control design has been developed fora class of non-
linear uncertain systems, a typical example of which is a popular SMIB system
with unknown load. It has been proposed that the offline neural network train-
ing and on-line neural network tuning should be integrated. This removes the
popular assumption that the initial values of these neural network parameters
fall within prescribed range. Furthermore, this approach makes best use of the
offline neural network training and makes the design more sensible and effective.
The transient performance is shown to assure a level of satisfactory performance.
The stability and convergence of the system with the developed control laws and
parameter updating laws has been proves.
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In this study, 
a remote controller is designed using a SCFNN to satisfy the system specification for 
the networked control system (NCS).  
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Abstract. The filtered-error back-propagation neural network (FEBPNN) algo-
rithm for control of smart structure is investigated experimentally. Piezoelectric 
actuator is employed to suppress the structural vibration. The controllers based 
on the FEBPNN algorithm and the filtered-x least mean square (FXLMS) algo-
rithm are implemented on a digital signal processor (DSP) TMS320VC33. The 
experimental verification tests show that the FEBPNN algorithm is effective for 
a nonlinear control problem, and has better tracking ability under change of the 
primary disturbance signal.  

1   Introduction 

Vibration control is of importance in many areas of engineering, in recent years, active 
vibration control (AVC) of smart structures has been the subject of intensive research 
[1]. The real time sensing and actuation capabilities of smart structure provide a pow-
erful means for AVC. A smart structure involves the integration of a physical structure 
with distributed actuators and sensors and a controller. Based on the piezoelectric 
effect, piezoelectric transducers have been used extensively in active control of smart 
structure vibrations as sensors and also as actuators [2]. For nonlinear systems, the 
most common algorithm is filtered-x back-propagation neural network (FXBPNN) [3], 
but it has relatively high computational load, so, a filtered-error back-propagation 
neural network (FEBPNN) algorithm is proposed here. It can reduce the computa-
tional load greatly, which will be discussed in detail in this paper. 

2   Algorithms Development 

The block diagram of an AVC system using the neural network algorithm and the 
neural network controller are shown in Fig.1 and Fig.2, respectively. P(Z) and S(Z) 
are the primary path and secondary path, respectively. In Fig.2, for the output node, 
the function was linear, for the hidden node, a sigmoidal nonlinear function was used 
[3].  
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P(Z)

S(Z)
neural network

controller

d(n)

y(n)

u(n)

e(n)x(n) +

+

 

Fig. 1.  The block diagram of an AVC system 

x(n)

x(n-1)

x(n-I+1)

wij
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q1

q0

qJ-1

u(n)

 

Fig. 2. The neural network controller 

2.1   FXBPNN Algorithm 

In order to compare the FEBPNN algorithm with the FXBPNN algorithm, the 
FXBPNN algorithm will first be derived, with the arrangement shown here, the refer-
ence input signal x(n) is used to derive the control signal, via the neural network con-
troller. Each control input to the system is modified by the secondary path transfer 
function to produce the control signal y(n), each error signal is then the sum of the 
primary and control components. 

The error criterion is to minimize the mean square value of the error signal e(n): 
2min E[e (n)]  . (1) 

For practicality, the instantaneous estimate of squared error is used to approximate 
the mean square value of the error signal e(n):  

2min[e (n)]  . (2) 

The gradient descent algorithm is employed to adjust the weights of the control sys-
tem. The weights are updated by adding a negative gradient of the error criterion with 
respect to the weights of interest: 

w(n+1) = w(n) - w(n)μΔ  . (3) 

where  is the learning rate(step size). 
Now, the objective is to find a solution to Eq. (3) for each weight in the neural net-

work controller. Due to being limited by the length of the paper, only the results are 
given here.  
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The adaptation algorithm of the weights in the output layer can be written as: 

 
M-1

j jj i
i=0

v (n+1) = v(n) - e(n) h q (n- i)μ ∑  . (4) 

j=0,1,…J-1. 
Where H=[h0 h1… hM-1] is the M-th-order impulse response of the secondary path 

model, whose z-transform is H(z) (where Z Z( ) = ( )ˆH S ), which is modeled as a FIR 
filter during training stage prior to the start of the AVC [4].  

The adaptation algorithm of the weights in the hidden layer can be written as: 
M 1

jij ij k jj
k 0

’w (n+1) = w (n) - e(n) h v (n- k) f (net (n- k)) x(n- i- k)μ
−

=
∑  . (5) 

i=0,1,…I-1; j=0,1,…J-2. 

Where 
I-1

j ij
i 0

net (n) = w (n) x(n- i)
=
∑ , f(.) is a smoothing nonlinear activation function.  

From Eqs. (4) and (5), it can be seen that in the AVC system, the reference signal 
x(n) is filtered by the estimate of the secondary path transfer function H (i.e., the ref-
erence signal is convolved with hj). Therefore, this algorithm is called the FXBPNN 
algorithm.  

2.2   FEBPNN Algorithm 

In the FEBPNN algorithm, instead of filtering the reference signal, the error signal is 
filtered by the estimate of the secondary path transfer function. The filtered-error 
Least Mean Square (LMS) algorithm for a linear system has been derived by 
S.J.Elliott [5], on the basis of this, the FEBPNN algorithm is derived in the following 
analysis.  

Step 1: Update the weights in the output layer of the neural network vj(n) 
Using Eqs. (3) and (4), then 

M 1

j ji
i 0

v (n) e(n) h q (n- i)
−

=
Δ = ∑  . (6) 

Recalling Eq. (1), then the gradient estimate of the time-averaged square error in 
the output layer can be written as: 

N M 1

j ji
N n =- N i 0

1
v (n) lim [e(n) h q (n- i)]

2 N

−

→∞ =

Δ = ∑ ∑  . (7) 

Let k = n-i so that n = k+i then, Eq. (7) can now be expressed as: 
M 1 N

j j i
N i 0 k+i=- N

1
v (n) lim q (k) h e(k+ i)

2 N

−

→∞ =

Δ = ∑ ∑  . (8) 

Noting that because i is always finite, the summation from –N to N as N tends to � 
on the right hand side of Eq. (8) will be the same for k= – � to � as for k+i= – � to �. 
At the same time, it is noted that an instantaneous estimate of Eq. (8) cannot be im-
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plemented with a causal system. This can be overcome by delaying both e(k+i) and 
qj(k) in Eq. (8) by M-1 samples. The final form of the FEBPNN algorithm for the 
output layer is obtained by adapting the controller’s coefficients with an instantaneous 
version of the gradient estimate given by Eq. (8) delayed by M-1 samples, which can 
be written as:  

M 1

j j M- 1 - ij

i 0

v (n+1) = v(n) - q (n- M+1) h e(n- i)μ
−

=

∑  . (9) 

Step 2: Update the weights in the hidden layer of the neural network wij(n) 
Using the similar method in Eq. (5), we can derive the formula for updating the 

weights in the hidden layer of the neural network wij(n) as: 

ij ij

M 1

j j M- 1 - kj

k 0

w (n+1) = w (n) -

’v(n- M+1) f (net (n- M+1)) x(n- i- M+1) h e(n- k)μ
−

=

∑ . (10) 

2.3   Comparison of FXBPNN Algorithm and FEBPNN Algorithm 

It is necessary to compare the two algorithms to show that the FEBPNN algorithm 
offer computational advantage over the FXBPNN algorithm. Considering the case 
with I input layer nodes and the J hidden layer nodes, for the FEBPNN algorithm 
using Eq. (9) and Eq. (10), the number of the multiplication operations required per 
sample to update the weights in the output layer is about M+J, and the number of the 
multiplication operations required per sample to update the weights in the hidden layer 
is about M+(2+I)(J-1). In contrast, for the FXBPNN algorithm using Eq. (4) and Eq. 
(5), the number of the multiplication operations required per sample to update the 
weights in the output layer and in the hidden layer is about JM+J and (3M+1)(J-1)I, 
respectively. For example when using M=256, J=15 and I=25, the FXBPNN and 
FEBPNN algorithms require about 273005 and 905 multiplications per sample for its 
implementation, respectively. So in terms of their computational efficiency, the 
FEBPNN algorithm is superior to the FXBPNN algorithm.  

3   Experimental Implementation 

3.1   Experimental Setup 

Fig.3 and Fig.4 show the Experimental setup and the schematic diagram of the setup, 
respectively. The test-bed chosen was a simple three-dimensional cavity , the cavity 
had five rigid wall boundaries and the dimensions are 60cm×50cm×40cm. One alumi-
num plate was located at the top of the cavity and form the flexible boundary of the 
enclosure, the thickness of the plate is 0.5mm and was clamped around the cavity. A 
loudspeaker was used to generate the primary disturbance signal, which was also sup-
plied to the controller as a reference signal. A piezoelectric ceramic(PZT) patch was 
surface bonded to the bottom of the aluminum plate to form the actuator and the di-
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mension of the PZT patch is 50mm×25mm×0.5mm, the maximum supply voltage to 
the actuator was ±150V. An accelerometer was used as a sensor to measure plate 
strains and was bonded to the top of the aluminum plate. The signal processing board 
includes ADC/DAC, low-pass filters and preamplifiers. The heart of the control sys-
tem was a TMS320VC33 DSP board, which was used to implement modal identifica-
tion and control algorithm. The sampling rate was chosen to be 2k HZ. 

  
TMS320VC33 DSP board

signal processing board

actuator
power supply

 power
amplifier

side view

cavity

aluminum
plate

loudspeaker

PZT patch

accelerometer

 

     Fig. 3. The experimental setup        Fig. 4. The schematic diagram of the experimental setup 

3.2   Experimental Results 

The FEBPNN algorithm was used to suppress the primary disturbance. The number of 
neurons used in the neural network is 25-15-1. For comparative purposes, a 32-tap FIR 
filter controller adapted using the linear filtered-x LMS (FXLMS) algorithm was also 
implemented [4].  

Case1: The first case investigated the nonlinear performance of the FXLMS and 
FEBPNN based controller. The primary disturbance signal was a 400HZ pure tone 
sinusoidal signal. The nonlinearity was introduced into the experimental arrangement 
by increasing the amplitude of the primary disturbance signal, and the preamplifier 
was driven to saturation, thus, the saturation nonlinearity was introduced into the AVC 
system [5]. The resultant error signal spectrum for nonlinear case is shown in Fig.5. 
From the results shown in Fig.5, it can be seen that the neural network controller per-
formance is vastly superior to that of the linear controller. Not only was the primary 
tone level reduced, but also the harmonic signal in the spectrum was reduced.  

Case 2: The second case investigated the tracking ability of the FEBPNN based 
controller. The primary disturbance signal was changed after the system had entered 
into steady-state phase. Fig.6 shows the error signal versus the number of iterations. 
Due to being Limited by the memory space of the DSP, it is not possible to record the 
entire change procedure of the error signal, so in Fig.6, the number of iterations is not 
continuous, the curve between 0 and 100 iterations shows the error signal when the 
AVC system turns off, the curve between 109500 and 110000 iterations shows the 
error signal when the AVC system turns on and has entered into steady-state phase, at 
this time, the primary disturbance signal is a 160HZ sinusoidal signal. When the num-
ber of iterations is equal to 110000, the primary disturbance signal was changed from 
a 160Hz sinusoidal signal to a 400Hz sinusoidal signal, the curve between 110000 and 
110100 iterations shows the error signal during first 100 iterations after the primary 
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disturbance signal was changed, the curve between 250000 and 250500 iterations 
shows the error signal after the system had entered into steady-state phase again. From 
the results shown in Fig.6, it can be seen that the system has better robust performance 
under change of the primary disturbance signal. 
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Fig. 5. The error signal spectrum for nonlinear 
case 

Fig. 6. The error signal versus number of
iterations when the primary disturbance signal
is changed 

4   Conclusions 

The neural network controller based on the FEBPNN algorithm has been developed 
for use in AVC system. Following this, the active vibration control of a three-
dimensional cavity with a surface-bonded piezoelectric actuator and an accelerometer 
was studied experimentally. The experimental verification tests indicated that the 
neural network controller based on the FEBPNN algorithm was effective for a nonlin-
ear system. 
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Position Control for PM Synchronous Motor
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Abstract. A robust position controller with linear-quadratic (LQ)
method and fuzzy neural-network (FNN) technique for permanent mag-
net synchronous motor (PMSM) is presented in this paper. An FNN
controller is implemented to preserve a favorable model-following char-
acteristics under various operating conditions. The performance of the
proposed drive is investigated both in experiment and simulation at dif-
ferent condition.

1 Introduction

Linear state feedback control is theoretically an attractive method for control-
ling a linear plant represented by a state-space model. The method has the
full flexibility of shaping the dynamics of the closed-loop system to meet the
desired specification. Techniques such as a pole placement or linear-quadratic
(LQ) method can be used to achieve the designed goals. However, these have
the main problem that the desired response may not be obtained once the exter-
nal disturbance and/or the parameters uncertainty exists.In recent years, much
research has been on the FNN system and its application, which combines the
capability of reasoning in handling uncertain information and the capability
of neural networks in learning from processes [1]-[3]. For instance, Y.C. chen
and C.C. Teng [1] proposed a model reference control structure using an FNN
controller, which is trained on-line using an FNN identifier; Faa-Jeng Lin [2]
described FNN sliding-mode position controller for induction servo motor drive;
R.-J.Wai, F.-J.Lin [3] introduced integral-proportion controller with FNN con-
troller to control a nonlinear objects.In this study, it is designed by combined
the LQ method and the FNN method. LQ method is used to decide the demand
feedback again to shape the dynamics and to meet the requirement of the perfor-
mance index at the robustness for the PMSM position control system. Finally,
simulation experimental results due to periodic step command were provided to
verify the effectiveness of the proposed control system.

2 The Position Controller Design for PMSM by LQ

The basic principle in controlling a PMSM drive is based on field orientation
through decoupling the quadrate axis (q axis) and direct axis (d axis). For a

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 179–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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permanent magnet machine, if d axis current id is at zero, PMSM becomes a
reduced-order linear time-invariant system as follows.

piq = (vq −Rsiq − ωrKb)/Lq (1)

pωr = P (Te − Tl)/2J −Bωr/J (2)

Te = KT iq (3)

where KT = 3P.λM/4 and Kb = λM .vd and vq are the d, q-axis stator voltages,
id and iq are the d-q-axis stator currents, Lq is the q-axis inductance, Te is the
electromagnetic torque, Rs and ωr are the stator resistance and the rotor speed,
respectively. P is the pole number of the motor, p is the differential operator, Tl is
the load torque. In (3), since the generated motor torque is linearly proportional
to the q-axis current, the maximum torque per ampere can be achieved.

Fig. 1. The block diagram of a state variable feedback control system

To design a desired controller using the LQ method, the system must first
be expressed in the state-space form. (2) can be expressed as(

θ̇e

ω̇

)
=
(

0 1
0 −B

J

)(
θe

ω

)
+
(

0
P
2J

)
Te −

(
0
P
2J

)
Tl (4)

where θe = θm−θ, θm and θ are the desired position and the actual rotor position,
respectively. There, we redefine the new state-space equation assumption the
disturbance T1 = 0 as

ẋ = Ax+Bu (5)

where A =
(

0 1
0 −B

J

)
, xT = [θe, ωr]T , b = [0, P/2J ]T . Using the LQ method, it

is to find an optimal control, u∗, minimizing the performance index J

J =
∫ ∞

0

(xTQx+ uTRu)dt (6)

associated with the system (5). In (6), matrix R is position defined, and Q is



Position Control for PM Synchronous Motor 181

Fig. 2. The closed-loop drive system with FNN controller

nonnegative define. To find the optimal control law, u∗, the following Riccati
equation

ATP + PA− PbR−1bTP +Q = 0 (7)

is first solved. Let P
′

be the solution of (7) and be nonnegative. Thus, to yield
a minimum index of (6), the control u∗ is defined as follows:

u∗ = −KTx = −(R−1bTP
′
)Tx (8)

and the feedback gainKT = [k1, k2]T is expressed asK = R−1bTP
′
.when system

(5) is under the control of (8), the resultant closed-loop dynamic are given by

ẋ = [A− bKT ]x = Acx (9)

The block diagram of a state variable feedback control system is shown in Fig.1.

3 The Proposed FNN Controller

The closed-loop drive system with the proposed closed-loop drive system with
FNN controller is shown in Fig.2, which consists of a PMSM, LQ controller,
FNN controller and adaptive reference model. The proposed FNN controller is
augmented to the LQ control system to preserve the desired command tracking
response under the occurrence of uncertainties. The control law is expressed as

u∗ = u1 + u2 (10)

where u1 is the output of the LQ position controller, and u2 is the output of
the FNN controller. Since the system shown in Fig.1 is three-order system to
meet the demanded system performance, the desired specifications of position
step command tracking usually are: (1) no steady-state error; (2) no overshoot;



182 Jun Wang, Hong Peng, and Xiao Jian

(3) desired risen time, tre. So, the designed transfer function of reference model
is

θ(s)
θ∗(s)

|TL(x)=0 =
K1

s3 + a2s2 + a1s+ a0
(11)

where the parameters K1, a0, a1 and a2 are constant determined by the desired
specifications.

The input signals of the controller are chosen as error em between the refer-
ence position θm and actual position θ and the error ėm between the reference
speed ωm and actual speed ω which is described as

em = θm − θ, ėm = ωm − ω (12)

A four-layer FNN as shown in Fig.3 is adopted to implement the proposed con-
troller. Node numbers in the input, a membership, a rule and output layers are
two, six, nine and one respectively.
Layer 1: input layer. The input nodes are written as

o11 = em, o
1
2 = ėm (13)

Layer 2: membership layer. The connecting weight is w2
ij(i = 1, . . . , 4, j = 1, 2),

the overall output is o2i .

net2i = f(x2
i ), o

2
i = f(net2i ) (14)

The Gaussian function is adopted as the exciting function expressed as

f(x) = − (x−mij)2

(σij)2
(15)

where mij and σij are the mean and the standard deviation of the Gaussian
function. The weights between the input and membership layer are assumed to
be unity.
Layer 3: rule layer. The output of the kth node is expressed as

net3k =
∏
j

w3
ijxj , o

3
k = net3k (16)

Layer 4: output layer. In this layer, the connecting weight is w4
k, the overall

output is O4.
o4 =

∑
k

w4
ko

3
k (17)

To describe the on-line learning algorithm of the proposed FNN controller
using the supervised gradient decent method, the performance index function J
is defined as

J =
1
2
(θm − θ)2 =

1
2
e2m (18)

Due to the real-time control system, adjusting the weight of FNN are adopted
by the gradient decent algorithm. Since the gradient decent algorithm can be
found easily in many references, it needn’t be introduced here.
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Fig. 3. Schematic diagram of the FNN controller

4 Simulation Results

The parameters of the LQ controller are designed when no load, nominal condi-
tion and the desired specifications are met. The reference model is chosen under
desire specification. The nominal parameters of PMSM are: Rated power is 700w,
rated speed is 1500rpm, number of poles is 4, magnetic flux is 0.175wb; Stator
resistance is 2.875,stator induction is 0.085H. Desired rising time is tre = 0.3s
and the sample time is 0.2ms. The reference model is designed as

θ(s)
θ∗(s)

|TL(x)=0 =
13800

s3 + 85s2 + 1890s+ 13800
(19)

The efficacy of the proposed scheme is verified by computer simulation based
on MATLAB/SIMULINK. The step command is a period step signal with mag-
nitude of 2πrad and period of 3s. To demonstrate the control performance of
the proposed controller, the simulation results are compared under the same
conditions for typical LQ controller and the proposed controller. The simula-
tion conditions are the following two cases [4]. Fig.4 shows different position
responses of typical LQ controller when no load, B and J are unchanged (case
1) shown in Fig.4(a) and a load of 5N.m is applied to the shaft, the inertia J and
damping constant B of the rotor are increase by 50% (case 2) shown in Fig.4 (b).
Fig.4 shows different position responses of the proposed FNN controller under
the condition of case 1 in Fig.4 (c) and case 2 in Fig.c (d).

Case 1. TL = 0N.m,B′ = B, J ′ = J . Case 2. TL = 5N.m,B′ = 5B, J ′ = 5J .

From the simulation results, compared the typical LQ controller, the propose
algorithm has smaller overshoot and shorter transient time. It can be already
seen under the control of the proposed FNN controller that the degenerated
and smooth responses under inertia variations and load disturbances are much
improved with the augmentation of the proposed FNN controller.
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Fig. 4. The simulation position responses

5 Conclusion

A controller based LQ and FNN techniques for PMSM are theoretically analyzed
and simulated in this paper. Major characters of the proposed controller are
described on the following: (1) it makes system stronger robustness. (2) It has on-
liner learning capability that can deal with a larger range of parameter variations,
and external disturbances. (3) More smooth responses can be obtained.

Acknowledgements

This work is supported by the doctor fund of Ministry of Education of the
People’s Republic of China (No. 20040613013) and the important project fund
of the education department of Sichuan province, China (No. 0229957).

References

1. Chen, Y.C., Teng, C.C.: A Model Reference Control Structure Using a Fuzzy Neural
Network. Fuzzy Sets and Systems, 73 (1995) 291-312

2. Lin, F.J., Wai, R.J., Chen, H.P.: A PM Synchronous Servo Motor Drive With an On-
Line Trained Fuzzy Neural Network Controller. IEEE Trans. on Energy Conversion,
13 (1998) 319-325

3. Wai, R.J., Lin, F.J.: Fuzzy Neural Network Sliding-Mode Position Controller for
Induction Serve Motor Drive, IEEE Proc. -Electr. Power Appl., 146 (1999) 297-308



zhaohanqing@yahoo.com.cn, wutao.nudt@263.net, hehangen@yahoo.com 



+ +−+−Γ=
Γ ⋅

Γ=+

φ

φ θ

θ

( )( )

φ

θθ ⋅−−⋅−=

θφ −=

θ

φ=

φ



+−= αα

=αα

ξξαα −−−= αααα

+−−+ ααεαα

=−αα =≤≤ αα

⋅⋅
σ−−=



• 
• 

�

Step1: if (|e(k)|>E & e(k)>0) 
          if (  >0) u(k) = u(k)/2;   
          else      u(k)=(u(k)-45)/2; 
else if (|e(k)|>E & e(k)<= 0) 
          if (  >0)  u(k)=(u(k)+45)/2;  
          else       u(k) = u(k)/2;  
else go to step 3. 
Step 2: use u(k) to train a new controller and drive the car 
with this controller, go to Step 1.  
Step 3: The end.       

Note:  
e(k)>0 means that the car is to the right of the road, and 
vice versa.  
 >0 means that the car is turning right and vice versa. 









∗

songyd@ncat.edu 

yaoli@umd.edu 

β

∗



α α
α α β

α β β
β α β α β β α β α β
φ

− + +

= − + + − +

α β α β
α α

φ θ φ θ

α θ α φ θ
β

α β θ β θ φ α β φ θ

α αα α
β β

ρ

− −

+ −

+

+

+ + −

− +

δ δ

δ δ δ

β α α β α α β α β α

α αα α β
β β

ρ α β α α β α β β β β β

− −

− +

+ − −
δ
δ
δ

α β α β
α

α β α β

α α α α
ρ α

α

+ +
= − − +

− + +

+ +

+

+

δ δ δ δ

δ

δ δ δ δ

α α α

α β α β α β α β δ
α δ

δα β α β α β α β

+

+ +

+

+ +

α β φ= =

α β φ θ α β φ θ α β= + +

α β α α β= + +

= + + + +



= −
= +

= + + + + − +

= + Δ +

= + − + Δ = + =

ψ= +

∈

ψ ∈

ε = −

−= − − −



ψ= +

ψ ψ

ψ

=

=

=

+

ψ

ψ ε= − + − +

= −

= + +

= = − −

= − −

ψ= − + − − +

= − + − −



σ ψ= − +
ψ ψ

σ
ψ

=

=

= − +
+

σ σ> >

σ σ
≤ − + − + − +

σ σ ξ

λ λ λ ξ λ ξ

≤ − − − − − − − +

= − − − + ≤ − +

σ σξ = + + λ = λ σ=

λ σ= λ λ λ λ=
ξ

λ
→ → ∞

β

λ

λ
ψ γ

− −

− −

−=
+

α
β
φ

=

λ

λ
ψ λ

μ

− −

− −

−=
+

α
β
φ

=

ψ ∈
=

β
α = + β −= + φ = +





{gaoying,lmzhang}@fudan.edu.cn 



∈ =

∈ =

=



×
×

×
×

=

=

=

+ + ++



= =

= − − =

= − λ
λ

λ

λ= =

=

=

λ
=λ =

−−

−−= − +
−

λ→ → ∞
λ

= −

=

−= − +

×



�

×
×

× × ×





chunsheng@tsinghua.edu.cn, tyg02@mails.tsinghua.edu.cn 



+ = + + =
= =

μ ( )= ∈

∈

= − = + −Λ

= = =
×= ∈Λ = >Λ Λ

( )θ θ
= =

+ = + +

θ
=

= + = + − +Λ

+ +

( ) ( )θ
=

+ = + − + + + +Λ

δ+ ≅ = +

( )θ θ
= =

+ = + + +

+ = + −



( )δ= − + + − +Λ

= > = −

+ = + + − =

( )= ∈

→ →
=

= + Δ = + Δ = + Δ

=

Δ Δ Δ
=

= = =

= − = + −Λ

( )θ
=

+ = + + + −

θ
=

= + = + −

δ= − + + − +Λ

>

+ =

( )θ
=

= − = − + +

= +



=

( )= − =

(θ
=

+ = Δ − Δ + Δ − Δ +

)Δ − Δ ( )( )θ δ
=

+ − + +Λ

+ = + − = + − = +

( )( )θ δ
=

= − − + +Λ

+ = +

= − ( ) ×= Δ Δ Δ Δ Δ Δ ∈

( ) ×= Δ Δ Δ Δ Δ Δ ∈

( )= ⊗ ⊗θ θ θ

( )= ∈ = +

= −

( )= =

= (
) = >

=≤ =>

=

= α= + θ=



Δ = η ( )σ+ −

α ηΔ ≤ − +

( )
=

Ω = ∪ ≤

η η η= > σ > (=

) η
η

( )−= − + + − −η

φ′ ′= φ φ′ ′= φ θ′ ′=

θ φ′= − + θ′= − +

= + =

μ = − − μ = − − =

α = = =
= =

[ ]= Λ =Λ α =

η η= = σ −= ×
=



⋅
⋅ ∈



General Underactuated Cooperating Manipulators
and Their Control by Neural Network
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Abstract. Underactuation may arise when a manipulator includes at least one
passive joint which is either a free joint where torque propagating along the axis
of rotation is only due to friction, or a flexible joint which has passive elements
introducing stiffness and damping. In this regard, free flying platform can be con-
sidered as linked to a fixed base by six DOF free joints with no friction. Dynamics
of underactuated cooperating manipulators become a bigger challenge when un-
deractuation is encountered by the combination of free, flexible and active joints
based on a free-flying platform in no-gravity setting. We call this class of sys-
tems as “general underactuated systems”. This paper demonstrates the theoreti-
cal background of an order of N algorithm for the dynamical modeling and neural
network based control of general underactuated manipulators cooperating to per-
form a common task on a free-flying space platform.

1 Introduction

Underactuated manipulators are those possessing fewer actuators than degrees of free-
dom (DOF). Manipulators with flexible joints to which passive elements such as tor-
sional spring and rotational dashpot pair, if revolute, are attached, free-flying robots in
space where there is no gravity, manipulators with one or more of the actuators failed,
and those that include “free joints” by design or structure, as in the case of hyper-
redundant manipulators, are some of the popular examples that fall under this research
area. It is a challenging problem to come up with a methodology for computationally
high performance algorithm dealing with these manipulators when two or more of the
same type manipulators work together in a cooperated manner to perform a common
task that is to move a rigid object. Obviously, it is more challenging when all three,
namely free joints, flexible joints and free-flying in space problems, coexist in the same
model which is particularly what is considered in this paper. We call that “general un-
deractuated systems.”

Modeling and control of underactuated mechanical systems has been the focus area
of some of the researchers in the robot dynamics field for more than a decade. Among
the work done, there are a few of them addressing the dynamic modeling of under-
actuated closed-kinematic-chain systems. Out of those, [1] drives dynamical modeling
based on the technique given by [2]. Although the algorithm is claimed to be computa-
tionally efficient, the method they use is still order of N 3. Multibody dynamical algo-
rithm with order of N performance has been a hot research area and is being improved

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 210–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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by researchers, such as [3], since it was first introduced by Armstrong [4] in 1979. The
roots of the algorithm presented in this paper can be found in [5] which presents the
dynamics of underactuated open chain manipulator.

This paper is organized as follows: The dynamical modeling algorithm is given
in section 2. How to incorporate this algorithm into neural network controller is then
demonstrated in section 3. Finally, section 4 is the conclusion of the paper.

2 Dynamical Modeling

Order of N algorithm for the dynamical modeling of general underactuated cooperating
manipulators will be given in this chapter.

The algorithm presented here utilizes a basis-free vectorial representation. ihk is a
unit vector parallel to the axis of rotation of the joint at the kth link of the ith manipula-
tor. iHk and iθk are the spatial axis of motion and the joint angle for the aforementioned
joint, respectively. i�k,k+1 is the link vector associated with link k. Spatial velocity and
the spatial acceleration of the link are denoted as iVk and iαk and they are defined as(

iωT
k

ivT
k

)T
and
(

iω̇T
k

iv̇T
k

)T
,respectively, where T is the transpose operator. imk is

the mass and iIk is the inertia tensor at point iOk.i�k,c is the vector from iOk to the
links center of mass. Link forces and torques acting at iOk are denoted as ifk and iτk.

Link spatial force vector iFk is defined as
(

iτT
k

ifT
k

)T
. Φ is the propagation matrix.

Based on the definitions given above (for more detailed explanation, please refer to
[6]) the link velocities are obtained as follows:

V = φHθ̇ (1)

Defining tip propagation operator, σt =
[

60 · · · iφn,n−1

]
yields Jacobian by premulti-

plying both sides of (1)

J �
= σtφH

Spatial forces are calculated from tip to base. Therefore, φT , in this case, is used as
the propagation operator.

f = φT (Mα+ b+ σT
t Ft) (2)

where Ft is the tip forces and b is the stacked up spatial bias forces. The definition of

spatial bias forces acting on link k is given as bk =
[
(ω̂kIkωk)T (mkω̂

2
k�k,c)T

]T
. We

obtain the applied torques if we project (2) onto the axis of motion. T = HT f . Finally,
we get the equation of motion as

T = Mθ̈ + C + J TFt (3)

where M �
= HTφTMφH and C

�
= HTφTMφa + HTφT b. A linear operator S is

constructed by reordering the rows of an identity matrix to rearrange the joint space
into four subspaces; base, actuated joints, free joints and flexible joints. When we apply
this operator to (3)

SMS−1Sθ̈ + SC + SJ TFt = ST (4)
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m1 m2

m3 m4

] [
θ̈1
θ̈2

]
+
[
C1

C2

]
+
[
J T

1

J T
2

]
Ft =

[
T1

T2

]
(5)

Let θ1 include base, actuated and free joint angles and θ2 represent flexible joint
angles. Then, T2 is the torques (or forces) generated by the joint flexibility.

T2 = −dθ̇2 − kθ2 (6)

where d and k are diagonal matrices representing spring and damper characteristics,
respectively. Substituting (6) in (5) we get,

m1θ̈1 +m2θ̈2 + C1 + J T
1 Ft = T1 (7)

m3θ̈1 +m4θ̈2 + dθ̇2 + kθ2 + C2 + J T
2 Ft = 0 (8)

θ̈1 can be solved from (7).

θ̈1 = m−1
1 (T1 −m2θ̈2 − C1 − J T

1 Ft) (9)

When (9) is substituted in (8), we get

M̄θ̈2 + dθ̇2 + kθ2 + C̄ + J̄ TFt = BT1 (10)

where M̄ �
= m4 −m3m

−1
1 m2, C̄

�
= C2 −m3m

−1
1 C1, J̄ �

= J2 − J1m
−1
1

T
mT

3 ,

B
�
= −m3m

−1
1 . The system can be reduced from second order to first order differential

equation as follows.

MsẆ +DsW + Cs + J T
s Ft = BsT1 (11)

where

W =
[
θ2
θ̇2

]
Ms =

[
I 0
0 M̄

]
Ds =

[
0 −I
k d

]

Cs =
[

0
C̄

]
Js =

[
0
J̄

]
Bs =

[
0
B

]
Defining

Ts
�
= BsT1 − Cs (12)

equation (11) becomes
MsẆ +DsW + J T

s Ft = Ts (13)

2.1 Dynamics of General Underactuated Cooperating Manipulators

Joint accelerations can be written as the sum of so called free accelerations and correc-
tion accelerations.

θ̈(T̄ , Fs) = θ̈(T̄ , 0)︸ ︷︷ ︸
θ̈f

+ θ̈(0, Fs)︸ ︷︷ ︸
θ̈δ

(14)
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Free accelerations, θ̈f , are nothing more than joint accelerations when the closed
loops are cut. For such case, equation (13) becomes

MsẆ
f +DsW

f = Ts (15)

This approximately yields the solution as

Ẇ f = M−1
s Dse

−M−1
s Ds(t−to)D−1

s MsẆo

W f = −e−M−1
s Ds(t−to)D−1

s MsẆo +D−1
s Ts

(16)

where

D−1
s =

[
k−1d k−1

−I 0

]
θ̈f
2 =
[
0 I
]
Ẇ f (17)

θ̈f
1 = m−1

1 (T1 −m2θ̈
f
2 − C1) (18)

θ̈f = S−1

[
θ̈f
1

θ̈f
2

]
(19)

3 Neural Network Controller

A three-layer feedforward Neural Network (NN) with a sigmoid function and bias units
is considered. Equation (20) defines the input output relationship of the NN

h(x) = UT
2 σ(UT

1 x) (20)

where x is the input vector, σ(·) is the sigmoid function, U1 is the weight matrix be-
tween input and hidden layers, and U2 is the weight matrix between hidden and output
layers.

The NN will be used as the approximation of the inverse dynamics model of the sys-
tem which is cooperating manipulators. We need to start with the kinematic constraints
of the system to determine its dependent joint variables.

3.1 Dependent Joint Variables

As introduced in Equation (??),Ac is the constraint matrix in the form of a link Jacobian
propagating the velocity of the center of mass of the common load to the tip velocities
of the cooperating manipulators . Therefore we can write

AcVc = J θ̇ ⇒ ÃcJ θ̇ = 0 (21)

where Ãc is the annihilator of Ac. Equation (21) implies that θ̇ has to lie in the null
space of ÃcJ . Let Sc be a linear operator rearranging the basis of the joint space so
that dependent joints in terms of kinematics can be separated from the independent
ones.

ÃcJ S−1
c =

[
Eind Edep

]
Scθ̇ =

[
θ̇ind

θ̇dep

]
(22)
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The correct choice of Sc can be checked that Edep should be full rank. Consequently,
the dependent joint rates can be written in terms of the independent ones.

θ̇ = L θ̇ind where L = S−1
c

[
I

−Edep−1
Eind

]
(23)

3.2 NN in Control

The methodology provided here is based on [7] in general. Let the independent joint
position tracking error e, filtered position tracking error s, and the reference trajectory
θr be defined as

e
�
= θind − θind

d

s
�= ė+ Λe

θr
�
= θind

d − Λe

where θd is the desired trajectory in the joint space and Λ > 0 . Now we will define the
input vector for the NN.

x =
[
eT ėT θindT

d θ̇indT

d θ̈indT

d

]T
The output function of the NN is written as

h(x) = MLθ̈r + C1θ̇r (24)

where C1 = CL+ ML̇.
Weight update strategy and discussion about robustness can be found in [7]. Here it

will be provided just for the convenience.

˙̂
U1 = −K1xÛ

T
2 σ̂

′(Ls)T − kvK1||Ls||Û1 (25)
˙̂
U2 = −K2(σ̂ − σ̂′ÛT

1 x)(Ls)
T − kvK2||Ls||Û2 (26)

where σ̂ = σ(ÛT
1 x), K1 and K2 are positive definite and symmetric matrices. The

initial values of the weights are chosen as zero. The control signal u is

u = h(x) − kmLs+ ν (27)

where km is a positive definite constant and ν is the term that guarantees robustness.

ν(t) = −kz(||Z||F + ZM )s (28)

where Z = diag(U1, U2).
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4 Conclusion

Neural network based control with a computationally high performance algorithm for
the dynamical modeling of general underactuated systems has been studied. A robust
neural network is used as the controller. The main contribution of this paper is to demon-
strate how the dynamical algorithm can be incorporated with this controller. Because
the tracking error is always guaranteed to stay bounded, the closed loop system remains
stable through out on-line learning phase with weights starting from zero initial condi-
tion. Due to page limitations, we limited our focus to demonstrate just the theoretical
part of this study.
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Abstract. In this paper, a design methodology for enhancing the stability of hu-
manoid robots is presented. Fuzzy Q-Learning (FQL) is applied to improve the
Zero Moment Point (ZMP) performance by intelligent control of the trunk of
a humanoid robot. With the fuzzy evaluation signal and the neural networks of
FQL, biped robots are dynamically balanced in situations of uneven terrains. At
the mean time, expert knowledge can be embedded to reduce the training time.
Simulation studies show that the FQL controller is able to improve the stability
as the actual ZMP trajectories become close to the ideal case.

1 Introduction

From the literature, the concept of Zero Moment Point (ZMP) has been actively used
to ensure dynamic stability of a biped robot [1],[2]. The ZMP is defined as the point on
the ground about which the sum of all the moments of the active forces is equal to zero.
If the ZMP is within the convex hull of all contact points between the feet and ground,
the biped robot is possible to walk. Hereafter, this convex hull of all contact points is
called the stable region. As off-line predefined trajectories are not suitable for uncertain
environment and uneven terrains, dynamic online control is requested. For humanoid
robots, design of appropriate control laws in unstructured environments with uncertain-
ties is very important. A number of researchers have been paying attention to intelligent
methodologies, such as Artificial Neural Networks [3], Fuzzy Systems [4] and other AI
algorithms, e.g. GA [5]. In [5], the author utilized fuzzy reinforcement learning based
on Generalized Approximate Reasoning for Intelligent Control (GARIC) and achieved
good dynamic balance control of a biped robot. Compared with the Actor-Critic method
applied in [5], Q-Learning of [6] is a type of off-policy reinforcement learning and it
is a method that learns action-value functions and determines a policy exclusively from
the estimated values. Q-learning is one of the most important breakthroughs in Rein-
forcement Learning (RL) and it dramatically simplifies the analysis of the algorithm
and enables early convergence proofs. In this paper, Fuzzy Q-learning (FQL) has been
proposed to improve humanoid robot’s stability and robustness of walking through un-
certain terrains by intelligent trunk control.

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 216–221, 2005.
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2 Gait Synthesis for a Humanoid Robot

There is no unique solution for the biped dynamic balance control problem. Any tra-
jectory through the state space (with constraints) that does not result in a failure is
acceptable. To synthesize the biped walking motion, it is required to take a workspace
variable p based on the ZMP criterion and the motion trajectory for p(t) can be obtained
by solving a dynamic optimization problem. Therefore, we can view the biped motion
control problem as minimizing the following performance index∫ tf

ti

‖Pzmp(t) − P d
zmp‖2dt (1)

subject to the boundary conditions of both p(t) and ṗ(t) at initial time ti and final time
tf , where Pzmp is the actual ZMP and P d

zmp is the desired ZMP position. One control
objective pertaining to gait synthesis for the biped dynamic balance can be described as
follows:

Pzmp = (xzmp, yzmp, 0) ∈ S (2)

where (xzmp, yzmp, 0)is the coordinate of ZMP with respect to O−XY Z and S is the
domain of the supporting area. In order to make the biped dynamic balancing problem
a tractable one, dynamic balancing in the sagittal and frontal planes is considered to
be independent. Instead of using scalar critical signal r(t), a fuzzy evaluation R(t) is
considered for this reinforcement learning [5].

3 Fuzzy Q-Learning

3.1 FIS Structure of Q-Learning

FQL is an extension of the original Q-learning proposed in [6] that tunes FIS conse-
quents. This method is essentially based on a state evaluation function that associates a
value with each state, indicating the state quality with respect to the task. The architec-
ture of the FQL is based on extended ellipsoidal basis function (EBF) neural networks,
which are functionally equivalent to TSK fuzzy systems [7]. If the output linguistic vari-
ables of a Multi-Input Multi-Output (MIMO) rule are independent, a MIMO FIS can be
represented as a collection of Multi-Input Single-Output (MISO) FISs by decomposing
the above rule into m sub-rules with Gk, k = 1, 2, ...m as the single consequent of the
kth sub-rule [8]. The structure of the FQL following our previous work [9] is shown in
Figure 1.

Let n denotes the number of inputs. Each input variable xi (i = 1, 2, ..., n) has l
membership functions. Layer one transmits values of the input linguistic variable xi,
i = 1, 2, ...n to the next layer directly. At the mean time, layer two evaluates member-
ship functions (MF) of the input variables. The MF is chosen as a Gaussian function of
the following form:

μij(xi) = exp[− (xi − cij)2

σ2
ij

] i = 1, 2...n, j = 1, 2..., l (3)
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Fig. 1. Structure of fuzzy Q-learning

where μij is the jthmembership function of xi and cij and σij are the center and width
of the jth Gaussian membership function of xi respectively. Layer three is a rule layer.
The number of nodes in this layer indicates the number of fuzzy rules. If the T-norm
operator used to compute each rule’s firing strength is multiplication, the output of the
jth rule Rj(j = 1, 2, ...l) in layer 3 is given by

fj(x1, x2, ..., xn) = exp[−
n∑

i=1

(xi − cij)2

σ2
ij

] j = 1, 2, ..., l (4)

Normalization takes place in layer 4 and we have

αj =
fj∑l
i=1 fi

j = 1, 2, ..., l (5)

Lastly, nodes of layer five define output variables. If the Center-Of-Gravity (COG)
method is performed for defuzzification, the output variable, as a weighted summation
of the incoming signals, is given by

y =
l∑

j=1

αjωj (6)

where y is the value of the output variable and ωj is the consequent parameter of the jth
rule which is defined as a real-valued constant.

Due to page limitation, details of FQL will not be presented here. Instead, readers
may refer to [9] for details. The neural network approximates the optimal evaluation
function corresponding to the current state and FIS by using the optimal local action
quality defined at time step t. Then, it computes the TD error and uses it to tune the
parameter vector q based on the eligibility trace. It elects local actions based on the
new vector qt+1 and computes the global action Ut+1(Xt+1) according to the new FIS.
After that, it estimates the new evaluation function for the current state with the new
vector qt+1 and the actions are effectively elected. Finally, it updates the eligibility
trace, which will be used for parameter update at the next time step. Eligibility trace
values need to be reset to zeros at the end of each episode.
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4 Trunk Intelligent Control

As described in the section before, the neural network has 5 layers. There are two inputs
in Layer 1 and 10 units in Layer 2 (there are five antecedent labels, negative medium
(NM), negative small (NS), zero (ZE), positive small (PS), and positive medium (PM)
for each input). There are 25 units in Layer 3 (the number of balancing rules), 7 units
in Layer 4 (there are 7 consequent labels, negative big (NB), negative medium (NM),
negative small (NS), zero (ZE), positive small (PS), positive medium (PM), and positive
big (PB) for the output). For Layer 5, there is only one output unit to compute the desired
control action. The learning algorithms described before are used to update the values
of the parameters. With initial expert knowledge embedded, the Q-value of the selected
action a is initialized to a fix value kq , while all the other values are given random
values according to a uniform distribution in [0, kq/2]. On the other hand, without any
prior knowledge, Q-values of all actions are initialized to zero or some random values.
The terms ΔPzmp and ΔṖzmp that refer to the distance between Pzmp and P d

zmp and
the rate of distance change correspondingly are to be applied as inputs of the controller
here. For FQL, intuitive balancing knowledge based on 25 fuzzy rules is presented in
Table 1.

Table 1. Fuzzy rules for biped dynamic balancing

ΔṖzmp

NM NS ZE PS PM
NM PB PB PM PS ZE

ΔPzmp NS PB PM PS ZE NS
ZE PM PS ZE NS NM
PS PS ZE NS NM NB

5 Simulation Results

In this section, the FQL-based biped dynamic balance control method is applied to the
simulated humanoid robot as shown in Figure 2.

We set the walking step length, Ds = 40cm, Hao = 16cm,Lao = 25cm, and
walking cycle=2 ∗ Tc = 1.8s (a walking cycle consists of two steps), and the double-
support phase=Td = 0.15s. The details in parameter setting are listed in Table 2.

In order to demonstrate the ability of biped walking on uneven terrains, white noise
of zero mean is injected into the ground. An ideal ZMP trajectory was chosen as the
reference so as to show improvement due to the FQL controller. Simulation results

Table 2. Robot’s parameters

Lhip Lthigh Lshank Lan Laf Lab
Length(cm) 40 40 50 5 10 10
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Fig. 2. The link structure of the humanoid robot

Fig. 3. Simulation results of ZMP performance before and after training

before and after reinforcement learning are shown in Figure 3. The results show that
the stability of humanoid robots can be improved as the ZMP trajectories become very
close to the ideal case.

6 Conclusion

Dynamic biped balance control using FQL is proposed in this paper. This FQL agent
can form the initial gait from fuzzy rules obtained from expert knowledge, and then
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accumulate on-line reinforcement learning. Simulation results show that with the pro-
posed FQL, much better ZMP stability can be achieved. This FQL controller can take
the advantage of both human being’s knowledge and training capability. Thus, the pro-
posed intelligent control approach achieves very good performance for humanoid robots
walking on uneven terrains.
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Abstract. Performance of a neural network-based control scheme is investigated
for uncalibrated robotic hand-eye coordination system. Since the conditions for
offline modelling with neural network are normally different from those for on-
line control, unmodeled dynamics is inevitable and should be compensated by
controller design. We analyze the system’s tracking error and stability with a dis-
crete system model under a PI visual servoing controller, taking account of robot
dynamics and image processing delays. The internal model principle is adopted
to arrive at a feedforward compensator to enhance system performance.

1 Introduction

The Image Jacobian Matrix (IJM) model has widely been adopted in the study of un-
calibrated robotic hand-eye coordination [1]. It is used to directly relate system errors
observed in image plane to system control in robot coordinate system [2], irrespective
of the globally nonlinear hand-eye relations that are practically very difficult to obtain.
Researches show that performance of the hand-eye coordination system is mainly de-
termined by how fast and how accurate the IJM is estimated online [3]. Among all
approaches, the neural network has been shown an effective tool to implement IJM
model in terms of reducing online computation expenses with offline training [4][10].
However, the conditions under which the neural network is trained offline are normally
different from those that the neural network is used for online control[5][6]. There exit
modelling errors, or modelling uncertainties that may not be negligible for achieving
superb performance.

Researches in uncalibrated robotic visual servoing have been focusing on coordina-
tion strategy and controller design [7]. Less attention is paid for systematic analysis of
performance of an uncalibrated hand-eye coordination system [8]. This paper highlights
performance analysis of the uncalibrated robotic hand-eye coordination system in terms
of system modelling errors from neural network realizations of IJM. System tracking
errors and system stability are elaborated with the help of its root locus plot. Then, the
well-known internal model principle is incorporated to design a compensatory feedfor-
ward controller. In [9], the internal model controller is used to deal with the tracking
problem on a two-degree-of-freedom control system with feedback and feedforward
controller. In this paper, we will show its applications in robotic visual servoing prob-
lem together with PI visual controller to deal with system’s uncertain dynamics from a
neural network model.

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 222–227, 2005.
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A discrete system model is adopted for analysis in Section 2, by taking account of
robotic dynamics and delays from image processing. The static tracking error and the
system stability are investigated in Section 3 and Section 4. A feed-forward controller
is consequently suggested in Section 5 with internal model principle. Simulations are
provided in Section 6 to demonstrate effectiveness of the proposed method.

2 The Discrete System Model

For the eye-in-hand configuration, motions of the camera and the robot hand are cou-
pled, which arises great difficulty for IJM estimation. If the IJM is realized by neural
network, an offline training procedure is required. Since the object motions are random
and not easy to measure, training data are always accumulated under the condition that
the object is static. Therefore, no matter how accurate the neural network is converged
after training, there exist modelling errors when used in online control.

Fig.1 shows the structure diagram of the whole coordination system to track a 2-D
moving object. System error is obtained from visual feedback by comparing the desired
positions with the true positions of the robot hand in image plane, and then divided
by motion planner to robotic control periods to serve as inputs to the trained neural
network, by which the control signals to robot system are generated. The immeasurable
object motion is treated as the external disturbance to the system control.

 

Motion 
Planner 

Neural 
Networks 

Robot 
Controller Robot Image 

Processing 

x*, y* u’
h, v’

h 

xh, yh 

uh, vh 

Object Motion 

Fig. 1. Control structure of the hand-eye coordination system with neural network realization of
IJM.

Since the control of the whole system is in discrete form in the sense of visual
sampling and robot control, we analyze the system performance with a discrete model.
Fig. 2 illustrates control diagram of the system with discrete models, in which, D(z)
denotes visual controller to generate velocity control to the robot from position errors
of robot hand and object in image plane. I(z) = z/(z − 1) is an integral function to
transform velocities to positions. M(z) is the combined effect of the neural network,
robot dynamics and camera imaging model. Without loss of generality, we only take
control in the u direction of image plane as an example to analyze the system model.
Then D(z) can be expressed as

D(z) = Kp +Ki
z

z − 1
= (Kp +Ki)

z −Kp/(Kp +Ki)
z − 1

, (1)
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Fig. 2. System diagram of the uncalibrated robotic hand-eye system.

if a PI control law is adopted for visual controller. After a conventional system identifi-
cation by the step response[5],[6],M(z) can be described by a second-order system

M(z) = (1 + ex)
(1 − a)(1 − b)z−d+1

(z − a)(z − b)
, (2)

where ex denotes the extent of the neural network to be trained. If the neural network
is sufficiently trained, ex could be the Gaussian white noise. d is the time delay from
image processing.

3 Tracking Error Analysis

It is easy to see that if the object is static, then the static error of the system is always
zero, no matter whether the neural network is sufficiently trained or not.

If the object is moving, i.e., uo is not zero, the tracking error is

E(z) =
uo(z)I(z)

1 +D(z)M(z)I(z)
, (3)

where uo(z) is the z transformation of the object motion in u direction in the image
plane. If the object is moving linearly, i.e.,

uo(z) = Ko
z

z − 1
, (4)

then the static tracking error is

e(∞) = lim
z→1

(z − 1)E(z) = 0. (5)

If the object is moving with an acceleration, i.e.,

uo(z) = Ko
z

(z − 1)2
, (6)

then the static tracking error is

e(∞) =
Ko

(1 + ex)Ki
	= 0. (7)

The error is closely related to the integration parameterKi, as well as the object moving
parameter Ko. The larger the Ki is, or the smaller the Ko is, the smaller the tracking
error will be. This agrees with commonsense of physical observations and controller
design.
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4 System Stability

We analyze the system performance via root locus of the system in terms of system gain
K (K = Kp + Ki), which is shown is Fig. 3 . It is clear in Section 3 that the system
error can be reduced by increasing integration gain of the PI controller. However, if the
system gain is too large, the system may have poles outside the unit circle in z plane,
which means the system is unstable. Moreover, it is well known that the system may
have a transient process for error convergence with large oscillations when the system
poles are near unit circle in z plane. Fig. 4 shows this phenomena by the examples of
tracking a linearly moving object (shown in Fig. 4(a)) and a sinusoidally moving object
(shown in Fig. 4(b)).

A PID controller can also be adopted for system controller. But research shows that
the system error is not decreased dramatically by adding differentiation part, yet the
system stable region is enlarged. System features under other controllers are still under
investigations.

5 A Compensatory Feedforward Controller

To decrease the system’s static error and keep the system stable, we design a feed-
forward controller by using acceleration signal. This is motivated by [9], in which the
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Fig. 3. Root locus under PI controller in terms of controller gain.
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Fig. 4. Tracking errors for the system with PI controller.
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internal model controller was utilized for a dynamic tracking problem in association
with a feedback controller.

The controller diagram is shown in Fig. 5, in which DF (z) is the feedforward con-
troller based on object acceleration in the image plane. Since the dynamics of the object
is not known, the acceleration of the object can only be estimated online. Practically, an
ARMAX model is acknowledged with a least-square iterative algorithm.

 

D(z) M(z) I(z) 

x*, y* 

+
- 

uo, vo 
uc, vc u', v’ xh, yh 

DF(z) 

Fig. 5. System diagram with feed-forward controller.

The feedforward controller is implemented by an AR model with the following
form:

DF (z) = KF
1

A(z−1)
, (8)

A(z−1)Δuo(k − 1) = [u(k) − u′(k − 1)] + ξ(k), (9)

whereA(z−1) = 1+a1z
−1+· · ·+amz

−m, and ξ(k) is the system noise. A least-square
iterative procedure is also incorporated here to solve the above problem.

Simulation results with the feedforward controller of (8)∼(9) are illustrated in Fig.
6, in which Fig.6(a) is the tracking error for a linearly moving object and Fig. 6(b) is for
a sinusoidally moving object. Here, we choose m = 6 for the AR model. Comparing
Fig. 6 with Fig. 4, it is easy to learn that the transient tracking process with the feed-
forward controller is smoothed with smaller overshoot at the beginning. In addition, the
system tracking errors have been suppressed by half at the stable tracking stages with
faster adjustment time, which exhibits the effectiveness of the proposed controller.

6 Conclusions

This paper investigates the performance of a calibration-free robotic hand-eye coordi-
nation system with neural network to realize the image Jacobian matrix model. The
eye-in-hand system configuration is considered and a 2-D tracking task is instantiated
to show the system control under the PI control law. The system performance is ex-
plored with the discrete model. The root locus of the system is exhibited, on which the
system stability is discussed in details in terms of the gain of the PI controller. Based
on the internal model principle, a feedforward controller is proposed to suppress effects
of the system modelling uncertainties on system control from the neural network real-
ization of IJM model. With the proposed feedforward controller, the system’s tracking
errors are reduced and the system stability is retained, which primarily demonstrates
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Fig. 6. Tracking errors for the system with feedforward controller as compensations.

potentials of the internal model principle in the field of visual servoing control for an
uncalibrated robotic hand-eye coordination system.

Future work lies in that the proposed feedforward controller should be verified in
experiments. Moreover, how to utilize the internal model controller to compensate other
kinds of visual servoing controller in dealing with system modelling uncertainties, and
thus demonstrate extensive applications of it in visual servoing problem is absolutely a
more exciting topic.
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Abstract. Due to the limitations of sensors, each member of a decentralized sys-
tem can only deal with local information respectively. A description of local re-
lationship within formation pattern is proposed in this paper. Furthermore, a NN
control approach with robust term is proposed to control individual motion. By
using such individual control method, all robots will finally form a unique forma-
tion. Based on properties of such control strategy, we propose a modified artificial
potential approach to realize obstacle avoidance.

1 Introduction

Formation task achieved by multiple robots is a hot research topic in recent years. Given
a predetermined relationship among robots, the issue of how to make all robots form a
certain order in parade is investigated. Regarding to related work, supposed that there
was a predetermined leader for coordination, a control law was provided to make a
group of nonholonomic robots keep a certain formation [1]. A behavior-based approach
was presented to formation maneuvers for groups of mobile robots [2]. To use a quanti-
tative value to estimate the performance of formation, LFS(leader-to-formation stabil-
ity) was proposed [3]. Usually keeping a formation can be regarded as a kind of track-
ing trajectory that robot should track a moving referenced point determined by other
robots. We deal with a practical situation that with parameter uncertainty and bounded
perturbations, how to use NN control strategy [4] to make robots form regular forma-
tion. Based on the properties of control law, we provide a modified artificial potential
approach to realize obstacle avoidance.

2 Description of Formation

The key issue on formation task is how to describe the formation pattern. We propose
following definitions:

Leaders-Follower Cell: If robot i follows a reference point which results from posi-
tions of a set of robots, this set is defined as leaders set of robot i, denoted by Ωi. Then
the combination of robot i and all robots in Ωi are called as leaders-follower cells. The
reference point can be expressed as pd

i =
∑

j∈Ωi
Sij(pj +Dd

ij), where p = [x y ]T ,
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Dd
ij represents the ideal distance between robot and each leader, S = {Sij} is a projec-

tion vector. It holds that
∑

j∈Ωi
Sij = 1.

Formation: A formation is defined as a combination of a group of leaders-follower
cells. Leaders of one cell can be followers of other cells. The robot that only plays the
role of leader is the leader of the formation.

Leader-to-Follower Link: In a leaders-follower cell, the relationship between a leader
and the follower is defined as a leader-to-follower link whose direction is from leader
to follower.

Link Between Two Robots: Between two arbitrary robots, if there exist a set of leader-
to-follower links that form one and only one directional link connecting these two
robots, we call it as a link between two robots. The number of leader-to-follower links
contained in the link is defined as the size of the link.

Fig. 1 shows an example of formation. There are three leaders-follower cells and
four leader-to-follower links. For example, robot 4 has two leaders, robot 2 and 3. Then
robot 2, robot 3 and robot 4 form a leaders-follower cell.

Fig. 1. Sample of formation pattern.

3 Individual Control Strategy

3.1 Dynamic Description for Individual Robot

Robot used in the formation is a kind of car-like robot with nonholonomic constraints
ẋ sin θ − ẏ cos θ + dθ̇ = 0. Since we just concern the position of robot denoted by
p = [x y ]T , the dynamics can be expressed as:

M0T p̈+M0Ṫ ṗ = STBτ − τ̄d. (1)

where T =
[

cos θ sin θ
− sin θ cos θ

]
, M0 =

[
m 0
0 I

d

]
, S(q) =

⎡⎣ cos θ −d sin θ
sin θ d cos θ

0 1

⎤⎦, τ̄d rep-

resents unmodeled structure of dynamics. d represents the distance between mass center
and central point between two driving wheels.

3.2 Neural Network Controller
We adopt a modified reference point:

pd
i = λ

∑
j∈Ωi

Sij(pj +Dd
ij) + (1 − λ)pi, (2)

where λ is a positive scaling factor. pi is coordinate of robot i’s leader.
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We define the relative position error as ei = pi−pd
i = λ

[
pi−
∑

j∈Ωi
Sij(pj+Dd

ij)
]
.

A filtered error is zi = ėi +Λei. If define ṗr
i = ṗd

i −Λei, then, zi = ṗi − ṗr
i . We define

a new error z̃i = Tizi. Then equation (1) is transformed to

M0
˙̃zi = STBτi − M̄ip̈

r
i − V̄iṗ

r
i − τ̄id. (3)

Because it is difficult to get M̄i, V̄i, τ̄id directly, we use an adaptive neural network
to model M̄ip̈

r
i + V̄iṗ

r
i + τ̄id on-line. To simplify the denotation, we omit the subscript

i. We suppose that there exists a two-layer feedforward NN, f(Xi) = M̄ip̈
r
i + V̄iṗ

r
i =

WTσ(V TX)+ε, whereXi = [ ṗi θi p̈r
i ṗr

i ]T , V ∈ RNi×NH andW ∈ RNH×NO

represent the input-to-hidden-layer interconnection weights and the hidden-layer-to-
outputs interconnection weights, ε is the NN functional approximation error. We con-
struct a NN function f̂(X) = ŴTσ(V̂ TX) to estimate f(X), where Ŵ and V̂ are
estimates of NN weights. The estimated errors are defined as f̃ = f− f̂ , W̃ = W −Ŵ ,
Ṽ = V − V̂ , σ̃ = σ − σ̂ = σ(V TX) − σ(V̂ TX).

We propose the following input-output feedback linearization control law and adap-
tive backpropagation learning algorithm as individual control strategy:

τ = (STB)−1(ŴTσ(V̂ TX) −Kz̃ + γ), (4)

˙̂
W = F σ̂′V̂ TXz̃T − F σ̂z̃T − κF‖z̃‖Ŵ
˙̂
V = −GX(σ̂′T Ŵ z̃)T − κG‖z̃‖V̂

, (5)

whereK = diag{k1, k2} in which k1 and k2 are positive, γ is a robust control term ex-

pressed as γ =

{
−Kr(‖Ŷ ‖F + YM )z̃ − J z̃

‖z̃‖ , ‖z̃‖ 	= 0
−Kr(‖Ŷ ‖F + YM )z̃, ‖z̃‖ = 0

to suppress τ̄d and ε, where

J andKY are positive. F andG are positive definite design parameter matrices govern-
ing the speed of learning. Substituting control law and f(X) into equation (3), adding
and subtractingWT σ̂ and ŴT σ̃ respectively, we have

M0
˙̃z = −Kz̃ − W̃T (σ̂ − σ̂′V̂ TX) − ŴT σ̂′Ṽ TX + s+ γ, (6)

where s(t) = −W̃T σ̂′V TX −WTO(Ṽ TX) − τ̄d + ε.
A Lyapunov function is defined as

L =
1
2
[z̃TM0z̃ + tr{W̃TF−1W̃} + tr{Ṽ TG−1Ṽ }]. (7)

Differentiating equation (7) and substituting equation (6) into its derivative, yields

L̇ = −z̃TKz̃ + κ‖z̃‖tr{W̃T (W − W̃ )} − κ‖z̃‖tr{Ṽ T (V − Ṽ )} + z̃T (s+ γ). (8)

We define Y = diag{W,V }, Ŷ = diag{Ŵ , V̂ }, and Ỹ = Y − Ŷ . It holds that,
tr{Ỹ (Y −Ỹ )} = 〈Ỹ , Y 〉F −‖Ỹ ‖2

F ≤ ‖Ỹ ‖F ‖Y ‖F −‖Ỹ ‖2
F , and ‖s‖ ≤ c0+c1‖Ỹ ‖F +

c2‖Ỹ ‖F ‖z̃‖ [5]. If we take KY > c2, J ≥ κC2
3

4 + c0,

L̇ ≤ −Kmin‖z̃‖2 + κ‖z̃‖(‖Ỹ ‖F ‖Y ‖F − ‖Ỹ ‖2
F ) −KY (‖Ŷ ‖F + YM )‖z̃‖2

+‖z̃‖(c0 + c1‖Ỹ ‖F + c2‖Ỹ ‖F ‖z̃‖) − J‖z̃‖
≤ −‖z̃‖

[
Kmin‖z̃‖ + κ

(
‖Ỹ ‖F − C3

2

)2] ≤ 0.
(9)
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where YM is the bound of ideal weights, and C3 = YM + c1
κ . According to LaSalle’s

principle, the system must stabilize to the invariant set {z̃ | V̇ = 0}, where z̃ = 0. Since
zTM0z = z̃TM0z̃, the invariant set can also be expressed as {z | V̇ = 0}, where z = 0.

Furthermore, e and ė converge to zero too. Since ei = λ
[
pi −

∑
j∈Ωi

Sij(pj +Dd
ij)
]

and λ > 0, we can conclude that in the end pi =
∑

j∈Ωi
Sij(pj + Dd

ij). Therefore
the NN control law with robust term can make robot follow reference points shown in
equation (2) without too much errors.

4 Performance of Formation

Every leader j in equation (2) except for the formation’s leader can be expressed as
pj = ej + pd

j = ej + λ
∑

k∈Ωj
[Sjk(pk + Dd

jk)] + (1 − λ)pj . Substituting it into
equation (2) and considering that for arbitrary robot l,

∑
m∈Ωl

Slm = 1, we can rewrite
the expression of robot i’s reference points as

pd
i = λ

(
p0 +

∑
k∈Ξi

bkD
d
ik

)
+
∑
j∈Ψi

ajej + (1 − λ)pi, (10)

where Ψi represents the set whose elements are robots on the links between the leader
of formation and robot i, p0 is the position of the formation’s leader. aj , bk are constant
coefficient matrices. We define a new error p̃i = λ

[
pi −

(
p0 +

∑
k∈Ξi

bkD
d
k

)]
, and

the filtered error r = ˙̃pi + Λp̃i. Then we have zi = ri −
∑

j∈Ψi
aj ėj − Λ

∑
j∈Ψi

ajej .
Substituting into (6), we have

M0
i
˙̃ri = −Kir̃i − W̃T

i (σ̂ − σ̂′V̂ T
i Xi) − ŴT

i σ̂
′Ṽ T

i Xi + si + γi + ui, (11)

where r̃i = Tiri, ui = Ti

∑
j∈Ψi

aj ëj +(TiΛi+ Ṫi+KiTi)
∑

j∈Ψi
aj ėj +(Ṫi+KiTi)·

Λi

∑
j∈Ψi

ajej . If ‖Ti‖, ‖TiΛi + Ṫi +KiTi‖ and ‖(Ṫi +KiTI) ·Λi‖ are bounded, there
exists a positive value uM

i so that ‖ui(t)‖ ≤ uM
i . Since ∀j ∈ Ψi, limt→∞ ej = 0,

therefore limt→∞ ‖ui(t)‖ = 0. We define a positive differentiable function as

L =
1
2
[
(T̄R)T M̄(T̄R) + tr{ ˜̄W

T
F̄−1 ˜̄W} + tr{ ˜̄V

T
Ḡ−1 ˜̄V }

]
, (12)

where T̄ = diag{Ti}, M̄ = diag{M0
i }, ˜̄W = diag{W̃i}, ˜̄V = diag{Ṽi}, F̄ =

diag{Fi}, Ḡ = diag{Gi}, i = 1, · · · , N . Because M̄ , F̄−1, Ḡ−1are diagonal positive

defined matrix, it must be held that, α1(R, ˜̄W, ˜̄V ) ≤ L ≤ α2(R, ˜̄W, ˜̄V ), where α1(·),
α2(·) are class K functions. Differentiating L yields,

L̇ ≤ −‖R̃‖
(
K̄min‖R̃‖ − ‖U‖

)
−

N−1∑
i=0

κ‖r̃i‖
(
‖Ỹi‖F − C3

2
)2
, (13)

where R̃ = T̄R, U = [ 0 u2 · · · uN ]T . We can not guarantee that ∀t > 0,

K̄min‖R̃(t)‖ ≥ ‖U(t)‖. But since limt→∞ ‖U‖ = limt→∞
(∑N

i=2 ‖ui‖2
)0.5 = 0,
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there must exist TM so that ∀t ≥ TM , K̄min‖R̃(t)‖ ≥ ‖U(t)‖. Therefore we can

find a class K function α3(·) such that L̇ ≤ −α3(R, ˜̄W, ˜̄V ). According to the theo-
rem of input-to-state stability [6], there exist a class KL function β(·) and a class K
function γ(·), which make solution R̃(t) satisfy ‖R̃(t)‖ ≤ β(‖R̃(TM )‖, t − TM ) +
γ(supTM≤τ≤t ‖U(t)‖). When t → ∞, It reduces to ‖R̃(t)‖ ≤ β(‖R̃(TM )‖, t− TM ).
It’s easy to prove that ‖R(t)‖ = ‖R̃(t)‖. Therefore robot 2 to robot N will follow
the reference points p0 +

∑
k∈Ξi

bkD
d
k. Fig. 2 shows the result of formation simula-

tion, whose pattern is shown in Fig. 1. We assume robot’s size is 0.14 × 0.08, and
‖τd‖ ≤ 0.005. Robot 1 follows a path described as yd = 0.8sin(πxd). The NN has a
hidden-layer including 40 nodes.

(a)

yexe
ye xe

ye
xe

(b)

Fig. 2. Simulation result.

5 Obstacle Avoidance of Formation

We use artificial potential principles to modify the coordinate of referenced point to
realize obstacle avoidance. The reference point pd

i =
∑

j∈Ωi
Sij(pj +Dd

ij) is used as
attractor. The attraction potential profile can be expressed as Uatt(pi) = 1

2λρ
2
att(pi),

where ρatt(pi) represents the distance between position of robot i and pd
i . We adopt the

FIRAS function [7] as repulsive potential profile which can be expressed as Urep(pi) =
1
2η
∑

k∈Hi

(
1

ρk(pi)
− 1

ρeff
k

)2
, where Hj is the set of obstacles in the sensor scope of

robot i, ρeff represents the sensor range, ρk(pi) is the distance between robot i and
obstacle k, η is a positive scaling factor. The reference points result from gradient of
artificial potential are

pd
i = pi + [−∇Uatt(pi) −∇Urep(pi)]

=

⎧⎨⎩
λ
∑

j∈Ωi
Sij(pj + Dd

ij) + (1 − λ)pi + η
∑

k∈Hi

[(
1

ρk(pi)
− 1

ρeff

)
1

ρ2
k
(pi)

∇ρk(pi)
]
,

ρk(pi) ≤ ρeff ,

λ
∑

j∈Ωi
Sij(pj + Dd

ij) + (1 − λ)pi, ρk(pi) > ρeff .

(14)



Formation Control for a Multiple Robotic System Using Adaptive Neural Network 233

Obviously reference points are continuous everywhere and almost differentiable
everywhere in case of ρk(pi) = ρeff . When there is no obstacle within the sensor range
of robot i, or, ρk(pi) > ρeff , the reference point is in the form of equation (2). Since
we change nothing about control strategy which is expressed in equation (4) and (5),
after the robots travel through the area of obstacles, they must reconstruct the formation
again.

Fig. 3 shows the simulation result for obstacle avoidance. It’s clearly displayed that
all robots can avoid the obstacles as shown in solid gray disks and reconstruct the for-
mation again.

Fig. 3. Simulation on obstacle avoidance.

6 Conclusion

In this paper, it has been proved that the individual control strategy based on NN can
make robots realize a formation, even if each member can only deal with local infor-
mation. Since the robot can follow the leaders without errors, an artificial potential
approach to get reference points is exploited, so that the system can avoid obstacles
without any change of individual control law.
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Obstacle Avoidance
for Kinematically Redundant Manipulators

Using the Deterministic Annealing Neural Network

Shubao Liu and Jun Wang
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Abstract. With the wide deployment of redundant manipulators in complex
working environments, obstacle avoidance emerges as an important issue to be
addressed in robot motion planning. In this paper, a new obstacle avoidance
scheme is presented for redundant manipulators. In this scheme, obstacle avoid-
ance is mathematically formulated as a time-varying linearly constrained
quadratic programming problem. To solve this problem effectively in real time,
the deterministic annealing neural network is adopted, which has the property of
low structural complexity. The effectiveness of this scheme and the real time so-
lution capability of the deterministic neural network is demonstrated by using a
simulation example based on the Mitsubishi PA10-7C manipulator.

1 Introduction

Kinematically redundant manipulators are those having more degrees of freedom
(DOFs) than required to perform a given manipulation task. The redundant DOFs can be
utilized to optimize certain performance criteria and avoid obstacles in their workspace,
while performing the given motion task [1],[2],[3],[4],[5]. Being dexterous and flexible,
redundant manipulators have been widely deployed in dynamic environments, where an
important issue to be considered is how to effectively avoid the moving objects in the
workspace of the manipulators.

Path planning, as a central task for robot control, has been widely studied under
the framework of optimization [4],[5]. We further extend the optimization model to
incorporate the obstacle avoidance. Recently, Zhang and Wang has done some work
on this area [4], but their formulation was restrictive and reduced the feasible solution
set. In this paper, the obstacle avoidance is formulated as an inequality constraint in
the framework of optimization with feasible solution set as the superset of that of the
formulation in [4].

Recurrent neural networks provide an efficient computing paradigm for online so-
lution of kinematics problem. Several network models have been proposed such as
penalty-parameter neural network [6], Lagrangian neural network [7], dual neural net-
work [3], primal-dual neural network [9], and deterministic neural network [8]. Here
the deterministic neural network is selected due to its low structural complexity.

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 240–246, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Problem Formulation

2.1 Inverse Kinematics

Consider a redundant manipulator in which the end-effector pose (position and ori-
entation) vector rE(t) ∈ Rm in Cartesian space is related to the joint-space vector
θ(t) ∈ Rn (n > m) through the following forward kinematic equation:

rE(t) = f(θ(t)). (1)

The manipulator path planning problem (also called inverse kinematics problem or
kinematic control problem) is to find the joint variable θ(t) for any given rE(t) through
the inverse mapping of (1). Unfortunately, it is usually impossible to find an analytic
solution due to the nonlinearity of f(·). The inverse kinematics problem is thus usually
solved at the velocity level with the relation

JE(θ)θ̇ = ṙE , (2)

where JE(θ) = ∂f(θ)/∂θ ∈ Rm×n is the Jacobian matrix.
For a redundant manipulator, (2) is underdetermined. That is, there are multiple

solutions for this equation. Then we can select the best solution based on some per-
formance criteria. For engineering plausibility and mathematical tractability, the norm
of velocities is often chosen as the criteria. Then the following time-varying linearly
constrained quadratic programming problem is used for online solution of manipulator
path planning problem.

minimize 1
2 ||θ̇||22 subject to JE(θ)θ̇ = ṙE . (3)

2.2 Obstacle Avoidance Scheme

For obstacle avoidance, the first step is to identify the critical point C on each link of
the manipulator by calculating/measuring the distance between obstacles and the link.
The second step is to assign the critical point C a desired velocity which directs the
vulnerable link away from the obstacle.

Critical Point Location. The critical pointC is defined as the point on the linkLwhich
is closest to the obstacle point O. As shown in Fig. 1(a) and Fig. 1(b), corresponding
to different relative positions of the obstacle and the link, there are two possible cases

O

C

Link

(a)

O

C

Link

(b)

α

˙rC

−−→
OC C

O

(c)

Fig. 1. Critical Point Location and Escape Direction
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for locating the critical point C on the vulnerable link L. Here the obstacle point O
is the representative of the obstacle object. In model-based control, the position of the
obstacle is a priori available while in sensor-based control, it is determined by synthetic
information of sensor fusion technology, e.g., utilizing vision, ultrasonic, and infra-
red sensors. The critical point C is thus derived via the online distance minimization
between the manipulator link and the obstacle object.

Equality Constraints Formulation. We want to devise a scheme to incorporate the
obstacle avoidance into the framework of optimization formulation (3). A direct thought
is to turn it into a constraint. Now let’s go into the details.

If the obstacle-link distance OC is less than the safety threshold dT , the critical
point Jacobian JC(θ) ∈ R3×n has to be calculated. Then an escape velocity ṙC ∈ R3

is derived and assigned to the critical point C, which will direct the manipulator link L
away from the obstacleO. The next step for obstacle avoidance is to treat the collision-
free criterion as the dynamic equality constraints JC(θ)θ̇ = ṙC , and thus the equivalent
QP formulation is

minimize 1
2 ||θ̇||22 subject to JE(θ)θ̇ = ṙE , JCi θ̇ = ṙCi , i = 1, · · · , p, (4)

where p is the number of critical points.
This method ensures that the manipulator moves away from the obstacle once it

enters the danger zone. But the following problems remain to be answered:

– How to determine the suitable magnitude of escape velocity ṙCi?
– Suppose that there are p critical points. If m+ p > n, the optimization problem (4)

is overdetermined, i.e., it has no solution.

Inequality Constraints Formulation. To avoid unnecessarily reducing the solution
space, the obstacle avoidance equality constraints can be replaced by inequality con-
straints. As shown in Fig.1(c), we can just constrain the direction of ṙCi in a range and
let the optimization process to determine its accurate direction and magnitude.

The shortest distance OC between the obstacleO and the link L will non-decrease,
if and only if −π/2 ≤ α ≤ π/2. The proof is easy. Because in the direction of OC, the
velocity of C is always away from O. That is, OC is always non-descreasing.

Thus the QP formulation for obstacle avoidance evolves to this form

minimize 1
2 ||θ̇||22

subject to JE(θ)θ̇ = ṙE , −π/2 ≤ αi ≤ π/2, i = 1, · · · , p. (5)

Because in the optimization formulation (5), the variable is θ̇, the obstacle avoidance
inequality constraints should be turn into the expression of θ̇. Notice that

−π/2 ≤ αi ≤ π/2 ⇐⇒ cos(αi) ≥ 0 ⇐⇒ −−−→
OiCi · ṙCi ≥ 0,

and −−−→
OiCi =

[
xCi − xOi yCi − yOi zCi − zOi

]T
,
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we can get

− π/2 ≤ αi ≤ π/2 ⇐⇒
[
xCi − xOi yCi − yOi zCi − zOi

]
JCi(θ)θ̇ ≥ 0. (6)

Denote

L(θ) :=

⎛⎝ [xC1 − xO1 yC1 − yO1 zC1 − zO1

]
JC1(θ)

· · ·[
xCp − xOp yCp − yOp zCp − zOp

]
JCp(θ)

⎞⎠ .
From (6), formulation (5) is equivalent to

minimize 1
2 ||θ̇||22 subject to JE(θ)θ̇ = ṙE , L(θ)θ̇ ≤ 0. (7)

Now let’s compare the proposed scheme with the one proposed in [4] where the
obstacle avoidance is formulated as an inequality constraint

JN (θ)θ̇ ≤ 0, (8)

where JN (θ) = −sgn(−−→OC) � JC(θ) 1. The vector-matrix multiplication operator � is
defined as u � V = [u1V1, u2V2, · · · , upVp]

T
, where column vector u := [u1, u2, · · · ,

up]T and the row vector Vi denotes the ith row of matrix V .
From (8), we can see that the direction of escape velocity is confined in the quadrant

where
−−→
OC lies, which varies with the Cartesian coordinates setted up. While in the this

proposed scheme, the direction is only required to be on the perpendicular half plane on
which side

−−→
OC lies. That is to say, half of feasible solution set is unnecessarily removed

in the scheme in [4].
While doing trajectory planning and obstacle avoidance, joint velocity bounds must

be taken into consideration. Otherwise, the optimization solution may be unreachable in
real world. Joint velocity bounds can be written as inequality constraints η− ≤ θ̇ ≤ η+.

After considering the joint velocity limits, the quadratic programming formulation
becomes this form

minimize 1
2 ||θ||22

subject to JE(θ)θ̇ = ṙE , L(θ)θ̇ ≤ 0, η− ≤ θ̇ ≤ η+.
(9)

3 Neural Network Model

Define

p(u) =
p∑

i=1

1
2
[h(Li(θ)u)]2+

n∑
i=1

1
2
[[h(ui−η+

i )]2+[h(η−i −ui)]2]+
1
2
||JE(θ)u−ṙE ||2,

where h(x) =
{

0, x ≤ 0
x, x > 0 . Then according to [8], the deterministic annealing neural

network for problem (9) can be written as

εdu
dt = −αp(u)u− (

[∑p
i=1 h(Li(θ)u)Li(θ)T

]
+ h(u− η+) − h(η− − u)

+JE(θ)TJE(θ)u− JE(θ)T ṙE),
dθ
dt = u,

(10)

1 The notations in [4] are revised to be consistent with the notations in this paper.
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where Li(θ) is the i-th row vector of L(θ), ε is a scaling parameter which controls the
convergence rate of the neural network and α is a weighting parameter.

In the deterministic annealing network, there are n neurons whereas the dual neural
network adopted in [4] will need m + n + p neurons. We can see that the structural
complexity is greatly reduced by adopting the deterministic annealing network.

From the structure of the deterministic annealing network (10), we can see that the
objective function, trajectory tacking constraint, joint and joint velocity limits and ob-
stacle avoidance are weighted to get a balance between these constraints and objective
function. When the link comes near the obstacle, the weight on obstacle avoidance can
be increased until infinity to ensure no collision. So, the deterministic annealing net-
work can be further developed as

εdu
dt = −αp̄(u)u− (

[∑p
i=1 γih(Li(θ)u)Li(θ)T

]
+ h(u− η+) − h(η− − u)

+JE(θ)TJE(θ)u − JE(θ)T ṙE),
dθ
dt = u,

(11)

where γi = γ ln(OiCi/dT ) is the weighting coefficient on obstacle avoidance and

p̄(u)=
p∑

i=1

1
2
γi[h(Li(θ)u)]2+

n∑
i=1

1
2
[[h(ui−η+

i )]2+[h(η−i −ui)]2]+
1
2
||JE(θ)u−ṙE ||2.

There are at least two advantages for this model compared with model (10). First,
the obstacle avoidance term takes effect continuously, instead of suddenly. This can
make the control variable (signal) change smoothly. In addition, the tracking accuracy
can be sacrificed for avoiding obstacles when it is impossible to avoid the obstacle while
accurately tracking the trajectory.

4 Simulation Results

In this section, the 7-DOF Mistsubishi PA10-7C manipulator is used to demonstrate
the validity of the obstacle avoidance scheme and the online solution capability of the
deterministic annealing network. The coordinates are setted up according to [2], and
the structure parameters, joint limits, and joint velocity limits can also be found there.
In the workspace there are two obstacle points, respectively [−0.0454m;−0.0737m;
0.8367m]T , and [−0.1541m;−0.0609m; 0.5145m]T . In this study, only the position
of the end-point is concerned, then m = 3 and n = 7. The safety threshold dT is
chosen as 5cm. And parameters for the deterministic annealing network are chosen as
ε = 10−6, α = 1 and γ = 10.

The desired motion of the end-effector is a circle of radius r = 20cm with the
revolute angle about the x axis π/6. The task time of the motion is 10s and the initial
joint variables θ(0) = [0;−π/4; 0;π/2; 0;−π/4; 0]T . Fig. 2 illustrates the simulated
motion of the PA10 manipulator in the 3D workspace, which is sufficiently close to the
desired one with the tracking error less than 0.6mm, as seen from Fig. 3.

The distances between obstacles and links are shown in Figs. 4, 5 and 6, where the
links always tend to move away from the obstacle once they enter the danger zone.
Fig. 7 shows the comparison between the case with and without obstacle avoidance
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scheme. Without obstacle avoidance, the link will collide with an obstacle as shown by
the dotted line in Fig. 7. But when the proposed scheme is adopted, the link will move
away from the obstacle once entering the danger zone, which can be observed from the
solid line in Fig. 7.

5 Concluding Remarks

A new obstacle avoidance scheme is proposed and its quadratic programming formula-
tion is presented. The solution to this time-varying optimization problem by the deter-
ministic annealing network is simulated with the PA10 robot manipulators. The results
show that this scheme is effective and can be performed in real time2.
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Abstract. In this paper, a novel neuro-fuzzy controller is proposed for reactive
navigation control of a mobile robot in complex environments with uncertainties.
A fuzzy logic system is designed with three behaviours: target seeking, obstacle
avoidance, and barrier following. A learning algorithm based on neural network
technique is developed to tune the parameters of membership functions, which
smooths the trajectory generated by the fuzzy logic system. Under the control of
the proposed neuro-fuzzy model, the mobile robot can preferably avoid static and
moving obstacles, and generate smooth trajectories toward the target in various
situations. The effectiveness and efficiency of the proposed approach are demon-
strated by simulation studies.

1 Introduction

In recent years, many approaches to steering mobile robots have been developed. Graph-
based methods [1] combine a graph searching technique with obstacle pruning to gen-
erate trajectory for mobile robots. These graph-based methods first need to construct
a data structure that is then used to find paths between configurations of the robot and
the target. The data structure tends to be very large, and the geometric search compu-
tation required is complex and expensive. In addition, these methods are usually used
for robot path planning only without considering the robot motion control. Artificial
potential field methods [2] are proposed to get rid of the computational complexity in
graph-based methods. These methods assume that each obstacle in the environment ex-
erts a repulsive force on the mobile robot, and the target exerts an attractive force. These
two types of forces are combined at every step and used to determine the next step robot
movement. But the algorithm is limited to a point robot and allows the robot approach
too close to the surface of obstacles. In order to overcome the shortcomings of potential
field methods, a vector field histogram (VFH) method [3] was proposed, which was used
for fast-running mobile robots and less likely to get trapped in local minima comparing
with the potential field methods. However the VFH methods ignored the dynamic and
kinematic constraints of mobile robots. Fuzzy logic approaches to mobile robot naviga-
tion and obstacle avoidance have been investigated by several researchers. Fuzzy sys-
tems have the ability to treat uncertain and imprecise information using linguistic rules,
thus, they offer possible implementation of human knowledge and experience. Saffiotti
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et al. [4] proposed some fuzzy logic methods for robot navigation. However, the draw-
backs mainly result the difficulty in defining proper membership functions and lack of a
systematic procedure to transform expert knowledge into the rule base. In addition, the
process of tuning the parameters of fuzzy rules may be rather difficult. Neural network
learning techniques are capable of automatically obtaining proper system parameters
to achieve a satisfactory performance. Therefore, the neuro-fuzzy controller becomes
one of the most popular techniques in robot navigation study. Godjevac [5] proposed
a neuro-fuzzy model for a mobile robot to avoid obstacles . More than 600 rules are
formulated, where many of them are redundant and there is no method to suppress the
useless rules.

In this paper, a novel neuro-fuzzy model, including a set of linguistic behaviour-
based fuzzy rules and a learning algorithm, is presented for navigation control of a
mobile robot. Under the control of the model, the mobile robot can preferably avoid all
static and moving obstacles automatically in various situations.

2 The Proposed Neuro-fuzzy Controller

While a mobile robot is moving in an unknown and changing environment, it is im-
portant to compromise between avoiding collisions with obstacles and moving toward
targets, depending on the sensed information about the environment. Fuzzy systems
can be used to realise this reactive strategy. Neural networks have the ability to learn
knowledge from “experience”. Combing these two paradigms, a neuro-fuzzy controller
is developed to navigate a mobile robot in unknown environments. Fig. 1 shows a brief
structure of the proposed neuro-fuzzy controller, which consists of a fuzzy controller
and a learning adaptation model.

Fuzzy controller

accelerators

accelerators

sensored

−

+

error
Adaptation

Robot

desired

information

Fig. 1. The schematic diagram of the proposed neuro-fuzzy controller.

The structure of the proposed neuro-fuzzy controller with the relationship to fuzzy
logic system is shown in Fig. 2, where {u1, u2, u3, u4, u5} = {dl, df , dr, td, rs} is the
input vector; dl, df and dr represent obstacle distances from the left, front and right
sensor groups, respectively; td denotes the angle between the robot moving direction
and the line connecting the robot centre with the target; rs is the current robot speed;
{y1, y2} = {al, ar} is the output vector; and al and ar represent the accelerations of
the left and right wheels.
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In the fuzzy controller, the process has three steps, which are fuzzification, fuzzy
inference, and defuzzification. The fuzzification procedure maps the crisp input values
to the linguistic fuzzy terms with the membership values between 0 and 1. In this paper,
triangle functions are chosen to represent fuzzy membership functions. Membership
functions are shown in Fig. 3. The outputs of the fuzzification procedure are as follows.
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pij =

{
1 − 2|ui−mij |

σij
, if mij − σij

2 < ui < mij + σij

2 ,

0, otherwise.
(1)

where i = 1, 2, . . . , 5 is the index number of input signals; j = 1, 2, . . . , 5 is the index
number of terms of the input variables; pij is the degree of membership for the ith input
corresponding to the jth term of the input variable; ui is the ith input signal to the fuzzy
controller; mij is the centre of the membership function corresponding to the ith input
and the jth term of the input variable; and σij is the width of the membership function
corresponding to the ith input and the jth term of the input variable.

The inference mechanism is responsible for decision making in the fuzzy controller
using approximate reasoning. Forty eight rules are formulated for the proposed con-
troller. The output of the aggregation procedure to get degree of IF part of every rule is
given as

qk = min{p1k1 , p2k2 , p3k3 , p4k4 , p5k5}, (2)

where qk is the conjunction degree of the IF part of the kth rule, k =1, 2, . . . , 48;
and pik1 is the degree of the membership for the ith input contributing to the kth rule,
i = 1, 2, . . . , 5; ki = 1, 2, . . . , 5.

Defuzzification procedure maps the fuzzy output from the inference mechanism to
a crisp signal. The “centre of gravity (CoG)” method is used in the proposed controller.
The values of the output variables al and ar are given as

al =
∑48

k=1 vk,1qk∑48
k=1 qk

and ar =
∑48

k=1 vk,2qk∑48
k=1 qk

, (3)

where vk,1 and vk,2 denote the estimated values of the outputs provided by the kth rule,
which are related to the centre of membership functions of the output variables.

3 The Learning Algorithm

To smooth the trajectory generated by the fuzzy logic model, a learning algorithm based
on neural network technique is developed. The effect of the output variables mainly de-
pends on the centre of membership functions when the rule base is designed. The widths
of membership functions can be disregarded, which are usually set to be constants. The
membership function centre values of the input and output variables may be improved
by the neural network learning property. The vector of 21 parameters could be tuned in
the proposed model, which is set as

Z = { m11,m12,m21,m22,m31,m32,m41,m42,m43,m51,m52,

n11, n12, n13, n14, n15, n21, n22, n23, n24, n25 }. (4)

In this paper, the least-mean square (LMS) algorithm is used to adjust the system
parameters by minimising errors between the desired output and the actual output of the
system using the following criterion function. Thus, the parameters would be adapted
as

mij(t+ 1) = mij(t) − εm
∂E

∂mij
, i = 1, . . . , 5; j = 1, 2, 3, (5)



A Neuro-fuzzy Controller for Robot Reactive Navigation 263

nls(t+ 1) = nls(t) − εn
∂E

∂nls
, l = 1, 2; s = 1, . . . , 5, (6)

where εm and εn are the learning rates. Therefore, it is only necessary to calculate the
partial derivative of the criterion function with respect to the particular parameter to get
the expression for each of them.

∂E

∂mij
=

2∑
l=1

(
∂E

∂yl

∂yl

∂qk

∂qk
∂pij

∂pij

∂mij

)

= −2
2∑

l=1

[
(yl − ŷl)

vk,l

∑48
k=1 qk −

∑48
k=1 vk,lqk

(
∑48

k=1 qk)2

]
× sign(ui −mij)

σij
,

∂E

∂nls
=

2∑
l=1

(
∂E

∂yl

∂yl

∂vk,l

∂vk,l

∂nls

)
= (yl − ŷl)

qk∑48
k=1 qk

. (7)

4 Simulation Studies

The model parameters are initialised first in the training phase. After the learning, the
better parameters of the membership functions are given as

{m11,m12,m21,m22,m31,m32,m41,m42,m43,m51,m52}
= {9.5, 5.4, 0,−5.5,−9.3, 9.4, 5.6, 0,−5.3,−9.4}, (8)

{n11, n12, n13, n14, n15, n21, n22, n23, n24, n25}
= {10, 5, 0,−5,−10, 10, 5, 0,−5,−10}. (9)

To show the effectiveness of the the proposed controller, several cases are studied.
Before the learning, It generates a winding trajectory as shown in Figs. 4A and 4B

Target

Start

ObstaclesObstacles

TargetA BRobot

Obstacles Obstacles

Start

Target

Start

ObstaclesObstacles

TargetC DRobot

Obstacles Obstacles

Start

Fig. 4. Mobile robot trajectories. A, B: winding trajectories without the learning algorithm. C, D:
smooth trajectories with the proposed learning algorithm.
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because of the model parameters. After the training, the trajectories become smoother
as shown in Figs. 4C and 4D.

5 Conclusions

A neuro-fuzzy control system combining a fuzzy controller and a neural network learn-
ing technique is proposed for real-time reactive navigation of a mobile robot. Under the
control of the proposed neuro-fuzzy model, the mobile robot can autonomously gen-
erate a smooth trajectory toward the target. Different from other neuro-fuzzy methods,
several features of the proposed approach are as follows: (1) The accelerations are used
as the controller outputs, which can resolve the speed jump problem; (2) The struc-
ture of the proposed neuro-fuzzy model is very simple with only 11 hidden nodes and
48 fuzzy rules; (3) The proposed learning algorithm provides a easy way to tune the
model parameters and smooth the trajectory; And (4) the proposed approach keeps the
physical meanings of the membership functions during the training.
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Abstract. This paper discusses the trajectory following issue for redundant non-
holonomic mobile modular manipulators. Dynamic model is established and an
adaptive neural-network controller is developed to control the end-effector to fol-
low a desired spacial trajectory. The proposed algorithm doesn’t need any priori
dynamics and provides a new solution for stabilization of redundant robotic self-
motions. Simulation results for a real robot demonstrate the proposed algorithm
is effective.

1 Introduction

A nonholonomic mobile modular manipulator can be defined as a kind of robot inte-
grating aN -degree of freedom (DOF) modular manipulator together with aM -wheeled
nonholonomic mobile platform. If the integrated structure has more DOFs than re-
quired, it is called a redundant one. This integration extends the workspace of the entire
robot drastically. However, the nonholonomic constraints, the interactive motions, as
well as the self-motions make the trajectory following task difficult to realize. Neural
networks (NNs) with characteristics of not needing exact priori dynamic parameters
and universal approximators are being widely used for robotic control.

In related research work, back-propagation (BP) NN was used for vibration control
of a 9-DOF redundant modular manipulator [1]. A multi-layer NN controller, which
did not need off-line learning, was designed to control rigid robotic arms [2]. A fuzzy-
Gaussian NN controller was proposed for trajectory tracking control of mobile robots
[3]. A dual NN was presented for the bi-criteria kinematic control of redundant manip-
ulators [4]. A sliding mode adaptive NN controller was devised for control of mobile
modular manipulators [5].

In this paper, the dynamic model is established in Section 2. An adaptive NN con-
troller (ANNC) is designed in task space in Section 3. Simulations are carried out in
Section 4. Finally, some conclusions are given in Section 5.

2 Dynamic Modeling

In this paper, a 3-wheeled nonholonomic mobile platform is studied as shown in
Fig. 1(a), and only end-effector positions x = [px py pz]T are concerned. The mo-

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 271–276, 2005.
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bile platform is supposed to just move on a horizontal plane. The coordinate system
can be defined as follows: an arbitrary inertial base frame OBXBYBZB is fixed on
the motion plane, while a frame OmXmYmZm is attached to the mobile platform. The
parameters can be observed in Fig. 1(b) in details.

 

(a) A real robot

BX

BY

mX

md

mY

mφ

fr

Gl

( ),m m mO x y

Rφ

Lφ

BO

(b) Platform motion

Fig. 1. A real mobile modular manipulator and its motion on a plane

Define ξ =
[
xm ym φm φL φR

]T
, then the nonholonomic velocity constraints can

be described as follows, [6]

⎡⎣ Cm Sm − dm

2 −rf 0
Cm Sm

dm

2 0 −rf
−Sm Cm 0 0 0

⎤⎦ ·

⎡⎢⎢⎢⎣
rf · Cm/2 rf · Cm/2
rf · Sm/2 rf · Sm/2
−rf/dm rf/dm

1 0
0 1

⎤⎥⎥⎥⎦ = 0 (1)

In short A (ξ) · S (ξ) = 0.

Define q =
[
φL φR q1 · · · qN

]T
, and ζ =

[
ξT q1 · · · qN

]T
, then the Jacobian

matrix can be derived by

J =
∂x

∂ζT
· S̄ (ξ) =

∂x

∂ζT
·
[
S (ξ) 05×N

0N×2 IN×N

]
(2)

The constrained dynamics can be determined by Eqn. 3, see [5] in details.

H · ζ̈ + V · ζ̇ +G = B ·
(
τ + JT · Fext

)
+ C · λ (3)

Where H , V and G denote the inertial matrix, the centripetal and coriolis matrix,

and the gravitational force vector. B =
[
0n×3 In×n

]T
, C =

[
A (ξ) 03×N

]T
, τ =[

τL τR τ1 · · · τN
]T

, Fext =
[
F x

ext F
y
ext F

z
ext

]T
is an external-force vector.

From Eqn. 2
ẋ = J · q̇, ζ̇ = S̄ · q̇. (4)

Solving Eqn. 4 and its derivative, yields

ζ̇ = S̄J†ẋ+ S̄
(
In − J†J

)
q̇s

ζ̈ = S̄
[
J†ẍ+

(
In − J†J

)
q̈s
]
+
( ˙̄S − S̄J†J̇

) [
J†ẋ+

(
In − J†J

)
q̇s
] (5)
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Where J† = JT ·
(
J · JT

)−1
is the Moore-Penrose generalized inverse of J ; q̇s ∈ �n

is an arbitrary joint velocity vector; J† · ẋ is a least-square solution;
(
In −J† ·J

)
· q̇s ∈

ℵ (J), the null space of J , is a homogeneous solution.
Define Jℵ ∈ �n×(n−m) as a matrix with all its columns being the normalized bases

of ℵ (J), J†
E =

[
J† ∣∣ Jℵ

]
, ẋℵ = JT

ℵ · q̇s, and xE =
[
xT

∣∣ xT
ℵ
]T

. Substituting

Eqn. 5 into 3, and left multiplying
(
J†

E

)T · S̄T , yields

H̄ · ẍE + V̄ · ẋE + Ḡ = τ̄ (6)

Where H̄ =
(
J†

E

)T · S̄T ·H · S̄ · J†
E , V̄ =

(
J†

E

)T · S̄T ·
[
H ·
( ˙̄S− S̄ · J† · J̇

)
+V · S̄

]
,

Ḡ =
(
J†

E

)T · S̄T ·G, τ̄ =
(
J†

E

)T · S̄T ·B ·
(
τ + JT · Fext

)
;
(
J†

E

)T · S̄T · C · λ = 0.

Remark 1. For any r ∈ �n, rT · H̄ · r ≥ 0.

Remark 2. For any r ∈ �n, rT ·
( ˙̄H − 2V̄

)
· r = 0 .

Remark 3. If J is full rank, J†
E is invertible, and JE =

(
J†

E

)−1 =
[
JT

∣∣ Jℵ
]T

.

Remark 4. H̄ , V̄ , Ḡ are all bounded as long as the Jacobian J is full rank.

3 Controller Design

Let xd, ẋd and ẍd be the desired trajectory, velocity and acceleration in task space. The
desired self-motions can be used to fulfil a secondary task. In this paper, the system is
assumed to be far away from singularity, physical limits, and obstacles. So, q̇sd and q̈sd

can be selected for the optimization problem of: min
{
q̇T · q̇

}
subject to ẋ = J · q̇.

Then, xℵd, ẋℵd and ẍℵd can be determined.
Let xEd = [xT

d | xT
ℵd ]T , then the error system can be defined by

e (t) = xE (t)− xEd (t) , ẋr (t) = ẋEd (t)−Λ · e (t) , r (t) = ẋE (t)− ẋr (t) . (7)

Where r (t) is the tracking error measure; Λ ∈ �n×n > 0 is a constant matrix.
Substituting Eqn. 7 into 6, yields

H̄ · ṙ (t) + V̄ · r (t) + H̄ · ẍr + V̄ · ẋr + Ḡ = τ̄ (8)

It is verified that a multilayer perceptron (MLP) trained with BP algorithm can
approximate any continuous multivariate functions to any desired degree of accuracy,
provided that sufficient hidden neurons are available [7]. To ensure rapid convergence,
multiple-input single-output (MISO) MLPs with only one hidden layer are applied in
this paper as shown in Fig. 2(a). Output of this MLP is:

fNN (x,wih, who, θh, θo) =
Nh∑
j=1

[
ϕ

(
Ni∑
i=1

xi · wihji + θhj

)
· whoj

]
+ θo (9)

Where ϕ (◦) is the activation function named hyperbolic tangent function; Ni and Nh

represent neuron numbers; x is the inputs; wih, who, θh and θo denote weights and
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thresholds accordingly; the subscript ”i, h and o” represents the input, hidden and output
layer respectively.

Define xin = [ ζT q̇T xT
Ed ẋT

Ed ẍT
Ed ]T , h (xin) = H̄ · ẍr + V̄ · ẋr + Ḡ.

From Remark 4 and Eqn. 7, all the elements hk(k = 1, 2, · · ·n) are bounded as long as
J keeps full rank. Then, they can be approximated by MISO NNs,

hk (xin) = hNNk (xin) + εk (xin) (10)

Where hNNk = fNN (xin, wkih, wkho, θkh, θko); εk is the approximated error.
Let ŵkih, ŵkho, θ̂kh and θ̂ko be estimates of wkih, wkho, θkh and θko respectively,

define ĥNNk = fNN

(
xin, ŵkih, ŵkho, θ̂kh, θ̂ko

)
, then the Taylor series expansions of

hNNk around ĥNNk can be derived

h̃NNk =
Nh∑
j=1

{
Ni∑
i=1

[
∂ĥNNk

∂wkihji
· w̃kihji +O

(
w̃2

kihji

)]}
+ ∂ĥNNk

∂θko
· θ̃ko +O

(
θ̃2ko

)
+

Nh∑
j=1

{
∂ĥNNk

∂wkhoj
· w̃khoj + ∂ĥNNk

∂θkhj
· θ̃khj +O

(
w̃2

khoj

)
+O
(
θ̃2khj

)} (11)

Where h̃NNk = hNNk − ĥNNk, w̃kihji = wkihji − ŵkihji , w̃khoj = wkhoj − ŵkhoj ,
θ̃khj = θkhj − θ̂khj , and θ̃ko = θko − θ̂ko;O

(
w̃2

kihji

)
, O
(
w̃2

khoj

)
,O
(
θ̃2khj

)
andO

(
θ̃2ko

)
are higher-order terms.

The ANNC is given by Eqn. 12, and the control system is shown in Fig. 2(b).

τ =
(
S̄T ·B

)−1 ·JT
E ·
{
ĥNN−KP ·r−KI ·

∫ t

0

r (t) dt−Kε·sgn (r)
}
−JT ·Fext (12)

Where ĥNN ∈ �n forms the adaptive NN term; KP ,KI ∈ �n×n are proportional and
integral gain matrices of the PID controller; Kε = diag

{
kε1 kε2 · · · kεn

}
is the

gain matrix of the robust term, and its elements are selected as follows:

kεk ≥
∣∣∣∣∣

Nh∑
j=1

{ Ni∑
i=1

O
(
w̃2

kihji

)
+O
(
w̃2

khoj

)
+O
(
θ̃2khj

)}
+O
(
θ̃2ko

)∣∣∣∣∣+ ∣∣εk∣∣ (13)

Substituting Eqn. 12 into 8, and considering 6 at the same time, yields

H̄ · ṙ + V̄ · r +KP · r +KI ·
∫ t

0

r (t) dt+Kε · sgn (r) + h̃NN + ε = 0 (14)
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Fig. 2. A MISO NN and an adaptive NN controller
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Theorem 1. If KP > 0, KT
I = KI > 0, the closed-loop system in Eqn. 14 is asymp-

totically stable under the adaptation laws given by Eqn. 15. The error signals are con-
vergent with time, i.e., e (t) , ė (t) → 0, as t→ +∞.

˙̂wkihji = −Γwkihji
· rk · ∂ĥNNk

∂wkihji
,

˙̂
θkhj = −Γθkhj

· rk · ∂ĥNNk

∂θkhj
,

˙̂wkhoj = −Γwkhoj
· rk · ∂ĥNNk

∂wkhoj
,

˙̂
θko = −Γθko

· rk · ∂ĥNNk

∂θko
.

(15)

Where Γwkihji
, Γwkhoj

, Γθkhj
, and Γθko

are positive constants. The terms with partial
differentiation can be derived from Eqn. 10, details will not be listed here.

Proof. Considering the following nonnegative Lyapunov candidate:

VS = 1
2 · rT · H̄ · r + 1

2 ·
[∫ t

0 r (t) dt
]T

·KI ·
[∫ t

0 r (t) dt
]

+ 1
2 ·

n∑
k=1

{
Nh∑
j=1

[
Ni∑
i=1

(
w̃2

kihji

Γwkihji

)
+

w̃2
khoj

Γwkhoj
+

θ̃2
khj

Γθkhj

]
+ θ̃2

ko

Γθko

}
≥ 0

(16)

The time derivative of Lyapunov candidate is

V̇S = rT ·
{
H̄ · ṙ +KI ·

[∫ t

0
r (t) dt

]}
+ 1

2 · rT · ˙̄H · r + 1
2 ·

n∑
k=1

{
θ̃ko· ˙̃θko

Γθko

}
+ 1

2 ·
n∑

k=1

{
Nh∑
j=1

[
Ni∑
i=1

(
w̃kihji· ˙̃wkihji

Γwkihji

)
+ w̃khoj · ˙̃wkhoj

Γwkhoj
+ θ̃khj · ˙̃θkhj

Γθkhj

]} (17)

Notice that ˙̃wkihji = − ˙̂wkihji, ˙̃wkhoj = − ˙̂wkhj , ˙̃
θkhj = − ˙̂

θkhj , ˙̃
θko = − ˙̂

θko.
Substituting Eqn. 12 into 15, then substituting the result together with Eqns. 14,16 into
18, and considering Remark 2 at the same time, yields

V̇S ≤ −rT ·KP · r ≤ 0 (18)

Therefore VS is a Lyapunov function, iff r = 0, VS and V̇S equal to zero. According
to LaSalle’s theorem, the system is asymptotically stable and r → 0 as t→ +∞.

Define �p = {x (t) ∈ �n : ‖x‖p <∞} the p−norm space. From Eqns. 16 and 18,
r (t) ∈ �2. According to Eqns. 7, e (t) ∈ �2∩�∞, ė (t) ∈ �2, and e (t) → 0, as t→ +∞.
It is obvious that the higher-order terms in Eqn. 11 are bounded, so Kε ∈ �∞. Then,
from Eqn. 14, ṙ (t) ∈ �∞. Since r (t) ∈ �2 and ṙ (t) ∈ �∞, r (t) → 0 as t → +∞,
which is followed by ė (t) → 0. End of proof.

4 Simulation Results

The simulation is performed on a real robot as shown in Fig. 1(a), in which N = 3 and
n = 5. Simulation time is 10 seconds and the end-effector is to follow the desired tra-
jectory in Fig. 3(a). The gain matrices and constants are: Nh = 200, KP = diag {50},
KI = diag {10}, Γwkihji

= Γwkhoj
= Γθkhj

= Γθko
= 0.01, Kε = diag {50},

Λ = diag {2.0}. To examine the disturbance suppression ability of the ANNC, an ex-
ternal force F z

ext = 1N is applied to the end-effector along the direction Zm at the time
instant t = 2s.
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The desired and the controlled locus are shown in Fig. 3(a). Figure 3(b) shows the
self-motion velocities. The tracking position and velocity errors are given by Fig. 3(c)–
3(d). From these figures, we can see that the ANNC is effective to control the end-
effector to follow a desired spacial trajectory.
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Fig. 3. Simulation results

5 Conclusions

Dynamic model is established and an ANNC is developed for a general mobile modu-
lar manipulator. The proposed controller does not need precise knowledge of dynamic
parameters in advance and can suppress bounded external disturbances effectively. The
torque instability problem caused by self-motions of the redundant robot can be solved
by the presented control algorithm. The simulation is carried out on a real redundant
nonholonomic mobile modular manipulator, which has verified the effectiveness of the
dynamic modeling method and the controller design method.
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(1) Measuring the rim points and calculating its space location. 
(2) Representing the measured points and the rim standards. 
(3) Evaluating the similarity between the measured points and rim standards. 
(4) Filtering and classifying process. 
(5) Learning process. 
 

 

The location 
calculating module



In order to calculate the location coordinate of one measured data 
given by laser location finder, we collected the measured data, the movement distance 
on every axis and the relative coordinate. Then the location coordinate of the meas-
ured point can be got.
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where (k) is the learning rate. sgn is the sigmond function. D(k) is the minus grads 
at the time k. For further details about the learning algorithm please refer to [11]. The 
output of the neural network includes the fitted coordinate of the point and its fitness. 
If the fitness is near to 0, then it is the point on the steel plate. However, if the fitness 
is near to 0.5, it represents the rim point. If the fitness is near to 1, it is the point out-
side the steel plate. 
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FPGA Realization of a Radial Basis Function
Based Nonlinear Channel Equalizer�
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Abstract. In this paper we propose a radial basis function (RBF) neural network
for nonlinear time-invariant channel equalizer. The RBF network model has a
three-layer structure which is comprised of an input layer, a hidden layer and
an output layer. The learning algorithm consists of unsupervised learning and
supervised learning. The unsupervised learning mainly adjusts the weight among
input layer and hidden layer. The supervised learning adjusts the weight among
output layer and hidden layer. We will implement RBF by using FPGA. Computer
simulation results show that the bit error rates of the RBF equalize using software
and hardware implements are close to that of the optimal equalizer.

1 Introduction

During the past few years, applications of high-speed communication are required and
fast increasing. Nonlinear distortion becomes a major fact or which limits the perfor-
mance of a communication system. High speed communications channels are often
impaired by the channel inter-symbol interference (ISI), the additive white Gaussian
noise (AWGN), and co-channel interference (CCI) [1]. All these effects are nonlinear
and complex problems. Nevertheless, adaptive equalizers are used in digital communi-
cation system receivers to mitigate the effects of non-ideal channel characteristics and
to obtain reliable data transmission.

We will adopt the radial basis function (RBF) neural network [2] suggested by
Moody and Darken. Radial basis function (RBF) neural networks provide an attractive
alternative to MLP for adaptive channel equalization problems because the structure of
the RBF network has a close relationship to Bayesian methods for channel equalization
and interference rejection problems. The main benefit was using linear algebra’s basis
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006.
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mathematic, relatively reduced the computation load. Usually the computation quan-
tity problem takes much more time to simulate through software. The solution is the
utilization of hardware simulation to obtain faster computational effectiveness.

Development of digital integrated circuit Field Programmable Gate Array (FPGA)
[3]-[5] digitizes the hardware making process. Recently programmable logic element
increases the number of the logic, velocity and memory. And add a lot of extra function.
In addition, use Very High Speed Integrated Circuit Hardware Description Language
(VHDL), enable the complicated circuit to form the way through the circuit that VHDL
compile, reach the specification designed easily and fast. Hence it holds lots of benefits
like high capacity, speedy, duplicate design, cheaper price, and cost lower. Finally we
will achieve this adapted, radiation basis function neural network equalizer by using
hardware FPGA.

2 The Structure of RBF

The structure of the RBF neural network model is shown in Fig.1. The input data in
the input layer of the network is x = [x1, x2, x3, . . . , xn], where n is the number of
dimensions. The hidden layer consists of m computing units (φ1 to φm), which are
connected to the output by m connection weights (w1 to wm).

The output of the network used by this algorithm has the following form:

Y (x) = f(x) =
m∑

j=1

wjφj(x) (1)

where φj is the response of the jth hidden neuron to the input x, is the weight connecting
the jth hidden unit to the output unit. Here, m represents the number of hidden neurons
in the network, and φj is a Gaussian function given by

φj = exp(−‖x− cj‖2

σ2
j

) (2)

where cj is the center and σj is the width of the Gaussian. ‖‖ denotes the Euclidean
norm.

3 The Learning Algorithm for RBF

The learning algorithm consists of unsupervised learning and supervised learning. The
unsupervised learning mainly adjusts the weight among input layer and hidden layer.
The supervised learning adjusts the weight among output layer and hidden layer.

3.1 Unsupervised Learning

The unsupervised k-means clustering procedure is often employed as a part of the gen-
eral learning algorithm to adjust RBF centers. This involves computing the squared
distance between the centers and the network input vector, selecting minimum squared
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Fig. 1. RBF neural network structure.

distance and moving the corresponding center closer to the input vector. The computa-
tional procedure of this unsupervised clustering is as follows:

dj(s) = ‖x(s) − cj(s− 1)‖2, 1 ≤ j ≤ n (3)

l = arg[min{dj(s), 1 ≤ j ≤ n}] (4)

cl(s) = cl(s− 1) + αc(x(s) − cl(s− 1)) (5)

cj(s) = cj(s− 1), 1 ≤ j ≤ n and j 	= l (6)

3.2 Supervised Learning

The supervised algorithm is very simple and robust. It is advisable to adjust the weights
of the network so that the network can learn the general equalizer solution. The adapta-
tion of the weights is achieved using the following supervised algorithm:

φj(s) = exp(−‖x(s) − cj(s)‖2

σ2
), 1 ≤ j ≤ n (7)

ε(s) = t(s− τ) −
n∑

j=1

wj(s− 1)φj(s) (8)

wj(s) = wj(s− 1) + αwε(s)φj(s), 1 ≤ j ≤ n (9)

4 Hardware Implementation

We can plan FPGA into the function that a user wants through the design of CLB and
connection of the connecting wire. As for we design FPGA, the assisting of software
is needed. So we utilize ISE 6.2i software that Xilinx Company produces to do logic
design.

The main part of the network structure of RBF neural network is design of hidden
layer. The input layer can direct output of input value to input of hidden layer. The
process does not pass through any operation. The output layer only needs to add up all
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outputs which hide layer with the adder. The part of hidden layer is to consist of gaus-
sian function. The structure of gaussian function is made up by a subtraction, divider,
multiplier and exponential function. The component shows to Fig.2. The part of the
multiplier includes the adder and counter. The concept implementation use bit shift and
add up it. The exponential function part can rely on Taylor’s expansion approximatively.
Taylor’s expansion is as follows:

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · · + xm

m!
(10)

where m is number of order, x is input. The larger m is the more perfect, but it will
be many logic gates and bit numbers used. We choose m=4 to make the realization of
the hardware. Fig.3 shows the block diagram that its hardware implementation. It used
three multipliers, three dividers and an adder. The adder adds the outputs of every order.

Finally, the hardware implementation of channel equalizer using RBF neural net-
work structure, show in Fig.4. The chip uses Virtex-2 series 3 million logic gates that
Xilinx Company produce. The RBF network structure is two input nodes, eight hidden
nodes and an output node.

Fig. 2. The structure of gaussian function. Fig. 3. Taylor expansion of exponential func-
tion.

5 Illustrative Examples

A discrete time model of a digital communication system is depicted in Fig.5. A random
sequence xi is passed through a dispersive channel of finite impulse response (FIR), to
produce a sequence of outputs ŷi. A term, ei, which represents additive noise in the
system, is then added to each ŷi to produce an observation sequence yi. The problem to
be considered is that of utilizing the information represented by the observed channel
outputs yi, yi−1, . . . , yi−m+1 to produce an estimate of the input symbol xi−d A device
which performs this function is known as an equalizer. The integer’s m and d are known
as the order and the delay of the equalizer, respectively. Throughout, the input samples
are chosen from {−1, 1} with equal probability and assumed to be independent of one
another.
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Fig. 4. RBFNN is realized on xc2v3000-
5fg676.

Fig. 5. Schematic of the data transmission sys-
tem.

Fig. 6. Desired channel states with no noise. Fig. 7. Comparison of bit error rate curves.

The equalizer performance is described by the probability of misclassification with
respect to the signal-to-noise ratio (SNR). With the assumption of independent identi-
cally distributed (i.i.d.) sequence the SNR can be defined as

SNR = 10log10
σ2

s

σ2
e

(11)

where σ2
s represents the signal power and σ2

e s the variance of the Gaussian noise.
The equalizer order is chosen as m=2. Let the channel transfer function be

ŷ(n) = (0.5x(n) + x(n− 1)) + 0.1 × (0.5x(n) + x(n− 1))3 (12)

All the combinations of x(n) and the desired channel states are showed in Fig.6.
To see the actual bit error rate (BER), a realization of 106 points of sequence x(n) and
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e(k) are used to test the BER of trained RBF neural network equalizer. It also tests the
BER of hardware implementation of the RBF neural network equalizer. The resulting
BER curve of the RBF neural network equalizer with software simulation and hardware
implementation under the different SNR is show in Fig. 7.

We now compare the performance with the RBF neural network equalizer of soft-
ware simulation, the RBF neural network equalizer of hardware implementation and
Bayesian equalizer. The Bayesian equalizer is near optimal method for communication
channel equalizer. Computer simulation results show that the bit error rate of the RBF
neural network equalizer is close to the optimal equalizer. But we can see, some BER
of hardware implementation is worse. Because the value of the hardware is expressed
with binary, so there will be difference in value. If we want to close the BER of original
RBF neural network structure, it is necessary to increase the number of bit.

6 Conclusion

The paper describes the RBF neural network structure as channel equalizer. The learn-
ing algorithm consists of unsupervised learning and supervised learning, in order to
reach a better and a faster training method. And realize its structure of network using
FPGA can obtain faster operation efficiency.

In the experiment of time-invariant channel, the result of simulation can be found
out, the BER is close to Bayesian equalizer. If we make the BER of hardware simulation
closer to original RBF network structure, it can be very easy to increase number of bit.
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Abstract. Remote OS fingerprinting is valuable in areas such as network secu-
rity, Internet modeling, and end-to-end application design, etc. While current 
rule-based tools fail to detect the OS of remote host with high accuracy, for us-
ers may modify their TCP/IP parameters or employ stack “scrubbers”. In this 
paper, a BP neural network based classifier is proposed for accurately finger-
printing the OS of remote host. To avoid the shortages of traditional BP algo-
rithm, the classifier is also enforced with Levenberg-Marquardt algorithm. Ex-
perimental results on packet traces collected at an access link of a website show 
that, rule-based tools can’t identify as many as 10.6% of the hosts. While the 
BP neural network based classifier is far more accurate, it can successfully 
identify about 97.8% hosts in the experiment. 

1   Introduction 

In recent years, the need for automated Internet vulnerability assessment software has 
been understood and has resulted in the very fast growth of widely available solu-
tions. Remote Operating Systems detection, a.k.a. OS Fingerprinting, is an essential 
part of the assessment process. OS fingerprinting is the process of determining the 
identity of the Operating System of a remote host on the Internet. This may be ac-
complished passively by sniffing network packets traveling between hosts, or actively 
by sending carefully crafted packets to the target machine and analyzing the response, 
it leverages the fact that different operating systems implement differing TCP/IP 
stacks, each of which has a unique signature. Even between versions or patches of an 
operating system there exist subtle differences as developers include new features and 
optimize performance [13]. 

Robust and practicable OS Fingerprinting must meet some requirements. At first, it 
must be accurate, i.e. it does not fingerprint the OS falsely; secondly, it must be 
quickly for allowing large network scans; furthermore, it also need that the signature 
database can be extended easily. To meet these requirements, the design of the classi-
fier in the OS fingerprinting tools plays an important role.  

Several TCP/IP fingerprinting tools exist employing both active and passive tech-
niques. The most widely used active tool is the nmap [10] program. Nmap fingerprint 
OS using a database of over 450 signatures. P0f [2] is a typical rule-based passive tool 
containing approximately 200 signatures. The signatures contain many fields in 
TCP/IP stacks, such as: IP time to live (TTL), the IP don’t fragment (DF) bit, etc. 
Each signature maps distinctive fields of the TCP/IP packet header to different operat-
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ing systems. For each observed packet to a certain remote host, these tools search the 
signature space for a match. They are rule-based. However, rule-based tools mainly 
rely on an exact match from an exhaustive list of TCP/IP settings, which make it less 
accurate and inefficient. For example, previous rule-based approaches fail to identify 
as many as 10.6% of the hosts in traces we collect from the access link of a website, 
likely due to users modifying their TCP parameters or employing stack “scrub-
bers” [3].  

The neural network is an efficient and widely used approach for solving classifica-
tion problems [1],[4]. It also has been used in many areas such as: decision support 
[5],[7],[8], automatic control [11],[12],[14], and image process [15], etc. In this paper, 
we designed an OS fingerprinting classifier based on BP neural network. While, the 
traditional BP algorithm has the disadvantages that, it converges slowly, and it falls 
into the local minimum point easily. So we enforced our classifier with Levenberg-
Marquardt (LM) algorithm. The experimental results show that, the BP neural net-
work based classifier is far more accurate and quicker than previous rule-based ap-
proaches; it can provide a continuous degree of identification confidence without 
deep-packet inspection. 

While OS fingerprinting is often regarded as a security attack, we argue that our 
work is motivated by a number of positive and practical applications. Remotely de-
termining operating systems is valuable in intrusion detection systems [6], serving 
operating system specific content, providing security against unauthorized access, 
compiling network inventories, building representative Internet models and measuring 
NAT (Network Address Translation) deployment which has important implications 
[9] to the Internet address registries, developers of end-to-end applications and de-
signers of next generation protocols. 

The remainder of the paper is organized as follows: Section 2 describes the design 
of the BP neural network based classifier. In Section 3 we give our measurement 
results. We conclude the paper in section 4. 

2   BP Neural Network Based Classifier 

2.1   Structure of the Classifier 

The classifier is composed of data acquiring module, pre-process module, BP neural 
network module and signature database, the structure of it is shown in Fig.1. The 
data-acquiring module obtains original network packets using active or passive 
method. The pre-process module picks up signature fields from the packet header and 
normalizes these signature fields to avoid large signature field value difference having 
negative effect on network training and classifying. The signature database has 213 

Data acquiring Signature database BP network 

Output 

Pre-Process 

Fig. 1. Structure of the BP network based classifier 
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signatures, which are the packet signatures used in p0f. The BP neural network mod-
ule is the pivotal module of the classifier, after training it using the signature database, 
we can use it to classify and fingerprint the OS of remote hosts. 

2.2   Implementation of the BP Network Module 

The BP network used in the classifier has three-layer neural network structure, i.e. 
input layer, hidden layer and output layer. BP algorithm is a supervised learning 
method. It uses mean squared error and gradient descent method to fix the network 
weight with the goal of obtaining minimum mean squared error between the real out-
puts of the network and prescriptive outputs. Assuming there are p learning samples 
inputted, denoting the corresponding supervising signal as tpi, and real output as ypi, 
then  the error of tpi and ypi is  

21
( )

2 pi pi
p i

E t y= −∑∑  (1) 

Denoting the weight of any two neurons as Wsq, then we have  

1

p

sq
i sq

E
W

W
η

=

∂Δ = −
∂∑  (2) 

Where� is the incremental amplitude of learning rate. 
If noticed that E<0, then the error can decay till E=0. The function values of the 

gradient descent method used in traditional BP algorithm descend fast at a few initial 
iterating steps, however when it is more close to the minimum, it descend more 
slowly, therefore, the learning rate is slow. To overcome this shortage of traditional 
BP algorithm, we adopt Levenberg-Marquardt (LM) algorithm to improve it, for 
shorting the learning time.   

The LM algorithm is designed for made training convergent fast, and it avoid cal-
culating the Hessian matrix. When the evaluation function has the form of square 
sum, the Hessian matrix is approximated as 

TH J J=  (3) 
Then the gradient is 

Tg J e=  (4) 

Where J is the Jacobian matrix, e is the network error vector. 
The Jacobian matrix can be calculated using standard BP algorithm, and it is sim-

pler to calculate the Jacobian matrix than the Hessian matrix. The LM algorithm uses 
an approximate matrix of Hessian matrix, then the weight adjusting rate is 

1[ ]T TW J J I J eμ −Δ = +  (5) 

Where I is the identity matrix. 
The whole LM algorithm used in the BP network classifier is given as follows, 

here we denote the evaluation function as 2

1

( ) ( )
=

= ∑
n

i

i

E a f a : 
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3   Experiments Results 

This section gives the results of our classifier on Internet traces. We evaluate the BP 
network based classifier and rule-based tools (p0f) with a one-day long packet trace 
into the website of Hunan university, for the website record the OS of the remote host 
which access it in its web logs.  

There are totally 9563 distinct hosts in the web log. Figure 2 shows the OS distri-
bution among these hosts in web log (denoted WL) and which fingerprinted using the 
BP network based classifier (denoted BPN) and p0f (denoted Rule-Based) from a 
one-day long packet trace. The OS distribution fingerprinted using BP network based 
classifier is more similar with which among hosts in web log, when comparing with 
rule-based tools. Table 1 displays the correct classification rate (CCR), false accept 
rate (FAR), and false reject rate (FRR) of our classifier and rule-based tools. The BP 
network based classifier has higher CCR than rule-based tools, with a difference of 

 

Fig. 2. The OS Distribution among hosts in web log (denoted WL) and which fingerprinted 
using the BP network based classifier (denoted BPN) and p0f(denoted Rule-Based). 

The LM algorithm used in the BP network classifier 

1. � 10-3, a(0) = a0. 
2. Calculate E(a). 

3. Calculate Jacobian matrix [ ]
i

f
J

a

∂=
∂

. 

4. 1( 1) ( ) [ ] ( ( ))μ −+ = − +T Ta k a k J J I J f a k . 
5. Calculate E(a(k+1)). 
6. If  E(a(k+1))>E(a(k)), then� ������goto����� 
7. If  E(a(k+1))< target error, then success, end the algorithm. 
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8.4%. The FAR and FRR of our classifier are also less than rule-based tools, for FAR, 
the difference is 2.0%, and for FRR, 6.4%. These results indicate that the proposed 
BP network based classifier is more accurate than the rule-based tools in fingerprint-
ing remote hosts’ OS. 

Table 1. The CCR,FAR, and FRR of  BPN classifier and rule-based tools 

 CCR(%) FAR(%) FRR(%) 
BPN 97.8 0.9 1.3 
Rule-Based 89.4 2.9 7.7 

 
In addition, we also use our classifier to analyze approximately 618M packets from 

a three hour-long trace collected at the inbound access point of our campus network. 
This trace contains 78694 hosts. The results are similar with figure 1, for space limita-
tion, we do not present them anymore. In a word, although the BP neural network 
based classifier still has about 0.9% false accept rate and 1.3% false reject rate when 
used to do OS fingerprinting, while compare with rule-based tools, it is far more accu-
rate. 

4   Conclusions 

In this paper, we have proposed a BP neural network based classifier used in remote 
OS fingerprinting, for previous rule-based tools are inaccurate. To overcome the 
shortage of traditional BP algorithm, the LM algorithm was adopted to shorten the BP 
network training time. Experimental results demonstrate the accuracy of the classifier. 
Comparing with former rule-based tools, the correct classification rate of our classi-
fier is 8.4% higher, which reaches 97.8%. However there still have few hosts that our 
classifier misclassified or couldn’t classify at all. As a future work, we will collect 
more OS signatures, and train our classifier using these signatures, to improve the 
correct classification rate of our classifier. 
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Abstract. A revised multi-scale prediction combination model for network traf-
fic is proposed, where network traffic series are decomposed with stationary 
wavelet transform, and the different models are built with combinations of 
wavelet decomposition coefficients. LS-SVM is introduced to predict the coef-
ficients at the expectation point, the prediction value can be obtained by wave-
let inversion transform. The simulation experiments with the two traffic traces 
at different time scale are done with the proposed system, and other predictors. 
The correlation structure between the prediction point and history data is also 
explored. The results show that the proposed model improve the computability 
and achieve a better forecasting accuracy. 

1   Introduction 

Network traffic prediction is important to network planning, performance evaluation 
and network management directly. In high-speed network such as ATM, the band-
width can be allocated based on the accurate traffic forecasting, thus ensuring Qos of 
the users and accomplishing the preventive congestion control. The traditional linear 
model oversimplifying the complex temporal correlation presenting in the network 
traffic [1], artificial neural network(ANN) and its ensembles are applied to network 
traffic modeling and congestion controlling because of the good capability of nonlin-
ear approximation and learning adaptively [2]. However, neural networks suffer from 
problems like the existence of local minima and the choice of network structure, so 
neural networks are limited in such applications as real-time disposition. In order to 
improve prediction performance in the nonstationary and nonlinear time series, the 
model combined with wavelet analysis and neural network are also proposed[3], but 
accompanied with low efficiency due to the inherent flaw from neural networks. 
After that, Support Vector Machines (SVM), a new learning technique, has been 
applied in time series prediction due to better generalization ability. 

In this paper, the multi-scale combination model based on Least Squares Support 
Vector Machines(LS-SVM)[4], is proposed to predict one-step head value of network 
traffic. Our strategies make use of the merits of wavelet analysis and LS-SVM, and 
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approximate the decomposed time subseries at different levels of resolution with 
coefficient combination models. There wavelet decomposition is implemented with 
stationary wavelet transform(SWT)[5], an important shift-invariant wavelet trans-
form. The nonstationary and nonlinear signal in time domain is decomposed into the 
relative stationary wavelet coefficients in frequency domain by way of the wavelet 
transform, and the property of long-range dependence inherent in the original is not 
present in the detail coefficients, making it possible that the traditional approaches 
can be used to approximate the actual correlation structure in the detail coefficients, 
even the linear models. 

The corresponding coefficients at expectation point are forecasted with the use of 
those models, and the prediction value can be built with wavelet inversion transform. 
By multi-scale prediction, we mean two facts the traffic data be forecasted at different 
time scale and that the multi-resolution wavelet analysis be used. We apply the pro-
posed multi-scale model to MPEG video and Ethernet data, and predict the number of 
bytes per unit time. The other methods, such as  autoregression and ANN, are tested 
in the simulation for comparison. 

2   Least Square Support Vector Machine 

Least Square Support Vector Machine(LS-SVM) is a new technique for regres-
sion[4]. when LS-SVM is used to model network traffic, the input and output vari-

ables should be chosen firstly. Given a training data set of N points { }
1

,
=

N

k k k
yx  with 

input data ∈ p

k
x R  and output data ∈

k
y R . In order to get the function dependence 

relation, SVM map the input space into a high-dimension feature space and construct 
a linear regressor in it. The regression function is expressed with y = f(x) = wT ϕ(x)+b. 

In LS-SVM, the model is constructed by solving the following optimal problem:  

2

, ,
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1 1
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p i
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w e

w e w w +  
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y b e i Nw x  

(1) 

with ( ) :ϕ ⋅ → h
nnR R a function which maps the input space into a so-called higher 

dimensional (possibly infinite dimensional) feature space, weight vector ∈ h
nw R  in 

primal weight space, error variables ∈
k

e R  and bias term b. Note that the cost func-

tion Jp consists of a sum squared fitting error(SSE) and a regularization term. 
The model should be computed in the dual space, the Lagrangian function can be 

defined: 

{ }
1

( , , , ) ( , ) ( )α ϕ
=

= − + + −∑
N

T

p i i i i

i

L b J b e dw e w e w x . (2) 

where ∈
i

a R  are Lagrange multipliers. The conditions for optimality are given by 
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After elimination of w and e, one obtains the solution 
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with y = [y1, y2, ⋅⋅⋅, yN]
T, � = [α1, α 2, ⋅⋅⋅, α N]

T, [ ]1, 1
�

�
T

1 = , Kij = K(xi, xj) = ϕ(xi) ϕ(xj)
T, 

the equation can be solved by least square. The resulting LS-SVM model becomes 

1
( ) ( , )

N

k kk
y a K b

=
= +∑x x x  . (5) 

where a and a are the solution to equ.4, here RBF kernel K(xk, xl) = exp(–||xk – 

xl||
2
2 /σ2) 

3   Multi-scale Prediction Model 

Given the time series x(k), k = 1, ⋅⋅⋅ N, the aim is to predict the T – th step ahead sam-
ple x(t + T) of the series. The working flow for the model run as follow: 
Perform SWT on the x(k) to the scale J, getting the approximation coefficients series 
ax(J,) and a set of detail series dx(j,k), (j = 1, ⋅⋅⋅ J). The number of resolution level J is 
empirically determined by way of the inspection of the smoothness of derived scale-
coefficient series. Taking the MPEG-4 trace, the medium quality version of Star Wars 
IV for example, we select the resolution level for wavelet transform as 3, the SWT 
coefficients series about it are dx(1,), dx(2,), dx(3,) and ax(3,), respectively. 

The four coefficient combination models based on LS-SVM should be built to 
producing the corresponding SWT coefficients for the expectation point (t+T), where 
T is the time length of forecast. In Table 1, we present the structure of the used LS-
SVM models for above-mentioned trace, among which LS-SVM1, LS-SVM2 and 
LS-SVM3 combine the SWT coefficients at present point(t) as input variables to 
produce the detail coefficients. LS-SVM4 for approximation coefficient prediction, 
its inputs are the p-lagged approximation coefficients, where p is the order of the 
autoregressive model(AR) that fit the known approximation coefficient. 

The expectation value is acquired by performing the inverse stationary wavelet 
transform on regenerated detail and approximation coefficients. 
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Table 1. The Structure of LS-SVM Models Used 

Models   Input Output 

LS-SVM1 (1, )d t , (2, )d t , (3, )d t  (1, )d t T+  

LS-SVM2 (2, )d t , (3, )d t  (2, )d t T+  

LS-SVM3 (2, )d t , (3, )d t  (3, )d t T+  

LS-SVM4 (3, )a t p− ,… (3, 1)a t − (3, )a t  (3, )a t T+  

4   Simulations and Performance 

We consider the performance of the proposed system on two network traces contain-
ing MPEG-4 video and Ethernet date. The MPEG-4 video trace is the medium quality 
version of Star Wars IV available at [6]. The Ethernet traffic, collected at Bellcore 
Morristontown RRESEARCH. All these traffic trace are processed to present the 
number of byte per unit time, then they are aggregated at different time scales of 1 
and 5 seconds. In comparison, the individual LS-SVM predictor, the individual ANN 
predictor and ANN combination predictor are tested on the same traffic data, where 
back propogation algorithm is used for ANN, and the inputs for the two individual 
predictors are the p-lagged normalized traffic data. The ANN combination is pro-
duced from the proposed system by replacing LS-SVM with ANN, which structure 
the same as our proposed system. 

In experiment, we use the minimization-maximization normalization method, com-
mon in data analysis. As usual, the preprocessed aggregation traffic data and their 
SWT coefficients are divided into two sets, a training set and a testing sets for each 
simulation. The training set is used to determine model parameters, and the perform-
ance is tested on the testing set. 

Note that the lagged traffic data and corresponding coefficients are used for inputs 
to the models, we apply autoregression (AR) based scheme to decide the order of 	
��
autoregressive model(AR). In this scheme, the training set is divided into a modeling 
and validation set. The modeling set is used to estimate the parameters of a p-th order 
AR process, where p is the number of lagged values. These parameters are subse-
quently used to predict the values in the validation set. p is varied and the one giving 
the best prediction performance is selected as the required lag order p. The p in LS-
SVM4(used  for approximation coefficient prediction) can be chosen the same as the 
individual predictor  because the approximation coefficients be more smooth and 
capture the trend of the original signal. The prediction performance measure is the 
signal-to-noise(SNR) defined as follows: 

2

10 2

E(x(n) )
SNR = 10log

ˆE((x(n) - x(n)) )

⎛ ⎞
⎜ ⎟⎝ ⎠

� dB . (6) 

where ( )E ⋅ is the expected value, x(n) is the actual value, and ˆ( )x n  is the predicted 

value. As prediction accuracy increases, the SNR  becomes larger. 
The simulation was with the one-step ahead prediction (T=1), and the  perform-

ance results in SNR are presented in Tables 2 and 3. In the two tables, the first col-
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umn shows the time scale(TS) in seconds, the second column shows the number of 
the used lagged value, p. The third column shows the result with autoregression for 
the corresponding data. The forth and fifth column present the results of the individ-
ual LS-SVM and ANN predictors. The results for the combination predictors of LS-
SVM and ANN are presented in the sixth and seventh columns. The combination 
predictors with LS-SVM and ANN employ the same network structure, see Table 1. 
The SWT decomposition scales for the two traffic aggregation data  are all set to 3. 
The ANN models in the experiments are all implemented with the revised back-
propagation algorithm, where both the learning rate factor and momentum factor are 
set to � , The number of training for ANN model is taken 2000 and the transfer 
functions of the hidden and output neurons are selected as sigmoid function, f(x) = 
1/(1+e–x)��

The approach to determine the number of lagged values for prediction plays an 
important role in the tests. Moreover  there is a key parameter for the LS-SVM mod-
els, which is the width for  RBF kernel function. The parameter for  the individual 
LS-SVM can be usually selected a relative large value, about  between 4 and 10. 
When it increases, the SNR value increases correspondingly.  

According to the above two tables, the performance of the individual models with 
LS-SVM and ANN are comparable, giving better performance  than AR model for 
the four tests with the two network traffic data. All of the combination predictors 
have advantage over the individual predictors in accuracy improvement. Especially 
the LS-SVM combination model outperform the ANN combination in computation 
efficiency besides prediction accuracy, the results demonstrate that the proposed 
system be valid. In fig. 1 presents samples of the LS-SVM combination model results 
in graphical form for the one-step ahead prediction with MPEG4 at time scale 1s.  

5   Conclusion 

In view of the drawbacks from the conventional methods for network traffic predic-
tion,  the muilt-scale combination prediction model with LS-SVM is proposed in the 
paper, which explores the related theory. The comparative simulation tests were car-

Table 2. SNR of the predicted MPEG4 video traffic�

Individual Predictor Combination Predictor TS(S) P AR 
ANN LS-SVM ANN LS-SVM 

1 8 10.223 10.656 10.995 13.131 14.241 
5 3 8.8702 9.4209 9.9324 11.616 14.341 

Table 3. SNR of the predicted Ethernet traffic�

Individual Predictor Combination Predictor TS(S) p AR 
ANN LS-SVM ANN LS-SVM 

1 13 5.235 5.5828 5.6229 8.9452 10.755 
5 7 9.143 9.5996 9.5372 10.004 12.11 

 
 



390      Zunxiong Liu, Deyun Zhang, and Huichuan Liao 

ried out with the ethernet and MPEG-4 traffics, demonstrating that the proposed sys-
tem attains better performance in prediction accuracy and efficiency. The proposed 
model can play an important role in congestion control  in high-speed network, meet-
ing the user Qos requirements. 
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Fig. 1. The actual and predicated traffic for MPEG4 at time scale 1s, the actual values and the 
predicted values are shown in solid line and dotted lines respectively 
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Abstract. Current Intrusion Detection Systems (IDS) examine all data features
to detect intrusion or misuse patterns. Some of the features may be redundant
or contribute little (if anything) to the detection process. The purpose of this
study is to identify important input features in building an IDS that is compu-
tationally efficient and effective. This paper proposes an IDS model based on
general and enhanced Flexible Neural Tree (FNT). Based on the pre-defined in-
struction/operator sets, a flexible neural tree model can be created and evolved.
This framework allows input variables selection, over-layer connections and dif-
ferent activation functions for the various nodes involved. The FNT structure is
developed using an evolutionary algorithm and the parameters are optimized by
particle swarm optimization algorithm. Empirical results indicate that the pro-
posed method is efficient.

1 Introduction

Intrusion detection is classified into two types: misuse intrusion detection and anomaly
intrusion detection. Misuse intrusion detection uses well-defined patterns of the attack
that exploit weaknesses in system and application software to identify the intrusions.
Anomaly intrusion detection identifies deviations from the normal usage behavior pat-
terns to identify the intrusion.

Various intelligent paradigms namely Neural Networks [1], Support Vector Ma-
chine [2], Neuro-Fuzzy systems [3], Linear genetic programming [4] and Decision
Trees [7] have been used for intrusion detection. Various data mining techniques have
been applied to intrusion detection because it has the advantage of discovering useful
knowledge that describes a user’s or program’s behavior from large audit data sets. This
papers proposes a Flexible Neural Tree (FNT) [5] for selecting the input variables and
detection of network intrusions. Based on the pre-defined instruction/operator sets, a
flexible neural tree model can be created and evolved. FNT allows input variables se-
lection, over-layer connections and different activation functions for different nodes. In
our previous work, the hierarchical structure was evolved using Probabilistic Incremen-
tal Program Evolution algorithm (PIPE) with specific instructions. In this research, the
hierarchical structure is evolved using tree-structure based evolutionary algorithm. The

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 439–444, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. A flexible neuron operator (left), and a typical representation of the FNT with function
instruction set F = {+2, +3, +4, +5, +6}, and terminal instruction set T = {x1, x2, x3} (right)

fine tuning of the parameters encoded in the structure is accomplished using particle
swarm optimization (PSO). The proposed method interleaves both optimizations. Start-
ing with random structures and corresponding parameters, it first tries to improve the
structure and then as soon as an improved structure is found, it fine tunes its parame-
ters. It then goes back to improving the structure again and, fine tunes the structure and
rules’ parameters. This loop continues until a satisfactory solution is found or a time
limit is reached. The novelty of this paper is in the usage of flexible neural tree model
for selecting the important features and for detecting intrusions.

2 The Flexible Neural Tree Model

The function set F and terminal instruction set T used for generating a FNT model
are described as S = F

⋃
T = {+2,+3, . . . ,+N}

⋃
{x1, . . . , xn}, where +i(i =

2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i arguments. x1,x2,. . .,xn

are leaf nodes’ instructions and taking no other arguments. The output of a non-leaf
node is calculated as a flexible neuron model (see Fig.1). From this point of view, the
instruction +i is also called a flexible neuron operator with i inputs.

In the creation process of neural tree, if a nonterminal instruction, i.e., +i(i =
2, 3, 4, . . . , N) is selected, i real values are randomly generated and used for represent-
ing the connection strength between the node +i and its children. In addition, two ad-
justable parameters ai and bi are randomly created as flexible activation function param-

eters. For developing the IDS, the flexible activation function f(ai, bi, x) = e
−(

x−ai
bi

)2

is used. The total excitation of +n is netn =
∑n

j=1 wj ∗ xj , where xj(j = 1, 2, . . . , n)
are the inputs to node +n. The output of the node +n is then calculated by outn =
f(an, bn, netn) = e−( netn−an

bn
)2 . The overall output of flexible neural tree can be com-

puted from left to right by depth-first method, recursively.

Tree Structure Optimization. Finding an optimal or near-optimal neural tree is for-
mulated as a product of evolution. In this study, the crossover and selection operators
used are same as those of standard GP. A number of neural tree mutation operators are
developed as follows:

(1) Changing one terminal node: randomly select one terminal node in the neural tree
and replace it with another terminal node;
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(2) Changing all the terminal nodes: select each and every terminal node in the neural
tree and replace it with another terminal node;

(3) Growing: select a random leaf in hidden layer of the neural tree and replace it with
a newly generated subtree.

(4) Pruning: randomly select a function node in the neural tree and replace it with a
terminal node.

Parameter Optimization with PSO. The Particle Swarm Optimization (PSO) con-
ducts searches using a population of particles which correspond to individuals in evolu-
tionary algorithm (EA). A population of particles is randomly generated initially. Each
particle represents a potential solution and has a position represented by a position vec-
tor xi. A swarm of particles moves through the problem space, with the moving velocity
of each particle represented by a velocity vector vi. At each time step, a function fi rep-
resenting a quality measure is calculated by using xi as input. Each particle keeps track
of its own best position, which is associated with the best fitness it has achieved so far
in a vector pi. Furthermore, the best position among all the particles obtained so far in
the population is kept track of as pg. In addition to this global version, another version
of PSO keeps track of the best position among all the topological neighbors of a par-
ticle. At each time step t, by using the individual best position, pi, and the global best
position, pg(t), a new velocity for particle i is updated by

vi(t + 1) = vi(t) + c1φ1(pi(t) − xi(t)) + c2φ2(pg(t) − xi(t)) (1)

where c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed random
number in [0,1]. The term vi is limited to the range of ±vmax. If the velocity violates
this limit, it is set to its proper limit. Changing velocity this way enables the particle
i to search around its individual best position, pi, and global best position, pg. Based
on the updated velocities, each particle changes its position according to the following
equation:

xi(t + 1) = xi(t) + vi(t + 1). (2)

Procedure of the General Learning Algorithm. The general learning procedure for
constructing the FNT model can be described as follows.

1) Create an initial population randomly (FNT trees and its corresponding parame-
ters);

2) Structure optimization is achieved by the neural tree variation operators as de-
scribed in subsection 2.

3) If a better structure is found, then go to step 4), otherwise go to step 2);
4) Parameter optimization is achieved by the PSO algorithm as described in subsec-

tion 2. In this stage, the architecture of FNT model is fixed, and it is the best tree
developed during the end of run of the structure search. The parameters (weights
and flexible activation function parameters) encoded in the best tree formulate a
particle.

5) If the maximum number of local search is reached, or no better parameter vector is
found for a significantly long time then go to step 6); otherwise go to step 4);

6) If satisfactory solution is found, then the algorithm is stopped; otherwise go to
step 2).
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3 Feature Selection and Classification Using FNT Paradigms

The Data Set. The data for our experiments was prepared by the 1998 DARPA intrusion
detection evaluation program by MIT Lincoln Lab and contains 24 attack types that
could be classified into four main categories namely Denial of Service (DOS), Remote
to User (R2L), User to Root (U2R) and Probing. The data for our experiments contains
randomly generated 11982 records having 41 features [6]. The training and test data
comprises of 5092 and 6890 records respectively. All the IDS models were trained and
tested with the same set of data. Since the data set has five different attack types we
performed a 5-class binary classification. The normal data belongs to class 1, Probe
belongs to class 2, DOS belongs to class 3, U2R belongs to class 4 and R2L belongs to
class 5.

Feature/Input Selection with FNT. It is often a difficult task to select important vari-
ables for any problem, especially when the feature space is large. A fully connected
NN classifier usually cannot do this. In the perspective of FNT framework, the nature
of model construction procedure allows the FNT to identify important input features
in building an IDS that is computationally efficient and effective. The mechanisms of
input selection in the FNT constructing procedure are as follows. (1) Initially the in-
put variables are selected to formulate the FNT model with same probabilities; (2) The
variables which have more contribution to the objective function will be enhanced and
have high opportunity to survive in the next generation by a evolutionary procedure;
(3) The evolutionary operators i.e., crossover and mutation, provide a input selection
method by which the FNT should select appropriate variables automatically.

Modelling IDS Using FNT with 41 Input-Variables. For this simulation, the origi-
nal 41 input variables are used for constructing a FNT model. A FNT classifier was
constructed using the training data and then the classifier was used on the test data
set to classify the data as an attack or normal data. The instruction sets used to create
an optimal FNT classifier is S = F

⋃
T= {+5, . . ., +20}

⋃
{x1,x2, . . . , x41}. Where

xi(i = 1, 2, . . . , 41) denotes the 41 features.
The optimal FNTs for classes 1-5 are shown in Figures 2. It should be noted that the

important features for constructing the FNT model were formulated in accordance with
the procedure mentioned in the previous section. These important variables are shown

Fig. 2. The evolved FNT for classes 1, 2, 3, 4 and 5 with 41 input variables
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Table 1. The important features selected by the FNT algorithm

Class Important variables

Class 1 x3, x11, x21, x40

Class 2 x1, x3, x12, x18, x20, x21, x22 x23, x26, x27, x31, x37, x41

Class 3 x1, x8, x10, x11, x16, x17, x20, x12, x23, x28, x29, x31

Class 4 x11, x14, x17, x28, x29, x32, x36, x38

Class 5 x1, x3, x11, x12, x13, x18, x20, x22, x25, x38

Table 2. Detection performance using FNT and NN classification models

Attack Class FNT NN

Normal 99.19% 95.69%

Probe 98.39% 95.53%

DOS 98.75% 90.41%

U2R 99.70% 100%

R2L 99.09% 98.10%

Table 3. The false positive/negative errors by the FNT algorithm

Attack Class False positive error False negative error

Normal 0.0581% 0.7837%

Probe 1.3943% 0.2160%

DOS 0.6241% 0.6241%

U2R 0.2177% 0.0726%

R2L 0.7547% 0.1597%

in Table 1. Table 2 depicts the detection performance of the FNT by using the original
41 variable data set.

For comparison purpose, a neural network classifier trained by PSO algorithm were
constructed using the same training data sets and then the neural network classifier was
used on the test data set to detect the different types of attacks. All the input variables
were used for the experiments and the results are shown in Table 2.

4 Conclusions

In this paper we presented a Flexible Neural Tree (FNT) model for Intrusion Detection
Systems (IDS) with a focus on improving the intrusion detection performance by re-
ducing the input features. We have also demonstrated the performance using different
reduced data sets. As evident from Tables 1 and 2, the proposed flexible neural tree
approach seems to be very promising. The FNT model was able to reduce the number
of variables to 4, 12, 12, 8 and 10 (using 41 input variables) for classes 1-5 respectively.
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Using 41 variables, FNT model gave the best accuracy for the detection of most of the
classes (except U2R). The achieved false positive/negative errors using 41 data set by
the FNT algorithm is depicted in Table 3. The direct NN classifier outperformed the
FNT approach for U2R attack only.
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A Dynamic Recurrent Neural Network Fault Diagnosis
and Isolation Architecture

for Satellite’s Actuator/Thruster Failures
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Abstract. In this paper, a fault diagnosis and isolation (FDI) strategy based on
a Dynamically Driven Recurrent Neural Network (DDRNN) architecture is pro-
posed for use in situations when there are thruster/actuator failures in the satel-
lite’s attitude control system. The proposed architecture is motivated from the
following facts: (1) the satellite’s attitude dynamics is highly complex and non-
linear, (2) the large volume of data that is generated in the attitude control system
has to be monitored in real-time by the ground station operators which is a highly
labor-intensive and time-consuming task, and (3) dynamically driven recurrent
neural networks (DDRNN) have been shown to have the ability to learn, recog-
nize and generate complex temporal patterns. To improve the FDI performance
accuracy, the proposed architecture is designed to consist of two DDRNNs. The
first DDRNN determines and diagnoses the presence of a faulty thruster. The sec-
ond DDRNN then identifies which thruster is faulty, i.e. it isolates the location of
the fault. Extensive simulation results are shown that demonstrate and verify that
the proposed two DDRNNs scheme is more efficient and robust as compared to
a scheme that is based on a single feed-forward back-propagation neural network
or a single DDRNN scheme, especially in the presence of external disturbances
and noise.

1 Introduction

Monitoring and diagnosis of spacecrafts require higher control autonomy, which would
then enable them to achieve performance with higher precision, faster slewing, and
larger maneuvers in spite of actuator, sensor or component failures and disturbances,
since: (1) For missions in outer space, the capacities of ground control to respond to
emergency situations are limited, mainly because of long round trip communication de-
lays, (2) In hostile environments the ground control could be interrupted for a long time,
(3) There is an increased need to minimize the cost of ground-based support during the
long duration of space missions, and (4) There is an increased requirement to improve
reliability and mission lifetime.

To achieve the goals of autonomous operation, the spacecraft should be designed to
have self-contained fault diagnosis, isolation and recovery (FDIR) capabilities. This is

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 574–583, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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to be realized by embedding the FDIR function on the spacecraft. An integral compo-
nent of this requirement is fault diagnosis since a fault can be correctly isolated only
when it is detected. During the last two decades, a large number of work have been
performed using analytical approaches based on quantitative models. The idea is to
generate signals that reflect inconsistencies between nominal and faulty system opera-
tion. Such signals, called residuals, are usually generated using analytical approaches,
such as observers, parameter estimation or parity equations based on analytical (or func-
tional) redundancy.

The main assumption made when using the above methods is that a precise math-
ematical model of the system being diagnosed is required. This makes quantitative
model-based approaches very difficult to use in real systems, since any unmodeled dy-
namics can affect the performance of the fault diagnosis and isolation (FDI) scheme.
There are also certain FDI techniques developed that are based on “if-then” rules, which
are process-history based qualitative methods. These kinds of approaches also require
lengthy and costly development and testing stages, and it is generally difficult to obtain
precise and formal satisfactory stability and robustness guarantees.

For fault diagnosis of spacecraft attitude control dynamics, it should be noted that
the attitude dynamics of a spacecraft is highly nonlinear, complex and time-varying.
On the other hand, dynamically driven recurrent neural networks (DDRNN) have the
learning ability to recognize and generate temporal patterns. Therefore, dynamically
driven recurrent neural networks (DDRNN) are promising for the development of FDI
schemes. In this paper, a FDI scheme based on DDRNN is designed and implemented
for achieving FDI and system recovery in the presence of thruster fault in the atti-
tude control system of a spacecraft. To improve the performance and accuracy of the
proposed scheme, the architecture is designed to consist of two DDRNNs. In the first
step, a DDRNN diagnoses whether there is a faulty thruster or not. In the next step,
the second DDRNN identifies which thruster is faulty, i.e. it identifies the location
of the fault. Extensive numerical simulations are conducted to demonstrate that the
two-DDRNNs scheme is more efficient than a scheme that is based on a feed-forward
back-propagation neural network, especially in the presence of disturbances and noises.
Moreover, our proposed approach is much more efficient than a single-neural network
DDRNN scheme with improved stability and robustness properties.

2 Thruster and Actuator Failures

This paper focuses on spacecraft attitude control system thruster and actuator diagnosis
and isolation. It is assumed that the spacecraft is a rigid body with thrusters that provide
torques about three mutually perpendicular axes, where the equations of motion for the
attitude dynamics may be governed by:

I
.
ω = −ωXIω +BT

where ω ∈ IR3 denotes the inertial angular velocity of the spacecraft with respect to an
inertial reference frame, ωX denotes the skew matrix of ω, and I denotes the second-
moment of inertial matrix (a diagonal matrix) which is taken about the mass center of
the spacecraft.
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Let us assume that there are six thrusters that provide the desired torques in the
three mutually perpendicular directions, and every two thrusters are arranged in one
pair, where one is the redundant or backup while the other one is the real operational
actuator. For instance, the thruster 1 and thruster 2 are arranged in theX-axis direction,
thrusters 3 and 4 are arranged in the Y -axis direction, and thrusters 5 and 6 in the Z-
axis direction. Accordingly, T = [t1, · · · , t6]T denotes the torques generated by the
corresponding individual thrusters (actuators), B ∈ IR3×6 denotes the allocator which
assigns and switches on and off the torques from each thruster(actuator). Under the

corresponding situation with no thruster(actuator) failure, we haveB =

⎡⎣1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎤⎦
The actual torque Ua ∈ IR3 which is applied to the spacecraft is given by Ua =

BT . Let Uc = [Uc1, Uc2, Uc3] denotes the vector of control torques commanded by the
controller to the three pairs of thrusters (each pair has one operating thruster and one
redundant one). In the ideal case, with no fault, each thruster generates the commanded
torque. This implies that switching on the torques from thrusters 1,3, and 5, and switch-
ing off torques from thrusters 2,4, and 6, which are the redundant ones. Therefore, the
allocator B is used as a security measure to keep-off the undesired torques due to the
delays in response from the faulty thrusters when switching the two thrusters of one
thruster pair. This scheme is to ensure that T = Uc.

In practice, usually there are two possible types of thruster faults: (1) no torques
are generated due to a complete loss of thruster, and (2) torques are not equal to the
desired values corresponding to the control torques commanded by the controller. The
latter case is possible because of the saturation property of a thruster, i.e. when the
control torques commanded by the controller are exceeding the limited torques of a
thruster, where the saturated torques will be generated instead of the desired values.
The relationship between the reference input Ur (control objective), the commanded
torques Uc, the torques generated by the thrusters T , and the actual torques Ua that are
applied to the spacecraft is shown in Figure 1. In the presence of a thruster failure when
the actual torques are not the desired ones corresponding to the commanded torques, it
is clear that the control objectives cannot be achieved.

3 Dynamically Driven Recurrent Networks

It is well-known that recurrent neural networks can respond and represent temporally
to an externally applied input signal. These kinds of recurrent networks are known as
dynamically driven recurrent neural networks (DDRNN). Due to the application and
presence of feedback, a DDRNN can be used to capture a state representations. This
makes DDRNNs suitable for diverse applications. Moreover, the use of global feedback
has the potential of reducing the memory requirement significantly.

3.1 State-Space Model and Elman’s Neural Network

State space representation of a dynamical nonlinear and complex system is one of the
properties of DDRNNs. The output of the hidden layer is fed back to the input layer
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Fig. 1. Relationship of Ur, Uc, and Ua

via a bank of unit delays. The input layer consists of a concatenation of feedback nodes
and source nodes. The neural network is connected to the external environment via
the source nodes. The number of unit delays used to feed the output of the hidden layer
back to the input layer determines the order of the model. Elman’s network has a similar
architecture to that of ordinary state-space model except for the fact that the output layer
could be nonlinear and the bank of unit delays is omitted. Elman’s network contains
recurrent connections from the hidden neurons to a layer of context units consisting
of unit delays. These context units store the outputs of the hidden neurons for one
time step, and then feed them back to the input layer. Thus the hidden neurons have
some record of their prior activations, which enables the network to perform learning
tasks that extend over time. The hidden neurons also feed the output neurons. Due to
the nature of the feedback around the hidden neurons, these neurons may continue to
recycle information through the network over multiple time steps, and thereby discover
abstract representations of dynamical characteristics. Figure 2 shows the structure of
the DDRNNs that is utilized in this paper for detecting and isolating the thruster failure
in the attitude control system of a satellite.

4 Two DDRNNs Fault Diagnosis
and Identification (FDI) and Recovery Scheme

The stages for the development of the proposed FDI scheme are outlined below:

STEP 1: Application of the DDRNN to determine whether there is a fault
The thruster torques commanded by the controller and the satellite outputs (body an-
gular velocities) sampled from the attitude control system are fed to the DDRNN for
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Fig. 2. Structure of the two-DDRNN FDI and system recovery schemes

determining if there is a fault in the thruster. The DDRNN is designed to have one hid-
den layer and one output neuron. Figure 2 shows the structure of the DDRNN. A tansig
transfer function is used for the hidden layer, and a purelin transfer function is selected
for the output layer. Specifically, we have: xk = tan sig(wpp + wfxk−1 + b1), yk =
purelin(whxk + b2), where tan sig(n) = 2/(1 + exp(−2n)) − 1, purelin(n) = n.
When there is no fault, the target output is chosen as “ 0” and when there is a thruster
(actuator) fault, the target output is chosen as “1”. The output of this neuron is then sent
to the Decision Maker (refer to Figure 2). If the output is greater than 0.5, it is decided
that a fault exists and the Decision Maker sends a signal to the next DDRNN. Other-
wise, it is decided that there is no fault and the Decision Maker does not send a signal.
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Once the Decision Maker sends a signal to the next DDRNN, the first DDRNN will be-
come “inactive” for a certain duration of time (in our simulations we have selected 0.8
seconds) until the redundant thruster operates normally. Beyond this time interval the
first DDRNN will be activated in order to maintain monitoring the data for the presence
of other possible fault(s).

STEP 2: Initiation of the second DDRNN to isolate the faulty thruster
Once the first DDRNN has diagnosed the presence of a fault, a signal will be sent to the
second DDRNN. Upon receiving this signal, the second DDRNN using the real-time
data from the satellite will attempt to identify the faulty thruster. The second DDRNN
is designed to have two output neurons. Figure 2 shows the structure of the second
DDRNN. The relationship between each type of thruster fault and the corresponding
desired target labels is shown in Table 1.

Table 1.

Fault type 1 (The thruster
(actuator) in use from the
first pair is faulty)

2 (The thruster
(actuator) in use from the
second pair is faulty)

3 (The thruster
(actuator) in
use from the
third pair is
faulty)

Target output [ 0 1] [ 1 0] [1 1]

The two outputs from the second DDRNN are then sent to the Decision Maker.
Based on this information the decision maker diagnoses the type of fault and sends
a corresponding diagnosis signal to initiate the next process. If the first output is less
than 0.5, and the second output is greater than 0.5, the diagnosis made is that the fault
is of type 1. On the other hand if the first output is greater than 0.5, and the second
output is less than 0.5, the diagnosis made is that the fault is of type 2, and finally if
both outputs are greater than 0.5, the diagnosis made is that the fault is of type 3. Upon
receiving the diagnosis signal, the following tasks will commence automatically by our
proposed strategy: (1) The faulty thruster will be disengaged from the attitude control
system. The corresponding element in the allocator matrix will also be set to zero, and
(2) Subsequently the corresponding redundant/backup thruster will be engaged, and
the corresponding element in the allocator matrix will be set to 1. Therefore the main
goal of the above scheme is to complete the FDI process and clear the fault in order
to ensure that the satellites attitude control system remains stable and can achieve its
desired control objectives.

4.1 Training the First DDRNN for Diagnosing Thruster Failure

As stated above the first DDRNN has one hidden layer and one output layer, and
the output layer has one neuron. When training the DDRNN, the following opera-
tions take place: (1) The entire input/output data is presented to the network and the
network’s output is calculated and compared with the actual data for generating the
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error signals, (2) At each time step, the error is backpropagated to obtain the gra-
dients for each weight and bias parameters. This gradient is an approximation since
the contributions of weights and biases via the delayed recurrent connection are ig-
nored, and (3) The gradient is used to update the weights and biases according to
ΔX = αΔX(n − 1) + αlr

dPerf

dX , where ΔX is the change to the weight or the bias
parameters, ΔX(n − 1) is the change to the weight or bias at the previous iteration,
dPerf

dX is the derivative of the performance index with respect to the weight and bias,
lr is the learning rate, and α is the momentum term. Our goal was to get the highest
accuracy in the fault diagnosis while using the least number of data from the satellite by
utilizing the least number of hidden neurons. The solution was found through numer-
ical simulations. Back-Propagation-Through-Time algorithm was used as the training
algorithm. Once the network is trained, it was tested by both clean data as well as data
that represented the presence of noise and disturbances in the satellite attitude control
system.

4.2 Training the Second DDRNN for Isolating the Faulty Thruster

The second DDRNN has one hidden layer and one output layer, and the output layer
has two neurons. The torques commanded by the controller and the outputs of the no-
fault model and the three faulty models were sampled and fed into the DDRNN as
inputs for training. The desired target outputs are described in the above table. As in the
first DDRNN the Back-Propagation-Through-Time algorithm was used as the training
algorithm. Once the network is trained, it was test by both clean data as well as data
that represented the presence of noise and disturbances in the satellite attitude control
system.

5 Simulation Results and Comparison with Other Architectures

Once the two DDRNNs are properly trained they were applied for FDI of thruster fail-
ures in the attitude control system of the satellite. The results in Figures 3 to 6 depict the
performance of our proposed architecture for the fault type 3 case only due to space lim-
itations. Similar results are also obtained for the other two faulty cases. The fault is sim-
ulated to occur at time 2 seconds. In order to illustrate the performance of our proposed
strategy with other alternative solutions, the simulation results for the two-DDRNNs,
two-FFBPNN (feedforward back-propagation neural network), and one-DDRNN FDI
and system recovery scheme are conducted and the results are summarized in Table 2.

The comparison of the data presented in the table below reveals that the fault di-
agnosis performance accuracy of the two-DDRNNs scheme is higher than that of the
two-FFBPNN and one-FFBPNN schemes especially in the presence of disturbances
and noise.

6 Conclusion

In this paper, a new fault diagnosis, isolation and recovery method designated as two-
DDRNNs FDI and system recovery scheme is presented. The two-DDRNNs FDI and
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Fig. 3. Response (angular velocity) using the two-DDRNN FDI and system recovery scheme with
the third thruster pair being faulty and the desired response (without a fault)

Fig. 4. Diagnosis (decision) from the first and the second DDRNNs FDI and system recovery
scheme when the third thruster is faulty
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Fig. 5. Behavior (output) of the first and second DDRNNs FDI and system recovery scheme when
the third thruster is faulty

Fig. 6. Status of the thrusters when the third thruster is faulty with the two-DDRNNs FDI and
system recovery scheme: “1” indicates the thruster normally in use is operating, “2” indicates the
redundant thruster is operating

system recovery scheme makes use of dynamically driven recurrent neural networks.
Extensive simulation results demonstrated that the two-DDRNN FDI and system recov-
ery scheme is more efficient than the FDI method based on the common feed forward
back propagation neural networks and is also more efficient than a single one-DDRN
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Table 2.

Scheme Structure of Neural Network Perform.
(Clean
Data)

Perform.
(Noisy
Data)

2 DDRNNs
1st DDRNN 2nd DDRNN

97.4% 96.1%Input
nodes

Hidden
nodes

Output
nodes

Input
nodes

Hidden
nodes

Output
nodes

121 25 1 265 25 2

2 FFBPNN
Structure of NNs

94.2% 90.3%1st DDRNN 2nd DDRNN
Input
nodes

Hidden
nodes

Output
nodes

Input
nodes

Hidden
nodes

Output
nodes

1 DDRNN
121 25 1 265 25 2

95.1% 78.8%
Input nodes Hidden nodes Output nodes
121 25 2

FDI method. It was demonstrated that the two-DDRNNs scheme has high robustness
in the presence of external disturbances and noise. The future work would focus on the
FDI of simultaneously multiple thruster failures utilizing our proposed neural networks
architectures.
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Abstract. Nuclear receptors (NRs) are ligand-inducible transcription factors that
regulate diverse functions as a superfamily of crucial medical significance. Be-
cause of their involvement in many physiological and pathological processes, the
development of methods to infer the different NR subfamilies has become an im-
portant goal in biomedical research. In this paper we introduce a sequence-based
computational approach-Support Vector Machine to classify the 19 subfamilies
of NRs. We use 4-tuple residue composition instead of dipeptide composition to
encode the NR sequences. The overall predictive accuracy about 96% has been
achieved in a five fold cross-validation.

1 Introduction

Nuclear receptors (NRs) are ligand-inducible transcription factors that regulate diverse
functions, such as homeostasis, differentiation, embryonic development and organ phys-
iology [1]. They are implicated in many important diseases like cancer, diabetes, and
osteoporosis, and, therefore, are targets for pharmaceutical industries with similar im-
portance as the G protein-coupled receptors (GPCRs), ion channels, or kinases [2].
These nuclear hormone receptors form an evolution-related superfamily of crucial med-
ical significance. NR superfamily has been subdivided into different families and sub-
families because of their binding with different ligand types [3]. Inferring the diver-
sity of different NR functions has become an important goal in biomedical research.
Whereas, not many experimentally determined structure data are available for NR. It
is of great interest to research biologists and pharmaceutical companies to develop an
accurate sequence-based prediction of NR function and superfamily diversity instead
of concerning about 3-D structure [4]. Recently, Bhasin and Raphava have classified
NRs superfamily into four families with amino acid composition and dipeptide compo-
sition using support vector machines [5]. Classes of thyroid hormone like, HNF4-like,
estrogen like and fushi tarazu-F1 like were considered in their work. However, there are
many important subfamilies derived from a family. For example, thyroid hormone like
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family consists of many subfamilies such as thyroid hormone, retinoic acid, vitamin
D3-like and so on. These diversiform subfamilies regulate various biological functions
in cellular process.In the current study, we try to apply sequence-based Support Vector
Machine (SVM) method to approach the problem of classifying NR proteins at subfam-
ily level, as an extension of NR classification at family level. The results show that good
performance of classification of 19 NR subfamilies is obtained with a cross-validation
test.

2 Materials and Methods

2.1 Sequence Data

The data for subfamilies classification of NRs was taken from nucleaRDB database (Jul
2004 release)[6]. All putative/orphan sequences and fragments were excluded and re-
dundancy was reduced so that pair-wise sequence identity is relative low. About 400
protein sequences compose our initial data set. According to pharmacological knowl-
edge, these NRs belong to various subfamily components. Any subfamily that contained
less than 6 proteins was dropped for further consideration and we divided these NRs into
19 subfamilies. A simplified view of these NR subfamilies is presented in Table 1.

2.2 Support Vector Machine

SVM is a popular machine learning algorithm based on recent advances in statistical
learning theory [7, 8]. This algorithm first maps data into a high-dimensional feature

Table 1. View of the NR subfamilies.

Subfamily Class Description Number of NRs

1 Knirps like 7
2 DAX like 12
3 Thyroid hormone 14
4 Retinoic acid 17
5 Peroxisome proliferator activated 22
6 REV-ERB 16
7 RAR-related orphan receptor 15
8 Ecdysone-like 30
9 Vitamin D3-like 21

10 Hepatocyte nuclear factor 4 13
11 Retinoic acid X 36
12 Orphan nuclear receptors TR2, TR4 7
13 Tailless-like 15
14 COUP-TF-like 16
15 Estrogen 52
16 Estrogen-related 7
17 Glucocorticoid-like 47
18 Nerve Growth factor IB-like 12
19 Fushi tarazu-F1 like 29
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space, and then establishes a hyperplane as the decision-making surface, which max-
imizes the boundary between two classes. The actual mapping is achieved through a
kernel function, making it easy to implement and fast to compute. Four popular kernel
functions are:

linear kernel:K(u, v) = uT v (1)

polynomial kernel:K(u, v) = (γuTv + r)d, γ > 0 (2)

RBF kernel: K(u, v) = exp(−γ‖u− v‖2), γ > 0 (3)

sigmoid kernel:K(u, v) = tanh(γuTv + r), γ > 0 (4)

where u,v are data vectors in SVM. In principle, SVM is a two-class classifier. With the
recent improvements, the SVM can directly cope with multi-class classification prob-
lem now. The software used to implement SVM was libSVM, which can be downloaded
from http://www.csie.ntu.edu.tw/˜cjlin/libsvm. We selected ‘one-against-the rest’
multi-class strategy in libSVM to deal with our problem instead of ‘one-againse-one’
strategy.

2.3 Data Representation

Instead of amino acid composition or protein’s dipeptide composition [9, 10], we used
simplified 4-tuple residues composition to encode the amino acid sequences. The se-
quence alphabet was first reduced from 20 amino acids to six categories of biochemical
similarity: [I,V,L,M], [F,Y,W], [H,K,R], [D,E], [Q,N,T,P] and [A,C,G,S] [11]. After
this reduction, there were 64=1296 possible substrings of length 4. We extracted and
counted the occurrences of these substrings from a NR sequence string in a sliding win-
dow fashion. For a given protein sequence, the 4-tuple residues composition is simply
an integral vector of length 1296, in which each bit indicates the counts the correspond-
ing length-4 substring occurs in the protein. This simplified 4-tuple residues compo-
sition method was previously used to predict protein-protein interactions from protein
sequence [12].

2.4 Scaling Data

Scaling data vectors before applying SVM is very important. The main advantage of
scaling data is to avoid attributes in greater numeric ranges dominate those in smaller
numeric ranges. Another advantage is to avoid numerical difficulties during the calcu-
lation. Because kernel values usually depend on the inner products of feature vectors,
e.g. the linear kernel and the polynomial kernel, large attribute values might cause nu-
merical problems. In this work, we linearly scaling each attribute in data vector to the
range [-1, +1].

2.5 Selecting Kernel Functions

The linear kernel is a special case of RBF. The linear kernel with a penalty parameter
has the same performance as the RBF kernel with some proper parameters. Similarly,
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the sigmoid kernel behaves like RBF for certain parameters. In addition, the number of
hyperparameters influences the complexity of model selection. The polynomial kernel
has more hyperparameters than the RBF kernel. So in our current study, we used RBF
kernel function as a reasonable choice.

2.6 Performance Assessment of Classification

Cross-validation within the original data set was utilized to provide a nearly unbiased
estimate of the prediction error rate [13]. The performance of classifying the subfami-
lies of NRs was evaluated using 5-fold cross-validation. The dataset of NRs was divided
into five subsets of approximately equal size. Sequentially one subset was tested using
the classifier trained on the remaining 4 subsets. Thus, each NR instance was predicted
once so the cross-validation accuracy was the percentage of data which are correctly
classified. Summary statistics assessing the performance of classification were calcu-
lated, including sensitivity, specificity and accuracy of classification. More formally,
these definitions are:

sensitivity =
true positives

true positives + false negatives
(5)

specificity =
true positives

true positives + false positives
(6)

accuracy =
true positives + true negatives

true positives + false negatives + true negatives + false positives
(7)

3 Results

3.1 Parameters Tuning

There are two parameters while using RBF kernels: kernel parameter γ and penalty
parameter C. We used the ‘grid-search’ strategy embedded in libSVM on choice of
parameters γ and C for SVM model. The best result was achieved when C = 8 and γ =
0.0001.

3.2 Classification of NR Subfamilies

The results of NR classification are demonstrated in term of sensitivity and specificity
for each subfamily, as shown in Table 2. The prediction for the largest two class, es-
trogen and glucocorticoid-like subfamilies (Class 15 and Class 17) reaches about 99%
sensitivity and 98% specificity. The sensitivity and specificity of most subfamily class
are over 91%. The performance of classification is good and balanced except for the
first class of knirps-like subfamily with low sensitivity of 60%.

3.3 Comparisons with Different Methods

In order to check the performance of our method, we tried to classify the subfamilies
via widely used nearest neighbor(NN) and decision tree algorithms and compared our
simplified 4-tuple residues composition with protein’s dipeptide composition via SVM.
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Table 2. Sensitivities and specificities of classification for each subfamily.

Subfamily Class Sensitivity(%) Specificity(%)

1 60 100
2 100 85.7
3 92.9 100
4 100 94.4
5 100 95.7
6 100 93.8
7 100 100
8 100 96.8
9 100 95.5
10 77.0 100
11 91.7 94.3
12 85.7 85.7
13 100 93.8
14 93.8 100
15 100 98.1
16 100 100
17 97.9 97.9
18 91.7 84.6
19 96.6 100

We measured ‘nearest’ by Euclidean distance in NN and used C4.5 strategy in decision
tree [14]. Overall classification accuracies of NR subfamilies in comparison are sum-
marized in Table 3. The accuracy of C4.5 decision tree or NN is about 10% or 6% lower
than that of our methods. The use of simplified 4-tuple residues composition in SVM
achieved better performance than using protein’s dipeptide composition.

4 Conclusion

In this paper, we introduced SVM method for recognizing the 19 subfamily of NRs.
Simplified 4-tuple residue composition was used to encode the NR sequences. The rate
of correct identification obtained in five fold cross-validation reaches about 96%. Com-
parisons with other methods imply that our method do a good performance and we can

Table 3. Performance comparisons with different algorithms.

Method Accuracy(%)

Our method 96.1
SVM with PDCa 93.3

NNb 89.7
Decision Tree 86.3

a protein’s dipeptide composition
b the nearest neighbor algorithm
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predict the type of NRs to a considerably accurate extent. It is anticipated that the es-
tablishment of such method will speed up the pace of identifying subfamilies of orphan
NRs and facilitate drug discovery for diseases.
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Abstract. A multiple modeling algorithm for antibiotic fermentation process
based on fuzzy c-means (FCM) and support vector regression (SVR) is proposed.
By analyzing the features of antibiotic fermentation, the mechanism of multi-
ple modeling of the bioprocess is presented. Using FCM clustering method, the
bioprocess is classified into several work states and sub-models. Then, taking
advantage of the generalization properties of SVR, the multiple model of biopro-
cess is established and the proposed algorithm is described. Experimental data of
industrial penicillin production is used to validate the model.
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Abstract. This paper presents two non-parametric statistical test methods, called
Kolmogorov-Smirnov (KS) and U statistic test methods, respectively, for infor-
mative gene selection of a tumor from microarray data, with help of the theory of
false discovery rate. To test the effectiveness of these non-parametric statistical
test methods, we use the support vector machine (SVM) to construct a tumor di-
agnosis system (i.e., a binary classifier) based on the identified informative genes
on the colon and leukemia data. It is shown by the experiments that the con-
structed tumor diagnosis system with both the KS and U statistic test methods
can reach a good prediction accuracy on both the colon and leukemia data sets.

1 Introduction

With the rapid development of DNA microarray technology, we can now get rapid,
large-scale screening for patterns of gene expression. These microarray data corre-
sponding to certain biological feature are generally represented by a gene expression
matrix W = (wij)n×m. In the matrix, a row represents a gene, while a column repre-
sents a sample. The numerical value wij denotes the expression level of a specific gene
in a particular sample. Many microarray data sets are now available on the web.

For medical diagnosis and treatment, it is important to select or discover informative
genes of a tumor from microarray data. Essentially, the informative genes can not only
provide valuable information for discovering the crucial reasons of the tumor as well as
the treatment methods, but also support to construct an efficient tumor diagnosis system
from their expression levels directly without any influence of the other irrelevant genes.
In fact, these have been already many methods for informative gene selection. However,
most of the existing methods are based on ranking the important genes according to a
certain criterion which requires that the data follows a normal distribution (e.g., [1]-[4]).
But the normality assumption is often violated in real data sets [5]. In order to avoid the
normality assumption, a rank sum test method (as a typical non-parametric statistical
method) has been suggested to select informative genes with a considerably improved
performance of tumor diagnosis on the colon and leukemia data [5].

In this paper, we further study this problem via two other non-parametric statistical
tests, called Kolmogorov-Smirnov (KS) test and U statistic test, respectively, for infor-
mative gene selection with help of the theory of false discovery rate [6]-[8]. To test the

� This work was supported by the Natural Science Foundation of China for Project 60471054.
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effectiveness of these non-parametric statistical test methods, we use the support vector
machine (SVM) to construct a tumor diagnosis system (i.e., a binary classifier) based
on the identified informative genes on the colon and leukemia data. Our experiments
show that the constructed tumor diagnosis system with both the KS and U test methods
through SVM can reach a good prediction accuracy on both the colon and leukemia
data sets.

2 The KS and U Statistic Tests

In this section, we introduce the KS and U statistic tests as the bases for informative
gene selection. We consider a data set of two classes, i.e., S = {x11, · · · , x1n;x21, · · · ,
x2m} in which x11, · · · , x1n come from one population being subject to the probability
distribution F1(x), while x21, · · · , x2m come from another population being subject to
the probability distribution F2(x). We need to make a non-parametric statistical test
of hypothesis H0 : F1(x) = F2(x) without any information on these two probability
distributions.

2.1 The KS Test

The KS test is a typical non-parametric statistical test based on the ranks of the obser-
vations. Actually, we first rank all the observations in S in an ascending order. Then,
each observation has a ranking number, being called its rank in statistics. We now de-
fine a discrete probability distribution F = {f1, f2, · · · , fn+m} according to the ranks
{k1, k2, · · · , kn} of the observations {x11, · · · , x1n} of the first class as follows (assum-
ing that k1 ≤ k2 ≤ · · · ≤ kn).

fj =

⎧⎪⎪⎨⎪⎪⎩
0, if j < k1;
i
n , if j = ki, i = 1, 2, · · · , n;
i
n , if ki < j < ki+1, i = 1, 2, · · · , n− 1;
1, if j > kn,

(1)

for j = 1, 2, · · · , n + m. In the same way, we can define G = {g1, g2, · · · , gn+m}
according to the ranks of the observations {x21, · · · , x2n} of the second class. Finally,
we construct the KS statistic Dnm as follows.

Dnm = max{|fi − gi| : i = 1, 2, · · · , n+m.}. (2)

For a significance level α > 0, we can get the threshold value V (α) of Dnm from a
general KS test table. If Dnm > V (α), we reject H0; otherwise, we acceptH0.

2.2 The U Statistics Test

Supposing that n ≤ m and R1 is the sum of ranks of the observations of the first class,
i.e., R1 =

∑n
i=1 ki, we have the following (Mann-Whitney) U statistic:

U = nm+
n(n+ 1)

2
−R1. (3)
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On the other hand, if n > m, we let R1 be the sum of ranks of the observations of the
second class and the U statistic is defined by

U = nm+
m(m+ 1)

2
−R1. (4)

When H0 holds, the U statistic tends to be subject to a normal distribution with
the mean μU = nm/2 and the standard variance σU =

√
nm(n+m+ 1)/12 as the

number of observations in each class becomes large. That is,

Z =
U − μU

σU
=

U − nm/2√
nm(n+m+ 1)/12

∼ N(0, 1). (5)

Thus, we can make the statistical test on H0 from Z . For a significance level α > 0, we
can get the threshold value V (α) from the standard normal distribution function. In the
same way, if Z > V (α), we reject H0; otherwise, we accept H0.

3 Informative Gene Selection and Tumor Diagnosis System
via SVM

We now consider the informative gene selection based on these two non-parametric
statistical tests. For informative gene selection, we can make a statistical test on each
gene with its expressions on the two classes of samples(tumor and normal tissues or two
kinds of tumor tissues). Clearly, if a gene is informative to the tumor, the probability
distributions on the two classes should be quite different; otherwise they should be
the same. On the other hand, we generally know nothing about the structures of these
distributions. In these situations, it is reasonable to apply the KS or U statistic test to the
informative gene selection via a microarray data set. That is, on each gene, when H0 is
rejected by the test of hypothesis, we consider this gene is informative; otherwise, we
consider it is not informative.

Generally, there are thousands of genes in a microarray data and thus the informative
gene selection is a large multiple-hypothesis testing problem. In this case, we must
control the false discovery rate (FDR), i.e., the ratio of the number of falsely discovered
(or selected) informative genes over that of all discovered informative genes [6]-[7].
Only when the FDR is controlled in a certain degree, we are sure that the informative
gene selection is reliable. In order to do so, Storey and Tibshirani [8] proposed a q-
value method which can be used to select the informative genes with the FDR being
controlled directly. Actually, we first make the KS or U statistic test for each gene
from the microarray data independently. Then, we can calculate the p-values of these
statistical tests according to the statistics, say p1 ≤ p2 ≤ · · · ,≤ pn in an ascending
order. By the q-value estimation algorithm given in [8] (which is now available on the
web site: http://faculty.washington.edu/ jstorey/qvalue.), we can get their corresponding
q-values, say q1 ≤ q2 ≤ · · · ,≤ qn. Finally, if we want to control the FDR by α > 0,
we need only to select the informative genes by the selection criterion that qi ≤ α. We
will use this q-value method via the KS and U statistic tests to select the informative
genes from a microarray data set.
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To test the effectiveness of our non-parametric statistical test method for informative
gene selection, we build a tumor diagnosis system (i.e., a binary classifier) using the
support vector machine (SVM) [9]. Actually, SVM has been proved to be the most
effective machine learning algorithm for processing large scale gene expression profiles.
It has been derived from the optimal classification problem in the sample space with a
finite number of samples. There are many softwares of SVM available on the web and
we will use the software of SVM in Matlab. For comparison, we also try the following
3 kinds of support vector machines: (1). Radial basis function SVM (RBF kernel); (2).
3-poly SVM (cubic polynomial kernel); and (3). Linear SVM (no kernel).

4 Experiment Results

We test the effectiveness of our non-parametric statistical test methods for informative
gene selection through SVM for tumor diagnosis using two real data sets as follows.

The colon cancer data set. It contains the expression profiles of 2, 000 genes in 22 nor-
mal tissues and 40 colon tumor tissues (retrieved from http://micro-array.princeton.edu
/oncology/database.html). In our experiment, we use the train set (22 normal and 22
tumorous tissues) and test set (18 tumorous tissues) provided at the web site.

The leukemia cancer data set. It consists of 7, 129 genes in 47 acute lymphoblas-
tic leukemia (ALL) and 25 acute myeloid leukemia (AML) samples (retrieved from
http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi). In our experiments, we use
the train set (27 ALL, 11 AML) and the test set (20 ALL, 14 AML) provided at the web
site.

We use MATLAB toolboxOSUSVM 3.0 (which can be obtained from the web site:
http://www.ece.osu.edu/˜maj/osu svm/.) to implement the three kinds of
SVMs. In the radial basis function and 3-poly SVMs, there are two parameters γ and
C. In our experiments, we generally select γ = 0.02 and C = 0.05 on the colon
dataset, and γ = 0.002 and C = 10 on the leukemia dataset. Sometimes, they are
slightly adjusted to get the best performance of the SVMs. For the KS and U statistic
test methods, we try three FDR α: 0.03, 0.05, and 0.07, respectively. The informative
gene selection returns different numbers of informative genes on both the colon and
leukemia data sets with slightly different prediction accuracies on the test sets. The
results of the two non-parametric statistical test methods on the colon and leukemia
data sets are given in Table 1-4, respectively.

From Tables 1& 2, we find that on the colon data set, the SVM tumor diagnosis
system can reach an optimum prediction accuracy 1 by both the KS and U statistic test

Table 1. The result of the KS test method on the colon data set. Here and in the following tables,
each number in the second to the fourth rows represents the prediction accuracy of the SVM on
the test set.

α (# informative genes) 0.03 (130) 0.05 (187) 0.07 (216)
RBF SVM 0.9444 1.0000 1.0000

3-poly SVM 0.9444 0.9444 0.9444
Linear SVM 0.9444 0.9444 0.9444
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Table 2. The result of the U test method on the colon data set.

α (# informative genes) 0.03 (130) 0.05 (187) 0.07 (216)
RBF SVM 0.9444 1.0000 1.0000

3-poly SVM 0.9444 0.9444 0.9444
Linear SVM 0.9444 0.9444 0.9444

Table 3. The result of the KS test method on the leukemia data set.

α (# informative genes) 0.03 (775) 0.05 (946) 0.07 (1108)
RBF SVM 0.9706 0.9706 0.9706

3-poly SVM 0.9706 0.9706 0.9706
Linear SVM 0.9706 0.9706 0.9706

methods. From Tables 3& 4, we further find that on the leukemia data set, the prediction
accuracy of the SVM tumor diagnosis system by using the informative genes of the
KS test method is always 0.9706, where only one prediction error happens in our test
experiments. As for the U statistic test method, the optimum prediction accuracy of the
SVM tumor diagnosis system is even 1. Therefore, the SVM tumor diagnosis system
with both the KS and U statistic test methods for informative gene selection can reach
a good prediction accuracy on both the colon and leukemia data sets.

We also make the experiments on these two microarray data sets by the rank sum
test method proposed in [5] with help of false discovery rate theory. It is found by the
experiments that the rank sum method is as good as the U statistic test method and better
than the original one to select the informative genes directly by the test of hypothesis.
It is also found by the experiments that these non-parametric statistical test methods
considerably outperforms the typical ranking methods [1]-[4] through the same SVM
software.

5 Conclusions

We have investigated the informative gene selection problem from a microarray data set
via non-parametric statistical test with help of the theory of false discovery rate theory.
We apply the Kolmogorov-Smirnov (KS) and U statistic tests and the q-value algorithm
to the informative gene selection of a tumor and use the support vector machine (SVM)
to construct a tumor diagnosis system with the identified informative genes on the colon
and leukemia data. Our experiments show that the constructed tumor diagnosis system
with both the KS and U statistic test methods can lead to a good prediction accuracy on
both the colon and leukemia data sets.

Table 4. The result of the U statistic test method on the leukemia data set.

α (# informative genes) 0.03 (1042) 0.05 (1255) 0.07 (1416)
RBF SVM 0.9706 0.9706 0.9706

3-poly SVM 0.9706 0.9706 1.0000
Linear SVM 0.9706 0.9706 0.9706
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Abstract. It is important in bioinformatics research and applications to select or
discover informative genes of a tumor from microarray data. However, most of
the existing methods are based on models which assume that the gene expressions
are normal distributed, which is often violated in practice. In this paper, we pro-
pose an information criterion for informative gene selection by ranking the genes
with the Kullback-Leiber discrimination information of two probability distribu-
tions of the expression levels on the tumor and normal (or another type of tumor)
samples. We use support vector machine (SVM) to construct the tumor diagnosis
system using certain top informative genes. The experiments on two well-known
data sets (colon data and leukemia data) show that the information criterion can
make the tumor diagnosis system reach 94.4% and 100% correctness rate of di-
agnosis on these two datasets, respectively.

1 Introduction

With the development of DNA microarray technology, we can now quickly obtain large-
scale gene expression profiles, i.e., the microarray data, which provide important and
detailed evidences to health state of human tissues for disease analysis and diagnosis.
Moreover, as gene studies are shifting from DNA sequencing to function analysis, the
microarry data will play a more important role since they can help us to discover and
understand the biological characteristics from a group of genes.

The microarray data can be represented by a matrix A = (aij)N×k, where the i-th
row corresponds to gene i, the j-th column corresponds to sample j, and aij denotes
the mRNA expression level of gene i in sample j. Generally, it is a large matrix with
thousands of rows according to such a number of genes in a microarray chip. As for
tumor diagnosis, each sample is labelled to be of a certain tumor or not and the tumor
diagnosis system can be trained with the supervised learning on these data. However,
the computing complexity due to the high dimension of the data has made it hard to
train the learning system. Moreover, not all these genes are relevant to the tumor and
the irrelevant genes will contribute nothing to the learning system but noise. In order to
achieve a high diagnosis accuracy, we should first select the informative genes that are
discriminative among the tumor and normal phenotypes. Meanwhile, the informative
genes provide clues to medical or biological studies.

� This work was supported by the Natural Science Foundation of China for Project 60471054.
�� The corresponding author, Email:jwma@math.pku.edu.cn.
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The problem of informative gene selection has been studied extensively in the last
five years. Golub et al.[1] proposed a kind of discrimination measurement on the genes
via a simple statistic: (μ1 − μ2)/(σ1 + σ2), similar to the t-statistic from expression
levels in two different classes. The t-statistic method and its variations are the most
popular in gene selection[2][3][4]. The statistic value is considered as a score for each
gene. Then all the genes are ranked according to their scores, and the group of top genes
are candidates for informative genes. The most serious problem for t-statistic method is
that it assumes the expression levels of each gene follow a normal distribution. However,
this is not always true in practice[5].

Many other scores have been proposed, such as NToM score[6] and BSS/WSS
score[7]. They even don’t consider the probability distributions of two-class gene ex-
pressions. According to the dimension reduction or filtering theory, some other meth-
ods are also proposed for informative gene selection, e.g., [8] [9] [10]. However, these
methods are not only lack of theoretic foundation on informative gene selection, but
also difficult to deal with, since the dimension of the data, i.e., the number of genes, is
so large.

In this paper, we propose an information criterion for informative gene selection by
measuring the discriminate power of a gene with the Kullback-Leiber discrimination in-
formation between the probability distributions of the expression level on the tumor and
normal (or another type of tumor) samples, which doesn’t need the normality assump-
tion on the expression levels. We then construct a tumor diagnosis system by the support
vector machine trained on the data set of certain top informative genes. In our exper-
iments, the information criterion can make the tumor diagnosis system reach 94.4%
correctness rate of diagnosis on colon dataset and 100% correctness rate of diagnosis
on leukemia dataset, respectively.

In the sequel, we propose our information criterion for informative gene selection in
Section 2. In Section 3, the experiments are conducted to demonstrate the information
criterion, being compared with the t-statistic method. A brief conclusion is made in
Section 4.

2 The Information Criterion

From the point of view of probability theory, the expression level of an informative gene
should subject to different probability distributions on the tumor and normal tissues,
respectively. Moreover, as this gene becomes more discriminative to the tumor, the two
probability distributions should be more different. Otherwise, the expression level of
an irrelevant gene should subject to the same probability distribution on both the tumor
and normal tissues. That is, the two probability distributions become the same in this
case. Based on this fact, we can use Kullback-Leiber discrimination information (also
known as Kullback-Leiber divergence) of these two probability distributions to evaluate
the discriminative power of the gene to the tumor.

If p(x) and q(x) are the probability distributions of the expression level on tu-
mor and normal tissues, respectively, the Kullback-Leiber discrimination information
is computed byK(p||q) =

∫
p(x) log(p(x)/q(x))dx. Since there are only a finite num-

ber of data available, we can only use the empirical distributions instead of p(x) and
q(x). For clarity, we rewrite the gene expression data by the following matrix:
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...
...

...
aN1 · · · aNm

∣∣∣∣∣∣∣
b11 · · · b1n

...
...

...
bN1 · · · bNn

⎞⎟⎠ , (1)

where aij is the expression level of gene i for the j-th tumor sample, while each bij is
the expression level of gene i for the j-th normal sample.

For a set of i.i.d. sample data x1, x2, · · · , xN , the empirical distribution can be esti-
mated by

p̂N (x) =
1

N

N∑
i=1

1

h
K
(

x − xi

h

)
, (2)

where K(x) is called the kernel function, h is the bandwidth of Parzen window (re-
lated with N ). In fact, Parzen[11] proved that under certain regular conditions, p̂N (x)
is an asymptotically unbiased estimator of the actual probability density function. In
our experiments we use Gaussian kernel function K(x) = 1√

2π
e−x2

and choose h by

ĥNS = ( 4
3N )1/5S, where S denotes the standard deviation of the sample data.

According to Eq.(2), from the data ai1, ai2, · · · , aim, we can get p̂i(x), the empirical
distribution of the expression level of gene i on the tumor sample data, and from the
data bi1, bi2, · · · , bin we can get q̂i(x), the empirical distribution for the expression of
gene i on the normal sample data. For symmetry, we define

Ki = K(p̂i||q̂i) +K(q̂i||p̂i) =
∫ +∞

−∞
(p̂i(x) − q̂i(x)) log

p̂i(x)
q̂i(x)

dx (3)

as the discriminative power of gene i to the tumor. Then, all genes can be ranked in the
descending order of this criterion. We can select a certain number of genes ranked first
as the informative genes and discard the rest ones.

After we select a group of informative genes, we can construct the tumor diagnosis
system by a binary (or bipolar) supervised classifier trained with the expression levels
of these informative genes. Since SVM owns a better generalization ability on a small
sample set[12], we use it as our tumor diagnosis system, with radial basis function as
the kernel function.

For comparison, we also give the t-statistic method for informative gene selection.
Actually, the t-statistic method ranks genes in the descending order of the absolute value
of t-statistic calculated from data samples in two classes as follows:

ti = (āi − b̄i)/(

√
s2a,i

m
+
s2b,i

n
), (4)

where āi and s2a,i are the mean and variance of gene i’s expression level on the tumor
samples, respectively, while b̄i and s2b,i are the mean and variance of gene i’s expression
level on the normal samples, respectively. Traditionally, t-statistic is used to test whether
two normal distributions have the same mean.

3 Experiment Results

We test the effectiveness of the information criterion for informative gene selection
through the SVM for tumor diagnosis using the two real data sets as follows:
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The colon cancer dataset1 contains the expression profiles of 2000 genes in 22 nor-
mal tissues and 40 tumor tissues[2]. In our experiments, we randomly select 44 samples
as the training set, and use the other 18 samples as test data.

The leukemia dataset2 consists of expression profiles of 7129 genes from 47 acute
lymphoblastic leukemia (ALL) and 25 acute myeloid leukemia (AML) samples[1].
Specifically, the training dataset contains 38 samples (27 ALL and 11 AML), while
the test dataset contains 34 samples (20 ALL, 14 AML).

We calculate all Ki and then rank the genes with these values. As shown above,
genes with larger Ki will have stronger discriminate powers. In the experiments, we
select the top k genes with the highest ranks, and train the SVM with the expression
levels of these k genes. We test the performance with k gradually increasing from some
initial value k0.

We use MATLAB toolbox OSU SVM 2.0 (which can be obtained from http://
eewww.eng.ohio-state.edu/˜maj/osu svm/) to implement the SVM with
the RBF kernel functions. In this situation, there are only two parameters γ and C to be
determined. Actually, the selection of γ and C affects the performance of the SVM. In
the experiments, we take a grid search procedure from 16 × 16 pairs of γ and C, and
choose the optimal values by cross validation. Then, the SVM is trained for the tumor
diagnosis. The correctness rates of tumor prediction on the two datasets with k from 1
to 300 are sketched in Figs 1 & 2, respectively.
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Fig. 1. The correctness rate of tumor prediction
on colon cancer data
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Fig. 2. The correctness rate of tumor prediec-
tion on leukemia data

From the curves in Figs 1 & 2, we can observe that as the number k of selected in-
formative genes increases from the beginning, the prediction accuracy tends to increase,
too. When the highest correctness rate of tumor prediction is reached, there exists cer-
tain interval in which each k can maintain a good prediction accuracy, although the
correctness rate may fluctuate slightly. But if k further increases, the correctness rate
begins to decrease. This means that the information criterion is significant on the se-
lection of informative genes of a tumor. It can be also found that when the number of
informative genes is properly selected, the information criterion can make the tumor

1 retrieved from http://microarray.princeton.edu/oncology/database.html
2 retrieved from http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
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diagnosis system reach 94.4% correctness rate of diagnosis on the colon dataset and
100% correctness rate of diagnosis on the leukemia dataset, respectively.

On the other hand, the experiment results show that the number of informative genes
should be carefully selected and is essential to the performance of SVM for tumor
prediction. With the more or less genes selected, the SVM would result in a drop of
prediction accuracy. However, there exist a number of weakly related genes that are not
very sensitive to the performance of the SVM for tumor prediction. It can be found by
the experiments that the optimal number of informative genes of colon cancer is about
125, while that of leukemia is about 75.

50 100 150 200 250 300
0.5
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0.65

0.7

0.75
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0.95

Fig. 3. The correctness rate of tumor prediction
on colon cancer data
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0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 4. The correctness rate of tumor prediec-
tion on leukemia data

For comparison, we replace the gene selection criterion with the t-statistic and the
results on the two datasets are shown in Figs 3 & 4. Clearly, our information criterion
is superior to the t-statistic method on the tumor diagnosis.

4 Conclusions

We have proposed an information criterion for informative gene selection of a tumor ac-
cording to the Kullback-Leiber discriminative information between the two probability
distributions of the expression levels on the tumor and normal tissues. By experiments
on real data sets through the SVM for tumor diagnosis, we show that the information
criterion is significant and even better than the t-statistic method. Moreover, the exper-
iments also show that the information criterion can make the tumor diagnosis system
reach 94.4% correctness rate of diagnosis on colon dataset and 100% correctness rate
of diagnosis on leukemia dataset, respectively.
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Model the Relationship Between Gene Expression
and TFBSs Using a Simplified Neural Network

with Bayesian Variable Selection
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Abstract. Although numerous computational methods consider the identifica-
tion of individual transcription factor binding sites (TFBSs), very few focus on
the interactions between these sites. In this study, we study the relationship be-
tween transcription factor binding sites and microarray gene expression data. A
probit regression with one linear term plus nonlinear (it is actually a simplified
neural network) is used to build a predictive model of outcome of interest (ei-
ther gene expression ratios or up- and down-regulations) using these transcription
factor binding sites. This issue is related to the more general problem of expres-
sion prediction in which we want to find small subsets of TFBSs to be used as
predictors of possible co-expressed genes and those genes do share some DNA
regulatory motifs. Given some maximum number of predictors to be used, a full
search of all possible predictor sets is prohibitive. This paper considers Bayesian
variable selection for prediction using the nonlinear probit model (or simplified
neural network). We applied this nonlinear model with Bayesian motif selection
on one gene expression data set. These TFs demonstrated intricate regulatory
roles either as a family or as individual members and our analysis created plausi-
ble hypotheses for combinatorial interaction among TFBSs.

1 Introduction

The expression of a gene is controlled by many mechanisms. A key factor in these
mechanisms is mRNA transcription regulation by various proteins, known as transcrip-
tional factors (TFs), which bind to specific sites in the promoter region of a gene that
activate or repress transcription. Genome sequences specify the gene transcription and
translation activities that produce RNAs and proteins to support living cells, but how
cells control global gene expression is far from transparent [10]. The transcriptional
regulatory apparatus is organized in the form of arrays of transcription factor bind-
ing sites (TFBSs) or motifs on DNA. Identifying the components of this array, and
the relationships among them is one of the challenging problems of contemporary biol-
ogy. Transcriptional regulation in eukaryotic organisms requires cooperation of multiple
transcription factors. To date, most computational methods focus on identifying single
or multiple TFBSs rather than exploring their interdependence in regulation. Recently,
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c© Springer-Verlag Berlin Heidelberg 2005



720 Xiaobo Zhou et al.

[3] developed a method called MOTIF REGRESSOR. This approach combines binding
site identification using position weight matrices, and the linear regression approach for
motif finding [2, 4]. All of those approaches [2–4] also first identifies potential TFBSs
from groups of genes separately and then uses linear regression to model gene expres-
sion as a function of these sites. In this study, we will use transcriptional factor library
TRANSFAC Professional [6], whose binding site sequence information has been ver-
ified experimentally, to find highly likely TFBS candidates, and study the relationship
between gene expression and TFBS candidates, without introducing too many false
positive candidates in the modeling process.

A simplified neural networks or nonlinear probit regression is used to build a pre-
dictive model of outcome of interest (either gene expression ratios or up- and down-
regulations) using these transcription factor binding sites. This issue is related to the
more general problem of expression prediction in which we want to find small subsets
of TFBSs to be used as predictors of possible co-expressed genes and those genes do
share some DNA regulatory motifs. Given a large number of predictors to be used, a full
search of all possible predictor sets is combinatorial prohibitive. This paper considers
Bayesian variable selection for prediction using a linear regression model. The non-
linear probit regressor is approximated as a linear plus a nonlinear combination of the
TFBSs and a Gibbs sampler is employed to find the TFBSs with the strongest predictive
power. We final applied this model to spinal cord injury (SCI) data analysis.

2 Material Preparation

As a first step of pre-preprocessing microarray data, we perform missing value esti-
mation to the all gene expression data. A weighted K-nearest neighbor method based
method select features of expression profiles similar to the gene of interest to impute
missing values [8]. The list of genes is screened further for the ones with maximum fold
changes. We first calculate the p-values of each gene by the ratio of the between-group
mean sum of squares to the within-group (F test). Only those genes whose p-values
are extremely small are retained. Next we choose two maximum concordant sets of the
top 30 up-regulated and down-regulated genes. A combined discordant set of genes is
obtained with the top 15 genes from each of the maximum concordant sets. As a result,
there are three lists of genes for each microarray experiment data set.

Sequence database for up-regulated concordant genes combined discordant genes
is generated for human and rat. Chromosomal location and sequence of these genes are
collected from Homo sapiens Genome assembly Build 35 (NCBI35), and Rat Genome
at http://www.hgsc.bcm.tmc.edu. Genome sequences with up to 800 bases upstream
from the 5′ end of the sense-strand (+), are retrieved from Ensemble (http://www.
ensembl.org) for each gene in the three lists. To search for potential transcription fac-
tor binding sites in the sequence database, MATCH, and PATCH from TRANSFAC
Professional[6] are used to avoid false positives of potential regulatory binding sites. In
this study [4], a dichotomized motif score is computed as

sg,h =
{

1, if gene g has at least one copy of motif h,
0, o.w.

(1)
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3 TFBSs Selection

3.1 Problem Formulation

Let w denote the gene expression profile, where w could be continues, binary, or ternary
expression profiles. As a discrete vector variable, w represents the class of genes, e.g.,
0 for down-regulated genes and 1 for up-regulated genes in binary format. We assume
to have independent and identically distributed (i.i.d.) observations of random variable
w. For any given potential binding site set of size n and a list of genes g = 1, · · · , n,
we define a covariate motif score matrix

X =

⎡⎢⎢⎢⎢⎢⎣
Motif1 Motif2 · · · Motifp
s1,1 s1,2 · · · s1,p

s2,1 s2,2 · · · s2,p

...
...

. . .
...

sn,1 sn,2 · · · sn,p

⎤⎥⎥⎥⎥⎥⎦ (2)

where the entries of this matrix are the sequence motif-matching score of motif h for
gene g, sg,h. Due to the small sample size, here we adopt a probit regression model

composed of a linear term plus a nonlinear term. Then wi and the TFBSs scores xi
�=

[xi,1, xi,2, ..., xi,p] are related through [1]

P (wi = 1 | xi) = Φ

⎛⎝ p∑
j=1

ajxij +
K∑

k=1

bkφ(xi,μk)

⎞⎠ , (3)

with φ(xi,μk) �= exp{−λk‖xi − μk‖2}, (4)

where φ(·) is a radial basis function; ‖·‖ denotes a distance metric (usually Euclidean
or Mahalanobis); β

�= [a1, a2, ..., ap, b1, ..., bK ]T contains the parameters and Φ is the
standard normal cumulative distribution function; μk = [μk,1, ..., μk,m] contains the
centers of the K clusters, whose values are obtained by using the fuzzy C-means clus-
tering algorithm [9]. The parameters {λk}K

k=1 are empirically set as 1.0. In this study,
we fix K = 2. The motivation to setting K centers by using clustering is that we
consider only consider up-regulate and down-regulate genes in this study. Define the
following n independent latent variable y1, ..., yn:

yi =
p∑

j=1

ajxij +
K∑

k=1

bkφ(xi,μk) + ei, i = 1, ..., n, (5)

where ei ∼ N (0, 1). Denote y
�= [y1, ..., yn]T , e

�= [e1, ..., ep]T and

D
�=

⎡⎢⎢⎢⎣
x1,1 · · · x1,p φ(x1,μ1) · · · φ(x1,μK)
x2,1 · · · x2,p φ(x2,μ1) · · · φ(x2,μK)

...
. . .

...
...

. . .
...

xn,1 · · · xn,p φ(xn,μ1) · · · φ(xn,μK)

⎤⎥⎥⎥⎦ . (6)
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Then (5) can be expressed in a vector form as

y = Dβ + e, (7)

where e
�= [e1, ..., en] ∼ N (0, In). Define γ = [γ1, ..., γp+K ] as the (p + K) × 1

indicator vector with the jth element γj such that γj = 0 if βj = 0 (the variable is not
selected) and γj = 1 if βj 	= 0 (the variable is selected). Given γ, let βγ consist of
all nonzero elements of β and let Xγ be the columns of X corresponding to those of
γ that are equal to 1. In this study, for simplicity, we fix the nonlinear term and only
consider TFBS selection. Hence γ = [γ1, ..., γp, 1, 1], i.e., γp+1 = 1 and γp+2 = 1.

3.2 Bayesian TFBSs Selection

A Gibbs sampler is employed to estimate all the parameters. Given γ, the prior distri-
bution of βγ is βγ ∼ N (0, c(Xγ

T Xγ)−1), where c is a constant (we set c = 100 [5]
in this study). Since the detailed derivations of the posterior distributions of the param-
eters are similar to those in [5], here we simply summarize the procedure for Bayesian
variable selection. Denote

S(γ,y) �= yT y − c

c+ 1
yT Xγ(Xγ

T Xγ)−1Xγ
T y. (8)

Then the Gibbs sampling algorithm for estimating γ,β,y is as follows:

– Draw γ from p(γ | y), where p(γ | y) ∝ (1 + c)−
pγ
2 exp

[
− 1

2S(γ,y)
]∏p+2

j=1 π
γj

j

(1 − πj)1−γj . Here pγ =
∑p+2

j=1 γj and πj = P (γj = 1) is a prior probabil-
ity to select the jth TFBS. This parameter is often set as a small number due to
small sample size. If πj is chosen in a bigger value, then we found that often times
(Xγ

T Xγ)−1 does not exist. We usually sample each γj independently from

p(γj | y,γ =j) ∝ (1 + c)−
pγ
2 exp

[
−1

2
S(γ,y)

]
π

γj

j (1 − πj)1−γj , (9)

where γ =j
�= (γ1, ..., γj−1, γj+1, ..., γp, 1, 1).

– Draw β from p(β | γ,y) ∼ N (VγXγ
T y,Vγ), where Vγ = c

1+c (Xγ
T Xγ)−1.

– Draw yi, i = 1, ..., n from a truncated normal distribution as follows: p(yi |
β, wi = 1) ∝ N (X iβ, 1)1{yi>0} and p(yi | β, wi = 0) ∝ N (X iβ, 1)1{yi<0}.

In this study, 10000 Gibbs iterations are implemented with the first 2000 as the burn-in
period. Then we obtain the Monte Carlo samples as {γ(t),β(t),y(t), t = 1, ..., T},
where T = 10000. Finally we count the number of times that each TFBS appears in
{γ(t), t = 2001, ..., T}. The TFBSs with the highest appearance frequencies play the
strongest role in predicting the gene expression profiles. Some implementation issues of
this algorithm is similar to the Bayesian gene selection and prediction method in [11].
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4 Results

Inflammatory responses often exacerbates secondary tissue damage following spinal
cord injury, and counter treatments in reducing inflammation and in sparing secondary
damage have been actively investigated. The microarray experiment of five anti-inflam-
matory compounds [7] using rat acute spinal contusion as injury model is aimed to
understand better subsequent physiological events in secondary injury and to facilitate
better treatments in the future. In particular, [7] have shown that a consistent and unique
gene expression profiles is associated NS398, the selective cyclooxygenase-2 inhibitor.
They also suggest that overall effect of these up-regulated genes can be interpreted as
neuroprotective. Hence our modeling is concentrated on the effect of NS398 on gene
expression levels.

Table 1. The top 10 appearance frequencies for Discordant genes. Condition 1: Equ. (1) is calcu-
lated for all possible motifs, and condition 2 for common motifs.

Condition 1 Condition 2
Index Transcriptional-Factor Frequency Transcriptional-Factor Frequency
1 NFKB 0.5421 Myc 0.6637
2 E2F1 0.4334 NFKB 0.5634
3 RUNX1 0.3637 LEF1 0.5457
4 Zic2 0.2832 TFAP2 0.4873
5 CREB 0.2758 COUP 0.4666
6 SMAD 0.2323 RAR 0.4452
7 MSX1 0.2167 SMAD 0.4417
8 RUNX1a 0.2056 Zic3 0.4205
9 MAZ 0.1871 MSX1 0.3821
10 Myc 0.1662 STAT4 0.3261

Upon finishing the estimation of missing values, we select genes whose expression
profiles change significantly between the NS398 treatment and the vehicle (injury with-
out treatment), using their associated p-values as selection criteria. These 2574 genes,
from the total of 5376 genes, are then screened for maximum fold changes in terms of
concordant up-regulated expressions (Concordant+), concordant down-regulated ex-
pressions (Concordant−), and maximum discordant expressions (Discordant). Here we
only present the discordant case due to space limited. Motif selection results with the top
10 average appearance frequencies, i.e. the ones play the strongest roles in predicting
the expression level, are given in Table 1 for Discordant genes in SCI data. The NFKB
is almost most important TFBS chosen by using the proposed modelling. Another tran-
scriptional factor SMAD is found in the both list. And also we found that among motifs
selected more than 90% of the times, there are NFKB and SMAD family-wise motifs
for Concordant+ genes, as well as PAX4 and TFAP2C for Concordant− genes. NFKB,
nuclear factor of kappa light polypeptide gene enhancer, is a transcription regulator that
is activated by various intra- and extra-cellular stimuli such as cytokines, oxidant-free
radicals, ultraviolet irradiation, and bacterial or viral products.
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These transcription factors demonstrated intricate regulatory roles either as a family
or as individual members during transcription activation and repression. Our analysis
using simplified neural network (or nonlinear probit model) Bayesian motif selection
created plausible hypotheses for combinatorial interaction among transcription factor
binding sites that were based on experimentally verified binding site sequence informa-
tion. Hence our approach also offered additional advantage of avoiding false positive
candidates in the modeling process.
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Abstract. A multisensors information fusion model (MIFM) based on the Mix-
ture of Experts (ME) neural networks was designed to fuse the multi-sensors 
signals for infrared noninvasive blood glucose detection. ME algorithm greatly 
improved the precision of noninvasive blood glucose measurement with mul-
tisensors. The principle of ME, design and implementation of MIFM were de-
scribed in details. The standard deviation of the error of predication (SO) was 
0.88 mmol/l from blood and 0.65 mmol/l from water-glucose. The correlation 
coefficient (CC) to training data from blood analysis was 0. 9. 

1   Introduction 

For prevention from complication, the tight control of blood glucose level is neces-
sary. There are numerous methods in noninvasive blood glucose measurement; near-
infrared spectroscopy [1], far-infrared spectroscopy [2], middle-infrared oscillating 
thermal gradient spectrometry [3], laser photoacoustic [4], optical rotation of polar-
ized light [4] and reverse iontophoresis fluid extraction [5]. In those methods near-
infrared can be realized at low cost and fits to use in small device, which can measure 
blood glucose by a beam of infrared through special tissues of body and without any 
blood sample and pain, it extracts blood glucose information from the spectroscopy 
[6]. Infrared noninvasive measurement of blood glucose in body shows a great of 
problems for precision and stability [7]. With traditional noninvasive measurement 
methods, single infrared sensor and wavelength range was used to determine blood 
glucose information [8]. Those methods cannot get enough blood glucose information 
to yield nice detecting results [9]. Infrared noninvasive blood glucose measurement 
based on multisensors and Mixture of Experts (ME) [10] is a new method, which can 
relieve the pain from a finger stick and avoids the infection of disease via blood. This 
method can improve the effectiveness of blood glucose monitoring and measurement 
in health care of diabetes. ME neural networks (MENN) was first time used in mul-
tisensors information fusion model (MIFM). It can divide a difficult task into appro-
priate subtasks, each of which can be solved by a very simple expert network [11] and 
may offer better way for multisensors information fusion and signal processing in 
multisensors measurement. 
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2   Model of Infrared Blood Glucose Measurement 

Near-infrared noninvasive blood glucose measurement is developed from technology 
of component measuring based on spectroscopy and bases on the Lambert-Beer Law, 
which takes advantage of glucose absorption feature in spectroscopy [8]. The range of 
near-infrared wavelength from 700 to 2500nm can pass through or be reflected by 
tissues, and components show different absorption feature. Utilizing the absorption 
feature of glucose can differ glucose component from other components in blood, and 
its concentration has a direct corresponding relation. Owing to special absorption 
peak in spectroscopy [3], the measurement of certain wavelength spectroscopy was 
detected to extract information of blood glucose. The relation writes as: 

cdIoLnID ε== / .  (1) 

Where: Io=export intensity of light; I=import intensity of light; c=concentration of 
substance, d=distance of light through substance; ε =light absorptive coefficient of 
certain substance; D is the light density. If the distance d is a constant, the concentra-
tion of this substance c shows a direct ratio to D. Omitting the scattering, the trans-
mission T through an absorbing sample follows the absorption: 

))(exp())(exp()( λλλ SdaT m −=−= .  (2) 

Where: d=distance of absorption path;          =absorption coefficient of the matrix 
at wavelengthλ ; S=      .  There are many factors affect infrared absorption, fat, pro-
tein, water, skin of detecting position, nail, tissue and little bones. In those factors, the 
reflection of skin, water and fat show main affection. With the analysis of relation 
between ages, height, weight and fat, water, reflection of skin, a set of affecting pa-
rameters were built and fingers were selected as measuring position. In past studies 
those factors were ignored. The absorption should be modified as:  

)54321()( aaaaaIIIIIIIII gtrfdc ++++−=−=Δ ++++ .  (3) 

In equation (3): �=alteration of infrared absorption, Idc=intensity of scattering, 
If=absorption intensity of fat, It=other absorption intensity, Ig=absorption intensity of 
glucose. According to the Lambert-Beer Law, when portion � represents absorption 
of glucose, the same part of the absorption of spectroscopy          is replaced by         , 
if S=          , T=(a1+a2+a3+a4+a5), the sensitivity was defined as a ratio of relative 
changes in transmitted I induced by change � in glucose, written as: 
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Therefore, the concentration of blood glucose is: 
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.  (5) 

From relation of equation (5), the maximal sensitivity wavelength should be se-
lected to maximize the value of CG( ), at the same time S( ) should also be selected 
optimally. If S( ) is too low, it will produce low sensitivity and too high will result in 
a low signal to noise ratio due to exponential decrease in intensity [8].  

For keeping a measuring accurate degree, the sensitive and unsensitive wavelength 
(600 to 2500nm) was selected, which can effectively include most absorption of  
sensitive or unsensitive absorption in blood glucose. Based on selected multiple 
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wavelength at every sensor, N*M sensors were used to acquire special information 
and prepared input data for MIFM to process.  

  

Fig. 1. Principle frame of Mixture of Experts 
neural networks. 

Fig. 2. Model of multisensors information 
fusion based on Mixture of Experts. 

3   Frame of Mixture of Experts Neural Network 

ME is a model that estimates the conditional probability distribution of a set of train-
ing patterns (Fig 1) [7]. It consists of multiple supervised neural networks, trained to 
specific regions of the input space. These networks use the idea of competitive learn-
ing where each Expert competes with the other Experts to generate the correct desired 
output. The gating network acts as a mediator to determine which Expert is best suited 
for that specific region of input space and assigns that portion to the Expert. This 
system is to divide a large complex set of data into smaller subsets by the gating net-
works that allow each Expert to better represent a specific subset. It is easier to learn 
multiple simple functions than to learn large complex ones. The experts are assigned 
to a specific region of the input space, which allows them to model that space. The 
idea of Experts is that each Expert assigned to its own unique input space. In combin-
ing these networks, it combines all the Experts that generate the system output with a 
better performance. The equation for the output is: 

i ii
Y PY= ∑  (6) 

Where pi is the proportion that the i Expert contributed to the output determined by 
the gating network; Yi is the output from the i Expert. The values of all weights within 
the last layer were set to random values between -1 and 1. For training the networks, 
it is necessary to modify the weights between the last two layers of the networks 
based on the whole system error. Below relation is sum of squares error: 

21
| | | |

2
c c c c

i ii
E P d O= −∑  (7) 

Where dc is the desired output and  oc is the actual output of the i Expert. The ob-
jective is to minimize the total error to the output of the entire system. The system 
would assume that the prior probability, Pi generated by the Gating network was cor-
rect and would modify the weights based on the error from only the i Expert and not 
the error of the entire system. Therefore, the error function used can be written as: 

2

ln( )
c cd oc ic p eE i i

− −
= − ∑
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  (8) 
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This relation is considered to be the negative log of the associative Gaussian mix-
ture model. The derivative of this equation is: 
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The equation represents the amount of error that the  i  Expert contributed to the to-
tal system error. In training a network using gradient descent, the derivative of the 
error function with respect to the weights is used. The change in weight for the Expert 
networks, using gradient descent should be:  
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The bi equals to the input from the previous layer. The f(x) is the activation func-
tion of the network. The gating network determines what probability each Expert will 
generate the desired output. The gating network is considered to be a single layer 
Perceptron. The gating network uses the same inputs as all the Expert systems, with 
the number of outputs equal to the number of Experts. The output from the network is 
the estimated probability, pi, that the specific Expert will generate the desired output. 
For the gating network, the Softmax activation function shows as: 
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∑
 

(11) 

The equation (11) is used to generate positive values with a sum equal to one. Ini-
tially, Each Expert should have the same probability of successfully generating the 
desired output; therefore the weights in the last layer of the gating network must be 
set to 0, which will cause the probabilities to be equally distributed. Similar to the 
Expert networks, the gating network is desirable to minimize the entire systems error 
in training. To substitute the Softmax function into the systems error function, the 
error function was written in the following form: 
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The equation (13) is from equation (12), where ui represents the weights in the last 
layer of the gating network, hi and x is the input. The pi can be considered to be the 
prior probability of selected i Expert, while hi is considered the posterior probability 
of selected i Expert. When training by gradient descent learning, the change in 
weights of the gating network is defined as: 

( )ij i iw n h p xΔ = −  (14) 
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4   Model of Multisensors Information Fusion Based on ME 

Using near-infrared to extract information of blood glucose must need enough signal 
to noise ratio to identify weak signals of blood glucose from noise of other compo-
nents. For this goal, suitable method of multisensors information fusion is very impor-
tant. The coarse signal from multisensors must be fused and calibrated by MIFM and 
then glucose concentration is calculated. For single sensor glucose measuring, partial 
least-square methods (PLS) was used [12] in past which is not a ideal algorithm to 
fuse multisensors information. In this study ME [8] was designed to fuse multisensors 
signals, which showed a better precision and nonlinear feature (Fig.2). ME algorithm 
is based on the Expectation Maximization (EM), and can be used to fuse multisensors 
signals and extract enough information from blood glucose spectroscopy. With regard 
to MENN, there are n Individual Experts  to predict the value of an output. The vari-
able CG is given by the summation of the values of Individual Expert; each Expert  
weighted by a suitable weighting factor Wi, written as:  

1
1

m

j

n

i ij ij ij

i

CG w a S z
=

+

=

= ∑∑ .  (15) 

The output of each Expert is a linear summation of m appropriate input parameters 
Sij pulsed a constant Zij. At the same time the weighting factor Wi is determined by 
another relationship of input parameters Sij, which can be utilized to process nonlinear 
factors, the weighting factor Wi is optimized by Expectation Maximization (EM) [8]: 
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Where    is a constant, there are n Experts and m input parameters in a system, 2n 
(m+1) unknown coefficients (aij, zi, Sij,     ) need to be determined [7,8]. The optimized 
procedure implements in two steps: In step one, the weighting factors associated with 
each output are fixed and then the parameter values are optimized. In step two, the 
parameters values are fixed and then the weighting factors are optimized. For the 
whole procedure step one and step two are then iterated until convergence is 
achieved. The coefficients (aij, zi, Sij,       ) are input coefficients, the output variable CG 
is fused information of blood glucose, and the variable Sij is acquired signals from 
different channel of multisensors through several gathering. The weights Wi has a 
responding relationship with each output, it is optimized in the distribution of Experts 
i. The coefficients (aij, zi, Sij,     ) can be initiated by affecting factors in blood glucose 
measuring model, which can be used to resolve some nonlinear problems, to remove 
interfering of other factors and process superposition of information. Through adjust-
ing factors of age, height, weight etc. the system modifies the individual difference of 
every body; the measuring accurate degree can be mostly improved. ME can work in 
linear or linear state. The model used data from blood biochemical detecting as learn-
ing arm CG, and data from multisensors with different range of wavelength as the 
input to train the networks. According to the trained model, the MIFM give out cor-
rect information of blood glucose. It is important to note the learning: a). The training 
data and learning arm must synchronously come from the same person; b). According 

i
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to range of blood glucose, the coefficients must be modified to respond the range of 
input data in the training. The change of coefficients must be limited to appropriate 
step to improve learning speed.  

5   Experiments and Results 

The 4*4 sensors of different wavelength were used to accept the information from 
different sensors. The MIFM with multisensors and the biochemical analysis method 
were applied to detect glucose values in water-glucose, plasma and blood at the same 
time. The nine group of data set from water-glucose, plasma and blood were collected 
by MIFM and inputted into Sij for training model, and the data set from biochemical 
analysis were inputted into CG as learning arm. Variable i was four responding to 
Experts, and j was four according to the number of sensors belong to each Expert 
(Fig.2). MIFM of infrared noninvasive blood measurement was improved by input-
ting the affecting factors of age, height and weight, which related with fat, water, 
protein and reflection of skin. The model modified the weights Wij of each Expert 
network. After training, the data from multisensors measurement was inputted to Sij, 
and then the value of glucose was given out. To validate MIFM, the training data sets 
were re-inputted into the model, and the value of glucose CG was extremely ap-
proximated to the training data sets (CC=0.91±0.14, n=16). The results from MIFM 
showed better relativity to results from blood sample analysis. Comparing with results 
of biochemical analysis, the other experimental results from methods of single sensor, 
enzyme pole, microanalysis and MIFM were described in Table 1: 

Table 1. The comparing analysis of experimental results from different methods. 

Water-glucose Plasma Blood 
Methods 

SO CC  SO CC  SO CC 
Single Sensor 0.90 0.96  1.10 0.70  1.14 0.51 
Enzyme Pole 0.66 0.90 0.68 0.80  0.92 0.72 
Microanalysis 0.58 0.93 0.66 0.85  0.70 0.92 
MIFM 0.65 0.95 0.70 0.90  0.88 0.90 

The standard deviation of the error of predication (SO) was 0.88 mmol/l from 
blood and 0.65 mmol/l from water-glucose. The correlation coefficient (CC) to train-
ing arm from blood analysis was 0. 9. The training of MENN was simple and the 
evaluative results were: Mean Absolute Error (MAE 14.4), Least Squares Slop (LSS 
0.96), Least Squares Intercept (LSI 2.2), Orthogonal Slop (OS 1.04). 

6   Discussion and Conclusion 

Due to that glucose content is 1/1000 of other components in blood, thus weak variety 
in glucose is difficult to detect. The infrared MIFM can improve the performance of 
identifying weak changes of glucose concentration. The information fusion algorithm 
based on ME makes measurement more precise than other methods. The training of 
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MIFM divides to three processes 1.when the spectral information of glucose from 
multisensors is collected, at the same time the glucose biochemical analysis as train-
ing arm must be achieved; 2.according to physiologic modifying coefficient, spectral 
data, and data of training arm, the MIFM is trained; 3.with trained MIFM, glucose 
value is calculate out. The ME can divide a large, difficult task into appropriate sim-
ple and each of subtasks can be solved by a very simple expert network [7], which is 
easier to implement in the application than other methods. This method may offer 
robustness for multisensors information fusion in development of small instrument.  
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Abstract. Temperature adjustment is one of the critical tasks affecting the qual-
ity of manufactured steel. This is controlled by the Basic Oxygen Furnace’s 
(BOF) blowing procedures. As many factors influence variations in temperature, 
it is often difficult to predict the blowing quantity necessary to achieve a required 
temperature. In this study, we assume the framework used by the intelligent 
blowing control system uses the Case Based Reasoning (CBR) and Neural 
Network (NN) to predict the appropriate blowing quantity in the BOF. Our 
proposed framework consists of three steps. First, we retrieve the similar cases 
for a new order requirement using CBR. Next, we train the NN engine with the 
selected case set. Finally, we predict the appropriate blowing quantity using a 
trained neural network. Experimental results show that the proposed framework 
performs more effectively than the framework without using CBR process. 

1  Introduction 
Numerous researchers have investigated ways promoting technological advancements 
through all processes within the steel industry with many researchers and practitioners 
focusing on large investment and interest to reduce costs, develop high value-added 
products, to increase productivity and to meet small lot size orders. Thus attempts to 
optimize operations using a variety of perspectives have been made [1]. Recently, some 
steel manufacturing processes have accomplished efficient productions due to the 
automated process control [2]. However, some important processes (e.g. oxygen 
blowing process) still rely on the experts’ knowledge and not on an automated system. 
It results from the existent of some indefinable factors and relations within those 
processes. So many expert systems, using artificial intelligence, have been suggested 
[3],[4],[5]. But those systems were unable to achieve desirable results as they were 
incapable of filtering the noise. In this study, we suggest a refined expert system 
framework to monitor and control the oxygen blowing process in steel manufacturing. 
One of the most distinctive features of the proposed framework is the preprocessing 
procedure using a CBR engine. The prediction based on the preprocessed data set 
improves the predictability significantly.  

The rest of the paper is organized as follows: Section 2 describes the problems’ 
background. The proposed system framework is described in Section 3. Section 4 
reports on the computational experiments. Finally, Section 5 provides concluding 
remarks and suggests a future research direction. 
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gathered by the monitoring system; data such as the composition of chemical elements 
in the molten iron. Based on the information from the monitoring system and the 
required steel properties, a CBR engine retracts similar cases from a database con-
taining the previous blowing quantity for each case. Using this selected previous case 
set, the neural network engine is trained to predict the blowing quantity required for 
that specific case. The blowing quantity for the case is determined by the trained neural 
network engine, and this decision is subsequently inserted into the database. 

… … 

NN Engine 

Database 

Prediction of  
Blowing quantity 

CBR Engine 

New 
Case 

Monitoring System 

… … 

 

Fig. 2. The framework using CBR and NN. 

3.1  Critical Factors for Prediction of Oxygen Blowing Quantity 

Based on metallurgical knowledge and experts’ experiences, all factors affecting the 
decision of the oxygen blowing quantity in the BOF process are investigated. The 
factors can be categorized into four groups related to refining, casting, ladle, and spe-
cies of steel. Only 12 out of 38 influencing factors are deemed significant, based on the 
correlation coefficient between each factor and temperature drop. In addition, each 
factor’s function type is determined using a scatter plot between the factors and oxygen 
blowing quantity. For example, a cubic expression of the arriving temperature is ex-
pected to predict the oxygen blowing quantity. 

3.2  Selection of the Similar Case Set Using CBR 

When molten iron for a new order arrives at the BOF, the CBR engine selects the most 
similar cases considering the order requirement and the current operational environ-
ment. Our CBR engine uses the nearest neighbor search method for retrieval. It can be 
expressed as equation (1) where P and C represent the selected critical factor for current 
and previous orders respectively. 
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3.3  Training the Neural Network Engine 

Neural networks are composed of simple parallel elements inspired by the nervous 
system. Similar to nature, the network function is determined largely by the connec-
tions between elements. Usually, neural networks are adjusted or trained such that a 
particular input leads to a specific target output.  Based on a comparison of the output 
and the target, the network is adjusted until the network output matches the target.  

To predict the oxygen blowing quantity, the development of the neural network 
model is attempted based on the Matlab environment. As the most popular network 
architecture in use today, multilayer perceptrons are adopted to predict the temperature 
drop during the continuous casting procedure. To compare the analysis methods, the 
neural network model is developed with the detailed architectural structure as follows: 

♦ The input node is made up of 12 factors. 
♦ The number of hidden layers and nodes in each layer is set to 2 and 16, respectively. 

The complexity of the network is also selected considering the danger of over-fit-
ting.  

♦ The log sigmoid function is adopted as the transfer function at each node. 
♦ The input layer is connected to the output layer through hidden layers.  
♦ For the training algorithm, the back propagation algorithm is selected. In back 

propagation, the gradient vector of the error surface is calculated. This vector points 
along the line of the steepest descent from the current point. Moving along it for a 
short distance will cause the error to decrease. A sequence of such moves makes the 
actual response of the network move closer to the desired response. 

♦ The neural network model based on the Matlab environment is developed.  
♦ Back propagation is performed based on the gradient descent method. 

4  Computational Experiments 

To evaluate the proposed framework for the prediction of the oxygen blowing quantity, 
we perform the simulation experiment using the real industry data. First, we gather over 
5000 data. Among them, we randomly select 100 data and regard this as future order 
data. Subsequently, two prediction methods are used to predict the oxygen blowing 
quantity for the case. One is our proposed method and the other is the prediction by the 
neural network without a preprocessing procedure using CBR. We classify the struc-
ture of the neural network for the experiment as simple, medium and complex. Simple 
size of the neural network consists of one hidden layer with ten hidden nodes. Medium 
size of the neural network is composed of two hidden layers with ten hidden nodes in 
each layer. Large size of the neural network is made up of the three hidden layers with 
ten hidden nodes in each layer. The performance measure is the difference between the 
predicted oxygen blowing quantity and the actual blowing oxygen quantity determined 
by the experts. If the absolute value of the If the absolute value of the difference be-
tween those the predicted and actual values is small, we can say that the estimator 
shows a good performance.  

One of the simulation results for the model which adapt the complex structure of 
neural network without preprocessing process is shown in Fig. 3.  
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Fig. 3. The scatter plot for the predicted and actual value. 

Table 1 shows the result of the average difference between the prediction value and 
the actual value for all six models. In all of the cases the adaptation of the preprocessing 
procedure using the CBR improved the prediction quality by approximately 10~25%.  

Table 1. The result of the simulation experiment. 

Structure of NN Preprocessing Complex Medium Simple 
No  25.6 25.2 22.1 
Yes 19.3 20.6 19.7 

% of the improvement 25% 18% 10% 

We also mention that the case which uses the preprocessing procedure shows the 
stable performance regardless with the structure of the neural network, while the per-
formance of the case without using the preprocessing procedure worse with the com-
plexity of the neural network structure. 

5  Conclusions 

In this study, we propose an artificial prediction system for the automation of the BOF 
process. In practice, the prediction of the oxygen blowing quantity in the BOF process 
is highly dependant upon the experts’ skill and experience. Therefore, the development 
of an intelligent prediction system for the oxygen blowing quantity in the BOF is 
necessary for the automated BOF control system. One of the most distinctive features 
of the proposed framework is the preprocessing procedures using the CBR engine. The 
prediction based on the preprocessed data set improves the predictability significantly. 
The simulation experiment shows that the adaptation of the preprocessing procedures 
using CBR significantly improves the prediction accuracy.  
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Application Research of Support Vector Machines
in Condition Trend Prediction of Mechanical Equipment

Junyan Yang and Youyun Zhang
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Abstract. Support vector machines (SVMs) are used for condition trend predic-
tion of mechanical equipment. The influence of cost functions, kernel functions
and parameters on prediction performance of SVMs is studied. Cost functions
play a very important role on prediction performance of SVMs. Experiments
show that the prediction performance of ε insensitive cost function is superior to
that of least square cost function. At the same time, analysis of the experimental
results shows that four kernel functions have very close prediction performance
in short term prediction, and radial basis function kernel has better prediction
performance than other kernels in long term prediction. In comparison with tra-
ditional Back Propagation (BP) neural network, Radial Basis Function (RBF) net-
work and Generalized Regression Neural Network (GRNN), experiments show
that SVMs, which implement the structure risk minimization principle, obtain the
best prediction performance.

1 Introduction

With rapid development of scientific technology, mechanical equipment in modern in-
dustry is growing larger, more precise and more automatic. Their structures become
more complex and their potential faults become more difficult to find. So, in the field
of mechanical fault diagnosis, it is an urgent problem to exactly evaluate and correctly
predict the running condition of the mechanical equipment [1].

Because of the noisy, non-stationary and chaotic characteristic of vibration signal
of mechanical equipment, the prediction methods [2], which based on the stationary
signal, such as AR(P ) model, MA(q) model, ARMA(p, q) model and multivariate
regression model, can not be efficiently used to evaluate and predict the condition of
mechanical equipment [3]. In recent years, neural networks have been successfully ap-
plied to evaluate and predict non-stationary time series [1], [3], [4]. The neural net-
work prediction model has poor generalization ability because it only implements the
Experience Risk Minimization (ERM) principle. Support Vector Machines (SVMs) a
universal learning algorithm, which implement the Structure Risk Minimization (SRM)
principle proposed by Statistical Learning Theory (STL), gradually become the hot
research point in the field of artificial intelligence for its favorable generalization abil-
ity. In many practical applications, the SVMs outperform many traditional regression
technologies in prediction performance [5], [6]. In this paper, the SVMs are used for
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condition trend prediction of mechanical equipment, and a comprehensive comparison
between the neural network prediction model and SVMs is studied.

2 Support Vector Regression

SVMs, a novel learning algorithm, which come from an optimal separating hyperplane
in case of linearly separable, were developed by Vapnik and his co-works. Its core
idea is to map the original pattern space into the high dimensional feature space Z
through some nonlinear mapping functions, and then construct the optimal separating
hyperplane in the feature space. Thus, the nonlinear problem in low dimensional space
corresponds to the linear problem in the high dimensional space. In order to generalize
the results obtained for estimating the indicate functions (pattern recognition problem)
to estimate real-valued functions (regression problem), ε insensitive cost function is
introduced [7]. Like the pattern recognition problem, the input vectors are mapped into
high dimensional feature space through nonlinear mapping function ϕ(x). The linear
function sets

f(x, α) = (ω • ϕ(x)) + b (1)

in feature space are used for estimating the regression function. To given training data
set

(y1, x1), (y2, x2), · · · , (yl, xl) x ∈ Rn y ∈ R

the corresponding constraint optimization problem is

min 1
2 ||ω||2 + C 1

l

∑l
i=1(ξi + ξ∗i )

s.t.

⎧⎨⎩yi − (ω • ϕ(xi)) − b ≤ ε+ ξi i = 1, 2, · · · , l
(ω • ϕ(xi)) + b− yi ≤ ε+ ξ∗i i = 1, 2, · · · , l
ξi, ξ

∗
i ≥ 0 i = 1, 2, · · · , l

(2)

where the coefficientC is a penalty factor, and it implements a tradeoff between empir-
ical risk and confidence interval. The coefficients ξi and ξ∗i are slack factors.

Eq. (2) is a classical convex optimization problem. According to the Lagrangian
multiplier theory, weight vector ω is equal to linear combination of training points:

ω =
l∑

i=1

(αi − α∗
i )ϕ(xi) (3)

where the coefficients αi and α∗
i are Lagrangian multipliers. Combining Eq. (1) and

Eq. (3), we can get the solution of the unknown data point x:

f(x) =
l∑

i=1

(αi − α∗
i )(ϕ(xi) • ϕ(x)) + b (4)

In Eq. (4), the inner product (ϕ(xi) • ϕ(x)) needs to be computed in feature space.
In 1992, Boser et al [7] found that it is not necessary to compute the inner product
explicitly in feature space. According to kernel function theory, we can use the kernel
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function K(xi, xj) in input space, which satisfying the Mercer condition, to compute
the inner product. So Eq. (4) can be expressed as:

f(x) =
l∑

i=1

(αi − α∗
i )K(x, xi) + b (5)

The typical examples of kernel function are the polynomial kernel, the radial basis
function kernel, the sigmoid kernel and the linear kernel.

3 Experiments

We continually monitored and recorded the vibration signal of a generator machine sets
about 141 hours, and extracted the peak-peak value from the vibration signal every one
hour. Thus, these history records about peak-peak value formed a time series, as shown
in Fig. 1. In this time series, the first 117 points are selected as training sample and
others as testing sample.
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Fig. 1. History records of the machine sets about peak-peak value

To given time series x0, x1, · · · , xn−1, condition trend prediction refers to esti-
mate the future value at time tn+k with the history observation value of time series,
where k is prediction step. The problem of predicting the xn based onm previous value
xn−1, xn−2, · · · , xn−m can be expressed as:

xn = f(xn−1, xn−2, · · · , xn−m) (6)

where m is called prediction order.
The prediction performance is evaluated by using the Normalized Mean Square

Error (NMSE).
NMSE = 1/(δ2n)

∑n
i=1(xi − x′i)

2

δ2 = 1/(n− 1)
∑n

i=1(xi − x)2 (7)
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4 Analysis of Experimental Results

4.1 Results of Different Cost Functions

In this section, two cost functions, ε insensitive cost function and least square cost
function, are used to evaluate the influence of different cost functions on prediction
performance of SVMs. In 1999, J.A.K. Suykens [8] proposed a modified version of
SVMs, Least Square SVMs (LS-SVM), where a least square cost function is used as
the cost function of SVMs [9]. It involves equality constraints instead of inequality
constraints, and its solution follows from a linear Karush-Kuhn-Tucker system instead
of a quadratic programming problem. However, sparseness is lost in the LS-SVM case.
The corresponding constraint optimization problem is given by

min 1
2 ||ω||2 + 1

2C
∑l

i=1(ξ
2
i )

s.t. yi = ω • ϕ(xi) + b+ ξi i = 1, 2, · · · , l (8)

Eq. (8)’s solution can be obtained by solving the following linear equation:[
0 yT

y Ω + C−1I

] [
b
α

]
=
[

0
1v

]
(9)

where y = [y1, y2, · · · , yl], 1v = [1; 1; · · · ; 1], α = [α1, α2, · · · , αl], and Ωij =
K(xi, xj) for i, j = 1, 2, · · · , l.

Table 1. The result of two cost functions

Cost function C γ m NMSE

ε insensitive 1 0.125 17 0.238091
Least square 4 1 7 0.268277

Table 1 gives the result of two cost functions in 24-step prediction, where the RBF
kernel is used as the kernel functions, and ε is fixed at 0.01. The experiments show that
the NMSE of ε insensitive cost function on test set is less than that of least square cost
function about 0.03. This indicates that the prediction performance of ε insensitive cost
function is superior to that of least square cost function. So, in this paper, we adopt the
ε insensitive cost function to research the SVMs prediction problem.

4.2 Prediction Performance of Various Kernel Functions in SVMs

In this section, four kernel functions are used to analyze the influence of kernel function
type on prediction performance of SVMs. Four kernel functions are linear kernel x•xi,
polynomial kernel [(x • xi) + 1]d, radial basis function kernel exp(−||x − xi||2) and
sigmoid kernel tanh[v(x • xi) + c]. The grid search method based on K-fold cross
validation [10] is used to select parameters of SVMs. The optimal parameters of SVMs
are listed in Table 2, and ε is fixed at 0.01.
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Table 2. The optimal parameters of four kernel function. 1S denotes the 1-step prediction error
on test set, and 24S denotes the 24-step prediction error on test set

Kernel m C others

function 1S 24S 1S 24S 1S 24S

RBF 14 17 8 1 γ = 1/128 γ = 0.125
Sigmoid 14 15 4 4096 v = 0.03 c = 2 v = 0.005 c = 0.5
Poly 14 16 1 2 d = 3 d = 3
Linear 14 15 0.125 8192

Fig. 2 gives the NMSE of SVMs on test set at different kernel functions. The figure
shows that the NMSE of four kernel functions is very close in 1-step prediction. This
indicates that kernel function has little influence to SVMs prediction performance in
short term prediction. In contrast to 1-step prediction, Fig. 2 shows that kernel functions
exert an important influence on SVMs prediction performance in 24-step prediction, and
RBF kernel obtains the best prediction performance. As stated above, the RBF kernel
outperforms other kernels in prediction performance. So, in present paper, we adopt the
RBF kernel to research the prediction problem of SVMs.

Fig. 2. Results of four kernel functions Fig. 3. Results of SVMs and three Neural net-
work models

4.3 Sensitivity of SVMs to Parameters

In this section, we discuss the influence of parameters C, γ, ε and m on prediction
performance of SVMs. Fig. 4(a) gives the results of SVMs at γ = [2−15, 2−14, · · · , 215],
in which C, ε and m are, respectively, fixed at 1, 0.01 and 17. This figure shows that
the NMSE on training set decreases with γ. On the other hand, the NMSE of 24-step
prediction on test set decreases initially but subsequently increases as γ increases. This
indicates that too large a value γ (2−1 − 215) causes SVMs to over-fitting the training
data. An appropriate value for γ would be between 2−5 and 2−1. It can be said that γ
plays a very important role on generalization performance of SVMs.

Fig. 4(b) gives the influence of parameter C at C = [2−15, 2−14, · · · , 214, 215] on
prediction performance of SVMs, where γ, ε and m are fixed at 0.125, 0.01 and 17. It



862 Junyan Yang and Youyun Zhang

Fig. 4. Results of various parameters γ, C, ε and m

can be observed that the NMSE on training set decreases monotonically as C increases.
In contrast, the NMSE on test set decreases as C increases from 2−15 to 20, and then
increases as C increases from 20 to 25, and subsequently maintains a constant value at
0.308129 as C increases beyond 25. This indicates that with the increase of C from 1
to 215, the prediction performance of SVMs keeps steady basically, and compared to
parameter γ, C do not emerge obviously over-fitting phenomenon.

Fig. 4(c) gives the result of various parameters ε ranging between 0 and 0.1, where
C, γ andm are fixed at 1, 0.125 and 17. This figure shows that the NMSE on training set
is very stable, and relatively unaffected by changes in ε. On the other hand, the NMSE
on test set increases with ε, but the change scope of NMSE is only 0.05. We can see
that the local change of ε has little influence on prediction performance of SVMs, but
according to the SVMs theory, the number of support vector decreases as ε increases
thus resulting in a speedup of testing speed.

Fig. 4(d) gives the influence of prediction order m on prediction ability of SVMs,
in which C, γ and ε are fixed at 1, 0.125 and 0.01, andm range between 3 and 21. This
figure shows that the NMSE on training set decreases as m increases, and the NMSE
of 1-step prediction keeps steady basically. The NMSE of 24-step prediction on test
set decreases initially but subsequently increases as m increases. As stated above, to
short term prediction, SVMs are insensitive to prediction order m. On the other hand,
because a small m includes less prediction information than that of a large m, it shows
poor prediction ability in long term prediction. When m is too large, it includes many
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noises, and lead to deterioration in the prediction performance of SVMs. In that case,
an appropriatem would be between 11 and 17.

4.4 Comparison Study Between SVMs and Neural Network Model

In this investigation, three-layer BP neural network, RBF neural network and GRNN
neural network are used as benchmark algorithm to compare with SVMs. According to
Sect. 4.1 and Sect. 4.2, the ε insensitive cost function and the RBF kernel are respec-
tively used as cost function and kernel function of SVMs. The optimal parametersC, γ,
ε and m are fixed at 1, 0.125, 0.01 and 17 because they provide the best possible result
based on the grid search method. To three-layer BP neural network, there are 7 nodes in
the input layer which is equal to the prediction order m, and 15 nodes in hidden layer
and 1 node in output layer. The Bayesian regularity algorithm is adopted by three-layer
BP neural network. To RBF and GRNN neural network, the spread of the radial ba-
sis function are respectively fixed at 4.5 and 0.35, and the prediction order m equal to
7. Fig. 3 gives the comparison among SVMs and three neural networks model. This
figure shows that the four methods have very close NMSE on 1-step prediction, and
SVMs obtain the least NMSE on 24-step prediction. This indicates that the prediction
performance of SVMs outperform three neural networks model in long term prediction.
Therefore, it can be concluded that SVMs provide a promising method in condition
trend prediction of mechanical equipment.

5 Conclusions

This study used SVMs to predict the condition of mechanical equipment. In this paper,
the effect of various cost functions and kernel functions was investigated. Experiments
show that the ε insensitive cost function obtains better NMSE than least square cost
function. Kernel function has little influence on prediction ability of SVMs in short
term prediction, but in long term prediction, RBF kernel obtains the best prediction
ability based on NMSE.

In addition, the influence of parametersC, γ, ε andm on prediction performance of
SVMs was discussed in this study. Experimental results show that improper selection
of parameters C and γ can cause over-fitting problem of SVMs and the prediction
performance of SVMs is insensitive to the local change of ε. Prediction order m has
great influence on prediction performance of SVMs. A smallm includes less prediction
information than that of a largem, so it shows poor prediction performance in long term
prediction. Whenm is too large, it includes too many noises, and lead to deterioration in
the prediction performance of SVMs. An appropriatem would be between 11 and 17.

In the end, this study compared SVMs with neural network prediction model. The
experimental results show that SVMs and neural network prediction model have very
close prediction performance in short term prediction, but in long term prediction,
SVMs obtain better prediction performance than neural network prediction model for
their favorable generalization performance.
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Abstract. This paper presents some results on geometrical error compensation
using multilayer neural networks (NNs). It is the objective to attain higher com-
pensation performance with less or comparable memory, using this approach.
There are three main contributions. First, multilayer NNs are used to approximate
the components of geometrical errors. This results in a significantly less number
of neurons compared to the use of radial basis functions (RBFs). Secondly, the
direction of motion is considered in the compensator. This is important as the
geometrical errors can be quite distinct depending on the direction of motion due
to backlash and other nonlinearities in the servo systems. Thirdly, the Abbe error
is explicitly addressed in the compensator.

1 Introduction

Since the 1970s, software-based error compensation schemes have blossomed (see [2,
3]) in the area of precision machines. Common to all these works and more is a model
of the machine errors ([4],[5],[7],[8],[9]), which is either implicitly or explicitly used
in the compensator. In CMMs, the error model is normally used off-line to analyze and
correct the measurement data in the final displayed look-up table form.

In this paper, a method for error compensation using the multilayer NNs will be
presented. It is the objective to attain a good compensation performance with modest
memory, using this approach. The individual geometrical error component will be de-
composed into forward and reverse ones, when they are significantly different. Real
machine measurements to be provided in this paper will strongly reinforced this neces-
sity. The relative increase in memory due to the additional NNs is offset by the reduction
in neuron numbers from the use of multilayer NNs. The Abbe error, which is not con-
sidered in [1], is also included in the proposed error compensation. Finally, the overall
geometrical error is computed from these NNs based on a kinetic equation for the ma-
chine in point. The proposed method is applied to an XY table, and the evaluation tests
show that the overall errors can be reduced to about 96μm from 324μm.

2 Geometrical Error Modeling Using NNs

Once all the geometrical error components are measured and available, an overall error
model can be used to yield the overall positional error. This model will consider the
systematic geometric errors in the machine, and to simplify the model, the rigid-body

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 897–902, 2005.
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assumption will be used. They are associated respectively with the table (0, X, Y ), the
bridge (01, X1, Y1), and the carriage (02, X2, Y2). It will be assumed that, initially, all
three origins coincide and the axes of all three systems are aligned.

Based on the 2D system described in [1], a volumetric error model can be derived
which is given by

Δx = δx(x) + δx(y) − yp(εx + εy) + xp, (1)

Δy = δy(x) + δy(y) + xεy(x) − xα+ xp(εy + εx) + yp, (2)

where x, y are the nominal positions; xp, yp represent the offsets of the tool tip (Abbe
error); δu(v) is the translational error along the u-direction under motion in the v direc-
tion; εu is the rotation of the u axis; and α represents the out-of-squareness error.

It should be noted that the error sources are all calibrated using only appropriate
combinations of linear displacement measurements. Since each error component varies
with displacement in a nonlinear manner, it is more naturally inclined to represent the
nonlinear profile using a nonlinear function compared to using a look-up table. The
NNs are general tools for modeling nonlinear functions, since they can approximate any
nonlinear function to any desired level of accuracy. Given X ∈ RN , a multilayer NN
has a net output given by Y = f(X ;W) with X is the NN input, Y is the NN output,
and W is the NN weights. The activation function in the NN is selected differently in
different applications. It is usually desirable to adapt the weights and thresholds of the
NN off-line or on-line in real-time to achieve the required approximation performance
of the net. That is, the NN should exhibit a “learning behavior”. Various NN training
algorithms can be found in Chapters 4 and 5 of [11].

For a XY table, six error sources comprising of the linear, angular, straightness and
squareness errors, have to be approximated using NNs. The causes for these errors have
been discussed in [1]. In the ensuing subsections, the results of error approximation
using NNs will be shown.

Linear errors are the translational errors of carriage along their axes (X or Y) of
motion. For each axis, the measurements must be carried out with the carriage mov-
ing in both the forward and reverse directions to determine the error associated with
each direction. The difference in the errors for the forward and reverse runs are rather
insignificant in this case. Thus, for this axis, the forward and reverse errors are simply
averaged. A model of the linear error is thus available as δx(x) = flin,x(x;W∗

linx),
where xi is the input nominal distance along the X-axis, flinx(·) represents the NN
network, and W∗

linx is a set of the weighting values of the trained NN. The results are
shown in Figure 1, where the output values measured using the laser system are plotted
against the output values predicted by the NN.

For the Y -axis, the errors of both the forward and reverse runs are considered using
separate NNs since the difference is large. Similar to the above procedure, the following
NN models are obtained: δ[1]y (y) = f

[1]
lin,y(y;W∗

liny), δ[2]y (y) = f
[2]
lin,y(y;W∗

liny), where

the symbols [1] and [2] are used to represent the separate error models corresponding to
the forward and reverse runs, respectively. A comparison between the NN output and
actual error measurements is given in Figure 1.

The three rotational motion errors are referred to as yaw, pitch, and roll errors. For
a XY table, there is no Z direction to be considered. Thus, pitch and roll errors are not



Geometrical Error Compensation of Gantry Stage Using Neural Networks 899

Fig. 1. NN approximation of the linear errors (X-axis, left): solid line is NN approximation and
the circles represent the measured data; NN approximation of linear errors (Y-axis, right): solid
line is NN approximation and circle represents the measured data (forward run); dotted line is
NN approximation and plus line represents the measured data (reverse run)

necessary to be measured for the calibration. Only the yaw errors are measured along
the XY table. The NN approximations of the yaw errors can be expressed as:

ε[1]x = f [1]
yaw,x(x;W∗

yawx), (3)

ε[2]x = f [2]
yaw,x(x;W∗

yawx), (4)

ε[1]y = f [1]
yaw,y(y;W∗

yawy), (5)

ε[2]y = f [2]
yaw,y(y;W∗

yawy). (6)

Straightness error measurements are derived from the perpendicular deviations from a
reference straight line. For the XY table, there are two straightness error components to
be determined: straightness of the X axis which is concerned with deviation along the
Y-axis, and the straightness of the Y axis which is concerned with deviation along the
X-axis. The corresponding NN-based models for straightness are respectively:

δ[1]y (x) = f
[1]
str,x(x;W∗

strx), (7)

δ[2]y (x) = f
[2]
str,x(x;W∗

strx), (8)

δ[1]x (y) = f
[1]
str,y(y;W∗

stry), (9)

δ[2]x (y) = f
[2]
str,y(y;W∗

stry). (10)

Squareness between 2 axes characterizes how far off from a 90 degree orientation, the
2 nominal axes are positioned relative to each other. The squareness measurement can
be accomplished by performing two straightness measurements, one of which is made
based on a 90 degree reference. In this experiment, Y-axis is chosen as the reference line
for the squareness measurement, i.e. the straightness of X is measured with respect to Y.
The squareness measurement yields a error which is single constant of 474 arcsec. Thus,
the NN is not needed for use of approximating squareness error. For the calibration,
α = 474arcsec is substituted directly into the overall model.
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3 Experimental Results

For XY table, the tool attached to the table may be moved in either the X or Y di-
rection. The X and Y travel together to span a 100mm x 100mm 2D space. Notice
that xp = 0, yp = 52mm since there is a probe used in this experiment. The control
algorithms are implemented on DS1102 DSP Controller Board from dSPACE GmbH,
which utilizes TI’s TMS320C31 32-bit floating point processor with 60MHz execution
frequency. The dSPACE control development and rapid prototyping system integrate
the entire development cycle seamlessly into a single environment, so that individual
development stages between simulations and tests can be run and re-run without fre-
quent re-adjustment. Define the error of X-axis: ex = Xd + Δx − x. Notice that the
PID control for X-axis is given by ux = Kxpex + Kxi

∫ t

0 exdτ + Kxdėx. Similarly,
we define the error of Y-axis: ey = Yd + Δy − y and the PID control for Y-axis is
given by uy = Kypey + Kyi

∫ t

0
eydτ + Kydėy. The performance of the error com-

pensation is tested along two diagonals of the working area 100mm × 100mm. This
provides a fair basis to gauge the adequacy of the NN-based models. Also, this as-
sessment follows the British Standard [10]. The linear errors are measured across the
diagonals using the HP laser interferometer system. Figure 2 shows the experimental
setup. For both measurements, five bi-directional runs are executed, with data points at
interval

√
12 + 12 ≈ 1.4142mm. 100 points are measured of the linear displacement

along the diagonal with and without the error compensation. At each point, there are 10
measurements taken from the forward and reverse runs.

For an X-Y diagonal (A-D), the total error before compensation is 166μm (see
Figure 3). After compensation, it is reduced to 91μm (see Figure 3). For the otherX−Y
diagonal (B-C), the maximum error is 324μm before compensation (see Figure 4) and
96μm after compensation (see Figure 4). Thus, on the whole, a significant improvement

Fig. 2. Experimental set-up
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Fig. 3. Diagonal errors along A-D before compensation(left);Diagonal errors along A-D after
compensation (right)

Fig. 4. Diagonal errors along B-C before compensation(left);Diagonal errors along B-C after
compensation(right)

in machine accuracy is achieved with the maximum error over the working region being
reduced from more 320μm to less than 100μm.

For comparison, a look-up table, which is a 20 × 20 matrix, is used. All the error
measurements are averaged from the five forward and reverse runs. For a quantitative
comparison of the overall performance over the travel area, the following index can be
used: J = 1

2

∑1000
i=1 e(i)2, where 1000 is obtained from 100 × 10 (100 points and 5

bi-directional runs). Based on this index, Table 1 compares the performance of com-
pensators based on the look-up table and NN approximations. It is clear that the NN
approximation method can provide an improved compensation.

Table 1. Quantitative performance evidence

A-D diagonal B-C diagonal
Look-up table J = 3.3113 × 106 J = 6.6480 × 105

NN approximation J = 1.4772 × 106 J = 6.1859 × 105
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4 Conclusion

A geometrical compensation method using multilayers NNs has been developed and
tested in the paper. It is capable of addressing the asymmetric errors from forward and
reverse motion of servo systems. The Abbe error is also included in the overall compen-
sation model. Compared to [1], the neuron number necessary is reduced, resulting in a
simpler implementation. Experimental tests on an XY table verified the effectiveness of
the proposed method.
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Abstract. Simultaneous Multithreaded (SMT) processors improve the instruc-
tion throughput by allowing fetching and running instructions from several
threads simultaneously at a single cycle. With the pipeline deepen and issue
widths increase, the branch predictor plays a more important role in improv-
ing the performance of an SMT processor. Many predictors based on neural net-
work, especially on perceptron, are proposed to provide a more accurate dynamic
branch prediction than before in the literature. In this paper, we propose an effec-
tive method to improve the accuracy of a perceptron predictor through correlating
data values in SMT processors. The key idea is using a dynamic bias input, which
comes from some information independent on the branch histories (data values
for example), to realize the objective of improving accuracy. The implementation
of our method is simple, and the predicting latency is not lengthened. Execution-
driven simulation results show that our method works successfully on improv-
ing the accuracy of a perceptron predictor and increasing the overall instruction
throughput of SMT processors.

1 Introduction

Simultaneous Multithreaded (SMT) processors [1, 2] improve the instruction through-
put by allowing fetching and running instructions from several threads simultaneously
at a single cycle. In SMT processors, functional units that would be idle due to in-
struction level parallelism (ILP) limitations of a single thread are dynamically filled
with useful instructions from other running threads. By allowing fetching instructions
from other threads, an SMT processor can hide both long latency operations and data
dependencies in a thread. These advantages increase both processor utilization and in-
structions throughput.

With the pipeline deepen and issue widths increase, the branch predictor plays a
more important role in improving the performance of an SMT processor. Recently, some
researches have shown that branch prediction is a machine learning problem. Based on
the results, some new branch predictors based on neural network, especially on percep-
tron, are proposed to provide a more accurate prediction than the traditional predictors
in the literature. The main obstacles that prevent these predictors being used in prac-
tice are the high implementation complexity and the high access latency because they

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3498, pp. 955–964, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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need multiplication and sum operations during their prediction processes. There are
researches that have addressed on these issues, and have provided several resolutions
such as ahead pipelining [5] and using MAC representation [6]. The first is a technique
that overrides the calculation through pipelining and starting ahead the operations. The
second is to simplify the sum operations. All these techniques have made the neural
network based branch predictors more and more practical.

In this paper, we focus our research on the perceptron predictor, a class of branch
predictors that are widely used in today’s branch prediction researches for their simplic-
ity and effectiveness. Most of the perceptron predictors are learning machines that pro-
duce an output from the inputs through learning from the branch histories. We propose
a new method to improve the accuracy of perceptron predictors through correlating data
values in SMT processors. Rather than adding a new input vector and a corresponding
weight to the original predictor, we use a dynamic bias input to show the effect of the
new correlating information to the prediction result. This is because the new informa-
tion (data values for example) does not depend on the branch histories, and needs not
to learn from them. The dynamic bias input is set only according to some instantaneous
information during a thread’s running. In this means, our method is a technique that
fuses an un-learning predicting technique and a learning technique to a single learning
machine, and improves the machine’s prediction accuracy to a higher level.

Although there are many researches that focus on perceptron predictors, they all use
a static bias input to our knowledge. This is the first work that uses a dynamic bias input
in a perceptron predictor explicitly.

The main contributions of this paper are: (1) We show that the accuracy of a pre-
ceptron predictor can be improved through correlating some information that does not
depend on the branch histories, data values for example. And the new input information
will not lengthen the predicting latency of the predictor. When the new predictor is used
in SMT processors, the overall instruction throughput can be improved accordingly. (2)
The new correlated information are realized through using a dynamic bias input to the
predictor other than adding a new input vector and a new corresponding weight for the
information in the predictor. This dynamic bias input is very successful in improving
the accuracy of the predictor.

The rest of this paper is organized as follows. In section 2, we describe the rationale
of perceptron predictor and the related works. In section 3, we present our method to
improve the accuracy of perceptron predictor in detail. Section 4 and 5 describe the
methodology and analyze the simulation results. Finally, section 6 concludes the paper.

2 The Perceptron Predictor and Related Work

2.1 The Idea of the Perceptron

The rationale of a perceptron predictor is shown in Figure 1. It is a very simple neural
network. Each perceptron is a set of weights that are trained to recognize patterns or
correlations between their inputs and the event to be predicted. A prediction is made
by calculating the dot-product of the weights and an input vector. The sign of dot-
product is then used as the prediction, each weight represents the correlation of one
bit of history (global, path or local) with the branch to be predicted. In hardware, each
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Fig. 1. The perceptron assigns weights to each element of the branch history and makes its predic-
tion based on the dot-product of the weights and the branch history plus a bias weight to represent
the overall tendency of the branch. Note that the branch history can be global, local or something
more complex.

weight is implemented as an n-bit signed integer, where n is typically 8 in the literature,
stored in an SRAM-Array. The input vector consists of 1’s for taken and -1’s for not
taken branches. The doc-product can then be calculated as a sum with no multiplication
circuits needed.

2.2 Related Works

The original predictor based on neural network was introduced by Calder [3] to be used
in static branch prediction at a program’s compiling time. Then D. Jiménez and C. Lin
[4] use the perceptron predictor firstly in dynamic branch prediction, and show that the
predictor is more accurate than any other known global branch predictors. Although
the perceptron predictor has a high accuracy, the implementation of it is very complex
due to the multiplication and sum operations needed in a prediction, and the complexity
also lengthens the predicting latency of a single branch instruction. Recently, many
orthogonal methods are proposed to simplify the complexity and shorten the latency.
One is using the Multiply-Add Contribution (MAC) [6] to represent the weights of a
perceptron and obtain a simpler hardware implementation. The other is ahead pipelining
[5], which hides the most of the delay by fetching weights and computing a running sum
along the path leading to each branch. Some other techniques also help to improve the
accuracy of a perceptron predictor, such as using pseudo-tag to reduce aliasing impact,
skewing weight tables to improve table utilization, and introducing redundant history
to handle linearly inseparable data sets.

[7, 8] have shown that a traditional branch predictor can obtain a higher accuracy
through combining a value predictor. The value predictor exploits the value locality to
predict the value of a register or a memory location, and help to break the data depen-
dence between instructions and let the control-flow to speculatively execute. A branch
predictor combined with a value predictor can predict the inputs of branch instructions,
and execute branches speculatively according to their predicted inputs.

3 Improving Perceptron Through Correlating Data Values

In this section, we present our method to improve the accuracy of perceptron predictor
through correlating data values.
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3.1 Rationale

[9] shows that the locality of branches does not come from the branch instructions
themselves but the locality of their referenced values, such as the values stored in the
registers or the memory. With the locality of data values, a value predictor can be used
to predict the outcome of an arithmetic operation or the result of a load/store operation.
In our work, we use a value predictor to predict the operands of a branch instruction,
and then compute the branch result according to the predicted values. Information about
the operator and the register names of operands of a branch instruction are cached in
a small table BIT (short for Branch Instruction Table). Due to existing misprediction
in a value predictor, the branch prediction result according to the values from the value
predictor will not always correct. We use a variable C, the first letter of Confirmation, to
reflect the degree of confirmation about the prediction result. The value of C is between
0 and 1.

Because the data values that a branch instruction referenced have no relationship
with the histories of branches (neither the global nor the local), the prediction result
according to the data values have also no relationship with the histories. So this branch
prediction process needs not to learn from the branch histories, and also needs not any
training process. The accuracy of the prediction only depends on the accuracy of the
value predictor. This feature can be used in a perceptron predictor as a factor to change
the bias input (g0 in Fig.1) dynamically.

In all the existing perceptron predictors, the bias input is determined, and always
being set to 1 as in Fig.1 that means the branch preferring to be taken. This static bias
input setting is similar as a static branch prediction in the past. It is well known that
a static branch prediction scheme has a lower accuracy than the dynamic prediction
schemes. So we use a dynamic bias input in a perceptron predictor to improve its pre-
diction accuracy.

A bias input in a perceptron predictor, whether being static or dynamic, must be
independent with the branch histories, and needs not any training process. Otherwise it
will be another input vector similar as the other vectors in the original predictor. A bias
input according to the prediction result based on value predictor just meets this condi-
tion. And due to the variance of the prediction result, taken or not taken, confirming or
not confirming, the bias input will change accordingly. Based on this feature, we named
this input as a dynamic bias input to the perceptron.

With the prediction result of a branch based on value predictor, a dynamic bias
input, still using g0 as in Fig.1, can be calculated with equation (1). In equation (1), C
is the confirmation parameter, and P is the prediction result of the branch based on the
value predictor. The value of P can be unipolar or bipolar, that is 0/1 in unipolar, or -1/1
in bipolar. In general, the bipolar is used more often as in Fig.1.

g0 = P ∗ C (1)

Using the dynamic bias input in a perceptron predictor, the branch prediction can
be correlated with some information not depending on the histories of branch, data
values for example, and obtains a higher accuracy than the original predictor. With the
prediction result based on value predictor and the result based on perceptron of a same
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branch exist and work together, our method can also be seen as a technique that fuses
the traditional branch prediction scheme and the new perceptron schemes.

Comparing with the other fusing techniques, our scheme makes the two candidates
working together to produce a higher accurate prediction result rather than using a se-
lector to choose a single result from the two candidates. With a selector, the accuracy of
a predictor does not exceed any one of the group’s accuracies, whereas with our scheme
it can obtain a higher one.

3.2 Implementation Issue

The implementation of our method needs the help from value predictor. A circuit should
read the predicted values needed by a branch from the value predictor, and calculate the
branch result, P, according to the values. The value predictor must record the name of
register whose value is predicted. And a new field, C, should be added into the value
predictor to show the confirmation of a single predicted value. The value of C needs to
be read out with the corresponding data values, and is used to calculate the result of bias
input, g0, together with the prediction result from the circuit. Other parts of perceptron
predictor are implemented as the original one.

Since the value of C is between 0 and 1, the calculation of g0 according to equa-
tion (1) needs a float point multiplying operation that will add more complexity to the
hardware implementation. A small change of equation (1) can avoid the float point op-
eration simply. For example, we can magnify the value scope of P firstly, such as 2 for
taken and -2 for not taken, and then set the value of C to five levels accordingly, 0, -1,
-2, -3, and -4, that represent the five degrees of confirmation (fully trust, a little of trust,
unsure, a little of distrust, fully distrust). The degree of confirmation is set according to
the accuracy of the value predictor. With these settings, the float point operation can be
converted into a sum (for taken) or subtraction (for not taken) operation between two
integers.

In addition, the BIT table can be implemented through an SRAM-Array. Once a
branch instruction enters the pipeline, it uses the PC to index the BIT table, and checks if
there is an entry for itself. If it is, the information about the branch, operator and register
names of operands, are read out and used to predict the branch outcome. Otherwise, a
new entry must be added into the table when the branch instruction enters the ”decode”
pipeline stage at next cycle.

Although needing accessing the value predictor and BIT table, and calculating the
sum/subtraction of C and P, our method does not lengthen the predicting latency of
perceptron predictor because these operations can be done in parallel with the other
sum operations in the original predictor.

4 Methodology

In this study, we focus on the heterogeneous multitasking mode of SMT processor.
We modified the SMT simulator (SMTSIM) [10] to implement our new method and to
gather detailed statistics of the experiments. This execution-driven simulator emulates
unaltered Alpha executables, and models all typical sources of processor latency and
conflict. The major simulator parameters are given in Table 1.
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Table 1. Simulator parameters.

Parameter Value
Functional Units 3 FP, 6 Int(4 LD/ST)
Pipeline depth 9 stages

Instruction Queue 32-entry FP, 32-entry Int
Latency Based on Alpha 21264

Instruction Cache 64KB, 2-way, 64 byte/line
Data Cache 64KB, 2-way, 64 byte/line

L2 Cache (on-chip) 512KB, 2-way, 64 byte/line
L3 Cache (off-chip) 4MB, 2-way, 64 byte/line

I/DTLB, miss penalty 48/128 entry, 160 cycles
Latency(to CPU) L2 6, L3 18, Mem 80 cycles

branch predictor, miss penalty O-GEHL, 7 cycles

Table 2. Number of running instructions of each program in every workload.

No. Workload Inst. (billion)
1 art,perlbmk 0.3
2 crafty,mcf 1.5
3 equake,mesa 3
4 mgrid,ammp 4
5 bzip2,lucas 5.3
6 parser,twolf 5.3
7 applu,sixtrack 3
8 gcc,facerec 0.5
9 gzip,swim 2
10 art,perlbmk,crafty,mcf 1.5
11 applu,sixtrack,gzip,swim 3
12 bzip2,lucas,parser,twolf 5.3

The BIT table in our experiment has 1024 entries. And the value predictor we used
is a 4096-entry stride 2-delta value predictor [11]. A 2-delta stride predictor computes
strides as per the stride predictor, but only updates when the last two strides are equal.
Due to the value predictor already existing in our simulator, we do not take its hardware
cost into account in our experiment. So the total hardware budget needed in our method
is the BIT table and a small circuit. The circuit reads data from the value predictor
and makes the branch prediction based on them, then calculates the sum or subtraction
between the prediction result and the confirmation parameter (C). The prediction result
is set to 2 for taken and -2 for not taken, and the value of C is set to 5 levels as described
in last section.

The perceptron predictor in our experiment is an O-GEHL branch predictor which
is nominated the ”best practice” in the first championship branch prediction [12]. The
hardware budget of the predictor is 64kbits.

Our workload consists of eight integer and ten floating point programs from the
SPEC CPU 2000 benchmark suite [13]. We compiled each program with GCC with the
-O4 optimization and produced statically linked executables. Each program runs with
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the reference (expect for bzip2, which uses the train) input set. From these eighteen
benchmarks, we created nine two-thread, and three four-thread workloads. The running
instructions each of the program in the workloads are listed in Table 2 according to the
method in [14]. All the combinations are otherwise arbitrary. We run the workload in
simulator with the original O-GEHL predictor and an updated version of it added by our
dynamic bias input, and then compare the performances of them. In all the simulators,
predictors are shared by all the threads running simultaneously.

5 Simulation Results

This section presents the simulation results of our experiments. It compares the perfor-
mances between the original O-GEHL branch predictor and the updated version of it in
SMT processors, and also presents the branch misprediction rates and the wrong path
instruction fetched rates in the experiment. It uses the serial numbers listed in Table 2
to denote workloads in the figures of this section.

5.1 Processor Performance

Figure 2 shows the overall instruction throughput or IPC (Instruction Per Cycle) in our
experiment. We can see that except the bzip2-lucas-parser-twolf and crafty-mcf work-
loads all the performances of other workloads with the updated version of O-GEHL
predictor are better than that with the original one. The average IPC of the two predic-
tors are 1.89 and 1.96 respectively. The speedup of our updated version over the original
predictor is 3.7%.

Fig. 2. The overall instruction throughput with the original O-GEHL predictor and our updated
version.

The individual performance of every thread in the 2-thread workloads are shown in
figure 3(a). The performances of crafty and mcf in our predictor are a little worse than
that in the original one, whereas the performances of others are all improved which
shows the fairness of our predictor to the threads in a workload. On average, the in-
struction throughput of the two predictor in the 2-thread workloads experiment are 0.91
and 0.95 respectively.

Figure 3(b) shows the individual performances of every thread in the 4-thread work-
loads experiment. The performances of near half of the threads, five in twelve, degrade
with our predictor, and other’s performances are improved. This shows the effect of
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Fig. 3. The individual performance of every thread in 2-thread (a) and 4-thread (b) workloads
experiment.

improved branch prediction accuracy on the performance of workload is not so distinct
when the number of threads in a workload is too large (≥ 4). The average IPCs of the
two predictors for the 4-threads workloads are 0.532 and 0.53. The performance of our
predictor is a little worse than the original one.

5.2 Branch Misprediction Rate

Figure 4(a) shows the branch misprediction rates in our experiment with the two pre-
dictors. For all the workloads, our updated version of O-GEHL predictor degrades the
misprediction rates effectively which also shows the fairness of our method. The high-
est improvement is obtained by gzip-swim, which is 3.43%. The lowest one belongs to
bzip2-lucas, which is only 0.38%. On average, the misprediction rate of the two predic-
tors are 9.39% and 7.64%.

Fig. 4. The branch misprediction rates (a) and instruction fetched rates along the wrong path (b)
in our experiment with the two predictors.

5.3 Wrong Path Instruction Fetched Rate

Figure 4(b) shows the instruction fetched rates along the wrong path (WP) in our exper-
iment with the two predictors. Same as in Fig. 4(a), our predictor degrades the fetched
rates of all the workloads effectively. The highest improvement, 17.71%, belongs to art-
perlbmk, and the lowest one belongs to mgrid-ammp that is only 0.31%. The average
WP fetched rate degrades from 15.02% with the original predictor to 9.76% with our
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updated version. With the lower WP fetched rate, the branch misprediction penalty in
our updated predictor decreases, and more instruction slots can be used by other useful
instructions which improves the overall performance of an SMT processor finally.

6 Conclusions

An SMT processor benefits the instruction throughput by allowing fetching and run-
ning instructions from several threads simultaneously at a single cycle. Branch predic-
tors based on neural network, especially on perceptron, are proposed recently in the
literature, and show the potential to increase the accuracy of prediction. We propose
an effective method to improving the accuracy of perceptron predictor through corre-
lating data values during its predicting process. Our contributions in this paper are that
we show a perceptron predictor can be improved through correlating some information
independent on branch histories, and the new correlated information and prediction
process can be fused into the original perceptron through a dynamic bias input. The
implementation of our method is easy and it does not lengthen the predicting latency of
a perceptron predictor. The execution-driven simulation in SMT environments shows
that our method works successfully on improving the accuracy of perceptron branch
predictor and the performance of SMT processors.
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Research on Reservation Allocation Decision Method
Based on Neural Network�
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Abstract. The paper describes management-decision functions in a reservation
allocation problem (RAP), and the purpose is to discuss how some recently de-
veloped techniques are combined with neural network to provide a firm’s man-
agement with important tools for this storage control. The research herein is not
sophisticated from the mathematical point of view , as a matter of fact, borrows
heavily from work already published in neural-network-research literature. An
optimization technique using linear programming is essential in solving the dis-
crete requirements case, and it has been used to solve this problem mathemati-
cally. Consequently, a reservation distribution is defined in the domain of stor-
age management. We propose an exact and a heuristic way that transforms the
RAP into a linear programming model, and compute the optimal solution in some
methods in neural network.

1 Introduction

With the explosion of information technologies over last decades, increasingly, it is
important for firms to use effectively information from customers. Optimization mod-
els offer the promise of a powerful instrument for processing reservation information
as soon as it is received. Online models for real-time operation planning face a host
of implementation issues in order to minimize the cost of logistics. Moreover, in the
conditions that a firm’s storage capacity is constant, the firm must deal rationally with
the relationship between reservation information and its own storage capability so as
to maximize its revenue. Therefore, optimally solving the subproblem of determining
a delivery schedule by balancing revenue and storage-holding-cost considerations can
be very important to a firm. In this paper, we give the definition of RAP. After the de-
tail of this description, we propose the linear programming model of RAP, and further
compute solution in some methods in neural network.

2 Problem

In order to make a reservation allocation decision efficient, the RAP considered in this
paper is modelled as a two-period problem, consisting of a reservation period followed
� This work was jointly supported by the National Natural Science Foundation of China under
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by a service one. At the initial of the reservation period, we assume that for each reser-
vation class i(i = 1, 2, ..., n), there is ξ = (ξ1, ξ2, ..., ξn) reservations currently on
hand; the problem is to decide how many reservations requests to accept. The vector
η = (η1, η2, ..., ηn) is the number of class i to hold at the end of the reservation pe-
riod, which we call the ordering levels . We assume the reservation demand is sufficient
to allow any set of ordering levels η to be chosen, that is, the ordering levels are not
constrained by future demands.

Let the vector z = (z1, z2, ..., zn) be the number of customers, where zi is the num-
ber of customers from reservation class i that actually shows up for service. These
are the accepted customers who survive from the reservation period to the service
one. The number of z = (z1, z2, ..., zn) is a function of the ordering level η, and
we further assume these reservation classes are independent respectively, so denote
zi = zi(ηi).Thenceforth, the number of reservation and no-shows is η − z(η), where
z(η) = (z1(η1), ..., zn(ηn)). Because the fact that a customer does not survive to the
service period could be due to either one, we suggest that cancellations are equal to
no-shows in the model. The revenue gained by accepted a reservation of class i is de-
noted ri, the refund associated with a cancellation of class i is denoted qi , and we
assume qi ≤ ri and z(η) = bη, where b is constant. Consequently, because of the
cancellations, the total revenue and cost in the first period are

∑n
i=1 ri(ηi − ξi) and∑n

i=1 qi(ηi − zi(ηi)) respectively, where ξi is the possible accepted ordering level, and
satisfies ξi ≤ ηi.

During the service period, surviving customers are allocated to storage classes to
maximize the total net benefit. Suppose δij be the net benefit of assigning the customer
of reservation class i to the reservation class j(j = 1, ...,m) during the service period;
cj(j = 1, ...,m) be the capacity of the storage class j; zi be the number of customers
of the reservation class i that shows up at the service period (number of survivors);
and εij be the number of customers of the reservation class i assigned to the storage
class j(j = 1, ...,m) during the service period (decision variables). So the revenue is∑n

i=1

∑m
j=1 δijεij during this period.

Let Π be the expected value of future net benefit as a function of the ordering level
η , and this is a transportation problem in which the supplies are the available storages,
demands are the customers requesting service, so we are maximizing the objective func-
tion rather than minimizing. Therefore, RAP is:

maxΠ =
n∑

i=1

ri(ηi − ξi) −
m∑

j=1

qi(ηi − zi) +
n∑

i=1

m∑
j=1

δijεij

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zi = bηi,∑m

j=1 εij = zi,∑n
i=1 εij ≤ cj ,

ηi ≥ ξi,
εij ≥ 0,

(1)
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By further transformation, we can convert model (1) into a linear programming model
(2).

maxΠ =
n∑

i=1

m∑
j=1

(
ri
b
− b− 1

b
qi + δij)εij −

n∑
i=1

riξi

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑n
i=1 εij ≤ cj ,∑m
j=1 εij ≥ bξi,

εij ≥ 0,

(2)

Because the penultimate term of the objection function in the model(2) is often con-
stant in the practice of solving the problem, in fact, we further simplify model(2), and
transform it into model(3) as follows:

maxW = BTY

s.t.

{
ATY ≤ C,
Y ≥ 0, (3)

where C ∈ Rn, X ∈ Rn, A ∈ Rn×m, B ∈ Rm, Y ∈ Rm.

3 The Neural Network Model of RAP

In this Section, we presented the neural network for solving RAP. Considering the fol-
lowing general linear programming problem

maxW = BTY

s.t.

{
ATY ≤ C,
Y ≥ 0, (4)

By the dual theory, the dual problem of (4) is as follows:

minZ = CTX,

s.t.

{
AX ≥ B,
X ≥ 0, (5)

Theorem 1: (Duality Theorem) Suppose that X∗ is an optimal solution of LP, then
there exists Y ∗, such that (X∗, Y ∗)T is an optimal solution of DLP and satisfies the
following complementary slackness condition,{

X ≥ 0, Y ≥ 0, CTX = BTY
AX ≤ B, ATY ≥ C.

(6)



Research on Reservation Allocation Decision Method Based on Neural Network 1025

We construct the following energy function.

E(X,Y ) =
1
2
‖(AX −B)−‖2

2 +
1
2
‖(ATY − C)+‖2

2 +
1
2
(CTX −BTY )2. (7)

Obviously, (x∗, y∗)T is an optimal solution of (6) if and only if (x∗, y∗)T is an op-
timal solution of (7) and E(X,Y ) = 0, that is all inequalities in (6) are satisfied. Since
the problem (7) is convex unconstraint programming, it exists the optimal solution. If its
optimal solution (x∗, y∗)T satisfies E(X∗, Y ∗) > 0, then the problem (4) has no solu-
tion, namely, (4) either has infeasible solution solution or is unbound solution. Because
of this, we only design a neural network for solving (4).

Now, we construct the neural network. The state vector of neural network is U, V ,
which is determined by the following differential equation.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dU
dt = −∇XE(X,Y ) = −[AT (AX −B)− + C(CTX −BTY )],

dV
dt = −∇Y E(X,Y ) = −[A(ATY − C)+ −B(CTX −BTY )],

xi = g(ui), i = 1, 2, ..., n,
yj = g(vj), j = 1, 2, ...,m,

(8)

where X ∈ Rn, Y ∈ Rm is the output variable of the network corresponding to the
optimal variable, g(·) is a neuron action function which may be a sigmoid function.

4 Stability and Convergency of the Neural Network Model

The neural network described by (8) is globally stable and converge to the optimal so-
lution of (7).Considering the time derivation of the energy functionE(X,Y ) as follow:

dE(X,Y )
dt

=
n∑

i=1

∂E

∂xi

dxi

dt
+

m∑
j=1

∂E

∂yj

dyj

dt
=

n∑
i=1

∂E

∂xi

dxi

dui

dui

dt
+

m∑
j=1

∂E

∂yj

dyj

dvj

dvj

dt

= ∇XE(X,Y )G′
u

du

dt
+ ∇YE(X,Y )G′

v

dv

dt
= −∇XE(X,Y )G′

u∇XE(X,Y ) −∇YE(X,Y )G′
v∇Y E(X,Y ) ≤ 0,

where

G′
u = diag(g′(u1), g′(u2), ..., g′(un)) > 0,

G′
v = diag(g′(v1), g′(v2), ..., g′(vm)) > 0.

Therefore, the energy function E(X,Y ) of system (7) is reduced with the time t in-
crease until the stable state of the system is reached. If the initial point x0, y0 is not an
equilibrium point of (8), then X(t), Y (t) ensures dE(X,Y )

dt ≤ 0, this is, the dynamic
system is globally stable and X(t), Y (t) is convergent.
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5 Simulation Example

Assume a firm’s storage capacity is c = (c1, c2, c3, c4) = (4500, 5200, 4200, 6250),
and the threshold of reservations is ξ = (1500, 2500, 3500, 2800, 1990). By careful
analysis, the relation data about RAP could be interpreted. Namely, the coefficient is
b = 0.60, the cancellation of reservation classes is q = (q1, q2, q3, q4, q5) = (0.08, 0.06,
0.07, 0.02, 0.15), and the revenue rates of reservation classes are r = (r1, r2, r3, r4,
r5) = (0.15, 0.10, 0.12, 0.08, 0.06), and the customer reservation transferring matrix is

(δij)T =

⎛⎜⎜⎝
0.90 0.85 0.77 0.70 0.95
0.75 0.80 0.82 0.75 0.90
0.88 0.86 0.90 0.78 0.92
0.92 0.78 0.75 0.65 0.85

⎞⎟⎟⎠
Consequently, substituting these data into model (2), we can obtain the optimal RAP

model in the following:

maxΠ =
5∑

i=1

4∑
j=1

dijεij − 1240

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11 + ε21 + ε31 + ε41 + ε51 ≤ 4500,
ε12 + ε22 + ε32 + ε42 + ε52 ≤ 5200,
ε13 + ε23 + ε33 + ε43 + ε53 ≤ 4200,
ε14 + ε24 + ε34 + ε44 + ε54 ≤ 6250,
ε11 + ε12 + ε13 + ε14 ≥ 900,
ε21 + ε22 + ε23 + ε24 ≥ 1500,
ε31 + ε32 + ε33 + ε34 ≥ 2100,
ε41 + ε42 + ε43 + ε44 ≥ 1680,
ε51 + ε52 + ε53 + ε54 ≥ 1194,
εij ≥ 0,

(9)

where

D = (dij)T =

⎛⎜⎜⎝
1.20 1.06 1.02 0.85 1.15
1.05 1.01 1.07 0.90 1.10
1.18 1.07 1.15 0.93 1.12
1.22 0.99 1.00 0.80 1.03

⎞⎟⎟⎠
According to Section (2) and Section (3), model (9) can be transformed into a sim-

ple linear programming problem and a neural network system can be constructed. The
solution of RAP decision matrix is

(εij)T =

⎛⎜⎜⎝
4500 0 0 0 0

0 1500 830 1680 1190
2930 0 1270 0 0
6250 0 0 0 0

⎞⎟⎟⎠
and under the decision the firm can obtain the most revenue Π = 23200.
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6 Conclusions

In the paper, we construct the model of RAP according to two-period revenue acqui-
sition definition and transform this model into simple linear programming by the rela-
tionship between storage transferring and revenue acquisition. With the neural network
method, we are not only able to devise the optimal RAP, but also give the maximum of
revenue under the given storage capacity.
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Temeltaş, Hakan III-210
Teng, Li I-546
Teng, Zhidong I-102
Tian, Jinsi II-405
Tian, Qiming II-189
Tian, Zheng II-643, II-730
Tian, Zhigang I-725
Tie, Ming III-167, III-871
Tong, Hanghang III-397, III-476
Tran, Quang-Anh III-476
Tsai, Hungming III-320
Tu, Fenghua I-346



Author Index 1073

Valenzuela, Tito III-833
van Alphen, Deborah II-262
Verikas, Antanas I-461

Wan, Chunru I-45
Wang, Bin II-651, II-759
Wang, Bo I-979
Wang, Chiajiu II-556
Wang, Chiang I-380
Wang, Chong II-550, II-795
Wang, Chongjun II-131
Wang, Dongli I-621
Wang, Dongsheng III-531
Wang, Dongxia II-592
Wang, Fangju III-259
Wang, Fenghua III-819
Wang, Gang I-961
Wang, Guizeng III-622
Wang, Guoping II-598
Wang, Guoyin I-455
Wang, Haixiao II-222
Wang, Hong III-550
Wang, Hongbing III-674
Wang, Hongbo II-339
Wang, Jiao III-914
Wang, Jin III-86
Wang, Jue II-327, III-731
Wang, Jun III-179, III-240
Wang, Junping I-615
Wang, Kaian I-887
Wang, Kesheng III-851, III-1046
Wang, Kongqiao I-949
Wang, Kuanquan II-177
Wang, Lei II-8, III-482, III-488
Wang, Lidan I-363, I-491
Wang, Ling I-391, I-497, I-851
Wang, Lipo I-45, I-682
Wang, Lunwen I-440
Wang, Manghui I-503
Wang, Min I-385, I-893, II-562, II-723,

III-79
Wang, Pan I-652
Wang, Ping I-800
Wang, Qi III-921
Wang, Qingchao III-98
Wang, Qun I-181
Wang, Ruili III-965
Wang, Shoujue I-34, II-87, II-339, II-345
Wang, Shouyang II-879
Wang, Shuang I-57, II-26

Wang, Shuning I-375, II-685
Wang, Sunan III-616
Wang, Wanliang I-762, III-463
Wang, Wei III-760
Wang, Wenyuan II-203
Wang, Wilson II-460
Wang, Xiaofeng II-281
Wang, Xianhui I-520
Wang, Xiaodong II-707
Wang, Xiaohong III-315
Wang, Xiaohua II-765
Wang, Xiaozhen III-827
Wang, Xihuai III-648
Wang, Xinfei III-983
Wang, Xiong III-839, III-914
Wang, Xiongxiang III-531
Wang, Xiuhong I-745
Wang, Xizhao I-81
Wang, Xuchu II-171
Wang, Xuebing I-991
Wang, Xuexia II-381
Wang, Xufa II-45, II-232
Wang, Yaonan II-268, II-753
Wang, Yi III-851, III-1046
Wang, Yingcai III-297
Wang, Yong I-824
Wang, Yongfu III-167
Wang, Yongqiang III-7
Wang, Yu II-586
Wang, Yuehong II-685
Wang, Yuguo III-1010
Wang, Zengfu I-282
Wang, Zhanshan I-142
Wang, Zhengqu I-745
Wang, Zhihua I-479
Wang, Zhongsheng I-199
Wei, Na II-292, III-567
Wei, Pengcheng II-860
Wei, Xiaopeng I-193
Wen, Guangrui III-508
Wen, Junhao II-69
Wen, Xianbin II-304
Wen, Xiangjun I-843, II-442
Wen, Xiaotong III-725
Wen, Yimin I-881
Weng, Jiansheng III-890
Williams, Peter I-831
Wong, Stephen I-203, III-719
Wu, Baihai III-827
Wu, Chengshong III-379



1074 Author Index

Wu, Chunguo I-863
Wu, Danyang II-828
Wu, Deyin I-126
Wu, Fei II-81
Wu, Genfeng I-532
Wu, Gengfeng I-634
Wu, Hongyan II-69
Wu, Jiansheng III-965
Wu, Kaigui III-428
Wu, Kaiyang III-409
Wu, Lingyao I-69
Wu, Shuanhu III-709
Wu, Shunjun II-562
Wu, Si I-831
Wu, Sitao III-315
Wu, Tao III-185
Wu, Wei I-609
Wu, Weidong I-800
Wu, Xing III-603
Wu, Yadong II-735
Wu, Yan II-339
Wu, Ying I-302
Wu, Zhilu II-381
Wu, Zhongfu I-340, II-69, III-428

Xi, Guangcheng I-552, I-640, III-801
Xi, Jiangtao II-520
Xi, Jianhui II-580, II-618
Xia, Bin II-514
Xia, Feng III-1
Xia, Liangzhen I-271
Xia, Mengqin I-677
Xia, Xiaohua III-131
Xia, Zhijun II-387
Xiang, Lan I-308
Xiang, Li I-187
Xiang, Tao I-229
Xiang, XiaoLin I-739, I-1028
Xiao, Di II-868, III-434
Xiao, Gang II-87
Xiao, Jianmei III-648
Xiao, Ming II-484
Xiao, Li I-688
Xie, Gang III-674
Xie, Guihai III-748
Xie, Jianying I-756, I-782
Xie, Keming III-674
Xie, Li I-203
Xie, Shengli II-484, II-532
Xie, Xiaojun III-609

Xie, Yuan I-782
Xing, Fei I-925
Xing, Hongjie I-824
Xiong, Haitao II-673
Xiong, Qingyu I-126, II-910
Xiong, Zhihua III-125, III-839
Xiong, Zhongyang III-428
Xu, Aidong III-521
Xu, Bingji I-181
Xu, Daoyi I-187, I-241
Xu, De II-819
Xu, Dianjiang II-131
Xu, Hongji III-309
Xu, Hua III-291, III-908
Xu, Jianfeng II-257
Xu, Jianhua I-900
Xu, Jianwen II-20
Xu, Jianxue I-302
Xu, Jie I-538
Xu, Lei I-5
Xu, Mingheng III-883
Xu, Qingjiu III-150
Xu, Qingxin II-765
Xu, Roger II-32, III-494
Xu, Tingxue III-150
Xu, Xiaoming I-843, II-442, III-501
Xu, Xin I-961
Xu, Xinli I-762
Xu, Xu I-334
Xu, Yiqiong I-979
Xu, Yongmao III-839
Xu, Zongben I-39, I-63, II-1
Xue, Jiansheng III-939
Xue, Lihua III-813
Xue, Xiaoning III-827
Xue, Yanxue II-183
Xue, Yaofeng I-756, III-691

Yadav, Abhishek I-95
Yan, Gaowei III-674
Yan, Hong III-709
Yan, Lanfeng III-760
Yan, Shaoze III-155, III-271
Yan, Tianyun I-455
Yan, Xiangguo III-754
Yang, Guang II-124, II-165, II-424
Yang, Hongying III-622
Yang, Hu II-20
Yang, Huaqian II-860



Author Index 1075

Yang, Jiaben III-42
Yang, Jie I-609, II-673
Yang, Jinmin III-367
Yang, Ju III-439
Yang, Junyan III-857
Yang, Li III-1010
Yang, Luxi II-496
Yang, Pei I-621
Yang, Shangming II-891
Yang, Shuyuan I-385, I-893, II-562, II-723
Yang, Simon X. II-418, III-259
Yang, Tianqi III-451
Yang, Xianhui III-125
Yang, Xiaofan I-265
Yang, Xiaosong I-357
Yang, Xiaowei I-869
Yang, Xiaozong I-497
Yang, Xin II-624
Yang, Xu II-819
Yang, Xuehong III-1017
Yang, Xuhua III-7, III-463
Yang, Xusheng III-616
Yang, Yahong I-770
Yang, Yang I-646, I-875
Yang, Yingjie III-998
Yang, Yong III-488
Yang, Yongqing I-706, III-1022
Yang, Yujiu I-824
Yang, Yuru II-916
Yang, Zhi III-92
Yang, Zhichun I-187, I-241
Yao, Li III-725
Ye, Hao III-622
Ye, Mao I-1034, II-112
Ye, Meiying I-919
Yeh, Chunghsing II-238
Yen, Gary G. III-69
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