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Preface

This proceedings volume contains the accepted papers and invited talks pre-
sented at the 4th International Workshop of Efficient and Experimental Algo-
rithms (WEA 2005), that was held May 10–13, on Santorini Island, Greece.

The WEA events are intended to be an international forum for research on
the design, analysis and especially the experimental implementation, evaluation
and engineering of algorithms, as well as on combinatorial optimization and its
applications.

The first three workshops in this series were held in Riga (2001), Monte Verita
(2003) and Rio de Janeiro (2004).

This volume contains 3 invited papers related to corresponding keynote talks:
by Prof. Christos Papadimitriou (University of California at Berkeley, USA),
Prof. David Bader (University of New Mexico, USA) and Prof. Celso Ribeiro
(University of Rio de Janeiro, Brazil).

This proceedings includes 54 papers (47 regular and 7 short), selected out
of a record number of 176 submissions. Each paper was reviewed by at least 2
Program Committee members, while many papers got 3 or 4 reviews. A total
number of 419 reviews were solicited, with the help of trusted external referees.

In addition to the 54 papers included in this volume, papers were accepted
as poster presentations: these papers were published in a separate poster pro-
ceedings volume by CTI Press and a major publisher in Greece, “Ellinika Gram-
mata.” The presentation of these posters at the event was expected to create a
fruitful discussion on interesting ideas.

The 6 papers accepted to WEA 2005 demonstrate the international charac-
ter of the event: 33 authors are based in Germany, 20 in the USA, 13 in Italy, 12
in Greece, 9 each in Switzerland, France and Brazil, 6 each in Canada, Poland
and Belgium, 5 in the Netherlands, to list just the countries with the largest
participations.

Selected papers of WEA 2005 will be considered for a Special Issue of the
ACM Journal on Experimental Algorithmics (JEA, http://www.jea.acm.org/)
dedicated to the event.

We would like to thank all authors who submitted papers to WEA 2005. We
especially thank the distinguished invited speakers (whose participation honors
the event a lot), and the members of the Program Committee, as well as the
external referees and the Organizing Committee members.

We would like to thank the Ministry of National Education and Religious Af-
fairs of Greece for its financial support of the event. Also, we gratefully acknowl-
edge the support from the Research Academic Computer Technology Institute
(RACTI, Greece, http://www.cti.gr), and the European Union (EU) IST/FET
(Future and Emerging Technologies) R&D projects FLAGS (Foundational As-
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VI Preface

pects of Global Computing Systems) and DELIS (Dynamically Evolving, Large-
Scale Information Systems).

I wish to personally acknowledge the great job of the WEA 2005 Publicity
Chair Dr. Ioannis Chatzigiannakis, and Athanasios Kinalis for maintaining the
Web page and processing this volume with efficiency and professionalism.

I am grateful to the WEA Steering Committee Chairs Prof. Jose Rolim and
Prof. Klaus Jansen for their trust and support.

Finally, we wish to thank Springer Lecture Notes in Computer Science (LNCS),
and in particular Alfred Hofmann and his team, for a very nice and efficient co-
operation in preparing this volume.

2005 Sotiris NikoletseasMay
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Heikki Hyyrö, Yoan Pinzon, Ayumi Shinohara . . . . . . . . . . . . . . . . . . . . . 380

Dynamic Application Placement Under Service and Memory Constraints
Tracy Kimbrel, Malgorzata Steinder, Maxim Sviridenko,
Asser Tantawi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391



XIV Table of Contents

Integrating Coordinated Checkpointing and Recovery Mechanisms into
DSM Synchronization Barriers

Azzedine Boukerche, Jeferson Koch,
Alba Cristina Magalhaes Alves de Melo . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Synchronization Fault Cryptanalysis for Breaking A5/1
Marcin Gomu�lkiewicz, Miros�law Kuty�lowski,
Heinrich Theodor Vierhaus, Pawe�l Wlaź . . . . . . . . . . . . . . . . . . . . . . . . . 415

An Efficient Algorithm for δ-Approximate Matching with α-Bounded
Gaps in Musical Sequences

Domenico Cantone, Salvatore Cristofaro, Simone Faro . . . . . . . . . . . . . 428

The Necessity of Timekeeping in Adversarial Queueing
Maik Weinard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

BDDs in a Branch and Cut Framework
Bernd Becker, Markus Behle, Friedrich Eisenbrand, Ralf Wimmer . . . 452

Parallel Smith-Waterman Algorithm for Local DNA Comparison in a
Cluster of Workstations

Azzedine Boukerche, Alba Cristina Magalhaes Alves de Melo,
Mauricio Ayala-Rincon, Thomas M. Santana . . . . . . . . . . . . . . . . . . . . . . 464

Fast Algorithms for Weighted Bipartite Matching
Justus Schwartz, Angelika Steger, Andreas Weißl . . . . . . . . . . . . . . . . . . 476

A Practical Minimal Perfect Hashing Method
Fabiano C. Botelho, Yoshiharu Kohayakawa, Nivio Ziviani . . . . . . . . . . 488

Efficient and Experimental Meta-heuristics for MAX-SAT Problems
Dalila Boughaci, Habiba Drias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

Experimental Evaluation of the Greedy and Random Algorithms for
Finding Independent Sets in Random Graphs

M. Goldberg, D. Hollinger, M. Magdon-Ismail . . . . . . . . . . . . . . . . . . . . . 513

Local Clustering of Large Graphs by Approximate Fiedler Vectors
Pekka Orponen, Satu Elisa Schaeffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

Almost FPRAS for Lattice Models of Protein Folding
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Tα Παιδία Παίζει

The Interaction Between Algorithms and Game
Theory�

Christos H. Papadimitriou

UC Berkeley
christos@cs.berkeley.edu

The theories of algorithms and games were arguably born within a year of each
other, in the wake of two quite distinct breakthroughs by John von Neumann, in
the former case to investigate the great opportunities – as well as the ever mys-
terious obstacles – in attacking problems by computers, in the latter to model
and study rational selfish behavior in the context of interaction, competition and
cooperation. For more than half a century the two fields advanced as gloriously
as they did separately. There was, of course, a tradition of computational consid-
erations in equilibria initiated by Scarf [13], work on computing Nash and other
equilibria [6, 7], and reciprocal isolated works by algorithms researchers [8], as
well as two important points of contact between the two fields propos the issues
of repeated games and bounded rationality [15] and learning in games [2]. But
the current intensive interaction and cross-fertilization between the two disci-
plines, and the creation of a solid and growing body of work at their interface,
must be seen as a direct consequence of the Internet.

By enabling rapid, well-informed interactions between selfish agents (as well
as by being itself the result of such interactions), and by creating new kinds
of markets (besides being one itself), the Internet challenged economists, and
especially game theorists, in new ways. At the other bank, computer scientists
were faced for the first time with a mysterious artifact that was not designed,
but had emerged in complex, unanticipated ways, and had to be approached
with the same puzzled humility with which other sciences approach the cell,
the universe, the brain, the market. Many of us turned to Game Theory for
enlightenment.

The new era of research in the interface between Algorithms and Game The-
ory is rich, active, exciting, and fantastically diverse. Still, one can discern in it
three important research directions: Algorithmic mechanism design, the price of
anarchy, and algorithms for equilibria.

If mainstream Game Theory models rational behavior in competitive set-
tings, Mechanism Design (or Reverse Game Theory, as it is sometimes called)
seeks to create games (auctions, for example) in which selfish players will be-
have in ways conforming to the designers objectives. This modern but already

� Research supported by NSF ITR grant CCR-0121555 and by a grant from Microsoft
Research. The title phrase, a Greek version of “games children play”, is a common
classroom example of a syntactic peculiarity (singular verb form with neutral plural
subject) in the Attic dialect of ancient Greek.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 1–3, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 C.H. Papadimitriou

mathematically well-developed branch of Game Theory received a shot in the
arm by the sudden influx of computational ideas, starting with the seminal pa-
per [9]. Computational Mechanism Design is a compelling research area for both
sides of the fence: Several important classical existence theorems in Mechanism
Design create games that are very complex, and can be informed and clarified
by our fields algorithmic and complexity-theoretic ideas; it presents a new genre
of interesting algorithmic problems; and the Internet is an attractive theater for
incentive-based design, including auction design.

Traditionally, distributed systems are designed centrally, presumably to op-
timize the sum total of the users objectives. The Internet exemplified another
possibility: A distributed system can also be designed by the interaction of its
users, each seeking to optimize his/her own objective. Selfish design has advan-
tages of architectural and political nature, while central design obviously results
in better overall performance. The question is, how much better? The price of
anarchy is precisely the ratio of the two. In game-theoretic terms, it is the ratio
of the sum of player payoffs in the worst (or best) equilibrium, divided by the
payoff sum of the strategy profile that maximizes this sum. This line of investiga-
tion was initiated in [5] and continued by [11] and many others. That economists
and game theorists had not been looking at this issue is surprising but not in-
explicable: In Economics central design is not an option; in Computer Science
it has been the default, a golden standard that invites comparisons. And com-
puter scientists have always thought in terms of ratios (in contrast, economists
favor the difference or “regret”): The approximation ratio of a hard optimization
problem [14] can be thought of as the price of complexity; the competitive ratio
in an on-line problem [4] is the price of ignorance, of lack of clairvoyance; in this
sense, the price of anarchy had been long in coming.

This sudden brush with Game Theory made computer scientists aware of
an open algorithmic problem: Is there a polynomial-time algorithm for finding a
mixed Nash equilibrium in a given game? Arguably, and together with factoring,
this is the most fundamental open problem in the boundary of P and NP: Even
the 2-player case is open – we recently learned [12] of certain exponential ex-
amples to the pivoting algorithm of Lemke and Howson [6]. Even though some
game theorists are still mystified by our fields interest efficient algorithms for
finding equilibria (a concept that is not explicitly computational), many more
are starting to understand that the algorithmic issue touches on the founda-
tions of Game Theory: An intractable equilibrium concept is a poor model and
predictor of player behavior. In the words of Kamal Jain “If your PC cannot
find it, then neither can the market”. Research in this area has been moving
towards games with many players [3, 1]), necessarily under some succinct repre-
sentation of the utilities (otherwise the input would need to be astronomically
large), recently culminating in a polynomial-time algorithm for computing cor-
related equilibria (a generalization of Nash equilibrium) in a very broad class of
multiplayer games [10].
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Abstract. We describe a multistart heuristic using an adaptive memory
strategy for the problem of sequencing by hybridization. The memory-
based strategy is able to significantly improve the performance of mem-
oryless construction procedures, in terms of solution quality and pro-
cessing time. Computational results show that the new heuristic obtains
systematically better solutions than more involving and time consuming
techniques such as tabu search and genetic algorithms.

1 Problem Formulation

A DNA molecule may be viewed as a word in the alphabet {A,C,G,T} of nu-
cleotides. The problem of DNA sequencing consists in determining the sequence
of nucleotides that form a DNA molecule. There are currently two techniques for
sequencing medium-size molecules: gel electrophoresis and the chemical method.
The novel approach of sequencing by hybridization offers an interesting alterna-
tive to those above [8, 9].

Sequencing by hybridization consists of two phases. The first phase is a bio-
chemical experiment involving a DNA array and the molecule to be sequenced,
i.e. the target sequence. A DNA array is a bidimensional grid in which each cell
contains a small sequence of nucleotides which is called a probe. The set of all
probes in a DNA array is denominated a library. Typically, a DNA array rep-
resented by C(�) contains all possible probes of a fixed size �. After the array
has been generated, it is introduced into an environment with many copies of
the target sequence. During the experiment, a copy of the target sequence re-
acts with a probe if the latter is a subsequence of the former. This reaction is
called hybridization. At the end of the experiment, it is possible to determine
which probes of the array reacted with the target sequence. This set of probes
contains all sequences of size � that appear in the target sequence and is called
the spectrum. An illustration of the hybridization experiment involving the tar-

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 4–15, 2005.
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Fig. 1. Hybridization experiment involving the target sequence ATAGGCAGGA and

all probes of size � = 4

get sequence ATAGGCAGGA and C(4) is depicted in Figure 1. The highlighted
cells are those corresponding to the spectrum.

The second phase of the sequencing by hybridization technique consists in
using the spectrum to determine the target sequence. The latter may be viewed
as a sequence formed by all n− � + 1 probes in the spectrum, in which the last
�−1 letters of each probe coincide with the first �−1 letters of the next. However,
two types of errors may be introduced along the hybridization experiment. False
positives are probes that appear in the spectrum, but not in the target sequence.
False negatives are probes that should appear in the spectrum, but do not. A
particular case of false negatives is due to probes that appear multiple times
in the target sequence, since the hybridization experiment is not able to detect
the number of repetitions of the same probe. Therefore, a probe appearing m
times in the target sequence will generate m− 1 false negatives. The problem of
sequencing by hybridization (SBH) is formulated as follows: given the spectrum
S, the probe length �, the size n and the first probe s0 of the target sequence,
find a sequence with length smaller than or equal to n containing a maximum
number of probes. The maximization of the number of probes of the spectrum
corresponds to the minimization of the number of errors in the solution. Errors
in the spectrum make the reconstruction problem NP-hard [5].

An instance of SBH may be represented by a directed weighted graph G(V,E),
where V = S is the set of nodes and E = {(u, v) | u, v ∈ S} is the set of arcs. The
weight of the arc (u, v) is given by w(u, v) = �−o(u, v), where o(u, v) is the size of
the largest sequence that is both a suffix of u and a prefix of v. The value o(u, v) is
the superposition between probes u and v. A feasible solution to SBH is an acyclic
path in G emanating from node s0 and with total weight smaller than or equal to
n− �. This path may be represented by an ordered node list a =< a1, . . . , ak >,
with ai ∈ S, i = 1, . . . , k. Let S(a) = {a1, . . . , ak} be the set of nodes visited by
a path a and denote by |a| = |S(a)| the number of nodes in this path. The latter
is a feasible solution to SBH if and only if a1 = s0, ai �= aj for all ai, aj ∈ S(a),
and w(a) ≤ n − �, where w(a) =

∑
h=1,...,|a|−1 w(ah, ah+1) is the sum of the
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(a) No errors in the spectrum (b) Errors in the spectrum

Fig. 2. Graphs and solutions for the target sequence ATAGGCAGGA with the probe

size � = 4: (a) no errors in the spectrum, (b) one false positive error (GGCG) and

one false negative error (GGCA) in the spectrum (not all arcs are represented in the

graph)

weights of all arcs in the path. Therefore, SBH consists in finding a maximum
cardinality path satisfying the above constraints.

The graph associated with the experiment depicted in Figure 1 is given in
Figure 2 (a). The solution is a path visiting all nodes and using only unit weight
arcs, since there are no errors in the spectrum. The example in Figure 2 (b)
depicts a situation in which probe GGCA was erroneously replaced by probe
GGCG, introducing one false positive and one false negative error. The new
optimal solution does not visit all nodes (due to the false positive) and uses one
arc with weight equal to 2 (due to the false negative).

Heuristics for SBH, handling both false positive and false negative errors,
were proposed in [3, 4, 6]. We propose in the next section a new memory-based
multistart heuristic for SBH, also handling both false positive and false negative
errors. The algorithm is based on an adaptive memory strategy using a set
of elite solutions visited along the search. Computational results illustrating
the effectiveness of the new memory-based heuristic are reported in Section 3.
Concluding remarks are made in the final section.

2 Memory-Based Multistart Heuristic

The memory-based multistart heuristic builds multiple solutions using a greedy
randomized algorithm. The best solution found is returned by the heuristic. An
adaptive memory structure stores the best elite solutions found along the search,
which are used within an intensification strategy [7].

The memory is formed by a pool Q that stores q elite solutions found along
the search. It is initialized with q null solutions with zero probes each. A new
solution a is a candidate to be inserted into the pool if |a| > mina′∈Q |a′|. This
solution replaces the worst in the pool if |a| > maxa′∈Q |a′| (i.e., a is better
than the best solution currently in the pool) or if mina′∈Q dist(a, a′) ≥ d, where
d is a parameter of the algorithm and dist(a, a′) is the number of probes with
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different successors in a and a′ (i.e., a is better than the worst solution cur-
rently in the pool and sufficiently different from every other solution in the
pool).

The greedy randomized algorithm iteratively extends a path a initially formed
exclusively by probe s0. At each iteration, a new probe is appended at the end
of the path a. This probe is randomly selected from the restricted candidate list
R = {v ∈ S \ S(a) | o(u, v) ≥ (1− α) ·maxt∈S\S(a) o(u, t) and w(a) + w(u, v) ≤
n − �}, where u is the last probe in a and α ∈ [0, 1] is a parameter. The list R
contains probes with a predefined minimum superposition with the last probe
in a, restricting the search to more promising regions of the solution space. The
construction of a solution stops when R turns up to be empty.

The probability p(u, v) of selecting a probe v from the restricted candidate
list R to be inserted after the last probe u in the path a is computed using the
superposition between probes u and v, and the frequency in which the arc (u, v)
appears in the set Q of elite solutions. We define e(u, v) = λ · x(u, v) + y(u, v),
where x(u, v) = mint∈S\S(a){w(u, t)/w(u, v)} is higher when the superposition
between probes u and v is larger, y(u, v) =

∑
a′′∈Q|(u,v)∈a′′{|a′′|/maxa′∈Q |a′|} is

larger for arcs (u, v) appearing more often in the elite set Q, and λ is a parameter
used to balance the two criteria. Then, the probability of selecting a probe v to
be inserted after the last probe u in the path a is given by

p(u, v) =
e(u, v)∑
t∈R e(u, t)

.

The value of λ should be high in the beginning of the algorithm, when the
information in the memory is still weak. The value of α should be small in

procedure MultistartHeuristic(S, s0, �, n)
1. Initialize o, w, α, q, d, Q;
2. a∗ ← null;
3. for i = 1 to N do
4. Set a ← (s0);
5. Build the restricted candidate list R;
6. while R �= ∅ do
7. Compute the selection probability for each probe v ∈ R;
8. Randomly select a probe v ∈ R;
9. Extend the current solution a by appending v to its end;
10. Update the restricted candidate list R;
11. end;
12. Use a to update the pool of elite solutions Q;
13. if |a| > |a∗| then set a∗ ← a;
14. end;
15. return a∗;
end;

Fig. 3. Memory-based multistart heuristic
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the beginning, to allow for the construction of good solutions by the greedy
randomized heuristic and so as to quickly enrich the memory. The value of α
is progressively increased along the algorithm when the weight λ given to the
superposition information decreases, to increase the diversity of the solutions in
the list R.

We sketch in Figure 3 the pseudo-code with the main steps of the memory-
based multistart heuristic, in which N iterations are performed.

3 Numerical Results

The memory-based multistart heuristic was implemented in C++, using version
3.3.2 of the GNU compiler. The rand function was used for the generation of
pseudo-random numbers. The computational experiments were performed on a
2.4 GHz Pentium IV machine with 512 MB of RAM.

Two sets of test instances have been generated from human and random
DNA sequences. Instances in group A were built from 40 human DNA sequences
obtained from GenBank [2], as described in [4]. Prefixes of size 109, 209, 309, 409,
and 509 were extracted from these sequences. For each prefix, a hybridization
experiment with the array C(10) was simulated, producing spectra with 100,
200, 300, 400, and 500 probes. Next, false negatives were simulated by randomly
removing 20% of the probes in each spectrum. False positives were simulated
by inserting 20% of new probes in each spectrum. Overall, we have generated
200 instances in this group, 40 of each size. Instances in group R were generated
from 100 random DNA sequences with prefixes of size 100, 200, . . ., and 1000.
Once again, 20% false negatives and 20% false positives have been generated.
There are 100 instances of each size in this group, in a total of 1000 instances.

Preliminary computational experiments have been performed to tune the
main parameters of the algorithm. The following settings were selected: N = 10n
(number of iterations performed by the multistart heuristic), q = n/80 (size of
the pool of elite solutions), and d = 2 (minimum difference for a solution to
be accepted in the pool). Parameters α and λ used by the greedy randomized
construction heuristic are self-tuned. Iterations of this heuristic are grouped in
20 blocks. Each block performs n/2 iterations. In the first block, λ = 100q. In
the second block, λ = 10q. The value of λ is reduced by q at each new block,
until it is made equal to zero. The value of α is initialized according to Tables 1
and 2, and increased by 0.1 after every five blocks of n/2 iterations, until it is
made equal to one.

Two versions of the MultistartHeuristic algorithm described in Figure 3
were implemented: MS is a purely multistart procedure that does not make use of
memory, while MS+Mem fully exploits the adaptive memory strategy described

Table 1. Initial values of α for the instances in group R

n 100 200 300 400 500 600 700 800 900 1000
α 0.5 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0
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Table 2. Initial values of α for the instances in group A

n 109 209 309 409 509
α 0.5 0.3 0.2 0.1 0.1

in the previous section. To evaluate the quality of the solutions produced by the
heuristics, we performed the alignment of their solutions with the corresponding
target sequences, as in [4]. The similarity between two sequences is defined as the
fraction (in percent) of symbols that coincide in their alignment. A similarity
of 100% means that the two sequences are identical. Average similarities and
average computation times in seconds over all test instances in group R for
both heuristics are displayed in Figure 4. These results clearly illustrate the
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Fig. 5. Probes in the best solutions found by heuristics MS and MS+Mem for an

instance with n = 1000 from group R

contribution of the adaptive memory strategy to improve the performance of
the purely multistart heuristic.

We have performed another experiment to further evaluate the influence of
the adaptive memory strategy on the multistart heuristic. We illustrate our
findings for one specific instance with size n = 1000 from group R. Figure 5
(a) displays the number of probes in the best solution obtained by each heuris-
tic along 10000 iterations. We notice that the best solution already produced
by MS+Mem until a given iteration is consistently better than that obtained
by MS, in particular after a large number of iterations have been performed.
Figure 5 (b) depicts the same results along 8.7 seconds of processing time.
The purely multistart heuristic seems to freeze and prematurely converge to
a local minimum very quickly. The use of the adaptive memory strategy leads
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the heuristic to explore other regions of the solution space and to find better
solutions.

To give further evidence concerning the performance of the two heuristics,
we used the methodology proposed by Aiex et al. [1] to assess experimentally
the behavior of randomized algorithms. This approach is based on plots showing
empirical distributions of the random variable time to target solution value. To
plot the empirical distribution, we select a test instance, fix a target solution
value, and run algorithms MS and MS+Mem 100 times each, recording the
running time when a solution with cost at least as good as the target value
is found. For each algorithm, we associate with the i-th sorted running time
ti a probability pi = (i − 1

2 )/100 and plot the points zi = (ti, pi), for i =
1, . . . , 100.

Since the relative performance of the two heuristics is quite similar over
all test instances, we selected one particular instance of size n = 500 from
group R and used its optimal value as the target. The computational results
are displayed in Figure 6. This figure shows that the heuristic MS+Mem us-
ing the adaptive memory strategy is capable of finding target solution values
with higher probability or in smaller computation times than the pure mul-
tistart heuristic MS, illustrating once again the contribution of the adaptive
memory strategy. These results also show that the heuristic MS+Mem is more
robust.
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Fig. 6. Empirical probability distributions of time to target solution value for heuristics

MS+Mem and MS for an instance of size n = 500 from group R

We have also considered the behavior of the heuristic MS+Mem when the
number of errors and the size of the probes vary. The algorithm was run on
randomly generated instances as those in group R, for different rates of false
negative and false positive errors: 0%, 10%, 20%, and 30%. Similarly, the
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Table 3. Average similarities for the instances in group A

n

Algorithm 109 209 309 409 509

TS 98.6 94.1 89.6 88.5 80.7
OW 99.4 95.2 95.7 92.1 90.1
GA 98.3 97.9 99.1 98.1 93.5

MS+Mem 100.0 100.0 99.2 99.4 99.5

algorithm was also run on randomly generated instances as those in group R
with different probe sizes � = 7, 8, 9, 10, 11. Numerical results are displayed in
Figure 7.
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Table 4. Average computation times in seconds for the instances in group A

n

Algorithm 109 209 309 409 509

TS <1.0 5.0 14.0 28.0 51.0
OW <1.0 <1.0 <1.0 <1.0 <1.0
GA 0.1 0.3 0.9 1.5 2.1

MS+Mem 0.1 0.4 0.8 1.6 3.0

Table 5. Target sequences exactly reconstructed for the instances in group A

n

Algorithm 109 209 309 409 509

TS 28 23 17 10 10
OW 28 20 21 13 14
GA 37 30 37 30 28

MS+Mem 40 40 39 39 39

The memory-based multistart heuristic MS+Mem was compared with the
tabu search algorithm (TS) in [4], the overlapping windows heuristic (OW) in [3],
and the genetic algorithm (GA) in [6]. The numerical results are summarized in
Tables 3 and 4, which depict the average similarities and the average computation
times in seconds observed for each algorithm over the 40 instances with the
same size in group A. The heuristic MS+Mem found much better solutions than
the others. The alignments observed for the solutions produced by MS+Mem
are systematically higher. The new heuristic MS+Mem is faster than TS and
competitive with GA (the results displayed for the overlapping windows heuristic
were obtained on a CRAY T3E-900 supercomputer).

Further comparative results for the four algorithms are given in Table 5, in
which we give the number of target sequences exactly reconstructed for each
algorithm over the 40 instances with the same size in group A. The heuristic
MS+Mem was able to reconstruct the 40 original sequences of size 109 and 209,
and 39 out of the 40 instances of sizes 309, 409, and 509, corresponding to a
total of 197 out of the 200 test instances in group A. The overlapping windows
and the tabu search heuristics found, respectively, only 96 and 88 out of the 200
original sequences.

We also compared the new heuristic MS+Mem with the genetic algorithm for
the instances in group R. Average similarities and average computation times in
seconds are shown in Figure 8. Table 6 depicts the number of target sequences
exactly reconstructed by MS+Mem and the genetic algorithm over the 100 in-
stances of each size in group R. Also for the instances in this group, the new
heuristic outperformed the genetic algorithm both in terms of solution quality
and computation times.
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Fig. 8. Computational results obtained by the heuristic MS+Mem and the genetic

algorithm (GA) for the instances in group R

Table 6. Target sequences exactly reconstructed for the instances in group R

n

Algorithm 100 200 300 400 500 600 700 800 900 1000

GA 70 61 55 37 23 11 9 3 1 2
MS+Mem 79 74 83 72 58 52 24 14 11 3

4 Concluding Remarks

We proposed a multistart heuristic for the problem of sequencing by hybridiza-
tion, based on an intensification strategy that makes use of an adaptive memory.
The adaptive memory strategy makes use of a set of elite solutions found along
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the search. The choice of the new element to be inserted into the partial solution
at each iteration of a greedy randomized construction procedure is based not
only on greedy information, but also on frequency information extracted from
the memory.

Computational results on test instances generated from human and random
DNA sequences have shown that the memory-based strategy is able to signifi-
cantly improve the performance of a memoryless construction procedure purely
based on greedy choices. The memory-based multistart heuristic obtained better
results than more involving and time consuming techniques such as tabu search
and genetic algorithms, both in terms of solution quality and computation times.

The use of adaptive memory structures that are able to store information
about the relative positions of the tasks in elite solutions seems to be particularly
suited to scheduling problems in which blocks formed by the same tasks in the
same order often appear in the best solutions.
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Abstract. Many large-scale optimization problems rely on graph the-
oretic solutions; yet high-performance computing has traditionally fo-
cused on regular applications with high degrees of locality. We describe
our novel methodology for designing and implementing irregular paral-
lel algorithms that attain significant performance on high-end computer
systems. Our results for several fundamental graph theory problems are
the first ever to achieve parallel speedups. Specifically, we have demon-
strated for the first time that significant parallel speedups are attainable
for arbitrary instances of a variety of graph problems and are developing
a library of fundamental routines for discrete optimization (especially in
computational biology) on shared-memory systems.

Phylogenies derived from gene order data may prove crucial in an-
swering some fundamental questions in biomolecular evolution. High-
performance algorithm engineering offers a battery of tools that can re-
duce, sometimes spectacularly, the running time of existing approaches.
We discuss one such such application, GRAPPA, that demonstrated over
a billion-fold speedup in running time (on a variety of real and simulated
datasets), by combining low-level algorithmic improvements, cache-aware
programming, careful performance tuning, and massive parallelism. We
show how these techniques are directly applicable to a large variety of
problems in computational biology.

1 Experimental Parallel Algorithms

We discuss our design and implementation of theoretically-efficient parallel algo-
rithms for combinatorial (irregular) problems that deliver significant speedups
on typical configurations of SMPs and SMP clusters and scale gracefully with the
number of processors. Problems in genomics, bioinformatics, and computational
ecology provide the focus for this research. Our source code is freely-available
under the GNU General Public License (GPL) from our web site.

� This work was supported in part by NSF Grants CAREER ACI-00-93039, ITR
ACI-00-81404, ITR EIA-01-21377,Biocomplexity DEB-01-20709, and ITR EF/BIO
03-31654; and DARPA contract NBCH30390004.
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1.1 Theoretically- and Practically-Efficient Portable Parallel
Algorithms for Irregular Problems

Our research has designed parallel algorithms and produced implementations
for primitives and kernels for important operations such as prefix-sum, pointer-
jumping, symmetry breaking, and list ranking; for combinatorial problems such
as sorting and selection; for parallel graph theoretic algorithms such as spanning
tree, minimum spanning tree, graph decomposition, and tree contraction; and
for computational genomics such as maximum parsimony (see [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12]). Several of these classic graph theoretic problems are notoriously
challenging to solve in parallel due to the fine-grained global accesses needed
for the sparse and irregular data structures. We have demonstrated theoretically
and practically fast implementations that achieve parallel speedup for the first
time when compared with the best sequential implementation on commercially
available platforms.

2 Combinatorial Algorithms for Computational Biology

In the 50 years since the discovery of the structure of DNA, and with new tech-
niques for sequencing the entire genome of organisms, biology is rapidly moving
towards a data-intensive, computational science. Many of the newly faced chal-
lenges require high-performance computing, either due to the massive-parallelism
required by the problem, or the difficult optimization problems that are often
combinatoric and NP-hard. Unlike the traditional uses of supercomputers for reg-
ular, numerical computing, many problems in biology are irregular in structure,
significantly more challenging to parallelize, and integer-based using abstract
data structures.

Biologists are in search of biomolecular sequence data, for its comparison
with other genomes, and because its structure determines function and leads to
the understanding of biochemical pathways, disease prevention and cure, and
the mechanisms of life itself. Computational biology has been aided by recent
advances in both technology and algorithms; for instance, the ability to sequence
short contiguous strings of DNA and from these reconstruct the whole genome
and the proliferation of high-speed microarray, gene, and protein chips for the
study of gene expression and function determination. These high-throughput
techniques have led to an exponential growth of available genomic data.

Algorithms for solving problems from computational biology often require
parallel processing techniques due to the data- and compute-intensive nature of
the computations. Many problems use polynomial time algorithms (e.g., all-to-
all comparisons) but have long running times due to the large number of items
in the input; for example, the assembly of an entire genome or the all-to-all
comparison of gene sequence data. Other problems are compute-intensive due to
their inherent algorithmic complexity, such as protein folding and reconstructing
evolutionary histories from molecular data, that are known to be NP-hard (or
harder) and often require approximations that are also complex.
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3 Phylogeny Reconstruction

A phylogeny is a representation of the evolutionary history of a collection of
organisms or genes (known as taxa). The basic assumption of process necessary
to phylogenetic reconstruction is repeated divergence within species or genes.
A phylogenetic reconstruction is usually depicted as a tree, in which modern
taxa are depicted at the leaves and ancestral taxa occupy internal nodes, with
the edges of the tree denoting evolutionary relationships among the taxa. Re-
constructing phylogenies is a major component of modern research programs in
biology and medicine (as well as linguistics). Naturally, scientists are interested
in phylogenies for the sake of knowledge, but such analyses also have many uses
in applied research and in the commercial arena.

Existing phylogenetic reconstruction techniques suffer from serious problems
of running time (or, when fast, of accuracy). The problem is particularly serious
for large data sets: even though data sets comprised of sequence from a single
gene continue to pose challenges (e.g., some analyses are still running after two
years of computation on medium-sized clusters), using whole-genome data (such
as gene content and gene order) gives rise to even more formidable computational
problems, particularly in data sets with large numbers of genes and highly-
rearranged genomes.

To date, almost every model of speciation and genomic evolution used in phy-
logenetic reconstruction has given rise to NP-hard optimization problems. Three
major classes of methods are in common use. Heuristics (a natural consequence
of the NP-hardness of the problems) run quickly, but may offer no quality guar-
antees and may not even have a well-defined optimization criterion, such as the
popular neighbor-joining heuristic [13]. Optimization based on the criterion of
maximum parsimony (MP) [14] seeks the phylogeny with the least total amount
of change needed to explain modern data. Finally, optimization based on the
criterion of maximum likelihood (ML) [15] seeks the phylogeny that is the most
likely to have given rise to the modern data.

Heuristics are fast and often rival the optimization methods in terms of accu-
racy, at least on datasets of moderate size. Parsimony-based methods may take
exponential time, but, at least for DNA and amino acid data, can often be run to
completion on datasets of moderate size. Methods based on maximum likelihood
are very slow (the point estimation problem alone appears intractable) and thus
restricted to very small instances, and also require many more assumptions than
parsimony-based methods, but appear capable of outperforming the others in
terms of the quality of solutions when these assumptions are met. Both MP-
and ML-based analyses are often run with various heuristics to ensure timely
termination of the computation, with mostly unquantified effects on the quality
of the answers returned.

Thus there is ample scope for the application of high-performance algorithm
engineering in the area. As in all scientific computing areas, biologists want to
study a particular dataset and are willing to spend months and even years in the
process: accurate branch prediction is the main goal. However, since all exact
algorithms scale exponentially (or worse, in the case of ML approaches) with the
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number of taxa, speed remains a crucial parameter—otherwise few datasets of
more than a few dozen taxa could ever be analyzed.

As an illustration, we briefly discuss our experience with a high-performance
software suite, GRAPPA (Genome Rearrangement Analysis through Parsimony
and other Phylogenetic Algorithms) that we developed, GRAPPA extends Sankoff
and Blanchette’s breakpoint phylogeny algorithm [16] into the more biologically-
meaningful inversion phylogeny and provides a highly-optimized code that can
make use of distributed- and shared-memory parallel systems (see [17, 18, 19,
20, 21, 22] for details). In [23] we give the first linear-time algorithm and fast
implementation for computing inversion distance between two signed permuta-
tions. We ran GRAPPA on a 512-processor IBM Linux cluster with Myrinet
and obtained a 512-fold speed-up (linear speedup with respect to the number
of processors): a complete breakpoint analysis (with the more demanding in-
version distance used in lieu of breakpoint distance) for the 13 genomes in the
Campanulaceae data set ran in less than 1.5 hours in an October 2000 run, for
a million-fold speedup over the original implementation. Our latest version fea-
tures significantly improved bounds and new distance correction methods and, on
the same dataset, exhibits a speedup factor of over one billion. We achieved this
speedup through a combination of parallelism and high-performance algorithm
engineering. Although such spectacular speedups will not always be realized, we
suggest that many algorithmic approaches now in use in the biological, phar-
maceutical, and medical communities can benefit tremendously from such an
application of high-performance techniques and platforms.

This example indicates the potential of applying high-performance algorithm
engineering techniques to applications in computational biology, especially in
areas that involve complex optimizations: our reimplementation did not require
new algorithms or entirely new techniques, yet achieved gains that turned an
impractical approach into a usable one.
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Abstract. The paper deals with one of the most studied problems dur-
ing the last years in the field of wireless communications in Ad-Hoc
networks. The problem consists in reducing the total energy consump-
tion of wireless radio stations randomly spread on a given area of interest
to perform the basic pattern of communication given by the Broadcast.
Recently an almost tight 6.33-approximation of the Minimum Spanning
Tree heuristic has been proved [8]. While such a bound is theoretically
close to optimum compared to the known lower bound of 6 [10], there
is an evident gap with practical experimental results. By extensive ex-
periments, proposing a new technique to generate input instances and
supported by theoretical results, we show how the approximation ratio
can be actually considered close to 4 for a “real world” set of instances,
that is, instances with a number of nodes more representative of practical
purposes.

1 Introduction

In the context of Ad-Hoc networking, one of the most popular studied problems
is the so called Minimum Energy Broadcast Routing (MEBR). The problem arises
from the requirement of a basic pattern of communication such as the Broadcast.
Given a set of radio stations (or nodes) randomly (or suitably) spread on a given
area of interest, and specified one of those stations as the source, the problem
is to assign the transmission range of each station so as to induce a broadcast
communication from the source with a minimum overall power consumption.
A communication session can be established through a series of wireless links
involving any of the network nodes and therefore Ad-Hoc networks are multi-hop
networks. To this aim, the nodes have the ability to adjust their transmission
power as needed. Thus every node is assigned a transmission range and every
node inside this range receives its message. Considering the fact that the nodes
operate with a limited supply of energy and given the nature of the operations for
which this kind of networks are used, such as military operations or emergency
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disaster relief, a fundamental problem is of assigning transmission ranges in such
a way that the total consumed energy is minimum.

According to the mostly used power attenuation model [11, 4], when a node s
transmits with power Ps, a node r can receive its message if and only if Ps

‖s,r‖2 > 1,
where ‖s, r‖ is the Euclidean distance between s and r.

Since the MEBR problem is NP -hard [3], a lot of effort was devoted to
device good approximation algorithms. Several papers progressively reduced the
estimate of the approximation ratio of the fundamental Minimum Spanning Tree
(MST) heuristic from 40 to 6.33 [3, 6, 10, 4, 8]. Roughly speaking the heuristic
computes the directed minimum spanning tree from the given source to the
leaves starting from the complete weighted graph obtained from the set of nodes
in which weights are the square distances of the endpoints of the edges. For each
node, then, the heuristic assigns a power of transmission equal to the weight of
the longest outgoing edge.

Even if the 6.33-approximation ratio is almost tight according to the lower
bound of 6 [10], there is an evident gap between such a ratio and the experi-
mental results obtained in several papers (see for instance [11, 2, 6, 7, 1, 9]). This
suggests to investigate more carefully the possible input instances in order to
better understand this phenomenon. The goal is to classify some specific family
of instances according to the output of the MST heuristic. The most common
method used to randomly generate the input instances has been that of uniformly
spreading the nodes inside a given area. In this paper we propose a new method
to produce instances in order to maximize the final cost of the MST heuristic. In
this way we better catch the intrinsic properties of the problem. Motivated by
the obtained experimental studies, we also provide theoretical results that lead
to an almost tight 4-approximation ratio for high-density instances of the MEBR
problem. The tightness of such ratio is of its own interest since the common in-
tuition was of a much better performance of the MST heuristic on high-density
instances. Moreover, such instances are more representative of practical environ-
ments since for a small number of nodes exhaustive algorithms can be applied
(see for instance the integer linear programming formulation proposed in [6]).

The paper is organized as follows. In the next section we briefly provide some
basic definitions and summarize the estimation method proposed in [4] by which
an 8-approximation for the MST heuristic arises. That will be useful for the rest
of the paper. In Section 3 we formally describe the algorithm to generate suitable
instances that maximize the cost of the MST heuristic. In Section 4 we present
the obtained experimental results and in Section 5 we present theoretical results
that strengthen the experimental ones. Finally, in Section 6, we discuss some
conclusive remarks.

2 Definitions and Notation

Let us first provide a formal definition of the Minimum Energy Broadcast Rout-
ing (MEBR) problem in the 2-dimensional space (see [3, 10, 2] for a more detailed
discussion). Given a set of points S in a 2-dimensional Euclidean space that
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represents the set of radio stations, let G2(S) be the complete weighted graph
whose nodes are the points of S and in which the weight of each edge {x, y} is
the power consumption needed for a correct communication between x and y,
that is ‖x, y‖2.

A range assignment for S is a function r : S → IR+ such that the range r(x) of
a station x denotes the maximal distance from x at which signals can be correctly
received. The total cost of a range assignment is then cost(r) =

∑
x∈S r(x)2.

A range assignment r for S yields a directed communication graph Gr =
(S,A) such that, for each (x, y) ∈ S2, the directed edge (x, y) belongs to A if
and only if y is at distance at most r(x) from x. In other words, (x, y) belongs to
A if and only if the power emission of x is at least equal to the weight of {x, y}
in G2(S). In order to perform the required minimum energy broadcast from a
given source s ∈ S, Gr must contain a directed spanning tree rooted at s and
must have the minimum cost.

One fundamental algorithm, called the MST heuristic [11], is based on the
idea of tuning ranges so as to include a spanning tree of minimum cost. More pre-
cisely, denoted as T2(S) a minimum spanning tree of G2(S) and as MST (G2(S))
its cost, considering T2(S) rooted at the source station s, the heuristic directs
the edges of T2(S) toward the leaves and sets the range r(x) of every inter-
nal station x of T2(S) with k children x1, . . . , xk in such a way that r(x) =
maxi=1,...,k‖x, xi‖2. In other words, r is the range assignment of minimum cost
inducing the directed tree derived from T2(S) and it is such that cost(r) ≤
MST (G2(S)).

Let us denote by Cr a circle of radius r. From [3, 10, 4] it is possible to restrict
the study of the performance of the MST heuristic just considering C1 centered
at the source as area of interest to locate the radio stations. An 8-approximation
is then proved in [4] by assigning a growing circle to each node till all the circles
form a unique connected area component. Such an area, denoted by a(S, rmax

2 ),
is related to the MST cost according to the following equation (see [5, 4]),

MST (G2(S)) = 2
∫ rmax

0

(n(S, r)− 1)r dr,

where rmax is the size of the longest edge contained in MST (S) and n(S, r)
is the number of connected components obtained from S associating a circle of
radius r to each node1. The following bounds are then derived

π

4
MST (S) +

π

4
r2
max ≤ a(S,

rmax

2
) ≤ π(1 +

rmax

2
)2,

hence obtaining
MST (S) ≤ 4(1 + rmax).

The 8-approximation then holds by observing that rmax ≤ 1. For rmax tend-
ing to 0, the approximation ratio of the MST heuristic tends to 4. Studying the

1 Two nodes belong to the same connected component if and only if the two associated
circles are overlapping in at least one point.
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results obtained by extensive experiments we are going to show that, in prac-
tice, that is, for a considerable number of nodes, such a bound of 4 is almost
tight.

3 Augmenting Algorithm

It is well-known that the lower bound for the MST heuristic is given by the
hexagonal shape presented in [10] where the instance is given by seven nodes
that are the center and the vertices of a regular hexagon inscribed in C1 (see
Figure 1). On such an instance the MST heuristic cost can be equal to 6 while
the optimal solution costs just 1. It is evident that 6 is the maximum cost for
instances inside a C1 in which the source is its center and the number of nodes
is at most 7. Performing experiments as described in [11, 2, 6, 7, 1, 9], even just
throwing seven nodes, in which one of them is fixed to be the center of C1 and
the other ones are randomly at uniform distributed inside such a circle, it is
really “lucky” to happen that a similar high cost instance appears. Moreover
increasing the number of nodes involved in the experiments, on average, the cost
of the performed MST decreases.

1

s

1

1

1

1

1

Fig. 1. The 6 lower bound for the MST heuristic provided in [10]

In this paper we are interested in maximizing the cost of a possible MST
inside C1 considering its center s as the source in order to better understand
the actual quality of the performance of the MST heuristic over interesting in-
stances more representative of the real world applications. Roughly speaking,
starting from random instances, the maximization is due to slight movements
of the nodes according to some useful properties of the MST construction. For
instance if we want to increase the cost of an edge of the MST, the easiest
idea is to increase the distance of its endpoints. Let us now consider a node
v �= s of a generic instance given in input. We consider the degree of such
a node in the undirected tree obtained from the MST heuristic before assign-
ing the directions. Let Nv = {v1, v2, . . . , vk} be the set of the neighbors of v
in such a tree. We evaluate the median point p = (x, y) whose coordinates
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p v
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p
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Fig. 2. Augmenting the edge costs when a node has one or more neighbors and when

it is on the circumference of C1

are given by the average of the corresponding coordinates of the nodes in Nv,
that is

x =
1
k

k∑
i=1

xvi
, y =

1
k

k∑
i=1

yvi
.

The idea is then to move the node v farther from p but, of course, remaining
inside the considered circle. In general this should augment the cost of the MST
on the edge connecting the node v to the rest of the tree (see Figure 2).

It can also happen that such a movement completely changes the structure
of the MST reducing the initial cost. In that case we do not validate the move-
ment. Given an instance, the augmenting algorithm performs this computation
for each node twisting over all the nodes but s till no movements are allowed.
As we are going to show, the movements depend also by a random parameter
rand. Therefore, in order to give to a node a “second chance” to move, we can
repeat such computations for a fixed number of rounds. Notice that, when a
node reaches the border that is the circumference of the circle, the only allowed
movement is over such circumference.

A further way to increase the cost of the MST is then to try to delete a node.
We choose as candidate the node with highest degree. The idea behind this
choice is that the highest degree node could be considered as the intermediary
node to connect its neighbors, so removing it, a “big hole” is luckily to appear.
On one hand this means that the distances to connect the remaining disjoint
subtrees should increase the overall cost. On the other hand, we are creating
more space for further movements. After a deletion, the algorithm starts again
with the movements. Indeed the deletion can be considered as a movement in
which two nodes are overlapping. If the deletion does not increase the cost of
the current MST, we do not validate it. In such a case, the next step, will be the
deletion of the second highest degree node and so on. The whole procedure is
repeated till no movements and no deletions are allowed. Notice that eventually
the whole algorithm can be repeated several consecutive times in order to obtain
more accurate results.

We now define more precisely the algorithm roughly described above. Let
V = {s, v1, v2, . . . , vn} be a set of nodes inside C1 centered in s and let ε be the
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step of the movements we allow, that is, the maximum fraction of the distance
from the median point p we allow to move the current point v.

Algo(s, V, ε)

1: flag1 = 1; \∗ flag1 determines if there is an allowed movement anymore.
2: flag2 = 1; \∗ flag2 determines if there is an allowed deletion anymore.
3: N = |V | − 1; \∗ Number of available nodes for the augmenting methods.
4: i = 1;
5: j = 1;
6: Compute the MST over the complete weighted graph G induced by the set of nodes

V in which each edge {x, y} has weight ‖x, y‖2; save its cost in cost1;
7: while flag2 ≤ N do
8: while flag1 ≤ N do
9: Consider the node vi = {xi, yi} and its ki neighbors,

x = 1
k i

∑ki

i=1
xvi ; y = 1

k i

∑ki

i=1
yvi ; \∗ Coordinates of the median point p.

10: Let rand be a random number in [0, 1];
11: if vi is not on the circumference then
12: Let v′

i be a point inside C1 on the line passing through vi and p in such a
way that ‖vi, p‖ < ‖v′

i, p‖ ≤ (1 + ε · rand)‖vi, p‖;
13: else
14: Let v′

i be a point on the circumference further from p with respect to vi

such that the arc joining vi and v′
i has length ε · rand;

15: end if
16: Compute the MST over the complete weighted graph induced by the set of

nodes (V \ vi) ∪ v′
i; save its cost in cost2;

17: if cost2 > cost1 then
18: V = (V \ vi) ∪ v′

i;
19: cost1 = cost2;
20: flag1 = 1;
21: else
22: flag1 = flag1 + 1; \∗ The movement is not valid.
23: end if
24: i = (i + 1)mod N ;
25: end while
26: Let vj be the j-th highest degree node of the current MST, compute the MST

over the complete weighted graph induced by the set of nodes V \ vj ; save its
cost in cost2.

27: if cost2 > cost1 then
28: V = V \ vj ;
29: N = N − 1;
30: cost1 = cost2;
31: flag1 = 1;
32: flag2 = 1;
33: else
34: flag2 = flag2 + 1; \∗ The deletion is not valid.
35: end if
36: j = (j + 1)mod N ;
37: end while
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The validated movements (and deletions) imply a monotonic increasing func-
tion on the cost of the MST. Since such a cost is bounded by 6.33 [8], the termi-
nation of the algorithm is guaranteed. Actually this is accomplished by the min-
imal constant growth in each computation given by the minimum performable
positive number of the working machine. A strategy to speed up the algorithm
could be to modify the if condition of lines 17 and 27 by cost2 > cost1 + c,
hence introducing a further parameter c that fixes the minimal growth at each
augmenting step.

4 Experimental Results

We run the algorithm over hundreds of instances from 5 up to 100 nodes. Table 1
resumes the average and the maximum costs obtained on random instances as
in previous papers and using our augmenting method for ε equal to .5 and .1.
We also repeated the execution of the algorithm two consecutive times for each
instance.

Compared to the standard random generated instances, the average costs
were almost tripled while the maximum almost doubled. The numerical results
obtained are very interesting since they show that standard random instances are
not so well representative to study the bounds of the MEBR problem. Moreover,
as “side effect” of such experiments, another very interesting obtained property
is about the topologies obtained in the augmented instances. While for instances
till around 15 nodes our method modifies the nodes distribution tending to the
well-known hexagon shape of Figure 1, increasing the number of nodes, things
become more and more interesting.

In Figure 3 an instance of 100 nodes is given before and after the movements
and deletions. What follows from those experiments is an evident regularity on
the final obtained instances. As showed in Figure 3, in general, after the augmen-

Table 1. The average and the maximum costs obtained on standard random instances

and using the previous augmenting algorithm on instances of 5 up to 100 nodes and ε

equal to 0.1 and 0.5

n Random Augmented, ε = .5 Augmented, ε = .1
Average Max Average Max Average Max

5 1.301 2.8752 3.6456 4 3.6276 4
7 1.4799 2.4793 4.5454 5.7386 4.5606 5.8797
10 1.8019 3.1231 5.2848 5.7851 5.353 5.9187
15 1.8875 2.6691 4.8648 5.4803 4.777 5.7728
20 1.854 2.6187 4.2817 5.0906 4.1316 5.1222
30 1.8252 2.2328 4.137 4.45 3.991 4.1819
50 1.812 1,9718 3.7319 3,8901 3.6331 3,7598
100 1.6833 1.8829 3.5673 3.7223 3.4898 3.812



The “Real” Approximation Factor of the MST Heuristic 29

tation, nodes look like disposed on some kind of regular grid. This strengthens
the lower bound given by the regular hexagon shape.

It is evident that our method considerably increases the average and the
maximum cost of the investigated instances. Moreover, the experiments also
suggest to consider regular distributions of the nodes in order to obtain maximal
cost instances. In the next section we investigate this property hence obtaining
an almost tight 4-approximation upper bound for the MST heuristic in the case
of high-density distributions.

Fig. 3. A random instance of 100 nodes before and after the augmenting method. The

number of nodes decreased from 100 to 65, while the cost increased from 1.8774 to

3.6809

5 High-Density Case

In this section we show that the upper bound of 4 provided in Section 2 for
the MST heuristic in the case of rmax tending to 0 is almost tight. We provide
an example of uniform distribution with high-density of the radio stations in
which the cost of the solution returned by the MST heuristic is very close to 4.
Actually, this is a significant result, in fact, as already stressed before, it was a
common idea, even supported by experimental results, that the MST heuristic
is very close to the optimum for the high-density case (see [11, 2, 6, 7, 1, 9]). It
is also interesting to notice that the next construction follows directly from
the previous experimental results. Such results, in fact, suggest to investigate
the case of equidistant nodes in order to increase the cost of the computed
MST.

Let us assume an high-density uniform distributions of nodes inside C1 and
let the set of nodes S be located on the vertices of a grid composed by equilateral
triangles as showed in Figure 4. Roughly speaking, the idea is now to estimate
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Fig. 4. The subdivision of a circle in triangles and the association of each node to a

triangle

the cost of the MST heuristic2 and comparing it with respect to the optimal
solution whose cost is upper bounded by the radius of C1 of length 1. Associating
a triangle to each node, roughly half of the triangles remain “singles” (the black
ones in Figure 4). Since for a given side l, the area of an equilateral triangle is
equal to

√
3

4 l2, and considering that, by construction, the number of nodes of the
MST is equal to the number of its edges plus 1,

√
3

4 MST (S) � π12

2 and then

MST (S) � 2π√
3

> 3.62.

The following theorem is then a direct consequence of the above discussions.

Theorem 1. In the 2-dimensional Euclidean space, the upper bound on the ap-
proximation ratio of the MST heuristic for the Minimum Energy Broadcast Rout-
ing problem with high-density distribution of the nodes is between 3.62 and 4.

6 Conclusions

We closely examined the MEBR problem by extensive experiments. The main
goal was to find special instances in order to maximize the possible cost of the
MST heuristic. Motivated by the gap between the theoretical bounds and the
values observed by experimental studies, we proposed a new method to generate
input instances hence obtaining interesting results. Those experiments, in fact,
showed that the usually considered standard random instances are not so well
representative for upper bounding the cost of the MST heuristic. Moreover they
also suggested how to build expensive instances hence validating the well-known
lower bound of 6 for the MEBR problem and the 4 approximation factor in the
high-density case.

2 In the case of regular distribution such as a triangular grid, there exists always an
MST composed by a path that visits all the nodes like in Figure 1. Therefore, the
maximal cost of the MST heuristic coincides with the cost of the MST.
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Abstract. In this paper we consider the problem of computing a mini-
mum cycle basis of an undirected graph G = (V, E) with n vertices and m
edges. We describe an efficient implementation of an O(m3 + mn2 log n)
algorithm presented in [1]. For sparse graphs this is the currently best
known algorithm. This algorithm’s running time can be partitioned into
two parts with time O(m3) and O(m2n + mn2 log n) respectively. Our
experimental findings imply that the true bottleneck of a sophisticated
implementation is the O(m2n + mn2 log n) part. A straightforward im-
plementation would require Ω(nm) shortest path computations, thus we
develop several heuristics in order to get a practical algorithm. Our exper-
iments show that in random graphs our techniques result in a significant
speedup.

Based on our experimental observations, we combine the two funda-
mentally different approaches to compute a minimum cycle basis used
in [1, 2] and [3, 4], to obtain a new hybrid algorithm with running time
O(m2n2). The hybrid algorithm is very efficient in practice for random
dense unweighted graphs.

Finally, we compare these two algorithms with a number of previ-
ous implementations for finding a minimum cycle basis in an undirected
graph.

1 Introduction

Let G = (V,E) be an undirected graph. A cycle of G is any subgraph in which
each vertex has even degree. Associated with each cycle is an incidence vector
x, indexed on E, where xe = 1 if e is an edge of C, xe = 0 otherwise. The vector
space over GF (2) generated by the incidence vectors of cycles is called the cycle
space of G. It is well-known that this vector space has dimension N = m−n+κ,
where m is the number of edges, n is the number of vertices, and κ the number
of connected components of G. A maximal set of linearly independent cycles is
called a cycle basis.

The edges of G have non-negative weights. The weight of a cycle is the sum
of the weights of its edges. The weight of a cycle basis is the sum of the weights
of its cycles. We consider the problem of computing a cycle basis of minimum
weight in a graph; we use the abbreviation MCB to refer to a minimum cycle
basis.

The problem has been extensively studied, both in its general setting and in
special classes of graphs. Its importance lies in its use as a preprocessing step

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 32–43, 2005.
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in several algorithms. Such algorithms include diverse applications like electrical
circuit theory [5], structural engineering [6] and periodic event scheduling [1].

The first polynomial time algorithm for the minimum cycle basis problem
was given by Horton [3] with running time O(m3n). de Pina [1] gave an O(m3 +
mn2 log n) algorithm by using a different approach. Golynski and Horton [4]
improved Horton’s algorithm to O(mωn) by using fast matrix multiplication. It
is presently known [7] that ω < 2.376. Recently Berger et al. [8] gave another
O(m3 +mn2 log n) algorithm by using similar ideas as de Pina. Finally, Kavitha
et al. [2] improved de Pina’s algorithm into O(m2n + mn2 log n) again by us-
ing fast matrix multiplication. In the same paper a faster 1 + ε approximation
algorithm, for any ε > 0, is presented.

In this paper we report our experimental findings from our implementation
of the O(m3 + mn2 log n) algorithm presented in [1]. Our implementation uses
LEDA [9]. We develop a set of heuristics which improve the best-case perfor-
mance of the algorithm while maintaining its asymptotics. Finally, we consider
a hybrid algorithm obtained by combining the two different approaches used
in [1, 2] and [3, 4] with running time O(m2n2), and compare the implementations.
The new algorithm is motivated by our need to reduce the cost of the shortest
path computations. The resulting algorithm seems to be very efficient in practice
for random dense unweighted graphs. Finally, we compare our implementations
with previous implementations of minimum cycle basis algorithms [3, 8].

The paper is organized as follows. In Section 2 we briefly describe the algo-
rithms.In Section 2.1 we describe our heuristics and in 2.2 we present our new
algorithm. In Section 3 we give and discuss our experimental results.

2 Algorithms

Let G(V,E) be an undirected graph with m edges and n vertices. Let l : E 
→ R≥0

be a non-negative length function on the edges. Let κ be the number of connected
components of G and let T be any spanning forest of G. Also let e1, . . . , eN be
the edges of G \ T in some arbitrary but fixed order. Note that N = m− n + κ
is exactly the dimension of the cycle space.

The algorithm [1] computes the cycles of an MCB and their witnesses. A
witness S of a cycle C is a subset of {e1, . . . , eN} which will prove that C
belongs to the MCB. We view these subsets in terms of their incidence vectors
over {e1, . . . , em}. Hence, both cycles and witnesses are vectors in the space
{0, 1}m. 〈C,S〉 stands for the standard inner product of vectors C and S. Since
we are at the field GF (2) observe that 〈C,S〉 = 1 if and only if the intersection
of the two edge sets has odd cardinality. Finally, adding two vectors C and S in
GF (2) is the same as the symmetric difference of the two edge sets. Algorithm
1 gives a full description.

The algorithm in phase i has two parts, one is the computation of the cycle
Ci and the second part is the update of the sets Sj for j > i. Note that updating
the sets Sj for j > i is nothing more than maintaining a basis {Si+1, . . . , SN} of
the subspace orthogonal to {C1, . . . , Ci}.
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Algorithm 1 Construct an MCB
Set Si = {ei} for all i = 1, . . . , N .
for i = 1 to N do

Find Ci as the shortest cycle in G s.t 〈Ci, Si〉 = 1.
for j = i + 1 to N do

if 〈Sj , Ci〉 = 1 then
Sj = Sj + Si

end if
end for

end for

Computing the Cycles. Given Si, it is easy to compute a shortest cycle Ci such
that 〈Ci, Si〉 = 1 by reducing it to n shortest path computations in an appropri-
ate graph Gi. The following construction is well-known.

Gi has two copies v+ and v− of each vertex v ∈ V . For each edge e = (u, v) ∈
E do: if e /∈ Si, then add edges (u+, v+) and (u−, v−) to the edge set of Gi and
assign their weights to be the same as e. If e ∈ Si, then add edges (u+, v−) and
(u−, v+) to the edge set of Gi and assign their weights to be the same as e. Gi

can be visualized as 2 levels of G (the + level and the − level). Within each
level, we have edges of E \ Si. Between the levels we have the edges of Si. Call
Gi, the signed graph.

Any v+ to v− path p in Gi corresponds to a cycle in G by identifying edges
in Gi with their corresponding edges in G. If an edge e ∈ G occurs multiple
times we include it if the number of occurrences of e modulo 2 is 1. Because we
identify v+ and v− with v, the path in G resulting from p is a cycle C. Since we
start from a positive vertex and end in a negative one, the cycle has to change
sign an odd number of times and therefore uses an odd number of edges from
Si. In order to find a shortest cycle, we compute a shortest path from v+ to v−

for all v ∈ V .

Running Time. In each phase we have the shortest path computations which
take time O(n(m + n log n)) and the update of the sets which take O(m2) time.
We execute O(m) phases and therefore the running time is O(m3 + m2n +
mn2 log n).

2.1 Heuristic Improvements

In this section we present several heuristics which can improve the running time
substantially. All heuristics preserve the worst-case time and space bounds.

Compressed representation (H1) All vectors (sets S and cycles C) which are
handled by the algorithm are in {0, 1}m. Moreover, any operations performed are
normal set operations. This allows us to use a compressed representation where
each entry of these vectors is represented by a bit of an integer. This allows us
to save up space and at the same time to perform 32 or 64 bitwise operations in
parallel.
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Upper bounding the shortest path (H2) During phase i we might perform up
to n shortest path computations in order to compute the shortest cycle Ci with
an odd intersection with the set Si. Following similar observations of [10] we
can use the shortest path found so far as an upper bound on the shortest path.
This is implemented as follows; a node is only added in the priority queue of
Dijkstra’s implementation if its current distance is not more than our current
upper bound.

Reducing the shortest path computations (H3) We come to the most important
heuristic. In each of the N phases we are performing n shortest path computa-
tions. This results to Ω(mn) shortest path computations.

Let S = {e1, e2, . . . , ek} be a witness at some point of the execution. We need
to compute the shortest cycle C s.t 〈C,S〉 = 1. We can reduce the number of
shortest path computations based on the following observation.

Let C≥i be the shortest cycle in G s.t 〈C≥i, S〉 = 1, and C≥i∩{e1, . . . , ei−1} =
∅, and ei ∈ C≥i. Then cycle C can be expressed as C = min

i=1,...,k
C≥i. We can

compute C≥i in the following way. We delete edges {e1, . . . , ei} from the graph
G and the corresponding edges from the signed graph Gi. Let ei = (v, u) ∈ G.
Then we compute a shortest path in Gi from v+ to u+. The path computed
will have an even number of edges from the set S, and together with ei an odd
number. Since we deleted edges {e1, . . . , ei} the resulting cycle does not contain
any edges from {e1, . . . , ei−1}.

Using the above observation we can compute each cycle in O(kSP (n,m))
time when |S| = k < n and in O(nSP (n,m)) when |S| ≥ n. Thus the running
time for the cycles computations is equal to SP (m,n) ·

∑
i=1,...,N min{n, |Si|}

where SP (m,n) is the time to compute a single-source shortest path on an
undirected weighted graph with m edges and n vertices.

2.2 A New Hybrid Algorithm

The first polynomial algorithm [3] developed, did not compute the cycles one by
one but instead computed a superset of the MCB and then greedily extracted
the MCB by Gaussian elimination. This superset contains O(mn) cycles which
are constructed in the following way.

For each vertex v and edge e = (u,w), construct the cycle C = SP (v, u) +
SP (v, w) + (u,w) where SP (a, b) is the shortest path from a to b. If these two
shortest paths do not contain a vertex other than v in common then keep the
cycle otherwise discard it. Let us call this set of cycles the Horton set. It was
shown in [3] that the Horton set always contains an MCB. However, not every
MCB is contained in the Horton set.

Based on the above and motivated by the need to reduce the cost of the
shortest path computations we developed a new algorithm, which combines the
two approaches. That is, compute the Horton set and extract the MCB not by
using Gaussian elimination which would take time O(m3n) but by using the
orthogonal space of the cycle space as we did in Section 2. The Horton set
contains an MCB but not necessarily all the cycles that belong to any MCB. We
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resolve this difficulty by ensuring uniqueness of the MCB. We ensure uniqueness
by ensuring uniqueness of the shortest path distances on the graph (either by
perturbation or by lexicographic ordering). After the preprocessing step, every
cycle of the MCB will be contained in the Horton set and therefore we can query
the superset for the cycles instead of the graph G. A succinct description can be
found in Algorithm 2.

Algorithm 2 Hybrid MCB algorithm
Ensure uniqueness of shortest path distances of G ( lexicographically or by pertur-
bation).
Construct superset (Horton set) S of MCB.
Set Si = {ei} for all i = 1, . . . , N .
for i = 1 to N do

Find Ci as the shortest cycle in S s.t 〈Ci, Si〉 = 1.
for j = i + 1 to N do

if 〈Sj , Ci〉 = 1 then
Sj = Sj + Si

end if
end for

end for

The above algorithm has worst case running time O(m2n2). This is because
the Horton set contains at most mn cycles, we need to search for at most m
cycles and each cycle contains at most n edges. The important property of this
algorithm is that the time to actually compute the cycles is only O(n2m), which
is by a factor of m

n + log n better than the O(m2n + mn2 log n) time required
by Algorithm 1. Together with the experimental observation that in general
the linear independence step is not the bottleneck, we actually hope to have
developed a very efficient algorithm.

3 Experiments

We perform several experiments in order to understand the running time of
the algorithms using the previously presented heuristics. In order to under-
stand the speedup obtained, especially from the use of the H3 heuristic, we
study in more detail the cardinalities of the sets S during the algorithm as well
as how many operations are required in order to update these sets. We also
compare the running times of Algorithms 1 and 2, with previous implementa-
tions.

All experiments are done using random sparse and dense graphs. All graphs
were constructed using the G(n; p) model, for p = 4/n, 0.3, 0.5 and 0.9. Our
implementation uses LEDA [9]. All experiments were performed on a Pentium
1.7Ghz machine with 1 GB of memory, running GNU/Linux. We used the GNU
g++ 3.3 compiler with the -O optimization flag. All other implementations, use
the boost C++ libraries [11].
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3.1 Updating Si’s

In this section we present experimental results which suggest that the dominating
factor of the running time of Algorithm 1 (at least for random graphs) is not
the time needed to update the sets S but the time to compute the cycles.

Note that the time to update the sets is O(m3) and the time to compute the
cycles is O(m2n+mn2 log n), thus on sparse graphs this algorithm has the same
running time O(n3 log n) as the fastest known. The currently fastest algorithm [2]
for the MCB problem has running time O(m2n+mn2 log n+mω); the mω factor
is dominated by the m2n but we present it here in order to understand what
type of operations the algorithm performs. This algorithm improves upon [1]
w.r.t the time needed to update the sets S by using fast matrix multiplication
techniques.

Although fast matrix multiplication can be practical for medium and large
sized matrices, our experiments show that the time needed to update the sets S
is a small fraction of the time needed to compute the cycles. Figure 1 presents a
comparison of the required time to update the sets Si and to calculate the cycles
Ci by using the signed graph for random weighted graphs.

In order to get a better understanding of this fact, we performed several ex-
periments. As it turns out, in practice, the average cardinality of the sets S is
much less than N and moreover the number of times we actually perform set
updates (if 〈Ci, Sj〉 = 1) is much less than N(N − 1)/2. Moreover, heuristic
H1 decreases the constant factor of the running time (for updating S’s) sub-
stantially by performing 32 or 64 operations in parallel. This constant factor
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Fig. 1. Comparison of the time taken to update the sets S and the time taken to

calculate the cycles on random weighted graphs, by Algorithm 1
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Table 1. Statistics about sets S sizes on sparse random graphs with p = 4/n and dense

random graphs for p = 0.3 and 0.5. Sets are considered during the whole execution of

the algorithm. Column #〈S, C〉 = 1 denotes the number of updates performed on the

sets S. An upper bound on this is N(N − 1)/2, which we actually use when bounding

the algorithm’s running time. Note that the average cardinality of S is very small

compared to N although the maximum cardinality of some S is in O(N)

n m N N(N − 1)/2 max(|S|) avg(|S|) # 〈S, C〉 = 1
sparse (m ≈ 2n)
10 19 10 45 4 2 8
104 208 108 5778 44 4 258
491 981 500 124750 226 7 2604
963 1925 985 484620 425 7 5469
2070 4139 2105 2214460 1051 13 20645
4441 8882 4525 10235550 2218 17 58186
p = 0.3
10 13 4 6 2 2 2
25 90 66 2145 27 3 137
75 832 758 286903 370 6 3707
150 3352 3203 5128003 1535 9 22239
200 5970 5771 16649335 2849 10 49066
300 13455 13156 86533590 6398 10 116084
500 37425 36926 681746275 18688 14 455620
p = 0.5
10 22 13 78 7 2 14
25 150 126 7875 57 4 363
75 1387 1313 861328 654 6 6282
150 5587 5438 14783203 2729 9 39292
200 9950 9751 47536125 4769 11 86386
300 22425 22126 244768875 10992 13 227548
500 62375 61876 1914288750 30983 15 837864

decrease does not concern the shortest path computations. Table 1 summarizes
our results.

3.2 Number of Shortest Path Computations

Heuristic H3 improves the best case of the algorithm, while maintaining at the
same time the worst case. Instead of Ω(nm) shortest path computations we hope
to perform much less. In Table 2 we study the sizes of the sets Si for i = 1, . . . , N
used to calculate the cycles for sparse and dense graphs respectively.

In both sparse and dense graphs although the maximum set can have quite
large cardinality, the average set size is much less than n. Moreover, in sparse
graphs every set used has cardinality less than n. On dense graphs the sets with
cardinality less than n are more than 95% percent. This implies a significant
speedup due to the H3 heuristic.

Figure 2 compares the running times of Algorithm 1 with and without the
H3 heuristic. As can easily be seen the improvement is more than a constant
factor.
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Table 2. Statistics about sets Si sizes on sparse random graphs with p = 4/n and

dense random graphs for p = 0.3 and 0.5, at the moment we calculate cycle Ci

n m N max(|Si|) �avg(|Si|)� |{Si : |Si| < n}|
sparse (m ≈ 2n)
10 19 10 4 2 10
104 208 108 39 5 108
491 981 498 246 13 498
963 1925 980 414 11 980
2070 4139 2108 1036 27 2108
4441 8882 4522 1781 33 4522
p = 0.3
10 13 4 2 2 4
25 90 66 20 4 66
75 832 758 357 15 721
150 3352 3203 1534 18 3133
200 5970 5771 2822 29 5635
300 13455 13156 6607 32 12968
500 37425 36926 15965 39 36580
p = 0.5
10 22 13 7 3 13
25 150 126 66 5 121
75 1387 1313 456 10 1276
150 5587 5438 2454 19 5338
200 9950 9751 4828 28 9601
300 22425 22126 10803 33 21875
500 62375 61876 30877 38 61483
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Fig. 2. Running times of Algorithm 1 with and without the H3 heuristic. Without the

heuristic the algorithm is forced to perform Ω(nm) shortest path computations

3.3 Running Time

In this section we compare the various implementations for computing a mini-
mum cycle basis. Except for Algorithms 1 (DP) and 2 (HYB) we include in the
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comparison two implementations [12, 13] (HOR) of Horton’s algorithm with run-
ning time O(m3n) and an implementation [12] (FEAS) of the O(m3+mn2 log n)
algorithm presented in [8]. Algorithms 1 and 2 are implemented with compressed
integer sets. Fast matrix multiplication [2, 4] can nicely improve many parts of
these implementations with respect to the worst case complexity. We did not
experiment with these versions of the algorithms.

The comparison of the running times is performed for three different type
of undirected graphs: (a) random sparse graphs, where m ≈ 2n, (b) random
graphs from G(n; p) with different density p = 0.3, 0.5, 0.9 and (c) hypercubes.
Tests are performed for both weighted and unweighted graphs. In the case of
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Fig. 3. Comparison of various algorithms for random unweighted graphs. Algorithm 1 is

denoted as DP U and Algorithm 2 as HYB U. HOR U1 [12] and HOR U2 [13] are two

different implementation of Horton’s [3] algorithm. FEAS U is an implementation [12]

of an O(m3) algorithm described in [8]
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Fig. 4. Number of cycles in the Horton set (set with duplicates) and number of queries

required in this set (set sorted by cycle weight) in order to extract the MCB for random

dense graphs with random weights of different ranges. Each random graph is consid-

ered with three different edge weight ranges: (a) unweighted, (b) weights in [1, 28], (c)

weights in [1, 216]

weighted graphs the weight of an edge is an integer chosen independently at
random from the uniform distribution in the range [0 . . . 216].

Figures 3 and 5 summarize the results of these comparisons. In the case of
weighted graphs Algorithm 1 is definitely the winner. On the other hand in the
case of dense unweighted graphs Algorithm 2 performs much better. As can
be easily observed the differences on the running time of the implementations
are rather small for sparse graphs. For dense graphs however, we observe a
substantial difference in performance.

Dense Unweighted Graphs. In the case of dense unweighted graphs, the hybrid
algorithm performs better than the other algorithms. However, even on the exact
same graph, the addition of weights changes the performance substantially. This
change in performance is not due to the difference in size of the produced Horton
set, between the unweighted and the weighted case, but due to the total number
of queries that have to be performed in this set.

In the hybrid algorithm before computing the MCB, we sort the cycles of
the Horton set. Then for each of the N phases, we query the Horton set from
the least costly cycle to the most, until we find a cycle with an odd intersection
with our current witness S. Figure 4 plots for dense graphs the number of cycles
in the Horton set and the number of queries required in order to extract the
MCB from this set. In the case of unweighted graphs, the number of queries is
substantially smaller than in the case of weighted graphs. This is exactly the
reason why the hybrid algorithm outperforms the others in unweighted dense
graphs.
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Abstract. We present a general framework for approximating several NP-hard
problems that have two underlying properties in common. First, the problems
we consider can be formulated as integer covering programs, possibly with ad-
ditional side constraints. Second, the number of covering options is restricted in
some sense, although this property may be well hidden. Our method is a natural
extension of the threshold rounding technique.

1 Introduction

We present a general framework for approximating several special cases of NP-hard
problems that have two underlying properties in common. First, the problems we con-
sider can be formulated as integer covering programs, possibly with additional con-
straints that control the interaction between the variables. Second, the number of cover-
ing options is restricted in some sense, although this property may be well hidden.

Our method is based on the rectangle stabbing algorithm of Gaur, Ibaraki and Kr-
ishnamurti [4], and can be viewed as an extension of the threshold rounding technique,
introduced by Hochbaum [9] for the vertex cover problem. Given an integer program-
ming formulation of the problem, min{cT x : Ax ≥ b, x ∈ {0, 1}n}, this approach
first relaxes the integrality constraints to obtain the linear program min{cT x : Ax ≥
b, x ∈ [0, 1]n}. The optimal fractional solution x∗ to this program is then rounded to an
integral one by setting each variable to 1 if its value is at least λ, and to 0 otherwise, for
a threshold parameter λ.

Since threshold rounding by itself does not guarantee any non-trivial approximation
ratio for the problems we study, we strengthen this method as follows. Instead of round-
ing x∗ to an integral solution, we round x∗ to an integral program. In other words, using
x∗ and a threshold parameter λ, we construct a new linear program min{cT x : A∗x ≥
b∗, x ∈ [0, 1]n} with the following two structural properties:

1. Feasibility: Any feasible solution to the new linear program is also feasible to the
original program.

2. Integrality: The extreme points of the polyhedron P ∗ = {x : A∗x ≥ b∗, x ∈
[0, 1]n} are integral.

It follows that the new linear program can be solved to obtain an integral solution x̂ to
the original integer program. We prove that the cost of x̂ is within factor 1

λ of optimum
by fitting x∗ into the polyhedron P ∗, that is, we show that 1

λx∗ ∈ P ∗.

� Due to space limitations, we defer most proofs to the full version of this paper.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 44–54, 2005.
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1.1 Applications

SET COVER WITH k BLOCKS OF CONSECUTIVE ONES. Let U = {e1, . . . , en} be
a ground set of elements, and let S = {S1, . . . , Sm} be a collection of subsets of
U , where each subset Si is associated with a non-negative cost ci. The objective of
the set cover problem is to find a minimum cost subcollection S ′ ⊆ S that covers all
elements. We consider a special case of set cover, in which there is a known orderO on
{1, . . . , m} such that the subsets covering each element e ∈ U form at most k “blocks”
in SO(1), . . . , SO(m). More precisely, there are indices le1 ≤ re

1 ≤ · · · ≤ lek ≤ re
k such

that the collection of subsets to which e belongs is
⋃k

t=1

⋃re
t

i=let
{SO(i)}.

MULTI-RADIUS COVER. Let G = (V,E) be a graph with a non-negative edge length
lu,v for every (u, v) ∈ E. The vertices of G represent locations at which transmission
stations are positioned, and each edge of G represents a continuum of demand points
to which we should transmit. A station located at v is associated with a set of allowed
transmission radii Rv = {rv

0 , . . . , rv
kv
}, 0 = rv

0 < · · · < rv
kv

, where the cost of trans-
mitting to radius rv

i is bv,i. Without loss of generality, 0 = bv,0 < · · · < bv,kv
for every

v ∈ V . The multi-radius cover problem asks to determine for each station a transmis-
sion radius, such that for each edge (u, v) ∈ E the sum of the radii in u and v is at least
lu,v , and such that the total cost is minimized.

RECTANGLE STABBING. Let R = {r1, . . . , rn} be a set of axis-parallel rectangles, and
let H and V be finite sets of horizontal and vertical lines, respectively, where each line
l has a non-negative weight w(l). The objective of the rectangle stabbing problem is to
find a minimum weight subset of lines in H ∪ V that intersects all rectangles in R.

GROUP CUT ON A PATH. Let P = (V,E) be a path, in which each edge e ∈ E is
associated with a non-negative cost ce, and let G1, . . . , Gk be k groups, where each
group is a set of at least two vertices. A group Gi is separated by the set of edges
F ⊆ E if there is a representative vi ∈ Gi such that no vertex in Gi \ {vi} belongs to
the connected component of P −F that contains vi. The objective of the group cut on a
path problem (GCP) is to find a minimum cost set of edges that separates all groups. We
consider two special cases of this problem: The case where the vertices of each group
appear consecutively on the path, and the case where the cardinality of each group is at
most d.

FEASIBLE CUT. Let G = (V,E) be a graph with a non-negative cost ce for every e ∈
E. In addition, let S1, . . . , Sk be a collection of k commodities, where each commodity
is a set of vertices, and let v∗ ∈ V . A cut (X, X̄) is feasible if it separates v∗ from
at least one vertex in each commodity, that is, v∗ ∈ X and Si ∩ X̄ �= ∅ for every
i = 1, . . . , k. The feasible cut problem asks to find a minimum cost feasible cut. We
consider a special case of this problem, in which each commodity contains at most d
vertices.

1.2 Related Work

The multi-radius cover problem, which is a generalization of the vertex cover problem,
was suggested by Hassin and Segev [7]. They presented two LP-based algorithms that
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achieve an approximation ratio of 2. The first algorithm is based on an extension of
threshold rounding, and the second is an efficient primal-dual algorithm that exploits
the special structure of the problem.

Hassin and Megiddo [6] proved that the rectangle stabbing problem is NP-hard,
and presented a 2-approximation algorithm for the special case in which all rectangles
are translates of the same rectangle. Gaur, Ibaraki and Krishnamurti [4] developed a
2-approximation algorithm for the general case. Kovaleva and Spieksma [11] recently
studied several variants of rectangle stabbing.

The group cut on a path problem was introduced by Hassin and Segev [8]. They
showed that this problem is at least as hard to approximate as set cover, and presented
a greedy 2Hk-approximation algorithm. They also proved that group cut on a path is
polynomial time solvable when the cardinality of each group is at most 3, but at least as
hard to approximate as vertex cover when the bound on cardinality is 4.

The feasible cut problem was first studied by Yu and Cheriyan [12]. They proved
that the problem is NP-hard, and provided an LP-rounding algorithm with an approx-
imation ratio of 2 when each commodity contains two vertices. This special case was
also considered by Bertsimas, Teo and Vohra [2], who presented a 2-approximation
algorithm using dependent rounding. Hochbaum [10] proved that the linear program
in [12] has an optimal solution consisting of half integrals, and obtained a faster 2-
approximation algorithm.

1.3 Our Results

Our main result in Section 2 is a k-approximation algorithm for set cover instances in
which the subsets covering each element form at most k blocks in SO(1), . . . , SO(m),
where O is some known order. We remark that for every k ≥ 2, Goldberg, Golumbic,
Kaplan and Shamir [5] proved that the problem of recognizing whether such an order
exists is NP-complete. Our result generalizes those of Bar-Yehuda and Even [1] and
Hochbaum [9], whose algorithms guarantee a k-approximation when each block con-
tains a single subset. Our algorithm identifies a collection of special blocks using the
optimal fractional solution to the natural LP-relaxation of set cover. It then constructs a
new integral program, in which the objective is to cover all elements, under the restric-
tion that subsets must be chosen from all special blocks.

We proceed to show that this algorithm can be used to provide a 2-approximation
for multi-radius cover. Using the indexing scheme suggested by Hassin and Segev [7],
we present a new set cover formulation of this problem, and describe an order on the
subsets, such that the subsets covering each element form at most two blocks. In addi-
tion, we show that through our set cover algorithm we can obtain new insight into the
rectangle stabbing algorithm of Gaur, Ibaraki and Krishnamurti [4].

In Section 3 we consider a special case of GCP, in which the vertices of each group
appear consecutively on the path, and show that this problem is at least as hard to ap-
proximate as vertex cover. We then present a 3-approximation algorithm, that is surpris-
ingly based on an incorrect integer program. This program uses an objective function
according to which we might pay the cost of each edge more than once. However, we
prove that the cost of an optimal solution to this program is at most that of an optimal
solution to the original problem. Moreover, we show how to obtain a 3-approximation
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to the new program, and translate it to a set of edges that separates all groups without
increasing the cost.

We also study another special case of GCP, where the cardinality of each group is
at most d, for which we provide a (d − 2)-approximation algorithm. This algorithm
is based on an integer programming formulation with constraints that depend on the
cardinality of each group1. We remark that since Hassin and Segev [8] proved that the
case d = 4 is at least as hard as vertex cover, any approximation ratio better than d− 2
would improve the best known results regarding vertex cover.

In Section 4 we present a d-approximation algorithm for a special case of the fea-
sible cut problem, in which the cardinality of each commodity is at most d. This result
improves previously known algorithms in two ways, as it is not restricted to commodi-
ties of exactly two vertices and is also very easy to analyze. Our algorithm uses the
optimal fractional solution to an LP-relaxation that was originally suggested by Yu and
Cheriyan [12], and identifies a non-empty subset of each commodity to be separated
from v∗. Using these subsets, it then defines a new integral program, that can be inter-
preted as an extension of the well-known MINIMUM s-t CUT problem.

2 Set Cover with k Blocks of Consecutive Ones

In this section we present a k-approximation algorithm for the special case of set cover
in which there is a known order O on {1, . . . , m} such that the subsets covering each
element e ∈ U form at most k blocks in SO(1), . . . , SO(m). We also show that this
algorithm can be used to provide a 2-approximation for the multi-radius cover problem,
and to obtain new insight into the rectangle stabbing algorithm of Gaur, Ibaraki and
Krishnamurti [4]. To avoid confusion, we refer to the latter as the GIK algorithm.

2.1 The Algorithm

To simplify the presentation, we assume that the subsets S1, . . . , Sm are indexed ac-
cording to O in advance. In addition, for each element e ∈ U we denote by le1 ≤ re

1 ≤
· · · ≤ lek ≤ re

k the endpoints of the blocks that cover e, that is, the collection of subsets

that contain e is
⋃k

t=1

⋃re
t

i=let
{Si}. Using this notation, the set cover problem can be

formulated as an integer program by:

(SC) min
m∑

i=1

cixi

s.t. (1)
k∑

t=1

re
t∑

i=let

xi ≥ 1 ∀ e ∈ U

(2) xi ∈ {0, 1} ∀ i = 1, . . . , m

In this formulation, the variable xi indicates whether the subset Si is picked for the
cover, and constraint (1) ensures that for each element e ∈ U we pick at least one

1 Although our algorithm follows the general framework of rounding to an integral program, we
defer its description to the full version of this paper.
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subset that covers it. The LP-relaxation of this integer program, (SCf ), is obtained
by replacing the integrality constraint (2) with xi ≥ 0, as the upper bound on xi is
redundant.

We first solve the linear program (SCf ) to obtain an optimal fractional solution
x∗. Next, we use this solution to identify for each element e ∈ U a special set of
blocks. Specifically, we apply threshold rounding to define for each e ∈ U the set

I∗e =
{

t :
∑re

t

i=let
x∗

i ≥ 1
k

}
. Based on these sets, we construct a new linear program

(SC∗
f ) min

m∑
i=1

cixi

s.t. (1)
re

t∑
i=let

xi ≥ 1 ∀ e ∈ U, t ∈ I∗e

(2) xi ≥ 0 ∀ i = 1, . . . , m

and solve it to obtain an optimal solution x̂.
In Lemma 1 we show that every feasible solution to (SC∗

f ) is also a feasible solution
to (SCf ). We also observe that x̂ is an extreme point of an integral polyhedron, and
therefore it is indeed a feasible solution to (SC). In Theorem 2 we show that x∗ can
be fitted into (SC∗

f ) when it is scaled by a factor of k. It follows that the cost of x̂ is at
most k times the cost of x∗, which is a lower bound on the cost of any solution to the
set cover problem.

Lemma 1. x̂ is a feasible solution to (SC).

Proof. We first show that every feasible solution to (SC∗
f ) is also a feasible solution

to (SCf ). Let x′ be a feasible solution to (SC∗
f ). As x′ is non-negative, it remains to

prove
∑k

t=1

∑re
t

i=let
x′

i ≥ 1 for every e ∈ U . Consider some element e. Since x∗ is

a feasible solution to (SCf ),
∑k

t=1

∑re
t

i=let
x∗

i ≥ 1, and there is an index s for which∑re
s

i=les
x∗

i ≥ 1
k . It follows that s ∈ I∗e and the linear program (SC∗

f ) contains the

constraint
∑re

s

i=les
xi ≥ 1. Therefore,

∑k
t=1

∑re
t

i=let
x′

i ≥
∑re

s

i=les
x′

i ≥ 1.
In addition, the rows of the coefficient matrix in (SC∗

f ) have the interval property,
that is, each row contains a single interval of consecutive 1’s. Such a matrix is to-
tally unimodular, and the extreme points of the set of feasible solutions to (SC∗

f ) are
integral. ��

Theorem 2. The cost of x̂ is at most k ·OPT(SCf ).

Proof. To bound the cost of x̂, we claim that kx∗ is feasible for (SC∗
f ). Consider an

element e ∈ U and an index s ∈ I∗e . Then
∑re

s

i=les
kx∗

i = k
∑re

s

i=les
x∗

i ≥ 1, where the

last inequality holds since
∑re

s

i=les
x∗

i ≥ 1
k . We conclude that

m∑
i=1

cix̂i ≤
m∑

i=1

ci(kx∗
i ) = k

m∑
i=1

cix
∗
i = k ·OPT(SCf ) .

��
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Two remarks are in place. First, the above analysis shows that an alternative way
to construct the sets I∗e is to pick for each such set an arbitrary index t for which∑re

t

i=let
x∗

i ≥ 1
k . Second, our algorithm can be easily adapted to obtain a similar ap-

proximation ratio for the MULTICOVER problem. In this generalization of set cover,
each element e ∈ U has an integer coverage requirement re, and we are allowed to pick
multiple copies of the subsets in S.

2.2 Application: Multi-Radius Cover

We first formulate multi-radius cover as a set cover problem. Our formulation is based
on the observation that when we transmit to radius rv

i from the station located at v,
we cover all demand points on the edges adjacent to v that are within distance of at
most rv

i from v. Therefore, from each u ∈ N(v) we must transmit to radius at least
lu,v − rv

i . This enables us to hide the actual lengths of edges and radii by using the
indexing scheme suggested in [7] as follows.

For every v ∈ V , i = 0, . . . , kv and u ∈ N(v), we define Iv
u(i) = min{j : ru

j ≥
lu,v − rv

i } if there exists some 0 ≤ j ≤ ku such that ru
j ≥ lu,v − rv

i , and Iv
u(i) = ∞

otherwise. Note that if we transmit from v to radius rv
i , we must transmit from u to

radius at least ru
Iv
u(i). In addition, when Iv

u(i) =∞ we cannot transmit from v to radius
rv
i . Using this notation, multi-radius cover can be formulated as set cover by:

(MRC) min
∑

v∈V

kv∑
i=0

bv,ixv,i

s.t. (1)
kv∑
i=0

xv,i ≥ 1 ∀ v ∈ V

(2)
ku∑

j=Iv
u(i)

xu,j +
kv∑

j=i+1

xv,j ≥ 1 ∀ v ∈ V, i = 0, . . . , kv,
u ∈ N(v)

(3) xv,i ∈ {0, 1} ∀ v ∈ V, i = 0, . . . , kv

The variable xv,i indicates whether we transmit to radius rv
i from v. Constraint (1)

ensures that we choose at least one radius for each vertex. Constraint (2) ensures that
we either transmit from v to radius at least rv

i+1 or transmit from u ∈ N(v) to radius at
least ru

Iv
u(i).

Each row of the coefficient matrix in (MRC) contains at most two blocks according
to the following order of the variables:

O = xv1,0, xv1,1, . . . , xv1,kv1
, . . . , xvn,0, xvn,1, . . . , xvn,kvn

.

Therefore, using the algorithm for set cover with blocks, we construct a feasible solu-
tion whose cost is at most 2 · OPT(MRCf ), where (MRCf ) is the LP-relaxation of
(MRC).

2.3 Application: Rectangle Stabbing

Let H = {h1, . . . , h|H|} and V = {v1, . . . , v|V |} be the sets of horizontal and vertical
lines, respectively. For each rectangle rk ∈ R, we denote by Hk and Vk the subsets of
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horizontal and vertical lines that intersect rk. The rectangle stabbing problem can be
formulated as an integer program by:

(RS) min
∑

hi∈H

w(hi)xi +
∑

vj∈V

w(vj)yj

s.t. (1)
∑

hi∈Hk

xi +
∑

vj∈Vk

yj ≥ 1 ∀ k = 1, . . . , n

(2) xi, yj ∈ {0, 1} ∀ i = 1, . . . , |H|, j = 1, . . . , |V |

The variable xi indicates whether the horizontal line hi is chosen, and the variable yj

indicates whether the vertical line vj is chosen. Constraint (1) ensures that for each
rectangle rk we choose at least one line that intersects it. We denote by (RSf ) the LP-
relaxation of (RS), in which the integrality constraint (2) is replaced with xi ≥ 0 and
yj ≥ 0.

The GIK algorithm can be summarized as follows. We first solve the linear program
(RSf ) to obtain an optimal fractional solution (x∗, y∗). Using this solution, we define
two subsets of rectangles, RH = {rk ∈ R :

∑
hi∈Hk

x∗
i ≥ 1

2} and RV = {rk ∈ R :∑
vj∈Vk

y∗
j ≥ 1

2}. We now solve to optimality the problem of covering all rectangles
in RH using horizontal lines and the problem of covering all rectangles in RV using
vertical lines. These problems can be formulated as linear programs that have integral
optimal solutions:

(RSH) min
∑

hi∈H

w(hi)xi

s.t. (1)
∑

hi∈Hk

xi ≥ 1 ∀ rk ∈ RH

(2) xi ≥ 0 ∀ i = 1, . . . , |H|

(RSV ) min
∑

vj∈V

w(vj)yj

s.t. (1)
∑

vj∈Vk

yj ≥ 1 ∀ rk ∈ RV

(2) yj ≥ 0 ∀ j = 1, . . . , |V |

We show that the GIK algorithm is a special case of the set cover with blocks al-
gorithm, that exploits additional structure of the problem. Each row of the coefficient
matrix in (RS) contains at most two blocks according to the order

O = x1, x2, . . . , x|H|, y1, y2, . . . , y|V |

of the variables, where we assume that the lines in H and V are indexed in increasing
order of coordinates. In addition, each block is contained either in x1, . . . , x|H| or in
y1, . . . , y|V |.

Given (RS), the set cover algorithm uses the optimal fractional solution (x∗, y∗) to
identify for each rectangle rk at least one block from which a line will be subsequently
chosen. The rule applied by the algorithm guarantees that a block {xi : hi ∈ Hk} is
chosen if and only if rk ∈ RH in the GIK algorithm, and similarly, a block {yj : vj ∈
Vk} is chosen if and only if rk ∈ RV . This observation implies that in the second stage
the algorithm constructs the linear program
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(RS∗
f ) min

∑
hi∈H

w(hi)xi +
∑

vj∈V

w(vj)yj

s.t. (1)
∑

hi∈Hk

xi ≥ 1 ∀ rk ∈ RH

(2)
∑

vj∈Vk

yj ≥ 1 ∀ rk ∈ RV

(3) xi, yj ≥ 0 ∀ i = 1, . . . , |H|, j = 1, . . . , |V |

and returns its optimal solution, which is integral. However, this linear program is sep-
arable with respect to x and y. Moreover, OPT(RS∗

f ) = OPT(RSH) + OPT(RSV ),
since (RS∗

f ) decomposes exactly to (RSH) and (RSV ).
We remark that the set cover with blocks algorithm can be used to obtain a d-

approximation for the problem of stabbing rectangles in Rd using hyperplanes. In addi-
tion, a cd-approximation can be obtained for the problem of stabbing compact sets with
at most c connected components in Rd.

3 Group Cut with Consecutive Groups

In what follows we consider the case where the vertices of each group appear consec-
utively on the path. We assume that the left-to-right order of the vertices on P is given
by v1, . . . , vn, and denote by [vi, vj ] the subpath connecting vi and vj .

We first discuss the hardness of approximating GCP with consecutive groups, and
prove that this problem is at least as hard to approximate as vertex cover. We then
present a 3-approximation algorithm, that is surprisingly based on an incorrect integer
program.

3.1 Hardness Results

In Lemma 3 we describe an approximation preserving reduction from the vertex cover
problem to GCP with consecutive groups. It follows that hardness results regarding
vertex cover extend to this special case of GCP, and in particular it is NP-hard to ap-
proximate the latter problem to within any factor smaller than 1.3606 [3].

Lemma 3. A polynomial time α-approximation algorithm for GCP with consecutive
groups would imply a polynomial time α-approximation algorithm for vertex cover.

Proof. Given a vertex cover instance I , with a graph G = (V,E) whose set of vertices
is V = {u1, . . . , un}, we construct an instance ρ(I) of GCP with consecutive groups
as follows. For each vertex ui ∈ V there is a corresponding edge ei with unit cost,
where the edges e1, . . . , en are vertex-disjoint. We connect these edges to a path in
increasing order of indices, using intermediate edges with cost M = αn + 1. For each
edge (ui, uj) ∈ E, i < j, we define the group Gij to be the sequence of vertices that
begins at the left endpoint of ei and terminates at the right endpoint of ej .

Let S∗ ⊆ V be a minimum cardinality vertex cover in G. We show how to find in
polynomial time a vertex cover in G with cardinality at most α|S∗|, given a polynomial
time α-approximation algorithm for GCP with consecutive groups.

Since S∗ is a vertex cover, the set of edges {ei : ui ∈ S∗} separates either the
leftmost vertex or the rightmost vertex in each group Gij from the other vertices in
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that group. It follows that OPT(ρ(I)) ≤ |S∗|, and we can find in polynomial time
a set of edges F that separates all groups such that c(F ) ≤ α|S∗|. We claim that
S = {ui : ei ∈ F} is a vertex cover in G. Consider some edge (ui, uj) ∈ E. Clearly,
F cannot separate any vertex in the interior of Gij from the other vertices in Gij , or
otherwise it contains an edge with cost M = αn + 1 and c(F ) > α|S∗|. Therefore,
F ∩ {ei, ej} �= ∅ and S contains at least one of the vertices ui and uj . In addition,
|S| ≤ α|S∗| since |S| = |F | = c(F ). ��

3.2 A 3-Approximation Algorithm

Let Li and Ri be the indices of the leftmost and rightmost vertices of the group Gi,
respectively. We formulate GCP with consecutive groups as an integer program using
two types of variables. For j = 1, . . . , n − 1, the variable xj indicates whether we
disconnect the edge (vj , vj+1). For j = 2, . . . , n− 1, the variable yj indicates whether
we disconnect both (vj−1, vj) and (vj , vj+1). Consider the following integer program:

(GCP ) min
n−1∑
j=1

cj,j+1xj +
n−1∑
j=2

(cj−1,j + cj,j+1)yj

s.t. (1) xLi
+ xRi−1 +

Ri∑
j=Li

yj ≥ 1 ∀ i = 1, . . . , k

(2) xj , yj ∈ {0, 1} ∀ j = 1, . . . , n

Clearly, constraint (1) ensures that the collection of edges we should pick, according to
the interpretation of the variables, separates all groups2.

It appears as if we made a mistake by choosing the objective function in (GCP ).
This follows from the observation that a single edge (vj , vj+1) can play three roles
simultaneously: When xj = 1, it separates vj as a leftmost vertex or vj+1 as a rightmost
vertex; when yj = 1, along with (vj−1, vj) it separates vj as a middle vertex; when
yj+1 = 1, along with (vj+1, vj+2) it separates vj+1 as a middle vertex. Therefore, by
separately considering each group Gi and adjusting the variables in (GCP ) according
to their roles, we might end up paying the cost of each edge several times.

Let F ∗ be a minimum cost set of edges that separates all groups. In Lemma 4 we
resolve the problem described above, by suggesting a way to distribute the cost of F ∗

between the variables in (GCP ), such that we obtain a feasible solution with an identi-
cal cost.

Lemma 4. There is a feasible solution to (GCP ) whose cost is at most c(F ∗).

An important observation is that (GCP ) is an integer programming formulation of
a certain set cover problem, in which we are required to cover the groups G1, . . . , Gk

using single edges and pairs of adjacent edges. We now use the set cover with blocks
algorithm, not before we notice that the subsets covering each group form at most three
blocks according to the following order of the variables:

O = x1, x2, . . . , xn−1, y2, y3, . . . , yn−1 .

2 For groups Gi such that Li = 1, we begin the summation
∑Ri

j=Li
yj at j = 2. In addition,

when Ri = n we end this summation at j = n − 1.
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By Theorem 2 and Lemma 4, we obtain a feasible solution (x̂, ŷ) whose cost is at
most 3c(F ∗). This solution can be translated to a set of edges that separates all groups
without increasing its cost, since now the fact that in (GCP ) we might pay the cost of
each edge several times works in our favor.

Theorem 5. There is a 3-approximation algorithm for GCP with consecutive groups.

4 Feasible Cut

In this section we present a d-approximation algorithm for a special case of the feasible
cut problem, in which the cardinality of each commodity is at most d. This algorithm is
based on an LP-relaxation that was originally suggested by Yu and Cheriyan [12].

The feasible cut problem can be formulated as an integer program by:

(FC) min
∑

(u,v)∈E

cu,vxu,v

s.t. (1) yv∗ = 0
(2)

∑
v∈Si

yv ≥ 1 ∀ i = 1, . . . , k

(3) xu,v ≥ yu − yv

xu,v ≥ yv − yu
∀ (u, v) ∈ E

(4) yv, xu,v ∈ {0, 1} ∀ v ∈ V, (u, v) ∈ E

In this formulation, the variable yv indicates whether the vertex v belongs to the side of
the cut that does not contain v∗, and the variable xu,v indicates whether the edge (u, v)
crosses the cut. Constraint (2) ensures that we separate from v∗ at least one vertex from
each commodity. Constraint (3) ensures that xu,v = 1 when (u, v) crosses the cut. Let
(FCf ) be the LP-relaxation of (FC), in which constraint (4) is replaced with yv ≥ 0
and xu,v ≥ 0.

Let (x∗, y∗) be an optimal fractional solution to (FCf ). We determine in advance a
subset of vertices V ∗

i ⊆ Si to be separated from v∗. These are vertices a large fraction
of which is separated from v∗ in y∗, V ∗

i =
{
v ∈ Si : y∗

v ≥ 1
d

}
. We now construct a new

linear program,

(FC∗
f ) min

∑
(u,v)∈E

cu,vxu,v

s.t. (1) yv∗ = 0
(2) yv ≥ 1 ∀ v ∈

⋃k
i=1 V ∗

i

(3) xu,v ≥ yu − yv

xu,v ≥ yv − yu
∀ (u, v) ∈ E

(4) yv, xu,v ≥ 0 ∀ v ∈ V, (u, v) ∈ E

and solve it to obtain an optimal solution (x̂, ŷ). Without loss of generality, we assume
that ŷv ≤ 1 for every v ∈ V , since this property can be achieved without increasing the
cost of the solution.

Since yv ≥ 1 in constraint (2) can be replaced by yv = 1, (FC∗
f ) is the LP-

relaxation of the problem of finding a minimum cut that separates v∗ and
⋃k

i=1 V ∗
i .
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Therefore, (x̂, ŷ) is integral. In Theorem 6 we show that this solution is indeed a feasible
cut, with cost of at most d times the cost of the optimal solution to (FCf ).

Theorem 6. (x̂, ŷ) is a feasible solution to (FC), and its cost is at most d·OPT(FCf ).
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Abstract. We consider the problem of covering an orthogonal polygon
with a minimum number of axis-parallel rectangles from a computational
point of view. We propose an integer program which is the first gen-
eral approach to obtain provably optimal solutions to this well-studied
NP-hard problem. It applies to common variants like covering only the
corners or the boundary of the polygon, and also to the weighted case.
In experiments it turns out that the linear programming relaxation is
extremely tight, and rounding a fractional solution is an immediate high
quality heuristic. We obtain excellent experimental results for polygons
originating from VLSI design, fax data sheets, black and white images,
and for random instances. Making use of the dual linear program, we
propose a stronger lower bound on the optimum, namely the cardinality
of a fractional stable set. We outline ideas how to make use of this bound
in primal-dual based algorithms. We give partial results which make us
believe that our proposals have a strong potential to settle the main open
problem in the area: To find a constant factor approximation algorithm
for the rectangle cover problem.

1 Introduction

A polygon with all edges either horizontal or vertical is called orthogonal. Given
an orthogonal polygon P , the rectangle cover problem is to find a minimum
number of possibly overlapping axis-parallel rectangles whose union is exactly P .
In computational geometry, this problem received considerable attention in the
past 25 years, in particular with respect to its complexity and approximability
in a number of variants. Still, the intriguing main open question [5] is:

Is there a constant factor approximation algorithm for the rectangle
cover problem?

We do not answer this question now, but we offer a different and new kind of
reply, which is “computationally, yes”. In fact, we provide a fresh experimental
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view, the first of its kind, on the problem which has applications in the fabrication
of masks in the design of DNA chip arrays [11], in VLSI design, and in data
compression, in particular in image compression.

Previous work. Customarily, one thinks of the polygon P as a union of finitely
many (combinatorial) pixels, sometimes also called a polyomino. The polygon
P can be associated with a visibility graph G [15, 17, 18, 20]: The vertex set of
G is the set of pixels of P and two vertices are adjacent in G if and only if their
associated pixels can be covered by a common rectangle. Rectangles correspond
to cliques in G. That is a set of vertices, any two of which are adjacent. Let θ
denote the number of rectangles in an optimal cover. An obvious lower bound on
θ is the size α of a maximum stable set in G, also called maximum independent
set. This is a set of pixels, no two of which are contained in a common rectangle.
In the literature one also finds the notion of an antirectangle set.

Chvátal originally conjectured that α = θ, and this is true for convex poly-
gons [6] and a number of special cases. Szemerédi gave an example with θ �= α,
see Figure 1. Intimately related to the initially stated open question, Erdős then
asked whether θ/α was bounded by a constant. In [6] an example is mentioned
with θ/α ≥ 21/17− ε, however, this example cannot be reconstructed from [6],
and thus cannot be verified. The best proven bound is θ/α ≥ 8/7.

For polygons with holes and even for those without holes (also called simple)
the rectangle cover problem is NP-hard [16, 7] and MaxSNP-hard [4], that
is, there is no polynomial time approximation scheme. The best approximation
algorithms known achieve a factor of O(

√
log n) for general polygons [1] and

a factor of 2 for simple polygons [8], where n is the number of edges of the
polygon. Because of the problem’s hardness quite some research efforts have
gone into finding polynomially solvable special cases; we mention only covering
with squares [2, 14] and polygons in general position [5]. Interestingly, there is
a polynomial time algorithm for partitioning a polygon into non-overlapping
rectangles [19]. However, a polygon similar to Fig. 3 shows that an optimal
partition size may exceed an optimal cover size by more than constant factor,
so this does not lead to an approximation.

Our Contributions. Despite its theoretical hardness, we demonstrate the rectan-
gle cover problem to be computationally very tractable, in particular by studying
an integer programming formulation of the problem. Doing this, we are the first
to offer an exact (of course non-polynomial time) algorithm to obtain provably
optimal solutions, and we are the first to introduce linear/integer programming
techniques in this problem area. Based on a fractional solution to the (dual of
the) linear programming relaxation we propose a stronger lower bound on the
optimum cover size which we call the fractional stable set size. In fact, this new
lower bound motivates us to pursue previously unexplored research directions to
find a constant factor approximation algorithm. These are the celebrated primal-
dual scheme [9], rounding a fractional solution, and a dual fitting algorithm [21].
We are optimistic that our research will actually contribute to a positive answer
to the initially stated long standing open question, and due to space limitations
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we only sketch some partial results and promising ideas. A fruitful contribution
of our work is a number of open questions it spawns.

Preliminaries. Since we are dealing with a combinatorial problem, we identify
P with its set of combinatorial pixels. This way we write p ∈ P to state that
pixel p is contained in polygon P . Let R denote the set of all rectangles in P . It
is important that we only count rectangles and do not consider areas. Thus, it
is no loss of generality to restrict attention to inclusionwise maximal rectangles.
We will do so in the following without further reference. The number of these
rectangles can still be quadratic in the number n of edges of P [8], see also Fig. 2.

2 An Integer Program

Interpreting rectangles as cliques in G we can make use of the standard integer
programming formulation for the minimum clique cover problem in graphs [20].
A binary variable xr indicates whether rectangle r ∈ R is chosen in the cover or
not. For every pixel p ∈ P at least one rectangle which covers p has to be picked,
and the number of picked rectangles has to be minimized:

θ = min
∑
r∈R

xr (1)

s. t.
∑

r∈R:r�p

xr ≥ 1 p ∈ P (2)

xr ∈ {0, 1} r ∈ R (3)

This integer program (which we call the primal program) allows us to optimally
solve any given instance of our problem, and we will do so in our experiments.
When we replace (3) by xr ≥ 0, r ∈ R (3′), we obtain the associated linear pro-
gramming (LP) relaxation. There is no need to explicitly require xr ≤ 1, r ∈ R,
since we are minimizing. We call the optimal objective function value of the LP
relaxation the fractional cover size of P and denote it by θ̄. Clearly, it holds that
θ̄ ≤ θ. In general, no polynomial time algorithm is known to compute the frac-
tional clique cover number of a graph, that is, for solving this linear program [20].
In our case, however, the number of variables and constraints is polynomial in
n, in fact quadratic, due to the fact that we work with maximal rectangles only.
Therefore, the fractional cover size θ̄ can be computed in polynomial time.

This integer program immediately generalizes to the weighted rectangle cover
problem, where rectangles need not have unit cost. It is straightforward, and it
does not increase the complexity, to restrict the coverage requirement to partic-
ular features of the polygon like the corners or the boundary—two well-studied
variants [4] for which no exact algorithm was known. It is also no coincidence
that a formal dualization of our program leads to a formulation for the dual
problem of finding a maximum stable set. A binary variable yp, p ∈ P , reflects
whether a pixel is chosen in the stable set or not. We have to require that no
rectangle contains more than one of the chosen pixels, and we maximize the
number of chosen pixels. We call this the dual integer program:
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α = max
∑
p∈P

yp (4)

s. t.
∑

p∈P :p∈r

yp ≤ 1 r ∈ R (5)

yp ∈ {0, 1} p ∈ P (6)

Again, when replacing (6) by yp ≥ 0, p ∈ P (6′), we obtain the associated LP
relaxation. We call its optimal objective function value ᾱ the fractional stable
set size of P . We refer to a feasible solution to the dual as a fractional stable set.
It holds that ᾱ ≥ α. By strong linear programming duality we have ᾱ = θ̄. We
stress again the fact that we distinguish between the (primal and dual) integer
programs which solve the problems exactly, and their respective continuous lin-
ear programming relaxations, which give bounds. In general, optimal solutions
to both linear programs (1)–(3′) and (4)–(6′) are fractional. However, using an
interesting link to graph theory, in the case that G is perfect [10], optimal solu-
tions are automatically integer because of a strong duality between the integer
programs [20]. This link was established already early, see e.g., [3,17,18], and our
linear programs give optimal integer covers in polynomial time for this important
class of polygons with α = θ.

2.1 About Fractional Solutions

Our computational experiments fuel our intuition; therefore we discuss some
observations first. In linear programming based approximation algorithms the
objective function value of a primal or dual fractional solution is used as a lower
bound on the integer optimum. The more we learn about such fractional solutions
the more tools we may have to analyze the problem’s approximability.

General Observations. The linear relaxations (1)–(3′) and (4)–(6′) appear to be
easily solvable to optimality in a few seconds on a standard PC. The vast ma-
jority of variables already assumes an integer value. A mere rounding of the
remaining fractional variables typically gives an optimal or near-optimal integer
solution (e.g., instance night is a bad example with “only” 95% integer val-
ues, but the rounded solution is optimal). For smaller random polygons the LP
optimal solution is very often already integer; and this is an excellent quality
practical heuristic, though memory expensive for very large instances.

Odd Holes. Figure 1 (left) shows Szemerédi’s counterexample to the α = θ
conjecture. The 5 rectangles indicated by the shaded parts have to be in any
cover. In the remaining parts of the polygon, there are 5 pixels which induce an
odd-length cycle C (“odd hole”) in the visibility graph G. To cover these pixels,
at least 3 rectangles are needed, implying θ ≥ 8. On the other hand, at most 2
of these pixels can be independent, that is, α ≤ 7. The odd hole C is precisely
the reason why G is not perfect in this example. Figure 1 (right) shows that
C is encoded in the optimal fractional solution as well: Exactly the variables
corresponding to edges of C assume a value of 0.5. The same figure shows an
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Fig. 1. The original counterexample to α = θ by Szemerédi and (to the right) an

optimal fractional cover. Thicker lines (points) indicate rectangles (pixels) which are

picked to the extent of 0.5

optimal fractional stable set. Pixels corresponding to vertices of C assume a
value of 0.5 (drawn fatter in the figure). That is, ᾱ = θ̄ = 7.5. This immediately
suggests to strengthen the LP relaxation.

Lemma 1. For any induced odd cycle C with |C| ≥ 5, the inequality
∑

r∈C xr ≥
�|C|/2� is valid for (1)–(3), where r ∈ C denotes the rectangles corresponding
to the edges of C.

The graph theoretic complements of odd holes are called odd antiholes. A
graph is not perfect either if it contains an induced odd antihole. However,
we can prove that there is no way of representing even the simplest non-trivial
antihole with 7 vertices in a rectangle visibility graph. Odd holes are therefore the
only reason for imperfection. Unfortunately still, from our experiments, arbitrary
fractions are possible, not only halves, and simply rounding a fractional solution
does not give a constant factor approximation, as discussed next.

High Coverage. We define the coverage of a pixel p as the number of rectangles
which contain p. For the classical set cover problem, rounding up an optimal frac-
tional solution gives an f -approximate cover, where f is the maximum coverage
of any element. In general, a pixel can have more than constant coverage; even
worse, almost no pixel may have constant coverage; even in an optimal cover of
a simple polygon in general position pixels may have high coverage (see Fig. 2).
Unlike in the general set cover case, high coverage is no prediction about the
fractions in an optimal LP solution: In Fig. 2 there are no fractional variables,
the solution is integer. The fractional (indeed integer) optimal solution to this
simple example has a remarkable property. Every rectangle in the optimal cover
contains pixels of low coverage. More precisely, the following holds.

Lemma 2. In an optimal cover C, every rectangle r ∈ C contains a pixel which
is uniquely covered by r.

This can be easily seen since otherwise C \ {r} would be a cover, contradicting
the optimality of C. We call these uniquely covered pixels private. It is no coin-
cidence that the pixels in a maximal stable set are private. It is natural to ask
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Fig. 2. Left: The shaded center pixel is covered by any maximal rectangle; almost all

pixels have non-constant coverage. In an optimal cover, the coverage of the center pixel

is linear in the cover size. The right figure schematically shows a minimal cover and a

maximal stable set

(since an answer immediately turns LP rounding into a constant factor approx-
imation algorithm): What are the characteristics of polygons where every pixel
has only constant coverage? What kind of polygons have “many” pixels with
“low” coverage? How can we exploit Lemma 2? These questions are intimately
related to the next section.

3 LP Based Approximation

There are more elaborate linear programming based approaches to constant
factor approximation algorithms. They can be used as analytical tools to theo-
retically sustain our excellent computational results.

3.1 Primal-Dual Scheme

The primal-dual scheme [9] builds on relaxing the well-known complementary
slackness optimality conditions [20] in linear programming. The general scheme
iteratively improves an initially infeasible integer primal solution, that is, a set
of rectangles, to finally obtain a feasible cover. The improvement step is guided
by a feasible fractional dual solution, that is a fractional stable set, which is
improved in alternation with the primal solution. The relaxed complementary
slackness conditions contain the key information. In our case they read

xr > 0 ⇒ 1
d
≤

∑
p∈P :p∈r

yp r ∈ R (7)

for some constant d, and

yp > 0 ⇒
∑

r∈R:r�p

xr ≤ c p ∈ P (8)
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for some constant c. First note that if a possibly infeasible primal integer solution
is maintained, xr > 0 means xr = 1. An interpretation of condition (7) is that
every rectangle in the constructed cover must cover at least 1/d pixels from the
fractional stable set. Condition (8) states that a pixel in the fractional stable set
must not be contained in more than c rectangles (regardless of whether in the
cover or not).

We found two cases where we can compute a cover and a fractional stable
set simultaneously such that the two conditions hold. Thin polygons, as unions
of width 1 or height 1 rectangles, are a class of polygons amenable to LP round-
ing and the primal-dual scheme: Since no pixel is covered by more than two
rectangles this gives a 2-approximation. More generally, polygons of bounded
width (every pixel contains a boundary pixel in its “neighborhood”) are a new
non-trivial class which allows a constant factor approximation.

3.2 Dual Fitting

Since α ≤ θ the former natural approach to approximation algorithms was to
construct a large stable set usable as a good lower bound [8]. Since α ≤ ᾱ
we propose to use the stronger bound provided by a fractional stable set. Our
dual fitting approach [21] is to simultaneously construct a cover C ⊆ R and an
pseudo stable set S ⊆ P of pixels with |C| ≤ |S| (we say that S pays for C).
“Pseudo” refers to allowing a constant number c of pixels in a rectangle, that is,
we relax (5) to

∑
p∈P :p∈r yp ≤ c. From this constraint we see that picking each

pixel in S to the extent of 1/c (which is a division of all yp variables’ values by
c) gives a feasible fractional solution to our dual linear program. A cover with
these properties has a cost of

|C| ≤ |S| ≤ c · ᾱ = c · θ̄ ≤ c · θ , (9)

that is, it would yield a c-approximation. Actually, one does not have to require
that S pays for the full cover but 1

d |C| ≤ |S| for a constant d suffices, which would
imply a (c · d)-approximation. This paying for a constant fraction of the primal
solution only is a new proposal in the context of dual fitting. Here again, the
question is how to guarantee our conditions in general. From a computational
point of view, we obtain encouraging results which suggest that our proposal can
be developed into a proven constant factor approximation. In the next section
we sketch some ideas how this can be done.

4 Towards a Constant Factor Approximation

4.1 Obligatory Rectangles and Greedy

For set cover, the greedy algorithm yields the best possible approximation fac-
tor of O(log n). The strategy is to iteratively pick a rectangle which covers the
most yet uncovered pixels. One expects that for our particular problem, the
performance guarantee can be improved. Computationally, we answer strictly
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in the affirmative. Again, our contribution is the dual point of view. It is our
aim to design an algorithm which is based on the dual fitting idea of Sec-
tion 3.2, and we mainly have to say how to construct a feasible dual fractional
solution.

We use some terminology from [11]. Certain rectangles have to be in any
cover. A prime rectangle contains a pixel which is not contained in any other
rectangle. Such a pixel is called a leaf. Every cover must contain all prime rect-
angles. For a given pixel p we may extend horizontally and vertically until we
hit the boundary; the rectangular area R(p) defined by the corresponding edges
at the boundary is called the extended rectangle of p. R(p) might not be en-
tirely contained in the polygon but if so, it is a prime rectangle [11]. Moreover,
let C′ ⊆ C be a subset of some optimal cover C. If there is a rectangle r which
contains (P \ C′) ∩R(p) for some extended rectangle R(p), then there is an op-
timal cover which contains C′ and r [11]. In this context, let us call rectangle r
quasi-prime and pixel p a quasi-leaf. The algorithm we use to compute a cover
is a slight extension of [11], but we will provide a new interpretation, and more
importantly, a dual counterpart:

Quasi-Greedy
1. pick all prime rectangles
2. pick a maximal set of quasi-prime rectangles
3. cover the remaining pixels with the greedy algorithm
4. remove redundant rectangles (“pruning”)

It has not been observed before that a set of leafs and quasi-leafs forms a
stable set. This leads to the idea to compute a pseudo stable set containing a
maximal set of leafs and quasi-leafs. Thus, in order to build a pseudo stable set
we check for every rectangle in the greedy cover whether it contains

1. a leaf
2. a quasi-leaf
3. a corner pixel

The first positive test gives a pixel which we add to the pseudo stable set.
A corner pixel is a corner of a rectangle which is private and a corner of the
polygon. We already observed that pixels from steps 1 and 2 are independent.
Furthermore, any rectangle obviously contains at most 4 corner pixels, and since
corner pixels are private, actually at most 2 of them. By our previous consider-
ations, this would imply a 2-approximation if the constructed pseudo stable set
would pay for the whole cover. In general, we found this not to be true. We have
constructed examples which suggest that one cannot guarantee that a constant
fraction of the cover has been paid for. To achieve this latter goal one has to add
more pixels to the pseudo stable set. To this end we extend the above test and
also check for every rectangle in the cover whether it contains

4. a border pixel.

A border pixel p is private and adjacent to a non-polygon pixel p̄ (the outer
face or a hole). The row (or column) of pixels which contains p, which is adjacent
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to p̄, and which extends to the left and the right (to the top and the bottom)
until some non-polygon pixel is hit must not be adjacent to a different hole (or
the outer face) other than the hole (or the outer face) the pixel p̄ corresponds
to. Also these pixels have a natural motivation.

Let us furthermore remark that after the pruning step in Quasi-Greedy,
every rectangle in the cover contains a private pixel (Lem. 2). This pixel is
an intuitive candidate to become a pixel in a pseudo stable set. This set would
actually pay for the whole cover. However, it is not clear whether one can control
how many pixels of this set can be contained in the same rectangle.

4.2 Using Boundary Covers

There is a simple 4-approximation algorithm for covering the boundary of an
orthogonal polygon [4]. In this context a natural question arises: Can we always
find an interior cover whose size is bounded from above by a constant multiple
of the size θboundary of an optimal boundary cover? The answer is “no”. Our
counterexample in Fig. 3 shows that there is an O (

√
n)-cover of the boundary

of the polygon in the left figure with maximal horizontal and vertical strips.
But the optimal interior cover needs Θ(n) rectangles since the white uncovered
pixels in the right figure are independent. Nevertheless, the latter observation is
actually very encouraging. We conjecture that one can find an interior cover of
size less than c1 ·θboundary +c2 ·α where c1 are c2 are appropriate constants. This
would imply a constant factor approximation for the rectangle cover problem.

Fig. 3. A boundary cover may leave a non-constant fraction of pixels uncovered

4.3 Quasi-Prime Rectangles and Breaking Holes

There is a large class of polygons (e.g., polygons resulting from typical oligonu-
cleotide masks [11]) where the optimal cover is found after the first two steps
of the Quasi-Greedy algorithm in Section 4.1. Then the cover consists of only
prime and quasi-prime rectangles. This is of course in general not the case (see
Fig. 1). Now, consider the set U of pixels remained uncovered after step 2. We
can prove that there is an induced cycle (a hole) in G whose vertices correspond
to a subset of U . Covering each second edge of this hole extends the previous
partial cover. We call this covering step to “break a hole”. A straightforward
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algorithm is the following: while the polygon is uncovered, iteratively pick a
maximal set of quasi-prime rectangles, then find a hole and break it. We can
iteratively extend also the partial pseudo stable set. The quasi-prime rectangles
are paid for by quasi-leafs, which form a stable set. The rectangles which break
an even (odd) hole can all (but one) be paid for by a stable set, too.

We have experimented with related and extended ideas based on the obser-
vations sketched in Sections 4.2 and 4.3 and obtained encouraging results. These
methods and their approximation potential are currently under investigation.

5 Computational Experience

We experimented with small polygons occurring in VLSI mask design (instances
VLSI*), a set of standard fax images (instances ccitt*), and several black and
white images (instances marbles, mickey, . . . ). Further, we have two strategies
to construct random polygons. The first is to eliminate a varying fraction of
single pixels uniformly from a square of size up to 750× 750 pixels. The second
is a union of uniformly placed rectangles of random sizes.

Table 1. Results for the primal and dual linear/integer programs. For each instance we

list its size in pixels, its number of pixels (as a fraction), and its number of rectangles.

For the dual and the primal programs (in that order) we give the optimal linear and

integer program objective function values. The ‘LP gap’ is the relative gap between

linear and integer program. Notice that instances mickey and night do not have a

fractional optimal solution with ‘nice’ fractions

instance characteristics dual (stable set size) primal (cover size)
Instance size density rectangles opt. LP opt. IP LP gap opt. LP opt. IP LP gap
VLSI1 68×35 50.25% 45 43.000 43 0.000% 43.000 43 0.000%
VLSI2 3841×298 95.34% 16694 4222.667 4221 0.039% 4222.667 4224 0.032%
VLSI3 148×135 45.09% 78 71.000 71 0.000% 71.000 71 0.000%
VLSI5 6836×1104 55.17% 192358 77231.167 77227 0.005% 77231.167 77234 0.004%
ccitt1 2376×1728 3.79% 27389 14377.000 14377 0.000% 14377.000 14377 0.000%
ccitt2 2376×1728 4.49% 30427 7422.000 7422 0.000% 7422.000 7422 0.000%
ccitt3 2376×1728 8.21% 40625 21085.000 21085 0.000% 21085.000 21086 0.005%
ccitt4 2376×1728 12.41% 101930 56901.000 56901 0.000% 56901.000 56901 0.000%
ccitt5 2376×1728 7.74% 46773 24738.500 24738 0.002% 24738.500 24739 0.002%
ccitt6 2376×1728 5.04% 30639 12013.000 12013 0.000% 12013.000 12014 0.008%
ccitt7 2376×1728 8.69% 85569 52502.500 52502 0.001% 52502.500 52508 0.010%
ccitt8 2376×1728 43.02% 41492 14024.500 14022 0.018% 14024.500 14025 0.004%
marbles 1152×813 63.49% 56354 44235.000 44235 0.000% 44235.000 44235 0.000%
mickey 334×280 75.13% 17530 9129.345 9127 0.026% 9129.345 9132 0.029%
day 480×640 64.63% 45553 32191.000 32190 0.000% 32191.000 32192 0.003%
night 480×640 96.02% 17648 7940.985 7938 0.038% 7940.985 7943 0.025%

The extremely small integrality gaps listed in Tab. 1 and experienced for
thousands of random polygons (not listed here) are a strong vote for our integer
programming approach. On the downside of it, integer programs for industrial

Available at http://www.cs.waikato.ac.nz/∼singlis/ccitt.html

1

1
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Table 2. Details for the Quasi-Greedy algorithm of Section 4.1. We compare the

optimal cover size against ours (they differ by only 3–7%). The following columns list

the number of prime and quasi-prime rectangles, and those picked by the greedy step.

Then, the number of corner and border pixels in the constructed quasi stable set S is

given (the number of (quasi-)leafs equals the number of (quasi-)primes). Finally, we

state the maximal number of pixels of S in some rectangle, and the fraction of the

cover size for which S pays

Instance optimum cover size prime quasi-prime greedy corner border max pixels pays for
VLSI1 43 43 41 2 0 0 0 1 100.00%
VLSI2 4224 4701 1587 203 2911 1105 1279 4 88.79%
VLSI3 71 71 71 0 0 0 0 1 100.00%
ccitt1 14377 14457 10685 2099 1673 1632 28 2 99.91%
ccitt2 7422 7617 3587 409 3621 3574 29 3 99.76%
ccitt3 21086 21259 15691 2020 3548 3427 86 3 99.84%
ccitt4 56901 57262 42358 8605 6299 6110 59 2 99.77%
ccitt5 24739 24911 18529 2985 3397 3259 98 2 99.84%
ccitt6 12014 12132 8256 1049 2827 2764 35 2 99.77%
ccitt7 52508 52599 39230 10842 2525 2448 56 2 99.96%
ccitt8 14025 14303 7840 1353 5110 5023 54 3 99.77%
marbles 56354 44235 43548 687 0 0 0 1 100.00%
mickey 9132 9523 5582 690 3251 528 1593 3 88.13%
day 32192 32431 26308 3777 2346 749 900 4 97.85%
night 7943 8384 4014 501 3869 762 1810 4 84.53%

size polygons, e.g., from VLSI design are extremely large. The generation of
the integer programs consumes much more time than solving them which takes
typically only a few seconds using the standard solver CPLEX [13]. As a remedy
we propose a column generation approach, that is, a dynamic generation of the
variables of the linear program. This enables us to attack larger instances.

For random instances the relation between the different objective function
values is very similar to Tab. 1 and is not reported separately in this abstract. The
excellent performance of the Quasi-Greedy algorithm can be seen in Tab. 2.
We remark that we never observed more than 4 pixels of a pseudo stable set in
a rectangle, and the pseudo stable set pays for significantly more than 50% of
the cover size. This supports that Quasi-Greedy could be an 8-approximation
algorithm for the rectangle cover problem (see Section 4.1).

6 Conclusions

It is common that theory is complemented by computational experience. In this
paper we did the reverse: We found promising research directions by a careful
study of computational experiments. Finally, we propose:

Restatement of Erdős’ Question. Is it true that both, the integrality gap of our
primal and that of our dual integer program are bounded by a constant? The
example in Fig. 1 places lower bounds on these gaps of θ/θ̄ ≥ 16/15 and ᾱ/α ≥
15/14, implying the already known bound θ/α ≥ 8/7. We conjecture that these
gaps are in fact tight. Originally, we set out to find an answer to Erdős’ question.
We conclude with an answer in the affirmative, at least computationally.
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Don’t Compare Averages
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Abstract. We point out that for two sets of measurements, it can hap-
pen that the average of one set is larger than the average of the other
set on one scale, but becomes smaller after a non-linear monotone trans-
formation of the individual measurements. We show that the inclusion
of error bars is no safeguard against this phenomenon. We give a the-
orem, however, that limits the amount of “reversal” that can occur; as
a by-product we get two non-standard one-sided tail estimates for ar-
bitrary random variables which may be of independent interest. Our
findings suggest that in the not infrequent situation where more than
one cost measure makes sense, there is no alternative other than to ex-
plicitly compare averages for each of them, much unlike what is common
practice.

1 Introduction

Fig. 1 shows us a typical performance statistic as we find it in many papers.
For the sake of concreteness, let us assume that the two graphs pertain to two

different numerical algorithms and that it was measured how large the numbers
get in the internal computations. More precisely, the number of bits needed
to represent the largest integer were measured, and each point in the graph is
actually an average taken over a number of problem instances. The fewer bits,

 3
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 4

 3

 3.5

 4

Fig. 1. The light gray algorithm is clearly better than the dark gray one
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the better of course. Along the x-axis the input size is varied. The message
conveyed by the figure is clear: the “light gray” algorithm performs consistently,
that is for all considered problem sizes, about 10% better than the “dark gray”
algorithm.

Now the cost measure is somewhat arbitrary in the sense that we might as
well have chosen to record the largest integer used and not the number of bits
used to represent it, that is, to consider costs 2c instead of costs c. What graph
do we expect then? Well, if on some instance the one algorithm needs 3 bits and
the other 4 bits, the modified costs would be 23 = 8 versus 24 = 16, that is, not
surprisingly the gap between the two becomes larger. Now let us take a look at
the graph for the same data but with the modified cost measure.

 10

 15

 10

 15

Fig. 2. . . . or isn’t it?

Indeed, the gap has increased (from 10% to about 30%), but moreover, the
order of the two graphs has changed! How is that possible?

There is, of course, nothing wrong with the figures, which are from authentic
data; details are given in Appendix A. The reason for the reversal is that for
two random variables X and Y , EX ≤ EY does not, in general, imply that
for an (even strictly) increasing function f , Ef(X) ≤ Ef(Y ). For a simple
counterexample, consider two runs of our two algorithms above, where the first
algorithm required once 1 and once 5 bits, and the second algorithm required
4 bits twice. Then clearly, on average the first algorithm required one bit less.
Considering the second cost measure, the first algorithm on average required
numbers up to (21 + 25)/2 = 17, which is one more than the (24 + 24)/2 = 16
required by the second algorithm.

Alternative cost measures are actually quite frequent: to assess the quality
of a language model, for example, both cross-entropy (c) and perplexity (2c)
are equally meaningful and both used frequently [1]. Example publications with
comparison graphs (or tables) of the very same kind as in Fig. 1 and 2 are [2] [3]
[4] [1]. To give a concrete numerical example also, one of these papers in one of
their graphs states average perplexities of ≈ 3200 and ≈ 2900 for two competing
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methods. This appears to indicate a solid 10%-improvement of the one method
over the other, but first, note that the difference of the logarithms is a mere
1%, and second, these perplexities would also result if, for example, the cross-
entropies were normally distributed with a mean and standard deviation of 11.4
and 0.6, respectively, for the apparently superior method, and 11.3 and 1.0 for
the apparently inferior method; see Appendix A for the calculations concerning
the normal distribution.

But language modeling is just one prominent example. Another frequent sce-
nario is that one (basic) algorithm is used as a subroutine in another (more
complex) algorithm in such a way that the complexity of the latter depends on
the complexity of the former via a non-linear, for example quadratic, function
f . Then, of course, an average complexity of c of the basic algorithm does not
simply translate to an average complexity of f(c) of the more complex one. But
isn’t it very tempting to assume that a subroutine with an improved average
complexity will at least improve the program that uses it? Well, but that is just
not necessarily true.

Now it is (or at least should be) common practice when plotting averages
to also provide so-called error bars, indicating some average deviation from the
average. The following theorem, which is the main result of this paper, says that
the “bands” formed by such error bars at least cannot be reversed completely,
that is, without intersection, by any monotone transformation f . As is also
stated in the theorem, however, the obvious strengthenings of this statement do
not hold: for example, it can very well happen that the bands do not intersect in
one measure, yet the means reverse in another measure. The theorem is stated in
terms of expected absolute deviations δX = E|X −EX| and δY = E|Y −EY |,
which are never more than the standard deviation; see Fact 1 further down.

Theorem 1. For any two random variables X and Y , and for any function f
that is strictly increasing, we have

EX + δX ≤ EY − δY =⇒ Ef(X)− δf(X) ≤ Ef(Y ) + δf(Y ) .

This result cannot be strengthened in the sense that if we drop any one of δX,
δY , δf(X), or δf(Y ) to obtain weaker conditions, we can find a counter-example
to the statement.

The proof for Theorem 1, which we give in the following Sect. 2, is elementary
but not obvious. Indeed, on their way the authors switched several times between
striving for a proof, and being close to finding a counterexample. In Sect. 3, we
give an alternative, more elegant proof in terms of the median. The first proof
is more direct, however, while the second proof owes its elegance and brevity to
the insight gained from the first; this is why we give the two proofs in that order.

To establish Theorem 1, we will derive two non-standard one-sided tail esti-
mates for general random variables, namely for a > 0,

Pr(X ≥ EX + a) ≤ δX/(2a);
Pr(X ≤ EX − a) ≤ δX/(2a) .
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These bounds, which are reminiscent of but incomparable to the one-sided
version of the Chebyshev inequality (cf. Appendix B), seem to be little known
and may be of independent interest.

2 Proof of the Main Theorem

All the proofs we give in this paper are for continuous random variables. In all
cases it will be obvious how to modify the proofs to work for the discrete case
by replacing integrals by sums. For a random variable X, we write EX for its
expected value (mean), σX for its standard deviation, that is

√
E (|X −EX|2),

and δX for the mean absolute deviation E|X−EX|. We will throughout assume
that these entities exist. The following simple fact relates the two deviation
measures.

Fact 1. For every random variable X, it holds that δX ≤ σX.

Proof. By Jensen’s inequality, (δX)2 = (E|X −EX|)2 ≤ E
(
|X −EX|2

)
=

(σX)2.

Generally, this inequality will be strict. To get a feeling for the difference,
check that for a normal distribution N(μ, σ) we have δ =

√
2/π σ ≈ 0.8σ and

for an exponential distribution Exp(λ) we have δ = 2/e σ = 2/(e λ) ≈ 0.7σ.
As a consequence of Fact 1 all our results still hold if we replace δ by σ, that

is, we will be proving the stronger form of all results.
We first prove the following non-standard tail estimates, which might be of

independent interest. There is a one-sided version of Chebyshev’s inequality [5]
which looks similar to Lemma 1 below, but the two are incomparable: Lemma
1 is stronger for deviations up to at least σX, while the Chebyshev tail bounds
are stronger for large deviations; see Appendix B.

Lemma 1. For any random variable X and for every a > 0, it holds that

(a) Pr(X ≥ EX + a) ≤ δX/(2a) ;
(b) Pr(X ≤ EX − a) ≤ δX/(2a) .

Proof. Since δX is invariant under shifting X by a constant, we may assume
without loss of generality that EX = 0.

Then, with ϕ denoting the density function pertaining to X,

0 = EX =
∫ 0

−∞
t · ϕ(t) dt +

∫ ∞

0

t · ϕ(t) dt

δX =
∫ 0

−∞
(−t) · ϕ(t) dt +

∫ ∞

0

t · ϕ(t) dt .

Adding the two equations gives us

δX = 2 ·
∫ ∞

0

t · ϕ(t) dt
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≥ 2 ·
∫ ∞

a

t · ϕ(t) dt

≥ 2a ·
∫ ∞

a

ϕ(t) dt

= 2a ·Pr(X ≥ a) ,

and hence Pr(X ≥ a) ≤ δX/(2a), which establishes (a). The proof for (b) is
analogous.

Armed with Lemma 1 we can now establish a relation between f(EX) and
Ef(X) for a monotone function f .

Lemma 2. For any random variable X, and for any function f that is strictly
increasing, it holds that

(a) Ef(X)− δf(X) ≤ f(EX + δX) ;
(b) Ef(X) + δf(X) ≥ f(EX − δX) .

Proof. Let a = Ef(X)− f(EX + δX). If a ≤ 0, there is nothing to show for (a),
otherwise two applications of the previous Lemma 1 give us

1/2 ≤ Pr(X ≤ EX + δX)
= Pr(f(X) ≤ f(EX + δX))
= Pr(f(X) ≤ Ef(X)− a)
≤ δf(X)/(2a) ,

and hence Ef(X)− f(EX + δX) = a ≤ δf(X), which is exactly part (a) of the
lemma. The proof of part (b) is analogous. More generally, we could in fact get
that for any t,

f(t)− δf(X)
2Pr(X ≥ t)

≤ Ef(X) ≤ f(t) +
δf(X)

2Pr(X ≤ t)
.

Theorem 1 is now only two application of Lemma 2 away. Let EX + δX ≤
EY − δY , like in the theorem, that is, the “bands” formed by the error bars do
not intersect. Then

Ef(X)− δf(X) ≤ f(EX + δX)
≤ f(EY − δY )
≤ Ef(Y ) + δf(Y ) ,

where the first inequality is by part (a) of Lemma 2, the second inequality follows
from the monotonicity of f , and the third inequality is by part (b) of Lemma 2.
This finishes the proof of our main theorem.
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3 The Median

There is an elegant alternative proof of Lemma 2 in terms of the median.

Fact 2. For any random variable X and any strictly monotone function f we
have mf(X) = f(mX). In the discrete case the medians can be chosen to have
this property.

Proof. Simply observe that for any a we have Pr(X ≤ a) = Pr(f(X) ≤ f(a)).
Here we do require the strict monotonicity.

Fact 3. For any random variable X, the median mX deviates from the mean
EX by at most δX, i.e. mX ∈ [EX − δX,EX + δX].

Remark. This also establishes the (weaker) fact that for any random variable
X, the median mX always lies in the interval [EX − σX,EX + σX], which is
mentioned in the literature [6], but, according to a small survey of ours, seems
to be little known among theoretical computer scientists. When the distribution
of X is unimodal, the difference between the mean and the median can even be
bounded by

√
3/5 · σ [7]. By what is shown below, we may in that case replace

δ by
√

3/5 · σ in Theorem 1.

Proof. Fact 3 is an immediate consequence of Lemma 1 by noting that (for
continuous random variables) Pr(X ≤mX) = Pr(X ≥mX) = 1/2 and taking
a = δX. Alternatively, we could mimic the proof of that lemma.

These two simple facts are the heart and soul underlying Theorem 1 in the
sense that the two inequalities of Lemma 2 now have the following very short
and elegant alternative proofs:

Ef(X)− δf(X) ≤ mf(X) = f(mX) ≤ f(EX + δX)
Ef(X) + δf(X) ≥ mf(X) = f(mX) ≥ f(EX − δX)

where the inequalities follow from Fact 3 and the monotonicity of f , and the
equalities are just restatements of Fact 2.

Given Theorem 1 and Fact 2, the question arises whether not the median
should generally be preferred over the mean when looking for an “average” value?

One strong argument that speaks against the median is the following. By the
(weak) law of large numbers, the average over a large number of independent
trials will be close to the mean, not to the median. In fact, by exactly the kind of
considerations given in our introduction, the order of the medians could be the
opposite of the order of the averages, which would be deceptive when in practice
there were indeed a large number of independent runs of the algorithm.

A pragmatic argument is that the mean can be computed much easier: the
values to be averaged over can simply be summed up without a need to keep
them in memory. For the median, it is known that such a memoryless compu-
tation does not exist [8]; even approximations have to use a non-constant num-
ber of intermediate variables, and the respective algorithms are far from being
simple [9].
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4 Relaxations of the Main Theorem

In this section, we show that the result from the previous section cannot be
relaxed in any obvious way, as stated in Theorem 1.

We try to find examples which are realistic in the sense that the f is well-
behaved and the distributions are simple. We do so to emphasize that all con-
ditions are also of practical relevance. First, observe that if the function f is
strictly increasing it also has a strictly increasing inverse function f−1. This
allows us to halve the number of cases we have to consider from four to two:
any counter-example for the case where δX is dropped from the statement of
Theorem 1, gives a counter-example for the case where δf(Y ) is dropped, by
replacing f(X)→ U and f(Y )→ V , where U and V are also random variables,
and the same symmetry relates δY to δf(X).

To prove that we cannot drop the δX (and hence neither the δf(y)) from the
statement of Theorem 1, we consider an example where Y is constant. Then we
find an example of a distribution for X and a strictly increasing function f such
that

EX < Y and
Ef(X)− δf(X) > f(Y ) .

The obvious thing works: We let X have a two-point distribution with points
x1 < Y and x2 > Y and consider a function which is convex, e.g. f(x) = ex. For
this setting we try to solve the system

p1 x1 + p2 x2 < Y

p1 f(x1) + p2 f(x2)− 2 p1 p2 (f(x2)− f(x1)) < f(Y ) . (1)

It becomes slightly easier to spot solutions to this if we write p1 = 1
2 − δ and

p2 = 1
2 + δ. Then (1) becomes

2 p1 f(x1) (1 + δ) + 2 p2f(x2) δ < f(Y ) . (2)

Thus as long as δ > 0 and f increases ‘fast enough’ in the region between Y
and x2 we can always construct a simple counter-example as f(x2) >> f(Y ).
For example, take Y = 2, p1 = 1

4 , p2 = 3
4 , x1 = −2, x2 = 3. Similarly, we can

find a two point counter-example for the case without the δY by considering a
logarithmic function. One such example consists of a constant X = 1, p1 = 3

4 ,
p2 = 1

4 , y1 = .5, y2 = 3 and f(x) = log(x).
If we restrict ourselves, as we have done, to the case where only one of X

and Y is random we see from Jensen’s inequality that we must indeed consider
examples with the curvatures as chosen above. Otherwise, it would be impossible
to find a counter-example.

The same examples still work if we allow Y to have a small degree of variation.
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5 Conclusions

Theorem 1 ensures that when conclusions are drawn only when the error bands
do not intersect, there will at least never be contradictions from the angle of
different measurement scales. The bad news is that, even when the error bands
do not intersect in one scale, in general nothing can be inferred about the order
of the averages after a monotone transformation.

Obviously, when two sets of measurements are completely separated in the
sense that the largest measurement of one set is smaller than the smallest mea-
surement of the other set, then no monotone transformation can reverse the
order of the averages. Beyond that, however, there does not seem to be any
less restrictive natural precondition, which most datasets would fulfill and under
which average reversal provably cannot occur.

What can be proven is that for two random variables X and Y , if 0 ≤
E(X − EX)k ≤ E(Y − EY )k for all k ∈ N, then for a monotonously increasing
function f , with all derivatives also monotone (as is the case for any monomial
x 
→ xk with k ∈ N, and for any exponential x 
→ bx with b > 1), indeed E(X) ≤
E(Y ) ⇒ Ef(X) ≤ Ef(Y ). Unfortunately, this precondition is neither practical
to check nor generally fulfilled. For example, consider two random variables
with different exponential distributions, both mirrored around the mean: then
one random variable will have smaller mean and variance than the other, yet its
third central moment (which is negative), will be larger.

The bottom line of our findings is that, in case there is an option, there is no
alternative other than to explicitly provide a comparison in each cost measure
that is of interest. Anyway, it should be clear that even in one fixed cost measure,
an average comparison alone does not say much: it is well known (see [10] for
an easy-to-read account) that even when the error bands do not intersect, the
apparent order of the averages is statistically not significant. Comparing averages
can be a very deceptive thing. Hence our title.
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A The Example from the Introduction

Each point in the figures in the introduction was computed as the average over
points distributed as Z = z0 + Exp(λ), where Exp(λ) denotes the exponential
distribution with mean 1/λ (density is ϕ(t) = λ e−λ t; variance is 1/λ2).

For the mean of 2Z , or more generally, eκZ , we have that

EeκZ =
∫ ∞

0

eκ(z0 + t)λe−λt dt

= eκz0 · λ/(λ− κ)

≈ eκ(z0 + 1/(λ− κ))

= eκ(z0 + 1/λ + κ/(λ(λ− κ))).

For the figures in the introduction, we chose z0 so that the means for each
curve would lie on a slightly perturbed line. For the light gray curve, we chose
λ = 1, for the dark gray curve we chose λ = 2. For example, for X = 3 + Exp(1)
and Y = 5 + Exp(2), we then have

EX = 3 + 1/1 = 4
EY = 5 + 1/2 = 5.5,

and for κ = 3/4 (then eκ ≈ 2),

EeκX ≈ eκ(3 + 1.0 + 3.0) ≈ 27.0

EeκY ≈ eκ(4 + 0.5 + 0.3) ≈ 25.8.

Observe that in this setting we need κ < λ1 and κ < λ2 to ensure that both
EeκX and EeκY exist.

One objection against the exponential distribution might be that its exponen-
tiation is too heavy-tailed in the sense that not all its moments exist. However,
the same calculations as above can also be carried out for two, say, normal dis-
tributions, which are free from this taint. Let Z = N(z0, σ), that is, Z has a
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normal distribution with mean z0 and standard deviation σ. A straightforward
calculation shows that the mean of eκZ , which obeys a lognormal distribution,
is given by

EeκZ =
∫ ∞

−∞
eκt 1√

2πσ2
e−(t− z0)2/(2σ2) dt

= eκz0 + κ2σ2/2.

Taking, for example, X = N(4, 1.5) and Y = N(4.5, 1.0) and κ = 1, we then
get the following reversed means after exponentiation:

EeκX = eκ4 + κ21.52/2 = e5.125

EeκY = eκ4.5 + κ2/2 = e5.

B One-Sided Chebyshev Bounds

For the sake of completeness, we state the one-sided version of Chebyshev’s
inequality, which looks similar to Lemma 1 in Sect. 2. As mentioned in that
section, Lemma 1 is stronger for deviations up to at least σX, while the lemma
below is stronger for large deviations.

Lemma 3. For any random variable X and for every a > 0, it holds that

(a) Pr(X ≥ EX + a) ≤ (σX)2

a2+(σX)2 ;

(b) Pr(X ≤ EX − a) ≤ (σX)2

a2+(σX)2 .

Proof. See, for example, [5]. The main idea is to write Pr(X ≥ EX + a) =
Pr((X − EX + c)2 ≥ (a + c)2), then apply Markov’s inequality and determine
that c which gives the best bound; similarly for (b).
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Such systems are large scale networks, for example broadband [27], wireless
[8] and peer to peer networks[7] or Internet. The users have the ability to select
their own route to their destination with little or no limitation [4, 20, 9]. Since the
users are instinctively selfish, they may use the right of path selection and may
select a route that maximizes their profit. This selfish routing behavior can be
characterized by a fixed state, which in game theory is called Nash Equilibrium
[15, 18]. In this context, the interested reader can find much of theoretic work in
[15, 12, 14, 9, 11, 19, 20, 21].

However, Nash Equilibrium may lead a system to suboptimal behavior. As a
measure of how worse is the Nash equilibrium compared to the overall system’s
optimum, the notion of coordination ratio was introduced in [12, 14]. Their work
have been extended and improved (price of anarchy here is another equivalent
notion) in [14, 24, 3, 22, 23, 6, 4].

Selfish behavior can be modeled by a non-cooperative game. Such a game
could impose strategies that might induce an equilibrium closer to the over-
all optimum. These strategies are formulated through pricing mechanisms[5],
algorithmic mechanisms[16, 17] and network design[25, 10]. The network admin-
istrator or designer can define prices, rules or even construct the network, in
such a way that induces near optimal performance when the users selfishly use
the system.

Particulary interesting is the approach where the network manager takes part
to the non-cooperative game. The manager has the ability to control centrally
a part of the system resources, while the rest resources are used by the selfish
users. This approach has been studied through Stackelberg or Leader-Follower
games [2, 23, 9, 11, 26]. The advantage of this approach is that it might be easier
to be deployed in large scale networks. This can be so, since there is no need to
add extra components to the network or, to exchange information between the
users of the network.

Let us concentrate on the setting of this approach. The simplified system
consists of a set of machines with load depended latency functions and a flow
of jobs with rate r. The manager controls a fraction α of the flow, and assigns
it to machines in a way that the induced cost by the users is near or equals
the overall optimal. An interesting issue investigated in [23, 9], is how should
the manager assign the flow he controls into the system, as to induce opti-
mal cost by the selfish users. For the case of linear load functions, in [23] was
presented a polynomial algorithm (LLF) of computing a strategy with cost at
most 4

3+α times the overall optimum one, where α is the fraction of the rate
that the manager controls. Korilis et al [9] has initiated this game theoretic ap-
proach and investigated on the necessary conditions such that the manager’s
assignment induces the optimum performance on a system with M/M/1 latency
functions.

1.1 Motivation and Contribution

Our work is motivated by the work in [1, 23, 9]. We consider a simple modifica-
tion of the algorithm Largest Latency First (LLF) [23] called New Leader Strategy
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(NLS). Experiments suggest that NLS has better performance in competitive sys-
tems of machines, that is, systems with high value of price of anarchy PoA. Also,
it has good performance in cases where the Leader may be constrained to use
a small portion α of flow. Notice that PoA ≤ 4/3 for linear latency functions.
Furthermore, a highly nontrivial algorithm presented in [1] slightly improves
over LLF for the case of linear latency functions. Then, despite its simplicity, our
heuristic has comparatively good performance.

Additionally, we conducted thousands random tuples of machines, with either
linear or M/M/1 latency functions. We experimentally tried to compute an upper
bound α0 for the least possible portion of flow that a Leader needs to induce
overall optimal behavior. We have considered tuples of machines with M/M/1
latency functions such that their price of anarchy is at least a parameter c.
Surprisingly, as parameter c increases (resulting to more competitive systems of
machines), the average value of α0 decreases.

2 Improved Stackelberg Strategies

2.1 Model - Stackelberg Strategies

For this study the model and notation of [23] is used. We consider a set M of m
machines, each with a latency function �(·) ≥ 0 continuous and nondecreasing,
that measures the load depended time that is required to complete a job. Jobs
are assigned to M in a finite and positive rate r. Let the m-vector X ∈ Rm

+

denote the assignment of jobs to the machines in M such that
∑m

i=1 xi = r. The
latency of machine i with load xi is �i(xi) and incurs cost xi�i(xi), convex on xi.
This instance is annotated (M, r). The Cost of an assignment X ∈ Rm

+ on the
(M, r) instance is C(X) =

∑m
i=1 xi�i(xi), measuring system’s performance. The

minimum cost is incurred by a unique assignment O ∈ Rm
+ , called the Optimum

assignment. The assignment N ∈ Rm
+ defines a Nash equilibrium, if no user can

find a loaded machine with lower latency than any other loaded machine. That
is, all machines i with load ni > 0 have the same latency L while any machine
j with load nj = 0 has latency Lj ≥ L. According to the Definition 2.1 in [23]:

Definition 1. An assignment N ∈ Rm
+ to machines M is at Nash equilibrium

(or is a Nash assignment) if whenever i, j ∈M with ni > 0, �i(ni) ≤ �j(nj).

The Nash assignment N causes cost C(N) commonly referred to as Social Cost
[15, 12, 14, 9, 11, 19, 20, 21]. The social cost C(N) is higher than the optimal one
C(O), leading to a degradation in system performance. The last is quantified
via the Coordination Ratio[12, 14, 3] or Price of Anarchy (PoA) [24], i.e. the
worst-possible ratio between the social cost and optimal cost: PoA = C(N)

C(O) , and
the goal is to minimize PoA 1 To do so, a hierarchical non cooperative Leader-
Follower or Stackelberg game is used [2, 23, 9, 11, 26]. In such a game, there is a

1 Notice that in a general setting may exist a set A of Nash equilibria, then PoA is
defined with respect to worst one, i.e. PoA = maxN∈A

C(N)
C(O)

.
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set M of machines, jobs with flow rate r and a distinguished player or Leader who
is responsible for assigning centrally an α portion of the rate r to the system
so as to decrease the total social cost of the system. The rest of the players,
called Followers are assigning selfishly the remaining (1 − α)r flow in order to
minimize their individual cost. This instance is called Stackelberg instance and
is annotated by (M, r, α). The Leader assigns S ∈ Rm

+ to M and the Followers
react, inducing an assignment in Nash equilibrium. We give the same definition
for an induced assignment at Nash Equilibrium or induced Nash assignment as
in Definition 2.7 of [23].

Definition 2. Let S ∈ Rm
+ be a Leader assignment for a Stackelberg instance

(M, r, α) where machine i ∈M has latency function �i, and let �̃i(xi) = �i(si+xi)
for each i ∈M . An equilibrium induced by S is an assignment T ∈ Rm

+ at Nash
equilibrium for the instance (M, (1− a)r) with respect to latency function �̃. We
then say that S + T is an assignment induced by S for (M, r, α).

The goal is achieved if C(S + T ) � C(O).
We consider here two types of latency functions: linear and M/M/1. Linear

latency functions have the form �i(xi) = aixi + bi, i ∈ M, X ∈ Rm
+ and it

holds PoA ≤ 4
3 . M/M/1 latency functions have the form �i(xi) = 1

ui−xi
, i ∈

M, X ∈ Rm
+ and it holds PoA ≤ 1

2

(
1 +
√

umin

umin−Rmax

)
, where umin is the

smallest allowable machine capacity and Rmax is the largest allowable traffic
rate.

Finally, to tune the competitiveness of a particular system M , we define the
parameter c as a lower bound of its PoA. Thus, systems with highly valued
parameter c are particularly competitive.

2.2 Algorithm NLS

Algorithm: NLS(M, r, α)
Input: Machines M = {M1, . . . , Mm}, flow r, and portion α ∈ [0, 1]
Output: An assignment of the load αr to the machines in M.

begin:
Compute the global Optimum assignment O = 〈o1, . . . , om〉 of flow r on M;

Compute the Nash assignment N = 〈n1, . . . , nm〉 of the flow (1 − α)r on M;

Let M∗ = {Mi ∈ M | ni = 0};
If
∑

{i:Mi∈M∗} oi ≥ αr then assign local optimally the flow αr on M∗;
else assign the flow αr on M according to LLF;

end if;
end;

Notice that it is possible to heuristically compute an even larger subset M∗

unaffected by the Followers, allowing us to assign to it a even larger portion
α′ > α of flow.

In [23] it was presented the Large Latency First (LLF) Stackelberg strategy for
a Leader that controls a portion α of the total flow r of jobs, to be scheduled to
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a system of machines M . For the case of machines with linear latency functions,
it was demonstrated that the induced scheduling cost is at most 4

3+α of the
optimum one.

We present and validate experimentally the New Leader Strategy (NLS). Our
motivation was a system of machines presented in [23], end of page 17. In that
example, the set of machines is M = {M1,M2,M3} with corresponding latency
functions �1(x) = x, �2(x) = x + 1, �3(x) = x + 1. LLF at first computes the
optimum assignment O = 〈o1 = 4

6 , o2 = 1
6 , o3 = 1

6 〉, of the total flow r = 1
to the given set of machines M . On each machine i, load oi incurs latency
value �i(oi), i = 1, . . . , 3. Then, LLF indexes the machines, from lower to higher
latency values, computed at the corresponding optimum load. In this example,
the initial indexing remains unchanged, since: �1(o1) ≤ �2(o2) ≤ �3(o3). In the
sequel, it computes a Stackelberg scheduling strategy S = 〈s1, s2, s3〉 for the
Leader as follows. LLF schedules the flow αr that Leader controls, filling each
machine i up to its optimum load oi, proceeding in a “largest latency first”
fashion. At first, machine 3 is assigned a flow at most its optimum load o3.
If αr − o3 > 0, then machine 2 is assigned a flow at most its optimum load
o2. Finally, if αr − o3 − o2 > 0, then machine 1 receives at most its optimum
load o1. Notice that all selfish followers prefer the first machine, i.e the Nash
assignment is N = 〈n1 = 1, n2 = 0, n3 = 0〉, since the total flow equals r =
1. Provided that no Follower affects the load assignment S of the Leader to
the subset of machines M ′ = {2, 3}, a crucial observation is that strategy S
computed by LLF is not always optimal. It is optimal only in the case that
the portion α of Leader equals: α = o2+o3

r . In other words, the assignment of
the Leader would be optimal if its flow was enough to fill all machines 2 and
3 up to their corresponding optimal loads o2, o3. Taking advantage of this, a
better Stackelberg strategy is: S′ = 〈s′1 = 0, s′2 = o∗2, s′3 = o∗3〉, where o∗2 and
o∗3 are the corresponding local optimum loads, of the flow αr that a Leader
controls, on the subset of the machines {2, 3} which are not appealing for the
Followers.

To illustrate this, consider any α < o2 + o3 = 1
6 + 1

6 , for example let α = 1
6 .

Then LLF computes the Stackelberg strategy S = 〈0, 0, 1
6 〉, inducing the Nash

assignment N = 〈56 , 0, 1
6 〉 with cost CS =

(
5
6

)2 +
(
1 + 1

6

)
1
6 = 8

9 . However,
the local optimum assignment of the flow α = 1

6 to machines 2 and 3 is S′ =
〈0, 1

12 , 1
12 〉. This induces the Nash assignment N ′ = 〈 56 , 1

12 , 1
12 〉 with cost CS′ =(

5
6

)2 +
(
1 + 1

12

)
1
6 = 7

8 < 8
9 .

We propose algorithm NLS that takes advantage all these issues discussed
above. Intuitively, it tries to compute a maximal subset M∗ ⊆ M = {1, . . . , m}
of machines not appealing to the selfish users. This subset M∗ ⊆ M consists
of exactly those machines that receive no flow by the Nash assignment of (1 −
α)r flow on M . Then it assigns the portion αr of a Leader local optimally on
M∗. The empirical performance of NLS is presented in Section 4, in Figures 2
and 4.
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3 Algorithm OpTop

3.1 Description

In [23] (also see the important results in [9] for the case of M/M/1 latency
functions) it was possed the important question:

“Compute the minimum flow of jobs that a Leader may play according to
a Stackelberg scheduling strategy to a system of machines, in a way that
the selfish play of the Followers leads the system to its optimum cost.”

In this section, we investigate this issue experimentally for the case of machines
with linear latency functions. Algorithm OpTop below (based on features of LLF),
tries to control a minimal portion α of the total flow r of jobs. It schedules this
flow to a system of m machines, in a way that the selfish play of the Followers
drives the system to its optimum cost. Intuitively, OpTop tries to find a small
subset of machines that have the following stabilizing properties:

– The selfish play of the Followers will not affect the flow αr assigned by the
Leader optimally to these machines.

– The selfish play of the Followers of the remaining (1 − α)r flow on the re-
maining machines will drive the system to its optimum cost.

Algorithm: OpTop (M, r, r0)
Input: Machines M = {M1, . . . , Mm}, flow r, initial flow r0

Output: A portion α of flow rate r0

begin:
Compute the Nash assignment N := 〈n1, . . . , nm〉 of flow r on machines M;

Compute the Optimum assignment O := 〈o1, . . . , om〉 of flow r on machines M;

If (N ≡ O) return (r0 − r)/r0;

else (M, r) ← Simplify(M, r, N, O);
return OpTop(M, r, r0);

end if;
end;
Procedure: Simplify(M, r, N, O)
Input: Machines M = {M1, . . . , Mm}, flow r

Nash assignment N := 〈n1, . . . , nm〉
Optimum assignment O := 〈o1, . . . , om〉

Output: Set of machines M, Flow r
begin:

for i = 1 to size(M) do:
If oi ≥ ni then

r ← r − oi;

M ← M\{Mi};
end if;

end for;
end;

The key features of OpTop are presented with the help of Figures 1a, 1b, 1c.
The corresponding Nash and Optimum assignments to these machines are de-
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noted as: N = 〈n1, . . . , n5〉, such that
∑5

i=1 ni = r, O = 〈o1, . . . , o5〉, such
that

∑5
i=1 oi = r.

Definition 3. Machine i is called over-loaded (or under-loaded) if ni > oi (or
ni < oi). Machine i is called optimum-loaded if ni = oi, i = 1, . . . , m.

Initially, the algorithm assigns to all under-loaded machines in Figure 1a their
optimum load. That is, it assigns optimum load o4 and o5 to machines 4 and 5 in
Figure 1b. Then the players selfishly assign the remaining r− o4− o5 flow to the
system of 5 machines. Observe that in the induced Nash assignment, none of the
machines 4 and 5 receives flow. That is, machines 4 and 5 have been stabilized
to their optimum load, irrespectively of the selfish behavior of the Followers, see
also Theorem 1.

A crucial point is that we can remove machines 4 and 5 from consideration
and run recursively OpTop on the simplified system of machines. In other words,
the induced game now is equivalent to scheduling the remaining r− o4− o5 flow
to the remaining machines 1, 2 and 3, see also Lemma 1.

In the sequel, in the simplified game, now machine 3 has become under-loaded
and 2 optimum-loaded, while 1 remains over-loaded, see Figure 1b. In the same
fashion as in the original game, OpTop assigns load o3 to machine 3. Happily, the
induced selfish scheduling of the remaining r−o3−o4−o5 flow yields the overall
optimum assignment for the system. That is, the remaining r−o3−o4−o5 flow,
when scheduled selfishly by the Followers, ignores machines 3, 4 and 5 (they
assign no load to these machines) while their selfish behavior assigns induced
Nash load n′

i = oi to each machine i = 1, 2, see Figure 1c.
In this example, algorithm OpTop needed to control a portion α0 = o3+o4+o5

r ,
of the total flow r of jobs, in a way that the final induced load to each machine
i equals its optimum value oi, i = 1, . . . , 5. OpTop’s objective is to impose the
overall optimum by controlling the least possible portion α0. The cornerstone
for the stability of the load assigned by OpTop to any machine is Theorem 1.
Intuitively, this theorem says that OpTop raises the latency of proper machines

Fig. 1. A dashed (or solid) line indicates the Nash (or Optimum) load ni (or oi)

assigned to each machine i = 1, . . . , 5. (a) Machines 1 and 2 (4 and 5) are over(under)-

loaded while 3 is optimum-loaded. Then OpTop will assign load o4 and o5 to machines

4 and 5. (b) Now machines 4 and 5 received load o4 and o5 by OpTop. In the induced

Nash assignment, machines 1 (3) become over(under)-loaded while 2 becomes optimum-

loaded.(c) Finally, OpTop assigns load o3 to machine 2. In the induced Nash assignment,

machines 1 and 2 become optimum-loaded
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sufficiently high, making them not appealing to selfish players, while retaining
their respective optimum load.

Theorem 1. Consider m machines with latency functions �j(x) = ajx+bj , j =
1, . . . , m. Let the Nash assignment N = 〈n1, . . . , nm〉 of the total load r on the
m machines. Suppose that for a Stackelberg strategy S = 〈s1, . . . , sm〉 we have
either sj ≥ nj or sj = 0, j = 1, . . . , m. Then for the induced Nash assignment
T = 〈t1, . . . , tm〉 of the remaining load r −

∑m
i=1 si we have that tj = 0 for each

machine j such that sj ≥ nj , j = 1, . . . , m.

Proof. By assigning load sj ≥ nj to machine j then for any induced load tj ≥
0 to it, its latency is now increased up to �̃j(tj) = ajtj + �j(sj) ≥ �j(sj) ≥
�j(nj), j = 1, . . . , m. Since the induced Nash assignment T assigns total load
r−
∑m

i=1 si ≤
∑

{i:si=0} ni, its is not now possible for any machine j with sj ≥ nj

to become appealing to the selfish users, j = 1, . . . , m.

Theorem 1 is valid for arbitrary increasing latency functions. Interestingly, a
similar (monotonicity) argument can be found in [13]. Another difficulty for the
evolution of the algorithm, is to describe the selfish play of the users in the
remaining machines. To this end, Lemma 1 is helpful.

Lemma 1. Let a set of machines M = {M1, . . . , Mm} and the Nash assignment
N = 〈n1, . . . , nm〉 of the total load r on these machines. Fix a Stackelberg strategy
S = 〈s1, . . . , sm〉 such that either sj ≥ nj or sj = 0, j = 1, . . . , m. Then the
initial game is equivalent to scheduling total flow: r −

∑m
i=1 si, to the subset

M ′ ⊆M of machines: M ′ = M\{Mi : si ≥ ni}, i = 1, . . . , m.

Proof. It follows from Theorem 1.

Lemma 1 allows us to run recursively OpTop on the simplified game on the
remaining machines. The empirical performance of OpTop is presented in Section
4, in Figures 3 and 5.

4 Experimental Validation of the Algorithms

All experiments presented in this section are performed using the package Mat-
lab [29]. An extensive toolbox was created for manipulating large systems of
machines for both linear and M/M/1 latency functions. All the routines of com-
puting the Optimum and Nash assignments, the LLF and NLS strategies are also
implemented in the same Toolbox [30].

Here we present results for 5-tuples of random machines for both linear and
M/M/1 latency functions. Similar results were observed for k-tuples with k ≥ 5.
For total flow r, machine i receives a portion or flow xi which incurs latency
�(xi) = aixi + bi, i = 1, . . . , 5, where ai, bi are random numbers in [0, r] and∑5

i=1 xi = r. The corresponding random M/M/1 latency functions are �(xi) =
1

ui−xi
, i = 1, . . . , 5. We created many large collections of 5 tuples of machines,
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where each such collection satisfies a predetermined value of the parameter c ≤ 4
3

(recall c is a lower bound of the price of anarchy value PoA). That is, for each
generated random 5-tuple of machines, we compute the ratio of the cost of the
Nash assignment to corresponding optimum one, and we store the 5-tuple to the
appropriate c-valued collection of tuples. Intutively, a collection of tuples with
particularly high value of c consists of highly competitive machines and the role
of the Leader is important.

4.1 Linear Latency Functions

Comparing NLS to LLF. We know that LLF strategy induce a Follower assign-
ment that drives the PoA to 4

3+α . We are interested in finding out how much
better the NLS strategy does in comparison to LLF strategy. In other words we
are interested in measuring the ratio CostNLS

CostLLF . The worst case would be when this
ratio is 1, which means that the NLS strategy is the same as the LLF strategy.
This phenomenon is expected since NLS is based on LLF but we are interested in
finding out the how much similar is NLS to LLF. Based on intuition, we expected
that in instances with higher values of PoA our strategy will do better than LLF.
This will be the case with even lower α, since we may manipulate more machines
in the subset M∗ which is described in the pseudo code of NLS. This intuition
was confirmed by the experiments, as it is shown in Figure 2. Both diagrams
present the percentage of machines that had CostNLS

CostLLF < 1. What is remarkable is
that NLS does better when the parameter c of the machine instances is increased
from 1 up to 1.2. Then the corresponding portion of machines that had better
performance using NLS is increased from 33% up to 62% of the instances.
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Fig. 2. Linear load functions: CostNLS
CostLLF

for PoA ≥ 1.2 and for PoA ≥ 1

We conjecture that the reason for this phenomenon is that systems with
high PoA usually overload 1 or 2 machines, while the rest ones remain idle.
Therefore, the αr flow assigned local optimally by the Leader to the subset of
the idle machines remains unaffected.

Another interesting observation was that NLS does better than LLF for small
α. For the instances with PoA ≥ 1 the NLS strategy is better than LLF strategy
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Fig. 3. Linear latency functions: The α0 computed by OpTop to reach the overall opti-

mum for PoA ≥ 1.2 and for PoA ≥ 1

for average α = 0.132 while for instances with PoA ≥ 1.2 the average α is higher
and has the value α=0.313.

Finally, the average CostNLS
CostLLF for PoA ≥ 1 is 0.995 while the CostNLS

CostLLF for PoA ≥
1.2 is 0.991.

Results for OpTop. The algorithm OpTop that we presented in Section 3, com-
putes an upper bound to the amount αr of flow that the Leader must posses in
order to induce optimal assignment. That is, we are interested in computing an
upper bound to the minimum flow α0 that the Leader must control to guaran-
tee overall optimum performance induced by the Followers selfish play. In Figure
3, x-axis presents the portion α0 needed to induce the overall optimum, while
y-axis presents the corresponding percentage of 5-tuples of machines.

The results of our experiments on the set of machine instances are presented
in Figure 3 below. In instances where PoA ≥ 1 the portion α0 of load flow the
Leader has to control ranges in α0 ∈ [0, 0.9] and its average value is α0 = 0.5.

Also in Figure 3, as PoA’s lower bound increases up to 1.2, the range of α0

the Leader has to control also increases, that is α0 ∈ [0.4, 0.9]. In this case its
average value is α0 = 0.6.

4.2 Results for M/M/1 Latency Functions

For M/M/1 latency functions, (i.e. of the form 1
u−x ) the results are similar. The

PoA of the systems with such load functions is not that different from the linear
load functions. As we can see the NLS strategy does better for systems with an
increased lower bound (parameter c) of PoA.

Once more, in Figure 4 we can see that NLS does better when the parameter
c of the machine instances is increased from 1 up to 1.2. Then the corresponding
portion of machines that had better performance using NLS is increased from
19% up to 43% of the instances. Furthermore, in the same figure, we see that
the average CostNLS

CostLLF for PoA ≥ 1 is 0.992 while the CostNLS
CostLLF for PoA ≥ 1.2 is 0.988.

The results of our experiments for OpTop on the set of machine instances are
presented in Figure 5 below. In instances where PoA ≥ 1 the portion α0 of flow
the Leader has to control to induce the overall optimum ranges in α0 ∈ [0.2, 0.9]
and its average value is α0 = 0.57. Also in this figure, as PoA’s lower bound
increases up to 1.2, the range of α0 the Leader has to control is in α0 ∈ [0.2, 1].
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Fig. 4. M/M/1 latency functions: CostNLS
CostLLF

for PoA ≥ 1.2 and for PoA ≥ 1

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,00%
5,00%

10,00%
15,00%
20,00%
25,00%
30,00%
35,00%
40,00%
45,00%
50,00%

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

M
a

c
h

in
e

in
s

ta
n

c
e

s

PoA >=1.2 PoA >=1

M
a

c
h

in
e

in
s

ta
n

c
e

s

Fig. 5. M/M/1 latency functions: The α0 computed by OpTop to reach the overall

optimum for PoA ≥ 1.2 and for PoA ≥ 1

Rather unexpectedly, in this case its average value has been reduced to α0 = 0.44.
Further work will focus on machine instances with arbitrary latency functions,
where the PoA is greater or even unbounded and the results are expected to be
more interesting than those of the linear load functions and M/M/1 functions.
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Abstract. The test cover problem asks for the minimal number of tests needed
to uniquely identify a disease, infection, etc. At ESA’02 a collection of branch-
and-bound algorithms was proposed by [4]. Based on their work, we introduce
several improvements that are compatible with all techniques described in [4].
We present a faster data structure, cost based variable fixing and adapt an upper
bound heuristic. The resulting algorithm solves benchmark instances up to 10
times faster than the former approach and up to 100 times faster than a general
MIP-solver.

1 Introduction

We are given a set of m items and a set of tests T = {T1, . . . , Tn}, Tk ⊆ {1, . . . , m},
k = 1, . . . , n. A test Tk is positive for an item i if i ∈ Tk, and negative if i �∈ Tk. In
general, we must use different tests to uniquely identify a given item because a single
test can be positive for several items. We say that a test Tk separates a pair of items
{i, j}, 1 ≤ i < j ≤ m, if |Tk ∩ {i, j}| = 1. Finally, a collection of tests T ⊆ T is a
valid cover if ∀ 1 ≤ i < j ≤ m : ∃Tk ∈ T : |Tk ∩ {i, j}| = 1.

The test cover problem (TCP) asks for a valid cover T ⊆ T that is minimal among
all valid covers. I.e. for all valid covers T ′ it holds |T | ≤ |T ′|. The weighted test cover
problem is a canonical extension of the test cover problem: Given c : T → IN, where
c(T ) represents the cost for test T , we look for a valid cover T that is cheapest among
all valid covers T ′:

∑
T∈T c(T ) ≤

∑
T∈T ′ c(T ).

Test cover problems are important in many real-life applications like medical diag-
nostics, biology, pharmacy, fault detection, or coding theory (see [4]).

The test cover problem has been studied by several authors in recent years. It is
known to be NP-hard [3] and approximation algorithms [5] as well as exact branch-
and-bound approaches [4, 7] have been proposed. The authors of [4] compared the ef-
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fectiveness of several pruning criteria, lower bounds and fixing techniques for their
algorithm solving unweighted TCPs.

In this paper, we present and analyze improvements on the approach of De Bontrid-
der et al. [4]. All techniques are compatible with the weighted case as well:

(i) We use a much faster data structure for the branch-and-bound algorithm. All tech-
niques discussed in [4] benefit from this efficient data structure and numerical
results show a typical speedup of 2 – 10 compared to solving the problem with the
straightforward data structure.

(ii) We introduce cost based variable fixing techniques. That is, during tree search we
try to identify tests Tk that have to be (cannot be) part of any improving solution.
Those tests are included (excluded) without branching. In so doing, runtime is
reduced by a factor of 2 – 4 and the number of branch-and-bound nodes decreases
by a factor of up to 5.

(iii) Finally, we improve convergence of the branch-and-bound algorithm by using an
upper bound. Having a good upper bound before branch-and-bound impacts on
variable fixing.

Items (i) and (iii) are based on a simple observation: Any test cover instance having
m items and n tests can be transformed into a set covering instance having O(m2)
elements and n subsets. We investigate on that relation in the next section.

1.1 Relation Between Test Cover and Set Covering Problems

A set covering problem (SCP) consists of n subsets {S1, . . . , Sn} = S, Si ⊆ {1, . . . , �}.
Furthermore, there is a cost function c : S → IN, where c(Si) represents the cost of
the subset Si. The SCP asks for a collection S ⊆ S such that {1, . . . , �} is covered at
minimal cost. To be more precise:

1.
⋃

S∈S S = {1, . . . , �} and
2. For all S ′ such that

⋃
S∈S′ S = {1, . . . , �} we have

∑
S∈S c(S) ≤

∑
S∈S′ c(S).

SCPs are NP-hard. Given their importance in flight scheduling, crew rostering, etc. they
have been subject of intensive research during the last decades, see the survey in [2].

A TCP instance can be interpreted as a SCP instance by considering all pairs of
items and asking for a coverage of all pairs by the tests. Let (m,T = {T1, . . . , Tn}, c)
be a TCP instance. A SCP instance (�,S = {S1, . . . , Sn}, c′) is constructed by

(i) using all pairs of items: {1, . . . , �} ← {eij | 1 ≤ i < j ≤ m}
(ii) setting Sk to contain all pairs of items separated by test Tk: Sk ← {eij | |Tk ∩
{i, j}| = 1, 1 ≤ i < j ≤ m}, k = 1, . . . , n, and by

(iii) keeping the original costs by: c′(Sk) := c(Tk), ∀ k ∈ {1, . . . , n}.

It is easy to see that a SCP solution S ⊆ S defines a solution T ⊆ T for the TCP.
By construction, the objective value of both solutions is identical. Thus, we can solve a
TCP with n tests and m items by solving the corresponding SCP having n subsets and
Θ(m2) items.
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1.2 Organization of the Paper

We start our discussion by presenting the basic branch-and-bound approaches of [4] in
Sect. 2. After that, we show how to adapt it so as to solve TCPs which are described
by SCPs. In Sect. 3 we present variable fixing techniques. Further improvements are
obtained by using an upper bound introduced in Sect. 4. In Sect. 5, we compare the
runtimes of CPLEX, the old and the new branch-and-bound approach. A discussion
of the impact of cost based variable fixing techniques closes this section. Finally, we
conclude.

2 Basic Branch-and-Bound Approaches

In this section we describe the basic branch-and-bound approaches used in order to
solve TCPs. We first briefly recall the approach used by De Bontridder et al. [4] which
works on the original TCP formulation. Thereafter, we describe how to adapt that ap-
proach to handle the SCP formulation of the TCP. Interestingly, all methods used in
the direct (TCP) approach can easily be adapted to work also in the indirect (SCP)
one. This allows to apply all structural methods known for the TCP also in the indirect
approach.

2.1 Solving the Test Cover Problem Directly

In [4] various lower bounds and pruning criteria, as well as variable ordering heuristics
for the TCP were described. Furthermore, a branch-and-bound framework was pre-
sented that allows to use any combination of a lower bound, a pruning criterion and a
variable ordering heuristic.

Each branch-and-bound node is assigned a tuple (T ,R). T ⊆ T contains those
tests that are included in the solution currently under construction. R ⊆ T contains
tests that have been discarded from the current solution. Thus, T ∩ R = ∅. Initially,
it holds R = ∅, T = ∅. Branch-and-bound decides on the remaining tests
T ∈ T \ (T ∪ R).

A branch-and-bound node (T ,R) potentially generates l := |T \ (T ∪ R)| child
nodes. These nodes are ordered by some heuristic such that the most promising nodes
(those with high quality) are processed first. After renumbering we obtain the child
nodes: (T ∪ {T1},R), (T ∪ {T2},R ∪ {T1}), (T ∪ {T3},R ∪ {T1, T2}), ..., (T ∪
{Tl},R∪ {T1, ..., Tl−1}).

Nodes are considered in a depth-first search, i.e. node (T ∪ {T1},R) and all its
successors are explored prior to node (T ∪ {T2},R∪ {T1}).

Quality Criteria. In [4] four quality criteria are described: Separation criterion D, in-
formation criterion ΔE, power criterion P , and least separated pair criterion S. We
introduce two of them in more details here and give a simple adaption to the weighted
case. Before that, define the subsets IT1 , IT2 , . . . , ITt ⊂ {1, . . . , m} (introduced in [4]).
Given a partial cover T ⊂ T, a subset ITj is a largest subset containing items that are
pairwise not separated by the current partial solution T .
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The separation criterion D(T |T ) was introduced in [7]. It calculates the cost per
additional separated pair of items that test T causes when it is added to T as

D(T |T ) :=
1

c(T )

t∑
h=1

|T ∩ ITh | · |ITh \ T |

The least separated pair criterion S was used e.g. in [7, 8, 9, 10]. First, we search
for a pair of items {i, j} that is covered by least remaining tests. Then we separate the
remaining tests into those covering the item pair, and those not covering it by:

S(T |T ) :=
{

1 if |T ∩ {i, j}| = 1
0 else

Criterion S can be used alone and follows the idea of assigning most critical items
early in the search. In our work, as well as in [4] S is only used in combination with
some other criterion (denoted as S(C), where C ∈ {D,ΔE,P}). There, all T ∈ T \
(T ∪R) are grouped according to S: {T |S(T |T ) = 1} and {T |S(T |T ) = 0}. Within
each of these groups, tests are sorted according to criterion C.

Lower Bounds. We use two different lower bounds L1 and L2 for pruning. The first
one is based on the property that at least �log2 k� tests are necessary to separate k items
that have not been separated so far. This results in the lower bound

L1(T ) := �log2( max
h=1,...,t

|ITh |)�

Lower bound L2 requires the use of the power criterion and some combinatorial values
that can be found by a recursive algorithm. Because of space limitations and since this
work is on algorithmic improvements we have to refer to [4] for more details on L2.
For weighted instances, we can transform a bound Lq, q ∈ {1, 2} into a lower bound
Lw

q , q ∈ {1, 2} for the weighted problem by summing up the Lq(T ) smallest cost
values of tests in T \ (T ∪ R).

Pruning. Pruning, that is detecting and discarding useless parts of the search tree is
based on four different criteria. Let L be a lower bound on the additional number of
tests needed to cover all pairs of items (in addition to the selected tests in T ). We prune

PC1 if according to the lower bound more tests are needed than are available, i.e.

if L > |T| − |T | − |R| then prune

PC2 if the minimal number of tests needed to construct a solution is not smaller than
the number of tests U in the best solution found so far, i.e.

if |T |+ L ≥ U then prune

PC2w (PC2 for weighted case, U is objective value of the best solution found so far)

if
∑
T∈T

c(T ) +
L∑

i=1

c(Ti) ≥ U then prune
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(PC2w requires the remaining tests Ti ∈ T \ (T ∪ R) to be sorted according to
increasing costs. Such an ordering can be determined in a preprocessing step.)

PC3 if there is an uncovered pair of items that cannot be covered by any of the remain-
ing tests in T \ (T ∪ R).

2.2 Solving the Test Cover Problem Indirectly

We propose to solve the test cover problem indirectly. I.e. instead of working on the
original formulation, we transform the TCP into a SCP (Sect. 1.1).

This transformation squares the number of “objects” in the problem, because rather
than separating m items in the TCP we have to cover Θ(m2) pairs of items in the SCP.
On the other hand, most techniques described before have to spend time Ω(m2) anyway
(e.g. they need to find out which pairs of items are not covered, etc.). That is, the direct
formulation is more space efficient, but does not save computing time. Even worse,
whereas in the SCP formulation we can delete a pair of items from consideration as
soon as we have covered it, we cannot do similarly in the original formulation.

There, pairs of items are checked sequentially and an item i can only be removed
from the list of active items, when it is separated from all other items j. In the best case
this happens after m − i steps (after separating {i, i + 1}, . . . , {i,m} we can discard
item i). In the worst case, however, 1

2 (m2 − 2m) + 1 steps are necessary before in the
direct formulation a test can be discarded from consideration (see Fig. 1).

m(m−1)

2

runtime

(c)

(b)

(a)

pairs of items being covered

m(m−1)

2

Fig. 1. Schematic view on the runtime (y-axis) when working on a branch-and-bound node with
a certain number of separated pairs of items (x-axis). (a) is the runtime for the indirect approach
– runtime is proportional to the number of pairs of items. (b) and (c) give examples for best and
worst case runtimes when using the direct formulation of the problem

Interpreting a TCP as a SCP thus gives a natural way of finding a more efficient data
structure for pairs of items.

3 Variable Fixing

Variable fixing aims in identifying tests that have to be part of a feasible or optimal
solution. It is one of the building blocks in constraint programming and it is frequently
used in presolving for mixed integer programming. We first explain in Sect. 3.1 a fixing
technique also used in [4]. In Sect. 3.2 we introduce a new variable fixing method based
on costs that can reduce runtime by a factor of 2 – 4 (see Sect. 5.3).
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3.1 Fixings Based on Feasibility

Before starting a branch-and-bound algorithm, it is helpful to identify essential tests. A
test T ∈ T is essential if there is a pair {i, j} of items that is only separated by T . In
this case T must be part of any feasible solution to the TCP and it can be added to T .
As described in [4] searching for essential tests can be performed in time O(m2n).

In our approach we check for essential tests in all branch-and-bound nodes. During
branching some other test as well might become the only remaining test that covers
a certain pair of items. It is thus justified to check for essential tests not only in the
root node. Using an incremental algorithm we can do so in time proportional to the
number of pairs not considered so far: Let μ{i,j} denote the number of tests that cover
item pair {i, j}. In an initial preprocessing step we initialize μ{i,j} in time O(m2n).
For any branching decision or any fixing of tests, we decrement those entries of μ that
correspond to pairs of items covered by the tests in question. Hence, in each branch-and-
bound node we can simply check whether only one test remains that covers a certain
pair of items, and we can include that test into the current solution. The number of pairs
of items not considered decreases with the depth of the search tree and is always in
O(m2). Thus, fixing essential tests in a branch-and-bound node requires time O(m2)
per node which is the time already needed by most other techniques described in Sect. 2.

3.2 Fixings Based on Costs

Additionally, we can include or exclude tests that have to be or cannot be part of an
improving solution. Let L denote a lower bound on the number of tests required to
form a valid test cover in the current branch-and-bound node, and let U denote the
value of the incumbent upper bound. (Both values are known in each node because we
already calculate them for bounding.) We order the remaining k := |T \ (T ∪R)| tests
in T \ (T ∪ R) =: {T1, . . . , Tk} according to increasing costs.

If k < L pruning criterion PC1 already prunes the current search tree. We also
prune, if the cost of all tests in T plus the costs of the L cheapest tests in T \ (T ∪ R)
exceeds the current upper bound U (PC2w).

Otherwise, we can apply the following variable fixing: If replacing one of the L
cheapest tests Ti by test TL+1 results in a value not smaller than the incumbent solution,
test Ti is essential for any improving solution, and thus we can fix it:

∀ 1 ≤ i ≤ L :
if

(∑
T∈T c(T ) +

∑L
j=1 c(Tj)− c(Ti) + c(TL+1)

)
≥ U

then T := T ∪ {Ti}
(1)

Vice versa, if already replacing test TL by some more expensive test results in a
value not smaller than the incumbent solution, we can safely discard the latter test:

∀ L + 1 ≤ i ≤ k :
if

(∑
T∈T c(T ) +

∑L
j=1 c(Tj)− c(TL) + c(Ti)

)
≥ U

then R := R∪ {Ti}
(2)

Notice that these checks are only useful for the weighted case as in the unweighted
case no change in the cost structure occurs when exchanging tests.
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4 Upper Bound Computation

When interpreting a test cover problem as a set covering problem, upper bound heuris-
tics can be adapted to the test cover problem. The two-phase approach of Beasley [1]
was adapted for our work (Alg. 1). It starts with a Lagrangian lower bound x and covers
all missing item pairs by a cheapest subset. If after that phase some pairs of items are
over-covered it tries to remove those subsets that are redundant. In some experiments
we call that upper bound heuristic initially prior to any branch-and-bound.

Algorithm 1 Constructing an upper bound x′ from a lower bound x (see [1])

x′ ← x; S ′ ← {Sk | xk = 1, k = 1, . . . , n}
/* Phase 1: Cover all items by including missing sets */
while (∃ a pair of items {i, j} that is not covered by S ′)

l ← index(argmin{c(Sk) | Sk covers {i, j}, k = 1, . . . , n})
x′

l ← 1; S ′ ← S ′ ∪ {Sl}
/* Phase 2: If pairs are over-covered: Remove redundant sets */
for all (Sk ∈ S ′ in order of decreasing costs)

if (S ′ \ {Sk} covers all pairs {i, j})
then x′

k ← 0; S ′ ← S ′ \ {Sk}
return x′

5 Numerical Results

In [4] 140 benchmark sets were used to experimentally evaluate different branch-and-
bound algorithms for the TCP. These benchmark sets were constructed randomly, and
they differ with respect to the number of items m, the number of tests n, and the prob-
ability p for a test to contain a certain item (E[i ∈ Tk] = p). There are 10 different
instances for each of the following (m,n, p)-combinations: (49, 25, {1/4, 1/2}), (24,
50, {1/10, 1/4, 1/2}), (49, 50, {1/10, 1/4, 1/2}), (99, 50, {1/10, 1/4, 1/2}), (49, 100,
{1/10, 1/4, 1/2}). We use the same sets for the unweighted case and thus our results can
be compared to those found in the earlier work on the TCP.

For the weighted case these instances were extended by assigning a cost value to
each test uniformly at random from the interval {1, . . . , n}.

All tests were performed on a Pentium 4 (1.7 GHz) running Linux 2.4.19. The al-
gorithms were coded in C++ and compiled by gcc 2.95.3 using full optimization. In the
comparison we used Ilog CPLEX 7.5 with default settings.

In their paper De Bontridder et al. note that they have not used "clever data struc-
tures for storing and retrieving information" but that a "significant speedup" could
be expected from these. Therefore, in addition to the techniques used in [4] both ap-
proaches (direct and indirect) store information needed in every branch-and-bound
node. We update this information incrementally rather than calculating it from scratch
in each node. These data include the assignment of items to the sets IT1 , IT2 , ..., ITt
which are needed for branching based on quality criterion D,ΔE,P as well as for
lower bounds L1 and L2. Furthermore, for each pair of items {i, j} not covered so far,
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we store the number of tests in T \ (T ∪ R) that cover {i, j}. The latter information
is needed for fixing essential tests, for the least-separated pair criterion S and for PC3.
Because the implementation in [4] always re-calculates the just mentioned values, it is
justified to assume that our implementation of the direct approach is already faster than
the original implementation used by the authors of [4].

In the following sections we compare three different approaches to solve test cover
problems, namely (a) solving the TCP directly, (b) solving the TCP indirectly by trans-
forming it to a SCP (see Sect. 1.1), and (c) solving its SCP formulation via CPLEX.
In Sect. 5.3 we elaborate more on the impact of the new cost fixing and of the up-
per bound heuristic. All figures show average runtimes in seconds and average num-
bers of branch-and-bound nodes, respectively, for the 10 instances in each
(m,n, p)-combination.

5.1 Unweighted Benchmark Sets

We have studied different combinations of pruning criteria, branching rules and quality
orderings for both branch-and-bound approaches. For the direct approach a combination
of quality criterion S(D) and lower bound L1 or L2 (noted as (S(D), L1), (S(D), L2))
was found to be most efficient (this corresponds to the findings in [4]). For the indirect
approach using L1 rather than L2 turned out to be most efficient. Thus we use the
variant (S(D), L1) in most experiments. For a detailed study on the impact of different
pruning criteria, branching rules and quality criteria we refer to the work in [4] for the
direct approach and to [11] for the indirect approach. We apply essential tests (Sect. 3.1)
in every branch-and-bound node but do not compute an upper bound with the technique
described in Sect. 4.

Figure 2 shows that both branch-and-bound approaches are between 10 – 100 times
faster than CPLEX. For instances having 49 items and 100 tests only one third of all
CPLEX runs terminated within 24 hours.

In most cases the indirect approach is about 4 times faster than the direct approach.

5.2 Weighted Benchmark Sets

On weighted benchmark sets we use pruning criteria PC1, PC2w and PC3. We do not
compute an upper bound based on a Lagrangian lower bound but we apply cost fixing
in every branch-and-bound node (see Sect. 5.3). For the direct approaches (S(D), L2)
or (S(P ), L2) are the most efficient approaches. Replacing L2 by L1 does only slightly
reduce runtime for the smaller instances. On larger instances (49, 100, 1/10), however,
a factor of 2 is lost when using L1 rather than L2.

For the indirect approach using (S(D), L2) or (S(P ), L2) is the best choice. On
smaller instances these two settings are about three times faster than other combinations
of branching or ordering strategies. Interestingly, Fig. 3 shows that on the 10 instances
in class (49, 100, 1/10) CPLEX is able to outdo both the direct and the indirect approach
by a factor of 10 or 20, respectively, whereas on all other classes (130 instances), the
specialized algorithms prevail by up to a factor of 10.

The indirect approach is always faster than the direct one (factor 2 – 10).
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Fig. 2. Comparing direct approach, indirect approach and CPLEX on several instances. Notice
the logarithmic scale. Lines connecting measure points are used for better readability and do not
indicate intermediate results

5.3 Impact of Cost Fixing and Upper Bound

Cost fixing as described in Sect. 3.2 reduces runtime as well as number of branching
decisions for almost all instances. As can be seen in Fig. 4 cost fixing reduces runtime
of instances (49, 50, {1/10, 1/4, 1/2}) and (99, 50, {1/10, 1/4, 1/2}) by a factor of 2 – 3,
whereas the number of branch-and-bound nodes is reduced by a factor of 3 – 5.

Also for the indirect approach, using cost fixing impacts positively on runtime as
well as on number of branch-and-bound nodes. Only between 25% – 75% of the original
runtime is needed when using cost fixing (see Fig. 5). The number of branch-and-bound
nodes is only 1/6 – 1/2 of the number of nodes when not using cost fixing. Impact of cost
fixing diminishes the more items are covered by a test. On the other hand, the number of
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Fig. 3. Comparing the approaches on weighted benchmark sets

branch-and-bound nodes is very small already in that scenario. Experiments on larger
instances that require more branching decisions are needed in order to conclude on the
behavior of instances having many items per test.

Finding an upper bound initial to branch-and-bound as explained in Sect. 4 should
be helpful for fixing variables. In our experiments it turns out that the upper bound
heuristic typically reduces runtime by about 1% – 5%. Upper bounds thus are the least
important ingredient for a fast solver to the test cover problem, although using them
reduces runtime and number of branching nodes.

6 Conclusions

In this paper we presented a simple, yet fast data structure for test cover problems.
Experimental results show a typical speedup of up to a factor of 10 compared to an im-
plementation proposed earlier. Furthermore, we introduced cost based filtering for tests.
These techniques turned out to be quite helpful because they reduce the number of ex-
plored branch-and-bound nodes by a factor of 5 and running time by a factor of 2 – 4.

It is known that Lagrangian techniques are quite successful for set covering prob-
lems (see [1, 2]). We performed initial experiments on applying Lagrangian bounds in
all nodes of the branch-and-bound tree. This modification led to a significant decrease
in the number of branch-and-bound nodes. Faster bound calculations are needed, how-
ever, to turn this decrease in tree size into a runtime improvement. Future work will
thus include investigation on Lagrangian techniques as well as experiments on larger
problem instances.
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Fig. 4. Runtimes (left) and number of branch-and-bound nodes (right) for the direct approach
DirB&B using / not using cost fixing (CF) on instances containing 49 (top) and 99 (bottom)
items and 50 tests, respectively
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Abstract. Every lower bound for treewidth can be extended by taking
the maximum of the lower bound over all subgraphs or minors. This ex-
tension is shown to be a very vital idea for improving treewidth lower
bounds. In this paper, we investigate a total of nine graph parameters,
providing lower bounds for treewidth. The parameters have in common
that they all are the vertex-degree of some vertex in a subgraph or minor
of the input graph. We show relations between these graph parameters
and study their computational complexity. To allow a practical compar-
ison of the bounds, we developed heuristic algorithms for those param-
eters that are NP -hard to compute. Computational experiments show
that combining the treewidth lower bounds with minors can considerably
improve the lower bounds.

1 Introduction

Many combinatorial optimisation problems take a graph as part of the input.
If this graph belongs to a specific class of graphs, typically more efficient al-
gorithms are available to solve the problem, compared to the general case. In
case of trees for example, many NP -hard optimisation problems can be solved
in polynomial time. Over the last decades, it has been shown that many NP -
hard combinatorial problems can be solved in polynomial time for graphs with
treewidth bounded by a constant. Until recently, it was assumed that these re-
sults were of theoretical interest only. By means of the computation of so-called
exact inference in probabilistic networks [17] as well as the frequency assign-
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algorithm to compute the optimal solution can be used in practice as well.
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Polynomial time algorithms for solving combinatorial problems on a graph
of bounded treewidth consist of two steps: (i) the construction of a tree decom-
position of the graph with width as small as possible, and (ii) the application
of dynamic programming on the tree decomposition to find the optimal solution
of the combinatorial problem. Whereas the first step can be applied without
knowledge of the application, the second step requires the development of an
algorithm tailor-made for the specific application.

To exploit the full potential of tree decomposition approaches for as many
combinatorial problems as possible, the first step is of fundamental importance.
The smallest possible width of a tree decomposition is known as the treewidth of
the graph. Computing the treewidth is however NP -hard [1]. To advance towards
tree decompositions with close-to-optimal width, research in recent years has
been carried out on practical algorithms for reduction and decomposition of the
input graph [5, 6, 11], upper bounds [10, 9, 14], lower bounds [4, 7, 10, 18, 20], and
exact algorithms (e.g. [12]).

In this paper, we research treewidth lower bounds that are based on the de-
gree of specific vertices. Good treewidth lower bounds can be utilised to decrease
the running time of branch-and-bound algorithms (see e.g. [12]). The better the
lower bounds, the bigger the branches that can be pruned in a branch-and-bound
method. Furthermore, treewidth lower bounds are useful to estimate the running
times of dynamic programming methods that are based on tree decompositions.
Such methods have running times that are typically exponential in the treewidth.
Therefore, a large lower bound on the treewidth of a graph implies only little
hope for an efficient dynamic programming algorithm based on a tree decompo-
sition of that graph. In addition, lower bounds in connection with upper bounds
help to assess the quality of these bounds.

Every lower bound for treewidth can be modified by taking the maximum
of the lower bound over all subgraphs or minors. In [7, 8] this idea was used to
obtain considerable improvements on two lower bounds: the minimum degree of
a graph and the MCSLB lower bound by Lucena [18].

In this paper, we extend our research efforts to improve the quality of fur-
ther known lower bounds in this way. One lower bound for treewidth is given by
the second smallest degree, another one by the minimum over all non-adjacent
pairs of vertices of the maximum degree of the vertices (cf. Ramachandra-
murthi [20]). Altogether, we examine nine parameters (defined in Section 2)
and determine some relationships between them (see Section 3.1). We show
that the second smallest degree over all subgraphs is computable in polyno-
mial time, whereas the parameters for other combinations are NP -hard to com-
pute (see Section 3.2). In this extended abstract, however, we omit full proofs.
For the parameters that are NP -hard to compute, we develop several algo-
rithms in Section 4.2 to obtain treewidth lower bounds heuristically. A compu-
tational evaluation (Section 4.3 and 4.4) of the algorithms shows that the heuris-
tics where we combine a lower bound with edge contraction outperforms other
strategies.
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2 Preliminaries and Graph Parameters

Throughout the paper G = (V,E) denotes a simple undirected graph. Unless
otherwise stated, n(G) (or simply n) denotes the number of vertices in G, i.e. n :=
|V |, and m(G) (or simply m) denotes the number of edges m := |E|. Most
of our terminology is standard graph theory/algorithm terminology. The open
neighbourhood NG(v) or simply N(v) of a vertex v ∈ V is the set of vertices
adjacent to v in G. As usual, the degree in G of vertex v is dG(v) or simply d(v),
and we have d(v) = |N(v)|. N(S) for S ⊆ V denotes the open neighbourhood of
S, i.e. N(S) =

⋃
s∈S N(s) \ S.

Subgraphs and Minors. After deleting vertices of a graph and their incident
edges, we get an induced subgraph. A subgraph is obtained, if we additionally
allow deletion of edges. (We use G′ ⊆ G to denote that G′ is a subgraph of G.)
If we furthermore allow edge-contractions, we get a minor (denoted as G′ � G,
if G′ is a minor of G). Contracting edge e = {u, v} in the graph G = (V,E)
is the operation that introduces a new vertex ae and new edges such that ae is
adjacent to all the neighbours of u and v, and deletes vertices u and v and all
edges incident to u or v.

Treewidth. The notions treewidth and tree decomposition were introduced by
Robertson and Seymour in [21]. A tree decomposition of G = (V,E) is a pair
({Xi | i ∈ I}, T = (I, F )), with {Xi | i ∈ I} a family of subsets of V and T
a tree, such that each of the following holds:

⋃
i∈I Xi = V ; for all {v, w} ∈ E,

there is an i ∈ I with v, w ∈ Xi; and for all i0, i1, i2 ∈ I: if i1 is on the path
from i0 to i2 in T , then Xi0 ∩ Xi2 ⊆ Xi1 . The width of tree decomposition
({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1. The treewidth tw(G) of G is the
minimum width among all tree decompositions of G. The following lemma is
well known and an important fact for proving the parameters, considered in this
paper, to be treewidth lower bounds.

Lemma 1 (see e.g. [3]). If G′ is a minor of G, then tw(G′) ≤ tw(G).

Graph Parameters. We consider a number of graph parameters in this paper,
all lower bounds on the treewidth of a graph, cf. Section 3. The minimum degree
δ of a graph G is defined as usual: δ(G) := minv∈V d(v)

The δ-degeneracy or simply the degeneracy δD of a graph G is defined in [2]
to be the minimum number s such that G can be reduced to an empty graph
by the successive deletion of vertices with degree at most s. It is easy to see
that this definition of the degeneracy is equivalent (see [24]) to the following
definition: δD(G) := maxG′{δ(G′) | G′ ⊆ G ∧ n(G′) ≥ 1} The treewidth of
G is at least its degeneracy (see also [14]). The δ-contraction degeneracy or
simply the contraction degeneracy δC of a graph G was first defined in [7]. In-
stead of deleting a vertex v of minimum degree, we contract it to a neighbour
u, i.e. we contract the edge {u, v}. This has been proven to be a very vital
idea for obtaining treewidth lower bounds [7, 8]. The contraction degeneracy
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is defined as the maximum over all minors G′ of G of the minimum degree:
δC(G) := maxG′{δ(G′) | G′ � G ∧ n(G′) ≥ 1}

Let be given an ordering v1, ..., vn of the vertices of G with n ≥ 2, such that
d(vi) ≤ d(vi+1), for all i ∈ {1, ..., n−1}. The second smallest degree δ2 of a graph
G is defined as: δ2(G) := d(v2) Note that it is possible that δ(G) = δ2(G). Similar
to the δ-degeneracy and δ-contraction-degeneracy we define the δ2-degeneracy
and δ2-contraction-degeneracy. The δ2-degeneracy δ2D of a graph G = (V,E)
with n ≥ 2 is defined as follows: δ2D(G) := maxG′{δ2(G′) | G′ ⊆ G ∧ n(G′) ≥
2} The δ2-contraction degeneracy δ2C of a graph G = (V,E) with n ≥ 2 is:
δ2C(G) := maxG′{δ2(G′) | G′ � G ∧ n(G′) ≥ 2}

In [19, 20], Ramachandramurthi introduced the parameter γR(G) of a graph
G and proved that this is a lower bound on the treewidth of G. γR(G) :=
min(n − 1,minv,w∈V,v �=w,{v,w}�∈E max(d(v), d(w))) Note that γR(G) = n − 1 if
and only if G is a complete graph on n vertices. Furthermore, note that γR(G) is
determined by a pair {v, w} �∈ E with max(d(v), d(w)) is as small as possible. We
say that {v, w} is a non-edge determining γR(G), and if d(v) ≤ d(w) then we say
that w is a vertex determining γR(G). Once again, we define the ‘degeneracy’ and
‘contraction degeneracy’ versions also for the parameter γR. The γR-degeneracy
γRD(G) of a graph G = (V,E) with n ≥ 2 is defined as follows: γRD(G) :=
maxG′{γR(G′) | G′ ⊆ G∧n(G′) ≥ 2} The γR-contraction degeneracy γRC(G) of
a graph G = (V,E) with n ≥ 2 is defined as: γRC(G) := maxG′{γR(G′) | G′ �
G ∧ n(G′) ≥ 2}.

3 Theoretical Results

3.1 Relationships Between the Parameters

Lemma 2. For a graph G = (V,E) with |V | ≥ 2, x ∈ {δ, δ2, γR} and X ∈
{D,C}, each of the following holds:

1. δ(G) ≤ δ2(G) ≤ γR(G) ≤ tw(G)
2. x(G) ≤ xD(G) ≤ xC(G) ≤ tw(G)
3. δX(G) ≤ δ2X(G) ≤ γRX(G) ≤ tw(G)
4. δ2X(G) ≤ δX(G) + 1
5. γRX(G) ≤ 2 · δ2X(G)

It follows directly from Lemma 2 that all the parameters defined in Section 2
are lower bounds for treewidth. Furthermore, we see that the gap between the
parameters δD and δ2D, and between δC and δ2C can be at most one (see
Lemma 2). In Section 3.2, we will see that δ2D can be computed in polynomial
time. Therefore, Lemma 2 gives us a 2-approximation algorithm for computing
the parameter γRD. Also in Section 3.2, we will see that γRD is NP -hard to
compute.

The next lemma shows some interesting properties of the parameter γR, when
given a vertex sequence sorted according to non-decreasing degree.
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Lemma 3. Let be given a graph G on n vertices with G �= Kn. Furthermore,
let be given an ordering v1, ..., vn of V (G), such that d(vi) ≤ d(vi+1), for all
i ∈ {1, ..., n−1}. We define j := min{i ∈ {1, ..., n} | ∃l ∈ {1, ..., i−1} : {vi, vl} �∈
E(G)}. Then we have:

1. d(vj) = γR(G)
2. v1, ..., vj−1 form a clique in G

3.2 Computational Complexity of the Parameters

A Bucket Data Structure

In this section, we briefly describe a data structure that can be used in many of
our algorithms. A more detailed description can be found in [24]. We extend the
standard adjacency-list data structure of a graph G = (V,E) in the following
way. We store in doubly linked lists the adjacent vertices for every vertex of the
graph, and we also use cross pointers for each edge {vi, vj} (i.e. a pointer between
vertex vi in the adjacency-list for vertex vj and vertex vj in the adjacency-list
for vertex vi). In addition to this advanced-adjacency-list, we create n = |V |
buckets that can be implemented by doubly-linked lists B0, ..., Bn−1. List Bd

contains exactly those vertices with degree d. We maintain a pointer p(v) for
every vertex v that points to the exact position in the list Bd that contains v
for the appropriate d.

Lemma 4 (see [24]). Let be given a graph G = (V,E) with n = |V | and
m = |E|. An algorithm performing a sequence of O(n) vertex deletions and
searches for a vertex with smallest or second smallest degree can be implemented
to use O(n + m) time.

Known Results

It is easy to see that δ(G) and δ2(G) can be computed in O(n + m) time. Also
the parameter γR(G) can be computed in O(n+m) time, see [19] or Section 4.1.
Interestingly enough, the definition of the degeneracy as in [2] (see also Section 2)
reflects an algorithm to compute this parameter: Successively delete a vertex of
minimum degree and return the maximum of the encountered minimum degrees.
Using the data structure described in this section, δD(G) can be computed in
time O(n + m). Computing δC is NP -hard as is shown in [7].

δ2D Is Computable in Polynomial Time

A strategy to compute δ2D is as follows. We can fix a vertex v of which we
suppose it will be the vertex of minimum degree in a subgraph G′ of G with
δ2(G′) = δ2D(G). Starting with the original graph, we successively delete a
vertex in V (H) \ {v} of smallest degree, where H is the current considered
subgraph of G (initially: H = G). Since we do not know whether our choice of
v was optimal, doing this for all vertices v ∈ V leads to a correct algorithm to
compute δ2D(G). Using the bucket data structure, described above, this method
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Fig. 1. An overview of some theoretical results

can be implemented to take O(n ·m) time. We call this algorithm Delta2D. The
following pseudo-code makes this algorithm more precise.

Algorithm Delta2D

1 delta2D := 0
2 for each v ∈ V do

3 H := G
4 repeat

5 if δ2(H) > delta2D then delta2D := δ2(H) endif

6 V ∗ := V (H) \ {v}
7 let u ∈ {w ∈ V ∗ | � ∃w′ ∈ V ∗ : dH(w′) < dH(w)}
8 H := H[V (H) \ {u}]
9 until |V (H)| = 1
10 endfor

11 return delta2D

Lemma 5. Algorithm Delta2D computes δ2D(G) and can be implemented to
run in O(n ·m) time, for a given connected graph G = (V,E) with |V | ≥ 2.

NP -completeness Results

Here, we will state the computational hardness of the decision problems corre-
sponding to the parameters γRD, γRC and δ2C.

Theorem 1. Let G be a graph, G′ be a bipartite graph and k be an integer.
Each of the following is NP -complete to decide: γRD(G) ≥ k, γRC(G′) ≥ k and
δ2C(G) ≥ k.

Figure 1 represents some of the theoretical results. A thick line between
two parameters indicates that the parameter below is smaller or equal to the
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parameter above, as stated by Lemma 2. The thin line marks the border between
polynomial computability and NP -hardness of the corresponding parameters
(see Theorem 1 and other results in Section 3.2).

4 Experimental Results

In this section, we describe exact and heuristic algorithms, which we used in our
experiments to compute the corresponding parameters.

4.1 Exact Algorithms

An implementation of algorithms to compute δ and δ2 is straightforward. It is
obvious that, in linear time, both parameters can be computed exactly. The
parameters δD and δ2D were computed as described in Section 3.2. Ramachan-
dramurthi shows in [19] that γR can be computed in O(n + m) time. In our
experiments, we use a different algorithm that does not use an adjacency ma-
trix. See the full version of this article ([16]) for more details.

4.2 Heuristics

For the parameters that are NP -hard to compute, we have developed heuristics
some of which are based on the polynomial counterparts.

γR-degeneracy: For the γRD, we developed three heuristics based on the follow-
ing observation: Let v1, ..., vn be a sorted sequence of the vertices according to
non-decreasing degree in G, and let γR(G) be determined by vj for some j > 1
(see Lemma 3). Thus, vj is not adjacent to some vertex vk with k < j, whereas
v1, ..., vj−1 induce a clique in G. Let V ′ be the set of all vertices vi with i < j
and {vi, vj} �∈ E. Now, for any subgraph G′ ⊂ G with ({vj} ∪ V ′) ⊆ V (G′), we
have that γR(G′) ≤ γR(G). Hence, only subgraphs without either vj or V ′ are
of further interest. Based on this observation, we implemented two heuristics.
In the heuristic γRD-left, we remove the vertices in V ′ (the vertices that are
more to the left in the sequence) from the graph and continue. Whereas in the
heuristic γRD-right, we delete the vertex vj (the vertex that is more to the right
in the sequence) and go to the next iteration.

δ-contraction degeneracy: For computing lower bounds for δC, we have exam-
ined various strategies for contraction in [7]. The most promising one has been
to recursively contract a vertex of minimum degree with a neighbour that has
the least number of common neighbours (denoted as the least-c strategy).

δ2-contraction degeneracy: For δ2C we implemented three heuristic algorithms.
The first one, all-v is based on the polynomial time implementation for δ2D.
We fix all vertices once at a time and perform the δC heuristic (with least-c
strategy) on the rest of the graph. The best second smallest degree recorded
provides a lower bound on δ2C. The other two δ2C-heuristics are based on
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the algorithms for δC. Instead of recording the minimum degree we also can
record the second smallest degree (Maximum Second Degree with contraction,
abbreviated as MSD+). If we contract a vertex of minimum degree with one
of its neighbours (according to the least-c strategy), we obtain the algorithm
MSD+1. If the vertex of second smallest degree is contracted with one of its
neighbours (also according to the least-c strategy), we obtain the algorithm
MSD+2.

γR-contraction degeneracy: For γRC the same strategies as for γRD have been
implemented. The only difference is that instead of removing all vertices in V ′ or
vj , we contract each of the vertices with a neighbour that is selected according
to the least-c strategy. Inspired by the good results of the ‘δ2C all-v’ heuristic,
we furthermore implemented the all-v strategy as described above also for the
γR-contraction degeneracy. The difference is that instead of computing δ2 of each
obtained minor, we now compute γR.

4.3 Experiments

The algorithms and heuristics described above have been tested on a large num-
ber of graphs from various application areas such as probabilistic networks,
frequency assignment, travelling salesman problem and vertex colouring (see
e.g. [7, 8] for details). All algorithms have been written in C++, and the com-
putations have been carried out on a Linux operated PC with a 3.0 GHz Intel
Pentium 4 processor. Many of the tested graphs as well as most of the exper-
imental results on their treewidth (from, among others, [7, 8] and this article)
can be obtained from [23].

In the tables below, we present the results for some selected instances only.
The result of these representative instances reflect typical behaviour for the
whole set of instances. The best known upper bound for treewidth (see [14]) is
reported in the column with title UB. Columns headed by LB give treewidth
lower bounds in the terms of the according parameter or a lower bound for the
parameter. The best lower bounds in the tables are highlited in bold font. Values
in columns headed by CPU are running times in seconds.

Table 1 shows the sizes of the graphs, and the results obtained for the
treewidth lower bounds without contraction. These bounds are the exact pa-
rameters apart from the values for the two γRD-heuristics. As the computation
times for δ, δ2 and γR are negligible, we omit them in the table. Also the δD
can be computed within a fraction of a second. The computational complexity
of δ2D is O(n) larger than the one of δD which is reflected in the CPU times
for this parameter.

Table 2 shows the results for the same graphs as in Table 1. Furthermore, in
Table 2, we give the treewidth lower bounds according to the parameters that
involve contraction. For δC, we only give the results of the least-c strategy, as
this seems to be the most promising one (see [7]). For δ2C and γRC, the results
of the heuristics as described in Section 4.2 are shown.
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Table 1. Graph sizes, upper bounds and lower bounds without contractions

instance size δ δ2 γR δD δ2D γRD
left right

|V | |E| UB LB LB LB LB CPU LB CPU LB CPU LB CPU

link 724 1738 13 0 0 0 4 0.01 4 3.67 4 0.01 4 0.01
munin1 189 366 11 1 1 1 4 0.00 4 0.23 4 0.00 4 0.00
munin3 1044 1745 7 1 1 1 3 0.01 3 6.70 3 0.02 3 0.01
pignet2 3032 7264 135 2 2 2 4 0.04 4 69.87 4 0.04 4 0.05
celar06 100 350 11 1 1 1 10 0.01 11 0.08 11 0.00 10 0.00
celar07pp 162 764 18 3 3 3 11 0.01 12 0.27 12 0.00 11 0.01
graph04 200 734 55 3 3 3 6 0.01 6 0.36 6 0.00 6 0.00
rl5934-pp 904 1800 23 3 3 3 3 0.01 3 5.33 3 0.01 3 0.01
school1 385 19095 188 1 1 1 73 0.04 74 7.89 75 0.03 73 0.03
school1-nsh 352 14612 162 1 1 1 61 0.02 62 5.69 62 0.03 61 0.02
zeroin.i.1 126 4100 50 28 29 32 48 0.00 48 0.58 50 0.01 50 0.01

Table 2. Treewidth lower bounds with contraction

instance δC δ2C γRC
least-c all-v MSD+1 MSD+2 left right all-v

LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

link 11 0.02 12 17.27 11 0.02 11 0.03 11 0.02 12 0.02 12 150.13
munin1 10 0.01 10 0.58 10 0.00 10 0.00 9 0.01 10 0.00 10 3.07
munin3 7 0.01 7 13.20 7 0.01 7 0.02 7 0.01 7 0.02 7 312.92
pignet2 38 0.11 40 369.00 39 0.12 39 0.14 38 0.12 39 0.12 40 11525.1
celar06 11 0.00 11 0.16 11 0.01 11 0.00 11 0.00 11 0.00 11 0.30
celar07pp 15 0.00 15 0.77 15 0.01 15 0.01 15 0.00 15 0.01 15 2.08
graph04 20 0.01 20 2.72 20 0.01 19 0.01 20 0.02 19 0.01 21 4.78
rl5934-pp 5 0.02 6 36.12 5 0.02 5 0.03 5 0.03 6 0.02 6 221.72
school1 122 0.48 124 180.30 123 0.48 122 0.51 122 0.45 122 0.49 125 215.35
school1-nsh 106 0.37 108 173.51 106 0.35 107 0.38 104 0.34 106 0.36 108 146.19
zeroin.i.1 50 0.03 50 6.25 50 0.03 50 0.03 50 0.03 50 0.03 50 5.43

4.4 Discussion

The results of algorithms and heuristics that do not involve edge-contractions
(Table 1) show that the degeneracy lower bounds (i.e. the lower bounds involv-
ing subgraphs) are significantly better than the simple lower bounds, as could
be expected. Comparing the results for δD and δ2D, we see that in four cases we
have that δ2D = δD + 1. In the other seven cases δ2D = δD. Bigger gaps than
one between δD and δ2D are not possible (confirm Lemma 2). In some cases
other small improvements (compared to δD and δ2D) could be obtained by the
heuristics for γRD. The two γRD-heuristics are all comparable in value and run-
ning times. Apart from the running times for computing δ2D, the computation
times are in all cases marginal, which is desirable for methods involving com-
puting lower bounds many times (e.g. branch & bound). Even though the δ2D
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algorithm has much higher running times than the other algorithms in Table 1,
it is still much faster than some heuristics with contraction. Furthermore, we
expect that its running time could be improved by a more efficient implementa-
tion. No further investigations about parameters without contraction have been
carried out as the parameters with contraction are of considerably more interest.

We can see that when using edge-contractions, the treewidth lower bounds
can be significantly improved (compare Table 2 with Table 1). The results show
that values for δ2C are typically equal or only marginal better than the value for
δC. The same is true for γRC with respect to δ2C. The best results are obtained
by the most time consuming algorithms: δ2C and γRC with all-v strategy. By
construction of the heuristic for γRC with all-v strategy, it is clear that it is at
least as good as the heuristic for δ2C with all-v strategy. Sometimes, it is even
a little bit better. As in the case of the δ2D algorithm, the computation times
of the δ2C and γRC heuristics with all-v strategy could probably be improved
by more efficient implementations. The other strategies for δ2C and γRC are
comparable in value and running times. No clear trend between them could be
identified. In a few cases, we can observe that the gap between δC and δ2C
is more than one. This does not contradict Lemma 2, because the considered
values are not the exact values. Different strategies for heuristics can result in
different values with larger gaps between them. With the same argument, we
can explain that in a few cases lower bounds of one parameter that in theory is
at least as good as another parameter can be smaller than lower bounds of the
other parameter.

As said above, using γR instead of δ2 in the degeneracy and contraction
degeneracy heuristics, gives only small improvements in some cases. Therefore,
the ratio of two between those parameters as stated in Lemma 2 is far from
the ratios observed in our experiments. Proving a smaller ratio and/or finding a
graph with ratio as large as possible, remains a topic for further research.

It was already remarked in [7] that the δ-contraction degeneracy of a planar
graph can never be larger than 5. In fact, we have that δC(G) ≤ δ2C(G) ≤
γ(G)+5, where γ denotes the genus of a graph (see [24]). This behaviour can be
observed in our experiments, e.g. for the graph rl5934-pp, which is expected to
be nearly planar. However, the γR-contraction degeneracy might be larger than
γ(G) + 5.

5 Conclusions

In this article, we continued our research in [7] on degree-based treewidth lower
bounds, where we combined the minimum degree lower bound with subgraphs
and edge-contraction/minors. Here, we applied this combination to two other
treewidth lower bounds, namely the second smallest degree lower bound and the
Ramachandramurthi lower bound [19].

We obtained theoretical results showing how the parameters are related to
each other. We also examined the computational complexity of the parame-
ters. Here, it is interesting to note that all contraction degeneracy problems are
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NP -hard, while the degeneracy problems are polynomial, except for the γR-
degeneracy, which has been shown to be NP -hard.

In our experiments, we could observe potent improvements when compar-
ing the simple parameters with their degeneracy counterparts. An even bigger
improvement was achieved when edge-contractions were involved. Therefore, we
can conclude that the incorporation of contraction improves the lower bounds
for treewidth considerably. However, the added value of δ2C and γRC in com-
parison to δC is from a practical perspective marginal. The best lower bounds
for δ2C and γRC were obtained by heuristics with considerably long running
times. Hence, if the lower bound has to be computed frequently, e.g. within a
branch-and-bound algorithm, it is advisable to first compute a lower bound for
δC, and only in tight cases using a slower but hopefully better lower bound.

It remains an interesting topic to research other treewidth lower bounds that
can be combined with minors, in the hope to obtain large improvements. Further-
more, good lower bounds for graphs with bounded genus are desirable, because
lower bounds based on δ, δ2 or γR do not perform very well on such graphs
(see [24]). However, treewidth lower bounds for planar graphs (i.e. graphs with
genus zero) can be obtained e.g. by computing the branchwidth of the graph
(see [13, 22]).
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Abstract. Recent techniques for inferring business relationships be-
tween ASs [1, 2] have yielded maps that have extremely few invalid BGP
paths in the terminology of Gao [3]. However, some relationships in-
ferred by these newer algorithms are incorrect, leading to the deduction
of unrealistic AS hierarchies. We investigate this problem and discover
what causes it. Having obtained such insight, we generalize the problem
of AS relationship inference as a multiobjective optimization problem
with node-degree-based corrections to the original objective function of
minimizing the number of invalid paths. We solve the generalized ver-
sion of the problem using the semidefinite programming relaxation of
the MAX2SAT problem. Keeping the number of invalid paths small, we
obtain a more veracious solution than that yielded by recent heuristics.

1 Introduction

As packets flow in the Internet, money also flows, not necessarily in the same di-
rection. Business relationships between ASs reflect both flows, indicating a direc-
tion of money transfer as well as a set of constraints to the flow of traffic. Knowing
AS business relationships is therefore of critical importance to providers, ven-
dors, researchers, and policy makers, since such knowledge sheds more light on
the relative “importance” of ASs.

The problem is also of multidimensional interest to the research community.
Indeed, the Internet AS-level topology and its evolutionary dynamics result from
business decisions among Internet players. Knowledge of AS relationships in the
Internet provides a valuable validation framework for economy-based Internet
topology evolution modeling, which in turn promotes deeper understanding of
the fundamental laws driving the evolution of the Internet topology and its
hierarchy.
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Unfortunately, the work on inferring AS relationships from BGP data has
recently encountered difficulties. We briefly describe this situation in its historical
context.

Gao introduces the AS relationship inference problem in her pioneering pa-
per [3]. This work approximates reality by assuming that any AS-link is of
one of the following three types: customer-provider, peering, or sibling. If all
ASs strictly adhere to import and export policies described in [3], then every
BGP path must comply with the following hierarchical pattern: an uphill seg-
ment of zero or more customer-to-provider or sibling-to-sibling links, followed by
zero or one peer-to-peer links, followed by a downhill segment of zero or more
provider-to-customer or sibling-to-sibling links. Paths with the described hierar-
chical structure are deemed valid. After introducing insight about valid paths,
Gao proposes an inference heuristic that identifies top providers and peering
links based on AS degrees and valid paths.

In [4], Subramanian et al. (SARK) slightly relax the problem by not infer-
ring sibling links, and introduce a more consistent and elegant mathematical
formulation. The authors render the problem into a combinatorial optimization
problem: given an undirected graph G derived from a set of BGP paths P , assign
the edge type (customer-provider or peering) to every edge in G such that the
total number of valid paths in P is maximized. The authors call the problem
the type-of-relationship (ToR) problem, conjecture that it is NP-complete, and
provide a simple heuristic approximation.

Di Battista et al. (DPP) in [1] and independently Erlebach et al. (EHS) in [2]
prove that the ToR problem is indeed NP-complete. EHS prove also that it is even
harder, specifically APX-complete.1 More importantly for practical purposes,
both DPP and EHS make the straightforward observation that peering edges
cannot be inferred in the ToR problem formulation. Indeed, as the validation
data presented by Xia et al. in [5] indicates, only 24.63% of the validated SARK
peering links are correct.

Even more problematic is the following dilemma. DPP (and EHS) come
up with heuristics that outperform the SARK algorithm in terms of produc-
ing smaller numbers of invalid paths [1, 2]. Although these results seem to be a
positive sign, closer examination of the AS relationships produced by the DPP
algorithm [6] reveals that the DPP inferences are further from reality than the
SARK inferences. In the next section we show that improved solutions to the ToR
problem do not yield practically correct answers and contain obviously misiden-
tified edges, e.g. well-known global providers appear as customers of small ASs.
As a consequence, we claim that improved solutions to the unmodified ToR
problem do not produce realistic results.

An alternative approach to AS relationship inference is to disregard BGP
paths and switch attention to other data sources (e.g. WHOIS) [7, 8], but noth-

1 There exists no polynomial-time algorithm approximating an APX-complete
problem above a certain inapproximability limit (ratio) dependent on the partic-
ular problem.
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ing suggests that we have exhausted all possibilities of extracting relevant infor-
mation from BGP data. Indeed, in this study we seek to answer the following
question: can we adjust the original (ToR) problem formulation, so that an algo-
rithmic solution to the modified problem would yield a better answer from the
practical perspective?

The main contribution of this paper is that we positively answer this question.
We describe our approach and preliminary results in the subsequent two sections,
and conclude by describing future directions of this work.

2 Methodology

2.1 Inspiration Behind Our Approach

The main idea behind our approach is to formalize our knowledge regarding why
improved solutions to the ToR problem fail to yield practically right answers.
To this end we reformulate the ToR problem as a multiobjective optimization
problem introducing certain corrections to the original objective function. We
seek a modification of the original objective function, such that the minimum of
the new objective function reflects an AS relationship mapping that is closer to
reality.

2.2 Mapping to 2SAT

To achieve this purpose, we start with the DPP and EHS results [1, 2] that deliver
the fewest invalid paths. Suppose we have a set of BGP paths P from which we
can extract the undirected AS-level graph G(V,E). We introduce direction to
every edge in E from the customer AS to the provider AS. Directing edges in E
induces direction of edges in P . A path in P is valid if it does not contain the
following invalid pattern: a provider-to-customer edge followed by a customer-to-
provider edge. The ToR problem is to assign direction to edges in E minimizing
the number of paths in P containing the invalid pattern.

The problem of identifying the directions of all edges in E making all paths
in P valid—assuming such edge orientation exists—can be reduced to the 2SAT
problem.2 Initially, we arbitrarily direct all edges in E and introduce a boolean
variable xi for every edge i, i = 1 . . .

∣∣E∣∣. If the algorithms described below assign
the value true to xi, then edge i keeps its original direction, while assignment of
false to xi reverses the direction of i. We then split each path in P into pairs of
adjacent edges involving triplets of ASs (all 1-link paths are always valid) and
perform mapping between the obtained pairs and 2-variable clauses as shown
in Table 1. The mapping is such that only clauses corresponding to the invalid
path pattern yield the false value when both variables are true. If there exists

2 2SAT is a variation of the satisfiability problem: given a set of clauses with two
boolean variables per clause li ∨ lj , find an assignment of values to variables satisfy-
ing all the clauses. MAX2SAT is a related problem: find the assignment maximizing
the number of simultaneously satisfied clauses.
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Table 1. Mapping between pairs of adjacent edges in P , 2SAT clauses, and edges

in G2SAT . The invalid path pattern is in the last row

Edges in P 2SAT clause Edges in G2SAT

i j
xi ∨ xj

xixi

xi xj

xj

i j
xi ∨ x̄j

xixi

xi xj

xj

i j
x̄i ∨ xj

xixi

xi xj

xj

i j
x̄i ∨ x̄j

xixi

xi xj

xj

an assignment of values to all the variables such that all clauses are satisfied,
then this assignment makes all paths valid.

To solve the 2SAT problem, we construct a dual graph, the 2SAT graph
G2SAT (V2SAT , E2SAT ), according to the rules shown in Table 1: every edge i ∈ E
in the original graph G gives birth to two vertices xi and x̄i in V2SAT , and every
pair of adjacent links li ∨ lj in P , where literal li (lj) is either xi (xj) or x̄i (x̄j),
gives birth to two directed edges in E2SAT : from vertex l̄i to vertex lj and from
vertex l̄j to vertex li. As shown in [9], there exists an assignment satisfying all
the clauses if there is no edge i such that both of its corresponding vertices in
the 2SAT graph, xi, x̄i ∈ V2SAT , belong to the same strongly connected compo-
nent3 (SCC) in G2SAT .

If an assignment satisfying all the clauses exists we can easily find it. We
perform topological sorting4 t on nodes in V2SAT and assign true or false to a
variable xi depending on if t(x̄i) < t(xi) or t(xi) < t(x̄i) respectively. All opera-
tions described so far can be done in linear time.

2.3 MAX2SAT: DPP Versus EHS

As soon as a set of BGP paths P is “rich enough,” there is no assignment
satisfying all clauses and making all paths valid. Furthermore, the ToR problem
of maximizing the number of valid paths can be reduced to the MAX2SAT [1, 2]

3 An SCC is a set of nodes in a directed graph s. t. there exists a directed path between
every ordered pair of nodes.

4 Given a directed graph G(V, E), function t : V �→ R is topological sorting if
t(i) ≤ t(j) for every ordered pair of nodes i, j ∈ V s. t. there exists a directed path
from i to j.
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problem of maximizing the number of satisfied clauses. Making this observation,
DPP propose a heuristic to find the maximal subset of paths PS ⊂ P such that
all paths in PS are valid.

EHS use a different approach. They first direct the edges i ∈ E that can be di-
rected without causing conflicts. Such edges correspond to vertices xi, x̄i ∈ V2SAT

that have indegree or outdegree zero. Then EHS iteratively remove edges directed
as described above and strip P , G, and G2SAT accordingly. This procedure signif-
icantly shortens the average path length in P , which improves the approximation
of ToR by MAX2SAT. Finally, they approximate MAX2SAT to find a solution
to the ToR problem.

2.4 Solving MAX2SAT with SDP

The MAX2SAT problem is NP- and APX-complete [10], but Goemans and
Williamson (GW) [11] construct a famous approximation algorithm that uses
semidefinite programming (SDP) and delivers an approximation ratio of 0.878.
The best approximation ratio currently known is 0.940, due to improvements
to GW by Lewin, Livnat, and Zwick (LLZ) in [12]. Note that this approximation
ratio is pretty close to the MAX2SAT inapproximability limit of 21

22 ∼ 0.954 [13].
To cast a MAX2SAT problem with m2 clauses involving m1 literals (vari-

ables xi and their negations x̄i, i = 1 . . . m1) to a semidefinite program, we first
get rid of negated variables by introducing m1 variables xm1+i = x̄i. Then we
establish mapping between boolean variables xk, k = 1 . . . 2m1, and 2m1 + 1 aux-
iliary variables y0, yk ∈ {−1, 1}, ym1+i = −yi, using formula xk = (1 + y0yk)/2.
This mapping guarantees that xk = true⇔ yk = y0 and xk = false⇔ yk = −y0.
Given the described construction, we call y0 the truth variable. After trivial al-
gebra, the MAX2SAT problem becomes the maximization problem for the sum
1/4
∑2m1

k,l=1 wkl(3 + y0yk + y0yl − ykyl), where weights wkl are either 1 if clause
xk ∨ xl is present in the original MAX2SAT instance or 0 otherwise. Hereafter
we fix the notations for indices i, j = 1 . . . m1 and k, l = 1 . . . 2m1.

The final transformation to make the problem solvable by SDP is relaxation.
Relaxation involves mapping variables y0, yk to 2m1+1 unit vectors v0,vk∈Rm1+1

fixed at the same origin—all vector ends lie on the unit sphere Sm1 . The problem
is to maximize the sum composed of vector scalar products:

max
1
4

2m1∑
k,l=1

wkl(3 + v0 · vk + v0 · vl − vk · vl) (1)

s.t. v0 · v0 = vk · vk = 1, vi · vm1+i = −1,

k = 1 . . . 2m1, i = 1 . . . m1.

Interestingly, this problem, solvable by SDP, is equivalent to the following
minimum energy problem in physics. Vectors v0, vk point to the locations of par-
ticles p0, pk freely moving on the sphere Sm1 except that particles pi and pm1+i

are constrained to lie opposite on the sphere. For every MAX2SAT clause xk ∨ xl,
we introduce three constant forces of equal strength (see Fig. 1): one repulsive
force between particles pk and pl, and two attractive forces: between pk and p0,



118 X. Dimitropoulos et al.

Fig. 1. The semidefinite programming relaxation to the MAX2SAT problem. Point p0

(corresponding to vector v0 from the text) is the truth point. It attracts both points pk

and pl representing the boolean variables from the clause xk ∨ xl. Points pk and pl repel
each other. The problem is to identify the locations of all points on the sphere that
minimize the potential energy of the system. Given an orientation by SDP, we cut the
system by a random hyperplane and assign value true to the variables corresponding
to points lying on the same side of the hyperplane as the truth p0

and between pl and p0—the truth particle p0 attracts all other particles pk with
the forces proportional to the number of clauses containing xk. The goal is to
find the location of particles on the sphere minimizing the potential energy of
the system. If we built such a mission-specific computer in the lab, it would solve
this problem in constant time. SDP solves it in polynomial time.

To extract the solution for the MAX2SAT problem from the solution obtained
by SDP for the relaxed problem, we perform rounding. Rounding involves cut-
ting the sphere by a randomly oriented hyperplane containing the sphere center.
We assign value true (false) to variables xk corresponding to vectors vk ly-
ing on the same (opposite) side of the hyperplane as the truth vector v0. GW
prove that the solution to the MAX2SAT problem obtained this way delivers
the approximation ratio of 0.878 [11]. We can also rotate the vector output
obtained by SDP before rounding and skew the distribution of the hyperplane
orientation to slightly prefer the orientation perpendicular to v0. These two tech-
niques explored to their greatest depths by LLZ improve the approximation ratio
up to 0.9401 [12].

2.5 Analysis of the Unperturbed Solution

We now have the solution to the original ToR problem and are ready to an-
alyze it. While the number of invalid paths is small [2], the solution is not
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perfect—some inferred AS relationships are not in fact accurate. What causes
these misclassifications?

First, some edges may be directed either way resulting in exactly the same
number of invalid paths—such edges are directed randomly. To exemplify, con-
sider path p ∈ P , p = {i1i2 . . . i|p|−1j}, i1, i2, . . . , i|p|−1, j ∈ E, and suppose that
the last edge j appears only in one path (that is, p) and that it is from some
large provider (like UUNET) to a small customer. Suppose that other edges
i1, i2, . . . , i|p|−1 appear in several other paths and that they are correctly inferred
as customer-to-provider. In this scenario both orientations of edge j (i.e. correct
and incorrect: provider-to-customer and customer-to-provider) render path p
valid. Thus, edge j is directed randomly, increasing the likelihood of an incor-
rect inference. We can find many incorrect inferences of this type in our experi-
ments in the next section and in [6], e.g. well-known large providers like UUNET,
AT&T, Sprintlink, Level3, are inferred as customers of smaller ASs like AS1 (AS
degree 67), AS2685 (2), AS8043 (1), AS13649 (7), respectively.

Second, not all edges are customer-to-provider or provider-to-customer. In
particular, trying to direct sibling edges leads to proliferation of error. Indeed,
when the only objective is to maximize the number of valid paths, directing
a sibling edge brings the risk of misdirecting the dependent edges sharing a
clause with the sibling edge. To clarify, consider path p ∈ P , p = {ij}, i, j ∈ E,
and suppose that in reality i is a sibling edge that appears in multiple paths
and that j is a customer-to-provider edge that appears only in one path p.
The algorithm can classify edge i either as customer-to-provider or provider-
to-customer depending on the structure of the paths in which it appears. If
this structure results in directing i as provider-to-customer, then the algorithm
erroneously directs edge j also as provider-to-customer to make path p valid. In
other words, the outcome is that we maximize the number of valid paths at the
cost of inferring edge j incorrectly.

We can conclude that the maximum number of valid paths does not corre-
spond to a correct answer because, as illustrated in the above two examples, it
can result in miss-inferred links. Specifically, in the presence of multiple solu-
tions there is nothing in the objective function to require the algorithm to prefer
the proper orientation for edge j. Our next key question is: Can we adjust the
objective function to infer the edge direction correctly?

2.6 Our New Generalized Objective Function

A rigorous way to pursue the above question is to add to the objective function
some small modifier selecting the correct edge direction for links unresolved by
the unperturbed objective function. Ideally this modifier should be a function
of “AS importance,” such as the relative size of the customer tree of an AS.
Unfortunately, defined this way the modifier is a function of the end result, edge
orientation, which makes the problem intractable (i.e. we cannot solve it until
we solve it).

The simplest correcting function that does not depend on the edge direction
and is still related to perceived “AS importance,” is the AS degree “gradient” in
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the original undirected graph G—the difference between node degrees of adjacent
ASs. In the examples from the previous subsection, the algorithm that is trying
not only to minimize the number of invalid paths but also to direct edges from
adjacent nodes of lower degrees to nodes of higher degrees will effectively have
an incentive to correctly infer the last edge j ∈ p.

More formally, we modify the objective function as follows. In the original
problem formulation, weights wkl for 2-link clauses xk ∨ xl (pairs of adjacent
links in P ) are either 0 or 1. We first alter them to be either 0, if pair {kl} /∈ P ,
or wkl(α) = c2α otherwise. The normalization coefficient c2 is determined from
the condition

∑
k �=l wkl(α) = α ⇒ c2 = 1/m2 (recall that m2 is the number of

2-link clauses), and α is an external parameter, 0 ≤ α ≤ 1, whose meaning we
explain below.

In addition, for every edge i ∈ E, we introduce a 1-link clause weighted by a
function of the node degree gradient. More specifically, we initially orient every
edge i ∈ E along the node degree gradient: if d−i and d+

i , d−i ≤ d+
i , are degrees of

nodes adjacent to edge i, we direct i from the d−i -degree node to the d+
i -degree

node, for use as input to our algorithm.5

Then, we add 1-link clauses xi ∨ xi, ∀i ∈ E, to our MAX2SAT instance, and
we weight them by wii(α) = c1(1− α)f(d−i , d+

i ). The normalization coefficient c1

is determined from the condition
∑

i wii(α) = 1− α, and the function f should
satisfy the following two conditions: 1) it should “roughly depend” on the rela-
tive node degree gradient (d+

i − d−i )/d+
i ; and 2) it should provide higher values

for node pairs with the same relative degree gradient but higher absolute de-
gree values. The first condition is transparent: we expect that an AS with node
degree 5, for example, is more likely a customer of an AS with node degree 10
than a 995-degree AS is a customer of a 1000-degree AS. The second condition
is due to the fact that we do not know the true AS degrees: we approximate
them by degrees of nodes in our BGP-derived graph G. The graphs derived from
BGP data have a tendency to underestimate the node degree of small ASs, while
they yield more accurate degrees for larger ASs [14]. Because of the larger error
associated with small ASs, an AS with node degree 5, for example, is less likely
a customer of an AS with node degree 10 than a 500-degree AS is a customer of
a 1000-degree AS.

We select the following function satisfying the two criteria described above:

f(d−i , d+
i ) =

d+
i − d−i

d+
i + d−i

log(d+
i + d−i ). (2)

In summary, our new objective function looks exactly as the one in (1), but
with different weights on clauses:

5 An initial direction along the node degree gradient does not affect the solution since
any initial direction is possible. We select the node degree gradient direction to
simplify stripping of non-conflict edges in the next section.
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wkl(α) =

⎧⎪⎨⎪⎩
c2α if {kl} ∈ P ,
c1(1− α)f(d−k , d+

k ) if k = l ≤ m1,
0 otherwise.

(3)

Now we can explain the role of the parameter α. Since
∑

k �=l wkl(α) = α
and

∑
k=l wkl(α) = 1− α, parameter α measures the relative importance of sums

of all 2- and 1-link clauses. If α = 1, then the problem is equivalent to the original
unperturbed ToR problem—only the number of invalid paths matters. If α = 0,
then, similar to Gao, only node degrees matter. Note that in the terminology of
multiobjective optimization, we consider the simplest scalar method of weighted
sums.

In our analogy with physics in Fig. 1, we have weakened the repulsive forces
among particles other than the truth particle p0, and we have strengthened the
forces between p0 and other particles. When α = 0, there are no repulsive forces,
the truth particle p0 attracts all other particles to itself, and all the vectors
become collinear with v0. Cut by any hyperplane, they all lie on the same side
as v0, which means that all variables xi are assigned value true and all links i
remain directed along the node degree gradient in the output of our algorithm.

3 Results

In our experiments, the BGP path set P is a union of BGP tables from Route-
Views [15] and 18 BGP route servers from [16] collected on May 13, 2004. Paths
of length 1 are removed since they are always valid. The total number of paths
is 1,025,775 containing 17,557 ASs, 37,021 links, and 382,917 unique pairs of
adjacent links.

We first pre-process the data by discovering sibling links. For this purpose,
we use a union of WHOIS databases from ARIN, RIPE, APNIC, and LACNIC
collected on June 10, 2004. We say that two ASs belong to the same organization
if, in the WHOIS database, they have exactly the same organization names, or
names different only in the last digits, e.g. “ATT-37” and “ATT-38,”or very
similar names, e.g. “UUNET South Africa” and “UUNET Germany.” We infer
links in P between adjacent ASs belonging to the same organization as sibling.
We find 211 sibling links in our dataset, which we ignore in subsequent steps.
More precisely, we do not assign boolean variables to them.

We then direct the remaining links in the original graph G along the node
degree gradient, assign boolean variables to them, and construct the dual G2SAT

graph. After directing edge i along the node degree gradient, we check whether
this direction satisfies all clauses containing li (xi or x̄i). If so, we then remove
the edge and strip P , G, and G2SAT accordingly. In this case we say that edge i
causes no conflicts because the value of the corresponding literal li satisfies all
the clauses in which li appears, independent of the values of all other literals
sharing the clauses with li. A non-conflict edge has two corresponding vertices
in the G2SAT graph, xi and x̄i. It follows from the construction of the G2SAT

graph that xi has an outdegree of zero and x̄i has an indegree of zero. We repeat
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the described procedure until we cannot remove any more edges. The stripped
graph G has 1,590 vertices (9% of the original

∣∣V ∣∣) and 4,249 edges (11% of the
original

∣∣E∣∣). The stripped G2SAT graph has 8,498 vertices and 46,920 edges.
In summary, we have 4,249 (m1) 1-link clauses and 23,460 (m2) 2-link clauses.
We feed this data into a publicly available SDP solver DSDP v4.7 [17], reusing
parts of the code from [2] and utilizing the LEDA v4.5 software library [18]. We
incorporate the pre-rounding rotation and skewed distribution of hyperplane
orientation by LLZ [12].

Fig. 2 shows results of edge orientations we derive for different values of α
in (3). Specifically, the figure shows the percentage of valid paths, edges directed
as in the α = 0 case, and edges directed as in the α = 1 case. In the particular
extreme case of α = 1, the problem reduces to the original ToR problem consid-
ered by DPP and EHS, and its solution yields the highest percentage of valid
paths, 99.67%. By decreasing α, we increase preference to directing edges along
the node degree gradient, and at the other extreme of α = 0, all edges become
directed along the node gradient, but the number of valid paths is 92.95%.

Note that changing α from 0 to 0.1 redirects 1.64% of edges, which leads
to a significant 6.53% increase in the number of valid paths. We also observe
that the tweak of α from 1 to 0.9 redirects 2.56% of edges without causing any
significant decrease (only 0.008%) in the number of valid paths. We find that
most of these edges are directed randomly in the α = 1 case because oriented
either way they yield the same number of valid paths. In other words, the AS
relationships represented by these edges cannot be inferred by minimizing the
number of invalid paths.

We also rank ASs by means of our inference results with different α values.
To this end we split all ASs into hierarchical levels as follows. We first order all
ASs by their reachability—that is, the number of ASs that a given AS can reach
“for free” traversing only provider-to-customer edges. We then group ASs with
the same reachability into levels. ASs at the highest level can reach all other ASs
“for free.” ASs at the lowest level have the smallest reachability (fewest “free”
destinations). Then we define the position depth of AS X as the number of ASs
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Table 2. Hierarchical ranking of ASs. The position depth (the number of AS at the
levels above) and width (the number of ASs at the same level) of the top five ASs in
the α = 0 and α = 1 cases are shown for different values of α. The customer leaf ASs
are marked with asterisks

α = 0.0 α = 0.2 α = 0.5 α = 0.8 α = 1.0

AS # name degree dep. wid. dep. wid. dep. wid. dep. wid. dep. wid.

701 UUNET 2373 0 1 0 173 1 232 1 252 17 476

1239 Sprint 1787 1 1 0 173 1 232 1 252 17 476

7018 AT&T 1723 2 1 0 173 1 232 1 252 17 476

3356 Level 3 1085 3 1 0 173 1 232 1 252 17 476

209 Qwest 1072 4 1 0 173 1 232 1 252 17 476

3643 Sprint Austr. 17 194 1 222 1 250 1 268 1 0 4

6721 Nextra Czech Net 3 1742 941 833 88 868 90 884 89 0 4

11551 Pressroom Ser. 2 1742 941 1419 398 1445 390 1457 386 0 4

1243 Army Systems 2 2683 14725* 2753 14655* 1445 390 1457 386 0 4

6712 France Transpac 2 2683 14725* 2753 14655* 292 3 1 252 4 13

at the levels above the level of AS X. The position width of AS X is the number
of ASs at the same level as AS X.

Table 2 shows the results of our AS ranking. For different values of α, we track
the positions of the top five ASs in the α = 0 and α = 1 cases. In the former case,
well-known large ISPs are at the top, but the number of invalid paths is relatively
large, cf. Fig. 2. In the latter case delivering the solution to the unperturbed
ToR problem, ASs with small degrees occupy the top positions in the hierarchy.
These ASs appear in much lower positions when α �= 1. Counter to reality, the
large ISPs are not even near the top of the hierarchy. We observe that the
depth6 of these large ASs increases as α approaches 1, indicating an increasingly
stronger deviation from reality. The deviation is maximized when α = 1. This
observation pronounces the limitation of the ToR problem formulation based
solely on maximization of the number of valid paths.

4 Conclusion and Future Work

Using a standard multiobjective optimization method, we have constructed a
natural generalization of the known AS relationship inference heuristics. We
have extended the combinatorial optimization approach based on minimization
of invalid paths, by incorporating AS-degree-based information into the prob-
lem formulation. Utilizing this technique, we have obtained first results that
are more realistic than the inferences produced by the recent state-of-the-art

6 Note that the large ISPs are at the same depth as soon as α �= 0, which is expected
since they form “almost a clique” [4] and are likely to belong to the same SCC. All
nodes in the same SCC have the same reachability. The converse is not necessarily
true.
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heuristics [1, 2]. We conclude that our approach opens a promising path toward
increasingly veracious inferences of business relationships between ASs.

The list of open issues that we plan to address in our future work includes:
1) modifications to the algorithm to infer peering; 2) careful analysis of the trade-
off surface [19] of the problem, required for selecting the value of the external
parameters (e.g. α) corresponding to the right answer; 3) detailed examination
of the structure of the AS graph directed by inferred AS relationships; 4) vali-
dation considered as a set of constraints narrowing the range of feasible values
of external parameters; and 5) investigation of other AS-ranking mechanisms
responsible for the structure of the inferred AS hierarchy.
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Abstract. We study acceleration methods for point-to-point shortest path and
constrained shortest path computations in directed graphs, in particular in road
and railroad networks. Our acceleration methods are allowed to use a prepro-
cessing of the network data to create auxiliary information which is then used to
speed-up shortest path queries. We focus on two methods based on Dijkstra’s al-
gorithm for shortest path computations and two methods based on a generalized
version of Dijkstra for constrained shortest paths. The methods are compared with
other acceleration techniques, most of them published only recently. We also look
at appropriate combinations of different methods to find further improvements.
For shortest path computations we investigate hierarchical multiway-separator
and arc-flag approaches. The hierarchical multiway-separator approach divides
the graph into regions along a multiway-separator and gathers information to
improve the search for shortest paths that stretch over several regions. A new
multiway-separator heuristic is presented which improves the hierarchical sepa-
rator approach. The arc-flag approach divides the graph into regions and gath-
ers information on whether an arc is on a shortest path into a given region. Both
methods yield significant speed-ups of the plain Dijkstra’s algorithm. The arc flag
method combined with an appropriate partition and a bi-directed search achieves
an average speed-up of up to 1,400 on large networks. This combination narrows
down the search space of Dijkstra’s algorithm to almost the size of the corre-
sponding shortest path for long distance shortest path queries. For the constrained
shortest path problem we show that goal-directed and bi-directed acceleration
methods can be used both individually and in combination. The goal-directed
search achieves the best speed-up factor of 110 for the constrained problem.

1 Introduction

In combinatorial optimization computing shortest paths is regarded as one of the most
fundamental problems. What makes the shortest paths problem so interesting is the im-
portant role it plays in numerous real world problems: combinatorial models of real
world scenarios often contain or reduce to shortest path computations. Much research
has been done on shortest path problems and there is a large variety of different algo-
rithms for computing shortest paths efficiently in a given network. In the present paper
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we look at one of the most common variants of the problem where one has to find a
shortest path between two nodes in a directed graph, the point-to-point shortest path
problem (P2P). Motivated by real-world applications, we assume that the shortest path
problem has to be solved repeatedly for the same network . Thus, preprocessing of the
network data is possible and can support the computations that follow. The purpose of
this paper is to study implementations of different acceleration methods for shortest
path and constrained shortest path computations in traffic networks. In contrast to gen-
eral graphs, road networks are very sparse graphs. They usually have an embedding in
the plane and the considered arc lengths often resemble Euclidean distances.

For shortest path computations we compare several approaches, published only re-
cently, and focus on four approaches which we found appropriate for our purpose.
For shortest path computations we first investigate a hierarchical multiway-separator
method similar to Frederikson’s [5]. In a preprocessing phase we determine a small
node multiway-separator that divides the graph into regions of almost balanced size,
then information is gathered on the distances between the separator nodes of that partic-
ular region and is used in subsequent shortest path computations. Second, we consider
a generalization of a region-based arc labeling approach that we refer to as the arc flag
approach. The basic idea of the arc flag method using a simple rectangular partition has
been suggested by Lauther [12]. The arc-flag approach divides the graph into regions
and gathers information for each arc on whether this arc is on a shortest path into a
given region. For each arc this information is stored in a vector. More precisely, the
vector contains a flag for each region of the graph indicating whether this arc is on a
shortest path into that particular region. Thus, the size of each vector is determined by
the number of regions and the number of vectors is determined by the number of arcs.
Arc flags are used in the Dijkstra computation to avoid exploring unnecessary paths.

In addition to ordinary shortest path computations, we also study accelerating con-
strained shortest path computations. We look at networks where each arc is assigned
two values: a length and a cost. The aim is to compute a shortest path with respect
to the length such that the sum of the cost values of the corresponding arcs does not
exceed a given cost bound. This is a well-known weakly NP-hard problem. A stan-
dard algorithm for constrained shortest paths is a generalized Dijkstra algorithm [1]. In
the present paper we analyze the behavior of several acceleration methods for shortest
paths when applied to the generalized Dijkstra algorithm. In particular we investigate a
goal-directed search, a bi-directed search, and a combination of the two. The study is
motivated by a routing project in cooperation with DaimlerChrysler AG. In this project
we have to compute routes which guarantee a given fairness condition. This is where
the constrained shortest path problem comes in.

To compare the different approaches we look at computational results for a given
set of road and railroad networks. We first present the results for the main methods in
this paper. We also compare them with results for other methods and finally we take
into account combinations of our main methods with the other methods we discussed.
In our tests we only present combinations which seem to be appropriate and leave out
non-appropriate methods as, for example, pure goal-directed search in combination with
the arc-flag method, since the latter is already highly goal-directed by construction.
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Related work. There are various studies of acceleration methods for shortest path
computations. A recent overview is given in [6]. For hierarchical methods we refer
to [5, 18]. Gutman [8] introduces a method based on the concept of reach: for each
node a single reach value together with Euclidean coordinates is stored in order to en-
able a specific kind of goal-directed search. Gutman reports that he computes shortest
paths 10 times faster than the plain Dijkstra algorithm. Goldberg describes an approach
which uses the A∗ search in combination with a lower-bounding technique based on so-
called landmarks and the triangle inequality. Using just one landmark the results that
Goldberg’s algorithm produces are not as good as Gutman’s, but with 16 landmarks he
reports on a speed-up of up to 17. The basic arc-flag approach using a rectangular geo-
graphic partition of the underlying graph is described by Lauther [13], who observed a
speed-up of up to 64. Experimental studies for other geometric speed-up techniques can
be found in Holzer, Schulz, and Willhalm [9]. For a recent overview on the many tech-
niques for the constrained shortest path problem we refer to [4]. Recent experimental
results on it can be found in [14, 17].

Our contributions. For the hierarchical multiway-separator approach we extend Good-
rich’s algorithm to non-planar graphs. We introduce a new heuristic which for our data
computes a smaller multiway-separator than METIS [15]. The sizes of the multiway-
separator range between 67 % and 85 % of the sizes of the separators computed by
METIS. Because of the smaller multiway-separator size our heuristic improves the hi-
erarchical multiway-separator approach up to a speed-up factor of 14.

With the arc-flag method we investigate a new type of shortest path acceleration. It
uses a partition of the node set of the graph into regions and precomputes one bit (flag)
of information per arc and region. It consistently yields the best speed-up results on our
road networks. When combined with an arc separator partition we obtain a speed-up
factor of 220. A combination with a bi-directed search yields a speed-up factor of up to
1,400. It may seem promising to combine the arc flag method also with Gutman’s ac-
celeration method [8]. However, our experiments have shown that although this method
reduces the search space, it does not reduce the running time any further.

For the constrained shortest path problem we show that the goal-directed and the bi-
directed approach can be used both individually and in combination. Here, the simple
goal-directed search yields the greatest speed-up factors (110) and the bi-directed search
which does not need preprocessing still provides reasonable results (factor of 5). To our
knowledge this is the first time that these standard techniques have been applied to
constrained shortest path problems on road networks.

2 Preliminaries

The input to the P2P problem is a directed graph G = (V,A) with n := |V | nodes, m :=
|A| arcs, a source node s, a target node t and a nonnegative arc length �(a), for each
arc a ∈ A. Additionally, in the constrained shortest path case, there are nonnegative arc
costs c(a) for each arc a ∈ A. The P2P problem is to find a length minimal path in a
graph G from s to t, i.e., the sum of the arc lengths of all arcs in the path should be
minimal. We will refer to the path as a shortest s, t–path in G and the sum of its arc
length is denoted by dists(t), the shortest path distance from s to t. In the constrained
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P2P problem the aim is to find a length minimal s, t–path for which the sum of the arc
costs of all arcs in the path does not exceed a given cost bound Cs,t .

Our acceleration methods are based on Dijkstra’s algorithm [3] which computes dis-
tance labels ds(u) from s to all reachable nodes u∈V until dists(t) is determined. The al-
gorithm maintains a preliminary distance ds(v) for all nodes and a set S of nodes whose
final shortest path distance from s has already been determined, i.e., ds(v) = dists(v).
The algorithm starts with setting ds(s) = 0 and inserts s into S. Then it repeatedly scans
nodes u /∈ S in nondecreasing order of their distance label ds(u). It inserts u into S and
updates labels of all adjacent nodes w with (u,w) ∈ A. Each node u is scanned and in-
serted into S at most once. On insertion arc (u,v) is considered and then ds(w) is updated
by the sum ds(u)+ �(u,w) if it is dominated by the sum, i.e., ds(u)+ �(u,w) < ds(w).
Note, that it is not necessary for the algorithm to traverse the whole graph. The set
of arcs which are traversed during the run of the algorithm is the search space. With
our acceleration methods we restrict Dijkstra’s algorithm to a smaller search space that
still leads to the shortest path and thus results in a faster running time. Using auxiliary
precomputed information from our acceleration methods the algorithm is able to reject
arcs before the update test which cannot be on a shortest path.

In the bi-directed search a second Dijkstra run is started simultaneously from t and
computes a distance distt(u) from t in the reverse graph, the graph with every arc re-
versed. The bi-directed search algorithm alternates between running the forward (com-
mon) and reverse search version of Dijkstra’s algorithm and stops with an appropriate
stopping criterion when the two searches meet. Note that any alternation strategy will
correctly determine a shortest path.

In the constrained case we use a generalized version of Dijkstra’s algorithm by
Aneja, Aggarwal, and Nair [1]. Here, instead of one distance label per node a whole set
of label pairs (ds(u),cs(u)) are used for each node u, each of them representing distance
ds(u) and cost cs(u) of a path from s to u. If a node w is adjacent to u, all of its label pairs
(ds(w),cs(w)) are removed if they are dominated by (ds(u)+ �(u,w),cs(u)+ c(u,w)),
i.e., ds(u)+ �(u,w) < ds(w) and cs(u)+ c(u,w) < cs(w). Thus, the generalized version
of Dijkstra’s algorithm maintains a list of non-dominating label pairs at each node and
stops once the target is reached.

3 Shortest Path Acceleration Methods

In this section we consider two acceleration methods for shortest path computation.
Both methods have been used before for the case of planar embedded graphs. Here we
extend them to work on almost planar graphs such as road or railroad networks. Note
that in theory our extensions also work on arbitrary graphs.

The Multiway-Separator Approach. A significant acceleration can already be
achieved by a divide and conquer method in combination with an appropriate prepro-
cessing. In the multiway-separator approach, due to Frederickson [5], one computes a
small node set whose removal partitions the graph into regions of roughly equal size
such that there is no path between different regions.

Our heuristic to determine a balanced multiway-separator in road networks is based
on an approach by Goodrich [7]. Goodrich uses a multiway-separator that divides the
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graph in up to O(nε), 0 < ε < 1
2 , regions. The construction of the multiway-separator

by Goodrich involves two steps. In the first step a breadth first search (BFS) tree from
some root node s is computed and O(nε) so-called starter-levels (0 < ε < 1

2 ) in the tree
are determined. For each of these starter-levels in the tree a cut-level above and below is
determined, such that each cut-level contains maximally 2�√n� nodes and its distance
is at most

√
n/2 levels away from the associated starter level. The nodes in the cut-level

are marked as separator nodes. The size of the regions is bounded by O(n1−ε). In the
second step Goodrich uses fundamental cycles to balance their size.

In our heuristic we make use of the first step of Goodrich’s algorithm since the sec-
ond step is not applicable to non-planar graphs. Instead, we apply again Goodrich’s
step 1 with a modified BFS-tree computation, together with a final cleaning step for
merging small connected components. In that way we reduce the number of separa-
tor nodes and obtain regions of roughly equal size. Altogether, our multiway-separator
heuristic consists of three steps: a BFS-tree computation for a coarse separation of the
graph, a second BFS-tree computation for a finer separation, and a cleanup step. The
size of the resulting multiway-separator and the regions depend essentially on the choice
of the different parameters in our multiway-separator heuristic.

After the multiway-separator has been constructed, every node which is not in the
multiway-separator is assigned to exactly one region. The separator nodes belong to
all regions separated by them and are defined as border nodes for that region. Then,
all shortest paths between separator nodes of the same region are precomputed and the
paths and their lengths are made available via lookup tables. This provides efficient
access during the subsequent path searches. For each determined shortest path between
border nodes of a particular region an additional arc is introduced with the shortest path
distance assigned to it as arc length. Border nodes together with the additionally inserted
arcs form a hierarchy layer on top of the original graph. If a shortest path search starts at
some node s lying in some region Rs the Dijkstra algorithm begins with scanning nodes
in Rs. However, when leaving region Rs, the search algorithm walks only along arcs of
the hierarchy layer, until it reaches the target region. Then, for the rest of the search it
again walks along original arcs in the graph. If the determined shortest path stretches
over several regions it consists of original and additionally inserted arcs. But it can
be reconstructed with the path information stored in the lookup table. Our multiway-
separator heuristic together with the hierarchical acceleration method delivers a speed-
up factor of up to 14 compared to the plain Dijkstra’s algorithm (see Section 5 for
further results).

The Arc-Flag Approach. A significantly stronger speed-up can be achieved with the
arc-flag approach. This approach is based on a partition of the graph into node sets
R1, . . . ,Rk, which we call regions. Each node is assigned to exactly one region. At each
arc a we store a flag for each region Ri (0 < i≤ k). This flag is set to TRUE if a is on a
shortest path to at least one node in Ri or if a lies in Ri, otherwise it is set to FALSE. For
each arc a this information is stored in a vector of flags fa. Thus the size of fa is k, the
number of regions, whereas the number of vectors is the number of arcs (see Figure 1).
A shortest path search from a node s to a node t in region R j can now be conducted
using a Dijkstra algorithm that only traverses arcs a where fa( j) is TRUE.
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Fig. 1. In the arc-flag method at each arc
a a vector fa of arc-flags is stored such
that fa[i] indicates if a is on a shortest
path into region i
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Fig. 2. The search space of a Dijkstra compu-
tation with arc-flag acceleration. The search
started in s and the region containing the target
node t is highlighted

The basic idea of this approach using a simple rectangular partition has been re-
ported by Lauther [12]. His partition requires an embedding of the graph in the plane.
When combined with a bi-directed search Lauther [13] obtains a speed-up factor of 64
on the European truck driver’s road map (326,159 nodes, 513,567 arcs, 300 requests,
139 regions). With an improved partition of the graph we obtain a speed-up factor of
677 on an instance of roughly the same size (362,554 nodes, 920,464 arcs, 2,500 re-
quests, 100 regions). Here we use fewer regions than Lauther and also apply bi-directed
search. The speed-up of this method increases with larger instances up to a factor of
1,400.

The preprocessing for this approach can be done as follows. Note that all shortest
paths entering a region Ri have to use some arc a that crosses the border of Ri. Now
for each of those crossing arcs a shortest path tree in the reverse graph is computed
starting at arc a. All arcs in this a–rooted reverse shortest path tree obtain the value
TRUE in their flag-vector at position i. Doing this for all arcs entering Ri one can fill up
all entries at the i-th component of the flag-vector of all arcs in G. Note, that it is not
possible to reduce the problem to one shortest path tree computation per region, since
then it may be possible that we miss necessary flags. The set of arcs crossing the border
of some region R form an arc cut CR. The total preprocessing time for that region then
amounts to O(|CR|n logn). This can be reduced further since information on a computed
shortest path tree of a border crossing arc a can be used for subsequent shortest path tree
computations of that region. An additional reduction of the preprocessing time can be
achieved by improving the partition, e.g., by computing small multi-way arc separator.
Using METIS [15] for this task we can reduce the preprocessing time by a factor of
2 compared to the rectangular partitioning, while using the same number of regions.
Here the shortest path query time decreases by a factor of up to 4. The reason for this
additional speedup is the fact that the arc separator determined by METIS much better
represents the specific structure of the graph.



132 E. Köhler, R.H. Möhring, and H. Schilling

4 Constrained Shortest Path Acceleration Methods

In addition to accelerating shortest path queries we have also investigated the effect of
standard acceleration methods for the resource constrained shortest path problem.

The Goal-Directed Approach. Our goal-directed approach attempts to accelerate
the path search by employing a lower bound on the (remaining) path lengths and costs
to the target node. This is achieved by modifying the arc lengths and costs and thereby
forcing Dijkstra’s algorithm to prefer nodes closer to the target node over those fur-
ther away. In road and railroad networks usually Euclidean distances are used as lower
bounds. However, in the case of constrained shortest paths one can exploit the fact that
computing the shortest path from the target node to all other nodes is cheap compared
to the overall cost of the extended Dijkstra. Hence, by simply computing both a reverse
shortest path tree from the target node with respect to length and a reverse shortest path
tree with respect to cost, it is possible to determine very good lower bounds on the re-
maining path lengths. One can use these trees for directing the constrained shortest path
search. Note that here it is not necessary to restrict the method to Euclidean distances.
Thus our goal-directed technique for constrained shortest paths is not limited to graphs
that are embedded in the plane. Compared to other acceleration methods, this procedure
consistently has delivered the best results in our tests (up to speed-up factors of 110).
More details on this acceleration method can be found in [11].

The Bi-Directed Approach. In the bi-directed approach the constrained shortest
paths are computed simultaneously from the start and the target node. In a traditional
bi-directed search there is a simple stopping criterion to stop the search when the two
frontiers meet. However, in the resource constrained case the stopping criterion is more
complex. We use the usual stopping criterion for the ordinary shortest path problem
as a starting point for a generalization to constrained shortest paths. Our generalized
stopping criterion requires the labeling Dijkstra to explore labels in a lexicographic or-
der (length before cost). For more details, please refer to the extended version of this
paper [11].

5 Implementation and Experiments

Implementation. The methods presented in this paper were implemented in C++ using
the GNU g++ compiler version 3.4.2 with the optimizing option ”-O3” on Linux 2.4/2.6
systems (SuSE 9.1). All computations were done on 64 bit machines: Intel Itanium II
machines 1.2 GHz with 64 GB shared memory and 500 KB cache memory and AMD
Opteron machines 2.2 GHz with 8 GB memory and 1 MB cache memory. For this work
we had to efficiently plug together and test several different versions of (constrained)
shortest path algorithms. For developing such a framework we used generic program-
ming techniques via template meta-programming in C++ as described, e.g., in [2].

Instances. All computations were done on real world networks described in Table 1.
Each arc in these networks has a nonnegative integer geographic length. The arc costs
are nonnegative rational numbers and arise from a routing project; see [10] for more de-
tails. For each network instance we randomly generated up to 2,500 route requests. The
measured speed-up factors and running times are averaged over all computed requests.
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Table 1. Input networks used in the paper. Dijkstra running time is the shortest path query time
computed by a plain Dijkstra’s algorithm for a single request. The values are averaged over 2,500
requests which were computed on an Opteron processor (2.2 GHz)

name description # nodes # arcs Dijkstra
running time [sec]

B Berlin 12,100 19,570 0.1
GR German Railway 14,938 32,520 0.2
GH German Highway 53,315 109,540 1.0
AA North Rhine-Westphalia south 362,554 920,464 5.3
TH Thuringia 422,917 1,030,148 6.1
OS Berlin, Brandenburg, 474,431 1,169,224 7.0

Saxony, Saxony-Anhalt, Mecklenburg
NW North Rhine-Westphalia north 560,865 1,410,076 9.9
NO Lower Saxony, Schleswig-Holstein, 655,192 1,611,148 11.6

Hamburg, Bremen
HS Hesse, Saarland, Rhineland-Palatinate 675,465 1,696,054 11.7
BY Bavaria 1,045,567 2,533,612 17.2

Shortest Path Computations. Dijkstra’s standard algorithm was compared with the
following acceleration methods: node multiway-separator heuristic (sep-heu), arc-flag
approach together with a rectangular partition (af-rect) and an arc multiway-separator
partition (af-sep), which were computed with METIS [15]. Combining the bi-directed
search and the arc-flag method with an arc multiway-separator partition by METIS was
the most successful method in our tests with a speed-up of up to 1,400 (af-sep-bi).

In all computations we measured the preprocessing time, the average over all short-
est path requests of the shortest path query time, of the length (number of arcs) of
the computed shortest path, and the size of the shortest path search space (number
of arcs). For the arc-flag method we also measured these parameters separately for
the 10% shortest and the 10% longest requests with respect to their shortest path
distance.

Constrained Shortest Path Computations. In our networks the path length corre-
sponds to travel times and the cost bound to a geographic length bound on the paths.
This is motivated by route guidance systems, where the cost corresponds to a given
fairness condition. More precisely, the cost bound is determined by a factor times the
geographic path length of an s, t–path with minimum length. In our experiments we
tested factors of 1.05, 1.1 and 1.2. Computational results for constrained shortest path
acceleration methods are displayed in Table 4.

6 Discussion and Conclusion

Shortest Path Acceleration Methods. The Multiway-Separator Approach achieved a
speed-up factor of up to 14, see Figure 3. Our multiway-separator heuristic was able to
find a smaller multiway-separator on our road network instances than METIS (between
67 % and 85 % of the multiway-separator sizes computed by METIS). The heuris-
tic was also able to improve upon the hierarchical separator methods by Frederick-
son [5]. But the hierarchical separator method together with our separator heuristic is
not among the best acceleration techniques studied here. For our multiway-separator
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Fig. 3. Speed-up factors on all networks compared to the plain Dijkstra algorithm (factor of
1). Results are shown for the node multiway-separator heuristic (sep-heu), the arc-flag with a
rectangular partition (af-rect, 225 regions), the arc-flag with an arc multiway-separator partition
(af-sep, 225 regions), and the arc-flag with an arc multiway-separator partition combined with
bi-directed search (af-sep-bidi, 225 regions)

heuristic typical separator sizes are 1.67% (AA) and 1.34% (OS) of the graph nodes
and the resulting regions are of balanced size. The preprocessing time of the hierarchi-
cal multiway-separator technique is comparably small, 32 min (AA) and 28 min (OS).
The reason for the performance of the hierarchical approach is the number of artifi-
cially inserted arcs, which is 18.6% (AA) and 12.6% (OS) of the number of original
graph arcs. This is not in line with the aim to reduce the search space in the shortest
path computation. Another problem is the huge memory consumption of this method,
which is higher than for all other methods we discussed: e.g., 4.5 GB on our largest
instance BY. We also studied combinations of the hierarchical multiway-separator ap-
proach with both the goal-directed and the bi-directed search, but they only led to small
improvements.

Table 2. Number of arcs of computed shortest path vs. search space on network OS (474,431
nodes, 1,169,224 arcs). The reduction of the search space is the fraction of the size of the search
space vs. the number of arcs in the corresponding shortest path, averaged over all requests.
|requests| is the number of computed requests, req.length is the relative length of the request,
av. |s.path| is the average number of arcs of the determined shortest paths. Results are shown
for the arc-flag method with a rectangular partition (af-rect) and a multiway-separator partition
(af-sep) as well as a combination of these two with bi-directed search (af-rect+bidi, af-sep+bidi).
All partitions consist of 225 regions. It is remarkable that the arc-flag method combined with a
bi-directed search narrows the search space down to almost the size of the shortest path

network |requests| req.length av. |s.path| plain Dijkstra af-rect af-sep af-rect+bidi af-sep+bidi

OS 250 long 791 × 1,313.3 × 11.0 × 6.9 × 1.3 × 1.2
250 short 136 × 571.7 × 74.0 × 26.0 × 19.7 × 5.4

2,500 all 437 × 1,342.8 × 23.0 × 11.0 × 2.4 × 1.8
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Table 3. Speed-up factors of the arc-flag method with an arc multiway-separator partition with
different numbers of regions and combined with a bi-directed search. Speed-up factors are com-
pared to the plain Dijkstra algorithm (factor of 1). Averaged values for 2,500 requests

network # nodes # arcs plain Dij. 25 regions 100 regions 225 regions 400 regions 625 regions

GR 14,938 32,520 × 1 × 8.56 × 18.4 × 32.6 × 38.39 × 43.7
GH 53,315 109,540 × 1 × 11.7 × 23.2 × 28.7 × 31.7 × 33.4
AA 362,554 920,464 × 1 × 260.6 × 677.6 × 1,020.5 × 1,136.9 × 148.9
OS 474,431 1,169,224 × 1 × 190.2 × 489.6 × 598.3 × 722.7 × 671.7

For the arc-flag method there is a clear trade-off between speed-up factor and mem-
ory usage. Depending on the chosen partition, one can regard the arc-flag acceleration
of shortest path computation as an interpolation between no precomputed information
at all (plain Dijkstra) and complete precomputation by determining all possible shortest
paths of the graph. Whereas the former is achieved by choosing a partition of the graph
into just one region, the latter means partitioning the graph in such a way that a region is
given for every single node of the graph. Thus in theory we can get as close as possible
to the ideal shortest path search by increasing the number of regions in the partition
(’ideal’ means that the shortest path algorithm visits only arcs which actually belong
to the shortest path itself). Obviously, an increase in the number of regions also entails
an increase in preprocessing time and memory consumption (e.g., 625 regions for AA:
5.3 h preprocessing time; 1.6 GB memory).

Using a combination of this method together with other techniques, the best result
that we achieved was on the largest instance (BY). The arc flag together with an arc
separator partition and combined with a bi-directed search delivers a speed-up factor of
1,400 compared to the plain Dijkstra. In this case we used a partition into 225 regions.
Thus we need an extra space of 450 bits (≈ 56 byte) per arc. With just 6 bytes of
information per arc (25 regions) the arc-flag method together with a bi-directed search
consistently delivered speed-up factors of up to 260 (instance AA, Table 3). This was
also the best result for memory consumption vs. speed-up factor. Moreover, Table 3
shows that this method is suitable in particular for larger instances (OS, AA) and long
distance requests. For long requests on OS we narrowed the search space down to a
factor of 1.2 times the number of shortest path arcs (corresponding to a speed-up factor
of 844), while we consistently achieved a factor of around 1.7 for a partition with 225
regions (corresponding to a speed-up factor of 598).

Another important point is the relatively small preprocessing time for our big in-
stances when compared to other preprocessing methods. For example, using the sepa-
rator partition with 100 regions took us about 2.5 hours (OS) or 2.9 hours (AA). This is
about half of what was spent on the rectangular partition. Still, the overall preprocess-
ing time can be reduced even further by using information on shortest path trees which
have been computed already for a region during the preprocessing phase.

Although we used this method on road networks with a given embedding in the
plane, the question of whether one really needs such an embedding of the graph de-
pends on the partition method that is used. Obviously, for the rectangular partition it is
needed, but for an arc multiway-separator partition it is not. The choice of the underly-
ing partition is crucial for the speed-up of this method. Using an arc multiway-separator
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partition instead of the rectangular partition results in an additional speed-up factor of 4.
The reason for this is the fact that the arc multiway-separator partition determined by
the help of METIS adapts much better to the specific structure of the network.

As for combinations of acceleration methods, the bi-directed search seems to be a
perfect match for the arc-flags (additional speed-up factors of up to 7). The goal-directed
search is less useful for the arc-flag method, since the method is already goal-directed by
construction. Typically, the arc-flag method creates a cone-like spreading of the search
space as it approaches the target region. In fact, at the beginning of a shortest path search
the algorithm is forced by the arc-flags to walk along shortest path arcs only. Just before
the target region is reached we can observe the spreading that was described above (see
Figure 2). To cope with this behavior of the arc-flag method and in order to improve the
algorithms even further, we suggest to study 2-level partitions; a coarse partition for far
away target nodes and a finer one for nearby nodes. An extensive investigation of the
speedup that can be obtained along these lines is presented in [16].

Constrained Shortest Path Acceleration Methods. In Section 4 we explained how
to adapt well-known acceleration techniques for shortest path computations to the con-
strained shortest path search. Here the goal-directed search yields the best results, but
the bi-directed search still delivers good accelerations. The advantage of the bi-directed
search is that it does not require any additional preprocessing. The combined version
(goal- and bi-directed) suffers from the lack of a good stopping criterion. See Table 4
for computational results of these methods.

The preprocessing phase of our methods is comparably short: on the Berlin road
network for the goal-directed search the preprocessing takes up to 161 seconds and
for the combined version up to 339 seconds. In the combined case the preprocessing
requires two shortest path tree computations to compute the lower bounds from the
target node to all other nodes in the graph. On hard instances where a large number

Table 4. Constrained shortest path acceleration methods on the Berlin road network
(12,100 nodes, 19,570 arcs). Results are shown for the plain generalized Dijkstra (plain), the
goal-directed search (go), the bi-directed search (bi), and the combination (go-bi). c. fact. is the
constrained factor, av. |s.path| is the average length of the determined shortest paths, |search
space| is the size of the search space (number of arcs), max. |label list| is the maximum size
of a node label list during a computation, prepro. time is the preprocessing time in seconds,
comp. time is the computation time in seconds, and speed-up fact. is the speed-up factor com-
pared to the plain generalized Dijkstra algorithm (factor of 1). Computed values are on average
for 1,000 requests, on a Itanium II processor (1.2 GHz)

method c. fact. av. |s.path| |search space| max. |label list| prepro. time [s] comp. time [s] speed-up fact.

plain 1.2 68 80,803 23 0 1,212 × 1
go 1.2 68 1,484 24 161 13 × 93
bi 1.2 68 16,045 20 0 231 × 5
go-bi 1.2 68 18,401 39 339 197 × 6

plain 1.05 76 95,241 23 0 1,534 × 1
go 1.05 76 1,847 26 154 14 × 110
bi 1.05 76 29,447 25 0 496 × 3
go-bi 1.05 76 4,793 26 323 37 × 42
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of labels is created during the search process, the preprocessing time can be neglected
compared to the overall processing time of a non-accelerated generalized Dijkstra run.
A further advantage of the goal-directed search is the possibility to have more than
one Pareto-optimal path computed within one run. This is of particular importance for
applications such as the routing project mentioned before.
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10. Jahn, O., Möhring, R.H., Schulz, A.S., Moses, N.E.S.: System optimal routing of traffic
flows with user constraints in networks with congestion. Oper. Res. (2005) to appear.
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Abstract. Broadcasting is an efficient alternative to unicast for deliver-
ing popular on-demand media requests. Windows scheduling algorithms
provide a way to satisfy all requests with both low bandwidth and low
latency. Consider a system of n pages that need to be scheduled (trans-
mitted) on identical channels an infinite number of times. Time is slotted,
and it takes one time slot to transmit each page. In the windows schedul-
ing problem (WS) each page i, 1 ≤ i ≤ n, is associated with a request
window wi. In a feasible schedule for WS, page i must be scheduled at
least once in any window of wi time slots. The objective function is to
minimize the number of channels required to schedule all the pages. The
main contribution of this paper is the design of a general buffer scheme
for the windows scheduling problem such that any algorithm for WS fol-
lows this scheme. As a result, this scheme can serve as a tool to analyze
and/or exhaust all possible WS-algorithms. The buffer scheme is based
on modelling the system as a nondeterministic finite state channel in
which any directed cycle corresponds to a legal schedule and vice-versa.
Since WS is NP-hard, we present some heuristics and pruning-rules for
cycle detection that ensure reasonable cycle-search time.

By introducing various rules, the buffer scheme can be transformed
into deterministic scheduling algorithms. We show that a simple page-
selection rule for the buffer scheme provides an optimal schedule to WS
for the case where all the wi’s have divisible sizes, and other good sched-
ules for some other general cases. By using an exhaustive-search, we
prove impossibility results for other important instances.

We also show how to extend the buffer scheme to more generalized
environments in which (i) pages are arriving and departing on-line, (ii)
the window constraint has some jitter, and (iii) different pages might
have different lengths.
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1 Introduction

Currently, popular on-demand data on the Internet is provided in a unicast way,
by requesting it from a server. Such systems are called pull systems. A very high
demand over a short period of time may put stress on both server and network
bandwidth. This stress can be alleviated by replicating data in mirrors or caches.
An alternative approach to on-demand for popular data is a push system where
the data is provided by periodic broadcast or multicast. Those desiring and
authorized to receive the data simply wait, hopefully a short period of time, for
the broadcast. Pushing has the advantage over pulling in that it requires less
server and network bandwidth, as long as the demand is high. This approach to
providing popular data has led to a very interesting problem. What are the best
ways to partition the channel in a time multiplexed way to provide the service
in a push system? This general question can be modelled mathematically in a
number of ways. We choose a specific approach called windows scheduling (WS)
[5, 6]. In this paper, we propose a new algorithmic technique called the buffer
scheme that can be used to design algorithms to solve WS problems and several
extensions of WS that cannot be solved using known algorithms. In addition,
the buffer scheme can be used to prove new impossibility results.

An instance to WS is a sequence W = 〈w1, . . . , wn〉 of n request windows,
and a set of h identical channels. The window request wi is associated with
a page i. Time is slotted, and it takes one time slot to transmit any page on
any channel. The output is a feasible schedule (a schedule in short) in which
for all i, the page i must be scheduled (transmitted) on one of the h channels
at least once in any window of wi consecutive time slots. Equivalently, the re-
quirement is that the gap between any two consecutive appearances of i in the
schedule is at most wi. We say that a schedule is perfect if the gap between
any two consecutive appearances of i in the schedule is a constant w′

i for some
w′

i ≤ wi.
The optimization problem associated with WS is to minimize the number

of channels required to schedule all n pages. Define 1/wi as the width of page
i and let h0(W) = �

∑
i 1/wi�. Then h0(W) is an obvious lower bound on the

minimum number of channels required for W.

Example I: An interesting example is that of harmonic scheduling, that is,
scheduling sequences Hn = 〈1, 2, . . . n〉 in a minimum number of channels. Har-
monic windows scheduling is the basis of many popular media delivery schemes
(e.g., [21, 15, 16, 18]). The following is a non-perfect schedule of 9 pages on 3
channels for the window sequence H9 = 〈1, 2, . . . , 9〉.⎡⎣1 4 1 1 1 1 1 6 1 1 1 1 · · ·

2 1 2 5 2 4 2 5 2 4 2 5 · · ·
3 6 7 3 8 9 3 1 7 3 9 8 · · ·

⎤⎦
Note that a page may be scheduled on different channels (e.g., 1 is scheduled on
all three channels). Also, the gaps between any two consecutive appearances of i
need not be exactly wi or another fixed number (e.g., the actual window granted
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to 5 is 4 and the actual windows of 8 and 9 are sometimes 5 and sometimes 7).
Even though this schedule is not “nicely” structured, it is feasible since it obeys
the requirement that the maximal gap between any two appearances of i is at
most wi for any i. Using our buffer scheme in exhaustive search mode, we show
that there is no schedule for H10 = 〈1, 2, . . . , 10〉 on three channels even though∑10

i=1 1/i < 3.

Example II: In this paper we demonstrate that for some instances such “flexible”
schedules achieve better performance. Indeed, for the above example, there exists
a perfect feasible schedule on three channels. However for the following instance
this is not the case. Let n = 5 and W = 〈3, 5, 8, 8, 8〉. We show in this paper
that there is no feasible perfect schedule of these 5 pages on a single channel.
However,

[3, 5, 8a, 3, 8b, 5, 3, 8c, 8a, 3, 5, 8b, 3, 8c, 5, 3, 8a, 8b, 3, 5, 8c, . . .]

is a feasible non-perfect schedule on a single channel. This schedule was found
by efficiently implementing the buffer scheme. Most previous techniques only
produce perfect schedules.

1.1 Contributions

The main contribution of this paper is the design of a general buffer scheme for
the windows scheduling problem. We show that any algorithm for WS follows
this scheme. Thus, this scheme can serve as a tool to analyze all WS-algorithms.
The buffer scheme is based on presenting the system as a nondeterministic finite
state machine in which any directed cycle corresponds to a legal schedule and
vice-versa. The state space is very large, therefore we present some heuristics
and pruning-rules to ensure reasonable cycle-search time.

By introducing various rules for the buffer scheme, it can be transformed
into deterministic scheduling algorithms. We show that a simple greedy rule
for the buffer scheme provides an optimal schedule to WS for the case where
all the wi’s have divisible sizes. Our theoretical results are accompanied by ex-
periments. We implemented the deterministic buffer scheme with various page
selection rules. The experiments show that for many instances the determin-
istic schemes perform better than the known greedy WS algorithm
presented in [5].

By using an exhaustive-search, we prove impossibility results and find the
best possible schedules. As mentioned earlier, we prove that there is no schedule
of H10 = 〈1, 2, . . . , 10〉 on three channels. In addition, we find the best possible
schedules for other important instances. Similar to branch and bound, the search
is done efficiently thanks to heavy pruning of early detected dead-ends. The
results achieved in the exhaustive-search experiments appear not to be achievable
in any other way.

The main advantage of the buffer scheme is its ability to produce non-perfect
schedules. Most of the known algorithms (with or without guaranteed perfor-
mance) produce perfect schedules. However, in the WS problem and its ap-
plications such a restriction is not required. We demonstrate that the Earliest
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Deadline First (EDF) strategy is not the best for WS even though it optimal
for similar problems. We develop some understanding that leads us to the de-
sign of the Largest Backward Move (LBM) strategy that performs well in our
simulations.

The basic windows scheduling problem can be generalized in several ways that
cannot be handled by previous techniques that only produce perfect schedules.
(i) Dynamic (on-line) environment: pages are arriving and departing on-line
and the set of windows is not known in advance. Here the scheme is extended
naturally emphasizing its advantage as a framework to algorithms as opposed to
other greedy heuristics for the off-line setting that cannot be generalized with
such an ease. (ii) Jitter windows: each page is given by a pair of windows (w′

i, wi)
meaning that page i needs to be scheduled at least once in any window of wi time
slots and at most once in any window of w′

i time slots. In the original definition,
w′

i = 1. Here again the generalization is natural. (iii) Different lengths: pages
might have different lengths. The buffer scheme can be generalized to produce
high quality schedules in these generalizations.

1.2 Prior Results and Related Work

The windows scheduling problem belongs to the class of periodic scheduling prob-
lems in which each page needs to be scheduled an infinite number of times. How-
ever, the optimization goal in of the windows scheduling problem is of the “max”
type whereas traditional optimization goals belong to the “average” type. That
is, traditional objectives insist that each page i would receive its required share
(1/wi) even if some of the gaps could be larger than wi. The issue is usually
to optimize some fairness requirements that do not allow the gaps to be too
different than wi. Two examples are periodic scheduling [17] and the chairman
assignment problem [20]. For both problems the Earliest Deadline First strategy
was proven to be optimal. Our paper demonstrates that this is not the case for
the windows scheduling problem.

The pinwheel problem is the windows scheduling problem with one channel.
The problem was defined in [13, 14] for unit-length pages and was generalized
to arbitrary length pages in [8, 12]. In these papers and other papers about the
pinwheel problem the focus was to understand which inputs can be scheduled on
one channel. In particular, the papers [10, 11] optimized the bound on the value
of
∑n

i=1(1/wi) that guarantees a feasible schedule.
The windows scheduling problem was defined in [5], where it is shown how

to construct perfect schedules that use h0(W) + O(log h0(W)) channels. This
asymptotic result is complemented with a practical greedy algorithm, but no
approximation bound has been proved for it yet. Both the asymptotic and greedy
algorithms produce only perfect schedules.

The general WS problem can be thought of as a scheduling problem for push
broadcast systems (e.g, Broadcast Disks ([1]) or TeleText services ([2])) In such
a system there are clients and servers. The server chooses what information
to push in order to optimize the quality of service for the clients (mainly the
response time). In a more generalized model the servers are not the information
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providers. They sell their service to various providers who supply content and
request that the content be broadcast regularly. The regularity can be defined
by a window size. Finally, various maintenance problems where considered with
similar environments and optimization goals (e.g., [22, 3]).

WS is known to be NP-hard. In a way, this justifies the efforts of this paper.
A proof for the case where i must be granted an exact wi window is given in [4].
Another proof which is suitable also for the flexible case in which the schedule
of i need not be perfect is given in [7].

2 The General Buffer Scheme

In this section, we describe the buffer scheme and prove that for any instance
of windows scheduling, any schedule can be generated by the buffer scheme.
We then discuss how the buffer scheme can be simulated efficiently by early
detection and pruning of dead-end states. Using these pruning rules, we establish
an efficient implementation of the scheme that can exhaust all possible solutions.
For big instances, for which exhaustive search is not feasible, we suggest a greedy
rule that produces a single execution of the scheme that “hopefully” generates
a correct infinite schedule.

2.1 Overview of the Scheme

Let W = 〈w1, . . . , wn〉 and number of channels h be an instance of the windows
scheduling problem. Let w∗ = maxi {wi}. We represent the pages state using
a set of buffers, B1, B2, . . . , Bw∗ . Each page is located in some buffer. A page
located in Bj must be transmitted during the next j slots. Initially, buffer Bj

includes all the pages with wi = j. We denote by bj the number of pages in Bj

and by �i the location of i (i.e., i ∈ B	i
).

In each iteration, the scheme schedules at most h pages on the h channels. By
definition, the pages of B1 must be scheduled. In addition, the scheme selects at
most h− b1 additional pages from other buffers to be scheduled in this iteration.
The way these pages are selected is the crucial part of the scheme and is discussed
later. After selecting the pages to be scheduled, the scheme updates the content
of the buffers.

– For all j > 1, all the non-scheduled pages located in Bj are moved to Bj−1.
– Each scheduled page, i, is placed in Bwi

- to ensure that the next schedule
of i will be during the next wi slots.

This description implies that the space complexity of the buffer scheme de-
pends on w∗. However, by using a data structure that is ‘page-oriented’, the
buffer scheme can be implemented in space O(n).

From the pages’ point of view, a page is first located as far as possible (wi

slots) from a deadline (represented by B1), it then gets closer and closer to the
deadline and can be selected to be transmitted in any time during this advance-
ment toward the deadline. With no specific rule for selecting which of the h− b1
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pages should be scheduled, the buffer scheme behaves like a nondeterministic
finite state machine with a very large state space, where a state is simply an
assignment of pages to buffers.

In running the buffer scheme nondeterministically, it fails if in some time
point b1 > h. The scheme is successful if it produces an infinite schedule. This
is equivalent to having two time slots t1, t2 such that the states at t1 and t2 are
identical. Given these two time slots, the page-selection sequence between t1 and
t2 can be repeated forever to obtain an infinite schedule.

Theorem 1. When it does not fail, the buffers scheme produces a feasible sched-
ule, and any feasible schedule for WS can be produced by an execution of the
buffer scheme.

Remark: In our simulations and in the page-selection rules we suggest, no
channel is ‘idle’ in the execution; that is, exactly h pages are scheduled in each
time slot. It is important to observe that this no-idle policy is superior over
scheduling policies that allow idles.

2.2 Page Selection Criteria and Dead-Ends Detection

As mentioned above, the buffer scheme fails if at some time point b1 > h, that
is, more than h pages must be scheduled in the next time slot. However, we
can establish other, more tight, dead-end conditions. Then, by trying to avoid
these dead-ends, we can establish “good” page selection criteria. In this section,
we present a tight dead-end criteria, and describe how to greedily select pages
in each time slot in a way that delays (and hopefully avoids) a dead-end state.
Given a state of the buffers, let c(i, j) denote the number of times i must be
scheduled during the next j slots in any feasible schedule.

Claim. For any i, j,

c(i, j) ≥
{

0 if j < �i

1 +
⌊

j−	i

wi

⌋
if j ≥ �i

Proof. If j < �i, that is, if i is located beyond the first j buffers, we do not need
to schedule i at all during the next j slots. If j ≥ �i, then we must schedule i
once during the next �j slots. After this schedule, i will be located in Bwi

. Note
that for any t, given that i ∈ Bwi

we must schedule i at least "t/wi# times during
the next t slots. In our case, we have t = j− �i, since this is the minimal number
of slots that remains after the first schedule of i.

For example, if �i = 1, wi = 3 and j = 11, then c(i, j) = 4. This implies
that i must be scheduled at least 4 times during the next 11 slots: once in the
next slot, and three more times in the remaining 10 slots. Let c(j) denote the
total number of page schedules the system must provide in the next j slots.
By definition, c(j) =

∑n
i=1 c(i, j). By definition, jh is the number of available

page schedules in the next j slots. Let f(j) = jh− c(j) denote the freedom level
existing in the next j slots.
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If for some j, f(j) < 0 then a dead-end state is reached. If f(j) = 0, then only
pages from the first j buffers must be scheduled in the next j slots. If f(j) > 0,
then some freedom exists in the way the pages are selected. That is, c(j) pages
must be selected from the first j buffers, and the remaining f(j) pages can come
from any buffer. In particular, for j = 1, only the pages in B1 are considered,
thus, this rule generalizes the obvious condition for B1.

Importantly, it is possible to know how many pages must be selected from
the first j buffers in the next slot. For any j, the system can provide at most
(j−1)h page-schedules during any j−1 slots. Thus, at least n(j) = c(j)−(j−1)h
pages from the first j buffers must be selected in the next slot in order to avoid
a dead-end. Again, this condition generalizes the condition for B1.

2.3 Delaying Dead-Ends and Deterministic Rules

We present a greedy way to select the pages to be scheduled based on the pa-
rameters c(j) and n(j) that are calculated during the selection process. Let s
denote the number of pages selected so far in the current iteration. Initially,
j = 1 and s = 0. As long as s < h, continue selecting pages as follows. For each
j, if n(j) > h the selection process fails. If n(j) = s, there are no constraints
due to Bj (since s pages have already been selected from the first j buffers) and
the selection proceeds to j + 1. Otherwise (s < n(j) ≤ h), select from the first j
buffers n(j)−s pages that were not selected yet, and proceed to j +1. Note that
this scheme is still nondeterministic because we have not yet specified exactly
which pages are scheduled. We call this scheme the restricted buffer scheme.

Theorem 2. Any legal schedule for WS can be generated by the restricted buffer
scheme.

We now give some deterministic rules for deciding exactly which pages to
schedule in a restricted buffer scheme. In applying the restricted buffer scheme,
it must determine, given a specific k and j, which k pages from the first j buffers
are to be scheduled in the next time slot. Naturally, high priority is given to pages
whose transmission will reduce the most the load on the channels.

This load can be measured by a potential function based on the locations
of the pages. We suggest two greedy selection rules, each of them maximizes
a different potential function. Our first greedy rule is suitable for the potential
function φ1 =

∑
i �i. Our second greedy rule is suitable for the potential function

φ2 =
∑

i �i/wi. These two approaches are realized by the following rules:

1. Select pages for which wi − �i is maximal.
2. Select pages for which (wi − �i)/wi is maximal.

In the first rule, denoted LBM (Largest Backward Move), pages that can in-
crease φ1 the most are selected. In LBM, pages that will move the most are
scheduled first. In the second rule, denoted WLBM (weighted LBM), the pages
that increase φ2 the most are selected. Each of these rules can be applied when
ties are broken in favor of pages associated with smaller windows or larger win-
dows. Our simulations reveal that breaking ties in favor of pages with small
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windows performs better for almost all inputs. On the other hand, we can-
not crown any of these two rules as the ultimate winner. For the first rule we
show that it is optimal for a large set of instances, even without the dead-end
detection of the restricted buffer scheme. The second rule performs better on
large harmonic instances. For both rules, the simulations give good results (see
Section 3).

In our simulations, a third natural greedy rule is considered, Earliest Dead-
line First, in which the pages with minimal �i are selected. This rule is optimal
for other periodic scheduling problems that care about average gaps (e.g., peri-
odic scheduling [17] and the chairman assignment problem [20]). However, in our
problem this rule performs poorly. This can be explained by the fact that dead-
lines are well considered by the dead-end detection mechanism of the restricted
buffer scheme. The role of the additional page selection is to reduce future load
on the channels.

2.4 The LBM Selection Rule

Let LBM be the buffer scheme with the greedy rule that prefers pages with large
(wi − �i) and breaks ties in favor of pages with smaller windows. We show that
LBM is optimal for a large set of instances even without the dead-end detection
mechanism of the restricted buffer scheme. Without dead-end detection, LBM
runs as follows:

1. Initialization: Put i in buffer Bwi
for all 1 ≤ i ≤ n.

2. In each time slot:

(a) If b1 > h then terminate with a failure.
(b) Otherwise, schedule all the pages from B1.
(c) If h > b1, select h− b1 additional pages with the largest (wi − �i), break

ties in favor of pages with smaller windows.

Optimality for Divisible-size Instances:

Definition 1. An instance W of WS is a divisible-size instance, if wi+1 divides
wi in the sorted sequence of windows w1 ≥ · · · ≥ wi ≥ wi+1 ≥ · · · ≥ wn for all
1 ≤ i < n.

For example, an instance in which all the windows are powers of 2 is a
divisible-size instance. The divisible-size constraint is not unreasonable. For ex-
ample, pages could be advertising slots which are only offered in windows that
are powers of 2, in a way that magazines sell space only in certain fractions, 1/2
page, 1/4 page, and so on. The following Theorem proves that LBM is optimal
for divisible-size instances.

Theorem 3. If an instance, W, of WS is a divisible-size instance and h ≥
h0(W), then LBM never fails.
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3 Deterministic Rules Experiments

We simulated the buffer scheme with the deterministic page-selection rules given
in Section 2.3. The performance of the buffer scheme, measured by the number
of channels required to schedule the pages, was compared for each instance, W,
with the lower bound h0(W) and with the number of channels required by the
greedy algorithm, Best-Fit Increasing (BFI), given in [5]. The algorithm BFI
schedules the pages in non-decreasing order of their window request. Page i with
window request wi is assigned to a channel that can allocate to it a window w′

i

such that wi−w′
i is non-negative and minimal. In other words, when scheduling

the next page, BFI tries to minimize the lost width (1/w′
i − 1/wi). Note that

BFI produces only perfect schedules.
In our simulations we considered several classes of instances. In this extended

abstract we report about two of them:
(i) Random - Sequences generated randomly, wi is chosen randomly in 2, . . . , 500
according to the following distribution. Let S =

∑500
i=2 i then the probability

of choosing wi = i is i/S. The simulation results for random instances are
shown in Figure 1. The same set of randomly chosen pages was scheduled by
the greedy BFI algorithm, by the buffer scheme using the LBM rule and by
the buffer scheme using the weighted LBM rule. It can be seen that the buffer
scheme always performs better, or not worse, than the greedy algorithm. Also,
the buffer scheme is always within one channel from the lower bound (given by
h0(W)).
(ii) Harmonic - Hn = 〈1, 2, . . . , n〉. The simulation results for Harmonic in-
stances is shown in Figure 2. For each number of channels h = 2, . . . , 8 and for
each rule, the maximal n such that Hn is scheduled successfully is presented.
For these instances, the algorithm BFI performs better than any of the deter-
ministic rules of the buffer scheme. The differences though are not significant.
In particular, for any harmonic sequence, none of the rules failed on h0(W)+1
channels.

C
ha

nn
el

s 
U

se
d

600 900 1000
0

1

2

3

4

5

6

7

8

9

800700

Number of Pages

1200 1300 15001100

Lower Bound

BFI

BS LBM

BS WLBM

Fig. 1. Simulation results for random

instances

L
ar

ge
st

 n

10

1000

100

2 3 4 5 6 7 8
1

BFI

BS LBM

BS WLBM

Channels Used

Fig. 2. Simulation results for harmonic

instances



148 A. Bar-Noy et al.

4 The Exhaustive Buffer Scheme

In this section, we demonstrate the usefulness of the buffer scheme for practical
cases for which it is possible to run an efficient implementation of the scheme that
exhausts all possible solutions. Dead-end detection is integrated in the search.
It enables early pruning of dead-end states and ensures reasonable cycle-search
time. We use the scheme to find the best schedules for some instances and to
prove non-trivial impossibility results for other instances.

To obtain our results, we reduce the problem of finding a schedule based on
the buffer scheme to the problem of detecting a directed cycle in a finite directed
graph. This problem can be solved using standard Depth First Search (DFS).
Consider the directed graph G in which each vertex represents a possible state
of the buffers, and there is an edge from v1 to v2 if and only if it is possible to
move from the state represented by v1 to the state represented by v2 in one time
slot - that is, by scheduling h pages (including all the pages of B1) and updating
the resulting page locations as needed. Note that G is finite since the number of
pages is finite and each page has a finite number of potential locations. Now use
a standard DFS to detect if there is a directed cycle. If a cycle is detected, then
this cycle induces an infinite schedule. If no directed cycle exists, by Theorem 1,
there is no schedule.
Windows Scheduling for Broadcasting Schemes: The buffer scheme can find for
small values of n the minimal d such that there exists a schedule of the in-
stance W = 〈d, . . . , d + n− 1〉 on h channels. These instances are of special
interest for the media-on-demand application since a schedule ofW would imply
a broadcasting scheme for h channels with delay guaranteed at most d/n of the
media length (using the shifting technique presented in [6]). In this scheme, the
transmission is partitioned into n segments. The trade-off is between the num-
ber of segments and the delay. Table 1 summarizes our simulation results for
n = 5, 6, 7, 8 segments and a single channel. For each 5 ≤ n ≤ 8, we performed
an efficient exhaustive search over all possible executions of the buffer scheme.
While for some values of n the optimal schedules are perfect and can be gener-
ated by simple greedy heuristics, for other values of n, the non-perfect schedules
produced by the buffer scheme are the only known schedules. This indicates that
for some values of n and d the best schedule is not perfect. No existing technique
can produce such schedules.

To illustrate that optimal schedules might be non-structured, we present the
optimal one-channel schedule for 〈5, . . . , 11〉. No specific selection rule was ap-

Table 1. Some best possible schedules for small number of segments

# of segments best range delay

5 4..8 4/5 = 0.8

6 5..10 5/6 = 0.833

7 5..11 5/7 = 0.714

8 6..13 6/8 = 0.75
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plied to produce this schedule, it was generated by exhaustive search over the
non-deterministic execution of the buffer scheme. [10, 9, 7, 5, 8, 6, 9, 11, 5, 7,10,6, 8,
5, 11, 9, 7, 6, 5, 8, 10, 6, 7, 5, 9, 11, 6, 8, 5, 7, 10, 9, 6, 5, 7, 8, 11, 5, 6].

Impossibility Results: Using the buffer scheme, we were able to solve an open
problem from [5] by proving that no schedule exists on three channels for the
instance H10 = 〈1, . . . , 10〉 even though

∑10
i=1 1/i < 3. Using the early detection

of dead-ends we able to reduce the search proving impossibility from 3,628,800
states to only 60,000 states. Using similar techniques we determined that there
are no one channel schedules for any of the sequences 〈3..7〉 , 〈4..9〉 , 〈4..10〉, and
〈5..12〉. This means that the ranges given in the Table 1 are optimal.

Arbitrary Instances: Most of the previous algorithms suggested for WS produce
perfect schedules. The buffer scheme removes this constraint. We demonstrate
this by the following, one out of many, example. Consider the instance W =
〈3, 5, 8, 8, 8〉. Using the fact that gcd(3, 8) = gcd(3, 5) = 1, it can be shown that
there is no perfect schedule for W on a single channel. The exhaustive search
and the deterministic buffer scheme with LBM produce the following non-perfect
schedule for W:

[3, 5, 8a, 3, 8b, 5, 3, 8c, 8a, 3, 5, 8b, 3, 8c, 5, 3, 8a, 8b, 3, 5, 8c, . . .].

We could not find any special pattern or structure in this schedule, suggesting
that the only non-manual way to produce it is by using the buffer scheme.

5 Extensions to Other Models

We show how the buffer scheme paradigm can be extended to more general envi-
ronments. As opposed to other known heuristics for WS, the first two extensions
are simple and natural.

Dynamic Window Scheduling: In the dynamic (on-line) version of WS, pages
arrive and depart over time [9]. This can be supported by the buffer scheme as
follows: (i) Any arriving page with window wi is placed upon arrival in Bwi

.
(ii) Any departing page is removed from its current location. The number h of
active channels can be adjusted according to the current load. That is, add a
new channel whenever the current total width is larger than some threshold (to
be determined by the scheme), and release some active channels whenever the
current total load is smaller than some threshold.

Window Scheduling with Jitter: In this model, each page is associated with a
pair of window sizes (w′

i, wi) meaning that i needs to be scheduled at least once
in any window of wi time slots, and at most once in any window of w′

i time
slots. That is, the gap between consecutive appearances of i in the schedule
must be between w′

i and wi. In the original WS, w′
i = 1 for all 1 ≤ i ≤ n. In the

other extreme, in which w′
i = wi, only perfect schedules are feasible and the gap
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between any two appearances of i in the schedule is exactly wi. To support such
instances with a buffer scheme, we modify the page-selection rules as follows: (i)
After scheduling i, put it in buffer Bwi

. (ii) Page i can be selected for scheduling
only if it is currently located in one of the buffers B1, B2, . . . , Bwi−w′

i
+1. This

ensures that at least w′
i slots have passed since the last time i was scheduled.

The first selection of i can be from any buffer.

Pages with Different Lengths: In this model, each page is associated with a win-
dow wi and with a length pi. Page i needs to be allocated at least pi transmission
slots in any window of wi slots. Clearly, pi ≤ wi for all 1 ≤ i ≤ n, otherwise it is
impossible to schedule this page. We consider non-preemptive windows schedul-
ing in which for any i, the pi slots allocated to i must be successive. In other
words, i must be scheduled non-preemptively on the channels and the gap be-
tween any two beginnings of schedules is at most wi.1 To support pages with
different lengths, each i is represented as a chain of pi page-segments of length
1. Due to lack of space we do not give here the full details of how these page
segments are selected one after the other.
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Abstract. We implement the approximation algorithm for the multi-
cast congestion problem in communication networks in [14] based on the
fast approximation algorithm for packing problems in [13]. We use an
approximate minimum Steiner tree solver as an oracle in our implemen-
tation. Furthermore, we design some heuristics for our implementation
such that both the quality of solution and the running time are improved
significantly, while the correctness of the solution is preserved. We also
present brief analysis of these heuristics. Numerical results are reported
for large scale instances. We show that our implementation results are
much better than the results of a theoretically good algorithm in [10].

1 Introduction

We study the multicast congestion problem in communication networks. In a
given communication network represented by an undirected graph G = (V,E)
with |V | = n and |E| = m, each vertex v represents a processor, which is able to
receive, duplicate and send data packets. A multicast request is a set S ⊆ V of
vertices (called terminals) which are to be connected such that they can receive
copies of the same data packet from the source simultaneously. To fulfil a request
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S, one subtree T in G is to be generated for spanning S, called an S-tree. In the
multicast congestion problem in communication networks we are given a graph
G and a set of multicast requests S1, . . . , Sk ⊆ V . A feasible solution is a set of
k trees T1, . . . , Tk, where Tq connects the terminals in Sq, called an Sq-tree. The
congestion of an edge in a solution is the number of Sq-trees which use the edge.
The goal of the problem is to find a solution of Sq-trees for all q = 1, . . . , k that
minimizes the maximum edge congestion.

If each request consists of only two terminals, the multicast congestion prob-
lem is reduced to the standard routing problem of finding integral paths with
minimum congestion. In fact it is a generalization of the problem of finding
edge disjoint shortest paths for source and destination pairs. This problem is
NP-hard [15] and hence the multicast congestion problem is also NP-hard.

Another related problem is the Steiner tree problem in graphs. Given a graph
G = (V,E), a set S ⊆ V of terminals and a non-negative length function (cost
or weight) on the edges, a Steiner tree T is a subtree spanning all vertices in S.
The vertices of T may be in V \S. The goal of the Steiner tree problem in graphs
is to find a minimum Steiner tree, i.e., a Steiner tree with minimum total edge
length. Compared with the multicast congestion problem, in the Steiner tree
problem there is only a single multicast and the objective function is different.
However, the Steiner tree problem is proved APX -hard [15, 1, 5]:

Proposition 1. The Steiner tree problem in graphs is NP-hard, even for un-
weighted graphs. Furthermore, there exists a constant c̄ > 1 such that there is no
polynomial-time approximation algorithm for the Steiner tree problem in graphs
with an approximation ratio less than c̄, unless P = NP.

The best known lower bound is c̄ = 96/95 ≈ 1.0105 [8].
Since the multicast congestion problem is NP-hard, interests turn to approx-

imation algorithms. In [20] a routing problem in the design of a certain class of
VLSI circuits was studied as a special case of the multicast congestion problem.
The goal is to reduce the maximum edge congestion of a two-dimensional rec-
tilinear lattice with a specific set of a polynomial number of trees. By solving
the relaxation of the integer linear program and applying randomized rounding,
a randomized algorithm was proposed such that the congestion is bounded by
OPT + O(

√
OPT ln(n2/ε)) with probability 1 − ε when OPT is sufficiently

large, where OPT is the optimal value. Vempala and Vöcking [22] proposed
an approximation algorithm for the multicast congestion problem. They applied
a separation oracle and decomposed the fractional solution for each multicast
into a set of paths. An O(lnn)-approximate solution can be delivered in time
O(n6α2+n7α) by their algorithm, where α involves the number k and some other
logarithmic factors. Carr and Vempala [6] proposed a randomized asymptotic
algorithm for the multicast congestion problem with a constant approximation
ratio. They analyzed the solution to the linear programming (LP) relaxation by
the ellipsoid method, and showed that it is a convex combination of Si-trees. By
picking a tree with probability equal to its convex multiplier, they obtained a
solution with congestions bounded by 2 exp(1)c · OPT + O(lnn) with probabil-
ity at least 1− 1/n, where c > 1 is the approximation ratio of the approximate
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minimum Steiner tree solver. The algorithm needs Õ(n7) time including k as a
multiplication factor. Without awareness of above theoretical results, Chen et
al. [7] studied this problem from practical point of view, which was called mul-
ticast packing problem in their paper. They showed some lower bounds for the
problem and implemented some instances with small sizes by the branch-and-cut
algorithm. More works on the multicast packing problem can be found in [18].

Baltz and Srivastav [3] studied the multicast congestion problem and pro-
posed a formulation based on the ideas of Klein et al. [16] for the concurrent
multicommodity flow problem with uniform capacities. The integer linear pro-
gram has an exponential number of variables and they constructed a combinato-
rial LP-algorithm to obtain a polynomial number of Sq-trees for each multicast
request Sq. Finally a randomized rounding technique in [19] was applied. The
solution of their algorithm is bounded by⎧⎨⎩ (1 + ε)c · OPT + (1 + ε)(exp(1)− 1)

√
c · OPT lnm, if c · OPT ≥ lnm,

(1 + ε)c · OPT +
(1 + ε) exp(1) ln m

1 + ln(lnm/(c · OPT ))
, otherwise.

(1)

In the case c · OPT ≥ lnm the bound is in fact (1 + ε) exp(1)c · OPT and oth-
erwise it is (1+ ε)c ·OPT +O(lnm). The running time is O(βnk3ε−9 ln3(m/ε) ·
min{lnm, ln k}), where β is the running time of the approximate minimum
Steiner tree solver. A randomized asymptotic approximation algorithm for the
multicast congestion problem was presented in [14]. They applied the fast ap-
proximation algorithm for packing problems in [13] to solve the LP relaxation
of the integer linear program in [3]. They showed that the block problem is the
Steiner tree problem. The solution hence is bounded by (1) and the running time
is improved to O(m(ln m + ε−2 ln ε−1)(kβ + m ln ln(mε−1))). Baltz and Srivas-
tav [4] further proposed an approximation algorithm for the multicast congestion
problem based on the algorithm for packing problems in [10], which has the best
known complexity O(k(m + β)ε−2 ln k lnm). They also conducted some imple-
mentation with typical instances to explore the behaviour of the algorithms. It
was reported that the algorithm in [10] is very impractical. In addition, they
presented a heuristic based on an online algorithm in [2], which can find good
solutions for their test instances within a few iterations.

In this paper we implement the algorithm in [14] with large scale instances.
We design some heuristics to speed up the computation and to improve the
quality of solution delivered in our implementation. We also present brief analysis
of the heuristics. The numerical results show that the algorithm for packing
problems [13] is reliable and practical. We also compare our results with those by
the algorithm in [10] and the heuristic in [4]. Because other algorithms mentioned
above are very impractical, we do not consider them for implementation.

The paper is organized as follows: In Section 2 the approximation algorithm
for the multicast congestion problem in [14] is briefly reviewed. We analyze
the technique to overcome the hardness of exponential number of variables in
Section 3. Our heuristics are presented in Section 4. Finally, numerical results
are reported in Section 5 with comparison with other approaches.
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2 Approximation Algorithm

Let Tq be the set of all Sq-trees for any q ∈ {1, . . . , k}. Here the cardinality of Tq

may be exponentially large. Define by xq(T ) a variable indicating whether the
tree T ∈ Tq is chosen in a solution for the multicast request Sq. Based on the
idea in [3, 4], the following integer linear program can be formulated:

min λ

s.t.
∑k

q=1

∑
T∈Tq & ei∈T xq(T ) ≤ λ, for all i ∈ {1, . . . , m};∑

T∈Tq
xq(T ) = 1, for all q ∈ {1, . . . , k};

xq(T ) ∈ {0, 1}, for all q and all T ∈ Tq,

(2)

where λ is the maximum congestion. The first set of constraints show that the
congestion on any edge is bounded by λ, and the second set of constraints indicate
that exact one Steiner tree is chosen for one request. As usual, the strategy is
to first solve the LP relaxation of (2) and then round the fractional solution to
a feasible solution.

We define a vector xq = (xq(T1), xq(T2), . . .)T for all T1, T2, . . . ∈ Tq repre-
senting the vector of indicator variables corresponding to all Steiner trees for
the q-th request. Denote by a vector x = (xT

1 , . . . , xT
k )T the vector of all in-

dicator variables. Furthermore, a vector function f(x) = (f1(x), . . . , fm(x))T

is used, where fi(x) =
∑k

q=1

∑
T∈Tq & ei∈T xq(T ) represents the congestion on

edge ei, for i ∈ {1, . . . , m}. In addition, we define by B = B1 × . . . × Bk where
Bq = {(xq(T ))T |T ∈ Tq,

∑
T∈Tq

xq(T ) = 1, xq(T ) ≥ 0}, for q ∈ {1, . . . , k}. It
is obvious that xq ∈ Bq and x ∈ B. In this way the LP relaxation of (2) is
formulated as the following packing problem (the linear case of the min-max re-
source sharing problems [12, 24, 13]): min{λ|f(x) ≤ λ, x ∈ B}. Thus we are able
to use the approximation algorithm for packing problems [13] to solve the LP
relaxation of (2).

The computational bottleneck lies on the exponential number of variables
xq(T ) in (2). The algorithm for packing problems in [13] is employed in [14]
with a column generation technique implicitly applied. We briefly describe the
algorithm as follows. The algorithm is an iterative method. In each iteration
(coordination step) there are three steps. In the first step a price vector w is
calculated according to current iterate x. Then an approximate block solver is
called as an oracle to generate an approximate solution x̂ corresponding to the
price vector w in the second step. In the third step the iterate is moved to
(1− τ)x + τ x̂ with an appropriate step length τ ∈ (0, 1). The coordination step
stops when any one of two stopping rules holds with respect to an relative error
tolerance σ, which indicates that the resulting iterate is a c(1 + σ)-approximate
solution. Scaling phase strategy is applied to reduce the coordination complexity.
In the first phase σ = 1 is set. When a coordination step stops, current phase
finishes and σ is halved to start a new phase, until σ ≤ ε. Finally the delivered
solution fulfils λ(x) ≤ c(1 + ε)λ∗, where λ∗ is the optimum value of the LP
relaxation of (2) (See [13, 14]).
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The block problem is exactly the Steiner tree problem in graphs and the
edge length function is the price vector w [14]. So k minimum Steiner trees
are computed corresponding to the k requests S1, . . . , Sk with respect to the
length function in current iteration. In the iterative procedure lengths on the
edges with large congestions increase while edges with small congestions have
decreasing lengths. In this way the edges with large congestions are punished
and have low probability to be selected in the generated Steiner trees. The
best known algorithm for the Steiner tree problem has an approximation ratio
c = 1 + (ln 3)/2 ≈ 1.550 [21] but the complexity is large. So in our implemen-
tation, we use a 2-approximate minimum Steiner tree solver (MST S) as the
block solver, and its time complexity is O(m + n ln n) [17, 9]. We call this al-
gorithm MC and its details can be found in [13, 14]. Then the following result
holds [13, 14]:

Theorem 1. For a given relative accuracy ε ∈ (0, 1), Algorithm MC delivers a
solution x such that λ(x) ≤ c(1 + ε)λ∗ in N = O(m(ln m + ε−2 ln ε−1)) itera-
tions. The overall complexity of Algorithm MC is O(m(ln m + ε−2 ln ε−1)(kβ +
m ln ln(mε−1))), where β is the complexity of the approximate minimum Steiner
tree solver.

3 The Number of Variables

In the LP relaxation of (2), there can be an exponential number of variables.
However, with the algorithm in [13, 14], a column generation technique is auto-
matically applied and totally the trees generated by the algorithm is a polynomial
size subset of T = ∪k

q=1Tq.
If a Steiner tree Tqj

∈ Tq is chosen for a request Sq, the corresponding indica-
tor variable is set to xqj

= 1. In the fractional sense, it represents the probability
to choose the corresponding Steiner tree Tqj

. For any tree Tqj
∈ Tq for a request

Sq, if it is not generated by MST S in any iteration of Algorithm MC, then
the corresponding indicator variable xqj

= 0, which shows that it will never be
chosen. Because in each iteration, there are k Steiner trees generated for the k
requests, respectively, we conclude that there are only polynomially many trees
generated in AlgorithmMC according to Theorem 1:

Theorem 2. When AlgorithmMC halts, there are only O(km(ln m+ε−2 ln ε−1))
non-zero indicator variables of the vector x and only the same number of Steiner
trees generated.

In our implementation, we maintain a vector x with a size k(N + 1), where
N is the actual number of iterations. We also maintain a set T of Steiner trees
generated in the algorithm. Notice that here T is not the set of all feasible Steiner
trees. At the beginning the set T is empty and all components of x are zeros. In
the initialization step, k Steiner trees are generated. Then the first k components
of x are all ones and the corresponding generated k Steiner trees T1, . . . , Tk are
included in T . In the j-th iteration, for the q-th request a Steiner tree Tjk+q is
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generated. No matter whether it is identical to any previously generated tree,
we just consider it as a new one and include it in the tree set T . Meanwhile, we
set the corresponding components x̂jk+q = 1. Therefore after the j-th iteration
there are totally (j + 1)k nonzero indicator variables (nonzero probability to
select the corresponding trees in T ). Finally, there are |T | = (N + 1)k non-zero
indicator variables.

However, in practice it is not easy to estimate the exact value of N in ad-
vance as there is only an upper bound O(m(ln m + ε−2 ln ε−1)) for N . In our
implementation, we set N = 100. If it is insufficient we will double it, until the
value of N suffices. In fact according to our implementation results the setting
N = 100 is enough as for all of our test instances there are only O(k) Steiner
trees generated (See Section 5).

4 Heuristics

4.1 Choose the Step Length

In Algorithm MC the step length τ is set as tθν/(2m(wT f(x) + wT f(x̂))) as
in [13, 14], where t and θ are parameters for computing the price vector, and
ν = (wT f(x)− wT f(x̂))/(wT f(x) + wT f(x̂)) is a parameter for stopping rules.
In the last coordination steps of MC, we have that t = O(ε) and ν = O(ε)
according to the scaling phase and the stopping rules, respectively. Assuming
that θ/(wT f +wT f̂) = O(1), we notice that τ = O(ε2/m) is very small. It means
that the contribution of the block solution is very tiny and the iterate moves to
the desired neighbourhood of the optimum very slowly, which results in a large
number of iterations (though the bound in Theorem 1 still holds). In fact in our
implementation we find that even at the beginning of the iterative procedure
the value of τ defined in [13, 14] is too small. In [11, 13] it is mentioned that any
τ ∈ (0, 1) can be employed as the step length. We test several feasible settings
of τ such as τ = 1− tθν/(2m(wT f + wT f̂)), τ = 1− ν and τ = ν. Experimental
results show that τ = ν is the best among them. With this heuristic, the number
of iterations is reduced significantly (see Section 5).

4.2 Remove the Scaling Phase

In our implementation we set ε = 10−5. In this way we are able to estimate the
number of scaling phases Ns = − log ε = 5 log 10 ≈ 16.61. Therefore in the total
computation there should be 17 scaling phases. In fact we find that in many
cases in our implementation there is only one iteration in each scaling phase.
Thus, the number of scaling phases dominates the overall number of iterations
and there are only O(1) iterations in a scaling phase.

We notice that in [13] the algorithm without scaling phase is also mentioned
and the corresponding coordination complexity is O(mc2(lnm+ε−2 +ε−3 ln c)).
In our implementation c = 2 is a constant so the complexity does not increase
much. In practice with this strategy the algorithm could run faster, especially
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when there are only very few iterations in each scaling phase. Therefore we use
this approach and the number of iterations is reduced.

4.3 Add Only One Steiner Tree in Each Iteration

Algorithm MC calls the block solver MST S k times independently for the k
requests in each iteration. We now consider Example 1 which leads to hard-
ness for finding an optimum solution. The instance is as follows: In the graph
G, |V | = 4 and |E| = 5. The edges are (1, 2), (1, 3), (2, 3), (1, 4) and (2, 4)
(see Figure 1(a)). There are 3 identical requests Sq = {1, 2} for q = 1, 2, 3. In
general we can also study the graphs with |V | = p, |E| = 2p − 3, with edge
set E = {(1, 2), (1, i), (i, 2)|i = 3, . . . , p} and identical requests Sq = {1, 2} for
q = 1, . . . , p− 1 for p ∈ N and p ≥ 4.

In the initialization step of AlgorithmMC, each edge is assigned an identical
length 1/5. For all requests, the minimum Steiner trees Tq, q = 1, 2, 3 are all the
path containing only edge (1, 2), with a total length 1/5. After T1 is generated for
the first request S1, AlgorithmMC is not aware of the change of the congestion
on edge (1, 2), and still assign the identical trees T2 and T3 to requests S2 and
S3. After the initialization congestions of edges are all zero except for edge (1, 2),
which has a congestion 3 (see Figure 1(b)). In the first iteration, the edge lengths
changes and the length on edge (1, 2) is the maximum, and other edges have very
small lengths. Therefore Algorithm MC will choose the path {(1, 3), (3, 2)} as
T4 for S1. With the same arguments, other requests are also assigned the path
{(1, 3), (3, 2)} as their corresponding minimum Steiner trees (see Figure 1(c)). In
the second iteration all requests are assigned the path {(1, 4), (4, 1)} (see Figure
1(d)) and in the third iteration the solution returns back to the case in Figure
1(b). This procedure continues and in each iteration only one path is used for all
requests, which leads to a wrong solution with always a maximum congestion 3.
It is also verified by our implementation.

This problem does not result from Algorithm MC itself but from the data
structure (the indices of the vertices and edges). An intuitive approach is to
re-index the nodes (and hence edges) after each Steiner tree is generated. How-
ever, this approach causes large computational cost of re-indexing. The strategy
we apply here is to establish a permutation of the requests. In each iteration
only one request is chosen according to the permutation, and a Steiner tree is
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3 4
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2

3 4
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2
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(a) (b) (c) (d)

Fig. 1. Examples 1
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generated by MST S for the chosen request. This method is applied in [23] to
solve the packing problems with block structured variables but with a standard
(not weak) approximate block solver. The bound on the number of iterations
is O(k lnm(ln min{k,m} + ε−2)), where k is the number of blocks of variables.
There is also a randomized algorithm for such problems [11] with a number of
iterations bounded by O(k lnm(ln k + ε−2)). In our problem there are also k
blocks of indicator variables corresponding to the k requests. But there are only
weak block solvers with the approximation ratio c > 1. So we apply this method
as a heuristic in our implementation. Furthermore, in our implementation we
find it is not necessary to construct and maintain the permutation. We can just
choose the requests according to their indices. In this way the optimum solution
can be attained in only 3 iterations for Example 1 such that the three requests
are realized by the three disjoint paths between vertex 1 and 2.

It is interesting that when this heuristic is employed, not only the quality of
the solution but also the running time are improved. In fact for many instances
with symmetric topology structure, such a problem due to data structure can
happen without our heuristic or the re-indexing approach.

4.4 Punish the Edges with Large Congestions

We use a 2-approximate minimum Steiner tree solver (c = 2) here as the block
solver in our implementation. We notice that with the above heuristics we can
only obtain a solution bounded by (1) as indicated in our implementation results
(see Section 5). In fact our implementation shows that as soon as the solution
fulfils (1) for c = 2, the algorithm halts immediately. In order to obtain a better
approximate solution still with MST S, we could modify the stopping rules to
force the algorithm to continue running with more iterations. However, here we
use another heuristic without changing the stopping rules in order to avoid more
running time.

The price vector is used as edge length in our algorithm for the Steiner tree
problem. It is obvious that a large congestion leads to a large length on the edge.
Thus we can add extra punishment to edges with large congestions to balance
the edge congestions over the whole graph. We apply the following strategy:

First we define an edge ei high-congested if its congestion fi fulfils the follow-
ing inequality:

λ− fi ≤ r(λ− λ̂). (3)

Here λ is the maximum congestion in current iteration, λ̂ is the average conges-
tion defined as the sum of congestions over all edges divided by the number of
edges with nonzero congestions, and r is a ratio depending on the quality of the
current solution defined as follows:

r =
√

1− (λ0 − λ)2/λ2
0, (4)

where λ0 ≥ λ is the maximum congestion of the initial solution. According to
(4), r ∈ (0, 1]. In addition, (4) is an ellipse function. At the beginning λ ≈ λ0

so r ≈ 1. With the maximum congestion being reduced, the value of r also
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decreases. Furthermore, according to the property of the ellipse function, at the
beginning of the iterative procedure the value of r decreases slowly. When the
congestions are well distributed, r reduces quickly. This formulation guarantees
that at the beginning of the iterative procedure there is a large portion of high-
congested edges while later there is only a small portion.

Next we re-assign length function to all edges in the graph. For any edge not
high-congested, we keep its length as computed by the method in [13, 14]. For a
high-congested edge, we set its length as its current congestion. Afterwards we
normalize all edge lengths such that the sum of lengths of all edges is exactly
one. Our implementation shows that this technique can not only improve the
quality of solution but also speed up the convergence (with less iterations).

5 Experimental Results

Our test instances are two-dimensional rectilinear lattices (grid graphs with cer-
tain rectangular holes). These instances typically arise in VLSI logic chip design
problems and the holes represent big arrays on the chips. These instances are re-
garded hard for path- or tree-packing problems. The instances have the following
sizes:

Example 1. n = 2079 and m = 4059; k = 50 to 2000.
Example 2. n = 500 and m = 940; k = 50 to 300.
Example 3. n = 4604 and m = 9058; k = 50 to 500.
Example 4. n = 1277 and m = 2464; k = 50 to 500.

We first demonstrate the influence of the heuristics mentioned in Section 4
by a hard instance. The instance belongs to Instance 3 with 4604 vertices, 9058
edges and 100 requests. The sizes of requests varies and the smallest request has
5 vertices. We test our algorithm without or with heuristics and the results are
shown in Table 1.

We refer Algorithm 1 the original Algorithm MC without any heuristics.
Algorithm 2 is referred to Algorithm MC with the heuristic to add only one
Steiner tree in each iteration. For Algorithm 3, we refer the algorithm similar to
Algorithm 2 but with step length τ = ν. Algorithm 4 is similar to Algorithm 3
but with extra punishment to high-congested edges. It is worth noting that in
Algorithm 1, the block solver MST S is called k times in each iteration, while

Table 1. Numerical results of Algorithm MC without and with heuristics

Alg. 1 Alg. 2 Alg. 3 Alg. 4

Initial Congestion 17 17 17 17

Final Congestion 17 13 6 4

Number of Calls − 44 85 90
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Table 2. Numerical results of Instance 1 compared with Garg-Könemann’s algorithm

and Baltz-Srivastav’s heuristic

# req.(# term.) G-K B-S Alg. 3 Alg. 4

50(4) 2.5(5000) 2(50) 4(111) 2(67)

100(4) 4.4(10000) 3(100) 7(207) 3(180)

150(4) 6.1(15000) 4(300) 9(314) 5(131)

200(4) 8.0(20000) 5(400) 11(594) 6(260)

300(4) 11.5(30000) 7(900) 15(826) 8(492)

500(4) 19.9(50000) 12(1000) 23(1389) 13(977)

1000(4) 36.5(100000) 21(69000) 48(2786) 24(2955)

2000(4) 76.1(200000) 44(4000) 96(5563) 54(3878)

500(≥ 2) 69.1(50000) 32(4500) 39(1381) 37(501)

1000(≥ 2) 100.5(100000) 65(3000) 78(2933) 72(1004)

in Algorithm 2, 3 and 4 MST S is called only once in each iteration. In order
to compare the running time fairly, we count the number of calls to MST S as
the measurement of running time. In fact according to our implementation, the
running time ofMST S dominates the overall running time. From Table 1 it is
obvious that the heuristics improve the quality of solution much. Since the value
of τ is too small in Algorithm 1, the iterate does not move after long time and
we manually terminate the program.

In [4] Instance 1 was implemented to test their heuristic based on an online
algorithm in [2] and a well-known approximation algorithm for packing problems
in [10] based on an approximation algorithm for the fractional multicommodity
flow problem. Here, we also use the same instances to test our Algorithm 3 and
4. The results are shown in Table 2. In the first column of Table 2 the num-
ber of requests and the number of terminals per request are given. The solution
delivered by the algorithms and heuristics are presented in other columns, to-
gether with the number of calls toMST S in brackets. The results of Garg and
Könemann’s algorithm are only for the LP relaxation.

It is clear that Algorithm 4 is superior to Algorithm 3 in the examples of
regular requests (with 4 terminals per request). Furthermore, it is worth noting
that our Algorithm 4 delivers better solutions than the algorithm by Garg and
Könemann [10] with much less number of calls toMST S. In fact the fractional
solutions of Algorithm 3 are also better than those of the algorithm by Garg
and Könemann. Our results are not as good as those of the heuristic proposed
in [4] for these instances. However, there is no performance guarantee of their
heuristic, while our solutions are always bounded by (1). A possible reason of this
case is that we use a 2-approximate block solver, which leads to a low accuracy.
We believe that a better approximate minimum Steiner tree solver and some
more strict stopping rules can result in better performance of our algorithm.

We also test our Algorithm 4 by Instances 2, 3 and 4, which are not im-
plemented in [4]. The results are listed in Table 3. Our algorithm can always
generate satisfactory solutions for these hard instances in short running times.
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Table 3. Numerical results of Instance 2, 3 and 4

Inst. # req.(# term.) Alg. 4 Inst. # req.(# term.) Alg. 4

2 50(≥ 10) 7(37) 2 150(≥ 30) 25(116)

2 50(≥ 5) 6(41) 2 200(≥ 10) 34(404)

2 100(≥ 5) 12(83) 2 200(≥ 30) 32(148)

2 100(≥ 10) 14(77) 2 300(≥ 10) 38(559)

2 150(≥ 10) 19(131) 2 300(≥ 30) 47(231)

3 50(≥ 5) 2(146) 3 200(≥ 20) 13(320)

3 50(≥ 20) 4(105) 3 300(≥ 5) 8(565)

3 100(≥ 5) 4(90) 3 300(≥ 20) 19(285)

3 100(≥ 20) 7(186) 3 500(≥ 5) 13(962)

3 200(≥ 5) 6(210) 3 500(≥ 20) 30(483)

4 50(≥ 5) 3(103) 4 200(≥ 20) 24(165)

4 50(≥ 20) 7(36) 4 300(≥ 5) 14(560)

4 100(≥ 5) 6(83) 4 300(≥ 20) 34(280)

4 100(≥ 20) 13(86) 4 500(≥ 5) 24(475)

4 200(≥ 5) 10(173) 4 500(≥ 20) 56(390)

For any request of all these instances, the corresponding MST S is called at
most 3 times.

6 Conclusion

We have implemented the approximation algorithm for the multicast congestion
problem in communication networks in [14] based on [13] with some heuristics
to improve the quality of solution and reduce the running time. The numerical
results for hard instances are reported and are compared with the results of
the approximation algorithm in [10] and a heuristic in [4]. It shows that the
algorithm in [13] is practical and efficient for packing problems with a provably
good approximation ratio.

There could be some interesting techniques to further improve the exper-
imental performance of the algorithm. A possible method is to use a better
approximate minimum Steiner tree solver (e.g. the algorithm in [21]), though
the running time will be significantly increased. Another technique is to use
the line search for the step length to reduce the number of iterations. However,
the running time in each iteration increases so the improvement of the overall
running time could be not significant. More heuristics and techniques are to be
designed and implemented in our further work.
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Abstract. The static frequency assignment problem on cellular net-
works can be abstracted as a multicoloring problem on a weighted graph,
where each vertex of the graph is a base station in the network, and the
weight associated with each vertex represents the number of calls to
be served at the vertex. The edges of the graph model interference con-
straints for frequencies assigned to neighboring stations. In this paper, we
first propose an algorithm to multicolor any weighted planar graph with
at most 11

6
W colors, where W denotes the weighted clique number. Next,

we present a polynomial time approximation algorithm which garantees
at most 2W colors for multicoloring a power square mesh. Further, we
prove that the power triangular mesh is a subgraph of the power square
mesh. This means that it is possible to multicolor the power triangular
mesh with at most 2W colors, improving on the known upper bound of
4W . Finally, we show that any power toroidal mesh can be multicolored
with strictly less than 4W colors using a distributed algorithm.

Keywords: Graph multioloring; power graph; approximation algorithm;
distributed algorithm; frequency assignment, cellular networks.

1 Introduction

A cellular network covers a certain geographic area, which is divided into regions
called cells. Each cell contains a base station equipped with radio transceivers.
Users in a cell are served by a base station and cells can communicate with their
neighbors via radio transceivers. This communication consists in assigning a
frequency to each call in a manner that avoids interference between two distincts
calls. However, cellular networks use a fixed spectrum of radio frequencies and
the efficient shared utilisation of the limited available bandwidth is critical to the
viability and efficiency of the network. The static frequency assignment problem
with reuse distance d (also called interference constraints), therefore, consists
in designing an interference frequency allocation for a given network where the
number of calls per cell is known, and it is assumed that a frequency can be
reused without causing interference in two cells if the distance between them is
at least d. This forms the motivation for the problems studied in this paper.
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Cellular networks are often modeled as finite portions of the infinite triangular
mesh embedded in the plane. Vertices represent cells and edges correspond to
interference constraints for frequencies assigned to neighboring stations.

The frequency assignment problem described above is a multicoloring prob-
lem in the triangular mesh, and it can be abstracted as follows. Let G = (V,E)
be a finite undirected subgraph of the triangular mesh. Each vertex v ∈ V has
an associated nonnegative integer weight, noted ω(v). A multicoloring of G is an
assignment of sets of colors to the vertices such that each vertex v is assigned
a set of ω(v) distinct colors, any pair of adjacent vertices u, v in G are assigned
disjoint sets of colors. Note that the weight of a vertex is the number of calls in
the corresponding cell and the assigned colors are the allocated frequencies. The
frequency assignment problem with reuse distance d = p + 1 is thus equivalent
to the problem of multicoloring the p th power of G.

There is a vast literature on algorithms for the multicoloring problem (also
known as weighted coloring [7] or ω-coloring [9]) on graphs (especially triangu-
lar mesh) [3, 4, 5, 6, 7, 9]. McDiarmid and Reed proved [7] that this problem is
NP-hard. Hence, it would be interesting to find algorithms that approximate
the number of colors used. But generally there are no proven bounds on the
approximation ratio of the proposed algorithms in terms of the number of colors
used in relationship to the weighted clique number. In this work, we give special
attention to some powers of the graphs with an embedding into the plane, in
particular square mesh and triangular mesh. Also, we study the multicoloring
problem on the power toroidal mesh.

In the next section, we present some definitions of basic terminology. In Sec-
tion 3, we describe an algorithm for multicoloring any planar graph in which
the number of colors used is within a factor 11

6 to the weighted clique number.
Our main results presented in Section 4 and in Section 5 concern the multicol-
oring the power square mesh and the power triangular mesh with an algorithm
using a number of colors at most 2 times the weighted clique number. Finally,
for multicoloring a power toroidal mesh, we propose in Section 6 a distributed
algorithm with guaranteed approximation ratio of 4.

2 Preliminaries

In this paper, we denote by G = (V,E) a finite and simple graph with vertex
set V and edge set E. The length of a path between two vertices is the number
of edges on that path. The distance in G between two vertices u, v ∈ V , noted
dG(u, v), is the length of a shortest path between them. Given a positive integer
p, the pth power Gp of a graph G is a graph with the same set of vertices as G
and an edge between two vertices if and only if there is a path of length at most
p between them in G. A proper coloring of G is an assignment of colors to its
vertices such that no two adjacent vertices receive the same colors. The mini-
mum number of colors for which a coloring of G exists is called the chromatic
number and is denoted by χ(G).
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Given a graph G, a weighted graph Gω associated with G is a pair Gω = (G,ω)
where ω is a weight function that assigns a non-negative integer to each vertex
v of G, ω(v) is called the weight of v. A multicoloring of the weighted graph Gω

consists of a set of colors C and a function f that assigns to each v ∈ V a subset
of colors f(v) ⊂ C such that:

i) ∀ v ∈ V , |f(v)| = ω(v), i.e. the vertex v gets ω(v) distinct colors.
ii) If (u, v) ∈ E then f(u)∩ f(v) = ∅, i.e. two adjacent vertices get disjoint sets

of colors.

The weighted chromatic number, denoted χω(G), of Gω is the minimum num-
ber of colors needed to multicolor all vertices of Gω so that conditions i) and
ii) above are satisfied. An algorithm is an α-approximation algorithm for the
multicoloring problem if the algorithm runs in polynomial time and it always
produces a solution that is within a factor of α of the optimal solution.

A subgraph K of Gω is called a clique if every pair of vertices in K is con-
nected by an edge. The weight of any clique in Gω is defined as the sum of the
weights of the vertices forming that clique. The weighted clique number of Gω,
denoted WG (for short, we will sometimes use W ), is defined to be the maximum
over the weights of all cliques in Gω. Clearly, χω(G) ≥W .

3 Planar Graphs

The Frequency assignment problem on planar graphs have been studied in [1, 8].
In this section we consider the multicoloring problem on planar graphs. Before,
we present a result of Narayanan and Shende [9] showing that there exists an
efficient algorithm to optimally multicolor any outerplanar graph. A graph is
planar if it can be drawn in a plane without edge crossings. A graph is said to
be outerplanar if it is a planar graph so that all vertices may lie on the outer
face.

Theorem 1. ([9]) Let G be an arbitrary outerplanar graph, then its associated
weighted graph Gω can be multicolored optimally using χω(G) colors in linear
time.

Now, we consider the problem of computing an approximate multicoloring of an
arbitrary planar graph.

Theorem 2. Let G be a planar graph, then

χω(G) ≤ 11
6
·WG

Proof. Suppose that G is connected, since disconnected components of G can be
multicolored independently. G is a planar graph of order n, then using the O(n2)
algorithm described by Robertson et al. in [11], we color G with 4 colors from
{1, 2, 3, 4}. We call these colors base colors. We denote by si any vertex s ∈ VG

which has color i ∈ {1, 2, 3, 4}, and by [1, x]i an interval of x (nonnegative integer)
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distinct hues associated with base color i so that if i �= j then for every integers
x, y ≥ 0, we have [1, x]i ∩ [1, y]j = ∅.

Let Gω be a weighted graph associated to G. WG denotes the weighted clique
number of Gω. We fix � = 1

3WG (to simplify, we consider the case where WG ≡

0 (mod3), otherwise the result will almost be same), and we let C =
4⋃

i=1

[1, �]i

denote a set of available colors. Consider the multicoloring function f of Gω

defined as follows:

f : VG −→ P(C)
si 
−→ f(si) = [1,min(ωG(si), �)]i

where each vertex si with weight ωG(si) is assigned the hues of [1,min(ωG(si), �)]i.
Note that a vertex v (with weight ω(v)) is called heavy if ω(v) > � and is called
light if ω(v) ≤ �. Hence, only the heavy vertices remain to be completely colored
and their weights may be decreased by �. All light vertices are colored completely
and are deleted from G.

Let H = (VH , EH) denote the remaining graph obtained after this process.
Thus H is such that

– u ∈ VH ⇔ ωG(u) > �,
– ωH(u) = ωG(u)− �,
– (u, v) ∈ EH ⇒ (u, v) ∈ EG.

It is easily seen that H has no clique of size 3. In fact, if (u1, u2, u3) is a tri-
angle in H, then these vertices must have been heavy in G. Hence, there exist
positive integers ε1, ε2 and ε3 such that ωG(u1) = � + ε1, ωG(u2) = � + ε2

and ωG(u3) = � + ε3. As ωG(u1) + ωG(u2) + ωG(u3) ≤ WG = 3�, we obtain
ε1 + ε2 + ε3 ≤ 0 a contradiction. Consequently, every clique K in H has size at
most 2. Furthermore, if (u, v) ∈ K then ωH(u)+ωH(v) = ωG(u)−�+ωG(v)−� ≤
WG − 2� = �. In addition, if u is an isolated vertex in H, then there exists a
positive integer ε such that ωG(u) = � + ε, and all neighbors of u must be light
vertices in G. Suppose that u has i for its base color and let Nj be the set of
all its neighbors having j �= i for there base color in G. Let vj ∈ Nj such that
ωG(vj) = max

s∈Nj

ω(s). Further, we have ωG(vj) = � − εvj
with 0 ≤ εvj

≤ �. Then

u can borrow εvj
available colors from [1, �]j , which are unused by all vertices

of Nj . As ωG(u) + ωG(vj) ≤ WG = 3�, we get ε − εvj
≤ �. For this reason, we

consider that each isolated vertex u ∈ H has ωH(u) = ωG(u)−(�+εvj
) = ε−εvj

.
Thus, WH ≤ � and we can therefore distinguish two cases

1. If H is a bipartite graph, then H can be multicolored optimally with exactly
WH colors (see [4, 7]). In this case, to avoid color conflicts, we use a new set
C′ of WH distinct colors. Thus, multicoloring all vertices of Gω requires at
most |C|+ |C′| ≤ 4� + � = 5

3WG colors.
2. If H is not a bipartite graph, then H is a planar graph without 3-cycles

(triangle-free). Then, using anO(nlogn) algorithm (See [12]) we color H with
at most 3 colors. Thus, there is an algorithm for multicoloring H that requires
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at most 3
2WH colors [4]. Similarly, we use a new set C′ of 3

2WH distinct colors.
Thus, multicoloring all vertices of Gω requires at most |C|+ |C′| ≤ 4�+ 3

2� =
11
6 WG colors.

4 p th Power of a Mesh

In this section, we denote by Mn,m = (Vn,m, En,m) the square mesh of order
n ∗m, and by Mp

n,m = (V p
n,m, Ep

n,m) the p th power of Mn,m such that:

- V p
n,m = {(i, j) | 0 ≤ i ≤ n− 1; 0 ≤ j ≤ m− 1},

- Ep
n,m = {((i, j), (i± l, j ± r)) ∈ (V p

n,m)2 | 1 ≤ l + r ≤ p}.

Suppose that Mp
n,m is a weighted graph with weighted clique number W . For

the multicoloring of Mp
n,m, the method we use is based on a greedy algorithm.

In fact, in the beginning, we fix a set of W distinct colors. Next, according
to a preset order, each vertex u is multicolored in a greedy manner by as-
signing any colors currently unused by its neighbors. If the multicoloring of
u remains incomplete, we use new colors to complete it. This method prompts
Lemma 1.

Let H = (V,E) be a weighted graph and let x be a vertex of H such that
V = K1 ∪ K2 ∪ {x}, where K1 and K2 are two disjoint subsets and K1 ∪ {x}
and K2 ∪ {x} are cliques in H (See Figure 1). We denote by ω(Ki) the weight
of Ki with i = 1, 2, by ω(x) the weight of x and by C the set of available
colors.

Lemma 1. Assume that all vertices of K1 ∪ K2 are already multicolored us-
ing colors from C and assume that the vertex x is not yet multicolored, then
the total number of colors obtainable after multicoloring x is at most
max(|C|,W + 1

2 |C|).

2

K 1

K

x

Clique

Clique

Fig. 1. The graph H
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Proof. Suppose that, for each i ∈ {1, 2}, Ki ∪ {x} is a clique in H. As W is
weighted clique number of H, we have{

ω(x) + ω(K1) ≤W
ω(x) + ω(K2) ≤W

(1)

(1) gives :

ω(x) ≤W − 1
2
(ω(K1) + ω(K2)) (2)

Let S be the number of colors of C used only on the vertices of K1 or K2. Let
D be the number of colors of C used on both vertices of K1 and K2. Thus, we
get ω(K1) + ω(K2) = S + 2D.

1. If all colors of C have been used i.e. |C| = S + D, according to (2) we obtain
ω(x) ≤ W − 1

2 (S + 2D) ≤ W − 1
2 (S + D) = W − 1

2 |C|. Then, to multicolor
the vertex x without having a colors conflict, we use ω(x) ≤ W − 1

2 |C| new
colors. Consequently, the total number of colors used is ω(x)+|C| ≤W + 1

2 |C|
colors.

2. If |C| > S + D, let A be the number of unused colors of |C|. If ω(x) ≤ A, we
can use some of these A colors to multicolor vertex x. In this case, the total
number of colors used cannot exceeds |C|. If ω(x) > A, we assign A colors to
vertex x and we consider that the new weight of vertex x is ω(x)− A, thus
we are in the previous case.

Theorem 3. For any p ≥ 2, there exists a polynomial time greedy algorithm
which multicolors all vertices of the weighted p th power square mesh using at
most 2W colors.

Proof. Let Mp
n,m be the p th power square mesh as defined previously. In what

follows, let ωij denote the weight of vertex (i, j) and C0 denote a set of colors
with |C0| = W .

Consider PN = {(i, j) ∈ V p
n,m | i+ j = N}, a subset of V p

n,m. We observe that

V p
n,m =

n+m−2⋃
N=0

PN .

The idea of the proof is to multicolor each subset PN starting from P0 to
Pn+m−2. At each stage N , we multicolor in a greedy manner the vertices of PN

using Lemma 1. In fact,

- For N = 0, let C0 be the set of available colors. It is easy to see that P0 =
{(0, 0)} and we can multicolor the vertex (0, 0) with ω00 colors from C0.

- For N = 1, we also consider C0 as the set of available colors. We have P1 =
{(1, 0), (0, 1)}. As (0, 0), (1, 0) and (0, 1) belong to the same clique, we can
easily multicolor the vertices (1, 0) and (0, 1) with colors from C0 without
having any conflict.

- At stage N , let (i, j) ∈ PN be a vertex not yet multicolored and let C be the
set of available colors. We suppose that all vertices of PN ′ (with N ′ < N)
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and the vertices (i + r, j − r) ∈ PN with 1 ≤ r ≤ min(N − i − 1, j) are
already multicolored and use colors from C. Let Kij be the subset of V p

n,m

that contains part of these vertices which are at distance less than or equal
to p from vertex (i, j) in Mn,m. The goal is to partition Kij into two cliques
K1

ij and K2
ij and applying Lemma 1 (See Figure 2).

Now, we are going to show that

Kij = {(i + r, j − l) ∈ V p
n,m | r + l ≤ p ; 0 ≤ r ≤ l}

∪ {(i− r, j − l) ∈ V p
n,m | r + l ≤ p ; 1 ≤ r ≤ p ; 0 ≤ l ≤ p}

∪ {(i− r, j + l) ∈ V p
n,m | r + l ≤ p ; 1 ≤ l < r}

Let (i′, j′) ∈ Kij , it is easy to see that dMn,m
((i, j), (i′, j′)) ≤ p.

In addition, we have

i′ + j′ =

⎧⎨⎩
i + j − (l − r), if 0 ≤ r ≤ l;
i + j − (l + r), 1 ≤ r, 0 ≤ l;
i + j − (r − l), 1 ≤ l < r.

(3)

If N ′ = i′ + j′ then, (3) gives us N ′ ≤ N , because N = i + j. How-
ever, we have i′ + j′ = N only if i′ = i + r and j′ = j − r with r ≤ j.
Hence, according to the above assumption, we have that (i′, j′) is already
multicolored.
Reciprocally, consider (i ± r, j ± l), with r, l ≥ 0, a vertex of V p

n,m al-
ready multicolored such that dMn,m

((i, j), (i ± r, j ± l)) ≤ p. That means
r + l ≤ p and there exists N ′ ≤ N such that (i ± r, j ± l) ∈ PN ′ . So,
i ± r + j ± l ≤ N = i + j this gives r ≤ l or l ≤ r. Hence,
(i± r, j ± l) ∈ Kij .
Moreover, we can partition Kij into two cliques K1

ij and K2
ij where:

- K1
ij = {(i + r, j − l) | 1 ≤ r + l ≤ p ; 0 ≤ r ≤ l} ∪ {(i − r, j − l) | r + l ≤
p ; 1 ≤ r < l}.

- K2
ij = {(i − r, j − l) | 1 ≤ r + l ≤ p ; 0 ≤ l < r} ∪ {(i − r, j + l), | r + l ≤
p ; 1 ≤ l < r}

Finally, by applying Lemma 1, we multicolor (i, j) and the total number of
colors used until this stage is max(|C|,W + 1

2 |C|). Then, it is clear that 2W colors
are sufficient for multicoloring all vertices of Mp

n,m.

In fact, the algorithm of the above proof can be applied to every subgraph of
the power square mesh.

Proposition 1. For any subgraph G of the weighted square mesh, there exists
a polynomial time greedy algorithm which multicolors all vertices of G using at
most 2W colors.

Proof. The proof is similar to that of Theorem 3, because, keeping the same
order on the vertices, when we multicolor vertex (i, j) of G, the set of neighbors
of (i, j) which are already multicolored can be partitioned in two cliques. Thus
the same algorithm used in proof of Theorem 3 gives the result.
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Fig. 2. The multicoloring of graph M3

5 p th Power of a Triangular Mesh

We define a triangular mesh as a mesh formed by tiling the plane regularly with
equilateral triangles (See Figure 3). The multicoloring problem on a weighted
triangular mesh has been extensively studied and proved to be NP-hard by
Mcdiarmid and Reed [7]. If the triangular mesh considered is of power p ≥ 2
then the problem models frequency allocation in cellular networks with reuse
distance d, where d = p − 1. Some authors independently gave approximation
algorithms for this problem. In case where d = 2, a 4

3 -approximation algorithm
has been described both in [7, 9]. For d = 3, [3] gives a simple algorithm that
has a guaranteed approximation ratio of 7

3 . For d ≥ 4, the best known upper
bound on the number of colors needed is 4W [6]. In contrast, the best known
lower bound on the number of colors needed is 9

8W if d = 2 [9] and is 5
4W if

d ≥ 3 [10].
In the following, we present an improvement of the upper bound of 4W

by showing that for the p th power triangular mesh noted Hp, there exists a
polynomial time algorithm that multicolors all vertices of Hp using at most 2W
colors. The method used is based on the multicoloring of the p th power mesh.

Fig. 3. A triangular mesh
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Fig. 4. A triangular mesh induced in the 4 th power of a mesh

Theorem 4. Hp is a subgraph of M4p, where M4p is the (4p) th power of a
mesh.

Proof. Let M = (V,E) be an arbitrary square mesh, and let Mp = (V p, Ep) be
the p th power of M .
We fix p = 4. We know that there exists a pair of integers (q, r) such that
n + m− 2 = 4q + r where 0 ≤ r < 4.

Let V 1
H =

q⋃
k=0

P4k be a vertex subset of V 4, where for 0 ≤ k ≤ q we have:

- P4k = {(2i, 2j) ∈ V 4 | i + j = 2k} when k is even.
- P4k = {(2i + 1, 2j + 1) ∈ V 4 | i + j = 2k − 1} when k is odd.

Consider v, v′ ∈ V 1
H two adjacent vertices in M4 (i.e. dM (v, v′) ≤ 4). Thus, there

exist k, k′ ∈ {0, 1, ..., q} such that v ∈ P4k and v′ ∈ P4k′ .
Without loss of generality, we assume that k is even. Then there exists (i, j) such
that v = (2i, 2j) ∈ V 4 and i + j = 2k.

case 1: k′ is even. Then, there exists (i′, j′) such that v′ = (2i′, 2j′) ∈ V 4 and
i′ + j′ = 2k′. As dM (v, v′) ≤ 4, we get |2(i′ − i)| + |2(j′ − j)| ≤ 4. Moreover,
|2(i′ − i) + 2(j′ − j)| ≤ |2(i′ − i)| + |2(j′ − j)| ≤ 4, this gives |4(k′ − k)| ≤ 4.
As k and k′ are even we obtain k = k′. Then, i′ − i = j − j′ so |i′ − i| ≤ 1.
Thus, i = i′ or i = i′ ± 1. If i = i′ we obtain v = v′, but if i = i′ ± 1 we obtain
v′ = (2i + 2, 2j − 2) or v′ = (2i− 2, 2j + 2).

case 2: k′ is odd. Then, there exists (i′, j′) such that v′ = (2i′ + 1, 2j′ + 1) ∈ V 4

and i′ + j′ = 2k′−1. dM (v, v′) ≤ 4 implies that |2(i′− i)+1|+ |2(j′− j)+1| ≤ 4.
As |2(i′−i)+2(j′−j)+2| ≤ |2(i′−i)+1|+|2(j′−j)+1|, we obtain |4(k′−k)| ≤ 4.
So, k′ = k ± 1 because they are of different parity.

If k′ = k +1, then i′− i = j− j′ +1. So, the inequality |2(i′− i)+1|+ |2(j′−
j) + 1| ≤ 4 gives j − j′ ≤ 1

2 or j′ − j ≤ 3
2 . Hence, we obtain j′ = j or j′ = j + 1.
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Therefore, v′ = (2i + 3, 2j + 1) or v′ = (2i + 1, 2j + 3). In the same way if we
take k′ = k − 1, we obtain v′ = (2i− 3, 2j − 1) or v′ = (2i− 1, 2j − 3).

Thanks to the above, we see that each inner vertex v ∈ P4k with k is even
has exactly six neighbors and they form a hexagon, and the same holds when k
is odd.

Consequently, we define H1 to be the subgraph of M4 induced by V 1
H . It is

clear that H1 is a triangular mesh (See Figure 4).
In addition, we remark that the distance in M between two adjacent vertices

of H1 is 4. Thus, we easily verify that for any p ≥ 1, the p th power of the trian-
gular mesh Hp is a subgraph of the (4p) th power of the mesh M4p.

Corollary 1. There exists a polynomial time greedy algorithm which multi-
color all vertices of the weighted p th of a triangular mesh Hp using at most
2W colors.

6 p th Power of a Toroidal Mesh

Let G = (V,E) be an arbitrary graph and let s be a vertex of G. We denote by
N(s) the neighborhood of vertex s.

Definition 1. A connected graph G = (V,E) has Property (Pk) iff for any ver-
tex s, the set N(s)∪{s} can be covered with k distinct cliques each containing s.

With the above definition, we provide the following theorem, where the proof
is based on an idea given in [3].

Theorem 5. If G is a weighted connected graph verifying Property (P4) then
χω(G) < 4W .

Proof. Let G = (V,E) be a connected graph verifying Property (P4). Consider
a proper coloring of G with k colors. We associate with each base color � dis-
tinct hues, where � is a constant to be determined later. Thus, we obtain k · �
available colors. Now, we assign each vertex s ∈ V ω(s) colors in the interval
[1,min(ω(s), �)] of colors associated to the base color of s. Then, we note that the
heavy vertices (with weight larger than �) are not completely colored. In order to
complete the coloring of the heavy vertices, we proceed in the following manner.
First, we consider a heavy vertex s not yet completely colored and let N(s) be
the vertex subset of V adjacent with s. As G verifies Property (P4), N(s) can
be covered with four cliques, each of them containing s. Assume that W is the
weighted clique number. Then each clique has weight at most W . Thus, the total
weight of N(s) is at most ω(s)+ 4(W −ω(s)) = 4W − 3ω(s) < 4W − 3� because
s is a heavy vertex. In order for k · � colors to be sufficient to color all vertices of
N(s) we must have 4W − 3� = k · �. This gives 4W = (3 + k)�. So, � = 4

3+kW .
Thus, we are able to color all vertices of G using at most k · � = 4k

3+kW < 4W
colors.

Now, we consider the p th power toroidal mesh Mp
n,m = (V p, Ep) of order

n ∗m where:
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Fig. 5. The graph M3 and the vertex subset V p
(i,j) covered by 4 cliques K1

ij , K2
ij ,

K3
ij , K4

ij

- V p = {(i, j) | 0 ≤ i ≤ n− 1; 0 ≤ j ≤ m− 1}.
- Ep = {((i, j), (i± l mod n , j ± r mod m)) | 1 ≤ l + r ≤ p}.

Let W be the weighted clique number of Mp
n,m.

Using Theorem 5, we show in the following theorem that the weighted chro-
matic number of the p th power of a toroidal mesh Mp

n,m does not exceed 4W .

Theorem 6. There exists a polynomial time algorithm which multicolors any
vertices of the weighted p thpower toroidal mesh of order n∗m if p<min(�n

2 �, �
m
2 �)

using at most 4W colors.

Proof. For the proof, with Theorem 5, we only have to show that Mp = (V p, Ep)
verifies Property (P4).

Let s = (i, j) be a vertex of V p, and let V p
s = N(s)∪{s} be the vertex subset

of V p which contains all vertices of V p at distance less or equal to p from s.
Now, we construct four subsets of V p

s defined as follow:

- K1
ij = {(i± r, j − l) ∈ V p

s | 0 ≤ r + l ≤ p; 0 ≤ r ≤ l}.
- K2

ij = {(i + r, j ± l) ∈ V p
s | 0 ≤ r + l ≤ p; 0 ≤ l ≤ r}.

- K3
ij = {(i± r, j + l) ∈ V p

s | 0 ≤ r + l ≤ p; 0 ≤ r ≤ l}.
- K4

ij = {(i− r, j ± l) ∈ V p
s | 0 ≤ r + l ≤ p; 0 ≤ l ≤ r}.

It is easy to see that each subset Kl
ij with l ∈ {1, 2, 3, 4} is a clique in Mp

n,m and
V p

s = K1
ij ∪K2

ij ∪K3
ij ∪K4

ij i.e. V p
s is covered by these 4 cliques (See Figure 5).

Then, Mp
n,m verifies Property (P ).

7 Conclusions

In this work, we have studied the problem of frequency assignment in cellular
networks with reuse distance d as a multicoloring problem on powers of graphs.
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We proposed some techniques of multicoloring based on approximation and dis-
tributed algorithms, and we provided some approximation ratios in terms of the
number of colors used in relationship to the weighted clique number, denoted
by W . For a planar graph, we have shown that 11

6 W colors are sufficient to
multicolor it. For the power square mesh and triangular mesh, we described a
greedy multicoloring algorithm that uses at most 2W colors. We also presented
a distributed algorithm for multicoloring a toroidal mesh using at most 4W col-
ors. It would be interesting to see if the algorithm proposed in Section 4 can
be improved to have an approximation ratio less than 2, and can be adapted to
every power n-dimensional mesh and every power planar graph.
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Abstract. We present the problem of statically distributing instructions
of a common programming language, a problem which we prove equiv-
alent to the multiterminal cut problem. We design efficient shrinkage
techniques which allow to reduce the size of an instance in such a way
that optimal solutions are preserved. We design and evaluate a fast local
heuristics that yields remarkably good results compared to a well known
2− 2

k
approximation algorithm. The use of the shrinkage criterion allows

us to increase the size of the instances solved exactly, or to augments the
precision of any particular heuristics.

1 Introduction

We present the problem of automatic distribution of a programming language,
motivated by our research in automatic distributed industrial control systems
[17]. This problem consists in distributing a program code among different
sites, minimizing the total communications between these sites during its ex-
ecution. We show that this problem is NP-hard. Furthermore, we show that
it is equivalent to the multiterminal cut presented in [7], and therefore con-
centrate on finding new ways to attack the problem described in terms of
multiterminal cut.

The key concept used in this paper is based on shrinkage, a notion presented
by Dahlhaus et al. in [7] where an instance I is transformed into a smaller
instance I ′ in such a way that all optimal solutions in I ′ can be easily transformed
into optimal solutions for I.

In this paper, we generalize the shrinkage criterion of Dahlhaus et al. which
is based on st cuts, to all nodes in the instance graph and prove its correctness.
Then, we present an implementation of a fast local heuristics taking advantage
of this new shrinkage operation. The heuristics combines both the new shrinkage
based reduction and an unshackle operation which operates on graphs where no
more shrinkage is possible.

We also introduce maximum size minimum st cuts, and prove (theorems 5,
6 and 7) some unexpected properties on the structure of these cuts. We ex-
ploit these results to obtain a more efficient implementation for our shrinkage
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algorithm, and prove (theorem 8) that the procedure of Goldberg and Tarjan,
presented in [10] for max-flow/min-cut actually computes these cuts. A practical
evaluation is presented showing that our heuristics yields generally better results
than the approximation algorithm designed by Dahlhaus et al. To the best of
our knowledge, we perform the first experimental study of the approximation
algorithm of [7].

2 Optimal Static Code Distribution Is Hard

Our problem consists in finding, at compile time, an optimal distribution of an
imperative regular program. Such a program contains instructions (assignments,
loops and tests), a set of static global internal variables and a set of static global
I/O variables. The distributed environment in which the program runs is com-
posed of several sites, each of which contains some of the global I/O variables. A
correct distribution is an assignment of all variables and all instructions to the
set of sites such that the following distribution constraints are satisfied : (1) the
I/O variables are on the predefined sites, (2) each variable and instruction is
on exactly one site, (3) each instruction using a variable is on the site of that
variable.

The assignment of instructions to sites influences the performance of the pro-
gram during execution: each time control flows from an instruction assigned to
one site to an instruction assigned to another site, the executed distribution en-
vironment must synchronize (e.g. by sending a message over a network) in order
to continue the execution on the other site. The optimal distribution is such that
the expected number of (synchronization) messages exchanged during execution
is minimum. In order to evaluate this performance criterion, we suppose that
a realistic control flow frequency function W is given, expressing the expected
number of times control flows from one instruction to another.

x=1;
while (y<k) { // k times
if (z>2) w=1; // 1/2
else x=3; // 1/2
s=0;
y++;

}
q=2;

I/O q : site1;
I/O s : site2;

(a) (b) (c)

Fig. 1. The distribution problem
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A graphical presentation of the optimal distribution problem can be found
in figure 1. The program of figure 1(a) can be graphically modeled by its control
flow graph (figure 1(b)) where the nodes are its instructions and edges model
the control flow between instructions with weights defined by W. The graph of
figure 1(c) is the undirected graph where all nodes using the same variables are
merged. We say that this graph is the result of the merging of x=1 and x=3 and
of the merging of y>k and y++ in the first graph. More formally, when two nodes
n and n′ are merged, n and n′ are replaced by one new node n′′, and all edges
{v, n} and {u, n′} are changed to {v, n′′} and {u, n′′}. Note that when more
than one edge exists between two nodes, all of the edges between those nodes
can be replaced by a single edge weighted by the sum of the weights of these
edges. Remark that both representations of figure 1 are equivalent with respect
to the optimal distribution problem. The merging operation is sometimes called
contraction if an edge exists between two merged nodes, since that edge would
disappear from the graph. We now give a formal definition of the multiterminal
cut problem on weighted undirected graphs.

Definition 1 (Multiterminal cut problem). Given a weighted undirected
graph G(V,E,w) : E ⊆ {{u, v}|u, v ∈ V ∧ u �= v} 1, w : E 
→ N and a set of
terminals T = {s1, ..., sk} ⊆ V , find a partition of V into V1, ..., Vk such that
si ∈ Vi ∀i ∈ [1, k] and

∑
v∈Vi,v′∈Vj ,i �=j w(v, v′) is minimized.

We know that the multiterminal cut problem is NP-Hard [7] for fixed k > 2,
even when all weights are equal to 1. As shown in [1], optimal distribution is an
np-hard problem. The following theorems, proved in [1], state that the optimal
distribution problem and the multiterminal cut are equivalent.

Theorem 1. There exists a polynomial time reduction from the optimal distri-
bution problem to the multiterminal cut.

Theorem 2. There exists a polynomial time reduction from multiterminal cut
on unweighted graphs to the optimal distribution problem.

With these two theorems, we can conclude that the optimal distribution
problem is polynomially equivalent to the multiterminal cut. Thus, to solve the
optimal distribution problem, we can concentrate on the multiterminal cut in
the program’s control flow graph.

3 Related Works

The multiterminal cut problem has first been studied by Dahlhaus et al. in [7].
In this paper, the authors prove that this problem is NP-hard for k > 2 even
when k is fixed where k is the number of terminals. The problem is polyno-
mially solvable when k = 2, a well known result proved by Ford and Fulker-
son [8], and in the case of planar graphs. The authors also present a 2 − 2

k

1 For technical reasons looping edges (v, v) will be omitted in all graphs considered
here.Note that their presence does not change the problem.
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polynomial time approximation algorithm that relies on isolating cuts, a tech-
nique that is detailed further on. Moreover, they proved that this problem is
MAX SNP-hard, i.e. there is no polynomial time approximation scheme un-
less P=NP. In [2], Calinescu, Karloff, and Rabani, presented a linear program-
ming relaxation. Using this technique and a well chosen rounding procedure,
they obtain an approximation factor of 1.5 − 1

k . This factor was lowered to
1.3438 by Karger et al. in [13] who give better approximations when k ≥ 14.
These improvements were found by studying carefully the integrality gap and
giving a more precise rounding procedure. A polyhedral approach [3, 15, 5] and
a non-linear formulation [6] have also been studied for the multiterminal cut
problem.

Shrinkage has also been studied by Högstedt and Kimelman in [11]. In this pa-
per, the authors give some optimality-preserving heuristics that allow to reduce
the size of the input graph by contracting some edges. The shrinkage technique
presented here generalizes some of their criteria (such as independent nets and
articulation points).

In this paper, we consider the multiterminal cut problem on undirected
graphs, but work has also been done on directed graphs. Naor and Zosin pre-
sented a 2-approximation algorithm for this problem in [14]. On the other hand,
Costa, Letocart and Roupin proved in [4] that multiterminal cuts on acyclic
graphs could be computed in polynomial time using a simple flow algorithm. A
generalization of multiterminal cut is minimum multicut where a list of pairs of
terminals is given and we must find a set of edges such that these pairs of ter-
minals are disconnected. Garg et al. [9] give a O(log k)-approximation algorithm
for this minimum multicut. A survey on multiterminal cuts and its variations
can be found in [4].

The applications that rely on the multiterminal cut fall mainly into two do-
mains : the domain of parallel computation and the partitioning of distributed
applications. The problems encountered in parallel computation are concerned
with the allocation of tasks on different processors. The total load must be
partitioned in roughly equal sized pieces, characterized by some load balanc-
ing criterion, and this subject to some interconnection criterion that must be
minimized ([12] and [16]). These problems can be formulated using the strongly
related k-cut problem, which asks to partition the graph in k subsets such that
crossing edges are minimized. Since this problem has no fixed terminals, it is
polynomially solvable, for any fixed k ≥ 3 [7] and is thus considerably easier
than the problem addressed here.

For the distributed applications, the problem is similar, only that it is the
several application’s components that must be distributed among different pro-
cessors. Several criteria are studied, such as the inter object communication load
of [11]. However, we are not aware of other works that are based on the static
distribution of the instructions where the control flow is used to minimize the
expected communications load. Because of this fine grain distribution, the scale
of our problem is considerably larger than the studies on the partitioning of
objects or functions as is the case in classical distributed systems. Therefore, we
believe that the results of the heuristics presented here are applicable on these
smaller instances as well.
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4 A Generalized Global Criterion

In [7] the authors design a 2− 2
k approximation algorithm based on the isolation

heuristics which uses st cuts. An st cut (multiterminal cut with k = 2) divides
the graph into two sets (C,C) where s ∈ C and t ∈ C. The heuristics consists
in finding an optimal isolating cut for each of the k terminals {s1, ..., sk} and
taking the union of the k−1 smallest of these cuts. An optimal isolating cut is a
minimum st cut where s=si and t is the node resulting of the merging of sj �=i.
We now introduce the original shrinkage theorem proved by Dahlhaus et al :

Theorem 3 (Shrinkage). Given graph G(V,E,w) with terminals T = {s1,
..., sk} ⊆ V . Let G′

i be the graph where all terminals in T \ {si} are merged
into t, and (C,C) the st cut between si and t, then there exists an optimal
multiterminal cut (V1, ..., Vk) of G such that ∃� : C ⊆ V	.

Theorem 3 allows us to shrink (i.e. to merge) all nodes in C into one node.
Shrinkage is clearly an interesting way to attack the multiterminal cut problem.
Indeed, we can apply theorem 3 to all terminal nodes in order to shrink the graph.
And if one can obtain a relatively small instance, then there may be hope to
find the optimal solution by exhaustive search. It can also be used independently
of any other algorithm designed to approximate the multiterminal cut problem.
We extend theorem 3 to handle more shrinkage as follows :

Theorem 4 (More shrinkage). Given graph G(V,E,w) with terminals T =
{s1, ..., sk} ⊆ V . Let v ∈ V , and G′

v be the graph where all terminals in T \ {v}
are merged into t, and (C,C) the minimum st cut between v and t in G′

v then
there exists an optimal multiterminal cut of G (V1, ..., Vk) such that ∃� : C ⊆ V	.

Proof. Outline (a detailed proof can be found in [1]). Figure 2 illustrates the
proof for l = 1. Proof by contradiction. Take any minimum multiterminal cut
C∗ = (V1, V2, ..., Vk) and suppose that v ∈ V1 but C �⊆ V1. Take C∗′

= (V1 ∪
C, V2 \ C, ..., Vk \ C). Then we can show that the weight of C∗′ ≤ the weight of
C∗ by using the weights of the edges between C and C and between C ∩ V1 and
C ∩ V1 : since (C,C) is a minimum st cut, the border of V1 can be extended to
V1 ∪ C without increasing the multiterminal cut’s weight. �

Theorem 3 differs from this theorem because we can apply the former only
on terminal nodes, while the latter can be applied to all nodes in the graph,
resulting in more shrinkage and therefore smaller graphs.

Fig. 2. Theorem 4
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We now explain how to use theorem 4 to shrink an instance of the multiter-
minal cut problem. Let s ∈ V , we compute the st cut were t is the result of
the merging of all terminals in T \ s. The nodes that are in the same partition
as s are merged together, with theorem 4 assuring that this preserves opimal-
ity. A chain of graphs G1, ..., Gl can therefore be calculated where each graph
is the result of the optimal merging with respect to its predecessor, and where
Gl can not be reduced any further. To compute these st cuts, one can use the
algorithm of Goldberg and Tarjan [10], with complexity O(nm log n2

m ) (where
n = |V |,m = |E|). With the results contained in the next section, we can show
that when this well known algorithm is used, then l ≤ n, resulting in a total
complexity in O(n2m log n2

m ).
Once a graph cannot be reduced any further, two options remain, either

search exhaustively and find an optimal solution, or unshackle the graph. Un-
shackling means contracting one or more edges that likely connect nodes from
the same partition in the optimal cut. Note that if an edge is picked that
is in every optimal multiterminal cut, this operation will not preserve opti-
mality. Once the graph is unshackled, the resulting graph may be ready for
further optimal reductions. In the following section, we study an implemen-
tation using the shrinkage technique combined with a fast local unshackling
heuristics.

5 A Fast Local Heuristics

As said in previous section, we can use the shrinkage technique in combination
with an unshackling heuristics. Figure 3 gives a graphical overview of this tech-
nique and figure 4 presents an implementation. We first perform shrinkage until
the graph cannot be reduced any further. Then, we use an unshackling heuristics
to contract one edge from this graph. The shrinkage technique may thereupon
be reused on this unshackled graph. This process is repeated until the graph
contains only terminal nodes. While the resulting multiterminal cut may not be
optimal, due to the unshackling heuristics, we will see that this technique gen-
erally computes a fairly good multiterminal cut and is quite efficient, provided
that the unshackling is easy to compute.

Fig. 3. Optimal and non optimal reductions

5.1 Definition and Complexity

Definition 2 (max-min-st cut). Given graph G(V,E,w) and two different
nodes s, t ∈ V . Define min-ST(s, t) as the set of cuts separating s and t with
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reduce();
while(non-terminals exist) {

unshackle(); // Contract 1 edge
reduce();

}

Fig. 4. Unshackling heuristics

minimum weight. We define the set max-min-st (s, t) as the set of nodes left
connected to s by the cut (C,C) ∈ min-ST(s, t) such that |C| is maximal. We
can easily extend these definitions for sets of nodes. For a set T , max-min-st
(s, T ) is equivalent to max-min-st (s, t) in the graph G where all nodes in T
have been merged into the new node t.

We now prove some interesting properties related to maximum size minimum
cuts. Theorems 5, 6 and 7 give some remarkable insights on the structure of these
cuts, which leads to a more efficient implementation of our heuristics. We use
the following notation :
w(A,B) =

∑
{(x,y)|x∈A,y∈B} w(x, y), and let w(X) = w(X,X), where X = V \X.

Theorem 5. Given graph G(V,E,w) and two nodes s, t ∈ V ,
max-min-st(s, t) is uniquely defined, i.e. there is only one maximal size mini-
mum st cut for any couple (s, t).

Proof. Outline (a full proof can be found in [1]). By contradiction : suppose
S and S′(S �= S′) both satisfy the definition of max-min-st(s, t). Let I =
S ∩ S′ and T = V \ (S ∪ S′), it is easy to see that S (resp. S′) �= I, else S
(resp. S′) would not be a maximal size minimum st cut. First, since S is a min
st cut we start from w(I) ≥ w(S) to prove that w(S \ I, I) ≥ w(S \ I, T ).
Next, we compute w(S ∪ S′), note that S ∪ S′ is also an st cut for (s, t).
We show that w(S ∪ S′) = w(S \ I, T ) + w(S′, T ) ≤ w(S′). Finally, observe
that S ∪ S′ is therefore a minimum st cut for (s, t) with larger cardinality
than S or S′. �

Theorem 6. For any three nodes s, s′, t of V , if s′ ∈ max-min-st(s, t), then
max-min-st (s′, t) ⊆ max-min-st (s, t).

Proof. By contradiction : let S = max-min-st(s, t), S′ = max-min-st(s′, t) and
suppose that S′ �⊆ S. We have that |S ∪ S′| > |S|. Let I = S ∩ S′ and T =
V \ (S ∪ S′), we define the following :

A ≡ w(S \ I, T ) B ≡ w(I, T ) C ≡ w(S′ \ I, T )
D ≡ w(I, S \ I) E ≡ w(I, S′ \ I) F ≡ w(S \ I, S′ \ I)

=⇒ w(S ∪ S′) = A + B + C w(S) = A + B + E + F
w(S′) = B + C + D + F w(I) = B + D + E

From the definition of S and S′ we have w(S ∪ S′) > w(S) (as S � S ∪ S′) and
w(I) ≥ w(S′), which implies that C > E + F and E ≥ C + F . This leads to a
contradiction. �
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Theorem 7. Given graph G(V,E,w) and three distinct nodes s, s′, t ∈ V . Let
S = max-min-st(s, t), S′ = max-min-st(s′, t), I = S ∩ S′, and T = V \
(S ∪ S′). If I �= ∅ and S �= I and S′ �= I, then w(I, S \ I) = w(I, S′ \ I).
Moreover, we have that w(I, V \ (S ∪ S′)) = 0. The same results hold when S =
max-min-st(s, {t∪s′}), S′ = max-min-st(s′, t) or S = max-min-st(s, {t∪s′}),
S′ = max-min-st(s′, {s ∪ t}).

Proof. By contradiction : let’s reuse the equations from proof of theorem 6, to
compute w(S \ I) and w(S) :

w(S \ I) = A + D + F w(S) = A + B + E + F

As S is the max-min-st cut(s, t), we have A + B + E + F ≤ A + D + F
and B + E ≤ D. By applying a similar reasoning with S′ and S′ \ I, we
can prove that B + D ≤ E. In conclusion, we have E = D(⇒ w(I, S \ I) =
w(I, S′ \ I)) and B(≡ w(I, T )) = 0. The two other propositions are
proved likewise. �

Theorems 5, 6 and 7 allow us to efficiently calculate the reduction phases of
our unshackling heuristics. We know that the order in which we calculate the cuts
has no effect on the outcome of the algorithm. Moreover, we can calculate the
max-min-st cut for a given node n and immediately merge all nodes on the same
side of n in the cut, thus reducing the number of nodes before calculating the
next max-min-st cut for the remaining unmodified nodes. After the calculation
and merging of all max-min-st cuts, we have for all nodes in the reduced graph
and terminals s1, . . . , sk, max-min-st cut (s,∪isi \{s}) = {s}. The only missing
link is how to calculate max-min-st:

Theorem 8. The algorithm of Goldberg and Tarjan [10] calculating the maxi-
mum flow in O(nm log(n2

m ))-time also calculates max-min-st

Proof. By contradiction. As for prerequisites, the reader is expected to be famil-
iar with [10], where the authors prove that it is possible to calculate a minimum
st cut (Sg, Sg) with s ∈ Sg ∧ t ∈ Sg in O(nm log(n2

m ))-time. We will use their
notations to prove that the min st cut calculated by their algorithm is in fact
the unique minimum st cut of maximal size.

Let g(v, w) : E 
→ R+ be the preflow function (here we may suppose that the
algorithm terminated and that the preflow is a legal flow). Gg is used to indicate
the residual graph and c(v, w) : E 
→ R+ indicates the capacities of the edges in
E. In addition, (Sg, Sg) is defined as the partition of V such that Sg contains
all nodes from which t is reachable in Gg and Sg = V \ Sg.
We use the following lemma by Golberg and Tarjan from [10]:

When the first stage terminates, (Sg, Sg) is a cut such that every pair
v, w with v ∈ Sg and w ∈ Sg satisfies g(v, w) = c(v, w).

Suppose that there exists another minimum cut (C ′, C ′) such that |C ′| > |Sg|
which is maximal in size.
Remark that Sg ⊆ C ′ because of theorem 6 and s ∈ C ′ ∩ Sg.
Let I = C ′ ∩ Sg. Note that I �= ∅ since |C ′| > |Sg|. We split the boundaries
between Sg, I and Sg in three sets :



From Static Code Distribution to More Shrinkage 185

– Old Boundary: O ⊆ E = (v, w) : v ∈ Sg \ I ∧ w ∈ I

– New Boundary: N ⊆ E = (v, w) : v ∈ I ∧ w ∈ Sg \ I

– Common Boundary: C ⊆ E = (v, w) : v ∈ Sg \ I ∧ w ∈ Sg \ I

By definition of (Sg, Sg), we know that g(O) = c(O). We also know that since
(C ′, C ′) and (Sg, Sg) are both minimum cuts : w(O) + w(C) = w(N) + w(C)⇒
w(O) = w(N). Remark that since g is a legal flow, the flow entering I must be
equal to the flow getting out of I, which means that g(O) = g(N).

The combination of these tree equations leads to a contradiction: since the
edges in N are saturated, t is not reachable from any n ∈ I in Gg which means
that I = ∅. �

Finally, we can prove that the worst execution time for the unshackling heuris-
tics stays within the complexity of the reduction algorithm :

Theorem 9. The unshackling algorithm from figure 4 can be implemented with
worst case complexity O(n2m log(n2

m )) if the complexity of unshackle() is in
O(nm log(n2

m )).

Proof. Consider an irreducible graph in which one and only one edge {v1, v2} is
contracted. Before contraction, ∀v ∈ V : max-min-st (v, T ) = {v}. It is easy to
see (proof by contradiction) that after contraction ∀v ∈ V \{v1, v2} : max-min-st
(v, T ) = {v}, i.e. the contraction only affects the resulting node from the contrac-
tion, which means that after each contraction only one max-min-st cut has to be
calculated. Since at most n contractions are possible, the number of max-min-st
calculations needed can be bounded by 2n (n for the initial reduction and n for
all subsequent reductions). The worst case complexity is therefore as stated, if
the complexity of unshackle() is O(nm log(n2

m )). �

5.2 Results

It remains to define the way we will unshackle the graph. We tried several local
procedures, among which :

– Greedy : take an edge with maximal weight.
– Error-reduction : take an edge where the expected error is small
– Balanced weight : take an edge {n1, n2} such that∑

{{n1,n′}∈E} w(n1, n
′) +

∑
{{n2,n′}∈E} w(n2, n

′) is maximal
– Max-unshackle : take an edge that has high reduction rate

Surprisingly, we found that balanced weight works much better than the others.
Unfortunately, we discovered that none of these heuristics have a fixed approxi-
mation bound, however, since our calculations include the ones from the k − 2

k
approximation algorithm, we can compare the results and take the better of
both, resulting in the same bound without any extra cost. In order to compare
both heuristics, this has not been done in the following experiments.

Two sets of experiments were conducted : figures 5(a), 5(b) show the results
on random graphs, while 5(c) shows the results on graphs obtained from auto
generated programs.
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In figure 5(a) we compare the results of our heuristics (indicated by H04)
with the approximation algorithm (called H94) from Dahlhaus et al. 1111 exper-
iments where conducted on sufficiently small graphs (ranging from 20-40 nodes),
allowing us to compare with the optimal solution. For 411 hard cases (37%), one
of the heuristics failed to find the optimal. We can see that for increasing mean
degree (X-axis), the error rate (Y-axis, in percent w.r.t. the optimal) for both
algorithms drops rapidly, caused by the randomness in the graph. For sparse
graphs however, error rates can be as high as 35%. The mean error rate for
H04, for these hard cases, is 3.6% while it raises to 6.8% for H94. Remark that
the failure rate for H94 is 100% of the hard cases, while our algorithm failed
in 65% of these cases. In these experiments, there was no instance where H04
performed worse compared to H94.

Figure 5(b) shows the mean error rate (Y-axis, in % w.r.t. the optimal so-
lution) for the experiments of figure 5(a), with increasing number of terminals
(X-axis). We can clearly see the gain of our algorithm.

Figure 5(c) shows results for 25.000 grammar graphs of moderate size (600
nodes, 3 to 10 terminals), where the two algorithms are compared to each other.
X-axis gives the mean degree. We can observe a difference of as high as +35%
(Y-axis) for some cases, meaning that our algorithm improves the other by the
same amount. For only 2 instances, our algorithm performed worse (1.3% worse
and 14% worse).

6 Conclusions

In this paper, we studied the problem of optimal code distribution of an imper-
ative regular program, a problem equivalent to the multiterminal cut problem.

We presented a criterion that allows to perform shrinkage on a given graph
such that optimal solutions for the multiterminal cut problem on the resulting
graph are optimal solutions for the original graph. This criterion is a general-
ization of the criterion of Dahlhaus et al. presented in [7]. Using this shrinkage
criterion, we designed a heuristics that, in practice, finds near optimal solutions
for the multiterminal cut problem. In our search for an efficient implementation
for our shrinkage algorithm, we defined maximum size minimum cuts for wich
we prove some interesting structural properties.

Future works. We hope that structural properties can lead to a more thorough
understanding of the combinatorial structure of optimal solutions for the mul-
titerminal cut. Furthermore, we are currently searching other unshackling pro-
cedures that could be combined with our shrinkage technique. Moreover, we
are trying to determine why the balanced weight unshackling performs well in
practice.

We are also considering the use of our shrinkage technique in the branch and
bound context. We are currently integrating our shrinkage technique into the
CPLEX solver in order to speed up the general branch and bound phase of the
mixed integer optimizer.
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Abstract. In this paper, we consider Dijkstra’s algorithm for the point-
to-point shortest path problem in large and sparse graphs with a given
layout. In [1], a method has been presented that uses a partitioning of
the graph to perform a preprocessing which allows to speed-up Dijkstra’s
algorithm considerably.

We present an experimental study that evaluates which partitioning
methods are suited for this approach. In particular, we examine par-
titioning algorithms from computational geometry and compare their
impact on the speed-up of the shortest-path algorithm. Using a suited
partitioning algorithm speed-up factors of 500 and more were achieved.

Furthermore, we present an extension of this speed-up technique to
multiple levels of partitionings. With this multi-level variant, the same
speed-up factors can be achieved with smaller space requirements. It
can therefore be seen as a compression of the precomputed data that
conserves the correctness of the computed shortest paths.

1 Introduction

We consider the problem of repeatedly finding shortest paths in a large but
sparse graph with given arc weights. Dijkstra’s algorithm [2] solves this problem
efficiently with a sub-linear running time as the algorithm can stop once the
target node is reached. If the graph is static, a further reduction of the search
space can be achieved with a preprocessing that creates additional information.
More precisely, we consider the approach to enrich the graph with arc labels
that mark, for each arc, possible target nodes of a shortest paths that start with
this arc. Dijkstra’s algorithm can then be restricted to arcs whose label mark
the target node of the current search, because a sub-path of a shortest path is
also a shortest path.

This concept has been introduced in [3] for the special case of a timetable
information system. There, arc labels are angular sectors in the given layout
of the train network. In [4], the approach has been studied for general weighted
graphs. Instead of the angular sectors, different types of convex geometric objects
are implemented and compared.
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A different variation has been presented in [1], where the graph is first parti-
tioned into regions. Then an arc-flag then consists of a bit-vector that marks the
regions containing target nodes of shortest paths starting with this arc. Usually,
arc-flags result in a much smaller search space for the same amount of prepro-
cessed data. Furthermore, the generation of arc-flags can be realized without the
computation of all-pairs shortest paths in contrast to the geometric objects of
[4]. In fact, only the distances to nodes are needed that lie on the boundary of a
region. (See [1] for details.) However in [5], it has been shown that partitioning
of the graph with METIS [6] generally results in a better reduction than for the
partitioning algorithms of [1].

The first contribution of this paper is a computational study whether par-
titioning algorithms from computational geometry can be used for the arc-flag
approach and how they compare to the results of METIS. The algorithms are
evaluated with large road networks, the typical application for this problem.

As a second contribution of this paper, we present a multi-level version of arc-
flags that produces the same speed-up with lower space consumption. Therefore,
these multi-level arc-flags can be seen as a (lossy) compression of arc-flags. Note
that the compression still guarantees the correctness of a shortest-path query
but may be slower than the uncompressed arc-flags.

We start in Sect. 2 with some basic definitions and a precise description of
the problem and the pruning of the search space of Dijkstra’s algorithm with
arc-flags. In Sect.3, we present the selection of geometric partitioning algorithms
that we used for our analysis. We discuss the two-level variant of the arc-flags
in Sect. 4. In Sect. 5, we describe our experiments and we discuss the results of
the experiments in Sect. 6. We conclude the paper with Sect. 7.

2 Definitions and Problem Description

2.1 Graphs

A directed simple graph G is a pair (V,A), where V is a finite set of nodes and
A ⊆ V × V are the arcs of the graph G. Throughout this paper, the number of
nodes |V | is denoted by n and the number of arcs |A| is denoted by m. A path
in G is a sequence of nodes u1, . . . , uk such that (ui, ui+1) ∈ A for all 1 ≤ i < k.
A path with u1 = uk is called a cycle. A graph (without multiple arcs) can have
up to n2 arcs. We call a graph sparse, if m ∈ O(n). We assume that we are given
a layout L : V → R2 of the graph in the Euclidean plane. For ease of notation,
we will identify a node v ∈ V with its location L(v) ∈ R2 in the plane.

2.2 Shortest Path Problem

Let G = (V,A) be a directed graph whose arcs are weighted by a function
l : A → R. We interpret the weights as arc lengths in the sense that the length
of a path is the sum of the weights of its arcs. The (single-source single-target)
shortest-path problem consists in finding a path of minimum length from a given
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source s ∈ V to a given target t ∈ V . Note that the problem is only well defined
for all pairs, if G does not contain negative cycles. If there are negative weights
but not negative cycles, it is possible, using Johnson’s algorithm [7], to convert
in O(nm+ n2 log n) time the original arc weights l : A→ R to non-negative arc
weights l′ : A→ R+

0 that result in the same shortest paths. Hence, in the rest of
the paper, we can safely assume that arc weights are non-negative. Throughout
the paper we also assume that for all pairs (s, t) ∈ V ×V , the shortest path from
s to t is unique.1

2.3 Dijkstra’s Algorithm with Arc-Flags

The classical algorithm for computing shortest paths in a directed graph with
non-negative arc weights is that of Dijkstra [2]. For the general case of arbitrary
non-negative arc lengths, it still seems to be the fastest algorithm with O(m +
n log n) worst-case time. However, in practice, speed-up techniques can reduce
the running time and often result in a sub-linear running time. They crucially
depend on the fact that Dijkstra’s algorithm is label-setting and that it can be
terminated when the destination node is settled. (Therefore, the algorithm does
not necessarily search the whole graph.)

If one admits a preprocessing, the running time can be further reduced with
the following insight: Consider, for each arc a, the set of nodes S(a) that can be
reached by a shortest path starting with a. It is easy to verify that Dijkstra’s
algorithm can be restricted to the sub-graph with those arcs a for which the
target t is in S(a). However, storing all sets S(a) requires O(nm) space which
results in O(n2) space for sparse graphs with m ∈ O(n) and is thus prohibitive
in our case. We will therefore use a partition of the set of nodes V into p regions
for an approximation of the set S(a). Formally, we will use a function r : V →
{1, . . . , p} that assigns to each node the number of its region. (Given a 2D layout
of the graph, a simple method to partition a graph is to use a regular grid as
illustrated in Figure 1 and assign all nodes inside a grid cell the same number.)
We will now use a bit-vector ba : {1, . . . , p} → {true, false} with p bits, each
of which corresponds to a region. For each arc a, we therefore set the bit ba(i)
to true iff a is the beginning of a shortest path to at least one node in region
i ∈ {1, . . . , p}. For a specific shortest-path query from s to t, Dijkstra’s algorithm
can be restricted to the sub-graph Gt with those arcs a for which the bit of the
target-region is set to true. (For all edges on the shortest path from s to t the
arc-flag for the target region is set, because a sub-path of a shortest path is also
a shortest path.)

The sub-graph Gt can be computed on-line during Dijkstra’s algorithm. In a
shortest-path search from s to t, while scanning a node u, the modified algorithm
considers all outgoing arcs but ignores those arcs which have not set the bit for
the region of the target node t. All possible partitions of the nodes lead to a
correct solution but most of them would not lead to the desired speed-up of the
computation.

1 This can be achieved by adding a small fraction to the arc weights, if necessary.
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Fig. 1. A 5 × 7 grid partitioning of Germany

The space requirement for the preprocessed data is O(p · m) for p regions
because we have to store one bit for each region and arc. If p = n and we assign
to every node its own region number, we store in fact all-pairs shortest paths:
if a node is assigned to its own, specific region, the modified shortest-path al-
gorithm will find the direct path without regarding unnecessary arcs or nodes.
Note however, that in practice even for p � n we achieved an average search
space that is only 4 times the number of nodes in the shortest path. Further-
more, it is possible within the framework of the arc-flag speed-up technique to
use a specific region only for the most important nodes. Storing the shortest
paths to important nodes can therefore be realized without any additional im-
plementation effort. (It is common practice to cache the shortest paths to the
most important nodes in the graph.)

3 Partitioning Algorithms

The arc-flag speed-up technique uses a partitioning of the graph to precompute
information on whether an arc may be part of a shortest path. Any possible
partitioning can be used and the algorithm returns a shortest path, but most
partitions do not lead to an acceleration. In this section, we will present the
partitioning algorithms that we examined. Most of these algorithms need a 2D
layout of the graph.

3.1 Grid

Probably the easiest way to partition a graph with a 2D layout is to use regions
induced by a grid of the bounding box. Each grid cell defines one region of the
graph. Nodes on a grid line are assigned to an arbitrary but fixed grid cell. Figure
1 shows an example of a 5× 7 grid.

Arc-flags for a grid can be seen as a raster image of S(u, v), where S(u, v)
represents the set of nodes x for which the shortest u-x path starts with the arc
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(u, v). The pixel i in the image is set, iff (u, v) is the beginning of a shortest
path to a node in region i ∈ {1, . . . , p}. A finer grid (i.e., an image with higher
resolution) provides a better image of S(u, v), but requires more memory. (On
the other hand, the geometric objects in [4] approximate S(u, v) by a single
convex object of constant size.)

The grid partitioning method uses only the bounding box of the graph—
all other properties like the structure of the graph or the density of nodes are
ignored and hence it is not surprising that the grid partitioning always has the
worst results in our experiments. Since [1, 5] include this partitioning method,
we use the grid partitioning as a baseline and compare all other partitioning
algorithms with it.

3.2 Quadtrees

A quadtree is a data structure for storing points in the plane. Quadtrees are
typically used in computational geometry for range queries and have applications
in computer graphics, image analysis, and geographic information systems.

Definition 1 (Quadtree). Let P be a set of points in the plane and R0 its
bounding-box. Then, the data structure quadtree is a rooted tree of rectangles,
where

– the root is the bounding region R0, and
– R0 and all other regions Ri are recursively divided into the four quadrants,

while they contain more than one point of P .

The leaves of a quadtree form a subdivision of the bounding-box R0. Even more,
the leaves of every sub-tree containing the root form such a subdivision. Since,
for our application, we do not want to create a separate region for each node, we
use a sub-tree of the quadtree. More precisely, we define an upper bound b ∈ N

of points in a region and stop the division if a region contains less points than
this bound b. This results in a partition of our graph where each region contains
at most b nodes. Fig. 2(a) shows such a partition with 34 regions. In contrast
to the grid-partition, this partitioning reflects the geometry of the graph—dense
parts will be divided into more regions than sparse parts.

3.3 Kd-Trees

In the construction of a quadtree, a region is recursively divided into four equally-
sized sub-regions. However, equally-sized sub-regions do not take into account
the distribution of the points. This leads to the definition of a kd-tree. In the
construction of a kd-tree, the plane is recursively divided in a similar way as for a
quadtree. The underlying rectangle is decomposed into two halves by a straight
line parallel to an axis. The directions of the dividing line alternate. The positions
of the dividing line can depend on the data. Frequently used positions are given
by the center of the rectangle (standard kd-tree), the average, or the median of
the points inside. (Fig. 2(b) shows a result for the median and 32 regions.) If
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(a) Quadtree (34 regions) (b) Kd-Tree (32 regions) (c) METIS (32 regions)

Fig. 2. Germany with three different partitions

the median of points in general position is used, the partitioning has always 2l

regions.
The median of the nodes can be computed in linear time with the median of

medians algorithm [8]. Since the running time of the preprocessing is dominated
by the shortest-path computations after the partitioning of the graph, we decided
to use a standard sorting algorithm instead. (As a concrete example, the kd-tree
partitioning with 64 regions for one of our test graphs with one million nodes
was calculated in 175s, calculating the arc-flags took seven hours.)

3.4 METIS

A fast method to partition a graph into k almost equally-sized sets with a small
cut-set is presented in [9]. An efficient implementation can be obtained free-of-
charge from [6]. There are two advantages of this method for our application. The
METIS partitioning does not need a layout of the graph and the preprocessing
is faster because the number of arcs in the cut is noticeable smaller than in the
other partitioning methods. Fig. 2(c) shows a partitioning of a graph generated
by METIS.

4 Two-Level Arc-Flags

An analysis of the calculated arc-flags reveals that there might exist possibilities
to compress the arc-flags. For 80% of the arcs either almost none or nearly all bits
of their arc-flags are set. Table 1 shows an excerpt of the analysis we made. The
column ”= 1” shows the number of arcs, which are only responsible for shortest
paths inside their own region (only one bit is set). Arcs with more than 95%
bits set could be important roads. This justifies ideas for (lossy) compression
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Table 1. Some statistics about the number of regions that are marked in arc-flags

graph #arcs algorithm # marked regions
= 1 < 10% > 95%

road network 1 920,000 KdTree(32) 351,255 443,600 312,021
road network 1 920,000 KdTree(64) 334,533 470,818 294,664
road network 1 920,000 METIS(80) 346,935 468,101 290,332
road network 4 2,534,000 KdTree(32) 960,779 1,171,877 854,670
road network 4 2,534,000 KdTree(64) 913,605 1,209,353 799,206

(a) Without two-level
arc-flags a search vis-
its almost all arcs in
the target region.

(b) For each arc a bit-vector is stored for the
coarse 5× 5 grid and a bit-vector for a fine 3× 3
grid in the same coarse region as the arc.

Fig. 3. Illustrations for two-level vectors

of the arc-flags, but it is important that the decompression algorithm is very
fast—otherwise the speed-up of time will be lost.

Let us have a closer look at a search space to get an idea of how to compress
the arc-flags. As illustrated in Figure 3(a) for a search from the dark grey node to
the light grey node, the modified Dijkstra search reduces the search space next
to the beginning of the search but once the target region has been reached, almost
all nodes and arcs are visited. This is not very surprising if you consider that
usually all arcs of a region have set the region-bit of their own region. We could
handle this problem if we used a finer partition of the graph but this would lead
to longer arc-flags (requiring more memory and a longer preprocessing). Take
the following example, if we used a 15 × 15 grid instead of a 5 × 5 grid, each
region would be split in 9 additional regions but the preprocessing data increases
from 25 to 225 bits per arc. However, the additional information for the fine grid
is mainly needed for arcs in the target region of the coarse grid. This leads to
the idea that we could split each region of the coarse partition but store this



196 R.H. Möhring et al.

additional data (for the fine grid) only for the arcs inside the same coarse region.
Therefore, each arc gets two bit-vectors: one for the coarse partition and one for
the associated region of the fine partition.

The advantage of this method is that the preprocessed data is smaller than
for a fine one-level partitioning, because the second bit-vector exists only for the
target region (34 bits per arc instead of 225). It is clear that the 15 × 15 grid
would lead to better results. However, the difference for the search spaces is small
because we expect that entries in arc-flags of neighboring regions are similar for
regions far away. Thus, we can see this two-level method as a compression of the
first-level arc-flags. We summarize the bits for remote regions. If one bit is set
for a fine region, the bit is set for the whole group.

Only a slight modification of the search algorithm is required. Until the target
region is reached, everything will remain unaffected, unnecessary arcs will be
ignored with the arc-flags of level one. If the algorithm has entered the target
region, the second-level arc-flags provide further information on whether an arc
can be ignored for the search of a shortest path to the target-node.

Experiments showed (Section 6) that this method leads to the best results
concerning the reduction of the search space, but an increased preprocessing
effort is needed. Note however, that it is not necessary in the preprocessing to
compute the complete shortest-path trees for all boundary nodes of the fine
partitioning. The computation can be stopped if all nodes in the same coarse
region are finished.

5 Experimental Setup

The main goal of this section is to compare the different partitioning algorithms
with regard to their resulting search space and speed-up of time during the ac-
celerated Dijkstra search. We tested the algorithms on German road networks,
which are directed and have a 2D layout and positive arc weights. Table 2 shows
some characteristics of the graphs. The column “shortest path” is the average
number of nodes on a shortest path in the graph. For the unmodified Dijkstra’s
algorithm, the average running time and number of nodes touched by the algo-
rithm is given for 5000 runs.

All experiments are performed with an implementation of the algorithms
in C++ using the GCC compiler 3.3. We used the graph data structure from

Table 2. Characteristics of tested road networks. The columns “shortest paths” pro-

vides the average number of nodes on a shortest path

Graph #nodes #arcs shortest Dijkstra’s algorithm
path time [s] #touched nodes

road network 1 362,000 920,000 250 0.26 183,509
road network 2 474,000 1,169,000 440 0.27 240,421
road network 3 609,000 1,534,000 580 0.30 306,607
road network 4 1,046,000 2,534,000 490 0.78 522,850
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LEDA 4.4 [10]. As we do not have real-world shortest-path queries we considered
random queries for our experiments. For each graph, we generated a demand file
with 5000 random shortest-path requests so that all algorithms use the same
shortest-path demands. All runtime measurements were made on a single AMD
Opteron Processor with 2.2 GHz and 8 GB RAM. Note that our algorithms are
not optimized with respect to space consumption. However, even for the largest
graphs considered in this study significant less than 8 GB RAM would suffice.

Our speed-up method reduces the complete graph for each search to a smaller
sub-graph and this leads to a smaller search space. We sampled the average size
of the search space by counting the number of visited nodes and measured the
average CPU time per query. Dijkstra’s algorithm is used as a reference algo-
rithm to compare search space and CPU time. Fortunately, Dijkstra’s algorithm
with arc-flags only tests a bit of a bit-vector and does not lead to a significant
overhead. In graphs we tested, there is a strong linear correlation between the
search space and the CPU time. This justifies that in the analysis it is sufficient
to consider the search space only.

Arc-flags can be combined with a bidirectional search. In principle, arc-flags
can be used independently for the forward search, the backward search, or both
of them. In our experiments the best results (with a fixed total number of bits
per arc) achieved a forward and backward accelerated bidirectional search, which
means that we applied the partition-based speed-up technique on both search
directions (with half of the bits for each direction).

6 Computational Results

6.1 Quadtrees and Kd-Trees

We first compared the four geometric partitioning methods quadtrees and kd-
trees for the center (standard), average, and median. Figure 4(a) shows the
average search space for a road network for an increasing number of bits per arc.
As the differences are indeed very small, we will use only kd-trees with median
in the rest of this section as a representative for this partitioning class.

We now compare the average search space for different graphs. For an easy
comparison we consider the search space relative to the average search space
of Dijkstra’s algorithm in this graph. Figure 4(b) provides the relative average
search space for an increasing number of bits per arc. It is remarkable that for
arc-flags in this range of size all curves follow a power law.

6.2 Two-Level Partitionings

The main reason for the introduction of the second-level partitions was that no
arc is excluded from the shortest-path search inside the region of the target node
t. Therefore, the second-level arc-flags reduce the shortest-path search mainly if
the search already approaches the target. Figure 5 compares the search spaces
of the one-level and two-level accelerated searches. Although only very few bits
are added, the average search space is reduced to about half of its size.
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Fig. 4. Average search space for different sizes of arc-flags. With an increasing number

of bits per arc, the search space gets smaller

Fig. 5. Comparison of one-level (64 regions) and two-level (64 first-level regions, 8

second-level regions) arc-flags with kd-trees

Using a bidirectional search, the two-level strategy becomes less important,
because the second-level arc-flags will not be used in most of the shortest-path
searches: the second-level arc-flags are only used, if the search enters the region
of the target. During a bidirectional search the probability is high that the
two search horizons meet in a different region than the source or target region.
Therefore, the second-level arc-flags are mainly used, if both nodes are lying in
the same region. Figure 6 confirms this estimation. Only for large partitions in
the first level is a speed-up recognizable. If more than 50 bits for the first level
are used, the difference is very small. We conclude that the second-level strategy
does not seem to be useful in a bidirectional search.
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Fig. 6. Average search space for a bidirectional search using arc-flags by kd-trees.

The two-level strategy becomes irrelevant for the bidirectional search. If more than

50 regions are used for the first-level, the two-level acceleration does not provide any

noticeable improvement

6.3 Comparison of the Partitioning Methods

Finally, we want to compare the different algorithms directly. We have four
orthogonal dimensions in our algorithm tool-box:

1. The base partitioning method: Grid, KdTree or METIS
2. The number of partitions
3. Usage of one-level partitions or two-level partitions
4. Unidirectional or bidirectional search

Since computing all possible combinations on all graphs takes way too much
time, we selected the algorithms that are listed in Table 3. (We refrained from
implementing Bi2Metis, because usually the two-level arc-flags in a bidirectional
search hardly performed better than the one-level variant.) Furthermore, we fix
the size of the preprocessed data to nearly the same number for all algorithms.

Table 3. Partitionings with nearly the same preprocessed data size of 80 bit

Name of partitioning forward backward bits per arc

1st level 2nd level 1st level 2nd level

Grid 9 × 9 - - - 81
KdTree 64 - - - 64
METIS 80 - - - 80
2LevelGrid 8 × 8 4 × 4 - - 80
2LevelKd 64 16 - - 80
2LevelMETIS 72 8 - - 80
BiGrid 7 × 7 - 6 × 6 - 85
BiKd 32 - 32 - 64
BiMETIS 40 - 40 - 80
Bi2LevelGrid 6 × 6 2 × 2 6 × 6 2 × 2 80
Bi2LevelKd 32 8 32 8 80
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(The same size can not be realized due to the restrictions by the construction of
the partitioning algorithms.) Figure 7 compares the results of our partitioning
methods on the four road networks.

For the unidirectional searches, the two-level strategies yield the best results
(a factor of 2 better than for their corresponding one-level partitioning). For the
bidirectional search, we can see some kind of saturation: the differences between
the partitioning techniques are very small.

Figure 8 shows the search space for the four road networks. Note that in the
case of a bidirectional search, a large number of bits per arc already shows some
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effects of saturation as the curves are bent. In contrast, in Fig. 4(b) the curves
follow a power-law.

7 Conclusion and Outlook

The best partition-based speed-up method we tested is a bidirectional search,
accelerated in both directions with kd-tree or METIS partitions. We can measure
speed-ups of more than 500. (In general, the speed-up increases with the size of
the graph.) Even with the smallest preprocessed data (16 bit per arc), we get
a speed-up of more than 50. The accelerated search on network 4 is 545 times
faster than plain Dijkstra’s algorithm using 128 bits per arc preprocessed data
(1.3ms per search). Of the tested partitioning methods, we can recommend the
kd-tree used for forward and backward acceleration. The partitionings with kd-
trees and METIS yield the highest speed-up factors, but kd-trees are easier to
implement.

It would be particularly interesting to develop a specialized partitioning
method that is optimized for the arc-flags approach. Our experiments showed
that our intuition is right that regions should be equally sized and nodes should
be grouped together if their graph-theoretic distance is small. However, we can-
not prove that our intuition is theoretically the best partitioning method for
arc-flags. Although many further techniques are known from graph clustering,
all optimization criteria that we are aware of either result in a large running
time or their use for the arc-flags approach cannot be motivated.

For an unidirectional search the two-level arc-flags lead to a considerable
speed-up. The reduction of the search space outweighs by far the overhead to
“uncompress” two-level arc-flags. It would, however, be interesting to evaluate
whether this effect can be repeated with a third or fourth level of compression
(especially for very large graphs like the complete road network of Europe).

There are further known speed-up techniques [11, 12, 13, 14]. Although the
speed-up factors of these speed-up techniques are not competitive, experimental
studies [15, 16] with similar techniques suggest that combinations outperform a
single speed-up technique. A systematic evaluation of combinations with current
approaches would therefore be of great value.
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Abstract. In large-scale or evolving networks, such as the Internet,
there is no authority possible to enforce a centralized traffic manage-
ment. In such situations, Game Theory and the concepts of Nash equi-
libria and Congestion Games [8] are a suitable framework for analyzing
the equilibrium effects of selfish routes selection to network delays.
We focus here on layered networks where selfish users select paths to
route their loads (represented by arbitrary integer weights). We assume
that individual link delays are equal to the total load of the link. We
focus on the algorithm suggested in [2], i.e. a potential-based method
for finding pure Nash equilibria (PNE) in such networks. A superficial
analysis of this algorithm gives an upper bound on its time which is
polynomial in n (the number of users) and the sum of their weights. This
bound can be exponential in n when some weights are superpolynomial.
We provide strong experimental evidence that this algorithm actually
converges to a PNE in strong polynomial time in n (independent of the
weights values). In addition we propose an initial allocation of users
to paths that dramatically accelerates this algorithm, compared to an
arbitrary initial allocation. A by-product of our research is the discovery
of a weighted potential function when link delays are exponential to their
loads. This asserts the existence of PNE for these delay functions and
extends the result of [2].

1 Introduction

In large-scale or evolving networks, such as the Internet, there is no authority
possible to employ a centralized traffic management. Besides the lack of central
regulation, even cooperation of the users among themselves may be impossi-
ble due to the fact that the users may not even know each other. A natural
assumption in the absence of central regulation and coordination is to assume
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that network users behave selfishly and aim at optimizing their own individual
welfare. Thus, it is of great importance to investigate the selfish behavior of users
so as to understand the mechanisms in such non-cooperative network systems.

Since each user seeks to determine the shipping of its own traffic over the
network, different users may have to optimize completely different and even
conflicting measures of performance. A natural framework in which to study such
multi-objective optimization problems is (non-cooperative) game theory. We can
view network users as independent agents participating in a non-cooperative
game and expect the routes chosen by users to form a Nash equilibrium in the
sense of classical game theory: a Nash equilibrium is a state of the system such
that no user can decrease his individual cost by unilaterally changing his strategy.

Users selfishly choose their private strategies, which in our environment cor-
respond to paths from their sources to their destinations. When routing their
traffics according to the strategies chosen, the users will experience an expected
latency caused by the traffics of all users sharing edges (i.e the latency on the
edges depends on their congestion). Each user tries to minimize his private cost,
expressed in terms of his individual latency. If we allow as strategies for each user
all probability distributions on the set of their source-destination paths, then a
Nash equilibrium is guaranteed to exist. It is very interesting however to explore
the existence of pure Nash equilibria (PNE) in such systems, i.e. situations in
which each user is deterministically assigned on a path from which he has no
incentive to unilaterally deviate.

Rosenthal [8] introduced a class of games, called congestion games, in which
each player chooses a particular subset of resources out of a family of allowable
subsets for him (his strategy set), constructed from a basic set of primary re-
sources for all the players. The delay associated with each primary resource is
a non-decreasing function of the number of players who choose it, and the total
delay received by each player is the sum of the delays associated with the pri-
mary resources he chooses. Each game in this class possesses at least one Nash
equilibrium in pure strategies. This result follows from the existence of a real-
valued function (an exact potential [6]) over the set of pure strategy profiles with
the property that the gain of a player unilaterally shifting to a new strategy is
equal to the corresponding increment of the potential function.

In a multicommodity network congestion game the strategy set of each player
is represented as a set of origin-destination paths in a network, the edges of which
play the role of resources. If all origin-destination pairs of the users coincide
we have a single commodity network congestion game. In a weighted congestion
game we allow users to have different demands for service, and thus affect the
resource delay functions in a different way, depending on their own weights.
Hence weighted congestion games are not guaranteed to possess a PNE.

Related Work. As already mentioned, the class of (unweighted) congestion games
is guaranteed to have at least one PNE. In [1] it is proved that a PNE for any
(unweighted) single commodity network congestion game can be constructed in
polynomial time, no matter what resource delay functions are considered (so
long as they are non-decreasing functions with loads). On the other hand, it is
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shown that even for an unweighted multicommodity network congestion game it
is PLS-complete to find a PNE, though it certainly exists.

For the special case of single commodity network congestion games where the
network consists of parallel edges from a unique origin to a unique destination
and users have varying demands, it was shown in [3] that there is always a pure
Nash equilibrium which can be constructed in polynomial time.

[5] deals with the problem of weighted parallel-edges congestion games with
user-specific costs: each allowable strategy of a user consists of a single resource
and each user has his own private cost function for each resource. It is shown
that all such games involving only two users, or only two possible strategies for
all the users, or equal delay functions, always possess a PNE. However, it is
shown that even a 3-user, 3-strategies, weighted parallel-edges congestion game
may not possess a PNE.

In [2] it is proved that even for a weighted single commodity network conges-
tion game with resource delays being either linear or 2-wise linear functions of
their loads, there may be no PNE. Nevertheless, it is proved that for the case of
a weighted single commodity �-layered network congestion game (to be defined
later) with resource delays identical to their loads, at least one PNE exists and
can be computed in pseudo-polynomial time.

Our Results. We focus our interest on weighted �-layered network congestion
games with resource delays equal to their loads. As already mentioned, any such
game possesses a PNE, and the algorithm suggested in [2] requires at most a
pseudo-polynomial number of steps to reach an equilibrium; this bound however
has not yet been proven to be tight. The algorithm starts with any initial al-
location of users on paths and iteratively allows each unsatisfied user to switch
to any other path where he could reduce his cost. We experimentally show that
the algorithm actually converges to a PNE in polynomial time for a variety of
networks and distributions of users’ weights. In addition, we propose an initial
allocation of users onto paths that, as our experiments show, leads to a significant
reduction of the total number of steps required by the algorithm, as compared
to an arbitrary initial allocation.

Moreover, we present a b-potential function for any single commodity net-
work congestion game with resource delays exponential to their loads, thus as-
suring the existence of a PNE in any such game (Theorem 2).

2 Definitions and Notation

Games, Congestion Games and Weighted Congestion Games. A game Γ =
〈N, (Πi)i∈N , (ui)i∈N 〉 in strategic form is defined by a finite set of players N =
{1, . . . , n}, a finite set of strategies Πi for each player i ∈ N , and a payoff func-
tion ui : Π → IR for each player, where Π ≡ ×i∈NΠi is the set of pure strategy
profiles or configurations. A game is symmetric if all players are indistinguish-
able, i.e. all Πi’s are the same and all ui’s, considered as a function of the choices
of the other players, are identical symmetric functions of n− 1 variables. A pure
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Nash equilibrium (PNE) is a configuration π = (π1, . . . ,πn) such that for each
player i, ui(π) ≥ ui(π1, . . . ,π

′
i, . . . ,πn) for any π′

i ∈ Πi. A game may not pos-
sess a PNE in general. However, if we extend the game to include as strategies
for each i all possible probability distributions on Πi and if we extend the pay-
off functions ui to capture expectation, then an equilibrium is guaranteed to
exist [7].

A congestion model 〈N,E, (Πi)i∈N , (de)e∈E〉 is defined as follows. N denotes
the set of players {1, . . . , n}. E denotes a finite set of resources. For i ∈ N let
Πi be the set of strategies of player i, where each �i ∈ Πi is a nonempty subset
of resources. For e ∈ E let de : {1, . . . , n}→ IR denote the delay function, where
de(k) denotes the cost (e.g. delay) to each user of resource e, if there are exactly
k players using e. The congestion game associated with this congestion model
is the game in strategic form 〈N, (Πi)i∈N , (ui)i∈N 〉, where the payoff functions
ui are defined as follows: Let Π ≡ ×i∈NΠi. For all � = (�1, . . . ,�n) ∈ Π
and for every e ∈ E let σe(�) be the number of users of resource e according
to the configuration �: σe(�) = |{i ∈ N : e ∈ �i}| . Define ui : Π → IR by
ui(�) = −

∑
e∈�i

de(σe(�)).
In a weighted congestion model we allow the users to have different demands,

and thus affect the resource delay functions in a different way, depending on their
own weights. A weighted congestion model 〈N, (wi)i∈N , E, (Πi)i∈N , (de)e∈E〉 is
defined as follows. N , E and Πi are defined as above, while wi denotes the
demand of player i and for each resource e ∈ E, de(·) is the delay per user that
requests its service, as a function of the total usage of this resource by all the
users. The weighted congestion game associated with this congestion model is the
game in strategic form 〈(wi)i∈N , (Πi)i∈N , (ui)i∈N 〉, where the payoff functions
ui are defined as follows. For any configuration � ∈ Π and for all e ∈ E, let
Λe(�) = {i ∈ N : e ∈ �i} be the set of players using resource e according to �.
The cost λi(�) of user i for adopting strategy �i ∈ Πi in a given configuration
� is equal to the cumulative delay λ�i

(�) on the resources that belong to �i:
λi(�) = λ�i

(�) =
∑

e∈�i
de(θe(�)) where, for all e ∈ E, θe(�) ≡

∑
i∈Λe(�) wi

is the load on resource e with respect to the configuration �. The payoff function
for player i is then ui(�) = −λi(�). A configuration � ∈ Π is a PNE if and
only if, for all i ∈ N , λ�i

(�) ≤ λπi
(�−i,πi) ∀πi ∈ Πi, where (�−i,πi) is the

same configuration as � except for user i that has now been assigned to path
πi. Since the payoff functions ui can be implicitly computed by the resource
delay functions de, in the following we will denote a weighted congestion game
by 〈(wi)i∈N , (Πi)i∈N , (de)e∈E〉.

In a network congestion game the families of subsets Πi are presented im-
plicitly as paths in a network. We are given a directed network G = (V,E) with
the edges playing the role of resources, a pair of nodes (si, ti) ∈ V × V for each
player i and the delay function de for each e ∈ E. The strategy set of player i
is the set of all paths from si to ti. If all origin-destination pairs (si, ti) of the
players coincide with a unique pair (s, t) we have a single commodity network
congestion game and then all users share the same strategy set, hence the game
is symmetric. If users have different demands, we refer to weighted network con-
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gestion games in the natural way. In the case of a weighted single commodity
network congestion game however the game is not necessarily symmetric, since
the users have different demands and thus their cost functions will also differ.

Potential Functions. Fix some vector b ∈ IRn
>0. A function F : ×i∈NΠi → IR is a

b-potential for the weighted congestion game Γ = 〈(wi)i∈N , (Πi)i∈N , (de)e∈E〉 if
∀� ∈ ×i∈NΠi,∀i ∈ N,∀πi ∈ Πi, λ

i(�)−λi(�−i,πi) = bi · (F (�)−F (�−i,πi)).
F is an exact potential for Γ if bi = 1 for all i ∈ N . It is well known [6] that if
there exists a b-potential for a game Γ , then Γ possesses a PNE.

Layered Networks. Let � ≥ 1 be an integer. A directed network (V,E) with a
distinguished source-destination pair (s, t), s, t ∈ V, is �-layered if every directed
s− t path has length exactly � and each node lies on a directed s− t path. The
nodes of an �-layered network can be partitioned into � + 1 layers, V0, V1, . . . ,
V�, according to their distance from the source node s. Since each node lies on
directed s− t path, V0 = {s} and V� = {t}. Similarly we can partition the edges
E of an �-layered network in � subsets E1, . . . ,E� where for all j ∈ {1, . . . , �},
Ej = {e = (u, v) ∈ E : u ∈ Vj−1 and v ∈ Vj}.

3 The Problem

We focus our interest on the existence and tractability of pure Nash equilibria
in weighted �-layered network congestion games with resource delays identical
to their loads. Consider the �-layered network G = (V,E) with a unique source-
destination pair (s, t) and the weighted single commodity network congestion
game 〈(wi)i∈N ,P, (de)e∈E〉 associated with G, such that P is the set of all di-
rected s− t paths of G and de(x) = x for all e ∈ E. Let � = (�1, . . . ,�n) be an
arbitrary configuration and recall that θe(�) denotes the load of resource e ∈ E
under configuration �. Since resource delays are equal to their loads, for all
i ∈ N it holds that λi(�) = λ�i

(�) =
∑

e∈�i
θe(�) =

∑
e∈�i

∑
j∈N |e∈�j

wj .
A user i ∈ N is satisfied in the configuration � ∈ Pn if he has no incentive to

unilaterally deviate from �, i.e. if for all s−t paths π ∈ P, λ�i
(�) ≤ λπ(�−i,π).

The last inequality can be written equivalently

λ�i
(�−i) + �wi ≤ λπ(�−i) + �wi ⇐⇒ λ�i

(�−i) ≤ λπ(�−i) ,

hence user i is satisfied if and only if he is assigned to the shortest s − t path
calculated with respect to the configuration �−i of all the users except for i.
The configuration � is a PNE if and only if all users are satisfied in �. In [2] it
was shown that any such weighted �-layered network congestion game possesses
a PNE that can be computed in pseudo-polynomial time:

Theorem 1 ([2]). For any weighted �-layered network congestion game with
resource delays equal to their loads, at least one PNE exists and can be computed
in pseudo-polynomial time.
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Proof (sketch). The b-potential function establishing the result is

Φ(�) =
∑
e∈E

(θe(�))2

where, ∀i ∈ N, bi = 1
2wi

. ��

In Sect. 4 we present the pseudo-polynomial algorithm Nashify() for the com-
putation of a PNE for a weighted �-layered network congestion game, while in
Sect. 6 we experimentally show that such a PNE can actually be computed in
polynomial time, as our following conjecture asserts:

Conjecture 1. Algorithm Nashify() converges to a PNE in polynomial time.

4 The Algorithm

The algorithm presented below converts any given non-equilibrium configuration
into a PNE by performing a sequence of greedy selfish steps. A greedy selfish
step is a user’s change of his current pure strategy (i.e. path) to his best pure
strategy with respect to the current configuration of all other users.

Algorithm Nashify(G, (wi)i∈N )

Input: �-layered network G and a set N of users, each user i having weight wi

Output: configuration � which is a PNE

1. begin
2. select an initial configuration � = (�1, . . . , �n)
3. while ∃ user i such that λ�i(�−i) > λs(�−i) where s = Shortest Path(�−i)
4. �i := Shortest Path(�−i)
5. return �
6. end

The above algorithm starts with an initial allocation of each user i ∈ N on
an s− t path �i of the �-layered network G. The algorithm iteratively examines
whether there exists any user that is unsatisfied. If there is such a user, say i,
then user i performs a greedy selfish step, i.e. he switches to the shortest s − t
path according to the configuration �−i. The existence of the potential function
Φ assures that the algorithm will terminate after a finite number of steps at a
configuration from which no user will have an incentive to deviate, i.e. at a PNE.

Complexity Issues. Let W =
∑

i∈N wi. Note that in any configuration � ∈ Pn

and for all j ∈ {1, . . . , �} it holds that
∑

e∈Ej
θe(�) = W. It follows that

Φ(�) =
∑
e∈E

(θe(�))2 =
�∑

j=1

∑
e∈Ej

(θe(�))2 ≤
�∑

j=1

⎛⎝∑
e∈Ej

θe(�)

⎞⎠2

= �W 2 .

Without loss of generality assume that the users have integer weights. At each
iteration of the algorithm Nashify() an unsatisfied user performs a greedy selfish
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step, so his cost must decrease by at least 1 and thus the potential function Φ
decreases by at least 2 mini wi ≥ 2. Hence the algorithm requires at most 1

2�W
2

steps so as to converge to a PNE.

Proposition 1. Suppose that (maxi wi)
2

mini wi
= O(nk) for some constant k. Then

algorithm Nashify() will converge to a PNE in polynomial time.

Proof. Observe that Φ(�) ≤ �W 2 ≤ �(nmaxi wi)2 = �n2 mini wi ·O(nk), which
implies that the algorithm will reach a PNE in O(�nk+2) steps. ��

5 The Case of Exponential Delay Functions

In this section we deal with the existence of pure Nash equilibria in weighted
single commodity network congestion games with resource delays being expo-
nential to their loads. Let G = (V,E) be any single commodity network (not
necessarily layered) and denote by P the set of all s − t paths in it from the
unique source s to the unique destination t. Consider the weighted network con-
gestion game Γ = 〈(wi)i∈N ,P, (de)e∈E〉 associated with G, such that for any
configuration � ∈ Pn and for all e ∈ E, de(θe(�)) = exp(θe(�)). We next
show that F (�) =

∑
e∈E exp(θe(�)) is a b-potential for such a game and some

positive n-vector b, assuring the existence of a PNE.

Theorem 2. For any weighted single commodity network congestion game with
resource delays exponential to their loads, at least one PNE exists.

Proof. Let � ∈ Pn be an arbitrary configuration. Let i be a user of demand wi

and fix some path πi ∈ P. Denote �′ ≡ (�−i,πi). Observe that

λi(�)− λi(�′) =
∑

e∈�i\πi

exp(θe(�−i) + wi)−
∑

e∈πi\�i

exp(θe(�−i) + wi)

= exp(wi) ·

⎛⎝ ∑
e∈�i\πi

exp(θe(�−i))−
∑

e∈πi\�i

exp(θe(�−i))

⎞⎠ .

Note that, for all e /∈ {{�i \ πi}∪ {πi \�i}}, it holds that θe(�) = θe(�′). Now

F (�)− F (�′) =
∑

e∈�i\πi

exp (θe(�−i) + wi)− exp(θe(�−i))

+
∑

e∈πi\�i

exp(θe(�−i))− exp(θe(�−i) + wi)

=
exp(wi)− 1

exp(wi)
(
λi(�)− λi(�′)

)
.

Thus, F is a b-potential for our game, where ∀i ∈ N, bi = exp(wi)
exp(wi)−1 , assuring

the existence of at least one PNE. ��
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6 Experimental Evaluation

Implementation Details. We implemented algorithm Nashify() in C++ program-
ming language using several advanced data types of LEDA [4]. In our imple-
mentation, we considered two initial allocations of users on paths: (1) Random
allocation: each user assigns its traffic uniformly at random on an s− t path and
(2) Shortest Path allocation: users are sorted according to their weights, and the
maximum weighted user among those that have not been assigned a path yet
selects a path of shortest length, with respect to the loads on the edges caused
by the users of larger weights.

Note that, in our implementation, the order in which users are checked for
satisfaction (line 3 of algorithm Nashify()) is the worst possible, i.e. we sort
users according to their weights and, at each iteration, we choose the minimum
weighted user among the unsatisfied ones to perform a greedy selfish step. By
doing so, we force the potential function to decrease as less as possible and thus
we maximize the number of iterations, so as to be able to better analyze the
worst-case behavior of the algorithm.

6.1 Experimental Setup

Networks. Figure 1 shows the �-layered networks considered in our experimental
evaluation of algorithm Nashify(). Network 1 is the simplest possible layered
network and Network 2 is a generalization of it. Observe that the number of
possible s− t paths of Network 1 is 3, while the number of possible s− t paths
for Network 2 is 35. Network 3 is an arbitrary dense layered network and Network
4 is the 5×5 grid. Network 5 is a 4-layered network with the property that layers
1, 2, 3 form a tree rooted at s and layer 4 comprises all the edges connecting the
leaves of this tree with t.

Fig. 1. The s − t layered networks considered

Distribution of weights. For each network, we simulated the algorithm Nashify()
for n = 10, 11, . . . , 100 users. Obviously, if users’ weights are polynomial in
n then the algorithm will definitely terminate after a polynomial number of
steps. Based on this fact, as well as on Proposition 1, we focused on instances
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where some users have exponential weights. More specifically, we considered
the following four distributions of weights: (a) 10% of users have weight 10n/10

and 90% of users have weight 1, (b) 50% of users have weight 10n/10 and 50%
of users have weight 1, (c) 90% of users have weight 10n/10 and 10% of users
have weight 1, and (d) users have uniformly at random selected weights in the
interval [1, 10n/10]. Distributions (a)–(c), albeit simple, represent the distribution
of service requirements in several communication networks, where a fraction of
users has excessive demand that outweighs the demand of the other users.

6.2 Results and Conclusions

Figures 2–6 show, for each network and each one of the distributions of weights
(a)–(d), the number of steps performed by algorithm Nashify() over the number
of users (#steps/n) as a function of the sum of weights of all users W . For each
instance we considered both random and shortest path initial allocation.
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Fig. 2. Experimental results for Network 1

Observe that the shortest path initial allocation significantly outperforms any
random initial allocation, no matter what networks or distributions of weights
are considered. In particular, the shortest path initial allocation appears to be
a PNE for sparse (Networks 1 and 2), grid (Network 4) and tree-like (Network
5) networks, while for the dense network (Network 3) the number of steps over
the number of users seems to be bounded by a small constant.
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Fig. 3. Experimental results for Network 2
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Fig. 4. Experimental results for Network 3
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Fig. 5. Experimental results for Network 4
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Fig. 6. Experimental results for Network 5
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On the other hand, the behavior of the algorithm when starting with an
arbitrary allocation is sensibly worse. First note that, in this case, the fluctu-
ations observed at the plots are due to the randomization of the initial allo-
cation. On the average however we can make safe conclusions as regards the
way #steps/n increases as a function of W . For the distributions of weights
(a)–(c) it is clear that the number of steps over the number of users is asymp-
totically upper bounded by the logarithm of the sum of all weights, implying
that #steps = O(n · log(W )). Unfortunately, the same does not seem to hold for
randomly selected weights (distribution (d)). In this case however, as Figs. 2–
6(d) show, n log(W ) seems to be a good asymptotic upper bound for #steps/n,
suggesting that #steps = O(n2 · log(W )).

Note that, for all networks, the maximum number of steps over the number
of users occurs for the random distribution of weights. Also observe that, for
the same value of the sum of weights W , the number of steps is dramatically
smaller when there are only 2 distinct weights (distributions (a)–(c)). Hence we
conjecture that the complexity of the algorithm does actually depend not only
on the sum of weights, but also on the number of distinct weights of the input.

Also note that the results shown in Figs. 2 and 3 imply that, when starting
with an arbitrary allocation, the number of steps increases as a linear function
of the size of the network. Since the number of s − t paths in Network 2 is
exponential in comparison to that of Network 1, we would expect a significant
increment in the number of steps performed by the algorithm. Figures 2 and 3
however show that this is not the case. Instead, the number of steps required for
Network 2 are at most 5 times the number of steps required for Network 1.

Summarizing our results, we conclude that (i) a shortest path initial alloca-
tion is a few greedy selfish steps far from a PNE, amplifying Conjecture 1, while
(ii) an arbitrary initial allocation does not assure a similarly fast convergence to
a PNE, however Conjecture 1 seems to be valid for this case as well, (iii) the size
of the network does not affect significantly the time complexity of the algorithm,
and (iv) the worst-case input for an arbitrary initial allocation occurs when all
users’ weights are distinct and some of them are exponential.
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Abstract. In this paper, we introduce and evaluate some heuristics to find an
upper bound on the treewidth of a given graph. Each of the heuristics selects the
vertices of the graph one by one, building an elimination list. The heuristics differ
in the criteria used for selecting vertices. These criteria depend on the fill-in of a
vertex and the related new notion of the fill-in-excluding-one-neighbor. In several
cases, the new heuristics improve the bounds obtained by existing heuristics.

1 Introduction

For several applications involving graphs, it is of great interest to have good algo-
rithms that compute or approximate the treewidth of a graph and its corresponding
tree decomposition. The interest in these notions, and some other related notions such
as branchwidth, branch decomposition, pathwidth, path decomposition, and minimum
fill-in arose because of their theoretical significance in (algorithmic) graph theory, and
because a tree decomposition of small width of a graph enables us to solve many graph
problems in linear or polynomial time. Among these problems are many well-known
combinatorial optimization problems such as: graph coloring, maximum independent
set, and the Hamiltonian cycle problem. Nowadays, there are several ’real world’ ap-
plications that use the notion of tree decomposition or branch decomposition to find
solutions for the problems at hand. These come from many different fields, such as ex-
pert systems [15], probabilistic networks [4], frequency assignment problems [12, 13],
telecommunication networks design, VLSI-design, natural language processing [10],
and the traveling salesman problem [9].

The problem of computing the treewidth of a graph is NP-hard [2]. Therefore, for
computing the treewidth of a graph, we have to use an exact but slow method like
branch and bound, algorithms that work only for specific classes of graphs, or resort
to algorithms that only approximate the treewidth. In the past years, several heuristics
for treewidth have been designed. We can divide those heuristics into two categories:
those that find upper bounds for the treewidth, and those that find lower bounds for the
treewidth. This paper concentrates on upper bound heuristics. An overview of results
on computing the treewidth can be found in [3].

Some of the heuristics for finding an upper bound for the treewidth are based on
algorithms that test whether a given graph is triangulated. These are Maximum Car-
dinality Search, Lexicographic Breadth First search, Minimum Degree and Minimum
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Fill-in algorithms. Other heuristics are based on other ideas, e.g. the Minimum Separat-
ing Vertex Set algorithm (cf. [1, 7, 11]).

In this paper, we present a number of heuristic methods to find upper bounds for the
treewidth of the graph. Each of our heuristics is based on constructing a triangulation
of the graph from an elimination ordering of the vertices. These elimination orderings
are constructed by repeatedly selecting a vertex and then adding the so-called fill-in
edges between its neighbors. The various heuristics differ in the criteria of the selection
of the vertices. These criteria, basically, depend on two concepts: the number of edges
that must be added between the neighbor vertices of a vertex to form a clique, and the
number of edges that must be added between all neighbor vertices of a vertex except
one to form a clique between them.

We have implemented the algorithms proposed in this paper, and tested them on a
set of 32 graphs, taken from instances of probabilistic networks, frequency assignment
and vertex coloring. We compared the results of these algorithms with those of other
heuristic methods. We observed that in many cases our algorithms perform well.

2 Definitions and Preliminary Results

In this section, we give the definitions of the most frequently used concepts and notions
in this paper. Let G = (V,E) be an undirected graph with vertex set V and edge
set E. A graph H is a minor of graph G, if H can be obtained from G by zero or
more vertex deletions, edge deletions, and edge contractions. Edge contraction is the
operation that replaces two adjacent vertices v and w by a single vertex that is connected
to all neighbors of v and w.

We denote the set of neighbors of vertex v by N(v) = {w ∈ V |{v,w} ∈ E}, and
the set of neighbors of v plus v itself by N [v] = N(v) ∪ {v}. In the same manner
we define N0[v] = {v}, N i+1[v] = N [N i[v]], N i+1(v) = N i+1[v] \ N i[v]. We can
extend the above definition to a set of vertices instead of one vertex. Suppose that S
is a set of vertices, then N0[S] = S, N i+1[S] = N [N i[S]], N i+1(S) = N i+1[S] \
N i[S], N [S] =

⋃
v∈S N [v], N(S) = N [S] \ S, i ∈ N . Let degree(v) = |N(v)| be

the degree of vertex v. Given a subset A ⊆ V of the vertices, we define the subgraph
induced by A to be GA = (A,EA), where EA = {{x, y} ∈ E|x ∈ A and y ∈ A}. A
subset A ⊆ V of r vertices is an r-almost-clique if there is a v ∈ A such that A− {v}
forms a clique. A vertex v in G is called simplicial, if its set of neighbors N(v) forms
a clique in G. A vertex v in G is called almost simplicial, if its neighbors except one
form a clique in G, i.e., if v has a neighbor w such that N(v)−{w} is a clique. A graph
G is called triangulated (or: chordal) if every cycle of length four of more possesses a
chord. A chord is an edge between two nonconsecutive vertices of the cycle. A graph
G = (V,E) is a subgraph of graph H = (W,F ) if V ⊆ W and E ⊆ F . A graph
H = (V,F ) is a triangulation of graph G = (V,E), if G is a subgraph of H and H is
a triangulated graph.

A linear ordering of a graph G = (V,E) is a bijection f : V → {1, 2, · · · , |V |}.
A linear ordering of the vertices of a graph G, σ = [v1, · · · , vn] is called a perfect
elimination order (p.e.o.) of G, if for every 1 ≤ i ≤ n, vi is a simplicial vertex in
G[v1, · · · , vn], i.e., the higher numbered neighbors of vi form a clique. It has been
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shown in [8] that a graph G is triangulated, if and only if G has a p.e.o. Eliminating a
vertex v from a graph G = (V,E) is the operation that first adds an edge between every
pair of non-adjacent neighbors of v, and then removes v and its incident edges.

A tree decomposition of the graph G = (V,E) is a pair (X,T ) in which T = (I,F )
a tree, and X = {Xi|i ∈ I} a collection of subsets of V , one for each node of T , such
that

⋃
i∈I Xi = V , for all (u, v) ∈ E, there exists an i ∈ I with u, v ∈ Xi, and for all

i, j, k ∈ I: if j is on path from i to k in T , then Xi ∩Xk ⊆ Xj . The width of the tree
decomposition ((I,F ), {Xi|i ∈ I}) is maxi∈I |Xi − 1|. The treewidth of a graph G is
the minimum width over all tree decompositions of G.

Lemma 1. (See Bodlaender [5].)

1. For every triangulated graph G = (V,E), there exists a tree decomposition (X =
{Xi|i ∈ I},T = (I,F )) of G, such that every set Xi forms a clique in G, and for
every maximal clique W ⊆ V , there exists an i ∈ I with W = Xi.

2. Let (X = {Xi|i ∈ I},T = (I,F )) be a tree decomposition of G of width at most
k. The graph H = (V,E ∪E′), with E′ = {{v,w}| ∃i ∈ I : v,w ∈ Xi}, obtained
by making every set Xi a clique, is triangulated, and has maximum clique size at
most k + 1.

3. Let (X = {Xi|i ∈ I}, T = (I,F )) be a tree decomposition of G, and let W ⊆ V
form a clique in G. Then there exist an i ∈ I with W ⊆ Xi.

Lemma 2. (See Shoikhet and Geiger [17].)
For triangulated graphs, tree decompositions exist where the nodes are exactly the max-
imal cliques of the graph. Such tree decompositions are called clique trees. The width
of a triangulated graph T is maxk∈K(T )(|K| − 1), where K(T ) is the set of maximal
cliques of T .

3 Upper Bound Heuristics for Treewidth

In this section we present some heuristic methods to find upper bounds for the treewidth
of a given graph, and the corresponding tree decompositions. Basically, these methods
depend on two concepts: The first one is the number of edges that must be added be-
tween the neighbors of a vertex x to make it simplicial, i.e., the neighborhood of that
vertex turn into a clique. We call this the fill-in of x.

fill-in(x) = |{{v,w}|v,w ∈ N(x), {v,w} �∈ E}|

The second concept is very similar to the first one, but here we find the minimum
number of edges which when added between pairs of neighbors of a vertex x, turn x into
an almost simplicial vertex, i.e., by adding these edges to the graph, the neighborhood
of that vertex will turn into an almost clique. We call this parameter the fill-in of x
excluding one neighbor fill-in-excl-one(x)

fill-in-excl-one(x) = minz∈N(X)|{{v,w}|v,w ∈ N(x)− {z}, {v,w} �∈ E}|

A graph with |V | vertices has |V |! (permutations of |V |) linear ordering. For each linear
ordering σ of G, we can build a triangulation Hσ of G, such that σ is the p.e.o. of Hσ ,
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in the following way. For i = 1, · · · , |V |, in that order, we add an edge between every
pair of non-adjacent neighbors of vi that are after vi in the ordering, vi is the ith vertex
in σ. One can observe that σ is a p.e.o. of the resulting graph Hσ . As Hσ is triangulated,
its treewidth is one smaller than its maximum clique size, which equals the maximum
number of neighbors of v over all vertices v that are after v in the linear ordering σ.
One can construct from Hσ a tree decomposition of Hσ and of G with width exactly
this maximum clique size minus one. It is also known that there is at least one linear
ordering of G where we obtain the exact treewidth of G in this way [5]. This suggests
the following general scheme for heuristics for treewidth.

set G′ ← G; i ← 1; σ ← ();
while G′ is not the empty graph

select according to some criteria a vertex v from G′;
eliminate v; /* remove v and turn its neighbors into a clique */
add v to position i in the ordering σ;
set i ← i + 1;

{Now σ is a linear ordering of V .}
construct triangulation Hσ of G and the corresponding tree decomposition.

Instead of constructing Hσ after σ is constructed, we also can construct Hσ and the
corresponding tree decomposition while σ is constructed. The width of the tree decom-
position thus obtained is the maximum over all vertices v of the number of neighbors
of v in G′. We call a graph G′ encountered during the algorithm a temporary graph.
A linear ordering of G, used in this way, is called often an elimination scheme. Sev-
eral heuristics are of this type. Most known are the Minimum Fill-in heuristic, and the
Minimum Degree heuristic. In these, we repeatedly select the vertex v with minimum
fill-in in G′, or minimum degree in G′ respectively. These two heuristics appear to be
successful heuristics for treewidth; they often give good bounds and are fast to com-
pute. The success of these heuristics encouraged us to develop other heuristics based
on similar principles. Our heuristics are inspired by results on preprocessing graphs for
treewidth. In [4], reduction rules are given that are safe for treewidth. Here, such rules
rewrite a graph G to a smaller graph G′, and possibly update a variable low that gives a
lower bound on the treewidth of the original graph. In [4], the notion of safe rule was
introduced. The safe rule rewrites a graph to a smaller one, and maintains a lower bound
variable low, such that the maximum of low and the treewidth of the graph at hand stays
invariant, i.e., rule R is safe, if for all graphs G, G′, and all integers low, low′, we have

(G, low) →R (G′, low′) ⇒ max(treewidth(G), low) = max(treewidth(G′), low′).

Thus, the treewidth of the original graph is known when we know the treewidth of the
reduced graph and low. Amongst others, the following two rules were shown to be safe
for the treewidth in [4].

The Simplicial Reduction Rule (SRR):
let v be a simplicial vertex of degree(v) ≥ 0.
remove v.
set low to max(low, degree(v)).
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The Almost Simplicial Reduction Rule (ASRR):
let v be an almost simplicial vertex of degree(v) ≥ 2.
if low ≥ degree(v) then eliminate v.

The safeness of the simplicial reduction rule tells us that if a vertex v has f ill − in
zero, then selecting that vertex as the next one in the elimination ordering will not
cause the remaining graph to have a treewidth that is larger than necessary for this
elimination ordering. It can be seen as a motivation for the Minimum Fill-in Heuristic,
where we select vertices with minimum fill-in. Similarly, the almost simplicial reduc-
tion rule can be seen as motivation to look at the f ill − in − excl − one. If a vertex
has f ill − in − excl − one of zero, then selecting that vertex as the next vertex in the
elimination ordering will in many cases not cause the treewidth caused by the formed
elimination ordering to be larger than necessary, unless the degree of the almost sim-
plicial vertex is more than the treewidth of the original graph. With a small twist to the
terminology, we say that eliminating v is safe (in a graph G), if the choice of v in the
heuristic scheme presented above can lead to a tree decomposition whose width equals
the treewidth of G. Motivated by these observations, we designed new heuristics for
treewidth that are given below.

3.1 Enhanced Minimum Fill-in (EMF):

The motivation for the Enhanced Minimum Fill-in algorithm is based on the safe-
ness of eliminating simplicial vertices and almost simplicial vertices of degree at most
the treewidth. Note that when we have vertices x and y with fill-in-excl-one(y) = 0,
degree(y) = low (for some lower bound low on the treewidth of the input graph),
fill-in(x) > 1, and fill-in(y) > fill-in(x), then y appears to be the best choice for elimina-
tion (as this is safe); the Minimum Fill-in heuristic, however, selects x.

For faster implementation of the algorithms, we observe that in many cases we do
not have to recompute the values of fill-in and fill-in-excl-one of every vertex in the
temporary graph after we eliminate a vertex from it.

Lemma 3. Let v be a simplicial vertex in graph G, G′ = G[V − {v}] be the graph
obtained by eliminating v, and fill-inG(v) be the fill-in of vertex v in graph G. For
all w �∈ N1[v], we have fill-inG(w)= fill-inG′(w), fill-in-excl-oneG(w)= fill-in-excl-
oneG′(w).

Therefore, when we eliminate a simplicial vertex v from a graph, and we want to find
the next vertex in the graph with minimum fill-in or minimum fill-in-excl-one, we need
only to recompute fill-in and fill-in-excl-one for neighbors of v, (N1(v)). For instance,
if we eliminate vertex 1 from the graph shown in Figure 1(a) and we want to find the
next vertex with minimum fill-in or minimum fill-in-excl-one in the graph, then we need
only to recompute the fill-in and fill-in-excl-one for vertices 2, 3 and 4.

Similarly, Lemma 4 shows that if we eliminate a non simplicial vertex v from a
graph, and we want to find the next vertex in the graph with minimum fill-in or mini-
mum fill-in-excl-one, then only the fill-in and fill-in-excl-one of the vertices in N2(v)
can change. For instance, if we eliminate vertex 1 from the graph in Figure 1 (b) and
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we want to find the next vertex with minimum fill-in or minimum fill-in-excl-one, then
we need to recompute the fill -in and fill-in- excl-one for vertices 2, 3, 4 and 5 only.

Lemma 4. Let v be a vertex in graph G that is not simplicial, G′ = G[V − {v}]
be the graph obtained by eliminating v, and fill-inG(v) be the fill-in of v in G. For
all w �∈ N2[v], we have fill-inG(w)= fill-inG′(w), fill-in-excl-oneG(w)= fill-in-excl-
oneG′(w).

Observation. Many of the heuristics have slightly different implementations that can
give different results on the same graph. For instance, consider the Minimum Fill-in
heuristic. If there is more than one vertex that has minimum fill-in, the method does
not specify which of these has to be selected and placed in the elimination ordering.
For instance, there could be some arbitrary numbering of the vertices, and the specific
implementation could choose the lowest or the highest numbered vertex with minimum
fill-in. It seems better to use criteria that guide towards a better upper bound for the
treewidth for such a selection. Using other criteria apart from minimum fill-in can be
seen to give better bounds for several inputs. Still, in each case, there are graphs for
which we do not find the optimal treewidth with such heuristics; given the NP-hardness
of the problem, we also cannot expect to do so.

We would like to remark here that if we want to fully describe an upper bound algo-
rithm, we must specify details like the method of representing the graph, specifically,
because of matters like when vertices have the same fill-in, in which manner such a
tie is broken. If we do not give such specifications, there is possibility to get different
results from the same algorithm. Moreover, it becomes more difficult to compare the
results of different methods.

In the proposed Enhanced Minimum Fill-in algorithm, we first select vertices whose
elimination is safe, i.e., we select vertices that are simplicial (have fill-in 0), or almost
simplicial (have fill-in-excl-one 0) and their degrees are at most the lower bound (low)
on the treewidth of the graph. Only if no safe vertex is available, we select the ver-
tex of minimum fill-in. Furthermore, we incorporated Lemma 3 and Lemma 4 in the
algorithm.

3.2 Minimum Fill-in Excluding One Neighbor (MFEO1)

Using the ideas behind the EMF heuristic and additional techniques, we developed a
more advanced heuristic. The idea is as follows: first, we test whether the graph contains
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simplicial vertices, or almost simplicial vertices with degree at most the lower bound
for the treewidth of the graph. If we find such vertices, we process them as in EMF. If
the graph does not include such simplicial or almost simplicial vertices anymore, then
we do the following test:

let H(W,F ) be the temporary graph of a given graph G(V,E),
p be a vertex with minimum fill-in in H ,
min-fill-in ← fill-in(p),
local-min-fill-in ← MaxInt,
local-min-fill-in-excl-one ← MaxInt;

for all q ∈Wandq �= p
if((fill-in-excl-one[q] < min-fill-in) and (degree[q] = low))
then

if((fill-in-excl-one[q] < local-min-fill-in-excl-one) or
((fill-in-excl-one[q] = local-min-fill-in-excl-one) and
(fill-in[q] < local-min-fill-in)))

then
p ← q;
local-min-fill-in ← fill-in[q];
local-min-fill-in-excl-one ← fill-in-excl-one[q];

After this test, if there is a vertex q amongst W that full fills these conditions, then
that vertex becomes the next eliminating vertex, otherwise, vertex p will be eliminated.
However, if the graph contains more than one vertex q with such properties then the
vertex with minimum fill-in-excl-one amongst these is eliminated first. But, if still there
is more than one vertex that satisfies the last condition, then the vertex with minimum
fill-in amongst these should be selected first.

3.3 The Minimum Fill-in Excluding One Neighbor Vertex (MFEO2)

The MFEO2 heuristic is a modification of MFEO1 heuristic, where ties are broken
using the fill-in and fill-in-excl-one in the other order. If more than one vertex q satisfies
the two conditions, namely, fill-in-excl-one(q) < fill-in(p) and degree(q) < low, then
the vertex with minimum fill-in amongst these is eliminated first. But, if still there is
more than one vertex that satisfies the last condition, then the vertex with minimum
fill-in-excl-one amongst these should be processed first.

3.4 The Ratio Heuristic, Version 1 (Ratio1)

In the two versions of the Ratio heuristic, we use different rules for when vertices of
small fill-in-excl-one can be selected for elimination before vertices of minimum fill-in.
Again, we first select simplicial vertices, or almost simplicial vertices whose degree is
at least the lower bound for the treewidth. If there are no such vertices in the temporary
graph, we proceed now as follows: In the Ratio heuristic, version 1, a vertex v can be
selected when its fill-in-excl-one is smaller than minimum fill-in, its degree is at most
the lower bound for the treewidth, and it satisfies the following condition. Let H(W,F )
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be a temporary graph of graph G(V,E). Select a vertex p of minimum fill-in. Compute
r1(w) = fill-in(w)/fill-in(p), and r2(w) = degree(w)/degree(p). We now require that
r1(w) < r2(w) for w �= p to be a candidate for selection at this point. If we have
more than one such candidate, we select from these a vertex with minimum difference
between r1 and r2, (r1 − r2).

The motivation for the Ratio heuristic, version 1, is that we want to select vertices
for which elimination creates a large clique while only few fill-in edges are added. Let
us illustrate the method with the following examples: Let p be a vertex of minimum fill-
in and w be a vertex whose fill-in-excl-one is less than minimum fill-in and its degree
is less than the value of the lower bound for the treewidth.

3.5 The Ratio Heuristic, Version 2 (Ratio 2)

The second variant of the Ratio heuristic is similar to the first one, with the following
difference. For each vertexw ∈W , we set r(w) = fill-in(w)/degree(w), (degree(w) >
1, otherwise w is simplicial). When there are no simplicial vertices and no almost sim-
plicial vertices with degree at most the treewidth lower bound, we select the vertex w
whose ratio r(w) is smallest.

4 Experimental Results

The algorithms described in the previous section and some other algorithms described
in [7, 11] have been implemented using Microsoft Visual C++ 6.0 on a Window 2000
PC with a Pentium III 800 MHz processor. The algorithms were tested on two sets
of graphs. The first one includes 18 graphs from real-life probabilistic networks and
frequency assignment problems [11]. The second set includes 14 graphs from a DI-
MACS coloring benchmark [7]. The selected graphs have different number of vertices
and edges. Also, the differences between the known upper bounds and lower bounds
for the treewidth of many of those graphs are noticeable. Thus, it is possible to obtain
different results for the upper bound of the same graph by using different heuristics.

In order to be able to achieve good conclusions from this analysis, we analyze our
algorithms in different ways. First, we compare the results of the implementations of
different methods that have been introduced in this paper. The second part of the evalua-
tions compares the heuristics introduced in this paper with known heuristics. The tables
use the following terminology. The columns with the upper bounds on the treewidth are
labeled as ub. The column for processing times in seconds are labeled as t. The pro-
cessing times are rounded of to the nearest integer. The values in column low are not
necessarily the best known lower bounds on the treewidth, but by using these values
with our heuristics we obtained the best upper bounds.

4.1 Comparison Between the Heuristics Introduced in This Paper

In Section 3, we have introduced five methods for finding upper bounds for the treewidth
of the graph; in addition we implemented the Minimum Fill-in heuristic (MF) and the
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Minimum Degree Fill-in (MDFI). The results of implementing these algorithms on dif-
ferent graphs are given in the following tables. Table 1 and Table 2 (columns 6-10) show
a comparison between different methods illustrated in this paper from the point view of
their best upper bound values and the processing time used to find these upper bounds.
Table 1 consists of instances of probabilistic networks and frequency assignment prob-
lems. Table 2 gives graphs from the DIMACS coloring benchmark. The results for the
D-LB heuristic in Table 2 were obtained from [7]. D-LB is shown in this table because
[7] gives experimentel results for this set of graphs and not for those used in Table 3.
We notice clearly from the results in these tables that in general the upper bounds ob-
tained by MFEO1 and RATIO2 are better than those obtained by the other methods.
The main differences between the results obtained by MFEO1 and those obtained by
RATIO2 are as follows:

– The upper bounds obtained by using the MFEO1 heuristic on graphs of probabilis-
tic networks and frequency assignment instances in Table 1 are better than or equal
to those produced by any other heuristic in that table. However, this is not the case
for some of the instances from the DIMACS coloring benchmark, see Table 2. We
notice when we consider Table 1 that the upper bounds for some graphs are better
when using RATIO2 than those obtained when using MFEO1.

– The upper bounds obtained by using the MFEO1 are more stable, namely, always
better than or equal to that produced by any other heuristic, except for RATIO2.
RATIO2 does not have such a “stable behavior”.

Table 1

Graphname Size low Heuristic
EMF MFEO1 MFEO2 RATIO1 RATIO2

|V | |E| ub t ub t ub t ub t ub t
alarm 37 65 2 4 0 4 0 4 0 4 0 4 0
barley 48 126 3 7 0 7 0 7 0 7 0 7 0
boblo 221 326 2 3 0 3 0 3 0 3 8 3 0
celar06 pp 100 350 11 11 0 11 0 11 0 11 0 11 0
celar07 pp 200 817 16 16 1 16 1 16 1 16 1 16 1
celar09 pp 340 1130 7 16 4 16 4 16 3 16 49 16 4
graph05 pp 100 416 11 26 0 25 1 25 1 25 0 26 1
midew 35 80 2 4 0 4 0 4 0 4 0 4 0
munin1 189 366 3 11 0 11 1 11 1 11 5 11 1
oesoca hugin 67 208 9 11 0 11 0 11 0 11 0 11 0
oow bas 27 54 2 4 0 4 0 4 0 4 0 4 0
oow solo 40 87 4 6 0 6 0 6 0 6 0 6 0
oow trad 33 72 4 6 0 6 0 6 0 6 0 6 0
pigs 441 806 3 10 6 10 6 10 6 10 123 10 6
ship-ship 50 114 4 8 0 8 0 9 0 8 0 9 0
vsd-hugin 38 62 2 4 0 4 0 4 0 4 0 4 0
water 32 123 9 10 0 9 0 10 0 9 0 10 0
wilson-hugin 21 27 2 3 0 3 0 3 0 3 0 3 0
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Table 2

Graphname Size low Heuristic
EMF MFEO1 MFEO2 RATIO1 RATIO2 DL B

|V | |E| ub t ub t ub t ub t ub t ub t
anna 138 986 11 12 0 12 0 12 0 12 0 12 0 12 1
david 87 812 11 13 0 13 0 13 0 13 0 13 0 13 0
dsjc125 1 125 736 17 65 6 64 6 64 6 64 6 66 6 67 3
dsjc125 5 125 3891 55 111 35 110 36 110 37 110 36 109 38 110 4
dsjc250 1 250 3218 3 177 451 177 451 177 451 177 453 177 441 176 33
games120 120 1276 10 39 2 39 2 42 1 41 2 38 2 41 2
LE450 5A 450 5714 3 315 7630 310 13694 315 13437 315 15308 304 13301 323 274
mulsol i 4 175 3946 32 32 23 32 27 32 26 32 26 32 28 32 14
myciel4 23 71 10 11 0 10 0 10 0 10 0 10 0 11 0
myciel5 47 236 8 21 0 20 1 20 0 20 0 20 0 20 0
myciel6 95 755 20 35 2 35 1 35 2 35 1 35 2 35 2
myciel7 191 2360 31 66 31 66 31 66 32 66 32 66 28 70 29
queen5 5 25 320 12 18 0 18 0 18 0 18 0 19 0 18 0
school1 385 19095 80 225 5791 225 5742 225 5738 225 6390 209 3877 242 274

4.2 Comparison Between Heuristics Introduced in This Paper with Known
Heuristics

Tables 2, 3 and 4 make a second type of comparison. Here, we compare the heuristics
introduced in this paper with a number of existing heuristics from the scientific litera-
ture. The data for the existing heuristics were taken from [7, 11]. Table 2 gives the upper
bounds found by using D-LB [7] and those found by using the heuristics introduced in
this paper, with the processing time used by each heuristic. Table 3 compares between
the MFEO1 heuristic and the heuristics that have been described in[11]. The first five
are based on building elimination order lists, and respectively use two variants of Lexi-
cographic Breadth First Search (LEX-P and LEX-M), the Maximum Cardinality Search
(MCS), the Minimum Fill-in heuristic (MF) and the Minimum Degree heuristic (MD:
the vertex of minimum degree in the temporary graph is chosen). The last one is the
Minimum Separating Vertex Sets heuristic (MSVS) from Koster [14], where a trivial
tree decomposition is stepwise refined with help of minimum vertex separators.

We conclude from the results of Tables 2, 3 and 4 that usually the best upper bounds
were achieved by the MFEO1 heuristic. Table 4 shows how often each of the heuristics
MFEO1, LEX-P, LEX-M, MF, MCS, and D-LB gives the best result of all seven on
the 18 graphs from probabilistic network and frequency assignment instances, and 14
graphs from DIMACS vertex-coloring instances. We can see that out 18 graphs of the
first set of graphs in Table 3, the upper bound of 2 graphs became better by using
MFEO1 than that produced by the heuristics introduced in [11] together, the upper
bounds of 14 graphs remain equal to the best upper bound of them, and no graph from
this set of graphs its upper bound became worse by MFEO1 than that produced by those
heuristics. As well, by applying the MFEO1 on 14 graphs of the second set of graphs
(DIMACS vertex-coloring instances), the upper bounds of 6 graphs became better than
that produced by D-LB (introduced in [7]), upper bounds of 7 graphs remain equal
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Table 3

Graphname Size Heuristic Name
MFEO1 LEX-P LEX-M MF MDFI MCS MSVS

|V | |E| ub t ub t ub t ub t ub t ub t ub t
alarm 37 65 4 0 4 0 4 0 4 0 4 0 4 0 4 0
barley 48 126 7 0 7 0 7 0 7 0 7 0 7 0 7 0
boblo 221 326 3 0 4 1 4 10 3 13 3 0 3 1 3 0
celar06 pp 100 350 11 0 11 0 11 2 11 1 11 0 11 0 11 0
celar07 pp 200 817 16 1 19 2 18 16 16 10 18 0 18 2 18 3
celar09 pp 340 1130 16 4 19 0 18 0 16 98 18 0 19 0 18 0
graph05 pp 100 416 25 1 29 3 27 11 26 1 28 0 29 3 26 5
midew 35 80 4 0 4 0 4 0 4 0 4 0 4 0 4 0
munin1 189 366 11 1 15 2 13 20 11 9 11 0 20 3 11 2
oesoca hugin 67 208 11 0 12 0 11 0 11 0 11 0 11 0 11 0
oow bas 27 54 4 0 4 0 4 0 4 0 4 0 5 0 4 0
oow solo 40 87 6 0 6 0 6 0 6 0 6 0 6 0 6 0
oow trad 33 72 6 0 6 0 6 0 6 0 6 0 6 0 6 0
pigs 441 806 10 6 19 14 18 161 10 190 10 0 15 8 15 9
ship-ship 50 114 8 0 9 0 9 0 8 0 8 0 9 9 9 0
vsd-hugin 38 62 4 0 4 0 4 0 4 0 4 0 5 0 4 0
water 32 123 9 0 10 0 10 0 9 0 11 0 10 0 10 0
wilson-hugin 21 27 3 0 3 0 3 0 3 0 3 0 3 0 3 0

Table 4

S Heuristic Number of graphs where the upper bound produced by the heuristic
name is the only best one is equal the best one is worse than the best one Sum

set 1 set 2 set 1 set 2 set 1 set 2 set 1 set 2
1 MFEO1 2 6 16 7 0 1 18 14
2 LEX-P 0 6 12 18
3 LEX-M 0 6 12 18
4 MF 0 3 15 18
5 MD 0 11 7 18
6 MCS 0 5 13 18
7 DLB 0 1 7 6 14

to the best upper bound, and only for one graph, the upper bound obtained by D-LB
method is better than that obtained by MFEO1. Table 4 shows a comparison between
MFEO1 and each of these seven heuristics. It gives number of graphs when MFEO1
gives a better, equal, or worse upper bounds than that produced by every heuristics
introduced in [7, 11]. The processing time of the MFEO1 heuristic is relatively close to
the processing time of other heuristics in spite of the fact that this algorithm uses O(n4)
time in the worst case, while some of other heuristics are of O(n2) time complexity.
Although there are only two cases in Table 1 where the MFEO1 heuristic gives a bound
that is better than each of other heuristics (namely, for graph05 pp and water), we can
see that it gives in many cases the best known value.
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In several cases, this is the exact treewidth of the graph. Our recent (unpublished)
work on branch and bound algorithms for treewidth has shown that. In many cases, the
heuristic gives considerable improvements compared with individual other heuristics.
For some of the graphs we do not know the exact treewidth and cannot determine yet
how much the upper bounds differ from the exact values.
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Abstract. Among all the variations of general combinatorial auctions, the Vick-
rey auction is essentially the only incentive-compatible auction. Furthermore, it
is individual rational and weakly budget-balanced. In many cases these properties
are very desirable. However, computing the winners and their payments in a Vick-
rey auction involves solving several NP-complete problems. While there have
been many approaches to solve the winner determination problem via search, this
search has not been extended to compute the Vickrey payments. The naive ap-
proach is to consecutively solve each problem using the same search algorithm.
We present an extension to this procedure to accelerate the computation of Vick-
rey payments using a simple backtrack algorithm. However, our results can be
applied to sophisticated branch-and-bound solvers as well. We test our approach
on data evolving from a Lufthansa flight schedule. Data of this type might be of
interest, since authentic data for combinatorial auctions is rare and much sought
after. A remarkable result is that after solving the winner determination problem
we can provide bounds for the remaining problems that differ from the optimal
solution by only 2.2% on average. We as well manage to obtain a rapid speedup
by tolerating small deviations from the optimal solutions. In all cases, the actual
deviations are much smaller than the allowed deviations.

1 Introduction

Many recent applications of auctions require several non-identical goods to be auc-
tioned off. This setting is quite complicated, since bidders are often interested in certain
subsets of items and want to ensure to get exactly these subsets with no missing or addi-
tional items. However, since there is an exponential number of possible combinations of
items, such auctions are often computationally intractable. In previous work, only a few
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number of combinatorial auctions were employed due to this burden. On the other hand,
combinatorial auctions have very desirable properties. In a scenario where the items are
just auctioned off one by one a bidder cannot be ensured that he gets the whole subset
of items he desires. This drawback is abolished allowing combinatorial bids. In an auc-
tion that allocates flights between airline alliance partners this is essential because of
connecting flights and logistic considerations.

It is NP-complete to determine the optimal allocation for a combinatorial auction
[17], but heuristics and tractable subcases have been analyzed [9, 12, 15, 8, 5]. A num-
ber of exponential search algorithms have been employed while trying to reduce the
search overhead as much as possible [13, 3, 8, 18]. Another approach uses commercial
software for solving integer programs [1]. It has been shown that non-optimal alloca-
tion algorithms cannot always ensure truthfulness [9]. For an overview of combinatorial
auctions we refer to de Vries et al. [17].

The goal of an auction designer is to design the auction in such a way that in-
tended goals are met while bidders act selfishly, i.e. choosing the strategy they think
is best for them. Designing auctions or more generally games (mechanisms) is the
central question of mechanism design. One desirable characteristic of a mechanism
is incentive-compatibility. A mechanism is incentive-compatible, if telling the truth is
a dominant strategy for each bidder. In an incentive-compatible auction, the auction-
eer might hope for a high revenue, since no bidder underbids. Bidders might favour
incentive-compatible auctions because they do not have to carry out strategic consid-
erations. The only combinatorial auction that accomplishes incentive-compatibility is
essentially the generalized Vickrey auction (GVA). However, the implementation of a
GVA requires several NP-complete problems to be solved in order to compute the pay-
ments of the bidders. These problems only differ from each other by the exclusion of
one player from the auction. While mechanism design only asks how one can design
systems so that agents’ selfish behavior results in desired system-wide goals, algorith-
mic mechanism design additionally considers computational tractability. Focussing on
algorithmic mechanism design, we present ideas to speed up the computation of the so-
called Vickrey payments to be used in a branch-and-bound algorithm. The main idea is
to use information already gained by previous search to obtain good lower bounds for
the still unsolved problems. Though there has been a lot of work on computing exact so-
lutions for the winner determination problem via search [13, 3, 8, 18], to the best of our
knowledge there has been no attempt to integrate the computation of Vickrey payments
in the search process. The only alternative so far is the plain consecutive execution
of one winner determination problem after the other. For another mechanism design
problem, the shortest path problem [7, 10], Hershberger et al. [4] show that Vickrey
payments for all the agents can be computed in the same asymptotic time complexity as
for one agent. For iterative auctions, Parkes [11] proposes an experimental design that
implements the outcome of the GVA in special cases.

While there has been a large amount of work on algorithms for combinatorial auc-
tions, it has only been tested on mostly artificially generated data so far. There is great
need to obtain more realistic data in order to evaluate the algorithms in a more practical
view. To the best of our knowledge, there has only been one approach to generate real-
istic test data before this work so far. Leyton-Brown et al. [6] present a generator that
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uses real-world domains like matching or scheduling problems to obtain reasonably re-
alistic data. However, they do not use any data that emanates from the real world. It is
assumed, that real-world data might be harder to deal with than artificial data. Due to
a cooperation with Lufthansa Systems we have access to a real-world flight schedule
and are able to transform it in order to describe a combinatorial auction in which flights
are auctioned off between airline alliance partners1. We implemented our ideas within
a simple backtrack algorithm and tested it on this data. We want to emphasize that it
is not the aim of this paper to compete against already existing algorithms for winner
determination but to investigate how the Vickrey payment computation can be accel-
erated using our improvements. Replacing the simple backtrack algorithm with a more
sophisticated one will retain obtained time savings due to our extensions and suppos-
ably achieve an overall speedup. The rest of the paper is structured as follows. Section
2 explains the allocation and payment rules of the GVA. After presenting a very simple
backtrack algorithm in Sect. 3 we propose extensions in Sect. 4 in order to accelerate
the Vickrey payment computation. Section 5 deals with converting the Lufthansa data
into input for a combinatorial auction. Results are presented and interpreted in Sect. 6.
Section 7 concludes.

2 The Generalized Vickrey Auction

The GVA was initially described by Varian et al. [16]. We describe the allocation and
payment rules of the GVA. Let [m] = {1, . . .m} be the set of objects that are auctioned
off and [n] = {1, . . .n} be the set of players. Let S j ⊆ [m] be the possible empty set
of objects that are allocated to player j. The set of all feasible allocations is given by
K = {S = (S1, . . . ,Sn)|S j ⊆ [m], j ∈ [n] and S j ∩ Si = /0, , ∀i �= j, i, j ∈ [n]}. The valu-
ation function v j(S j) represents the value that player j assigns to the object set S j of
allocation S = (S1, . . . ,Sn). The set of his valuation functions is denoted by Vj. Let the
valuation function v j(·) denote his true valuation and a valuation function v̂ j(·) denote
his submitted valuation, which does not necessarily have to be his true valuation. By
means of this function the mechanism can compute valuations for all possible subsets
of objects. For all bidders j ∈ [n], let t j be bidder j’s payment to the auctioneer. In a
Vickrey auction, t j is always non-positive. This implies that bidder j has to make a
payment of −t j to the auctioneer. The set of admissible alternatives is

X = {(S, t1, . . . , tn)|S ∈ K and t j ∈ R, ∑
j∈[n]

t j ≤ 0}.

The quasilinear utility for alternative x ∈ X of player j is given by u j : X ×Vj → R with
u j(x,v j(·)) = v j(S j)+ t j. The efficient allocation S∗ ∈K maximizes the sum of players’
values. Let S∗ = (S∗1, . . . ,S

∗
n) be an optimal allocation and V ∗ be the value of the optimal

allocation (the social welfare):

S∗ = argmax
S∈K

∑
j∈[n]

v̂ j(S j) and V ∗ = max
S∈K

∑
j∈[n]

v̂ j(S j).

1 Available on http://wwwcs.uni-paderborn.de/cs/ag-monien/PERSONAL/
YVONNEB/
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Let V ∗
− j be the value of the optimal allocation with player j excluded from the auc-

tion. Player j’s payment t j is defined by t j = −V ∗
− j +(V ∗ − v̂ j(S∗j)). A player pays the

additional amount that the other players collectively add to their social welfare if player
j is excluded from the auction.

The following IP computes the efficient allocation for all valuation functions. The
only adjustment to the auction setting in some cases is to include dummy items to ensure
correct allocation [8]. If there is more than one bid on one object set, only the one with
highest valuation is kept. The variable xS ∈ {0,1} denotes if the subset S is allocated to
the player that placed the highest bid on S. Equation (1) ensures, that no object i∈ [m] is
allocated more than once. The LP relaxation in which xS ∈ [0,1] will be used to compute
upper bounds in the backtrack algorithm in Sect. 3.

max ∑S⊆[m] v(S)xS

s.t. ∑S�i xS ≤ 1 ∀i ∈ [m] (1)
xS ∈ {0,1} ∀S ⊆ [m]

3 A Standard Backtracking Algorithm

In this section we introduce a standard backtrack algorithm that is the basis for our
investigations referred to as BACKTRACK in the following. A very similar represen-
tation is used by Sandholm et al. [14]. A data structure called pro f ile contains all still
unallocated bids and information about which objects they contain. Bids that are already
a part of the solution are stored in a data structure IN. Let path value be the revenue
from bids included in IN on the search path so far. Let best be the value of the best so-
lution found so far and IN∗ the set of winning bids of the best solution found so far. The
algorithm is given in Fig. 1. The first four steps deal with the case in which the value of
the bids winning on the current path is greater than the value of the best solution found
so far. If this is the case, the set of winning bids IN∗ and best have to be updated. Steps
6 to 9 determine an upper bound of what can be reached on the current search path by
computing the solution to the LP for the profile. If no better solution than the current
best solution can provably be achieved, this branch can be cut off. If the solution to
the LP is integral, it is the optimal assignment for the bids still unallocated given the
allocation in IN and no further search beyond this search node is required. Steps 10 to
16 cover this case and update the best solution found so far if necessary. Using a greedy
allocation algorithm, steps 17 to 21 determine a lower bound of the solution on the
current search path and if necessary update the solution. Step 22 chooses the branching
bid. In Steps 23 to 25, the branching bid is included into the current solution and all
other bids in the profile colliding with the branching bid are removed from the profile.
After calculating the value of the subtree below in step 26, the branching bid is excluded
from the current solution and all bids that were removed in step 25 are reinserted. Step
29 determines the value of the subtree below for the case that the branching bid is not
part of the current solution. There are several ways to modify and tune this standard
backtrack algorithm. Upper bounds can be acquired by any upper bound algorithm. We
choose the LP-relaxation because it can be solved in a reasonable amount of time and
the fractional solutions serve as a sorting criteria for the greedy algorithm. The greedy
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1. BACKTRACK (profile, path_value){
2. IF (path_value > best){
3. IN* -> IN;
4. best -> path_value;
5. }
6. lp_value = LP(profile);
7. IF (lp_value + path_value <= best){
8. return;
9. }
10. IF (lp solution is integral){
11. IF (lp_value + path_value > best){
12. best = lp_value + path_value;
13. update IN*;
14. }
15. return;
16. }
17. greedy_value = GREEDY(profile);
18. IF (greedy_value + path_value > best){
19. best = greedy_value + path_value;
20. update IN*;
21. }
22. choose bid b from profile
23. delete b from profile
24. IN = IN + {b}
25. remove all bids b in profile that collide with b
26. BACKTRACK(profile, path_value + v(b))
27. IN = IN - {b}
28. reinsert the bids that were removed in step 25
29. BACKTRACK(profile, path_value)
30. return;
31. }

Fig. 1. BACKTRACK algorithm

algorithm can as well be substituted by any lower bound algorithm. We use CPLEX
9.0 2 to solve the LP. In the greedy algorithm, bids are ordered in descending values of
the LP solution as suggested by Nisan [8] and inserted into the solution if they do not
collide with any bids in the solution already. Other suggestions for ordering the bids
are given by Sandholm [13]. We always choose the branching bid to be the bid with the
largest LP solution value of the still unallocated bids.

4 Acceleration of Vickrey Payment Computation

Preprocessing The only preprocessing that is applied within BACKTRACK is to delete
dominated bids. A bid b1 = (S1,v1) on object set S1 with value v1 dominates a bid
b2 = (S2,v2) if S1 ⊆ S2 and v1 ≥ v2. Though this is an accurate technique to solve the
winner determination problem only, this procedure might produce incorrect results if
the Vickrey payments have to be computed afterwards. Consider the following setting:

player 1 player 2 player 3
value objects value objects value objects
1 {2,0} 3 {0,2,3} 2 {1}
3 {1} 4 {1,2,3,4}

In this setting, bid (2,{1}) of player 3 is dominated by bid (3,{1}) of player 1. If we
delete this bid the optimal assignment grants bid (3,{1}) to player 1 and bid (3,{0,2,3})
to player 2. This assignment does not change if we keep the dominated bid. However,

2 www.cplex.com
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the payment of player 1 is −2 for the case of deleting and −1 for the case of keeping
the dominated bid. The bid that dominates bid (2,{1}) of player 3 belongs to player 1.
If player 1 is excluded from the auction, no other bid dominates bid (2,{1}) of player
3. Consequently, this bid can be deleted for the winner determination, but has to be
reinserted for the computation of player 1’s payment since he is the only player that
submits a dominating bid for it. The naive approach would be to eliminate all domi-
nated bids for the winner determination, compute the efficent allocation, reinsert them
again, delete the bids of player j, delete all dominated bids from the remaining bids,
compute t j, reinsert the bids deleted before, delete the bids of player k, and so on. In
our implementation, a preprocessing phase eliminates all dominated bids. Each player
remembers the bids that were deleted only because of one of his bids. If a player is
excluded from the auction to compute his payment, he reinserts those bids into the auc-
tion profile. Other preprocessing techniques are proposed by Sandholm [13]. It has to
be investigated, how they are to be applied to the computations of Vickrey payments.

Bounds. To conduct a GVA, one winner determination problem has to be solved for
the auction comprising all players. Additionally, for each player one winner determi-
nation problem has to be solved in which the player is excluded from the auction. The
main motivation for the attempt to speed up the calculation of the Vickrey payments
using a branch and bound method is the possibility to use the information gained by the
previous runs of the algorithm. Let l j be a lower bound for the solution value V ∗

− j of
the problem excluding player j. Consider the first problem that includes all players. A
backtrack search tree is depicted in Fig. 2. During the search for the optimal solution,
we come across various feasible solutions. These solutions could already be optimal
solutions for the problem with one player excluded or at least provide lower bounds.
Let FEA− j be a feasible solution that does not assign any objects to player j. In that
case, we can update the lower bound l j for the problem without player j if l j < FEA− j.
Let now v j(S j) be the value of the object set S j �= /0 assigned to player j by a feasible
allocation FEA. The lower bound l j can be updated, if l j < FEA− v j(S j). If the opti-
mal solution does not grant any of player j’s bids, his payment is zero and V ∗

− j = V ∗.
If player j receives a subset S∗j in the optimal solution with value OPT it has to be
checked, if l j < OPT − v j(S∗j). All these updates can be made during the subsequent
runs as well. The bounds have only been updated for the players j for which the value

FEA

OPT

FEA(−j)

A4

A3
A2

A1

G

Fig. 2. left: BACKTRACK search tree. right: partition of flights
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V ∗
− j has not been determined yet. To avoid a large running time overhead we only update

the bounds l j if the current best solution is updated.

Approximations. Even if we can provide a good lower bound or even the optimal but not
verified solution value for a problem, a branch-and-bound method does not necessariliy
have to find the optimal solution faster than if no initial bound is given. This might be
the case if a lot of similar bids were placed and various combinations of subsets yield
a similar value. In that situation, the LP might compute an upper bound dangling just a
tiny improvement and the branch cannot be cut off. One way out of this dilemma is to al-
low small deviations from the optimal solutions. We cut off a branch if the upper bound
only differs from the current best solution by a certain percentage. This approach can
as well be applied to the winner determination problem on its own. Although approxi-
mation in combinatorial auctions compromises the incentive-compatibility of the GVA,
it is arguable if a deviation by a small percentage can be traced and taken advantage of
by the bidders [10].

5 Testdata

Most experiments so far have been conducted on artificially generated problems. The
most common distributions are random, weighted random, uniform, and decay [14, 17].
Our approach is to use a real flight schedule to be able to conduct experiments on realis-
tic instances. This data is converted into data for a combinatorial auction. The players in
this setting are partners of an airline alliance who are competing for rights to fly certain
flights. A cooperation with Lufthansa Systems makes it possible to acquire an authentic
Lufthansa flight schedule. Since data of a complete airline alliance is unavailable, we
partition the Lufthansa flight schedule into several parts to simulate alliance partners.
Although these data is artificially generated, it is more influenced by real-world data
than other test data used in previous work.

We first want to justify the use of the GVA in order to allocate the flights between
the alliance partners. The GVA is provably hard to compute. The calculation of the op-
timal allocation as well as the calculation of the payments for each airline are NP-hard
problems in the general case. However, the optimal allocation in the GVA maximizes
the social welfare. Since we consider an alliance, this kind of objective fits perfectly in
our setting.

In the following we explain the data generation in detail. Objects are flights. For
each flight, each alliance partner has a certain valuation. Flights inside Germany are
considered accessible to all alliance partners. Flights outside Germany are exclusive to
a single alliance partner. The aim is to allocate the flights inside Germany such that the
maximal social welfare for the alliance is achieved. Let G be the set of flights inside
Germany and let A j be the set of flights that are exclusively flown by airline j. Figure
2 depicts the partition of the flights for four alliance partners. The nodes of the graph
represent cities, each edge represents one leg. One possible passenger travel itinerary
is illustrated by the dashed edges. For the investigated test data, the Lufthansa flight
schedule is partitioned into 20 parts, each for one of 20 alliance partners. The set G
consists of 64 flights. For each airline 1000 bids on sets of flights out of G are generated.
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Each bid does not contain more than 20 flights. There are about 160000 itineraries
that are used to determine the values of the bids. In detail, for each airline j a set G j

consisting of 1000 subsets G j(i), i = 1, . . . ,1000 with a maximal cardinality of 20 is
determined. A subset G j(i) is called relevant for airline j, if there are itineraries that
contain flights from G j(i) as well as flights from A j. For each relevant subset G j(i)∈G j

the valuations of the flights in these itineraries are summed up. This sum represents the
bid of airline j for the set of flights G j(i). Airline j bids on each relevant subset of G j.
We generated instances each with 100,200, . . . ,900 bids per player by drawing them
randomly from the generated bids. For every amount of bids per player we generated
10 instances.

6 Results

First, we show that the simple backtrack algorithm is comparable to other recently pub-
lished backtrack algorithms. We tested BACKTRACK on the most common distribu-
tions as described in Sect. 5. These distributions were used by other authors as well
[14, 17, 3]. We focus on the results of Sandholm et al. [14] since they claim their algo-
rithm CABOB to be the currently fastest optimal algorithm for the winner determina-
tion problem. They conducted experiments against CPLEX 7.0 on various distributions.
However, they compare median running times instead of average running times. This
still leaves a possibility that nearly half of the running times are arbitrarily larger than
the median running time. We compare the average running times and the median run-
ning times for CPLEX 9.0 and BACKTRACK. The results are shown in in Fig. 3.
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There are a lot of interesting phenomenons to discuss which goes beyond the scope
of this paper. For further investigation on these problem distributions, see [14, 2]. Since
our algorithm is a very simple backtrack algorithm that does not use any sophisticated
techniques, the running times are sometimes slower than the running times achieved
before. However, they are not dramatically slower and the tendencies if a problem dis-
tribution is hard or easy are the same. Again we want to emphasize that it is not our aim
to compete with CPLEX. We use this simple backtrack algorithm for research on how
to speed up the computation of Vickrey payments in general.
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Fig. 4. running times on the airline distribution

The rest of our experiments uses the airline alliance test data. To get an impression
of the complexity of these problems we show the average and the median running times
of CPLEX 9.0 and BACKTRACK in Fig. 4. On the left, only the winner determination
problem is solved. On the right, the Vickrey payments are computed as well. The per-
centage of runs in which the first LP relaxation is already integral increases for the left
side from 0% for 100 bids per players to 100% for 800 and 900 bids per player. The
percentage of the on the spot found integer solutions in the runs computing the Vickrey
payments is listed in the second column of the left table of Fig. 7. As one would expect
from the results of the pure winner determination, the number rises from 0% to 90.5%.
To put the large running times for a small number of bids per player in perspective,
we investigate how long it takes until the solution is found and until it is verified. The
large average running time for the computation of the winners for 100 bids per player
is caused by essentially three instances that yield a much larger running time than the
other instances. For these three instances, Fig. 5 depicts the current best solution at
each timestep a solution improves during the search. In all three cases, a remarkable
amount of time is needed for verification after the best solution has been found. The
actual time to find the optimal solution is much smaller than the overall running time.
Tuning BACKTRACK to increase the number of cuts might decrease the amount of
time needed for verification.

Figure 6 compares the average running times and the average recursion calls needed
by BACKTRACK to compute the Vickrey payments to the several extensions we made
to BACKTRACK to speed up this computation. The addition WITH BOUNDS denotes
the permanent update of the lower bounds for the values V ∗

− j for players j that have not
been excluded from the auction yet but have received a set of objects in the efficient



Accelerating Vickrey Payment Computation 237

 13200

 13400

 13600

 13800

 14000

 14200

 14400

 14600

 14800

 0  5  10  15  20
O

B
JE

C
T

IV
E

TIME (SEC)

AIRLINES 100 BIDS PER PLAYER

INSTANCE 10
INSTANCE 5
INSTANCE 2

Fig. 5. anytime performance of BACKTRACK on three airline instances

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 100  200  300  400  500  600  700  800  900

T
IM

E
 (

S
E

C
)

# BIDS PER PLAYER

AIRLINES (VICKREY) (64 OBJECTS, 20 PLAYERS)

BACKTRACK
BACKTRACK WITH BOUNDS

BACKTRACK(0.1) WITH BOUNDS
BACKTRACK(1) WITH BOUNDS

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 100  200  300  400  500  600  700  800  900

R
E

C
U

R
S

IO
N

 C
A

LL
S

# BIDS PER PLAYER

AIRLINES (VICKREY) (64 OBJECTS, 20 PLAYERS)

BACKTRACK
BACKTRACK WITH BOUNDS

BACKTRACK(0.1) WITH BOUNDS
BACKTRACK(1) WITH BOUNDS

Fig. 6. running times and recursion calls for the airline distribution

allocation. Unfortunately, this extension on its own does not significantly reduce the
amount of computation. Though this is a drawback in some respects, there are promis-
ing results as well. Figure 7 presents some of these results. The third column of the left
table presents the percentage of optimal bounds, i.e. bounds that are given as initial so-
lutions to BACKTRACK which are already optimal but not verified yet. The fourth col-
umn shows the average deviation of the bounds, i.e. the difference between the bounds
given as initial solutions and the actual best solution. For the airline instances with 100
bids per player the percentage of 7.3% of the optimal bounds seems to be small com-
pared to the large amount of running time. One could expect, that the more time the
algorithm spends on searching, the better the bounds on V ∗

− j. This conjecture is sup-
ported by the results on the average deviation. On average, the bounds given as initial

inst. int.sol.(%) opt.bds.(%) bds.dev.(%)
100 0.0 7.3 2.2
200 17.0 5.3 3.4
300 30.0 2.8 3.3
400 45.2 0.0 3.7
500 61.9 1.8 4.6
600 70.5 0.0 4.2
700 67.6 0.0 4.2
800 84.3 0.0 6.5
900 90.5 0.0 9.4

instance sol.dev.(%) pay.dev.(%) opt. pay.(%)
dev. 0.1 1 0.1 1 0.1 1
100 0.03 0.23 1.56 43.04 88.52 24.40
200 0.03 0.20 1.69 19.86 91.38 44.98
300 0.00 0.19 0.16 17.13 89.00 45.93
400 0.00 0.15 3.55 13.94 88.04 56.94
500 0.00 0.07 0.43 2.41 90.43 76.08
600 0.00 0.05 1.39 2.86 94.26 80.38
700 0.00 0.06 4.28 6.07 96.17 82.78
800 0.00 0.02 0.01 0.58 98.56 94.26
900 0.00 0.00 0.00 0.04 100 98.09

Fig. 7. data for BACKTRACK WITH BOUNDS with(out) deviation
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solutions only deviate from the optimal solution by 2.2%. With a decreasing percentage
of integer solutions the percentage of the optimal bounds decreases and the pecentage
of deviation increases. This phenomenon can be explained by less search due to a lot of
initial integer LP solutions.

Since in a lot of cases either the bounds are very close to the optimal solution or
have the same value already, we allow a small deviation from the optimal solution hop-
ing for faster computation of near-optimal solutions or faster verification of optimal
solutions in the second case. We carried out experiments allowing a deviation of 0.1%
and of 1%. Figure 6 denotes these cases with BACKTRACK(0.1) WITH BOUNDS and
BACKTRACK(1) WITH BOUNDS. For both cases, the running times are improved.
The right table in Fig. 7 shows additional information on the experiments. Particulary
interesting is the solution deviation, i.e. the actual deviation, not the allowed deviation
from the optimal solution. Though we allow a deviation of 0.1%, the actual deviation
is almost zero in all cases and never larger than 0.03%. If we accept a deviation of
1%, the actual deviation is always less than 0.23%. Despite the negative results on us-
ing approximation in truthful mechanisms, there is hope that such a small deviation
is intractable by the users. One observable and inevitable effect of computing an ap-
proximation no matter how close to optimal is the change of allocation. Objects are
very likely given to other players than in the efficient allocation and therefore pay-
ments and utilities change enormously. This explains the third and fourth column of
the left table in Fig. 7 that show the deviation from the payments and the percentage
of correctly computed payments with respect to the optimal allocation and the resulting
payments.

7 Conclusions and Future Research

To guarantee incentive-compatibility for general combinatorial auctions, a GVA has to
be implemented. Computing the winners and their payments in a GVA involves solv-
ing several NP-complete problems. Using a backtrack algorithm on each problem, we
on-the-fly computed lower bounds for the remaining problems. We showed that this ap-
proach often yields very good bounds if the percentage of initial integral LP solutions is
small. We observed that it is not sufficent to only provide good bounds in order to speed
up the computation. Even if given the optimal solution as a lower bound, the back-
track algorithm might take a long time to verify this solution. Nevertheless, we took
advantage of the good bounds by allowing small deviations from the optimal solution
and being able to accelerate the computation. Our results support the assumption that
authentic data is much harder to cope with than artificially generated data.

For additional investigation, it is a central question to what extend the incentive-
compatibility remains uneffected by a small deviation from optimum. In our future
research, we will incorporate our extensions into more sophisticated branch-and-bound
algorithms to be able to compete with CPLEX. Another interesting question is to iden-
tify special structures of the airline data and try to exploit it in specialized algorithms.
To get a more realistic view, we will conduct experiments that base upon more than one
flight plan.



Accelerating Vickrey Payment Computation 239

References

1. A. Andersson, M. Tenhunen, and R. Ygge. Integer Programming for Combinatorial Auction
Winner Determination. In Proceedings of the 4th International Conference on Multi-Agent
Systems, pages 39–46, 2000.

2. Y. Bleischwitz. Kombinatorische Auktionen: Einbettung ins Mechanism Design und Algo-
rithmen zur Erteilung der Zuschlaege, Diploma Thesis, University of Paderborn, 2004.

3. Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the Computational Complexity
of Combinatorial Auctions: Optimal and Approximate Approaches. In D. Thomas, editor,
Proceedings of the 16th International Joint Conferences on Artificial Intelligence, volume 1,
pages 548–553. Morgan Kaufmann Publishers, 1999.

4. J. Hershberger and S. Suri. Vickrey Prices and Shortest Paths: What is an edge worth? In
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pages 252–
259, 2001.

5. D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth Revelation in Rapid, Approximately
Efficient Combinatorial Auctions. Proceedings of the 1st ACM Conference on Electronic
Commerce, pages 96–102, 1999.

6. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a Universal Test Suite for Com-
binatorial Auction Algorithms. In Proceedings of the 2nd ACM Conference on Electronic
Commerce (ACM-EC), pages 66–76, 2000.

7. N. Nisan. Algorithms for Selfish Agents. In Proceedings of the 16th Symposium on The-
oretical Aspects of Computer Science, volume 1563 of Lecture Notes in Computer Science,
pages 1–15. Springer, 1999.

8. N. Nisan. Bidding and Allocation in Combinatorial Auctions. In Proceedings of the 2nd
ACM Conference on Electronic Commerce, pages 1–12, 2000.

9. N. Nisan and A. Ronen. Computationally Feasible VCG Mechanisms. In Proceedings of the
2nd ACM Conference on Electronic Commerce, pages 242–252, 2000.

10. N. Nisan and A. Ronen. Algorithmic Mechanism Design. Games and Economic Behavior,
35:166–196, 2001.

11. D. Parkes. An Iterative Generalized Vickrey Auction: Strategy-Proofness without Complete
Revelation. In Proceedings of the AAAI Spring Symposium on Game Theoretic and Decision
Theoretic Agents, pages 78–87, 2001.

12. M. Rothkopf, A. Pekec, and R. Harstad. Computationally Manageable Combinatorial Auc-
tions. Management Science, 44(8):1131–1147, 1995.

13. T. Sandholm. An Algorithm for Optimal Winner Determination in Combinatorial Auctions.
In Artificial Intelligence, volume 135, pages 1–54, 2002.

14. T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: A Fast Optimal Algorithm for
Combinatorial Auctions. In Proceedings of the 16th International Joint Conferences on
Artificial Intelligence (IJCAI), pages 542–547. Morgan Kaufmann Publishers, 1999.

15. M. Tennenholtz. Some Tractable Combinatorial Auctions. In Proceedings of the 17th Na-
tional Conference on Artificial Intelligence, pages 98–103, 2000.

16. H. Varian and J. MacKie-Mason. Generalized Vickrey Auctions. Technical Report, Univer-
sity of Michigan, 1995.

17. R. Vohra and S. de Vries. Combinatorial Auctions: A Survey. INFORMS Journal of Com-
puting, 15(3), 2003.

18. E. Zurel and N. Nisan. An Efficient Approximate Allocation Algorithm for Combinatorial
Auctions. In Proceedings of the 3rd ACM Conference on Electronic Commerce, pages 125–
136, 2001.



Algorithm Engineering for
Optimal Graph Bipartization

Falk Hüffner�
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Abstract. We examine exact algorithms for the NP-complete Graph
Bipartization problem that asks for a minimum set of vertices to delete
from a graph to make it bipartite. Based on the “iterative compression”
method recently introduced by Reed, Smith, and Vetta, we present new
algorithms and experimental results. The worst-case time complexity is
improved from O(3k · kmn) to O(3k · mn), where n is the number of
vertices, m is the number of edges, and k is the number of vertices to
delete. Our best algorithm can solve all problems from a testbed from
computational biology within minutes, whereas established methods are
only able to solve about half of the problems within reasonable time.

1 Introduction

There has recently been a much increased interest in exact algorithms for NP-
hard problems [23]. All of these exact algorithms have exponential run time,
which at first glance seems to make them impractical. This conception has been
challenged by the view of parameterized complexity [6]. The idea is to accept
the seemingly inevitable combinatorial explosion, but to confine it to one aspect
of the problem, the parameter. If for relevant inputs this parameter remains
small, then even large problems can be solved efficiently. Problems for which
this “confining” is possible are called fixed-parameter tractable.

The problem we focus on here is Graph Bipartization, also known as
Maximum Bipartite Subgraph or Odd Cycle Transversal. It is NP-
complete [13] and MaxSNP-hard [19]; the best known polynomial-time approxi-
mation is by a logarithmic factor [9]. It has numerous applications, for example
in VLSI design [1, 12], computational biology [21, 18], and register allocation [24].

In a recent breakthrough paper, solving a more than five years open ques-
tion [14], Reed, Smith, and Vetta [20] proved that the Graph Bipartization
problem on a graph with n vertices and m edges is solvable in O(4k · kmn)
time, where k is the number of vertices to delete. The basic idea is to construct
size-k solutions from already known size-(k +1) solutions, the so-called iterative
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compression. Their algorithm is of high practical interest for several reasons: the
given fixed-parameter complexity promises small run times for small parameter
values; no intricate algorithmic concepts with extensive implementation require-
ments or large hidden runtime costs are used as building blocks; and being able
to “optimize” given solutions, it can be combined with known and new heuristics.

In this work we demonstrate by experiments that iterative compression is
in fact a worthwhile alternative for solving Graph Bipartization in practice.
Thereby, we also shed more light on the potential of iterative compression, which
has already found applications in other areas as well [3, 4, 11, 16]. The structure
of this work is as follows: In Sect. 3 we give a top-down presentation of the
Reed-Smith-Vetta algorithm with the goal of making this novel algorithm tech-
nique accessible to a broader audience. Moreover, it prepares the ground for
several algorithmic improvements in Sect. 4. In Sect. 5 we present experimental
results with real-world data (Sect. 5.1), synthetic application data (Sect. 5.2),
and random graphs (Sect. 5.3).

2 Preliminaries

By default, we consider only undirected graphs G = (V,E) without self-loops,
where n := |V | and m := |E|. We use G[V ′] to denote the subgraph of G induced
by the vertices V ′ ⊆ V . For a set of vertices V ′ ⊆ V , we write G \ V ′ for the
graph G[V \ V ′]. With a side of a bipartite graph G, we mean one of the two
classes of an arbitrary but fixed two-coloring of G. A vertex cut between two
disjoint vertex sets in a graph is a set of vertices whose removal disconnects these
two sets in the graph.

Definition 1 (Graph Bipartization). Given an undirected graph G = (V,E)
and a nonnegative integer k. Does G have an odd cycle cover C of size at most k,
that is, is there a subset C ⊆ V of vertices with |C| ≤ k such that each odd cycle
in G contains at least one vertex from C? Note that the removal of all vertices
in C from G results in a bipartite graph.

We investigate Graph Bipartization in the context of parameterized com-
plexity [6] (see [5, 7, 8, 17] for recent surveys). A parameterized problem is called
fixed-parameter tractable if it can be solved in f(k) · nO(1) time, where f is a
function solely depending on the parameter k, not on the input size n.

For comparison, we examined two alternative implementations: one by Wer-
nicke based on Branch-and-Bound [22], and one based on the following simple
integer linear program (ILP):

C1, . . . ,Cn, s1, . . . , sn : binary variables
minimize

∑n
i=1 Ci

s. t. ∀{v,w} ∈ E : sv + sw + (Cv + Cw) ≥ 1
∀{v,w} ∈ E : sv + sw − (Cv + Cw) ≤ 1

The ILP performs surprisingly well; when solved by GNU GLPK [15], it con-
sistently outperforms the highly problem-specific Branch-and-Bound approach
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by Wernicke on our test data, sometimes by several orders of magnitude. There-
fore, we use it as the main comparison point for the performance of our algo-
rithms.

3 A Top-Down Presentation of the Reed-Smith-Vetta
Algorithm

In this section we present in detail the algorithm for Graph Bipartization as
described by Reed, Smith, and Vetta [20]. While they focus on the correctness
proof and describe the algorithm only implicitly, we give a top-down description
of the algorithm while arguing for its correctness, thereby hopefully making the
result of Reed et al. more accessible.

The global structure is illustrated by the function Odd-Cycle-Cover. It
takes as input an arbitrary graph and returns a minimum odd cycle cover.

Odd-Cycle-Cover(G = (V,E))
1 V ′ ← ∅
2 C ← ∅
3 for each v in V
4 do V ′ ← V ′ ∪ {v}
5 C ← Compress-OCC(G[V ′],C ∪ {v})
6 return C

The routine Compress-OCC takes a graph G and an odd cycle cover C
for G, and returns a smaller odd cycle cover for G if there is one; otherwise,
it returns C unchanged. Therefore, it is a loop invariant that C is a minimum
odd cycle cover for G[V ′], and since eventually V ′ = V , we obtain an optimal
solution for G.

It remains to implement Compress-OCC. The idea is to use an auxiliary
graph H(G,C) constructed from G = (V,E) and C as follows (see Fig. 1 (a)
and (b)):

– Remove the vertices in C from G and determine the sides of the remaining bi-
partite graph (in Fig. 1 (a), one side comprises {b, d} and the other {e, f,h}).

– For each c ∈ C, add a vertex c1 to one side and another vertex c2 to the
other side.

– For each edge {v, c} ∈ E with v /∈ C and c ∈ C, connect v to that vertex
from c1 and c2 that is on the other side (see the bold lines in Fig. 1 (b)).

– For each edge {c, d} ∈ E with both c, d ∈ C, arbitrarily connect either c1
and d2 or c2 and d1 (for example in Fig. 1, we chose {g1, c2}).

The crucial property of the resulting graph H is that every odd cycle in G
that contains a vertex c ∈ C implies a path (c1, . . . , c2) in H. This means that
all odd cycles in G can be found as such paths in H, since the vertices in C
touch all odd cycles. For example, the triangle d, c,h in G (Fig. 1 (a)) can be
found as path (c1,h, d, c2) in H(G,C) (Fig. 1 (b)).
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Therefore, if we could find a set C ′ of vertices whose removal disconnects for
each c ∈ C the two vertices c1 and c2 in H, then C ′ is an odd cycle cover for G.
Unfortunately, solving this multi-cut problem is still NP-complete. Consider,
however, a partition of the vertices

⋃
c∈C{c1, c2} such that for all c ∈ C the two

copies c1 and c2 are in different classes (called a valid partition for C). We can
find a vertex cut between the two classes of a valid partition in polynomial time
by using maximum flow techniques. It is clear that such a cut is also an odd
cycle cover for G, since in particular it separates c1 and c2 for each c ∈ C. It
is not clear, though, that if there is a smaller odd cycle cover for G, then we
will find it as such a cut. This is provided by the following lemma, which while
somewhat technical, does not require advanced proof techniques.

Lemma 1 ([20]). Consider a graph G with an odd cycle cover C with |C| = k
containing no redundant vertices, and a smaller odd cycle cover C ′ with C ′∩C =
∅ and |C ′| < k. Let V ′

1 and V ′
2 be the two sides of the bipartite graph G \ C ′.

Then C ′ is a vertex cut in H(G,C) between {c1 | c ∈ C ∩V ′
1}∪{c2 | c ∈ C ∩V ′

2}
and {c2 | c ∈ C ∩ V ′

1} ∪ {c1 | c ∈ C ∩ V ′
2}.

That is, provided C ′ ∩C = ∅, we can in fact find C ′ as a vertex cut between
the two classes of a valid partition, namely the valid partition (V1, V2) that can
be constructed as follows: for c ∈ C, if c is on the first side of G \ C ′, put c1
into V1 and c2 into V2; otherwise, put c2 into V1 and c1 into V2. For the proof
we refer to Reed et al. [20].

To meet the requirement of C ′ ∩ C = ∅, we simply enumerate all 2k sub-
sets Y ⊆ C; the sets Y are odd cycle covers for G \ (C \ Y ). We arrive at the
following implementation of Compress-OCC.

Compress-OCC(G,C)
1 for each Y ⊆ C
2 do H ← Aux-Graph(G \ (C \ Y ),Y )
3 for each valid partition (Y1,Y2) of Y
4 do if ∃ vertex cut D in H between Y1 and Y2 with |D| < |Y |
5 then return (C \ Y ) ∪D
6 return C

We examine every subset Y of the known odd cycle cover C. For each Y , we
look for smaller odd cycle covers for G that can be constructed by replacing the
vertices of Y in C by fewer new vertices from V \ C (clearly, for any smaller
odd cycle cover, such a Y must exist). Since we thereby decided to retain the
vertices in C \Y in our odd cycle cover, we examine the graph G′ := G\ (C \Y ).
If we now find an odd cycle cover D for G′ with |D| < |Y |, we are done, since
then (C \ Y ) ∪ D is an odd cycle cover smaller than C for G. To find an odd
cycle cover for G′, we use its auxiliary graph H and Lemma 1.

Example. Let us now examine an example for Compress-OCC (see Fig. 1).
Given is a graph G and an odd cycle cover C = {a, c, g}, marked with cir-
cles (Fig. 1 (a)). Observe that partitioning the remaining vertices into {b, d}



244 F. Hüffner
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Fig. 1. Construction of auxiliary graphs in Compress-OCC. (a) G with C = {a, c, g};
(b) H for Y = {a, c, g}; (c) H for Y = {a, g}

and {e, f,h} induces a two-coloring in G \ C; only the bold edges conflict with
this two-coloring in G. The function Compress-OCC now tries all subsets Y
of C; we give two examples, first Y = C. We construct the auxiliary graph H
(Fig. 1 (b)). Note how by selecting a suitable copy of the duplicated vertices
from Y for the bold edges, we can honor the two-coloring (for example, we
chose a2 over a1 for the edge {a, b}). The algorithm will now try to find a vertex
cut of size less than 3 for some valid partition. Consider for example the valid
partition {a1, c2, g1} and {a2, c1, g2}. With (a1, e, b, a2), (c2, d, g2), and (g1, f, c1),
we can find 3 vertex-disjoint paths between the two classes, so there is no vertex
cut smaller than 3. In fact, for this choice of Y , there is no valid partition with
a vertex cut smaller than 3. Next, we examine the case Y = {a, g} (Fig. 1 (c)).
Here we succeed: for the valid partition {a1, g1}, {a2, g2}, the set D := {b} is
a vertex cut of size 1. Note this valid partition corresponds to a two-coloring
of G \ ((C \ Y ) ∪ D). We can now construct a smaller odd cycle cover for G
as (C \ Y ) ∪D = {b, c}.

Note that although Lemma 1 does not promise it, we might also find a vertex
cut that leads to a smaller odd cycle cover for some Y with Y ∩ C ′ �= ∅. For
example, had we chosen to insert the edge {c1, g2} instead of {c2, g1} in Fig. 1 (b),
we would have found the cut {b, c1} between {a1, c1, g1} and {a2, c2, g2}, leading
to the odd cycle cover {b, c}. Therefore, in practice one can find a smaller odd
cycle cover often much faster than predicted by the worst case estimation.

Running Time. Reed et al. [20] state the run time of their algorithm as O(4k ·
kmn); a slightly more careful analysis reveals it as O(3k · kmn). For this, note
that in effect the two loops in line 1 and 3 of Compress-OCC iterate over all
possible assignments of each c ∈ C to 3 roles: either c ∈ C \ Y , or c ∈ Y1,
or c ∈ Y2. Therefore, we solve 3k flow problems, and since we can solve one flow
problem in O(km) time by the Edmonds-Karp algorithm [2], the run time for
one invocation of Compress-OCC is O(3k · km). As Odd-Cycle-Cover calls
Compress-OCC n times, we arrive at an overall run time of O(3k · kmn).

Theorem 1. Graph Bipartization can be solved in O(3k · kmn) time.
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4 Algorithmic Improvements

In this section we present several improvements over the algorithm as described
by Reed et al. [20]. We start with two simple improvements that save a constant
factor in the run time. In Sect. 4.1 we then show how to save a factor of k in
the run time, and in Sect. 4.2 we present the improvement which gave the most
pronounced speedups in our experiments presented in Sect. 5.

First, it is easy to see that each valid partition (Y1,Y2) is symmetric to (Y2,Y1)
when looking for a vertex cut, and therefore we can arbitrarily fix the allocation
of one vertex to Y1, saving a factor of 2 in the run time.

The next improvement is justified by the following lemma.

Lemma 2. Given a graph G = (V,E), a vertex v ∈ V , and a minimum odd
cycle cover C for G \ {v} with |C| = k. Then no odd cycle cover of size k for G
contains v.

Proof. If C ′ is an odd cycle cover of size k for G, then C ′ \ {v} is an odd cycle
cover of size k− 1 for G[V \ {v}], contradicting that |C| is of minimum size. ��

With Lemma 2 it is clear that the vertex v we add to C in line 5 of Odd-
Cycle-Cover cannot be part of a smaller odd cycle cover, and we can omit
the case v /∈ Y in Compress-OCC, saving a third of the cases.

4.1 Exploiting Similarity of Flow Subproblems

The idea here is that the flow problems solved in Compress-OCC are “similar”
in such a way that we can “recycle” the flow networks for each problem. Recall
that each flow problem corresponds to one assignment of the vertices in C to
the three roles “c1 source, c2 target” (c ∈ Y1), “c2 source, c1 target” (c ∈ Y2),
and “not present” (c ∈ C \ Y ). Using a so-called (3, k)-ary Gray code [10], we
can enumerate these assignments in such a way that adjacent assignments differ
in only one element. For each of these (but the first one), one can solve the flow
problem by adapting the previous flow:

– If the affected vertex c was present previously, zero the flow along the paths
with end points c1 resp. c2 (note they might be identical).

– If c is present in the updated assignment, find an augmenting path from c1
to c2 resp. from c2 to c1.

Since each of these operations can be done in O(m) time, we can perform
the update in O(m) time, as opposed to O(km) time for solving a flow problem
from scratch. This improves the overall worst case run time to O(3k ·mn). We
call this algorithm OCC-Gray.

Theorem 2. Graph Bipartization can be solved in O(3k ·mn) time.
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4.2 Enumeration of Valid Partitions

Lemma 1 tells us that given the correct subset Y of an odd cycle cover C, there is
a valid partition for Y such that we will find a cut in the auxiliary graph leading
to a smaller odd cycle cover C ′. Therefore, simply trying all valid partitions will
be successful. However, Lemma 1 even describes the valid partition that will lead
to success: it corresponds to a two-coloring of the vertices in G \C ′. This allows
us to omit some valid partitions from consideration. If for example there is an
edge between two vertices c, d ∈ Y , then any two-coloring of G \C ′ must place c
and d on different sides. Therefore, we only need to consider valid partitions that
place c and d into different classes. This leads to the following modification of
Compress-OCC:

Compress-OCC’(G = (V,E),C)
1 for each bipartite subgraph B of G[C]
2 do for each two-coloring V1, V2 of B
3 do H ← Aux-Graph(G \ (C \ V (B)), V (B))
4 if ∃ vertex cut D in H between V1 and V2 with |D| < |V (B)|
5 then return (C \ V (B)) ∪D
6 return C

The correctness of this algorithm follows directly from Lemma 1. The worst
case for Compress-OCC’ is that C is an independent set in G. In this case,
every subgraph of G[C] is bipartite and has 2|C| two-colorings. This leads to
exactly the same number of flow problems solved as for Compress-OCC. In
the best case, C is a clique, and G[C] has only O(|C|2) bipartite subgraphs, each
of which admits (up to symmetry) only one two-coloring.

It is easy to construct a graph where any optimal odd cycle cover is in-
dependent; therefore the described modification does not lead to an improve-
ment of the worst-case run time. However, at least in a dense graph, it is “un-
likely” that the odd cycle covers are completely independent, and already a few
edges between vertices of the odd cycle cover can vastly reduce the required
computation.

Note that with a simple branching strategy, one can enumerate all bipartite
subgraphs of a graph and all their two-colorings with constant cost per two-
coloring. This can also be done in such a way that modifications to the flow
graph can be done incrementally, as described in Sect. 4.1. The two simple
improvements mentioned at the beginning of this section also can still be applied.
We call the thus modified algorithm OCC-Enum2Col.

It seems plausible that for dense graphs, an odd cycle cover is “more likely”
to be connected, and therefore this heuristic is more profitable. Experiments
on random graphs confirm this (see Sect. 5.3). This is of particular interest
because other strategies (such as reduction rules [22]) seem to have a harder
time with dense graphs than with sparse graphs, making hybrid algorithms
appealing.
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5 Experiments

Implementation Details. The program is written in the C programming lan-
guage and consists of about 1400 lines of code. The source and the test data are
available from http://www.minet.uni-jena.de/˜hueffner/occ.

Data Structures. Over 90% of the time is spent in finding an augmenting path
within the flow network; all that this requires from a graph data structure is
enumerating the neighbors of a given vertex. The only other frequent operation is
“enabling” or “disabling” vertices as determined by the Gray code (see Sect. 4.1).
In particular, it is not necessary to quickly add or remove edges, or query whether
two vertices are neighbored. Therefore, we chose a very simple data structure,
where the graph is represented by an array of neighbor lists, with a null pointer
denoting a disabled vertex.

Since the flow simply models a set of vertex-disjoint paths, it is not necessary
to store a complete n×n-matrix of flows; it suffices to store the flow predecessor
and successor for each node, reducing memory usage to O(n).

Finding Vertex Cuts. It has now become clear that in the “inner loop” of the
algorithm, we need to find a minimum vertex cut between two sets Y1 and Y2 in
a graph G, or equivalently, a maximum set of vertex-disjoint paths between two
sets. This is a classical application for maximum flow techniques: The well-known
max-flow min-cut theorem tells us that the size of a minimum edge cut is equal
to the maximum flow. Since we are interested in vertex cuts, we create a new, di-
rected graph G′ for our input graph G = (V,E): for each vertex v ∈ V , create two
vertices vin and vout and a directed edge (vin , vout). For each edge {v,w} ∈ E, we
add two directed edges (vout ,win) and (wout , vin). It is not too hard to see that a
maximum flow in G′ between Y ′

1 :=
⋃

y∈Y1
yin and Y ′

2 :=
⋃

y∈Y2
yout corresponds

to a maximum set of vertex disjoint paths between Y1 and Y2. Furthermore, an
edge cut D between Y ′

1 and Y ′
2 is of the form

⋃
v∈V (vin , vout), and

⋃
(vin ,vout )∈D v

is a vertex cut between Y1 and Y2 in G.
Since we know that the cut is relatively small (less than or equal k), we employ

the Edmonds-Karp algorithm [2]. This algorithm repeatedly finds a shortest
augmenting path in the flow network and increases the flow along it, until no
further increase is possible.

Experimental Setup. We tested our implementation on various inputs. The test-
ing machine is an AMD Athlon 64 3400+ with 2400 MHz, 512 KB cache, and
1 GB main memory, running under the Debian GNU/Linux 3.1 operating sys-
tem. The source was compiled with the GNU gcc 3.4.3 compiler with options
“-O3 -march=k8”. Memory requirements are around 3 MB for the iterative com-
pression based algorithms, and up to 500 MB for the ILP.

5.1 Minimum Site Removal

The first test set originates from computational biology. The instances were
constructed by Wernicke [22] from data of the human genome as a means to
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Table 1. Run times in seconds for different algorithms for Wernicke’s benchmark

instances [22]. Runs were cancelled after 2 hours without result. We show only the

instance of median size for each value of |C|. The column “ILP” gives the run time

of the ILP given in Sect. 2 when solved by GNU GLPK [15]. The column “Reed”

gives the run time of Reed et al.’s algorithm without any of the algorithmic improve-

ments from Sect. 4 except for omitting symmetric valid partitions. The columns “OCC-

Gray” and “OCC-Enum2Col” give the run time for the respective algorithms from

Sect. 4.1 and 4.2. The “augmentations” colums give the number of flow augmentations

performed

n m |C| ILP Reed OCC-Gray OCC-Enum2Col
time [s] time [s] augmentations time [s] augmentations time [s] augmentations

Afr. #31 30 51 2 0.02 0.00 7 0.00 6 0.00 5
Jap. #19 84 172 3 0.12 0.00 27 0.00 14 0.00 10
Jap. #24 142 387 4 0.97 0.00 117 0.00 46 0.00 31
Jap. #11 51 212 5 0.46 0.00 412 0.00 109 0.00 79
Afr. #10 69 191 6 2.50 0.00 1,558 0.00 380 0.00 97
Afr. #36 111 316 7 15.97 0.01 5,109 0.00 696 0.00 1,392
Jap. #18 71 296 9 47.86 0.05 59,052 0.01 7,105 0.00 568
Jap. #17 79 322 10 237.16 0.22 205,713 0.02 18,407 0.00 1,591
Afr. #11 102 307 11 6248.12 0.79 671,088 0.14 85,851 0.00 1,945
Afr. #54 89 233 12 6.48 5,739,277 0.73 628,445 0.03 20,385
Afr. #34 133 451 13 10.13 6,909,386 1.04 554,928 0.04 16,413
Afr. #52 65 231 14 18.98 22,389,052 1.83 2,037,727 0.01 11,195
Afr. #22 167 641 16 350.00 229,584,280 64.88 15,809,779 0.08 22,607
Afr. #48 89 343 17 737.24 731,807,698 74.20 54,162,116 0.06 41,498
Afr. #50 113 468 18 3072.82 2,913,252,849 270.60 151,516,435 0.05 26,711
Afr. #19 191 645 19 1020.22 421,190,990 3.70 1,803,293
Afr. #45 80 386 20 2716.87 2,169,669,374 0.14 99,765
Afr. #29 276 1058 21 0.23 56,095
Afr. #40 136 620 22 0.80 333,793
Afr. #39 144 692 23 0.65 281,403
Afr. #17 151 633 25 5.68 2,342,879
Afr. #38 171 862 26 1.69 631,053
Afr. #28 167 854 27 1.02 464,272
Afr. #42 236 1110 30 73.55 22,588,100
Afr. #41 296 1620 40 236.26 55,758,998

solve the so-called Minimum Site Removal problem. The results are shown in
Table 1.

As expected, the run time of the iterative compression algorithms mainly
depends on the size of the odd cycle cover that is to be found. Interestingly,
the ILP also shows this behavior. The observed improvement in the run time
from “Reed” to “OCC-Gray” is lower than the factor of k gained in the worst
case complexity, but clearly still worthwhile. The heuristic from Sect. 4.2 works
exceedingly well and allows to solve even the hardest instances within minutes.
For both improvements, the savings in run time closely follow the savings of flow
augmentations.

5.2 Synthetic Data from Computational Biology

In this section we examine solving the Minimum Fragment Removal [18]
problem with Graph Bipartization. We generate synthetic Graph Bipar-
tization instances using a model of Panconesi and Sozi [18], with parame-
ters n = 100, d = 0.2, k = 20, p = 0.02, and c varying (see Table 2). We refer
to [18] for details on the model and its parameters.
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Table 2. Run times in seconds for different algorithms for synthetic Minimum Frag-

ment Removal instances [18]. Here, c is a model parameter. Average over 20 instances

each

c |V | |E| |C| ILP Reed OCC-Gray OCC-Enum2Col

2 24 22 1.4 0.02 0.00 0.00 0.00
3 49 58 3.1 1.40 0.00 0.00 0.00
4 75 103 4.8 1538.41 0.02 0.00 0.00
5 111 169 7.7 4.18 0.42 0.04
6 146 247 9.8 5.22 0.68 0.04
7 181 353 13.8 3044.25 238.80 1.89
8 214 447 14.9 4547.54 8.03
9 246 548 16.8 17.41
10 290 697 20.1 744.19

The results are consistent with those of Sect. 5.1. The ILP is outperformed
by the iterative compression algorithms; for OCC-Gray, we get a speedup by
a factor somewhat below |C| when compared to “Reed”. The speedup from
employing OCC-Enum2Col is very pronounced, but still far below the speedup
observed in Sect. 5.1. A plausible explanation is the lower average vertex degree
of the input instances; we examine this further in Sect. 5.3. Note that even with
all model parameters constant, run times varied by a factor of up to several
orders of magnitude for all algorithms for different random instances.

5.3 Random Graphs

The previous experiments have established OCC-Enum2Col as a clear winner.
Therefore, we now focus on charting its tractability border. We use the following
method to generate random graphs with given number of vertices n, edges m,
and odd cycle cover size at most k: Pre-allocate the roles “black” and “white”
to (n− k)/2 vertices each, and “odd cycle cover” to k vertices; select a random
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Fig. 2. Run time of OCC-Enum2Col (Sect. 4.2) for random graphs of different density

(n = 300). Each point is the average over at least 40 runs
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vertex and add an edge to another random vertex consistent with the roles
until m edges have been added.

In Fig. 2, we display the run time of OCC-Enum2Col for different sizes
of the odd cycle cover and different graph densities for graphs with 300 ver-
tices. Note that the actual optimal odd cycle cover can be smaller than the
one “implanted” by our model; the figure refers to the actual odd cycle cover
size k.

At an average degree of 3, the growth in the measurements closely matches
the one predicted by the worst-case complexity O(3k). For the average degree 16,
the measurements fit a growth of O(2.5k), and for average degree 64, the growth
within the observed range is about O(1.7k). This clearly demonstrates the effec-
tiveness of OCC-Enum2Col for dense graphs, at least in the range of values
of k we examined.

6 Conclusions

We evaluated the iterative compression algorithm by Reed et al. [20] for Graph
Bipartization and presented several improvements. The implementation per-
forms better than established techniques, and allows to solve instances from
computational biology that previously could not be solved exactly. In particu-
lar, a heuristic (Sect. 4.2) yielding optimal solutions performs very well on dense
graphs. This result makes the practical evaluation of iterative compression for
other applications [3, 4, 11, 16] appealing.

Future Work.

– Wernicke [22] reports that data reduction rules are most effective for sparse
graphs. This makes a combination with OCC-Enum2Col (Sect. 4.2) at-
tractive, since in contrast, this algorithm displays the worst performance for
sparse graphs.

– Guo et al. [11] give an O(2k ·km2) time algorithm for Edge Bipartization,
where the task is to remove up to k edges from a graph to make it bipartite.
The algorithm is based on iterative compression; it would be interesting to
see whether our improvements can be applied here, and do experiments with
real world data.

– Iterative compression can also be employed to “compress” a non-optimal
solution until an optimal one is found. Initial experiments indicate that
OCC-Enum2Col with this mode finds an optimal solution very quickly,
even when starting with C = V , but then takes a long time to prove the
optimality.

Acknowledgements. The author is grateful to Jens Gramm (Tübingen) and
Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke (Jena) for many helpful
suggestions and improvements.



Algorithm Engineering for Optimal Graph Bipartization 251

References

1. H.-A. Choi, K. Nakajima, and C. S. Rim. Graph bipartization and via minimiza-
tion. SIAM Journal on Discrete Mathematics, 2(1):38–47, 1989.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2nd edition, 2001.

3. F. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and K. Stevens.
An O∗(2O(k)) FPT algorithm for the undirected feedback vertex set problem.
Manuscript, Dec. 2004.

4. F. Dehne, M. R. Fellows, F. A. Rosamond, and P. Shaw. Greedy localization,
iterative compression, and modeled crown reductions: New FPT techniques, an
improved algorithm for set splitting, and a novel 2k kernelization for Vertex Cover.
In Proc. 1st IWPEC, volume 3162 of LNCS, pages 271–280. Springer, 2004.

5. R. G. Downey. Parameterized complexity for the skeptic. In Proc. 18th IEEE
Annual Conference on Computational Complexity, pages 147–169, 2003.

6. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
7. M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in FPT.

In Proc. 29th WG, volume 2880 of LNCS, pages 1–12. Springer, 2003.
8. M. R. Fellows. New directions and new challenges in algorithm design and com-

plexity, parameterized. In Proc. 8th WADS, volume 2748 of LNCS, pages 505–520.
Springer, 2003.

9. N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM Journal on Computing,
25(2):235–251, 1996.

10. D.-J. Guan. Generalized Gray codes with applications. Proceedings of the National
Science Council, Republic of China (A), 22(6):841–848, 1998.
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21. R. Rizzi, V. Bafna, S. Istrail, and G. Lancia. Practical algorithms and fixed-
parameter tractability for the single individual SNP haplotyping problem. In Proc.
2nd WABI, LNCS, pages 29–43. Springer, 2002.

22. S. Wernicke. On the algorithmic tractability of single nucleotide polymorphism
(SNP) analysis and related problems. Diplomarbeit, Univ. Tübingen, Sept. 2003.
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Empirical Analysis of the Connectivity
Threshold of Mobile Agents on the Grid�
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Abstract. This paper gives empirical evidence about the connectivity
properties of moving agents on a grid graph. The theoretical aspects of
the problem were studied asymptotically in [1]. Here, it is proven that
the asymptotical behaviour is also true for real size cases.

1 Introduction

Imagine that we have a set of w agents (for example robots), with cardinal
movement (N/S/W/E), sampling several city levels (ambiental noise, carbon
monoxide, ozone, humidity, etc.). The robots move around the city. At regular
steps of time, they stop, take their samplings, broadcast to the others, and
randomly continue or change direction. The agents communicate with radio-
frequency, using a simple goship protocol. One of the agents has a secondary
station with sufficient power to rely the information of all agents to a base
station. The agents are deployed uniformly at random through the intersections
of the street. We assume the streets of the city are modelled in a grid like pattern.
The first question to be studied is the threshold for connectivity between the
agents; i.e. given the size of the grid and, the maximun distance of broadcast
(as function of the grid size) we wish to estimate the minimun number of agents
we need to insure connectivity. Then we must describe how this connectivity
evolves in a dynamic setting.

For very large parameters, this situation was mathematically modelled in [1].
There, the authors study what they call the walkers model. They consider the
graph G = (V,E), |V | = N = n2, to be a n × n grid embedded into a torus
(to avoid considering boundary effects). A set of walkers W with |W | = w and
a “distance” d are given. The walkers are placed uniformly at random (u.a.r.)
and independently on the vertices of G (a vertex may contain more than one
walker). Two walkers w1 and w2 communicate in one hop if the distance between
the positions of the walkers is at most d. We say that they communicate if they
can reach each other by a sequence of such hops. The walkers move around
the graph, each one performing an independent standard random walk. At each
step they move from their position to any of the 4 neighboring vertices with

� Supported by the EU 6th. FP under contract 001907 (DELIS).
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equal probability. Given f : W → V a random assignment of walkers into V , we
define the graph of walkers, Gf [W ]. The vertices of Gf [W ] are the vertices of G
that contain at least one walker (occupied vertices), and two vertices in Gf [W ]
are joined by an edge iff they are at distance at most d in G. Components in
Gf [W ] are connected components in the usual graph theory sense. A simple
component is an isolated vertex (i.e. an occupied vertex with no other walkers
within distance d). In the first part, the paper [1] studies the probability of Gf [W ]
being connected, the number of components and their sizes, under certain mild
asymptotic restrictions on w and d. In the second part, the paper studies the
dynamic situation, where, from an initial placement of walkers, at each time step,
every walker simultaneously moves onto a randomly selected neighbour vertex in
G. They provide characterisations of the probability of creation and destruction
of connected components, and use it to give estimations of the expected lifespan
of connected components and the expected time the graph of walkers remains
connected (or disconnected).

In this paper we validate empirically the asymptotics results in [1] for grids
of reasonable size. In particular for the static case we deal with grids of size
N = 1000 × 1000, N = 3000 × 3000 and N = 10000 × 10000. For the dynamic
case, the size is N = 1000× 1000. The experiments show that the behaviour of
the model is not far in most cases from the theoretical predictions.

Although several aspects communication of moving agents in networks have
been studied, in particular efficient protocols for communication, not that much
has been done for studying experimentally connectivity properties of moving
agents in the grid. In [4], the authors present algorithms for computing coverage
properties of sensors in a random geometric graphs, but the results are of a very
different nature than the one presented in this paper. More work has been done
on experimentation for protocols and communication for mobility of agents (see
for example [3, 2]) or with transmission power performance [5], but none that this
author is aware, for estimating the evolution of the properties of the connectivity
graph, as agents move simultaneously.

Through the paper, K is the number of connected components in Gf [W ] and
X the number of simple components. Let  = w/N denote the expected number
of walkers at a vertex. Let h be the number of vertices in the G within distance
greater than 0 and at most d from any given one. We do the experiment for the
Manhatan distance (�1 norm) and in this case h = 2d(d+1). Equivalent results,
modulo a constant, can be obtained for distances defined from other norms, in
particular the euclidian distance.

2 Static Properties

In [1], parameters w and d are considered as functions of N and the results
are asymptotic for N growing large. They require w → ∞ in order to avoid
small-case effects. Furthermore, they assume that w < N logN + O(N) and
that h = o(N) (or d = o(n)) since otherwise the graph Gf [W ] is asymptotically
almost surely (a.a.s.) connected.
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Let μ be the expected number of simple components. Under the mild restric-
tions above, the following theorems are proved in [1]:

Theorem 1. The expected number μ of simple components satisfies

μ ∼ N
(
1− e−�

)(
1− h

N

)w

Furthermore, if μ is bounded then X is asymptotically Poisson with mean μ,
whilst if μ is bounded away from 0 then

(
1− h

N

)w ∼ e−h� and we have μ ∼
N (1− e−�) e−h�.

Theorem 2.
• For μ →∞, Gf [W ] is disconnected a.a.s.
• For μ = Θ(1), then K = 1 + X a.a.s., and X is asymptotically Poisson.
• For μ → 0, Gf [W ] is connected a.a.s.

These results, provide a sharp characterisation of the connectivity in the static
case and show the existence of a phase transition when μ = Θ(1). At this point,
just a finite number of simple components exist (following a Poisson distribution)
and the remaining walkers belong to one single component which is called the
giant component.

From Theorem 1, the relationship between w and h (or d) at the threshold
can be easily computed. One observes that a larger amount of walkers implies
a smaller h (or d) and viceversa. For instance, some usual situations can be
summarized in the following

Proposition 1. In the case μ ∼ N(1− e−�)e−h� = Θ(1), then

1. h = Θ(1) iff w = Θ(N logN),
2. h = Θ(logN) iff w = Θ(N),
3. h = Θ(N c) iff w = Θ(N1−c logN), for 0 < c ≤ 1,
4. h = Θ( N

log N ) iff w = Θ(logN log logN).

Proof. If we apply logarithms to the asymptotic expression of μ, we obtain that
logN(1− e−�) = h+Θ(1). Then, by taking into account the initial restrictions
imposed to w and h, the proof is immediate. ��

In this paper, we test experimentally these results for some interesting values
which may arise in real life. We deal with grids of sizes N = 10002, 30002 and
100002. We study each case for d’s of several shapes ranging from a constant to
a function growing large slightly slower than n. For each pair N , d, we choose
the amount of walkers w that makes N(1− e−�)e−h� = log 2. (Since w must be
an integer, we choose the closest one.) A summary of these parameters can be
found in Table 1.

Note that we are demanding μ = log 2 because the condition μ = Θ(1) is
purely asymptotic and makes no sense for fixed values of N . The reason for
choosing log 2 in particular is that then, according to the theoretical results,
the number of simple components should be roughly Poisson with expectation
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Table 1. Parameters at the phase transition (μ = log 2)

N = 1000 × 1000 N = 3000 × 3000 N = 10000 × 10000

d constant d = 3 d = 3 d = 3
w = 555377 w = 5866110 w = 75639720

d = log n d = 7 d = 8 d = 9
w = 106128 w = 875018 w = 9079434

d = n1/3 d = 10 d = 14 d = 22
w = 50804 w = 275985 w = 1436466

d = n1/2 d = 32 d = 55 d = 100
w = 4113 w = 14538 w = 55931

d = n2/3 d = 100 d = 208 d = 464
w = 301 w = 719 w = 1825

d = n/ log n d = 145 d = 375 d = 1086
w = 122 w = 177 w = 249

log 2. This makes the probability of Gf [W ] being connected (or disconnected)
be around 1/2.

For each triple of parameters N , w and d previously described, we exper-
imentally place uniformly at random (u.a.r.) w walkers on a grid of size N ,
check whether Gf [W ] is connected or not, and count the number of occu-
pied vertices, the number of components, the size of the biggest component
and the average size of the remaining ones. We repeat this experiment inde-
pendently 100 times and take averages of the observed magnitudes. Then we
compare the obtained data with what we would expect according to the theoret-
ical results. In fact, for large N , these magnitudes approach the expressions in
Table 2.

Table 2. Asymptotic expected values for N growing large

Occupied vertices N(1 − e−�)

Probability that Gf [W ] is connected e−μ

Number of components 1 + μ

Size of the biggest component N(1 − e−�) − μ

Average size of the other components 1

For each particular run of our experiments, our algorithm must assign at
random grid coordinates (i, j) to each walker. It is convenient to store this data
in a Hashing table of size w instead of using a n× n table in order to optimize
space resources. By doing this we don’t loose much time efficiency, since the cost
of checking wether a given vertex is occupied remains constant in expectation. We
use then a Depth-First-Search to find all components. The whole algorithm takes
expected time Θ(wh) (since for each walker we examine all the grid positions
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within distance d) and requires space Θ(w). Moreover, as we are testing it in
situations where wh ∼ N logw, the time is roughly proportional to N besides
logarithmic factors.

Tables 3, 4 and 5 contrast the averages of the experimental results with the
asymptotic expected values (see Table 2) for the selected parameters.

Table 3. Contrasted results at the phase transition for N = 1000 × 1000

N = 1000 × 1000 Experimental average Theoretical value
Occupied vertices 426140.57 426144.12

d = 3 Probability of connectivity 0.54 0.50
Number of components 1.68 1.69

w = 555377 Size of the biggest component 426139.80 426143.43
Average size of other components 1.14 1
Occupied vertices 100674.83 100690.47

d = 7 Probability of connectivity 0.40 0.50
Number of components 1.89 1.69

w = 106128 Size of the biggest component 100673.72 100689.78
Average size of other components 1.23 1
Occupied vertices 49533.84 49535.06

d = 10 Probability of connectivity 0.39 0.50
Number of components 1.95 1.69

w = 50804 Size of the biggest component 49532.60 49534.36
Average size of other components 1.31 1
Occupied vertices 4104.37 4104.55

d = 32 Probability of connectivity 0.37 0.50
Number of components 1.97 1.69

w = 4113 Size of the biggest component 4102.96 4103.86
Average size of other components 1.53 1
Occupied vertices 301.00 300.95

d = 100 Probability of connectivity 0.36 0.50
Number of components 2.16 1.69

w = 301 Size of the biggest component 298.52 300.27
Average size of other components 2.02 1
Occupied vertices 122.00 121.99

d = 145 Probability of connectivity 0.19 0.50
Number of components 2.38 1.69

w = 122 Size of the biggest component 118.05 121.30
Average size of other components 2.69 1

What we described so far accounts for the situation at the phase transition.
However, we also want to verify experimentally that there is indeed a phase
transition. We consider only the case N = 3000× 3000 and deal with the same
types of d as before (i.e. d =constant, d = log n, d = n1/3, d = n1/2, d = n2/3

and d = n/ log n). For each d, we consider 10 different values for w, ranging
from w0/5 to 2w0 and equidistant, where w0 is the amount of walkers needed
to have μ = log 2 (see Table 1). (As before, all these quantities are rounded
to the nearest integer.) For each triple of parameters N , w and d, we sample
at random again 100 independent instances of Gf [W ] and check whether they
are connected. The probability of connectivity can be estimated from the ratio
between connected outputs and the total number of trials.

Since we are just concerned with connectivity, we can slighly modify our
previous algorithm to improve time performance. Given a random arrangement
of walkers in the grid G stored as before in a Hashing table, we first examine the
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Table 4. Contrasted results at the phase transition for N = 3000 × 3000

N = 3000 × 3000 Experimental average Theoretical value
Occupied vertices 4309968.88 4309990.64

d = 3 Probability of connectivity 0.49 0.50
Number of components 1.67 1.69

w = 5866110 Size of the biggest component 4309968.18 4309989.95
Average size of other components 1.05 1
Occupied vertices 833825.19 833827.19

d = 8 Probability of connectivity 0.37 0.50
Number of components 1.87 1.69

w = 875018 Size of the biggest component 833824.16 833826.49
Average size of other components 1.22 1
Occupied vertices 271795.67 271796.38

d = 14 Probability of connectivity 0.39 0.5
Number of components 1.86 1.69

w = 275985 Size of the biggest component 271794.6 271795.69
Average size of other components 1.25 1
Occupied vertices 14525.60 14526.26

d = 55 Probability of connectivity 0.41 0.5
Number of components 1.86 1.69

w = 14538 Size of the biggest component 14524.48 14525.57
Average size of other components 1.34 1
Occupied vertices 718.97 718.97

d = 208 Probability of connectivity 0.29 0.50
Number of components 2.10 1.69

w = 719 Size of the biggest component 717.16 718.28
Average size of other components 1.58 1
Occupied vertices 176.99 177.00

d = 375 Probability of connectivity 0.28 0.50
Number of components 2.29 1.69

w = 177 Size of the biggest component 174.20 176.31
Average size of other components 1.98 1

existence of simple components. We run along the table and, for each unmarked
walker, we look for another walker within distance d and mark both as “not in
a simple component”. If we detect one isolated walker (a simple component), we
stop and output disconnected. Otherwise, we perform as before a Depth-First-
Search to find all components. In the worst case, the algorithm has the same
complexity as the previous one, but if Gf [W ] has some simple components, we
may be lucky and have a quick output. This proves quite useful for our particular
kind of graphs since simple components are very common.

The plots in Figs.1, 2 and 3 show for each grid of size N and distance d, the
evolution of the probability that Gf [W ] is connected as we increase the amount
of walkers. The dots correspond to the experimental values we obtained. In
contrast, the curves show the theoretical value of this probability according to [1].
This is asymptotically e−μ, where the expression of μ is given in Theorem 1.

We were using for the tests, the joint effort of 10 computers with the following
power:

– Processor: AMD K6(tm) 3D processor (450 MHz)
– Main memory: 256 Mb
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Table 5. Contrasted results at the phase transition for N = 10000 × 10000

N = 10000 × 10000 Experimental average Theoretical value
Occupied vertices 8679487.90 8679449.86

d = 9 Probability of connectivity 0.52 0.5
Number of components 1.71 1.69

w = 9079434 Size of the biggest component 8679487.05 8679449.16
Average size of other components 1.23 1
Occupied vertices 1426204.88 1426198.05

d = 22 Probability of connectivity 0.40 0.50
Number of components 1.89 1.69

w = 1436466 Size of the biggest component 1426203.82 1426197.36
Average size of other components 1.19 1
Occupied vertices 55915.73 55915.36

d = 100 Probability of connectivity 0.38 0.50
Number of components 1.97 1.69

w = 55931 Size of the biggest component 55914.51 55914.67
Average size of other components 1.3 1
Occupied vertices 1824.97 1824.98

d = 464 Probability of connectivity 0.37 0.50
Number of components 2.04 1.69

w = 1825 Size of the biggest component 1823.39 1824.29
Average size of other components 1.48 1
Occupied vertices 249.00 249.00

d = 1086 Probability of connectivity 0.33 0.50
Number of components 2.23 1.70

w = 249 Size of the biggest component 246.25 248.30
Average size of other components 2.32 1

2.1 Conclusions for Static Case

Our experimental results show that the qualitative behaviour of the walkers
model sticks reasonably well to the theoretical predictions. In fact, we observe a
clear threshold phenomenon on the connectivity property even though in some
cases the observed critical point is slightly displaced from its theoretical loca-
tion. Furthermore, at the phase transition, we observed that there is indeed one
giant component consisting of the vast majority of walkers, and a few small
components (not far from being simple in most cases).

From a quantitative point of view, the accuracy of our predictions is dramat-
ically better for small d’s. This is probably due to the fact that, at the phase
transition, a smaller distance d requires a bigger amount of walkers w, and we
recall that the asymptotic results in [1] require w →∞ as a regularity condition.
For instance, in our last case where d = n/logn, the corresponding w is essen-
tially logarithmic on N . Then, we may need to consider exponentially huge grid
sizes in order to have a big amount of walkers and get reliable predictions.

Strangely enough, for the cases we considered, the accuracy of the predictions
does not seem to improve significantly as we increase the grid size N from 106 to
108. Possibly the improvement is too small to be detected within the precision
of our experiments. We could always perform more trials for each test, or we
could even consider much bigger values of N , but this last is beyond our current
computational means.
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Fig. 1. Threshold of connectivity
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Fig. 2. Threshold of connectivity

3 Dynamic Properties

Assume that from an initial random placement f of the walkers, at each time
step, every walker moves from its current position to one of its 4 neighbours,
with probability 1/4. This is a standard random walk on the grid for each walker.

A configuration is an arrangement of the w walkers on the vertices of G.
Consider the graph of configurations, where the vertices are the Nw different
configurations. The dynamic process can be regarded as a random walk on the
graph of configurations and, in particular, as a Markov chain.

Let Gft
[W ] denote the graph of walkers at time t. Note that the the walk-

ers are u.a.r. arranged at the initial configuration and that this property stays
invariant throughout the process. Hence, for any fixed t, we can regard Gft

[W ]
as Gf [W ] in the static case. Thus, if μ → 0 (or μ → ∞) then, for t in any
fixed bounded time interval, Gft

[W ] is a.a.s. connected (or a.a.s. disconnected).
So, for the remaining of the section, we restrict our atention to the phase
transition (μ = Θ(1)) since we wish to study only the nontrivial dynamic
situations.
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Fig. 3. Threshold of connectivity

In [1], is provided a full characterisation of the dynamic evolution of the
system at the phase transition. As a consequence of the results obtained in the
static section, it suffices to study the behaviour of the simple components.

We say that a simple component dies at vertex v between times t and t +
1 if at time t there is a simple component on v, but at time t + 1 none of
the neighbors of v is a simple component (i.e. either the walkers in v jump
towards different directions and the component grows larger or they join another
component nearby). Similarly, we say that a simple component is born at vertex
v between times t and t + 1 if at time t none of the neighbors of v is a simple
component, but at time t+1 there is one on v. And finally, we say that a simple
component survives at vertex v between times t and t + 1 if at time t there is a
simple component on v, and all walkers there jump onto the same neighbor and
stay incommunicated from the other ones.

Let B(t), D(t) and S(t) denote the number of births deaths and survivals
between times t and t + 1. They are asymptotically determined by the following
theorem, provided in [1]:

Theorem 3. For t in any fixed bounded time interval, the random variables
S(t), B(t) and D(t) are asymptotically jointly independent Poisson, with the
expectations

E [S(t)] ∼

⎧⎪⎨⎪⎩
μ d� → 0,

μ − λ d� → c,

4 1−e−�/4

1−e−� e−(2d+ 5
4 )�μ d� → ∞,

E [B(t)] = E [D(t)] ∼

⎧⎪⎨⎪⎩
2d�μ d� → 0,

λ d� → c,

μ d� → ∞,

where λ =
(
1− e−2d�

)
μ. Here 0 < λ < μ for d → c.

This result has many important consequences and is the main tool for charac-
terising the dynamic behaviour of Gft

[W ].
For one particular history of the dynamic process, let us define TC as the av-

erage number of steps that Gft
[W ] remains connected from each time it becomes

so, after a disconnected period (i.e. the average length of the connected periods).
Similarly, let TD be the average length of the disconnected periods. Also in[1] is
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the following theorem, which gives the expectation of these two random variables
averaged over all possible histories of the process. It is an important non-trivial
consequence of Theorem 3.

Theorem 4. Let λ be defined as in Theorem 3. Then, E [TC ] ∼ 1
1−e−λ and

E [TD] ∼ eμ−1
1−e−λ .

Our aim in this section is to validate experimentally the asympotic result in
Theorem 4. We deal with grids of size N = 1000 × 1000 and we consider the
parameters d and w listed in Table 1.

For each triple N , w and d, we experimentally place the walkers on the grid
u.a.r. as in the static situation, but then we perform T dynamic steps, for some
big enough chosen T . We examine the connectivity of Gft

[W ] at each time step,
measure the length of the different periods we encounter in which Gft

[W ] is
(dis)connected, and then take the average. This accounts for the average time
Gft

[W ] remains (dis)connected for this particular history between times 0 and
T . We repeat this experiment independently 50 times and take the average of
the averages. We choose T to be about 500 times the final value we expect to
get. In our cases, this ranges from 1000 to 20000 depending on the parameters
N , w and d (see last column in Table 6).

Our algorithm is an easy extension of the one used for the static situation.
For each walker we choose its grid coordinates at random and store them in a
Hashing table of size w. To perform a dynamic transition, we just need to run
along the walkers and move each one to any of the 4 neighboring grid positions
with equal probability. This has expected complexity Θ(w) since the expected
time for search, insertion and removal in the table is constant. Besides, we must
look at the connectivity at each time step, and the same observations we made
in §2 apply here. (It is of great help checking the existence of simple components
first, since it is usually much faster, and it is a sufficient condition for non-
connectivity.) Hence, the algorithm requires space Θ(w) and takes time O(Twh),
but it usually runs much faster at the steps when Gft

[W ] is disconnected.
We used the same machines and system of computation as for the static case,

and the results are summarised in Table 6.

3.1 Conclusions for Dynamic Case

The experimental values obtained for E [TC ] and E [TD] are in all cases of the
same order of magnitud as the values predicted by the theoretical model. How-
ever, the level of accuracy is much higher for the smaller values of d and gets
poorer for the largest d’s, exactly as in the static situation. Again the reason
may be that in these last cases, the considered amount of walkers w is quite
small, while in [1] w is required to grow to infinity.

We observe as well that the average length of the disconnected periods is
larger than that of the connected periods and it is much closer to the predicted
value. Here is a plausible explanation to this: We were studying situations where
ideally in the limit there should be one giant component and an average of
μ = log 2 small (indeed simple) components. In this case the probability of
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Table 6. Contrasted results for the dynamic proccess (N = 1000 × 1000)

N = 1000 × 1000 Experimental average Theoretical expectation
d = 3 Time Gft [W ] stays connected 1.93 2.05
w = 555377 Time Gft [W ] stays disconnected 2.14 2.05
d = 7 Time Gft [W ] stays connected 2.05 2.41
w = 106128 Time Gft [W ] stays disconnected 2.70 2.41
d = 10 Time Gft [W ] stays connected 2.28 2.79
w = 50804 Time Gft [W ] stays disconnected 3.17 2.79
d = 32 Time Gft [W ] stays connected 4.89 6.75
w = 4113 Time Gft [W ] stays disconnected 7.56 6.75
d = 100 Time Gft [W ] stays connected 14.14 25.36
w = 301 Time Gft [W ] stays disconnected 27.86 25.13
d = 145 Time Gft [W ] stays connected 18.97 41.80
w = 122 Time Gft [W ] stays disconnected 55.20 42.09

Table 7. New predictions, using the observed average number of non-giant components

instead of μ

N = 1000 × 1000 Experimental average Modified prediction
d = 3 Time Gft [W ] stays connected 1.93 2.08
w = 555377 Time Gft [W ] stays disconnected 2.14 2.02
d = 7 Time Gft [W ] stays connected 2.05 2.01
w = 106128 Time Gft [W ] stays disconnected 2.70 2.88
d = 10 Time Gft [W ] stays connected 2.28 2.20
w = 50804 Time Gft [W ] stays disconnected 3.17 2.49
d = 32 Time Gft [W ] stays connected 4.89 4.97
w = 4113 Time Gft [W ] stays disconnected 7.56 8.15
d = 100 Time Gft [W ] stays connected 14.14 15.26
w = 301 Time Gft [W ] stays disconnected 27.86 33.42
d = 145 Time Gft [W ] stays connected 18.97 21.35
w = 122 Time Gft [W ] stays disconnected 55.20 63.51

connectivity would be P (K = 1) = e−μ = 1/2, and moreover we would have
E [TC ] = 1

1−e−λ = eμ−1
1−e−λ = E [TD]. But as shown in Figs.1, 2 and 3 the real

observed probability of connectivity is mostly below the theoretical predictions
at the limit, and this fact is stressed for the largest values of d. This is the same
as saying that the phase transition occurs slightly afterwards for the observed
cases than in the theoretical limit, or equivalently that the observed amount
of non-giant components is slightly bigger than what we would asymptotically
expect. This explains why in our experiments E [TC ] < E [TD].

We note that this deviation between the observed number of non-giant com-
ponents and μ, gets amplified in the expressions of E [TC ] and E [TD] since μ
appears there exponentially. So let’s try the following: let us use the average
number of non-giant components we observed (see Table 3) as the value of μ in
the expressions in Theorem 4. Then, in Table 7 we compare the obtained values
with our observations. The new predictions turn out to be much closer to the
experimental quantities.

This gives reasonable evidence for the validity of Theorem 4, but also restricts
its applicabilaty to the cases where the number of non-giant components is close
to the expected number μ of simple components in the limit.
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4 Further Problems

Similar theoretical work has already been done for agents moving on the cy-
cle and the hypercube. Currently, asymptotic results are being studied on the
behaviour of a dynamically evolving random geometric graph, which models a
generic type of Mobile Ad hoc Network. Since, from a practical point of view,
the cycle has no interest for the empirical study of real life size networks, we
intend to continue the research for the hypercube and the random geometric
graphs.
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Abstract. Extensions of the randomized tournaments techniques in-
troduced in [6, 7] to approximate solutions of 1-median and diameter
computation of finite subsets of general metric spaces are proposed. In
the linear algorithms proposed in [6] (resp. [7]) randomized tournaments
are played among the elements of an input subset S of a metric space. At
each turn the residual set of winners is randomly partitioned in nonempty
disjoint subsets of fixed size. The 1-median (resp. diameter) of each sub-
set goes to the next turn whereas the residual elements are discarded.
The algorithm proceeds recursively until a residual set of cardinality less
than a given threshold is generated. The 1-median (resp. diameter) of
such residual set is the approximate 1-median (resp. diameter) of the in-
put set S. The O(n log n) extensions proposed in this paper replace local
single-winner tournaments by multiple-winners ones. Moreover consen-
sus is introduced as multiple runs of the same tournament. Experiments
on both synthetic and real data show that these new proposed versions
give significantly better approximations of the exact solutions of the cor-
responding optimization problems.

1 Introduction

Solutions of optimization problems in generic metric spaces are crucial in the
development of efficient algorithms and data structures for searching and data
mining [13, 17]. Examples of such optimization problems are clustering [3], 1-
median [6], and diameter computation [7].

The 1-median of a set of points S in a metric space is the element of S
whose average distance from all points of S is minimal. This problem is known
to be Ω(n2) [16]. In [16], Indyk proposed a provably correct linear (1 + δ)-
approximation algorithm for the 1-median problem, with an O(n/δ5) running-
time. However, Indyk’s solution, based on large sampling, turns out not to be
practical. In [6], Cantone et al. proposed a practical linear randomized approx-
imate algorithm –here referred to as the Single-Winner 1-median algorithm –

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 265–276, 2005.
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which outperforms Indyk’s solution in practice. The Single-Winner 1-median
algorithm elects as approximate 1-median of a given input set S the winner
of the following randomized tournament played among the elements of S. At
each turn, the elements which passed the preceding turn are randomly parti-
tioned into disjoint subsets, say X1, . . . ,Xk. Then, each subset Xi is locally
processed by a procedure which computes its exact 1-median xi. The result-
ing elements x1, . . . , xk move to the next turn. The tournament terminates
when the number of residual winners falls under a given threshold. The ex-
act local 1-median of the residual set is taken to approximate the exact 1-
median of S.

The diameter of a set S of points in a metric space is the maximum distance
among all pairs of elements in S. As observed in [16], one can construct a metric
space where all distances among points are set to 1 except for one (randomly
chosen) distance, which is set to 2. Thus, any algorithm which computes the
diameter with an approximation factor strictly greater than 1

2 must necessarily
examine all pairs. A randomized algorithm – here referred to as the Single-Winner
diameter algorithm – has been proposed in [7]. The Single-Winner diameter algo-
rithm, based on the computation of local diameters, plays the following random-
ized tournament among the elements of the input set S. As before, at each turn
the winners of the previous turn are randomly partitioned into disjoint subsets,
say X1, . . . ,Xk. The endpoints of the diameter of each round Xi are the winners
of the current turn. The tournament terminates when the number of residual
elements falls under a given threshold. The farthest pair of the residual set is
the Antipole pair and its distance is taken to approximate the diameter of the
initial set S.

The 1-median and diameter problems for generic metric spaces find important
applications in such areas as molecular biology [15], network management [1, 5,
10], and information retrieval [12]. Among their most relevant applications here
we cite:

- approximate queries with a given threshold on very large databases of objects
belonging to clustered metric spaces. In such a problem, one seeks clusters
whose representatives have distance from the query bounded by the thresh-
old. It turns out that if the 1-medians are selected as representatives of the
clusters and the clusters diameters are comparable with the threshold, then
the average error during the search is minimized with very high probabil-
ity [8, 9];

- k-clustering of metric spaces, in which iterative computations of 1-medians
and diametrical pairs are required [11, 14];

- multiple sequence alignment, in which the goal is to find a common alignment
of a set of genetic sequences [15] (this is a basic problem in biological data
engineering).

In this paper we propose some improvements on the randomized tournament
techniques for the 1-median and diameter computations.
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The first idea is aimed at avoiding early elimination of good candidates in
the initial phases of the tournament. This is achieved by enlarging the number of
local winners. We call the resulting algorithms Multiple-Winners variants of the
original Single-Winner 1-median and diameter algorithms. The second idea is to
also use consensus [18, 19], which consists in extracting the best solution from
several runs of the algorithm. We call the resulting algorithms Multiple-Winners-
With-Consensus variants of the original ones. Of course, the Multiple-Winners-
With-Consensus variants require more computational resources. In particular,
O(n log n) distance computations are needed instead of the O(n) distance com-
putations required by the Single-Winner versions. However, it turns out from
the experimental results that improvements in precision very much justify the
slightly higher computational costs. More precisely, a thorough comparison has
been carried out between the original Single-Winner randomized tournament al-
gorithms with the newly proposed Multiple-Winners-With-Consensus variants, us-
ing both synthetic and real data sets. Synthetic data consisted of sets of randomly
chosen points from highly dimensional Euclidean spaces with different distribu-
tions. Real data included strings from the Linux dictionary and image histogram
databases extracted from the Corel Image database [2]. All experimental results
showed that our newly proposed algorithms perform considerably better than
the old versions.

2 Approximate Single-Winner 1-Median and Diameter
Computation

In this section, we review the randomized algorithm for the approximate 1-
median (resp. diameter) computation given in [6] (resp. [7]).

Let (M, dist) be a metric space and let S be a finite set of points in M .
The 1-median of S is an element of S whose average distance from all points
of S is minimal. The farthest pair of S is a pair of points A,B of S such that
dist(A,B) ≥ dist(x, y), for x, y ∈ S. The distance of the farthest pair A,B is the
diameter of S.

The algorithm proposed in [6] (resp. [7]) is based on a randomized tourna-
ment played among the elements of an input set S taken from a given metric
space (M, dist). At each turn, the elements which passed the previous turn are
randomly partitioned into subsets (rounds), say X1, . . . ,Xk, having the same size
t, with the possible exception of only one subset, whose size must lie between
(t + 1) and (2t − 1). Then, the exact 1-median xi (resp. farthest pair (ai,bi))
of each subset Xi is computed, for i = 1, . . . , k. The elements x1, . . . , xk (resp.
the points (a1,b1), . . .,(ak,bk)) win the round and go to the next turn. When
the number of residual elements falls below a given threshold, the exact local
1-median (resp. farthest pair) of the residual set is taken as the approximate
1-median (resp. farthest pair) of S. Plainly, the requirement that no round is
played with less than t elements is useful to ensure statistical significance of the
tournament.
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In [6] (resp. [7]), it is shown that such algorithm has a worst-case complexity
of t

2n+o(n) (resp. t(t−1)
2(t−2)n+o(n)) in the input size n, provided that the threshold

is o(
√

n).

3 Multiple-Winners Extensions

In this section, we propose improvements of the algorithms described above,
starting from the following observation. If only few good candidates participate
to the same round, they might be discarded early with a high probability. Thus,
to avoid such loss of information, more elements must be promoted at each
round.

3.1 Approximate Multiple-Winners 1-Median Computation

In the Multiple-Winners version of the 1-median computation, each round r of
the tournament is played among 2t elements. Let us define the weight dis-
tance of an element x as the sum of the distances between x and all other
elements playing in the same round. We sort the elements in Xr with respect
to the weight distance in increasing order and we define Tr as the sequence
of the first t elements in such ordering. Let Hi be the set of i-th compo-
nents of the sequences Tr. Intuitively, elements belonging to Hi with lower
index i have higher probability to approximate the exact 1-median. Elements
in all Hi are promoted to the next turn. The tournament terminates when the
number of residual winners falls under a given threshold. The exact local 1-
median of the residual set is taken to approximate the exact 1-median of S.
We assume that the parameter threshold, which bounds the number of resid-
ual winners, has been set to min {4t− 1, �

√
n�}, where n is the size of the in-

put set S.
A high level description of our proposed algorithm is the following.

1. Given a set S of elements and a tournament size t, partition S into subsets
Xr of size 2t, with the possible exception of only one subset whose size must
lie between (2t + 1) and (4t− 1);

2. For each subset Xr:
(a) Compute the weight distance w(x,X) =

∑
y∈X dist(y, x), for x ∈ X.

(b) Sort the elements in Xr with respect to the weight distance in increasing
order and let Tr be the sequence of the first t elements in such ordering.

(c) Hi = Hi

⋃
{(Tr)i} for i = 1, . . . , t.

3. If |H1| ≥ threshold/t then partition
⋃t

i=1 Hi into subsets Xr of size 2t each,
taking two random elements from each bucket Hj . All the subsets Xr will
have 2t elements with the possible exception of only one subset of size 3t.
Go to step 2.

4. If |H1| < threshold/t then return the exact 1-median of
⋃t

i=1 Hi.

Next we analyze the computational complexity of our proposed algorithm.
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Complexity Analysis. Let G(n, t, threshold) be the number of rounds com-
puted at step 2 of Multiple-Winners 1-median algorithm, with an input of size
n, and using the parameters t ≥ 2 and threshold ≥ 1. An upper bound for
G(n, t, threshold), denoted with G1(n), satisfies the following recurrence
relation:

G1(n) =

⎧⎨⎩
0 if 0 ≤ n ≤ 1
1 if 2 ≤ n < 4t
�2n/t�+ G1(�n/2t� t) if n ≥ 4t .

By induction on n, we can show that G1(n) ≤ �n/t�. For n < 4t, our estimate
is trivially true. Thus, let n ≥ 4t. Then by inductive hypothesis, we have

G1(n) =
⌊ n

2t

⌋
+ G1

(⌊n

2

⌋)
≤ n

2t
+
⌈

n

2
× 1

t

⌉
=
⌊⌈ n

2t

⌉
+

n

2t

⌋
≤
⌈n

t

⌉
.

Thenumberof distance computationsmadeat each round is equal to
∑|Xr|

i=1 (i−1) =
|Xr|(|Xr|−1)

2 . Each round of the first turn has size 2t, with the possible exception
of the last round, which can have size between (2t + 1) and (4t − 1). In the
successive turns we may have a round of size 3t. Since there are �log2 n� rounds,
it follows that the total number of distances computed by an execution of our
algorithm, with |S| = n, a constant tournament size 2t, and a threshold ϑ, is
upper bounded by the expression

G(n, t,ϑ) · t(2t− 1) +
(4t− 1)(4t− 2)

2
+ �log2 n− 1� ·

[
3t(3t− 1)

2
− 2(t− 1)

]

+
(ϑ− 1)(ϑ− 2)

2
= n(2t− 1) +O(log n + ϑ2).

3.2 Approximate Multiple-Winners Diameter (Antipole)
Computation

In the Multiple-Winners version of the diameter computation, we replace local
farthest pair computation with the generation (in the style of [14]) of the far-
thest sequence T of t points starting with the two diameter endpoints. More
precisely, each round r of the tournament is played among 2t elements. If p1, p2

are the two diameter endpoints of Xr, pi+1 is the element of Xr which maxi-
mizes the minimum distance from p1, . . . , pi, for each i = 2, . . . , t − 1. Let Tr

be the ordered sequence p1, . . . , pt. Let Hi be the set of i-th components of the
sequences Tr. We require that elements in all Hi are promoted to the next turn.
The tournament terminates when the number of residual elements falls under
a given threshold. The farthest pair computed in the tournament is taken to
approximate the diameter endpoints of the initial set S. We assume that the
parameter threshold, which bounds the number of residual winners, has been set
to min {4t− 1, �

√
n�}, where n is the size of the input set S.
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A high level description of our proposed algorithm is the following.

1. Set a variable dmax = 0 and pmax = ∅.
2. Given a set S of elements in a metric space, randomly partition the input set

S into subsets Xr of size 2t, with the possible exception of only one subset
whose size lies between (2t + 1) and (4t− 1).

3. For each subset Xr:
(a) let a, b the diameter endpoints of Xr and let d = dist(a, b);
(b) if d > dmax then dmax = d; pmax = {a, b};
(c) set T=[a, b]; H1 = H1

⋃
{a}; H2 = H2

⋃
{b};

(d) for i = 2 to t− 1:
i. let c be the point in Xr \ T which maximize the minimum distance

from elements of T ;
ii. add c to the end of T ; Hi = Hi ∪ {c}.

4. If |H1| ≥ threshold/t then partition
⋃t

i=1 Hi in subsets Xr of size 2t each
taking two random elements from each bucket Hj . All the subsets Xr will
have 2t elements with the possible exception of only one subset of size 3t.
Go to step 2.

5. If |H1| < threshold/t then let {a, b} be the farthest pair in
⋃t

i=1 Hi.
6. If dmax > dist(a, b) then return pmax else return {a, b}.

The proposed algorithm computes the same number of distances of the algorithm
in Section 2. Therefore it has complexity n(2t − 1) +O(log n + ϑ2), where n is
the size of the input, θ is the threshold, and 2t is the size of rounds.

4 Experimental Results

Experiments have shown that Multiple-Winners variants of the algorithms per-
form better than the respective Single-Winner versions in terms of precision.
In order to further improve the precision, we applied consensus techniques
[18, 19].

In our context, consensus consists of executing several independent runs of
a given randomized algorithm, which aims at approximating the solution of an
optimization problem. Then the best output of all runs is selected. Here we have
chosen to perform log n runs of both Single-Winner and Multiple-Winners verions
of 1-median and diameter computations.

Our implementations have been done in standard C (GNU-gcc compiler
v.2.96) and all the experiments have been carried out on a PC Pentium IV
2.8GHz with the Linux operating system (RedHat distribution v. 8.1). Each
experiment refers to 5, 000 independent executions of the algorithm on a fixed
input set.

Due to space limitations, here we report only the experiments relative to the
1-median algorithms. The corresponding group of experiments on the farthest
pair computation have similar results and can be found at the following address
(http://alpha.dmi.unict.it/˜ct-nyu/diam.htm).

Asymptotic behavior of the 1-median algorithms. Experiments in Fig. 1
report the relative frequencies histograms showing the empirical distribution of
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Fig. 1. Relative frequencies histograms of the outputs. The abscissae refer to the

elements in the input set with the smallest weight, in increasing order. The leftmost

element is the exact 1-median of S. The ordinates show the corresponding winning

frequencies

the algorithms outputs, obtained with round size 2t = 4 for the Multiple-Winners
version and t = 3 for the Single-Winner version. The input set has size 10000,
it is drawn from [0, 1]2 with uniform distribution and it is equipped with the
Euclidean metric L2. In Fig. 2, the input sets are taken from: (i) uniformly
distributed [0, 1]50 with the Euclidean metric L2, (ii) clustered points in R2 with
the Euclidean metric L2, and (iii) randomly sampled Linux words with editing
distance.

In all groups of histograms, we notice that the proposed Multiple-Winners
algorithm (in both versions with and without consensus) has higher winning
frequencies of elements with lower weights than the the corresponding Single-
Winner version.

Histograms give the output precision of our algorithms in terms of the relative
position w.r.t. the exact 1-median. Nevertheless, in many applications, it is more
convenient to define the output quality in terms of the weight function w(), by
introducing the following values relatively to a generic input set S:

– mS = minx∈S w(x), the minimum weight in S, i.e., the weight of the exact
1-median;

– MS = maxx∈S w(x), the maximum weight in S;
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Fig. 2. Frequencies histograms of the algorithms outputs with consensus. The input

sets are taken from: (in (a) and (b)) uniformly distributed [0 : 1]50, (in (c) and (d))

clustered points in R2, (in (e) and (f)) sampled Linux words

– μS = E[w(x)] and σS = σ[w(x)] (with x ∈ S), i.e., the average and the
standard deviation of weights in S;

– wout = w(Output), the weight of the Output element returned by our algo-
rithm on input S.

Next we introduce the relative error, relatively to a single test on a random
input set S:

– εout = wout −mS

MS −mS
·100, the percentage error distance defined w.r.t. the largest

range of values w(x), with x ∈ S; the extreme values assumed by εout are
0% and 100%, when the minimum- and maximum-weight element in S are
returned by the algorithm, respectively.
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Figs. 3-(a) and (b) report the average percentage error distance E[εout] and its
standard deviation σ[εout] of experiments performed with and without consensus
in [0, 1]2 on a fixed set S.

Fig. 3. Average percentage error E[εout] and standard deviation σ[εout], w.r.t. the

input size, on fixed input set (a) Multiple-Winners(b) Multiple-Winners-With-Consensus

Fig. 4. Average percentage error E[εout] for different types of clustered distribution,

w.r.t. the number of clusters
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Fig. 5. Average percentage error E[εout], w.r.t. the input size, for different space

dimensions

Distribution and Space Dimensionality Analysis. Next we analyzed the
uniform distributions of c clustered input sets containing n = 10i/c points each,
with i = 3, 4, 5, and where c = �log10 n�, 10, �

√
n�. We generate c random

clusters in [0, 1]50, with uniform distribution in each cluster.
Clusters are characterized by a parameter 0 < ρ < 1

2 which determines
the wideness of clusters. Such clusters are generated using the same procedures
implemented for the experimental session reported in [4]. We use the Euclidean
metric L2, with a round size 2t = 2 for the Multiple-Winners version and t = 3
for the Single-Winner version. The average percentage errors E[εout] are shown
in Fig. 4, with wideness factor ρ = 0.2.

Results in Fig. 5 allow one to evaluate the performance of our algorithm in
the case of a [0, 1]m metric space equipped with the metric L2, for m = 10, 25, 50,
with uniformly generated data.

Real world data-sets analysis. Finally we computed the average percentage
error E[εout] of our algorithm on input data-sets extrapolated from real world
databases. In Fig. 6-(a) the input set of n = 10i, with i = 2, 3, 4, is randomly
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Fig. 6. Average percentage error E[εout] for (a) the strings metric space with the

minimum edit distance, (b) the images metric space with Euclidean distance

chosen from the Linux Dictionary,1 using the round size 2t = 4 for Multiple-
Winners variant and t = 3 for Single-Winner version. In Fig. 6-(b) the input set of
n = 10i, with i = 2, 3, 4, is randomly chosen from the Corel images database [2].
Each image has been characterized by its colors histograms, represented in the
Euclidean metric space R32.

5 Conclusion

O(n log n) extensions of linear randomized tournaments techniques to better
approximate solutions of optimization problems in metric spaces have been pre-
sented. The proposed extensions replace Single-Winner rounds with Multiple-
Winners ones. Using a logarithmic consensus strategy further improves precision.
Applications to 1-median and diameter computation have been considered. Ex-
periments on both real and synthetic data showed that such newly proposed
versions significantly outperform the Single-Winner strategy.

1 The dictionary is contained in the text file /usr/share/dict/linux.words, under the
Linux Mandrake v.8.1.
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Abstract. Ordered Binary Decision Diagrams (OBDDs) are a data
structure for Boolean functions which supports many useful operations.
It finds applications in CAD, model checking, and symbolic graph algo-
rithms. We present an application of OBDDs to the problem of schedul-
ing N independent tasks with k different execution times on m identical
parallel machines while minimizing the over-all finishing time. In fact,
we consider the decision problem if there is a schedule with makespan
D. Leung’s dynamic programming algorithm solves this problem in time

O
(
log m · N2(k−1)

)
. In this paper, a symbolic version of Leung’s algo-

rithm is presented which uses OBDDs to represent the dynamic program-
ming table T . This heuristical approach solves the scheduling problem
by executing O(k log m log(mD)) operations on OBDDs and is expected
to use less time and space than Leung’s algorithm if T is large but well-
structured. The only known upper bound of O((m · D)3k+2

)
on its re-

source usage is trivial. Therefore, we report on experimental studies in
which the symbolic method was applied to random scheduling problem
instances.

1 Introduction

The problem of nonpreemptively scheduling N independent tasks with integral
execution times on m identical and parallel machines while minimizing the over-
all finishing time (the makespan) is one of the most fundamental and well-studied
problems of deterministic scheduling theory. It is known to be NP-hard in the
strong sense [5]. In this paper, we consider the restricted case that the tasks
have only a constant number k of different execution times. Moreover, we are
interested in the decision problem if there is a schedule with makespan not larger
than D. This restricted problem is simply referred to as scheduling problem
throughout this paper.

Definition 1 (Scheduling Problem). A scheduling problem P consists of
k execution times t1, . . . , tk ∈ IN, corresponding demands N1, . . . ,Nk ∈ IN, a

� Supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Research
Cluster “Algorithms on Large and Complex Networks” (1126).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 277–289, 2005.
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number m of machines, and a makespan bound D. The over-all demand of P
is defined by N :=

∑
1≤i≤k Ni.

A schedule S : {1, . . . , k} × {1, . . . , m} → IN for a scheduling problem P is
called valid if

∑m
j=1 S(i, j) ≥ Ni for every i ∈ {1, . . . , k} and

∑k
i=1 ti ·S(i, j) ≤ D

for every j ∈ {1, . . . , m}.
A scheduling algorithm has to decide if there is a valid schedule S for P.

Leung [13] presents a scheduling algorithm with time O
(
log m ·N2(k−1)

)
and

space O
(
log m ·N (k−1)

)
. Following a dynamic programming approach, it com-

putes a table T of O
(
log m ·Nk−1

)
partial solution values. The author considers

the algorithm as polynomial for constant k because the input size of general
scheduling problems is Ω(N). However, due to the restriction to k different exe-
cution times, the input can be represented by 2k+2 numbers of length log(mD).

The idea behind the symbolic scheduling algorithm presented in this paper
is to use Ordered Binary Decision Diagrams (OBDDs) [3, 4, 22] to represent the
dynamic programming table T . OBDDs are a data structure for Boolean func-
tions offering efficient functional operations, which is well-established in many
areas like CAD, model checking [8, 14], and symbolic graph algorithms [9, 18, 17,
20, 23]. It is known to be a compact representation for structured and regular
functions and allows to compute many table entries in parallel by few operations
applied to the corresponding OBDDs. On the one hand, we expect this approach
to require essentially less space than Leung’s method; on the other hand, this
implies also less runtime, because the efficiency of OBDD operations depends on
the size of their operands.

In order to analyze the behavior of symbolic OBDD-based heuristics, we have
to analyze the OBDD size of all Boolean functions occurring during their exe-
cution. This is known to be a difficult task in general and has been done only
in a few pioneer works so far [18, 20, 21, 23]. So in most papers the usability of
symbolic algorithms is just proved by experiments on benchmark inputs from
special application areas [9, 10, 12, 15, 24]. In other works considering more gen-
eral graph problems, mostly the number of OBDD operations (often referred to
as “symbolic steps”) is bounded as a hint on the actual runtime [2, 6, 7, 16].

To evaluate the usefulness of the presented scheduling method, it has been
implemented and applied to random input instances for k = 3 due to three pop-
ular distributions of execution times. On these instances, the symbolic algorithm
was observed to beat Leung’s scheduling algorithm w. r. t. time and space if the
product P := Πk−1

j=1 Nj of task quantities is sufficiently large.
The paper is organized as follows: Section 2 introduces OBDDs and the op-

erations offered by them. Then, Sect. 3 gives some preliminaries on symbolic
algorithms and their notation. After a brief description of Leung’s algorithm
in Sect. 4, we present the symbolic scheduling method in Sect. 5. The exper-
iments’ setting and results are documented in Sects. 6 and 7. Finally, Sect. 8
gives conclusions on the work.
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2 Ordered Binary Decision Diagrams (OBDDs)

We denote the class of Boolean functions f : {0, 1}n → {0, 1} by Bn. The ith
character of a binary number x ∈ {0, 1}n is denoted by xi and |x| :=

∑n−1
i=0 xi2i

identifies its value.
A Boolean function f ∈ Bn defined on variables x0, . . . , xn−1 can be repre-

sented by an Ordered Binary Decision Diagram (OBDD) [3, 4]. An OBDD G
is a directed acyclic graph consisting of internal nodes and sink nodes. Each
internal node is labeled with a Boolean variable xi, while each sink node is
labeled with a Boolean constant. Each internal node is left by two edges one
labeled by 0 and the other by 1. A function pointer p marks a special node
that represents f . Moreover, a permutation π ∈ Σn called variable order must
be respected by the internal nodes’ labels on every path from p to a sink. For
a given variable assignment a ∈ {0, 1}n, we compute the function value f(a)
by traversing G from p to a sink labeled with f(a) while leaving a node xi via
its ai-edge.

An OBDD with variable order π is called π-OBDD. The minimal-size π-
OBDD G for a function f ∈ Bn is known to be canonical. Its size size(G) is
measured by the number of its nodes and will be denoted by πG[f ]. We adopt
the usual assumption that all OBDDs occurring in symbolic algorithms have
minimal size, since all essential OBDD operations produce minimized diagrams.
On the other hand, finding an optimal variable order leading to the minimum
size OBDD for a given function is known to be NP-hard. There is an upper
bound of

(
2 + o(1)

)
2n/n for the OBDD size of every f ∈ Bn.

The satisfiability of f can be decided in time O(1). The negation f as well
as the replacement of a function variable xi by a constant ai (i. e., f|xi=ai

)
is obtained in time O

(
size(πG[f ])

)
without enlarging the OBDD. Whether

two functions f and g are equivalent (i. e., f = g) can be decided in time
O
(
size(πG[f ])+size(πG[g])

)
. These operations are called cheap. Further essential

operations are the binary synthesis f⊗g for f, g ∈ Bn, ⊗ ∈ B2 (e. g., “∧” or “∨”),
and the quantification (Qxi)f for a quantifier Q ∈ {∃,∀}. In general, the result
πG[f ⊗ g] has size O

(
size(πG[f ]) · size(πG[g])

)
, which is also the general runtime

of this operation. The computation of πG
[
(Qxi)f

]
can be realized by two cheap

operations and one binary synthesis in time and space O
(
size2(πG[f ])

)
.

The book of Wegener [22] gives a comprehensive survey on different types of
binary decision diagrams.

3 Preliminaries on Symbolic Algorithms

The functions used for symbolic representations are typically defined on a num-
ber of m subsets of Boolean variables, each having a certain interpretation within
the algorithm. We assume w. l. o. g. that all arguments consist of the same num-
ber of n Boolean variables. If there is no confusion, both a function f ∈ Bmn

defined on x(1), . . . , x(m) ∈ {0, 1}n as well as its OBDD representation πG[f ]
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will be denoted by f in this paper. Quantifications
(
Qx

(i)
0 , . . . , x

(i)
n−1

)
over all n

variables of argument i will be denoted by
(
Qx(i)

)
.

Argument reordering. Assume that each of the m function arguments
x(1), . . . , x(m) ∈ {0, 1}n has its own variable order τi ∈ Σn. The global
order π ∈ Σmn is called m-interleaved if it respects each τi while
reading variables x

(i)
j with same bit index j en bloc, that is, π :=(

x
(1)
τ1(0)

, x
(2)
τ2(0)

, . . . , x
(m)
τm(0), x

(1)
τ1(1)

, . . . , x
(m)
τm(n−1)

)
.

Let ρ ∈ Σm and f ∈ Bmn be defined on variables x(1), . . . , x(m) ∈ {0, 1}n.
A function g ∈ Bmn is called the argument reordering of f w. r. t. ρ if
g
(
x(1), . . . , x(m)

)
= f

(
x(ρ(1)), . . . , x(ρ(m))

)
. Computing argument reorderings is

an important operation of symbolic algorithms and is possible in linear time and
space O(n) if an m-interleaved variable order is used and m is constant (see [19]).

Multivariate threshold and modulo functions. The symbolic scheduling
algorithm contains comparisons of weighted sums with threshold values like
f(x, y, z) := (a·|x|+b·|y| ≥ T ), a, b,T ∈ ZZ, which can be realized by multivariate
threshold functions.

Definition 2 (Woelfel [23]). Let f ∈ Bmn be defined on variables
x(1), . . . , x(m) ∈ {0, 1}n. Then, f is called m-variate threshold function iff there
are W ∈ IN, T ∈ ZZ, and w1, . . . ,wm ∈ {−W, . . . ,W} such that

f
(
x(1), . . . , x(m)

)
=

(
m∑

i=1

wi ·
∣∣∣x(i)

∣∣∣ ≥ T

)
.

Clearly, the relations >, ≤, <, and = can be composed of multivariate threshold
functions. For constant W and m, such comparisons have π-OBDDs of size
O(n) for an m-interleaved variable order π with increasing bit significance (i. e.,
τi = id) [23]. These OBDDs can be computed efficiently in linear time.

Moreover, the symbolic scheduling algorithm makes use of multivariate mod-
ulo functions.

Definition 3 (Woelfel [23]). Let f ∈ Bmn be defined on variables
x(1), . . . , x(m) ∈ {0, 1}n. Then, f is called m-variate modulo function iff there
are M ∈ IN, T ∈ ZZ, and w1, . . . ,wm ∈ ZZ such that

f
(
x(1), . . . , x(m)

)
=

(
m∑

i=1

wi ·
∣∣∣x(i)

∣∣∣ mod M = T

)
.

For constant M and m, m-variate modulo functions have π-OBDDs of size O(n)
using an m-interleaved variable order π with increasing bit significance (i. e.,
τi = id) [23]. These OBDDs can be computed efficiently in linear time.

We conclude that all essential functional operations are realized efficiently by
OBDDs w. r. t. the corresponding OBDD size if an interleaved variable order is
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used. Therefore, this property is assumed in the following. This is also crucial
for threshold and modulo functions to have compact OBDDs, which will be the
building blocks of all Boolean functions computed by the symbolic scheduling
algorithm.

4 The Scheduling Algorithm of Leung

Let P be a scheduling problem according to Def. 1. and assume that log2(m) ∈
IN. Leung’s algorithm [13] computes a k-dimensional table T with entries
T (�, i1, . . . , ik−1) for � = 0, . . . , log2 m, ij = 0, . . . ,Nj , and j = 1, . . . , k − 1.
Such an entry contains the maximum number I of tasks of type k that can
be scheduled onto 2� machines together with ij tasks of type j for all types
j = 1, . . . , k − 1.

We define upper bounds Bj := min{Nj , �D/tj�}, j = 1, . . . , k, for the maxi-
mum number of tasks of type j that can be scheduled onto one machine. Let us
consider the case � = 0: If 0 ≤ ij ≤ Bj for j = 1, . . . , k− 1 and D ≥

∑k−1
j=1 tj · ij ,

it is I =
⌊(

D −
∑k−1

j=1 tj · ij
)
/tk

⌋
; else, we define I := −1.

Having computed all Πk−1
j=1 (Nj + 1) entries T (�, i1, . . . , ik−1) for some ma-

chine count 2�, the entries for 2�+1 machines are obtained by

T (� + 1, i1, . . . , ik−1) := max
{
−1, T (�, i′1, . . . , i

′
k−1) + T (�, i′′1 , . . . , i′′k−1)

| ∀j ∈ {1, . . . , k − 1} : i′j , i
′′
j ∈ {0, . . . ,Nj}, ij = i′j + i′′j ,

T (�, i′1, . . . , i
′
k−1) �= −1 �= T (�, i′′1 , . . . , i′′k−1)

}
. (1)

This procedure can be easily modified to cope with values m that are
not powers of 2. Finally, there is a valid schedule for P if and only
if T (log2 m,N1, . . . ,Nk−1) ≥ Nk. Altogether, O

(
log m ·Πk−1

j=1 (Nj + 1)
)

=
O
(
log m ·Nk−1

)
table entries are computed, each one as maximum over

O
(
Πk−1

j=1 (Nj + 1)
)

= O
(
Nk−1

)
vectors

(
i′1, . . . , i

′
k−1

)
implying the runtime com-

plexity O
(
log m ·N2(k−1)

)
.

The minimal makespan can be found by a binary search using
O(log max {t1, . . . , tk}) executions of Leung’s algorithm (see [13]). By storing
the optimal partition vector

(
i′1, . . . , i

′
k−1

)
for each table entry, the algorithm

can easily be extended to compute an optimal schedule if one exists.

5 The Symbolic Scheduling Algorithm

We again assume that log2(m) ∈ IN. Moreover, it is reasonable to require ti ≤ D
and Ni ≤ mD for i = 1, . . . , k. Then, �log2(mD + 1)� =: n Boolean variables
suffice to represent the number arguments of all Boolean functions occurring
during the algorithm.
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The symbolic scheduling algorithm works with characteristic Boolean func-
tions χT,� ∈ Bkn of Leung’s dynamic programming table T defined by

χT,�

(
x(1), . . . , x(k)

)
= 1 :⇔ T

(
�,
∣∣∣x(1)

∣∣∣ , . . . , ∣∣∣x(k−1)
∣∣∣) =

∣∣∣x(k)
∣∣∣

for � = 0, . . . , log2 m and vectors x(j) ∈ {0, 1}n, j = 1, . . . , k. The binary value
of x(j) corresponds to the number ij of tasks in Sect. 4. Because

∣∣x(k)
∣∣ is non-

negative, χT,� is false for table entries −1.
In order to compute the initial function χT,0, we express the conditions for

� = 0 stated in Sect. 4 in terms of Boolean equations using multivariate threshold
and modulo functions as building blocks. At first, we state a function g for the
condition

∣∣x(k)
∣∣ = ⌊(D −

∑k−1
j=1 tj ·

∣∣x(j)
∣∣)/tk⌋, which is equivalent to

D −
k−1∑
j=1

tj ·
∣∣∣x(j)

∣∣∣ = ∣∣∣x(k)
∣∣∣ · tk +

⎛⎝D −
k−1∑
j=1

tj ·
∣∣∣x(j)

∣∣∣
⎞⎠ mod tk .

This leads to the following symbolic formulation for g which can be computed by
subsequent applications of OBDD operations starting with multivariate thresh-
old and modulo functions. It uses two vectors y, z ∈ {0, 1}n of intermediate
helping variables.

g
(
x(1), . . . , x(k)

)
:= (∃y, z)

⎡⎢⎣
⎛⎝|y| = D −

k−1∑
j=1

tj ·
∣∣∣x(j)

∣∣∣
⎞⎠

∧ (|z| < tk) ∧ (|y| − |z| mod tk = 0) ∧
(
|y| =

∣∣∣x(k)
∣∣∣ · tk + |z|

)⎤⎥⎦
Altogether, the initial function χT,0 is obtained by

χT,0

(
x(1), . . . , x(k)

)
:=

k−1∧
j=1

(∣∣∣x(j)
∣∣∣ ≤ Bj

)

∧

⎛⎝D ≥
k−1∑
j=1

tj ·
∣∣∣x(j)

∣∣∣
⎞⎠ ∧ g

(
x(1), . . . , x(k)

)
.

At next, the iterative step (1) is realized in terms of OBDD operations
using 2k + 1 vectors y, u(1), v(1), . . . , u(k), v(k) ∈ {0, 1}n of intermediate help-
ing variables. Assume that χT,� has already been computed for some � ∈
{0, . . . , log2 m− 1}. We define h�+1 ∈ Bk,n as
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h�+1

(
x(1), . . . , x(k)

)
:=
(
∃u(1), v(1), . . . , u(k−1), v(k−1)

)
⎡⎣k−1∧

j=1

(∣∣∣x(j)
∣∣∣ = ∣∣∣u(j)

∣∣∣+ ∣∣∣v(j)
∣∣∣) ∧ χT,�

(
u(1), . . . , u(k)

)
∧ χT,�

(
v(1), . . . , v(k)

)⎤⎦ .

That is, h�+1 represents load vectors
(∣∣x(1)

∣∣ , . . . , ∣∣x(k)
∣∣) that can be partitioned

into loads
(∣∣u(1)

∣∣ , . . . , ∣∣u(k)
∣∣) and

(∣∣v(1)
∣∣ , . . . , ∣∣v(k)

∣∣) each fitting onto 2� ma-
chines while respecting makespan bound D.

Finally, we have to guarantee the maximality of the number of type-k-tasks:

χT,�+1

(
x(1), . . . , x(k)

)
:= h�+1

(
x(1), . . . , x(k)

)
∧ (∃y)

[(
|y| >

∣∣x(k)
∣∣) ∧ h�+1

(
x(1), . . . , x(k−1), y

)]
.

That is, there is no number |y| of type-k-tasks greater than
∣∣x(k)

∣∣ that can also
be distributed onto 2�+1 machines according to h�+1.

Having computed χT,log2 m this way, we replace each variable vector
x(j) by the binary representation of Nj for j = 1, . . . , k − 1. Then, the
unique satisfying assignment of the remaining variables x(k) correspond to
T (log2 m,N1, . . . ,Nk−1) which is compared to Nk. The correctness follows from
the correctness of Leung’s algorithm. We have solved scheduling problem P
following Leung’s approach by using a symbolic OBDD representation for the
dynamic programming table T .

Similar to Leung’s algorithm, the symbolic scheduling methods can be easily
modified to handle arbitrary numbers m of machines as well as to compute
concrete schedule S.

Theorem 1. The symbolic scheduling algorithm solves a scheduling problem P
with task execution times t1, . . . , tk, task demands N1, . . . ,Nk, machine count m,
and makespan bound D by executing O(k log m log(mD)) operations on OBDDs
defined on (3k + 2)n Boolean variables with n := �log2(mD + 1)�.

Proof. We compute log2 m + 1 Boolean functions χT,� with � = 0, . . . , log2 m.
Each function occurring during the algorithm is defined on no more than
(3k + 2)n variables and computed by a constant number of binary syntheses
and quantifications over variable vectors of length n. Altogether, each χT,� takes
O(k log(mD)) OBDD operations. ��

The upper bound of
(
2 + o(1)

)
2n/n for the OBDD size of every f ∈ Bn

implies a maximum OBDD size of O
(
(mD)3k+2

)
. Hence, each OBDD operation

takes time O
(
(mD)6k+4

)
in the worst case. After having computed χT,�+1 we

may discard χT,�. Therefore, O
(
(mD)3k+2

)
is also an upper bound on the over-

all space usage. Of course, these theoretical bounds cannot compete with the
complexity of Leung’s algorithm.

Nevertheless, we hope that heuristical methods like the symbolic scheduling
algorithm perform much better than in the worst case when applied on practical
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problem instances or in the average case. Then, they are expected to beat known
algorithms with better worst-case behavior. Hence, we applied the presented al-
gorithm to randomly generated instances hoping that structures and regularities
of table T lead to compact OBDDs for the functions χT,� and, therefore, to an
efficient over-all time and space usage.

6 Experimental Setting

The symbolic scheduling algorithm was implemented1 in C++ using the gcc
2.95.3 and the OBDD package CUDD 2.3.1 by Fabio Somenzi.2 Initially, an
interleaved variable order with increasing bit significance is used for the Boolean
variables of each function argument. After quantification operations, the actual
variable order π is heuristically optimized by permuting three adjacent variables
while keeping π interleaved. This is iterated until a local optimum is reached
(see [11]).

The scheduling problem instances P generated for the experiments have a
load sum L :=

∑k
j=1 tj · Nj with mean E[L] = M := (mD)/1.2. That is, the

effective capacity mD is 20% larger than the expected load. This is achieved by
first drawing a uniformly distributed fraction Fj of M such that

∑k
j=1 Fj = M

for each task type j = 1, . . . , k. Then, the number Nj of tasks of each type j is
drawn uniformly due to a mean parameter E[Nj ]. Finally, the execution times
tj are drawn due to the uniform, exponential, or Erlang distribution (shape
parameter 2) with mean E[tj ] := Fj/Nj , which are common distributions in
modeling synthetic scheduling instances (see, e. g. [1]).

E[L] =
k∑

j=1

E[tj ·Nj ] =
k∑

j=1

E[tj ] ·Nj =
k∑

j=1

Fj = M

This random procedure has parameters m, D, and E[Nj ] for j = 1, . . . , k.
The values tj and Nj are rounded randomly to integers. Moreover, only those
instances are accepted that fulfill the conditions tj ≤ D, Nj ≤ mD, and tj �= tj′

for 1 ≤ j < j′ ≤ k.
The experiments consist of three series with mD = 800, 1600, 3200 and k = 3.

Within each series, m was chosen to be 2, 4, 8, 16, and 32. For each setting,
20 instances have been generated due to the three execution time distribution
mentioned above. Moreover, 10 different values of E[Nj ] between (mD)/6 to
(mD)/3 have been used per series (E[N1] = · · · = E[Nk]).

The experiments took place on a PC with Pentium 4 3GHz processor and 1
GB of main memory running Linux 2.4.21. The runtime has been measured by
seconds of process time, while the space usage is given as the maximum number

1 Implementation and experimental data are available at http://thefigaro.

sourceforge.net/.
2 CUDD is available at http://vlsi.colorado.edu/.
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(e) Space comparison for mD = 3200
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(f) Time comparison for mD = 3200

Fig. 1. Experimental results on random instances with exponentially distributed exe-

cution times. P denotes Πk−1
j=1 Nj , S denotes the symbolic algorithm’s space, T denotes

the symbolic algorithm’s time
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of OBDD nodes present at any time during an algorithm execution. The latter
is of same magnitude as the over-all space usage and independent of the used
computer system.

7 Experimental Results

In order to compare Leung’s algorithm to the symbolic approach, we have to
take a closer look at the resources used by the former one. Because we exclu-
sively consider values m with log2(m) ∈ IN, each subtable T (�, . . . ) due to some
machine count can be discarded after having computed the subtable for � + 1
machines. Moreover, we assume that Nk = min {N1, . . . ,Nk}. Then, Leung’s
algorithm needs space Ω

(
Πk−1

j=1 Nj

)
and time Ω

(
Πk−1

j=1 N
2
j

)
.

We consider the experimental results for exponentially distributed execution
times: Figures 1(a), 1(c), and 1(e) show plots of the ratios P/S for P := Πk−1

j=1 Nj

and the symbolic algorithm’s space usage S for growing P using logarithmic
scales. Analogue, Figs. 1(b), 1(d), and 1(f) show plots of the ratios P 2/T and
the symbolic algorithm’s time usage T for growing P 2. We observe the symbolic
method to beat Leung’s algorithm w. r. t. both time and space for inputs with
high task demand products P .

Concretely, the presented plots for exponentially distributed execution times
as well as the omitted plots for the other two distributions hint to a linear
dependence of log(P/S) of log P resp. log

(
P 2/T

)
of log P 2. Therefore, a least

squares method has been used to fit parameters a1 and b1 for log(P/S) =
a1 · log P + b1 resp. a2 and b2 for log(P 2/T ) = a2 · log P 2 + b2. Table 1 shows
the fitting results for all three values of mD and the three considered distribu-
tions. The gradients’ a1 and a2 asymptotic standard errors never exceed 1.4%.

Table 1. Fits of a1 and b1 for P/S (Tab. 2(a)) resp. a2 and b2 for P 2/T (Tab. 2(b))

Distribution / mD 800 1600 3200

Uniform 1.28270 / -13.21930 1.32832 / -14.21380 1.36477 / -15.22760

Exponential 1.21732 / -12.77160 1.28701 / -13.93220 1.34987 / -15.22830

Erlang 1.26583 / -13.11690 1.37385 / -14.63660 1.44698 / -16.14440

(a) Fits for the symbolic algorithm’s space usage

Distribution / mD 800 1600 3200

Uniform 1.06093 / -0.47254 1.08898 / -1.35841 1.12353 / -2.51579

Exponential 1.05560 / -0.43123 1.09418 / -1.55419 1.11825 / -2.50760

Erlang 1.06234 / -0.52043 1.11002 / -1.82228 1.15972 / -3.31591

(b) Fits for the symbolic algorithms time usage
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The Erlang distribution seems to result in slightly higher absolute values a
and |b|.

The hypothesed linear dependencies imply P/S = P a1 ·2b1 ⇔ S = P 1−a1 ·2−b1

resp. T = P 2(1−a2) · 2−b2 . Due to 1 < a1, a2 < 1.5 (see Tab. 1), we conclude the
symbolic scheduling algorithm to have space usage 2−b1/ c1

√
P for c1 = 1/(a1 −

1) > 2 resp. time usage 2−b2/ c2
√

P for c2 = 1/(2a2 − 2) > 1.
That is, the a- and b-parameters seem to depend only on mD and k while be-

ing independent of m. For fixed mD and k, the OBDD sizes shrink proportional
to c1

√
P leading to essentially smaller time and space than Leung’s algorithm.

Although only experiments with k = 3 are documented, these results have been
also observed for higher values k.

8 Conclusions

We presented a symbolic algorithm for the decision problem of scheduling in-
dependent tasks with restricted execution times. It solves the problem by per-
forming O(k log m log(mD)) OBDD operations, while its final runtime and space
usage depends on the size of the OBDDs it generates. Therefore, it was applied
to random scheduling instances whose execution times were generated due to the
uniform, exponential, and Erlang distribution. On these instances, the symbolic
algorithm was observed to beat Leung’s scheduling algorithm w. r. t. time and
space if the product P := Πk−1

j=1 Nj is sufficiently large. For fixed mD and k,

the symbolic time and space usage is observed to grow as Θ
(
1/ c
√

P
)

for some
constant c > 1 depending on mD and the measured quantity.

Hence, we consider the application of OBDDs to Leung’s scheduling method
as a useful way to compress its dynamic programming table, which succeeds in
savings of runtime and space on inputs with large demand N . Future research
could address experiments on real world instances as well as several heuristics
like different strategies for OBDD variable reordering.

Acknowledgments. Thanks to Detlef Sieling, Ingo Wegener, and Berthold
Vöcking for fruitful discussions.
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Abstract. Most of distributed algorithms encoded by means of local
computations [3] need to solve k−local election problems to ensure a
faithful relabeling of disjoint subgraphs. Due to a result stated in [1], it
is not possible to solve the k−local election problem for k ≥ 3 in anony-
mous networks. Based on distributed computations of rooted trees of
minimal paths, we present in this paper a simple randomized algorithm
which, with very high probability, solves the k-local election problem
(k ≥ 2) in an anonymous graph.

Keywords: Local computations, election in graphs, distributed algorithms,
randomized algorithms.

1 Introduction

The problem of election is linked to distributed computations in a network. It aims
to choose a unique vertex, called leader, which subsequently is used to make de-
cisions or to centralize some information. For a fixed given positive integer k, a
k-local election problem requires that, starting from a configuration where all pro-
cesses are in the same state, the network reaches a configuration C such that for
this configuration there exists a non empty set of vertices, denoted E , satisfying:

– each vertex v ∈ E is in a special state called leader and
– ∀v ∈ C and for all vertex w �= v such that d(v,w) ≤ k then w is in the state

lost (i.e. w �∈ E).

We assume that each process has the same local algorithm. This problem is then
considered under the following assumptions:

– the network is anonymous: unique identities are not available to distinguish
the processes,

– the system is asynchronous,
– processes communicate by asynchronous message passing: there is no fixed

upper bound on how long it takes for a message to be delivered,
– each process knows from which channel it receives a message.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 290–301, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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Our goal is to perform k-local elections such that all the elected vertices should
be able to execute graph relabeling steps on disjoint subgraphs of radius k

2 . We
consider a network of processors with arbitrary topology. It is represented as a
connected, undirected graph where vertices denote processors and edges denote
direct communication links. At every time, each vertex and each edge is in some
particular state and this state will be encoded by a vertex or edge label. A
distributed algorithm is encoded by means of local relabeling: labels attached
to vertices and edges are modified locally, that is on a bounded subgraph of
the given graph according to certain rules depending on the subgraph only. The
relabeling is performed until no more transformation is possible.

For the sake of time complexity, we assume that each message incurs a delay
of at most one unit of time [2]. Note that the delay assumption is only used to
estimate the performance of our algorithms. This does not imply that our model
is synchronous, neither does it affect the correctness of our algorithms. That is,
our algorithms work correctly even in the absence of this delay assumption.

Here we first propose and analyze a randomized algorithm that solves the
k-local election problem for k ≥ 2. This algorithm is based on distributed com-
putations of minimal paths rooted trees and works under the assumption that
each vertex has an unique identity. Afterward we derive a second algorithm which
solves the same problem without identities, with very high probability and with
an acceptable time complexity of O(k2).

This paper is organized as follows. Section 2 reviews definitions of graphs and
illustrates the notions of graph relabeling systems for distributed algorithms.
Section 3 is devoted to the distributed computation of a rooted tree of minimal
paths. In Section 4 we present and analyze our algorithms for solving the k-local
election problem in an anonymous network. Section 5 concludes the paper.

2 Definitions and Notations

2.1 Undirected Graphs

We only consider finite, undirected and connected graphs without multiple edges
and self-loops. If G is a graph, then V (G) denotes the set of vertices and E(G)
denotes the set of edges; two vertices u and v are said to be adjacent if {u, v}
belongs to E(G). The distance between two vertices u, v is denoted d(u, v). The
set of neighbors of v in G, denoted NG(v), is the set of all vertices of G adjacent
to v. The degree of a vertex v is |NG(v)|. Let v be a vertex and k a non negative
integer, we denote by BG(v, k), or briefly B(v, k), the centered ball of radius
k with center v, i.e., the subgraph of G defined by the vertex set V ′ = {v′ ∈
V (G) | d(v, v′) ≤ k} and the edge set E′ = {{v1, v2} ∈ E(G) | d(v, v1) <
k and d(v, v2) ≤ k}. Throughout the rest of this paper we will consider graphs
whose vertices and edges are labeled with labels from a recursive set L. A graph
labeled over L will be denoted by (G,λ), where G is a graph and λ : V (G) ∪
E(E) → L is the labeling function. The graph G is called the underlying graph
and the mapping λ is a labeling of G.
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2.2 Randomized 2-Local Elections

We present in this subsection the randomized procedure: RL2 that solves the
2−local election problem. This procedure was introduced and analyzed in [6].
Let K be a nonempty set equipped with a total order.

RL2: Each vertex v repeats the following actions. The vertex v selects an in-
teger rand(v) randomly and uniformly from the set K. v sends rand(v) to
its neighbors. v receives messages from all its neighbors. Let Intw be the
maximum of the set of integers that v has received from vertices different
from w. For all neighbors w, v sends Intw to w. v receives integers from all
its neighbors. v wins the 2−Election in B(v, 2) if rand(v) is strictly greater
than all integers received by v.

Fact 1. Let G = (V,E) be a graph. After the execution of RL2 in G there are
at most |V |

2 vertices v of G that have won the 2-local election.

2.3 Graph Relabeling Systems for Encoding Distributed
Computation

In this section, we illustrate, in an intuitive way, the notion of graph relabeling
systems by showing how some algorithms on networks of processors may be en-
coded within this framework [4]. According to its own state and to the states
of its neighbors (or a neighbor), each vertex may decide to realize an elemen-
tary computation step. After this step, the states of this vertex, of its neighbors
and of the corresponding edges may have changed according to some specific
computation rules. Graph relabeling systems satisfy the following requirements:

(C1) they do not change the underlying graph but only the labeling of its com-
ponents (edges and/or vertices), the final labeling being the result,

(C2) they are local, that is, each relabeling changes only a connected subgraph of
a fixed size in the underlying graph,

(C3) they are locally generated, that is, the applicability condition of the relabel-
ing only depends on the local context of the relabeled subgraph.

A formal definition of local computations can be found in [4]. Our goal is to
explain the convention under which we will describe graph relabeling systems
in this paper. If the number of rules is finite then we will describe all rules by
their preconditions and relabellings. We will also describe a family of rules by a
generic rule scheme (“meta-rule”). In this case, we will consider a generic star-
graph of generic center v0 and of generic set of vertices B(v0, 1). If λ(v) is the
label of v in the precondition, then λ′(v) will be its label in the relabeling. We
will omit in the description labels that are not modified by the rule. This means
that if λ(v) is a label such that λ′(v) is not explicitly described in the rule for a
given v, then λ′(v) = λ(v). The same definitions also hold for the relabeling of
edges.
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An Example:
The following relabeling system performs the election algorithm in the family
of tree-shaped networks. The set of labels is L = {N, elected, non-elected}. The
initial label on all vertices is l0 = N and there are two meta-rules that are
described as follows.

R1 : Pruning rule
Precondition :
• λ(v0) = N ,
• ∃! v ∈ B(v0, 1), v �= v0,λ(v) = N .

Relabeling :
• λ′(v0) := non-elected.

R2 : Election rule
Precondition :
• λ(v0) = N ,
• ∀v ∈ B(v0, 1), v �= v0,λ(v) �= N .

Relabeling :
• λ′(v0) := elected.

Let us call a pendant vertex any vertex labeled N having exactly one neighbor
with the label N. The meta-rule R1 consists in cutting a pendant vertex by giving
it the label non-elected. The label N of a vertex v becomes elected by the meta-
rule R2 if the vertex v has no neighbor labeled N. A complete proof of this
system may be found in [4].

3 Computation of a Rooted Tree of Minimal Paths

Let G = (V,E) be an anonymous network with a distinguished vertex U . The
problem considered here is to find a tree of (G,V ), rooted at U , which for any
v ∈ V contains a unique minimal path from v to U . This kind of tree is generally
used to pass a signal along the shortest path from v to U (see Moore [7]).

To solve the above problem, we can simply fan out from U , labeling each
vertex with a number which counts its distance from U , modulo 3. Thus, U is
labeled 0, all unlabeled neighbors of U are labeled 1, etc. More generally, at the
tth step, where t = 3m+ q,m ∈ N, q ∈ {0, 1, 2}, we label all unlabeled neighbors
of labeled vertices with q and we mark the corresponding edges. When no more
vertices can be labeled, the algorithm is terminated. It is then quite simple to
show that the set of marked edges represents a tree of minimal paths rooted
at U . In an asynchronous distributed system, where communication is due to a
message passing system, we do not have any kind of centralized coordination.
Thus, it is not easy for a labeled vertex to find out that all labeled vertices are
in the same step t. To get around this problem, we have slightly modified and
adapted the above procedure for distributed systems.
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3.1 The Algorithm

Our algorithm works in rounds. All the vertices have knowledge about the
computation round in which they are involved, they also have a state that
indicates if they are locked or unlocked. At the end of round i, all vertices
v ∈ {w ∈ V |d(w, U) ≤ i} are labeled and locked. Initially, U is unlocked and
labeled 0. At round 1, all unlabeled neighbors of U are labeled 1 and locked. A
vertex w is said to be marked for a vertex v if the edge e = [w, v] is marked. For
further computations the algorithm has to satisfy the following requirements:

r1: Each time an unlabeled vertex is labeled, it is set in the locked state.
r2: A labeled unlocked vertex v �= U becomes locked if:

– v is in the same round as all its marked neighbors,
– v does not have any unlabeled vertex in its neighborhood,
– All the marked neighbors w of v that satisfy d(U,w) = d(U, v) + 1 are

locked.
r3: A locked vertex v in round p becomes unlocked and increases its round, if it

has an unlocked marked neighbor w in round p + 1.

We encode this procedure by means of a graph relabeling system where the locked
and unlocked states are respectively represented by the labels F and A. The root
is the only distinguished vertex labeled with R. Marked edges are labeled with
1. The set of labels is L = {0, 1, (x, d, r)} with x ∈ {N, A,F, R} and d, r ∈ N. d
and r respectively represent the distance from the root vertex (modulo 3) and
the computation round of a given vertex. The initial label on the root vertex
U is (R, 0, 1) and all the other vertices have the label l0 = (N, 0, 0). All the
edges have initially the label 0. Thus, the rooted tree computation is described
by Algorithm 1.

Algorithm 1.

R1 : Initializing the first level
Precondition :
• λ(v0) = (R, d, r),
• ∃v ∈ B(v0, 1)(v �= v0 ∧ λ(v) = (N, 0, 0)).

Relabeling :
• λ

′
([v0, v]) := 1,

• λ
′
(v) := (F, (d + 1)%3, r).

R2 : Unlock the first level (part 1)
Precondition :
• λ(v0) = (R, d, r),
• ∀v ∈ B(v0, 1)(v �= v0 ∧ λ(v) = (F, (d + 1)%3, r) ∧ λ([v0, v]) = 1).

Relabeling :
• λ

′
(v0) := (R, d, r + 1),
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R3 : Unlock the first level (part 2)
Precondition :
• λ(v0) = (R, d, r),
• ∃v ∈ B(v0, 1)(v �= v0 ∧ λ(v) = (F, (d + 1)%3, r − 1) ∧ λ([v0, v]) = 1).

Relabeling :
• λ

′
(v) := (A, (d + 1)%3, r).

R4 : Unlock the remaining levels
Precondition :
• λ(v0) = (A, d, r),
• ∃v ∈ B(v0, 1)(v �= v0 ∧ λ(v) = (F, (d + 1)%3, r − 1) ∧ λ([v0, v]) = 1).

Relabeling :
• λ

′
(v) := (A, (d + 1)%3, r)).

R5 : Add new leaves to the tree
Precondition :
• λ(v0) = (A, d, r),
• ∃v ∈ B(v0, 1)(v �= v0 ∧ λ(v) = (N, 0, 0)).

Relabeling :
• λ

′
(v) := (F, (d + 1)%3, r)),

• λ
′
([v0, v]) := 1.

R6 : Lock internal vertices of the tree
Precondition :
• λ(v0) = (A, d, r),
• ∀v ∈ B(v0, 1)(v �= v0 ∧ λ(v) �= (N, 0, 0)),
• ∀w ∈ B(v0, 1)(w �= v0 ∧ λ([v0,w]) = 1 ⇒ (λ(v) = (F, (d + 1)%3, r) ∨

λ(v) = (A, (d− 1)%3, r) ∨ λ(v) = (R, (d− 1)%3, r))).
Relabeling :
• λ

′
(v0) := (F, d, r).

Lemma 1. Let D be the diameter of graph G. At the end of round i 1 ≤ i ≤ D,
all the 1−labeled edges build a rooted tree Tu0 that contains the root u0 and all
F−labeled vertices. Tu0 has therefore a depth of i.

Proof. We show this lemma by induction on i. We recall that initially all vertices
different from U are labeled with (N, 0, 0). During the execution of round i = 1,
only rule R1 can be executed. This round ends with the execution of rule R2.
Thus, only the neighbor vertices of U are F -labeled and they build (with U)
a tree T 1

U of minimal paths rooted at U . T 1
U has therefore depth 1. Let T i

U be
the constructed tree after round i. By the induction hypothesis we know that
all vertices v �= U of T i

U are F -labeled. During the computation of round i + 1,
all the F -labeled are first unlocked (see rules R3 and R4). Thereafter, rule R5
increases the rooted tree by adding new F -marked vertices (at most one new
vertex per leave) to T i

U . At the end of round i + 1, all A-labeled vertices are
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locked through rule R6. From the preconditions and the effects of the rules R5
and R6 we can deduce that T i+1

U is a minimal path tree rooted at U and having
depth i + 1.

Corollary 1. Let v ∈ V be a F−labeled vertex and p = {v, v0, v1..., vj , u0} a
path from v to u0 such that all vi(i ≤ j) are F−labeled and vi �= u0, vi �= vk,
∀i, k ≤ j. Then p is a minimal path from v to u0.

Adding two adequate relabeling rules makes it possible to generate rooted trees
of minimal paths having a depth k such that 1 ≤ k ≤ D, k ∈ N. Such an
improvement and the corresponding proofs are presented in [8].

Lemma 2. Let T d
U be a rooted tree of depth d. The time complexity of construct-

ing T d
U is O(d2) and the message complexity is O(|E|+ n ∗ d).

Proof. Let T i
U represents the tree of minimal paths, of depth i and rooted at

vertex U . We recall that all vertices of T i
U must be locked and unlocked for the

computation of T i+1
U . Thus, the worst case time and message complexity for

computing one path rooted at U of tree T d
U is

∑d
i=1 i = O(d2), 1 ≤ d ≤ D. With

D representing the diameter of G. Thus, the message complexity for computing
T d

U starting from G is O(|E|+n∗d) [5]. All the vertices v that satisfy the rules R2
and R3 can change their labels simultaneously. That is, we assume that a vertex
at depth i sends messages to its neighbors at depth i + 1 simultaneously. The
same fact is also true for the rules R4 and R5. For this reasons, we need 2(d+1)
time units to construct the tree T d+1

U from T d
U . Thus, the time complexity of

our procedure is given by
∑d

i=1 2 ∗ (i + 1) = d(d + 1) + 2d = O(d2).

4 Solving the k-Local Election Problem

Starting from the rooted tree algorithm described in Section 3, we intend to
design a simple algorithm that should be able to solve the k-local election (k ≥ 2)
in an anonymous network. Let Iu be the identity of a vertex u and (S,>) be a
structure model of tuples of the form (x1, x2) where x1 and x2 are real numbers
and (x1, x2) > (x3, x4) ⇔ (x1 > x3) ∨ (x1 = x3) ∧ (x2 > x4). Basically this
algorithm works in three steps.

Procedure 1.

Step 1: Each vertex u chooses a random number ru and takes advantage of its
tuple nu = (tu, Iu) ∈ S to perform a 2−local election (RL2). The winners
and losers of these elections are respectively marked with W and L.

Step 2: Each W−marked vertex u starts the construction of the tree T d
u (with

depth d) of minimal paths rooted at u.
Step 3: Once T d

u is constructed for a given vertex u, the tuples of all the
W−marked vertices in T d

u are compared to nu. If nu > nv,∀v ∈ T d
u , v �= u (v

is W -marked) then u has won the local election in the ball of radius k = d
centered on u.
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The use of minimal paths trees ensures that the tree T d
u contains all vertices of

the set {v ∈ V (G)|d(u, v) ≤ d}. We remind that Algorithm 1 was designed for
a single root. Thus, all labels were related to the computation of the same tree.
In Procedure 1, several trees have to be computed in a distributed way. For this
reason, the label of each vertex v, in the new algorithm, includes a set Lv of
tuples representing the different states of v in the computations of all the rooted
minimal paths trees that contain v. Furthermore, to encode the marking of edges
and to distinguish the different elements of Lv, we relax one specification of our
model and require that each vertex has a unique identity. The label of each
vertex v also indicates if v has won the RL2 procedure. Moreover, it includes an
item that represents the label of v during the computation of the tree of minimal
paths rooted at v.

Remark 1. The use of identities is certainly a weak point of our algorithm. Nev-
ertheless, we will see that without identities, our algorithm solves the k−local
election with very high probability. Moreover, the structure (S,>) ensures that
at least one vertex terminates the election as winner. We are now ready to present
the basics of our algorithm for the k−local election problem (k ≥ 2).

Definition 1. A tuple structure model (T , <) is an irreflexive total ordering of
tuples of the form (Iv, sw,mw, r

w
v ,Mw,Fv

w),∀v,w ∈ V where:

– Iv is the identity of a root node v,
– sw is an element of the set {R,A,F},
– mw = d(v,w)%3,
– 0 ≤ rw

v = d(v,w) ≤ k is the round of vertex w in the computation of the
minimal path tree rooted at v,

– Mw is the maximal tuple (on the minimal path between v and w) known by
w so far,

– Fv
w is the identity of the father of vertex w in the minimal paths tree rooted

at v.

Definition 2. For all u, v, i, j ∈ V , let ti = (Iv, si,mi, r
i
v,Mi,Fv

i ) and tj =
(Iu, sj ,mj , r

j
u,Mj ,Fu

j ) be two elements of (T , <). Then

– ti = t+j if and only if Iv = Iu, (mj + 1)%3 = mi, rj
u = ri

v, Fv
i = Ij, si = F

if sj = A and si = F if sj = R. We say tj < ti.
– ti = t−j if and only if Iv = Iu, (mj − 1)%3 = mi and ri

v = rj
u, Fu

j = Ii,
si = A if sj = F and si = R if sj = F . We say ti < tj.

Let G be a graph, for each vertex v we assume that λ(v) = (Iv,Sv,Lv, tv, Ev)
where:

– Iv is the identity of the vertex v,
– Sv is an item that indicates the state of vertex v (L or W ). Initially all

vertices are in the L state.
– Lv is a set of elements of (T , <),
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– tv is the label of vertex v in the tree of minimal paths rooted at v,
– Ev is anitemthatindicates if vhaswonthe k−localelection(elected,non elected).

Initially λ(v) = (I0
v ,S0

v ,L0
v, t

0
v) for all vertices v with I0

v = Iv, S0
v ∈ {L,W},

L0
v = ∅ and t0v = (Iv, R, 0, 1, nv, Iv). All vertices are in the state non elected.

Procedure 1 (Steps 2 and 3) is then computed by the relabeling rules given in
Algorithm 2.

Algorithm 2.

R1 : Initializing the first level
Precondition :
• λ(v0) = (Iv0 ,Sv0 ,Lv0 , tv0) ∧ Sv0 = W ,
• ∃v ∈ B(v0, 1)(v �= v0 ∧ ∀t ∈ Lv(t = (Iw, x,mv, r

v
w,Mv0 ,Fw

v ) ∧ Iw �=
Iv0 ∧ x ∈ {R,F, A})).

Relabeling :
• λ

′
(v) := (Iv,Sv,Lv + t+v0

, tv, Ev).

R2 : Unlock the first level(part 1)
Precondition :
• Sv0 = W ∧ tv0 = (Iv0 , R,mv0 , r

v0
v0
,Mv0 ,Fv0

v0
),

• ∀v ∈ B(v0, 1)(v �= v0 ∧ t+v0
∈ Lv).

Relabeling :
• t

′
v0

:= (Iv0 , R,mv0 , r
v0
v0

+ 1,Mv0 ,Fv0
v0

),
• λ

′
(v0) := (Iv0 ,Sv0 ,Lv0 , t

′
v0
, Ev0).

R3 : Unlock the first level (part 2)
Precondition :
• Sv0 = W ∧ tv0 = (Iv0 , R,mv0 , r

v0
v0
,Mv0 ,Fv0

v0
),

• ∃v ∈ B(v0, 1)(v �= v0 ∧ ∃ti ∈ Lv(ti = (Iv0 ,F, (mv0 + 1)%3, rv0
v0
−

1,Mv,Fv0
v ))).

Relabeling :
• Lv := Lv − ti,
• t := (Iv0 ,F, (mv0 + 1)%3, rv0

v0
+ 1,Mv,Fv0

v ),
• λ

′
(v) := (Iv,Sv,Lv + t, tv, Ev),

R4 : Unlock the remaining levels
Precondition :
• ∃v ∈ B(v0, 1)(v �= v0∧∃ti∈ L v(∃t j∈Lv0(ti = (Ip,F,mv, r

v
p,Mv,Fp

v )∧
tj = (Ip, A, (mv − 1)%3, rv

p + 1,Mv0 ,Fp
v0

)))).
Relabeling :
• λ

′
(v) := (Iv,Sv,Lv − ti, tv, Ev),

• ti := (Ip, A,mv, r
v
p + 1,Mv,Fp

v ),
• λ

′
(v) := (Iv,Sv,Lv + ti, tv, Ev).
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R5 : Add new leaves to the tree
Precondition :
• ∃v ∈ B(v0, 1)(v �= v0 ∧ ∃ti ∈ Lv0(ti = (Ip, A,mv0 , r

v0
p ,Mv0 ,Fp

v0
))),

• � ∃t ∈ Lv(t = (Iq, x,mv, r
v
q ,Mv,Fq

v ) ∧ Ip = Iq) ∧ x ∈ {R,F, A}.
Relabeling :
• M∗

v := max(Mv0 , nv),
• ti := (Ip, A,mv0 , r

v0
p ,M∗

v ,Fp
v0

),
• λ

′
(v) := (Iv,Sv,Lv + t+i , tv, Ev)).

R6 : Lock internal vertices of the tree
Precondition :
• ∃ti ∈ Lv0(ti = (Ip, A,mv0 , r

v0
p ,Mv0 ,Fp

v0
)),

• ∀v ∈ B(v0, 1)(v �= v0 ∧ ∃tj ∈ Lv(tj = (Iq, x,mv, r
v
q ,Mv,Fq

v ) ∧ Fp
v =

Iv0∧Iq = Ip∧x ∈ {R,F, A}) ⇒ tj = (Ip,F, (mv0+1)%3, rv0
p ,Mv,Fp

v )∨
tj = (Ip, A, (mv0 − 1)%3, rv0

p ,Mv,Fp
v ) ∨ tv

= (Ip, R, (mv0 − 1)%3, rp
p,Mp,Fp

p )).
Relabeling :
• λ

′
(v0) := (Iv0 ,Sv0 ,Lv0 − ti, tv0 , Ev0),

• ∀v ∈ B(v0, 1)(v �= v0∧∃tj∈ Lv(tj =(Ip,F, (mv0+1)%3, rv0
p ,Mv,Fp

v )∧
Fp

v = Iv0 ∧ Iq = Ip ⇒ Mv0 := max(Mv0 ,Mv))),
• ti := (Ip,F,mv0 , r

v0
p ,Mv0 ,Fp

v0
),

• λ
′
(v0) := (Iv0 ,Sv0 ,Lv0 + ti, tv0 , Ev0).

Remark 2. To know that a vertex v is already involved in the computation of the
tree rooted at a vertex w, one has in Algorithm 2 to look for an element t ∈ Lv

whose root vertex has the same identity as w. This fact gives the above rules a
more complicated aspect as the rules described in Algorithm 1 . Nevertheless,
these rules exactly perform the same. The rules R5 and R6 ensure that each
time an internal vertex w is locked, the maximal known tuple Mw is actualized
bottom-up. This actualization is done up to and including the vertices of the
first level. Some improvements of this algorithm are given in [8].

Corollary 2. During the computation of the rooted minimal paths tree TD
v , at

the end of round i ≤ D, v is aware of the maximum tuple nm ∈ S amongst the
tuples generated by all the W -marked vertices of T i

v.

4.1 k-Local Election for Anonymous Networks

Due to the use of identities, Algorithm 2 is not adapted for anonymous networks.
We now present a variant of Procedure 1 that is able to solve the k-local election
problem in an anonymous network.

Procedure 2.

Step 1: Each vertex v chooses a random number nv and performs a 2−local
election (RL2). The winners and losers of these elections are respectively
marked with W and L.
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Step 2: Each W−marked vertex u chooses a random number n∗
u and set its

identity to be the number n∗
u.

Step 3: For each W−marked vertex u, we construct the tree TD
u (with depth

D) of minimal paths rooted at u.
Step 4: Once TD

u is constructed for a given vertex u, the chosen numbers of
all the W−marked vertices in TD

u are compared to n∗
u. If n∗

u > n∗
v,∀v ∈

TD
u , v �= u (v is W -marked) then u has won the local election in its ball of

radius k = D.

Once the first two steps have been performed, the last parts of this procedure
can be computed effortlessly by Algorithm 2. Obviously, the correctness of Pro-
cedure 2 heavily depends on the absence of random numbers coincidences in the
whole network. That is, if two W -marked vertices generate the same random
number, the algorithm can not guarantee a faithful execution.

Remark 3. We assume that each vertex v selects at random uniformly and in-
dependently an integer rand(v) from {1, ..,N}. Let X be a set of vertices and v
a given vertex of X. Let |X| = h. Then under the above assumptions on rand
we obtain the probability,

Pr(rand(v) �= rand(w),∀w ∈ X − {v}) =
1
N

N∑
i=1

(
N − 1

N

)h−1

.

We need to reduce the value of Pr(rand(v) = rand(w),∀w ∈ X − {v}). To
achieve this task, we assume in our framework that the set X represents the set
of all W -marked vertices in the network and that |X| < N . Due to Fact 1 we
know that |X| ≤ |V |

2 . Furthermore, the integer N , which is the range of selection
for vertices, is supposed to be large enough, so that the probability of coincidence
of rand in the whole network becomes small. Thus,

Pr(rand(v) = rand(w),∀w ∈ X − {v}) = 1− 1
N

N∑
i=1

(
N − 1

N

) |V |
2 −1

,

P r(rand(v) = rand(w),∀w ∈ X − {v}) = 1− 1

N
|V |
2

N∑
i=1

(N − 1)
|V |
2 −1

,

P r(rand(v) = rand(w),∀w ∈ X − {v}) = 1−
(

1− 1
N

) |V |
2 −1

.

This means that if N is large enough, the probability that two vertices generate
the same random number converges to 0. This assumption is equivalent to the
one supposing that all vertices choose at random uniformly and independently
a real from the interval [0, 1].

Fact 2. With the requirements presented in Remark 3, Procedure 2 solves with
high probability the k-local election problem in an anonymous network.
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Lemma 3. The time complexity of solving the k-local election for a vertex v0

is the same as the complexity required to compute a tree of minimal paths with
depth k and rooted at v0. Thus, the complexity of Procedure 2 is O(k2).

Proof. Let n = |V (G)|. The RL2 procedure has a message complexity of O(n2 +∑
v∈G |NG(v)|) = O(n2 +n(n− 1)). Under the time assumptions we have made,

it is easy to see that a given vertex v0 knows, after a constant time, that it has
won or lost the 2-local election. Furthermore, Procedure 2 has also a worst case
message complexity of O(γ(|E|+n∗k)). With γ ≤ n

2 representing the number of
vertices that have won the RL2 procedure. The time complexity of solving the
k-local election problem for a given vertex v0 is the same as the time required to
compute a tree of minimal paths with depth k and rooted at v0. Thus, the time
complexity of our procedure is O(k2). This means that the time complexity of
solving the k-local election problem is not constrained by the topology of the
network nor by the size of the underlying graph G.

5 Concluding Remarks

We have presented a new randomized algorithm that, with very high probability,
solves the k−local election problem (k ≥ 2) in anonymous networks. The pre-
sented protocol has already been successfully used to implement distributed graph
reduction algorithms. For further researches, we expect this algorithm to be an-
other step in the computation of more complex problems in the local computation
environment and more generally in the distributed computation framework.
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Abstract. In this work we experimentally study the min order Radio-
coloring problem (RCP) on Chordal, Split and Permutation graphs, which
are three basic families of perfect graphs. This problem asks to find an as-
signment using the minimum number of colors to the vertices of a given
graph G, so that each pair of vertices which are at distance at most
two apart in G have different colors. RCP is an NP-Complete problem
on chordal and split graphs [4]. For each of the three families, there
are upper bounds or/and approximation algorithms known for minimum
number of colors needed to radiocolor such a graph[4, 10].

We design and implement radiocoloring heuristics for graphs of above
families, which are based on the greedy heuristic. Also, for each one of
the above families, we investigate whether there exists graph instances
requiring a number of colors in order to be radiocolored, close to the
best known upper bound for the family. Towards this goal, we present a
number generators that produce graphs of the above families that require
either (i) a large number of colors (compared to the best upper bound), in
order to be radiocolored, called “extremal” graphs or (ii) a small number
of colors, called “non-extremal”instances. The experimental evaluation
showed that random generated graph instances are in the most of the
cases “non-extremal” graphs. Also, that greedy like heuristics performs
very well in the most of the cases, especially for “non-extremal” graphs.

1 Introduction

The Problem of Frequency Assignment (FAP) consists of assigning frequencies to
the transmitters of a wireless network exploiting frequency reusability in order
to save bandwidth, while keeping the interference caused when nearby stations
transmit in the same or close frequency, in acceptable levels. This problem is usu-
ally modelled as a vertex coloring problem. However, the vertex coloring model
fails to describe some realistic scenarios of practical wireless networks, because
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in this case the only requirement is to assign just different colors to adjacent
vertices in a graph. Henceforth, a number of generalizations of the vertex col-
oring problem have been introduced and investigated in the past, towards this
direction [8].

Here we study a variation of FAP, called min order Radiocoloring Problem
(min order RCP) [5], on three basic families of perfect graphs that of permutation,
chordal and split graphs. The problem consists of assigning colors (frequencies)
to the vertices (transmitters) of a graph (network), so that any two vertices of
distance at most two apart get different colors. The objective is to minimize
the number of distinct colors used. Permutation graphs model well networks
where two groups of independent transmitters want to have communication with
transmitters from the opposite group. Split graphs model networks where a
number of independent transmitters want to communicate with a set of strongly
communicated transmitters.

1.1 Definitions and Notation

Let G(V,E) be a graph. The size of G is the number of its vertices and is denoted
by n (i.e., n = |V |). W.l.o.g. we assume that V = {1, 2, ...,n}). We denote by
Δ(G) the maximum degree of G. When there is no confusion we omit G and we
refer to it simply as Δ. We denote as Cx a cycle on x vertices (i.e., of size x)
in a graph G. A chord in a cycle is an edge joining two non-consecutive vertices
of a cycle. A cycle graph that does not have chords is called unchord. A tree
graph is denoted by T and its root vertex by r. For a vertex v in T , we denote as
layer(v) its distance from the root plus one (1). The father of v in T is denoted
as father(v). The lowest common ancestor (LCA) of two vertices u,w in T is
denoted as LCA(u,w).

Definition 1. ([6]) The min order Radiocoloring Problem (min order
RCP) of a given graph G is the problem of coloring the graph G with a minimum
number of colors so that any two vertices of G of distance at most two apart get
different colors. The minimum such number is called the radiochromatic number
of G and is denoted by λ(G).

In this work, we concentrate only on min order RCP. Henceforth, for simplicity
reasons, we refer to it as the radiocoloring problem (RCP). In the following, uni-
formly random permutation of numbers 1 to n is a permutation of the vertices in
which the position of any number is chosen uniformly random from the positions
that are free in the permutation. The first family of perfect graphs considered is
that of permutation graphs. These graphs can be defined based on a permutation
of their vertices, i.e., a permutation π of numbers 1, 2, . . . ,n. Let us think of π
as the sequence [π1,π2, · · · ,πn]. We denote by π−1

i the position of number i in
the sequence.

Definition 2. [7] Let π = [π1,π2, · · · ,πn] be a permutation of numbers 1 to n.
Then, the permutation graph determined by π is the graph G[π] = (V,E) with
V = {1, · · · ,n} and (i, j) ∈ E iff (i− j)(π−1

i − π−1
j ) < 0.
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Observe that for any vertex i of G[π], j ∈ V is a neighbor of i iff i > j and i is on
the left of j in permutation π. A graph G is a permutation graph if there exists
a permutation π such that G is isomorphic to G[π]. Let a graph G(V,E) and a
permutation σ of its vertices. We denote by Gi = (Vi,Ei) the induced subgraph
of G on the vertices of the set Vi, where Vi = {σi,σi+1,σi+2, ...,σn} and σj is
the j-th vertex in σ.

Definition 3. [7] An undirected graph G is chordal if each of its cycles of size
bigger than three has a chord. A vertex v of it, v is a simplicial vertex if the
neighbors of v form a clique in G. The ordering σ is a perfect elimination scheme
(PES) if each vertex σi is a simplicial vertex in Gi, for 1 ≤ i ≤ n.

Theorem 1. [7] An undirected graph G is chordal iff it has a PES.

Split graphs consist a subfamily of chordal graphs [7].

Definition 4. A split graph is a graph G(V,E) of which its vertex set can be
split into two sets K and S, such that K induces a clique and S induces an
independent set (its vertices are not incident to each other).

In the experimental results shown, we denote n the size of the vertices of the
graph G, Δ the maximum degree of G, p a probability and #Colors the number
of colors used by the radiocoloring algorithm evaluated on the graph G.

1.2 A Greedy Radiocoloring Heuristic

A basic radiocoloring heuristic investigated in this work is a simple greedy heuris-
tic, called Radiocoloring First Fit (RFF ) Heuristic. This algorithm generalizes
the well known First Fit (FF ) heuristic for ordinary vertex coloring. It takes as
input a predefined ordering O of the vertices of G and produces a radiocoloring
of G. Most of the heuristics developed in this work apply RFF radiocoloring
algorithm on various interesting orderings of the vertices of G. We denote by Oi

the vertex located at position i of the ordering O.

Radiocoloring First Fit Heuristic (RFF )
Input: a graph G(V,E) and an ordering O of its vertices.
Output: a radiocoloring of G.

1. For i := 1 to n do:
color the vertex Oi with the smallest color not assigned to any of its

distance one or two neighbors located on its left in the ordering O.

1.3 Previous Related Work

The radiocoloring problem has been studied in a number of theoretical works [5,
10, 1, 4]. These works consider RCP on a number of interesting families of graphs,
such as: general, strongly chordal, paths, cycles, trees, graphs of diameter two,
grids, hypercubes, bipartite, planar, chordal, split, treewidth and outerplanar
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graphs, providing upper bounds, algorithms and hardness results. In contrast,
the problem has not been investigated in the past experimentally. From the best
of our knowledge, the only known experimental work on RCP is that of Andreou
et al. 3 [3] concentrated on planar graphs.

Here, we study at first time experimentally RCP on three families of perfect
graphs: permutation, chordal and split graphs. Most of the theoretical work done
for these families of graphs is by Bodlaender et al. and Sakai [4, 10]. Moreover,
from the best of our knowledge, this is the first work that concentrates on the
problem of generating graph instances of families of perfect graphs, especially
when RCP is of concern.

In the sequel, we introduce the definitions of the families of perfect graphs
studied here and the relative known theoretical results related to our study. A
graph G is perfect iff χ(H) = ω(H), where χ(G) is the chromatic number of G,
H is any induced subgraph of G and ω(H) is the clique number of H, i.e., the size
of the maximum clique (complete subgraph) in H. The radiocoloring problem
for chordal and split graphs becomes NP -complete [4] while for permutation
graphs its complexity is still unknown. We proceed with a useful proposition on
RCP and a related previous work.

Proposition 1. [6] For any graph G, Δ(G)2 + 1 ≥ ω(G) ≥ λ(G) ≥ Δ(G) + 1.

Theorem 2. [4] For any permutation graph G, λ(G) ≤ 3Δ(G) − 2. The Ra-
diocoloring First Fit heuristic RFF (G,O) (see previous section) radiocolors a
permutation graph G this number of colors, when O = {1, 2, ...,n}.

Theorem 3. [4] Given a chordal or a split graph G(V,E) and an integer r, the
problem of deciding whether λ(G) ≤ r is NP -complete.

Theorem 4. [10] For any chordal graph G, λ(G) ≤ (Δ(G) + 3)2/4. Heuristic
RFF (G,O) radiocolors a chordal graph G using this number of colors, when
O = {σn,σn−1, ...,σ1} and σ is a PES of G.

Theorem 5. 1. [4] For any split graph G, λ(G) ≤ Δ(G)1.5 + Δ(G) + 1. There
exists a polynomial time radiocoloring algorithms that computes an assignment
of this number of colors.

2. [4] For any Δ, there exists a polynomial time generator that constructs a
split graph G with λ(G) ≥ (1/3)

√
(2/3)Δ(G)1.5.

1.4 Research Objectives and Approach

As we reviewed in previous section, for all three families there are only approxi-
mation algorithms or upper bounds known for the problem. An important open
question for research on RCP on these families of perfect graphs is how close
the known upper bounds are to the optimal solution. This work, we investi-
gate there are instances of graphs of the families of our interest that require a
number of colors close to the best known upper bounds in order to be radiocol-
ored.
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Towards this goal, we utilize the following research approach: we construct,
in polynomial time, graphs for which their radiochromatic number is at least X,
where X we seek to be close to the best known upper bound of RCP on such
graphs. We call such graphs as extremal graphs. In particular, to guarantee this,
we aim in constructing graphs for which X of their vertices are at distance at
most two to each other. Thus, any radiocoloring assignment on them requires at
least X distinct colors.

We also generate instances of permutation, chordal and split graphs that
besides the necessary properties of their family, they do not present any addi-
tional properties. More analytically, these “average case” graph instances have
λ(G) ≈ Δ(G) + constant or λ(G) relatively small compared to the best up-
per bound of λ(G) for the corresponding graph family. We call such graphs as
“non-extremal” and we usually construct them using randomness.

We estimate the number of colors needed for radiocoloring the graphs gener-
ated, by utilizing (i) known radiocoloring algorithms of guaranteed performance
or/and (ii) efficient heuristics, that we provide here.

In particular, we introduce an interesting variation of the greedy radiocol-
oring heuristic RFF for permutation graphs. We also introduce a new greedy
radiocoloring heuristic for split graphs. We evaluate their performance experi-
mentally on the graph instances generated. Also, we compare them with known
radiocoloring (approximation or optimal) algorithms, throughout extensive ex-
periments. Our contribution is summarized in the following:

1. We design and implement, polynomial time, generators (algorithmic con-
structions) that produce extremal permutation, split and chordal graphs.
For the case of permutation graphs we manage to produce graphs G such
that λ(G) = 2Δ(G) (3Δ(G) − 2 is the best upper bound). In the case of
split graphs (also for chordal graphs), we implement a known generator [4]
to produce split graphs G such that λ(G) ≥ Δ(G)1.5 (Δ(G)1.5 + Δ(G) + 1
is the best upper bound).

2. We design and implement, polynomial time, generators for “non-extremal”
instances permutation, split and chordal graphs. In the most of the
cases, these graph instances have λ(G) ≈ Δ(G) + cost, where cost is a
constant.

3. We implement known radiocoloring algorithms for chordal and split graphs
[4]. We design and implement new heuristics for radiocoloring permutation
and split graphs. We evaluate their performance on various graph instances
produced by the generators provided. The experimental findings show that
the radiocoloring heuristics proposed have very good performance on “non-
extremal” permutation, chordal and split graphs. Actually they use Δ(G) +
constant colors to radiocolor such a graph G. We remark that this number
is much smaller than the best known upper bounds for the radiochromatic
number of such graphs.

All our implementations are written in the C++ programming language with
the support of the LEDA library, [9], in a UNIX environment. The rest of this
paper is organized as follows: In Section 2, we provide new generators and a
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heuristic for RCP for permutation graphs. In Section 3, we provide genera-
tors for chordal graphs and in Section 4 new and known generators and ra-
diocoloring heuristics for split graphs. Finally, in the last section we present
our experimental findings and conclude our work. Due to lack of space, the
omitted pseudocodes (and the actual codes) of algorithms and proofs of theo-
rems, lemma, claims etc, presented, are included in the full version of the paper
[2].

2 Permutation Graphs

From the best of our knowledge, the only known result for RCP on a permu-
tation graph G[π] is λ(G) ≤ 3Δ(G) − 2 (Theorem 2) and can be obtained by
RFF (G,O), where O = {1, 2, ...,n}. It is also known that FF (G,π) heuristic,
computes an optimal ordinary vertex coloring of G[π], [7]. Having this in mind,
we introduce and investigate the RFF (G,π) heuristic to radiocolor permutation
graphs. Moreover, we investigate whether there exist instances of permutation
graphs having a radiochromatic number close to the best known upper bound.
Henceforth, we seek to construct graphs with Δ(G) < n/3, so that to be possible
to have λ(G) close to 3Δ(G) (we need 3Δ(G) ≤ 3n

3 ≤ n). We first introduce two
random generator that produce, in polynomial time, “non-extremal” instances
of permutation graphs. Moreover, we provide a deterministic generator that pro-
duces graphs with λ(G) = 2Δ(G).

2.1 Generators for Permutation Graphs

In the following, we call an integer number i as big number or big vertex (numbers
represent vertices identities) if n ≥ i ≥ n/2, otherwise we call i as small number
or small vertex (i.e., 1 ≤ i < n/2).

Random Permutation 1 (RP1) Algorithm. The first generator provided,
called RP1, is based on a random permutation π of numbers 1 to n, representing
the vertices of the graph G[π]. RP1 takes an integer n (the size of the graph to
be produced). It first, finds a uniformly random permutation π of numbers 1 to
n. Then, it produces the permutation graph G[π] applying sequence π on the
constructive Definition 2.

Observation 2.1 Every permutation graph can be produced by RP1 with posi-
tive probability.

Claim. With high probability, a permutation graph produced by the genera-
tor RP1 has maximum degree close to n (call this Event 1). Thus, with high
probability, the graph has λ(G) ≈ Δ(G), i.e. it is “non-extremal”.

Random Permutation 2 (RP2) Algorithm. The next random generator
differentiates from RP1 only on the way it places the vertices in the permutation:
Each big vertex is placed in the second half of the permutation π if a Bernoulli
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trial, with probability of success p, is successful. Otherwise, the vertex is placed
in the first half of π. The opposite holds for a small vertex. Note that as p tends
to 1, the Event 1 happens less frequently.

Deterministic Permutation (DP ) Algorithm.

Deterministic Permutation (DP ) Algorithm
Input: a positive integer n.
Output: a permutation graph G[π] with Δ(G) = n

2 all of its vertices are at
distance at most two apart to each other.

1. Set numbers n
2 + 1, n

2 + 2, ...,n in positions 1, 2, ..., n
2 of a permutation π,

respectively.
2. Set numbers 1, 2, ..., n

2 in positions n
2 + 1, n

2 + 2, . . . , n of π, respectively.
3. Create the permutation graph G[π] according the constructive Def. 2 on π.

Lemma 1. Any graph produced by Algorithm DP is a permutation graph. It has
maximum degree Δ = n/2 and needs 2Δ(= n) colors to be radiocolored. Also, its
vertices are at distance at most two apart to each other.

2.2 Experimental Results for Permutation Graphs

We use the RFF (G[π],π) heuristic to radiocolor permutation graphs produced
by the generators provided here. In the following paragraphs, we present our
experimental findings on graphs produced by generators RP1, RP2 and
DP .

Radiocoloring on Graphs produced by RP1. We apply the radiocolor-
ing heuristic RFF (G[π],π) on permutation graphs generated by RP1. Table 1
shows most of representative our experimental findings. All graph instances ob-
tained are radiocolored using Δ(G) + const colors, where const is a constant
independent of the size of the graph, i.e. less than 3Δ(G), the best upper bound
of λ(G) on such graphs, obtained by RFF (G[π], O), O = {1, 2, ...,n} [4]. Hence,
our radiocoloring heuristic has almost optimal performance on such permuta-
tion graphs, since λ(G) ≥ Δ(G) + 1 (Proposition 1). As explained above, and
illustrated in the results obtained, the maximum degree of the graphs produced
by RP1 is close to n.

Radiocoloring on Graphs produced by RP2. We have evaluated the gen-
eration algorithm RP2 for various values of the probability p. Note that the most
interesting cases are for values of p > 0.5, as explained above. As p increases,
the probability to get graphs of smaller maximum degree G[π] also increases. Of
course, if p = 1, then all big (small) vertices are at the second (first) half of π.
On the other hand, the opposite holds when p = 0. When p = 0.5, RP2 equals
to RP1.
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Table 1 shows the most representative graphs instances obtained by the gen-
erator, when p = 0.75. As we can see, RP2 do not manage to produce graphs
that have maximum degree less than n/2; their maximum degree is close to
n, as in RP1. The performance of the radiocoloring heuristic RFF (G[π],π) on
such graphs is actually the same as on the instances of the permutation graphs
obtained by RP1 as seen in the results presented in the table.

Table 1. Radiocoloring permutation graphs generated by RP1 and RP2 using algo-

rithm RFF (G[π], π)

RP1 PR2

n Δ #Colors n Δ #Colors p

512 439 483 512 487 494 0.75

600 569 590 600 567 581 0.75

1000 971 987 1000 971 984 0.75

RadioColoring Graphs produced by DP . DP generates permutation graphs
whose vertices are at distance two apart as explained above. In particular, always,
λ(G) = n = 2Δ(G). As expected the experimental results verify the theoretical
analysis, so we do not present them here.

3 Chordal Graphs

Our study on chordal graphs has been concentrated on the generation of such
graphs. We provide three generators for chordal graphs. The first two are based
on randomness. Moreover, we implement and evaluate the performance the ra-
diocoloring heuristic RFF (G,σ′), where σ′ is the reverse of a perfect elimination
scheme σ of a chordal G of Theorem 4 ([10]).

3.1 Generators for Chordal Graphs

We seek to generate chordal graphs with radiochromatic number close to the
best upper bound of λ(G) ≤ (Δ(G) + 3)2/4 (Theorem 4). It is known that
there exists a polynomial time constructor that generates a split graph, thus
also a chordal graph, that needs order Δ(G)1.5 colors to be radiocolored (The-
orem 5). This algorithm is implemented and evaluated in the following sec-
tion for split graphs, 4.2. Here, we seek to construct chordal graphs of maxi-
mum degree Δ(G) close to O(

√
n), so that to be able to need the above num-

ber of colors in order to be radiocolored. We developed a number of random
generators and a deterministic one for chordal graphs. However, it turns out
that the graphs produced by the generators are “non-extremal”, requiring a
few number of colors (≈ Δ(G) + const), compared to the best upper bound
of [4].

Random Chordal 1 (RC1) Algorithm. RC1 starts with an initially empty
graph G and finds a uniformly random order σ of its n vertices. Considering σ
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as a PES of G, it selects the neighbors of vertex σi in Gi (σi will be a simplicial
vertex in Gi for each i from n to 1) so that the maximum degree of G remains
at most Δ, where Δ is a given number. Finally, it inserts appropriate edges in
G so that the neighbors of σi in Gi to form a clique.

Claim. Any graph G obtained by RC1 is a chordal graph.

Treelike-Chordal (TC) Algorithm. The second new generator of chordal
graphs introduced called Treelike-Chordal (TC), utilizes also randomness.

Treelike-Chordal (TC) Algorithm
Input: Two positive integers n, k and a probability p.

Output: A chordal graph G = (V,E) of size n.

1. Create a tree with n vertices so that each vertex (except leaves) has k children.
2. For each u, v ∈ V , where u is the grandfather of v do :

Add the edge (u, v) in G with probability p.

Proposition 2. Any graph G produced by generator TC is a chordal graph.

Deterministic BFS-Chordal Algorithm (BFS − Chordal). The third
generator introduced, called BFS − Chordal, takes as input an arbitrary undi-
rected connected graph G, with n vertices and close to 2n edges. Then, it
adds edges to the graph so that to become a chordal as follows: It first finds
a rooted Breadth First Search T of the initial graph G. Next, it labels the
vertices of T , layer by layer and within each layer it labels them from left to
right with consecutive numbers, starting with label(r) = 1 for the root r. Note
that, the edges of the graph connect vertices either of the same layer or of suc-
cessive layers. The algorithm then adds edges in the initial graph so that to
construct a chordal graph. This is achieved by finding the cycles in the initial
graph of size bigger than three and we split them into triangles (see [2] for
details).

Lemma 2. BFS − Chordal constructs a chordal graph in polynomial time.

3.2 Experimental Results for Chordal Graphs

Radiocoloring Graphs produced by RC1. The first three columns of Table
2 show our experimental findings when radiocoloring graphs produced by the
random generator RC1 using algorithm RFF (G,σ′). Recall that the maximum
degree Δ of these graphs is predefined and is given as input to the generator.
Hence, for such graphs we focus our interest on the number of colors used by
RFF (G,σ′) to radiocolor chordal graphs obtained by RC1. σ′ is the reverse
of a perfect elimination ordering of G. Experiments showed that this number
is close to Δ (not more than 1.12Δ). Note that this number is much smaller
than (Δ(G) + 3)2/4, the upper bound known for this radiocoloring algorithm
(RFF (G,σ′)) (Theorem 4).
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Table 2. Radiocoloring Chordal Graphs produced by generators RC1, Treelike −
Chordal and BFS − Chordal using algorithm RFF (G, σ′)

RC1 BFS Treelike

n Δ #Colors n Δ #Colors n Δ #Colors

1000 10 11 100 99 100 259 28 29

1000 20 21 100 97 98 1023 8 9

10000 40 49 200 194 195 1093 10 11

10000 500 529 200 197 198 1093 14 15

10000 1000 1156 300 285 286 1365 12 13

10000 1000 1174 300 296 299 1365 22 23

Radiocoloring on Graphs produced by TC. Our experimental findings
for graphs obtained by generator TC are also shown in Table 2. We observe
that the maximum degree of these graphs is small compared to n. However
the performance of the radiocoloring heuristic RFF (G,σ′) we use remains al-
most optimal, since it uses at most Δ(G) + const colors for radiocoloring these
graphs.

Radiocoloring on Graphs produced by BFS − Chordal. Based on the
results presented in Table 2, it can be easily seen that the number of colors used
by RFF (G,σ′) is close to n on chordal graphs generated by BFS − Chordal
algorithm. This is because, the graphs obtained by this generator have maximum
degree close n. Observe again that the number of colors used is much smaller
than (Δ(G) + 3)2/4, the upper bound of the radiocoloring algorithm used. The
large maximum degree obtained is due to that we insert too many edges in order
to split each cycle of an arbitrary sparse graph into triangles.

4 Split Graphs

The last family of perfect graphs considered is that of split graphs. We de-
signed and implemented generators for split graphs using randomness. We also
implemented the generator of Bodlaender et al. [4] producing split graphs with
λ(G) = O(Δ(G)1.5). We designed and implemented a new greedy radiocoloring
heuristic for such graphs. Also, we implemented a known radiocoloring algorithm
of o Bodlaender et al. [4]. We estimate the number of colors needed to radiocolor
the graph instances produced by the generators applying our greedy heuristic
and the radiocoloring algorithm of Bodlaender et al.

4.1 Radiocoloring Algorithms for Split Graphs

Bodlaender et al. Radiocoloring Algorithm (BRcSG). In [4] it is proved
that the following algorithm, uses at most Δ(G)1.5+Δ(G)+1 colors to radiocolor
any split graph G, (Theorem 5).
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Bodlaender’s Radiocoloring Algorithm (BRcSG)
Input: a split graph G(V,E).
Output: a radiocoloring of G.

1. Assign to each vertex of the clique K a different color from set {1, 2, . . . , |K|}.
2. If there is a vertex u ∈ S with degree greater than Δ(G)1.5 then:

(a) Remove vertex u and call the algorithm recursively.
(b) Add u back and assign to it the first available color not assigned to a vertex

at distance 1 or 2 from u in G.
else color S with Δ(G)1.5 colors.

A new radiocoloring heuristic for Split Graphs (GRcSG). Algorithm
GRcSG firstly assigns to each vertex of the clique K a distinct color. Next,
for each vertex v of the independent set S, it finds the first available color not
assigned to any vertex of distance at most 2 from v in G and assigns it to v.

4.2 Generators for Split Graphs

Random Split Graph 1 (RS1) Algorithm. RS1 constructs a split graph
utilizing randomness as follows: First, it computes a uniformly random permuta-
tion of the vertices of G (i.e., of numbers 1, . . . , n). Then, it chooses the first pn
vertices of the sequence and joins them to form the clique K of the split graph
to be obtained. For the rest of the vertices, consisting the independent set, S,
it adds an edge between a vertex u and a vertex v for u ∈ K and v ∈ S with
probability q = 1− p.

Random Split Graphs 2 (RS2) Algorithm. This generator is similar to
the previous one. The only difference is on the way we add edges between the
vertices of the clique K and those of the independent set S. The objective is to
produce split graphs of maximum degree lower than that of the graphs obtained
by RC1. RS2, first, joins each vertex v of the independent set to close to npq
vertices of the clique, where 0 ≤ q, p ≤ 1. For each such vertex v ∈ S, it chooses
a number close to npq, call it α. Then, it finds α vertices of K with the lowest
degrees and connects them to v.

Deterministic Generation Algorithm for Split Graphs of Bodlaender
et al. (BD). [4] presented a deterministic generator for split graphs G, we
called it BD, such that λ(G) ≥ (1/3)

√
2/3Δ(G)1.5. The same method applies

also for chordal graphs, since every split graph is chordal.
The algorithm first creates a clique K of Δ(G)/3 + 1 vertices. It creates

an independent set S of size (1/3)
√

2/3Δ(G)1.5. This set is partitioned into√
2
3Δ(G) groups, each consisting of Δ(G)/3 vertices. Note that the number of

distinct pairs of groups with vertices of S is
(√

2
3Δ(G)2

)
/2 = Δ(G)/3.
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Then, the algorithm construct a split graph G(V,E) using the clique K and
the independent set S defined above as follows: For each pair of groups of vertices
of S, take one vertex of K and join it with each vertex of these two groups. In
this way the maximum degree of G is Δ(G). Note that all the vertices of the
resulting graph are at distance at most two apart.

A variation of Bodlaender’s Generation Algorithm (BV ). We designed
and implemented a variation of BD Algorithm, called BV . The modification
differentiates only an edge between a vertex of S to a vertex of K is added in
the same way as above but this occurs with probability p.

4.3 Experimental Results for Split Graphs

In this section we present our experimental findings on split graphs. We discuss
about the instances of graphs obtained by our generators and that of Bodlaen-
der’s et al. [4]. Finally, we present and compare the radiocolorings produced by
Bodlaender’s algorithm, BRcSG and the heuristic GRcSG we provide here.

Radiocoloring on Graphs produced by RS1. We evaluate the performance
of the greedy radiocoloring heuristic GRcSG on split graphs produced by RS1
generator and compare it with the performance of the radiocoloring algorithm
BRcSG. We have performed extensive experiments for various values of the
probability p given to the generator. Recall that with probability p there is an
edge between a vertex of the clique K and a vertex of the independent set S.
The most interesting cases are when the maximum degree of the graph pro-
duced is small compared to n. So, we concentrate on values of p less than 0.5.
Our results (see [2]) showed that the maximum degree of the graphs produced
by RS1, when p = 0.4 is close to n/2. GRcSG uses almost n colors to radiocolor
these graphs. This number is increased proportional to the size of the clique
K. On the other hand, the algorithm provided by algorithm BRcSG has much
better performance of graphs obtained by the same generator for the same value
of p.

Radiocoloring on Graphs produced by RS2, BD and BV . The gener-
ator RS2, produces graphs with lower maximum graph degree than the graphs

Table 3. Radiocoloring Split Graphs produced by generators RS2 and BV using the

algorithm GRcSG

RS2 BV
n Δ |K| #Colors p n Δ |K| #Colors p

1000 140 20 143 0.2 289 89 33 165 0.3

1000 333 40 360 0.6 2177 340 129 774 0.3

2000 550 40 587 0.5 2177 330 129 724 0.3

2000 356 40 373 0.3 3079 406 163 942 0.3

3000 1001 120 1086 0.6 3079 479 163 1928
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obtained by RS1. The experiments illustrated in Table 3 show that this decrease
results in an analogous decrease in the number of colors needed for the radiocol-
oring of the produced graph. This quantity (i.e. λ(G)) is estimated applying algo-
rithm GColSG on the graphs obtained by RS1. Thus, the founding suggest that
a decrease of Δ in graphs generated by such a random procedure does not help in
generating graphs that need a large number of colors in order to be radiocolored.

BD generator is a deterministic one, as we described above. The experiments
performed using this generator evaluate the theoretical results, so we do not
present them explicitly. Moreover, we evaluate the performance of the variation
of BD, algorithm BV , introduced here. The experiments shown in table 3 show
that the graphs produced by BV need less colors than the graphs produced by
BD, but this number is quite more than the Δ(G). Thus, the generator produces
graph instances that lie between “extremal ” and “non-extremal ” characteriza-
tions.
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Abstract. Succinct representation is a space-efficient method to repre-
sent n discrete objects by O(n) bits. In order to access directly the ith
object of succinctly represented data structures in constant time, two
fundamental functions, rank and select, are commonly used. However,
little efforts were made on analyzing practical behaviors of these func-
tions despite their importance for succinct representations.

In this paper we analyze the behavior of Clark’s algorithm which is
the only one to support select in constant time using o(n)-bit space of
extra space, and show that the performance of Clark’s algorithm gets
worse as the number of 1’s in a bit-string becomes fewer and there exists
a worst case in which a large amount of operations are needed. Then, we
propose two algorithms that overcome the drawbacks of Clark’s. These
algorithms take constant time for select, and one uses o(n) bits for extra
space and the other uses n + o(n) bits in the worst case. Experimental
results show that our algorithms compute select faster than Clark’s.

1 Introduction

To analyze performance of data structures, the processing time and the amount
of used storage are measured in general. With the rapid proliferation of in-
formation, it is increasingly important to focus on the storage requirements of
data structures. Traditionally, discrete objects such as elements of sets or arrays,
nodes of trees, vertices and edges of graphs, and so on, are represented as inte-
gers which are the indices of elements in a consecutive memory block or values
of logical addresses in main memory. If we store n discrete objects in this way,
they occupy O(n) words, i.e., O(n log n) bits.

Recently, a method to represent n objects by O(n) bits, which is called suc-
cinct representation, was developed. Various succinct representation techniques
have been developed to represent data structures such as sets, static and dynamic

� Supported by “Research Center for Logistics Information Technology (LIT)” hosted
by the Ministry of Education & Human Resources Development in Korea.

�� Supported by MOST grant M6-0405-00-0022.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 315–327, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



316 D.K. Kim et al.

dictionaries [7, 14] trees [11], and graphs [16, 8]. Moreover, succinct representa-
tion is also applied to permutations [10] and functions [13]. Especially, in the
areas of string precessing and bio-informatics, to store efficiently enormous DNA
sequence data, full-text index data structures are developed such as compressed
suffix trees and arrays [12, 5, 15, 6, 4] and the FM-index [2, 3]. If we use these suc-
cinctly represented data structures, we can perform very fast pattern searching
using small space.

Most succinct representations use rank and select as their basic functions.
The rank and select functions are defined as follows. Given a static bit-string A,

– rankA(x): Counts the number of 1’s up to and including the position x in
A.

– selectA(y): Finds the position of the yth 1 bit in A.

For example, if A = 1 0 0 1 0 1 1 0, rankA(5) = 2 and selectA(2) = 4.
There have been only three results on rank and select. Jacobson [7, 8] first

considered rank and select and proposed a data structure supporting the func-
tions in O(log n) time. Jacobson constructs a two-level directory structure and
performs a direct access and a binary search on the directory for rank and
select, respectively. Clark [1] improved Jacobson’s result to support rank and
select in constant time by adding lookup-tables to complement the two-level
directory of Jacobson’s. Munro and Raman [11] proposed a three-level directory
structure for rank. Recently, Miltersen [9] showed lower bounds for rank and
select. For select, Clark’s data structure is the only one to support select
in constant time using o(n)-bit space of extra space. Despite the importance
of select for succinct representation, little efforts were made on analyzing its
behavior on different kinds of bit strings.

In this paper we analyze the behavior of Clark’s algorithm for select on
various bit-strings and then we get the following results.

– Its performance gets worse as the number of 1’s in the bit-string becomes
fewer. Especially when the number of 1’s in the bit-string is very few (the
portion of 1’s is less than 10%), Clark’s algorithm becomes quite slow.

– In Clark’s algorithm, there exists a worst case in which a large number of
accesses to lookup tables is needed.

– In addition, it is difficult to implement Clark’s algorithm using a byte-based
method because the block sizes of Clark’s algorithm are varying.

We propose two algorithms that resolve these drawbacks of Clark’s algorithm
by transforming the given bit-string A into a bit-string where 1’s are distributed
quite regularly. Our algorithms support rank and select in constant time, and
Algorithm I uses o(n) bits for extra space and Algorithm II uses n+ o(n) bits in
worst case. However, Algorithm II works fast and uses less space than Algorithm
I in practice. Both algorithms have the following properties.

– Our algorithms are not affected by the distribution of 0’s and 1’s because
we partition a bit-string into blocks of constant size to make a directory for
select. Hence, the algorithms take uniform retrieval time.
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⇓
A 1001 0100 1110 0100 1101 0000 1111 0100 1001 1001 0100 0100

↓
1st-level

7 15 21directory
↓

2nd-level 2 3 6 × 3 3 7 × 2 4 5 ×
directory

(a) rank-directory of A

patterns # of 1
0000 0

: :
→ 1000 1

1001 2
: :

1111 4

(b) rank-lookup-table

patterns \ i 1 2 3 4
0000 × × × ×

: : : : :
1011 1 3 4 ×
1100 1 2 × ×

: : : : :
1111 1 2 3 4

(c) select-lookup-table

Fig. 1. Examples of data structures

– Only a small number of table accesses is always required in our algorithms.
– Our algorithms are easy to implement because directories are composed of

constant-sized blocks. Thus, our algorithms can be implemented by a byte-
based method which is suitable for modern general-purpose computers.

In experimental results, we show the behavior of Clark’s algorithm and show
that Algorithm I and Algorithm II resolve the drawbacks of Clark’s algorithm.
We compare the performance of Clark’s algorithm, Algorithm I and II. Our
algorithms construct and compute select faster than Clark’s. Algorithm II
using byte-based implementation shows remarkable performance in computing
select.

2 Preliminaries

We first give definitions of some data structures that will be used for rank and
select later. Let A be a static bit-string of length n. We denote the ith bit by
A[i] and the substring A[i]A[i + 1] · · ·A[j] by A[i..j]. For simplicity, we assume
that

√
log n, log n and log2 n are integers.

We first define a hierarchical directory structure for rank. Given a bit-string
A, we define rank-directory of A as the following two-level directory (see Fig. 1
(a)):

– We partition A into big blocks of size log2 n. Each big block of the 1st-
level directory records the accumulated number of 1’s from the first big
block. That is, the ith entry contains the number of 1’s in A[1..i log2 n] for
1 ≤ i ≤ �n/ log2 n�.

– We partition A into small blocks of size log n. Each small block of the 2nd-
level directory records the accumulated number of 1’s from the first small
block within each big block. That is, the ith entry contains the number of 1’s
in A[i′ log2 n + 1..i log n] for 1 ≤ i ≤ �n/ log n�, where i′ =

⌊
i log n/ log2 n

⌋
.

If we have rank-directory of A, we can get rankA(i) for an ending position i
of every small block in constant time. For example, log2 n = 16 and log n = 4
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in Fig. 1 (a). Then we can find rankA(36) = 17 by adding the value 15 in
the 2nd entry of the 1st-level directory and the value 2 in the 9th entry of
the 2nd-level directory, which give the number of 1’s in A[1..32] and A[33..36],
respectively.

Lemma 1. Given a bit-string A of length n, rank-directory of A can be stored
in o(n) bits.

We define some lookup tables that enable us to compute rank and select
in constant time. For some integer c > 1 (c = 2 suffices), rank-lookup-table is
the table where an entry contains the number of 1’s in each possible bit pattern
of length (log n)/c. Similarly, select-lookup-table is the table where an entry
contains the position of the ith 1 bit in each possible bit pattern of length
(log n)/c, for 1 ≤ i ≤ log n/c. Figure 1 (b) and (c) show rank-lookup-table
and select-lookup-table for patterns of length 5, respectively.

Lemma 2. Both rank-lookup-table and select-lookup-table can be stored
in o(n) bits.

3 Behavior Analysis of Clark’s Algorithm

In this section we describe Clark’s algorithms [1] for rank and select, and
analyze the behavior of Clark’s algorithm for select.

3.1 Clark’s Algorithm

We first describe the algorithm for rank and then describe the algorithm for
select. For rankA, Clark used rank-directory of A and rank-lookup-table.
To get rankA(x), one first computes rankA(i) for an ending position i of the
small block which includes A[x] using rank-directory, and then counts the
number of 1’s in remaining x mod log n bits, which can be found by adding at
most c entries in rank-lookup-table after masking out unwanted trailing bits.

Example 1. For bit-string A in Fig. 1, we want to compute rankA(38). We first
get rankA(36) = 17 using rank-directory in Fig. 1 (a). We get a bit-pattern
1000 by mask out A[37..40] = 1001 with 1100 and get the number of 1’s in 1000
using rank-lookup-table in Fig. 1 (b). So, we get rankA(38) = 18 by adding 1
to 17.

For selectA, Clark used rank-lookup-table, select-lookup-table, and
the following multi-level directory which is stored in o(n) bits.

– The 1st-level directory records the position of every (log n log log n)’th 1
bit. That is, the ith entry contains selectA(i log n log log n) for 1 ≤ i ≤
�n/ log n log log n�.

– The 2nd-level directory consists of two kinds of tables. Let r be the size of a
subrange between two adjacent values in the 1st-level directory and consider
this range of size r.
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• If r ≥ (log n log log n)2, then all answers of select in this range are
recorded explicitly using log n bits for each entry.

• Otherwise, one re-subdivides the range and records the position, relative
to the start of the range, of every (log r log log n)’th 1 bit.

– Let r′ be the size of a subrange between two adjacent values in the 2nd-level
directory.
• If r′ ≥ log r′ log r(log log n)2, then all answers are recorded explicitly.
• Otherwise, one records nothing. In this case, rank-lookup-table and
select- lookup-table are used.

Now we describe how to get selectA(y) using the data structures above. To
get selectA(y), one first finds the correct 1st-level directory entry, at position
�y/ log n log log n�, and compute r. If r ≥ (log n log log n)2, one can find the
value of selectA(y) in the 2nd-level directory. Otherwise, a similar search is
performed in the 2nd-level directory resulting in either finding the answer from
the 3rd-level directory or scanning a small number of bits using lookup-tables.
It was proven that the length of a bit-string scanned using lookup-tables is less
than 16(log log n)4 [1]. So one can perform select on a range of 16(log log n)4

bits using a constant number of accesses to the lookup-tables.

3.2 Behavior of Clark’s Algorithm

We analyze the behavior of Clark’s algorithm for select on various bit-strings
and then we get the followings.

– The retrieval time of Clark’s algorithm for select varies according to dis-
tribution of 0’s and 1’s in bit-strings. The performance gets worse as the
number of 1’s in the bit-string becomes fewer. Especially when the number
of 1’s in the bit-string is very few (the portion of 1’s is less than 10%), Clark’s
algorithm becomes quite slow.

– In Clark’s algorithm, there exists a worst case in which a large number of
accesses to lookup-tables is needed. The reason is that 16(log log n)4 is much
larger than log n in practice although the former is asymptotically smaller
than the latter. For example, in case that the length of a bit-string is 232, the
size of a block for accessing tables is 4096 and the number of table accesses
is 256 in the worst case. The number 256 is too big to regard as a constant
in practice.

– The structure of directories is irregular because the subranges r and r′ of
entries vary. It makes it difficult to implement the algorithm using a byte-
based implementation method.

4 Algorithm I

In this section we present our first algorithm that overcomes the drawbacks of
Clark’s algorithm for select. This algorithm also adopts the approach using
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Agiven string
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(a) Algorithm I (b) Algorithm II

Fig. 2. Structures of Algorithms I and II

multi-level directories and lookup-tables. The difficulty of developing an algo-
rithm for select results from the irregular distribution of 1’s. While Clark’s
algorithm overcomes the difficulty by classifying the subranges of directories
into two groups: dense one and sparse one, we do it by transforming A into a
bit-string where 1’s are distributed quite regularly.

4.1 Definitions

Given a bit-string S of length m, we divide S into blocks of size b. There are
two kinds of blocks. One is a block where all elements are 0 and the other is a
block where there is at least one 1. We call the former zero-block (ZB) and the
latter nonzero-block (NZ).

– The contracted string of S is defined as a bit-string Sc of length m/b such
that Sc[i] = 0 if the ith block of S is a zero-block, Sc[i] = 1 otherwise.

– The extracted string of S is defined as a bit-string Se which is formed by
concatenating nonzero-blocks of S in order. Hence, the length of Se is m in
the worst case, and the distance between the ith 1 bit and the jth 1 bit is
at most (j − i + 1)b− 1 for i < j.

– The delimiter string of S is defined as a bit-string Sd such that Sd[i] = 0 if
the ith 1 bit and the (i − 1)st 1 bit of S are contained in the same block,
and Sd[i] = 1 otherwise. We define Sd[1] = 1. Note that the length of Sd is
equal to the number of 1’s in S and so it is m in the worst case. The value
of rankSd

(i) means the number of nonzero blocks up to the block (including
itself) containing the ith 1 bit of S.

Example 2. Bit-strings S, Sc, Se and Sd. We assume that we divide S into blocks
of size 4.

Sc 1 0 1 1

S 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1

Se 0 1 1 1 0 0 1 0 1 1 0 1
Sd 1 0 0 1 1 0 0
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4.2 Skeleton of Algorithm I

Let B be the extracted string of A, and C be the contracted string of A when
dividing A into blocks of size

√
log n. We transform A into B and C, and compute

rankA and selectA using B and C. We first consider the properties of B and
C and describe how to compute rankA and selectA using rank’s and select’s
of B and C. In the next section we present algorithms and data structures for
rank’s and select’s of B and C.

Recall that blocks of B contain at least one 1 bit, and thus the distance
between the ith 1 bit and the jth 1 bit in B is at most (j − i + 1)

√
log n− 1 for

i < j. Bit-string C represents a mapping between A and B. The length of C is
n/
√

log n and the length of B is n in the worst case. See Fig. 2 (a).

Example 3. Bit-strings A, B and C. We assume that
√

log n = 5.
↓ ⇓

A 01101 00000 00000 11010 00000 01001 00100

C 1 0 0 1 0 1 1

B 01101 11010 01001 00100
↑ ⇑

We describe how to compute rankA(x) and selectA(y) using B and C. For
computing rankA(x), we find the index x′ of B which corresponds to A[x] and
compute rankB(x′). Let xb be the block number of A which contains A[x] and
xp be the position of A[x] in the xbth block of A, that is, xb = �x/

√
log n � and

xp = x− (xb − 1)
√

log n. Then,

x′ = rankC(xb − 1)×
√

log n + xp × C[xb] and rankA(x) = rankB(x′).

For computing selectA(y), we compute selectB(y) and find an index of A
which corresponds to B[selectB(y)]. Let sb be the block number of B which
contains the yth 1 bit, that is, sb = �selectB(y)/

√
log n �. Then,

selectA(y) = selectB(y) + (selectC(sb)− sb)
√

log n.

Example 4. For A of Example 3, suppose that we want to compute rankA(28)
and selectA(9). For rankA(28), we get xb = 6 and xp = 3, that is, A[28] is the
3rd bit in the 6th block of A. Because rankC(5) = 2, we get x′ = 2× 5+3 = 13,
so rankA(28) = rankB(13) = 6. For selectA(9), we get selectB(9) = 18, so
sb = 4. Because selectC(4) = 7, we get selectA(9) = 18 + (7− 4)× 5 = 33.

4.3 Ranks and Selects for B and C

For rankB , we build rank-directory of B and rank-lookup-table. For rankC ,
we build rank-directory of C and rank-lookup-table. We can compute
rankB(x) and rankC(x) using these data structures in constant time as in
Section 2.

Select for extracted string B. For selectB , we use lookup-tables and a
two-level directory which is a little different from rank-directory.
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– The 1st-level directory records the position of every log2 n’th 1 bit in B.
This directory has at most n/ log2 n entries and each entry requires log n
bits. Thus the space of this directory is n/ log2 n× log n = o(n) bits.

– The 2nd-level directory records the position of every
√

log n’th 1 bit in the
ranges of 1st-level directory. This directory has at most n/

√
log n entries and

each entry requires log(log2 n×
√

log n) bits because all blocks of size
√

log n
have at least one 1 bit. Thus the space of this directory is n/

√
log n× 5/2×

log log n = o(n) bits.
– We also maintain rank-lookup-table and select-lookup-table.

We can compute selectB(y) by accessing the directory and the lookup-tables as
in rank. Because the 2nd-level directory records the position of every

√
log n’th

1 bit, we need to scan a substring of at most length
√

log n ×
√

log n using the
lookup-tables. It can be done by accessing the lookup-tables at most c times.

Select for contracted string C. We use a different approach for selectC

because the range of contiguous 0’s is not bounded in C. Let D be the delimiter
string of C when dividing C into blocks of size log n. The length of D is n/

√
log n

in the worst case. See Example 5. We construct the following auxiliary data
structures.

– We construct a data structure for rankD. It consists of rank-directory of
D and rank-lookup-table. The value of rankD(i) means the number of
nonzero blocks of size log n up to the block (including itself) containing the
ith 1 bit of C.

– We construct an array M whose ith entry represents the block number of the
ith nonzero-block in C. We call M the mapping array of C. This array has
at most n/(log n

√
log n) entries and each entry requires log(n/(log n

√
log n))

bits. Thus the space of this array is n/(log n
√

log n)×log
(
n/(log n

√
log n)

)
=

o(n)bits.

Example 5. Bit-strings C and D, and the mapping array M of C. We assume
that log n = 4.

C 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1

D 1 0 0 1 1 0 0

i 1 2 3

M 1 3 4

In order to get selectC(y), we first compute the block number containing the
yth 1 bit in C using rankD and array M . Then, we can find the position of the
yth 1 bit in C by scanning the bit-string of this block using the lookup-tables.

Example 6. Suppose that we want to find selectC(6). The rank of the 6th bit
in D is 3 and the value of the 3rd entry in array M is 4. Thus, the 6th 1 bit is in
the 4th block of C. We can also know that the first 3 blocks of C contains four
1 bits using rankC . The final job is to find the 2nd 1 bit in the 4th block using
the lookup-tables.

Theorem 1. Algorithm I performs rankA and selectA in constant time using
o(n) bits of extra space.
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5 Algorithm II

In this section we describe Algorithm II, which is simpler and more practical
than Algorithm I but theoretically uses n + o(n) bits of extra space. We also
propose a new implementation method which is suitable for modern general-
purpose computers.

5.1 Description of Algorithm II

We only describe the algorithm for selectA since the algorithm for rankA is
the same as Clark’s. For selectA, we use an approach similar to that used for
selectC in Section 4.3. When dividing A into blocks of size log n, let P and Q
be the contracted string and the delimiter string of A, respectively. The length
of P is n/ log n and the length of Q is n in the worst case.

We can compute selectA(y) using rankQ and selectP . Because rankQ(y)
gives the number of nonzero blocks up to the block (including itself) containing
the yth 1 bits of A and selectP (k) represents the block number of the kth
nonzero block, selectP (rankQ(y)) is the block number containing yth 1 bit in
A. Then, we can find the position of the yth 1 bits in A by scanning the bit-string
of this block using the lookup-tables. For rankQ, we build rank-directory of
Q. For selectP , we use a new approach.

We describe an approach for selectP which uses small space in practice. We
call a bundle of contiguous 0’s a clump. In Example 7, there are 4 clumps in P .
We define the clump-delimiter string R of P as follows: R[i] = 0 if the ith 1 bit
of P is adjacent to the (i − 1)st 1 bit, R[i] = 1 otherwise. We define R[1] as 0
if P [1] = 1, and 1 otherwise. See Example 7. The length of R is n/ log n in the
worst case. We construct the following auxiliary data structures.

– We construct a data structure for rankR. The value of rankR(i) means how
many clumps there are in front of the ith 1 bit of P . In Example 7, there
are 3 clumps in front of the 7th 1 bit.

– We construct an array where the ith entry represents the accumulated num-
ber of 0’s up to the ith clump (including itself) in P . We call it the clump
array of P . In practice, most elements of P are 1 because P is a delimiter
string. Therefore, there are a few clumps in P and so the size of this table
is very small. Note that we do not need to maintain bit-string P .

Example 7. Bit-strings P and R, and the clump array of P .

P : 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1
R: 1 0 0 1 0 1 0 0 0 1

The clump array of P
index 1 2 3 4

2 3 5 6

In order to get selectP (i), we first know how many clumps there are in front
of the ith 1 bit of P using rankR(i) and compute the number j of 0’s in front of
the ith 1 bit using the clump array . Then selectP (i) = i + j.

Theorem 2. Algorithm II performs rankA and selectA in constant time using
o(n) and n + o(n) bits of extra space, respectively.
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5.2 Byte-Based Implementation of Algorithm II

We present an efficient implementation method of Algorithm II. The directories
and lookup-tables are based on bits while atomic units in modern computers
are not bits but bytes. Therefore, we need bit-operations such as bitwise-and,
bitwise-or, and shift in order to get the values of entries. It causes inefficiency
in time. One method avoiding such inefficiency is to allocate space to entries by
the units of bytes. For example, we allocate 2 bytes to an entry which requires
12 bits. However, this method may waste much space. We present a byte-based
implementation method reducing waste of space and avoiding bit-operations.
This method is applied to Q and R as well as A. We assume that n is less than
232, the maximum value represented by a word in 32-bit machines. However, our
method can be extended to apply to the case of n ≥ 232.

The key idea of our method is that ranges of directories and lookup-tables
are adjusted to multiples of 8. The following data structure, which we use to
implement Algorithm II, is an instance of our implementation method.

– The 1st-level directory contains rank for every multiple of 28. Each entry
requires at most 32 bits. Particularly, the ranges of 1st-level directory is
adjusted to 2k, where k is a multiples of 8 in order to allocate space to
entries of 2nd-level directory by byte units.

– The 2nd-level directory contains rank, for every multiple of 25, within the
subranges of size 28. Each entry requires 8 bits.

– For each possible bit pattern of length 8, the rank-lookup-table gives the
number of 1’s in the pattern. Each entry requires 3 bits but we allocate
8 bits for each entry in order to avoid bit-operations. We may access the
rank-lookup-table four times to get rank.

Because each entry in each directory is stored in bits of a multiple of 8, we can
find values of entries without bit-operations. So retrievals in our method are fast.

6 Experimental Results

We present experimental results comparing Clark’s algorithm (CA) with Algo-
rithm I (A1), Algorithm II (A2), and byte-based Algorithm II (BA). All algo-
rithms except algorithm BA are allowed to use bit-operations.

We used Microsoft Visual C++ 6.0 to implement the algorithms and per-
formed these experiments on the 2.8Ghz Pentium IV with 4GB main memory.
We measured retrieval time of rank and select, construction time, and space
of auxiliary data structures. We performed experiments on bit-strings where the
ratio of 1’s is about 3 % and random bit-strings.

Experiment 1 (bit-strings with 3 % 1’s): This experiment shows the draw-
backs of Clark’s algorithm pointed out in Section 3.2. Figure 3 (a) and (b) show
retrieval time of select and rank, respectively. In these figures, the vertical axis
represents the time taken to perform 107 random queries and the horizontal axis
represents the length of bit-string A. In select, our algorithms are about 3 ∼ 10
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times faster than Clark’s. In rank, Algorithm I is the slowest. The reason is that
it needs two rank’s. Algorithm II and Clark’s algorithm have the same perfor-
mance in rank because two algorithms for rank are the same. Figure 3 (c) shows
construction time. Clark’s algorithm is the slowest due to the complication and
irregularity of the data structures. Our algorithms are about 3 ∼ 5 times faster
than Clark’s. Figure 3 (c) shows space of auxiliary data structures. We do not
count the space for a given string A. Clark’s algorithm requires the most space.
The reason why Algorithm I has negative values is that a transformed string B
is even shorter than given string A.

Experiment 2 (random bit-strings): This experiment shows general perfor-
mance of the algorithms. Figure 4 (a) and (b) show retrieval time of select and
rank, respectively. The fact that byte-based Algorithm II is the fastest in both
tells efficiency of byte-based implementation in time. In select, the performance
of Algorithm I and Clark’s algorithm are similar and they are the slowest. The
reason why Clark’s Algorithm is slow is that it needs many accesses to lookup-
tables. In every algorithm, retrieval time of select is slower than that of rank.
Figure 4 (c) and (d) show construction time and space of auxiliary data struc-
tures, respectively. Our algorithms are about 1.5 ∼ 2.5 times faster than Clark’s.
Clark’s algorithm requires less space than ours. However, the difference on space
is not large compared to the differences on retrieval time and construction time.
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Comparative Experiments with GRASP and
Constraint Programming for the Oil Well

Drilling Problem

Romulo A. Pereira, Arnaldo V. Moura, and Cid C. de Souza

Institute of Computing, University of Campinas

Abstract. Before promising locations become productive oil wells, it
is often necessary to complete drilling activities at these locations. The
scheduling of such activities must satisfy several conflicting constraints
and attain a number of goals. Here, we describe a Greedy Random-
ized Adaptive Search Procedure (GRASP) for the scheduling of oil well
drilling activities. The results are compared with those from a well ac-
cepted constraint programming implementation. Computational experi-
ence on real instances indicates that the GRASP implementation is com-
petitive, outperforming the constraint programming implementation.

1 Introduction

Oil extracted from oceanic basins is an increasingly important fraction of the
total world offer of petroleum and gas. Usually, diverse petroliferous basins are
explored, each with hundreds of promising spots where productive oil wells could
be located. However, before these places are turned into productive wells they
must be developed, that is, a sequence of engineering activities must be com-
pleted at each promising spot, to render them ready for oil extraction. Oil der-
ricks and ships are used to complete these activities. These resources are limited
and expensive, either in acquisition or rent value, and must be used efficiently.

The oil well drilling problem (WDP) can be summarized thus: given a set of
promising spots, the activities to be executed at each location, and the avail-
able resources, find a scheduling of the activities and resources, fulfilling several
conflicting engineering and operational constraints, in such a way as to optimize
some objective criteria. In this work, the specific WDP faced by Petrobras (a
leading company in deep water oil extraction) is studied. This WDP imposes
much more realistic constraints than other similar studies [1]. The constraints
are presented in detail, and an heuristic strategy is developed in order to maxi-
mize oil production within a given time horizon.

The next section describes the WDP. Section 3 discusses a GRASP imple-
mentation for the WDP. Section 4 presents our computational results obtained
with this new algorithm and compares them to other results derived from a con-
straint programming implementation presently running at Petrobras. Finally,
some concluding remarks are offered in the last section.
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2 The Well Drilling Problem

After a well is drilled, the preparation for oil extraction develops in several
stages. First, oil derricks place Wet Christmas Trees (or WCTs, structures where
hydraulic valves are attached) at the mouth of the wells in order to avoid oil
leakage. Later, boats connect pipelines between WCTs and manifolds. Manifolds
are metallic structures installed by boats at the sea floor. Their use prevents the
need for exclusive pipelines connecting each well to the surface, which would
be prohibitively expensive. Once this stage is completed, oil extraction can be-
gin. For that, Stationary Units of Production (SUPs) are anchored at specific
locations in the surface, and boats interconnect manifolds to them. SUPs are
used to process, and possibly store, the extracted products. Later, ships fetch
the products from SUPs to land storage sites or other processing units. If the
oil outflow is very high or a SUP does not have storage capacity, a petroliferous
platform may be installed at the surface.

The constraints involved in the scheduling of oil development activities are:

C1. Technological Precedence: sets an order between pairs of activities. When
considering the precedence between the start and finish of the activities in
each pair, any of the four possibilities can be present.

C2. Mark-Activity : an activity must finish before or initiate after a fixed date,
with or without lag time. This date is often related to some external event.

C3. Baseline: sets the start date of the activities.
C4. Use of Resources: to execute an activity, due to its intrinsic nature, a resource

used must match some operational characteristics. For a boat, it must be
verified if the on-board equipments can operate at the specified depth. For an
oil derrick, its type and capabilities must be verified, as well as the maximum
and minimum depth of operation and drilling.

C5. Concurrence: two activities at the same well, or executed by the same re-
source, cannot be simultaneous.

C6. Unavailability : resources may be unavailable for a period of time, either for
maintenance reasons or due to contract expiration.

C7. User Defined Sequences : the user can specify a sequence for the drilling or
for the “start production” activities of different wells. These sequences are
specified by engineers in order to avoid loss of pressure in the oil field. If well
A appears before well B in the sequence, then activity FA of well A must
finish before the start of activity SB of well B. The activities FA and SB

are either the activity of drilling or the activity of start production of their
respective wells, according to the type of the sequence.

C8. Surface Constraints: represented by a polygonal security area defined around
a well. When a well is inside the restricted area of another well, activities
executed at them cannot be simultaneous. These constraints must be verified
between pairs of mobile and pairs of mobile and anchored oil derricks.

C9. Cluster Constraints: an activity can be part of a cluster, which is a set of
activities that must use the same resource.

C10.SameDerrick : it is desirable that the same oil derrick executes as much of the
activities at a well as possible, in order to avoid unnecessary displacements.
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The oil yield is calculated as follows. Each well has an associated outflow and
an activity that marks the beginning of its production. When this last activity
is concluded, the well is considered in production. The yield is obtained by mul-
tiplying the oil outflow by the period between that instant and the established
time horizon. If the start production activity is set for after the time horizon,
the corresponding yield is disregarded. The objective is to obtain a schedule of
all activities, satisfying all constraints, while maximizing the oil yield.

Other goals to be attained by automating the schedule of the activities are:

1. Faster solutions. Human made solutions take many hours, even days, to be
constructed. A faster method would permit the analysis of different scenarios
for the same problem, for example, by adding or removing resources. Fur-
thermore, modifications in already committed plans would not result in new
hours, or days, spent in rescheduling.

2. Better resource allocation. With an automated scheduling, all highly skilled
engineers responsible for the manual scheduling can receive other duties.

From the above description, it can be seen that the WDP is a difficult com-
binatorial problem. In fact, it is simple to devise a polynomial-time reduction to
the classical Job Shop Scheduling problem, showing that the WDP is NP-hard.

The WDP treated here shows several differences from similar problems stud-
ied in the literature [1]. To tackle the same problem, a project team from
Petrobras developed a Constraint Programming (cf., [2]) model using ILOG’s
Solver and Scheduler [3]. After four years of development and testing, the tool,
named ORCA (Portuguese acronym for “Optimization of Critical Resources in
the Production Activity”), became operational and very successful. Nowadays,
the ORCA solver is often used by engineers both to define a good schedule for the
drilling activities and, also, to analyze the need for acquiring or renting new re-
sources. They confirmed that ORCA generates better solutions than those made
by humans. In one real instance, ORCA showed that buying a third oil derrick
was unnecessary and that it was better to add a new LSV ship instead. As a
result, Petrobras avoided a expenditure of US$ 15 million, while anticipating oil
production by 26 days. Despite the good performance of ORCA, searching for
even better solutions is still important, since a tenth of a percent of improvement
in the oil production may represent millions of dollars in the company’s revenue.
The next sections show how we obtain such gains using GRASP.

3 A GRASP for the WDP

Our search for alternatives to compete with ORCA started with an implemen-
tation of Tabu Search [4] for a simpler version of the WDP [1]. However, some
issues proved to be particularly difficult to treat, especially the definition of
an adequate neighborhood and ways to explore it. After some investigation,
GRASP [5] seemed most appropriate for the WDP. Contrary to what occurs
with other metaheuristics, such as tabu search or genetic algorithms, which use
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a large number of parameters in their implementations, the basic GRASP ver-
sion requires the adjustment of fewer parameters. Despite its simplicity, GRASP
is a well studied metaheuristic which has been successfully applied to a wide
variety of optimization problems (cf. [6]). In particular, applications of GRASP
to scheduling problems can be found in [7, 8, 9, 10, 11].

The next paragraphs review some GRASP basics and describe our specific
implementation designed to solve the WDP, named GRASP-WDP (GRASPW).
The model and its algorithms are shown in the subsequent paragraphs.

GRASP Basics. In the GRASP methodology each iteration consists of two
phases: construction and local search [5]. Figure 1 illustrates a generic imple-
mentation of GRASP, in pseudo-code. The input includes parameters for setting
the candidate list size (ListSize), the maximum number iterations (MaxIter),
and the seed (Seed) for the random number generator. The iterations are car-
ried out in lines 2-6. Each iteration consists of the construction phase (line 3),
the local search phase (line 4) and, if necessary, the incumbent solution update
(line 5). In the construction phase, a feasible solution is built, updating the vari-
able Solution. Then the local search algorithm seeks a better solution in the
neighborhood of Solution, according to a given criterion, and updates Solution.
This process of construction, search and update is executed MaxIter times.

1: procedure GRASP (ListSize, MaxIter, Seed)
2: for k = 1 a MaxIter do
3: Solution ← Construct Solution(ListSize, Seed);
4: Solution ← Local Search(Solution);
5: Update Solution(Solution,Best Solution Found);
6: end for
7: return Best Solution Found;
8: end GRASP

Fig. 1. Pseudo-code of the GRASP Metaheuristic

In the construction phase, a feasible solution is built one element at a time.
Figure 2 illustrates a generic implementation of the construction phase, in pseudo-
code. Input includes the candidate list size (ListSize) and the seed (Seed). The
iterations are carried out in lines 2-8. At each iteration, the next element to be
added is determined by adding all possible elements to a candidate list, ordered
with respect to a greedy function that measures the, maybe myopic, benefit of
selecting each element. This list is called the Restricted Candidate List (RCL).
The adaptive component of the heuristic arises from the fact that the bene-
fits associated with every element are updated at each iteration to reflect the
changes brought on by the selection of the element in the previous iteration.
The probabilistic component is present by the random choice of one of the best
candidates in the RCL, but usually not the best one. This way of choosing el-
ements allows for different solutions to be obtained at each iteration, while not
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necessarily jeopardizing the adaptive greedy component. The solutions gener-
ated by the construction phase are not guaranteed to be locally optimal. Hence,
it is almost always beneficial to apply a local search to attempt to improve each
constructed solution. The search phase is a standard deterministic local search
algorithm that seeks to optimize the solution built in the construction phase.

1: procedure Construct Solution(ListSize, Seed)
2: Solution ← 0;
3: Evaluate the incremental costs of the candidate elements;
4: while Solution is not a complete solution do
5: Build the restricted candidate list, RCL(ListSize);
6: Select an element s from the RCL at random;
7: Solution ← Solution ∪ {s};
8: Reevaluate the incremental costs;
9: end while

10: return Solution;
11: end Construct Solution

Fig. 2. Pseudo-code of the Construction Phase of GRASP

The GRASPW Implementation. The GRASPW implementation was con-
structed using the C/C++ programming language. The heuristic uses two types
of integer variables. One represents the beginning of execution of each activity
in the corresponding well. These values range between a minimum and a max-
imum start time, with those values depending on the current partial solution
being constructed. The second type of variables represents which resource will
execute each activity in its well. Their domains are characterized by a set of the
possible resources, of whose one must be chosen to execute the activity. All the
constraints described in Section 2 were enforced. Three constraints, namely, C2,
C3 and C4, were set while reading the problem data, before the search begins.
Note that, in these cases, all values needed to set the constraints are already
defined. The other constraints were dealt with during the search for solutions,
the variables involved being assigned single values.

The following adaptations were made to the procedure illustrated in Fig-
ure 1: (i) the search procedure was interrupted by a time limit instead of by the
number of iterations; and (ii) During a complete run of the GRASPW heuris-
tic, the value of ListSize can be monotonically incremented by a fixed amount
when a predefined interval of time is reached with no improvement on the best
solution. Doing so, the algorithm will explore larger regions of the search space.
Alternatively, during a run of GRASPW, the value of ListSize can be mono-
tonically decremented between iterations, thus focusing into a greedier heuristic.
With this scheme we obtain a dynamic sized RCL in opposition to the original
static sized RCL. Note that, as GRASP iterations are independent, one could
think that there is no difference between increasing and decreasing the RCL size.
However, as we do not know in advance the amount of time the algorithm will
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execute at each run or when the RCL size will be altered, we can not anticipate
the result of a GRASPW run, when increasing or decreasing the RCL size.

As in the ORCA implementation, we seek solutions with the highest oil yield.
To this end the construction phase illustrated in Figure 2 was modified thus:

1. The first time ever the construction phase is initiated, we use ListSize equal
to one, when the algorithm behaves like a pure greedy heuristic. With few
constraints obstructing the greedy heuristic, it tends to generate a good or
even very good solution. For example, in two out of twelve real instances,
the best solution was found in the first pass of the construction phase.

2. Before line 3, we added a function called isPressed. It verifies if any activity
of any well has a start time with a small domain and if only one resource
can do it at that time. By a start time with a small domain we mean that
its minimum and maximum values are very close, such that having only
one resource able to execute it indicates that there is almost no flexibility
to schedule the activity. If there are such activities, the function schedules
their wells. Retarding the schedule of such activities could render the so-
lution infeasible, as other activities may occupy the period of time where
those activities would be scheduled. We schedule the wells, and not only the
activities, in order to comply with constraint C10.

3. The candidates are defined by the production wells that are available (mean-
ing that there are no wells yet not scheduled which must precede them), or
the injection wells that have activities of production wells succeeding them.
The activities of injection wells that do not have activities of production
wells succeeding them are left to be scheduled after all others. Note that in-
jection wells are not productive and therefore must not be scheduled before
production wells, unless there are constraints forcing such a schedule.

4. The evaluation of incremental costs (line 3 of Figure 2) assesses how much
oil a well can offer until the end of the time horizon. The RCL is built with
those wells that offer the highest yields of oil. Actually, not only the oil offer
is considered, but also the oil offer of the constrained successors of that well.

5. In the construction phase, the next element to be introduced in the solution
is chosen uniformly from the candidates in the RCL (line 5 of Figure 2).
However, any probability distribution can be used to bias the selection.We
tried to bias the selection of the candidates proportionally to their oil offer.

6. To schedule the candidate well (line 7 of Figure 2), proceed as follows.
As long as there are activities not yet scheduled in the well: (i) choose any
activity available in the well, i.e., one not yet scheduled and such that there
is no other one not yet scheduled in the wells that must precede it; (ii) choose
a resource for this activity that can execute it, and that can complete the
activity the earliest; (iii) set the start time of the activity at the earliest
possible time, i.e., the maximum between the earliest time the resource is
available to execute the activity and the minimum start time of the activity;
and (iv) all activities that are constrained to succeed the chosen one must
have their minimum start times updated to satisfy any constraints.
The scheduling of a well is done so as to satisfy all constraints, including the
seven ones not yet enforced. In case of violations, and this can be tested after
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each activity is scheduled, the construction of this solution is aborted and a
new one is started. Instead, we could backtrack a few steps, but this would
slow down this phase, especially if the first steps were not appropriate.

7. After a well is scheduled, any activities that must succeed it has their min-
imum start time updated to satisfy any constraints. If that is not possible,
the construction of this solution is also aborted.

For the search phase, an appropriate neighborhood was defined, so as to
permit explorations quickly leading to better solutions. The 2-exchange local
search algorithm based on the disjunctive graph model [12] was used. The same
neighborhood was used in [11] for a Job Shop Scheduling problem. In order to
apply the 2-exchange local search to the WDP, we swap two elements in the
scheduling. For example, if in resource X the scheduling was ... → X1 → A →
X2 → ... and in resource Y it was ... → Y 1 → B → Y 2 → ..., where →
represents a conjunctive arc, the result of the swap would be a schedule like
... → X1 → B → X2 → ... and ... → Y 1 → A → Y 2 → ..., in resources X and
Y , respectively. Since the execution time of elements A and B can be different,
all activities after them may have their start times updated.

We need to decide, of course, what an element stands for. Some options are:
(i) An activity: with very small granularity, giving rise to huge neighborhoods [1],
and, worse, moving an activity to another position would possibly force us to
move also its predecessors and successors in the same well, because of constraints
C10; or (ii) A well: with higher granularity, but since the sequence of activities
in a well may be splited in the present schedule due to constraints C1, some
problems now being that moving all activities takes time to verify all constraints,
and exchanging the whole well may not be possible even though exchanging
only part of it could be; or finally (iii) Part of a well: (that is, a maximal set
of activities of the same well scheduled consecutively in the same resource) with
medium granularity and already satisfying constraint C10.

In our implementation we chose the last possibility, where the local search
algorithm exchanges all pairs of parts of two wells, no matter on what resource
they have been scheduled. That neighborhood is of size O(n2), where n is the
number of parts of wells. For practical instances, this is one order of magnitude
smaller than the neighborhood that uses activities as the moving elements.

To fully specify the local search phase we need a rule that defines how the
neighborhood is searched and which solution replaces the current one. This rule
is called the pivoting rule [13], and examples of it are the first improvement
rule (FIR) and the best improvement rule (BIR). In the first case, the algorithm
moves to a neighboring solution as soon as it finds a better solution; in the
second case, all neighbors are checked and the best one is chosen. In either case,
the worst case running time of each iteration is bounded by O(n2), where n is
the number of elements in the neighborhood. In the next section we present a
comparison between these two alternatives.



Comparative Experiments with GRASP and Constraint Programming 335

4 Computational Results

In this section, computational results for the GRASPW implementation are
given. They are also compared with results obtained with the ORCA implemen-
tation over the same real instances. All tests were run on a platform equipped
with a Sun SPARC Ultra 60 processor running a Solaris 9 operating system at
450 MHz and with 1024 MB of RAM. Both GRASPW and ORCA were allowed
to run for 1800 seconds on each instance.

Typical Instances. Twenty one real instances provided by Petrobras were used
in our tests. Table 4 summarizes the dataset. Columns with the same numerical
data refer to distinct instances that differ in the number of other constraints, like
C9. The first part of that table displays the instances were no C7 constraints
were found. In order to reduce the amount of time spent in testing, in some
experiments we used only 7 of these instances, eliminating instances that dif-
fered only in the number of clusters (see constraint C9, in Section 2). The lower
part shows the nine instances were C7 constraints were present. The ORCA
implementation had difficulties to handle these contraints.

Table 1. Test instances

Instance 1 2 3 4 5 6 7 8 9 10 11 12

# wells 29 22 29 29 17 22 22 29 29 22 29 22
# activities 98 107 98 98 111 107 128 98 98 107 98 107
# boats 1 1 2 1 1 2 1 1 1 2 1 2
# derriks 3 2 3 3 2 2 3 3 3 2 3 2
# C7 constr. 0 0 0 0 0 0 0 0 0 0 0 0

Instance 13 14 15 16 17 18 19 20 21

# wells 22 22 22 22 22 22 22 22 29
# activities 107 107 107 107 107 107 107 107 98
# boats 2 2 2 1 2 2 2 2 1
# derriks 2 2 2 2 2 2 2 2 3
# C7 constr. 1 1 1 1 1 1 1 1 2

Setting GRASPW Parameters. In Section 3 we presented the idea of a dy-
namic sized RCL. There are at least two ways we could exploit this idea: we
may decrease the number of candidates through time, using a greedier heuristic;
or we may increase the number of candidates through time, in order to drive
away from a local optimum into new regions of the search tree. In the first
case, the initial RCL size is set to max(13,w), w being the number of wells,
and is decreased by one every 300 seconds without improvement. In the sec-
ond case, we start with max(5,w) for the initial RCL size and increase it by
one every 300 seconds without improvement. The first approach did not yield
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(a) Instance 1 (b) Instance 2

Fig. 3. Static Sized RCL x Dynamic Sized RCL

good results when applied to the WDP, generating the same or worse solu-
tions than those found by GRASPW with a static sized RCL. However, the sec-
ond approach proved promising. Figure 3.a shows the algorithm with dynamic
sized RCL generating better solutions after 150 thousand iterations, when the
RCL is increased. The same happens in Figure 3.b after 50 thousand iterations,
when another real instance is tested. Amongst twelve scenarios tested, four had
better solutions with the dynamic sized RCL, totalizing an increase of around
261 thousand barrels of oil. In the other eight scenarios, the same solutions
were found.

Another technique tested was to bias the selection towards some particular
candidates, those with the highest oil yield, but this strategy did not produce
good results. Amongst twelve instances tested, three had slightly worse solu-
tions with such a bias function, totaling a decreasing of 40 thousand barrels
of oil. Worse, with the bias function in place, the algorithm takes much more
time to find the same solution than when no bias is used. Summing up all the
differences in time for the twelve scenarios, with the bias function the algo-
rithm took 3431 more seconds to reach the same results, an average increase of
72%.

We also considered two options for searching the neighborhood and selecting
a new neighbor: the first improvement rule (FIR) and the best improvement rule
(BIR). We tested both of them on seven instances. The BIR heuristics proved
to be the best one when finding solutions whose production was equal to a
predefined target value and with the least number of iterations (see Figure 4
(a) and (c)). On average, to find a solution with a predefined production, the
BIR strategy used about 60% of the number of iterations of the FIR strategy.
On the other hand, the FIR strategy was faster in most instances (see Figure 4
(b) and (d)). On average, to find a solution with a predefined production, the
FIR strategy used 66% of the time used by the BIR strategy. That is because,
on average, a FIR iteration was almost seven times faster than a BIR iteration.
Since, to users, running time was deemed important, the FIR strategy was found
to better suit this problem.
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(a) Instance 1 - BIR (b) Instance 1 - FIR

(c) Instance 2 - BIR (d) Instance 2 - FIR

Fig. 4. BIR × FIR

The ORCA and the GRASPW Implementations. Our GRASPW imple-
mentation found better solutions than the ORCA implementation on all twelve
but one of the real instances tested and, in that one, it found the same solution.
GRASPW achieved 0.14% more oil production on average which, despite being
a small percentage, means an increase of almost one million barrels of oil, in
total. Perhaps, the highest gain with GRASPW was in running time. It found
solutions with the same production of those generated by ORCA, on average, in
only 36.3% of the time used by ORCA on the same instances. Figure 5.a shows
that the best GRASPW solution has a production 290 thousand barrels of oil
higher than the best ORCA solution. Furthermore, GRASPW found a solution
with the same oil production of the best ORCA solution within the first second,
while ORCA found it only after 2200 seconds. Similarly, Figure 5.b shows that
the best GRASPW solution has a production of almost 200 thousand barrels
of oil higher than the best ORCA solution. Again, GRASPW found a solution
with the same oil yield as the best ORCA solution within the first second, while
ORCA found it only after 1000 seconds.

In all the nine tested scenarios, where the constraints C7 were present,
GRASPW found better solutions than ORCA. In one of them, ORCA could
not find any solution, while GRASPW found one with about 26 million barrels
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(a) Instance 1 (b) Instance 2

Fig. 5. ORCA x GRASPW

(a) Instance 3 (b) Instance 4

(c) Instance 5 (d) Instance 6

Fig. 6. ORCA x GRAPS

of oil production. Comparing the other eight scenarios, GRASPW achieved 5.3%
more oil production, on average, which means an increase of around 4.6 million
barrels of oil, in total. In Figure 6 we present the results over four such instances.
In all of them GRASPW was more effective than ORCA.
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5 Conclusions

Scheduling activities efficiently is of paramount importance to the industry, in
general. Petrobras, a leading company in deep water exploration of oil, presented
us the WDP, a scheduling problem related to oil well drilling. Here we constrast
two approaches to the WDP: the constraint programming tool ORCA and a
GRASP implementation, dubbed GRASPW. Computational experiments were
carried out on several real instances. We conclude that GRASPW greatly out-
performs ORCA. Not only it generates solutions with higher oil production, but
often it outputs solutions with the same oil production as ORCA in much less
time. We also note that ORCA already produced better results than the manual
solutions.

It is worth mentioning that ORCA is built over the ILOG Constraint Pro-
gramming suite, a set of highly expensive and sophisticated libraries with years of
development. Using GRASPW, which was entirely programmed from the ground
up, these costs could be averted. In opposition, the ILOG suite favors easiness
of development, of maintenance and of understanding of the source code.
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Abstract. In this paper we show how to use stochastic estimation meth-
ods to investigate the topological properties of sensor networks as well as
the behaviour of dynamical processes on these networks. The framework
is particularly important to study problems for which no theoretical re-
sults are known, or can not be directly applied in practice, for instance,
when only asymptotic results are available. We also interpret Russo’s
formula in the context of sensor networks and thus obtain practical in-
formation on their reliability. As a case study, we analyse a localization
protocol for wireless sensor networks and validate our approach by nu-
merical experiments. Finally, we mention three applications of our ap-
proach: estimating the number of pivotal sensors in a real network, min-
imizing the number of such sensors for robustness purposes during the
network design and estimating the distance between successive localized
positions for mobile sensor networks.

1 Introduction

Recent technological improvements have favoured the development of small, in-
expensive, low-power, multifunctional sensor nodes. These tiny sensor nodes are
the numerous sensing, data processing, and communicating components of an
extended network: a wireless sensor network [1]. There are several types of sen-
sors (e.g. thermal, visual, infrared, acoustic or radar), which are able to monitor
their vicinity (e.g. measure temperatures, noise levels or vehicular movements).
Wireless sensor networks can thus help monitor and control physical environ-
ments through collection and distribution of data in which the usually densely
scattered sensors collaborate to perform some specific action. The collected data
must be routed back through a multihop infrastructureless architecture to a
distinguished node which can then communicate to a task manager via the In-
ternet or by satellite. In most cases, the environment to be monitored does
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not have an existing infrastructure neither for energy nor communication and
is often very rough. This influences the design of a sensor network with re-
spect to fault tolerance, scalability, production costs, sensor network topology,
hardware constraints, transmission media, computational capacity, and power
consumption. The constraints are often due to the inexpensive nature and ad-
hoc method of deployment of the sensors. As a matter-of-fact, the major con-
cern is to extend the lifetime and robustness of sensor networks. Particular care
must given to energy efficient routing, localization algorithms and system de-
sign. To this end, energy consumption for processing and communication must
be optimized. It is also required that sensor networks display some form of self-
organization for both communication and positioning so as to adapt to changing
connectivity (e.g. addition or failure of nodes) as well as changing environmental
conditions.

Application areas include military, environment, health and chemical pro-
cessing. In particular, wireless sensor networks can perform bio-system analysis
or surveillance of seismic activity through area monitoring. They can for exam-
ple help to identify the type, concentration, and location of pollutants in air
or water. In such settings, sensors monitoring a given part of the entire area
should know their location in order to provide information on what happens
together with where it happens. Towards this goal, sensors could be equipped
with GPS systems. However, this solution would have two main drawbacks: the
cost and the energy consumption [17, 18]. Indeed, for large scale sensor networks
the individual price of GPS systems becomes an important factor in the net-
work design. Moreover, the energy requirement would shorten the lifespan of
the network. Therefore, many strategies have been developed to ensure localiza-
tion of the entire set of sensors while minimizing the number of GPS systems
involved in the localization process. Surveys on the existent strategies can be
found in [5, 23] where they are classified and analysed. We also refer to [8, 9] in
which the authors make an empirical analysis of different protocols, in particular
for localization. With respect to complexity, the localization problem turns out
to be NP-hard [2]. It can be worthwhile to use stochastic estimation methods
to obtain numerical information about the process. In relation to this, let us
mention the inspiring work [20, 21, 22] that makes strong use of randomization
and stochastic processes.

In this paper, we show how to use stochastic estimation methods, first in-
troduced in [15], to investigate the topological properties of sensor networks as
well as the behaviour of dynamical processes on these networks. The framework
is particularly important to study problems for which no theoretical results are
known, or can not be directly applied in practice, for instance, when only asymp-
totic results are available. The framework is also useful, for example, for network
design or optimisation of network parameters. Moreover, we interpret the well-
known Russo formula [7, 16] in the context of sensor networks and we thus obtain
practical information on the network reliability. We point out in the existing lit-
erature [6, 19] suitable numerical estimation methods and implement them for
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our practical analysis. Concretely, our framework is applied to the problem of
localization in wireless sensor networks.

The paper is organised as follows. In the next section, we introduce a model of
sensor networks and a localization protocol. Section 3 presents the probabilistic
model, theoretical results concerning the probability of success of the localization
proocol and the stochastic estimation methods to be implemented. Numerical
experiments are then performed and discussed in section 4. We go on in section 5
with three applications of the framework developed previously. We draw some
conclusion in the final section.

2 Model of Sensor Networks and Localization Protocol

We consider sensors scattered over a unit square region [0, 1]2 with a uniform
distribution. A given sensor can communicate with all the sensors located in
a region corresponding to a sector of a disk (see Figure 1). The motivation
for considering such a geometry for the transmission of the signal comes from
optical networks [9] as well as from the development of smart antennas for radio
transmission. Indeed, if radio waves are chosen as the mean of transmission of
the information, the problem of interferences between simultaneous emissions
has to be faced. A way of addressing this is to choose a shape for the antenna
emission pattern which minimizes the probability of interferences, provided a
solution exists! Results in the field of percolation [4] show that the shape of the
antenna emission pattern has an influence on the percolation probability and,
quite surprisingly, that the circle seems to be the worst shape. In this paper
interferences are not taken into account and we assume that transmission is
supported by protocols able to recover from lost data. We do not either deal
directly with energy consumption. The radius of emission r as well as the angle
of emission α are kept constant through time and are the same for all sensors.
The orientation β is also kept constant. It is drawn from a uniform distribution
on the circle ([0, 2π[). Notice that the assumption that the angle of emission is
constant with time is not essential. Actually our analysis remains valid if the

β

r

α

Fig. 1. Sensor with radius of emission r, angle of emission α and orientation of the

emission β
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angles change independently. This is also the case if the sensors move in such a
way that they remain uniformly distributed on the square region.

The localization protocol whose properties we investigate is the following.
The total number of sensors is fixed equal to n out of which a subset, henceforth
referred to as localized sensors, is equipped with GPS systems. For each sensor,
this occurs independently with probability p. Localized sensors make their po-
sitions known to connected sensors. A sensor which receives 3 positions is able
to locate itself, for example by triangulation using distance estimates. Then, a
sensor which has just computed its position sends it out so that the localization
process goes on until no new sensor becomes localized. We say that the process
is successful if the percentage of sensors that are eventually localized, is greater
than a fixed threshold.

3 Probabilistic Model and Recursive Estimation

We begin by describing the probabilistic model for the point process which ac-
counts for the uniform scattering of the sensors over the square area [0, 1]2,
and the random selection of an orientation for information transmission. Re-
call that n denotes the total number of scattered sensors. A point configura-
tion V = {(x1, y1, θ1), . . . , (xn, yn, θn)} of n sensors is an unordered sequence of
triplets (xi, yi, θi) where (xi, yi) are coordinates and θi an orientation in which
sensor i transmits. The coordinates, respectively the orientations, are random
variables independently and uniformly distributed in [0, 1], respectively in the
circle [0, 2π[. Let Si be the disk sector described in Figure 1 with origin (xi, yi).
We define the following incidence relation on V : there is an oriented edge from
sensor Xi located at (xi, yi) to sensor Xj located at (xj , yj) if (xj , yj) ∈ Si.
Clearly, an edge indicates that sensor Xi can transmit data to sensor Xj .

Definition 1. We denote by Λ the entire set of sector graphs (V,A) where A is
the set of edges associated to the point configuration V .

The space Λ can be made into a probability space. For our purpose, we do not
need to exhibit how this probability space is defined and hence, the construction
is omitted and we refer to [12] for similar constructions.

Let us formulate the localization process probabilistically. We first obtain a
sector graph in Λ resulting from the scattering of sensors in [0, 1]2. A random
orientation for the emission is assigned to each sensor which in turn receives a
GPS system with probability p. So p is roughly the density of localized sensors
among the total set of sensors at the beginning of the localization process. We
denote by η = η(p) a possible assignment of GPS, where η(i) = 1 if sensor
i is localized and 0 otherwise. The set of all GPS assignments is denoted by
Ω. It is a probability space with the power set P(Ω) as σ−algebra and the
product probability measure. The process of localization starts according to the
protocol described at the end of the previous section. We consider the event
whether the process is successful or not. Thus, we define a Bernoulli random
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variable L : Λ × Ω → {0, 1} which depends on the parameter p, i.e. L = 1
with probability m(p) := Pp({L = 1}). The primary task in the analysis of the
chances of success for the localization process is to obtain a plot of the function
m(p). Theoretical results about this function can then be derived to support the
effectiveness of our numerical methods.

Theorem 1. The function m(p) is polynomial in p.

Proof. To a given sector graph we associate its adjacency matrix. Denoting by
Adj the set of adjacency matrices there is then a measurable map Λ → Adj which
defines a probability measure on the set Adj. The random variable L : Λ×Ω →
{0, 1} can actually be seen as a random variable L : Adj ×Ω → {0, 1}, we thus
keep the same notation for both random variables. Since Adj and Ω are finite
sets and since each element belonging to Adj ×Ω has polynomial probability in
p, all events belonging to P(Adj ×Ω) are polynomial in p.

�

Definition 2. We define a partial order on Ω by setting η ≤ η′ if η(i) ≤ η′(i)

Definition 3. An event B ⊂ Ω is said to be increasing if its indicator function
IB is increasing, namely IB(η) ≤ IB(η′) whenever η ≤ η′.

Proposition 1. Given a sector graph g ∈ Λ the event {L = 1 | g} is increasing.

Proof. The event {L = 1 | g} depends only on the GPS assignment vector η
and it is clear that adding a localized sensor can do nothing but increase the
indicator function of {L = 1 | g}. Formal arguments based on coupling can be
found in [10].

�

Definition 4. Given a sector graph g, a sensor i is called pivotal if η ∈ {L =
1 | g} and η′ �∈ {L = 1 | g} where η′ is obtained from the assignment η by changing
η(i) = 1 to η(i) = 0.

We must emphasize the following fact: given a sector graph, a pivotal sensor can
neither fail nor be removed without compromising the success of the localization
algorithm. Hence, the number of pivotal sensors gives a crucial information about
the reliability of the localization process. The derivative of the function m(p) has
a representation in terms of pivotal elements.

Theorem 2. The derivative of the function m(p) := Pp({L = 1}) satisfies

m′(p) :=
d

dp
Pp({L = 1}) = Ep(number of pivotal sensor for {L = 1}). (1)

Moreover, the function Pp({L = 1}) is increasing with p.
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Proof. By proposition 1 the event {L = 1 | g} is increasing, hence we can apply
Russo’s formula [7, 10, 12, 16]. In our context, the formula states

d

dp
Pp({L = 1 | g}) = Ep(number of pivotal sensor for {L = 1 | g}). (2)

Taking the expectation of (2), we get at once the right hand side of (1). The
probability Pp({L = 1 | g}) being polynomial in p the expectation and the deriva-
tive commute to obtain the left hand side of (1). The right hand side of (1) is
positive implying that the function Pp({L = 1}) is increasing.

�

Definition 5. We call the function d
dpPp({L = 1}) the instability coefficient

function.

Our numerical analysis is based on stochastic estimation methods, first in-
troduced in [15]. This work stimulated many researches because of the vast
domain of applications ranging from non-parametric and parametric estimation
to stochastic optimisation, including automation and remote control. Research
in this field is synthesized in [14]. In [11] the authors already applied a similar
procedure to implement a solution to the energy balanced data propagation in
wireless sensor networks. The main drawback of the procedure is the relatively
slow rate of convergence which is of order O(#step−1/2).

We assume that the total number of sensors n, the radius of emission r and
the angle of emission α are fixed. We choose an initial value for the parameter
p1 which is the probability that a sensor is equipped with a GPS system. We
draw a sample sector graph and a configuration of sensors which are localized
accordingly to the value of the parameter p1. Then, we start the localization
process which yields a sample for the random variable L : Λ → {0, 1}. The
parameter p1 is updated with the rule [15]

pj+1 = pj +
1
j
(y − L(pj))

with y ∈ [0, 1] kept fixed. If the parameterized probability function m(p) =
P ({L = 1 | p}) satisfies some regularity conditions [3, 14, 15], then it is known
that pj → p(y) as j → ∞ where p(y) is such that m(p(y)) = y. Hence, by
repeating this procedure with different values of y, we get a set of points (p(y), y)
of the curve p %→ m(p).

Theorem 3. The sequence (pj)j≥1 recursively defined by

pj+1 = pj +
1
j
(y − L(pj))

converges almost surely to a value p such that m(p) = y, for any initial value p1.

Proof. The results in theorem 2 imply that the hypothesis (see [3, 14, 15]) ensur-
ing the convergence of the scheme are fulfilled.

�
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The derivative of m(p) must also be estimated since it is related to the expected
number of pivotal sensors (theorem 2). This problem was first solved in [19] (see
also [6, 14]). The numerical scheme requires to simulate the localization process
twice per random sector graph with different values for the paremeter p as stated
in the following theorem.

Theorem 4. The intertwined numerical scheme ([19]) recursively defined by

aj =
1
j

j∑
k=1

L(pj + j−γ)− L(pj − j−γ)
2j−γ

.

and

pj+1 = pj +
(1
j

+
1√
j

) 1
2aj

(
y − L(pj + j−γ) + y − L(pj − j−γ)

)
,

where 0 < γ ≤ 0.5, converges almost surely for any initial value p1. The sequence
pj converges to a value p which satisfies m(p) = y and aj → m′(p) with m′(p)
the derivative of m at p.

The simulations in the next section apply the previous scheme with γ = 0.4.

4 Numerical Simulations

We propose a numerical scaling analysis of the localization process by plotting
the probability of success m(p) and its derivative m′(p) for various antenna ra-
diation patterns. We performed three sets of experiments. In the first one, we
keep the angle of emission and the density of sensors constant while the radius
of emission varies. In the second one, the angle changes while the radius and
the density remain constant. In the last one, we vary the density keeping the
other two parameters constant. These simulations are devoted to the numerical
analysis of the impact of the antenna radiation pattern on the success of the
localization process. This problem is connected to open questions in the field
of percolation theory mentioned in the introduction and discussed in [4]. It is
in particular important for the development of smart antennas for wireless net-
works. This set of experiments also allows us to validate our framework based
on stochastic estimation methods.

We now present our simulations. In Figures 2, 3 and 4, we plot the graphs
p %→ m(p) on the left and p %→ m′(p) on the right. For each set of parame-
ters, angle of emission, radius of emission and density, the computations are
performed three times because of the slow rate of convergence. This gives us
some confidence on the convergence of the process when the measurement is
taken.

The first set of experiments is shown in Figure 2. It allows us to numerically
investigate the impact of increasing the area of the antenna radiation pattern
through an increase of the radius of emission while the angle of emission is kept



348 P. Leone et al.

Fig. 2. Graphs of the regression function m(p) on the left and m′(p) on the right with

α = 1. and r = 0.1, 0.3, 0.7
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Fig. 3. Graphs of the regression function m(p) on the left and m′(p) on the right with

α = 0.3, 1.0, 2π and r = 0.1

constant. We chose n = 50 for the total number of sensors and α = 1.0 radian
for the angle of emission. The radius of emission varies from r = 0.1 to r = 0.7.

For the second set of experiments, we still have n = 50 for the total number of
sensors and the radius of emission is constant with r = 0.1. The angle of emission
changes from α = 0.3 to α = 2π radian. Results are presented in Figure 3.

The last set of experiments deals with the impact of the density of sensors
on the success of the localization process. We successively chose n = 50, 100, 200
while the radius of emission with r = 0.1 and the angle of emission with α = 2π
are kept constant. Numerical results are presented in Figure 4.

Although the numerical analysis of this type of problem should be done in a
more systematic way than in this work, we still try to give some interpretation
of the results. Figure 2 shows that increasing the radius of emission improves
the probability of success of the localization protocol. This is expected since the
area covered by the emission and hence the expected number of sensors prone to
receive the data, are increased. However, when the radius is small, the probability
of success seems to depend little on the radius. This can be observed from the
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Fig. 4. Graphs of the regression function m(p) on the left and m′(p) on the right with

α = 2π and r = 0.1 and n = 50, 100, 200 from top to bottom

superposition on Figure 2 of the curves with radius of emission r = 0.1, 0.3.
With a larger radius of emission r = 0.7, the probability of success increases
significantly and the process becomes more robust since the number of pivotal
sensors decreases. Further numerical investigations with a finer tuning of the
radius will allow us to monitor more carefully what happens when the radius of
emission increases. For instance, whether there seems to be a phase transition
or not. Suprisingly results on Figure 3 shows no dependency on the angle of
emission α. This might be due to the relatively small value of the radius. One can
infer that the probability of success of the localization algorithm does not only
depend on the area covered by the emission but also on the shape of the emission
radiation pattern. Results on Figure 4 show that increasing the density of the
sensors increases the chances of success of the process. More interestingly, we
observe that the maximum expected number of pivotal sensors seems to depend
little on the density. Indeed, on Figure 4 right, we observe a maximum at about
7 pivotal sensors. In our opinon, it is worth investigating this particular point
further, since it could reflect some structural properties of the random graphs.

5 Applications

We now describe three practical applications of the framework introduced in
this paper. The first application is concerned with the problem of estimating the
instability coefficient, hence the expected number of pivotal sensors in a given
networks. The second application is oriented towards network design. We assume
that the total number of sensors to be scattered in a given region as well as their
characteristics are known. We look for a placement of the sensors in the region
which minimises the expected number of pivotal sensors in order to make the
network more robust to failures. The last application deals with mobile sensor
networks in an informal manner.
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5.1 Networks Robustness Estimation

We consider a given network with n sensors, k of them being localized with a
GPS system. We assume that the process of localization described in section 2
is successful. The problem is to estimate the number of pivotal sensors. If we
assume that the probability for a sensor to be localized is p, the expected total
number of localized sensors X is E(X) = np. We search for the probability that
X = k. Let ε < 1 be the order of certainty in the following analysis. Using
Chernoff’s bound [13], we know that with

δ(np, ε) =

√
4 ln(1/ε)

np
, 0 < δ < 1, (3)

we have
Pr
(
(1− δ)np < X < (1 + δ)np

)
< e−npδ2/2 . (4)

Clearly, the right hand side of (4) has to be made as small as possible. We rewrite
the expression on the left side replacing δ with the expression (3) to obtain

(
1−

√
4 ln(1/ε)

np

)
np < k <

(
1 +

√
4 ln(1/ε)

np

)
. (5)

Given that we have fixed the order of uncertainty ε, we obtain

2 ln(1/ε) + k − 2
√

ln(1/ε)2 + k ln(1/ε)
n

< p... (6)

... <
2 ln(1/ε) + k + 2

√
ln(1/ε)2 + k ln(1/ε)
n

(7)

For example, assuming n = 50 and k = 5, we get with ε = 0.1

0.28 < p < 0.36. (8)

If we assume that the radius of emission r = 0.1 and the angle of emission α = 1,
we can look at Figure 2 to determine that the expected number of pivotal sensors
lies in the interval [4.0, 5.5].

5.2 Network Design

Assume we are given a fixed number of sensors n with specified characteristics
and we would like to monitor a given area. The problem is to place the sen-
sors in such a way that a given process will succeed in the network and ensure
that the placement maximises the robustness of the network. Although, the pro-
cess we consider is evidently not the localization process, it could be a flooding
process for example, we keep in mind the situation of the previous section as
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an illustration. We assume that we have already computed a figure similar to
the one in Figure 2 for the particular process under investigation. Consider for
example the right picture in Figure 2. We would like to exhibit a configuration of
sensors which minimises the expected number of pivotal sensors, i.e. maximises
the robustness of the network. This can be done using the same type of proba-
bilistic method: choose a value of the parameter p which minimises the expected
number of pivotal elements and get sample points through simulations. For this
application, it would be useful to use a stochastic estimation for the variance
of the expected number of pivotal sensors in order to bound the real number of
pivotal elements.

5.3 Mobile Sensor Networks

Consider a sensor network with mobile sensors monitoring a given area. We as-
sume for cost and energy consumption reasons that not every sensor is equipped
with a GPS system. Thus, whenever sensors want to send data, a localization
process must take place because the data is meaningless without the location
of the sensor. Therefore, a probabilistic estimate of the maximal or typical dis-
tance a sensor travels between localized positions is required. Our framework
can apply to the situation where every sensor needs to be localized at a given
time. We assume the motion of the sensors is represented by a suitable Markov
chain X(t) in the set of random sector graphs. For every discrete time t, the
localization process on the random sector graph X(t) can be successful or not.
We denote this random variable by L(X(t)) ∈ {0, 1}. The process X(t) possesses
limit laws which entails that limt→∞ P ({L(X(t)) = 1}) = ν. The limit ν can be
inferred from numerical simulations as described in section 3. For t large enough,
we have P ({L(X(t)) = 1}) ≈ ν and the probability that the interval between
two successes of the localization process is n can therefore be approximated by
(1− ν)n−1ν (geometric distribution).

6 Conclusion

The probabilistic framework developed in this paper is validated by the sim-
ulations and can therefore be applied for handling difficult problems numeri-
cally. Concerning the analysis of the localization protocol, we observed that the
changes in the shape of the probability of success are not important when the
radius or the angle of emission vary, provided that the density of sensors is
relatively small. However, the shape of the plots vary considerably more with
the increase of the density as was observed in the numerical experiments. A
complete analysis of the protocol would require more systematic numerical com-
putations. We emphasize that the aim of this paper was to build the framework
for stochastic numerical evaluation, validate our approach and point out pos-
sible applications. The applications listed in the previous section, demonstrate
the potential of the method.
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Abstract. We consider the problem of satisfying the maximum number of con-
straints of an instance of the Periodic Event Scheduling Problem (PESP). This is
a key issue in periodic railway timetable construction, and has many other appli-
cations, e.g. for traffic light scheduling.

We generalize two (in-) approximability results, which are known for MAXI-
MUM-K-COLORABLE-SUBGRAPH. Moreover, we present a deterministic com-
binatorial polynomial time algorithm. Its output violates only very few constraints
for five real-world instances.

1 Introduction

The Periodic Event Scheduling Problem (PESP) has been introduced by Serafini and
Ukovich ([18]). This powerful model has many practical applications, e.g. traffic light
scheduling ([7]) and periodic railway timetabling. In the context of the second appli-
cation, it has been exemplified in several studies that exact optimization can be very
difficult for real-world instances ([16, 10, 12]). These studies made even use of sophis-
ticated MIP models and several problem specific classes of valid inequalities.

Nevertheless, the PESP has proven to be sufficiently powerful to model the vast ma-
jority of the requirements which practitioners impose. For a concise review of the mod-
eling capabilities of the PESP— including the minimization of the amount of rolling
stock required to operate a timetable, and even some decisions of line planning—we
refer to [9]. In particular, the 2005 timetable of the Berlin underground is the first one
which has been computed by mathematical optimization methods ([8]). At the level of
strategical planning, both Nederlandse Spoorwegen and Deutsche Bahn AG use soft-
ware which is based on the PESP-model ([17, 10]).

The reported difficulties motivate to have a look at local search procedures. This
does also hold for models for timetabling that are based on the quadratic semi-assign-
ment problem (QSAP), for which Daduna and Voß consider the minimization of pas-
senger transfer times ([4]). For some PESP-models, the genetic algorithm that has been
proposed by Nachtigall and Voget ([13]), constitutes a competitive alternative ([10, 5]).
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However, sometimes it is already difficult to come up with a feasible solution, and the
performance may depend on the quality of the initial population.

Contribution. This is the first time, the question of satisfying as many PESP-constraints
as possible is addressed formally. We are able to generalize two (in-) approximability
results that were established for MAXIMUM-K-COLORABLE-SUBGRAPH.

Moreover, we present a deterministic combinatorial polynomial time algorithm,
whose output violates only very few constraints. In a computational study on five
practical instances—ranging from long-distance traffic over regional traffic down to
undergrounds—we exhibit its superiority compared to three other heuristics, two of
these being previously published in related contexts.

2 Problem Definition

We start by defining the PESP formally, and then derive the problem of satisfying the
maximum number of constraints of a PESP instance. We include the constant integer
period time T of the input network in the name of the problem—just as with the con-
stant K for K-VERTEX-COLORABILITY.

An instance I = (D, �, u) of T-PESP consists of a directed graph D = (V,A)
and vectors � and u of lower and upper time bounds for the arcs. As usual, we set
n := |V | and m := |A|, and we denote by G(D) the underlying undirected graph
of D. We may assume �a ≤ ua. In the case of � and u being integral vectors, we call
an instance of T-PESP integral. A (feasible) solution of a T-PESP instance is a vec-
tor π : V → [0,T )—which may represent time values of, say, hourly recurring depar-
ture/arrival events within a public transportation network, see [9]—fulfilling periodic
constraints of the form

(πj − πi − �a) mod T ≤ ua − �a, a = (i, j) ∈ A, (1)

or πj−πi ∈ [�a, ua]T for short. Sometimes, we will refer to a constraint (1) by its arc a.
In practice, often a (linear) objective function over the slack times (πj−πi−�a) mod T
has to be minimized. We mention two simple but useful properties of T-PESP.

Lemma 1 ([18]). If the underlying undirected graph G(D) of D of an instance I of
T-PESP is a forest, then I has a feasible solution.

Remark 1 ([11]). For every feasible integral instance of T-PESP, there exists an integral
solution π ∈ {0, . . . ,T − 1}V , because a resulting LP is totally unimodular.

Remark 2. Notice that we allow parallel arcs explicitly. They provide the ability to
model disjunctive constraints ([18]), which are extremely useful in practice ([9]).

The input for MAX-T-PESP is the same as for T-PESP. A solution of MAX-T-PESP

is a vector π : V → [0,T ) which maximizes

|{a = (i, j) ⊆ A |πj − πi ∈ [�a, ua]T }|.
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Besides providing initial solutions for local search algorithms for PESP minimization
problems, MAX-T-PESP has an intrinsic application in practice. For instance, during
the evenings’ service—where T equals 10 minutes—the Berlin underground aims at
offering a changeover waiting time of at most five minutes for a maximum number of
connections ([8]). Currently, this can be offered for the 48 most important connections.
Among the next 86, of approximately 110 remaining connections, 55 do not exceed this
bound. In [17], a similar goal is reported for Dutch railways (NS).

3 Approximability of MAX-T-PESP

Odijk ([14]) proposed the most convenient proof of the NP-completeness of T-PESP by
polynomially transforming K-VERTEX-COLORABILITY to T-PESP. Recall that there
are two canonical optimization variants of K-VERTEX-COLORABILITY. The most pop-
ular is to compute the chromatic number of a graph. But this question is of no practical
relevance for the construction of periodic railway timetables, because the period time of
the transportation system is a fixed constant—passengers would never accept a period
time of, say, 53 minutes.

Consider the other optimization variant, namely MAXIMUM-K-COLORABLE-SUB-
GRAPH. Here, we seek for a K-coloring of the vertices such that a minimum number of
edges relates two vertices sharing the same color. We summarize some of the main prop-
erties of MAXIMUM-K-COLORABLE-SUBGRAPH and relate them to MAX-T-PESP.

Theorem 1 ([15]). MAXIMUM-K-COLORABLE-SUBGRAPH is MAXSNP-hard.

Theorem 2. MAX-T-PESP is MAXSNP-hard.

Proof. We provide an L-reduction from MAXIMUM-K-COLORABLE-SUBGRAPH to
MAX-T-PESP. Consider an instance of MAXIMUM-K-COLORABLE-SUBGRAPH being
defined on a graph G(V,E). Let D = (V,A) be an arbitrary orientation of G. Set
T = K and define �a = 1, ua = T − 1 for every a ∈ A.

Let A′ be any subset of A and consider the instance I ′ := (D′ = (V,A′), �|A′ , u|A′)
of T-PESP. Due to Remark 1, we know that from every solution of I ′ we can derive an
integral solution π′ ∈ {0, . . . ,T − 1}V of I ′ in polynomial time. By the choice of �
and u, we may interprete π′ as a vertex coloring.

Let E′ ⊆ E be the projection of A′ into G. Then, there exists a bijection between
K colorings of G which respect the edges in E′ and vectors π ∈ {0, . . . ,T − 1} which
respect the constraints (1) for the corresponding set A′. Trivially, the above construction
constitutes an L-reduction—in particular α = β = 1. ��

Corollary 1. There is no PTAS for MAX-T-PESP, unless P=NP.

Corollary 2. MAX-T-PESP can be approximated within some fixed constant ratio.

Proposition 1 ([19]). MAXIMUM-K-COLORABLE-SUBGRAPH can be approximated
with ratio K−1

K .
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Remark 3. Recall that for dense graphs, a PTAS for MAXIMUM-K-COLORABLE-SUB-
GRAPH can be derived using the techniques of Arora, Karger, and Karpinski ([1, 3]).
Further, notice that the ratio of K−1

K can be improved by applying the semidefinite
programming techniques due to Goemans and Williamson ([6, 3]). However, this im-
provement becomes arbitrarily small for large values for K.

Proposition 1 might sound promising for railway timetabling. There, often T is at
least 60 minutes. Hence, the precision used by the German railway infrastructure com-
pany (6s) yields even T = 600. Further, bear in mind that the K-COLORING require-
ment can be respected for every arc being incident to vertices with degree at most K−1.

We should analyze, if we may profit from Proposition 1 for MAX-T-PESP. Unfortu-
nately, this is limited, in particular if many constraints with small span ratio ρa = Δa+1

T
are involved, Δa := ua − �a being the span of a constraint, i.e. with ρa � 1. Notice
that the span ratio is invariant under any scaling of the time precision. We say that a
constraint (1) is symmetric, if ua = T −�a. Further, we call an instance of T-PESP span
homogeneous if there exists an α ∈ [0,T ) such that Δa = α for every a ∈ A.

On the one hand, neither symmetric nor span homogeneous instances seem to have
any practical motivation in railway timetabling. On the other hand, as they constitute
the bridge to MAXIMUM-K-COLORABLE-SUBGRAPH, they will enable us to gen-
eralize both, algorithms and approximation guarantees from MAXIMUM-K-COLOR-
ABLE-SUBGRAPH to MAX-T-PESP. More specifically, in the following section we pro-
vide a ρ-approximation algorithm for the span homogeneous integral MAX-T-PESP.

4 Heuristics for MAX-T-PESP

We present four heuristics for MAX-T-PESP. The first and the second one were previ-
ously published ([13, 18]). The third one is inspired by Vitanyi’s approximation algo-
rithm for MAXIMUM-K-COLORABLE-SUBGRAPH ([19]). The fourth one constitutes a
considerable improvement of the first heuristic and is the main target of the computa-
tional study in Section 5.

4.1 MST Heuristic

Algorithm 1 can already be found in the pioneering work of Serafini and Ukovich ([18]).
It is based on Lemma 1 and thus ensures n − 1 constraints of I to be satisfied. By
choosing the spans as weights for the MST computation, we ensure that n − 1 very
tight constraints—i.e. hopefully the most difficult ones—are always satisfied.

A more detailed analysis requires to specify how to choose the value for πv in Step 6.
By the following lemma, we illustrate that a global rule which does not take into account
local configurations of a specific instance provides only poor results.

Lemma 2. For every T ≥ 4, the approximation ratio of Algorithm 1 for MAX-T-PESP

is Θ( n
m ), if in Step 6 πv is selected such that the lower bound of arc a becomes tight.

Proof. Consider the complete graph Kn. Orient its edges such that a = (i, j) ∈ A
implies i < j. Set �a = 0 and ua = 1 if a = (1, v), v ∈ {2, . . . , n}, �a = 1 and
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Algorithm 1 MST heuristic ([18]) for MAX-T-PESP

Input: Instance I = (D, �, u) of MAX-T-PESPwith D being a connected digraph
Output: Vector π ∈ [0, T )V and spanning tree F ⊆ A of D, such that the vector π is feasible

for all arcs a ∈ F
1: Compute a minimum spanning tree F ⊆ A of D with respect to the arcs’ span Δa = ua−�a.
2: Choose an arbitrary v ∈ V .
3: Set πv := 0 and V ′ := {πv}.
4: while V ′ �= V do
5: Choose v ∈ Γ (V ′), i.e. a neighbor of V ′ and let a ∈ F be the arc connecting v to V ′.
6: Set πv to a value in [0, T ) such that constraint a is satisfied.
7: V ′ ← V ′ ∪ {v}
8: end while

ua = T − 1 otherwise. Algorithm 1 assigns the the same value πv to every vertex.
Hence, precisely the n− 1 constraints induced by the tree arcs are satisfied.

Now, set πv = 0 for v odd, and πv = 1 otherwise. The constraints of the tree
arcs are still satisfied. But any arc that connects an odd vertex with an even vertex
becomes satisfied, too. Roughly speaking, this is every second arc of Kn−1. Hence,
Θ(m) constraints can be satisfied. ��

Corollary 3. For planar graphs, Algorithm 1 ensures an approximation ratio of 1
3 .

4.2 Local Improvements

A vector π computed by Algorithm 1 can be improved locally by the following algo-
rithm, which is due to Nachtigall and Voget ([13]). Observe that the performance of
Algorithm 2 depends on the order in which the vertices are processed.

Algorithm 2 Local improvement algorithm for MAX-T-PESP

Input: Instance I = (D, �, u) of MAX-T-PESP and a vector π ∈ [0, T )V

Output: Vector π′ ∈ [0, T )V

1: π′ ← π
2: for all v ∈ V do
3: Compute the minimal value t ∈ [0, T ) such that with π′

v + t a maximum number of arcs
in the cut δ({v}) are satisfied.

4: π′
v ← π′

v + t
5: end for

Given a set of vertices X and a vector π, we introduce sets P (X,π) such that for
X = {v} the set P ({v},π′) contains candidate values for t in Step 3 of Algorithm 2,

P (X, π) :=
⋃

a=(i,j)∈δ+(X)

{((πj − πi) − �a) mod T, ((πj − πi) − ua) mod T}∪⋃
a=(i,j)∈δ−(X)

{(�a − (πj − πi)) mod T, (ua − (πj − πi)) mod T} ∪ {0}. (2)
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Lemma 3. Let t be the choice of Algorithm 2, when processing vertex v. Then, t ∈
P ({v},π′).

Proof. We know that π′
v + t is in the intersection of periodic intervals whose bounds

we collect in {π′
v + t′ | t′ ∈ P ({v},π′)}. ��

Corollary 4. Algorithm 2 can always be implemented with runtime O(m2n). For inte-
gral instances and integral input vectors π, we obtain O(n ·min{m,T} ·m).

Proof. We know |P ({v},π′)| ≤ 2m + 1. Remark 1 guarantees |P ({v},π′)| ≤ T for
integral instances. ��

Notice that we may face n ∈ o(δ({v})) because of Remark 2.

Remark 4. Further improvements can be achieved by executing Algorithm 2 repeatedly.

4.3 An Approximation Algorithm for Span Homogeneous MAX-T-PESP

Algorithm 3 works much similar to Algorithm 2. Surely, they are of a different flavor,
as Algorithm 3 does not require any input vector π. But observe that the only difference

Algorithm 3 Approximation algorithm for span homogeneous integral MAX-T-PESP

Input: Instance I = (D, �, u) of MAX-T-PESP

Output: Vector π ∈ [0, T )V

1: V ′ ← ∅
2: for all v ∈ V do
3: A′ ← {a ∈ A | ∃u ∈ V ′ : a = (u, v) or a = (v, u)}
4: Set πv to the minimum value in [0, T ), such that a minimum number of constraints a ∈ A′

are violated.
5: V ′ ← V ′ ∪ {v}
6: end for

between Algorithm 3 and applying Algorithm 2 to π = 0 is that here only such arcs
are taken into account that connect the current vertex with vertices that were already
processed. This will enable us to compute a lower bound for the approximation ratio of
MAX-T-PESP restricted to span homogeneous integral instances, cf. Corollary 2.

Lemma 4. For every arc a ∈ A there exists precisely one vertex v ∈ V such that
a ∈ A′ in Step 3 of Algorithm 3.

Proof. The arc a = (u, v) ∈ A is in A′, if and only if the second of its two vertices is
processed by the for-loop. ��

Theorem 3. For span homogeneous integral instances I = (D, �, u) of MAX-T-PESP

with spanΔ, the vector π produced by Algorithm 3 satisfies at least Δ+1
T |A| constraints.
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Proof. By Lemma 4, we may decompose the analysis into the |V | iterations. Moreover,
by Remark 1 and an analogon of Lemma 3, we consider only integer vectors π.

Denote by fv(t) the number of arcs that are feasible if we set πv to t. By our as-
sumption on the span homogeneity of I , for every a ∈ A′ there are precisely Δ + 1
values for πv , such that a is respected. This yields

T−1∑
t=0

fv(t) = |A′| · (Δ + 1).

Trivially, there exists some t ∈ {0, . . . ,T − 1} such that

fv(t) ≥
⌈
Δ + 1
T

|A′|
⌉
.

��

Corollary 5. Algorithm 3 is a ρ-approximation algorithm for the span homogeneous
integral MAX-T-PESP with span ratio ρ.

Proposition 2. The runtime of Algorithm 3 is bounded by the runtime of Algorithm 2.

Remark 5. By considering symmetric span homogeneous instances of MAX-T-PESP

with � = it gets obvious that Theorem 3 is a generalization of Vitanyi’s result ([19])
for MAXIMUM-K-COLORABLE-SUBGRAPH. However, both the algorithm and its anal-
ysis became more direct than in the original paper. Finally, we may conclude that
an approximation ratio of ρ cannot be tight—at least for symmetric instances, cf.
Remark 3.

4.4 Cut Improvements of the MST Heuristic

The last heuristic we propose is motivated by the poor quality of Algorithm 1, and by
Lemma 1. For a spanning tree F ⊆ A and an arc a ∈ F consider the set Ca of arcs
of the fundamental cut induced by a and F . Observe that for every a′ ∈ Ca \ {a}
there is a unique cycle in F ∪ {a′}. Algorithm 4 considers these cycles. We refer to
applying cut improvements (Algorithm 4) to an output vector of Algorithm 1 as cut
heuristic.

Proposition 3. The runtime of the cut heuristic is O(m2n). For integral instances and
integral input vectors π, we achieve O(n ·min{m,T} ·m).

Proof. We know |δ(X)| ≤ m and |F | = n−1. Further, we will find t in the set P (X,π)
and, hence, the analysis of Corollary 4 deploys. ��

Proposition 4. For every T ≥ 3 there are instances of MAX-T-PESP, where Algo-
rithm 4 examines Θ(nm) arcs in total.
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Algorithm 4 Cut-based improvements for MAX-T-PESP

Input: Instance I = (D, �, u) of MAX-T-PESP with D being a connected digraph, a vector π ∈
[0, T )V , and a spanning tree F

Output: Vector π′ ∈ [0, T )V

1: π′ ← π
2: for all a ∈ F do
3: Let Ca ⊆ A be the arc set of the fundamental cut induced by the arc a = (i, j) and the

tree F , and define X ⊂ V such that {i} ∈ X and δ(X) = Ca.
4: Compute the minimal value t ∈ [0, T ) such that π′ + t · χX satisfies a maximum number

of constraints in δ(X). {χX ∈ {0, 1}V being the characteristic vector of X}
5: π′ ← π′ + t · χX

6: end for

Proof. Again, consider the complete graph Kn and orient its edges such that a =
(i, j) ∈ A implies i < j. Define the feasible intervals of the constraints as follows:

[�a, ua]T =
{

[1, 2]T , if a = (i, i + 1), i = 1, . . . , n− 1,
[0, 2]T , otherwise.

Thus, the spanning tree will be a path.
Let us assume n = 3k + 1, k ∈ , for notational convenience. Consider the n−1

3
fundamental cuts that are induced by the tree arcs a = (i, i + 1), i = k + 1, . . . , 2k.
Each of these contains all the Θ(m) arcs a = (i, j) with i ≤ k + 1 and j ≥ 2k + 1. ��

Theorem 2 and Proposition 3 imply that there are feasible instances of T-PESP, for
which the cut heuristic fails to produce a feasible solution, otherwise P = NP .

Example 1. Consider the feasible T-PESP instance in Figure 1 (T ≥ 6). After shifting
any solution such that π1 = 0, the unique feasible solution is π� = (0, 0, 1, 2)t.

Let Algorithm 1 ensure the lower bounds of the constraints become tight for the tree
arcs. This yields π ≡ 0 and the only non-tree arc is violated. Hence, the cut heuristic
will only change π, if it can obtain π = π�—occasionally after shifting. But this is im-
possible, because π� carries three distinct values and in every iteration of Algorithm 4,
only one single offset can be applied to some set of vertices. ��

Nevertheless, our computational study in Section 5 will reveal the notable benefit
the cut heuristic is able to achieve. Unfortunately, our theoretical analysis does not

[0, 1]T

[0, 1]T

[0, 1]T

[2, 4]T

1

2

3

4

Fig. 1. Feasible instance of 6-PESP, but the cut heuristic fails to produce a feasible solution
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reflect this quality. This is mainly caused by non-empty pairwise intersections of the
fundamental cuts and by the multi-stage character of the cut heuristic.

Remark 6. Observe that the cut heuristic immediately extends to the so-called EXTEN-
DED-PESP, in which the vertices may have different period times.

5 Computational Study

We will compare the cut heuristic for MAX-T-PESP to Algorithm 1. Further, we ana-
lyze how the local improvement heuristic performs when applied to the output vectors
of these two algorithms. We will also apply the approximation algorithm for span homo-
geneous instances to the five practical data sets that we consider. We start by describing
these. Notice that each of these five instances permits feasible timetables.

The first pair of data sets, ICE small and ICE big, share the same basic network.
In particular, ICE small is a subset of ICE big, resulting from the deletion of certain
traffic lines. In turn, the lines contained in ICE big are a subset of a strategic planning
scenario of the long-distance service of Deutsche Bahn AG (DB AG). Since the un-
derlying infrastructure has the same capacity, it shall be easier to construct a feasible
timetable for ICE small than for ICE big. Most constraints are to ensure a minimal
headway between two consecutive trains. But there are even some single tracks in these
high-speed networks, e.g. “Hildesheimer Kurve”. The data set ICE big has been the
subject of an earlier extended computational study ([10]). Its results motivate a po-
tential for local search techniques, even when compared to CPLEX c© 8.1 ([2]), or to
ILOG SOLVER.

The second pair of data sets model one of the five largest federal states of Ger-
many. In PS Regio, only regional trains are considered. In PS all, we also include the
long-distance traffic serving that state and fix the timetables on tracks outside the fed-
eral state to a planning scenario provided by DB AG. Notice that many regional trains
use single tracks. Moreover, in the geographic intersection of PS all and ICE big, there
is more traffic in PS all, because the full passenger traffic is included. Notice that the
algorithms can deal with the three different periods that occur in these data sets, cf.
Remark 6.

The last data set models the Berlin underground. Here, one tries to ensure a maximal
waiting time of five minutes for the 48 most important connections. But this must not
happen at the price of stopping times which exceed 2.5 minutes—travel times between
stations being fixed. Also, some operational constraints have to be obeyed.

Table 1 provides additional information on the real-world instances, and on the re-
sulting graph models. For the latter, we only mention classification numbers for the
graph, in which redundancies have been eliminated by contraction steps ([11]). We also
ignore arcs with Δa ≥ T − 1. Given the fact that the first four data sets make even use
of parallel arcs, cf. Remark 2, none of the data sets induces a dense graph, cf. Remark 3.

Computational Results. We start by filling the theoretical benchmarks in the last row of
Table 1 with life. Also in our context, when applied to instances that arise in practice,
the approximation algorithm performs much better than can be guaranteed in general.
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Table 1. Classification numbers of the real-world problems and graph models

Quantity ICE small ICE big PS Regio PS all U Berlin
Real-world problems
Period times of the lines 120’ 120’ 60’, 120’ 30’, 60’, 120’ 10’
Time precision 60” 60” 6” 6” 30”
Pairs of traffic lines 11 31 66 98 8
# fixed pairs of lines 0 0 0 40 1
# partly fixed pairs of lines 0 0 0 9 0
Resulting graph models
Period time T 120 120 600 1200 ≤1200 20
Number of vertices n 69 173 160 192 343 38
Number of arcs m 304 1102 341 387 1224 83
Cyclomatic number μ 236 930 377 882 46
Average span ratio ρ 73.6% 82.5% 61.4% 55.9% — 32.3%
Max. number of violated arcs
for ρ span homog. instances 80 192 — — 57

Table 2. Number of infeasibilities left by Algorithm 3

Strategy ICE small ICE big PS Regio PS all U Berlin
index 6 22 31 81 12
degree 15 30 58 72 19
intensity 18 28 42 52 7
Algorithm 3 plus local improvement
index 4 12 25 47 8
degree 8 11 36 41 14
intensity 9 14 34 38 6

Notice that we investigate three different strategies for Algorithm 3 to select the
next vertex v: by index (increasingly), by the vertices’ degree (decreasingly), and by the
intensity of the incident constraints,

∑
a∈δ({v}) T − (Δa + 1), (decreasingly). Table 2

shows that none of these strategies dominates the two others.
Before presenting the results of our computations for the cut heuristic, we specify

how we made use of the degrees of freedom left by Algorithms 1, 2, and 4. We run
the MST heuristic for eleven target spans p ∈ { k

10 | k ∈ {0, . . . , 10}}, and compute
π such that (πv − πu − �a) mod T = p · Δa, for every arc a = (u, v) ∈ F . For the
cut improvements, we choose cuts that have (many) infeasible arcs and many arcs with
small span ratio foremost—we omit the full details due to space limitations. Finally, we
apply Algorithm 2 repeatedly, until no more change appears, cf. Remark 4.

We either start with the result of the MST heuristic (“tree”) or of the cut heuris-
tic (“cut”). These may be improved locally (“locImp”). In Figure 2 every chart rep-
resents the results obtained for one of the five data sets. For every data set, the four
heuristics have been executed eleven times each, with different values for the target
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Fig. 2. Performance of MST heuristic and cut heuristic plus occasional local improvement for
five data sets: ICE small, ICE big, PS Regio, PS all, and U Berlin (from left to right)

span to be applied by the initial MST heuristic. On the ordinate, the number of arcs that
are violated by the output vector of a heuristic is given.

Let us summarize the main observations to be torn out of Figure 2 and relate them
to the practical performance of our approximation algorithm:

– Both, Algorithm 3 and the cut heuristic are much superior to the pure MST heuris-
tic. Only for PS all, the cut heuristic does not outperform Algorithm 3 significantly.

– For each of the five data sets, the best solutions are obtained by locally improving
output vectors of the cut heuristic.

– For PS Regio, the worst solution obtained by the pure cut heuristic is still better
than any locally improved output of Algorithms 1 and 3.

Recall that heuristics for MAX-T-PESP shall provide good initial input vectors for
local search algorithms. Unfortunately, we have to admit that in some spot tests on
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ICE big, we did not perceive any significant improvement in the performance of a
genetic algorithm, when fed with locally improved output vectors of the cut heuristic.

6 Conclusions

We addressed the problem of satisfying as many constraints of a PESP-instance as pos-
sible. We proved it to be MAXSNP-hard and provided an approximation algorithm with
constant approximation ratio ρ, ρ being the span ratio of a span homogeneous integral
instance of MAX-T-PESP. Moreover, we proposed a new heuristic that provides much
better solutions for MAX-T-PESP than two heuristics that were previously published.

Unfortunately, the theoretical analysis of this cut heuristic stays limited. Hopefully,
our promising computational results attract other researchers to join the theoretical
analysis of the cut heuristic—or even to design further approximation algorithms for
MAX-T-PESP. This is of importance, because PESP-techniques have just entered the
practice of timetable design. And practice bears many instances, on which the existing
algorithms leave space for improvements that, in turn, are really required by practice. . .
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Abstract. A GRASP with path-relinking for finding good-quality so-
lutions of the weighted maximum satisfiability problem (MAX-SAT) is
described in this paper. GRASP, or Greedy Randomized Adaptive Search
Procedure, is a randomized multi-start metaheuristic, where at each iter-
ation locally optimal solutions are constructed, each independent of the
others. Previous experimental results indicate its effectiveness for solving
weighted MAX-SAT instances. Path-relinking is a procedure used to in-
tensify the search around good-quality isolated solutions that have been
produced by the GRASP heuristic. Experimental comparison of the pure
GRASP (without path-relinking) and the GRASP with path-relinking
illustrates the effectiveness of path-relinking in decreasing the average
time needed to find a good-quality solution for the weighted maximum
satisfiability problem.

1 Introduction

A propositional formula Φ on a set of n Boolean variables V = {x1, . . . , xn}
in conjunctive normal form (CNF), is a conjunction on a set of m clauses
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C = {C1, . . . ,Cm}. Each clause Ci is a disjunction of |Ci| literals, where each
literal lij is either a variable xj or its negation ¬xj . Formally, we write

Φ =
m∧

i=1

Ci =
m∧

i=1

⎛⎝|Ci|∨
j=1

lij

⎞⎠ .

A clause is satisfied if at least one of its literals evaluates to 1 (true), which
means that either one of the unnegated Boolean variables has the value of 1 or
a negated variable has the value of 0. The propositional formula is said to be
satisfied if all of its clauses are satisfied. In the Satisfiability problem (SAT),
one must decide whether there exists an assignment of values to the variables
such that a given propositional formula is satisfied. SAT was the first prob-
lem to be shown to be NP-complete [8]. The Maximum Satisfiability problem
(MAX-SAT) is a generalization of SAT, where given a propositional formula,
one is interested in finding an assignment of values to the variables which maxi-
mizes the number of satisfied clauses. Generalizing even further, if we introduce
a positive weight wi for each clause Ci, then the weighted MAX-SAT prob-
lem consists of finding an assignment of values to the variables such that the
sum of the weights of the satisfied clauses is maximized. The MAX-SAT has
many applications both theoretical and practical, in areas such as complexity
theory, combinatorial optimization, and artificial intelligence [5]. It is an in-
tractable problem in the sense that no polynomial time algorithm exists for
solving it unless P = NP, which is evident since it generalizes the satisfiability
problem [11].

Due to the computational complexity of the MAX-SAT there has been an ex-
tensive research effort devoted to the development of approximation and heuris-
tic algorithms for solving it. An ε-approximate algorithm for the MAX-SAT is
a polynomial time algorithm which finds a truth assignment to the variables
that results in a total weight of the satisfied clauses that is at least ε times the
optimum (0 < ε < 1). We will refer to ε of an approximation algorithm as its
performance ratio. The first approximation algorithms for the MAX-SAT were
introduced in [18], where Johnson presented two algorithms with performance
rations (k− 1)/k and (2k − 1)/2k, where k is the least number of literals in any
clause. For the general case k = 1 they both translate to a 1/2-approximation
algorithm, while it has been shown in [7] that the second algorithm is in fact a
2/3-approximation algorithm. A 3/4-approximation algorithm, based on network
flow theory, was presented by Yannakakis in [32] and also in [14] by Goemans
and Williamson. Currently the best deterministic polynomial time approxima-
tion algorithm for MAX-SAT achieves a performance ratio of 0.758 and is based
on semidefinite programming [15], while there is also a randomized algorithm
with performance ratio 0.77 [3]. Better approximation bounds for special cases
of the problem in which, for instance, we restrict the number of literals per
clause or impose the condition that the clauses are satisfiable have also been
found [9, 20, 31]. With respect to inapproximability results, it is known [17] that
unless P = NP there is no approximation algorithm with performance ratio
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greater than 7/8 for the MAX-SAT in which every clause contains exactly three
literals, thereby limiting the general case as well.

Local search is the main ingredient for most of the heuristic algorithms that
have appeared in the literature for solving the MAX-SAT, where in conjunction
with various techniques for escaping local optima they provide solutions which
exceed the theoretical upper bound of approximating the problem. We can divide
the heuristic algorithms that have appeared in the literature into two main
classes. The first class being those heuristics which use the history of the search
in order to construct a new solution, such as Tabu Search [16], Hsat [12] and
Reactive Search [4], and those that are not history sensitive such as Simulated
Annealing [30], Gsat [29] and GRASP [22, 24]. Surveys of approximation and
heuristic algorithms for solving the MAX-SAT can be found in [5, 16].

GRASP is a constructive multi-start metaheuristic which has been applied to
a wide range of well known combinatorial optimization problems with favorable
experimental results [23]. In [24, 25], Resende, Pitsoulis, and Pardalos describe a
GRASP implementation for solving the weighted MAX-SAT, and report exten-
sive computational results on a set of weighted SAT benchmark instances [19]
that indicate that the heuristic produces good quality solutions. Each iteration
consists of two phases: a construction phase where a solution is constructed in
a greedy randomized fashion; and a local search phase where the local optimum
is found in the neighborhood of the constructed solution. GRASP can therefore
be thought of as a memoryless procedure, where past information from previous
solutions is not used for the construction of a new solution. In this paper, we
show how memory can be incorporated in the GRASP for weighted MAX-SAT
proposed in [24]. At each iteration of the GRASP heuristic, a path of feasi-
ble solutions linking the current solution with a solution from a set of elite (or
good-quality) solutions previously produced by the algorithm is explored. Path-
relinking has been used as a memory mechanism in GRASP [27] resulting in
faster convergence of the algorithm.

The remainder of the paper is organized as follows. In Section 2, we briefly
state the implementation of GRASP for the MAX-SAT from [24], while in Sec-
tion 3 we describe how to apply path-relinking for the MAX-SAT. Finally, in
Section 4, computational results are presented which demonstrate empirically
that path-relinking results in faster convergence of GRASP.

2 GRASP for the Weighted MAX-SAT

The construction and local search phase of GRASP are described in detail in [24],
while in [25] a complete Fortran implementation is given along with extensive
computational runs. In this section, we provide a brief description in order to
facilitate the discussion of path-relinking that will follow in the next section.
Given a set of clauses C and a set of Boolean variables V , let us denote by
x ∈ {0, 1}n the truth assignment which corresponds to the truth values assigned
to the variables, while let c(x) denote the sum of the weights of the satisfied
clauses as implied by x. Without loss of generality we can assume that all the
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procedure GRASP(MaxIter,RandomSeed)
1 cbest := 0;
2 do k = 1, . . . , MaxIter →
3 x :=ConstructSolution(RandomSeed);
4 x :=LocalSearch(x);
5 if c(x) > cbest →
6 xbest := x;
7 cbest := c(xbest);
8 endif;
9 od;
7 return xbest

end GRASP;

Fig. 1. Pseudo-code of GRASP for maximization problem

weights wi of the clauses are positive integers. Given any two truth assignments
x,y ∈ {0, 1}n let us denote their difference set

Δ(x,y) := {i : xi �= yi, i = 1, . . . , n} (1)

and their distance

d(x,y) := |Δ(x,y)| =
n∑

i=1

|xi − yi|. (2)

which is the Hamming distance, and will be used as a measure of proximity
between two solutions. The GRASP procedure is shown in Figure 1. In the
construction phase of the algorithm (line 3), let us denote by γ+

j and γ−
j the

gain in the objective function value if we set the unassigned variable xj to 1 and
0, respectively, and by X ⊆ V the set of already assigned variables. We compute
the best gain

γ∗ := max{γ+
j , γ−

j : j such that xj ∈ V \X}

and keep only those γ+
j and γ−

j that are greater or equal to α·γ∗ where 0 ≤ α ≤ 1
is a parameter. A random choice γ+

k (γ−
k ) among those best gains corresponds

to a new assignment xk = 1 (xk = 0), which is added to our partial solution
X = X ∪ {xk}. After each such addition to the partial solution, the gains γ+

j

and γ−
j are updated, and the process is repeated until |X| = n. The parameter

α reflects the ratio of randomness versus greediness in the construction process,
where α = 1 corresponds to a pure greedy selection for a new assignment and
α = 0 to a pure random assignment. Having completed a truth assignment x,
we apply local search (line 4) in order to guarantee local optimality. The 1-flip
neighborhood is used in the local search, which is defined as

N1(x) := {y ∈ {0, 1}n : d(x,y) ≤ 1}, (3)
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where a depth-first search approach is employed in the sense that the current
solution is replaced with a solution in the neighborhood which has greater cost.
The search is terminated when the current solution is the local optimum.

3 Path-Relinking

Path-relinking was originally proposed by Glover [13] as an intensification strat-
egy exploring trajectories connecting elite solutions obtained by tabu search or
scatter search. Given any two elite solutions, their common elements are kept
constant, and the space of solutions spanned by these elements is searched with
the objective of finding a better solution. The size of the solution space grows
exponentially with the the distance between the initial and guiding solutions
and therefore only a small part of the space is explored by path-relinking. Path-
relinking has been applied to GRASP as an enhancement procedure in various
problems [1, 2, 6, 21, 26, 28], where it can be empirically concluded that it speeds
up convergence of the algorithm. A recent survey of GRASP with path-relinking
is given in [27].

We now describe the integration of path-relinking into the pure GRASP
algorithm described in Section 2. Path-relinking will always be applied to a pair
of solutions x,y, where one is the solution obtained from the current GRASP
iteration, and the other is a solution from an elite set of solutions. We call x
the initial solution while y is the guiding solution. The set of elite solutions will
be denoted by E and its size will not exceed MaxElite. Let us denote the set of
solutions spanned by the common elements of x and y as

S(x,y) := {w ∈ {0, 1}n : wi = xi = yi, i /∈ Δ(x,y)} \ {x,y}, (4)

where it is evident that |S(x,y)| = 2n−d(x,y) − 2. The underlying assumption
of path-relinking is that there exist good-quality solutions in S(x,y), since this
space consists of all solutions which contain the common elements of two good
solutions x,y. Taking into consideration that the size of this space is exponen-
tially large, we will employ a greedy search where a path of solutions

x = w0,w1, . . . ,wd(x,y),wd(x,y)+1 = y,

is built, such that d(wi,wi+1) = 1, i = 0, . . . , d(x,y), and the best solution
from this path is chosen. Note that since both x,y are local optima in some
neighborhood N1 by construction1, in order for S(x,y) to contain solutions
which are not contained in the neighborhoods of x or y we must have d(x,y) > 3.
Therefore we need not apply path-relinking between any two solutions which are
not sufficiently far apart, since it is certain that we will not find a new solution
that is better than both x and y.

The pseudo-code which illustrates the exact implementation for the path-
relinking procedure is shown in Figure 2. We assume that our initial solution will

1 here the same metric d(x,y) is used.W
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procedure PathRelinking(y, E)
1 Randomly select a solution x ∈ {z ∈ E : d(y, z) > 4};
2 w0 := x;
3 w∗ := x;
4 for k = 0, . . . , d(x,y) − 2 →
5 max:= 0
6 for each i ∈ Δ(wk,y) →
7 w :=flip(wk, i);
8 if c(w) > max →
9 i∗ := i;
10 max:= c(w);
11 fi;
12 rof ;
13 wk+1 :=flip(wk, i∗);
14 if c(wk+1) > c(w∗) → w∗ := wk+1;
15 endfor;
16 return (w∗);
end PathRelinking;

Fig. 2. Pseudo-code of path-relinking for maximization problem

always be the elite set solution while the guiding solution is the GRASP iterate.
This way we allow for greater freedom to search the neighborhood around the
elite solution. In line 1, we select at random among the elite set elements, an
initial solution x that differs sufficiently from our guiding solution y. In line 2,
we set the initial solution as w0, and in line 3 we save x as the best solution. The
loop in lines 4 through 15 computes a path of solutions w1,w2, . . . ,wd(x,y)−2,
and the solution with the best objective function value is returned in line 16.
This is achieved by advancing one solution at a time in a greedy manner, as
illustrated in lines 6 through 12, while the operation flip(wk, i) has the effect
of negating the variable wi in solution wk. It is noted that the path of solutions
never enters the neighborhood of y.

The integration of the path-relinking procedure with the pure GRASP is
shown in Figure 3, and specifically in lines 6 through 11. The pool of elite
solutions is initially empty, and until it reaches its maximum size no path re-
linking takes place. After a solution y is found by GRASP, it is passed to the
path-relinking procedure to generate another solution. Note here that we may
get the same solution y after path-relinking. The procedure AddToElite(E ,y)
attempts to add to the elite set of solutions the currently found solution. A
solution y is added to the elite set E if either one of the following conditions
holds:

1. c(y) > max{c(w) : w ∈ E},
2. c(y) > min{c(w) : w ∈ E} and d(y,w) > βn, ∀w ∈ E , where β is a

parameter between 0 and 1 and n is the number of variables.
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procedure GRASP+PR(MaxIter,RandomSeed)
1 cbest := 0;
2 E := ∅;
3 do k = 1, . . . , MaxIter →
4 x :=ConstructSolution(RandomSeed);
5 x :=LocalSearch(x);
6 if |E| =MaxElite →
7 x :=PathRelinking(x, E);
8 AddToElite(E ,x);
9 else
10 E := E ∪ {x};
11 endif;
12 if c(x) > cbest →
13 xbest := x;
14 cbest := c(xbest);
15 endif;
16 od;
17 return xbest

end GRASP+PR;

Fig. 3. Pseudo-code of GRASP with path-relinking for maximization problem

If y satisfies either of the above, it then replaces an elite solution z of weight
not greater than c(y) and most similar to y, i.e. z = argmin{d(y,w) : w ∈
E such that c(w) ≤ c(y)}.

4 Computational Results

In this section, we report on an experiment designed to determine the effect
of path-relinking on the convergence of the GRASP for MAX-SAT described
in [25]2. After downloading the Fortran source code, we modified it to enable
recording of the elapsed time between the start of the first GRASP iteration and
when a solution is found having weight greater or equal to a given target value.
We call this pure GRASP implementation grasp. Using grasp as a starting
point, we implemented path-relinking making use of the local search code in
grasp. The GRASP with path-relinking implementation is called grasp+pr. To
simplify the path-relinking step, we use β = 1 when testing if a solution can be
placed in the elite set. This way only improving solutions are put in the elite set.
We were careful to implement independent random number sequences for the
pure GRASP and the path-relinking portions of the code. This way, if the same
random number generator seeds are used for the GRASP portion of the code,

2 The Fortran subroutines for the GRASP for MAX-SAT described in [25] can be
downloaded from http://www.research.att.com/∼mgcr/src/maxsat.tar.gz.
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Table 1. Test problems used in experiment. For each problem, the table lists its name,

number of variables, number of clauses, the target weight used as a stopping criterion,

and the percentage deviation of the target from the optimal solution

problem variables clauses target rel. error

jnh1 100 800 420739 0.044%
jnh10 100 800 420357 0.115%
jnh11 100 800 420516 0.056%
jnh12 100 800 420871 0.013%

jnh201 100 850 394222 0.047%
jnh202 100 850 393870 0.076%
jnh212 100 850 394006 0.059%

jnh304 100 900 444125 0.092%
jnh305 100 900 443815 0.067%
jnh306 100 900 444692 0.032%

the GRASP solutions produced in each iteration are identical for the GRASP
and GRASP with path-relinking implementations. Consequently, GRASP with
path-relinking will never take more iterations to find a target value solution than
the pure GRASP. Since the time for one GRASP with path-relinking iteration is
greater than for one pure GRASP iteration, we seek to determine if the potential
reduction in number of iterations of GRASP with path-relinking will suffice to
make the total running time of GRASP with path-relinking smaller than that
of pure GRASP.

The Fortran programs were compiled with the g77 compiler, version 3.2.3
with optimization flag -O3 and run on a SGI Altix 3700 Supercluster running
RedHat Advanced Server with SGI ProPack. The cluster is configured with 32
1.5-GHz Itanium-2 processors (Rev. 5) and 245 Gb of main memory. Each run
was limited to a single processor. User running times were measured with the
etime system call. Running times exclude problem input.

We compared both variants on ten test problems previously studied in [25] 3.
Optimal weight values are known for all problems. The target weight values used
in the experiments correspond to solutions found in [25] after 100,000 GRASP it-
erations and are all near-optimal. Table 2 shows test problem dimensions, target
values, and how close to optimal the targets are.

Since grasp and grasp+pr are both stochastic local search algorithms, we
compare their performance by examining the distributions of their running times.
For each instance, we make 200 independent runs of each heuristic (using dif-
ferent random number generator seeds) and record the time taken for the run

3 The test problems can be downloaded from http://www.research.att.com/∼mgcr/

data/maxsat.tar.gz.
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to find a solution with weight at least as large as the given target value. For
each instance/heuristic pair, the running times of each heuristic are sorted in
increasing order. We associate with the i-th sorted running time (ti) a probability
pi = (i− 1

2 )/200, and plot the points zi = (ti, pi), for i = 1, . . . , 200. These plots
are called the time to target plots and were first introduced in [10]. These plots
display the empirical probability distributions of the random variable time to
target solution. Figures 4 and 5 are time to target plots for a subset of the test
instances.4

We make the following observations about the experiments.

– Each heuristic was run a total of 2000 times in the experiments.
– Though the maximum number of GRASP iterations was set to 200,000,

both algorithms took much less than that to find truth assignments with
total weight at least as large as the target weight on all 200 runs on each
instance.

– On all but one instance, the time to target curves for grasp+pr were to the
left of the curves for grasp.

– The relative position of the curves implies that, given a fixed amount of
computing time, grasp+pr has a higher probability than grasp of finding
a target solution. For example, consider instance jnh1 in Figure 4. The
probabilities of finding a target at least as good as 420750 in at most 50
seconds are 48% and 97%, respectively, for grasp and grasp+pr. In at most
100 seconds, these probabilities increase to 73% and 99%, respectively.

– The relative position of the curves also implies that, given a fixed probability
of finding a target solution, the expected time taken by grasp to find a
solution with that probability is greater than the time taken by grasp+pr.
For example, consider instance jnh306 in Figure 5. For grasp to find a
target solution with 50% probability we expect it to run for 329 seconds,
while grasp+pr we expect a run of only 25 seconds. For 90% probability,
grasp is expected to run for 984 seconds while grasp+pr only takes 153
seconds.

– The only instance on which the time to target plots intersect was jnh305,
where grasp+pr took longer to converge than the longest grasp run on 21
of the 200 runs, Still, two thirds of the grasp+pr were faster than grasp.
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Heikki Hyyrö1, Yoan Pinzon2 � , and Ayumi Shinohara1,3

1 PRESTO, Japan Science and Technology Agency (JST), Japan
helmu@cs.uta.fi

2 Department of Computer Science, King’s College, London, UK
pinzon@dcs.kcl.ac.uk

3 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
ayumi@i.kyushu-u.ac.jp

Abstract. The task of approximate string matching is to find all loca-
tions at which a pattern string p of length m matches a substring of a text
string t of length n with at most k differences. It is common to use Lev-
enshtein distance [5], which allows the differences to be single-character
insertions, deletions, substitutions. Recently, in [3], the IndelMYE, In-
delWM and IndelBYN algorithms where introduced as modified version
of the bit-parallel algorithms of Myers [6], Wu&Manber [10] and Baeza-
Yates&Navarro [1], respectively. These modified versions where made
to support the indel distance (only single-character insertions and/or
deletions are allowed). In this paper we present an improved version of
IndelMYE that makes a better use of the bit-operations and runs 24.5
percent faster in practice. In the end we present a complete set of exper-
imental results to support our findings.

1 Introduction

The approximate string matching problem is to find all locations in a text of
length n that contain a substring that is similar to a query pattern string p of
length m. Here we assume that the strings consist of characters over a finite
alphabet. In practice the strings could for example be English words, DNA se-
quences, source code, music notation, and so on. The most common similarity
measure between two strings is known as Levenshtein distance [5]. It is defined as
the minimum number of single-character insertions, deletions and substitutions
needed in order to transform one of the strings into the other. In a comprehen-
sive survey by Navarro [7], the O(k�m/w�n) algorithm of Wu and Manber (WM)
[10], the O(�(k + 2)(m− k)/w�n) algorithm of Baeza-Yates and Navarro (BYN)
[1], and the O(�m/w�n) algorithm of Myers (MYE) [6] were identified as the
most practical verification capable approximate string matching algorithms un-
der Levenshtein distance. Here w denotes the computer word size. Each of these
algorithms is based on so-called bit-parallelism. Bit-parallel algorithms make use

� Part of this work was done while visiting Kyushu University. Supported by PRESTO,
Japan Science and Technology Agency (JST).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 380–390, 2005.
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of the fact that a single computer instruction operates on bit-vectors of w bits,
where typically w = 32 or 64 in the current computers. The idea is to achieve
gain in time and/or space by encoding several data-items of an algorithm into
w bits so that they can be processed in parallel within a single instruction (thus
the name bit-parallelism).

In [3] the three above-mentioned bit-parallel algorithms were extended to
support the indel distance. In this paper we improve the running time of one
of those algorithms, namely, IndelMYE. IndelMYE is a modify version of My-
ers algorithm [6] that supports the indel distance instead of the more general
Levenshtein distance. The new version (called IndelNew) is able to compute the
horizontal differences of adjacent cell in the dynamic programming matrix more
efficiently. Hence, the total number of bit-operations decreases from 26 to 21. We
run extensive experiments and show that the new algorithms has a very steady
performance in all cases, achieving and speedup of up to 24.5 percent compare
with its previous version.

This paper is organised as follows. In Section 2 we present some preliminar-
ies. In Sections 3 we explain the main bit-parallel ideas used to create the new
algorithm presented in Section 4. In Section 5 we present extensive experimen-
tal results for the three bit-parallel variants presented in [3] and two dynamic
programming algorithms. Finally, in Section 6 we give our conclusions.

2 Preliminaries

We will use the following notation with strings. We assume that strings are
sequences of characters from a finite character set Σ. The alphabet size, i.e.
the number of distinct characters in Σ, is denoted by σ. The ith character of a
string s is denoted by si, and si..j denotes the substring of s that begins at its
ith position and end at its jth position. The length of string s is denoted by |s|.
The first character has index 1, and so s = s1...|s|. A length-zero empty string is
denoted by ε.

Given two strings s and u, we denote by ed(s, u) the edit distance between
s and u. That is, ed(s, u) is defined as the minimum number of single-character
insertions, deletions and/or substitutions needed in order to transform s into u
(or vice versa). In similar fashion, id(s, u) denotes the indel distance between
s and u: the minimum number of single-character insertions and/or deletions
needed in transforming s into u (or vice versa).

The problem of approximate searching under indel distance can be stated
more formally as follows: given a length-m pattern string p1..m, a length-n
text string t1..n, and an error threshold k, find all text indices j for which
id(p, tj−h..j) ≤ k for some 1 ≤ h < j. Fig. 1 gives an example with p ="ACGC",
t ="GAAGCGACTGCAAACTCA", and k = 1. Fig. 1(b) shows that under indel dis-
tance t contains two approximate matches to p at ending positions 5 and 11.
In the case of regular edit distance, which allows also substitutions, there is an
additional approximate occurrence that ends at position 17 (see Fig. 1(a)). Note
that Fig. 1 shows a minimal alignment for each occurrence. For strings s and u,
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the characters of s and u that correspond to each other in a minimal transforma-
tion of s into u are vertically aligned with each other. In case of indel distance
and transforming s into u, si corresponds to uj if si and uj are matched, si

corresponds to ε if si is deleted, and ε corresponds to uj if uj is inserted to s. In
case of Levenshtein distance, si corresponds to uj also if si is substituted by uj .

G A C TG G A C T G C A AA C C T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A

A GC C

�

A G CC�A G CC

(a)

G A C TG G A C T G C A AA C C T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A

A GC C

�

�A G CC

(b)

Fig. 1. Example of approximate string matching with k = 1 difference under (a) Leven-

shtein distance and (b) indel distance. Grey boxes show the matches and corresponding

alignments. In the alignments we show a straight line between corresponding characters

that match, and a cross otherwise. Hence the number of crosses is equal to the number

of differences

We will use the following notation in describing bit-operations: ’&’ denotes
bitwise “AND”, ’|’ denotes bitwise “OR”, ’∧’ denotes bitwise “XOR”, ’∼’ de-
notes bit complementation, and ’<<’ and ’>>’ denote shifting the bit-vector
left and right, respectively, using zero filling in both directions. The ith bit of
the bit vector V is referred to as V [i] and bit-positions are assumed to grow
from right to left. In addition we use superscript to denote bit-repetition. As
an example let V = 1001110 be a bit vector. Then V [1] = V [5] = V [6] = 0,
V [2] = V [3] = V [4] = V [7] = 1, and we could also write V = 102130. Fig. 2
shows a simple high-level scheme for bit-parallel algorithms. In the subsequent
sections we will only show the sub-procedures for preprocessing and updating
the bit-vectors.

Algo-BitParallelSearch(p1 . . . pm, t1 . . . tn, k)
1. � Preprocess bit-vectors
2. Algo-PreprocessingPhase()
3. For j ∈ 1 . . . n Do
4. � Update bit-vectors at text character j and check if a match was found
5. Algo-UpdatingPhase()

Fig. 2. A high-level template for bit-parallel approximate string matching algorithms
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3 Bit-Parallel Dynamic Programming

During the last decade, algorithms based on bit-parallelism have emerged as the
fastest approximate string matching algorithms in practice for the Levenshtein
edit distance [5]. The first of these was the O(kn(m/w)) algorithm of Wu &
Manber [10], where w is the computer word size. Later Wright [9] presented an
O(mn logσ /w)) algorithm, where σ is the alphabet size. Then Baeza-Yates &
Navarro followed with their O((km/w)n) algorithm. Finally Myers [6] achieved
an O((m/w)n) algorithm, which is an optimal speedup from the basic O(m/n)
dynamic programming algorithm. With the exception of the algorithm of Wright,
the bit-parallel algorithms dominate the other verification capable algorithms
with moderate pattern lengths [7].

The O(�m/w�n) algorithm of Myers [6] is based on a bit-parallelization of
the dynamic programming matrix D. The O(k�m/w�n) algorithm of Wu and
Manber [10] and the O(�(k + 2)(m − k)/w�n) algorithm of Baeza-Yates and
Navarro [1] simulate a non-deterministic finite automaton (NFA) by using bit-
vectors.

For typical edit distances, their dynamic programming recurrence confines
the range of possible differences between two neighboring cell-values in D to
be small. Fig. 3 shows the possible difference values for some common dis-
tances. For both Levenshtein and indel distance, {-1,0,1} is the possible range
of values for vertical differences D[i, j] − D[i − 1, j] and horizontal differences
D[i, j] − D[i, j − 1]. The range of diagonal differences D[i, j] − D[i − 1, j − 1]
is {0,1} in the case of Levenshtein distance, but {0,1,2} in the case of indel
distance.

D[i-1,j-1]

D[i,j-1] D[i,j]

D[i-1,j]

-1
0
1

1
0

-1, 0, 1

-1, 0, 1

-1
0
1

-1
0
1

-1, 0, 1

-1, 0, 1

-1
0
1

0
1

0, 1

0, 1

0
11

0

2
1

0

D[i-1,j-1]

D[i,j-1] D[i,j]

D[i-1,j] D[i-1,j-1]

D[i,j-1] D[i,j]

D[i-1,j]

(a) edit distance (b) indel distance (c) lcs distance

Fig. 3. Differences between adjacent cells. White/grey boxes indicate that one/two

bit-vectors are needed to represent the differences

The bit-parallel dynamic programming algorithm of Myers (MYE) makes use
of the preceding observation. In MYE the values of matrix D are expressed im-
plicitly by recording the differences between neighboring cells. And moreover,
this is done efficiently by using bit-vectors. In [4], a slightly simpler variant of
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MYE, the following length-m bit-vectors Zdj , Nhj , Phj , Nvj , and Pvj encode
the vertical, horizontal and diagonal differences at the current position j of the
text:

— Zdj [i] = 1 iff D[i, j]−D[i− 1, j − 1] = 0
— Phj [i] = 1 iff D[i, j]−D[i, j − 1] = 1
— Nhj [i] = 1 iff D[i, j]−D[i, j − 1] = −1
— Pvj [i] = 1 iff D[i, j]−D[i− 1, j] = 1
— Nvj [i] = 1 iff D[i, j]−D[i− 1, j] = −1

The crux of MYE is that these difference vectors can be computed efficiently.
The basic idea is that, given the vertical difference D[i − 1, j] −D[i − 1, j − 1]
(left vertical difference in Fig. 4), the diagonal difference D[i, j]−D[i− 1, j − 1]
fixes the value of the horizontal difference D[i, j]−D[i, j−1]. And subsequently,
in symmetric fashion, the diagonal difference also fixes the vertical difference
D[i, j] − D[i − 1, j] after the previous horizontal difference D[i, j] − D[i, j − 1]
is known. These observations determine the order in which MYE computes the
difference vectors. The overall scheme is as follows. The algorithm maintains
only the value of interest, D[m, j], explicitly during the computation. The initial
value D[m, 0] = m and the initial vectors Pv0 = 1m and Nv0 = 0m are known
from the dynamic programming boundary values. When arriving at text position
j > 0, MYE first computes the diagonal vector Zdj by using Pvj−1, Nvj−1

and M(tj), where for each character λ, M(λ) is a precomputed length-m match
vector where M(λ)i = 1 iff pi = λ. Then the horizontal vectors Phj and Nhj are
computed by using Zdj , Pvj−1 and Nvj−1. Finally the vertical vectors Pvj and
Nvj are computed by using Zdj , Nhj and Phj . The value D[m, j] is maintained
incrementally during the process by setting D[m, j] = D[m, j − 1] + (Phh[m]−
Nhh[m]) at text position j. A match of the pattern with at most k errors is found
at position j whenever D[m, j] ≤ k. Fig. 5 shows the complete MYE algorithm.

At each text position j, MYE makes a constant number of operations on
bit-vectors of length-m. This gives the algorithm an overall time complexity
O(�m/w�n) in the general case where we need �m/w� length-w bit-vectors in
order to represent a length-m bit-vector. This excluded the cost of preprocessing
the M(λ) vectors, which is O(�m/w�σ+m). The space complexity is dominated
by the M(λ) vectors and is O(�m/w�σ). The difference vectors require O(�m/w�)
space during the computation if we overwrite previously computed vectors as
soon as they are no longer needed.

4 IndelNew Algorithm

In this section we will present IndelNew, our faster version for IndelMYE which
at the same time was a modification of MYE to use indel distance instead of
Levenshtein distance.

As we noted before, indel distance allows also the diagonal difference D[i, j]−
D[i−1, j−1] = 2. Fig. 4 is helpful in observing how this complicates the compu-
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Fig. 4. The 13 possible cases when computing a D-cell

tation of the difference vectors. It shows the 13 different cases that can occur in a
2×2 submatrix D[i−1..i, j−1..j] of D. The cases are composed by considering all
18 possible combinations between the left/uppermost vertical/horizontal differ-
ences (D[i, j−1]−D[i−1, j−1]/D[i−1, j]−D[i−1, j−1]) and a match/mismatch
between the characters pi and tj , some cases occur more that once so only 13 of
them are unique.

We note that M is the only case where the diagonal difference is +2, and fur-
ther that M is also the only case that is different between indel and Levenshtein
distances: in all other cases the value D[i, j] is the same regardless of whether
substitutions are allowed or not. And since the diagonal, horizontal and verti-
cal differences in the case M have only positive values, IndelNew can compute
the 0/-1 difference vectors Zdj , Nhj , and Nvj exactly as MYE. In the case of
Levenshtein distance, the value D[i, j] would be x + 1 in case M, and hence the
corresponding low/rightmost differences D[i, j]−D[i, j−1] and D[i, j]−D[i−1, j]
would be zero. This enables MYE to handle the case M implicitly, as it com-
putes only the -1/+1 difference vectors. But IndelNew needs to explicitly deal
with the case M when computing the +1 difference vectors Phj and Pvj , un-
less these vectors are computed implicitly/indirectly. The latter approach was
employed in IndelMYE algorithm [3] by using vertical and horizontal zero dif-
ference vectors Zvj and Zhj , where Zvj [i] = 1 iff D[i, j] −D[i − 1, j] = 0, and
Zhj [i] = 1 iff D[i, j]−D[i, j−1] = 0. Then, solutions where found for computing
Zvj and Zhj , and the positive difference vectors were then computed simply as
Phj = ∼ (Zhj | Nhj) and Pvj = ∼ (Zvj | Nvj). For IndelNew we propose
the following more efficient solution for computing Phj and Pvj directly. The
discussion assumes that 0 < i ≤ m and 0 < j ≤ n.
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MYE-PreprocessingPhase
1. For λ ∈ Σ Do M(λ) ← 0m

2. For i ∈ 1 . . . m Do M(pi) ← M(pi) | 0m−i10i−1

3. Pv0 ← 1m, Nv0 ← 0m, currDist ← m

MYE-UpdatingPhase
1. Zdj ← (((M(tj) & Pvj−1) + Pvj−1)

∧ Pvj−1) | M(tj) | Nvj−1

2. Nhj ← Pvj−1 & Zdj

3. Phj ← Nvj−1 | ∼ (Pvj−1 | Zdj)
4. Nvj ← (Phj << 1) & Zdj

5. Pvj ← (Nhj << 1) | ∼ ((Phj << 1) | Zdj)
6. If Phj & 10m−1 �= 0m Then currDist ← currDist + 1
7. If Nhj & 10m−1 �= 0m Then currDist ← currDist − 1
8. If currDist ≤ k Then Report a match at position j

Fig. 5. MYE algorithm. Variable currDist keeps track of the value D[m, j]. The al-

gorithm representations could be optimized to reuse the value Phj << 1 so that it is

computed only once

Computing Phj. We may observe from Fig. 4 that Phj [i] = 1 in the six
cases A, D, I, F, L, and M. Cases A, D, and I arise from the negative vertical
difference in column j − 1, i.e. Nvj−1[i] = 1. Cases F and L arise from a zero
vertical difference in column j − 1, i.e. Nvj−1[i] = 1 and Pvj−1[i] = 0, together
with a positive diagonal difference, i.e. Zdj [i] = 0. Hence the formula

Nvj−1 | (∼ Nvj−1 & ∼ Pvj−1 & ∼ Zdj) = Nvj−1 | ∼ (Pvj−1 | Zdj)

covers the first five cases for the complete vectors, and this is enough for MYE
under Levenshtein distance. Case M arises from having a positive difference in
column j − 1, a positive horizontal difference in row i − 1, and a non-zero di-
agonal difference. This translates into the formula Pvj−1 & (Phj << 1) & ∼
Zdj , which contains a slightly problematic self-reference to Phj . We solve it as
follows.

The self-reference states that case M can be true on row i only if one of the
other five cases has happened above i. Let X be an auxiliary length-m bit-vector
that covers the five cases, that is,

X = Nvj−1 | ∼ (Pvj−1 | Zdj).

Let Y be another auxiliary bit-vector so that

Y = Pvj−1 & ∼ Zdj .

Now each set bit Phj [i] = 1 can be assigned to a distinct region Phj [a..b] =
1b−a+1 of consecutive set bits in such manner, that 1 ≤ a ≤ i ≤ b ≤ m, X[a] = 1,
Y [a + 1..b] = 1b−a if a < b, and Y [b + 1] = 0 if b < m. Moreover, the conditions
Y [a + 1..b] = 1b−a and X[a] = 1 are sufficient to imply that Phj [a..b] = 1b−1+1.
If we now shift the bit region Y [a + 1..b] one step right to overlap the positions
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a . . . b− 1 and then perform an arithmetic addition Y [a..b] + X[a..b], the result
is that the bits Y [a..b− 1] will change from 1 to 0 and the bit Y [b] from 0 to 1.
These changed bits can be set to 1, and thus to be correct values for Phj [a..b],
by performing XOR. Hence we have the formula

Phj = (X + Y ) ∧ Y,

where Y has already been shifted one step right. We further note that if Nhj =
Pvj−1 & Zdj has already been computed, we may set Y = Pvj−1 & ∼ Zdj =
Pvj−1 −Nhj in the beginning.

Computing Pvj. This step is diagonally symmetric with the case of Phj . After
similar observations from Fig. 4 as before, the six relevant cases are seen to be
A, B, C, F, H, and M, and the first five of these are covered by the formula
(Nhj << 1) | ∼ ((Phj << 1) | Zdj). This time, case M has the formula
(Phj << 1) & Pvj−1 & ∼ Zdj , which is straighforward to compute. As with
the auxiliary variable Y , we may again use the fact that Pvj−1 & ∼ Zdj =
Pvj−1 −Nhj . Then the complete formula for Pvj becomes

Pvj = (Nhj << 1) | ∼ ((Phj << 1) | Zdj) | ((Phj << 1) & (Pvj−1 −Nhj)).

Fig. 7 shows the complete algorithm IndelNew for computing the difference
vectors Zdj , Nhj , Phj , Nvj , and Pvj at text position j under indel distance.
Obviously IndelNew has the same asymptotical time and space complexities
as IndelMYE. Fig. 6 shows the complete algorithm IndelMYE as presented in
[3]. IndelNew algorithm is able to compute the positive vectors directly. In-
delMYE main drawback is the way the horizontal solution is computed. All
in all, the total number of bit-operations is 26 for IndelMYE versus 21 for
IndelNew, so we have a more efficient implementation for a bit-parallel indel
algorithm.

IndelMYE-UpdatingPhase
1. D′ ← (((KTj &Pv) + Pv) ∧Pv) | KTj | Nv
2. X ← (Pv & (∼ D′)) >> 1
3. Y ← (Zv & D′) | ((Pv & (∼ D′)) & 0m−11)
4. Zh′ ← (X ′ + Y ′) ∧ X ′

5. Nh′ ← Pv & D′

6. Ph′ ← ∼ (Zh′ | Nh′)
7. Zv′ ← (((Zh′ << 1) | 0m−11) & D′) | ((Ph′ << 1) & Zv & (∼ D′))
8. Nv′ ← (Ph′ << 1) & D′

9. Pv′ ← ∼ (Zv′ | Nv′)
10. If Ph′ & 10m−1 �= 0m Then currDist ← currDist + 1
11. If Nh′ & 10m−1 �= 0m Then currDist ← currDist − 1
12. If currDist ≤ k Then Report a match at position j

Fig. 6. IndelMYE algorithm as presented in [3]
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IndelNew-UpdatingPhase
1. Zdj ← (((M(tj) & Pvj−1) + Pvj−1)

∧ Pvj−1) | M(tj) | Nvj−1

2. Nhj ← Pvj−1 & Zdj

3. X ← Nvj−1 | ∼ (Pvj−1 | Zdj)
4. Y ← (Pvj−1 − Nhj) >> 1
5. Phj ← (X + Y ) ∧ Y
6. Nvj ← (Phj << 1) & Zdj

7. Pvj ← (Nhj << 1) | ∼ ((Phj << 1) | Zdj) | ((Phj << 1) & (Pvj−1 − Nhj))
8. If Phj & 10m−1 �= 0m Then currDist ← currDist + 1
9. If Nhj & 10m−1 �= 0m Then currDist ← currDist − 1
10. If currDist ≤ k Then Report a match at position j

Fig. 7. IndelNew algorithm. The value Pvj−1 − Nhj could be reused

5 Experiments

We compare IndelNew against several other approximate string matching algo-
rithms for indel distance. They are: IndelWM (our own implementation), In-
delMYE (our own implementation), IndelBYN (a modification of the original
code by Baeza-Yates and Navarro), and IndelUKK (our own implementation of
the cutoff version of Ukkonen [8]). We also implemented a plain dynamic pro-
gramming algorithm (without bit-parallelism) but it was too slow for the pattern
lengths we used, therefore we removed it from the final test.

The computer used for testing was a 3.2Ghz AMD Athlon64 with 1.5 GB
RAM running Windows XP. The computer word size was w=32. All code was
compiled with MS Visual C++ 6.0 and optimization switched on. We tested on
three different ≈ 20MB texts. The first was composed by repeating the yeast
genome twice. The second was built from a sample of Wall Street Journal articles
taken from the TREC collection. The third text was random with alphabet size
σ = 120. The tested pattern lengths were m = 8, 16 and 32, and we tested
over k=1 . . .m−2. The patterns were selected randomly from the text, and each
(m, k) combination was timed by taking the average time over searching for 100
patterns.

Fig. 8 shows the results. It can be seen that IndelWM is competitive with
low k, being always the best when k=1. The performance of IndelBYN depends
highly on the effectiveness of its “cutoff” mechanism, which in turns depends
on the alphabet size σ. With DNA its performance becomes poor quite quickly
when k grows (except when m=8 as then Rd always fits into a single computer
word. But IndelBYN is always the best when k > 1 with random text and
moderately large alphabet size σ = 120. As expected due to its independence on
k, IndelMYE/IndelNew has a very steady performance in all cases. But IndelNew
was 24.5 percent faster that IndelMYE. Hence, IndelNew is the fastest in those
cases where k is moderately large.
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Fig. 8. The average time for searching for a pattern in a ≈ 0 MB text. The first row

is for DNA (a duplicated yeast genome), the second row for a sample of Wall Street

Journal articles taken from TREC-collection, and the third row for random text with

alphabet size σ = 120

6 Conclusions

We have presented a new algorithms based on bit-parallelism that solve the
problem of approximate string matching problem with k differences under indel
edit distance measure, namely, IndelNew. IndelNew is a more thought version
of the early IndelMYE version in [3]. In practice, we showed that the speedup
gain by the new version was higher (24.5 percent) than the improvement in the
number of bit-operations (about 19 percent – 26 → 21). IndelNew showed a very
steady performance in all cases due to its independence on k. It is the fastest in
those cases where k is moderately large and the cutoff scheme of IndelBYN does
not work well.

We plan to use some of the ideas presented in [2] to search several text
segments in parallel by encoding several copies of the pattern (or its prefixes)
into a single bit-vector. This is left as a future work.

4.
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Abstract. In this paper we consider an optimization problem which
models the dynamic placement of applications on servers under two si-
multaneous resource requirements: one that is dependent on the loads
placed on the applications and one that is independent. The demand
(load) for applications changes over time and the goal is to satisfy all
the demand while changing the solution (assignment of applications to
servers) as little as possible. We describe the system environment where
this problem arises, present a heuristic algorithm to solve it, and provide
an experimental analysis comparing the algorithm to previously known
algorithms. The experiments indicate that the new algorithm performs
much better. Our algorithm is currently deployed in the IBM flagship
product Websphere.

1 Introduction

With the proliferation of the Web and outsourcing of data services, computing
service centers have increased in both size and complexity. Such centers provide
a variety of services, for example web content hosting, e-commerce, web appli-
cations, and business applications. Managing such centers is challenging since
a service provider must manage the quality of service provided to competing
applications in the face of unpredictable load intensity and distribution among
the various offered services and applications. Several management software pack-
ages which deal with these operational management issues have been introduced.
These software systems provide functions including monitoring, demand estima-
tion, load balancing, dynamic provisioning, service differentiation, optimized re-
source allocation, and dynamic application placement. The last function, namely
dynamic application placement, is the subject of this paper.

Service requests are satisfied through the execution of one or more instances of
each of a set of applications. Applications include access to static and dynamic
web content, enterprise applications, and access to database servers. Applica-
tions may be provided by HTTP web servers, servlets, Enterprise Java Beans
(EJB), or database queries. When the number of service requests for a particular
application increases, the application placement management software deploys
additional instances of the application in order to accommodate the increased
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load. It is imperative to have an on-demand management environment allowing
instances of applications to be dynamically deployed and removed. The problem
is to dynamically change the number of application instances so as to satisfy the
dynamic load while minimizing the overhead of starting and stopping application
instances.

We characterize an application by two parameters, a load-independent re-
quirement of resources required to run an application, and a load-dependent
requirement which is a function of the external load or demand placed on the
application. Examples of load-independent requirements are memory, commu-
nication channels, and storage. Examples of load-dependent requirements are
current or projected request rate, CPU cycles, disk activity, and number of ex-
ecution threads.

We also characterize a server by two parameters: a load-independent capacity
which represents the amount of resources used to host applications on the server,
and a load-dependent capacity which represents the available capacity to process
requests for the applications’ services.

In this paper we restrict ourselves to a single load-independent resource, say
memory requirements, and a single load-dependent resource, say CPU cycles.
These are the most constrained resources for most applications, and thus we are
able to focus on these and use our solution in practice even though there are
other resource requirements and constraints.

The paper is organized as follows. In Section 2 we describe the Websphere
environment in which our algorithm is implemented. In Section 3 we describe
related work. In Section 4 we present a mathematical formulation of the problem.
We describe our heuristic algorithm in Section 5. Experimental results are given
in Section 6. Further work is discussed and conclusions are given in Section 7.

2 System Description

Based on the experimental results presented in this paper, our algorithm has been
incorporated into the IBM Websphere environment [10]. A Websphere compo-
nent known as the placement controller receives dynamic information about the
load-independent and load-dependent requirements of the various applications,
and the load-independent and load-dependent capacities of the various servers.
We used memory size and CPU cycles/sec as the representative load-independent
and load-dependent parameters, respectively. The placement controller is aware
of the configuration, i.e., the mapping of applications onto servers in a given
Websphere cell. Upon need, or periodically, the placement controller executes
our algorithm in order to determine the change in application placement config-
uration in response to changes in loads and characteristics of the applications and
servers. Then the placement controller realizes the change, automatically or in a
supervised mode, through the execution of scripts to start and stop applications
servers.

The system includes an application workload predictor and an application
profiler. The application workload predictor utilizes historical information re-
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garding the offered load to produce a workload prediction for each application
supported by the server farm. For instance, the workload prediction can be char-
acterized by the arrival rate of requests to a given application. Similar to the
application workload predictor, the application profiler produces a set of ap-
plication resource requirements by estimating the amount of server resources
required by a single request of each application. The application resource re-
quirements includes, for example, the number of CPU cycles required to process
a request.

The placement controller utilizes the workload prediction and the appli-
cation resource requirements provided by the application workload predictor
and the application profiler to compute predicted load-dependent resource re-
quirements for each application. Considering the predicted resource require-
ments for each application, the given capacities of each of the server computing
nodes in the server farm, and the current application placement, the placement
controller uses the algorithm presented here to compute a new placement of
applications.

3 Related Work

The problem of optimally placing replicas of objects on servers, constrained by
object and server sizes as well as capacity to satisfy a fluctuating demand for
objects, has appeared in a number of fields related to distributed computing.
In managing video-on-demand systems, replicas of movies are placed on stor-
age devices and streamed by video servers to a dynamic set of clients with a
highly skewed movie selection distribution. The goal is to maximize the number
of admitted video stream requests. Several movie placement and video stream
migration policies have been studied. A disk load balancing criterion which com-
bines a static component and a dynamic component is described in [9]. The static
component decides the number of copies needed for each movie by first solving
an apportionment problem and then solving the problem of heuristically assign-
ing the copies onto storage groups to limit the number of assignment changes.
The dynamic component solves a discrete class-constrained resource allocation
problem for optimal load balancing, and then introduces an algorithm for dy-
namically shifting the load among servers (i.e. migrating existing video streams).
A placement algorithm for balancing the load and storage in multimedia systems
is described in [5]. The algorithm also minimizes the blocking probability of new
requests.

In the area of parallel and grid computing, several object placement strate-
gies (or, meta-scheduling strategies) have been investigated [8, 1]. Communica-
tion overhead among objects placed on various machines in a heterogeneous
distributed computing environment plays an important role in the object place-
ment strategy. A related problem is that of replica placement in adaptive content
distribution networks [?, 1]. There the problem is to optimally replicate objects
on nodes with finite storage capacities so that clients fetching objects traverse a
minimum average number of nodes in such a network. The problem is shown to
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be NP-complete and several heuristics have been studied, especially distributed
algorithms.

Similar problems have been studied in theoretical optimization literature. The
special case of our problem with uniform memory requirements was studied in
[6, 7] where some approximation algorithms were suggested. Related optimiza-
tion problems include bin packing, multiple knapsack and multi-dimensional
knapsack problems [2].

4 Problem Formulation

We formalize our dynamic application placement problem as follows. We are given
m servers 1, . . . , m with memory capacities Γ1, . . . ,Γm and service capacities
(number of requests that can be served per unit time) Ω1, . . . ,Ωm. We are also
given n applications 1, . . . , n with memory requirements γ1, . . . , γn. Application
j must serve some number of requests ωjt in time interval t.

A feasible solution for the problem at time step t is an assignment of appli-
cations’ workloads to servers. Each application can be assigned to (replicated
on) multiple servers. For every server i that an application j is assigned to, the
solution must specify the number ωitj of requests this server processes for this
application.

∑
i ωijt must equal ωjt for all applications j and time steps t. For

every server the memory and processing constraints must be respected. The sum
of memory requirements of applications assigned to server i cannot exceed its
memory Γi and

∑
j ωijt, i.e. the total number of requests served by this server

during the time step t, cannot exceed Ωi. Note that each assignment (copy) of
an application to a server incurs the full memory cost, whereas the processing
load is divided among the copies.

The objective is to find a solution at time step t which is not very different
from the solution at time step t−1. More formally, with every feasible solution we
associate a bipartite graph (A,S,Et) where A represents the set of applications,
S represents the set of servers, and Et is a set of edges (j, i) such that application
j is assigned to (or has copy on) server i at time step t. Our objective function
is to minimize |Et & Et−1|, i.e., the cardinality of the symmetric difference of
the two edge sets. This is the number of application instances that must be shut
down or loaded at time t.

4.1 Practical Assumptions

Since finding a feasible solution to the static problem (i.e., that of finding an
assignment for a single time step) is NP-hard, we must make certain assumptions
about the input. Intuitively, if the input is such that even finding a static solution
is hard we cannot expect to find a good solution with respect to the dynamic
objective function. Thus the problem instance must be ”easy enough” that a
relatively straightforward heuristic can find a feasible solution at each time step.
In practical terms, this means there must be enough resources to easily satisfy
the demand if we ignore the quality of the solution in the sense of the dynamic
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objective function. In the worst case, we can fall back on the heuristic to find a
feasible solution. In fact, our algorithm will degrade gradually to this extreme,
but should perform much better in the common case.

5 Algorithm

We first describe an algorithm that builds a solution from scratch, i.e. under the
assumption that Et−1 = ∅, either because this is the first step (t = 1) or because
the solution from the previous step t − 1 is very bad for serving demands at
step t. This heuristic will be also used later as a subroutine when we describe an
incremental algorithm which optimizes the objective function as we move from
step t − 1 to t. At the risk of slight confusion, we will refer to this heuristic as
the initial placement heuristic even when it is used as part of the incremental
construction.

5.1 Initial Placement

We order all servers by decreasing value of their densities Ωi/Γi, and order appli-
cations by decreasing densities ωjt/γj . We load the highest density application
j to the highest density server i which has enough memory for that application.

If the available service capacity Ωi of a server i is larger then service re-
quirement ωjt of an application that we assign to the server, then we delete
application j from the list of unscheduled applications. We recompute the avail-
able memory and service capacities of the server i by subtracting the amounts
of resources consumed by application j and insert server i back to the list of
servers according to its new density Ωi/Γi with the updated values Ωi and Γi.

If the available service capacity Ωi of the server i is exceeded by the demand
ωjt, we still assign application j to server i, but this application’s demand served
by this server is limited by the server’s (remaining) service capacity. We remove
the server from the list.

In the latter case that the service capacity on the server i is exceeded by
application j assigned to it, let ω′

jt be the amount of demand of application j
assigned to this server and let ω′′

jt be the remaining demand; note ω′
jt+ω′′

jt = ωjt.
Since the server i cannot serve all demand of application j we will need to load at
least one more copy of it on another server, but we do not yet know which server.
The density of the remaining demand is ω′′

jt/γj . We place the application back
in the list with this value as its density in the sequence of remaining applications
(in the appropriate place in the list ordered by densities). Then we move on to
the next highest density application, and so on.

The intuition behind the rule is as follows. We should match applications
which have many requests per unit of memory with servers which have high
processing capacity per unit of memory. It is not wise to assign applications
with high density to a low density server, since we would be likely to reach
the processing capacity constraint and leave a lot of memory unused on that
server. Similarly, if low density applications are loaded on high density servers,
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we would be likely to reach the server’s memory constraint without using much
of the processing capacity.

Note that for every server the algorithm splits the demand of at most one
application between this server and some other servers. Thus the total number of
application-to-server mappings (edges in the bipartite graph) is at most n+m−1.

5.2 Incremental Placement

Although the initial placement algorithm is rather conservative in memory allo-
cation, it could be very bad from the viewpoint of the dynamic objective function,
which seeks a minimal incremental cost of unloading and loading applications
between time steps. We now explain how we can combine the initial placement
algorithm with a max flow computation to yield a heuristic for minimizing our
objective function.

Given a feasible solution on the previous step (A,S,Et−1) we first would like
to check whether we can satisfy the new demands ωjt by simply using the old
assignment of applications to servers. We check this by solving a bipartite flow
problem. I.e., we use the edge set Et−1. Each node corresponding to application
j is a source of ωjt units of flow. We test whether there is a flow satisfying
these sources by routing flow to sinks corresponding to the servers, such that
the flow into each sink corresponding to a server i is limited by the server’s
service capacity Ωi.

If this flow is feasible we are done; the flow values on the edges give the
assignments of applications’ loads to servers. Otherwise, there is a residual de-
mand for every application (possibly 0 for some) which remains unassigned to
servers. Denote the residual demands by ω′

jt. For every server there are a residual
memory Γ ′

i and a service capacity Ω′
i that are not consumed by the assignment

given by the flow. Notice that these demands and capacities induce a problem
of the same form as the initial placement problem. We apply our greedy initial
placement heuristic to this instance. If our heuristic finds a feasible solution to
the residual instance, we can construct an overall solution as follows. The resid-
ual instance results in a new set of edges, i.e., application-to-server mappings
(applications which must be loaded onto servers), which we simply add to the
existing edges. The total cost of the new solution is the number of new edges
used by the heuristic to route the residual demand. This should not be large
since our heuristic is conservative in defining new edges.

If our heuristic fails to find a feasible solution, we delete an edge in the graph
(A,S,Et−1) and repeat the procedure. We continue in this fashion until a feasible
solution is found. The total cost is the number of deleted edges in addition to
the number of new edges. In the worst case, we eventually delete all edges in the
graph and build the solution from scratch using our initial placement heuristic,
which is possible by our assumption that the instance is ”not too hard.”

It remains to define which edge should be deleted. A good heuristic choice
should be the edge which minimizes the ratio of the total demand routed through
this edge (i.e., the flow on this edge) divided by the memory requirement of the
corresponding application. The intuition for this is that we would like to delete



Dynamic Application Placement Under Service and Memory Constraints 397

an edge which uses memory in the most inefficient way. Experimental analysis
could find a better function to define a candidate for deletion.

6 Experimental Evaluation

6.1 Uniform Memory Requirements

In this section we evaluate our proposed algorithm for uniform memory require-
ments γj = const. We concentrate on its performance in terms of the number
of placement changes it suggests and in terms of the execution time. The al-
gorithm is compared against two other placement algorithms we considered for
implementation.

The first algorithm, known as the Noah’s Bagels algorithm, is a solution to
a class-constrained Multiple Knapsack problem as defined in [6, 7]. This algo-
rithm is applicable to the application placement problem only after making the
assumption that all applications have the same memory requirement d, i.e., for
every application j, γj = d. In consequence, the memory of each server can be
expressed as a multiple d; normalizing by setting d = 1, server i can host Γi

applications. The algorithm fills nodes in increasing order of Ωi. To fill a node i,
it considers applications in increasing order of ωj , and finds the minimum j such
that

∑j+Γi−1
k=j ωk ≥ Ωi. Applications j, . . . , j + Γi − 1 are loaded on i, possibly

splitting the demand of j+Γi−1; in this case, j+Γi−1 is put back in the list of
applications, sorted according to its remaining unmet demand. This algorithm is
known to solve a maximization version of our problem, maximizing

∑
i

∑
j ωijt,

when for every i, Ωi

Γi
= const and

∑
i Γi ≥ n+m− 1. If the above conditions are

not satisfied, the algorithm is sub-optimal, but if we allow resource augmenta-
tion, i.e., if we increase each Γi by 1, then this algorithm finds a solution with
value lower bounded by the optimal value for the original instance.

Under our assumption on practical inputs, we can use this maximization
algorithm to find a feasible solution to our problem (i.e., optimal under the
multiple knapsack objective). Our implementation of the Noah’s Bagels algo-
rithm computes a new placement in each iteration from scratch, not taking the
previous placement into account. It may produce a different placement, even
if no placement changes are needed to satisfy the new demand. To avoid this
unnecessary placement churn, in our implementation, a new placement is com-
puted only if the previous one is unable to satisfy the current demand as wit-
nessed by the existence or non-existence of a solution to the satisfying flow
problem.

The second algorithm is a modification of the Noah’s Bagels algorithm that
we developed to make it take the previous placement into account. The algorithm
adopts several heuristics to modify the previous placement to satisfy the new
demand. It first accepts the old placement on nodes that are well utilized by
the new demand. We say a node is well utilized if applications placed on it
use the total CPU capacity and no more than the node’s available memory,
and the CPU load of no more than one application needs to be transfered to
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another node. When no more well utilized nodes exist, the algorithm fills unused
memory on underutilized nodes using the original Noah’s Bagels algorithm. If
this step does not result in a well utilized node, an application with the smallest
CPU demand is removed from the node and the process is repeated until the
node is well utilized. When no more underutilized nodes remain, overutilized
nodes are processed by removing applications from them, starting from ones
with the highest CPU demand, until a node becomes well utilized. We call this
new algorithm Noah’s Bagels Ext. Like the original algorithm, the Noah’s Bagels
Ext algorithm assumes that all applications have the same memory requirements
and it guarantees a placement satisfying the demand of all applications if for
every i, Ωi

Γi
= const and

∑
i Γi ≥ n + m − 1. The algorithm Noah’s Bagels Ext

was the previous candidate to be implemented in the placement controller and
this why we compare our algorithm with it.

Experiment Design. In the experimental study we vary the following vari-
ables:

1. The number of servers. We start from 5 servers and increase their number
to 60. This range of values covers the server-cluster sizes that are used in
practice.

2. The number of applications that may be hosted on each server, which corre-
sponds to their memory sizes. We set this value to 3 in all experiments, i.e.
Γi = 3, i = 1, . . . , m.

3. The ratio of the number of applications to the number of servers. We use
values of 1, 1.5, and 2.

4. Memory requirements of applications. For this section, memory requirements
are the same for all applications, i.e., γj = 1, j = 1, . . . , n. In the next
section we will consider the case in which different applications have different
memory requirements.

5. CPU speeds of servers. In our study, the CPU speeds of all servers are the
same.

6. Utilization factor, which is the ratio of the sum of CPU processing require-
ments of all applications to the sum of the CPU speeds of all servers. We
use utilization factors of 0.8, 0.9, and 0.99.

Given the above parameters, we generate the test scenarios iteratively as
follows. We set the initial placement to be empty. We repeatedly produce CPU
demand for applications by independently generating a set of n random numbers
in the interval [0, 1], p1, . . . , pn, one for each application. Then we normalize these
values by setting p∗j = αpj , where α = 1∑

j pj
. Then we set the load-dependent

demand of application j, ωj = p∗jρ
∑

i Ωi, where ρ is the utilization factor. Given
the new demand, we compute the new placement, taking the placement from the
previous iteration as the current placement.

It should be mentioned that, in practice, demand in a given cycle is correlated
with the demand in the previous cycle, whereas in our experiments the new
demand is independent of the old demand. However, this correlation is very
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Fig. 1. The number of placement changes

difficult to quantify. Our random method provides a pessimistic case on which
to test the algorithms.

Each data point presented in the following sections was obtained as an average
of 100 consecutive placement recomputations.

Number of Placement Changes. In this section we compare the three algo-
rithms with respect to the number of changes to the previous placement required
to satisfy the new demand. Figures 1(a) and 1(b) show this difference for various
utilization factors and application-to-server ratios.

We can conclude that our incremental algorithm causes less perturbation of
the placement than the previous algorithms. For reasonable utilization factors
(e.g., 0.8 in Figure 1(a)), this difference is very significant.

Running Time. In Figures 2(a) and 2(b), we show the execution time of a
single placement recomputation. We observe that the incremental algorithm runs
longer than the other two algorithms. In problem instances with a large number
of applications and a high utilization factor, the running time performance of
our algorithm is significantly worse than that of other algorithms. This is caused
by the fact that in those hard problem instances, a placement satisfying the
new demand might be obtained only by removing all or most of the current
application instances, which requires the algorithm to execute a large number of
iterations. However, even in these hard cases, the incremental algorithm allows
the new placement for a 60-server cluster to be computed in 20 seconds. Note
that starting a single application instance in our environment takes about 1
minute. A placement computation time that is a fraction of the application start-
up time is acceptable in our application domain. Nevertheless, we investigate
the computational time of the incremental algorithm further to understand the
reasons for this lower performance.

Figure 3(a) presents the results obtained for utilization factor 0.9 and appli-
cation to server ratio 2. It shows the total placement recomputation time and
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Fig. 3. Contribution of flow-solve computation

the amount of time spent in flow-solve computation. Figure 3(b) presents the
number of iterations and the number of flow-solve invocations per placement
recomputation. We observe that solving the flow problem is the most significant
contributor to the overall execution time. Even though the number of times the
initial placement has to be invoked to compute the new placement is high in this
scenario, compared to the number of times the flow problem has to be solved,
the contribution of the actual placement computation remains low compared
to that of the flow solver. It should be noted at this point that our flow-solve
method uses the Simplex algorithm. Clearly, much more efficient techniques are
available. We believe that, should one of the more efficient techniques be applied,
the overall algorithm execution time would be significantly reduced.

6.2 Nonuniform Memory Requirements

Since in the case of non-uniform memory requirements γj there are no other
heuristics to solve our problem, we need to compare the value of the solution
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provided by our algorithm either with the optimal value or with some lower
bound on the optimal value. Finding a good lower bound seems a non-trivial task
and remains an interesting open problem. The difficulty is that our objective
function is essentially non-linear (concave) and it is hard (or impossible) to
write a linear programming relaxation which does not have a large integrality
gap. Finding good enumerative algorithms for our problem is also an interesting
open question and again the main difficulty is to figure out how to construct a
lower bound.

We compared the quality of solutions obtained by our algorithm with an
optimal solution on instances of small size (5 servers and 14 applications). The
optimal solution is found by complete enumeration with some additional tricks
to cut down the search space.

The test instances are defined as follows: m = 5, n = 14. Server memory
and capacity requirements are normalized and are equal to 1. Application mem-
ory requirements are chosen uniformly independently at random in the interval
[0, 2/3] and numbers of requests for each application are chosen uniformly in-
dependently at random in the interval [0, 2ρn/m], where ρ is the density which
was 0.7, 0.8 or 0.9 in these experiments.

In the case of small density ρ = 0.7 the heuristic found an optimal so-
lution in almost all the cases and sometimes it used one more assignment.
Note that if the optimal value is zero our heuristic always finds an optimal
solution.

In the case of higher density ρ = 0.8 the behavior of our heuristic becomes
worse with 1−2 additional changes of assignment, and occasionally our heuristic
wipes out the previous solution completely, making 11− 15 changes. In the case
of ρ = 0.9 the behavior is even worse. The difference between optimal value
(which is 1 − 2) and approximate value is significant (5 − 6) in approximately
30% cases.

We believe that such behavior is due to a combination of bad factors such
as small instance size, non-uniform capacities that sometimes do not allow us
to utilize servers’ memory well, and high density which decreases the number of
”good” solutions.

7 Conclusion

In this paper we defined a new optimization problem and presented a heuristic
algorithm to solve it. In this problem we produce copies of applications (at
some cost) and assign them to servers. This is not a well-studied concept in
classical scheduling where jobs or applications are usually simply assigned to
machines. (A related concept is ”duplication” that is popular in scheduling with
communication delays [3, 4].) Another interesting feature of our problem is the
objective function, which is the number of placement changes from time step to
the next time step. This type of objective functions was not studied before in
the optimization literature, to the best of our knowledge.
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We think that it would be interesting to provide some theoretical evidence
that our (or any other) algorithm performs well on a suitably defined class of
instances for which finding feasible solutions is easy.

Another open problem, mentioned in the previous section, is to develop effi-
ciently computable lower bounds which would allow more extensive and rigorous
heuristic testing.
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Abstract. Distributed Shared Memory (DSM) creates an abstraction of a physi-
cal shared memory that parallel programmers can access. Most recent software 
DSMs provide relaxed memory models that guarantee consistency only at syn-
chronization operations. As the main goal of DSM systems is to provide support 
for long term computation intensive applications, checkpointing and recovery 
mechanisms  are highly desirable. This article presents and evaluates the inte-
gration of a coordinated checkpointing  mechanism to the barrier primitive that 
is usually provided with many DSM systems. Our results on some popular 
benchmarks and a real parallel application show that the overhead introduced 
during the failure-free execution is often small. 

1   Introduction 

In order to make shared memory programming possible in distributed architectures, 
we must create a shared memory abstraction that parallel processes can access. This 
abstraction is called Distributed Shared Memory (DSM). The first DSM systems tried 
to give parallel programmers the same guarantees they had when programming uni-
processors. It has been observed that providing such a strong memory consistency 
model creates a huge coherence overhead, slowing down the parallel application and 
bringing frequently the system into a thrashing state  [15]. To alleviate this problem, 
researchers have proposed to relax some consistency conditions, thus creating new 
shared memory behaviors that are different from the traditional uniprocessor one.  
    In the shared memory programming paradigm, synchronization operations must be 
used every time processes want to restrict the order in which memory operations 
should be performed. Using this fact, hybrid Memory Consistency Models guarantee 
that processors only have a consistent view of the shared memory at synchronization 
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time. This allows a great overlapping of basic read and write memory accesses that 
can potentially lead to considerable performance gains. By now, the most popular 
hybrid memory consistency models for DSM systems are Release Consistency (RC) 
[4] and Scope Consistency (ScC)[7]. 

While the memory consistency model defines when consistency should be 
ensured, coherence protocols define how it should be done. Most recent DSM systems 
use sophisticated coherence protocols that are often variations of the Lazy Release 
Consistency (LRC) protocol [9]. LRC is a multiple-writer, homeless protocol that 
uses techniques such as page twinning, page diffing and write notices to guarantee 
that pages at the shared memory segment are consistent at acquire time. In homeless 
protocols, fetching the up to date version of a page usually involves sending messages 
to many nodes whereas, in home-based protocols, it is sufficient to fetch the up to 
date version of a page from a single node, called home.  

For any system running on a distributed platform that aims to be used in large 
scale, fault tolerance mechanisms must be considered. Usually, fault tolerance is 
achieved by periodically checkpointing each process that compose the system and, in 
the case of a failure, recovering the system to a previous consistent system state by 
activating the saved checkpoints. 

Checkpointing can be done in a coordinated or in an uncoordinated way. 
Coordinated checkpointing is achieved by establishing a checkpointing session that 
captures a global consistent state of the execution and saves it to a stable storage. 
Usually, all DSM processes stop computing to take their checkpoints, in a coordinated 
way. Rollback/recovery is quite simple and is done by activating the last set of 
checkpoints.  

In uncoordinated  (or independent) checkpointing, there is no need to establish 
chekpointing sessions and all processes can take their checkpoints whenever they 
want. However, rollback/recovery in this case is unbounded and garbage collection is 
complex [3]. To overcome this problem, message logging is often associated with 
uncoordinated checkpointing. 

Barrier synchronization is used in DSM systems whenever a global 
synchronization point needs to be established. Thus, taking checkpoints at barriers is a 
natural choice to implement coordinated checkpointing in DSM systems. 

In this article, we propose and evaluate a coordinated checkpointing/recovery 
strategy that can be adapted to DSM systems that have barrier primitives. We also 
opted to take the actual checkpoints with an existing checkpoint library (ckpt [21]) in 
order to make our approach more portable and to concentrate efforts on the coordi-
nated checkpointing strategy and at the recovery mechanism itself. This separation 
between the checkpointing mechanism and the checkpointing policy is the original 
part of our approach. 
    The remainder of this paper is organized as follows. Section 2 describes some char-
acteristics of memory coherence protocols for DSM systems. Section 3 presents an 
overview of checkpointing schemes for DSM systems. The JIAJIA software DSM is 
described in section 4. Section 5 describes our checkpointing and recovery  
mechanisms. Some experimental results are discussed in Section 6. Finally, Section 7 
concludes the paper and presents future work. 
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2   Memory Coherence Protocols for DSM Systems 

There are two basic coherence protocols which are traditionally used to solve the 
cache coherence problem: write-invalidate and write-update protocols. In general, at 
consistency time, a write-invalidate protocol guarantees that there is only one up-to-
date copy of the data in the system. If these data are further needed, they are fetched 
from the only node that has a valid copy. On the other hand, a write-update protocol 
allows many copies of the same data to be valid at consistency time and generally 
guarantees that updates will be done atomically and totally ordered. Although most of 
DSM systems use write-invalidate based protocols (TreadMarks[9], ATMK[1]), some 
recent DSM systems offer also write-update protocols (ADSM[14], Brazos[18]). 

Another characteristic that is important in a cache coherence protocol for DSM 
systems is the number of simultaneous writers allowed. The most intuitive approach 
allows only one processor to write data at a given moment (single-writer protocol). 
However, as the unity of consistency is often a page, false sharing can occur when 
two or more processors want to access independent variables that belong to the same 
page. To reduce the effects of false sharing, many DSM systems use multiple-writer 
protocols, allowing many processors to have write access to the same page 
simultaneously and then merging the multiple versions of the page when a consistent 
view is required. Multiple-writers protocols are generally implemented for LRC and 
Scope Consistent DSM systems as follows. If a write fault occurs inside a critical 
section, the original page is copied to a twin before write access is granted. When the 
lock is released, the pages are compared to their twins and the differences between 
them (diffs) are generated. At acquire time, the lock manager sends to the acquiring 
process an acquire message containing the identifications of the pages that are no 
longer valid (write notices). These pages are invalidated before the application 
continues its execution. 

There are two basic approaches used to manage the information needed to execute 
coherence protocols in page-based DSM systems: home-based and homeless. In 
home-based systems, each page is assigned to a node (home-node) that concentrates 
all modifications made to the page. Every time an up-to-date version of the page is 
needed, it is sufficient to contact the home node in order to fetch the page. In the 
homeless approach, each processor that modifies a page maintains such modifications 
locally. In order to obtain an up-to-date version of the page, a node must collect the 
modifications that are distributed all over the system. Modifications are kept by each 
node and garbage collection is required. 

Home-based protocols do have some advantages. First, each access fault requires 
only communication with the home-node. Second, since modifications are eagerly 
applied at the home-node, there is no need to keep additional control structures such 
as twin pages or diffs after the home node is updated. However, as modifications are 
eagerly sent to the home node, such protocols generally require additional messages. 
Also, on an access fault, homeless protocols fetch only the modifications made to the 
page (diffs) while home-based protocols fetch the whole page [5]. 
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3   Checkpointing Mechanisms for DSM Systems 

In DSM systems, research in rollback/recovery is concentrated in adapting either 
coordinated or uncoordinated checkpointing strategies from message-passing systems 
to the DSM environment. 

In [8], a coordinated checkpointing mechanism is proposed that keeps track of the 
DSM processes interactions by building a communication tree in order to reduce the 
number of processes involved in a checkpointing session. Incremental checkpoints are 
taken only for this subset of processes and stored to disk. 

A coordinated checkpointing strategy for TreadMarks [9] is presented in [10]. 
Coherence-related information contained in write-notices are used to decide which 
data really  need to be saved in the checkpoint.  

An uncoordinated checkpointing strategy for home-based release consistent DSM 
systems is presented in [19]. Logs of DSM operations are maintained in remote 
memories for further use in the recovery mechanism.  

A logging strategy for ADSM[14] is proposed in [11]. Coherence-related 
information is logged according to the coherence protocol which is in use. The 
protocols considered are multiple-writer/write-invalidate and single-writer/write-
update. Coordinateed and uncoordinated checkpointing can be used. The use of 
coordinated checkpointing with logging can be justified since, in this case, the size of 
the logs can be reduced. 

In [23], the impact of locks and barriers in sequential consistent DSM systems is 
analyzed. Kernel-level support is used to keep track of data dependencies in either 
coordinated and uncoordinated checkpointing.  

In all these systems, coherence related information is used to decide which 
information will be included in the checkpoint. Also, most of these works deployed 
their own checkpoint libraries. Modifications made to the operating system kernel 
must be often taken into account by the checkpoint library. Modifications into the 
kernel itself are made in [23]. 

Like [8] and [10], we opted to use coordinated checkpointing. However, unlike 
them, we integrated an existing checkpointing library to our checkpointing  
mechanism.  

Also, we did not use coherence-related information to reduce the size of the check-
point file since our approach is designed to work in any DSM system that provides 
barriers as synchronization mechanisms. 

4   The JIAJIA Software DSM System 

JIAJIA is a software DSM system proposed by Hu, Shi and Tang [5]. It implements 
the Scope Consistency memory model with a write-invalidate multiple-writer home-
based protocol.  

In JIAJIA, the shared memory is distributed among the nodes in a NUMA-
architecture basis. Each shared page has a home node. A page is always present in its 
home node and it is also copied to remote nodes on an access fault. There is a fixed 
number of remote pages that can be placed at the memory of a remote node. When 
this part of memory is full, a replacement algorithm is executed. 
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Scope Consistency is a memory model that requires that consistency must be 
guaranteed when a process acquires a lock or when it reaches a synchronization 
barrier. In the first case, consistency is maintained in a per-lock basis, i.e., only the 
shared variables that were modified on the critical section guarded by lock l are 
guaranteed to be updated when a process acquires lock l.  

On a synchronization barrier, however, consistency is globally maintained and all 
processes are guaranteed to see all past modifications to the shared data [6]. 

In order to implement Scope Consistency, JIAJIA statically assigns each lock to a 
lock manager. The functions that implement lock acquire, lock release and 
synchronization barrier in JIAJIA are jia_lock, jia_unlock and jia_barrier, respectively 
[17]. 

On a release access, the releaser sends all modifications performed inside the 
critical section to the home node of each modified page. The home node applies all 
modifications to its own copy and sends an acknowledgment back to the releaser. 
When all acknowledgements arrive, the releaser sends a message containing the 
numbers of the pages modified inside the critical section (write notices) to the lock 
manager [6].   
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Fig. 1. Barrier synchronization at the JIAJIA software DSM system 

On an acquire access, the acquirer sends an ACQ message to the lock manager. 
When the lock manager decides that the lock can be granted to the acquirer, it 
responds with a lock granting message that contains all write notices associated with 
that lock. Upon receiving this message, the acquirer invalidates all pages that have 
write notices associated, since their contents are no longer valid.  
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On a barrier access, the arriving process generates the diffs of all pages that were 
modified since the last barrier access. Then, it sends the diffs to the respective home 
nodes. The home nodes receive the diffs, apply the modifications, and send an 
acknowledgement to the arriving process. Then, the arriving process sends a BARR 
message containing the write notices of all modified pages to the owner of the barrier.  

When all processes arrive at the barrier, the owner of the barrier sends back a 
BARRGRANT message to each process, containing the write notices of all pages 
modified since the last barrier. Upon receiving this message, the processor invalidates 
the pages contained in the write notices and continues the execution.  

Figure 1 illustrates the barrier operation in JIAJIA. For simplicity, the whole 
process was only represented for node 0. 

5   Proposed Coordinated Checkpointing/Recovery Mechanisms  

5.1   Design Choices 

Some assumptions were made when designing our mechanisms. First, the communi-
cation network and the stable storage used to store the checkpoints is assumed to be 
fault-free. Second, only transient faults will be treated. Permanent faults are not sup-
ported. Third, processes fail in a fail-stop mode. More complex failures such as byz-
antine failures are not considered. Forth, failures that occur during the recovery proc-
ess are not supported. 

The first decision made in the design of our checkpoint/recovery mechanism is 
whether to use coordinated or uncoordinated checkpointing. Although coordinated 
checkpointing can introduce non-negligible overheads in failure-free executions, the 
overheads that can be introduced by uncoordinated strategies due to complex garbage 
collection schemes and log management are often very high. Besides, uncoordinated 
checkpointing makes the recovery process more complex. Thus, we opted to design a 
coordinated checkpointing scheme and, to overcome the possible problem of consid-
erable overheads introduced to failure-free executions,  special care was taken not to 
increase the number of messages exchanged by the nodes due to checkpointing. 

The second design choice concerned the checkpointing mechanism itself. We opted 
to use an existing checkpointing library since we wanted to concentrate our efforts on 
the coordinated checkpointing strategy. Also, we wanted to decouple the checkpoint 
strategy from the checkpointing procedure in order to make it easier to use different 
libraries for different operating systems, while maintaining the same checkpointing 
strategy.  

In order to choose an appropriate checkpointing library, we evaluated Libckpt 
[16], Libckp [20] and ckpt [21]. The following characteristics were analyzed. First, 
solutions that required modifications in the operating system kernel were discarded, 
since these modifications introduce portability problems. Libraries that ran always in  
user-level with no kernel modifications were preferred.  Second, open source libraries 
were preferred. Third and more important, the recovery mechanism provided by the 
library should work for general Unix processes and, specially, for Unix processes 
using JIAJIA primitives.  
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Of those, only ckpt presented these three characteristics that is the reason why it 
was chosen. However, ckpt does have some limitations [21]. First, only integral 
checkpointing is done, i. e., incremental checkpointing is not implemented. Second, 
checkpoint files are always written to disk and that precludes the use of remote 
memories as stable storage. Third, the following resources are not saved to the check-
point file [21]: open files, network connections, Unix inter-process communication 
(IPC) mechanisms, thread information and the process status. 

5.2   Design of the Checkpointing Mechanism 

Our coordinated checkpointing mechanism is integrated to the barrier synchronization 
primitive and requires no additional inter-node communication to take checkpoints. In 
DSM systems that implement relaxed memory models such as LRC and ScC, the 
barrier is the only execution point that captures a consistent global state of the execu-
tion. Thus, it is the natural choice for the integration of a coordinated chekpointing 
mechanism. In this case, there is no need for the checkpointng mechanism to establish 
a consistent global state since it is done naturally by the barrier primitive. 

The primitive jia_barrier illustrated in figure 1 was modified to include our 
checkpointing strategy. When a process receives a BARRGRANT message, it knows 
that all the other processes have already reached the barrier and that the global consis-
tent state is attained. At this moment, the following actions are taken: 

a) the process disables interruptions to guarantee that no messages will be treated 
while the checkpointing is underway; 

b) integral checkpointing is made to the local disk using the command checkpoin-
tHere, provided by the ckpt library. If there is already a checkpoint for this 
process on the disk, it is replaced by this last one; and 

c) interruptions are enabled. 

    After that, the jia_barrier proceeds as in the original implementation (figure 1): 
remote pages are invalidated, write-notices are cleaned and the pages state is set to 
read/only. 
    The programmer has the choice to enable/disable the checkpointing mechanism 
whenever he/she wants. The primitives jia_config(CKPTREC,ON) and 
jia_config(CKPTREC,OFF) are provided and they activate/deactivate the checkpoint-
ing mechanism at the subsequent barrier primitives. The primitive jia_barrier_ckpt is 
also provided to force chekpointing without considering the value of the variable 
CKPTREC. 

5.3   Design of the Rollback/Recovery Mechanism 

The rollback/recovery mechanism allows the execution to be continued from the last 
saved checkpoint. The whole rollback/recovery mechanism is illustrated in figure 2, 
where P0 is the node from where the DSM application was initially launched. 
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    The program jia_restart <application> is offered to provide this facility. When the 
command jia_restart is executed at processor P0, the following executable files are 
copied to the remote machines: jia_restart, <application> and restart. The library 
librestart.so and some configuration files are also copied at this point. After that, the 
remote execution command rexec “jia_restart <application>” is issued to all nodes 
that were running the DSM application when the failure occurred.  
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Restore 
chekpoint
(program
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Initialize
sync and 
comm

Resume
execution

P1

Restore 
chekpoint
(program
restart)
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execution
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execution

rexec “jia_restart”
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sync and 
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Initialize
sync and 
comm

copy files 
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Fig. 2. Proposed rollback/recovery protocol 

    When this command starts execution on the remote nodes, it first executes the pro-
cedure initmem that does the mapping of the DSM area to the memory assigned to the 
process. After that, the checkpoint file is read from the local disk and the process state 
is built from this file by the ckpt library (program restart). Since the ckpt library did 
not save some data that are needed for a JIAJIA process to restart correctly, additional 
procedures (initsyn and initcomm) were included at this point. 

The procedure initsyn is needed to allocate memory for the data structures that rep-
resent the locks and barriers. Finally, the procedure initcomm allocates and re-
activates the sockets that were used by the process, which were not saved by ckpt, as 
explained in section 5.1. Since the restored JIAJIA processes resume execution from 
the last saved barrier, there is no need for synchronization at the end of this protocol. 

6   Experimental Results 

The mechanisms described in section 5 were implemented in C and integrated to 
JIAJIA.  
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    To evaluate our mechanism, we ran our experiments on a dedicated cluster of  8 
Pentium II 550 MHz, with 160 MB RAM connected by a 100Mbps Ethernet switch. 
The JIAJIA software DSM system v.2.1 ran on top of  Debian Linux 2.2.5. 

Our results were obtained with 4 popular parallel benchmarks and a real parallel 
application. The following benchmarks were used: EP from the NAS parallel bench-
mark [2], TSP from TreadMarks benchmarks [12], MM, which is a matrix multiplica-
tion program that uses the inner product algorithm and MMA, which is also an inner-
product matrix multiplication but each value is calculated with additions. A real paral-
lel application that locally aligns long DNA sequences (Genome) was also evaluated. 
This application uses a variant of the algorithm proposed by [22] and has time com-
plexity O(n2) where n is the size of the sequences. More details about this application 
can be found in [13]. The sizes of the problem and the synchronization primitives 
used by these applications are shown in table 1. 

Table 1. Characteristics of the applications 

Program Problem size Synchronization 
EP 228 Locks and Barriers 
TSP 19 Locks and Barriers 
MM1408 1408x1408 Barriers 
MMA1408 1408x1408 Barriers 
Genome398 398x398 Locks and Barriers 
Genome782 782x782 Locks and Barriers 

 

The execution times and speedups of these applications are shown in figure 3. It 
must be noted that the Genome application parameters were set in order to reproduce 
a highly communication-intensive scenario with bad speedups.  
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Fig. 3. Execution times (sec) and speedups for the applications 

 
Figure 4 shows the average size of the checkpoint file for these applications. 
For the ckpt library there seems to be a lower bound on the checkpoint file size 

that relies around 7MB (figure 4). For this reason, the sizes of the checkpoint files for 
EP and TSP do not decrease as we increase the number of nodes. For MM and MMA, 
the size of the checkpoint file for the one-node execution is 31MB. As long as we 
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increase the number of nodes, the part of the matrix to be calculated is smaller and so 
are the checkpoint files.  
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Fig. 4. Average checkpoint sizes for the applications 

 
It must be noted that the size of the checkpoint file at node 0 is bigger than in the 

other nodes. For instance, with 8 processors, the size of the checkpoint file for 
MM1408 is 23.1MB and 14.3MB, at node 0 and at the other nodes, respectively. This 
can be explained since node 0 is considered the master node and contains data struc-
tures that are exclusive to it. 
    Figure 5 shows the overhead introduced by our checkpointing strategy in failure-
free executions. The highest overhead obtained was 19.9%, achieved when executing 
MM with 8 processors. For the four benchmarks analyzed, the overhead introduced 
by our mechanism increases as long as the number of nodes is increased. This can be 
explained since, with more nodes, the execution time is smaller but the size of the 
checkpointing file does not decrease in the same rate (figure 4) and 7MB seems to be 
a lower bound for the checkpoint file size. Thus, the impact of the overhead on the 
total execution time increases when more nodes are added.   
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Fig. 5. Failure-free overheads for the 6 applications 

The genome applications (genome398 and genome782) were of particular interest 
since they presented really bad speedups (figure 3)  and this could lead to a negative 
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impact in our checkpointing mechanism. For these two applications, the highest over-
heads (9.7% and 15.1%, respectively) were obtained with 4 nodes. With 8 nodes, the 
failure-free overhead presented by these applications dropped to 0.8% and 9.4%, 
respectively.  

Nevertheless, even in this bad scenario, the overhead values obtained by our 
checkpointing mechanism with the genome applications were close to the ones ob-
tained with three benchmarks (TSP, MM and MMA).  

To test our recovery mechanism, we turned the power off while the genome782 
application was running, waited for 5 minutes and then turned the power on. After 
rebooting, all the nodes restarted execution from the last saved checkpoint and the 
results produced were correct. The whole recovery process took less than 2 minutes. 

7   Conclusions and Future Work 

This article presented the design and evaluation of checkpointing and roll-
back/recovery mechanisms that can be adapted to DSM systems that use barriers as 
synchronization mechanisms. The main  characteristic of our checkpointing mecha-
nism is that it does coordinated checkpointing at barrier time, without adding mes-
sages to the DSM system. We chose to use an existing checkpointing library (ckpt) in 
order to separate the procedure from the mechanisms and to focus on the checkpoint-
ing and recovery mechanisms themselves.  

The experimental results obtained in an eight machine cluster with 4 popular 
benchmarks and a bioinformatics application presented reasonable failure-free over-
heads, ranging from 0.6% to 19.9% for 8-node executions. The size of the checkpoint 
file is also reasonable, ranging from 7MB to 17MB with 8 processors.   

As future work, we will use our mechanism in long run real parallel applications. 
Also, we are investigating how to integrate an incremental checkpointing strategy to 
our mechanism. 
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Abstract. A5/1 pseudo-random bit generator, known from GSM networks, po-
tentially might be used for different purposes, such as secret hiding during cryp-
tographic hardware testing, stream encryption in piconets and others. The main
advantages of A5/1 are low cost and a fixed output ratio.

We show that a hardware implementation of A5/1 and similar constructions
must be quite careful. It faces a danger of a new kind of attack, which signif-
icantly reduces possible keyspace, allowing full recovery of A5/1 internal reg-
isters’ content. We use “fault analysis” strategy: we disturb the A5/1 encrypt-
ing device (namely, clocking of the LFSR registers) so it produces an incorrect
keystream, and through error analysis we deduce the state of the internal reg-
isters. If a secret material is used to initialize the generator, like in GSM, this
may enable recovering the secret. The attack is based on unique properties of
the clocking scheme used by A5/1, which is the basic security component of this
construction.

The computations that have to be performed in our attack are about 100 times
faster than in the cases of the previous fault-less cryptanalysis methods.

Keywords: fault cryptanalysis, A5/1, GSM, LFSR.

1 Introduction

In this paper we consider the security of A5/1 algorithm. The algorithm is a pseudo-
random bit generator used e.g. by GSM networks for keystream generation. It is ex-
tremely simple in design: it consists of three LFSR registers, which output is XOR-ed.
The most important feature of this algorithm is its’ LFSRs’ clocking mechanism.

The cryptographic strength of A5/1 algorithm comes from a non-linear clocking
rule. All LFSR-based designs, which do not have a non-linear component, can be bro-
ken easily with simple linear algebra. A lot of attention was devoted to the question how
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to combine LFSRs – which are easy to build and fast – in order to get a cryptograph-
ically strong generator. A5/1 is an extremely simple solution to this question, another
one is a shrinking generator [8]. A5/1 has an advantage over the shrinking generator, it
produces an output bit at each step, while the shrinking generator requires a buffer for
collecting the bits before outputting them.

Potential Applications. A5/1 is at the moment probably the most widely used stream
cipher. It has been designed so that its’ cheap and efficient hardware implementation
is possible, so the idea to use A5/1 for purposes other that those it was originally cre-
ated for might be tempting. This is additionally motivated by the fact that using ex-
isting and tested ciphers instead of designing new ones is advised from a security’s
viewpoint. Such tasks could include for example purposes related to secure testing of
integrated circuits that store sensitive data. Every chip that is currently produced con-
tains an appropriate test circuitry, used generally right after production and before final
packaging. However, sometimes integrated circuits have to be checked thoroughly and
frequently – this occurs for many crucial security components implemented in hard-
ware, a good example are secure signature creation devices for which a hardware fault
must be detected as soon as possible. If such a chip contains secret data, possibility
to perform checks by an unauthorized personnel poses a security threat, especially
in presence of some modern side-channel cryptanalysis techniques, such as timing at-
tacks, DPA or fault analysis. To avoid problems, the test output should be scrambled.
Due to technical reasons, algorithms such as A5/1 are very well suited for becoming
scramblers – the data from the testing circuit comes through a kind of serial inter-
face and can be combined with the random bits of the scrambler before sending them
out.

A5/1 Security. Several attacks on encryption algorithms A5/1 and A5/2 (a weaker al-
gorithm that may be used instead of A5/1 by GSM phones) have been proposed, see
[4, 5, 10]; the most recent work [2] is based on some fundamental cryptographic flaws
found in GSM protocol, and describes a way to recover A5/2 secret session key using
only a couple of milliseconds of encrypted communication within a second on a home
computer. Authors suggest that although similar method can be used against stronger
A5/1, that attack would be rather cumbersome in practice: one of possible setups is that
if one had 8 seconds of encrypted communication and 5000 PCs had completed prepro-
cessing in 1 year’s time filling up 176 200GB disks, another 1000 PCs could perform
an attack in real-time. However, while such an effort is rather unrealistic for individu-
als, it is well within the range of a middle sized company or university, not to mention
wealthy and highly motivated attackers.

New Result. The main goal of this paper is to inspect threats of A5/1 device secu-
rity that come from the design of the shift registers’ clocking. We show that disturbing
a clocking sequence yields an alternative, quite efficient attack on A5/1. For instance,
it allows to reconstruct the contents of A5/1 internal registers with a moderate com-
putational effort in a certain fault model. This attack may be seen as a special case
of attacks on A5/1 predicted in [4], however as far as we know it is the only attack
that use fault-analysis strategy, and at the same time it is probably the most efficient
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one. The attack is based on stopping a LFSR register from clocking at a given mo-
ment. Our paper shows that the countermeasures against hardware faults of this kind are
necessity.

Paper Organization. We start with an overview of A5/1 stream cipher and briefly
describe the idea of fault analysis. Then we introduce the idea of resynchronization,
and describe the way it can be used to guess some part of A5/1 internal state, and thus
mount an effective attack; we discuss some difficulties and their possible solutions. At
the end we discuss technical feasibility of attacks on physical devices and necessary
precautions.

2 Preliminaries

2.1 The A5/1 Stream Cipher

The A5/1 algorithm is known for several years: although never officially published,
its construction has been found via reverse-engineering [7]. The algorithm, as used by
GSM, has three linear shift registers R1, R2 and R3 with 19, 22 and 23 bit cells re-
spectively. The session key has 64 bits. The data transferred is divided into so-called
frames, each 228-bit long: 114 bits of incoming data and 114 bits of outgoing data.
The frame number is 22 bit long. For each frame the keystream generation is divided
into three phases. In the first phase, registers are zeroed and then clocked regularly 64
times, while their leftmost (see Fig. 1) bits are XOR-ed with consecutive bits of the
session key. Similarly in another 22 similar steps 22 bits of the frame number are in-
serted (actually, the frame number is a fixed bit permutation of TDMA frame number,
cycled in 222 long periods.) In the second phase registers do not clock regularly – which
of the registers clock depend on bits on positions 8 , 10, 10 in (respectively) R1, R2,
R3, called clocking windows. The registers clock according to a majority rule: in the
next step the only registers (2 or 3) that clock are the ones which “decision” bits from
clocking windows (black cells on Fig. 1) are equal to the majority of these bits (ma-
jority of the three bits, a, b, c can be expressed as ab + ac + bc.) The second phase
lasts for 100 steps and its’ output is discarded. Finally, during the third phase the reg-
isters work as in the second phase, but their output bits are XOR-ed; the results are the
key bits that are XOR-ed with the plaintext. This phase lasts for 228 steps and then
the frame is over. For the next frame, the whole procedure restarts with a new frame
number.

2.2 Fault Cryptanalysis

Fault analysis is a fairly recent cryptanalysis tool; it was introduced by Boneh et. al
[6]. The idea is to cause distortions during operation of a cryptographic device so that
it produces a faulty output; comparing faulty and correct output can yield significant
information about the secrets contained within the device. Among others, a spectacular
attacks of this kind have been proposed against improperly implemented RSA scheme
[13], and against symmetric algorithms [3, 9].
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3 Resynchronization Attack

We consider an attack in which the adversary holds the encryption device with a se-
cret key inside. The adversary’s goal is to find the state of the linear shift registers at
some moment of the computation. Having this state one can apply known computa-
tional methods [5] to trace back the states of the shift registers to the moment when the
secret key is involved in the computation and derive the secret key.

3.1 Clocking Fault

We assume that an adversary, say Bob, holds an A5/1 encryption device and can use
it freely. Since the input and output data are known for Bob, he gets the pseudoran-
dom sequence generated by the device. Bob can insert faults into device’s operation.
For the sake of simplicity in this paper we discuss only one scenario: we assume that
in an arbitrary moment Bob can block the shift that would be performed by one of
the shift registers (say R1.) Hence, if R1 does not clock at this moment, this has no
effect on the state of shift registers and therefore has no effect on the output. In the
opposite case the computation gets disturbed: in the next step majority function is com-
puted from different bits and changes in clocking may propagate. Typically, the shift
registers clock in a different way and, consequently, different pseudorandom bits are
generated.

Obviously, if after blocking R1 for one step no change in the output sequence oc-
curs, then with high probability R1 does not clock at this moment in a correct compu-
tation. So by checking whether the output changes Bob gets some information on the
bits that determine clocking. By performing many such trials one may hope to gather
enough information to reconstruct the states of the shift registers. The problem is that
putting these information together seems to be hard as the number of possible cases
grows rapidly. Our goal is to find a method that allows making conclusions about the
contents of the shift registers possibly less frequently, but when succeeded, only a small
number of candidates for relatively large blocks of bits exist (strategy similar to the one
presented in [4].)
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3.2 Resynchronization

Assume that at step t ′ clocking of a register was prohibited. We say that shift registers
are synchronized at step t of a computation, if during steps t ′ through t each of the shift
registers clocks exactly the same number of times as in a fault free computation with
the same initial state. Of course, clocking patterns need not to be the same, only the
total number of moves for each shift register counts.

A key observation is that after a clocking fault resynchronization is possible
and occurs in quite specific situations. For instance, consider the following config-
uration:

R1: 1 0 0 0 0 ... 0 0 0 ← n−1 zeroes
R2: 0 0 0 0 0 ... 0 0 0 ← n zeroes
R3: 0 0 0 0 0 ... 0 0 0 ← n zeroes

Assume that a fault occurs at the first step in R1. It is easy to see that after n steps the
registers get resynchronized. Of course, the above example (due to the construction of
R1) is valid only for n < 10.

Now let us introduce some notation. The block of bits starting in the clocking win-
dows that provides resynchronization immediately after k steps is called resynchro-
nization pattern or k-resynchronization pattern, RSPk for short; each resynchroni-
zation pattern consist of three blocks of bits, one per shift register (R1, R2 and R3.)
For instance, the example above considered for n = 2 yields an RSP2 of the form
(10,00,00).

Any pattern can be checked offline for resynchronization property, so all resynch-
ronization patterns of small length can be found via an exhaustive search. For instance,
there are only two RSP3: (011,111,111) and (100,000,000), which in fact we have
already seen. The things become more interesting for RSP4. There are the following
resynchronization patterns of length 4:

(011,1101,110), (011,110,1101) , (100,0010,001), (100,001,0010)
(011,1101,1101), (100,0010,0010),
(0111,1111,1111), (1000,0000,0000).

Essentially, we have here only three different cases, we can obtain each other pattern by
replacing the contents of R2 and R3, or by flipping each bit.

The things are really exciting for larger lengths. Through an exhaustive search we
have identified all resynchronization patters of lengths 5 through 9. The number of these
patters equals: 30 for RSP5, 112 for RSP6, 480 for RSP7, 2068 for RSP8, and 8992 for
RSP9. The number of the resynchronization patterns fits very well cryptanalysis needs:
it is not too small (which would make finding resynchronization difficult) and not too
big (large number of possible patterns would make hard to guess the pattern that has
actually occurred.)

3.3 Outline of Cryptanalysis

The attack is based on the following observations:

– if we observe resynchronization after n steps, then it is plausible to assume that one
of patterns RSPk occurred, for k = n or k slightly bigger than n,
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– the clocking fault does not change the contents of the shift registers, only their
timing is affected; as a consequence, before a resynchronization occurs, the output
is built from the same bits, but the moments when particular bits are used by the
output XOR-gate differ. The important thing is that these changes can be derived
from resynchronization pattern.

The attack consists of the following phases:

Phase 1: run the device without faults and with faults injected at different moments;
look for a situation where resynchronization occurs after some (about 5 to 9) steps and
collect the corresponding output streams. For a given resynchronization length, there
is a number of possible RSPs, typically couple thousands; we execute the remaining
phases for each of these patterns.

Phase 2: compute clocking pattern that follows from the resynchronization pattern
assumed – in this way derive clocking in both faulty and non-faulty execution for
the period between the moment of injecting the fault and the moment of resynchro-
nization. Given the clocking pattern, construct a system of linear equations describ-
ing the output in this period. For this purpose take a number of variables describing
some number of rightmost bits in each of the shift registers. Then express the output
bits in terms of these variables (each expression is a (mod 2) sum of three variables.)
This is possible, since the clocking pattern is known. Note that we have two sets of
equations – one corresponding to a faulty execution and one for the error-free one;
moreover, the faulty computation gives us different equations with the same vari-
ables. For example, for RSP7 there are typically 13 equations of 18 variables. Solve
this systems of linear equations. If the system has no solution then stop considering
this resynchronization pattern. Otherwise, we can express a number of bits on the
right side of shift registers at the moment when a fault occurs by but a few of these
bits.

Phase 3: In this phase we have many bits of registers known (about 44 bits in the case
of RSP9; about 21 in the case of RSP5.) To find the rest of them we will gradually guess
the values of unknown bits needed for the clocking mechanism, make one move of the
system and construct a linear equation with current rightmost bits of registers and the
output bit. All equations are expressed in terms of bits of registers at the moment when
clocking fault is caused.

Some of the guesses will contradict the system of linear equations, other will lead
to full rank linear system with 64 unknowns – the solution should be then verified by
comparing to the original keystream.

3.4 Some Details of the Attack

Resynchronization Probability. After injecting a clocking fault resynchronization oc-
curs after 5 to 9 steps with probability of about 1.5% (0.0148462...). If we may afford
to look for resynchronization occurring less frequently (meaning more experiments
with the device) we should rather concentrate on longer patterns, say 8 or 9 steps
long.
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Linear Equations for Phase 2. First let us consider a toy example of an RSP3. Con-
sider one of RSP3s mentioned before – (011,111,111). Consider the state of registers
before injecting a fault and denote the bits stored by R1, R2 and R3 by, respectively,
a0, . . . ,a18, b0, . . . ,b21 and c0, . . . ,c22 (see Fig. 1.) Let the output observed in the fault
free computation be x1,x2,x3, . . . and in the faulty computation – y1,y2,y3, . . .. Since
we assume resynchronization after 3 steps, x3 = y3. By inspecting the clocking se-
quence in both computations one can derive the following equalities for the output
values: ⎧⎨⎩

a17 +b20 + c21 = x1

a16 +b19 + c20 = x2

a16 +b18 + c19 = x3

⎧⎨⎩
a18 +b20 + c21 = y1

a17 +b19 + c20 = y2

a16 +b18 + c19 = y3

Since x3 = y3, this yields a system of 5 equations, which are in this case independent.
So we may express 5 variables occurring in this system through expressions with 4
remaining variables. For instance:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a16 = b20 + c20 + x1 + x2 + y2

a17 = b20 + c21 + x1

a18 = b20 + c21 + y1

b18 = b20 + c19 + c20 + x1 + x2 + x3 + y2

b19 = b20 + x1 + y2

In this example no values of xi,yi can contradict the system, which could only happen,
if the rank was lower than the number of equations. However, for instance for RSP5
(100,00110,0011) the system considered consists of 9 equations and 13 variables, rank
of its left side is 7 and it has a solution if and only if{

x1 + x2 + y1 + y2 = 0
x1 + x3 + y1 + y3 = 0

So this RSP5 will be excluded for 75% cases of the values of xi,yi.
In general, systems of equations defined in Phase 3 are underdefined, but the rank

of the system matrix is quite high; more thorough statistics can be found in the Ap-
pendix A.1 [12]. If we consider only resynchronization after 5, 6, 7, 8 and 9 steps, then
there are 11682 RSPs (with different lengths.) We may also consider fixed length RSPs
by filling in additional bits so that all RSPs have the same length. Then we get 1992622
RSPs of length 27. The average case is that resynchronization occurs after 6.70807
steps, (the variable length) RSP contains 16.421 bits, the system of linear equations
contains 17.1326 variables and its rank is 10.5344. So once we choose an RSP, on aver-
age we express 33.5536 bits of the shift registers by guessing some 6.5982 bits. Since
the difference between the number of equations and the rank is 1.88174, for an average
system, in about 73% cases RSP guess is not consistent with the bits xi,yi, so it can be
quickly filtered out.

Uncertainty About Resynchronization Pattern Length. Unfortunately, we cannot
be sure about the exact number of steps before resynchronization occurs: even if the
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output bits from a given step onwards are the same, it may happen that resynchroni-
zation occurs a few steps later, and the same keystream bits before resynchronization
came out by accident. If resynchronization occurs after step t, then with probability
approximately 1

2 the outputs are the same already after step t−1 (we would have prob-
ability exactly 1

2 after replacing each shift register by an independent random generator.)
However, finding exact probability that output of an RSPn will synchronize after step
n− 1, n− 2, . . . is nontrivial due to some subtleties of resynchronization. For instance
consider an RSP4 (011,1101,1101). Denote the contents of the registers exactly as in
the case of an RSP3. Then the output sequence starting from the moment of injecting
a fault equals

a18 +b20 + c21, a18 +b19 + c20, a17 +b18 + c19, a16 +b17 + c18 ,

while the correct system outputs

a17 +b20 + c21, a17 +b19 + c20, a16 +b18 + c19, a16 +b17 + c18 .

So the output for this RSP4 will synchronize after step 4 if and only if

a16 +b18 + c19 �= a17 +b18 + c19

or just a16 �= a17 for which probability is about 1
2 . We observe the same output already

after step 3 if {
a16 +b18 + c19 = a17 +b18 + c19

a17 +b19 + c20 �= a18 +b19 + c20 ,

that is, if a16 = a17,a17 �= a18. This occurs with probability roughly 1
4 . For observing

output resynchronization after step 2 conditions are⎧⎨⎩
a16 +b18 + c19 = a17 +b18 + c19

a17 +b19 + c20 = a18 +b19 + c20

a17 +b20 + c21 �= a18 +b20 + c21 ,

that is, if a16 = a17, a17 = a18, a17 �= a18, which can never happen. So the remaining
probability is allocated to the event that the outputs get the same already after step 1
after the moment of fault injection.

Exactly the same effects can be observed for the following RSP4: (100,0010,0010),
(011,1101,110), (011,110,1101), (100,0010,001), (100,001,0010). For two other
RSP4, namely (0111,1111,1111) and (1000,0000,0000), the probabilities of resynch-
ronization of the output after step 4, 3, 2 and 1 are, respectively, 1

2 , 1
4 , 1

8 and 1
8 . Thus,

if we consider fixed length RSP4s (all consisting of 12 bits), then we get two RSPs
for which the outputs can re-synchronize after step 2, and 20 RSPs for which it is
impossible. So probability that output of random registers with RSP4 resynchronizes
after 2nd step is 1

8 ·
1

11 = 0.011(36). Experimental results are very close to these
values.
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Table 1. Which RSP is responsible for resynchronization of outputs

observed actual RSP length
RSP prob. n n+1 n+2 n+3 n+4 n+5 n+6 > n+6
n = 1 1.93% 0% 80.84% 5.05% 6.63% 3.42% 1.79% . . . 2.27% . . .
n = 2 1.72% 91.29% 5.70% 0.36% 1.18% . . . . . . . . . . 1.47% . . . . . . . . . .
n = 3 0.39% 49.41% 34.02% 4.05% 5.16% 3.13% 1.81% . . . 2.42% . . .
n = 4 0.43% 62.07% 23.64% 3.16% 4.72% 2.72% 1.58% . . . 2.11% . . .
n = 5 0.34% 60.61% 23.33% 3.76% 5.11% 3.03% 1.78% . . . 2.38% . . .
n = 6 0.28% 56.47% 25.53% 4.32% 5.63% 3.38% 2.00% 1.16% 1.51%
n = 7 0.25% 56.84% 24.91% 4.43% 5.68% 3.39% 2.01% 1.18% 1.56%
n = 8 0.22% 56.06% 25.12% 4.62% 5.81% 3.50% 2.07% 1.20% 1.62%
n = 9 0.20% 55.60% 25.21% 4.77% 5.85% 3.55% 2.10% 1.22% 1.70%

4 Cryptanalysis Implementation

4.1 Some Notes on Implementation

Phase 1. We have to guess which RSP really occurred: we know we should not rely
on outputs’ similarities only. For that reason, we should rather exclude situations where
outputs seem to synchronize after 9 steps – investigating Table 1 shows that the chances
that some of RSPk, k ∈ {5,6,7,8,9} occurred are rather slim (about 55%.) Therefore
we shall concentrate on outputs that seem to synchronize after 5 to 8 steps. Of course if
we have observed resynchronization after, say, 7 steps, we need not to consider RSP5s
and RSP6s. Each RSP guess gives us possible values of some bits within the registers
– typically 12 to 27. We may think of these as of trivial equations (variable = value.)
Obviously, these equations are independent.

Phase 2. This phase basically sieves the possible guesses from Phase 1 out, and adds
some equations given by the guess. Phase 2 gives significant boost to our calcula-
tions: not only we are able to quickly falsify about 73% of the wrong guesses from
the previous phase, but also, since we are considering two different outputs at the same
time, given by two different clockings, we get twice as much equations. Some of them
are unfortunately dependent; luckily, the rank of an appropriate matrix is still quite
high. As it has been pointed before, because of the moderate number of RSPs it is
possible to precompute the equations given by every single RSP – this significantly
speeds up the search and also makes the whole search easier to implement on parallel
computers.

Phase3. In Phase 3 we try to fill the bits on the left side of the patternguessed in Phase1
(i.e. we add trivial equations describing some bits close to the left end of the registers)
and afterwards we construct more equations, just as in Phase 2, concerning the bits that
are at the rightmost positions when the newly guessed bits enter the clocking window.
Of course now only one equation for each step is given. Once non-contradictory set of
64 independent equations is found, we solve it and check if the solution is consistent
with output given by an original device. A rough estimation of the number of cases
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shows that about 234.23 systems of linear equations with 64 unknowns need to be solved
in an average case. More details regarding complexity of our approach can be found in
Appendix A.2, see [12].

It is also possible to perform Phase 3 in a different, simplified way: guess gradually
bits in interesting positions and check it against the known output. This approach can
be used when for some reason one does not want to perform lots of matrix operations
necessary to solve linear equations’ system.

Let us remark that in this attack, compared to the the previous ones [4, 10], the
number of cases to be considered has been reduced about 100 times. This is possible
since we take for cryptanalysis only very particular sequences. On the other hand, their
frequency is close to 1.5%. This is advantageous, because generally cost of running /
simulating A5/1 is negligible comparing to cryptanalysis’ cost.

4.2 Test Implementation

We have tested our cryptanalysis procedure on a home computer, namely AMD Athlon
XP 1800+ based PC running Debian GNU/Linux.

In the precomputational phase we have found and stored all RSPs and correspond-
ing systems of equations together with their solutions and conditions under which the
system has solutions. The space required for the data is less than 1MB and the compu-
tations were performed on the same home PC.

Our proof-of-concept implementation finds the whole 64-bit-long contents of the
three registers given two outputs that resynchronize after 5 to 8 steps. This first imple-
mentation is not (yet) optimized for code efficiency. We believe that a lot of fine tuning
in algorithm design is possible to speed it up considerably. In fact, many directions seem
to be promising; the problem is to choose the most efficient tricks.

When assumed RSP is of length 5, after Phases 1 and 2 we are left with about
one thousand (partially filled) candidates, checking each of them takes few minutes
on average. For (assumed) RSP of length 9 Phases 1 and 2 yield about one million
candidates, but hundreds of them may be checked in a second.

It is also worth noting that the computation very easily scales up to a larger number
of CPUs: different processors can simply check different candidates in parallel.

5 Technical Feasibility

One may try to implement fault attack using test capabilities of integrated circuits (IC).
It seems to be a plausible idea, since testing should enable to run single components,
that is, disable the other components. However, while a “raw” chip or die typically
has extra test pins accessible via needles, they are not included in the packaging of
the IC and cannot be accessed from the circuit board. The package of an IC must be
opened for such purpose, which requires a highly sophisticated semiconductor test lab’s
equipment.

Manipulation of functional chips based on intrusive technologies is a different sub-
ject. Internal structures of an IC can be influenced by needles mechanically and elec-
trically, by electron and ion beams electrically, and optically by lasers. In today’s deep
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sub-micron structures, using needles is no longer feasible except for specific pad ar-
eas. However, a focused charged electron or ion beam can very well influence specific
wires of an IC or even a single memory cell. Re-scattered electrons from a charged
lines can be observed on a scanning electron microscope and can exhibit whether such
a line is at “low” or at “high.” Again the advances in semiconductor technology limit
such mechanisms. With up to seven layers of metal interconnects stacked upon each
other in state-of-the-art digital CMOS technologies [1], the higher levels will shield
the lower level effectively. Removal of higher layers and successive active operation
of lower levels for observation is close-to impossible. Furthermore, shielding of signal
lines from observation is quite well possible by physical IC design. Because of that, if
the chip have been designed without some special precautions, our attack is of little or
no concern.

Trapdoors. With currently available IC technology possibilities of external manipula-
tions of clocking seem to be limited. However, the manufacturers may introduce some
trapdoors through a certain IC design – one can put a certain line on a higher level in
order to make it vulnerable to intrusive technologies. In such a scenario it would be
necessary to possess an advanced test lab to perform the synchronization attack. This
situation might be comfortable for security agencies – the number of manufacturers
with the access to sophisticated semiconductor technology is small and they can be
relatively easily monitored. Controlling all / majority of parties with appropriate tech-
nological tools would successfully limit the potential attackers, and at the same time
allow the secret services to use the synchronization attack.

6 Conclusions

We have shown that if one can stop clocking in a chosen register for a single step, and
run A5/1 for the same initial contents, then with a reasonable number of experiments
one can find a case in which the contents of the registers can be fully reconstructed.

So the main point is that during security evaluation of hardware devices implement-
ing A5/1 one has to prove infeasibility of resynchronization attack against the A5/1
component with physical equipment available today.

Further Attacks. One can consider different scenarios in which essentially the same
idea can be applied. Consider the case in which we can change a single bit at a random
position in one of the registers. Attacks of this kind should be considered very care-
fully, since such faults might be likely in appropriate physical conditions. The details
of retrieving the contents of the shift registers are different in this case (perhaps more
confusing) but the general attack idea based on resynchronization remains the same.

If one could assume the possibility of changing the state of consecutive bits of cho-
sen register to 1, then another attack can be applied. In this case no knowledge of correct
sequence is needed, see [11].

Source of Weaknesses. The problem with the A5/1 algorithm is that the keystream is
generated from quite weak components, even if their outputs are combined in a clever
way. So a distortion of a single component has limited consequences and the effect



426 M. Gomułkiewicz et al.

may cancel out in certain circumstances – which is exactly the opposite to an avalanche
effect.

It turns out that taking the bits for clocking in the middle (which is reasonable from
the point of view of the previous attacks) becomes advantageous for synchronization
attack. Namely, the following design aspects help to mount the attack:

– for a relatively long resynchronization period no bit of the resynchronization pattern
reaches the output position, while

– all the bits of resynchronization pattern are already in the registers when the fault
occurs.

However, the main feature is that one can consider separately the bits on each side of
the resynchronization pattern. This reduces complexity of the attack against brute force
by an order of magnitude.

Countermeasures. The change of the registers’ length does not reduce the gain ob-
tained in our attack, it only influences the number of the remaining bits that have to be
found.

Another way to defend against synchronization attacks would be redesigning the
way in which the shift registers cooperate. Certainly, considering more than one clock-
ing window in each register would make the attack much harder – the resynchronization
pattern would consist of many blocks of bits. Consequently, we would have to choose
shorter patterns and in this way gain less information on the remaining bits. However,
we cannot be sure that such a modification does not bring new dangers. Additionally,
one can use feedback bits from all three registers for each of the shift registers. In such
a case resynchronization would be unlikely.
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10. Jovan Dj. Golič, Cryptanalysis of Alleged A5 Stream Cipher, Eurocrypt’97, LNCS 1233,
Springer, 1997, pp. 239–255

11. Marcin Gomułkiewicz, Mirosław Kutyłowski, Paweł Wlaź, Fault Cryptanalysis for Breaking
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Abstract. We present a new efficient algorithm for the δ-approximate
matching problem with α-bounded gaps. The δ-approximate matching
problem, recently introduced in connection with applications in music
retrieval, generalizes the exact string matching problem by relaxing the
notion of matching. Here we consider the case in which matchings may
contain bounded gaps.

An extensive comparison with the only (to our knowledge) other solu-
tion existing in the literature for the same problem, due to Crochemore
et al., indicates that our algorithm is more efficient, especially in the
cases of large alphabets and long patterns. In addition, our algorithm
computes the total number of approximate matchings for each position
of the text, requiring only O(mα)-space, where m is the length of the
pattern.

Keywords: approximate string matching, experimental algorithms, mu-
sical information retrieval.

1 Introduction

Given a text T and a pattern P over some alphabet Σ, the string matching
problem consists in finding all occurrences of P in T . It is a very extensively
studied problem in computer science, mainly due to its direct applications to
such diverse areas as text, image and signal processing, speech analysis and
recognition, information retrieval, computational biology and chemistry, etc.

Recently, the classical string matching problem has been generalized to var-
ious notions of approximate matching, particularly useful in specific fields such
as molecular biology [9], musical applications [3], or image processing [8].

In this paper we focus on a variant of the approximate string matching prob-
lem, namely the δ-approximate string matching problem with α-bounded gaps.
Such a problem, which will be given a precise definition later, arises in many
questions concerning musical information retrieval and musical analysis. This
is especially true in the context of monophonic music, in which one wants to
retrieve a given melody from a complex musical score. We mention here that
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Fig. 1. Representation of the C-minor and B-sus4 chords in the absolute pitch encoding

(a.p.e.) and in the interval pitch encoding (i.p.e.)

a significant amount of research has been devoted to adapt solutions for exact
string matching to δ-approximate matching (see for instance [1], [5], [6], [2]). In
this respect, Boyer-Moore-type algorithms are of particular interest, since they
are very fast in pratice.

1.1 Approximate Matching in Musical Sequences

Musical sequences can be schematically viewed as sequences of integer numbers,
representing either the notes in the chromatic or diatonic notation (absolute
pitch encoding), or the intervals, in number of semitones, between consecutive
notes (interval pitch encoding); see the examples in Fig. 1. The second repre-
sentation is generally of greater interest for applications in tonal music, since
absolute pitch encoding disregards tonal qualities of pitches. Note durations and
note accents can also be encoded in numeric form, giving rise to richer alphabets
whose symbols can really be regarded as sets of parameters. This is the reason
why alphabets used for music representation are generally quite large.

δ-approximate string matching algorithms are very effective to search for
all similar but not necessarily identical occurrences of given melodies in musical
scores. We recall that in the δ-approximate matching problem two integer strings
of the same length match if the corresponding integers differ by at most a fixed
bound δ. For instance, the chords C-minor and B-sus4 match if a tolerance of
δ = 1 is allowed in the absolute pitch encoding (where C-minor= (60, 63, 67, 72)
and B-sus4= (59, 64, 66, 71)), whereas if we use the interval pitch encoding, a tol-
erance of δ = 2 is required to get a match (in this case we have C-minor= (3, 4, 5)
and B-sus4= (5, 2, 5)); see Fig. 1. Notice that for δ = 0, the δ-approximate string
matching problem reduces to the exact string matching problem.

Intuitively, we say that a melody (or pattern) has a δ-approximate occurrence
with α-bounded gaps within a given musical score (or text), if the melody has
a δ-approximate matching with a subsequence of the musical score, in which it
is allowed to skip up to a fixed number α of symbols (the gap) between any two
consecutive positions. In the present context, two symbols have an approximate
matching if the absolute value of their difference is bounded by a fixed number δ.

In classical music compositions, and in particular in compositions for Piano
Solo, it is quite common to find musical pieces based on a sweet ground melody,
whose notes are interspaced by rapidly executed arpeggios. Fig. 2 shows two bars
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Fig. 2. Two bars of the study Op. 25 N. 1 of F. Chopin (first score). The second score

represents the melody

Fig. 3. An excerpt of a piece of J.S. Bach (first score). The second score shows how

the musical ornaments must be played. Two musical ornaments are present: a mordent,

attached to the 4th note, and a trill, attached to the 11th note

of the study Op. 25 N. 1 for Piano Solo by F. Chopin illustrating such a point.
The notes of the melody are the first of each group of six notes (sextuplet).
If we use the standard MIDI representation of the pitches, then the melody
corresponds to the sequence of integer numbers P = [76, 81, 83, 84, 84, 83, 86, 77].
Then, if a gap bound of α = 5 is allowed, an exact occurrence of the melody can
be found through the piece.

The above musical technicality is not by any means the only one for which
approximate string matching with bounded gaps turns out to be very useful.
Other examples are given by musical ornaments, which are common practice
in classical music, and especially in the music of the baroque period. Musical
ornaments are groups of notes, played at a very fast tempo, which generally
are “attached” to the notes of a given melody, in order to emphasize or adorn
certain dynamical passages. Some of the most common musical ornaments are
the acciaccatura, the appoggiatura, the mordent, the

Fig. 3 shows an excerpt of a Minuet by J.S. Bach, which makes use of musi-
cal ornaments. We provide both the actual score, in which ornaments are repre-
sented as special symbols marked above notes or as groups of small notes, and
the corresponding score showing how these notations translate into real musical
execution. Note that in Fig. 3 the mordent corresponds to a group of three notes,
whereas the trill corresponds to a group of 16 notes. In general, to take care of
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musical ornaments in δ-matching problem with gaps, one needs gap values in
the range between 4 and 16.

1.2 Paper’s Organization

The paper is organized as follows. In Section 2 we introduce some basic no-
tions and give a formal definition of the δ-approximate matching problem with
α-bounded gaps. An algorithm based on the dynamic programming approach
for the approximate matching problem of our interest is reviewed in Section 3.
Then, in Section 4, we present a new efficient algorithm for the same prob-
lem. Experimental data obtained by running under various conditions both
our algorithm and the one based on the dynamic programming approach are
presented and compared in Section 5. Finally, we draw our conclusions in
Section 6.

2 Basic Definitions and Properties

Before entering into details, we need a bit of notation and terminology. A string
P is represented as a finite array P [0 ..m − 1], with m ≥ 0. In such a case we
say that P has length m and write length(P ) = m. In particular, for m = 0
we obtain the empty string. By P [i] we denote the (i + 1)-st character of P , for
0 ≤ i < length(P ). Likewise, by P [i .. j] we denote the substring of P contained
between the (i+1)-st and the (j+1)-st characters of P , for 0 ≤ i ≤ j < length(P ).
The substrings of the form P [0 .. j] (also denoted by Pj), with 0 ≤ j < length(P ),
are the nonempty prefixes of P .

Let Σ be an alphabet of integer numbers and let δ ≥ 0 be an integer. Two
symbols a and b of Σ are said to be δ-approximate (or we say that a and b
δ-match), in which case we write a =δ b, if |a−b| ≤ δ. Two strings P and Q over
the alphabet Σ are said to be δ-approximate (or we say that P and Q δ-match),
in which case we write P

δ= Q, if

length(P ) = length(Q), and P [i] =δ Q[i], for i = 0, ..., length(P )− 1 .

Given a text T of length n and a pattern P of length m, a δ-occurrence
with α-bounded gaps of P in T at position i is an increasing sequence of indices
(i0, i1, . . . , im−1) such that (i) 0 ≤ i0 and im−1 = i ≤ n−1, (ii) ih+1− ih ≤ α+1,
for h = 0, 1, . . .m − 2, and (iii) P [j] =δ T [ij ], for j = 0, 1, . . .m − 1. We write
P�i

δ, αT to mean that P has a δ-occurrence with α-bounded gaps in T at position
i (in fact, when the bounds δ and α are well understood from the context, we
will simply write P �i T ).

The δ-approximate string matching problem with α-bounded gaps admits
the following variants: (a) find all δ-occurrences with α-bounded gaps of P
in T ; (b) find all positions i in T such that P �i T ; (c) for each position i
in T , find the number of distinct δ-occurrences of P with α-bounded gaps at
position i.



432 D. Cantone, S. Cristofaro, and S. Faro

In Section 4 we will describe an efficient O(mn)-time solution for the variants
(b) and (c) above which uses only O(mα) extra space. Variant (a) can then be
solved by running an O(m2α)-time and -space local search at each position i
such that P �i T .

The following very elementary fact will be used later.

Lemma 1. Let T and P be a text of length n and a pattern of length m, respec-
tively. Also, let δ,α ≥ 0. Then, for each 0 ≤ i < n and 0 ≤ k < m, we have that
Pk �i

δ, α T if and only if P [k] =δ T [i] and either k = 0, or Pk−1 �i−h
δ, α T , for some

h such that 1 ≤ h ≤ α + 1.

3 A Dynamic Programming Algorithm: δ-Bounded-Gaps

The δ-approximate matching problem with α-bounded gaps has first been ad-
dressed by Crochemore et al. in [7], where an algorithm based on the dy-
namic programming approach—named δ-Bounded-Gaps—has been proposed. To
our knowledge, this is still the only solution present in literature for the δ-
approximate matching problem with α-bounded gaps. In our review, we follow
the presentation given later in [4], which also considers several new versions of
the approximate matching problem with gaps.

Given as usual a text T of length n, a pattern P of length m, and two integers
δ,α ≥ 0, the algorithm δ-Bounded-Gaps runs in O(mn)-time and -space, at least
in the case in which one is interested in finding all δ-occurrences with α-bounded
gaps of P in T (variant (a)). Space requirements can be reduced to O(n), if only
positions i in T such that P �i T need to be computed (variant (b)). To solve
also variant (c) with δ-Bounded-Gaps, one needs to first solve variant (a) and
then trace back and count all approximate matchings with gaps at each position
of the text T .

The algorithm δ-Bounded-Gaps is presented as an incremental procedure,
based on the dynamic programming approach. More specifically, it starts by
first computing all the δ-occurrences with α-bounded gaps in T of the pre-
fix of P of length 1, i.e. P0. Then, during the i-th iteration, it looks for all
the δ-occurrences with α-bounded gaps in T of the prefix Pi−1. At the end of
the last iteration, the δ-occurrences of the whole pattern P have been com-
puted.

To give a more formal description of the algorithm, let us put:

LastOccurj(Pi) = max
(
{0 ≤ k ≤ j : Pi �k T and j − k ≤ α} ∪ {−1}

)
.

Notice that if LastOccurj(Pi) = −1, then Pi ��kT for k = j −α, j −α+ 1, . . . , j.
Otherwise, LastOccurj(Pi) is the largest value k ∈ {j −α, j −α+ 1, . . . , j} such
that Pi �k T .

Using a trace-back procedure, as described in [4], the values
LastOccurj(Pi) can be used to retrieve the approximate matchings at a given
position in time O(mα).

The values LastOccurj(Pi) can be computed incrementally, for 0 ≤ i < m
and 0 ≤ j < n. More specifically, the algorithm δ-Bounded-Gaps fills a matrix D



An Efficient Algorithm for δ-Approximate Matching with α-Bounded Gaps 433

δ-Bounded-Gaps (P , T , δ, α)
1. n = length(T )
2. m = length(P )
3. for i = 0 to m − 1 do
4. D[i, 0] = −1
5. if P [0] =δ T [0] then
6. D[0, 0] = 0
7. for i = 0 to m − 2 do
8. for j = 1 to n − 1 do
9. D[i, j] = −1

10. if ((P [i] =δ T [j]) and (i = 0 or D[i − 1, j − 1] ≥ 0)) then
11. D[i, j] = j
12. else if D[i, j − 1] ≥ j − α then
13. D[i, j] = D[i, j − 1]
14. for j = m − 1 to n − 1 do
15. if P [m − 1] =δ T [j] and D[m − 2, j − 1] ≥ 0 then
16. output(j)

Fig. 4. The algorithm δ-Bounded-Gaps for the δ-approximate matching problem with

α-bounded gaps

of dimension m × n, where D[i, j] corresponds to LastOccurj(Pi), according to
the following recursive relation:

D[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j if T [j] =δ P [i] and
- i = 0 , or
- i, j ≥ 1 and D[i− 1, j − 1] ≥ 0

D[i, j − 1] if j ≥ 1 , D[i, j − 1] ≥ j − α , and
- T [j] �=δ P [i] , or
- T [j] =δ P [i] , i ≥ 1 , and D[i− 1, j − 1] < 0

−1 otherwise

where 0 ≤ i < m and 0 ≤ j < n.
Fig. 4 presents the pseudo-code of the algorithm δ-Bounded-Gaps. Its running

time is easily seen to be O(mn). Also, O(mn)-space is needed to store the matrix
D. However, if one is only interested in the positions i of T at which P �i T ,
space requirements reduce to O(n), since the computation of each row depends
only on the values stored in the previous row.

4 A New Efficient Algorithm: (δ, α)-Sequential-Sampling

In this section we present a new efficient algorithm for the δ-approximate match-
ing problem with α-bounded gaps, named (δ,α)-Sequential-Sampling. Our



434 D. Cantone, S. Cristofaro, and S. Faro

algorithm is characterized by an O(mn)-time and an O(mα)-space complex-
ity, where m and n are the length of the pattern and text, respectively. No-
tice that in practical applications mα is much smaller than n. In addition,
our algorithm solves variant (c) (and therefore also variant (b)) of the approx-
imate matching problem with gaps, as stated in Section 2, namely it computes
the number of distinct δ-occurrences of the pattern with α-bounded gaps at
each position of the text. If one is also interested in retrieving the actual ap-
proximate matching occurrences at position i of a text T , a possibility would
be to compute the submatrix D[k, j], for max(0, (m − 1) · (α + 1)) ≤ k ≤ i
and 0 ≤ j ≤ m − 1, where, as before, m is the length of the pattern, and
then trace back through all possible approximate matchings. The submatrix
D[k, j] can be computed in time and space O(m2α) by the algorithm δ-Bounded-
Gaps.

Our algorithm follows a different computation ordering than the one fol-
lowed by the algorithm δ-Bounded-Gaps; in fact, it computes the occurrences of
all prefixes of the pattern in continuously increasing prefixes of the text, rather
than computing all occurrences in the whole text of continuously increasing pre-
fixes of the pattern, as the algorithm δ-Bounded-Gaps does. That is, for a text
T of length n, pattern P of length m, and nonnegative integers δ,α, during
its first iteration the algorithm (δ,α)-Sequential-Sampling computes the (num-
ber of) occurrences of all prefixes Pk of P such that Pk �0 T . Then, during
the i-th iteration, it computes (the number of) all occurrences of prefixes Pk

of P such that Pk �i−1 T , using information gathered during previous itera-
tions.

To be more precise, let Si denote the collection of all pairs (j, k) such that
Pk �j T , for 0 ≤ i ≤ n, 0 ≤ j < i, and 0 ≤ k < m. Notice that S0 = ∅.
If we put S = Sn, then the problem of finding the positions i in T such that
P �i T translates to the problem of finding all values i such that (i,m − 1) ∈
S.

To begin with, notice that Lemma 1 justifies the following recursive definition
of the set Si+1 in terms of Si, for i < n:

Si+1 = Si ∪ {(i, k) : P [k] =δ T [i] and
(k = 0 or (i− h, k − 1) ∈ Si, for some h ∈ {1, . . . ,α + 1})}.

This relation, coupled with the initial condition S0 = ∅, allows one to com-
pute the set S in an iterative fashion, as shown in Fig. 5. The time complexity
of the resulting algorithm—named Slow-(δ,α)-Sequential-Sampling—is O(nmα).
Notice that given the set S, one can easily compute the actual δ-occurrences
with α-gaps of P in T .

From a practical point of view, the set S in the algorithm Slow-(δ,α)-
Sequential-Sampling could be represented by its characteristic n×m matrix M,
where M[i, k] is 1 or 0, provided that the pair (i, k) belongs or does not belong
to S, for 0 ≤ i < n and 0 ≤ k < m.
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Slow-(δ, α)-Sequential-Sampling (T , P , δ, α)
1. n = length(T )
2. m = length(P )
3. S = ∅

4. for i = 0 to n − 1 do
5. for k = m − 1 downto 1 do
6. if P [k] =δ T [i] and (i − h, k − 1) ∈ S, for some h ∈ {1, . . . , α + 1} then
7. S = S ∪ {(i, k)}
8. if P [0] =δ T [i] then
9. S = S ∪ {(i, 0)}
10. for i = 0 to n − 1 do
11. if (i, m − 1) ∈ S then
12. output(i)

Fig. 5. The algorithm Slow-(δ, α)-Sequential-Sampling for the δ-approximate matching

problem with α-bounded gaps

Since during the i-th iteration of the for-loop at line 4 of the algorithm Slow-
(δ,α)-Sequential-Sampling at most α + 1 rows of M need to be scanned (more
precisely the ones having index j ∈ {max(0, i−α−1), i−1}), it would be enough
to store only α+1 rows of M at each step of the computation, plus another one
as working area.

In addition, by maintaining an extra array C of length m such that during
the i-th iteration of the for-loop at line 4 the following invariant holds:

C[k] =
i−1∑

j=max(0,i−α−1)

M[j, k] , for 0 ≤ k < m ,

the test of the conditional instruction at line 6 can be performed in constant
time, rather than in O(α)-time.

Such observations allow to reduce the space requirement to O(mα) and the
running time to O(mn).

In fact, we can do a little bit more than that. Rather than maintaining in
M[j, k] the Boolean value of the test (j, k) ∈ S, it is more convenient to let
M[j, k] count the number of distinct δ-occurrences with α-gaps of Pk at position
j of T . With this change, when the i-th iteration of the for-loop at line 4 of
algorithm Slow-(δ,α)-Sequential-Sampling starts, the item C[k] will contain the
total number of distinct δ-occurrences with α-bounded gaps of Pk at positions
max(0, i − α − 1) through i − 1, provided that the above invariant holds. Such
values can then be used to maintain the invariant itself.

Plainly, at the end of the computation one can retrieve in constant time the
number of approximate matchings at each position of the text.

The resulting algorithm—named (δ,α)-Sequential-Sampling—is presented in
detail in Fig. 6. Its overall running time is O(mn) and its space requirement is
O(mα).
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(δ, α)-Sequential-Sampling (T , P , δ, α)
1. n = length(T )
2. m = length(P )
3. for i = 0 to α + 1 do
4. for j = 0 to m − 2 do
5. M[i, j] = 0
6. for i = 0 to m − 2 do C[i] = 0
7. for i = 0 to n − 1 do
8. j = i mod(α + 2)
9. for k = 0 to m − 2 do
10. C[k] = C[k] −M[j, k]
11. M[j, k] = 0;
12. if P [m − 1] =δ T [i] and C[m − 2] > 0 then
13. output(i)
14. for k = m − 2 downto 1 do
15. if P [k] =δ T [i] and C[k − 1] > 0 then
16. M[j, k] = C[k − 1]
17. C[k] = C[k] + C[k − 1]
18. if P [0] =δ T [i] then
19. M[j, 0] = 1
20. C[0] = C[0] + 1

Fig. 6. The (δ, α)-Sequential-Sampling algorithm for the δ-approximate matching prob-

lem with α-bounded gaps

5 Experimental Results

In this section we report experimental data relative to an extensive comparison
of the running times of our algorithm (δ,α)-Sequential-Sampling, presented in
Section 4, and the algorithm δ-Bounded-Gaps, described in Section 3.

Both algorithms have been implemented in the C programming language and
were used to search for the same patterns in large fixed text sequences on a
PC with a Pentium IV processor at 2.66GHz. In particular, they have been
tested on three Randσ problems, for σ = 60, 120, 180 and on a real music text
buffer.

In particular, each Randσ problem consisted in searching a set of 250 ran-
dom patterns of length 10, 20, 40, 60, 80, 100, 120, and 140 in a 5Mb random
text sequence over a common alphabet of size σ. For each Randσ problem, the
approximation bound δ and the gap bound α have been set to 1, 2, 4 and to 4,
8, respectively.

Concerning the tests on the real music text buffer, these have been per-
formed on a 4.8Mb file obtained by combining a set of classical pieces, in
MIDI format, by C. Debussy. The resulting text buffer has been translated
in the pitch interval encoding with an alphabet of 101 symbols. For each
m = 10, 20, 40, 60, 80, 100, 120, 140, we have randomly selected in the file 250
substrings of length m which subsequently have been searched for in the same
file.
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All running times in the tables have been expressed in tenths of second and,
for each length of the pattern, the best result achieved has been bold-faced.
Moreover, (δ,α)-S-S denotes our algorithm (δ,α)-Sequential-Sampling, whereas
δ-B-G denotes the algorithm δ-Bounded-Gaps by Crochemore et al.

Experimental results with σ = 60

δ = 1, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.042 8.203 14.26 20.41 26.38 32.36 38.43 44.47
δ-B-G 5.724 10.75 21.13 32.03 42.80 53.84 64.87 75.77

δ = 1, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.199 8.511 14.56 20.69 26.57 32.53 38.80 44.85
δ-B-G 5.660 10.52 21.28 31.69 42.55 53.19 64.20 74.36

δ = 2, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.336 8.580 14.73 20.86 26.72 32.73 38.84 44.85
δ-B-G 5.832 11.00 22.67 33.34 44.80 55.99 67.29 78.56

δ = 2, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.914 9.395 15.41 21.54 27.46 33.48 39.68 45.68
δ-B-G 5.827 10.98 22.67 33.36 44.79 56.03 67.12 78.44

δ = 4, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 6.347 9.717 15.75 21.87 27.84 33.94 40.01 46.03
δ-B-G 6.258 11.76 24.02 35.79 47.41 59.89 71.23 83.55

δ = 4, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 8.135 12.67 19.14 25.36 31.20 37.34 43.54 49.67
δ-B-G 6.259 11.99 24.18 35.75 47.78 59.82 71.33 83.35

Experimental results with σ = 120

δ = 1, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.916 8.044 14.10 20.26 26.17 32.21 38.25 44.37
δ-B-G 5.529 10.37 20.48 30.49 41.06 51.37 61.80 71.87

δ = 1, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.931 8.129 14.24 20.33 26.20 32.15 38.48 44.47
δ-B-G 5.406 10.16 21.18 30.81 41.74 51.55 62.58 72.42

δ = 2, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.006 8.143 14.19 20.34 26.35 32.31 38.39 44.44
δ-B-G 5.861 10.96 21.24 31.59 42.06 52.53 63.12 73.72

δ = 2, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.100 8.372 14.40 20.54 26.50 32.41 38.68 44.73
δ-B-G 5.772 10.83 21.34 31.86 42.62 53.41 63.82 74.57

δ = 4, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.242 8.481 14.50 20.67 26.67 32.67 38.75 44.76
δ-B-G 5.788 10.92 22.48 33.18 44.47 55.49 66.51 77.72

δ = 4, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.696 9.093 15.15 21.32 27.18 33.23 39.40 45.51
δ-B-G 5.960 11.14 21.51 32.00 42.93 53.87 64.97 75.95
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Experimental results with σ = 180

δ = 1, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.911 8.019 14.06 20.24 26.17 32.16 38.24 44.34
δ-B-G 5.406 10.16 21.05 30.82 41.77 51.52 62.43 72.31

δ = 1, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.886 8.055 14.11 20.22 26.08 32.00 38.31 44.35
δ-B-G 5.913 11.07 21.36 31.65 41.96 52.30 62.51 72.95

δ = 2, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.941 8.057 14.09 20.26 26.16 32.17 38.21 44.29
δ-B-G 5.605 10.47 20.72 31.07 41.68 52.04 62.69 73.13

δ = 2, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.954 8.164 14.19 20.33 26.18 32.13 38.42 44.46
δ-B-G 5.635 10.58 21.38 31.61 42.75 53.41 64.64 75.68

δ = 4, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.045 8.230 14.44 20.51 26.40 32.45 38.47 44.53
δ-B-G 5.786 10.84 21.18 31.76 42.37 53.54 65.46 76.52

δ = 4, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.201 8.476 14.55 20.72 26.56 32.57 38.81 44.84
δ-B-G 5.724 10.74 21.89 32.40 43.40 54.07 65.01 75.85

Experimental results on a Real Music problem with σ = 101

δ = 1, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.707 7.846 13.28 19.06 24.50 30.30 35.68 41.32
δ-B-G 5.138 9.639 19.62 29.14 38.90 48.60 58.61 68.15

δ = 1, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.885 8.404 13.57 19.62 24.84 30.70 35.92 41.61
δ-B-G 5.121 9.579 19.80 29.15 39.10 48.58 58.74 68.20

δ = 2, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.063 8.779 13.57 19.92 25.13 31.12 36.12 42.13
δ-B-G 5.246 9.823 20.39 29.96 40.48 49.99 60.77 70.26

δ = 2, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.306 8.531 14.11 20.50 25.60 31.66 36.85 42.60
δ-B-G 5.351 9.985 20.04 30.25 40.23 50.07 60.42 70.47

δ = 4, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.610 9.077 14.59 21.10 26.31 32.26 37.41 43.32
δ-B-G 5.677 10.49 21.26 31.68 42.39 52.75 63.52 73.72

δ = 4, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.864 9.838 15.56 23.04 27.65 34.13 39.12 45.27
δ-B-G 5.581 10.33 21.28 31.66 42.42 52.92 63.75 73.94

Experimental results show that most of the times our newly presented al-
gorithm is faster than the one by Crochemore et al. Its superiority is more
noticeable as the size of the pattern increases.
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6 Conclusions

We have presented a new efficient O(mn)-time algorithm for the δ-approximate
string matching problem with α-bounded gaps. Extensive experimentation has
shown that in most of the cases our algorithm is faster than the one by
Crochemore et al., which to our knowledge is the only solution present in litera-
ture for the same matching problem. The performances of our algorithm become
more remarkable as the size of the pattern increases. In addition, our algorithm
uses only O(mα)-space, rather than O(n)-space, and it also computes the num-
ber of all distinct approximate matchings of the pattern at each position of the
text.

We plan to reach a further speed-up of our algorithm by appropriate tuning.
We also intend to generalize it to other variants of the approximate matching
problem with gaps.
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Abstract. We study queueing strategies in the adversarial queueing
model. Rather than discussing individual prominent queueing strategies
we tackle the issue on a general level and analyze classes of queueing
strategies. We introduce the class of queueing strategies that base their
preferences on knowledge of the entire graph, the path of the packet and
its progress. This restriction only rules out time keeping information like
a packet’s age or its current waiting time.

We show that all strategies without time stamping have exponential
queue sizes, suggesting that time keeping is necessary to obtain subex-
ponential performance bounds. We further introduce a new method to
prove stability for strategies without time stamping and show how it can
be used to completely characterize a large class of strategies as to their
1-stability and universal stability.

1 Introduction

We study the problem of contention resolution for packet routing in networks.
A network is represented as a graph with vertices representing the access points
of the network (routers) and edges representing the established connections be-
tween routers. Users will insert data – organized in packets of roughly same size –
into the access points of the network. Each packet has a destination and routing
policies assign a simple path from its source to its destination.

This paper focuses on queueing strategies. Queueing strategies are used to
decide which packet may proceed whenever more than one packet intends to
traverse an edge. Throughout this paper we will concentrate on greedy strategies.
These are strategies that allow one packet to cross an edge e whenever there is
a packet ready to cross edge e.

We analyze queueing strategies in a distributed online model, i.e., decisions
need to be made on the fly, independent of future input, with local information
only, as a router is realistically neither aware of packets that will be inserted
into the network in the future nor of packets that are currently stored in other
nodes of the network.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 440–451, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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We work within the model of adversarial queueing theory [6], a worst-case
setup which allows to establish performance guarantees. Packets are inserted by
an adversary at arbitrary times and with arbitrary assigned paths. Of course
the strength of the adversary needs to be restricted, since no queueing strategy
can cope with an adversary, who continuously inserts more packets which seek
to cross a specific edge e than edge e can handle.

Definition 1. An adversary is an (r, b)-adversary, if for every time interval I
and every edge e at most r · |I|+ b packets with edge e in their path are inserted
into the network during I. We call r the rate and b the burstiness.

Hence for r ≤ 1 an adversary cannot just simply overload an edge by new
insertions. While for some queueing strategies like First-In-First-Out (FIFO)
there exist graphs for which an upper bound for the total traffic in a network
cannot be guaranteed even for arbitrarily small r > 0 [5, 8], others like Nearest-
To-Source (NTS) have bounded total traffic in every graph even for r = 1 [7].

Definition 2. 1. A queueing strategy is r-stable, if for every graph G and every
b ∈ IN there exists a bound cG,r,b such that for every sequence of insertions
by an (r, b)-adversary into G the total number of packets in G never exceeds
cG,r,b.

2. A queueing strategy is universally stable, if it is r-stable for every r < 1.

Apart from the number of packets in the system, one is also interested in trans-
portation times, i.e., the time between the insertion of a packet into the network
and its arrival at the final node of its path. For r < 1 there is a straight forward
connection between the number of packets in the system and transportation
times [2]: if in a given network and against a given adversary the maximal size
of a queue is bounded, so are the number of packets in the entire network and
the transportation times. Hence for r < 1 we concentrate on analyzing the queue
sizes of strategies.

It is crucial to see that universal stability is a necessary but by no means
sufficient condition for a strategy in order to be “useful” in the r < 1 setup. A
transportation time superpolynomial in the number of vertices of the graph is
inacceptable if one has networks like the internet in mind and the fact, that this
is a constant for a fixed network, offers little comfort.

A randomized protocol with polynomial queue size was introduced in [2].
This protocol however can only be derandomized in a centralized manner: to-
tal knowledge of all insertions is necessary. In [3] another randomized strategy,
following similar high level ideas, with polynomial delay is introduced and deran-
domized in a distributed manner: each router can do the necessary computations
only with the knowledge of the packets inserted into the network via this router.
So also deterministic queueing strategies with polynomial queue size do exist.

The question remains as to whether there exist simple queueing strategies
that achieve the same goal. Longest-In-System (LIS) is the only prominent strat-
egy for which the upper bound of 2O(d) could only be matched by a lower bound
of Ω(d), where d is the diameter of the graph. It is known [1], that on directed
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acyclic graphs the queue size for LIS is indeed O(d), whereas a proof for the
general case requires new techniques [4]. Also in [4] it is shown, that the trans-
portation time under LIS can be exponential in the path length of a packet.
(These paths however turn out to be short in comparison to the diameter.) This
result is then extended to a class of vulnerable queueing strategies.

We also seek results about entire classes of queueing strategies. We associate
a queueing strategy S with a priority function that maps the state of a packet
and available knowledge of the network to a priority. Among packets competing
for the same edge, S then prefers a packet of highest priority. Classes arise by
specifying which parameters a strategy bases its priority on. Our goal is a study
of the large class of strategies without time stamping.

Definition 3. We say that a queueing strategy Sf operates without time stamp-
ing if it assigns priorities f(G,P, a), where G is the graph of the network, P is
the path of the packet and a is the number of edges already traversed. We call
strategies that operate without time stamping WTS-strategies for short.

Prominent WTS-strategies include Nearest-To-Source (NTS), Farthest-From-
Source (FFS), Nearest-To-Go (NTG), and Farthest-To-Go (FTG) with priority
functions fNTS(G,P, a) = −a, fFFS(G,P, a) = a, fNTG(G,P, a) = a− |P | and
fFTG(G,P, a) = |P | − a respectively.

In Section 3 (Theorem 1) we show that each WTS-strategy has queue size
2Ω(

√
n), where n is the number of vertices. Moreover the diameter d turns out

to coincide asymptotically with
√
n and hence the queue size is 2Ω(d).

This result suggests that time keeping is crucial to obtain good performance
bounds, as the only reasonable quantities that WTS-strategies ignore, are times,
such as the age of a packet – as used in LIS – or the current waiting time of a
packet – as used in FIFO.

In [9] the term eternal packet is introduced for a packet that gets stuck in a
network indefinitely. For greedy strategies this effect only arises at the critical
arrival rate r = 1. Observe that there are strategies that avoid eternal packets at
r = 1 but are instable for every r < 1 like FIFO, while others are even 1-stable
but fail to avoid eternal packets at r = 1. In fact no strategy can avoid eternal
packets and be 1-stable [9].

All WTS-strategies produce eternal packets at r = 1. For burstiness b ≥ 1 this
observation can be easily verified with a one edge network: in step one insert two
packets that seek to traverse the edge and in every later step one more packet.
As a WTS-strategy is incapable of distinguishing between any of these packets,
one can be stuck forever.

In Section 4 we introduce the technique of push-around-cycles that can be
used to prove 1-stability for WTS-strategies. Using this technique we provide a
complete classification of 1-stable distance-based strategies: these strategies base
their decision on the number of edges a packet has already crossed and the length
of its path. It turns out that in this class of strategies 1-stability and universal
stability coincide. Conclusions and open problems are discussed in Section 5.
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2 Notation and Conventions

Throughout this paper we let G denote the graph of the network, PG the set of
all simple paths in G and n,m, d the number of vertices, number of edges and
the diameter of the graph in question. We assume that the network operates in
consecutive steps, where each step breaks down into three substeps:

1. Insertion: New packets with assigned paths are inserted by the adversary.
2. Transportation: Packets move along edges.
3. Clean Up: Packets that have crossed the last edge of their path are removed

from the system.

Hence a packet that is inserted into the system may proceed in the same step.
In each step each edge can be crossed by at most one packet. We use Qe(t)
to denote the set of packets ready to cross edge e in step t. We occasionally
use multiple edges; however, if desired, multiple edges can be eliminated by
introducing extra nodes. Whenever two packets of same priority reside in the
same queue we assume worst case tie resolution.

3 Queue Size of WTS-Strategies

We now see that WTS-strategies cannot avoid exponential queue size and hence
exponential transportation time.

Theorem 1. There is a family Gk of graphs with n = 2k2 + 6 nodes and diam-
eter d = 4k so that every WTS-strategy requires queues of size 2Θ(k) for r > 0.5
and b > 2rk

2r−1 .

Proof. We describe Gk = (Vk,Ek). Gk basically consists of k2 copies of the
gadget Gij (see Figure 1). Gk has 2k2 + 6 vertices and diameter 4k.

Let Ri be the set of paths from X to Z traversing only the gadgets of row i.
Let Cj be the set of paths from X ′ to Z ′ traversing only the gadgets of column
j. We will only work with these row and column paths.

For each of the x-edges xl
ij we determine a dominant path: i.e., a path in

Ri ∪Cj that uses xl
ij and has a maximum priority in the queue of xl

ij . Hence in
the queue of xl

ij a packet on the dominant path has priority

max
{

max
P∈Ri

{f(Gk, P, 2j)|P uses xl
ij}, max

P∈Cj

{f(Gk, P, 2i)|P uses xl
ij}
}
.

Observe that a packet on a path in Ri [Cj ] has traversed 2j edges [2i edges]
when reaching xl

ij . If a dominant path of xl
ij is in Ri we say that edge xl

ij is row
dominated, otherwise it is column dominated. Furthermore we say that gadget
Gi,j is row [column] dominated if at least k + 1 of its x-edges are row [column]
dominated. Hence each gadget is either row or column dominated.

We now focus on a row in which at least half of the gadgets are column
dominated or a column in which at least half of the gadgets are row dominated.
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Fig. 1. Graph Gk contains k2 gadgets Gi,j and extra nodes X, Y, Z, X ′, Y ′ and Z′

arranged and connected as indicated on the left. A thick arrow represents a set of k+1
multiple edges. Each gadget consists of two internal nodes Ai,j , where all incoming
edges end, and Bi,j , where all outgoing edges originate, connected by 2k + 1 directed
edges named x1

i,j , . . . , x
2k+1
i,j . The incoming row edges (coming from Gi,j−1 resp. Y )

are labeled rl
i,j for 1 ≤ l ≤ k + 1. The incoming column edges (coming from Gi−1,j

resp. Y ′) are labeled cl
i,j for 1 ≤ l ≤ k + 1. The row edges [column edges] leaving Gi,k

[Gk,j ] and entering Z [Z′] are named ri,k+1 [ck+1,j ]. Finally we call the k + 1 edges
connecting X and Y [X ′ and Y ′] rl

0 [cl
0] for 1 ≤ l ≤ k + 1

Observe that at least one such row or column must exist. W.l.o.g. asssume that
there are q ≥ k

2 column dominated gadgets in row i0 and that in column dom-
inated gadgets Gi0,j edges x1

i0,j , . . . , x
k+1
i0,j are column dominated. The following

algorithm carefully chooses paths from Ri0 that we will use to insert packets.

1. Initially let L consist of the edge ri0,k+1, the edges rl
0 and rl

i0,j as well as
xl

i0,j for 1 ≤ j ≤ k and 1 ≤ l ≤ k + 1. We call edges in L legal and call a
path legal, if it only uses legal edges. Set z := q.

2. For j from k to 1 in descending order repeat:
(a) Choose e ∈ {rl

i0,j |1 ≤ l ≤ k + 1} ∩ L arbitrarily (a legal entrance to
Gi0,j).

(b) IF Gi0,j is column dominated:
i. Let Sz be a legal path that uses e and assigns a minimum priority

(restricted to legal paths using e) in Qe. (I.e., f(Gk, Sz, 2j − 1) is
minimal). Remove the edges Sz traverses before e from L.

ii. Let e′ ∈ {xl
i0,j |1 ≤ l ≤ k + 1} be a legal edge Sz does not use.

iii. Let Dz be the dominant path of e′. Set z := z − 1.
(c) ELSE: Choose e′ ∈ {xl

i0,j |1 ≤ l ≤ k + 1} ∩ L arbitrarily.
(d) Remove all edges rl

i0,j �= e and xl
i0,j �= e′ with 1 ≤ l ≤ k + 1 from L.

3. Choose a legal path S0 arbitrarily.

Observe that the choices of e and e′ are always well defined, since at start
there are for each j at least k + 1 legal rl

i0,j and xl
i0,j edges. At most k − 1 of

them are removed in steps 2(b)i before e and e′ are picked.
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We are now ready to start our insertion of packets. The insertion scheme
proceeds in q phases that correspond to the column dominated gadgets. Let
these be Gi0,j1 , Gi0,j2 , . . . Gi0,jq

. To start off the process we exploit burstiness
and launch b packets along path S0 in one step. We call this set of packets X0.

Phase t: Phase t starts, when the first packet of Xt−1 is ready to cross rl
i0,jt

and lasts for |Xt−1| steps. During phase t we insert packets along St and Dt in
parallel at rate r. Note that St and Dt are edge disjoint.

In the queue of rl
i0,jt

the packets from St collide with the packets of Xt−1 for
the first time. They have a priority not greater than any packet in Xt−1 as the
paths, the packets of Xt−1 are travelling on, were all legal when St was picked
minimally. Hence none of the r|Xt−1| packets from St is able to traverse Gi0,jt

in phase t.
After at most 2k steps of phase t the first packet on Dt arrives in Gi0,jt

and
from then on the xl

i0,jt
edge, the packets from Xt−1 intend to use, is occupied

r · (|Xt−1|−2k) steps by blocking packets. As Dt is a dominant path of the edge
at least r · (|Xt−1| − 2k) packets from Xt−1 do not traverse Gi0,jt

in phase t.
Let Xt be the union of these remaining Xt−1 packets and the newly inserted

packets from St. Then |Xt| ≥ 2r|Xt−1| − 2rk holds. Observe that for r > 1
2

and sufficiently large b (i.e., |X0| = b > 2rk
2r−1 ) the size of Xt has increased by a

multiplicative factor. As q = Θ(k) = Θ(d), the last set Xq has size 2Θ(d). ��

4 Stability of WTS-Strategies

In this section we provide a new method for proving 1-stability of WTS strategies,
that can be used to unify the proofs for NTS and FTG as well as for proving the
1-stability of entire classes of strategies. Besides providing a sufficient criterion
for 1-stability of WTS-strategies we also characterize universally stable distance-
based strategies.

Crucial for this approach is the concept of push-around-cycles. A push-
around-cycle is intuitively speaking a sequence of paths that intersect in a cyclic
manner so that the priorities allow to push packets around this cycle indefinitely.
Assume WTS-strategy Sf is used. We show that whenever the number of packets
in a network G can be driven beyond any bound (instability) then G contains a
push-around-cycle with respect to f . By contraposition we may then conclude
1-stability whenever a queueing strategy prevents push-around-cycles in every
single graph. We introduce the concept of a path prefix.

Definition 4. Let P = (e1, e2, . . . , ez) be a path. Then the path prefix [P, a] for
a ≤ z consists of the edges (e1, e2, . . . , ea).

Let QP
e (t) denote the set of packets in Qe(t) travelling along path P and QP (t) be

the set of packets travelling along path P at time t. (Hence QP (t) =
⋃z

i=1 QP
ei

(t).)
Furthermore set Q[P,a](t) =

⋃a
i=1 QP

ei
(t) as the set of packets in path prefix [P, a].

WTS-strategies define priorities between paths P and P ′ meeting in a com-
mon edge e: a packet reaching edge e on path P has the right of way over a
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Fig. 2. An illustration for Lemma 1. The common edge eP ′
a′ = eP

i is distinguished

packet reaching e on path P ′ if f(G,P, j) > f(G,P ′, i) where e is the j-th (resp.
i-th) edge of P (resp. P ′). The Lemma 1 shows that for every heavily loaded
path prefix [P, a] there is another heavily loaded path prefix [P ′, a′] that has
priority over P in an edge e. Later we apply this method repeatedly to find a
necessary condition for instability at every r ≤ 1. Figure 2 illustrates Lemma 1.

Lemma 1. Assume WTS-strategy Sf (with priority function f) is used on a
graph G. Moreover assume that after a sequence of insertions for t steps by an
(1, b) adversary there is a path prefix [P, a] such that |Q[P,a](t)| ≥ c, where c is
a constant larger than b. Then there exists a path prefix [P ′, a′] such that

– P ′ has the right of way over P in a common edge e = eP
i = eP ′

a′ and
– the path prefix of P ′ ending in e has at some moment in time before time t

carried at least c
2·3d·|PG | −

b
|PG | packets.

Proof. Assume that |Q[P,a](t)| ≥ c holds. Then choose t0 minimal such that at
time t0 there exists i ≤ a such that

|QP
ei

(t0)| >
c

3a−i+1
. (1)

Such a t0 ≤ t is well defined, since otherwise we have |QP
ej

(t)| ≤ c
3a−j+1 for

all j ≤ a and consequently

|Q[P,a](t)| =
a∑

j=1

|QP
ej

(t)| ≤
a∑

j=1

c

3a−j+1

= c · 3−a ·
a∑

j=1

3j−1 = c · 3−a 3a − 1
2

<
c

2
, a contradiction.

Choose i to be a minimal index satisfying inequality (1). Furthermore pick
t1 maximally with t1 < t0 such that QP

ei
(t1) = ∅. t1 exists, since all queues are

assumed to be empty in the beginning. Exploiting t1 < t0 and the minimality of
t0 we get |Q[P,i−1](t1)| =

∑i−1
j=1 |QP

ej
(t1)| ≤

∑i−1
j=1

c
3a−j+1 ≤ c

2·3a−i+1 .

Since |QP
ei

(t0)| > c
3a−i+1 , at most half of the packets in QP

ei
(t0) were already

in the system at time t1. We concentrate on the time interval J = (t1, t0] and
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assume that y packets are inserted into path P during J . Let x denote the
number of packets on path P that traverse ei during J . We then conclude

y − x ≥ c

2 · 3a−i+1
. (2)

Since QP
ei

(t) is nonempty during J , one packet traverses ei in every step of
J , and thus t0 − t1 − 1 = |J | packets traverse ei. Hence (t0 − t1 − 1− x) packets
from paths that have priority over P in ei traverse edge ei during J . Due to the
restriction on the adversary at most (t0− t1− 1+ b) packets with ei are inserted
during J and at most (t0− t1− 1 + b− y) of them travel on paths other than P .
We may hence conclude – using (2) –, that at least

(t0 − t1 − 1− x)− (t0 − t1 − 1 + b− y) = y − x− b ≥ c

2 · 3a−i+1
− b ≥ c

2 · 3d
− b

packets on paths with priority over P in ei are in the system at time t1 and that
they are somewhere before or on edge ei on their respective paths.

Finally we observe that at least one path with priority over P in ei must
carry at least c

2·3d·|PG| −
b

|PG| of these packets before or on ei and hence if P ′ is

this path and a′ is picked so that eP ′
a′ = ei we have verified the claim. ��

A repeated application of Lemma 1 leads to the concept of push-around-cycles.

Definition 5. A push-around-cycle with respect to a WTS-strategy with priority
function f and a network G is a sequence of paths P1, P2, . . . , Pr ∈ PG in G with
two distinguished edges ePi

xi
and ePi

yi
for every path with the following properties:

– ∀1≤i≤r xi ≤ yi: edge ePi
xi

precedes edge ePi
yi

on Pi,
– ∀1≤i≤r−1 ePi

yi
= e

Pi+1
xi+1 and ePr

yr
= eP1

x1
: The second distinguished edge of Pi is

the first distinguished edge of Pi+1 and the second distinguished edge of the
last path is the first distinguished edge of the first path.

– ∀1≤i≤r−1 f(G,Pi, yi) ≥ f(G,Pi+1, xi+1) and f(G,Pr, yr) ≥ f(G,P1, x1):
path Pi has the right of way over Pi+1 with respect to their common distin-
guished edge. Moreover Pr has the right of way over P1 with respect to their
common edge.

Figure 3 illustrates the concept of a push-around-cycle. We are now ready to
state the main result of this section.

Theorem 2. If a WTS-strategy Sf with priority function f is instable at r = 1
on a graph G, then there exists a push-around-cycle among the paths of G with
respect to Sf .

Proof. We define the following recurence in order to use Lemma 1: A(0) = b

and A(i) = A(i+1)
2·3d·|PG| −

b
|PG| . As we assume instability, there is a sequence of

insertions that causes G to accomodate |PG| · A(d · |PG|) packets. Hence one
path accomodates at least A(d · |PG|) packets. Using this entire path P0 and
its entire length a0 := |P0| as a first path prefix [P0, a0] we apply Lemma 1
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Fig. 3. An illustration for a push-around-cycle consisting of four paths and their four
distinguished edges. A dashed line indicates that the respective path must yield priority

iteratively: if we have a path prefix [Pi, ai] that can be forced to accomodate
A(d · |PG|− i) packets, Lemma 1 provides a path Pi+1 that intersects [Pi, ai] and
has priority at that intersection. If we pick ai+1 according to Lemma 1, we know
that the path prefix [Pi+1, ai+1] can be forced to contain A(d · |PG| − (i + 1))
packets.

As we have picked A(d · |PG|) large enough, we can iterate the application of
Lemma 1 d · |PG| times, which is an upper bound on the number of path prefixes
in G. Hence a cycle must be closed in the process and we have our theorem. ��

By contraposition we get immediately that every WTS-strategy, that does
not allow push-around-cycles in a network G, is 1-stable in G. The following
corollary contains Nearest-To-Source and Farthest-To-Go as special cases.

Corollary 1. Assume a WTS-strategy Sf with priority function f is given.
If f is strictly decreasing along all paths P in all graphs G, i.e., f(G,P, i) >
f(G,P, i + 1), then Sf is 1-stable.

Proof. Assume G contains a push-around-cycle with respect to Sf , let P1, . . . , Pr,
x1, . . . , xr and y1, . . . , yr be defined in accordance to Definition 5. We then have
f(G,P1, x1) > f(G,P1, y1) ≥ f(G,P2, x2) > . . . > f(G,Pr, yr) ≥ f(G,P1, x1) as
a contradiction. Hence by Theorem 2 the strategy is stable at r = 1. ��
Remark 1. Assume that we have a WTS-strategy that does not depend on the
number of edges a packet has traversed so far. If the strategy assigns different
priorities to different paths in every G, then this strategy is 1-stable.

We say that a queueing strategy is distance-based, if its priority function only
depends on the the number x of traversed edges and the length y of the packet’s
path. We provide a complete classification of 1-stable distance-based strategies.

Theorem 3. Let f be the priority function of a distance-based queueing strategy
Sf . Then Sf is 1-stable if and only if

∀(x, y) 1 ≤ x < y : f(x, y) < f(x− 1, y). (3)

It is not even universally stable otherwise.
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Proof. The 1-stability given (3) follows immediatly from Corollary 1, since f is
strictly decreasing along all paths. To complete the proof we need to carefully
embed and adapt the baseball graph from [2] and come up with an elaborate
insertion scheme.

Our proof exploits that Sf is only stable if it guarantees stability for every
possible choice among packets of same priority. Hence if two packets with iden-
tical x and y values collide, we may pick the one to be prefered in a worst case
manner. We consider the network of Figure 4.
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Fig. 4. The graph used to prove instability of Af . We have central nodes A, B, C
and A′, B′, C′. Each central node has an entrance path starting at a node named
YA, . . . , YC′ . Each of these entrance paths consists of x − 1 nodes and x − 1 edges.
Hence for x = 1 these entrance paths disappear and the Y -node is identical with the
corresponding central node. Also A, B, A′ and B′ have an exit path ending in a node
named XA, . . . , XB′ . Each exit path has length y − x− 1. So for y = x + 1 these paths
vanish and the X-nodes are identical with their respective central node

We assume that there exists a time t such that if injection of new packets is
completely stopped after step t , there is still – for each of the next s steps – a
packet crossing e0. These packets (we call them set S) will have crossed precisely
x edges before e0, have destination XB and a total path of length y.

We intend to construct an injection process (Phases 1,2 and 3), such that
there is a set of more than s packets waiting to cross edge e′0, if injection is
stopped after step t′ > t. These packets will have crossed precisely x edges before
e′0, have destination XB′ and a total path of length y. This implies instability,
since the process can then be repeated arbitrarily.

In the caption of Figure 4 we have introduced the notion of central node,
entrance and exit path. All the packets that we are inserting in phases 1,2 and 3
have a path of length y. In the first central node of their paths they have crossed
x−1 edges, in the second central node they have crossed x edges. The necessary
insertions are listed in the following table along with references to the relevant
observations.
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Phase Duration Inserted Sets & Paths Size Observations

1 s F : (YA
∗→ A

e0→ B
e1→ A′ ∗→ XA′) rs (1),(2),(3),(4)

2 rs G1 : (YA
∗→ A

e0→ B
e2→ A′ ∗→ XA′) r2s (2),(4),(5)

G2 : (YB
∗→ B

e1→ A′ e′0→ B′ ∗→ XB′) r2s (3),(4),(6)

3 r2s H1 : (YB
∗→ B

e2→ A
e′0→ B′ ∗→ XB′) r3s (5)

H2 : (YC
∗→ C

e4→ B
e1→ A′ ∗→ XA′) r3s (6)

(1) In phase 1 the set S of s packets we assume to cross e0 complete their
journey. When F reaches A, it will be blocked by S, since f(x, y) ≥ f(x− 1, y)
holds. Observe that x− 1 steps pass before F ’s first packet reaches A. So in fact
not all of the rs packets of F can get to A before phase 1 ends, i.e., the last one
has just been inserted and needs another x − 1 steps to get to A. For s large
enough however this effect causes no problems.

After phase 1 S has vanished. (The last packets of S are actually still on their
way from B to XB , but they do not interfere with anything we are about to do
and we will consider them gone. The same argument in the next steps allows us
to regard every packet as out of the way once it’s on its exit path.)

(2) Set G1 collides with F in node A. Their path length and advance in the
path at this point are identical, hence we may choose that F is advanced over
e0.

(3) Set G2 collides with F in node B. Since F has traversed x edges and G2

has traversed x− 1 edges, F will be prefered.
(4) At the end of phase 2 F has vanished and both G1 and G2 are still in

the first central node of their paths.
(5) G1 completes its journey in phase 3. In node B the set G1 will block H1.
(6) In the first x steps of Phase 3 x packets of G2 cross e1 and are lost for

our purpose. After these x steps the stream of H2 packets has reached B. In B
packets from H2 will be prefered over G2-packets. Of course, as r < 1 holds, the
stream of H2 packets occupies e1 for r · (r2s− x) of the remaining r2s− x steps
of Phase 3. Hence (1− r) · (r2s− x) more G2 packets slip through and are lost.

We define the end of phase 3 as the time t′. Observe that r(r2s− x) packets
from G2 and the entire H1 still need to cross e′0. Their combined size is |S′| =
2r3s−rx. So by having S and r sufficiently large we can guarantee, that |S′| > |S|
holds and we have successfully increased the number of packets in the system.
To start out the process we have to use a sufficiently large burstiness. ��

5 Conclusion and Open Problems

We have introduced the class of WTS-strategies and obtained general results
about this class itself and its subclass of distance-based strategies. Most impor-
tantly we have ruled out the existence of WTS-strategies with subexponential
queue size indicating, that some form of timekeeping is necessary to achieve poly-
nomial queue size. Furthermore we have introduced the concept of push-around-
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cycles and used it to classify the 1-stable and universally stable distance-based
strategies.

In order to be of practical use, queueing strategies need to be as simple as
possible. So the question remains whether queueing strategies simpler than the
one introduced in [3] and with polynomial queue size exist. Such a candidate is
Longest-In-System, as LIS is obviously one of the simplest queueing strategies
that does use timekeeping.
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Abstract. Branch & Cut is today’s state-of-the-art method to solve 0/1-integer
linear programs. Important for the success of this method is the generation of
strong valid inequalities, which tighten the linear programming relaxation of 0/1-
IPs and thus allow for early pruning of parts of the search tree.

In this paper we present a novel approach to generate valid inequalities for
0/1-IPs which is based on Binary Decision Diagrams (BDDs). BDDs are a data-
structure which represents 0/1-vectors as paths of a certain acyclic graph. They
have been successfully applied in computational logic, hardware verification and
synthesis.

We implemented our BDD cutting plane generator in a branch-and-cut frame-
work and tested it on several instances of the MAX-ONES problem and randomly
generated 0/1-IPs. Our computational results show that we have developed com-
petitive code for these problems, on which state-of-the-art MIP-solvers fall short.

1 Introduction

Many industrial optimization problems can be formulated as an integer program. For-
mally, an integer program deals with the maximization of a linear objective function
c(1)x(1) + · · ·+ c(n)x(n), where the variables x(1), . . . , x(n) have to be integers and
have to satisfy m given linear inequalities ai1x(1)+ · · · ainx(n) ≤ bi for 1 ≤ i ≤ m. A
special case of integer programming is 0/1 integer programming (0/1-IP), which arises
if the variables are additionally restricted to attain values in {0, 1}. It is a particularly
important special case, since most combinatorial optimization problems are modeled
with decision variables and thus are 0/1-IPs.

The most successful method for 0/1-IP, which is applied by all competitive com-
mercial codes is branch-and-cut. This variant of branch-and-bound relies on the fact
that the linear relaxation of a given 0/1-IP can be efficiently solved. The linear relax-
ation is the linear program which is obtained from the 0/1-IP by relaxing the condition
x(i) ∈ {0, 1} to the condition 0 ≤ x(i) ≤ 1 for each i ∈ {1, . . . , n}. The value of
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the linear programming relaxation can then be used as an upper bound in a branch-and-
bound approach to solve the 0/1-IP. In branch-and-cut, one additionally applies cut-
ting planes [8, 26] to improve the quality of the linear programming relaxation. Cutting
planes are inequalities which are valid for all feasible integer points, but not necessarily
valid for the rational points which are feasible for the linear programming relaxation.
Thus the incorporation of cutting planes improves the tightness of the linear relaxation
and helps to prune parts of the branch-and-bound tree.

In theory a cutting plane can be easily infered from a fractional optimal solution to
the linear programming relaxation. The strength of the cutting plane is however crucial
for the performance of the branch-and-cut process. Classes of strong valid inequali-
ties are for example knapsack-cover inequalities [2, 6, 11, 29], clique inequalities [21]
the flow-cover inequalities [23, 24] or the mixed integer rounding cuts [21]. Knapsack-
cover and flow-cover inequalities in particular are inequalities which are valid for the
0/1-points which satisfy one single constraint of the 0/1-IP. Up to now there is no
satisfactory method available which generates valid inequalities for the 0/1-solutions
of two or more inequalities. This paper aims at a method for this algorithmic problem
which is based on Binary Decision Diagrams, a datastructure which is widely used in
computational logic, hardware verification and logic synthesis.

A Binary Decision Diagram (BDD) represents a set of 0/1-vectors in a compact
way, see Fig. 1. We provide a short definition of BDDs as they are used in this paper. A
BDD for a set of variables x(1), · · · , x(n) is a directed acyclic graph G = (V,A) with
a labeling � : V −→ {x(1), . . . , x(n)} and a parity function par : A −→ {0, 1}. The
graph has one node with in-degree zero, called the root and one node with out-degree
zero, called leaf 1. Each path from root to leaf 1 contains exactly n edges and each
x(i), 1 ≤ i ≤ n is the label of a starting node of an edge on this path, thus the BDD
is called complete. All nodes labelled with x(i) lie on the same level, which means, we
have an ordered BDD (OBDD). A path e1, . . . , en from the root to the leaf represents a
variable assignment, where the label of the starting node of ei is assigned to the value
par(ei). In this way, the BDD represents a set of vectors in {0, 1}n.

1

x(2)

x(3) x(3)

x(1) x(1) x(1)

(a) BDD

x(1) x(2) x(3)

0 0 1
0 1 0
1 0 0
1 1 0
1 1 1

(b) Represented 0/1-points

Fig. 1. A simple BDD represented as a directed graph. Edges with parity 0 are dashed
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BDDs were first proposed by Lee in 1959 [20]. Bryant [3] presented efficient algo-
rithms for the synthesis of BDDs. After that, BDDs became very popular in the area of
hardware verification, and computational logics, see e.g. [28]. Lai et. al. [19, 18] have
developed a branch-and-bound algorithm for 0/1-IP that uses an extension of BDDs
called EVBDDs. EVBDDs represent functions f : {0, 1}n −→ ZZ. So the EVBDDs
are used not only to represent the characteristic functions of the constraints but also
for the constraints themselves. In this approach however, one has to build an EVBDD
for the conjunction of all the constraints of the 0/1-IP. In many cases this leads to an
explosion in memory requirement.

We incorporate BDDs into a cutting plane engine and apply it in an integer pro-
gramming solver. We use BDDs to represent the feasible solutions of a small subset of
the given constraints and derive valid inequalities for the polytope which is described
by these solutions. Thereby we avoid the explosion of the size of the BDD which hap-
pens if the BDD represents all the constraints. The separation problem is solved with
a sequence of shortest path problems with Lagrangean relaxation techniques. For this
we use a standard BDD-package and apply our own efficient implementation of an
acyclic shortest path algorithm on the BDD-datastructure. We apply our cutting plane
framework to the MAX-ONES problem and to randomly generated 0/1-IPs. Our compu-
tational results show that we could develop competitive code to solve hard 0/1-integer
programming problems, on which state-of-the-art commercial branch-and-cut codes fall
short.

Currently there is active and promising research in the field of combining techniques
from computational logic and constraint programming with integer programming, see
e.g. [5, 13]. We contribute further to this development by using BDDs sucessfully and
for the first time in a cutting plane engine.

1.1 Preliminaries from Polyhedral Theory

Before we proceed we review some terminology from polyhedral theory, see e.g. [21,
26]. A polyhedron P is a set of vectors of the form P = {x ∈ IRn | Ax ≤ b}, for some
matrix A ∈ IRm×n and some vector b ∈ IRm. The polyhedron is rational if both A and
b can be chosen to be rational. If P is bounded, then P is called a polytope. An integral
0/1-polytope is a polytope that is the convex hull of a set of 0/1-vectors S ⊆ {0, 1}n.
The integer hull PI of a polytope P is the convex hull of the integral vectors in P .
The dimension dim(P ) of P is the dimension of its affine hull and P ⊆ IRn is full-
dimensional if dim(P ) = n.

An inequality cTx ≤ δ is valid for P if it is satisfied by all points in P . If cTx ≤ δ
is valid and δ = max{cTx | x ∈ P}, it defines a face F = {x ∈ P | cTx = δ} of P .
The face F is a facet of P , if dim(F ) = dim(P )− 1.

2 Using BDDs to Generate Cutting Planes

Suppose we have to solve a 0/1-integer programming problem,

max{cTx : Ax ≤ b, x ∈ {0, 1}n} (1)
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where A ∈ ZZm×n, b ∈ ZZm and c ∈ ZZn. Our idea is now to choose a subset A′x ≤ b′

of the constraints in Ax ≤ b and to build the BDD which represents all 0/1-points
which satisfy A′x ≤ b′. We next distinguish between two 0/1-polytopes PI and PBDD.
The polytope PI = conv{x ∈ {0, 1}n | Ax ≤ b} is the convex hull of the feasible
0/1-points of the 0/1-IP. The polytope PBDD = conv{x ∈ {0, 1}n | A′x ≤ b′} is the
convex hull of the 0/1-points which are feasible for A′x ≤ b′. Clearly PBDD ⊇ PI.
We are now interested in an efficient handling of the constraints which define PBDD. In
a branch-and-cut framework, we want to decide whether our current optimal solution
x∗ to the linear programming relaxation lies in PBDD. If not, we want to compute an
inequality which is valid for PBDD but not valid for x∗. This is the so-called separation
problem for PBDD.

BDD-SEP
Given x∗ ∈ Qn and a BDD (G, �,par), decide, whether x∗ ∈ PBDD and
if not, compute a valid inequality for PBDD which is not valid for x∗.

2.1 Polynomial Time Solvability of BDD-SEP

In the 1980’s, several authors[9, 17, 22] showed that the linear optimization problem
over polyhedra and the separation problem over polyhedra are polynomial time equiva-
lent. This equivalence of separation and optimization is a central result in combinatorial
optimization. It implies that one can solve the separation problem for PBDD in polyno-
mial time, if one can solve the optimization problem for PBDD in polynomial time.

BDD-OPT
Given c ∈ Qn and a BDD (G, �,par), compute a 0/1-point which is rep-
resented by (G, �,par) and is maximal w.r.t. the linear objective function
cTx.

BDD-OPT is easily shown to be the following longest path problem on G with edge
weights w : E → IR, where

w(e) =

{
c(i) if par(e) = 1 and �(head(e)) = x(i),
0 otherwise.

(2)

It is very easy to see that the optimal solutions to BDD-OPT are exactly the 0/1-
points which are represented by a longest path from root to leaf 1. Since G is acyclic,
the longest path problem can be solved in linear time. Using the equivalence of sepa-
ration and optimization, we can thus conclude that BDD-SEP can, in theory, also be
efficiently solved.

Theorem 1. The problems BDD-SEP and BDD-OPT can be solved in polynomial
time.

2.2 Separation with the Subgradient Method

The point x∗ /∈ PBDD if and only if there exists a λ ∈ IRn such that

λTx∗ > δλ. (3)
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The value δλ is the length of the longest path from root to leaf 1 w.r.t. the edge weights

wλ(e) =

{
λ(i) if par(e) = 1 and �(head(e)) = x(i),
0 otherwise.

(4)

Since G is acyclic, δλ can be computed in linear time. If (3) does not hold, we update λ
as in the subgradient method to solve the Lagrangean relaxation, see e.g. [26–p. 367ff.].
In words, Alg. 1 does the following. The first guess for a normalvector of a separating

Algorithm 1 Subgradient separation routine
(1) k := 1
(2) λ(k) := c
(3) Compute a longest path p(k) from root to leaf 1 w.r.t. the edge lengths wλ(k) .
(4) If λT x∗ > δλ then return the separating hyperplane λT x ≤ δλ

(5) t(k) := 1
k

(6) λ(k+1) := λ(k) + t(k)(x∗ − xp(k))
(7) k := k + 1;
(8) GOTO (3)

hyperplane is the objective function vector c, which is why λ is initialized with this

vector. Let λ(k) be the normalvector in the k-th iteration such that λ(k)T
x∗ ≤ δλ(k) =

λ(k)T
xp(k) . After the update one has λ(k+1)T

(x∗ − xp(k)) = λ(k)T
(x∗ − xp(k)) +

t(k)‖x∗−xp(k)‖2. If t(k) > 0 is small enough then there exists a longest path w.r.t. wλ(k) ,

which is also a longest path w.r.t. wλ(k+1) . Then λ(k+1)T
x∗−δλ(k+1) > λ(k)T

x∗−δλ(k) .
It is known, see [26], that for any t(k) with limk→∞ t(k) = 0 and

∑∞
k=1 t

(k) = ∞ the
subgradient method terminates. This is the case for t(k) = 1/k.

Geometrically, step 6 can be interpreted as a rotation of the hyperplane λ(k)T
x ≤ δλ

in the direction of the vector x∗ − xp(k) . Although Alg. 1 cannot be guaranteed to run
in polynomial time, we observed that it outperforms linear programming methods for
BDD-SEP by far. This is why we implemented this method in our BDD cut-separator.

3 Heuristics for Strengthening Inequalities with BDDs

The inequalities generated with the subgradient method naturally define faces of PBDD

with a low dimension. We want to increase their dimension in order to increase the
“quality” of the hyperplanes, i.e., we are interested in facets of PBDD. Using facet-
defining inequalities in branch-and-cut has led to an enourmous progress in solving
large-scale optimization problems, see e.g. [16]. The standard way to turn a separating
hyperplane into a facet-defining inequality, see e.g. [10], turned out to be too expen-
sive. Therefore, we developed some heuristics to strengthen inequalities which do not
guarantee to produce facets, but can be efficiently implemented.
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In the following let cTx ≤ δ be a valid inequality for PBDD. The right hand side
can be set to δ = max{cTx | x ∈ PBDD}. We compute the maximum in linear time via
optimizing over PBDD with edge weights set to wc as in (2). Note that with this method
every inequality can be made tight at at least one vertex of the BDD-polytope.

3.1 Increasing the Number of Tight Vertices

By increasing the number of vertices of PBDD that are tight at cTx ≤ δ, chances are
high to also increase the dimension of the induced face. In the following we try to
strengthen an inequality along the unit vectors. Remember that every path in the BDD-
graph from the root to leaf 1 corresponds to a vertex of PBDD. W.l.o.g. assume that for
all i ∈ {1, . . . , n} the variable x(i) lies in level i.

Given i ∈ {1, . . . , n} we want to find a new c(i) so that the number of longest paths
w.r.t. the edge weights wc increases. For that we compute the sets of all longest paths,
that use a 0-edge resp. 1-edge in level i. Be α0 resp. α1 their costs. If α0 �= α1 setting
c(i) := c(i) + α0 − α1 and δ := α0 increases the number of shortest paths.

The strengthened c depends on the order of the indices which we took to strengthen
it. Different permutations of {1, . . . , n} can lead to different strengthened hyperplanes.
For the computation of c(i) we look at each edge of G once. As we strengthen every
coefficient of c the total running time is O(n|A|). If we do not consider permutations of
the indices but take the canonical order {1, . . . , n} we only have to use each edge three
times, so the running time can be reduced to O(|A|).

In a branch-and-cut framework it may occur that a hyperplane separating a given
x∗ does not separate x∗ after strengthening for an index i. In this case we do not
change c(i).

3.2 Improving Coefficients

In the following we adapted a strategy known for lifting cover inequalities for the
knapsack problem, see e.g. [21]. W.l.o.g. assume that c ≥ 0 holds. If there exists a
c(i) < 0 replace δ := δ − c(i) and c(i) := −c(i). For simplicity reasons assume
we want to strengthen c(1) which means, as we have x ≥ 0, increasing its value.
Rewriting the inequality to c(1)x(1) ≤ δ −

∑n
i=2 c(i)x(i) shows that we can set

c(1) := δ − max{
∑n

i=2 c(i)x(i) | x ∈ PBDD, x(1) = 1}. Again we use the fact
that we can optimize over PBDD in linear time. Different permutations of indices again
lead to different strengthened inequalities.

4 Computational Results

The cuts that we developed in this paper can be used for any 0/1-integer program, even
for those, where nothing is known about their structure. We investigated the practical
strength of our theory by doing computational experiments. Our results with MAX-
ONES problems and randomly generated IPs show, that one can achieve a considerable
speedup on hard and small 0/1-IPs. We report on some techniques that we developed
to build BDDs fast and to keep their sizes small.
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4.1 Heuristics for the Variable Order of the BDD

It is well-known that the variable order used in a BDD has a great influence on its
size [28]. Before we start to build BDDs for any subset A′x ≤ b′, we choose an appro-
priate variable order, which considers all constraints Ax ≤ b.

Experiments have shown that heuristics that do not take the structure of the problem
into account will produce bad variable orders. We adapted an algorithm for partition-
ing the outputs of circuits that was presented in [12]. It proceeds as follows: First the
constraint set Ax ≤ b is partitioned into subsets with a similar support. Then, for every
subset a partial variable order is computed. These partial orders are merged into one
total order using a technique called interleaving [7].

For the partitioning of the constraints generate a new initially empty block. Delete
that constraint from the set of constraints that has the largest support and insert it into
the new block. This constraint is called the leader of the block. Then all constraints
satisfying a certain criterion are moved to the new block. We iterate until the set of
constraints becomes empty.

The two citeria we used are:

1. Add a constraint if its support is a subset of the support of the leader (WOG).
2. Add a constraint if its support is a subset of the supports of all constraints already

contained in the block (BOG).

For the partial orders we used a simple heuristics. For every variable x(j) we com-
puted hj =

∑n
i=1|aij | and sorted the variables in every block according to decreasing

hj value. Before we apply the interleaving algorithm we sort the blocks increasingly by
the number of variables contained in them.

Besides this algorithm that computes an inital variable order, we use sifting [25] to
improve the order dynamically while we build the BDDs.

4.2 Building a BDD for a Subset of Constraints

We mainly use the following two operations for BDDs: computing the BDD for the
characteristic function of a single constraint and the conjunction of two BDDs. Both
BDD algorithms work recursively. The top-most variable is set to 0 and 1 and the al-
gorithm is called recursively on the two branches. Figure 2 shows an example of a
conjunction of two BDDs.

4.3 Decreasing the Size of the BDD

Let aTx ≤ b be a constraint of the 0/1-IP, that has not been used to build the BDD.
We set the edge weights in the BDD-graph to wa as in (2) and optimize over it. A point
xp ∈ PBDD satifies the constraint aTx ≤ b if and only if the costs of its corresponding
path p are less or equal b. For a given node, consider the costs of all paths that cross it.
If the minimum of these costs is greater than b, we can delete that node together with its
incident edges, since we are only interested in those points of the BDD-polytope, that
satisfy the given constraint.

This algorithm runs in linear time in the number of nodes of the BDD and it can be
applied while the BDD is built.
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x(1)

x(2)x(2)

x(3)x(3)

1

(a) First Operand

x(1)

x(2)x(2)

x(3) x(3)

1

(b) Second Operand

x(1)

x(2)

x(3) x(3)

1

(c) Result

Fig. 2. Conjunction of BDDs: The first operand is the BDD of the characteristic function of the
constraint 2x(1) − x(2) + 3x(3) ≤ 2, the second of −x(1) + x(3) ≥ 0

4.4 Implementation

To evaluate the effectiveness, we implemented our methods in C++. For building BDDs
we used the CUDD 2.4.0 package [27].

Before we build a BDD for the first time, we use our WOG-heuristics for finding
a good variable order on the initial 0/1-IP. In terms of finding a variable order which
decreases the size of the BDDs, WOG seems to be slightly better than BOG. If the
number of nodes exceeds a given limit while building the BDD, we turn on sifting
occasionally. 60.000 turned out to be a good node limit for sifting. If the size of the
BDD gets too large, which means, more than 1 million nodes, we stop building it.

The BDDs that we use in our implementation differ from those that we use for
theory. In practice we work on reduced BDDs. There are no redundant nodes but long
edges that cross levels so that not every path from the root to the leaf 1 contains exactly
n edges. This reduces memory and time consumption. On the BDD-datastructure used
in CUDD we implemented an efficient version of an acyclic shortest path algorithm.

Our separation routine is called in a node of the branch-and-bound tree. To simplify
building the BDD, we fix the variables according to the fixation in the branching that
led us to this node. In addition to that we restrict the constraints that will be used for
building the BDD to some of those of the 0/1-IP that are tight at the LP solution in the
current node. The BDD is a compact representation of all 0/1-points that are feasible
for the given constraints and possibly given fixations. If there are no fixations, the BDD
gives an overapproximation of all 0/1-points that are feasible for the 0/1-IP. If some
variables were fixed while building the BDD, the generated cuts are only valid for that
face of PBDD, which corresponds to the given fixations. To make these cuts valid for
PBDD we lift them by sequentially solving LPs (see e.g. [21]).

We embedded our separation routines in the cutcallback function of the CPLEX 9.0
Branch & Cut framework [15]. Algorithm 2 sketches our separation routine.

Due to numerical problems the subgradient method sometimes does not terminate.
We investigated the steplength of the rotation t(k) and increased the denominator by 1
not in every but in every s’th iteration where s = 5 showed to be a good value for most
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Algorithm 2 Separation via BDDs as cutcallback function
(1) Restriction: Fix some variables according to the branching decisions.
(2) Build the BDD for some of the constraints that are tight at the LP solution.
(3) Solve the separation problem with the subgradient method.
(4) Strengthen the cuts.
(5) Lift the strengthened cuts into the original full space and return them.

of the cases. If we cannot find a separating hyperplane after 2000 iterations we stop.
To make the hyperplanes integer, we multiply them with an adequate integer value and
round them. After that we compute a new right-hand-side via a shortest path computa-
tion. In almost all of the cases the resulting integer hyperplanes are still separating the
current LP solution from the 0/1-IP.

4.5 Benchmarks

MAX-ONES. Satisfiability problems notoriously produce hard to solve IPs [1]. There-
fore we investigated SAT instances and converted them to MAX-ONES problems. A
given SAT-instance over n boolean variables and a set of clauses C1, . . . ,Ck can easily
be transformed into a 0/1-IP representing a MAX-ONES problem by converting each
clause to a linear constraint of the form

∑
i x(i) +

∑
j(1 − x(j)) ≥ 1 and adding the

objective function max
∑n

i=1 x(i). From a SAT competition held in 1992 [4], we took
the hfo instances. The 5cnf instances are competition benchmarks of SAT-02 [14], and
the remaining instances are competition benchmarks from SAT-03 [14].

Randomly Generated IPs. Additionally we are interested in how our code performs
on problems with less or without any structure. We randomly generated 0/1-IPs the
following way: an entry in the matrix A, the right-hand-side b and the objective function
c gets a nonzero value with probability p. This value is randomly chosen from the
integers with absolute value less or equal cmax. The instances that we generated are
available on request.

4.6 Results

Our experiments have been performed on a PC Intel Xeon CPU 3.06 GHz with 4 GByte
RAM on GNU/Linux (kernel 2.6) operating system. Every investigated problem was
solved to optimality or proved to be infeasible. On the one hand we run CPLEX 9.0
with the default values, i.e. it did presolving and used all types of built-in separation
cuts. On the other hand we used the CPLEX Branch & Cut framework with our separa-
tion routines (bcBDD), but switched off presolve and all built-in cuts. We switched off
presolve since we sometimes encountered problems working on the presolved model.
We also tried to switch off presolve for the benchmarks made with CPLEX standalone.
It showed, that presolving the randomly generated IPs does not really influence the run-
ning time but switching off presolve for the MAX-ONES instances increased CPLEX
running times.
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For the MAX-ONES instances we found out, that generating nearly all of our cuts in
the root node is the most promising strategy. Using too few constraints to build the BDD
resulted in weaker cutting planes. In practice it showed that 70% of the constraints, that
are tight at the current LP solution, is a good threshold for generating cuts with an
adequate quality while building the BDD does not consume too much time.

For randomly generated IPs building the BDDs is harder as the constraints have no
structure. We generated our cuts deeper in the branch-and-bound tree and lifted them.
Furthermore we only used 20% of the constraints, that belong to the basis of the LP
solution in the current branch-and-bound node.

In all tables the running times are the total user times given in seconds. We com-
puted the speedup as 1 minus the ratio of our running time divided by the CPLEX
running time. The values for the hfo instances are average values taken over 20 differ-
ent instances of each type. The standard deviation is in brackets. For 109 of the 120
hfo-instances we obtain faster running times compared to CPLEX default MIP-solver.
The average of the overall speedup for the hfo-instances is 18.31% with a standard de-
viation of 14.44%. For the randomly generated IPs we achieved an average speedup of
34.23%.

Table 1. Results for the SAT-02 / SAT-03 instances

Name #Var. #Constr. solvable CPLEX(s) bcBDD(s) Speedup (%)

5cnf_3800_50f1 50 760 yes 55.59 35.21 36.66
5cnf_3900_060 60 936 no 5000.01 3519.79 29.60
5cnf_3900_070 70 1092 yes 4523.13 3524.89 22.07
5cnf_4000_50f1 50 800 no 183.55 180.21 1.82
5cnf_4000_50f7 50 800 no 252.49 240.19 4.87
5cnf_4000_50t1 50 800 yes 24.21 12.81 47.09
5cnf_4000_50t3 50 800 yes 106.74 89.66 16.00
5cnf_4000_50t8 50 800 yes 125.63 109.32 12.98
5cnf_4000_60t5 60 960 yes 3905.54 3458.66 11.44
5cnf_4100_50f1 50 820 no 291.00 206.07 29.19
5cnf_4100_50f2 50 820 no 237.47 171.19 27.91
5cnf_4100_50f3 50 820 no 253.30 153.63 39.35
5cnf_4100_50f5 50 820 no 259.19 166.43 35.79
5cnf_4100_50f7 50 820 no 380.19 257.91 32.16
5cnf_4100_50t1 50 820 no 242.31 134.71 44.41
icosahedron 30 192 no 184.35 186.81 -1.39
marg2x5 35 120 no 22.52 23.51 -4.40
marg2x6 42 144 no 207.22 237.38 -14.55
marg2x7 49 168 no 3371.32 3330.37 1.21
marg3x3add4 37 160 no 453.39 414.66 8.54
urqh1c2x4 35 216 no 492.38 464.90 5.58
urqh2x3 31 240 no 465.25 413.98 11.02
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Abstract. Biological sequence comparison is one of the most important and ba-
sic problems in computational biology. Due to its high demands for computa-
tional power and memory, it is a very challenging task. Most of sequence com-
parison methods used are based on heuristics, which are faster but there are no
guarantees that the best alignments will be produced. On the other hand, the al-
gorithm proposed by Smith-Waterman obtains the best local alignments at the
expense of very high computing power and huge memory requirements. In this ar-
ticle, we present and evaluate our experiments with three parallel strategies to run
the Smith-Waterman algorithm in a cluster of workstations using a Distributed
Shared Memory System. Our results on an eight-machine cluster presented very
good speedups and indicate that impressive improvements can be achieved, de-
pending on the strategy used. Also, we present some theoretical remarks on how
to reduce the amount of memory used.

1 Introduction

Biological sequence comparison (or sequence alignment) is one of the most important
problems in computational biology, given the number and diversity of the sequences and
the frequency on which it is needed to be solved daily all over the world [1]. Sequence
comparison is in fact a problem of finding an approximate pattern matching between
two sequences, possibly introducing spaces (gaps) into them. The most important types
of sequence alignment problems are global and local. To solve a global alignment prob-
lem is to find the best match between the entire sequences. Local alignment algorithms
must find the best match (or matches) between parts of the sequences. In this article, we
will treat mainly local alignments.

Smith and Waterman [2] proposed an algorithm (SW) based on dynamic program-
ming to solve the local alignment problem. It is an exact algorithm that finds the best
local alignments between two genomic sequences of size n in quadratic time and space
complexity O(n2). In genome projects, the size of the sequences to be compared are
constantly increasing, thus an O(n2) solution is still expensive. For this reason, heuris-
tics were proposed to reduce time complexity to O(n). BLAST [3] and FASTA [4] are
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examples of widely used heuristics to compute local alignments. SW is the most sen-
sitive method but also the slowest one for similarity searches between sequences. One
obvious improvement is the use of parallel processing to speedup the SW computations.
Even in this case, the quadratic space complexity remains a problem and techniques
must be used to reduce it. Martins [5] and MASPAR[6] proposed techniques to run the
SW algorithm in, respectively, a Beowulf machine with 128 processors and a massively
parallel computer system with 16384 processors. Although the results obtained in both
cases were good, the cost of such machines make this an expensive approach. Deci-
pher [7] is a dedicated hardware based on FPGAs that implements the SW algorithm.
This is also an expensive approach.

In this paper, we propose and evaluate a new parallel SW algorithm in a cluster
of workstations that uses commodity hardware and operating system. We also com-
pare the results obtained with this approach with two parallel SW algorithms [8] [9]
that were earlier deployed by our research group. These first two strategies (heuristic
and heuristic-block) are approximate ones since they use heuristics to reduce the space
complexity. The strategy proposed in this paper (pre-process) is an exact one that stores
intermediate results into disk. Additionally, we propose a modification to the original
SW algorithm which runs in space complexity O(n + n′2), where n′ is the maximal
length of a local alignment between sequences s and t of size n. The results obtained
in an eight-machine cluster with large sequence sizes show good speedups when com-
pared with the sequential algorithm. Moreover, the proposed technique provides great
improvements over the former strategies. For instance, to compare 80KBP (kilo-base
pair) sequences using eight processors, the pre-process strategy run approximately 12
times faster than heuristic.

2 Smith-Waterman’s Algorithm for Local Sequence Alignment

To compare two sequences, we need to find the best alignment between them, which is
to place one sequence above the other making clear the correspondence between similar
characters or substrings from the sequences [1]. In an alignment, spaces are inserted in
arbitrary locations along the sequences so that they end up with the same size.

Given an alignment between two sequences s and t, a score is usually associated
for it as follows. For each column, we associate +1 if the two characters are identical,
-1 if the characters are different and -2 if one of them is a space. The score is the sum
of the values computed for each column. The maximal score is the similarity between
the two sequences, denoted by sim(s,t). In general, there are many alignments with
maximal score. Figure 1 shows the alignment of sequences s and t, with the score for
each column. In this case, there are nine columns with identical characters, one column
with distinct character and one column with a space, giving a total score 6.

G A C G G A T T A G
G A T C G G A A T A G

+1 +1 −2 +1 +1 +1 +1 −1 +1 +1 +1︸ ︷︷ ︸
Σ = 6

Fig. 1. Alignment between s = GACGGATTAG and t = GATCGGAATAG
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For long sequences, it is unusual to obtain a global alignment. Instead, the local
alignment algorithm is executed to detect regions inside both sequences that are simi-
lar. Smith-Waterman proposed an algorithm (SW) based on dynamic programming to
solve the local alignment problem. The time and space complexity of this algorithm is
0(mn), where m and n are the lengths of the two sequences, and, if both sequences
have approximately the same length, n, we get O(n2) [2].

The SW algorithm is divided into two parts: the calculation of the similarity array
and the retrieval of the local alignments, which are to be explained in the following
sections.

• Part 1: Calculation of the Similarity Array : As input, the algorithm receives two
sequences s, with |s| = m, and t, with |t| = n, where |s| denotes the length of the
sequence s. There are m + 1 possible prefixes for s and n + 1 prefixes for t, including
the empty string. An array Am+1,n+1 is built, in which the A[i, j] entry contains the
value of the similarity between two prefixes of s and t, sim(s[1..i], t[1..j]). Figure 2
shows the similarity array between s=ATAGCT and t=GATATGCA. To obtain local
alignments, the first row and column are initialized with zeros. The other entries are
computed using equation 1.

sim(s[1..i], t[1..j])= max

⎧⎪⎪⎨⎪⎪⎩
sim(s[1..i], t[1..j − 1]) − 2,
sim(s[1..i − 1], t[1..j − 1])+( if s[i] = t[j] then 1 else −1),
sim(s[1..i − 1], t[1..j]) − 2,
0

⎫⎪⎪⎬⎪⎪⎭(1)

The values A[i, j], for i, j > 0, are defined as sim(s[1..i], t[1..j]).

A T A G C T

G

A

T

A

T

G

C

A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 1 0 0
↖

0 1 0 1 0 0 0
↖

0 0 2 0 0 0 1
↖

0 1 0 3 1 0 0
↑

0 0 2 1 2 0 1
↖

0 0 0 1 2 1 0
↖

0 0 0 0 0 3 1
↖

0 1 0 1 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

local alignment︷ ︸︸ ︷
A T A G C
A T A T G C

+1 +1 +1 −2 +1 +1︸ ︷︷ ︸
Σ = 3

Fig. 2. Array to compute the similarity between the sequences ATAGC and ATATGC, using
the SW algorithm
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We have to compute the array A row by row, left to right on each row, or column by
column, top to bottom, on each column. Finally, arrows are drawn to indicate where the
maximum value comes from, according to equation 1. In the example, the score value of
the best local alignment appears in A[5, 4] and A[8, 6]. Figure 2 illustrates the similar-
ity array obtained with the SW algorithm to compute local alignments of two sequences.

• Part 2: Retrieval of the Local Alignments: An optimal local alignment between
two sequences can be obtained as follows. We begin in a maximal value at array A,
and follow the arrow going out from this entry until we reach another entry with no
arrow going out, or until we reach an entry with value 0. Each used arrow gives us one
column of the alignment. A west arrow leaving entry A[i, j] corresponds to a column
with a space in s matching t[j], a north arrow corresponds to s[i] matching a space in t
and a north-west arrow means s[i] matching t[j]. After computing A, an optimal local
alignment is constructed from right to left following these arrows. Many optimal local
alignments may exist for two sequences. The detailed explanation of this algorithm can
be found in [2].

3 Reducing the Space Complexity of the SW Algorithm

To obtain local alignments, we implemented a variant of the Smith-Waterman algorithm
that uses two linear arrays [1]. The bi-dimensional array described in section 2 could
not be used since, for long sequences, the memory overhead would be prohibitive. The
idea behind this algorithm is that it is possible to simulate the filling of the original
bi-dimensional array just using two rows in memory, since, to compute entry A[i, j]
we just need the values of A[i − 1, j], A[i − 1, j − 1] and A[i, j − 1]. So, the space
complexity of this version is linear, O(n). The time complexity remains O(n2). The al-
gorithm works with two sequences s and t with length |n|. First, one of the linear arrays
is initialized with zeros. Then, each entry of the second linear array is obtained from the
first one with the Smith-Waterman algorithm, but using a single character of s on each
step. When the calculated score reaches an opening threshold, the actual coordinates
are saved to the data structure alignments, which contains the candidate alignments.
When the score drops to less than a closing threshold, the actual coordinates are saved
into the same data structure and the alignment is said to be closed. More details on this
heuristics can be found in [5].

• Parallel Local Sequence Alignment without blocking factors: The access pattern
presented by the algorithm described earlier, presents a non-uniform amount of paral-
lelism and has been extensively studied in the parallel programming literature [10]. The
parallelization strategy that is traditionally used in this kind of problem is known as the
”wave-front method” since the calculations that can be done in parallel evolve as waves
on diagonals.

We deployed a parallel version of the algorithm presented earlier (see also [11]).
Each processor p acts on two rows, a writing row and a reading row. Work is assigned
in a column basis, i.e., each processor calculates only a set of columns on the same row,
as shown in figure 3.
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P0 P1 P2 P3

computation
P0

computation computationcomputation
P1 P2 P3

Fig. 3. Work assignment in the parallel algorithm. Each processor p is assigned N/P columns,
where P is the total number of processors and N is the length of the sequence

Table 1. Execution times (seconds) and speedups for 5 sequence sizes

Size Serial 2 proc 4 proc 8 proc
exec exec/speedup exec/speedup exec/speedup

15Kx15K 296 283.18/1.04 202.18/1.46 181.29/1.63
50K x 50K 3461 2884.15/1.20 1669.53/2.07 1107.02/3.13
80Kx80K 7967 6094.18/1.31 3370.40/2.46 2162.82/3.68

150Kx150K 24107 19522.95/1.23 10377.89/2.32 5991.79/4.02
400Kx400K 175295 141840.98/1.23 72770.99/2.41 38206.84/4.58

The parallel programming paradigm used was Distributed Shared Memory (DSM)
[12], which creates a shared memory abstraction that parallel processes can access.
Synchronization is achieved by locks and condition variables provided by JIAJIA [13],
which is a scope consistent DSM system. Barriers are only used at the beginning and at
the end of computation.

The proposed parallel algorithm was implemented in C, using the software DSM
JIAJIA v.2.1. To evaluate the gains of our strategy, we ran our experiments on a dedi-
cated cluster of 8 Pentium II 350 MHz, with 160 MB RAM connected by a 100Mbps
Ethernet switch. The JIAJIA software DSM system ran on top of Debian Linux 2.1
with NFS. Our results were obtained with real DNA sequences obtained from [?]. Five
sequence sizes were considered (15KBP, 50KBP, 80KBP, 150KBP and 400KBP) [11].
Execution times and absolute speedups for each n x n sequence comparisons, where n
is the approximate size of both sequences, with 1, 2, 4 and 8 processors, are shown in
table 1. Absolute speedups were calculated considering the total execution times and
thus include times for initialization and collecting results. As can be seen in table 1, for
small sequence sizes, e.g. 15KBP, very bad speedups were obtained since the parallel
part is not long enough to surpass the amount of synchronization inherent to the algo-
rithm. As long as sequence sizes increase, better speedups are obtained because more
work can be done in parallel.

• Parallel Local Sequence Alignment with blocking factors: Using the wavefront
method and obtaining good performance results is sometimes tricky and it is worth to
investigate if the communication time can be reduced by grouping many values from the
border column (figure 3) into one single communication, which is to introduce blocking
factors to the strategy presented in section 3.
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In order to obtain an appropriate block size, we run our algorithm for the 50KBP
sequences, varying the block size and the number of bands, using a blocking multiplier.
For instance, a 3x5 blocking multiplier for 8 processors divides the matrix into 40 bands
(5x8), each one containing 24 blocks (3x8). In this test, we observed that for the 50KBP
sequences and 8 processors, the best results were obtained for a blocking multiplier 5x5,
which means 40 bands, each one with 40 blocks.

Execution times and speedups to locally align the 8KBP, 15KBP and 50KBP se-
quences, with 1,2,4 and 8 processors are shown in Table 2 [9]. The same cluster as
described earlier was used. Speedups were calculated considering the total execution
time and thus include times for initialization and collecting results.

Table 2. Execution times (seconds) and speedups for 3 sequence sizes

Size Bands Serial 2 proc 4 proc 8 proc
exec exec/speedup exec/speedup exec/speedup

8Kx8K 40x40 57.18 38.59/1.48 21.18/2.72 12.55/4.55
15Kx15K 40x40 266.51 129.22/1.98 67.42/3.95 36.51/7.29

50K x 50K 40x25 2620.64 1352.76/1.93 701.95/3.73 363.13/7.21

4 Reducing Space Complexity ithout Introducing Heuristics

The key goal of this third strategy is to calculate the similarity array for local sequence
alignment without introducing heuristics, since our objective here is to execute the orig-
inal SW algorithm. Besides calculating the similarity array, it allows saving of the array
to disk, either partially or entirely. As in the previous strategies, this third parallel strat-
egy was designed for the shared memory programming paradigm. However, several de-
cisions were made to limit the amount of shared memory and the activity of the shared
memory system. The following concepts guided the design:

– only a limited amount of the similarity array should be shared;
– processing of the array would be done by columns, and nodes should send infor-

mation to the next node once the bottom of the column had been calculated;
– full alignment tracking would not be implemented, only a scoreboard of points of

interest will be kept;
– saving the resulting array should be done to disk.

Figure 4 shows the general layout of the data in each processing node. With the
exception of the shaded areas, which represent shared memory areas, all other structures
are local to the node. The passage band is an array used to allow data to be moved from
one node to the other. To avoid the excessive use of locking, columns are processed
in chunks. Each column is stored in a linear array, to improve intra-node locality. A
bandrepresents a set of columns in the length of the top sequence. The result matrix is
used to hold the number of cells in a column that had scores above a given threshold.

The innermost processing is done computing a column from the previous one: only
4 cells are handled at a time. Unlike the previous strategies, there is no structure to keep

W
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Chunk

B
and

PassageBand

Result Matrix

Fig. 4. Data structures used in the implementation without heuristics

track of alignments. When a new cell score is calculated, the score value is compared to
a threshold and if it is greater than it a hit counter is incremented. The total number of
hits per column or set of columns is stored in the result matrix. The goal of this simple
processing is to reduce the execution time while still maintaining potential similarity
regions. Notice that in this way we will provide exact, but also approximate answers.

Although little information is contained in the result matrix, it does indicates inter-
esting regions in the score matrix. If one consider 1,000 columns per cell in the matrix
and a 1,000 row band size, each cell will contain the total hits for 1,000,000 cells of
the score matrix. So having the total number of hits will hint on whether there is some-
thing worth more investigation in that block of data. On some of the test runs, some of
the result matrix cell indicated 300,000 hits or more. Values at this level indicate that
30% of the cells were above the threshold, so that region is very likely to contain good
alignments.

The limited visibility of the result matrix may be worthwhile if the overall per-
formance is good. Knowing interesting areas of the matrix and having the boundary
columns and rows, one can reprocess those limited areas to retrieve the local align-
ments.

Several parameters were added to control the behavior of this implementation. The
most important ones include: the height of the band in rows; the chunk size and growth
method; the number of columns to be stored into disk; and the amount of columns
summarized in each cell of the result matrix.

The size of the chunks can be set to a fixed value, or grow in arithmetic or geometric
projections. It is possible to save all the columns but, in the tests, only a reduced number
of columns were saved. Also it is possible to store individual columns at the cost of more
shared memory.

Each cell (Ri,j) of the result matrix contains the total number of hits from all the
columns n of band i that satisfy the following equation �n/ip� = j, where ip is the
result matrix interleave parameter.

The columns that should be saved to disk are also controlled by the save inter-
leave parameter ip, such that any given column i will be saved to disk if i �= 0 and (i
mod ip = 0). This interleave parameter can be used to increase or reduce the amount
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of information available in the end result. If the save interleave parameter is set to 1,
the entire matrix will be saved, but even for small sequences this can require a huge
amount of disk. For instance, the comparison of two 10KBP sequences would require
400 MBytes, just for the column data. All passage bands are saved once the last cell in
it is updated.

Besides having ways to control the amount of data being grouped, the band size
is controlled by three different schemes. The first one determines fixed band size (or
height). Another scheme uses even or equal bands, so that all the nodes have the same
amount of data to process. The final mode, attempts to balance the band size so that it
is still close to the designated band size according to the following equations:

bandsproc =
⌈
�rsize/bsize�

nnodes

⌉
bsizedown

=
⌈

bsize

bandsproc∗nnodes

⌉
bsizeup

=
⌈

bsize

(bandsproc−1)∗nnodes

⌉
The new band size will be bsizeup

or bsizedown
, whichever is nearer to the original

band size. The objective is to make all nodes process the same number of bands of equal
size, while maintaining the blocking concept.

4.1 Experimental Results

Using the same platform described earlier, several tests were made varying some of
the configuration parameters. Processing times shown in our results consider only the
parallel execution time since this is the largest of the measured times and gives a good
indication of the overall performance. The init time is mostly due to the overhead of
starting the remote processes by the DSM environment (and ran under 10 seconds for
all tests). The termination time basically contains the time for completing I/O and final
synchronization times of the DSM environment. For the latter the worst case was 20
seconds, but most likely because of the NFS and DSM overhead. Most termination
times were under 7 seconds.

Figure 5 presents two speedup analysis. The first graph shows the speedup on the
average time for all the different configurations. On this case, speedups are roughly 75%
of the linear case. On the 8 processor case, the average time for the 15Kx15K sequence
is slightly lower due to the fact that with large blocking (4K blocks), several processors
where not used at all. In those cases, the 8 node times were close to the 4 node times,
resulting in a bad average.

The second graph shows the speedup of the best time of the parallel execution,
against the best time of the sequential execution. In this case, for the larger sequences,
speedups are near to the 80% mark. In both graphs, the 2 node speedups are slightly
worst, and this is due mostly to the fact that the sequential execution does not have any
DSM overhead at all, and the parallel implementation is still not having enough effect to
overcome the added overhead. However, even with 2 nodes, there is some performance
gain.

Figure 6 shows the effects of the blocking parameter in the run time. All three block-
ing parameters (band size, save interleave, and result matrix interleave) are set to the
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Fig. 5. Speedup for the parallel implementation

same value. In this graph, we can observe an interesting effect. On the sequential exe-
cution, the runs with “even” blocking factors behave the worst, around 20% above the
other times. This is due to the fact that the band size is the length of the sequence and
with a 40KBP or 80KBP sequences this has a negative impact in the memory locality
within the CPU cache, and results it poor performance.

As the number of nodes increases, the even division of blocks makes the blocks
smaller and reduces the amount of DSM activity, resulting in better result for this
method. The even distribution of bands size also tries to balance the amount of work on
all the nodes.

We compared the results obtainded with 8 processors with the three strategies (heuris-
tic, heuristic-block and pre-process using 15KBP, 50KBP and 80KBP sequences (figure
7). The results illustrate the high performance gain that we achieved only by changing
the strategy. For instance, to compare 50KBP sequences, the heuristic strategy ran in
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1107.02s. Using the heuristic-block approach, the same experiment took 363.13 sec-
onds. Also, to compare 80KBP sequences, the heuristic approach took 2162.82s and,
for the same size, the pre-process strategy took only 178.5s.

5 Reducing Space Complexity Without Intermediary Stores

We present theoretical observations that can be applied to decrease the running time
and space of our current implementations. In particular, we show how we can develop
an implementation running in space O(min(n,m) + n′2), where n′ is the maximum
length of a local alignment between words s, t of size n and m, respectively. Since in
general n′ << n and n′ << m, this is a remarkable improvement. When, after detect-
ing an alignment position, the required space for building the alignment is small (that
is n′ is small) one could apply the well-known Hirschberg’s general method for doing
it in linear space while only doubling the worst-case time bound (in n′) [14]. But, in
general we are supposing that n′ is too large to be processed simultaneously in main
memory.

The basic idea is founded on the fact that whenever there is an alignment finishing
at positions i and j of the words s and t, respectively, there is an alignment of the same
score starting at positions n− i+1 and m− j +1 between the reverses of these words,
which we will denote by srev and trev , respectively. This alignment corresponds to a
global alignment of the same score between the words s[1..i]rev and t[1..j]rev . The
former is expressed as the following observation.

Observation 5.1 (Alignments over reverses). Suppose there is a local alignment of
score k finishing at positions i and j between the words s and t. Then there is an
alignment of the same score starting at positions n− i + 1 and m− j + 1 of the words
srev and trev .

This result justifies the correctness of the following modification of the dynamic
programming based solution:
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Algorithm for reducing space complexity

Run the SW algorithm over the input words s, t using only one linear array (for row, column
or diagonal);
For each detected alignment of desirable score, say k at positions i, j,

Run the dynamical programming algorithm for over the input words s[1..i]rev and
t[1..j]rev until you detect an alignment of score k.
Rebuild the alignment of the reverses over the initial inputs.

The space comlexity of the proposed scheme can easily be computed as
O(min(n,m) + n′2), where n′ is the maximal length of selected maximal alignments.
The proposed modification is relatively easy to implement whenever one could work
over the given input sequences from left to right.

6 Conclusion and Future Works

In this paper, we discussed two parallel SW strategies and proposed and evaluated a new
parallel strategy to solve the DNA local sequence alignment problem. A DSM system
was chosen since, for this kind of problem, DSM offers an easier programming model
than its message passing counterpart.

The first two strategies (heuristic and heuristic block) used heuristics to reduce the
space complexity to O(n), where n is the size of the sequences to be compared. The
third strategy (pre process) allowed the original SW algorithm to be run by saving in-
formation about the most relevant columns of the result matrix to disk. These columns
can be later processed in order to retrieve the actual alignments. For all strategies, the
wavefront method was used and work was assigned in a column basis. Synchroniza-
tion was achieved with locks and condition variables. Barriers were only used at the
beginning and at the end of computation.

The results obtained to locally align real DNA sequences in an eight machine cluster
present good speedups that are improved depending on the strategy used. For instance,
in order to compare two sequences of approximately 80KBP using the heuristic and
pre-process approaches, our 8-machine cluster took 36 minutes and 2.8 minutes, re-
spectively.

Thus,our results show that an appropriate blocking factor can further reduce the
execution time to obtain local alignments. Besides, using the pre-process strategy that
does not keep track of the candidate alignments can also provide a great performance
gain at the expense of storing some intermediate columns to disk.

We also presented some theoretical results that eliminate the need for disk storage
by maintaining only the coordinates of the highest score and retrieving the actual align-
ments over the reverses of the original sequences.

As immediate future work, we intend to implement the modifications suggested in
section 5. Also, we intend to run this modified algorithm to compare very long DNA
sequences (larger than 1MBP) in a computational grid, which is composed by several
clusters. In this case, message passing will be used for inter-cluster communication and
DSM will be used for communicating processes which belong to the same cluster.
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Abstract. Let G = (V1 ∪V2, E) be a bipartite graph on n nodes and m
edges and let w : E → R+ be a weight function on the edges. We give
several fast algorithms for computing a minimum weight (perfect) match-
ing for a given complete bipartite graph (i.e. m = n2) by pruning the
edge set. The algorithm will also output an upper bound on the achieved
approximation factor. Under the assumption that the edge weights are
uniformly distributed, we show that our algorithm will compute an op-
timal solution with high probability. From this we deduce an algorithm
with fast expected running time that will always compute an optimal
solution. For real edge weights we achieve a running time of O(n2 log n)
and for integer edge weights a running time of O(n2).

1 Introduction and Motivation

Let G = (V1 ∪ V2,E) be a bipartite graph on n nodes and m edges and let
w : E → R+ be a weight function on the edges. A perfect matching of G is a
subset M ⊆ E of the edges such that for every node v ∈ V = V1 ∪ V2 there is
exactly one incident edge e ∈ M . The weight of a matching M is given by the
sum of the weights of its edges, i.e. w(M) :=

∑
e∈M w(e). Now, the minimum

weight bipartite matching problem is to find for a given bipartite graph G and
a given weight function w a perfect matching of minimum weight. In operations
research this problem is often called the assignment problem. In the following
we assume w.l.o.g. that |V1| = |V2|.

In practice, this problem appears in a wide range of applications. For exam-
ple, in bioinformatics a well know problem is the protein structure alignment to
compare and classify all known protein structures. Therefore a protein is com-
pared to every protein in a database, which holds information about their 3-D
structures. This can give insights into the nature of protein structures and their
functional mechanisms. For aligning two proteins, one has to find an isometric
transformation of one structure to the other. To find good choices of atoms pair-
ings between the two structures, one has to solve a weighted bipartite matching
problem on an appropriate graph, where the nodes represent atoms or groups of
atoms and the edge weights are given by a suitable distance function [18].

Another example appears in logistics and warehousing. Here, one wants to
place products in shelves such that the access time to the products is minimised.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 476–487, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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The weights can model the access time depending as well on attributes of the
products as access frequency, weight and size as on the place in the shelf – for
example access time can be fastest in the centre of the shelf. Clearly, this problem
can be formulated as a weighted bipartite matching.

Other important applications can be found in shape matching and object
recognition [2], image processing and computer vision [3], and VLSI design [14].

Over the last decades the problem has attracted considerable attention and
several algorithms – improving theoretical and practical running times – have
been developed. The first polynomial time algorithm, the so called Hungarian
method, was given by Kuhn [17]; implementations of this algorithm had a run-
ning time of O(n3), which is still optimal for dense graphs. Edmonds and Karp
[4] gave a reduction of the minimum weight bipartite matching problem to the
minimum cost flow problem on a special network (see Section 2.1) and devel-
oped an algorithm for solving the flow problem. They proved a running time
of O(n3). This was improved for sparse graphs by Fredman and Tarjan [6] us-
ing Fibonacci Heaps for the shortest paths computations to a running time of
O(n(m + n log n)), which is still optimal for sparse graphs with arbitrary edge
weights.

Under the assumption that the input weights are integers in the range
[0, . . . ,C] – in practice this can almost always be achieved by scaling the input
weights – Gabow and Tarjan improved the running time to O(

√
nm log(nC)) by

a cost scaling approach and blocking flow techniques [9]. In [11] Goldberg and
Kennedy developed an algorithm with the same running time using global price
updates and a push-relabel implementation for the minimum cost flow. Very effi-
cient implementations of this algorithm show that it is quite fast in practice, too.
Several cost scaling algorithms with the same running time of O(

√
nm log(nC))

were independently developed. Gabow and Tarjan [8] presented an algorithm
with the same running time and a similar idea to global updates. Moreover,
two-phase algorithms with the same running time were developed by Goldberg,
Plotkin and Vaidya [12] and by Orlin and Ahuja [20]. These two algorithms use
in a first phase a push-relabel method or an auction method (due to Bertsekas)
and in a second phase a successive shortest paths augmentation approach. Karp
[16] gave an algorithm with expected running time of O(n2 log n) on graphs with
independent random edge weights. For further references we refer to [1].

Furthermore, for many of these algorithms experimental studies for evaluat-
ing and comparing their run time behaviour in practice were done. Additionally,
heuristics for speeding up these algorithms were developed [15].

For many practical problems, in particular those involving dense graphs, these
running times are still too time consuming even on today’s hardware. In practice,
one often does not need to find the optimal solution, but an approximation of the
optimal solution is good enough, as long as the algorithm guarantees an upper
bound on the approximation factor.

Hence, much effort was put into developing faster algorithms with good ap-
proximation guarantees. Most of these algorithms exploit a restriction of the
weight function, for example they assume that the triangle inequality holds
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(e.g. [10, 21]). A fast and quite simple approximation algorithm for the weighted
matching in general graphs and weight functions fulfilling the triangle inequality
was recently given by Wattenhofer and Wattenhofer [22].

Our results
This research was initiated by a joint project with a company developing soft-
ware for combinatorial optimisation. The problem involved solving minimum
weight bipartite perfect matching for large (i.e. n > 10000) and dense (i.e. m =
θ(n2)) graphs where the standard algorithms with running times of O(n3) (and
O(
√
nm log(nC)) for integer weights) were impracticable. We therefore imple-

mented and tested several heuristics with a running time of Õ(n2). In this paper
we report on one variant that performs well on real-world data and is also prov-
able almost optimal on complete bipartite graphs with random edge weights.

The main idea of our approach is to discard a large subset of the edges of
the input graph. Then we can use one of the fastest known algorithms for sparse
graphs to achieve a good running time. So in case of arbitrary edge weights we
use the algorithm of Fredman and Tarjan [6] and for integer weights we use a
cost scaling algorithm of Goldberg and Kennedy [11].

In detail we prove the following theorems. For a complete bipartite graph
with arbitrary weight function we compute with high probability (w.h.p. that is
with probability tending to 1 as n→∞)in time O(n2 log n) a perfect matching
– not necessarily optimal – and an upper bound on the achieved approximation
factor. This algorithm is quite fast and still gives good approximations for many
input classes.

Theorem 1. There exists a randomised algorithm with running time O(n2 log n),
which computes with high probability for a given complete bipartite graph with
arbitrary weight function on the edges a weighted perfect matching and an upper
bound on the achieved approximation factor, if the matching is not optimal.

Under the assumption that the input graph is a complete bipartite graph
and the edge weights are uniformly distributed on the interval [0, 1], we prove
that the algorithm will output an optimal solution with high probability. For the
proof we use a result of Frieze and Sorkin [7] which bounds the heaviest edge in
a minimum weight perfect matching for a complete bipartite graph, if the edge
weights are uniformly distributed.

Theorem 2. There exists an algorithm with running time O(n2 log n), which
computes with probability 1 − o(n−1) for a given complete bipartite graph with
uniformly distributed edge weights, a minimum weight perfect matching. More-
over it computes an upper bound on the achieved approximation factor, if the
matching is not optimal.

From this we can easily deduce an algorithm with fast expected running
time which always computes an optimal solution: First, we run the algorithm of
Theorem 2. Then we check the optimality of the solution for the complete input
graph using the dual variables that were computed on the sparse graph. We
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show that w.h.p. this dual solution will also fulfil the complementary slackness
conditions of the original graph. If the check fails, we run the algorithm on the
complete graph. As this check won’t fail w.h.p., we achieve a good expected
running time. Thus, we get the following corollary:

Corollary 1. There exists an algorithm with expected running time O(n2 log n),
which computes a minimum weight perfect matching for a given complete bipar-
tite graph with uniformly distributed edge weights.

If the weights are integers in the range [0,C := O(nc)], where c is a constant,
we can run a faster algorithm for the matching computation, for example a cost
scaling algorithm of Goldberg and Kennedy [11] which runs in O(

√
nm log(nC)).

Then the overall running time is dominated by choosing a small subset of the
n2 input edges and testing for optimality by checking the n2 complementary
slackness conditions, which both need O(n2) time.

Theorem 3. There exists an algorithm with expected running time O(n2) which
computes a minimum weight perfect matching for a given complete bipartite
graph with integer edge weights which are drawn uniformly at random from the
interval [0, O(nc)], where c is a constant.

Outline
In Section 2.1 we first give a reduction of the minimum weight bipartite matching
problem to minimum cost flow and introduce the linear programming formula-
tions of this problem. Then, in Section 2.2, we present our main algorithm, its
main idea and a short proof of Theorem 1. The proofs for the other theorems
and the corollary will be shown in Sections 2.3 and 2.4. Finally, in Section 3, we
give a short overview of the computational results.

2 Algorithm

We first give a reduction of the minimum weight matching problem to the min-
imum cost flow problem; then we present the linear programming formulations
for this problem. These are useful as the dual variables and the objective func-
tions are used in the algorithms and in the proofs. The general algorithm will be
described in Section 2.2, where we also give a proof of Theorem 1. In Sections 2.3
and 2.4, we will present the algorithms and the necessary proofs for uniform edge
weights and then for the case of integer edge weights.

2.1 Reduction to Minimum Cost Flow

Following the ideas of Edmonds and Karp [4] and Goldberg and Kennedy [11], we
give a reduction of the minimum weight matching problem for bipartite graphs
to the minimum cost flow problem.

A network N is a set of nodes V and a subset A of the ordered pairs
(u, v) ∈ V × V , u �= v, called the arcs. There are two special nodes s and t
called source and sink. A network has a special return arc from t to s.
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With every arc (u, v) a nonnegative cost w(u, v) and a nonnegative capacity
c(u, v) is associated. A flow is a nonnegative function f : A→ R+ such that

1. f(u, v) ≤ c(u, v) ∀(u, v) ∈ A
2.
∑

v:(u,v)∈A f(u, v) =
∑

v:(v,u)∈A f(v, u) ∀u ∈ V

A maximum flow is a flow in N such that f(t, s) is maximum. The cost of a
flow is

∑
(u,v)∈A f(u, v)w(u, v). In the minimum cost flow problem we seek for a

maximum flow of minimum cost.
To reduce the minimum weight bipartite matching problem to the minimum

cost flow problem we introduce two new nodes s and t. s is connected by an arc
(s, v) with capacity c(s, v) = 1 and weight −n ·maxe∈E({w(e)}) to every node
v ∈ V1 and every node v ∈ V2 is connected to t by an arc (v, t) with capacity
c(v, t) = 1 and weight w(v, t) = 0. We direct every edge in the original graph from
V1 to V2 with capacity 1 and the original weight. The arc (t, s) has weight 0 and
capacity ∞. Clearly an integral minimum cost flow in this graph corresponds to
a minimum weight matching in the original bipartite graph. The large negative
costs on the outgoing edges of s assure that there will be maximum flow on
these edges and therefore every node will be matched. The minimum cost flow
problem can be formulated as a linear program as follows:

min
∑

(u,v)∈A

f(u, v)w(u, v)

∀u ∈ V :
∑

v:(u,v)∈A

f(u, v)−
∑

v:(v,u)∈A

f(v, u) = 0

∀(u, v) ∈ A : 0 ≤ f(u, v) ≤ c(u, v)

The associated dual program is:

max −
∑

(u,v)∈A

c(u, v)z(u, v)

∀(u, v) ∈ A : p(v)− p(u)− z(u, v) ≤ w(u, v)
∀(u, v) ∈ A : z(u, v) ≥ 0

Let w̄(u, v) = w(u, v) + p(u)− p(v) be the reduced weight of edge (u, v). For the
dual variables z(u, v) we have the two constraints z(u, v) ≥ 0 and
z(u, v) ≥ −w̄(u, v). As z(u, v) has a negative coefficient in the dual objective
function, z(u, v) will be chosen as small as possible, i.e.:

z(u, v) = max{0,−w̄(u, v)} (1)

Thus the dual variables z(u, v) are determined by the dual variables p(u) and
it is sufficient to compute the “potentials” p(u).

Now by complementary slackness conditions we have

f(u, v) < c(u, v) ⇒ z(u, v) = 0 ⇒ p(v)− p(u) ≤ w(u, v), (2)
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and

f(u, v) > 0 ⇒ w̄(u, v) = −z(u, v) ≤ 0
⇒ −w̄(u, v) ≥ 0 ⇒ p(v)− p(u)− w(u, v) ≥ 0.

(3)

2.2 General Algorithm

Algorithm 2.2 keeps for every node O(log n) edges. On this subset of the edges
we run the algorithm MATCHING. For MATCHING we use the algorithm by
Fredman and Tarjan [6] which improves the algorithm of Edmonds and Karp [4]
for sparse graphs by using a Fibonacci-Heap for the shortest paths computations.
The algorithm uses the reduction to minimum cost flow (see Section 2.1) and
returns a minimum weight matching and the potentials p(u) of the dual solution
of the linear program. The running time of the algorithm is O(n(m + n log n)).

Algorithm 2.2 Minimum Weight Matching

1: procedure MIN-WEIGHT-MATCHING (V,E, c,w);
2: E1 = {e = (v,w)|e ∈ E ∧ e is one of the c · log(n) smallest edges of v or w}
3: E2 = {c′n log n uniformly at random chosen edges of E}
4: E′ = E1 ∪ E2

5: (M, p) = MATCHING(V,E′,w)
6: return (M, p)

To guarantee that the pruned edge set E′ contains w.h.p. a perfect matching,
we make use of a result of Erdős and Rényi [5] which is stated in Theorem 4.

Theorem 4 (Erdős and Rényi [5]).
Let G(n, n, p) be a random bipartite graph on 2n nodes with edge probability p.
Then

Pr (G(n, n, p) has a perfect matching) →

⎧⎪⎨⎪⎩
0 if np− log n→ −∞
e−2e−c

if np− log n→ c

1 if np− log n→∞

Theorem 4 guarantees that by adding uniformly at random c′n log n addi-
tional edges (see Algorithm 2.2), where c′ > 1, to the pruned edge set E′ the
graph contains w.h.p. a perfect matching.

If the dual solution does not fulfil the complementary slackness conditions
for the original edge set, we compute the value of the dual objective function
and use the difference to the computed primal objective as an upper bound on
the error. The dual objective for the original edge set can be easily computed
from the potentials by using Equation (1) and the primal objective is obtained
from the returned matching. The objective of a dual feasible solution is always
a lower bound for the optimum of the primal, thus the difference is an upper
bound on the error.
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Proof (Theorem 1). By pruning the edge set we obtain a set of cardinality
|E1| = O(n log n) in time O(n2 log n). The randomly chosen edge set E2 has
cardinality |E2| = O(n log n). Thus |E′| = O(n log n) and the running time of
MATCHING is O(n(|E′| + n log n)) = O(n2 log n). By computing the dual ob-
jective value for the original edge set we obtain an upper bound on the error,
which is also returned. The constant c controls the quality of the computed so-
lution. Good indications for the choice of c are given in the next section. For
computational experiences see Section 3.

2.3 Uniform Edge Weights

Now we consider a complete bipartite graph where the edge weights are generated
according to the uniform distribution. Frieze and Sorkin consider in [7] such
graphs. For a complete bipartite graph G = (V1 ∪ V2,E) where |V1| = |V2| with
uniform edge weights w(u, v) and for any perfect matching π the directed graph
DG,π on V1, V2 has the edge set

−→
E =

−→
E π ∪

−→
E 1 ∪

−→
E 2 where

−→
E π = {(y, x)|x ∈ V1, y ∈ V2, y = π(x)}
−→
E 1 = {(x, y)|x ∈ V1, y ∈ V2, (x, y) is one of the 40 shortest edges out of x}
−→
E 2 = {(x, y)|x ∈ V1, y ∈ V2, (x, y) is one of the 40 shortest edges into y}.

That is all matching edges are oriented backwards and for every node x ∈ V1

the 40 smallest arcs out of x and for every y ∈ V2 the 40 smallest arcs into y
are added. Let the weight in DG,π for the forward edges be w(u, v) and for the
backward edges (the matched edges) be - w(u, v).

Frieze and Sorkin prove the following Lemma.

Lemma 1 ([7] Lemma 7). Let G = (V1 ∪ V2,E) be a complete bipartite graph
with |V1| = |V2| and uniform [0, 1] edge weights w(u, v). For any perfect matching
π the probability that the weighted diameter of DG,π is greater than 2ζ ln n

n is at
most o(n−1) for all ζ ≥ 24.3. Moreover, for each pair of nodes there exists a path
of weight less than 2ζ ln n

n consisting of at most 3 log4 n edges.

The constants for this result are not best possible (compare also Section 3).
Using this lemma Frieze and Sorkin prove the following bound on the maximum
edge weight in a minimum weight perfect matching.

Lemma 2 ([7] Theorem 2). Let ζ ≥ 24.3. The maximum edge weight Cmax in
a minimum weight perfect matching in a complete bipartite graph with uniform
[0, 1] edge weights is with probability 1− o(n−1) smaller than 2ζ ln n

n .

The idea of the algorithm for Theorem 2 is to prune away heavy edges and
run the matching algorithm on the smaller edge set. To prove Theorem 2 we
need the following lemma about the dual solution for the pruned edge set.

Lemma 3. Let ζ ≥ 24.3. The optimal dual solution computed by the matching
algorithm on the set of edges containing only edges of weight smaller than 2ζ ln n

n
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is with probability 1−o(n−1) also an optimal solution for the dual of the original
graph.

Proof. The dual solution is considered not optimal if one of the complementary
slackness conditions on the complete edge set is violated. This can only happen
for unmatched edges which have not been in the smaller edge set. We show
that with probability 1− o(n−1) no such edge exists. From the complementary
slackness conditions we have for (u, v) ∈ V1×V2 that p(u)− p(v) ≤ −w(u, v) for
the matched edges (Equation (3)) and p(v)− p(u) ≤ w(u, v) for the unmatched
edges (Equation (2)).

For n such that 2ζ lnn ≥ 40, the graph consisting of all nodes and the 40
smallest edges of every node is contained in the pruned edge set. Therefore by
directing again the computed matched edges in the pruned edge set from V2 to
V1 and setting their weights w̃(v, u) := −w(u, v) and directing all other edges
from V1 to V2 with weight w̃(u, v) := w(u, v), we have by Lemma 1: for every
pair (u, v) ∈ V1×V2 with probability 1−o(n−1) there exists a path in DG,π from
u to v of weight less than 2ζ ln n

n . Summing over the complementary slackness
conditions for the edges of this path P gives:

p(v)− p(u) =
∑

(i,j)∈P

(p(j)− p(i))

=
∑

(i,j)∈P∧(i,j)∈V1×V2

(p(j)− p(i)) +
∑

(j,i)∈P∧(j,i)∈V2×V1

(p(i)− p(j))

≤
∑

(i,j)∈P

w̃(i, j) ≤ 2ζ
lnn
n

(4)

Thus, the complementary slackness condition p(v) − p(u) ≤ w(u, v) can only
be violated if w(u, v) is smaller than 2ζ ln n

n and all these edges are contained
in the pruned edge set. Thus the check for optimality succeeds with probability
1− o(n−1).

Proof (Theorem 2). If we keep in Algorithm 2.2 all edges of weight ≤ 2ζ lnn/n
in E1, by Lemma 2 this graph still contains with probability 1 − o(n−1) an
optimal matching. The pruned edge set is w.h.p. of cardinality O(n lnn), thus
Algorithm 2.2 returns with probability 1− o(n−1) a minimum weight matching
in time O(n2 log n).

The complementary slackness conditions may not hold for the complete edge
set, but by Lemma 3 we pass the test of the complementary slackness conditions
with probability 1 − o(n−1). Thus, with probability 1 − o(n−1) the algorithm
recognises and returns an optimal matching.

We can now easily deduce Corollary 1:

Proof (Corollary 1). After running the matching algorithm in O(n2 log n) time,
checking perfectness of the matching and the complementary slackness condi-
tions takes O(n2) time. This fails with probability o(n−1) and in this case we run



484 J. Schwartz, A. Steger, and A. Weißl

the matching algorithm on the original edge set to compute an optimal perfect
matching. Hence, the combined algorithm computes an optimal perfect match-
ing in expected running time O(n2 log n)+o(n−1)O(n3) = O(n2 log n) where the
last term counts for the unlikely cases where the solution on the pruned edge set
was not optimal.

2.4 Integer Edge Weights

If the edge weights are integers in the range [0, . . . ,C], we can use a fast scal-
ing algorithm with global price updates of Goldberg and Kennedy [11] for the
MATCHING algorithm in Algorithm 2.2. Then MATCHING has running time
O(
√
nm log(nC)). The algorithm has for polynomial C that is C ≤ nc for

some constant c on the pruned edge set of size O(n log2 n) a running time of
O(n1.5 log2(n) log(nnc)) = o(n2). Thus the overall running time of the above
algorithms will be dominated by the pruning and the optimality testing (or
computation of the upper bound of the achieved approximation factor) which
takes time O(n2). Small C have to be treated in a special way, for details see the
proof of Theorem 3. In this way, the algorithm of Theorem 1 can be implemented
in running time O(n2) if the edge weights are integers.

The algorithm of Theorem 2 can be implemented in running time O(n2) too,
if the edge weights are integers drawn uniformly at random from the interval
[0,C ≤ nc], where c is a constant. The idea is that by multiplying all edge
weights by 1/C they are approximately uniformly distributed in [0, 1] (for details
see proof of Theorem 3).

Proof (Theorem 3). Suppose we have continuous uniformly distributed edge
weights wc(u, v) ∈ [0,C + 1). Then we know by Lemma 1 that for any perfect
matching π for each pair of nodes (u, v) and large enough ζ there exists w.h.p.
a path in DG,π from u to v of weight ζ ln n

n (C + 1) where the path consists of
at most 3 log4 n edges. Let w(u, v) = �wc(u, v)� and d(u, v) = wc(u, v)−w(u, v)
then w(u, v) are integer random variables distributed uniformly on the interval
[0,C] and d(u, v) are continuous [0, 1] random variables.

First we consider C ≥ n
2 ln n . We discard all edges with weight greater than

�ζ ′ ln n
n (C + 1)�, where ζ ′ = Θ(lnn) is large enough. On the remaining edges a

minimum weight perfect matching π is computed using the integer weights w. By
Lemma 1 we know that for this matching π for every pair (u, v) ∈ V1×V2 we have
w.h.p. a path u = x1, y1, . . . , xk, yk = v in DG,π with k ≤ 3 log4 n such that the
weight of the path on wc is for a constant ζ smaller than ζ ln n

n (C + 1). Showing
that the probability that the sum over the differences d(·, ·) on such a path is
> (ζ ′ − ζ) ln n

n (C + 1) is o(n−2) gives that w.h.p. the paths with integer weights
have weight ≤ ζ ′ ln n

n (C + 1) as there are n2 pairs of nodes. We set ζ ′′ := ζ ′ − ζ
which is still Θ(log n).

As the backward edges are negative and the forward edges are positive
we bound the probability that one of the respective sums deviates more than
ζ′′

2
ln n
n (C + 1) from its mean μ = k/2. We use the following Chernoff bound.
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Suppose 0 ≤ Xi ≤ 1 independent random variables, X =
∑k

i=0 Xi, and μ =
E[X] then Pr (|X − μ| ≥ kt) ≤ 2e−2kt2 for all t ≥ 0. Hence,

Pr

(
|

k∑
i=1

d(xi, yi)− μ| > ζ ′′/2 · lnn
n

(C + 1)

)

= Pr

(
|

k∑
i=1

d(xi, yi)− k/2| > k

(
ζ ′′

lnn
2kn

(C + 1)
))

≤ 2e
−2k ζ′′ ln n·C

2kn

2

≤ 2e
−2k ζ′′

4k

2

≤ 2e−
ζ′′2

24 log4 n = o(n−2),

as k ≤ 3 log4 n, C ≥ n
2 ln n and for large enough ζ ′ (such that ζ ′′ is large).

For the backward edges the same probability is calculated in an analogue way
and it follows that we have w.h.p. for the computed matching π and all pairs
(u, v) ∈ V1 × V2 a path in DG,π of weight at most ζ ′ ln n

n (C + 1) on the integer
weights. Therefore by the same argument as in the proof of Lemma 3 (see Equa-
tion (4)) the dual of the solution on the edge set consisting of the edges with
weight ≤ ζ ′ ln n

n (C + 1) will w.h.p. fulfil the complementary slackness conditions
on the complete edge set and therefore the solution will be optimal.

This set of small edges is w.h.p. of size m = O(n log2 n), thus the running time
of the integer matching algorithm is O(

√
nm log(nC)) = o(n2) and the overall

running time is dominated by the pruning of the edge set and the optimality
check which is O(n2).

Now let C ≤ n
2 ln n . Then the edges of weight 0 form a random graph with

edge probability p ≥ 2 ln(n)/n. Again, by Theorem 4 this graph contains w.h.p.
a perfect matching. Therefore a graph with edge weights from such an interval
has w.h.p. a matching of weight 0. Thus, in this case we are only looking for a
maximum cardinality matching within the graph consisting only of edges with
weight 0. If there are more than O(n log n) such edges, we choose O(n log n) of
them uniformly at random. A maximum cardinality matching in this graph can
be computed in time O(

√
nm) for example by the algorithm of Hopcroft and

Karp [13], which leads to a running time of O(n1.5 log n) for the pruned edge
set. In general for denser graphs a maximum cardinality matching can be com-
puted in O(nω) where ω is the exponent of the best known matrix multiplication
algorithm which was shown by Mucha and Sankowski [19].

3 Computational Results

3.1 Real World

On real-world data (n ranging from about 5000 to 20000 and with integer
weights) that was provided by our partner our algorithms performed quite well.
As the data was highly structured it was essential to introduce the randomly
chosen edges of the edge set E2 of Algorithm 2.2.

The constant c′ of Algorithm 2.2 was always set to a small value, i.e. c′ ≈ 4.
For obtaining a solution within 5% of the optimum setting c = 15 was sufficient
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for all provided test inputs. For the highly structured data sets c had to be set
to c > 120 to achieve an approximation within 3% of the optimum.

3.2 Random Edge Weights

On test cases with edge weights generated according to the uniform distribution
experiments showed that a cut off value of c · log n/n with c = 4 was sufficient
instead of the c = 48.6 which was obtained from Lemma 1.

Table 1. Testing the algorithm on different input graphs with edge weights drawn
uniformly at random from the interval [0, n2]

n 10 100 500 800 1000 1200 1500

Opt Check Opt Check Opt Check Opt Check Opt Check Opt Check Opt Check

c = 2 100 100 100 100 98 98 96 92 98 98 100 100 100 100

c = 3 100 100 100 100 100 100 100 100 100 100 100 98 100 100

c = 4 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 1 lists for c ∈ {2, 3, 4} and n from 10 to 1500 the percentage of having
found an optimal matching (column Opt) and the percentage of passing the
complementary slackness checks on the complete input graph with the dual
variables computed on the pruned edge set (column Check). For every n the
algorithm was run on 50 input graphs. The edge weights were integers drawn
uniformly at random from the interval [0, n2].
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Abstract. We propose a novel algorithm based on random graphs to
construct minimal perfect hash functions h. For a set of n keys, our
algorithm outputs h in expected time O(n). The evaluation of h(x) re-
quires two memory accesses for any key x and the description of h takes
up 1.15n words. This improves the space requirement to 55% of a previ-
ous minimal perfect hashing scheme due to Czech, Havas and Majewski.
A simple heuristic further reduces the space requirement to 0.93n words,
at the expense of a slightly worse constant in the time complexity. Large
scale experimental results are presented.

1 Introduction

Suppose U is a universe of keys. Let h : U → M be a hash function that maps
the keys from U to a given interval of integers M = [0,m−1] = {0, 1, . . . ,m−1}.
Let S ⊆ U be a set of n keys from U . Given a key x ∈ S, the hash function h
computes an integer in [0,m − 1] for the storage or retrieval of x in a hash
table. Hashing methods for non-static sets of keys can be used to construct data
structures storing S and supporting membership queries “x ∈ S?” in expected
time O(1). However, they involve a certain amount of wasted space owing to
unused locations in the table and waisted time to resolve collisions when two
keys are hashed to the same table location.

For static sets of keys it is possible to compute a function to find any key in a
table in one probe; such hash functions are called perfect. Given a set of keys S,
we shall say that a hash function h : U → M is a perfect hash function for S
if h is an injection on S, that is, there are no collisions among the keys in S:
if x and y are in S and x �= y, then h(x) �= h(y). Since no collisions occur, each
key can be retrieved from the table with a single probe. If m = n, that is, the
table has the same size as S, then h is a minimal perfect hash function. Minimal
perfect hash functions totally avoid the problem of wasted space and time.
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Minimal perfect hash functions are widely used for memory efficient storage
and fast retrieval of items from static sets, such as words in natural languages,
reserved words in programming languages or interactive systems, universal re-
source locations (URLs) in Web search engines, or item sets in data mining
techniques.

The aim of this paper is to describe a new way of constructing minimal perfect
hash functions. Our algorithm shares several features with the one due to Czech,
Havas and Majewski [4]. In particular, our algorithm is also based on the gen-
eration of random graphs G = (V,E), where E is in one-to-one correspondence
with the key set S for which we wish to generate the hash function. The two
main differences between our algorithm and theirs are as follows: (i) we generate
random graphs G = (V,E) with |V | = cn and |E| = |S| = n, where c = 1.15, and
hence G contains cycles with high probability, while they generate acyclic ran-
dom graphs G = (V,E) with |V | = cn and |E| = |S| = n, with a greater number
of vertices: |V | ≥ 2.09n; (ii) they generate order preserving minimal perfect hash
functions while our algorithm does not preserve order (a perfect hash function
h is order preserving if the keys in S are arranged in some given order and h
preserves this order in the hash table). Thus, our algorithm improves the space
requirement at the expense of generating functions that are not order preserving.

Our algorithm is efficient and may be tuned to yield a function h with a very
economical description. As the algorithm in [4], our algorithm produces h in O(n)
expected time for a set of n keys. The description of h requires 1.15n computer
words, and evaluating h(x) requires two accesses to an array of 1.15n integers.
We further derive a heuristic that improves the space requirement from 1.15n
words down to 0.93n words. Our scheme is very practical: to generate a minimal
perfect hash function for a collection of 100 million universe resource locations
(URLs), each 63 bytes long on average, our algorithm running on a commodity
PC takes 811 seconds on average.

2 Related Work

Czech, Havas and Majewski [5] provide a comprehensive survey of the most
important theoretical results on perfect hashing. In the following, we review
some of those results.

Fredman, Komlós and Szemerédi [10] showed that it is possible to construct
space efficient perfect hash functions that can be evaluated in constant time
with table sizes that are linear in the number of keys: m = O(n). In their
model of computation, an element of the universe U fits into one machine word,
and arithmetic operations and memory accesses have unit cost. Randomized
algorithms in the FKS model can construct a perfect hash function in expected
time O(n): this is the case of our algorithm and the works in [4, 14].

Many methods for generating minimal perfect hash functions use a mapping,
ordering and searching (MOS) approach, a description coined by Fox, Chen and
Heath [9]. In the MOS approach, the construction of a minimal perfect hash func-
tion is accomplished in three steps. First, the mapping step transforms the key
set from the original universe to a new universe. Second, the ordering step places
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the keys in a sequential order that determines the order in which hash values are
assigned to keys. Third, the searching step attempts to assign hash values to the
keys. Our algorithm and the algorithm presented in [4] use the MOS approach.

Pagh [14] proposed a family of randomized algorithms for constructing mini-
mal perfect hash functions. The form of the resulting function is h(x) = (f(x)+
dg(x)) mod n, where f and g are universal hash functions and d is a set of dis-
placement values to resolve collisions that are caused by the function f . Pagh
identified a set of conditions concerning f and g and showed that if these con-
ditions are satisfied, then a minimal perfect hash function can be computed in
expected time O(n) and stored in (2 + ε)n computer words. Dietzfelbinger and
Hagerup [6] improved [14], reducing from (2 + ε)n to (1 + ε)n the number of
computer words required to store the function, but in their approach f and g
must be chosen from a class of hash functions that meet additional requirements.
Differently from the works in [14, 6], our algorithm uses two universal hash func-
tions h1 and h2 randomly selected from a class of universal hash functions that
do not need to meet any additional requirements.

The work in [4] presents an efficient and practical algorithm for generat-
ing order preserving minimal perfect hash functions. Their method involves the
generation of acyclic random graphs G = (V,E) with |V | = cn and |E| = n,
with c ≥ 2.09. They showed that an order preserving minimal perfect hash
function can be found in optimal time if G is acyclic. To generate an acyclic
graph, two vertices h1(x) and h2(x) are computed for each key x ∈ S. Thus,
each set S has a corresponding graph G = (V,E), where V = {0, 1, . . . , t} and
E =

{
{h1(x),h2(x)} : x ∈ S

}
. In order to guarantee the acyclicity of G, the algo-

rithm repeatedly selects h1 and h2 from a family of universal hash functions until
the corresponding graph is acyclic. Havas et al. [11] proved that if |V (G)| = cn
and c > 2, then the probability that G is acyclic is p = e1/c

√
(c− 2)/c. For

c = 2.09, this probability is p + 0.342, and the expected number of iterations to
obtain an acyclic graph is 1/p + 2.92.

3 The Algorithm

Let us show how the minimal perfect hash function h will be constructed. We
make use of two auxiliary random functions h1 and h2 : U → V , where V =
[0, t − 1] for some suitably chosen integer t = cn, where n = |S|. We build a
random graph G = G(h1,h2) on V , whose edge set is

{
{h1(x),h2(x)} : x ∈ S

}
.

There is an edge in G for each key in the set of keys S.
In what follows, we shall be interested in the 2-core of the random graph G,

that is, the maximal subgraph of G with minimal degree at least 2 (see, e.g.,
[1, 12]). Because of its importance in our context, we call the 2-core the critical
subgraph of G and denote it by Gcrit. The vertices and edges in Gcrit are said to
be critical. We let Vcrit = V (Gcrit) and Ecrit = E(Gcrit). Moreover, we let Vncrit =
V − Vcrit be the set of non-critical vertices in G. We also let Vscrit ⊆ Vcrit be
the set of all critical vertices that have at least one non-critical vertex as a
neighbour. Let Encrit = E(G) − Ecrit be the set of non-critical edges in G.
Finally, we let Gncrit = (Vncrit ∪ Vscrit,Encrit) be the non-critical subgraph of G.
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procedure GenerateMPHF (S , g)
Mapping (S , G ) ;
Ordering (G , Gcrit , Gncrit ) ;
Searching (G , Gcrit , Gncrit , g ) ;

Fig. 1. Main steps of the algorithm for constructing a minimal perfect hash function

The non-critical subgraph Gncrit corresponds to the “acyclic part” of G. We have
G = Gcrit ∪Gncrit.

We then construct a suitable labelling g : V → Z of the vertices of G: we
chooseg(v) foreachv ∈ V (G) insuchawaythath(x) = g(h1(x))+g(h2(x))(x ∈ S)
is a minimal perfect hash function for S. We will see later on that this labelling g
can be found in linear time if the number of edges in Gcrit is at most 1

2 |E(G)|.
Figure 1 presents a pseudo code for the algorithm. The procedure Gener-

ateMPHF (S, g) receives as input the set of keys S and produces the labelling g.
The method uses a mapping, ordering and searching approach. We now describe
each step.

3.1 Mapping Step

The procedure Mapping (S, G) receives as input the set of keys S and generates
the random graph G = G(h1,h2), by generating two auxiliary functions h1,
h2 : U → [0, t− 1].

The functions h1 and h2 are constructed as follows. We impose some upper
bound L on the lengths of the keys in S. To define hj (j = 1,2), we generate
an L × Σ table of random integers tablej . For a key x ∈ S of length |x| ≤ L
and j ∈ {1, 2}, we let

hj(x) =
(∑|x|

i=1 tablej [i,x[i]]
)

mod t.

The random graph G = G(h1,h2) has vertex set V = [0, t − 1] and edge set{
{h1(x),h2(x)} : x ∈ S

}
. We need G to be simple, i.e., G should have neither

loops nor multiple edges. A loop occurs when h1(x) = h2(x) for some x ∈ S. We
solve this in an ad hoc manner: we simply let h2(x) = (2h1(x)+1) mod t in this
case. If we still find a loop after this, we generate another pair (h1,h2). When a
multiple edge occurs we abort and generate a new pair (h1,h2).

Analysis of the Mapping Step. We start by discussing some facts on random
graphs. Let G = (V,E) with |V | = t and |E| = n be a random graph in the
uniform model G(t,n), the model in which all the

((t
2)
n

)
graphs on V with n

edges are equiprobable. The study of G(t,n) goes back to the classical work of
Erdős and Rényi [7, 8, 13] (for a modern treatment, see [1, 12]). Let d = 2n/t
be the average degree of G. It is well known that, if d > 1, or, equivalently,
if c < 2 (recall that we have t = cn), then, almost every G contains1 a “giant”

1 As is usual in the theory of random graphs, we use the terms ‘almost every’ and
‘almost surely’ to mean ‘with probability tending to 1 as t → ∞’.
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component of order (1+o(1))bt, where b = 1−T/d, and 0 < T < 1 is the unique
solution to the equation Te−T = de−d. Moreover, all the other components
of G have O(log t) vertices. Also, the number of vertices in the 2-core of G (the
maximal subgraph of G with minimal degree at least 2) that do not belong to
the giant component is o(t) almost surely.

Pittel and Wormald [15] present detailed results for the 2-core of the giant
component of the random graph G. Since tablej (j ∈ {1, 2}) are random, G =
G(h1,h2) is a random graph. In what follows, we work under the hypothesis
that G = G(h1,h2) is drawn from G(t,n). Thus, following [15], the number of
vertices of Gcrit is

|V (Gcrit)| = (1 + o(1))(1− T )bt (1)

almost surely. Moreover, the number of edges in this 2-core is

|E(Gcrit)| = (1 + o(1))
(
(1− T )b + b(d + T − 2)/2

)
t (2)

almost surely. Let dcrit = 2|E(Gcrit)|/|V (Gcrit)| be the average degree of Gcrit.
We are interested in the case in which dcrit is a constant.

As mentioned before, for us to find the labelling g : V → Z of the vertices
of G = G(h1,h2) in linear time, we require that |E(Gcrit)| ≤ 1

2 |E(G)| = 1
2 |S| =

n/2. The crucial step now is to determine the value of c (in t = cn) to obtain a
random graph G = Gcrit ∪Gncrit with |E(Gcrit)| ≤ 1

2 |E(G)|.
Table 3.1 gives some values for |V (Gcrit)| and |E(Gcrit)| using Eqs (1) and (2).

The theoretical value for c is around 1.152, which is remarkably close to the
empirical results presented in Table 3.1. In this table, generated from real data,
the probability P|E(Gcrit)| that |E(Gcrit)| ≤ 1

2 |E(G)| tends to 0 when c < 1.15 and
it tends to 1 when c ≥ 1.15 and n increases. We found this match between the
empirical and the theoretical results most pleasant, and this is why we consider
that this random graph, conditioned on being simple, strongly resembles the
random graph from the uniform model G(t,n).

We now briefly argue that the expected number of iterations to obtain a
simple graph G = G(h1,h2) is constant for t = cn and c = 1.15. Let p be the
probability of generating a random graph G without loops and without multiple
edges. If p is bounded from below by some positive constant, then we are done,
because the expected number of iterations to obtain such a graph is then 1/p =
O(1). To estimate p, we estimate the probability of obtaining n distinct objects
when we independently draw n objects from a universe of cardinality

(
t
2

)
=

Table 1. Determining the c value theoretically

d T b |V (Gcrit)| |E(Gcrit)| c

1.734 0.510 0.706 0.399n 0.498n 1.153
1.736 0.509 0.707 0.400n 0.500n 1.152
1.738 0.508 0.708 0.401n 0.501n 1.151
1.739 0.508 0.708 0.401n 0.501n 1.150
1.740 0.507 0.709 0.401n 0.502n 1.149
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Table 2. Probability P|Ecrit| that |E(Gcrit)| ≤ n/2 for different c values and different
number of keys for a collections of URLs

c URLs (n)

103 104 105 106 2 × 106 3 × 106 4 × 106

1.13 0.22 0.02 0.00 0.00 0.00 0.00 0.00
1.14 0.35 0.15 0.00 0.00 0.00 0.00 0.00
1.15 0.46 0.55 0.65 0.87 0.95 0.97 1.00
1.16 0.67 0.90 1.00 1.00 1.00 1.00 1.00
1.17 0.82 0.99 1.00 1.00 1.00 1.00 1.00

(
cn
2

)
∼ c2n2/2, with replacement. This latter probability is about e−(n

2)/(t
2) for

large n. As e−(n
2)/(t

2) → e−1/c2
> 0 as n →∞, the expected number of iterations

is e1/c2
= 2.13 (recall c = 1.15). As the expected number of iterations is O(1),

the mapping step takes O(n) time.

3.2 Ordering Step

The procedure Ordering (G, Gcrit, Gncrit) receives as input the graph G and
partitions G into the two subgraphs Gcrit and Gncrit, so that G = Gcrit ∪Gncrit.
For that, the procedure iteratively remove all vertices of degree 1 until done.

Figure 2(a) presents a sample graph with 9 vertices and 8 edges, where the
degree of a vertex is shown besides each vertex. Applying the ordering step in this
graph, the 5-vertex graph showed in Figure 2(b) is obtained. All vertices with
degree 0 are non-critical vertices and the others are critical vertices. In order to
determine the vertices in Vscrit we collect all vertices v ∈ V (Gcrit) with at least
one vertex u that is in Adj(v) and in V (Gncrit), as the vertex 8 in Figure 2(b).

Analysis of the Ordering Step. The time complexity of the ordering step is
O(|V (G)|) (see [5]). As |V (G)| = t = cn, the ordering step takes O(n) time.

3.3 Searching Step

In the searching step, the key part is the perfect assignment problem: find g :
V (G) → Z such that the function h : E(G) → Z defined by

h(e) = g(a) + g(b) (e = {a, b}) (3)
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d:2d:2

d:0

d:0

a) d:2

d:4

d:2

d:0

d:0

d:2d:2

d:0

d:0

b)

6

7 0

1

2

34

5

8

6

7 0

34

5

8

2

1

Fig. 2. Ordering step for a graph with 9 vertices and 8 edges
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is a bijection from E(G) to [0,n−1] (recall n = |S| = |E(G)|). We are interested
in a labelling g : V → Z of the vertices of the graph G = G(h1,h2) with the prop-
erty that if x and y are keys in S, then g(h1(x))+g(h2(x)) �= g(h1(y))+g(h2(y));
that is, if we associate to each edge the sum of the labels on its endpoints,
then these values should be all distinct. Moreover, we require that all the sums
g(h1(x)) + g(h2(x)) (x ∈ S) fall between 0 and |E(G)| − 1 = n − 1, so that we
have a bijection between S and [0,n− 1].

The procedure Searching (G, Gcrit, Gncrit, g) receives as input G, Gcrit, Gncrit

and finds a suitable log2 |V (G)| + 1 bit value for each vertex v ∈ V (G), stored
in the array g. This step is first performed for the vertices in the critical sub-
graph Gcrit of G (the 2-core of G) and then it is performed for the vertices in
Gncrit (the non-critical subgraph of G that contains the “acyclic part” of G).
The reason the assignment of the g values is first performed on the vertices
in Gcrit is to resolve reassignments as early as possible (such reassignments are
consequences of the cycles in Gcrit and are depicted hereinafter).

Assignment of Values to Critical Vertices. The labels g(v) (v ∈ V (Gcrit))
are assigned in increasing order following a greedy strategy where the critical ver-
tices v are considered one at a time, according to a breadth-first search on Gcrit.
If a candidate value x for g(v) is forbidden because setting g(v) = x would create
two edges with the same sum, we try x + 1 for g(v). This fact is referred to as a
reassignment.

Let AE be the set of addresses assigned to edges in E(Gcrit). Initially AE = ∅.
Let x be a candidate value for g(v). Initially x = 0. Considering the subgraph
Gcrit in Figure 2(b), a step by step example of the assignment of values to vertices
in Gcrit is presented in Figure 3. Initially, a vertex v is chosen, the assignment
g(v) = x is made and x is set to x + 1. For example, suppose that vertex 8 in
Figure 3(a) is chosen, the assignment g(8) = 0 is made and x is set to 1.

In Figure 3(b), following the adjacency list of vertex 8, the unassigned vertex
0 is reached. At this point, we collect in the temporary variable Y all adjacencies
of vertex 0 that have been assigned an x value, and Y = {8}. Next, for all u ∈ Y ,
we check if g(u) + x �∈ AE . Since g(8) + 1 = 1 �∈ AE , then g(0) is set to 1, x
is incremented by 1 (now x = 2) and AE = AE ∪ {1} = {1}. Next, vertex 3 is
reached, g(3) is set to 2, x is set to 3 and AE = AE∪{2} = {1, 2}. Next, vertex 4
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Fig. 3. Example of the assignment of values to critical vertices
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is reached and Y = {3, 8}. Since g(3)+3 = 5 �∈ AE and g(8)+3 = 3 �∈ AE , then
g(4) is set to 3, x is set to 4 and AE = AE∪{3, 5} = {1, 2, 3, 5}. Finally, vertex 7 is
reached and Y = {0, 8}. Since g(0)+4 = 5 ∈ AE , x is incremented by 1 and set to
5, as depicted in Figure 3(c). Since g(8)+5 = 5 ∈ AE , x is again incremented by
1 and set to 6, as depicted in Figure 3(d). These two reassignments are indicated
by the arrows in Figure 3. Since g(0) + 6 = 7 �∈ AE and g(8) + 6 = 6 �∈ AE ,
then g(7) is set to 6 and AE = AE ∪ {6, 7} = {1, 2, 3, 5, 6, 7}. This finishes the
algorithm.

Assignment of Values to Non- ritical Vertices. As Gncrit is acyclic, we
can impose the order in which addresses are associated with edges in Gncrit, mak-
ing this step simple to solve by a standard depth first search algorithm. There-
fore, in the assignment of values to vertices in Gncrit we benefit from the unused
addresses in the gaps left by the assignment of values to vertices in Gcrit. For
that, we start the depth-first search from the vertices in Vscrit because the g val-
ues for these critical vertices have already been assigned and cannot be changed.

Considering the subgraph Gncrit in Figure 2(b), a step by step example of the
assignment of values to vertices in Gncrit is presented in Figure 4. Figure 4(a)
presents the initial state of the algorithm. The critical vertex 8 is the only one
that has non-critical neighbours. In the example presented in Figure 3, the ad-
dresses {0, 4} were not used. So, taking the first unused address 0 and the vertex
1, which is reached from the vertex 8, g(1) is set to 0 − g(8) = 0, as shown in
Figure 4(b). The only vertex that is reached from vertex 1 is vertex 2, so taking
the unused address 4 we set g(2) to 4− g(1) = 4, as shown in Figure 4(c). This
process is repeated until the UnAssignedAddresses list becomes empty.

Analysis of the Searching Step. We shall demonstrate that (i) the maximum
value assigned to an edge is at most n−1 (that is, we generate a minimal perfect
hash function), and (ii) the perfect assignment problem (determination of g)
can be solved in expected time O(n) if the number of edges in Gcrit is at most
1
2 |E(G)|.

We focus on the analysis of the assignment of values to critical vertices be-
cause the assignment of values to non-critical vertices can be solved in linear
time by a depth first search algorithm.

We now define certain complexity measures. Let I(v) be the number of times
a candidate value x for g(v) is incremented. Let Nt be the total number of times
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Fig. 4. Example of the assignment of values to non-critical vertices
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that candidate values x are incremented. Thus, we have Nt =
∑

I(v), where the
sum is over all v ∈ V (Gcrit).

For simplicity, we shall suppose that Gcrit, the 2-core of G, is connected.2

The fact that every edge is either a tree edge or a back edge (see, e.g., [3]) then
implies the following.

Theorem 1. The number of back edges Nbedges of G = Gcrit ∪ Gncrit is given
by Nbedges = |E(Gcrit)| − |V (Gcrit)|+ 1. ��

Our next result concerns the maximal value Amax assigned to an edge e ∈
E(Gcrit) after the assignment of g values to critical vertices.

Theorem 2. We have Amax ≤ 2|V (Gcrit)| − 3 + 2Nt.

Proof. (Sketch) The assignment of g values to critical vertices starts from 0, and
each edge e receives the label h(e) as given by Eq. (3). The g value for each vertex
v in V (Gcrit) is assigned only once. A little thought shows that maxv g(v) ≤
|V (Gcrit)| − 1 +Nt, where the maximum is taken over all vertices v in V (Gcrit).
Moreover, two distinct vertices get distinct g values. Hence, Amax ≤ (|V (Gcrit)|−
1 + Nt) + (|V (Gcrit)| − 2 + Nt) ≤ 2|V (Gcrit)| − 3 + 2Nt, as required. ��

Maximal Value Assigned to an Edge. In this section we present the fol-
lowing conjecture.

Conjecture 1. For a random graph G with |E(Gcrit)| ≤ n/2 and |V (G)| = 1.15n,
it is always possible to generate a minimal perfect hash function because the
maximal value Amax assigned to an edge e ∈ E(Gcrit) is at most n− 1.

Let us assume for the moment that Nt ≤ Nbedges. Then, from Theorems 1
and 2, we have Amax ≤ 2|V (Gcrit)| − 3 + 2Nt ≤ 2|V (Gcrit)| − 3 + 2Nbedges ≤
2|V (Gcrit)|−3+2(|E(Gcrit)|−|V (Gcrit)|+1) ≤ 2|E(Gcrit)|−1. As by hypothesis
|E(Gcrit)| ≤ n/2, we have Amax ≤ n− 1, as required.

In the mathematical analysis of our algorithm, what is left open is a single
problem: prove that Nt ≤ Nbedges.3

We now show experimental evidence that Nt ≤ Nbedges. Considering Eqs (1)
and (2), the expected values for |V (Gcrit)| and |E(Gcrit)| for c = 1.15 are 0.401n
and 0.501n, respectively. From Theorem 1, Nbedges = 0.501n − 0.401n + 1 =
0.1n + 1. Table 3 presents the maximal value of Nt obtained during 10,000
executions of the algorithm for different sizes of S. The maximal value of Nt

was always smaller than Nbedges = 0.1n + 1 and tends to 0.059n for n ≥
1,000,000.

2 The number of vertices in Gcrit outside the giant component is provably very small
for c = 1.15; see [1, 12, 15].

3 Bollobás and Pikhurko [2] have investigated a very close vertex labelling problem for
random graphs. However, their interest was on denser random graphs, and it seems
that different methods will have to be used to attack the sparser case that we are
interested in here.
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Table 3. The maximal value of Nt for different number of URLs

n Maximal value of Nt

10,000 0.067n
100,000 0.061n

1,000,000 0.059n
2,000,000 0.059n

Time Complexity. We now show that the time complexity of determining g(v)
for all critical vertices x ∈ V (Gcrit) is O(|V (Gcrit)|) = O(n). For each unassigned
vertex v, the adjacency list of v, which we call Adj(v), must be traversed to collect
the set Y of adjacent vertices that have already been assigned a value. Then, for
each vertex in Y , we check if the current candidate value x is forbidden because
setting g(v) = x would create two edges with the same endpoint sum. Finally,
the edge linking v and u, for all u ∈ Y , is associated with the address that
corresponds to the sum of its endpoints. Let dcrit = 2|E(Gcrit)|/|V (Gcrit)| be
the average degree of Gcrit, note that |Y | ≤ |Adj(v)|, and suppose for simplicity
that |Adj(v)| = O(dcrit). Then, putting all these together, we see that the time
complexity of this procedure is

C(|V (Gcrit)|) =
∑

v∈V (Gcrit)

[
|Adj(v)|+ (I(v)× |Y |) + |Y |

]
≤
∑

v∈V (Gcrit)
(2 + I(v))|Adj(v)| = 4|E(Gcrit)|+ O(Ntdcrit).

As dcrit = 2 × 0.501n/0.401n + 2.499 (a constant) we have O(|E(Gcrit)|) =
O(|V (Gcrit)|). Supposing that Nt ≤ Nbedges, we have, from Theorem 1, that Nt ≤
|E(Gcrit)| − |V (Gcrit)| + 1 = O(|E(Gcrit)|). We conclude that C(|V (Gcrit)|) =
O(|E(Gcrit)|) = O(|V (Gcrit)|). As |V (Gcrit)| ≤ |V (G)| and |V (G)| = cn, the
time required to determine g on the critical vertices is O(n).

4 Experimental Results

We now present some experimental results. The same experiments were run
with our algorithm and the algorithm due to Czech, Havas and Majewski [4],
referred to as the CHM algorithm. The two algorithms were implemented in the
C language and are available at http://cmph.sf.net. Our data consists of a
collection of 100 million universe resource locations (URLs) collected from the
Web. The average length of a URL in the collection is 63 bytes. All experiments
were carried out on a computer running the Linux operating system, version
2.6.7, with a 2.4 gigahertz processor and 4 gigabytes of main memory.

Table 4 presents the main characteristics of the two algorithms. The num-
ber of edges in the graph G = (V,E) is |S| = n, the number of keys in the
input set S. The number of vertices of G is equal to 1.15n and 2.09n for our
algorithm and the CHM algorithm, respectively. This measure is related to the
amount of space to store the array g. This improves the space required to store
a function in our algorithm to 55% of the space required by the CHM algorithm.
The number of critical edges is 1

2 |E(G)| and 0 for our algorithm and the CHM
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Table 4. Main characteristics of the algorithms

c |E(G)| |V (G)| = |g| |E(Gcrit)| G Order preserving

Our algorithm 1.15 n cn 0.5|E(G)| cyclic no

CHM algorithm 2.09 n cn 0 acyclic yes

algorithm, respectively. Our algorithm generates random graphs that contain
cycles with high probability and the CHM algorithm generates acyclic random
graphs. Finally, the CHM algorithm generates order preserving functions while
our algorithm does not preserve order.

Table 5 presents time measurements. All times are in seconds. The table
entries are averages over 50 trials. The column labelled Ni gives the number of
iterations to generate the random graph G in the mapping step of the algorithms.
The next columns give the running times for the mapping plus ordering steps
together and the searching step for each algorithm. The last column gives the
percentage gain of our algorithm over the CHM algorithm.

Table 5. Time measurements for our algorithm and the CHM algorithm

n Our algorithm CHM algorithm Gain

Ni Map+Ord Search Total Ni Map+Ord Search Total
(%)

6,250,000 2.20 33.09 10.48 43.57 2.90 62.26 6.76 69.02 58
12,500,000 2.00 63.26 23.04 86.30 2.60 117.99 14.94 132.92 54
25,000,000 2.00 130.79 51.55 182.34 2.80 262.05 33.68 295.73 62
100,000,000 2.07 567.47 243.13 810.60 2.80 1,131.06 157.23 1,288.29 59

The mapping step of the new algorithm is faster because the expected num-
ber of iterations in the mapping step to generate G are 2.13 and 2.92 for our
algorithm and the CHM algorithm, respectively. The graph G generated by our
algorithm has 1.15n vertices, against 2.09n for the CHM algorithm. These two
facts make our algorithm faster in the mapping step. The ordering step of our
algorithm is approximately equal to the time to check if G is acyclic for the
CHM algorithm. The searching step of the CHM algorithm is faster, but the
total time of our algorithm is, on average, approximately 58% faster than the
CHM algorithm.

The experimental results fully backs the theoretical results. It is important
to notice the times for the searching step: for both algorithms they are not the
dominant times, and the experimental results clearly show a linear behavior for
the searching step.

We now present a heuristic that reduces the space requirement to any given
value between 1.15n words and 0.93n words. The heuristic reuses, when possible,
the set of x values that caused reassignments, just before trying x + 1 (see
Section 3.3). The lower limit c = 0.93 was obtained experimentally. We generate
10,000 random graphs for each size n (n = 105, 5 × 105, 106, 2 × 106). With
c = 0.93 we were always able to generate h, but with c = 0.92 we never succeeded.
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Decreasing the value of c leads to an increase in the number of iterations to
generate G. For example, for c = 1 and c = 0.93, the analytical expected number
of iterations are 2.72 and 3.17, respectively (for n = 12,500,000, the number of
iterations are 2.78 for c = 1 and 3.04 for c = 0.93). Table 6 presents the total
times to construct a function for n = 12,500,000, with an increase from 86.31
seconds for c = 1.15 (see Table 5) to 101.74 seconds for c = 1 and to 102.19
seconds for c = 0.93.

Table 6. Time measurements for our tuned algorithm with c = 1.00 and c = 0.93

n Our algorithm c = 1.00 Our algorithm c = 0.93

Ni Map+Ord Search Total Ni Map+Ord Search Total
12,500,000 2.78 76.68 25.06 101.74 3.04 76.39 25.80 102.19

We compared our algorithm with the ones proposed by Pagh [14] and Diet-
zfelbinger and Hagerup [6], respectively. The authors sent to us their source code.
In their implementation the set of keys is a set of random integers. We modified
our implementation to generate our h from a set of random integers in order to
make a fair comparison. For a set of 106 random integers, the times to generate
a minimal perfect hash function were 2.7s, 4s and 4.5s for our algorithm, Pagh’s
algorithm and Dietzfelbinger and Hagerup’s algorithm, respectively. Thus, our
algorithm was 48% faster than Pagh’s algorithm and 67% faster than Dietzfel-
binger and Hagerup’s algorithm, on average. This gain was maintained for sets
with different sizes. Our algorithm needs kn (k ∈ [0.93, 1.15]) words to store the
resulting function, while Pagh’s algorithm needs kn (k > 2) words and Dietzfel-
binger and Hagerup’s algorithm needs kn (k ∈ [1.13, 1.15]) words. The time to
generate the functions is inversely proportional to the value of k.

5 Conclusion

We have presented a practical method for constructing minimal perfect hash
functions for static sets that is efficient and may be tuned to yield a function
with a very economical description.
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Mat. Kutató Int. Közl., 5:17–61, 1960.

9. E.A. Fox, Q.F. Chen, and L.S. Heath. A faster algorithm for constructing minimal
perfect hash functions. In Proceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
266–273, 1992.

10. M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
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Abstract. Many problems in combinatorial optimization are NP-Hard. This has 
forced researchers to explore meta-heuristic techniques for dealing with this 
class of complex problems and finding an acceptable solution in reasonable 
time.  The satisfiability problem, SAT, is studied by a great number of re-
searchers the three last decades. Its wide application to the domain of AI in 
automatic reasoning and problem solving for instance and other domains like 
VLSI and graph theory motivates the huge interest shown for this problem.  In 
this paper, tabu search, scatter search, genetic algorithms and memetic evolu-
tionary meta-heuristics are studied for the NP-Complete satisfiability problems, 
in particular for its optimization version namely MAX-SAT. Experiments com-
paring the proposed approaches for solving MAX-SAT problems are repre-
sented. The empirical tests are performed on DIMACS benchmark instances. 

1   Introduction 

The satisfiabilty problem, SAT, is one of the most known NP-complete problems: 
given a collection of m clauses C= { C1, C2,  …..  Cm} involving n Boolean vari-
ables x1, x2 ,…, xn. The SAT problem is to determine whether or not there exists a 
truth assignment for C that satisfies the m clauses. A clause is a disjunction of literals. 
A literal is a variable or its negation. A formula in conjunctive normal form (CNF) is 
a conjunction of clauses. The formula is said to be satisfiable if there exists an as-
signment that satisfies all the clauses and unsatisfiable otherwise. In the latter situa-
tion, we are interested to other variants of SAT. We mention among them the maxi-
mum satisfiability problem (MAX-SAT) which consists in finding an assignment that 
satisfies the maximum number of clauses.  MAX-SAT is the optimization variant of 
SAT [14]. It is an important and widely studied combinatorial optimization problem 
with applications in artificial intelligence and other areas of computing science. The 
decision variants of both SAT and MAX-SAT are NP-Complete [5, 9, 16]. The inter-
est focuses on the development and implementations of heuristics.  
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     Many algorithms have been proposed and important progress has been achieved. 
These algorithms can be divided into two main classes: 

- Exact or Complete algorithms: dedicated to solve the decision version of SAT 
problem. The well- known algorithms are based on the Davis-Putnam-Loveland 
procedure [6]. Satz [20, 21] is a famous example of a complete algorithm.   

- Incomplete algorithms: they are mainly based on local search and evolutionary 
algorithms. Gsat [25], Tabu search [22, 1, 2], simulated annealing [14], genetic 
algorithms [8], Grasp [24], scatter search [7] and recently memetic algorithm [3] 
are examples of incomplete algorithms for SAT. These meta-heuristics are a good 
approach for finding a near solution of very large instances, in particular for un-
satisfiable or unknown instances.  

In this paper, tabu search, scatter search, genetic and memetic evolutionary meta-
heuristics are studied and compared for solving MAX-SAT problems. Empirical tests 
are performed on DIMACS benchmark instances. The paper starts with a brief review 
of the Tabu Search (TS). Section 3 introduces the Population-based Tabu Search 
(PTS). In section 4, we explain the most key components of the classical Genetic 
algorithms. In section 5, we propose our memetic approach. Section 6, presents the 
scatter search- based population meta-heuristic (SS). Our comparative study and ex-
periments results are summarized in section 7. Finally, conclusion and future work are 
explained in section 8. 

2   A Tabu Search Meta-heuristic  

Tabu search is one of the efficient methods for large combinatorial optimization prob-
lems. Given the search space, the method attempts to find a global minimum state. It 
is a general meta-heuristic that has been proposed by Fred Glover [10, 11]. It has been 
applied to various optimization problems  
including the arc routing problem [13], Satisfiability problem [22, 1, 2], bid evalua-
tion [4], job shop scheduling [26] and the mix fleet vehicle routing problem [27]. Like 
local search, Tabu search starts with an initial configuration generated randomly, 
then, the best neighbor solutions are selected. Tabu search uses also a list called 
"Tabu list" to keep information about solutions recently selected, that, in order to 
escape the solutions already visited. In the case, in which, a Tabu move applied to a 
current solution gives a better solution; we accept this move in spite of its Tabu status 
by aspiration criterion. The search stops when the quality of the solution is not im-
proved during a maximum number of iterations or when we reach the optimum 
global.  

2.1   Tabu Search Items 

To use Tabu search for solving MAX-SAT problem, we define the following items: 
 
A Solution is represented by a binary chain X (n Vector). Each of whose components 
xi receives the value 0 or 1. It is defined as a possible configuration verifying the  
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problem constraints and satisfying the goal that consists in finding an assignment of 
truth values to the n variables that maximizes the number of satisfied clauses. 

A move is an operator used to generate neighbor solutions.  An elementary move 
consists in flipping one of the variables of the solution. The neighborhood of a solu-
tion is constituted by all the solutions obtained by applying an elementary move on 
this solution. A variable has the tabu state if it has been modified during the current 
move and it keeps it during a certain number of iterations called tabu tenure.  

A Tabu List is used to keep information about the solutions already visited in or-
der to escape the local optimum by searching in new regions not already explored.  

2.2   A Tabu Search Outline 

Step1. Initialization, 
Set Tabu search parameters 
// maxiter is the maximum number of iterations 
// iter is the Number of process iterations,   
//bestiter is the iteration where the best solution has been found  
//S*is the best solution with the minimum F* corresponds to S*,  
// F* objective function value that is F*=F(S*) 

iter:=0;  bestiter:=0;  TL: = ;  //TL  is the Tabu list , 
Generate an arbitrary solution S; Evaluate F (S); S*:= S, F*: = F; 
 
Step2. Iteration, 

While (iter- bestiter  < maxiter)  do 
begin  
      iter:= ier+1; 

  Generate neighbor of solutions using the move;            
  Select the best move; 
  Ignore the tabu status by aspiration Criterion if such move lead to a best solution; 
  Apply the selected move to the current configuration S;  Save the move in TL; 
  Evaluate F(S); If (F >F*) then begin S* := S; F*:= F; bestiter: = iter; end; 

End; 
 
Step3. Termination, Print the best solution with the best cost. 

3   A Population–Based Tabu Search 

In order to scan the most important part of the whole search space for attaining good 
solutions, we add a population strategy on the tabu search single-oriented solutions.   
The tabu search with the added constraints of the population strategy, PTS, maintains 
a pool of solutions rather than a single solution. Initially, the new approach starts from 
an arbitrary set of individuals, then a neighbor of each individual in the current popu-
lation is generated using a variable flipping move operator. The best neighbor solution 
is selected and the moves that return a previously generated solution are considered 
tabu and not accepted. In addition, the back-tracking to previous solutions is permit-
ted in the case, in which a tabu moves lead to a high quality solution. The basic com-
ponents of the population-based tabu search are depicted on figure1.   
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Fig. 1. Population- based Tabu Search Main components 

3.1   A Population-Based Tabu Search Outline 

The overall of the population–based Tabu Search algorithm is described as:  

Step1. Initialization:    
Set PTS parameters.                                                            
// Maxiter: is the maximum number of iterations,                                      
// S* is the best solution with the minimum F* corresponds to  S*,   
F* objective function value that is   F*=F(S*),     
// Psize is the population size,                                                     
  iter=0 ;         // iter is the number of PTS process iterations                                                                
  TL = ;        //TL  is the Tabu list ,      
-  Generate an arbitrary Population P;  - Evaluate the individuals in P;                                                   
 - S* is the best individual in P, F* = F(S*)                                                         
 
Step 2 Iteration                                                                                                                            
While (iter   < maxiter)  do 
 Begin  iter++; 
  For i= 1 to PSize  do  
   begin 
   - Generate neighbor of the individual "Si" using the move,            
   - Select the best move, 
    -  Ignore the tabu status by aspiration, criterion if such  move generates a best solution, 
    - Apply the selected move to the current configuration "Si",  
    - Save the move in TL, 
    -  Evaluate F(Si), if  F >F*    S* = Si;  F*= F;  
   end; 
 end; 
 
Step3 termination. Print the best solution with the best cost. 

4 Genetic Algorithms 

Genetic algorithms [12, 8] are an evolutionary meta-heuristic that have been used for 
solving difficult problems. They have been applied to complex optimization problems 

 
A Population-based Tabu Search- Main components 

Short memory 
Tabu list 
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A population 
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with remarkable success in some cases. Their behavior mimics the process of natural 
evolution. A population initially made of candidate solutions representing individuals 
improves towards another population of individuals with higher quality along a proc-
ess repeating a finite number of times, sequentially reproduction between individuals, 
and mutation of chromosomes and selection of better individuals. The goal is to create 
a very fit individual.  

Fig. 2. Genetic algorithm outline for MAX-SAT 

    The algorithm, depicted on figure 2 above, operates as follows. From a population 
of points (parents), the algorithm constructs a new population (children) in combining 
several parents and applying some random modifications (mutation). The selection 
phase chooses the best points among parents and children to produce the next popula-
tion for the next iteration. Usually, the genetic algorithms converges, ie, the popula-
tion has the tendency to lose its diversity, so it loses its efficacy; it is why the conver-
gence is often used like stop criteria. However, the premature convergence of genetic 
algorithms is an inherent characteristic that makes them incapable of searching nu-
merous solutions of the problem domain why it is frequent to stop searching after a 
certain number of generations.    

5   Memetic Algorithms 

The Memetic algorithms [23] can be viewed as a marriage between a population-
based global technique and a local search made by each of the individuals. They are a 
special kind of genetic algorithms with a local hill climbing.  Like genetic algorithms, 

Input: an instance of satisfiability ;                                                                                       
Output: an assignment of variables that maximizes the number of  satisfied clauses;            
Begin                                                                                                                                     
Generate at random the initial population;                                                                  
While (the maximum number of generations is not reached and the optimal solution is not 
found) do   Begin                                                                                                                     
Repeat    Select two individuals;                                                                                              
                Generate at random a number Rc from [0, 100];  
                If (Rc > crossover rate) then apply the crossover;                                                    
                Generate at random Rm from [0, 100];                                             
                 While (Rm < mutation rate do  Begin 
                Choose at random a chromosome from the individual obtained by the cross 
                 over  and flip it;  Generate at random Rm from [0, 100];    End ;                            
                  Evaluate the new individual;  
End repeat;                                                                                                                   
Replace the bad individuals of the population by the fittest new ones.                                    
End;                                                                                                                                         
Return the best chromosome                                                                                                     
End; 
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memetic algorithms are a population-based approach. They have shown that they are 
orders of magnitude faster than traditional Genetic Algorithms for some problem 
domains. Basically, they combine local search heuristics with crossover operators. 
Therefore, some researchers have viewed them as Hybrid Genetic Algorithms [12], 
others known it as Genetic Local Search. They have also received the denomination 
of Parallel Genetic Algorithms [17, 12]. In a memetic algorithm the population is 
initialized at random or using a heuristic. Then, each individual makes local search to 
improve its fitness. To form a new population for the next generation, higher quality 
individuals are selected. The selection phase is identical inform to that used in the 
classical genetic algorithm selection phase. Once two parents have been selected, their 
chromosomes are combined and the classical operators of crossover are applied to 
generate new individuals. The latter are enhanced using a local search technique.  The 
memetic meta-heuristic is a competitive- cooperative approach. The cooperative as-
pect is supplied by a crossover operators and the local search is supplied by a search 
technique ST. The competitive aspect is supplied by a selection phase. As you can see 
on the figure 3, the memetic approach can not include the mutation phase but it may 
include two necessary phases: 

• A local search and cooperation (muting of individuals) 
• A competition (selection of better individuals)   

The two phases above are repeated until a stopping criterion is satisfied.   

 

Fig. 3. A Memetic algorithm in pseudo-code 

6   Scatter Search Meta-heuristic 

Scatter search [18, 19] is a population-based meta-heuristic like genetic and memetic 
algorithms. It is an evolutionary method that constructs solutions by combining others. 
The approach starts with an initial population (collection of solutions) generated using 
both diversification and improvement strategies, then, a set of best solutions (reference 
set that incorporates both diverse and high quality solutions) are selected from the popu-
lation. These collections of solutions are a basis for creating new solutions consisting of 
structured combinations of subsets of the current reference solutions.   

 

Step1. Initialize the parameters of the Memetic algorithm (MA) 
Step 2. Generate at random an initial population of individuals for the MA 
Step 3. For each of the individuals apply a ST to improve its fitness 
Step 4. Selection: each individual may choose a partner for muting 
Step 5. Reproduction using crossover and ST 
Step 6. Replacement of individuals 
Step 7 . If not finished, go to Step3. 
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6.1   A Scatter Search Template 

Four methods are used to achieve the scatter search template:  
 

Fig. 4. Scatter Search template 

7   A Comparative Study Between TS, PTS, SS, GA, and MA   

In this work, computational experience regarding five well-known meta-heuristics 
(Tabu search, Population- based Tabu Search, genetic algorithms, memetic algorithms 
and scatter search) for solving MAX-SAT instances are reported. The purpose of this 
comparative experiment is to evaluate the performance of each one of the different 
techniques to solve MAX-SAT instances.  First of all, we compare on the table below 
the different approaches regarding their Principles and the operators used by each 
approach. Further, we give some numerical results obtained by applying each algo-
rithm on MAX-SAT instances.   

Computational Results 

The purpose of this experiment is to evaluate the performance of the evolutionary 
approaches (PTS, SS, GA, and MA) for solving MAX-SAT instances. All experi-
ments were run on a 350 Mhz Pentium II with 128 MO RAM. All instances have been 
taken from the SATLIB [15]. They are hard Benchmark Problems. On each instance 
the four algorithms have been executed in order to compute the average of the maxi-
mum number of satisfied clauses. The tables below show the results obtained by our 
algorithms. These columns contain the number of variables, the number of clauses, 
the number of satisfied clauses, the rate of satisfied clauses and the running time in 
second.  

The DIMACS Benchmarks  
Two kinds of experimental tests have been undertaken. The goal of the first ones is 
the setting of the different parameters of the TS, PTS, SS, GA and MA algorithms 
like the Tabu tenure, population size, crossover rate, the mutation rate, and the type of 
crossover, the number of iterations, the population size and the interaction between 
the  algorithms parameters. These parameters are fixed as: 

1. Diversification generation and reference set method. This step generates, at first, 
diverse solutions, then, improves them and selects the most elite and diverse to cre-
ate the reference set solutions. 

2. Improvement method. The improvement heuristic is used in step 1 and step 4 to 
enhance the quality of solutions.      

3. Subset generation method. This method creates new solutions based on determi-
nistic of subsets of the reference set solutions. 

4. Solution combination method. The structured combination produces solution in-
side and outside of the regions spanned by the reference set. 
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Table 1. Comparison of TS, PTS, SS, GA, and MA approaches 

Tabu Search Population- 
based Tabu 
Search 

Genetic 
Algorithms 

Memetic 
Algorithms 

Scatter 
Search 

Principles - neighbor 
search meta- 
heuristic  
- Single ori-
ented approach 
-Interdiction 

- Evolutionary 
meta-heuristic 
-Based-population 
-Evolution with 
interdiction 

Evolutionary 
meta-
heuristic 
-Based 
population  
-Biological 
evolution 

- Evolution-
ary meta-
heuristic 
- Based 
population 
- Cultural 
evolution 

Evolutionary 
meta-heuristic 
- Based-
population 
-Biological evolu
tion 

Operators Move 
Tabu list 
Aspiration-
criterion  

Selection 
Move 
Tabu list 
Aspiration-
criterion 

Selection 
Crossover 
Mutation 

Selection 
Crossover + 
local search 
Mutation 

Reference set 
selection 
Structured 
combination 
Improvement  
technique 

Configura-
tion or 
Population 
generation 

At Random  At Random   At Random  At Random 
or using a 
heuristic 

Using diversi-
fication 
generator 

 
- PTS algorithm parameters are fixed as:  the maximum number of iterations was set 
to Maxiter=200, the population size was set to Psize = 100 and the tabu list size was 
set to |TL|=7. 
- Scatter search variant algorithm parameters:  the maximum number of generations 
was set to maxiter=5, the population size was set to Psize = 50, the reference set was 
set to 10 (B1= 5, B2= 5) and the Improvement tabu search parameters was set as: 
maximum number of iteration = 30 and tabu list size was set to |TL|=7. 
- Memetic algorithm parameters:  the maximum number of generations was set to 
maxiter=10, the population size was set to Psize = 50,  Rc=0.6  and  the ST parame-
ters was set as. Number of iterations, T=20. 
- Genetic algorithm parameters:  the maximum number of generations was set to max-
iter=10000, the population size was set to Psize = 50,  Rc=0.6  and  Rm=0.5. 
 The second kind of experiments concerns MAX-SAT instances. All these instances 
are encoded in DIMACS CNF format. For more information about these instances, 
see the SATLIB Web site at [www.satlib.org]. 
The results found are classed by class: 

- AIM class: Artificially generated random 3-SAT, defined by Kazuo Iwama, Eiji 
Miyano and Yuichi Asahiro. We have chosen four Satisfiable instances. 

JNH class: Randomly generated instances- constant density model. The instances 
have originally been contributed by John Hooker (jh38+@andrew.cmu.edu). "Yes", 
means that the instance is satisfiable, "no" means that the instance is not satisfiable.  

-Dubois class: Instance from generator gensathard.c defined by Olivier Dubois  
(dubois@laforia.ibp.fr). All the instances are not satisfiable. 
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Table 2. Solutions quality and running time results obtained by PTS, MA, GA and SS on AIM 
instances 

Instances # var #    clauses PTS-Sol Rate % time MA-
Sol 

MA 
Rate 

MA 
Time 

Aim-50-1 50 80 79 99 67,3 79 99% 43,32 

Aim-50-2 50 100 100 100 16,3 99 99% 44,84 
Aim-50-3 50 170 170 100 22,0 168 99% 71,37 
Aim-50-6 50 300 300 100 51,4 295 99% 121,8 

GA- sol GA-Rate% GATime SS- Sol SS - Rate % SS-Time 
78 97,5 57,88 80 100 20,0 
97 97 65,21 99 99 34,1 
162 95 93,45 170 100 0,7 
280 93 124,0 300 100 1,1 

Table 3. Solutions quality and running time results obtained by PTS, MA, GA and SS on JNH 
instances 

Instances # var #clauses PTS-   
Sol 

Rate 
% 

Time MA 
-Sol      

MA 
Rate% 

Time 

Jnh201-yes 100 800 800 100 406,3 800 100 290,99 
Jnh202- no 100 800 798 99 1516,7 794 99 621,41 
Jnh203-no 100 800 798 99 1737,8 792 99 799,12 
Jnh204-yes 100 800 799 99 1452,0 793 99 779,88 
Jnh205-yes 100 800 800 100 1283,3 796 99 520,3 
Jnh206-no 100 800 799 99 1430,9 793 99 824,5 
Jnh207-yes 100 800 800 100 1064,5 795 99 783,34 
Jnh208-no 100 800 799 99 1430,1 791 99 526,11 
Jnh209-yes 100 800 800 100 614,1 794 99 782,6 
Jnh210-yes 100 800 800 100 313,0 797 99 520,01 

GA   sol GA Rate% GA   Time SS sol SS Rate% Time 
780 97,5 444,70 800 100 831,7 
776 97 430,98 797 99 800,0 
774 97 432,60 798 99 700,0 
777 97 430,66 798 99 799,3 
775 97 433,66 800 100 0,945 
775 97 429,74 799 100 848,7 
777 97 431.78 799 99 790,4 
772 96,5 439,25 798 99 225,7 
775 97 429,72 800 100 635,7 
776 97 432,31 800 100 218,3 

 

    Above, some results found by the population-based tabu search, scatter search, 
genetic and memetic Algorithms. The results obtained by the evolutionary approaches 
are acceptable. In general, we can observe the superiority of the population-based 
tabu search and scatter search algorithms in solving the MAX-SAT problems from the 
quality of solution point of view (we have reached the optimum for lot of instances).  
PTS: When a population strategy is incorporated in TS the solutions space is better 
searched.  SS: When intensified improvement Tabu search and diversified compo-
nents are incorporated in SS, the solutions space is better searched. But the process 
search takes more time to find the solution. MA: When the local search ST is incorpo-
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rated in GA the solutions space is better searched. We precise, that in general, the role 
of a local search technique in Scatter, PTS, and memetic search algorithms is to locate 
the solution more efficiently. According to the experimental results, we can conclude 
that the single-oriented approaches play an important role in population-based  
processes.  

Table 4. Solutions quality and running time results obtained by PTS, MA, GA and SS on Du-
bois instances 

Instances # Var #clauses PTS-Sol Rate% Time MA 
sol  

MA 
Rate% 

MA 
Time 

Duboi20 60 160 159 100 84.75 159 100 1,63 
Duboi21 63 168 167 100 95.77 167 100 1,61 
Duboi22 66 176 175 100 106.00 175 100 1,68 
Duboi23 69 184 183 100 116,61 183 100 1,63 
Duboi24 72 192 191 100 120.89 191 100 1,69 
Duboi25 75 200 199 100 129,89 199 100 1,74 
Duboi26 78 208 207 100 165,03 207 100 1,80 
Duboi27 81 216 215 100 149,60 215 100 1,78 
Duboi28 84 224 223 100 225,92 223 100 1,72 
Duboi29 87 232 231 100 287,96 231 100 1,62 
Duboi30 90 240 239 100 214,35 239 100 1,81 
Duboi50 150 400 399 100 548,47 399 100 1,51 

GA-sol GAate% GA time SS sol SS Rate% SS Time 

155 97 430,01 159 100 53,9 

161 96 144,07 167 100 66,8 

171 98 90,02 175 100 61,7 

175 96 92,62 183 100 77,6 

185 97 88,84 191 100 49,9 

189 95 96,03 199 100 44,0 

199 96 101,66 207 100 86,4 

205 95 110.24 215 100 101,8 

211 95 106,19 223 100 108,8 

219 95 111,62 231 100 122,2 

227 95 117.98 239 100 67,3 

373 94 282,8 399 100 335,8 

8    Conclusion and Future Work 

In this paper, we have presented, at first, the single–oriented meta-heuristic called 
Tabu search. We have proposed to hybridize it with a population strategy to solve the 
MAX-SAT optimization problems. The solutions found by the PTS method are very 
encouraging. When a population strategy is incorporated in TS the solutions space is 
better searched.  Then, we have presented some well-known evolutionary meta-
heuristics which are genetic algorithms, memetic algorithm and scatter search. The 
four proposed approaches have been implemented on machine for solving MAX-SAT 
hard instances. The solutions found by the methods are encouraging; the numerical 
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results show a considerable performance in favor of PTS and scatter search. The scat-
ter search method takes its superiority from the use of several techniques as diversifi-
cation used by scatter search components (generator, combination methods) and  
intensification strategy by the improvement procedure. But the search process takes 
more time for finding the solution in comparison with memetic and PTS approaches.  
The solutions found by the memetic method are encouraging; the result method takes 
its superiority from the use of several techniques as cooperation supplied by crossover 
operators and the local search heuristic and the competitive aspect supplied by a se-
lection phase. When ST is incorporated in GA the solutions space is better searched. 
We plan to improve our framework to implement a parallel hybrid evolutionary ap-
proach.             
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Abstract. This work is motivated by the long-standing open problem
of designing a polynomial-time algorithm that with high probability con-
structs an asymptotically maximum independent set in a random graph.
We present the results of an experimental investigation of the compara-
tive performance of several efficient heuristics for constructing maximal
independent sets. Among the algorithms that we evaluate are the well
known randomized heuristic, the greedy heuristic, and a modification of
the latter which breaks ties in a novel way. All algorithms deliver on-
line upper bounds on the size of the maximum independent set for the
specific input-graph. In our experiments, we consider random graphs pa-
rameterized by the number of vertices n and the average vertex degree
d. Our results provide strong experimental evidence in support of the
following conjectures:

1. for d = c ·n (c is a constant), the greedy and random algorithms are
asymptotically equivalent;

2. for fixed d, the greedy algorithms are asymptotically superior to the
random algorithm;

3. for graphs with d ≤ 3, the approximation ratio of the modified greedy
algorithm is asymptotically < 1.005.

We also consider random 3-regular graphs, for which non-trivial lower
and upper bounds on the size of a maximum independent set are known.
Our experiments suggest that the lower bound is asymptotically tight.

1 Introduction

The problem of constructing a maximum independent set (MIS) in a graph is a
classical NP-hard computational problem [9], which arises in many applications.
It is also NP-hard to approximate the size of the maximum independent set [11].
For general graphs, the best approximation algorithm for the independence num-
ber has an approximation ratio of O(n/(log n)2) [4]; for bounded-degree graphs,
the best ratio known is O(Δ/ log logΔ) ([8]). The problem is 2-approximable on
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random graphs with fixed edge probability p (the average degre d is (n − 1)p).
Here we consider random graphs in the Erdös-Rényi, or G(n, p)-model [2, 5]:
given n vertices, each of the

(
n
2

)
edges is generated independently with prob-

ability p. Let α(n, p) be a random variable denoting the size of a maximum
independent set in a G(n, p) graph. For fixed p, it is known that the standard
randomized algorithm Random (described below) outputs an independent set
of size 1 ∼ log1/(1−p) n, with probability → 1 (w.p.1). The 2-approximability
of MIS on G(n, p) with fixed p follows from the results by Bollobás and Erdös
([3]) and Matula ([12]), where they show that for a G(n, p) graph with fixed p,
α(n, p) ∼ 2 log1/(1−p) n, w.p.1. For c > 0, no polynomial algorithm for MIS on a
G(n, p) is known to find, w.p.1, an independent set of size ∼ (1 + c) log1/(1−p) n.
Frieze and McDiamard [6–page 11] pose the following research problem:

Construct a polynomial algorithm that finds an independent set of size
∼ (1

2 +c)α(n, p) with high probability, or show that no such algorithm ex-
ists, modulo some reasonable conjecture on the computational complexity
hierarchy (e.g. P �= NP ).

Two well-known algorithms for MIS are Random and Greedy, which are instan-
tiations of the following general sequential algorithm:

1: Sequential algorithm for MIS:
2: I = ∅ (the independent set);
3: while G �= ∅ do
4: select a vertex v ∈ G;
5: I ← I ∪ {v};
6: G ← G \ {N(v) ∪ v}

In Random, the vertex selected in step 4 is random, whereas in Greedy it is a
minimum degree vertex (ties are broken randomly). Random is generally easier
to analyze mathematically ([2]), but it under-performs Greedy on most graph
domains. It is not known whether Greedy is asymptotically better than, worse
than, or equivalent to Random on G(n, p) graphs. It is not known whether there
are any polynomial-time algorithms that perform asymptotically better than
Random. The difficulty encountered by existing analysis techniques in attempt-
ing to analyze deterministic algorithms, e.g. Greedy, on random objects is that
during execution, the algorithm destroys the randomness in an analytically un-
predictable way. This difficulty already surfaces when one analyzes Greedy on
random graphs with average degree 3. The only results that carry through the
analysis of Greedy are those for finding matchings in random graphs ([10], [1]) and
for 3-regular random graphs ([7]). However, it is not known how Greedy performs
on random d-regular graphs with d ≥ 4; on random graphs with the average ver-
tex degree d, for any d > 0; or on random graphs with a fixed edge-probability
p > 0 (d = p(n− 1)).

1 We use the notation f(n) ∼ g(n) if lim
n→∞

f(n)/g(n) = 1.
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In this paper, we present the results of a comparative experimental investi-
gation of the performance of several fast polynomial heuristics for constructing
maximum independent sets in random graphs. The procedures that we tested in-
clude Random, Greedy, and a modification of the latter, Greedym, which breaks
the ties in a novel way. All three heuristics deliver, on-line, upper bounds on the
size of the maximum independent set in the input-graph. The input domain of
all experiments is the set of random graphs with a given number n of vertices
and a given average vertex degree d. Based on the experiments, we formulate
the following conjectures:

– for d = c ·n (c is a constant), Random and the greedy algorithms are asymp-
totically equivalent, i.e., the independent sets they construct are asymptot-
ically of the same size;

– for fixed d, Greedy and Greedym are asymptotically superior to Random;
– for d ≤ 3, the approximation ratio of Greedym is asymptotically < 1.005

w.p.1.

We also tested our algorithms on random 3-regular graphs for whichnon-trivial
lower and upper bounds on the MIS exist ([7]). The results suggest that the
lower bound is asymptotically tight.

We will use standard graph theory notation as described in [13]. For a graph
G, the independence number α(G) is the maximal size of an independent set
in G. For v ∈ V (G), αv(G) denotes the maximal size of an independent set
containing v. Vertex v is correct if αv(G) = α(G). N(v) is the neighborhood
of v, the set of vertices adjacent to v; deg(v), the degree of v, is the size of
the neighborhood, |N(v)|; deg(G) = maxv deg(v). For a subset of the vertices,
T ⊆ V (G), N(T ), the neighborhood of T , is the union of the neighborhoods of
the vertices in T .

Let A be a sequential algorithm for MIS, which constructs an independent set
by repeatedly selecting vertices, e.g. Random, or Greedy. When A is applied to
G, suppose that the sequence of vertices selected is {v1, v2, . . . , vk} (k is the size
of the independent set). Let Gi be the subgraph obtained from G by removing
N({v1, . . . , vi−1}). The dynamic degree deg(vi) is the degree of vi in Gi (the
dynamic degree depends on the algorithm A); deg(G), the dynamic degree of
G, is maxi{deg(vi)}. Let I� denote the vertices in the output independent set
whose dynamic degrees are � (� ≥ 0); thus, I = ∪�≥0I�.

2 On-line Upper Bounds

A key feature of our algorithms is that we bound the approximation ratio of the
output independent set, for the specific input graph. Our bounds are based on
the following observations.

Lemma 1. Let v ∈ V (G). If deg(v) = 0, then αv(G) = α(G), otherwise
αv(G) ≥ α(G)− deg(v) + 1. If αv(G) < α(G), then every MIS of G contains at
least α(G)− αv(G) + 1 vertices from N(v).
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Lemma 2. For a sequential algorithm A which selects vertices {v1, . . . , vk},
α(G) ≤ |I0|+

∑k
i=1 deg(vi).

The lemmas imply that selecting any vertex of dynamic degree 0 or 1 is cor-
rect, and each vertex of dynamic degree 2 gives an error of size at most 1. Our
experiments show that for G(n, p) graphs with average degree ≤ 6, Greedy se-
lects a small number of vertices of dynamic degree 2, and the probability that
Greedy selects a vertex of dynamic degree ≥ 3 is asymptotically 0. The general
problem of determining whether a given degree two vertex belongs to an MIS
is NP-complete. We present polynomial-time sufficient conditions for a degree
two vertex to be correct. These conditions are incorporated in Greedym, an en-
hancement over Greedy in which ties between dynamic degree 2 vertices may
be broken optimally to yield a correct vertex. Since we can always remove any
vertex with dynamic degree 0 or 1, we assume that the dynamic degrees of all
vertices are at least 2.

A straight path is a path containing only degree two vertices. An interval
is a straight path which is not a proper subpath of another straight path. A
straight path is even (resp. odd) if its length is even (resp. odd). (The smallest
interval consisting of one vertex is even and has length 0.) The end-points
of an interval are the first and last vertices of the interval. A connector is a
vertex of degree > 2 adjacent to the end-points of an interval. A leaf-interval
(or leaf) is an interval with length > 0 whose end-points are adjacent to the
same connector. A loop-interval (or loop) is an interval whose end-points are
adjacent.

Define a bi-partite graph Q = (I ∪ C;F ) as follows: the vertex set is I ∪ C,
where I is the set of intervals and C is the set of connectors; the edge (p, c) is in
the edge set F iff p is an interval in I and c is a connector adjacent to at least one
end-point of p. The even (resp. odd) subgraphs Qev (resp Qodd) are the induced
subgraphs after removing the even (resp. odd) intervals from Q. We now give
sufficient conditions for a degree 2 vertex to be correct (proofs are postponed to
a full version of the paper).

Theorem 1. If v is an end-point of a loop or leaf, then v is a correct.

Theorem 2. Let C be a connected component of Qev and v an end-point of an
interval in C. Then v is correct if one of the following hold:

1. C contains a cycle;
2. two connectors from C are adjacent in G;
3. there is an odd interval whose connectors are both vertices in C.

2.1 Greedym: Modifying the Greedy Algorithm

Theorem 2 indicates how we can modify Greedy to obtain a better algorithm. If
a degree 2 vertex v is encountered, we may try to determine if it is correct. If it is
correct, then we may safely take v. A polynomial-time scan through all degree 2
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vertices can be used to find a correct degree two vertex if one exists. If no degree
2 vertex is found, then the degree 2 vertex that is a member of the longest path
is selected, resulting in a mistake of at most 1 for all the vertices selected in the
path. Thus, Greedym differs from Greedy (described in the introduction) only in
how it breaks ties among dynamic degree 2 vertices.

2.2 Efficiently Generating Random Graphs

For dense graphs (fixed edge probability p), the expected size of the input is
Ω(n2). Thus, one cannot significantly improve upon the algorithm that
checks each of the

(
n
2

)
pairs to generate

(
n
2

)
p of edges independently with

probability p.
When p = o(1), generating the edges by examining all pairs of vertices is

excessive since only O(n2p) edges need be generated. It is therefore more ef-
ficient to first generate the number of edges M , and then select the specific
edges. For sparse graphs, with p = d/(n− 1), this approach yields considerable
computational savings.

Specifically, the number of edges in the graph M is a binomial random vari-
able B(p,

(
n
2

)
). The following code can be used to generate M efficiently,

1: x = 0; y = 0; N =
(

n
2

)
; c = ln(1− p);

2: if c = 0 then
3: return 0;
4: while TRUE do
5: Generate a uniform random variate u ∈ [0, 1];
6: y ← y + � lnu/c �+ 1;
7: if y ≤ N then
8: x ← x + 1;
9: else

10: BREAK;
11: return x;

The runtime of the algorithm is O(x), where x is the output value for M . Since
the expected value of M is

(
n
2

)
p = O(n) (sparse graphs), we see that generating

M is quite efficient.
Given M , it is now a simple matter to uniformly pick M edges from the

available
(

n
2

)
edges. The following algorithm accomplishes this task,

1: Let S = ∅ be the set of selected edges;
2: while |S| < M do
3: Generate a uniform integer random variate u ∈ [1,

(
n
2

)
];

4: if edge u �∈ S then
5: S ← S ∪ u;

The probability that a sampled edge is not placed in S is O(1/n) for sparse
graphs. Therefore in M = O(n) samples, O(1) edges are rejected. Thus, O(2M)
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samples should suffice. If the set S is stored in a data structure that allows for
efficient searching in time O(log |S|), for example a balanced binary search tree,
then the entire algorithm has expected run time O(M logM).

3 Experimental Results

The experiments described here involve running Random, Greedy, and Greedym

on randomly generated graphs from different domains: G(n, p) for a fixed p;
G(n, p) for p = d/(n−1), where d is an integer in [1,10]; and 3-regular graphs. All
our experiments are reproducible, since we use a seeded pseudo-random number
generator. The machines used to run the experiments range in size and power
from Sun Ultra 10 workstations with 256MB RAM running Solaris, to Intel IA64
based workstations with 16GB RAM running Linux.

3.1 Greedy Versus Random for Fixed Edge Probability

It is not known whether Greedy outperforms Random on G(n, p) graphs for
fixed p – no theoretical or experimental evidence to the contrary is available. We
present experimental data comparing Random to Greedy on G(n, p) graphs for
fixed p. We show the results for p = 0.1 and n up to 100,000 (other values of p
gave similar results).

For each n, we generated 1000 graphs, and compared the average independent
set size found by Greedy to that found by Random. Let g(n, p) (resp. r(n, p))
be the average independent set size found by Greedy (resp. Random). We are
interested in the ratio R(n, p) = g(n, p)/r(n, p), which is plotted in Figure 1(a).
Figure 1(a) shows that R(n, p) is not a monotone function (as was expected
initially) but a unimodular function with the maximum near n = 1000.
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Fig. 1. (a) R(n, p) for p = 0.1, n ≤ 50000. Also shown is the fit to 1/ log n for n ≥
10, 000. (b) Convergence of c0(nL) for f(n) ∈ {1/ log n, log log n/ log n}
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Although Greedy consistently finds a larger independent set than Ran-
dom, and R(100, 000, 0.1) > 1.15, the analysis of R(n, 0.1) suggests that indeed
R(n, 0.1) → 1, as n → ∞. We analyze the experimental data for R(n, 0.1) by
fitting a curve of the form R(n, p) = c0 + c1f(n), where f(n) → 0. We have
tried many functional forms for f(n) (yielding similar results), but the func-
tional forms f(n) = 1/ log n and f(n) = log log n/ log n are suggested by the
theoretical analysis of Random, and so we only show the results for these two
functional forms. For n ≥ nL, we can obtain the optimal least squares fit for c0,
denoted c0(nL). As nL gets larger, c0(nL) should converge to the true value of
c0. We show the convergence of R(n, 0.1) as a function of n and the convergence
of c0(nL) in Figure 1. From Figure 1(b) it appears that c0 converges to 1 for
f(n) = 1/ log n. f(n) = log log n/ log n does not give a reasonable value for c0 as
it is below 1. Thus the data indicates that c0 → 1 and that f(n) = 1/ log n. In
particular, this indicates that Greedy only outperforms Random by a constant
number of vertices.

3.2 Greedy Versus Random for Fixed Average Degree

Frieze and Suen [7] show that for random 3-regular graphs, Greedy constructs
an independent set of the size at least (6 log 3

2 − 2)n ≈ 0.432791n w.p.1., which
is asymptotically larger than the independent set constructed by Random (the
asymptotics for Random can be found in [2]). The data in Table 1 show that
the lower bound on the performance of Greedy is tight. Each entry is an average
over 1000 randomly generated graphs.

Table 1. Size of independent sets found in 3-Regular graphs

n Random Greedy

1,000 0.3749 n 0.4320 n

5,000 0.3751 n 0.4324 n

10,000 0.3750 n 0.4326 n

50,000 0.3750 n 0.4327 n

Our experiments on random graphs with fixed average degree show a similar
performance gain for Greedy over Random. Figure 2 shows the ratio R(n, p) for
d = 1, 2, 3, 4, 5, 6; and n ∈ [1000, 50, 000]; each data point is an average over 1000
graphs. The main conclusion: on average, Greedy outperforms Random by a
multiplicative constant which is increasing in d for small d.

3.3 Dynamic Degrees

We now consider the dynamic degrees of the vertices in the independent sets
found by Greedy and Random. The dynamic degrees allow us to establish non-
trivial upper bounds on the independence number of the input-graph. The dy-
namic degree distributions with respect to Greedy for random average degree 3



520 M. Goldberg, D. Hollinger, and M. Magdon-Ismail

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

ra
tio

number of vertices

Ratio of Greedy to Random
in graphs with fixed average degree

Degree 6
Degree 5
Degree 4
Degree 3
Degree 2
Degree 1

Fig. 2. Ratio of Greedy vs. Random for graphs with fixed average degree

Table 2. Distribution of dynamic de-

grees for graphs with average degree 3

n I0/n I1/n I2/n

1000 0.076 0.442 0.013

5000 0.073 0.449 0.009

10000 0.073 0.451 0.009

50000 0.072 0.452 0.008

100000 0.072 0.452 0.008

Table 3. Distribution of dynamic de-

grees for graphs with average degree 4

n I0/n I1/n I2/n

1000 0.025 0.363 0.083

5000 0.023 0.368 0.081

10000 0.023 0.368 0.080

50000 0.022 0.369 0.080

Table 4. Distribution of dynamic de-

grees for graphs with average degree 5

n I0/n I1/n I2/n

1000 0.010 0.255 0.160

5000 0.008 0.260 0.157

10000 0.008 0.260 0.157

50000 0.008 0.262 0.156

Table 5. Distribution of dynamic de-

grees for graphs with average degree 6

n I0/n I1/n I2/n I3/n

1000 0.004 0.161 0.224 0.0002

5000 0.003 0.165 0.222 0.0000

10000 0.003 0.166 0.222 0.0000

50000 0.003 0.166 0.221 0.0000

graphs are shown in Table 2. Tables Tables 3, 4 and 5 give the corresponding
distributions for average degrees 4, 5 and 6 respectively.

These statistics (averaged over 1000 graphs) were collected from the same
data used in the previous section. Although there are a few vertices of dynamic
degree 3 for average degree and 6 graphs, it is clear that the number of such
vertices is approaching zero as the graph size increases.
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Table 6. Accuracy of Greedy on random graphs with a fixed average degree

Average Approximation Ratio
Degree n = 1000 n = 5000 n = 10000 n = 50000

1 1.0000784 1.0000195 1.0000077 1.0000014

2 1.0006551 1.0001155 1.0000603 1.0000111

3 1.0249426 1.0174993 1.0161715 1.0150454

4 1.1767924 1.1709950 1.1708517 1.1694409

5 1.3761916 1.3700855 1.3695010 1.3674423

6 1.5764024 1.5693010 1.5685679 1.5670232

Using the data collected above we are able to evaluate the accuracy of
Greedy using the bound in Lemma 2. Table 6 shows the approximation ra-
tio for Greedy on average degree graphs with up to 50,000 vertices. The ratio
shown is the average upper bound on the size of independent set derived from
the dynamic degrees over the average size found by the Greedy algorithm.

Our interpretation of the data presented in Table 6 is that Greedy is very
near optimal for graphs with average degree 1 and 2, and probably 3 as well
(asymptotically).

3.4 Greedym for Average Degree 3

Greedym is similar to Greedy except that the ties between dynamic degree 2
vertices are broken by incorporating the sufficient conditions in Theorem 2. Thus,
not only will the independent set found be larger, but the bound obtained in
Lemma 2 can be improved by subtracting the number of dynamic degree two
vertices that are correct. The approximation ratios in Table 7 uses this improved
upper bound from Greedym. As before, each entry is based on an average over
1000 random graphs.

Table 7. Approximation ratios for Random, Greedy, and Greedym; average degree = 3

n Random Greedy Greedym

1000 1.183317 1.021652 1.013076

5000 1.170949 1.012581 1.006536

10000 1.171350 1.012373 1.006349

50000 1.166931 1.009917 1.004922

100000 1.166914 1.009740 1.004830

4 Conclusions

The main objective of this research is the development of a database of exper-
imental results to aid the theoretical investigation of the problem of constructing
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large independent sets in random graphs. Our experiments support a conclusion
that traditional randomized algorithms are not optimal on a variety of random
graphs domains, and may give clues as to what results may hold and how to
prove them.

Specifically, for sparse random graphs, the greedy algorithm asymptotically
outperforms the randomized algorithm by a constant factor. Up to average degree
3, the modified greedy algorithm which breaks the ties among dynamic degree
2 vertices appears to be asymptotically optimal or near optimal (approximation
ratio < 1.005).

For dense graphs, with fixed edge probability p, our results indicate that the
greedy and randomized heuristics are asymptotically equivalent. In particular,
the ratio of Greedy to Random appears to have the dependence Ratio = 1 +
c1/ log n. Since the asymptotics of Random are well known on this random graph
domain, Random = log1/(1−p) n + o(log n), our results indicate that Greedy is
asymptotically only a constant better than Random.

Our results indicate that for sparse graphs, the modified greedy algorithm
is asymptotically superior to the randomized algorithm. However, for fixed edge
probability p the greedy and randomized algorithms are asymptotically equivalent.
An interesting open question raised by our results is to determine the threshold
p(n) for the edge probability below which the greedy algorithm is superior to the
randomized algorithm, and above which the two are equivalent.
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Abstract. We address the problem of determining the natural neighbourhood of
a given node i in a large nonunifom network G in a way that uses only local
computations, i.e. without recourse to the full adjacency matrix of G. We view
the problem as that of computing potential values in a diffusive system, where
node i is fixed at zero potential, and the potentials at the other nodes are then
induced by the adjacency relation of G. This point of view leads to a constrained
spectral clustering approach. We observe that a gradient method for computing
the respective Fiedler vector values at each node can be implemented in a local
manner, leading to our eventual algorithm. The algorithm is evaluated experimen-
tally using three types of nonuniform networks: randomised “caveman graphs”,
a scientific collaboration network, and a small social interaction network.

1 Introduction

The recent interest in the analysis of natural network data [16, 17, 24] has given rise
to an array of fascinating algorithmic research issues. One key task is that of extract-
ing natural clusters of nodes in a network that have a relatively high interconnectivity
among themselves, and a relatively low connectivity to the rest of the network. (Also
called “communities” in, e.g. [17, 18].) Most of the existing literature on this topic con-
siders the task of finding an ideal global clustering of a given graph. This is, however,
infeasible by present techniques in the case of very large networks such as the WWW.
For large networks, an effective clustering algorithm should scale at most linearly in
the number of nodes n, whereas global clustering methods typically scale as m logm
or mn, where m is the number of edges. In the case of the WWW, where n and m
are currently in the order of several billions, such methods are quite inadequate. The
fastest global algorithms can currently deal with networks containing up to maybe a
few millions of nodes [13, 17, 18]. An added complication with online networks such
as the WWW is that not all the nodes are directly accessible, and the graph can only be
explored “on demand”.

In many applications it would in fact be sufficient to know the relevant cluster of a
given source node, or maybe a group of nodes. Some recent papers, such as [20, 22, 25]
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address also this more limited goal. E.g. in [20, 22], a parameter-free local cluster-
ing quality measure is optimised using simulated annealing; the computational effort
needed to obtain the cluster of a given source node is quite modest and — most impor-
tantly — independent of the total size of the network, and the results seem to be quite
robust with respect to variations in the annealing process.

One fascinating aspect of the clustering problem is that it is not even clear how
the notion of a “natural cluster” of nodes in a graph should be defined. It is usu-
ally apparent to the human eye what the “correct” or at least “reasonable” cluster-
ing of a given node neighbourhood is, but this intuition is difficult to make precise
in a way that could be reliably automated. The clustering quality measure in [20, 22]
is robust, easily computable and gives good results, but is somewhat heuristic. In the
general literature, spectral and conductance-based notions are preferred on conceptual
grounds [7, 8, 10, 11, 12, 14, 19, 21], but are computationally demanding. (See, however,
[15] for a distributed algorithm for decentralising the computational load.) Also flow-
based and other more heuristic approaches have been proposed; see [1, 9] for overviews
and comparisons.

In [25] the clustering task is formulated, with the goal of efficient computation, as
a problem of determining voltage levels in an electrical circuit with unit resistances
corresponding to the edges of the original network. The source node is fixed at a high
potential and a randomly selected target node at low potential; an approximate solution
to the Kirchhoff equations is computed by an iteration scheme, and the eventual cluster
of the source node is deemed to consist of those nodes whose voltages are “close” to the
high value. The possibility that the target node is accidentally selected from within the
natural cluster of the source node is decreased by repeating the experiment some small
number of times and determining cluster membership by majority vote.

This electrical circuit analogue appears to have been first suggested in [18], where
however the aim is to compute a global clustering of a given network by considering all
possible source-target pairs, and for each pair solving the Kirchhoff equations exactly
by explicitly inverting the corresponding Laplacian matrix. (We note that since solu-
tions of the Kirchhoff equations can be decomposed in terms of the eigenvectors of the
circuit graph Laplacian, this method is actually also a variant of the spectral partitioning
techniques.)

In Section 2, we present our local clustering algorithm, which improves on [18, 25]
by eliminating the need for arbitrary “target” nodes, and by making the connection to
spectral methods explicit. Section 3 discusses our experiments with the method. Sec-
tion 4 summarises the work and addresses directions for further research.

2 Approximate Computation of Fiedler Vectors

We continue the analogue of representing cluster membership values as physical poten-
tials, but eliminate the unnatural choice of random “target” nodes by basing our model
on diffusion in an unbounded medium rather than the electrical closed-circuit model.
Thus, given a graph G and a source node i, we fix i at a constant potential level, which
we choose to be zero, and consider the solution to the discrete Dirichlet problem on G
with this single-node boundary condition [3, p. 128]. For clustering purposes, we find
an eigenvector u corresponding to the smallest eigenvalue σ1 of the respective Dirichlet
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matrix, i.e. the Laplacian matrix of G with row and column i removed [3, 4]. This eigen-
vector u, the (Dirichlet-)Fiedler vector of G, will now assign potential values u(j) close
to 0 for nodes j that are within a densely interconnected neighbourhood of the source
node i, and larger values for nodes that have sparser connections to the source. The
method obviously generalises to starting from a larger set of source nodes, if desired.

An alternative point of view [5] is to consider a simple random walk on the graph G:
from each node in G, move to one of its neigbours with uniform probability. Modify the
transition matrix P of this Markov chain by making node i absorbing; denote the new
transition matrix by P ′. Then our Fiedler vector u is the right eigenvector associated to
the second largest eigenvalue of P ′, i.e. the (super)harmonic potential associated to the
most slowly decaying mode of this absorbing chain.1

It is shown in [3, 4] that the Fiedler vector u associated to (the i-absorbing simple
random walk on) graph G can be obtained by minimising the degree-adjusted Rayleigh
quotient:

σ1 = inf
u

∑
j∼k(u(j)− u(k))2∑

j deg(j) · u(j)2
, (1)

where the infimum is computed over vectors u satisfying the boundary condition u(i) =
0 at the source node(s). (The notation j ∼ k is an abbreviation for (j, k) ∈ E.) This
representation enables the approximation of u by a local algorithm, not requiring the
full adjacency matrix of the network.

Since we are free to normalise our eventual Fiedler vector u in any way we wish,
we can constrain the minimisation to vectors u that satisfy, say,

‖u‖ .=
∑

j

deg(j) · u(j)2 = 2m,

wherem is the total number of edges inG. The exact value of the normalisation constant
does not actually matter: 2m is chosen here because it is an upper bound on the value
of the sum if all components u(j) are between 0 and 1.

Thus, the task becomes one of finding a vector u that satisfies:

u = argmin

{∑
j∼k

(u(j)− u(k))2 | u(i) = 0, ‖u‖ = 2m
}
. (2)

We can solve this task approximately by reformulating the requirement that ‖u‖ = 2m
as a “soft constraint” with weight c > 0, and minimising the objective function

f(u) =
1
2

∑
j∼k

(
u(j)− u(k)

)2

+
c

2
·
(

2m−
∑

j

deg(j) · u(j)2
)

(3)

by gradient descent. Since the partial derivatives of f have the simple form

1 As is well known [2], the largest eigenvalue of a Markov chain transition matrix is always 1, with
left eigenvector representing the stationary distribution π and right eigenvector the potential
(1, 1, . . . , 1), both up to normalisation. In the present case, π = (0, . . . , 0, 1, 0, . . . , 0), with 1
in the ith position. The second largest eigenvalue dominates the convergence rate of the chain,
and the corresponding left and right eigenvectors indicate the most slowly converging mode.
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∂f

∂u(j)
= −

∑
k∼j

u(k) + (1− c) · deg(j) · u(j), (4)

the descent step can be computed locally at each node, based on information about the
u-estimates at the node itself and its neighbours:

ũt+1(j) = ũt(j) + δ ·
(∑

k∼j

ũ(k)− (1− c) · deg(j) · ũ(j)
)
, (5)

where δ > 0 is a parameter determining the speed of the descent.
Assuming that the natural cluster of node i is small compared to the size of the full

network, the normalisation ‖u‖ = 2m entails that most nodes j in the network will
have u(j) ≈ 1. Thus the descent iterations (5) can be started from an initial vector ũ0

that has ũ0(i) = 0 for the source node i and ũ0(k) = 1 for all k �= i. The estimates
need then to be updated at time t > 0 only for those nodes j that have neighbours k ∼ j
such that ũt−1(k) < 1.

Balancing the constraint weight c against the speed of gradient descent δ natu-
rally requires some care. We have obtained reasonably stable results with the following
heuristic: given an estimate k̄ for the average degree of the nodes in the network, set
c = 1/k̄2 and δ = c/10. The gradient iterations (5) are then continued until all the
changes in the u-estimates are below ε = δ/10. The ˜u(j) values are thresholded at 1,
so that if the right hand side of equation (5) suggests a value greater than this, then a
value of 1 is used in the update instead. Occasionally equation (5) may suggest also
negative u-estimates, but this we have taken as an indication of a too rapid descent, and
have restarted the run with a smaller value of δ.

The eventual (approximate) Fiedler values thus represent the degree of membership
of each node j in the cluster of node i. A fully automated clustering system needs
to still determine a good cluster boundary for node i, based on these values. This is
a simple one-dimensional two-classification task that can in principle be solved using
any of the standard pattern classifiers, such as the k-means algorithm [6]. However
since we wish to maintain the locality of our method also at this stage, the most obvious
implementations of these algorithms are not acceptable to us. (We have not yet looked
into the possibility of localising the standard classifiers.) One simple local approach
would be to just threshold the potentials as in [25], but we prefer not to introduce any
additional instance-specific parameters to the algorithm.

Rather, we choose to follow the approach of [22, 23] of defining a locally com-
putable cluster quality measure and optimising it by some local process — currently
by a simulated annealing computation that modifies (expands or contracts) a candidate
cluster one node at a time, with a time-increasing preference towards modifications that
improve cluster quality. Given a source node i and a candidate cluster S containing i, a
natural family of quality measures is provided by the weighted Cheeger ratios [3, p. 35]:

hw(S) =

∑
j∈S

∑
k∼j,k �∈S w(j, k)∑

j∈S

∑
k∼j w(j, k)

, (6)

where w(j, k) is an appropriate nonnegative edge weight function. Clusters S with
low Cheeger ratios have low (weighted) extracluster connectivity, and high (weighted)
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intracluster connectivity, as is to be intuitively expected of a good cluster. Thus, aim-
ing to minimise this ratio seems like a reasonable thing to do, and is also justified
by general isoperimetric principles. In our experiments, edge weights determined as
w(j, k) = (|u(j) − u(k)|)−1 seem to lead to natural clusters in different types of net-
works, and are also intuitively appealing.

3 Experiments

We report on tests of our local Fiedler clustering method on three types of networks:
randomised “caveman graphs” with 144 and 1533 nodes, a “collaboration graph” repre-
senting the pairwise coauthorships of 503 mathematicians and computer scientists, and
a small social interaction graph, so called “Zachary’s karate club network” often used
to illustrate also other network clustering algorithms (e.g. [16, 18, 25]).

The synthetic caveman graphs (cf. Figure 1) were generated according to a prob-
abilistic variation of the deterministic construction given in [24, p. 103]. Whereas the
recipe in [24] stipulates that a caveman graph of size n = rk and cavesize k consist
of exactly r copies of a k-clique connected together into a cycle in a specific way,
our construction gives only probabilistic parameters for the expected size, number and
connection densities of the caves, resulting in a somewhat more natural family of test
graphs with nevertheless predictable clustering properties. (The precise graph genera-
tion method is given in [23, p. 94].)

Figure 1 represents the results of the approximate Fiedler vector calculations on
a 144-node caveman graph, starting from three different source nodes. For visual ef-
fect, the nodes are colour-coded so that dark colours correspond to small approximated
Fiedler potential values, with the source node in each case coloured black. The pa-
rameter values used in this case were the standard ones derived from k̄ = 6.14 (i.e.
c = 0.027, δ = 0.003, ε = 0.0003). As can be seen, the method discerns the natural
clusters embedded in the graph quite distinctly. The nodes selected by the Cheeger ratio
heuristic for the relevant clusters in each of the three cases are indicated by thickened
node boundaries; also the clusters determined in this manner can be seen to correspond
to the natural ones. (The smaller, 144-node graph was chosen here merely for illustra-

Fig. 1. Local Fiedler clusters in a 144-node caveman graph
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tive purposes. The results on the bigger, 1533-node graph are qualitatively similar, but
the graph is too large to be represented in a drawing.)

Another perspective on the data is provided by Figure 2, where the approximate
Fiedler vector corresponding to the clustering in the middle panel of Figure 1 is pre-
sented numerically. On the left, the components of the Fiedler vector are ordered simply
by node index, and on the right they are sorted in increasing order. The vertical lines in-
dicate the nodes selected for the cluster of the source node (which in this case has index
95) by the Cheeger ratio heuristic. In our generating process for the synthetic caveman
graphs, nodes deemed to belong to the same “cave” are assigned consequent indices,
and hence good clusterings should exhibit the “band” structure observed on the left.
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Fig. 2. Components of a Fiedler clustering vector

Our second test graph was extracted from the Mathematics section of the Karl-
sruhe Collection of Computer Science Bibliographies.2 The raw coauthorship data was
cleaned in various ways to eliminate nonperson authors such as institutes and commit-
tees, unify spellings of authors’ names, etc. (details given in [23, p. 99]). The resulting
503-node graph is shown in the left panel of Figure 3. The right panel shows three
small collaborative clusters identified by the local Fiedler clustering method, starting
from three distinct source nodes; the clusters are non-overlapping in the sense that none
of the source nodes gave values less than 1.0 for any of the members of the other two
clusters.

Figure 4 presents a close-up view of the three clusters indicated in Figure 3, with
distant and overlapping nodes rearranged to allow a better view of the structure of the
induced subgraphs. Also in this instance, our standard parameter values based on k̄ =
3.3 were used.

The third example (Figure 5) represents the friendship relations among 34 members
of a university karate club studied by the anthropologist Zachary in 1977 [26] (cited
in [16]). Due to internal tensions, the club split into two during Zachary’s two-year study
period, and some of the members joined the former instructor of the club in establishing
a new organisation. In the graphs of Figure 5, the actual partition of the club is indicated

2 http://liinwww.ira.uka.de/bibliography/Math/, accessed 2 Dec 2002.
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Fig. 3. Local Fiedler clusters in a 503-node collaboration graph

Fig. 4. A closeup view of the three clusters

by the shape of the nodes: square nodes correspond to the club members who stayed in
the original club together with its administrator, and circular nodes correspond to the
members who moved to the new club.

In the left panel of Figure 5, the nodes are coloured according to their approximate
Fiedler values in the cluster of the original club’s administrator, and in the right panel
according to the club’s instructor. As can be seen, the correlation between the shapes
and colours of the nodes is quite good in both cases; only a few nodes in the middle are
“undecided” as to which club they belong to, but this may correspond also to the actual
social reality of the situation.

We wish to emphasize that the small size of our example graphs here is due to the
requirements of illustration. The fact that our method is local means exactly that its
running time scales relative to the size of the resulting cluster, and does not depend on
the size of the ambient graph.

In fact, we have also implemented the method in such a manner that the u-estimates
are updated according to equation (5) only as required by the optimisation process of the
Cheeger clustering criterion (6). This means, firstly, that nodes that fall out of the single-
edge neighbourhood of an evolving candidate cluster no longer need to be accessed, and
secondly, that nodes that remain in the cluster have their u-estimates updated repeatedly
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Fig. 5. Fiedler values in a 34-node karate club network

in connection with re-evaluations of the Cheeger criterion, thus implicitly focusing the
gradient descent of the u-estimates to the part of the graph that is of interest for the clus-
tering goal. This implementation saves considerably in both the working space and the
running time requirements of the algorithm, without affecting the quality of the results.

4 Conclusions and Further Work

We presented a local method for clustering graphs based on computing their approxi-
mate Fiedler vectors and illustrated its behaviour on simple “caveman”, “collaboration”
and social interaction graphs. According to our experiments, the method behaves well
and conforms to the intuition that arises from its analytical properties. The key char-
acteristic of the method is that its resource requirements depend only on the size and
connectivity of the resulting cluster, and not on the characteristics of the whole graph.

As future work, the algorithm should also be extended to work on directed graphs,
in order to deal with interesting natural networks such as the WWW. Some interesting
issues remain also in the area of localising standard clustering methods and comparing
them to the presently used Cheeger criterion optimisation technique.
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Abstract. The provably efficient randomized approximation scheme
which evaluates the partition function for the wide class of lattice models
of protein prediction is presented. We propose to apply the idea of self-
testing algorithms introduced recently in [8]. We consider the protein
folding process which is simplified to a self-avoiding walk on a lattice. The
power of a simplified approach is in its ability to search the conformation
space, to train the search parameters and to test basic assumptions about
the nature of the protein folding process. Our main theoretical results
are formulated in the general setting, i.e. we do not assume any specific
lattice model. For the simulation study we have chosen the HP model on
the FCC lattice.

1 Introduction

One approach to protein structure prediction is to simulate the backbone of
α-carbons of n-residue protein as a self-avoiding walk (SAW), where n beads
on a string occupy adjacent lattice sites. Lattice models of protein folding have
provided valuable insights into the general complexity of protein structure pre-
diction problem: for the variety of models it has been shown to be NP-hard
and even MAX SNP hard (see e.g. [4]). These intractability results are comple-
mented by efficient (heuristic or approximation) algorithms that construct the
near-optimal protein structures.

A self-avoiding walk takes place on a graph, and it is a walk (i.e. a sequence
of distinct graph vertices) that starts at a fixed origin. In this paper we are
concerned with self-avoiding walks on some regular lattices. We call a lattice
regular if any two lattice vertices can be mapped on the other by a translation
of the lattice. Self-avoiding walks have been studied for many years and are the
subject of an extensive literature, see e.g. the monograph [3].

Recently, Randall worked on uniform generating and approximate counting
self-avoiding walks on lattices Zd, and wrote in [7]: ”[...] A generalization worth
exploring is sampling self-avoiding walks with attractive or repulsive forces among

� Research supported by Polish Research Council KBN grant 4 T11C 044 25.
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the bonds. [...], this problems arises in computational biology in context of protein
prediction. The sites of the self-avoiding walk represent carbon atoms of a long pro-
tein chain, and forces between carbon atomswhich are adjacent in the lattice, but not
along the protein, determine the structure of the protein. Biologists are interested in
generating such ’potential’ protein structures according to their likelihood in order
to infer properties about actual proteins which are difficult to probe directly.” This
quotation includes major motivations of our paper. Randall have posed also two
problems from which we are solving here the latter.

Notation. We consider finite regular lattices L that satisfy the following condi-
tions: (a) the number of outgoing edges from any vertex equals D; (b)the lattice
is strongly connected; (c) one of vertex is marked as an origin (zero point) and
denoted by 0. Examples of such lattices are cubic Zd (D = 2d) and face-centered
cubic (FCC, D = 12).

The length |w| of SAW w is the number of its edges. The set of SAWs of
length N on L is denoted by SN and the set of SAWs of length at most N
by XN =

⋃N
i=0 Si . The concatenation w ◦ v of two SAWs w and v is the walk

formed by translating v so that its origin coincides with the free endpoint of w
and appending the translated copy of v to w. Note that w ◦ v need not to be self
avoiding and length |w ◦ v| amounts |w|+ |v|.

The labeling of walks w ∈ XN is a mapping s from the set {0, 1, . . . ,N} to
some finite alphabet Σ, and it labels ith site of walk w by s(i).

For 0 < λ ≤ 1 we associate with each SAW w ∈ XN a weight λh(w), where
h : XN → R+ is any nonnegative, superadditive function which can be evaluated
for any walk from XN in time polynomial in N and |Σ|. The weight of a given
conformation (SAW) corresponds to a free energy of a folded protein sequence.

Let cN denotes the sum of weighted SAWs of length N , i.e. cN =
∑

w∈SN
λh(w).

In this paper, we present Markov Chain Monte Carlo algorithms for two prob-
lems concerning weighted SAWs:
– sample a walk proportional to its weight (i.e., sample from Gibbs distribution);
– compute cN , also known as a partition function; from this value one can de-
rive different characteristics such as density of states, entropies and energies
necessary to study the molecular properties of a model.

The running time of these algorithms is polynomial in the walk length and
grows slowly with parameters controlling the accuracy and confidence levels of the
estimates. Our algorithms are based on Randall approach presented in [7] and [8].

Example. Dill et. al. proposed ([1]) the HP lattice model for proteins. Accord-
ing to this model chains (SAWs) are configured on three-dimensional lattice, for
example Z3. An alphabet Σ consists of two letters H and P which correspond
to hydrophobic and polar amino acids. In the HP model, the weight function
reflects the fact that hydrophobic amino acids have (or not) a propensity to
form a hydrophobic core and it depends on the number of HH contacts (i.e. non-
adjacent hydrophobics that occupy adjacent grid points on the lattice).
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Organization of the paper. The paper is organized as follows. Section 2
presents the concept of randomized approximation scheme and the ideas behind
the self-testing approach. The main theoretical results are given here together
with the outline of the algorithms. Next Section contains the numerical results
obtained for the counting and generation problems. Section 4 is devoted to the
discussion of possible extensions of this work.

2 Theoretical Results

We start this Section with a formal definition of efficient randomized approxi-
mation schemes. The algorithms are based on the Markov Chain Monte Carlo
paradigm, i.e. on the simulation of appropriately defined Markov chain. Then
we formulate the main results.

Definition 1. A nearly Gibbs generator for weighted SAWs is a probabilistic
algorithm which, on input N and ε ∈ (0, 1), outputs a self-avoiding walk of
length N with probability at least 1/q(N) for a fixed polynomial q, such that the
conditional probability distribution over walks of length N has variation distance
at most ε from the Gibbs distribution. If this generator runs in time polynomial
in N, ε−1 and ln δ−1 with probability at least 1− δ, where δ ∈ (0, 1) is a part of
input, then we call it almost fully polynomial.

Definition 2. A randomized approximation scheme for the weighted prob-
lem of counting SAWs is a probabilistic algorithm which, on input N and ε, δ ∈
(0, 1), outputs a number c̃N such that

Pr (|c̃N − cN | ≤ cN ε) ≥ 1− δ

If this scheme runs in time T (N) such that

Pr
(
T (N) ≤ p(N, ε−1, ln δ−1)

)
≥ 1− δ

where p is some polynomial, then we call it almost fully polynomial.

Recall that we denote by ci the sum of weighted SAWs of length i (i.e. ci =∑
w∈Si

λh(w)). The following quantity affects the running time of our algorithms:

αN := min
j,k : j+k≤N

cj+k

cj · ck
.

Theorem 1 (Main Theorem). There exist:

– a nearly Gibbs generator for weighted self-avoiding walks,
– a randomized approximation scheme for the weighted problem of counting

self-avoiding walks

that run in time polynomial in N, ln ε−1 , ln δ−1 and α−1
N with probability 1−δ.
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We propose some generalization of widely believed conjecture about SAWs
([7]). This Conjecture is being tested simultaneously with running the algorithms
— this is the main idea of self-testing approach.

Conjecture 1. For any j, k ∈ N there exists a fixed polynomial g such that:

cjck ≤ g(j + k)cj+k

Corollary 1. Assuming Conjecture 1, there exist an almost fully polynomial
nearly Gibbs generator and an almost fully polynomial randomized approximation
scheme for the weighted SAWs.

2.1 The Markov Chain Mn

In this section we show how to incrementally construct Markov chainsM1,M2, . . .
such that the nth chain has as its state space the set of all SAWs of length at
most n and it depends on some parameters β1, . . . βn ∈ (0, 1). First we define the
chain Mn and deduce its basic properties, next we analyze its rate of conver-
gence. The approximation schemes whose existence are postulated by Corollary 1
are based on the following three ideas:

(1) by simulating Markov chain Mn−1 we can determine the mixing time of the
chain Mn necessary for its simulation during the next step;

(2) the quantity βn (needed for the chain Mn) is calculated in the previous step
using the chain Mn−1, so we do not require the knowledge of all βi;

(3) the self-testing procedure ensures that the algorithm runs in the polynomial
time; it tests whether Conjecture 1 is true for the assumed parameters’ space.

Our chain explores the space of self-avoiding walks by expanding and contracting
a walk randomly over time. Transitions in this chain are allowed only between
self-avoiding walks (states) whose lengths differ at most 1. Given such a neigh-
borhood structure, a Markov chain with the desired properties is immediately
obtained using the Metropolis method. This give us the transition probabilities
Pn of the Markov chain Mn defined by:

Pn(v, v′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
D min

{
λh(v′)−h(v)β|v′|, 1

}
if v ≺1 v′;

1
D min

{
λh(v′)−h(v)β−1

|v| , 1
}

if v′ ≺1 v;
r(v) if v = v′;
0 otherwise,

(1)

where r(v) is a normalizing constant, v, v′ ∈ Xn, and ≺1is the ordering on the
set of all self-avoiding walks such that v ≺1 v′ if and only if v′ extends v by one
step. More precisely, v ≺1 v′ (v ≺ v′) if and only if |v|+ 1 = |v′| (|v| < |v′|) and
the first |v| steps of v′ coincide with v.
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Proposition 1. The stationary distribution πn : Xn −→ R of the Markov chain
Mn is given by:

πn (v) =
λh(v)

Zn

|v|∏
i=1

βi, for all v ∈ Xn,

where Zn is a normalizing factor.

We assume that ε ∈ (0, 1) and
∣∣∣βi − ci−1

ci

∣∣∣ ≤ ci−1
ci

ε
2N .

Theorem 2. For the Markov chain Mn (with self-loops probabilities ≥ 1
2),

starting at the empty walk 0, we have

τn(ε) = τ
(n)
0 (ε) ≤ Kn2α−1

n ln
n + 1
ε

,

where K is some positive constant.

2.2 The Algorithm

Estimating αn to determine the mixing time for Mn. We have deter-
mined the mixing time of the Markov chain Mn as a function of the unknown
quantity αn, among other quantities. Thus we are interested in upper bounding
the quantity α−1

n . Of course, if we accept Conjecture 1 then we could everywhere
substitute g(n) for α−1

n , but we want to be independent of any conjectures. To
this aim, we present an algorithm for finding this upper bound with high prob-
ability.

The procedure approximating the quantity αn is shown as Algorithm 1. The
main part of this procedure is the estimation the quantity cn

cicn−i
within ra-

tio 1 + εα (with probability at least 1 − δ
n3 ) for which we find an unbiased

estimator an,i = λh(u,v)1[u◦v∈Sn], where i < n and u, v are random SAWs of
length i,n − i, respectively. To draw the sample of walks of any given length
i < n we simulate the Markov chain Mn−1 with the stationary distribution
πn−1. We assume also that we have previously calculated the approximated
value α̃n−1 using the same procedure. Then the procedure approximates αn

within ratio 1 + εα with probability at least 1− δ, because in the procedure we
have α̃n = min{α̃n−1,mini≤n an,i}. Lemma 1 states the main properties of the
procedure EstimateAlpha.

Lemma 1. Let εα, δ ∈ (0, 1) and tn ≥ cα−1
n ε−2

α (ln n+ln δ−1) (for some constant
c). Then for the procedure EstimateAlpha we have:

Pr (|α̃n − αn| ≤ αnεα) ≥ 1− δ.

Moreover, if TEA (random variable) denotes a running time of this procedure
then we have:

Pr
(
TEA = O

(
n2
(
tn + n ln δ−1

)
τn

))
≥ 1− δ,

where τn is the mixing time of the Markov chain Mn.
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Algorithm 1 EstimateAlpha

Require: εα, δ, λ, s[0 . . . N ], α̃−1
n−1, β̃−1

1 , . . ., β̃−1
n−1;

Ensure: α̃n;
1: α̃n := α̃n−1;
2: for i = 1, 2, . . . , �n/2� do
3: using Mn−1, generate tn random SAWs uj ∈ Si and tn random SAWs vj ∈ Sn−i;
4: for j = 1, 2, . . . , tn do

5: Xj :=

{
λh(u,v) if uj ◦ vj ∈ Sn;
0 otherwise;

6: end for
7: an,i := 1

tn

∑tn
j=1 Xj ;

8: α̃n := min{α̃n, an,i};
9: end for

10: return α̃n;

As a simple consequence of Lemma 1 we obtain that the running time of the
procedure EstimateAlpha is, with high probability, polynomial in n, α−1

n , ε−1,
ln δ−1, namely O(n4α−2

n ε−2) if we suppress logarithmic factors and assume that
εα ≤ ε. Because we want to know the quantity αn to determine the simulation
time for Mn and we are able to approximate it within ratio 1 + εα (with high
probability), so we could substitute α̃−1

n (1 + εα) for α−1
n . Notice that α−1

n ≤
α̃−1

n (1 + εα) with high probability.
Estimating βn. Recall that we need the parameter βn to simulate the Markov
chain Mn and we do not need it for Mn′ , where n′ < n. We show here how
to estimate the necessary quantity βn using the chain Mn−1, so in consequence
how to sample SAWs with repulsive forces among the bond. The procedure is
sketched in Algorithm 2, where we show also how to estimate the weighted sum
of SAWs of a given length (line 6).

Algorithm 2 EstimateBeta

Require: ε, εα, δ, λ, s[0 . . . N ];
Ensure: β̃−1

2 , β̃−1
3 , . . . , β̃−1

N and c̃2, c̃3, . . . , c̃N ;
1: c̃1 :=D; β̃−1

1 :=D; α̃1 := 1;
2: for n = 2, 3, . . . , N do
3: using Mn−1, generate a set Y of Tn random SAWs w ∈ Sn−1;
4: E :=

∑
w∈Y

∑
v	1w λh(v)−h(w);

5: β̃−1
n := E/Tn;

6: c̃n := c̃n−1 · β̃−1
n ;

7: output β̃−1
n and c̃n;

8: α̃n :=EstimateAlpha(εα, δ, λ, s, α̃n−1, β̃
−1
1 , . . . , β̃−1

n−1);
9: end for

We explain in more details how this procedure works. Assume that we have
already computed good approximations of the parameter βn′ for n′ < n, so
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we could use the chain Mn−1. To find a good approximation β̃n of βn = cn−1
cn

we sample Tn walks of length n − 1 (using the Markov chain Mn−1), then we
extend every sampled walk by one step in all directions, and we estimate the
average growth of weight for this walks. We can do this by checking all D − 1
possibilities. To obtain a good approximation of βn with high probability we do
not need too large sample size Tn for any n what is precisely stated in Lemma 2.

Lemma 2. Let ε, δ ∈ (0, 1), n ≤ N and Tn ≥ cN2α−1
n ε−2(lnN + ln δ−1) (for

some constant c). Then the procedure EstimateBeta estimates β−1
n such that:

Pr
(∣∣∣β̃−1

n − β−1
n

∣∣∣ ≤ β−1
n

ε

2N

)
≥ 1− δ

N
.

Moreover, let TEB (random variable) denotes a running time of this procedure
(excluding line 8, i.e. the estimation of αn) then TEB satisfies:

Pr
(
TEB = O

(
N2TNτN

))
≥ 1− δ

N
,

where τN is the mixing time of the Markov chain MN .

From this Lemma we have that with high probability the running time of the
procedure EstimateBeta, excluding line 8, is polynomial in N ,α−1

N ,ε−1,
ln δ−1, namely O(N6α−2

N ε−2 ln N
δ ln N

ε ). If follows from Lemma 1 that the run-
ning time of the whole procedure EstimateBeta is polynomial in N ,α−1

N ,ε−1,ln δ−1

and ε−1
α . Procedure EstimateBeta estimates also weighted sums of SAWs of

given length. Notice that cn =
∏n

i=1 β
−1
i = cn−1β

−1
n , so it is easy to approxi-

mate cn when we have already computed cn−1 and β−1
n .

Lemma 3. For the parameters taken from Lemma 2 the procedure EstimateBeta
estimates cn such that: Pr (|c̃n − cn| ≤ cnε) ≥ 1− δ.

Conjecture independence. Till now we have designed the algorithm which is
correct without any additional assumption, however to bound its running time
we need to assume Conjecture 1. The algorithm Selftest below tests, whether
this Conjecture holds. Using it we can guarantee almost fully polynomial time
for generation and counting procedures.

Recall that Conjecture 1 postulates the existence of a fixed polynomial g
such that: cjck ≤ g(j + k)cj+k. Hence, for all n we have α−1

n ≤ g(n) and this
inequality yields a polynomial mixing time for the Markov chain Mn.

The idea of self-testing is to assure with high probability that α−1
n ≤ g(n)

whenever we know that α−1
i for i < n. The quantity α−1

n is approximated by
procedure EstimateAlpha with the relative error not greater than εα with
probability at least 1 − δ. Thus, if α−1

n ≤ g(n) then for our estimator α̃−1
n the

inequality α̃−1
n (1 − εα) ≤ g(n) holds with the same probability. This inequality

yields α−1
n ≤ 1+εα

1−εα
and explains why in procedure Selftest we compare α̃−1

n (1−
εα) with g(n).

Theorem 3. Let n ≤ N and ε, εα, δ ∈ (0, 1) where εa ≤ ε. Then the procedure
EstimateBeta (Algorithm 2) with the self-tester incorporated (instead of line
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Algorithm 3 Selftest

Require: εα, δ, λ, s[0 . . . N ], α̃n−1, β̃
−1
1 , . . . , β̃−1

n−1;

1: α̃n := EstimateAlpha(εα, δ, λ, s, α̃n−1, β̃1, . . . , β̃n−1);
2: if α̃−1

n (1 − εα) > g(n) then
3: output ”Warning: conjecture fails!”;
4: end if

8) runs in time polynomial in N, ε−1 and ln δ−1 with probability at least 1 − δ.
Moreover, assuming that no warning message has been issued for any i < n, this
procedure satisfies the following properties:

(i) if α−1
n ≤ g(n), then the procedure outputs a reliable numerical answer (i.e.,

β̃−1
n and c̃n such that Pr

(∣∣∣β̃−1
n − β−1

n

∣∣∣ ≤ β−1
n

ε
2N

)
≥ 1− δ

N and Pr (|c̃n − cn|
≤ cnε) ≥1− δ) with probability at least 1− δ;

(ii) if α−1
n > 1+εα

1−εα
g(n), then the procedure outputs a warning message with prob-

ability at least 1− δ;
(iii) if g(n) < α−1

n ≤ 1+εα

1−εα
g(n), then the procedure either outputs a warning

message or a reliable numerical answer.

3 Numerical Results

HP model. We have chosen the HP model for its simplicity. It is one of the
most studied simple protein model. On the other hand this model is widely be-
lieved to capture many important properties of folding process. In HP model we
restrict the space of conformations to self-avoiding walks on a lattice in which
lattice points are labeled by the letters H and P. Depending on the parameter λ
the energy potential (i.e. the weight function) in HP model may reflect the fact
that hydrophobic amino acids have a propensity to form a hydrophobic core (for
λ > 1) or not (for λ < 1). For a walk w its weight is equal to λh(w), where h(w)
counts the number of hydrophobics that form a topological contact.

Selecting a lattice. HP simulations have typically followed Dill’s original choice
of square lattices. Unfortunately, there is one severe consequence of the structure
of the square lattice: no two amino acids can be in adjacent lattice points if the
string between them is of odd length. E.g. the sequence HPHPHPHPHPH. . .has
no HH contacts, despite the fact that such a protein has many contacts in “real
space”. We have decided to work with the face-centered-cubic (FCC) lattice,
since it is much more accurate in modeling real proteins and lacks the parity
problem of the cubic lattice. The most promising fact is that structure predic-
tion in the FCC HP model can be used for real protein structure prediction in
hierarchical approaches [11].

The FCC lattice is a close pack structure. It has alternating layers shifted so
its atoms are aligned to the gaps of the preceding layer. The FCC lattice, when
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Fig. 1. The basis vectors for FCC lattice

viewed along the (1 1 1) direction, is composed of hexagonal layers stacked upon
one another. The FCC layers cycle among the three equivalent shifted positions.
The FCC lattice nodes can be viewed as the points in R3 whose all coordinates
are integer and the sum of coordinates is even. FCC= {x ∈ Z3 :

∑3
i=1 xi is even}

(see Figure 1). Results. Our results are twofold: we have approximated the par-
tition function cN for a wide range of parameters and we have tested the Con-
jecture 1. The experiments are performed mainly for two sequences: first one
is somehow artificial sequence: w1 = HPPHPHPHPHPH. . . and the second is
the sequence: w2 = PHPHPHPPPPHPHPHPPHPHPHPPPPHPHPHPP. The
sequence w2 has been analyzed in [6].

Partition function. In Table 1 we present the partition function calculated
by the procedure EstimateBeta for sequences w1 and w2 and for λ = 0.5. The
first column contains the approximate number of self-avoiding walks of given
length. It is an interesting observation, that the value of β−1

n is very close to the

Table 1. The partition function estimated by the procedure EstimateBeta

n cn cn cn β−1
n β−1

n

λ = 1 for w1 for w2 for w1 for w2

2 132 123.901 132 10.3251 11
3 1403.55 1323.18 1326.17 10.6793 10.0467
4 14704.2 12897.9 13953.6 9.74764 10.5217
5 152489 134510 134065 10.4288 9.60794
6 1.57441e+06 1.28339e+06 1.39607e+06 9.54126 10.4134
7 1.61775e+07 1.3307e+07 1.43855e+07 10.3686 10.3042
8 1.65642e+08 1.25837e+08 1.47305e+08 9.45641 10.2399
9 1.69321e+09 1.29758e+09 1.50843e+09 10.3117 10.2401
10 1.72806e+10 1.22262e+10 1.50833e+10 9.422 9.99936
11 1.76098e+11 1.25874e+11 1.54251e+11 10.2955 10.2266
12 1.79192e+12 1.17901e+12 1.46706e+12 9.36657 9.51087
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Fig. 2. α−1
n for different λ ∈ (0, 1) and sequences w1 and w2

postulated value for its counterpart for λ = 1 (i.e. to the limit μ = limn→∞ c
1/n
n

where cn stands for the number of self-avoiding walks of length n). This limit is
believed [9] to be equal approximately to 10.0364.

The Conjecture. For the uniform case (i.e. λ = 1) the conjecture analo-
gous to Conjecture 1 have been studied extensively in [8]. The quantity αN :=
min j,k

j+k≤N

cj+k

cjck
. for unweighted walks has a natural interpretation: for fixed

lengths j and k, the fraction cj+k

cjck
is the probability that the concatenation

of two walks chosen uniformly and independently forms a proper longer self-
avoiding walk. In our case Conjecture 1 corresponds to the following property
of the underlying lattice: the concatenation of two SAWs with lengths j and k,
with reasonable high probability forms a longer SAW and its weight does not
differ much from the weight of the walk of length j + k on average.

Concerning the Conjecture 1 we have obtained very promising results: the
quantity α−1

n seems to be almost independent on λ (see Fig. 2) and the hy-
drophobicity pattern of the sequence. We also observe that this value increases
quite slowly with n. This let us believe that the Conjecture 1 is true. Hence
we can easily choose appropriate polynomial g required in the procedure
Selftest.

4 Conclusion and Further Work

We have presented provably efficient randomized approximation schemes for the
problem of sampling weighted SAWs and computing the partition function. Our
algorithms adopt the idea of self-testing from [8].

The natural question here is the verification of the Conjecture 1. However
even in the uniform case (i.e. unweighted SAW) this conjecture remains chal-
lenging open problem.

Another interesting extension of our work is to apply much more efficient
version of the Algorithm 1. Such a modification based on the idea of single
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MC-trajectory simulation from [5] has been already developed by us. Prelimi-
nary results obtained for the uniform case show the essential speedup w.r.t. the
standard algorithm.
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Abstract. The vertex cover problem is a classic NP-complete problem for which
the best worst-case approximation ratio is roughly 2. In this paper, we use a col-
lection of simple reductions, each of which guarantees an approximation ratio of
3
2

, to find approximate vertex covers for a large collection of test graphs from
various sources. We explain these reductions and explore the interaction between
them. These reductions are extremely fast and even though they, by themselves
are not guaranteed to find a vertex cover, we manage to find a 3/2-approximate
vertex cover for every single graph in our large collection of test examples.

1 Introduction

The vertex cover problem is a classic problem in computer science and one of the first
NP-complete problems, [17, 11]. A vertex cover of a graph G = (V,E) is a subset of
the vertices, C ⊆ V , such that each edge e ∈ E has at least one endpoint in C. The
objective is to minimize the size of the vertex cover.

A simple greedy algorithm gives a 2-approximation for this problem [9]. In spite of
many attempts to design improved approximation algorithms for vertex cover [7, 18, 3,
13] the best known approximation ratio is 2 − θ( log log n

log n ) for a graph with n vertices
[14]. Minimum vertex cover NP-hard to approximate within any factor smaller than
1.36 [8] and many people believe that there does not exist an algorithm with a fixed
approximation ratio better than 2 [15, 10]. In recent years, much good work has been
done on the fixed parameter version of vertex cover, where, given a fixed parameter k
and a graph G with n vertices, we can find a vertex cover of size at most k in time
O(kn + 1.2832k), if such a vertex cover exists [2, 5, 20].

In this paper, we look at the classic vertex cover problem and take a different ap-
proach. We use a collection of simple reductions and allow reductions that don’t main-
tain optimality but only guarantee a worst case approximation ratio of 3/2. Each reduc-
tion has unique properties and utilizes various specific graph structures. We will look
both at the performance of specific reductions and at how they work in combinations.
By combining reductions that use fundamentally different properties of the graph, we
can get very beneficial interactions; these reductions create a scheme that is much more

� Research partially supported by NSF Grant DMI-9970063.
�� Research partially supported by NSF Grant DMI-9970063.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 545–557, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



546 E. Asgeirsson and C. Stein

powerful than the sum of the individual methods. These interactions between different
reductions create both possibilities and difficulties that we will explore further.

To test these reductions, we collected all graphs we could find on the internet and
from previous works, and also generated graphs specially designed to be difficult for the
vertex cover problem. In principle, our reductions do not guarantee that we will find an
approximate vertex cover, however we managed to find a 3/2-approximate vertex cover
in several seconds for every single graph using only our reductions. For the graphs
where we know the size of the minimum vertex cover, the actual approximation ratio
was usually much lower than 3/2; in many cases the vertex cover we found was either
optimal or very close to optimal.

2 Graph Reductions

Our main approach is to use divide and conquer. The vertex cover problem is a hard
problem, but instead of tackling the whole graph at once, we try to find chinks in its
armor and solve it by breaking it into smaller and easier subproblems. For this approach
to work, we need the following lemma which states that by partitioning the graph and
carefully finding an approximate vertex cover for each part, we can combine them into
a feasible vertex cover for the whole graph with an approximation ratio equal to the
largest approximation ratio of the vertex covers for the subgraphs.

Lemma 1. Assume we have a graph G = (V,E) and a partition of the vertices V =
V1 ∪ V2 ∪ . . . ∪ Vk. Let Gi = (Vi,Ei) be the subgraph induced by Vi and suppose
that ∀i, Ei �= ∅. Also assume that for each Gi we have a vertex cover VCapprox

i with the
property that VCapprox = ∪iVCapprox

i is a vertex cover for G. Let VCopt be an optimal vertex
cover for G. Then: VCapprox

VCopt ≤ max
i

|VCapprox

i |
|VCopt ∩ Vi|

.

Proof. We have that VCapprox = ∪iVCapprox

i and since the vertex partition is disjoint,
|VCapprox| = | ∪i VCapprox

i | =
∑

i |VCapprox|. Since Ei �= ∅, |VCopt ∩ Vi| ≥ 1 for all i.
Then

|VCapprox|
|VCopt| =

| ∪i VCapprox

i |
| ∪i (VCopt ∩ Vi) |

=
∑

i |VCapprox

i |∑
i |VCopt ∩ Vi|

≤ max
i

|VCapprox

i |
|VCopt ∩ Vi|

This lemma implies that we can find an approximate vertex cover for a graph by
iteratively finding an approximate vertex cover for small sections of the original graph,
until hopefully we have an approximate vertex cover for the whole graph. The way we
will use this lemma is to iteratively break off small pieces of the graph. We are not
claiming that finding a vertex cover for each subproblem implies that we’ve found a
vertex cover of the whole graph. The lemma contains the additional restriction that the
union of the vertex covers of the subgraphs is a vertex cover for the whole graph.

Definition 1. An optimal graph reduction is a mapping from a graph G = (V,E) to
a graph G′ = (V ′,E′) with the property that if we have an optimal vertex cover for G′

then we can find an optimal vertex cover for the original graph G.
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Definition 2. A ρ-approximating graph reduction is a mapping from a graph G =
(V,E) to a graph G′ = (V ′,E′) such that if we have an optimal vertex cover for G′

then we can find a ρ-approximate vertex cover for G.

We will use optimal graph reductions and ρ-approximate graph reductions with ρ ≤ 3
2 .

An operation we will use extensively is a vertex contraction.

Definition 3. The contraction of a set of vertices v1, . . . , vk to a new vertex v is an
operation where we replace the vertices v1, . . . , vk with a new vertex v, delete all edges
between removed vertices and replace each edge (vi, u) with an edge (v, u). Then set
of vertices adjacent to v is the union of the vertices that were adjacent to v1, . . . , vk.

When we perform a vertex contraction, we replace multiple edges that might appear
with a single edge and encode information about the contracted vertices and adjacent
edges so that we can recreate them later to get the original graph.

2.1 Optimal Graph Reductions

Almost all the optimal graph reductions that we present in this section are well known
and have been used to simplify difficult graphs previously [1]. The exception to that rule
is the Extended Network Flow method, which is a simple yet powerful idea that to our
knowledge has not been used extensively before. For completeness we briefly explain
these reductions.

Zero- and One-degree Vertices

Claim. A vertex of degree zero is not in an optimal vertex cover.

Claim. Let u be a vertex of degree 1, and w be its neighbor. Then there is an optimal
vertex cover C such that w ∈ C and u �∈ C.

Degree-two Vertices

Claim. If there is a degree-two vertex u whose neighbors v and w are adjacent then
there is an optimal vertex cover that includes both v and w and not u.

Let u be a vertex of degree with v and w as adjacent neighbors. To cover the edge
(u, v), at least one of v or w must be in any vertex cover. By removing that vertex and
all adjacent edges, u becomes a degree-one vertex which means that there is an optimal
vertex cover that includes u and w but does not include u.

Claim. If there is a degree-two vertex u whose neighbors, v and w are non-adjacent,
we can find a new graph G′ by contracting the vertices u,v and w to a new vertex z.
Given a vertex cover for G′ with approximation ratio ρ, we can find a vertex cover for
the original graph G with the approximation ratio ρ. Specifically, if the vertex cover for
G′ is optimal then we can find an optimal vertex cover for G.

This idea of eliminating degree-two vertices was proposed in [5]. Any optimal vertex
cover of G will have at least one of the vertices and at most two. If there is just one of
them in the vertex cover then it must be vertex u. Otherwise if there are two vertices
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in the vertex cover then we can select v and w to be in the cover by the same argu-
ment as before. Let VCopt(G) be the optimal vertex cover for G. Then |VCopt(G)| =
|VCopt(G′)| + 1. If z is in the vertex cover for G′ then v and w will be in the vertex
cover for G, and if z is not in the vertex cover for G′ then only u will be in the vertex
cover for G. Since |VCopt(G)| = |VCopt(G′)| + 1, any approximation ratio for a vertex
cover of G′ holds for the vertex cover of G.

Network Flow. The vertex cover problem can be formulated as the following integer
program.

min
∑

i xi

s.t. xu + xv ≥ 1 ∀ (u, v) ∈ E

xi ∈ {0, 1} ∀ i ∈ V

By solving the linear programming relaxation of this problem we get a fractional so-
lution. Nemhauser and Trotter [19] showed that the solution of this linear program
can be used find a partial solution to the vertex cover problem. Given an optimal so-
lution x∗ to the linear programming relaxation, define P = {u ∈ V |xu > 0.5},
Q = {u ∈ V |xu = 0.5} and R = {u ∈ V |xu < 0.5}. We can show that there is
an optimal vertex cover that is a superset of P and disjoint from R. Hence we can solve
the linear programming relaxation of the vertex cover and remove all vertices that cor-
respond to solution variables with values not equal to 1/2. It is well known that this
problem can be solved as a network flow problem [16].

Extended Network Flow. One of the problems with the network flow algorithm is that
it tends to find solutions with many variables equal to 1/2, even when other solutions
exists with more variables either 0 or 1. In order to find as many non-half solution vari-
ables as possible, we first solve the network flow problem and remove all variables with
values not equal to 1/2. Then, using the optimal solution, we try to set each variable
with value 1/2 equal to 1 and resolve. If the objective value doesn’t change we keep
this new value and repeat for the remaining variables. Otherwise we set the value back
to 1/2 and try the next variable. The Extended Network Flow method works well in
practice on sparse graphs where the size of the optimal vertex cover is close to half the
number of vertices. To our knowledge, this approach has not been used previously. Our
implementation is based on a bipartite matching and unit capacity flow algorithm from
Andrew Goldberg’s Network Optimization Library [12, 6].

2.2 Approximating Graph Reductions

While the optimal reductions can find solutions to simple examples, they are usually
not enough to solve difficult graphs. We use approximating graph reductions to make
further progress. The approximate reductions in this section use Lemma 1 extensively.
We try to find a subgraph with certain properties, reduce this subgraph while ensuring
that all edges between this subgraph and the remaining graph are covered by our re-
duction. By Lemma 1 we can do this repeatedly and get an approximate solution to the
vertex cover problem with approximation ratio equal to the largest approximation ratio
of these reductions.
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Definition 4. Let G = (V,E) be a graph and let G′ be the graph obtained by contract-
ing of a set of vertices Vi ⊂ V to a new vertex z. If, given an optimal vertex cover of
G′, we can use the mapping of Vi to z to find a ρ-approximate vertex cover for G, then
we call z a ρ-approximated vertex. (We will sometimes drop the ρ) A regular vertex
is a vertex that is not an approximated vertex.

Approximated vertices can be very useful in some situations but in others they can cre-
ate difficulties. They are useful because they map a set of vertices to a single vertex and
yield a simpler graph with fewer vertices and edges. The difficulty is that we cannot use
them in further approximating reductions, although we can use approximated vertices
in optimal reductions. Due to this, we try to use reductions that create approximated
vertices only when necessary.

In Definition 4, we are using Lemma 1 when we find the ρ-approximate vertex
cover of the original graph G = (V,E) from the vertex cover of G′. Let z be the ρ-
approximated vertex in G′ and let V1 be the set of vertices in G that we contract to
z, and V2 = V \ V1. Let V C ′ be the vertex cover of G′ and V C2 = V C ′ ∩ V2. Let
V C1 be the cover of V1 that we can find by using the knowledge whether z is in V C ′

or not, while making sure that V C1 covers all edges with one or more endpoint in V1

that are not covered by V C2. Then by Lemma 1 and Definition 4, the vertex cover
V C = V C1 ∪ V C2 is a ρ-approximate vertex cover of G.

Degree-three Vertices. The idea for degree-three vertices is similar to the degree-two
vertices reduction. We find a degree-three vertex, u, with non-adjacent neighbors, v,w
and z, and contract them to a new vertex, q to get a new graph G′. This new vertex, q,
is a 3

2 -approximated vertex, so if we find an optimal vertex cover for this new graph,
we can determine which of u, v,w and z are in an 3

2 -approximate vertex cover for our
original graph.

Lemma 2. Let G = (V,E) be a graph and u ∈ V be a degree-three vertex with v,w
and z as neighbors, v,w and z are non-adjacent. Let G′ be a the graph we get by
contracting u, v,w and z to a new vertex q. Then, if VC∗ is an optimal vertex cover for
G′ then we can find a vertex cover VCapprox for G that is a 3

2 -approximation.

Proof. Let VC∗ be an optimal vertex cover for G′ and set VCapprox be the same as VC∗

for all vertices v ∈ V \ {u, v,w, z}. Now if q is not in VC∗ then every vertex in the
neighborhood of q must be in the vertex cover. Hence, every vertex in the neighborhoods
of v,w and z are in the vertex cover VCapprox and none of v,w or z need to be in the
vertex cover. However, we know that at least one of the vertices u, v,w or z must be in
the vertex cover, hence we can select u to be in the vertex cover VCapprox and by Lemma
1 this is an optimal vertex cover for G. If q is in VC∗ then at least one of q’s neighbors
is not in VC∗ so at least one of v,w or u must be in the vertex cover VCapprox. In that
case we would need at least two of u, v,w and z to be in VCapprox to cover the subgraph
induced by u, v,w and z. We can select v,w and z in the vertex cover VCapprox and get
a 3

2 -approximation for this subgraph. Hence by Lemma 1, if VC∗ is an optimal vertex
cover for G′ then VCapprox is a 3

2 -approximation of the optimal vertex cover for G.

This reduction removes four regular vertices and at least three edges from our graph
while creating one 3

2 -approximated vertex.
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Triangles

Claim. For any clique of size k, at least k − 1 of the vertices are in any vertex cover.

Claim. If the vertices v,u and w form a triangle, then we can include all three vertices
in a vertex cover for a 3

2 -approximation.
A triangle is a clique of size three, so at least two of the vertices must be in any
vertex cover. Hence if we include all three vertices in the vertex cover we get a 3

2 -
approximation. Removing a triangle removes three vertices from the graph along with
all adjacent edges. This has the nice property that it does not create any approximated
vertices.

Four-cycles. Assume we have a cordless cycle of length four with the vertices v1, v2, v3

and v4. For any cycle of length four, at least two of the vertices must be in a vertex cover
and the only way to get exactly two of the vertices in the vertex cover is to select the
opposite corners, i.e. either v1 and v3 or v2 and v4. Any other choice will give us at least
three of the vertices in the vertex cover. We use this property to get a 4

3 -approximate
reduction that removes four regular vertices and at least three edges from the graph, but
at the same time creates two new 4

3 -approximated vertices.

Lemma 3. Let G = (V,E) be a graph with v1, v2, v3 and v4 as a cordless cycle of
length four. Let G′ be a new graph where we contract v1 and v3 to a new vertex z1 and
contract v2 and v4 to a new vertex z2. Then if VC∗ is an optimal vertex cover for G′

then we can find a 4
3 -approximate vertex cover for G.

Proof. For any vertex cover of G, at least two of the vertices v1, . . . , v4 must be in the
cover. The only way to get exactly two of the vertices is to select either v1 and v3 or v2

and v4. Any other selection will have at least three of the vertices in the vertex cover.
In the graph G′, there is an edge between z1 and z2 so at least one of these vertices
must be in any vertex cover. If z1 ∈ VC∗ and z2 �∈ VC∗ then that corresponds to v1

and v3 being in the vertex cover for G. Since the remaining graphs of G′ and G are
the same, this vertex cover is optimal for G. Similarly if z2 ∈ VC∗ and z1 �∈ VC∗.
Then v2 and v4 will be in the vertex cover for G and we have an optimal vertex cover.
However, if both z1 and z2 are in the optimal vertex cover for G′ then at least three of
the vertices v1, . . . , v4 must be in the optimal vertex cover for G. In that case, we take
all four vertices in the cover and get a 4

3 -approximation.

Six-cycles. The idea for cycles of length six is the same as for cycles of length four. If
we have a cordless cycle of length six, we can replace it with only two vertices and get
a 3

2 -approximation. This reduction removes six regular vertices and at least five edges
from the graph, but creates two 3

2 -approximated vertices.

Lemma 4. Let v1, v2, . . . , v6 be a cycle of length six in G. Let G′ be a graph where
v1, v3 and v5 in G are contracted to a new vertex z1 and v2, v4 and v6 are contracted
to z2 while keeping all other vertices and edges the same. If VC∗ is an optimal vertex
cover for G′ then we can find a vertex cover VCapprox for G that is a 3

2 -approximation of
the optimal vertex cover.

The proof for this is almost identical to the proof to Lemma 3..
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2.3 Other Reductions

The crown reduction is an optimal reduction that was introduced by [1]. Here we try
to find an independent set of vertices S such that there exists a matching on the edges
connecting S and its neighborhood, N(S), that matches all the vertices in N(S). If we
can find such a set then we can take the neighborhood set in the vertex cover and none of
the vertices in the independent set. Abu Khzam et. al. [1] proved that this is an optimal
reduction. However, it is easy to show that this reduction is captured by the Extended
Network Flow method.

Greedily Decreasing the Vertex Cover. After we find an approximate vertex cover we
run a simple greedy algorithm to eliminate vertices from the vertex cover. We look at
each vertex in the cover and check if all its neighbors are also in the vertex cover. If that
is the case then we remove this vertex from the cover.

3 Order of Reductions
The reductions in previous section are all simple and straightforward. We can use them
in any order and given one input graph, applying them in different orders will give
different results. This creates some difficulties when we try to automate the reduction,
since the wrong choices can leave us in a dead end without any means of removing
approximated vertices, while a different approach might have solved the problem. The
greatest danger is in using 3-degree, 4-cycle and 6-cycle reductions since they leave
approximated vertices that cannot be used in further approximations. The extended net-
work flow and low degree reductions are optimal while the triangle elimination com-
pletely removes the vertices from the graph, so these methods are safe in the sense that
they do not leave any approximated vertices.

The triangle elimination proved to be very effective on almost all of the graphs but
it is also responsible for the largest approximation ratios. In many cases, just running
triangle elimination followed by the extended network flow method was enough to find
an approximate vertex cover, but often it was necessary to use multiple iterations of
several reductions to get a solution. One example of this is shown in Table 1. This table
shows the results of each iteration for the complement graph of the graph ‘s20.vc’ which
we created using Laura Sanchis’ graph generator (see Section 4). We show the number
of vertices and edges at the start of each iteration and how many vertices and edges each
reduction removes from the graph. In this case, the extended network flow method and
triangle elimination remove many edges which help create low degree vertices, which
are eliminated with low-degree methods. During the low-degree methods, the 2-degree
reduction creates more triangles, thus creating a cycle where we slowly but surely clear
all the vertices.

For a few graphs we had to use the 3-degree reduction or 4-cycle and 6-cycle reduc-
tion to create a way into the graph for the optimal methods or the triangle elimination.
One example of this is shown in Table 2. Here we are trying to find a vertex cover for
the complement graph of the graph ‘san400 0.9 1.clq’ [4]. The table shows how many
vertices and edges are at the start of each iteration, which reduction we used and how
many vertices and edges this reduction removed from the graph. In this example, the
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Table 1. Interaction between triangle elimination and low-degree reductions on the graph
‘s20.vc’. |V | and |E| are the number of vertices and edges at the start of each iteration while
ΔV and ΔE show how many vertices and edges are removed from the graph

Method |V | |E| ΔV ΔE

Network flow 500 2000 3 17
Triangles 497 1983 147 1076
Low Degree 350 907 59 96
Triangles 291 811 24 205
Low Degree 267 606 54 67
Triangles 213 539 15 108
Low Degree 198 431 46 49
Triangles 152 382 21 139
Low Degree 131 243 50 57
Triangles 81 186 6 41
Low Degree 75 145 26 60
Triangles 49 85 3 11
Low Degree 46 74 33 50
Triangles 13 24 3 10
Low Degree 10 14 10 14
Finished 0 0 - -

Table 2. The complement graph of ‘san400 0.9 1.clq’. On the left we find a 3/2-approximate
vertex cover by using 3-degree reduction. On the right we use 4-cycle reduction instead. There
we get stuck and cannot finish

Method |V | |E| ΔV ΔE

Triangles 400 7980 348 7864
Low Degree 52 116 12 21
Triangles 40 95 3 18
Low Degree 37 77 2 3
3-Degree 35 74 15 27
Network Flow 20 47 20 47
Finished 0 0 - -

Method |V | |E| ΔV ΔE

Triangles 400 7980 348 7864
Low Degree 52 116 12 21
Triangles 40 95 3 18
Low Degree 37 77 2 3
4-cycle 35 74 10 17
6-cycle 25 57 4 5
Stuck 21 52 - -

three major reductions are not enough and we must use the 3-degree reduction to find a
way into the graph, if we use 4-cycle reduction instead we get stuck.

After much experimentation, we settled on using the following order of reductions
to automate the approximation process. We ran the extended network flow method,
triangle elimination and low-degree in a loop until we had found a solution or no im-
provements were made during an iteration. Then we ran 3-degree, 4-cycle and 6-cycle
reductions, stopping as soon as any one of them made some progress and returning to
the original loop. The stopping criteria is either having processed all the vertices from
the graph which gives us a vertex cover, or running 3-degree, 4-cycle and 6-cycle with-
out any improvements. In that case we stop and must use some other methods, such as
branch-and-bound, to get a solution. If we find a solution then the final step in the al-
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gorithm is to use a simple greedy algorithm to eliminate unnecessary vertices from the
cover. In our experiments we never had to resort to branch-and-bound, our algorithm
managed to solve every single graph we found.

4 Experiments and Results

We did an extensive search for datasets we could use for vertex cover and also gathered
all datasets we could find from previous works.

1. From the DIMACS website we took 78 graphs that were used as a challenge for
the MaxClique problem [4]. We also used the complement graphs for these graphs,
where we find the vertex cover for the complement graphs. These graphs are of
special interest since there is a direct connection between the optimal vertex cover
in a graph and the maximum clique in the complement graph.

2. From the DIMACS challenges we also obtained 60 graphs used as a benchmark for
the MinColor problem, along with the complement graphs.

3. Also from the DIMACS challenges, we found 5 additional benchmark graphs. We
also used the complement graphs.

4. sh2-3.dim and sh2-10.dim are graphs used in [1]. These graphs were obtained from
the biological data repositories NCBI and SWISS-PROT. We also used the comple-
ment graphs.

5. From [22] we found 4 small graphs used as a benchmark for vertex cover algo-
rithms. These graphs are of special interest because the optimal vertex cover is
known. We also tried the complement graphs.

6. We generated 32 graphs using Laura Sanchis’ graph generator [21]. These graphs
have 500 vertices each, with number of edges ranging from 2000 to 110, 000. We
split these graphs into three groups, with maximum clique sizes of 2,4 and 10. The
reason we focused more on graphs with small cliques is that the triangle elimination
is just too powerful on graphs with large cliques, leaving at most two vertices from a
clique of size greater than two. And not surprisingly, we also tried the complement
graphs of these generated graphs for additional 32 graphs.

We solved every one of these 362 graphs, finding a 3/2-approximate vertex
cover in under 5 minutes for each one. The running time for most of these graphs was
less than a second. Moreover, in only one case did we need to use any reduction other
than the extended network flow method, triangle elimination or low degree reduction.
In that case, a simple 3-degree reduction finished off the graph. The triangle elimination
is very powerful, on average it removed 88.78% of the vertices and 93.34% of the edges
from each graph. The extended network flow method removed on average 5.09% of the
vertices and 5.56% of the edges from each graph while low degree reductions averaged
6.12% of the vertices and 1.10% of the edges from each graph.

The experiments were run on a machine with 1.6GHz Intel Pentium 4 and 512MB
RAM. The largest running time we saw for the extended network flow method was
just under 4 minutes on the graph ’MANN a81.clq’ with 3, 321 vertices and 5, 506, 380
edges, even though it didn’t manage to remove anything from that graph. The largest
running time for the triangle elimination was 56 seconds on the same graph, removing



554 E. Asgeirsson and C. Stein

every single vertex and all the edges. These running times are however largely related
to paging, for smaller graphs with less than 500, 000 edges, the running time for each
reduction was just a fraction of a second.

The MaxClique-Complement graphs are of special interest since many of them have
a known optimal solution. The vertices not in the vertex cover form an independent set,
which is a clique in the complement graph. Since we are trying to minimize the size of
the vertex cover, it’s equivalent to maximizing the clique size. Of the 75 MaxClique-
Complement graphs, we had optimal solutions to 48 of them. The average approxima-
tion ratio was 1.043 and the largest ratio was 1.459.

Since our reductions perform so well and we manage to find an approximate vertex
cover for every graph, we will only go into details about the most difficult and interest-
ing problems.

Worst approximation ratio: The graphs that had the worst approximation ratio were
the complement graphs of the MANN series. These graphs are made by Carlo Mannino
and they are a part of the Maximum Clique challenge on the DIMACS webpage. These
graphs are a clique formulation of the Steiner Triple Problem and they show how easy
it is to create graphs with approximation ratios close to 3/2. They include a large set of
independent triangles and the optimal vertex cover includes only two vertices from each
triangle while the triangle elimination includes all three vertices from each triangle.

The method of greedily decreasing the vertex cover after we have found a feasible
cover is very inconsistent. In the worst cases, it does not help at all while in one of
the best cases we manage to decrease the size of the vertex cover on a graph with 200
vertices from 198 vertices down to the optimal vertex cover of 142 vertices.

Most challenging problems: Some complement graphs of the ‘san200’ and ‘san400’
series from the DIMACS challenges were the most challenging, forcing us to use low
degree, triangle elimination and extended network flow to get a result while still having
approximation ratio over 1.2. The only graph where we had to use 3-degree reduction
is the complement graph of ‘san400 0.9 1.clq’. This is shown in Table 2.

Some graphs we generated using Laura Sanches’ graph generator showed very in-
teresting behavior. The triangle elimination and the extended network flow method re-
moved about half the vertices and then low degree elimination removed a few more.
We seemed to be stuck, the graph had a few 4 and 6-cycles, but if we reduced them we
couldn’t finish the graph completely since we then couldn’t eliminate the approximated
vertices that these reductions created. However, if we went back and forth between 2-
degree elimination and triangle elimination then slowly but surely we finished off the
whole graph. This is shown in Table 1.

Special bad case: Even though we managed to find an approximate vertex cover for
every graph we tested using only these simple methods, it’s easy to construct graphs
where our algorithm gets stuck. One example of such a graph, consisting of connected
5-cycles is shown in Figure 1. The only thing we can do in this case is to use 3-degree
reduction to decrease the size of this graph down from 45 vertices and 75 edges to a
reduced graph of 18 vertices and 48 edges. After that, we are stuck and must turn to
branch-and-bound or some other methods to get a solution. The graph in Figure 1 is a
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Fig. 1. A simple bad case

Table 3. Detailed performance on a small subset of the graphs

Name n m VCdec |V C| ENF n ENF m ENF time LD n LD m LD time T n T m T time
Max-Clique
brock800 3.clq 800 207333 4 794 0 0 0.161 2 1 0 798 207332 0.171
C4000.5.clq 4000 4000268 8 3989 0 0 13.734 4 3 0 3996 4000265 10.392
c-fat500-2.clq 500 9139 0 481 0 0 0.016 44 59 0 456 9080 0.005
johnson32-2-4.clq 496 107880 10 465 30 190 0.056 1 0 0 465 107690 0.101
MANN a81.clq 3321 5506380 2 3318 0 0 229.387 0 0 0 3321 5506380 55.991
p hat1500-2.clq 1500 568960 25 1473 0 0 0.639 3 1 0 1497 568959 0.722
Max-Clique Complement
C1000.9.clq(comp) 1000 49421 27 952 12 16 0.165 28 49 0 960 49356 0.045
hamming10-2.clq(comp) 1024 5120 0 512 1024 5120 0.004 0 0 0 0 0 0
keller6.clq(comp) 3361 1026582 29 3330 0 0 1.536 1 0 0 3360 1026582 0.318
MANN a45.clq(comp) 1035 1980 0 990 0 0 0.04 45 0 0 990 1980 0.002
Min-Color
DSJC1000.1.col 1000 49629 26 956 0 0 0.172 28 28 0 972 49601 0.081
flat1000 50 0.col 1000 245000 6 980 0 0 0.272 22 56 0 978 244944 0.294
le450 25a.col 450 8260 12 370 0 0 0.034 123 332 0 327 7928 0.01
R250.1.col 250 867 8 190 10 41 0.007 90 125 0 150 701 0
zeroin.i.2.col 211 3541 0 84 108 3342 0.003 79 1 0 24 198 0
Min-Color Complement
DSJR500.1c.col(comp) 500 3475 10 438 0 0 0.014 98 134 0 402 3341 0.001
R1000.5.col(comp) 1000 261233 186 808 0 0 0.343 10 12 0 990 261221 0.216
Sanchis’ generator
s17.vc 500 70000 124 375 0 0 0.059 2 1 0 498 69999 0.025
s20.vc 500 2000 18 337 3 17 0.07 278 393 0 219 1590 0.008
s22.vc 500 10000 16 454 0 0 0.04 56 82 0 444 9918 0.009
sh2 problems
sh2-3.dim.sh 839 5860 0 246 839 5860 0.006 0 0 0 0 0 0
sh2-10.dim.sh 839 129697 92 644 44 167 0.244 78 135 0 717 129395 0.149
sh2-10.dim.sh.pp 726 69982 54 529 101 11222 0.213 124 384 0.001 501 58376 0.091
VC benchmarks
vtx cov 3.gph 100 200 3 56 8 40 0.002 74 98 0.001 18 62 0

simple bad case, by combining graphs similar to this and making them larger we can
easily construct large graphs where the methods used here have little or no effect.

Table 3 shows how the reductions performed on a selected subset of the graphs. The
first column is the name of the graph, then we have the number of vertices and number
of edges. The next column shows by how much a simple greedy approach managed to
decrease the size of our vertex cover. Next is the size of the vertex cover we found. Then
we have the performance of the extended network flow method, triangle elimination and
low degree reductions. We show how many vertices and edges each method removed
from each graph, and the total time it took in seconds. This is only a small selection of
the results we have, due to space constraints we cannot show all our results here.

Looking at these results it is clear that for dense graphs (‘C4000.5.clq’,
‘MANN a81.clq’), the triangle elimination is very powerful, while the extended net-
work flow method works well on sparser graphs (‘hamming10-2.clq(comp)’, ‘ze-
roin.i.2.col’, ‘sh2-3.dim.sh’). The three largest graphs show an extreme case of how
the running time increases when the size of the graphs increases, the triangle elimi-
nation takes about 0.3 seconds on a graph with just over 1, 000, 000 edges while for
a graph with 4, 000, 000 edges this takes over 10 seconds and then up to 56 seconds
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on a graph with around 5, 500, 000 edges. Most of this time increase is due to the fact
that these largest graphs do not fit into memory so the performance of the algorithms
takes a hit. The time it takes to do low degree elimination is so small that it is hardly
measurable even though it is very helpful in some cases (‘s20.vc’).

5 Conclusions

simple reductions where we allowed reductions that have a worst case approximation
ratio of 3/2. Even though these reductions do not guarantee that we will find a solution,
we ran these reductions on a wide collection of test problems from every source we
could find and by combining them we managed to find an approximate vertex cover for
every single graph. Moreover, the reductions are extremely fast and easily applied, and
since the bad examples have a very restrictive structure, these reductions should work
well in practice.

To our knowledge, applying reductions that maintain a worst case guarantee has not
been widely studied. This approach should be applicable to other problems.

References

1. F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters, and C. T.
Symons. Kernelization algorithms for the vertex cover problem: Theory and experiments.
Proceedings, ACM-SIAM Workshop on Algorithm Engineering and Experiments, 2004.

2. R. Balasubramanian, M. R. Fellows, and V. Raman. An improved fixed-parameter algorithm
for vertex cover. Information Processing Letters, 65:163–168, 1998.

3. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex
cover problem. Annals of Disc. Math., 25:27–46, 1985.

4. DIMACS Implementation Challenges. Center for Discrete Mathematics & Theoretical Com-
puter Science. ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/.

5. J. Chen, I. Kanj, and W. Jia. Vertex cover: further observations and further improvements.
Journal of Algorithms, 41(2):280–301, 2001.

6. B.V. Cherkassky, A.V. Goldberg, P. Martin, J. C. Setubal, and J. Stolfi. Augment or Push? A
computational study of Bipartite Matching and Unit Capacity Flow Algorithms. Technical
Report 98-036R, NEC Research Institute, Inc., 1998.

7. P. Crescenzi and V. Kann. A compendium of NP optimization problems.
http://www.nada.kth.se/theory/problemlist.html.

8. I. Dinur and S. Safra. The importance of being biased. Proc. 34th Ann. ACM Symp. on
Theory of Comp., pages 33–42, 2002.

9. P. Erdös and T. Gallai. On the minimal number of vertices representing the edges of a graph.
Publ. Math. Inst. Hungar. Acad. Sci., 6:181–202, 1961.

10. U. Feige. Vertex cover is hardest to approximate on regular graphs. Technical Report
MCS03-15, Computer Science and Applied Mathematics, The Weizmann Institute of Sci-
ence, 2003.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Fransisco, 1979.

12. A. Goldberg. Andrew Goldberg’s Network Optimization Library. http://www.avglab.com/
andrew/soft.html.



Vertex Cover Approximations: Experiments and Observations 557
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Abstract. The Maximum Diversity Problem (MDP) consists in iden-
tifying, in a population, a subset of elements, characterized by a set of
attributes, that present the most diverse characteristics between them-
selves. The identification of such solution is an NP-hard problem. This
paper presents a GRASP heuristic associated with the path-relinking
technique developed to obtain high-quality solutions for this problem in
a competitive computational time. Experimental results illustrate the
effectiveness of using the path-relinking method to improve results gen-
erated by pure GRASP.

1 Introduction

Consider P = {p1, . . . , pn} a set of elements and pik, k ∈ L = {1, . . . , l}, the
l attributes associated with each element pi. The maximum diversity problem
(MDP) [4, 6, 7] consists in identifying a subset M from the population P , so
that the m elements from M present the maximum possible diversity among
them. The measure of diversity dij between a pair of elements (i, j) is calculated
by a function applied on their attributes. This problem can be formulated as:
Maximize z =

∑n−1
i=1

∑n
j=i+1 dijxixj , subject to

∑n
i=1 xi = m, where xi is a

binary variable indicating if an element i is selected to be a member of the
subset M .

Many applications [8] can be solved using the resolution of this problem, such
as human resource management, measure of biodiversity, and VLSI design.

Glover et al. [6] presented mixed integer zero-one formulation for this prob-
lem, that can be used to solve small instances by exact methods. They also show
that this problem belongs to the class of NP-hard problems.

Some heuristics are available to obtain approximate solutions. Weitz and
Lakshminarayanan [12] developed five heuristics to find groups of students with
the most possible diverse characteristics, such as nationality, age and gradua-
tion level. They tested the heuristics using instances based on real data and
implemented an exact algorithm for solving them.
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Constructive and destructive heuristics were presented by Glover et al. [7],
who created instances with different sizes of population (maximum value was
30) and showed that the proposed heuristics obtained results close (2%) to the
ones obtained by the exact algorithm, but much faster.

Ghosh [4] proposed a GRASP (Greedy Randomized Adaptive Search Proce-
dure) that obtained good results for small instances of the problem. Andrade
et al. [2] developed a new GRASP and showed results for instances randomly
created with a maximum population of 250 individuals. This algorithm was able
to find some solutions better than the ones found by Ghosh’s algorithm. Silva et
al. [11] elaborated construction and local search heuristics and combined them
to generate several GRASP algorithms, which were tested for instances created
by the authors for populations of maximum size equal to 500 individuals. They
compared their algorithms with the ones developed by Ghosh and Andrade et
al. and showed that better results were obtained.

In this paper, we present GRASP heuristics for the MDP, which use path-
relinking as an intensification mechanism. In Sect. 2 we describe the path-
relinking techniques adopted and present the combinations of GRASP and path-
relinking developed. In Sect. 3 we show computational results for these different
versions of GRASP proposed. Concluding remarks are presented in Sect. 4.

2 GRASP and Path-Relinking

GRASP [3] is an iterative process, where each iteration consists of two phases:
construction and local search. In the construction phase a feasible solution is
built, and its neighborhood is explored by a local search. The result is the best
solution found over all iterations.

Path-relinking is a technique proposed by Glover [5] to explore possible trajec-
tories connecting high quality solutions, obtained by heuristics like tabu search
and scatter search. A survey of GRASP with path-relinking is given in Resende
and Ribeiro [9]. The pure GRASP metaheuristic is a memoryless method, be-
cause all iterations are independent and no information about the solutions is
passed from one iteration to another. The objective of introducing path-relinking
to a pure GRASP algorithm is to retain previous good solutions and use them
as guides in the search of new good solutions.

The main objective of this paper is to evidence that the introduction of the
path-relinking technique into GRASP heuristic, as an intensification strategy,
may improve the results obtained for the MDP. Although, nowadays, the pure
GRASP heuristics developed by Silva et al. [11] present the best results found
in the literature for the MDP, we introduced path-relinking strategies to the
GRASP heuristic developed by Andrade et al. [2], since the work of Silva et al.
was not concluded at the time we started this research. The pseudocode for the
pure GRASP of Andrade et al. is given in Fig. 1.

In line 1, the size of population n, the subset size m, the diversity matrix
DivMat and the maximum number of iterations MaxIter are obtained. DivMat
contains the diversity dij between each pair of elements (i, j) of population P .
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procedure Pure GRASP

01. Read Input Data(n, m, DivMat, MaxIter);
02. z best ← −∞;
03. for i = 1, . . . , MaxIter do
04. Sol ← Build Random Greedy Solution(n, m, DivMat);
05. Sol ← Local Search(Sol);
06. if z(Sol) > z best do
07. z best ← z(Sol);
08. Best Sol ← Sol;
09. end if;
10. end for;
11. return Best Sol;

Fig. 1. Algorithm for pure GRASP

The cost of the best solution found is initialized in line 2. From lines 3 to line 10,
the iterations of the GRASP are executed. In line 4, a feasible solution is con-
structed inserting one element at each construction iteration. Initially, the sum
of diversities SD(i) between an element i and the other elements is calculated.
The initial element of the constructed solution is selected randomly from the m
individuals that present larger values of SD. Then, for each construction itera-
tion, a restricted candidate list (RCL) is created and an element from this list is
randomly selected. To build the RCL, candidates are sorted in decrescent order
by a function, which evaluates the benefit of inserting an element in a partial
constructed solution. Details about this construction phase may be found in [2].

After a solution is constructed, a local search phase should be executed to
attempt to improve the initial solution. The neighborhood of a solution used by
Andrade et al. [2] is the set of all solutions obtained by replacing an element in
the solution by another that does not belong to it. In line 5, a local search is
performed starting with the incumbent solution Sol obtained by the construction
phase. For each i ∈ Sol and j ∈ P \Sol, the improvement due to exchanging i by
j, Δz(i, j) =

∑
u∈Sol(dju−diu), is computed. If, for all i and j, Δz(i, j) ≤ 0, the

local search is terminated, because no exchange will improve z. Otherwise, the
elements of the pair (i, j) that provides the maximum Δz(i, j) are interchanged,
a new incumbent solution Sol is created, and the local search is performed again.
In lines 7 and 8, the best solution found is updated if an improved solution is
generated after the local search.

In order to minimize the execution time, we insert a procedure to avoid
executing the local search on duplicate solutions in this original GRASP. All
solutions generated after the construction phase are stored in a repository. After
a solution is constructed, a search is performed in this repository and, in case
that the solution is found, then the local search is not performed.

The new GRASP presented in this paper uses path-relinking as an intensi-
fication strategy. An elite set E is maintained, in which good solutions found
in GRASP iterations are stored to be combined with solutions created by other
GRASP iterations. The path-relinking is activated only after the elite set reaches
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its size. For each solution Sol generated in a GRASP iteration, one of the so-
lutions e ∈ E is selected and a path-relinking is applied between them. There
are two ways to choose element e: randomly selection (E1) or picking up the
one with the best cost (E2). A path-relinking is performed by starting from an
initial solution si and gradually incorporating attributes from a guide solution
sg to it, until si becomes equal to sg. Several ways to select si and sg have been
studied in the literature [9]. We have explored the following strategies:

– Backward relinking (T1): the best cost solution is set to si and the worst
one to sg.

– Forward relinking (T2): the worst cost solution is set to si and the best one
to sg.

– Mixed relinking (T3): both trajectories are explored in alternate way. At
each iteration of path-relinking, the roles of initial and guide solutions are
inverted.

Figure 2 shows the GRASP with path-relinking developed in this work. In
line 1, the instance parameters are obtained and also the parameters EliteSel
to specify the way to select a solution from the elite set and RelinkType used to
define the strategy of path-relinking. The elite set and the solutions repository
are initialized in lines 3 and 4. For each GRASP iteration a solution is constructed
in line 6 and, in line 7, a search is performed in the repository to verify if this

procedure GRASP PR

01. Read Input Data(n, m, DivMat, MaxIter, EliteSel, RelinkType);
02. z best ← −∞;
03. E ← {};
04. Repository ← {};
05. for i = 1, . . . , MaxIter do
06. Sol ← Build Random Greedy Solution(n, m, DivMat);
07. Search Sol Repository(Repository, Sol, SolNotFound);
08. if SolNotFound then do
09. Repository ← Repository ∪ {Sol};
10. Sol ← Local Search(Sol);
11. end if;
12. if E is full then do
13. SolElite ← Select Sol Elite(E, EliteSel);
14. Sol ← PathRelinking(Sol, SolElite, RelinkType);
15. end if;
16. Update Elite(E, Sol);
17. if z(Sol) > z best do
18. z best ← z(Sol);
19. Best Sol ← Sol;
20. end if;
21. end for;
22. return Best Sol;

Fig. 2. Algorithm for GRASP with path-relinking
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solution has already been produced. If it has not been found, the repository is
updated in line 9, and a local search is executed in line 10. If the elite set is full,
the path-relinking should be performed. In line 13, the element of the elite set
is selected according to EliteSel parameter and, in line 14, the path-relinking
is performed using the strategy defined by parameter RelinkType. In line 16,
either the solution generated by the GRASP iteration or by path-relinking is
evaluated to verify if it should be inserted in the elite set. If the elite set is not
full and the solution is not already in the elite set, then it is inserted into it. If
the elite set is full and the solution cost is better than the worst-cost elite set
solution, then this new solution replaces the worst one in the elite set. In lines
18 and 19 the best solution and best cost are updated.

We show in Fig. 3 the details on our implementation of path-relinking for
the MDP. In line 1, the solution generated by the GRASP iteration Sol and
the solution from the elite size SolElite are compared to determine which has
the best cost (BS) and which has the worst one (WS). From lines 3 to 9, the
initial and guide solutions are set. If either strategy backward relinking (T1)
or mixed relinking (T3) is used, the initial solution is set as the best-cost
solution among Sol and SolElite. Otherwise, if strategy forward relinking
(T2) is adopted, the initial solution is set as the worst one. From line 10 to
22, the steps of path-relinking are performed until the initial solution reaches

procedure Path Relinking(Sol, SolElite, RelinkType)
01. Find Better Worst(Sol, SolElite, BS, WS);
02. BetterSolPR ← BS;
03. if RelinkType equal to T1 or T3 then do
04. Initial ← BS;
05. Guide ← WS;
06. else do
07. Initial ← WS;
08. Guide ← BS;
09. end if;
10. while Initial not equal to Guide do
11. DifEl ← Obtain Different Elements(Initial, Guide);
12. IntSol ← Obtain Int Sol(Initial, DifEl);
13. if z(IntSol) > z(BetterSolPR) then do
14. BetterSolPR ← IntSol;
15. end if;
16. if RelinkType is equal to T1 or T2 then do
17. Initial ← IntSol;
18. else do
19. Initial ← Guide;
20. Guide ← IntSol;
21. end if;
22. end while;
23. return BetterSolPR;

Fig. 3. Algorithm for path-relinking
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the guide solution. In line 11, the elements that are in the guide solution and
are not in the initial solution are found. In line 12, a step of the path-relinking
is performed. Intermediate solutions are obtained by replacing an element that
belongs to the initial solution and do not belong to the guide solution with all
other elements that belong to the guide solution and do not belong to the initial
solution. The solution which presents the best cost among all these intermediate
solutions is selected as the result of an iteration of path-relinking. This solution
(IntSol) is then more similar to the guide solution because one element from
the initial solution was replaced by another one from the guide solution. In
line 14, if this new intermediate solution (IntSol) has a better cost than the
current best intermediate solution (BetterSolPR), then the latter is updated.
From lines 16 to 21, the solutions used as initial and guide for the next iteration
of path-relinking are selected according to the strategy adopted.

We developed six GRASP heuristics combining the two parameters used for
path-relinking: the way to select an element from the elite set and the strategy
used for walking from one solution to another. The computational experiments
implemented to evaluate the performance of these heuristics are presented in the
next Section.

3 Computational Results

The computational experiments were performed on five sets (A, B, C, D, and E)
of test problems with different characteristics [11]. An instance of a set consists
of a population P with size n and a diversity matrix DivMat, which contains
the diversity dij between elements i and j of P . The instances of a specific set
are obtained from the same base diversity matrix, differing among themselves
by the population size. Different base matrices are used to generate instances
for each set. All sets A, B, C, and D contain instances with population sizes
n = 50, 100, 150, 200, 250. The instances for set E have populations sizes n =
300, 400, 500. For all instances, tests were performed to find subsets M of sizes
20% and 40% of the population size.

The six GRASP procedures evaluated were created by combining a walking
strategy (T1, T2, and T3) with the way to select an element from the elite set
(E1, E2).

The algorithms were implemented in C and compiled with gcc 2.96. The
tests for sets A, B, C, and D were performed on a 550 MHz Intel Pentium III
PC with 384 Mbytes of RAM, and for set E on a 1.3 GHz AMD Athlon with
256 Mbytes of RAM.

In Tables 1 and 2, we show the results of computing 1000 iterations for
the pure GRASP and for each GRASP with path-relinking. The first column
identifies each instance by the set it belongs to (A, B, C, D, or E) and the size of
the population. Bold values indicate that a new GRASP heuristic outperforms
the pure GRASP, and the best result found is underlined. The results obtained
for selecting a subset of size equal to 20% of the population size are in Table 1 and
for 40% can be found in Table 2. The elite set size was 5 and the path-relinking
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Table 1. Diversity values for subset of size 20% of the population size

Inst. GRASP T1E1 T2E1 T3E1 T1E2 T2E2 T3E2 Best
A050 491.9 491.9 491.9 491.9 491.9 491.9 491.9 491.9
A100 2007.1 2007.1 2007.1 2007.1 2007.1 2007.1 2007.1 2007.1
A150 4552.1 4552.1 4552.1 4552.1 4552.1 4552.1 4552.1 4552.1
A200 8132.1 8132.1 8132.1 8132.1 8132.1 8132.1 8132.1 8132.1
A250 12653 12653 12653 12653 12653 12653 12653 12653
B050 334976 334976 334976 334976 334976 334976 334976 334976
B100 1267277 1267277 1267277 1267277 1267277 1267277 1267277 1267277
B150 2758381 2758381 2758381 2758381 2758381 2758381 2758381 2758381
B200 4787819 4788086 4788086 4788086 4788086 4788086 4788086 4788086
B250 7378534 7388307 7388471 7388501 7388471 7388471 7388501 7388997
C050 316409 316409 316409 316409 316409 316409 316409 316409
C100 1205722 1205722 1205722 1205722 1205722 1205722 1205722 1205722
C150 2613286 2613286 2613286 2613286 2613286 2613286 2613286 2613286
C200 4627942 4630545 4630545 4630545 4630545 4630545 4630545 4630545
C250 7177365 7178043 7178043 7178043 7178043 7178043 7178043 7178043
D050 381379 381379 381379 381379 381379 381379 381379 381379
D100 1570800 1570800 1570800 1570800 1570800 1570800 1570800 1570800
D150 3498551 3500593 3500593 3500593 3502215 3502215 3502215 3502567
D200 6201319 6202900 6201603 6202900 6202900 6202900 6202900 6207580
D250 9673201 9679220 9676047 9677761 9680718 9680718 9680718 9685430
E300 9653 9689 9689 9689 9684 9684 9684 9689
E400 16870 16906 16906 16906 16906 16906 16906 16956
E500 26158 26179 26179 26179 26197 26197 26197 26254

Table 2. Diversity values for subset of size 40% of the population size

Inst. GRASP T1E1 T2E1 T3E1 T1E2 T2E2 T3E2 Best
A050 1931.5 1931.5 1931.5 1931.5 1931.5 1931.5 1931.5 1931.5
A100 7730 7730 7730 7730 7730 7730 7730 7730
A150 17482.4 17482.4 17482.4 17482.4 17482.4 17482.4 17482.4 17482.4
A200 31048.6 31048.6 31048.6 31048.6 31048.6 31048.6 31048.6 31048.6
A250 48384.3 48384.3 48384.3 48384.3 48384.3 48384.3 48384.3 48384.3
B050 1171416 1171416 1171416 1171416 1171416 1171416 1171416 1171416
B100 4544642 4544642 4544642 4544642 4544642 4544642 4544642 4544642
B150 9956281 9960461 9960461 9960461 9956937 9956717 9956937 9960461
B200 17544447 17544447 17544447 17544447 17544447 17544447 17544447 17544448
B250 27133488 27153046 27151127 27153046 27153694 27153694 27153694 27162906
C050 1094343 1094343 1094343 1094343 1094343 1094343 1094343 1094343
C100 4219476 4219476 4219476 4219476 4219476 4219476 4219476 4219476
C150 9374611 9374611 9374611 9374611 9374611 9374611 9374611 9374611
C200 16759895 16759895 16759895 16759895 16759895 16759895 16759895 16759895
C250 26047022 26047022 26047022 26047022 26047022 26047022 26047022 26047022
D050 1502908 1502908 1502908 1502908 1502908 1502908 1502908 1502908
D100 6067776 6067776 6067776 6067776 6067776 6067776 6067776 6067776
D150 13609151 13609151 13609151 13609151 13609151 13609151 13609151 13611261
D200 24127123 24131660 24131340 24131660 24131660 24131340 24131660 24133320
D250 37718854 37735642 37735642 37735642 37742328 37737210 37742328 37753120
E300 35864 35874 35874 35874 35874 35874 35874 35881
E400 62340 62417 62417 62417 62429 62429 62429 62483
E500 97171 97254 97254 97254 97268 97268 97268 97344

strategy starts to be performed only after this set set is full, i.e, during the first
five iterations, path-relinking is not applied. The best known values, obtained
by several different algorithms [2, 4, 11] under distinct environment conditions,
are shown in the last column.
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For the 46 tests, the proposed GRASP heuristics found 17 better solutions
than the pure GRASP. For instances of population size 50, the optimal solution
is known [2] and the pure GRASP and the GRASP with path-relinking heuristics
were able to find them. All procedures obtained the same result for population
size 100. The new GRASP heuristics show better results than pure GRASP
for larger population sizes. The strategies that use path-relinking found better
solutions for almost all instances of population size larger or equal to 250.

To evaluate the performance of the path-relinking concerning the strategies
used for defining the initial and guide solutions (T1, T2, and T3), we observed
the number of times that one of these strategies found the best (underlined)
solution. The values obtained for T1, T2, and T3 are 23, 19, and 25, respectively,
indicating that strategies T1 and T3 performed better. Other works [9, 10] also
show that usually T1 and T3 outperforms T2. The explanation for this behavior
is that these two strategies start the trajectory from a good cost solution, and
the neighborhood of the initial solution is much more carefully explored than
that of the guiding one. So there is a better chance to investigate in more detail
the neighborhood of the most promising solution.

As these two strategies presented better results, more tests were performed
using them. The instances used have population sizes 150, 200, 250, 300, 400, and
500. We discarded instances from set A and with population size 100, because
the new GRASP heuristics obtained the same results of the pure GRASP.

Each instance was run three times with different random seeds. Tables 3 and 4
show the average and best diversity values and the average computational times
(in seconds) achieved for subsets of size 20% and 40% of the population size. Bold
values indicate that a new GRASP heuristic outperforms the pure GRASP, and
the best result found is underlined. Considering the average diversity values, the
GRASP with path-relinking procedures found 19 better solutions in 24 tests.
Strategies T1 and T3 behave similarly, generating almost the same number of
better results. For instances with subset size of 20%, selecting a random element
from the elite set (E1) generated better results, while for instances with subset
size of 40%, choosing the better solution of the elite set (E2) performed better.

The new GRASP heuristics generate better results than pure GRASP but it
demands more computational time, as we can see from these tables. To perform
a more fair comparison, the pure GRASP was allowed to execute until achieve a
fixed limit on run time. This limit was set to the highest time used by the new
GRASP heuristics with path-relinking. The average results obtained for three
independent runs are presented in Table 5. The second and sixth columns present
the diversity values obtained when executing pure GRASP for 1000 iterations
using subset sizes of 20% and 40%, respectively. The third and seventh columns
show the values generated by the pure GRASP executing until the run time limit
was achieved. In the remaining columns, the worst and best values produced by
the GRASP with path-relinking procedures are exhibited. The bold values, in
the third and seventh columns, indicate that the pure GRASP with more time
outperforms the pure GRASP. But it never gives better results than the worst
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Table 5. Average diversity obtained by pure GRASP executing more time

20% 40%
Inst. GRASP GRASPt Worst PR Best PR GRASP GRASPt Worst PR Best PR
B150 2756581 2756581 2758003 2758381 9952386 9952386 9952386 9957365
B200 4787900 4787908 4788086 4788086 17526848 17526848 17543566 17544061
B250 7365771 7370551 7375944 7376175 27134803 27137262 27153692 27154943
C150 2613286 2613286 2613286 2613286 9374611 9374611 9374611 9374611
C200 4626056 4626057 4628450 4630545 16759895 16759895 16759895 16759895
C250 7176140 7176141 7177937 7178043 26047022 26047022 26047022 26047022
D150 3498547 3498642 3500283 3502060 13609448 13609448 13609448 13609448
D200 6203391 6203391 6204650 6205505 24127046 24127046 24130476 24131581
D250 9671279 9671279 9680189 9680980 37720373 37720373 37733021 37735250
E300 9652 9652 9678 9679 35853 35853 35868 35868
E400 16874 16881 16899 16904 62343 62345 62415 62424
E500 26151 26154 26198 26198 97170 97170 97252 97277

value generated by a GRASP with path-relinking. These results reinforce the
contribution of inserting the path-relinking strategy into a pure GRASP.

We made a deeper performance analysis for the new GRASP heuristics T1E1,
T1E2, T3E1, and T3E2. We selected three instances B150, C150, and D150 and
executed each GRASP heuristic until a solution was found with a greater or equal
cost compared to a target value. Two target values were used for each instance:
the average and the best value obtained by the pure GRASP. Empirical proba-
bility distributions for the time to achieve a target value are plotted in Fig. 4.
We only show results for the instance D150 because we have similar behavior
for the two other instances. To plot the empirical distribution, we executed each
GRASP heuristic 200 times using 200 different random seeds. In each execution,
we measured the time to achieve a solution whose cost was greater or equal to
the target cost. The execution times were sorted in ascending order so that ti
represents the ith lower time. For i = 1, . . . , 200, a probability pi = (i− 0.5)/200
was associated for each time ti and the points zi = (ti, pi) were plotted [1].

Figure 4 illustrates that when the target becomes more difficult to be reached,
the path-relinking strategy can find the solutions faster than pure GRASP. We
can observe that all path-relinking strategies behave similarly, so it is not possible
from this analysis to determine which of them performs better.

To show the evolution in quality of the elite set in the path-relinking strategy,
T1E1 was run 200 times with 200 different seeds for instances C150 and D150.
The stopping criterion for each run was to execute 1000 iterations. For each
iteration of each run, we evaluate if the path-relinking improved the solution
generated after the local search. In Fig. 5, a point (x, y) of the curve represents
the number of times y that the T1E1 strategy found a better solution than
pure GRASP in the xth iteration. For example, in the 10th iteration for instance
C150, we can see that, for the 200 executions, path-relinking was able to im-
prove the solution generated after local search in approximately 170 times. The
results show that after the elite set is full (iteration 5) and the path-relinking
starts to be used, it contributes to generate better cost solutions. For the final
iterations, path-relinking can improve many more solutions, because the elite set
was improved with good solutions of earlier iterations.
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Fig. 5. Number of solutions improved by path-relinking

We also executed some tests to evaluate the influence of the elite set size
in the performance of the path-relinking strategies. The instances of Tables 3
and 4 were run three times using an elite set size of 10 and 20. Comparing
the average diversity values obtained using the elite set size 10 to the previous
results, which were obtained using an elite set size 5, we noticed that, in 20
instances, it was able to generate better results, while, in another 20, the results
were worse. When using the elite size 20, 23 better and 25 worse results were
obtained. These results give evidence that having larger elite set size does not
benefit the path-relinking strategy for solving the MDP problem.
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4 Concluding Remarks

This paper presented some versions of GRASP heuristics to solve the maximum
diversity problem (MDP). The main goal of this work was to analyse the influence
of inserting path-relinking strategies to a pure GRASP.

Experimental results show that the versions that use path-relinking signifi-
cantly improve the average quality of solutions generated by a pure GRASP ap-
proach proposed in the literature. Our experiments also show that path-relinking
speeds up convergence to target values.

Although the new GRASP heuristics presented here were able to improve the
results obtained by a pure GRASP, they were not able to find all best known
solutions for these instances. As a future work, we believe that inserting the path-
relinking technique into pure GRASP presented in [11], which has obtained good
results, may contribute to achieve better solutions for the MDP.
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Abstract. We present an extension of the splay technique, the chain-splay. 
Chain-splay trees splay the accessed element to the root exactly as classic splay 
trees do, but also perform some local ‘house-keeping’ splay operations below 
the accessed element. We prove that chain-splay is loglogN-competitive to any 
off-line searching algorithm. This result is the nearest point to dynamic 
optimality of splay trees reached since 1983. 

1 Introduction 

A fundamental problem in computer science is SEARCHING: how can we organize N 
elements into a data structure so that the accession of one by one of the elements of a 
given sequence is performed optimally? For many decades this problem was 
addressed using any of a large variety of ‘balanced’ trees [1, 5, 15, 17] through which 
an optimal cost O(logN) cost per operation is obtained. 

Around 1983−85 a radical turn was made by Sleator and Tarjan (see [19], but also 
[3]) based on new ideas like self-adjustment, amortized cost analysis and 
competitiveness [22]. Sleator and Tarjan introduced the well known splay-trees, 
proved a very interesting set of properties for them (‘static optimality’, ‘working set’ 
and ‘static finger’ properties), and conjectured that splay trees are dynamically 
optimal, in other words, competitive with respect to any off-line searching algorithm 
that uses a binary search tree. (The reader can trace the story of splay trees and several 
related issues in [2, 4, 6–14, 16, 18–21, 23].)  

The dynamic optimality conjecture remains open since 1983—the most significant 
relative progress so far being the proof of the ‘dynamic finger’ conjecture by R. Cole 
et al. (announced in 1989, published in [7, 8]). Yet in 2004 E. Demaine et al. [9] 
offered a data structure (the tango tree) which is O(loglogN)-competitive to the 
optimal searching algorithm. The authors of [9] use a variety of trees consisting of 
smaller red-black trees that they cut-and-link to maintain a convenient, quite relaxed, 
balance condition. The structure they obtain—although it is self-organizing—it is not 
splay-like in the following sense: splay-like search trees do not maintain (explicitly) 
any balanced condition. (This seems to be a necessary condition for optimality. Tango 
trees, as their inventors already comment in [9], are not optimal. See also [11] where 
it is shown that even a minimum balance of an otherwise self-adjusting tree, can 
destroy optimality.) 

l
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Thus we have to ask whether splay trees or splay-like trees can be as good as tango 
trees. In this work we show that the ideas leading to tango trees, also lead to a splay-
like technique (chain-splay) that does achieve O(loglogN)-competitiveness. Tango 
trees and chain-splay stand as strong reminders, if any is needed, of the dynamic 
optimality issue. 

2 The On-line Searching Problem 

Let U be a set of N elements linearly ordered by ≤. A sequence of accesses H (or 
history) of length M is a function H ∈ [0..M–1] → U. At the i th step, i = 0, ..., M–1, 
we have to access element i = H(i) ∈ U. To do so, we maintain a binary search tree S, 
self-adjusted by some algorithm A that is constrained to navigate in S starting at its 
root, following one edge at a time and transforming S through rotations. Traversing or 
rotating an edge costs one unit. Let S0 be the initial tree, S i+1 be the tree after 
completing access( i), and c( i) be the cost if the i th access. The total cost of 

performing all M accessed is 1

0( ) ( )M
A iiC H c s−

= . Algorithm A is said to be an on-

line algorithm iff the way it performs access( i) depends only on ‘the past’, i.e., only 
on Si and 0, ..., i. Otherwise it is called off-line. Obviously, there exists an optimal 
offline algorithm OPT: just check all possible sequences of trees and select the best. 
(See [6] for a more clever, yet still highly inefficient, optimum algorithm). 

An algorithm A serving H with total cost CA (H
 ), is said to be k-competitive (to the 

optimal) if CA (H
 ) ≤  k COPT (H

 ) for all sequences of accesses H. We shall present in 
the next sections a version of splay achieving  k = (loglogN) competitiveness. 

3 Splay Templates, Progress Factors and Amortized-Cost 
Analysis 

The splay technique for a binary tree S may be described by the ‘template set’ [13, 20] 
given in Fig. 1. Let the internal node x be a descendant of y in S. The splay operation 
splay[x → y] is defined as follows: put a cursor  on x and relink its path to y 
applying repeatedly the ‘zig-zag’ or ‘zig-zig’ templates and finally the ‘zig’ template 
(if needed), until x takes the place of y. 

To obtain an amortized cost analysis for splay we assign to each node x in S (even 
external ones) an atomic weight w(x) ≥ 0, and define its total weight W(x) as the sum 
of the atomic weights of its descendant nodes, itself included.   

For an edge e = (parent(x), x) we define its progress factor (e) by  

( )( ) log ( ( )) / ( )e W parent x W x . For a path x → y we set ( )( ) ( )e x yx y e∈ →→ . 

The potential  of tree S —w.r.t. to ( )w ⋅ —is defined as the sum of all progress 

factors: ( ) ( )
e S

S e
∈

. 

Lemma 1 (‘progress lemma’): Let splay[x → y] be applied to S, obtaining tree S . 
Then, length(x→ y) − 1  ≤  3 (x→ y) + [ (S) – (S  )], i.e., the amortized cost of 
splay[x→ y] is ( (x→ y)) = O(log(W( y)/W(x))). 

O

l
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Proof: As in [13], or by a direct calculation similar to that in [19].  

'zig'

A B

C

B

A

A

B

AD

C

C

A B DC

'zig-zag'

A

B

DC

A B

D

C

'zig-zig'

 

Fig. 1. Classic splay templates 

4 Chain-Partitions and a Lower Bound for COPT(H ) 

Simplifying things, let us suppose that N = |U | = 2m–1 for some integer m > 0. Let B 
be a fully balanced binary tree of N internal and N+1 external nodes. For each internal 
node x in B define follow(x) as either its left child left(x) or its right child right(x), and 
define the HEAD nodes as the set  of nodes that are the follow of no other one. (We 
shall see below how to define follow(⋅) w.r.t. a sequence of operations H.) 

The chain(x) will be the set of nodes reachable from x along edges of the form 
( y, follow( y)). The set of chains P = {chain(x): x ∈ HEAD}, is turned to a tree, in fact 
a binomial one, by defining the parent of a chain with head x, as that chain which 
contains the parent of x. Notice that the size of every chain is at most log2(N+1). 

Every sequence of operations H partitions the tree B into chains: for each x in B we 
set  follow(x) ← left(x) if  the most recently accessed descendant of x is either x, or 
some node in the left subtree of x, or no descendant of x has been accessed so far. 
Otherwise, we set follow(x) ← right(x). For each step i let Pi(H

 ) be the partition of B 
into chains induced by the partial history 0, ..., i–1. For every node x we define its 
level at step i, leveli(x), as the number of HEAD nodes of Pi on the path x → root(B), 
(i.e., the depth of its chain in the tree of chains.) The following result is due to 
R. Wilber [23]: 

Lemma 2 (‘interleave bound’): Any algorithm A serving H by accessing a binary 

search tree through rotations, performs at least 1
OPT 0

1( ) ( )2
M

i iiC H level−
=≥ –O(N ) 

operations. 

(A proof of Lemma 2, rewritten to conform with the framework of this paper, is 
included in the Appendix for the sake of the reader, since it may provide helpful 
insights for the results presented subsequently.) 
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5 Chain-Splay: Achieving the Lower Bound Within O(loglogN ) 

To serve H we have to access at each step i the element i and adjust tree Si to tree 
Si+1. For an amortized cost analysis of these accesses we define the atomic weight 
wi(x) of x in Si by: 

 ( ) ( )
( ) log 2( 1) i

i

level x
w x N

−= +  (1) 

its leveli being derived from its corresponding node in B and the current partition Pi. 

Lemma 3: Let tree S with root r be weighed according to wi(⋅). Then the amortized 
cost for accessing any x in S is O( (x→ r)) = O(loglog2(N+1))⋅level(x). 

Proof: Let us denote by Km, l the number of nodes of level l in a fully balanced binary 
tree of height m. Suppose w.l.o.g. that follow(root(B)) is left(root(B)). A node of level 
l in the left subtree of the root retains its level in the full tree while an element of level 
l–1 in the right subtree acquires level l in the full tree. Thus Km, l = Km–1, l + Km–1, l–1, 
and since Km, 1 = m and Km, m = 1, we obtain Km, l = (m 

l). Setting m = log2(N+1), and 
calculating the total weight of the root r by, 

 ( ) ( )
,

1 1

1 1 1
1 1 1 ,

l l mm m
level x

m l
x S l l

m
W r m K e

lm m m
−

∈ = =

= = = = + − ≤ −  (2) 

we obtain: 

 ( )( )( )
( ) log log 2 log( ) log ( )

( ) ( )
level xW r e

x r m O m level x
W x w x

→ = ≤ ≤ + = ⋅ . (3) 

  

By Lemma 1 and Eq. 3, classic splay would suffice for our purposes if the weights 
were constant. Since each access modifies the partition of B and the weights of nodes, 
we must reweigh the tree S. To do so, at a (very) low potential cost, we shall keep the 
following condition invariant: 

Chain-Respect Condition:   

1. For each step i = 0, ..., M–1, every chain C in the partition Pi induced on B by the 
history up to step i, forms a single subtree in Si (i.e. its nodes are connected by Si), 
and the parent node in Si of the top (highest) node of C in Si belongs to the parent-
chain of C w.r.t. to Pi. 

2. In every node x in S we keep one variable bit denoting whether x is the top node of 
the chain to which it belongs. It is very easy to maintain this variable bit during 
rotations. We also keep the depth, d(x), in B of the corresponding node in B. For 
this we need just loglog2(N+1) fixed bits. (Thus chain-splay trees use a few 
variable bits less than tango trees [9].) 

Theorem 4: The following algorithm—explained in the proof—maintains the chain-
respect condition and reweighs Si without increasing the potential by more than 

(loglog2(N+1)) leveli( i). 

How to Splay for  oglogN-Competitiveness
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Chain-Splay( tree S, element ): 

{ Splay  to next higher ‘top’ node - unless  is already one 

  while  ≠ root(S) do  
  { Splay  to the next higher ‘top’ node 

    x
L
 = left( ), x

R
 = right( ) 

    If d(x
L
)<d(x

R
) then LeftGroup(x

L
) else RightGroup(x

R
) 

    // ReWeigh S - now! } } 

 

Procedure LeftGroup(x):    // RightGroup(x) is symmetrical  

{ c
J
 ← NIL; z ← left(x) 

  while (z ≠ NIL) and (z not a ‘top’ node) do   

  { c
J
 ← z; if d(z)<d(x) then z ← right(z) else z ← left(z)} 

  Let p
J
 be the predecessor of c

J
 along the traversed path 

  Splay c
J
 to below p

J 
, Splay p

J
 to below x  

  Mark right(p
J
) as ‘top’ } 

 
Proof: Since after step i element i is the most recently accessed one, the chain of i 
will become the new maximum chain of Pi+1, and the partition Pi should be updated 
accordingly. We perform this update from child-chain to parent-chain as i ascends to 
the root. 

Let C be the chain i currently belongs to, and let the parent-chain of C be p(C ). 
All elements in C and all the descendants chains of C  belong to an interval defined by 
two elements xL and xR which are ≤-consecutive in p(C ). After splaying i to the top-
node in Si of p(C ) these two elements will appear as i’s left and right children, and 
the subtree of C (with all its descendants) will split into two subtrees L and R, 
appearing as right and left subtrees of xL and xR (Fig. 2). Chains that are descendants 
of C will be moved en block into either tree L or tree R. 

We consider two cases (the second being symmetrical to the first): 
Case 1: If the depth d(xR)—in B—of xR is less than d(xL) then xR appears in B above xL 
so i is a right descendant of xR, and the chain p(C ) proceeds in B through the left 
edge of xL : follow(xL) = left(xL). To prepare the next partition we must set follow(xL) 
← right(xL). To update, so far, Pi, we should turn chain(left(xL)) into a separate 
subtree and modify p(C ) by incorporating L and R into it. 

The nodes in chain(left(xL)) are exactly the nodes in the left subtree of xL that 
belong to p(C ) and have greater depth in B than xL. These nodes form a ≤-interval J 
within chain p(C ), hence they can be grouped into one subtree by the procedure 
LeftGroup: starting with the left child of xL , if a node z has depth greater than the 
depth of xL then [z .. xL] ⊆ J thus z’s right subtree is included in J and we may proceed 
to left( z). Otherwise z and its left subtree are disjoint from J and we can proceed to 
right(z). We stop at NIL nodes or top-nodes (demarking the subtree of p(C )). Splaying 
cJ up to below its predecessor pJ in p(C ), and this predecessor just below xL , groups J  
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to a single subtree, restoring our invariant condition: the update follow(xL) ← right(xL) 
can be done by marking the highest node of J as ‘top’. (We splay nodes pJ and cJ so 
that their access-cost is paid in an amortized sense.) 

L R

i

xRxL

cJ

pJ

L R

i

xRxL

cJ

pJ

J  (and descendants)

=  a 'top' node
L

R

i

xR

xL

 

Fig. 2. Chain splay – the LeftGroup operation 

The crucial fact is that after this suitable grouping we have the opportunity to 
reweigh Si in the appropriate manner with a minimal cost. Consider the sets, J ∗ 
(consisting of nodes in J and all their descendants) and C ∗ (consisting of nodes in C 
and all their descendants). The level of nodes in J ∗ is increased by one so their 
weights must be divided by log2(N+1). The level of elements in C ∗ is decreased by 
one, hence their weights must be multiplied by log2(N+1). This is all the reweighing 
needed, so far (since further updates are dangling). Two observations are in order: 

1. The distributions of node-levels inside C ∗ and J ∗ are identical: these sets are just 
the subtrees of xL in B. Therefore their total weights in B differ just by a factor of 
log2(N+1). The weights in C ∗ are multiplied by, and weights in J ∗ are divided by, 
log2(N+1), hence the total weight of i and all its ancestors remains exactly the 
same. In particular ( i → root(Si)) remains the same. 

2. The weights of all the nodes (even external ones) in subtrees J ∗, L, R  are 
multiplied or divided by the same factor, therefore the progress factors (e) of 
edges e inside J ∗, L or R are not modified. (Exactly this effect is more difficult to 
handle with a ‘sum-of-logs’ potential on S.) 

Hence we have to consider only an (1) number of edges linking J ∗, L, R up to i, 
the progress factors of which are easily seen to be either decreased, or increased by 
less than (loglog2(N+1)). Since the progress factors of all other edges remain the 
same, reweighing of Si increases the potential by an (loglog2(N+1)) amount at most. 
Case 2: If d(xR) is greater than d(xL) we proceed symmetrically with a right-grouping. 

The operations LeftGroup and RighGroup are performed locally, within the 
subtree that the relevant chain forms in Si, and their amortized cost is easily calculated  
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(analogously to Lemma 3) to (loglog2(N+1)). The while-loop is repeated at most 
leveli( i) times: tree Si respects the chains of Pi thus we meet at most leveli( i) chains 
along the path i → root(Si).  

Notice that splaying of i up to the top node of p(C ) may be performed avoiding 
the ‘zig’ rule of splay. In this way i may not become the top node of p(C ), but only 
its left or right child  (Fig. 2). In this case our analysis holds as well, with only trivial 
modifications. Thus the accessed element can be splayed to the root of Si in exactly 
the same way as classic splay would do. 

Theorem 5: Chain-Splay is (loglog2(N+1))-competitive to the optimum 
searching algorithm, for M ≥ N. 

Proof: The splay of i to the root has by Lemma 3 an amortized cost of 
(loglog2(N+1))⋅leveli( i) and reweighing has by Theorem 4 an amortized cost of 
(loglog2(N+1))⋅leveli( i). Using Lemma 2 we obtain: 

 CC-SPLAY(H ) ≤ ( )
1

0

log ( )
M

i i
i

m levelO
−

=

⋅ ≤ O(loglog2(N+1)) COPT(H) + (S0
 ).  

6 Epilogue: A Comparison with Tango Trees and Some 
Comments 

‘Tango’ trees [9] are a clever and very efficient variety of search trees. Yet, as far as 
the dynamic-optimality conjecture is concerned, they present few theoretically 
undesirable properties: (a) If the lower bound of Lemma 2 is tight then they are not 
optimal, as pointed out in [9]; (b) They are not splay-like since they maintain various 
subtrees explicitly height-balanced; (c) They do not use only comparisons—if this is 
of any theoretical significance; (d) They are naturally described through cutting and 
linking of subtrees, while the optimal opponent is allowed to perform only rotations.  

Chain-splay avoids all the above, except, so far, the 1st one: possibly chain-splay is 
not optimal. Notice however in chain-splay each accessed element is splayed to the 
root in exactly the same way as ordinary splay would do. The extra work is done to 
keep the chains S-connected. At the time of writing we could not indicate a reason 
forcing us to do so, other than reweighing S effectively. Conceivably extra splaying 
arises as an artifact of our analysis. Asserting this would be a very strong statement, 
which—to our opinion—could even be equivalent to the dynamic optimality 
conjecture. Obviously, O(loglogN)-competitiveness of ordinary splay is the major 
next issue left open by this work. 

Finally, we would like to draw the reader’s attention to [11] where it is proved that 
splay trees are competitive to parametrically balanced self-adjusting trees—a class 
including the self-adjusting versions of almost all balanced trees designed so far. Can 
we apply or extend [11] to prove that chain-splay trees, or better splay trees, are 
competitive to tangos? Is ordinary splay competitive to chain-splay? 

O

O

O
O
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Appendix 

Lemma 2: Any algorithm A serving H by accessing a binary search tree through 

rotations, performs at least 1
OPT 0

1( ) ( )2
M

i iiC H level−
=≥ –O(N ) operations [23]. 

Proof: If y is a HEAD node on the path i → root(B) then during the access of i the 
follow(⋅) node of y’s parent changes from the sibling of y to y itself. The sum 

1

0 ( )M
i ii level−

=  equals the total number of such changes (including M accesses to the 

root) and obviously half of them (excluding at most N) change the follow(⋅) of a node 
from its left to its right child. We shall put pebbles on tree S and force algorithm A to 
gather as many pebbles as the total number of left-to-right changes of follow(⋅).  

Let us say that a node z covers a set J ⊆ U if z is an ancestor in S of every element 
in J. Denote the highest node of J by top(J). It is easy to see that, since S is a binary 
search tree, if J is an interval of U then top(J) covers J. For every x in B we define the 
left subinterval LI(x) of x as {x} plus all elements in the left subtree of x, and the right 
subinterval RI(x) as all elements in the right subtree of x. Since the subintervals of x 
are not separated by any element, nodes top(LI(x)) and top(RI(x)) lie on a path in S. 
We define the transition point of x, tp(x), as the lowest of them. Since the subintervals 
of every x are disjoint and the transition point of x belongs to the subinterval it covers, 
it covers that subinterval of x to which it belongs. Moreover being the lowest of 
top(LI(x)) and top(RI(x)) it does not cover both. Notice that A has to ‘touch’ (i.e. visit 
and/or rotate) tp(x) in order to access in S some element in the subinterval covered by 
tp(x). Below we exploit this fact.  

By the definition of follow(x) in B, a left-to-right change occurring at node x, 
corresponds to two steps a, b ∈ [0..M–1] for which  ∈ LI(x), b ∈ RI(x) and for each 
k ∈ (a, b) we have k ∉ I(x), i.e., the most recent access before step b of an element in 
I(x) occurred at step a. (Recall that x belongs to LI(x)). After access( ) we put a 
pebble on the transition point tpa(x) in S. When algorithm A ‘touches’ a node in S it 
gathers all pebbles on it. The following facts prove our Lemma:  

1. Every left-to-right change of follow(⋅) puts exactly one pebble on S. (It puts one on 
tpa(x) when it occurs and cannot not occur again unless this one has been gathered.) 

2. The transition point of x remains the same during steps k ∈ [a..b], unless it is 
touched by A. (Unless tpa(x) is touched no other node can become, or cease to be, a 
descendant of it. Thus tpa(x) continues to cover the subinterval of x to which it 
belongs and not to cover the other one.) 

3. Algorithm A touches the transition point tpa(x) at some step in (a..b]. (For 
accessing b algorithm A must touch tpb(x), and this equals tpa(x) if the latter has 
been untouched so far.) 

4. No two nodes in B have the same transition point in S. (Let x ≠ y be two nodes with 
z as their common transition point. Every node is an ancestor in B of its transition 
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point, thus x and y are ancestors in B of z. W.l.o.g. suppose that x, y, z appear on 
their path in the given order. Node z being the transition point of x covers that 
subinterval of x to which it belongs, i.e. the same subinterval which contains y. 
Thus it covers both subintervals of y. Yet z is also the transition point of y, while 
the transition point of no node covers both its subintervals—a contradiction.) 

5. Algorithm A has to gather at most one pebble for touching tpa(x), i.e., it is not 
overcharged. (Node tpa(x), up to be touched by A, remains the transition node of x, 
hence by 4. no other node will put a pebble on it: every node carries at most on 
pebble.)  

6. At most N pebbles may be left ungathered at the end.   
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Abstract. We consider the problem of fast IP address lookup in the for-
warding engines of Internet routers. We analyze over 2400 public snap-
shots of routing tables collected over five years, discovering what we
call the middle-class effect. We exploit this effect for tailoring a simple
solution to the IP lookup scheme, taking advantage of the skewed distri-
bution of Internet addresses in routing tables. Our algorithmic solution is
easy to implement as it is tantamount to performing an indirect memory
access. Its performance can be bounded tightly and has very low mem-
ory dependence (e.g. just one memory access to off-chip memory in the
hardware implementation). It can quickly handle route announcements
and withdrawals on the fly, with a small cost which scales well with the
number of routes. Concurrent access is permitted during these updates.

1 Introduction

The IP lookup problem is a recurrent problem in the literature for packet for-
warding in the Internet [16]. Routers have to forward lots of packets from input
interfaces to output interfaces (next hops) based on packet’s destination Inter-
net address, called an IP address. Forwarding a packet requires an IP address
lookup at the routing table to select the next hop corresponding to the packet.
(We will use the term “routing table” to denote what is more properly called a
“forwarding table.”) As routers have to deal with links whose speed constantly
improves, the address lookup is considered one of the major bottlenecks [6, 16].
For networks with a link speed of 10 gigabits per second (OC-192), they need
to forward up to 33 million packets per second, assuming that each packet is 40
bytes long. Other bottlenecks, such as those involved by fair queuing policy and
IP switching technology, are well understood and handled [11].

In IPv4 [13] the prefixes are binary strings of variable length using the syntax
X.Y.W.Z/L to represent the first L bits of the 4-byte word X.Y.W.Z, where
8 ≤ L ≤ 32. Prefixes can be up to 128 bits in IPv6 [5] (but then have a different
syntax). The use of prefixes increases the complexity of the IP address lookup
problem. For each packet, more than one prefix in the routing table can match
the packet’s IP address. In this case, the adopted rule is to take the longest
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Table 1. A routing table Table 2. Its two-layer organization

prefix hop

65.10.10.0/24 1

192.168.0.0/17 2

192.168.0.0/18 3

192.168.64.0/18 2

192.168.0.0/32 4

192.168.0.0/29 5

layer 1 layer 2

65.10.10.0/24 1 192.168.0.0/24 3

192.168.0.0/17 2 192.168.0.0/32 4

192.168.0.0/18 3 192.168.0.0/29 5

192.168.64.0/18 2

192.168.0.0/24 255

matching prefix. Given prefixes p1, p2, . . . , pn, for any binary string x we want
to identify the longest pi that equals the first bits of x, where 1 ≤ i ≤ n. For
example, let us consider the prefixes in Table 1. Both prefixes 192.168.0.0/17
and 192.168.0.0/18 match the IP address 192.168.32.125; hence, the packet is
forwarded to next hop 3. We will only consider situations arising with single
hops, since dealing with multi-hops is very similar. No-route-to-host is the special
next hop 0 associated with the empty prefix ε.

In this paper we stress the importance of data analysis on real routing tables
before designing IP lookup algorithms. We begin with the experimental anal-
ysis performed on public databases of nearly 2400 snapshots of routing tables
collected over five years. We identify some new parameters characterizing the
(skewed) distribution of prefixes in routing tables. Based upon our findings, we
provide a new and simple solution to the IP address lookup problem.

Our starting point is the result based on full expansion and compression
of routing tables by Crescenzi, Dardini and Grossi [4]. (It was later referred
to as CDG in [3].) Let us illustrate CDG conceptually with Table 1 for IPv4,
considering all possible 232 IP addresses that can be queried. For each such
address, we associate with it the corresponding next hop according to its longest
prefix match in Table 1. Now, let us organize the 232 next hops thus computed in
a 216 × 216 matrix. Lookup time is now a direct access to this matrix; however,
its size does not fit current capacity of L2 caches. Observing that many rows
and columns contain repeated values, CDG considers only the distinct rows (as
individual sequences of 216 next hops each); they are further compressed using
run length encoding (RLE) on their values. The lookup requires three accesses
but the size reduces to very few megabytes.

Table 3. Dataset description

router #tables from to

aads 538 10-01-00 05-15-02
mae-east 230 10-01-00 06-01-01
mae-west 618 10-01-99 04-12-02
paix 78 10-01-01 03-10-02
pacbell 576 12-09-98 05-15-02
ripe-ncc 365 01-01-03 12-01-03
ripe-ncc 19 10-10-99 04-01-04

router date router date

aads 05-30-01 oregon-03 07-10-03
att 07-10-03 pacbell 05-30-03
east.attcanada 07-10-03 paix 05-30-01
funet 10-30-97 telstra 03-31-01
mae-west 05-30-01 telus 07-10-03
west.attcanada 07-10-03 oregon-01 03-31-01
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row

255 3 ... 3 ... 3 2 ... 2  0 ... 0

  0 0 ... 1 ... 0 0 ... 0  0 ... 0

  0 0 ... 0 ... 0 0 ... 0  0 ... 0

  0 1 ... 10...63 64...127 128..255

255.255

192.168

65.10

0.1
0.0

hop

Fig. 1. The arrays row and hop for layer 1 in Table 2

To our knowledge CDG is the first to describe a lookup scheme whose design
is fully driven by data analysis. A frequently cited survey [16] published in 2001
shows that CDG is almost an order of magnitude faster than its state-of-the-
art competitors at that time (see Table 3 in [16]). Even in the worst case, the
frequency of lookups with small response time is impressively high and does not
depend on the traffic through the router (see Fig. 22 in [16]). Unfortunately,
CDG has some drawbacks. The survey reports that “Schemes using multibit
tries and compression give very fast search times. However compression and the
leaf pushing technique used do not allow incremental updates. Rebuilding the
whole structure is the only solution.” Moreover, some authors [3, 7, 15] pointed
out some cases in which the space requirement of CDG is too high, possibly
causing its performance to suffer in the worst case.

Our scheme. We present a lookup scheme that exploits the original idea of
CDG in a novel and even simpler way. Going on in our illustrative Table 1, let
us truncate the prefixes in the table that are longer than 24, thus retaining just 24
bits and associating with them a dummy next hop (e.g. 255). We obtain layer 1,
as shown in the left column of Table 2. The prefixes longer than 24 constitute
layer 2, in the right column of Table 2, which is scarcely populated according to
our data analysis. (Note that 192.168.0.0/24 in layer 2 is pushed from layer 1 to
deal with IP addresses matching 192.168.0.0/L, where 24 ≤ L < 29.) We can
now revisit the approach described for CDG and apply it to layer 1. With each
24-bit address, we associate its corresponding next hop according to its longest
prefix match in layer 1. Organizing the resulting next hops into a 216×28 matrix,
we keep only the distinct rows (and do not compress them with RLE) as shown
in Fig. 1. It suffices to perform a lookup in two accesses in layer 1 by looking at
the first 24 bits in the given IP address. For example, the next hop for IP address
192.168.32.125 can be retrieved by following the pointer in row[192.168] to a row
of 256 entries, in which entry 32 contains the result, next hop 3. Sometimes we
get the dummy next hop in layer 1 and so we also need to perform the lookup
in layer 2 (this happens very rarely according to our data analysis). Access time
and space occupancy are definitively improved over CDG in this way.

Our method exploits some properties that allow us to avoid the drawbacks of
CDG. The main discovery is what we call the middle-class effect in real routing
tables: even though the majority of prefixes have lengths ranging from 16 to 24,
they tend to follow regular patterns. In other words, we have a good chance
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to store the mapping from all the 232 IP addresses to the next hops into a
compact table, so that lookup and update are able to access the table very quickly
using indirection. Our contributions can be summarized as follows. First, we save
space significantly over CDG since we have a much more stable space occupancy
that scales linearly with the table size (Fig. 3, left). We no longer need the
run-length encoding (RLE) adopted in CDG, because we organize suitably the
prefixes. Second, we improve lookup time by nearly 30% (Fig. 3, right). Third,
we can dynamize the table, performing updates quickly without rebuilding the
whole structure as previously required. Our update algorithm is robust since
we can efficiently bound the worst case, which is important for unauthenticated
announcements [9]. Concurrent access is also permitted while updating. Our
method compares favorably with previous work [16]. We plan to extend our
experimental investigation to the interesting method recently proposed in [3].

2 Data Analysis of Routing Tables

In this section, we describe our data analysis on routing tables to highlight
a useful property for prefixes of length from 16 to 24, called the middle-class
effect. We first describe the large data set of public routing tables for IPv4 in
Section 2.1. We illustrate the middle-class effect in Section 2.2, showing how to
exploit it for a two-layer organization of IP lookup tables in Section 2.3.

2.1 Databases and Experimental Platforms

We base our analysis on an extensive data set of more than 2400 snapshots
of routing tables available from public databases, collected over a period rang-
ing from 1998 to 2004. The major source is the IPMA project [10]. We also
collected all daily data for year 2003, plus some monthly snapshots, from the
RIPE NCC [14]. Some authors singled out individual snapshots that cause the
worst-case behavior of CDG in terms of space occupancy; hence, they are good
benchmarks for our method as well. Most of these tables have been employed in
the experiments [3, 12, 15]. We report the figures in Table 3.

As for the updates, we collected all the announcements and withdrawals
available for the entire year 2003 on RIPE NCC. In Fig. 2(left), we plot their
number in millions on a daily basis. As we can see, the number of withdrawals
is an order of magnitude smaller than the number of announcements. On the
average, there is approximately one announcement per second; clearly, they ar-
rive in bursts. For example, note the peak of more than 20 million updates on
Oct. 25–26, 2003 (around 300 on the x-axis). We will use this particular peak for
intense benchmarking in Section 4. As for the lookups, we could not find publicly
available traffic traces (for privacy reasons). We instead use random data from
previous work [3], as well as synthetic data. We obtain the latter by extending
the approach in [2], adopted in the network community, to generate traffic data
according to the distribution of the prefixes of any given routing table T (details
given in the technical report [8]).
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Fig. 2. Left picture: Millions of daily announcements (top) and of daily withdrawals

(bottom) for RIPE NCC, in logarithmic scale on the y-axis. The x-axis reports the 365

days in year 2003 as numbers in the interval 0. . . 364. Right picture: Space occupancy of

our scheme scales linearly with table size. The x-axis reports the thousands of prefixes

and the y-axis the number of kilobytes taken

For our experiments we employed an AMD Athlon XP 1900+ (1.6GHz),
256Mb RAM DDR at 133Mhz, 256Kb L2 cache, 128Kb L1 cache (64 Kb data
and 64Kb instructions) running Linux kernel 2.4.22. We used gettimeofday for
timings. We plan to extend the experimentation to more platforms (e.g. those
based on the PowerPC).

2.2 Distilling the Middle-Class Effect in Routing Tables

In order to illustrate our ideas, let us consider any routing table T ; in our case, the
snapshot of the RIPE NCC router taken on April 1st, 2004, containing 138201
prefixes. (Note that analogous properties hold for the other router snapshots
mentioned in Section 2.1.) What is widely known is the skewed distribution of
prefixes from length 1 to 32 in T . Indeed, 98% of the prefix lengths are in the
interval 16. . . 24, which we call middle-class prefixes. This skew is typically a
good sign for compressing data.

We can get further insight on T by examining the trie storing all the prefixes
in T since an IP lookup is a traversal of a path from the root of the trie. The
nodes of the tries are labeled with the next hops according to prefixes in T . Some
nodes u are also marked to record the fact that the path from the root to u stores
a prefix of the table. We can draw two cutlines on the trie, on levels 16 and 24.
We obtain a set of at most 216 sub-tries of height no more than h = 8. (The
height is the numbering of levels, starting from 0 for the root.) For random data,
we do not expect to find isomorphic sub-tries. Indeed, the probability that no
two sub-tries are isomorphic is very near to one, i.e., (1− p)2

16 ≈ 1 (see [1]). We
instead consider a weaker notion which is more relevant in our case. Given a trie
of height h, let us expand it to its complete form (also called prefix expansion)
so that all the leaves are on the same level. Nodes are still labeled and marked
according to the prefixes in T , except that they are now part of a complete trie
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(with expanded leaves that explicitly represent all possible 2h binary strings of
length h). Note that each string is associated with its correct next hop when
seen as part of an IP address.

We say that two tries are equivalent, if the sequence of 2h next hops in the
expanded leaves on level h of the former is identical to that of the latter, when
scanned in left-to-right order. In other words, when a lookup with h bits is
performed on two equivalent tries, the next hops thus returned make them in-
distinguishable. Note that two isomorphic tries are equivalent while the reverse
is not necessarily true, since different combinations of shapes and labels/marks
can yield the same sequence of next hops. We are therefore interested in select-
ing one representative for each class of equivalent tries. In our case, we apply
this selection to the sub-tries of height at most 8 obtained from the cutlines on
levels 16 and 24 (corresponding to the middle-class prefixes). How many of them
are equivalent? For random data, we still expect that there are very few equiva-
lent sub-tries. Fortunately, we observe what we call the middle-class effect in
real routing tables T when we build the trie on the prefixes in T :

Many sub-tries of height ≤ 8 on level 16 are equivalent with lots of rep-
etitions, and their nodes store the great majority of prefixes in T .

So there is a good chance to store fewer than 216 sub-tries by keeping just one
representative for each equivalence class. Even though the majority of prefixes
are middle-class (98% in our T ), they do follow regular patterns in the routing
table. In our example, table T gives 13834 nonempty sub-tries of height at most 8
on level 16. Among these, we are left with 3241 representatives of equivalence
classes. These are not random data at all!

2.3 Two-Layer Lookup Tables Exploiting the Middle-Class Effect

We now present a simple, but powerful, lookup scheme based on the middle-class
effect described in Section 2.2. To be more concrete, we illustrate our approach
by referring to T , shown in Table 1. Following what claimed in the middle-class
effect, we can conceptually cut the trie built on the router prefixes, on level 24.
We transform the resulting trie into a direct acyclic graph (DAG), in which
equivalent sub-tries (of height at most 8) on level 16 are collapsed. This DAG
can be represented by the data structure in Fig. 1, consisting of two components:
hop: This is the two-dimensional array of α̂ × 256 next hops, where α̂ is the
number of non-equivalent sub-tries on level 16 of the DAG (α̂ = 3 in our ex-
ample); each such sub-trie is represented by its sequence of 28 = 256 next hops
without RLE compression.
row: This is the array of 216 entries mapping the first 16 bits of IP addresses
to the suitable row of hop. (Equivalently, they represent the children pointers of
DAG nodes on level 16.)

In other words, we expand the upper part of the DAG that corresponds to
the first 16 levels into row, and store in each row of hop the sequence of 256 next
hops derived from each class of equivalent (collapsed) sub-tries. The pointers in
row keep track of the corresponding sub-tries thus represented in hop. For any
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IPv4 address x = x1.x2.x3.x4, the next hop obtained by searching for x into the
trie (compactly represented by the DAG) is that stored in hop

[
row[x1.x2], x3

]
.

The above data structure forms what we call layer 1, which allows us to
answer IP lookups by examining the first 24 bits (which is mostly the case in
our collected data). The set of remaining prefixes (longer than 24 bits) in T
form layer 2, which is augmented by taking their first 24 bits. (Recall that we
associate with these bits the dummy hop, e.g. 255, in layer 1.) Table 2 shows
an example. Dummy prefixes of length 24 in layer 1 correspond to prefixes of
length 24 with the correct next hop in layer 2. The number of such dummy
prefixes cannot exceed that of prefixes longer than 24. At this stage, we do not
need to choose any specific implementation of the lookup table for layer 2.

Before discussing the experimental analysis on the lookup in Section 3, we
first assess the space occupancy of our scheme.

Fact 1. Layer 1 occupies α̂ × 256 + 216 · size(ptr) bytes, where α̂ ≤ 216 is
the number of non-equivalent sub-tries of height at most 8 on level 16, and
size(ptr) ≥ (log2 α̂)/8 is the number of bytes encoding a pointer to hop’s rows.

In the worst case, hop occupies no more than 16 Mb and row needs 256 Kb
(using 4-byte pointers) by Fact 1. This is actually a pessimistic estimate, since
we only keep the sub-tries that are not equivalent each other. In order to have a
fair comparison of our scheme with CDG, we must add the space taken by the
lookup table adopted for layer 2:

lookup space (Kb) lookup space (Kb)
time total layer 1 layer 2 time total layer 1 layer 2

CDG 7012 2022 1521 501 N-Way Srch 5211 1608 1521 87
Binary Search 5221 1556 1521 35 Binary Trie 5758 1649 1521 128
K-Way Search 5274 1556 1521 35 Hybrid Trie 5297 1649 1521 128

In the above table, we report the figures for several choices with router
west.attcanada, where we compare several methods for storing the prefixes in
layer 2: CDG, array with binary search, k-way search (with k = 8 and k = 2n
where n is the number of prefixes), binary tries, and hybrid tries in which the
first three levels are indexed by individual bytes and the next 8 levels (at most)
are indexed by individual bits. Indeed, a lookup in layer 2 surely matches at
least the first 24 bits by construction. Lookup times measure the number of
microseconds for running 100,000 lookups.

We computed similar tables for the other snapshots: it turns out that hybrid
tries are the best trade-off between space and lookup time. Choosing hybrid tries
for storing prefixes in layer 2, we report in Table 4 the space improvement with
respect to CDG for the 13 benchmark tables listed in Section 2.1. As we can see,
the column corresponding to our scheme gives a quite stable occupancy in space
with respect to the routing table size (#prefixes). This is better highlighted if
we consider the entire year 2003 of RIPE NCC, with the results for our scheme
being plotted on the bottom part of Fig. 3(left).
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router #prefixes space (Kb) random (ms) synthetic (ms)
CDG ours CDG ours hit-2 CDG ours hit-2

aads 32505 3706 1084 7276 5903 5463 7452 4775 4820
att 121711 2188 1822 12605 7351 15 7872 4941 16
east.attcanada 127561 16418 1661 15096 8429 3220 9164 5450 3116
funet 41328 666 540 3130 2461 88 5036 2783 67
mae-west 71319 4643 1290 7217 5916 2385 7425 4565 2401
oregon-01 118190 9897 1596 7740 9933 11693 7265 6654 10651
oregon-03 142883 9026 2164 14262 9529 3565 8790 6023 3525
pacbell 45184 3170 982 6126 5078 3899 6584 4233 3458
paix 17766 2745 875 6306 5522 9683 6934 4682 8703
telstra 104096 8896 1490 8468 7544 3899 7966 5317 3690
telus 126687 11390 1724 14011 8177 2095 8630 5279 2228
west.attcanada 127576 16749 1664 15071 8353 3277 9167 5350 3050
RIPE NCC 138201 5132 1202 10936 5922 1136 6970 4106 1074
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Fig. 3. Left picture: Space occupancy of our scheme vs. CDG for RIPE NCC. The

x-axis reports the 365 daily snapshots of year 2003 numbered as 0. . . 364; the y-axis

the occupied space in kilobytes. Right picture: Number of milliseconds (on the y-axis)

required by 1 million lookups in CDG (top) and in our scheme (bottom) using synthetic

traffic. The x-axis reports the 365 daily snapshots of year 2003 numbered as 0. . . 364

The net result for our scheme is a lookup table whose space occupancy scales
linearly with the number of prefixes. (Clearly, layer 1 alone scales as well; more-
over, its maximum size is 16Mb.) Fig. 2(right) illustrates this behavior for the
available monthly snapshots of RIPE NNC, from October 1999 to April 2004,

Table 4. Space occupancy and time performance of our method versus CDG for the

13 benchmarks described in Section 2.1. Space is measured in kilobytes; time is mea-

sured in microseconds. The data for the columns should be read as follows. Columns 1–2

are the benchmark names and their numbers of prefixes. Columns 3–4 report the space

occupancy of CDG and our method. Columns 5–6 measure their running time for

100,000 lookups on random traffic. Column 7 (hit-2) counts how many hits our lookups

made in layer 2. Columns 8–10 are similar to 5–7 but refer to synthetic traffic. The

figures in italic correspond to random data for the experiments in [3, 12]
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with a number of prefixes ranging from 65841 (yielding α̂ = 1404) to 138201
(yielding α̂ = 3241). Here, layer 1 has a size ranging in 9n . . . 14n bytes for n
prefixes. For the sake of comparison, a straightforward storage of these prefixes
alone in a routing table would require 6n bytes, assuming that each prefix re-
quires a 4-byte word of memory, and its prefix length and its next hop need one
further byte each. We also computed statistics for all daily snapshots of 2003 of
RIPE NCC (see Section 2.1). The total size of our lookup table (using a hybrid
trie for layer 2) is in the range 7n . . . 16n, thus confirming the linearity of space
even in this case.

3 Performing Lookups

The improved space bounds described in Section 2 makes our scheme more stable
to use with respect to CDG. What about lookup time in IPv4? For any given
IP address x = x1.x2.x3.x4, we keep the variable lx = x1.x2 storing the first 16
bits of x and rx = x3.x4 storing the last 16 bits, so that x = lx.rx. We use the
right shift operator on rx to get byte x3 and to perform a lookup on lx.x3. If we
get the dummy value 255 in layer 1, we also need to perform a lookup in layer 2:

#define DUMMY 255

if ( (h1 = hop[ row[lx], rx>>8 ]) != DUMMY )

return h1;

return lookup_layer2( lx.rx );

For example, an IP lookup for x = 192.168.32.125 successfully stops at layer 1
by returning the next hop 3, which is located at hop

[
row[192.168], 32

]
. In-

stead, x = 192.168.0.27 requires a lookup in layer 2, since it returns the dummy
value 255 stored in hop

[
row[192.168], 0

]
. We measured the running time of our

method and of CDG on the daily snapshots of RIPE NCC for the year 2003. We
employed the synthetic traffic data for each individual snapshot as explained in
Section 2.1. As can be noted in Fig. 3(right), our lookups are definitively faster
than those in CDG by 30%. This is consistent with the fact that we reduce
CDG’s number of memory accesses from 3 to 2. It turns out that the role played
by the data structures in layer 2 is rather limited in our data set. We refer the
reader to columns hit-2 in the experimental data reported in Table 4, for the
number of hits to layer 2 out of 100,000 lookups.

4 Performing Updates

We now describe one of the main effects of our simplification of the lookup
scheme. We show how to efficiently handle the updates of the lookup table when
announcements (i.e. insertions) and withdrawals (i.e. deletions) of routes arrive
on the fly. We do not need to rebuild the lookup table from scratch. We describe
how to use our method by assuming that some reasonably efficient method has
been adopted for layer 2 (e.g. tries, multi-level hashing, TCAMs, etc.). Again,



Distilling Router Data Analysis 589

we base our method on real data analysis to show that the great majority of
updates involves layer 1, consistent with what was observed in the middle-class
effect. We also make our scheme more robust by providing a good, exact up-
per bound on the number of entries changed in the lookup table in the worst
case.

As described in Section 2.3, we employ hop and row for layer 1. It is crucial
to observe that hop is stored in row-major order. Since we adopt the maximum
number of columns, 256, the only admissible size change in hop is to add or
remove rows. Performing this change on the columns would result in a disaster,
as the whole hop would need to be re-allocated dynamically, which can have a
cost analogous to that of rebuilding. Here is why we opt for keeping all the 256
columns. This also guarantees a high level of concurrent access to our lookup
table during its lifetime.

We assume (realistically speaking) that the prefixes in route announcements
and withdrawals are of length at least 8. (They can be shorter in case of heavy
network failures, but then updating the routing table is a minor problem.) We
also assume that there are at most 127 distinct next hop values in layer 1. We
reserve the most significant bit in each entry of hop to mark it as a dummy.
(Note that we do not use the dummy value of 255 anymore as in Section 2.3.)
Masking this bit yields the correct next hop value.

We performed data analysis on the update traces for RIPE NCC. We collected
all the announcements and withdrawals available for year 2003 (see Section 2.1).
We discovered that for 336 days the percentage of daily updates involving layer
2 is less then 0.1%, for 360 days that percentage does not exceed the threshold
of 0.2% and that the maximum percentage is less then 0.7% This confirms once
again the middle-class effect, motivating our choice to build layer 1 on the first
24 bits. We suggest to use a well-tuned trie in layer 2, so that its update cost
does not significantly influence the overall performance of announcements and
withdrawals in a router.

4.1 Handling Announcements and Withdrawals

We show how to efficiently process announcements and withdrawals that are
produced during the execution of the border gateway protocol (BGP). When an
announcements arrives, we have to insert a certain prefix p with its associated
prefix length lp and next hop hp, into layer 1. Recall that 8 ≤ lp ≤ 32 by our
assumptions. We distinguish among three main cases for describing the worst-
case effect of this insertion on row and hop:

1) Case lp < 16: Since lp ≥ 8, we have to change no more than 256 entries
in row. However, each of them could change up to 256 entries in hop. The worst
case is therefore that of changing 256 + 216 entries. In practice, the number of
entries is much smaller.

2) Case 16 ≤ lp ≤ 24: This is the most frequent case according to the middle-
class effect. We can change one entry of row to point from one row of hop
to another, since the insertion of p needs to change some entries of the row
previously pointed in that entry of row. We may need to add a new row when
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none of the existing ones match this change. In the worst case, we change no
more than 1 + 256 entries.

3) Case lp > 24: We can change one entry in row and one in hop; the latter
change may cause the creation of a new row in hop as discussed in case 2.

We use the most significant bit to mark the next hop of a truncated prefix
so as to avoid that an update falling into cases 1–2 does not propagate to 24-bit
prefixes in layer 2 as a side effect. Consequently, we need to make a slight change
to lookup, as shown next.

#define BITMASK 0x80

#define NO_ROUTE_TO_HOST 0

if ( ! ((h1 = hop[ row[lx], rx>>8 ]) & BITMASK) )

return h1;

if ( (h2 = lookup_layer2( lx.rx )) != NO_ROUTE_TO_HOST )

return h2;

return h1 & ~BITMASK;

If a lookup in layer 2 returns no-route-to-host, then we must return the
next hop value (with its most significant bit cleaned) previously computed in
layer 1. Although it may appear that we are harming the performance of the
original lookup algorithm in Section 3, we observe that the hit ratio for the
first if-statement is very high and determines the real lookup cost, which stays
unchanged according to the experimental evaluation discussed in Section 3.

Withdrawals have an effect on row and hop similar to announcements, except
that we have to handle “hidden” prefixes. When we delete a prefix, we should
find the “parent” of that prefix and propagate its next hop downward to replace
that of the deleted prefix. For example, the withdrawal of route 192.168.0.0/18
from layer 1 in Table 2 causes the propagation of the next hop 2 (associated
with 192.168.0.0/17) to 192.168.0.0/24 (replacing its next hop 3) in layer 2.

As a result we add or remove one row at most in hop. Removed rows are
linked in a free list that can be reused for adding rows. This does not change the
lookup procedure and its cost.

Since the main cost is given by the number of entries changed in row and
hop, we computed statistics to account for this cost, classifying it according to
cases 1–3 (both for announcements and withdrawals). We processed the peak of
Oct. 25–26, 2003, in router RIPE NCC:

date #announcements #withdrawals case 1 case 2 case 3
10-25-04 20459780 139787 0.68% 99.31% 0.01%
10-26-04 11538757 144937 0.67% 99.30% 0.03%

The above table shows that nearly 99.3% of the updates fall into case 2.
Roughly half of them involve a prefix length lp = 24, so they change just one
entry in hop. Actually, the average number of changed entries in row and hop
is nearly 1. For case 1, the most expensive one, the variance is high for a small
number of updates while the rest of updates does not change any row of hop.
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On Oct. 25, 1495 updates changed entries row and hop; on Oct. 26, there were
1889. These few updates changed between 100 and 1000 entries; we found a single
example in which there were 20,985 changed entries, approaching the worst case.

The net result of the case analysis discussed so far is that updates are of
bounded cost in layer 1, even in the worst case. This cost scales well with the
number of updates and prefixes stored in layer 1.

Fact 2. In the worst case, the announcement or withdrawal of an IPv4 route
changes at most 256 entries in row and at most 216 entries in hop in case 1.
The number of changed entries in hop becomes 256 in cases 2 and 3. In all cases,
the empirical average number of changed entries is nearly 1.

5 Construction of the Lookup Table

The construction of our table consists in building a trie and then obtaining its
DAG. It is worth noting that we insert the prefixes (truncated at 24 bits) into
the trie in order of nondecreasing prefix length. If we do not follow this pattern,
we have to propagate the next hop of the currently inserted prefix downward.
In other words, we change the next hop to an already created set of nodes. If
we follow the above pattern instead, we have to assign the next hop only to
newly created nodes and this can happen once per node. This pattern gives a
better performance in the worst case. For our tables, the most time-consuming
construction was for oregon-03, in 365 milliseconds. Note that, since we can
quickly handle updates, the construction time is less important than in static
lookup tables.
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Abstract. We consider the problem of finding a door along a wall with
a blind robot that neither knows the distance to the door nor the direc-
tion towards of the door. This problem can be solved with the well-
known doubling strategy yielding an optimal competitive factor of 9
with the assumption that the robot does not make any errors during
its movements. We study the case that the robot’s movement is erro-
neous. In this case the doubling strategy is no longer optimal. We present
optimal competitive strategies that take the error assumption into ac-
count.

Keywords: Online algorithms, motion planning, ray search, errors.

1 Introduction

Motion planning in unknown environments is theoretically well-understood and
also practically solved in many settings. During the last decade many different
objectives where discussed under several robot models. For a general overview
on online motion planning problems see e. g. [3, 15, 9, 17].

Theoretical correctness results and performance guarantees often suffer from
idealistic assumptions so that in the worst case a correct implementation is im-
possible. On the other hand, practioners analyze correctness and performance
mainly statistically or empirically. Therefore it is useful to investigate, how the-
oretic online algorithms with idealistic assumptions behave if those assumptions
cannot be fulfilled. Can we incorporate assumptions of errors in sensors and
motion into the analysis?

The task of finding a point on a line by a blind agent without knowing the
location of the goal was considered by Gal [6, 1] and independently reconsidered
by Baeza-Yates et al. [2]. Both introduced the so-called doubling strategy, which
is a basic paradigma for searching algorithms, e. g., approximating the optimal
search path, see [5]. Searching on the line was generalized to searching on m
concurrent rays, see [8, 13, 14, 4, 7, 12].

In this paper we investigate how an error in the movement influences the
correctness and the corresponding competitive factor of a strategy. The error
range, denoted by a parameter δ, may be known or unknown to the strategy.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 593–596, 2005.
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Due to space limitations, we give only brief sketches of the proofs and refer the
interested reader to [11] where we also consider a second error model.

2 The Standard Problem and the Error Model

The task is to find a point, t, on a line. Both the distance from the start position
s to t, as well as the position of t (left hand or right hand to s) is unknown. A
strategy can be described by a sequence F = (fi)i∈IN. fi denotes the distance the
robot walks in the i-th iteration. If i is even (odd), the robot moves fi steps from
the start to the right (left) and fi steps back. It is assumed that the movement
is correct, so after moving fi steps away from the start point and fi towards s,
the robot has reached s. This does not hold if there are errors in the movement.
In this case, every movement may be erroneous, which causes the robot to move
more or less far than expected. We require that the robots error per unit is
within a certain error bound, δ. Let f denote the length of a movement required
by the strategy then we require that the robot moves at least (1 − δ)f and at
most (1 + δ)f for δ ∈ [0, 1[.

3 Finding a Point on a Line

First, we assume that the robot is not aware of making any errors. Thus, the
optimal 9-competitive doubling strategy fi = 2i [6, 2] seems to be the best choice
for the robot. Let �+i (�−i ) be the covered distance to the right (left) in the i-th
step. Now, the drift from s, Δk, is Δk =

∑k
i=1(�

−
i − �+i ).

Theorem 1. The robot will find the door with the doubling strategy fi = 2i,
if the error δ is not greater than 1

3 . The generated path is never longer than
8 1+δ

1−3δ + 1 times the shortest path to the door.

Proof sketch. We assume that the goal is found on the right side. For the com-
petitivity it is the worst, if the door is hit in step 2j+2, but located just a little
bit further away than the rightmost point reached in step 2j.

We get the worst case ratio
|πonl|

d = 1 +
∑2j+1

i=1
(2�−

i
)

�+2j
−
∑2j−1

i=1
(�−

i
−�+

i
)+ε

(∗).

This maximizes for �∓i =(1± δ)2i, and
we get |πonl|

d < 1 + 8 1+δ
1−3δ . We have to

require δ ≤ 1
3 , otherwise the distance

(1−3δ) 22j +4δ from s may not exceed
the point 4δ . �� d

.

..

�+1 = 2 (1 − δ)

�+2 = 4 (1 − δ)

�−2 = 4 (1 + δ)

�−3 = 8 (1 + δ)

22(j+k)(1−δ)
s′

s

Δ2j+2k−1

�−1 = 2 (1 + δ)

One might wonder if there is a strategy which takes the error δ into account
and yields a smaller factor. Intuitively this seems to be impossible, but we are
able to show that there is such a strategy.
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Theorem 2. In the presence of an error up to δ there is a strategy that meets

every goal and achieves a competitive factor of 1 + 8
(

1+δ
1−δ

)2

.

Proof sketch. We design a strategy, F = (fi)i∈IN. From (*) we conclude that it

is sufficient to minimize G(n,δ)(F ) :=
∑n+1

i=1
fi

(1−δ)fn−2δ
∑n−1

i=1
fi

, which is achieved by

the strategy fi =
(
2 1+δ

1−δ

)i

. This strategy is reasonable since it monotonically
increases the distance to s, and we reach every goal. ��

This factor is optimal. We can show that for every δ there is a strategy, F ∗,
that achieves the optimal factor Cδ exactly in every step, and describe F ∗ by a
recurrence. Finally, the condition fi > 0 leads to a lower bound for Cδ. Thus:

Theorem 3. In the presence of an error up to δ ∈ [0, 1[, there is no competitive

strategy that yields a factor smaller than 1 + 8
(

1+δ
1−δ

)2

.

4 Error-Prone Searching on m Rays

The robot is located at the common endpoint of m infinite rays, knowing neither
the location—the ray containing t— nor the distance to t. Gal [6] showed that
w.l.o.g. one can use a periodic and monotone strategy, i. e., fi and fi+m visit
the same ray, and fi < fi+m holds. In the error-prone setting, the start point of
every iteration cannot drift away, since the start point is the only point where
all rays meet.

Theorem 4. Searching for a target located on one of m rays with an error-prone
robot using a monotone and periodic strategy is competitive with an optimal
factor of 3 + 2 1+δ

1−δ

(
mm

(m−1)m−1 − 1
)

for δ < e−1
e+1 .

Proof sketch. It turns out that we consider the functionals Gk(F ) :=
∑k+m−1

i=1
fi

fk

in this case, which are identical to the functionals considered in the error-free
m-ray search. Thus, fi = (m/m − 1)i minimizes Gk(F ), see [2, 6]. Ensuring
monotony leads to the condition δ < e−1

e+1 . ��

5 Summary

We have analyzed the standard doubling strategy in the presence of errors in
movements. The robot still reaches the goal for δ ≤ 1

3 with a competitive ratio

of 8 1+δ
1−3δ + 1. If δ is known to the strategy fi =

(
2 1+δ

1−δ

)i

is optimal with a

competitive factor of 1 + 8
(

1+δ
1−δ

)2

. In the case of m rays fi = (m/m−1)i yields
3 + 2 1+δ

1−δ

(
mm

(m−1)m−1 − 1
)

for δ ≤ e−1
e+1 ≈ 0.46.
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Abstract. We study the performance of the most practical internal
adaptive sorting algorithms. Experimental results show that adaptive
AVL sort performs the least number of comparisons unless the num-
ber of inversions is fewer than 1%. In such case, Splaysort performs the
fewest number of comparisons. On the other hand, the running time of
Quicksort is superior unless the number of inversions is fewer than 1.5%.
In such case, Splaysort consumes the smallest running time.

1 Introduction

A sorting algorithm is considered adaptive if it performs better for sequences
having some existing order. One of the main measures of presortedness is the
number of inversions in the input sequence Inv; that is the number of pairs in
the wrong order. For an adaptive sorting algorithm to be optimal with respect
to the number of inversions, its running time should be in O(n log Inv

n + n) [6].
Among the sorting algorithms optimal with respect to the number of inver-

sions, Splitsort [8] and adaptive Heapsort [9] are the most promising from the
practical point of view. Splaysort, sorting by repeated insertion in a splay tree
[11], was proved to be optimal with respect to the number of inversions [2].
Moffat et al. [10] performed experiments showing that Splaysort is practically
efficient. See [5] as a nice survey of adaptive sorting algorithms. A later study,
oriented towards improving the number of comparisons for inversions-optimal
sorting algorithms, introduces adaptive AVL sort [4].

On the other hand, Quicksort introduced by Hoare [7] is considered the most
practical sorting algorithm. Several empirical studies illustrated that Quicksort
is very efficient in practice [13]. The Quicksort algorithm and its variants also
demonstrated an efficient performance when applied to nearly sorted lists [3]. A
very recent result of Brodal et al. [1] shows that the expected number of swaps
performed by randomized Quicksort is O(n log Inv

n + n).
In this paper, we are interested in demonstrating a practical study of such

inversions-optimal sorting algorithms. Our objective is to conclude which of these

� This work was done while the author was visiting Al-Zaytoonah University.
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algorithms would be a good candidate in practice, and which one we would
use under different circumstances. We also compare the performance of these
algorithms with Quicksort.

2 Experimental Settings

We implemented three versions of adaptive Heapsort; the basic implementation
that uses a binary heap, an improved version for heap operations [9], and another
variation that uses binomial queues. For Splitsort, we implemented two versions;
the first uses an auxiliary array of pointers [8], while the second relies on linked
structures. It turns out that the running time of the array-based Splitsort is less
than the linked implementation. Two variations of the Splaysort algorithm were
implemented, one using bottom-up splaying and the other using top-down(TD)
splaying [10]. It turns out that the running time for the top-down version is
much less. Finally we implemented adaptive AVL sort as in [4].

In all the experiments, we start with a sorted sequence < 1, 2, . . . , n > and
perform two phases of permutations. For a given value of a parameter m, we
want to permute the sorted sequence to have at most n · m with expected ≈
n · m/2 inversions. For the first phase, the sequence is broken into consecutive
�n/m� blocks, almost equally-sized. The elements of each block are randomly
permuted, for a total of at most n · m/2 inversions. For the second phase, the
sorted sequence is broken into m consecutive blocks, almost equally-sized. From
each block we select one element at random, and these m elements are then
randomly permuted, for at most another n ·m/2 inversions. Hence, the resulting
average number of inversions per element will be at most m.

Note that the way we produce the input guarantees that the elements of
the input sequence are distinct. It is still an issue to check the performance
of the given algorithms when there are duplicate elements. As an example, the
adaptive properties of the used version of Heapsort are only correct when applied
to distinct elements. Another issue is that we applied the algorithms for integer
sorting; all our elements are 4-byte integers. The performance may be different
if we apply the algorithms to sort real numbers or other data types.

We fixed n at 222. All the experiments were performed on an Athlon750
machine with 384 MB RAM and 256 KB cache, running Windows 2000 platform.
With such memory capacity, there was no need to use virtual memory. All the
algorithms are implemented in C++ using Borland C++ builder version 5.

Two outcomes are measured; the number of comparisons and the running
time. The measured running times are CPU times, ignoring the time for I/O
operations. For each point represented in the graphs, the average of 10 sample
runs was taken. We first proceeded by investigating different alternatives and
implementation issues for each algorithm. Then, we concluded by selecting the
best method from each algorithm and comparing them with each other.
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3 Experimental Results

One of our main observations for the running time of the algorithms that re-
quire linked structures is that the dynamic allocations of such structures is time
consuming. We noticed that more than 15% of the time of such algorithms
(Heapsort, Splaysort and AVL sort) was used for such memory allocations.
Our solution was to allocate a chunk of memory at the beginning of the al-
gorithm. It was not hard to decide the memory requirement for Heapsort and
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Splaysort. For AVL sort, the theoretical results in [4] indicated that the number
of combines (extra nodes needed throughout the algorithm) is linear. Working
through these proofs, we came up with the exact constant which is at most 3n
combines.

Comparing the running time of the other algorithms with Quicksort, these
algorithms were better for low inversions. As the number of inversions increases,
Quicksort is preferable for both the running time and the storage requirements.
As illustrated by the graph, TD-Splaysort shows the best performance when the
number of inversions is low. It is better than Quicksort as long as the number of
inversions per element is less than 215 (n = 222). Splitsort, although not the best
with low inversions, is better than Splaysort for high inversions, while it is not
much worse than Splaysort with low inversions. In addition, it has less storage
requirements. It is also interesting to demonstrate that Quicksort is adaptive
with respect to time, this is a consequence of the result of [1] that Quicksort is
optimally adaptive with respect to the number of swaps.

Experimental results show that the number of cache misses, and in effect the
running time, is related to the number of inversions and the storage complexity
of the underlying algorithm. For the algorithms with large storage requirements,
the curves have sharp bends when the inversions increase (at m ≈ 13). This
illustrates that these algorithms are adaptive with respect to cache misses.

Regarding the number of comparisons, the adaptive algorithms under study
were noticeably much better than Quicksort for low number of inversions. Some
of the algorithms perform less comparisons even for random lists. Empirical
results show that all the adaptive algorithms under study perform c ·n log Inv

n +
O(n) comparisons, with c between 1 and 2. For the AVL sort, c ≈ 1.
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Abstract. We introduce an invariant π(G) on a graph G, which is the
upper bound for the chromatic index of G, and show that π(G) and a
π(G)-edge-coloring of G can be found in polynomial time. This general-
izes the classical edge-coloring theorems of Shannon and Vizing.

1 Introduction

Let χ′(G) be the chromatic index of a graph G (the minimum number d such
that G has a proper edge-coloring by d colors). By Holyer [1], it is an NP-hard
problem to evaluate χ′(G). On the other hand classical theorems of Shannon [2]
and Vizing [3] say that χ′(G) ≤ � 3

2Δ(G)� and χ′(G) ≤ Δ(G)+p(G), respectively.
These estimates give easy computable upper bounds for χ′(G). Now we generalize
these results from algorithmical and theoretical points of view.

We deal with finite graphs with multiple edges and without loops. If G is
a graph, then V (G) and E(G) denote the sets of vertices and edges of G, re-
spectively. If v and e is a vertex and an edge of a graph G, then dG(v) and
pG(e) denote the degree of v and the multiplicity of e (the number of edges of G
with the same ends as e), respectively. Let Δ(G) and p(G) denote the maximum
degree of a vertex and the maximum multiplicity of an edge of G, respectively.

An edge e = uv of G is called r-critical on u if
r ≥ dG(v) + dG(u)− pG(e), and
for every edge e′ = uv′, v′ �= v we have dG(v′) + pG(e′) ≤ r.

Let ρG(u) denote the smallest integer r such that either dG(v′′)+pG(e′′) ≤ r for
every edge e′′ = uv′′ incident to u, or there exists an edge e which is r-critical
on u. Denote πG(u) = max{dG(u), ρG(u)}.

Let v1, . . . , vn be an ordering of the vertices of a graph G. Furthermore, let
G1 = G and Gi+1 = Gi − vi for i = 1, . . . , n − 1. We say that v1, . . . , vn is an
r-ordering of G if πGi

(vi) ≤ r for every i = 1, . . . , n. By a supermultiplicity of
G, denoted by π(G), we mean the smallest integer r such that there exists an

� This work was supported by Science and Technology Assistance Agency under the
contract No. APVT-51-027604 and partially by VEGA grant 2/4004/04.
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r-ordering of G. Clearly, ρG−e(u) ≤ ρG(u) and πG−e(u) ≤ πG(u) for every e ∈
E(G) and u ∈ V (G). Thus π(G) is a monotone invariant, i. e., π(G− e) ≤ π(G)
for every edge e of G.

We prove that χ′(G) ≤ π(G) ≤ � 3
2Δ(G)�, Δ(G) + p(G) for every graph

G. This generalizes the theorems of Shannon [2] and Vizing [3]. We present a
polynomial algorithm which, for every graph G, finds π(G), a π(G)-ordering of
G, and a π(G)-edge-coloring of G. Furthermore we show that the problem to
decide whether χ′(G) < π(G) is NP-complete.

2 Upper Bounds for Chromatic Index

Suppose we have a proper coloring of edges of a graph G by colors 1, . . . , r and
s, t ∈ {1, . . . , r}, s �= t. Then by an (s, t)-path we mean a component of the
graph arising from G after deleting all edges having colors different from s and t
(which is either an isolated vertex, or an even circuit, or a path). By a recoloring
of an (s, t)-path we mean a process so that the edges of the (s, t)-path colored
by s (resp. t) receive color t (resp. s) and the colors of all other edges remain
unchanged. We say that a color s ∈ {1, . . . , r} lacks in a vertex u of G if no edge
incident to u is colored by s. The following lemmas are proved in [3].

Lemma 1. Suppose we have a graph with a proper edge-coloring. Then recolor-
ing any (s, t)-path results in another proper edge-coloring.

Lemma 2. Let G have a proper edge-coloring by colors 1, . . . , r and u1, u2, u3

be pairwise different vertices of G. Suppose that there are s, t ∈ {1, . . . , r}, s �= t,
such that for every i = 1, 2, 3, there exists si ∈ {s, t} which lacks in ui. Then
there exists j ∈ {1, 2, 3} such that no (s, t)-path joins sj with si for any i ∈
{1, 2, 3} \ {j}.

Theorem 1. For every graph G, χ′(G) ≤ π(G).

Proof. We use induction on |E(G)|. The statement is true if |E(G)| = 0. Let
|E(G)| > 0 and v1, . . . , vn be a π(G)-ordering of G. Set u = v1. If every edge
e′′ = uv′′ of G satisfies dG(v′′) + pG(e′′) ≤ π(G), choose an arbitrary edge
e = uu0, incident to u. Otherwise choose e = uu0 so that e is π(G)-critical on
u. Then π(G− e) ≤ π(G), and by the induction hypothesis, G− e has a proper
edge-coloring by 1, . . . ,π(G). Let L (L0) be the set of colors lacking in u (u0).

If dG(u0) + pG(e) ≤ π(G), then dG−e(u0) < π(G). If e is π(G)-critical on u,
then dG(u0) ≤ π(G) − dG(u) + pG(e) ≤ π(G), whence dG−e(u0) < π(G). Thus
dG−e(u0) < π(G) and L0 �= ∅. Similarly dG−e(u) < dG(u) ≤ π(G) and L �= ∅.

A sequence of colors s0, . . . , sk−1 is called semistrong (of order k ≥ 1) if there
exist edges e1 = uu1, . . . , ek = uuk of G− e so that:

(a) edges e1, . . . , ek are colored by s0, . . . , sk−1, respectively;
(b) colors s0, . . . , sk−1 are pairwise different;
(c) colors s0, . . . , sk−1 lack in u0, . . . , uk−1, respectively.
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We show that (a)–(c) imply the following:
(d) s0, . . . , sk−1 /∈ L;
(e) edges e1, . . . , ek are pairwise different;
(f) ui �= ui+1 for every i = 0, . . . , k − 1;
(g) vertices u0, . . . , uk are different from u.
Really, (d) and (e) follows from (a) and (b), respectively, and (f) follows from
(a) and (c). (g) follows from the fact that u0, . . . , uk are adjacent with u.
A sequence of colors s0, . . . , sk−1, sk is called strong (of order k ≥ 0) if
(e1, . . . , ek and u0, . . . , uk have the same meaning as above):

either k = 0 and s0 ∈ L ∩ L0,
or k > 0, sk lacks in u and uk, and s0, . . . , sk−1 is semistrong.

From this sequence we can construct a proper edge-coloring of G by col-
ors 1, . . . ,π(G), because changing the colors of edges e1, . . . , ek to colors
s1, . . . , sk, respectively, we obtain a proper edge-coloring of G− e so that s0

lacks in u and u0, and we can color e by s0.
Choose s0 ∈ L0 �= ∅. If s0 ∈ L, then the sequence s0 is strong, whence
χ′(G) ≤ π(G). If s0 /∈ L, i. e., there is and edge e1 = uu1 of G − e colored
by s0, then the sequence s0 is semistrong of order 1. Let s0, . . . , sk−1 be a
semistrong sequence of the largest possible order k ≥ 1. Note that by (e),
k ≤ Δ− 1. First we show that there exists a color sk so that (e1, . . . , ek and
u0, . . . , uk have the same meaning as above):
(h) sk lacks in uk,
(i) sk �= si if uk = ui, i ∈ {0, . . . , k − 1}.

If dG(uk) + pG(ek) ≤ π(G), then dG−e(uk) + pG−e(ek) + 1 < π(G), whence by
(e), there exists a color sk satisfying (h) and (i). If dG(uk) + pG(ek) > π(G),
then e is π(G)-critical on u and ek must be parallel with e. Thus uk = u0 and
π(G) ≥ dG(u0) + dG(u) − pG(e), in other words, u is incident with at most
π(G)− dG(u0) edges of G not parallel with ek. Then uk can be equal to ui (for
i ∈ {0 . . . , k−1}) in at most π(G)−dG(u0) cases (because if ui1 = . . . = uir

= u0,
then by (f), ui1+1, . . . , uir+1 �= u0, thus the edges ei1+1, . . . , eir+1 are not parallel
with ek, and by (e), they are also pairwise different, whence r ≤ π(G)−dG(u0) <
π(G)− dG−e(u0)). Thus there exists a color sk satisfying (h) and (i).

Now one of the following three cases must occur.
Case 1: sk ∈ L, i. e., s0, . . . , sk is a strong sequence, whence χ′(G) ≤ π(G).
Case 2: sk /∈ L and there exists 0 ≤ j ≤ k − 1 such that sk = sj . By (b), j is
unique and since sk (sk−1) lacks (does not lack) in uk, j �= k−1. By (i), uk �= uj

and by (g), uk �= u �= uj . Since L �= ∅, there exists t ∈ L. Then t �= sj and colors
sj , t, sj lack in uk, u, uj , respectively. By Lemma 2, one of the vertices uk, u, uj

is not joined with the other two by an (sj , t)-path. If uk (resp. u and uj) is not
joined by an (sj , t)-path with u, uj (resp. uk, uj and uk, u), then recoloring the
(sj , t)-path beginning in uk (resp. u and uj), we get that t (resp. sj and t) lacks
in uk (resp. u and uj). Thus the sequence s0, . . . , sk−1, t (resp. s0, . . . , sj and
s0, . . . , sj−1, t) is strong for the new edge-coloring of G− e, i.e., χ′(G) ≤ π(G).
Case 3: sk /∈ L and sk �= si for i = 0, . . . , k − 1. Then there exists an edge
ek+1 = uuk+1 of G − e having color sk and by (h), s0, . . . , sk is a semistrong
sequence of order k + 1, a contradiction with the choice of k. ��
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Corollary 1. If a graph G satisfies Δ(G) = Δ and for every edge e of G, either
pG(e) ≤ p, or pG(e) ≥ Δ − p (1 ≤ p ≤ Δ/2), then χ′(G) ≤ π(G) ≤ Δ + p. In
particular, χ′(G) ≤ � 3

2Δ(G)�,Δ(G) + p(G).

Proof. Clearly, πG(v) ≤ Δ+p and πH(v) ≤ πG(v) for every v ∈ V (G) and every
subgraph H of G. Thus π(G) ≤ Δ + p, whence by Theorem 1, χ′(G) ≤ Δ + p.
Setting p = �Δ/2�, we get χ′(G) ≤ � 3

2Δ(G)�,Δ(G) + p(G). ��

3 Algorithms and Complexity

Theorem 2. There exists a polynomial time algorithm which, for any graph G,
finds π(G), a π(G)-ordering of G, and a π(G)-edge-coloring of G.

Proof. For each v ∈ V (G), πG(v) can be found in polynomial time. Let H1 = G
and choose w1 ∈ V (H1) so that πH1(w1) = minv∈H1 πH1(v). For i = 2, . . . , n, let
Hi = Hi−1 − wi−1 and choose wi ∈ V (Hi) so that πHi

(wi) = minv∈Hi
πHi

(v).
Define π′(G) = maxi=1,...,n πHi

(wi). Then π(G) ≤ π′(G), because w1, . . . ,wn

is a π′(G)-ordering of G. Using induction on n we show that π′(G) ≤ π(G).
Let v1, . . . , vn be a π(G)-ordering of G. Then πG(w1) ≤ πG(v1) ≤ π(G) by the
choice of w1, and π(G−w1) ≤ π(G) by the monotonicity of π. By the induction
hypothesis, π′(G−w1) ≤ π(G−w1), whence π′(G) = max{πG(w1),π′(G−w1)} ≤
max{π(G),π(G − w1)} = π(G). Thus π′(G) = π(G) and we can find π(G) and
a π(G)-ordering w1, . . . ,wn of G in polynomial time.

Now choose an edge e incident to w1 so that either every edge e′′ = w1v
′′

satisfies dG(v′′) + pG(w1v
′′) ≤ π(G) or e is π(G)-critical on w1. From the proof

of Theorem 1 it follows that any π(G)-edge-coloring of G−e can be transformed
to a π(G)-edge-coloring of G after polynomially many steps. ��

Theorem 3. It is an NP-complete problem to decide whether χ′(G) < π(G).
This problems remains NP-complete for simple cubic graphs.

Proof. Let G be a simple cubic graph, i.e., pG(e) = 1 for every e ∈ E(G) and
dG(v) = 3 for every v ∈ V (G). Then ρG(v) = πG(v) = 4 for every v ∈ V (G).
Thus π(G) = 4 and G is 3-edge-colorable if and only if χ′(G) < π(G). By Holyer
[1], it is an NP-complete problem to decide whether G is 3-edge-colorable. This
proves the statement ��

References

1. I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981) 718-
720.

2. C. E. Shannon, A theorem on coloring the lines of a network, J. Math. Phys. 28
(1949) 148–151.

3. V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3
(1964) 25-30 (in Russian).



Finding, Counting and Listing All Triangles in
Large Graphs, an Experimental Study�

Thomas Schank and Dorothea Wagner
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1 Introduction

In the past, the fundamental graph problem of triangle counting and listing
has been studied intensively from a theoretical point of view. Recently, triangle
counting has also become a widely used tool in network analysis. Due to the
very large size of networks like the Internet, WWW or social networks, the
efficiency of algorithms for triangle counting and listing is an important issue.
The main intention of this work is to evaluate the practicability of triangle
counting and listing in very large graphs with various degree distributions. We
give a surprisingly simple enhancement of a well known algorithm that performs
best, and makes triangle listing and counting in huge networks feasible. This
paper is a condensed presentation of [SW05].

2 Definitions

Let G = (V,E) be an undirected, simple graph with a set of nodes V and a set
of edges E. We use the symbol n for the number of nodes and the symbol m
for the number of edges. The degree d(v) := |{u ∈ V : ∃{v, u} ∈ E}| of node v
is defined to be the number of nodes in V that are adjacent to v. The maximal
degree of a graph G is defined as dmax(G) = max{d(v) : v ∈ V }. An n-clique
is a complete graph with n nodes. Unless otherwise declared we assume graphs
to be connected. A triangle Δ = (VΔ,EΔ) of a graph G = (V,E) is a three
node subgraph with VΔ = {u, v,w} ⊂ V and EΔ = {{u, v}, {v,w}, {w, u}} ⊂ E.
We use the symbol δ(G) to denote the number of triangles in graph G. Note
that an n-clique has exactly

(
n
3

)
triangles and asymptotically δclique ∈ Θ(n3). In

dependency to m we have accordingly δclique ∈ Θ(m3/2) and by concentrating
as many edges as possible into a clique we observe that there exists a family of
graphs Gm, such that δ(Gm) ∈ Θ(m3/2).
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ropean Commission - Fet Open project COSIN - COevolution and Self-organization
In dynamical Networks - IST-2001-33555, and by the EU within the 6th Framework
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3 Algorithms

We call an algorithm a counting algorithm if it outputs the number of triangles
δ(v) for each node v and a listing algorithm if it outputs the three participating
nodes of each triangle. A listing algorithm requires at least one operation per
triangle. For the running time we get worst case lower bounds of Ω(n3) in terms
of n and Ω(m3/2) in terms of m by the observation in Section 2.

listing-ayz

node-iterator

matrix-multiplication

edge-iterator

forward

core

ayz using fast
matrix-
multiplication

listing algorithms

fast matrix-
multiplication

(n
3

)

counting algorithms

forward-hashed

hashed

O
(
n3)

O(mdmax)

O
(
m3/2

)

O
(
n3)

O (nγ)

O
(
m

2γ
γ+1

)

Fig. 1. An overview of the presented algorithms

A very simple approach is to use matrix multiplication as a counting algo-
rithm or to check for connecting edges between any three nodes as a listing
algorithm. Traversing over all nodes and checking for existing edges between
any pair of neighbors is part of the folklore. This algorithm, which we call node-
iterator has running time O

(
nd2

max

)
⊂ O

(
n3
)
. The Algorithm listing-ayz is the

Algorithm 1: forward
Input: ordered list (high degree first) of vertices (1, . . . , n); Adjacencies Adj(v)

Data: Node Data: A(v);

for v ∈ V do
A(v) ← ∅

for s ∈ (1, . . . , n) do
for t ∈ Adj(s) do

if s < t then
foreach v ∈ A(s) ∩ A(t) do

output triangle {v, s, t} ;

A(t) ←− A(t) ∪ {s};
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listing version of the currently most efficient counting algorithm [AYZ97]. It
has running time in O

(
m3/2

)
. Algorithm node-iterator-core uses the concept

of cores. It takes a node with currently minimal degree, computes its triangles
in the same fashion as in node-iterator and then removes the node from the
graph. The running time is in O

(
nc2max

)
, where c(v) is the core number of node

v. Since node-iterator-core is an improvement over listing-ayz the running time
of node-iterator-core is also in O

(
m3/2

)
.

Similar to node-iterator one can also traverse over all edges and compare
the adjacency lists of the two incident nodes. This algorithm, which we call
edge-iterator is equivalent to an algorithm introduced by Batagelj and Mrvar
[BM01]. The running time without preprocessing is in O(mdmax). It can actually
be shown that node-iterator and edge-iterator are asymptotically equivalent, see
[SW05] for details. Algorithm forward is an improvement of edge-iterator. The
pseudo code is listed in Algorithm 1. It can be shown, that forward has running
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time in O
(
m3/2

)
. Both algorithms can be further improved with certain methods

relying on hashing, see [SW05] for details.

4 Experiments

The algorithms are tested in two ways. On the one hand we list the execution
time of the algorithms. Additionally, we give the number of triangle operations,
which in essence captures the asymptotic running time of the algorithm without
preprocessing. The algorithms are implemented in C++. The experiments were
carried out on a 64-bit machine with a AMD Opteron Processors clocked at
2.20G-Hz. Figure 2 shows the results on generated Gn,m graphs where m edges
are inserted randomly between n nodes. These Gn,m graphs tend to have no
high degree nodes and to have a very low deviation from the average degree.
However, this seems to be not true for many real networks [FFF99]. Therefore,
Figure 3 shows results on modified Gn,m graphs with O(

√
n) high degree nodes.

5 Conclusion

The two known standard Algorithms node-iterator and edge-iterator are asymp-
toticly equivalent. However, the Algorithm edge-iterator can be implemented
with a much lower constant overhead. It works very well for graphs where the
degrees do not differ much from the average degree. If the degree distribution is
skewed refined algorithms are required. The Algorithm forward shows to be the
best compromise. It is asymptotically efficient and can be implemented to have
a low constant factor with respect to execution time.
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Abstract. The roots of a system of two bivariate polynomial equations
are calculated using a two-step method. First all x-roots and y-roots are
determined independently. Then tolerance based weighted matching is
used to form (x, y)-pairs that together form a minimum-error solution to
the system.

Keywords: combinatorial optimization, tolerance based bipartite match-
ing, solving polynomial equations.

1 Introduction

Consider a system of two polynomial equations

f(x, y) = 0 g(x, y) = 0 (1)

with symbolic constants and of low degree. By assigning numerical values to the
constants we obtain a problem instance. Assuming that it is known that (1) has
a finite number of solutions the conventional method to calculate the solutions is
as follows. From (1) a univariate polynomial, say p(x), is derived by eliminating
y. For every problem instance the symbolic constants in p(x) = 0, f(x, y) = 0 and
g(x, y) = 0 are replaced by numerical values and p(x) = 0 is solved numerically
giving the roots x1, . . . , xn. Subsequently, for every root xi the corresponding
root yi has to be determined. To that end, xi is backsubstituted in f(x, y) = 0
and g(x, y) = 0, giving the univariate polynomial equations f(xi, y) = 0 and
g(xi, y) = 0. Solving f(xi, y) = 0 for y gives the solutions yf1 , . . . , yfl

, and
solving g(xi, y) = 0 for y gives the solutions yg1 , . . . , ygm

. The value yi occurring
both in yf1 , . . . , yfm

and yg1 , . . . , ygm
is the desired value, i.e., the pair xi, yi is a

root of (1). During this process, a number of complications may occur:

1. The equation f(xi, y) = 0 may be degenerate, i.e. may be 0 = 0, or even
worse, may be near degenerate within the noise margin. The case of exact

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 610–613, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Selecting the Roots of a Small System of Polynomial Equations 611

degeneracy is easily detected but it is not trivial to detect near degeneracy.
In both cases every solution of the other equation, that is, of g(xi, y) = 0 is
a correct root. Analogously, g(xi, y) = 0 may be degenerate, giving the same
problems. As we know that (1) has a finite number of solutions the situation
that f(xi, y) = 0 and g(xi, y) = 0 are both degenerate will not occur.

2. It is sometimes hard to select from yf1 , . . . , yfl
and yg1 , . . . , ygm

the collective
value yi because, by numerical errors, the actual value of yi will be different
in the two sets.

3. p(x) = 0 may have multiple roots, that is, the roots x1, . . . , xn may contain
(near) identical values. Let us assume that there is a double root, given by
the the identical values xi and xi′ . Then there will be two matching roots yj

and yj′ , not necessarily with the same value. When yj is matched to xi, in
a later stage yj′ should be matched to xi′ and not to xi.

When solving a problem of computational geometry we ran into these problems,
first using our own multivariate polynomial solver and later using methods from
packages. As a result a small but significant part of the roots, notably multiple
roots, were missed or were completely wrong.

2 The CORS Method

To avoid the aforementioned complications we propose and test a two-step
method, called the CORS method (Combinatorial Optimization Root Selection).
First from (1) two univariate polynomials p(x) and q(y) are derived by elimi-
nating y and x respectively. Whether this is done by calculating resultants or a
Groebner basis is irrelevant. Now for every problem instance the symbolic con-
stants in p(x), q(y), f(x, y) and g(x, y) are replaced by numerical values and the
roots in C of p(x) and q(y) are calculated numerically. Both p(x) and q(y) have
n roots represented by x1, . . . , xn and y1, . . . , yn, respectively. These roots are
used to calculate n2 weights, where wi,j is defined as

w(i, j) =
√

(f(xi, yj))2 + (g(xi, yj))2. (2)

Subsequently a complete weighted bipartite graph G(V,E) is constructed with
V = X ∪ Y and |X| = |Y | = n. The nodes in X consist of the values x1, . . . , xn,
and the nodes in Y consist of the values y1, . . . , yn. The arc between nodes xi and
yj is assigned the weight w(i, j). On G the minimum-weight perfect matching
π0 is calculated. The n arcs in π0 represent the optimal solutions of (1). Here,
optimal means that the sum of the errors is minimal. In the following this method
of roots selection is called CORS1.

Instead of minimizing the sum of the errors it is more natural to minimize the
maximum error. This is done as follows. All n2 arcs and their weights are stored
in a linear list L. Subsequently, L is sorted in increasing order of weights. Now the
weight in the first entry inL is set to 1, and the weight of item i is equal to the sum of
the weights in previous items plus one, i.e. weight[i] = (

∑i−1
j=1 weight[j])+1. Thus

the weights are 1, 2, 4, 8, 16, . . .. A new graph G′ is constructed, identical to G but
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with the newweights.OfG′ theminimum-weight perfectmatchingπ0 is calculated.
The n arcs in π0 represent the optimal solutions of (1). Here, optimal means that
the maximum error of π0 is minimal. We call this method CORS2.

We here outline the three steps of a proof that this procedure minimizes the
maximum weight when no identical weights in G occur, without this assumption
the proof is similar but more complex.

1: π0 is unique because the total weight of π0 can be constructed only in one
way from the weights in G′.

2: In π0 there is only one element em with the maximum weight.
3: There is no matching of G′ without em, with a lower weight. q.e.d.

The weights in G′ become very large causing overflow on standard integer
arithmetic. Therefore the infinite precision integer type should be used. The
weights in G′ have the nice property that none of the weights can be constructed
from other weights. This makes G′ very suitable for tolerance based matching.

3 Tolerance Based Matching

A Feasible Assignment (matching, permutation) (FA) π on the bipartite graph
G′ is a mapping π of X onto Y with w(π) =

∑
(i,j)∈π w(i, j) < ∞ and the set of

all FAs is Π. The Linear Assignment Problem (LAP) is the problem of finding a
FA π0 ∈ arg min{w(π) : π ∈ Π}, and all algorithms are based on shortest paths
and the König-Egervary’s theorem with O(n3) time complexity when applied
to dense instances [1]. We sketch the idea of algorithms which are based only
on tolerances for the Relaxed LAP (RLAP) without using the König-Egervary’s
theorem. A Relaxed FA (RFA) θ is defined on the same graph G′ as a mapping
θ of X into Y with w(θ) =

∑
(i,j)∈θ w(i, j) < ∞. The RLAP is the problem of

finding min{w(θ) : θ ∈ Θ} =
∑

i∈X min{w(i, j) : j ∈ Y } = w(θ0) ≤ w(π0)
on the set of RFA Θ ⊃ Π. A FA π on G′ is a set of n arcs (i, j) such that the
out-degree od(i) = 1 for all i ∈ X and the in-degree id(j) = 1 for all j ∈ Y , and
a RFA θ is a set of n arcs (i, j) with od(i) = 1 for all i ∈ X and

∑
j∈Y id(j) = n.

Note that θ is a FA if the id(j) = 1 for all j ∈ Y . For each fixed row i of the matrix
W = ||w(i, j)|| let w[i, j1(i)] ≤ w[i, j2(i)] ≤ . . . ≤ w[i, jn(i)] be the ordered set of
entries in a non-decreasing order. We define the reduced matrix W r = ||wr(i, j)||
with wr(i, j) = w(i, j) − w[i, j1(i)] for all i ∈ X and j ∈ Y . The tolerance
problem for the RLAP is the problem of finding for each arc (i, j) ∈ X × Y the
maximum decrease l(i, j) and the maximum increase u(i, j) of the arc weight
w(i, j) preserving the optimality of θ0 under the assumption that the weights of
all other arcs remain unchanged. Now for an arc [i, j1(i)] ∈ θ0 the upper tolerance
u[i, j1(i)] = w[i, j2(i)], and the lower tolerance l[i, j1(i)] = ∞. Similarly, for an
arc (i, j) /∈ θ0 the lower tolerance l(i, j) = wr(i, j) and the upper tolerance
u(i, j) = ∞. Let us show that the bottleneck tolerance b(θ0) = max{u(θ0), l(θ0)}
is a tightness measure between known value of w(θ0) and the unknown value of
w(π0). For a fixed θ0 we partition the set Y into three subsets of vertices: the
unassigned set Y0 = {j ∈ Y : id(j) = 0}, assigned set Y1 = {j ∈ Y : id(j) = 1},
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and overassigned set Y2 = {j ∈ Y : id(j) > 1}. For each fixed j ∈ Y2 we order the
corresponding upper tolerances in non-decreasing order u[i1(j), j] ≤ u[i2(j), j] ≤
... ≤ u[ipj (j), j] and compute u(θ0) =

∑
j∈Y2

u(j) with u(j) =
∑pj−1

t=1 u[it(j), j].
Similarly, for each fixed j ∈ V0, l[i(j), j] = min{l(i, j) : i ∈ X}, l[Y0(j)] =
max{l[i(t), t] : t ∈ Y0(j)} and l(θ0) =

∑k
j=1 l[Y0(j)] with Y0(j) = {t ∈ Y0 :

i(t) = i(j)}. Here, Y0(1), . . . ,Y0(k) is a partition of Y0. Further we treat each
π, and each θ as the sets of corresponding arcs such that |π| = |θ| = n. Note
that if either Y0 = ∅ or Y2 = ∅ then |Y1| = n and θ0 is a FA. Hence, for each
θ0 /∈ Π we may use the number of unassigned columns |Y0| =

∑
j∈Y2

|id(j)− 1|
in the reduced matrix W r as a measure of structural infeasibility of θ0 to the
LAP, for which the bottleneck tolerance b(θ0) ≤ w(π0) − w(θ0). Our algorithm
for solving the LAP recursively fixes the arc (i, j) ∈ θ0 with the largest tolerance
and replaces all other arcs from Y2 by the arcs representing the tolerances ordered
in a non-increasing order, regardless of either upper or lower tolerance will be
the next tolerance induced by that order. Therefore, the first obtained θ ∈ Π is
θ = π0, and hence the time complexity of LAP for CORS2 is O(n2).

4 Implementation, Tests and Results

Implementation We tested CORS on our computational geometry problem.
Of this class of problems it is known that every instance has eight solutions. The
univariate polynomials p(u) and q(w) are derived with MAPLE. The numerical
calculations are implemented in C++ in double precision. Laguerre’s method [2]
is used to compute the roots of the polynomials p(u) and q(w). The LEDA [3]
implementation of the minimum weight bipartite matching algorithm is used.
Tests We tested the CORS1 and CORS2 method. Every problem instance is
solved in two ways: with the CORS method and with SYNAPS, a C++ pack-
age for solving polynomial equations [4]. We solved 104 problem instances with
CORS and SYNAPS, and ≈ 400 with MAPLE. The latter problem instances
were solved correctly by CORS and were missed by SYNAPS, i.e. we use MAPLE
to decide whether CORS or SYNAPS gave the correct result.
Results In general the results of CORS1 and CORS2 are identical. In the tests
approximately 2.4% of the solutions is missed by SYNAPS and are found by
CORS. No solutions were missed by CORS. The average error of the solutions
found by SYNAPS is 1.3 10−10 and of CORS 6.5 10−11. Running 105 problem
instances with CORS takes 14 sec. and with SYNAPS 475 sec.
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Abstract. In this paper, the concept of statistical bandwidth of multi-
access systems are studied and extended to the case of unknown statistical
descriptors. The results can improve the statistical characterization of the
tail distribution of aggregated load presented to a multi-access system
which is traditionallybasedon the logarithmicmomentgeneration function
(LMGF)[1]. In the paper, an extended moment generating function is
introduced for calculating the statistical bandwidth and as a result a novel
admission algorithm is presented. To further maximize the admitted load
into the multi-access system the free parameter of the extended statistical
bandwidth is optimizedbasedon the geometrical optimization of polygonal
surfaces. In this way, the system utilization can be near-optimal.

1 Introduction

Let us assume that the following quantities are given: (i) a number of traffic
classes (e.g. video, ftp, voice ... etc.) denoted by i = 1, ...,M ; (ii) the random
traffic emitted by source j from class i is denoted by X

(i)
j (sources form the

same class are assumed to be homogenous); (iii) traffic class i is characterized
by traffic descriptors ri = (ri1 , ..., riV

) (e.g. in the case of On/Off sources ri =
(mi,hi), where mi refers to the average rate, whereas hi stands for the peak
rate, respectively); (iv) ri, i = 1, ...,M are supposed to be random variables
due to imperfect measurements and the corresponding p.d.f.-s are denoted by
pi(x), i = 1, ...,M ; (v) the traffic state of the network is described by a traffic
state vector n = (n1, ...,nM ), the ith component of which indicates the number
of users being present from class i; (vi) the network (or access point) capacity
is denoted by C; (vii) QoS is measured by the cell loss probability (zero buffer
approximation) meaning that

P

⎛⎝ M∑
i=1

ni∑
j=1

X
(i)
j > C

⎞⎠ < e−γ , (1)
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where γ is the QoS parameter. Our concern is to evaluate equation (1) when
traffic descriptors are only given by their p.d.f and possibly reduce this expression
into

∑M
i=1 niβi < Ψ(C, γ), where βi is referred to as statistical bandwidth of class

i (due to the additive rule) and Ψ is an appropriate function.
Traditionally, statistical bandwidth has been calculated on the basis of Cher-

noff inequality assuming known traffic descriptors

P

⎛⎝ M∑
i=1

ni∑
j=1

X
(i)
j > C

⎞⎠ < e
∑M

i=1
niμi(s

∗)−s∗C , (2)

where μi(s) := log
(
E

(
esX(i)

))
and s∗ : mins

∑M
i=1 niμi(s) − sC. In this way

inequality (1) can easily be evaluated by checking the equivalent inequality∑M
i=1 niμi(s∗) < s∗C − γ. This form defines the statistical bandwidth as μi(s),

since it follows the desired additive rule. One must note that this expression de-
fines a dichotomy over the traffic state space N expanded by the traffic vectors.
Unfortunately, μi(s) can only be calculated if the source is fully characterized
by its traffic descriptors, i.e. in the case of On/Off sources when ri = (mi,hi),
P (Xi = 0) = 1 − mi

hi
and P (Xi = hi) = mi

hi
, the statistical bandwidth becomes

μi(s) = log
(
1− mi

hi
+ mi

hi
eshi

)
. In the case of unknown ri, i = 1, ...,M are not

known then new methods must be developed for CAC.

2 Extension of Statistical Bandwidth

In this section, we embark on extending the statistical bandwidth when ri, i =
1, ...,M are not given by their exact values but assumed to be random variables
and only the family of p.d.f.-s, pi(z), i = 1, ...,M is given. This extension is based
on the following theorem:

Theorem 1. The function

βi(s) := log
(∫

z1,...,zV

pi(z1, ..., zV )eμi(z1,...,zV ,s)dz1, .., dzV

)
(3)

is additive in the sense that calls can be accepted by checking if

M∑
i=1

niβi(s) < sC − γ.

The proof drops out form the conditional form of the Chernoff inequality, due
to the limited we do not detail the steps.

As a result we call βi(s), i = 1, ...,M as Generalized Statistical Bandwidth
(GSB). One must note that βi(s) does not need the exact values of the traffic
descriptors, but only their p.d.f. is necessary. As was mentioned earlier, the
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modified Chernoff-bound is valid for each positive s. Therefore, one can select
the tightest upper bound given as follows:

P

⎛⎝ M∑
i=1

ni∑
j=1

X
(i)
j > C

⎞⎠ < e
∑M

i=1
niβi(s

∗)−s∗C , where s∗ : min
s

.

M∑
i=1

niβi(s∗)− s∗C

(4)
Consequently, the CAC algorithm in the case of unknown traffic descriptors can
be performed as follows: Given: n, C and γ
(i) Calculate βi(s) := log

(∫
z(i) e

μi(s)pi

(
z(i)

)
dz(i)

)
; (ii) Calculate s∗ : mins

∑M
i=1

niβi(s∗) − s∗C; (iii) Check if
∑M

i=1 niβ(s
∗) < s∗C − γ; (iv) If YES then accept

traffic vector n, otherwise refuse it.
One can see that this algorithm is rather tiresome in the sense that parameter

s has to be re-optimized for each entering traffic vector n. Therefore, it is not
suitable for real-time CAC algorithm. To get rid of this computational burden, it
is easy to see that with a constant s̃ the formula

∑M
i=1 niβi(s̃) < s̃C−γ defines a

set-separation where the separation surface is a linear hyperplane. Therefore, for
a given s̃ the admitted traffic volume can be calculated as counting the number
of traffic vectors n for which the formula holds. This volume can be expressed
as V ol(s̃) := (s̃C−γ)M

M !
∏M

i=1
βi(s̃)

. Hence, one can use a fixed s̃ which maximizes the

volume defined above, setting sopt : sopt : maxs̃
(s̃C−γ)M

M !
∏M

i=1
βi(s̃)

. Since this sopt

does not depend on the incoming traffic vector n, it can be calculated once for
all, demanding only off-line complexity.

3 Numerical Results

The aim of this section is to evaluate the traffic volumes accepted by SB-CAC
(ex.SB-CAC: SB-CAC with expected values ; av.SB-CAC: SB-CAC with ran-
dom selection and averaging) and GSB-CAC methods, respectively. The com-
parison of these volumes will characterize the loss of traffic due to the fact of
uncertain link descriptors given only by their p.d.f.-s. The new statistical band-
widths, βi(s), i = 1, ...,M are calculated when the mean rates are considered to
be random variables subject to Gaussian and uniform p.d.f.

The second column of Table 1 shows the sopt parameters optimized off-line
and calculated by maximizing the traffic volume. All calculations were made with
the following initial parameters: (i) the number of traffic classes: M = 2; (ii) the
network capacity is chosen to be: C = 10000 kbps; (iii) the QoS parameter is
chosen to be: γ = 10, (iv) the deviation of the Gaussian p.d.f. is chosen to be: σ =
10; (v) the traffic rates: [mi,hi]TC1 = [32, 64]kbps ; [mi,hi]TC2 = [96, 128]kbps.
Using the sopt parameters for calculating the volume of the accepted users, the
results can easily be demonstrated by counting the accepted traffic vectors n.
Table 1 shows the calculated accepted volume of the user vectors. As one can
see, there is a loss of accepted traffic volume due to the uncertain information

s
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Table 1. The calculated sopt parameters, and the accepted volume in the cases of

different p.d.f.s and CAC methods

volume sopt ex.SB-CAC av.SB-CAC GSB-CAC

Gaussian pdf 0.0079 10149 5626 13496

Uniform pdf 0.0088 10240 5030 13252

(unknown traffic descriptors). The larger the variance of the p.d.f. of the traffic
descriptor (i.e. the larger the amount of uncertainty), the larger these losses
become. The loss in traffic volume is the trade-off for only accepting those traffic
configurations which do not put the QoS in jeopardy.

These numerical results demonstrate the advantage of using the GSB concept
in admission control.

4 Conclusion

In this paper the concept of statistical bandwidth was extended to the case of un-
known traffic descriptors. A novel statistical bandwidth was derived by using the
LMGF of the traffic descriptors, furthermore the tail estimator was optimized to
admit the maximal load volume without violating the QoS requirements. As the
numerical results have demonstrated the new method yield minimal loss of load
volume despite the incompleteness in characterization of the traffic descriptors.
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Abstract. This paper presents a framework for the provision of dynamic Qual-
ity of Service (QoS) support in Virtual Private Networks (VPNs) running over 
an MPLS-enabled public network infrastructure.  A Dynamic Bandwidth Allo-
cation scheme that includes traffic estimators and the development of a resource 
reservation algorithm, capable of modifying the resource allocation in real-time, 
is used. Three traffic estimation algorithms are implemented and tested. This 
system can automatically adjust to the bandwidth size of a VPN tunnel. The 
technique is beneficial to Internet Service Providers (ISPs) and corporate users 
alike. The superior resource management achieved through the examined  
approach can produce lower costs for the users and higher profits to the ISP. 
Implementation and experimental evaluation of the technique, using our MPLS 
and Diffserv enabled Linux test-bed, confirmed its ability to provide better re-
source utilization. 

1   Introduction 

VPN services have been offered in various forms over an extended period of time and 
typically have been implemented at the data link layer using Frame Relay and Asyn-
chronous Transfer Mode (ATM) networking technologies. VPN services based on 
IP/MPLS are quickly gaining public interest and market acceptance.  Most work on 
VPNs has mainly dealt with the security issue. However, with the advancement of 
technology and the introduction of sophisticated applications, users don’t only de-
mand security, but expect provision of QoS guarantees, in several cases compared to 
those provided by leased line services. Thus, incorporation of QoS support in the 
VPN technology, in a resource efficient manner, becomes increasingly important.   

In this paper we describe and evaluate a dynamic QoS supporting technique, suit-
able for VPNs. It was implemented in an MPLS and DiffServ enabled experimental 
network, incorporating Traffic Engineering and RSVP-TE for the establishment of 
connections.  Three traffic estimators and the CBQ, modified in order to be able to 
support resource allocation in a dynamic fashion, were implemented. 
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2   Traffic Estimators 

We assume that the measurements comprise samples gathered at regularly spaced in-
stants during a measurement window

measT .  The measurements are used to estimate the 

bandwidth for the traffic flow over some reservation window Y. The parameters are: 
X:  inter-sample interval; Y:  reservation window; W: number of samples taken within 
the measurement window Tmeas; N: number of samples taken within the reservation 
window Y; Ri: average sampling rate.  

The traffic estimation algorithms we implemented and evaluated are the Maximum 
Estimator (ME) [1], Gaussian Estimator (GE) [2] and α−stable Estimator (ASE) [5]. 
The following relations between the above defined parameters hold: Y = N*X  (N = 
1,2, …...…; N is positive integer).  

The expressions of the renegotiated bandwidth Rren for the three estimators are 
given in equation 1.  In the case of ME (equation 1(a)), the renegotiated rate Rren is the 
maximum of the rate samples collected during the measurement window Tmeas, i.e.:  

}max{ iren RR = (a)                     vamRren += (b)                      
Wj KmW σ+=ˆ (c) (1) 

The GE is based on the assumption that aggregated traffic can be characterized by 
the Gaussian distribution. The renegotiated rate Rren for GE is given in equation 1(b), 
where m and v  are respectively the mean and variance of the rates sampled during 
the measurement window, and a  is a scale factor that controls the extent to which the 
negotiated rate accommodates the variability of the samples.  

The ASE estimator assumes that the statistical behavior of aggregate traffic 
streams is statistically described through α−stable long-range dependent stochastic 
processes [3]. This is a valid assumption, since the authors of [3] proved that such dis-
tributions describe more accurately aggregate traffic passing through modern net-
works as compared to earlier models. In [4], traffic estimators for α−stable long-range 
dependent traffic have been proposed.  In [5], the concept of probabilistic envelope 
processes was extended to the α−stable case, providing us with a very practical and 
simple to implement traffic estimator. The bandwidth demand imposed by the traffic 
is represented by an envelope process. The following envelope process 

jŴ  is used (see 

equation 1(c)), where m  is the mean of the number of arrivals per unit time, and
Wσ  

is the scale parameter. It is similar to the variance of the Gaussian distribution.  How 
to compute Wσ  can be found in [3,4,5]. K  is determined by the overshoot probability 

ε  [5] and index of stability α  [3].  

3   Experimental Set-Up and Performance Evaluation 

Figure 1 shows the architecture of our test-bed. The source customer network includes 
an IP router used to mark IP packets (setting up the DSCP value) by using iptables.  
The MPLS backbone network is made up of two edge LERs and one core LSR, which 
establish one or more Diffserv enabled LSPs. All routers run under the Linux 
RedhatTM system.  At the core router, CBQ has been implemented for the allocation of 
bandwidth. The CBQ has been modified in order to be able to change the allocation in 
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real-time.  The speed of the segment, to which the core LSR’s output is connected, is 
10 Mbps, becoming the source of congestion. The other segments have 100  
Mbps speed.  

In our experiments, we used our α−stable Long Range Dependent (LRD) traffic 
generator, set to produce traffic streams with index of stability: i) α=1.95, ii) α =1.60, 
and a Short Range Dependent (SRD) UDP Poisson traffic generator. The QoS pa-
rameters we measure are the packet loss rate, average delay, delay jitter and the ratio 
of average reserved bandwidth over the average traffic volume.  The parameters we 
examine in terms of their impact on the performance are: i) buffer size at the core 
router B; ii) sample interval X; iii) measurement window

measT ; iv) resource reserva-

tion window Y. For each parameter, we plot: a) the amount of packet losses at the core 
router; b) the average forwarding delay at the core router;  c) the average delay jitter 
(IPDV) at the core router; d)  the ratio of average reservation over the average  
traffic volume.  
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Fig. 1. Test-bed’s architecture 

Due to the limited space, we only show the performance as function of 
measT  for 

α−stable traffic with α= 1.95 when the GE and ASE are used. The results are presented 
in figure 2. We consider the cases where the traffic process exceeds its envelope by 
0.1, 0.01 and 0.001.  Please note that differently from the Gaussian case, the α−stable 
estimator is able to provide better performance when the QoS requirement becomes 
more stringent. Dynamic bandwidth allocation jointly with the ASE provides more re-
liable performance, especially when the traffic exhibits high variability. 

4   Conclusions 

This paper presents a framework for QoS provisioning  in VPNs by combining dy-
namic Bandwidth Allocation and traffic monitoring.  Three traffic estimation algo-
rithms were assessed by developing the proposed scheme on an experimental testbed 
with DiffServ MPLS capabilities. 
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Fig. 2. (a) Ratio of reservation over average traffic volume; (b) average forwarding delay [ms] 
measured at the core router ;  (c) IPDV jitter [ms] measured at the core router; (d) packet loss 
[%] measured at the core router, vs. 

measT , for GE and ASE when α−stable traffic with α = 1.95 is 
applied 

References  

1. Cisco White Paper, “Cisco MPLS Auto-Bandwidth Allocator for MPLS Traffic Engineer-
ing: A Unique New Feature of Cisco IOS Software”, http://www.cisco.com/warp/public/ 
cc/pd/iosw/prodlit/mpatb_wp.htm 

2. N .G. Duffield, P. Goyal, A. Greenberg, P. Mishra, “A Flexible Model for Resource Man-
agement in Virtual Private Networks”, ACM SIGCOMM’ 99, Oct. 1999, Cambridge, MA, 
USA. 

3. J. R. Gallardo, D. Makrakis, L. Orozco-Barbosa, “Use of Alpha-Stable Self-Similar Sto-
chastic Process for Modeling Traffic in Broadband Networks”, Performance Evaluation, 40 
(1-3), pp. 71-98, 2000. 

4. J. R. Gallardo, D. Makrakis, M. Angulo, “Dynamic Resource Management Considering the 
Real Behavior of Aggregate Traffic”, IEEE Trans. On Multimedia, Vol. 3, No. 2, pp. 177-
185, June 2001.  

5. M. L. Guerrero, L. Orozco-Barbosa, D. Makrakis, “Probabilistic Envelope Processes for 
alpha-Stable Self-Similar Traffic Models and their Application to Resource Provisioning”, 
to appear in the Performance Evaluation Journal.   



Author Index

Albuquerque, Paul 341
Andreou, M.I. 302
Asgeirsson, Eyjolfur 545
Ayala-Rincon, Mauricio 464

Bachoore, Emgad H. 216
Bader, David A. 16
Bar-Noy, Amotz 139
Bast, Holger 67
Becker, Bernd 452
Behle, Markus 452
Bekker, H. 610
Bleischwitz, Yvonne 228
Bodlaender, Hans L. 101, 216
Botelho, Fabiano C. 488
Boughaci, Dalila 501
Boukerche, Azzedine 403, 464
Braad, E.P. 610

Cantone, Domenico 265, 428
Christensen, Jacob 139
laffy, kc 113

Cristofaro, Salvatore 428

de Andrade, Marcos R.Q. 558
de Andrade, Paulo M.F. 558
de Melo, Alba Cristina

Magalhaes Alves 403, 464
de Souza, Cid C. 328
De Wachter, Bram 177
Dimitropoulos, Xenofontas 113
Drias, Habiba 501

Eisenbrand, Friedrich 452
Elmasry, Amr 597

Fahle, Torsten 89
Faro, Simone 428
Fernandes, Eraldo R. 4
Ferro, Alfredo 265
Festa, Paola 367
Flammini, Michele 22

Gambin, Anna 534
Genon, Alexandre 177

Georgakopoulos, George F. 570
Georganas, Nicolas D. 618
Geraci, Filippo 580
Giugno, Rosalba 265
Goldberg, M. 513
Goldengorin, B. 610
Gomu�lkiewicz, Marcin 415
Grossi, Roberto 580

Hammad, Abdelrahman 597
Hassin, Refael 44
Heinrich-Litan, Laura 55
Hollinger, D. 513
Huffaker, Bradley 113
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Wlaź, Pawe�l 415
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