Ronald Cramer (Ed.)

Advances in Cryptology -
EUROCRYPT 2005

24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Aarhus, Denmark, May 2005, Proceedings

LNCS 3494

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3494

Ronald Cramer (Ed.)

Advances in Cryptology —
EUROCRYPT 2005

24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Aarhus, Denmark, May 22-26, 2005

Proceedings

@ Springer

Volume Editor

Ronald Cramer

CWI, Amsterdam

and Mathematical Institute, Leiden University
Kruislaan 413, P.O. Box 94079

1090GB Amsterdam, The Netherlands

E-mail: cramer@cwi.nl, cramer @math.leidenuniv.nl

Library of Congress Control Number: 2005926095

CR Subject Classification (1998): E.3, F2.1-2, G.2.1, D.4.6, K.6.5, C.2,J.1

ISSN 0302-9743
ISBN-10 3-540-25910-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25910-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© International Association for Cryptologic Research 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11426639 06/3142 543210

Table of Contents

Cryptanalysis I

Cryptanalysis of the Hash Functions MD4 and RIPEMD
Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen,
Xiuguan YU . ..o

How to Break MD5 and Other Hash Functions
Xiaoyun Wang, Hongbo Yu

Collisions of SHA-0 and Reduced SHA-1
Eli Biham, Rafi Chen, Antoine Jouz, Patrick Carribault,
Christophe Lemuet, William Jalby

Theory I

Reducing Complexity Assumptions for Statistically-Hiding Commitment
Iftach Haitner, Omer Horvitz, Jonathan Katz, Chiu-Yuen Koo,
Ruggero Morselli, Ronen Shaltiel

Smooth Projective Hashing and Two-Message Oblivious Transfer
Yael Tauman Kalai e

On Robust Combiners for Oblivious Transfer and Other Primitives
Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold,
Alon ROSEN .. .o

Encryption I

Efficient Identity-Based Encryption Without Random Oracles
Brent Waterso

Tag-KEM/DEM: A New Framework for Hybrid Encryption and a New
Analysis of Kurosawa-Desmedt KEM

Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa,

Victor SROUp ..o

XII Table of Contents

Signatures and Authentication
Secure Remote Authentication Using Biometric Data
Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky,
Adam Smiath. 147

Stronger Security Bounds for Wegman-Carter-Shoup Authenticators
Daniel J. BErnsteinu oo 164

3-Move Undeniable Signature Scheme
Kaoru Kurosawa, Swee-Huay Heng........ 181

Group Signatures with Efficient Concurrent Join
Aggelos Kiayias, Moti Yung ..., 198

Algebra and Number Theory I

Floating-Point LLL Revisited
Phong Q. Nguyén, Damien Stehlé 215

Practical Cryptography in High Dimensional Tori
Marten van Dijk, Robert Granger, Dan Page, Karl Rubin,

Alice Silverberg, Martijn Stam, David Woodruff 234
A Tool Kit for Finding Small Roots of Bivariate Polynomials over the
Integers

Johannes Blomer, Alexander Mayo i, 251

Quantum Cryptography

Computational Indistinguishability Between Quantum States and Its
Cryptographic Application

Akinori Kawachi, Takeshi Koshiba, Harumichi Nishimura,

Tomoyukt Yamakami 268

Approximate Quantum Error-Correcting Codes and Secret Sharing

Schemes
Claude Crépeau, Daniel Gottesman, Adam Smith 285

Secure Protocols

Compact E-Cash
Jan Camenisch, Susan Hohenberger, Anna Lysyanskaya 302

Table of Contents XIII

Cryptographic Asynchronous Multi-party Computation with Optimal
Resilience
Martin Huirt, Jesper Buus Nielsen, Bartosz Przydatek 322

Algebra and Number Theory 11

Differential Cryptanalysis for Multivariate Schemes
Pierre-Alain Fouque, Louis Granboulan, Jacques Stern.............. 341

A Fast Cryptanalysis of the Isomorphism of Polynomials with One
Secret Problem
Ludovic Perret 354

Partial Key Exposure Attacks on RSA up to Full Size Exponents
Matthias Ernst, Ellen Jochemsz, Alexander May,

Benne de Weger ... 371
The RSA Group is Pseudo-Free

Daniele MicCianeiooooo vt e 387
Theory 11

Universally Composable Password-Based Key Exchange
Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell,
Phil MacKenzie 404

Mercurial Commitments with Applications to Zero-Knowledge Sets
Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin,
Leonid Reyzinoo o 422

Encryption 11

Hierarchical Identity Based Encryption with Constant Size Ciphertext
Dan Boneh, Xavier Boyen, Eu-Jin Goh........................... 440

Fuzzy Identity-Based Encryption
Amit Sahai, Brent Waters 457

Cryptanalysis 11

Second Preimages on n-Bit Hash Functions for Much Less than 2 Work
John Kelsey, Bruce Schneier, 474

Predicting and Distinguishing Attacks on RC4 Keystream Generator
Ttsik Mantin. 491

X1V Table of Contents

Related-Key Boomerang and Rectangle Attacks
Eli Biham, Orr Dunkelman, Nathan Keller 507

On the Impossibility of Highly-Efficient Blockcipher-Based Hash

Functions
John Black, Martin Cochran, Thomas Shrimpton 526

Broadcast Encryption and Traitor Tracing

Public Traceability in Traitor Tracing Schemes
Hervé Chabanne, Duong Hieu Phan, David Pointcheval 542

One-Way Chain Based Broadcast Encryption Schemes

Nam-Su Jho, Jung Yeon Hwang, Jung Hee Cheon,
Myung-Hwan Kim, Dong Hoon Lee, Eun Sun Yoo.................. 559

Author Index 575

Preface

These are the proceedings of the 24th Annual TACR Eurocrypt Conference.
The conference was sponsored by the International Association for Cryptologic
Research (IACR; see www.iacr.org), this year in cooperation with the Computer
Science Department of the University of Aarhus, Denmark. As General Chair,
Ivan Damgard was responsible for local organization.

The Eurocrypt 2005 Program Committee (PC) consisted of 30 internationally
renowned experts. Their names and affiliations are listed on pages VII and VIII
of these proceedings. By the November 15, 2004 submission deadline the PC
had received a total of 190 submissions via the IACR Electronic Submission
Server. The subsequent selection process was divided into two phases, as usual.
In the review phase each submission was carefully scrutinized by at least three
independent reviewers, and the review reports, often extensive, were committed
to the TACR Web Review System. These were taken as the starting point for the
PC-wide Web-based discussion phase. During this phase, additional reports were
provided as needed, and the PC eventually had some 700 reports at its disposal.
In addition, the discussions generated more than 850 messages, all posted in
the system. During the entire PC phase, which started in August 2003 with my
earliest invitations to PC members and which continued until March 2005, more
than 1000 email messages were communicated. Moreover, the PC received much
appreciated assistance from a large body of external reviewers. Their names are
listed on page VIII of these proceedings.

The selection process for Eurocrypt 2005 was finalized by the end of January
2005 with a one-day PC meeting held in Amsterdam, The Netherlands. This
meeting was attended by most of the PC members. The PC ultimately selected
33 papers for publication in these proceedings and presentation at the confer-
ence. After notification of acceptance the authors were provided with the review
comments and were granted one month to prepare the final versions, which were
due by February 28, 2005. These final versions were not subjected to further
scrutiny by the PC and their authors bear full responsibility.

It was a great pleasure to work with this PC, and I thank all members for
contributing so much of their scientific expertise, advice, opinions, preferences
and devotion, and for their very hard work in the relatively short time frame
that a PC has to operate in.

The Eurocrypt 2005 “Best Paper Award” was shared by Xiaoyun Wang, Xue-
jia Lai, Dengguo Feng, Hui Chen and Xiuyuan Yu for their paper “Cryptanalysis
of the Hash Functions MD4 and RIPEMD” and by Xiaoyun Wang and Hongbo
Yu for their paper “How to Break MD5 and Other Hash Functions.”

Besides the above-mentioned 33 regular presentations, the Eurocrypt 2005
scientific program featured two invited speakers: René Schoof (University of
Rome, Ttaly), with a survey talk on algebraic geometry algorithms in cryptology,

VI Preface

in particular on point counting algorithms for algebraic varieties over finite fields,
and Joe Kilian (Yianilos Labs, Princeton, USA), with a talk on “Confusion,
Quagmire and Irrelevancy: an Optimist’s View of the Future of Cryptographic
Research.”

Many others have, in one way or another, helped the PC, contributed to
these proceedings or the Furocrypt conference as such, thereby also serving the
international cryptology community as a whole, directly or indirectly.

The Eurocrypt conference continues to attract many very high-quality sub-
missions from all over the world; so many in fact that not all good papers could
be selected. All authors who submitted their work for consideration by the PC
are hereby acknowledged for their contributions.

CWI! in Amsterdam and the Mathematical Institute at Leiden University,
my employers, are gratefully acknowledged for their support.

Eurocrypt 2004 PC Co-chairs Christian Cachin and Jan Camenisch (IBM Re-
search), as well as Crypto 2004 PC Chair Matt Franklin (UC Davis), gave useful
advice on a number of occasions. Also many thanks to Springer for its collabo-
ration. Peter Landrock (Cryptomathic) is kindly acknowledged for agreeing to
organize and chair the Eurocrypt 2005 rump session, a traditional, entertain-
ing Tuesday evening session with brief research announcements and “any other
business.”

Hats off to John Tromp (Quantum Computing and Advanced Systems Re-
search Group, CWI), who reallocated, from the summer of 2004 until February
2005, substantial amounts of his precious research time to expertly manage the
technical infrastructure for electronic submissions and Web review. The software
was run on the network of CWI’s INS Department. I hereby acknowledge the sup-
port of INS head Martin Kersten and his system manager Matthijs Mourits. Also
many thanks to Harry Buhrman and Paul Vitdnyi! Thomas Herlea from KU Leu-
ven’s IACR submission server and webreview system development team offered
prompt technical assistance to John whenever needed. Michael Smeding (Com-
puter Support Team, CWI) provided prompt service to me and my group.

Serge Fehr of my Cryptology and Information Security Research Group at
CWI was in charge of “General Affairs.” In particular, he assisted me during the
very busy week following the submission deadline, organized the PC meeting
in collaboration with Wilmy van Ojik (Conference Organization, CWI), helped
the PC by logging the entire decision process during the meeting, and provided
instrumental assistance when I edited this volume. Serge, thanks a lot!

Finally, I thank Ivan Damgard, Eurocrypt 2005 General Chair, for our very
pleasant collaboration during the organization of Eurocrypt 2005, a memorable
addition to our many joint scientific endeavors (and friendship!)

March 2005 Ronald Cramer

1 CWI is the National Research Institute for Mathematics and Computer Science in
The Netherlands.

EUROCRYPT 2005

May 22-26, 2005, Aarhus, Denmark

Sponsored by the
International Association for Cryptologic Research (IACR)
in cooperation with the
Computer Science Department, Faculty of Science,

University of Aarhus, Denmark
General Chair
Ivan Damgard, Department of Computer Science,
University of Aarhus, Denmark
Program Chair
Ronald Cramer, CWI, Amsterdam & Mathematical Institute,
Leiden University, The Netherlands

Program Committee

Michael Backes IBM Ziirich Research Laboratory, Switzerland
Daniel Bleichenbacher Lucent Bell Labs, USA
Don Beaver i Syntechnica, LLC, USA
Don Coppersmith IBM T. J. Watson Research Center, USA
Hans Dobbertin University of Bochum, Germany
Yevgeniy Dodis ... New York University, USA
Marc Fischlin oo i ETH Ziirich, Switzerland
Steven Galbraith Royal Holloway, University of London, UK
Shafi Goldwasser MIT, USA & Weizmann Institute of Science, Israel
Shai Halevi IBM T. J. Watson Research Center, USA
Johan Hastadoooooii.. Royal Institute of Technology, UK
Marc Joye ... Gemplus, France
Aggelos Kiayias ..., University of Connecticut, USA
Eyal Kushilevitzoo i Technion, Israel
Arjen LenstraLucent Bell Labs, USA & TU Eindhoven, The Netherlands
Phong Q. Nguyén CNRS & Ecole Normale Supérieure, France
Kaisa Nybergo Nokia, Finland
Tatsuaki Okamotoo NTT, Japan
Rafail Ostrovsky ... U.C.L.A., USA
Carles Padré Universitat Politecnica de Catalunya, Spain
Benny Pinkaso Hewlett-Packard Labs, Israel

......................... (continued on the next page).........................

VIII Organization

Bart Preneel

Louis Salvail

Palash Sarkar
Berry Schoenmakers
Igor Shparlinski
Douglas Stinson
Salil Vadhan
Moti Yung

Michel Abdalla
Masayuki Abe
Saurabh Aggarwal
Roberto Avanzi
Joonsang Baek
Paulo Barreto

Amos Beimel

Eli Biham

Alex Biryukov
Alexandra Boldyreva
Emmanuel Bresson
Eric Brier

Christian Cachin
Jan Camenisch

Ran Canetti
Christophe De Canniere
Dario Catalano
Debrup Chakraborty
Yan-Cheng Chang
Denis Charles

Sanjit Chatterjee
Benoit Chevallier-Mames
Olivier Chevassut
Scott Contini
Giovanni Di Crescenzo
Ivan Damgard

Drew Dean
Jean-Francois Dhem
Iwan Duursma
Stefan Dziembowski
Kirsten Eisentraeger
Nelly Fazio

Matthias Fitzi
Pierre-Alain Fouque

External Referees

Matt Franklin
Michael H. Freedman
Atsushi Fujioka
David Galindo

Juan Garay

Rosario Gennaro
Guang Gong
Maribel Gonzalez Vasco
Ignacio Gracia
Louis Granboulan
Stuart Haber
Helena Handschuh
Alex Healy

Javier Herranz
Florian Hess

Jason Hinek

Martin Hirt

Susan Hohenberger
Thomas Holenstein
Nick Howgrave-Graham
Yuval Ishai

Markus Jakobsson
Stanislaw Jarecki
Antoine Joux

Ari Juels

Jonathan Katz
Alexander Kholosha
Eike Kiltz

Tetsutaro Kobayashi
Tadayoshi Kohno
Yuichi Komano
Hugo Krawczyk
Gunnar Kreitz

Caroline Kudla

Katholieke Universiteit Leuven, Belgium
University of Aarhus, Denmark
Indian Statistical Institute, India
TU Eindhoven, The Netherlands
Macquarie University, Australia
University of Waterloo, Canada

Harvard University, USA

Columbia University, USA

Noboru Kunihiro
Jeff Lagarias
Tanja Lange
Joseph Lano
Kristin Lauter
Yehuda Lindell
Helger Lipmaa
Moses Liskov
Phil MacKenzie
Subhamoy Maitra
Tal Malkin

John Malone-Lee
Stefan Mangard
Keith Martin
Alexander May
Mira Meyerovich
Silvio Micali
Anton Mityagin
Paz Morillo
Siguna Mueller
Sourav Mukhopadhyay
Enric Nart
Kenny Nguyen
Minh-Huyen Nguyen
Antonio Nicolosi
Jesper Nielsen
Kobbi Nissim
Satoshi Obana
Miyako Ohkubo
Kazuo Ohta
Elisabeth Oswald
Pascal Paillier
Rafael Pass
Kenny Paterson

Maura Paterson
Souradyuti Paul
Thomas Pedersen
Jan Pelzl
Giuseppe Persiano
Erez Petrank
Birgit Pfitzmann
Duong Hieu Phan
Krzysztof Pietrzak
David Pointcheval
Manoj Prabhakaran
Bartosz Przydatek
Jordi Pujolas

Tal Rabin

Omer Reingold
Rennato Renner
Leonid Reyzin
Vincent Rijmen
Pankaj Rohatgi
Alon Rosen
Germéan Saez
Kazue Sako
Takakazu Satoh
Christian Schaffner

Werner Schindler
Mike Scott
Hovav Shacham
Ronen Shaltiel
Peter Shor
Victor Shoup
Tom Shrimpton
Alice Silverberg
Nigel Smart
Martijn Stam
Francois-Xavier Standaert
Allan Steel
Damien Stehlé
Ron Steinfeld
Koutarou Suzuki
Mike Szydlo
Keisuke Tanaka
Tamir Tassa
Yael Tauman
Isamu Teranishi
Edlyn Teske
Marten Trolin
Yiannis Tsiounis
Pim Tuyls

Organization X

Shigenori Uchiyama
Vinod Vaikuntanathan
Ingrid Verbauwhede
Frederik Vercauteren
Eric Verheul

Jorge Luis Villar
Michael Waidner
Shabsi Walfish
Huaxiong Wang
Xijaoyun Wang
Mark Watkins
Benne de Weger
Steve Weis

Annegret Weng
Mike Wiener
Douglas Wikstrom
Christopher Wolf
Stefan Wolf

Go Yamamoto
Aleksandr Yampolskiy
Yuliang Zheng
Hong-Sheng Zhou

Cryptanalysis of the Hash Functions
MD4 and RIPEMD

Xiaoyun Wang!, Xuejia Lai?, Dengguo Feng?, Hui Chen', and Xiuyuan Yu*

! Shandong University, Jinan250100, China
xywang@sdu.edu.cn
2 Shanghai Jiaotong University, Shanghai200052, China
3 Chinese Academy of Science China, Beijing100080, China
4 Huangzhou Teacher College, Hangzhou310012, China

Abstract. MD4 is a hash function developed by Rivest in 1990. It serves
as the basis for most of the dedicated hash functions such as MD5, SHAx,
RIPEMD, and HAVAL. In 1996, Dobbertin showed how to find collisions
of MD4 with complexity equivalent to 22 MD4 hash computations. In
this paper, we present a new attack on MD4 which can find a collision
with probability 272 to 27¢, and the complexity of finding a collision
doesn’t exceed 28 MD4 hash operations. Built upon the collision search
attack, we present a chosen-message pre-image attack on MD4 with com-
plexity below 28. Furthermore, we show that for a weak message, we can
find another message that produces the same hash value. The complex-
ity is only a single MD4 computation, and a random message is a weak
message with probability 27122,

The attack on MD4 can be directly applied to RIPEMD which has
two parallel copies of MD4, and the complexity of finding a collision is
about 2'® RIPEMD hash operations.

1 Introduction

MD4 [14] is an early-appeared hash function that is designed using basic arith-
metic and Boolean operations that are readily available on modern computers.
Such type of hash functions are often referred to as dedicated hash functions,
and they are quite different from hash functions based on block ciphers. After the
publication of MD4, several dedicated hash functions are successively designed,
including MD5 [15], HAVAL [18], RIPEMD [13], RIPEMD-160 [9], SHA-1 [10],
SHA-256 [11], etc. These hash functions, although more complex, all follow the
same design philosophy as MD4 and have similar structures as MD4. In partic-
ular, RIPEMD consists of two parallel copies of MD4, and each copy is identical
to MD4 except for some internal constants.

There have been several important cryptanalytical results for both MD4 and
RIPEMD. In 1996, H. Dobbertin [5] gave a collision attack on MD4 which finds
a collision with probability 2722. He also showed how to find collisions of mean-
ingful messages. In 1998, H. Dobbertin [8] showed that the first two (out of the

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 1-18, 2005.
© International Association for Cryptologic Research 2005

2 X. Wang et al.

total three) rounds of MD4 is not one-way, and this means that there is an ef-
ficient attack for finding a preimage and a second preimage. For RIPEMD, H.
Dobbertin [7] gave an attack that finds a collision of RIPEMD reduced to two
rounds with 23! hash operations.

Along with the development of the MD4-family of hash functions, there have
also been security analysis on these functions. For example, B. den Boer and
A. Bosselaers [3] found pseudo-collisions (same message with two different ini-
tial values) for MD5. In Eurocrypto’96, H. Dobbertin [6] presented a collisions of
MD5, under another initial value. In Crypto’98, F. Chabaud and A. Joux [4] pre-
sented a differential attack on SHA-0 with probability 271, At Asiacrypt 2003,
B.V. Rompay etc. [16] gave a collision attack on HAVAL-128 with probability
2729,

Some very interesting results on hash functions came out simultaneously in
Crypto 2004. Eli Biham and Rafi Chen [2] presented a near-collision attack
on SHA-0, and described their improved results on SHA-0 and SHA-1 in the
rump session. Then, A. Joux [12] presented a real collision of SHA-0 with four
message blocks. X.Y. Wang etc. [17] also announced real collisions of a series of
hash functions including MD4, MD5, HAVAL-128, and RIPEMD in the rump
session. All these research work were done independently.

The purpose of this paper is to analyze the security of MD4 and RIPEMD
and present more efficient attacks. The main results are summarized below.

1. Collision search attack on MD4: we can find collisions with probability 272
to 276 and with complexity less than 28 MD4 hash operations.

2. A theoretical second pre-image attack on MD4 for weak messages: For a weak
message, we can find another message that produces the same hash value.
The complexity is only a single MD4 computation and a random selected
message is a weak message with probability 27122,

3. Collision search attack on RIPEMD: we can find collisions with probability
2716 and with complexity less than 2'8 RIPEMD hash operations.

In addition to presenting the new attacks on MD4 and RIPEMD, we also
introduce a set of new analytical techniques that are applicable to all the hash
functions in the MD4-family. More specifically, we show how to derive a set of the
sufficient conditions on the chaining values to ensure the differential path to hold,
and how to use message modification techniques to greatly improve the success
probability of the attack. Such techniques have proved to be very effective in
cryptanalyzing other dedicated hash functions such as MD5, RIPEMD, HAVAL-
128, HAVAL-160, SHAO, and especially SHA-1.

All the existing attacks on dedicated hash functions belong to differential
attacks [1], since a collision can be regarded as a special differential which has
non-zero input difference and zero output difference. We remark that unlike
other existing attacks on hash functions, our attack presented in this paper is
a “precise” differential attack in which the differential path is more restrictive
since it depends on both the difference as well as the specific value of the bit
involved.

Cryptanalysis of the Hash Functions MD4 and RIPEMD 3

The paper is organized as follows. In Section 2 we provide a description
of MD4 and RIPEMD. In Section 3, we summarize some useful properties of
the Boolean functions in two hash functions and introduce the notation used
in the paper. As our main result, the collision attack on MD4 is presented in
Section 4, the collision attack on RIPEMD is presented in Section 5. In Section 6,
we describe a theoretical second pre-image attack on MD4. In Section 7, we
summarize our work together with some remarks, especially on the implication
for the analysis of the hash function SHA-0.

2 Description of MD4 and RIPEMD

2.1 MD4 Algorithm

The message digest algorithm MD4 compresses any arbitrary bit-length message
into a 128-bit hash value. Given any message, the algorithm first pads it into a
message with a length that is a multiple of 512 bits We omit the padding method
here since it is irrelevant to our attack.

For each 512-bit message block, MD4 compresses it into a 128-bit hash value
using a compression function. The MD4 compression function has three rounds.
Each round uses a different nonlinear Boolean function defined as follows:

F(X,Y,Z)=(XAY)V (~X A Z)
GX,Y,Z)=(XANY)V(XAZ)V (Y AZ)
HXY,Z)=XaYeaZ

Here XY, Z are 32-bit words. The operations of three functions are all bitwise.
=X is the bitwise complement of X, A, & and V are respectively the bitwise
AND, XOR and OR.

Each round of the compression function repeats 16 similar step operations,
and in each step one the four chaining variables a, b, ¢, d is updated.

bo(a,b,c,d,my,s) = ((a+ F(b,c,d) +my) mod 2%%) << s

é1(a,b,c,d,my,s) = ((a+ G(b,c,d) +my + 0x5a827999) mod 2%?) <« s

ba(a,b,c,d,my,s) = ((a+ H(b,c,d) + my, + 0x6ed9ebal) mod 23?) <« s
The initial value for MD4 is defined as:

(a,b,c,d) = (0x67452301, Oxefcdab89, 0x98badcfe, 0x10325476)

MD4 Compression Function. For one 512-bit block M of the padded mes-
sage M, M = (mg,mq, ..., my5), the compression function is defined as follows:

1. Let (aa,bb,cc,dd) be input chaining variables for M. If M is the first mes-
sage block to be hashed, then (aa,bb, cc, dd) are set to be the initial value.
Otherwise they are the output from compressing the previous message block.

4 X. Wang et al.

2. Perform the following 48 steps (three rounds):
For j =0,1,2 and i = 0,1,2,3

¢j (0% b, c,d, Wj 4i, 3j,4i)

¢i(d,a,b,c,wjai41,5j4i+1)

¢j(c,d,a,b,wj 4i42, 55 4i+2)
(

¢j b,c,d,a, Wj 4i+3, 5j,4i+3)

a
d
c
b

Here sj44+% (K = 0, 1, 2, 3) are step-dependent constants, w; 15 is a
message word and << s;4;4 is circularly left-shift by s; 4,4 bit positions.
The specific message order and shift positions are given in Table 5.

3. Add the chaining variables a, b, ¢ and d respectively to the input chaining
variables to produce the final chaining variables for the current message
block.

aa = (a + aa) mod 232
bb = (b + bb) mod 232
cc = (¢ + cc) mod 232
dd = (d + dd) mod 232

If M is the last message block, H(M) = aal|bb|cc|dd is the hash value for the
message M. Otherwise repeat the above process with the next 512-bit message
block and (aa, bb, cc, dd) as the input chaining variables.

2.2 RIPEMD Algorithm

RIPEMD employs the same nonlinear round functions as MD4 and they are
used in the following six operations:

)
a+ G(b,c,d) +my) mod 2°%) <« s
= ((a+ H(b,c,d) + my, + 0x5c4dd124) mod 2%%) << s

(G
V2

In order to easily describe the RIPEMD compression function, we denote MD4
compression function with three operations ¢g, ¢1 and ¢o as MD4 (g, 1, pa, M).

RIPEMD Compression Function. The RIPEMD compression function em-
ploys two copies of MD4 compression function: the left copy is MD4
(¢o0, 1,2, M), and the right copy is MD4 (¢, ¥1, 12, M). Both copies have the
same initial value as MD4. The details of the message order and shift positions
are given in Table 7.

a,b,c,d,my, s

wola,b,c,d,my, s) = ((a + F(b,c,d) +my) mod 2%?) <« s
oi1(a,b,c,d,my, s) = ((a + G(b,c,d) + my + 0x5a827999) mod 2°?) « s
wo(a,b,c,d, my, s) = ((a + H(b,c,d) + my + 0x6ed9ebal) mod 2°?) < s
Yo(a,b,c,d,my,s) = ((a + F(b,c,d) + my + 0x50a28be6) mod 2°?) < s
()=
()

a‘)b7 c’ d’ mk78

1. Let (a,b,c,d) be the input chaining variables for M which is the same as
MD4.

Cryptanalysis of the Hash Functions MD4 and RIPEMD 5

2. Perform two copies of the MD4 operation

(aa,dd, cc,bb,) < MD4(pq, p1, 02, M),
(aaa, ddd, ccc, bbb) «— MDA (g, 11, 1o, M).
3. The output (a, b, ¢,d) for compressing M is the following:

a = (b + cc + ddd) mod 2%?
b= (¢ + dd + aaa) mod 232
¢ = (d + aa + bbb) mod 2%*
d = (a + bb + ccc) mod 2%?

3 Preliminaries

3.1 Basic Properties of the Boolean Functions

Some properties of three nonlinear Boolean functions are very helpful for de-
termining sufficient conditions for the differential paths that are used in our
collision search attack on MD4 and RIPEMD. In what follows, we summarize
some well-known properties of these functions.

Proposition 1. For the nonlinear function F(X,Y,Z) = (X ANY)V (=X A Z)
in the first round, there are the following properties:

1. F(z,y,2z) = F(—x,y,2) if and only if y = z.
2. F(x,y,z) = F(z,~y, 2) if and only if x = 0.

3. F(x,y,z) = F(x,y,—z) if and only if x = 1.

Proposition 2. For the nonlinear function G(X,Y,Z) = (X AY)V (X ANZ)V
(Y A Z) in the second round, there are the following properties:

1. G(x,y,2) = G(—z,y,2) if and only if y = z.
2. G(z,y,2) = G(z,~y, 2) if and only if x = z.

3. G(z,y,2) = G(x,y,z) if and only if x = y.

Proposition 3. For the nonlinear function H(X,Y,Z) = X @Y ® Z in the
third round, there are the following properties:

1. H('Tayvz) = —\H(ﬂx,y,z) = _‘H(xv_‘yaz) = _‘H("L‘a_‘yvz)

2. H(x,y,z) = H(—w,—‘y,z) = H(l’,—\y,—!Z) = H(_\l',y, _'Z)

6 X. Wang et al.

3.2 Notation

Here we introduce the notation used in our analysis. Since our attack is a “pre-
cise” differential attack, we need to keep track of both the difference as well as
the specific value of the bit involved. Therefore, the notation may seem quite
complex at a first glance, but the intuition behind these notation will become
more clear as we proceed in describing the attacks.

1. M = (mg,m1,...,m15) and M’ = (mj, m},...,m}y) represent two 512-bit
messages.

2. a;, d;, ¢;, b; respectively denote the outputs of the (4i — 3)-th, (4i — 2)-th,
(4i — 1)-th and 4i-th steps for compressing M, for 1 < i < 16.

3. a}, b}, c;, d. respectively denote the outputs of the (4i — 3)-th, (4i — 2)-th,
(4i — 1)-th and 4i-th steps for compressing M’.

4. Am; = m} —m; denotes the difference between two message words m,; and
ml.

5. a;j, bi j, cij, di ;j represent respectively the j —th bit of a;, b;, ¢;, d;, where
the least significant bit is the 1-st bit, and the most significant bit is 32-th
bit.

6. x;[j], zi[—j] (x can be a, b, ¢, d) is the resulting values by only changing the
J —th bit of the word z;. x;[j] is obtained by changing the j-th bit of x; from
0 to 1. z;[—7] is obtained by changing the j-th bit of x; from 1 to 0.

7. x;[+j1, £j2, ..., £7i] is the value by change ji — th, jo — th, ..., j; — th bits
of x;. The ”+4” sign means that the bit is changed from 0 to 1, and the ”-”
sign means that the bit is changed from 1 to 0.

Note that we use integer modular subtraction difference as the measure of dif-
ference, not the exclusive-or difference. In addition, we also need to specify the
precise values of each bit when considering the carry effect in the differential
path. This is better understood using an example. Let us consider step 7 in
Table 5. The output difference is

Acy = ¢y — ¢ = =218 1221,

Using our notation, ¢4 = ¢2[—19,22]. For the specific differential path, we need
to expand the one-bit subtraction difference in bit 19 into a three-bit difference
in bits 19,20,21. That is, we expand c3[19] as ¢3[19, 20, —21]. Hence, the output
¢4 is represented as

cy = ¢5[19,20, —21,22],

as showed in the last column of Table 5.

4 The Collision Attack on MD4

In this section, we will describe a collision attack on MD4 with a success prob-
ability 272 to 275. The complexity is below 28 MD4 computations. The attack
includes three parts:

Cryptanalysis of the Hash Functions MD4 and RIPEMD 7

1. Find a collision differential in which M and M’ produces a collision.

2. Derive a set of sufficient conditions which ensure the collision differential to
hold.

3. For any random message M, make some modification to M such that almost
all the sufficient conditions hold.

4.1 The Collision Differential for MD4

We select a collision differential for MD4 as follows:

AHy =0 M) A —o

such that
AM:leM: (Amg,Aml, ,Amlg,)

Aml = 231, Amg = 231 - 228, Amlg = —216
Am; =0, 0<i<15, i#1,2,12.

All the characteristics in the collision differential can be found in Table 5.
The first column denotes the step, the second column is the chaining variable
in each step for M, the third is the message word for M in each step, the
fourth is shift rotation, the fifth and the sixth are respectively the message word
difference and chaining variable difference for M and M’, and the seventh is
the chaining variable for M’. Especially, the empty items both in fifth and sixth
columns denote zero differences, and steps those aren’t listed in the table have
zero differences both for message words and chaining variables.

It is clear that the collision differential consists of two internal collisions
respectively from 2-25 steps and 36-41 steps.

The sufficient conditions (Table 6) that ensure all the characteristics to hold
can be easily verified by the properties of the Boolean functions given in Sec-
tion 3. This further means that if M satisfies all the conditions in Table 6, M
and M’ consists of a collision.

The following is the derivation for the sufficient conditions in the step 9 of
Table 5. The differential characteristic in step 9 is:

(bo[—13, —14,15], ¢5[19, 20, —21,22], d5[14], as)
— (as[17], by[—13, —14,15], ¢5[19, 20, —21, 22], d5[14])

1. According to (1) of Proposition 1, the conditions ¢z 13 = do13 and c2 15 =
ds,15 ensure that the changes in 13-th and 15-th bits in b result in no change
in as.

2. According to (2) of Proposition 1, the conditions bs 19 = 0, ba 290 = 0, ba 21 =
0, and bz 22 = 0 ensure that the changes in 19-th, 20-th, 21-th and 22-th bits
in ¢y result in no change in as.

3. From the property of function f, the conditions by 14 = 1, dp,14 = 0 and
2,14 = 0 result in f(b 14, 2,14, d2,14) = 0 and f(—b214,¢2,14, 7d2,14) = 1. So
Aag = 216.

4. The condition az 17 = 0 ensures that aj = a3[17].

8 X. Wang et al.

Thus the above 10 conditions consists of a set of sufficient conditions for the
differential characteristic in step 9.

4.2 Message Modification

From the conditions listed in Table 6, we know that the (M, M’) is a collision
with probability 27122, This is greatly lower than the birthday attack probability
2764 We can improve the probability to 27¢ ~ 272 by two types of message
modification techniques, which we term as “single-step modification” and “multi-
step modification.”

Single-Step Modification. It is easy to modify M such that the conditions in
round 1 hold. For example, m, can be modified as :

dy —di ®(d17 < 6)® ((d1,sDars) K T)d ((dr11 D ar11) K 10)

my — (dy >>7) — do — F(aq, b, o)

After simple-message modification, (M, M) is a collision with probability 2725

by Table 6.

Multi-step Modification. Although the probability 272° is high enough for us
to find many collisions of MD4, we also introduce a multi-message modification to
correct the conditions in second round, and that greatly improves the probability.
This modification technique is very important for analyzing other hash functions
such as MD5, SHA-0, especially SHA-1.

The principle for multi-message modification is that the modifications for
some messages consist of a partial collision in the first round which remains all
the conditions in the first round to hold, but only change a bit of the second
round. The details are as follows:

1. Modify mg, m1, ms, ms, my successively by Table 1 to correct 5 conditions
of a5 in Table 6. For example, if a5 19 = €119, modify mg, mq, ma, ms, my
by Table 1 (i = 19). The changed message words don’t change any condition
of first round in Table 6, but correct as 19 = C4,19 to a5 19 = c4,19.

It is noted that, the conditions in step 17 should be corrected from low bit
to high bit, i.e. the order of the bits needed to be changed is:

Q5,19 — 5,26 — G527 — 45,29 — G532

2. Similarly, modify my4, ms, mg, m7, mg successively to correct 4 conditions
of d5.
ds,19 = as,19, ds.26 = ba,26, ds,27 = ba 27, d520 = b4 29

3. Utilize more precise modification to correct some other conditions. For ex-
ample, we can use the internal collision in Table 2 in which there are three
message words are changed to correct cs;, i = 26,27,29,32. The precise
modification should add some extra conditions in the first rounds (see Ta-
ble 2) in advance. There are many other precise modifications. ¢5 30 can be

Cryptanalysis of the Hash Functions MD4 and RIPEMD 9

Table 1. Message Modification for Correcting as i, @ = 19, 26,27, 29, 32

Modify m; Chaining values
after message modification
1|lmol| 3 mo «— mo = 211 a1 = al[:l:i}, bo, co, do
2ima| 7 |m1 — (dl > 7) —do — f(all,bo,CO) d17 CL1n€w7 bo, Co
3|ma|1ljms «— (cl =>> 11) —Co — f(dlva,hbo) Ci1, d17 alnew, bo
4|1m3|19|ms «— (bl > 19) — by — f(cl,dl,a'l) bl, ci, d17 a™v
5lma| 3 m4<—(a2>>>3)—a'1—f(b1,cl,d1) az, b1, c1, di

Table 2. The Modification for Correcting cs,;, @ = 26, 27, 29, 32

Modify m; Chaining values after|The extra conditions
message modification|in first round

6 |da|ms|7 |ms — ms + 21_17 dg[i — 9}, as, bl, c1 dgyi_g =0

7 C2 Mg 11 C2, dQ[Z — 9], asz, bl az,i—9 = bl,i_g
8 b2 mr 19 bg, Cc2, dg[’i — 9]7 a C2,4—9 = 0

9

asz|ms 3 mg <— Mg — 21_10 as, bz, C2, dz[Z — 9] bz}ifg =0
10 d3 mg 11 mg <— Mg — 22_10 d3, as, b27 C2

Table 3. T'wo collisions for MD4. H is the hash value with little-endian and no message
padding, and H™ is the hash value with big-endian and message padding

M;]4d7a9c83 56¢cb927a b9d5a578 57a7abee de748a3c dcc366b3 b683a020 3b2abdof
c69d71b3 £9€99198 d79f805e a63bb2e8 45dd8e31 97e31feb 2794bf08 b9e8c3e9
4d7a9c83 d6cb927a 29d5a578 57a7abee de748a3c dcc366b3 b683a020 3b2abd9of
c69d71b3 £9€99198 d79£805e a63bb2e8 45dc8e31 97e31feb 2794bf08 b9e8c3e9
H [5f5c1a0d 71b36046 1b5435da 9b0d807a
H*|4d7e6ald efa93d2d de05b45d 864c429b
M>|4d7a9¢c83 56cb927a b9d5ab78 57a7abee de748a3c dcc366b3 b683a020 3b2a5d9f
c69d71b3 £9€99198 d79£805e a63bb2e8 45dd8e31 97e31feb £713¢c240 a7b8cf69
M114d7a9c83 d6cb927a 29d5a578 57a7abee de748a3c dcc366b3 b683a020 3b2a5d9f
c69d71b3 £9€99198 d79£805e a63bb2e8 45dc8e31 97e31feb £713¢c240 a7b8cf69
H |e0f76122 c429c56¢ ebb5e256 b809793
H*|c6£3b3fe 1£4833e0 697340fb 214fbea

M

=

corrected by other modification. By various modifications, besides two con-
ditions in the third round, almost all the conditions in rounds 1-2 will be
corrected. The probability can be among 276 ~ 272,

The complexity of finding a collision doesn’t exceed 28 MD4 computations.
To select a message M is only to change the last two words from the previous se-
lected message M. So, finding (M, M) only needs about one-time single-message
modification for the first 14 words. This time can be neglected. For each selected
message M, it is only needs two-time single-message modifications for the last
two words and about 20 -time advanced modifications for correcting 20 condi-
tions in the second round, and each multi-message modification only needs about

10 X. Wang et al.

a few step operations, so the total time for both kinds of modifications is about
two MD4 computations for each selected message. According to the probability
of the collision differential, it is easy to know that the complexity of finding
(M, M") does not exceed 28 MD4 computations. We give two collisions for MD4
in the Table 3.

5 The Collision Attack on RIPEMD

We select a collision differential for RIPEMD as follows:

AHy =0 MM A —

such that
my =ms + 220 miy = mig + 28 + 231 mly = mys + 23,

m, =my, i # 3,10, 15.

The reason for the choice of M’ is that M and M’ can easily collide in round
3 with probability 274.

The differential characteristics and sufficient conditions can be referred to
Table 7 and Table 8.

The following mainly describes the message modification for RIPEMD. Be-
cause RIPEMD has two copies of MD4, the modification is more complicated
than that of MD4.

Message Modification for Correcting Conditions in the First Round.
Select M, we make the modification for M word by word so that both copies
with the modified M satisfy the conditions in the first round.

1. Modify m;_1 such that i-th step conditions in the left copy hold. The mod-
ification is the same as the single-message modification in Section 4.

2. Correct the conditions in the right copy from low bit to high bit. There are
many kinds of modifications. The following gives two kinds of modification
techniques.

For example, we correct aaa; ; = 0 to aaa; ; = 1 by the following methods.
(a) Correct the condition by bit carry. If j —1-bit has no constraint condition
in table 8, and aa; j_1 = aa; ;_1, let

m; «— my; £ 297275,

We select the modification which results in bit carry in the right and no
carry in the left.

(b) Correct the condition by changing (j — s;) — th bit of chaining variables
in the nonlinear round function .

i. Change (j — s;) — th bit of some chaining variables in the nonlinear
round function F' by modifying a previous message word, such that
the changed bit doesn’t occur in Table 8, and the changed bit only
causes one of aa; ; and aaa; ; changes.

Cryptanalysis of the Hash Functions MD4 and RIPEMD 11

ii. If aa;; = aaa; ; = 0, modify the next bit of aaa;.
iii. If aa;; = aaa; ; =1, let

my «<— m; — 2j7175i,
then modify the next bit of aaa;.

By combining the above two methods, we can get some other methods to correct
aaa; j. For example, if j — 1-bit has no constraint condition in table 8, and
aa; j—1 = aa; j—1, the bit-carry correction of (a) isn’t available. We can use (b)
or the lower bit carry to change aa; j_1 or aaa; j—1 such that aa; ;1 = aaa; j_1,
and then use the bit carry.

Remarks. For RIPEMD, a non-zero differential in the first round is an im-
possible differential with a very high probability. The reason that results in the
phenomenon is that, the conditions of both copies in some step cannot hold si-
multaneously. Among 30 collision differentials we selected, only one can produce
the real collisions.

Message Modification for Correcting Some Second Round Conditions.
By the multi-message modification in Section 4 to correct the conditions of left
copy in the second round. There are about 16 conditions are left, so the modified
M and M’ is a collision with probability 2716, and the complexity is about 2'®
RIPEMD computations. Two collisions for RIPEMD can be seen in Table 4.

Table 4. Two collisions for RIPEMD. H is the hash value with little-endian and no
message padding, and H* is the hash value with big-endian and message padding

M;|579faf8e 9ecf579 574ababa 78413511 a2b410a4d ad2f6c9f b56202c 4d757911
bdeaae7 78bc91f2 47bc6d7d 9abddibl a45d2015 817104ff 264758a8 61064eab
M7/ |579faf8e 9ecf579 574ababa 78513511 a2b410ad ad2f6c9f b56202c 4d757911
bdeaae7 78bc91f2 c7c06d7d 9abddibl a45d2015 817104ff 264758a8 e1064eab
H | 1fab152 1654a31b 7a33776a 9e968ba7
H*|dd6478dd 9a7d821c aa018648 e5e792e9
M,|579faf8e 9ecf579 574ababa 78413511 a2b410ad ad2f6c9f b56202c 4d757911
bdeaae7 78bc91f2 47bc6d7d 9abddibl a45d2015 a0ab04ff b18d58a8 e70c66b6
MJ|579faf8e 9ecf579 574a6aba 78513511 a2b410a4 ad2f6c9f b56202c 4d757911
bdeaae7 78bc91f2 c7c06d7d 9abddlbl a45d2015 a0a504ff b18d58a8 670c66b6
H |1£2c159f 569b31a6 dfcaabla 25665d24
H™|88ceal96 c773c29f 04cd9698 4a41d139

6 Theoretical Pre-image Attack on MD4

For a secure hash function, there are two important security properties, one
property is collision-resistance, another is one-wayness which is to find a second

12 X. Wang et al.

pre-image or a pre-image. In this section, we will show that we can give a second
pre-image attack on MD4 for a set of weak messages.

For a hash function with [-bit hash value, it’s ideal security strength against
the second pre-image attack is that, for any message M, to find another message
M’ such that h(M) = h(M’) is not higher than the exhaustive search probability
of 271,

Theorem 1 (Second Pre-image Attack for Weak Messages). For a weak
message, we can find another message such that these two different messages
produce the same hash code. The complexity is only one-time MDJ4 computation.
A random selected message is weak with probability 27122,

Proof. For any message M, we select M’ such that
M =M+ AM

AM = M/ - M = (Amo, Aml, s Amlg,)
Amy =231, Amg = 231 — 228 Amyy = —216,
Am; =0,0<i<15,7#1,2,12.

From the conditions in Table 6, we know that, if M satisfies all the 122 conditions,
M’ is the second pre-image of h(M).

There are 2512 /2122 = 2391 one-block messages satisfy all the conditions. This
completes the proof. O

Any message M can be modified with the techniques in Section 4 so that
almost all the conditions in rounds 1-2 hold. For the resulting message, say M’,
we then find a second pre-image M" of h(M') with probability 272 to 276.
This fact can be interpreted as a chosen-message 2nd pre-image attack, since
M’ is not chosen freely but “close” to M. One message ”close” to other message
implies that the hamming weight of the difference for two messages is low. For
example, given any random message M, if we only fulfil the the single-message
modification, the chosen message M’ is the 2nd pre-image of other message M"
with probability 223 (excluding two conditions in 17-step). According to the
conditions in Table 6, we can get M’ by modifying M about 50 bits, so the
difference hamming weight for two messages is 50 on average. When applying
the multi-message modification, although the probability can be improved to
272 to 279, the hamming weight may be greatly increased. The best method
is to fulfil a kind of precise message modification, and correct a condition by
increasing about 3 hamming weights. So, the difference hamming weight can be
controlled within 110 on average.

7 Conclusion

In this paper, we have presented efficient collision search attacks on MD4 and
RIPEMD. We have shown that only about 4 to 64 random selected messages are

Cryptanalysis of the Hash Functions MD4 and RIPEMD 13

needed in order to find a collision of MD4, and only about 2'¢ random selected
messages to for RIPEMD.

We have introduced three important analytical techniques that are very im-
portant for the effectiveness of the attacks:

1. How to find an efficient differential that is composed of one collision.

2. Determine all the conditions under which the collision happens.

3. For any message M, make some modification to M to guarantee that almost
all the conditions hold.

Remarks. Our collision search attack on MD4 implies that for a weak message
a 2nd pre-image can be found with complexity below 28. The probability for a
random messages to be weak with respect to MD4 is 27122, However, this can
be improved significantly. In fact note that Theorem 1 directly come from the
collision differential path in Section 4, where the differential path is chosen to
minimize the complexity of our collision attack. Hence it is not optimal for our
pre-image attack. The number of weak messages is determined by the number of
conditions specified in Table 1. By finding other differential paths with the least
number of conditions, we believe that the probability of weak messages can be
increased significantly. In fact, the latest 2nd pre-image attack can be improved
to 2772 which is found by Hongbo Yu Gaoli Wang et al.

We also note that for SHA-0, given any random message, it is a weak mes-
sage with about probability 2707 which is a surprising result compared to the
exhaustive search probability 27160,

Acknowledgements

It is a pleasure to acknowledge Hans Dobbertin, Magnus Daum for their impor-
tant advice, corrections, and suggestions, and for spending their precious time
on our research.

Xiaoyun Wang’s research is supported by the National Natural Science Foun-
dation of China (Grant No. 90304009). Dengguo Feng’s research is supported by
973 project (Grant No. G19990358).

References

1. E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, 1993.

2. E. Biham, R. Chen, Near collision for SHA-0, Advances in Cryptology, Crypto’04,
2004, LNCS 3152, pp. 290-305.

3. B. den Boer, A. Bosselaers, Collisions for the compression function of MD5, Ad-
vances in Cryptology, Eurocrypt’93.

4. F. Chaband, A. Joux, Differential Collisions in SHA-0, Advances in Cryptology,
Crypto’98 Proceedings, 1998.

14

10.
11.
12.
13.

14.
15.

16.

17.

18.

X. Wang et al.

H. Dobbertin, Cryptanalysis of MD4, Fast Software Encryption, LNCS 1039, D.
Gollmann, Ed., Springer-Verlag, 1996.

H. Dobbertin, Cryptanaltysis of MD5 Compress, Presented at the Rump Session
of Eurocrypt’96.

H. Dobbertin, RIPEMD with Two Round Compress Function Is Not Collision-Free,
Journal of Cryptology(1997) 10:51-69, 1997.

H. Dobbertin, The First Two Rounds of MD4 are Not One-Way, Fast Software
Encryption, 1998.

H. Dobbertin, A. Bosselaers, B. Preneel, RIPMEMD-160:A Strengthened Version
of RIPMMD, Fast Software Encryption, LNCS 1039, 1996.

FIPS 180-1, Secure hash standard, NIST, US Department of Commerce, Washing-
ton D. C.; April 1995. Springer-Verlag, 1996.

FIPS 180-2, Secure Hash Standard, http://csrc.nist.gov/publications/,2002.
Joux, A., Collisions for SHA-0, Rump Session of CRYPTO’04, 2004.
RIPE,Integrity Primitives for Secure Information Systems, Final Report of RACE
Integrity Primitives Evalutiobn(RIPE-RACE 1040), LNCS 1007, 1995.

R. L., Rivest, The MD4 Message Digest Algorithm, Crypo’90 Proceedings, 1991.
R. L. Rivest, The MD5 Message-Digest Algorithm, Request for Comments (RFC
1320), Internet Activities Board, Internet Privacy Task Force, April 1992.

Bart Van Rompay, A. Biryukov, B. Preneel, J. Vandewalle, Cryptanalysis of 3-pass
HAVAL, Asiacrypto’03 Proceedings, pp. 228-245, 2003.

X.Y. Wang, F.D. Guo, X.J. Lai, H.B. Yu, Collisions for Hash Functions MD4,
MD5, HAVAL-128 and RIPEMD, Rump Session of Crypto’04, E-print, 2004.

Y. Zheng, J. Pieprzyk, J. Seberry, HAVAL-A One-way Hashing Algorithm with
Variable Length of Output, Auscrypto’92 Proceedings, pp.83-104.

Appendix

In the appendix, we give the tables for the differential paths and the set of
sufficient conditions that are used in our collision search attacks on MD4 and
RIPEMD.

Cryptanalysis of the Hash Functions MD4 and RIPEMD

Table 5. Differential Characteristics in the Collision Differential for MD4

Chaining The i-th step |The ¢-th output
Step| value |w;j;[Shift| Am; difference |for M’
for M

1 al mo 3 al

2 d1 ma 7 231 26 d1[7]

3 ci | ma| 11 [=2F 4251 2T 4210 ¢ [-8,11]

4 by ms| 19 27 b1 [26]

5 asz ma| 3 asz

6 ds |ms| 7 213 d2[14]

7 ca me | 11 —218 1271 1419, 20, —21, 22]

8 b |mr| 19 212 ba[—13, —14, 15]

9 as |ms| 3 216 a3[17]

10 ds mo| 7 219 1 270 _9%[d,[20, —21, —22, 23, —26]

11 ez |mio| 11 —2%9 c3[—30]

12 by |mi1| 19 231 b3[32]

13 as |mi2| 3 —216 277 127 [a4[23, 26]

14 da |mas| 7 —27 1 2% du[—27, —29, 30]

15 C4 mia| 11 Cq

16 bs |mus| 19 218 b4[19]

17 as |mo| 3 275 2% 9314526, 27, —29, —32]

18 d5 ma 5 d5

19 Cs ms 9 Cs

20 bs |mie| 13 —216 —279 1 231 [b5[-30, 32]

21 ag |mi| 3 251 278 231 146[—29, 30, —32]

22 d(j ms 5 d(j

23 Ce ™mo 9 Ce

24 be m13 13 b6

25 ar |ma| 3 [-2% 2% ar

36 by |mie| 15 —216 231 bo[—32]

37 a0 |ma| 3 [—2T 4271 23T a10[—32]

38 dio |mio| 9 dio

39 c10 me | 11 C10

40 blO mi4 15 bl()

41 ai mi| 3 25T ail

15

16 X. Wang et al.
Table 6. A Set of Sufficient Conditions for Collisions of MD4

a1 |ai,7 =bor

di |di,7=0,d18 =ai8, di,11 = ai,11

c1 laar=1,c8=1,c1,11 =0, c1,26 = d1,26

by |bi7=1,b1,8 =0, b1,11 =0, b1,26 =0

a2 la2s =1, a211 =1, as26 =0, az2,14 = b1,14

dz |d2,14 =0, d2,190 = a2,19, d2,20 = 2,20, d2,21 = a2,21, d2,22 = a2,22, d226 = 1

c2 |c2,13 = d2,13, 2,14 = 0, c2,15 = d2,15, €2,19 = 0, 2,20 =0, 2,21 =1, c222 =0

ba |b2,13=1,b214 =1, b215 =0, ba,17 = 2,17, b2,190 =0, ba20 =0, b2 21 =0
b2,22 =0

a3z |a3,13 =1, a3,14 =1, az,;15 =1, a3, 17 =0, a3, 19 = 0, az 20 =0, az,21 =0,
as,23 = b2,23 as,22 = 1, as,26 = b2,26

ds |d3i3=1,d314=1,d315 =1,d317 =0, ds20 =0, dso1 =1, d32 =1, dz2 =0,
ds2e =1, d3,30 = as,30

c3 |e3ir =1, ¢320=0, c321 =0, c3,00 =0, c3,23 =0,¢3,26 = 0,330 =1,c3,30 =d3,32

bz |bz20 =0, bz 21 =1, b3 22 =1, b3,23 = 3,23, b3,26 = 1, b330 =0, b330 =0

a4 |as,23 =0, ag26 = 0, as,27 = b3 27, 4,20 = b3,29, a4,30 =1, aa,32 =0

ds |da23 =0, daoe =0, daor =1, da20 =1,da30 =0, dssz2=1

c4 |ca19 = dajig, cap3 =1, ca06 =1, canr =0, ca20 =0, ca30 =0

ba |baji9 =0, baos =caoes =1, baor =1, bs29=1,b430=0

as |as,19 = C4,19, @526 = 1, as271 =0, as20 =1, as 320 =1

ds |ds,19 = as,19, ds,26 = ba26, ds,27 = ba 27, d5,29 = ba 29, d5,32 = ba 32

C5 |C5,26 = ds,%‘, C5,27 = d5,277 C5,29 = d5,29, C5,30 = d5,30, C5,32 = d5,32

bs |bs,29 = 5,29, bs,30 =1, bs,30 =0

ag |ae29 =1, ag32 =1

de |ds,20 = b5 29

ce |C6,29 = dg,29, C6,30 = de,30 + 1, 6,320 = dp 320 + 1

by |bgz2 =1

aio|aiosz =1

Table 7. Differential Characteristics in a Collision Differential of RIPEMD

Cryptanalysis of the Hash Functions MD4 and RIPEMD

Chaining The i-th step | The i-th output
Step| value |wj;[Shift| Am; difference |for M’
for M

0 al mo 11 al

1 d1 ma 14 dl

2 C1 ma 15 C1

3 by ms| 12 270 1 bi[—1,—2,—3,4]

4 a2 ma| 5 20 a2[7]

5 d> |ms| 8 27 21T d,[10, —12]

6 2 |me| 7 216 218 ey [17, —19]

7 ba mr| 9 29 + 2% 1+ 277|by[10, —26, 27, 28]

8 az |ms| 11 —2° 42T as[—6, 18]

9 ds mo| 13 —2% ds[24, 25, —26]

10 ez |mao| 14 |28 + 231 —21 1270 [c5[—14,31]

11 by |mi1| 15 210 1271 [p,[11, 25]

12 as |miz2| 6 —2TT 1 2% (12,13, —14, 24]

13 d4 mis 7 d4

14 ca |mua| 9 27 — 273 |cy[8, 24, —25]

15 by |mis| 8 251 —27 4+ 2T |by[-8,19]

16 as |mr| 7 —218 as[—19]

17 d5 ma 6 d5

18 Cs mis3 8 231 Cs[—32}

19 bs |mi| 13 —27%0 bs[-21]

20 ag |mio| 11 |22 as

21 d6 me 9 d6

22 c6 |mas| 7 251 Co

23 bs ms| 15 270 bs

24 ar mi2 7 ar

25 d7 |mo| 12 dr

26 Cc7 mo | 15 C7

27 b7 ms 9 b7

28 as mia| T as

29 ds mo 11 ds

30 cs mai| 13 cs

31 bg ms 12 bS

32 ag |ms| 11 279 277 ag[32]

33 dy |mao| 13 |27 427 277 do[32]

34 cg meo | 14 (&)

35 bg m4 7 bg

36 aio mo 14 aio

37 d10 mis 9 231 le

17

18

X. Wang et al.

Table 8. A Set of Sufficient Conditions for Collisions of RIPEMD

al

di |[dip=1

c1 | =dii,c12=0,c13=d13, cr,a=dia

b1 [bii=1,b12=1,b13=1,b14=0,b17=c17

as |a2,7=0, a21 =0, a22=1,a23 =1, a24 =0, az,10 =b1,10 =1, az;12 =b1,12 =1
az,17 =0

dy |d2g =1,doo=1,da3z=1,doa=1,do7=0,d210=0,d212=1,d217 =1,
d2,19 =G2,10 =0

c2 |c217 =0, c2,10 =1, 2,10 =0, c2,7 = 1, c2,12 = 0, 2,26 = d2,26, C2,27 = d2,27 = 0,
c2,28 = d2,28

b2 |b2,6 = c2,6, b2,10 =0, b2,12 =1, 2,17 = 0, b2,18 = 2,18, b2,19 = 0, b2 26 =1,
baor =0, ba2s =0

as |aze =1, as,10 =1, as;17 = 1, az,;18 = 0,a3,19 = 1, a3,24 = b2,24, a3,25 = b2 25,
az26 =0, az 27 =0, az 28 =0

ds |ds,e =0, d3,10 = 1,d3,14 = a3,14,d3,18 = 0,d3,24 = 0,d3,25 = 0,d3,26 = 1,d3,27 = 1,
d3s =1, d3 31 = a3 31

c3 |ea e =1, c311 =d3,11, 3,14 =1, 3,18 =1, €324 =0, c325 =0, c3,06 =1, c331 =0

bz b3,11=0,b3,12 = c3,12,b3,13= 3,13, 03,14 = 0,b3,24 = 1,b3,25 = 0,b3,26 = 1,b3,31 =0

as ag11 =0, a4,12 =0, a4,13 =0, ag,14 =1, ag24 =0, ag25 =0, ag31 =1

dy |dag =aag, dsin =1, dai2 =0, da13 =0, daa =1, dapa =0, dajos =1,

cs |cag =0,ca12=1,ca13 =1, ca,14a =1, ca,19 = da,19, ca 24 =0, ca,25 = 1,

ba |bag =1, ba19 =0, ba2a = da24, baos = da,25

as |as,19 = 1, as,24 = ba24, a5,25 = ba 25

ds |ds,;s = @58, ds,32 = as,32

¢s |c5,19 = ds,19, €521 = ds,21, €532 = 1

bs |bs,21 =1, bs32 = ds,32

ae (06,21 = C5,21, 46,32 = b5,32

de |de,21 = as,21

ag |ag,32 =0,

do |dg 32 =0

aio

How to Break MD5 and Other Hash Functions

Xiaoyun Wang and Hongbo Yu

Shandong University, Jinan 250100, China
xywang@sdu.edu.cn
yhb@mail.sdu.edu.cn

Abstract. MD5 is one of the most widely used cryptographic hash func-
tions nowadays. It was designed in 1992 as an improvement of MD4, and
its security was widely studied since then by several authors. The best
known result so far was a semi free-start collision, in which the initial
value of the hash function is replaced by a non-standard value, which is
the result of the attack. In this paper we present a new powerful attack
on MD5 which allows us to find collisions efficiently. We used this attack
to find collisions of MD5 in about 15 minutes up to an hour computation
time. The attack is a differential attack, which unlike most differential
attacks, does not use the exclusive-or as a measure of difference, but
instead uses modular integer subtraction as the measure. We call this
kind of differential a modular differential. An application of this attack
to MD4 can find a collision in less than a fraction of a second. This attack
is also applicable to other hash functions, such as RIPEMD and HAVAL.

1 Introduction

People know that digital signatures are very important in information security.
The security of digital signatures depends on the cryptographic strength of the
underlying hash functions. Hash functions also have many other applications
in cryptography such as data integrity, group signature, e-cash and many other
cryptographic protocols. The use of hash functions in these applications not only
ensure the security, but also greatly improve the efficiency. Nowadays, there are
two widely used hash functions — MD5 [18] and SHA-1 [12].

MDS5 is a hash function designed by Ron Rivest as a strengthened version of
MD4 [17]. Since its publication, some weaknesses has been found. In 1993, B.
den Boer and A. Bosselaers [3] found a kind of pseudo-collision for MD5 which
consists of the same message with two different sets of initial values. This attack
discloses the weak avalanche in the most significant bit for all the chaining vari-
ables in MD5. In the rump session of Eurocrypt’96, H. Dobbertin [8] presented
a semi free-start collision which consists of two different 512-bit messages with
a chosen initial value V(.

ag = 0x12ac2375, by = 0x3b341042, ¢y = 0x5£62b97c, dy = 0x4ba763ed
A general description of this attack was published in [9].

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 19-35, 2005.
© International Association for Cryptologic Research 2005

20 X. Wang and H. Yu

Although H. Dobbertin cannot provide a real collision of MD5, his attack
reveals the weak avalanche for the full MD5. This provides a possibility to find
a special differential with one iteration.

In this paper we present a new powerful attack that can efficiently find a col-
lision of MD5. From H. Dobbertin’s attack, we were motivated to study whether
it is possible to find a pair of messages, each consists of two blocks, that pro-
duce collisions after the second block. More specifically, we want to find a pair
(Mo, My) and (M, M]) such that

(CL, b, C, d) = MD5(CLQ, bo, Co, do, MQ),
(a’, b/, C/, d/) = MD5(G0, bo7 Co, CZQ7 Mé),
MD5(a, b, ¢, d, My) = MD5(a, b, ¢, d’, My),

where ag, by, co, dp are the initial values for MD5. We show that such collisions
of MD5 can be found efficiently, where finding the first blocks (My, M{)) takes
about 239 MD5 operations, and finding the second blocks (M, M]) takes about
232 MD5 operations. The application of this attack on IBM P690 takes about
an hour to find My and M,’, where in the fastest cases it takes only 15 minutes.
Then, it takes only between 15 seconds to 5 minutes to find the second blocks
M, and M,’. Two such collisions of MD5 were made public in the Crypto’04
rump session [19].

This attack is applicable to many other hash functions as well, including MD4,
HAVAL-128 and RIPEMD ([17], [20], [15]). In the case of MD4, the attack can
find a collision within less than a second, and can also find second pre-images
for many messages.

In Crypto’04 Eli Biham and Rafi Chen presented a near-collision attack on
SHA-0 [2], which follows the lines of the technique of [4]. In the rump session they
described their new (and improved) results on SHA-0 and SHA-1 (including a
multi-block technique and collisions of reduced SHA-1). Then, A.Joux presented
a 4-block full collision of SHA-0 [14], which is a further improvement of these
results. Both these works were made independently of this paper.

This paper is organized as follows: In Section 2 we briefly describe MD5.
Then in Section 3 we give the main ideas of our attack, and in Section 4 we
give a detailed description of the attack. Finally, in Section 5 we summarize the
paper, and discuss the applicability of this attack to other hash functions.

2 Description of MD5

In order to conveniently describe the general structure of MD5, we first recall
the iteration process for hash functions.

Generally a hash function is iterated by a compression function X = f(Z)
which compresses [-bit message block Z to s-bit hash value X where [> s. For
MD5, I = 512, and s = 128. The iterating method is usually called the Merkle-
Damgard meta-method (see [6], [16]). For a padded message M with multiples
of I-bit length, the iterating process is as follows:

Hiyr = f(H;, M;), 0<i<t—1.

How to Break MD5 and Other Hash Functions 21

Here M = (Mo, Ms, -+, M;_1), and Hy = IV, is the initial value for the hash
function.

In the above iterating process, we omit the padding method because it has
no influence on our attack.

The following is to describe the compression function for MD5. For each
512-bit block M; of the padded message M, divide M; into 32-bit words, M; =
(mg, my,,m15). The compression algorithm for M; has four rounds, and each
round has 16 operations. Four successive step operations are as follows:

a—b+((+ ¢i(b,c,d) +w; + ;) K s;),

=a+ ((d+ dit1(a,b,c) +wip1 +tiy1) <K siq1),
c=d+ ((c+ dita(d; a,b) + wira + tiy2) K Siy2),
b=rc+ ((b+ dits(c,d,a) + wiys +tips) <K sit3),

where the operation + means ADD modulo 232. ¢;1; and s;4; (j =0, 1, 2, 3)
are step-dependent constants. w;; is a message word. < s;4; is circularly left-
shift by s;;; bit positions. The details of the message order and shift positions
can be seen in Table 3.

Each round employs one nonlinear round function, which is given below.

(XY, Z)=(XANY)V (=X ANZ), 0<i<]I5,
(XY, Z)= (X ANZ)V (Y A=Z), 16<i<3l,
O,(X,YV,Z)=XaoY a2, 32 < i <47,
O(X,Y,Z2) =Y & (X V-2), 48 < i < 63,

where X, Y, Z are 32-bit words.
The chaining variables are initialized as:

a = 0x67452301, b = Oxefcdab89, c = 0x98badcfe, d = 0x10325476.

We select a collision differential with two iterations as follows: Let H;, 1 =
(aa, bb, cc,dd) be the chaining values for the previous message block. After four
rounds, the compression value H; is obtained by wordwise addition of the chain-
ing variables to H;_ 1.

3 Differential Attack for Hash Functions

3.1 The Modular Differential and the XOR Differential

The most important analysis method for hash functions is differential attack
which is also one of most important methods for analyzing block ciphers. In
general, the differential attack especially in block ciphers is a kind of XOR dif-
ferential attack which uses exclusive-or as the difference. The differential attack
was introduced by E. Biham and A. Shamir to analyze the security of DES-like
cryptosystems. E. Biham and A. Shamir [1], described that differential crypt-
analysis is a method which analyzes the effect of particular differences in plain
text pairs on the differences of the resultant cipher text pairs.

22 X. Wang and H. Yu

The differential definition in this paper is a kind of precise differential which
uses the difference in term of integer modular subtraction. A similar definition
about the differential with the integer subtraction as the measure of difference
were described in [5] for differential analysis of RCG.

We also use modular characteristics, which describe for each round with both
the differences in term of integer modular subtraction and the differences in term
of XOR. The combination of both kinds of differences give us more information
than each of them keep by itself. For example, when the modular integer sub-
traction difference is X’ — X = 26 for some value X, the XOR difference X’ ¢ X
can have many possibilities, which are

1. One-bit difference in bit 7, i.e., 0x00000040. In this case X’ — X = 2% which
means that bit 7 in X’ is 1 and bit 7 in X is 0.

2. Two-bit difference, in which a different carry is transferred from bit 7 to
bit 8, i.e., 0x000000C0. In this case X’ — X = 26, but the carry to bit 8
is different in X and X', so X} is now 0, and X7 = 1, while X} = 1, and
Xs = 0. (i.e., bits 7 and 8 together in X’ are 10 in binary, and in X there
are 01 in binary).

3. Three-bit difference, in which a different carry is transferred from bit 7 to bit
8 and then to bit 9, i.e., 0x000001CO0. In this case bits 7, 8, and 9 in X’ are
0, 0, and 1, respectively, and in X they are the complement of these values.

4. Similarly, there can be more carries to further bits, and the binary form of
X’ 15 1000. .., and of X is 0111....

5. In case the former difference is negative, the XOR differences still look the
same, but the values of X and X' are exchanged (i.e., X is of the form
1000.. ., and X’ of the form 0111...).

In order to explain our attack clearly, we refer to the modular differences in the
differential path (see Table 3) with both kinds of differences together, i.e., the
difference is marked as a positive or a negative integer (modulo 23?) and also
with the XOR difference. But then the XOR difference is marked by the list of
active bits with their relative sign, i.e., in the list of bits, the bits whose value in
X is zero are marked without a sign, and the values whose value in X is 1 are
marked with a negative sign. For example, the difference —26,[7,8,9,...,22, —23]
marks the integer modular subtraction difference X’ — X = —2¢ (with X’ <
X), with many carries which start from bit 7 up to bit 23. All bits of X
from bit 7 to bit 22 are 0, and bit 23 is 1, while all bits of X’ from bit 7
to bit 22 are 1, and bit 23 is 0. A more complicated example is —1 — 26 +
223227 11,2,3,4,5,-6,7,8,9,10,11, —12, —24, —25, —26, 27, 28, 29, 30, 31, —32],
where the integer modular subtraction difference is composed of several (positive
and negative) exponents of 2, and the XOR difference has many difference due
to carries. Note that when the carry arrives to bit 32, a further (dropped) carry
may happen, and then there is no negative sign in bit 32.

It should be noted that the modular differential has been used earlier to
analyze some hash functions ([4], [7], [10]). Compared with these attacks, our
attack has the following advantages:

How to Break MD5 and Other Hash Functions 23

1. Our attack is to find collisions with two iterations, i. e., each message in the
collision includes two message blocks (1024-bit).

2. Our attack is a precise differential attack in which the characteristics are
more restrictive than used, and that they gives values of bits in addition to
the differences.

3. Our attack gives a set of sufficient conditions which ensure the differential
to occur.

4. Our attack use a message modification technique to greatly improve the
collision probability.

3.2 Differential Attacks on Hash Functions

The difference for two parameters X and X' is defined as AX = X' — X. For
any two messages M and M’ with [-bit multiples, M = (Mg, My,---, My_1),
M = (My',My’,---, My_+"), a full differential for a hash function is defined as
follows:

(M1 1) (M3, M3) (My—1,Mj,_q)

(Mo_.,Z\{O) AHy 25 AHp_4 — AH,

AH, AH,

where AHy is the initial value difference which equals to zero. AH is the output
difference for the two messages. AH; = AIV; is the output difference for the
i-th iteration, and also is the initial difference for the next iteration.

It is clear that if AH = 0, there is a collision for M and M’. We call the
differential that produces a collision a collision differential.

Provided that the hash function has 4 rounds, and each round has 16 step
operations. For more details, we can represent the i-th iteration differential

AH; (M“M AH; 1 as follows:
AH; — ARH—l 1 *> ARH—l 2 4’ AR1+1 3 *> ARH—l 4 = AH1+1

The round differential AR;_1 — AR,;(j = 1,2,3,4) with the probability P; is
expanded to the following differential characteristics.

ARy 2% Axy 22 P18 AXyg = AR,
where AX,;_; REIN AXpt=1,2,----- , 16 is the differential characteristic in the

t-th step of j-th round.

The probability P of the differential AH; IVL,M)

AH,; satisfies
P> H?:IPJ and Pj > Ht:lPJt

3.3 Optimized Collision Differentials for Hash Functions

In Section 3.1, we mentioned that our attack uses a message modification tech-
nique to improve the collision probability. According to the modification tech-
nique, we can get a rough method to search for optimized differentials (including
collision differentials) of a hash function.

24

1.

X. Wang and H. Yu

There are two kinds of message modifications:
For any two message blocks (M;, M/) and a 1-st round non-zero differential

AH; (M3, ARiy11.

Our attack can easily modify M; to guarantee the 1-st round differential to
hold with probability P; = 1.

Using multi-message modification techniques, we can not only guarantee the
first-round differential to hold with the probability 1, but also improve the
second-round differential probability greatly.

To find an optimized differential for a hash function, it is better to select a
message block difference which results in a last two-round differential with a
high probability.

4 Differential Attack on MD5

4.1 Notation

Before presenting our attack, we first introduce some notation to simplify the
discussion.

1. M = (mg,m1,...,my15) and M’ = (my, m},...,m}y) represent two 512-bit

messages. AM = (Amg, Amy, ..., Amy5) denotes the difference of two mes-
sage blocks. That is, Am; = m} — m; is the i — th word difference.

ai, d;, c;, b; respectively denote the outputs of the (4i — 3)-th, (4 — 2)-th
(4i — 1)-th and 4i-th steps for compressing M, where 1 < i < 16. a}, b}, ¢},
d;; are defined similarly.

ai j, bi j, cij, dij represent respectively the j —th bit of a;, b;, ¢;, d;, where
the least significant bit is the 1-st bit, and the most significant bit is 32-th
bit.

¢;,; is the j-th bit of the output for the nonlinear function ¢; in the i-th step
operation.

Ax;; = x; ; — xij = £1 is the bit difference that is produced by changing
the j-bit of ;. ;[j], ;[—j] (z can be a, b, ¢, d, ¢) is the resulting values by
only changing the j — th bit of the word z;. x;[j] is obtained by changing the
j-th bit of z; from 0 to 1, and x;[—j] is obtained by changing the j-th bit of
xz; from 1 to 0.

Ax;ilj1, j2s -y Ji] = xild1, g2, -, Ji) — @i denotes the difference that is produced
by the changes of j; — th, jo — th, ..., j; — th bits of x;. z;[+j1, £j2, ..., £Ji]
is the value by change j; — th, jo — th, ..., j; — th bits of z;. The “4” sign
(usually is omitted) means that the bit is changed from 0 to 1, and the “-”
sign means that the bit is changed from 1 to 0.

How to Break MD5 and Other Hash Functions 25

4.2 Collision Differentials for MD5

Our attack can find many real collisions which are composed of two 1024-bit
messages (Mg, M) and (Mo, M;")) with the original initial value IV, of MD5:

IVy : ap = 0x67452301, by = Oxefcdab89, ¢y = 0x98badcfe, dy = 0x10325476.

We select a collision differential with two iterations as follows:
AHy M0N0 g MY A — g

where

AMy = M}, — M, = (0,0,0,0,2°",0,0,0,0,0,0,2,0,0,2",0)
AM,; = M| — M, = (0,0,0,0,23',0,0,0,0,0,0, —2',0,0,23',0)
AHl — (2317231 _|_2257231 _|_2257231 +225).

Non-zero entries of AMy and AM; are located at positions 5, 12 and 15. AH, =
(Aa, Ab, Ac, Ad) is the difference of the four chaining values (a,d, ¢, b) after the
first iteration.

We select AMy to ensure that both 3-4 round differential happens with a
high probability. AM; is selected not only to ensure both 3-4 round differential
happens with a high probability, but also to produce an output difference that
can be cancelled with the output difference AHj.

The collision differential with all the characteristics can be referred to Table 3
and Table 5. The columns of both tables have the same meanings. We just give
the explanation for Table 3. The first column denotes the step, the second column
is the chaining variable in each step for My, the third is the message word for M,
in each step, the fourth is shift rotation, the fifth and the sixth are respectively
the message word difference and chaining variable difference for My and M, and
the seventh is the chaining variable for M. Especially, the empty items both in
sixth and fifth columns denote zero differences, and steps those aren’t listed in
the table have zero differences both for message words and chaining variables.

4.3 Sufficient Conditions for the Characteristics to Hold

In what follows, we describe how to derive a set of sufficient conditions that
guarantee the differential characteristic in Step 8 of MD5 (Table 3) to hold.
Other conditions can be derived similarly.

The differential characteristic in Step 8 of MD5 is:

(ACQ, Adg, Aag, Abl) i AbQ

Each chaining variable satisfies one of the following equations.

V) =b
ah = as7,...,22, —23]
dy = do[—T7,24,32]

dy = ¢]7,8,9,10,11, —12, —24, —25, —26, 27, 28,29, 30, 31, 32, 1,2, 3,4, 5, —6]
by = by[1,16, 17,18, 19,20, —21, —24]

26 X. Wang and H. Yu

According to the operations in the 8-th step, we have
by = co + ((bl -+ F(CQ, da, (ZQ) +mr7 + t7) K 22

by = ch + ((by + F(chy, dy, ah) +mh + t7) << 22
¢7 = F(CQ,dQ, 02) = (CQ N d2) V (_‘CQ N 02)

In the above operations, ¢y occurs twice in the right hand side of the equation.
In order to distinguish the two, let £ denote the ¢y inside F, and ¢}t denote
the ¢y outside F.

The derivation is based on the following two facts:

1. Since Ab; = 0 and Amy = 0, we know that Aby = AclF + (A¢r < 22).
2. Fix one or two of the variables in F' so that F' is reduced to a single variable.

We get a set of sufficient conditions that ensure the differential characteristic
holds.

1. The conditions for each of the non-zero bits in Abs.
(a) The conditions dy 17 = 1 and by 1 = 0 ensure the change of 1-st bit of bs.
i. If da11 =az11 =1, we know that A¢r 11 = 1.

ii. After << 22, A¢7 11 is in the position 1.
iii. Since Acé\le = O7 SO, Ab271 = Acé\{f + A¢7711 =1.

(b) The conditions d 26 = @226 = 1, ba16 = 0 and by 17 = 1 ensure the
changes of 16-th bit and 17-th bit of bs.

(¢) The conditions da s = G228 = 0, by; = 0,7 = 18,19,20 and by 21 = 1
ensure the changes of 18-th, 19-th, 20-th, 21-th bits of bs.

(d) The conditions da 3 = az3 = 0 and bg 24 = 1 ensure the change of 24-th
bit of by. This can be proven by the equation:

Ac)F[—24,-25,-26,27] + (Ad7[3] < 22) = 228 — 221 = 223,

2. The conditions for each of the zero bits in Ab,.
(a) The condition ¢z 17 = 0 ensures the changed bits from 7-th bit to 12-th
bit in C’QNF and 17-th bit of aj, result in no bit change in by. It is easily
proven by the following equation:

A E(7,.. 11, —12] 4 (Ap7[17] <« 22) = =26 + 26 = 0.

(b) The conditions ds; = ag,; ensure that the changed i-th bit in cg result

in no change in by, where i € {1,2,4,5,25,27,29, 30, 31}.

(¢) The conditions cg; = 1 ensure that the changed i-th bit in ag result in
no change in by, where i € {13, 14, 15, 16, 18, 19, 20, 21, 22, 23}..

(d) The condition da g = @z = 0 ensures that the 6-th bit in ¢k result in
no change in bs.

(e) The condition as 3z = 1 ensures that the changed 32-th bit in cf and
the 32-th bit in ds result in no change in b,.

(f) The condition da; = 0 ensures that the changed i-th bit in ay and the
i-th bit in ¢’ result in no change in by, where i € {8,9,10}.

How to Break MD5 and Other Hash Functions 27

(g) The condition ds 12 = 1 ensures that the changed 12-th bit in ag and the
12-th bit in £ result in no change in bs.

(h) The condition as 24 = 0 ensures that the changed 24-th bit in ¢f” and
the 24-th bit in dy result in no change in bs.

(i) The changed 7-th bits in ¢, do and ay result in no change in by.

By the similar method, we can derive a set of sufficient conditions (see Table 4
and Table 6) which guarantee all the differential characteristics in the collision
differential to hold.

4.4 Message Modification

Single-Message Modification. In order to make the attack efficient, it is very
attractive to improve over the probabilistic method that we describe, by fixing
some of the message words to a prior fulfilling some of the conditions. We observe
that it is very easy to generate messages that fulfill all the conditions of the first
16 steps of MD5. We call it single-message modification.

For each message block My (or similarly M7) and intermediate values (Hy, or
for the second block H; and HY), we apply the following procedures to modify
My (or My, respectively), so that all the conditions of round 1 (the first 16 steps)
in Table 4 and Table 6 hold.

It is easy to modify M, such that the conditions of round 1 in Table 4 hold
with probability 1.

For example, to ensure that 3 conditions for ¢; in Table 4 hold, we modify
my as follows:

new old old 6 old 11 old 19
G =G —Cr- 2 - C1,12° 27— 1,20 " 2

myeY — ((che” — ¢y > 17) + mg'e.

By modifying each message word of message My, all the conditions in round 1
of Table 4 hold. The first iteration differential hold with probability 2743.

The same modification is applied to M;. After modification, the second iter-
ation differential hold with probability 2737.

Multi-message Modification. We further observe that it is even possible to
fulfill a part of the conditions of the first 32 steps by an multi-message modification.

For example, if a5 32 = 1, we correct it into a5 32 = 0 by modifying mq, ma,ms,
my,ms such that the modification generates a partial collision from 2-6 steps,
and remains that all the conditions in round 1 hold. See Table 1. Some other
conditions can be corrected by the similar modification technique or other more
precise modification techniques. By our modification, 37 conditions in round 2-4
are undetermined in the table 4, and 30 conditions in round 2-4 are undetermined
in the table 6. So, the 1-st iteration differential holds with probability 2737, and
the second iteration differential holds with probability 2730,

28 X. Wang and H. Yu

Table 1. The Message Modification for Correcting as 32

new new new new
b , d

‘ Modify m; a
2[m1 12 mi «<— mi + 226 d?ew, ai, b()7 Co
3|lme|17|mg «— ((01 — d?ew)>>> 17)— Co —(ﬁz(d?ew,ahbo)— ta c1, di°, a1, bo

i

4im3|22| mg «— (b1 —c1) >> 22) — by — ¢3(c1,dT¥,a1) — ts3 b1, c1, i, a1
5lmal| 7 m4<—((agfbl)>>>7)7a1—¢4(b1,cl,d’1mw7t4 az, bl,cl,d?ew
6|ms|12| ms «— ((d2 — az) >> 12) — d7°" — ¢5(az,br,c1) — ts da, az, b1, &1

4.5 The Differential Attack on MD5

From the above description, it is very easy to show our attack on MDS5.

The following is to describe how to find a two-block collision, of the following
form
(My,M7),2730

’ —37
Hy MM
1. Repeat the following steps until a first block is found
(a) Select a random message M.
(b) Modify My by the message modification techniques described in the pre-

vious subsection.
(¢) Then, My and M} = My + AMj produce the first iteration differential

AMO — (AH17AM1)

with the probability 2737.

(d) Test if all the characteristics really hold by applying the compression
function on My and M{.

2. Repeat the following steps until a collision is found

(a) Select a random message M.

(b) Modify M; by the message modification techniques described in the pre-
vious subsection.

(¢) Then, M; and M; + AM; generate the second iteration differential

(AH17AM1) — AH - 0

with the probability 2739,
(d) Test if this pair of messages lead to a collision.

The complexity of finding (My, M}}) doesn’t exceed the time of running 23° MD5
operations. To select another message My is only to change the last two words
from the previous selected message My. So, finding (My, M{)) only needs about
one-time single-message modification for the first 14 words. This time can be ne-
glected. For each selected message My, it is only needs two-time single-message
modifications for the last two words and 7-time multi-message modifications for
correcting 7 conditions in the second round, and each multi-message modification
only needs about a few step operations, so the total time for both kinds of mod-
ifications is not exceeds about two MD5 operations for each selected message.

How to Break MD5 and Other Hash Functions 29

According to the probability of the first iteration differential, it is easy to know
that the complexity of finding (Mo, M) is not exceeds 2% MD5 operations.

Similarly, we can show that the complexity of finding (M;, M) is not exceeds
232 MD5 operations.

Table 2. Two pairs of collision for MD5. H is the hash value with little-endian and
no message padding, and H”* is the hash value with big-endian and message padding

My | 2dd31d1 cdeeebc5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8
634adb5 2b3f409 8388e483 5a417125 8255108 9fc9cdf7 £2bd1dd9 5b3c3780
M, |d11d0b96 9c7bd1dc £497d8ed d555655a c79a7335 cfdebf0 6612930 8fb109d1
797£2775 eb5cd530 baade822 5¢c15cc79 ddcb74ed 6dd3c55f d80a9bbl e3a7cc35
Moy'| 2dd31d1 c4eeebch 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8
634adb5 2b3f409 8388e483 5a41f125 8255108 9fc9cdf7 72bd1dd9 5b3c3780
M;'|d11d0b96 9c7b41dc £497d8e4 d555655a 479a7335 cfdebf0 66£12930 8fb109d1
T797£2775 eb5cd530 baade822 5¢c154c79 ddcb74ed 6dd3c55f 580a9bbl e3a7cc35
H [9603161f a30f9dbf 9f65ffbc f41fcT7ef

H™ |a4c0d35c 95a63a80 5915367d cfe6b751

My | 2dd31d1 cdeeebc5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8
634ad55 2b3f409 8388e483 5a417125 8255108 9fc9cdf7 £2bd1dd9 5b3c3780
M, |313e82d8 5b8f3456 d4ac6dae c619c936 bde253dd £d03da87 6633902 a0cd48d2
42339fe9 e87e570f 70b654ce 1e0da880 bc2198c6 9383a8b6 2b65£996 702af76f
Moy'| 2dd31d1 c4eeebchs 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8
634ad55 2b3f409 8388e483 5a41f125 8255108 9fc9cdf7 72bd1dd9 5b3c3780
M;’|313e82d8 5b8f3456 d4ac6dae c619c936 34e253dd £d03da87 6633902 a0cd48d?2
42339fe9 e87e570f 70b654ce 1e0d2880 bc2198c6 9383a8b6 ab65£996 702af76f
H |8d5e7019 61804e08 715d6b58 6324c015

H™ [79054025 255fbla2 6e4bc422 aef54ebd

Two collisions of MD5 are given in Table 2. It is noted that the two collisions
start with the same 1-st 512-bit block, and that given a first block that satisfies
all the required criteria, it is easy to find many second blocks My, M/ which lead
to collisions.

5 Summary

In this paper we described a powerful attack against hash functions, and in
particular showed that finding a collision of MD5 is easily feasible.

Our attack is also able to break efficiently other hash functions, such as
HAVAL-128, MD4, RIPEMD, and SHA-0. The analysis results for these hash
functions are as follows:

1. The time complexity for finding a collision for MD4 is about 223 MD4 oper-
ations without the multi-message modification, and is about 28 MD4 oper-
ations with the multi-message modification.

30

X. Wang and H. Yu

The time complexity for finding a collision for HAVAL-128 is about 23 MD4
operations without the multi-message modification, and is 27 HAVAL-128
operations with the multi-message modification.

The time complexity for finding a collision for RIPEMD is about 23° RIPEMD
operations without the multi-message modification, and is 2'® RIPEMD op-
erations with the multi-message modification.

The time complexity for finding a collision for SHA-0 is about 26! SHA-0
operations without the multi-message modification, and is 245 SHA-0 oper-
ations with the multi-message modification.

Acknowledgements

It is a pleasure to acknowledge Dengguo Feng for the conversations that led to
this research on MD5. We would like to thank Eli Biham, Andrew C. Yao, and
Yiqun Lisa Yin for their important advice, corrections, and suggestions, and
for spending their precious time on our research. We would also like to thank
Xuejia Lai, Hans Dobbertin, Magnus Daum for various discussions on this paper.
The research is supported by the National Natural Science Foundation of China
(Grant No. 90304009).

References

1.

2.

3.

10.

11.

12.

E. Biham, A. Shamir. Differential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, 1993.

E. Biham, R. Chen, Near collision for SHA-0, Advances in Cryptology, Crypto’04,
2004, LNCS 3152, pp. 290-305.

B. den. Boer, A. Bosselaers. Collisions for the compression function of MD5, Ad-
vances in Cryptology, Eurocrypt’93 Proceedings, Springer-Verlag, 1994.

F. Chabaud, A. Joux. Differential collisions in SHA-0, Advances in Cryptology,
Crypto’98 Proceedings, Springer-Verlag, 1998.

S. Cotini, R.L. Rivest, M.J.B. Robshaw, Y. Lisa Yin. Security of the RC6T* Block
Cipher, http://www.rsasecurity.com/rsalabs/rcé/.

I. B. Damgard. A design principle for hash functions, Advances in Cryptology,
Crypto’89 Proceedings, Springer-Verlag, 1990.

H. Dobbertin. Cryptanalysis of MD4, Fast Software Encryption, LNCS 1039,
Springer-Verlag, 1996, 53-69.

H. Dobbertin. Cryptanalysis of MD5 compress, presented at the rump session of
Eurocrypt’96.

H. Dobbertin. The status of MD5 after a recent attack, CryptoBytes 2 (2), 1996,
ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto2n2.pdf.

H. Dobbertin. RIPEMD with two round compress function is not collision-free,
Journal of Cryptology, 10:51-69, 1997.

H. Dobbertin, A. Bosselaers, B. Preneel. RIPEMD-160: A strengthened version of
RIPEMD, Fast Software Encryption, LNCS 1039, Springer-Verlag, 1996.

FIPS 180-1. Secure hash standard, NIST, US Department of Commerce, Washing-
ton D.C., Springer-Verlag, 1996.

13.

14.

15.

16.

17.

18.

19.

20.

How to Break MD5 and Other Hash Functions 31

FIPS 180-2. Secure Hash Standard, http://csrc.nist.gov/publications/, 2002.
A. Joux. Collisions for SHA-0, rump session of Crypto’04, 2004.

RIPE. Integrity Primitives for Secure Information Systems. Final Report of RACE
Integrity Primitives Evaluation (RIPE-RACE 1040), LNCS 1007, Springer-Verlag,
1995.

R.C. Merkle. One way hash function and DES, Advances in Cryptology, Crypto’89
Proceedings, Springer-Verlag, 1990.

R.L. Rivest. The MD4 message digest algorithm, Advances in Cryptology,
Crypto’90, Springer-Verlag, 1991, 303-311.

R.L. Rivest. The MD5 message-digest algorithm, Request for Comments (RFC
1320), Internet Activities Board, Internet Privacy Task Force, 1992.

X.Y. Wang, F.D. Guo, X.J. Lai, H.B. Yu, Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD, rump session of Crypto’04, E-print, 2004.

Y.L. Zheng, J. Pieprzyk, J. Seberry. HAVAL-A one-way hashing algorithm with
variable length of output, Advances in Cryptology, Auscrypt’92 Proceedings,
Springer-Verlag.

32 X. Wang and H. Yu
Table 3. The Differential Characteristics in the First Iteration Differential
Step| The output w; | 8; |Aw;|The output difference| The output in i-th step for M(')
in i-th step in i-th step
for My

4 by ms |22

5 as my | 7| 25T [=2F as[7,...,22, —23]

6 d> ms |12 —20 275 1 231 d2[—7,24, 32]

7 co mg | 17 —1—25 427 277 [¢,[7,8,9,10,11, —12, —24, —25, —26,

27,28,29,30,31,32,1,2,3,4,5, —6]

8 by mr |22 1— 215 217 925 14,01, 16, —17, 18, 19, 20, —21, —24],
9 a3 mg | 7 1 — 25 4 23T az[—1,2,7,8,—9, —32]

10 ds mo | 12 212 4 931 d3[—13, 14, 32]

11 c3 mio| 17 250 4 931 c3[31, 32]

12 bs my| 22| 277 [—27 — 215 1 231 b3[8, —9,14,...,19, —20, 32]
13 ay mig| 7 22T 4 931 a4[—25, 26, 32]

14 dy miz| 12 251 d4[32]

15 c4 mag| 17| 25T |23 — 215 £ 23T cq[4, —16, 32]

16 by mis| 22 —2%9 1 251 b4[—30, 32]

17 as mi| 5 231 as[32]

18 ds mg | 9 25T ds[32]

19 cs maq| 14| 215 [217 4 25T c5[18, 32]

20 bs mg | 20 25T b5 [32]

21 ag ms | 5 231 a6[32]

22 dg mio| 9 25T ds[32]

23 Ce mis5 14 Ce

24 be my |20 25T be

25 a7 mog | 5 ay

26 d7 mi4 9 231 d7

27 cr msz | 14 cr

34 dg mg |11 do

35 cy my1| 16| 275 [23T co[*32]

36 bg maa| 23] 25T [25T bo [+32]

37 a0 my | 4 231 a10[*32]

38 dio my |11 25T [25T dy10[*32]

39 c10 m7 |16 231 c10[*32]

45 a1o mo | 4 231 a12[*32]

46 dio mia| 11 251 d12[32]

47 C12 mis| 16 231 c12[32]

48 b1o mo |23 251 b12[32]

49 a13 mo | 6 231 a13[32]

50 dis m7 | 10 25T dy3[—32]

51 C13 mi4 15 231 231 613[32]

52 bi3 ms | 21 25T b13[—32]

58 dis mis| 10 231 d15[—32]

59 C15 me | 15 251 c15(32]

60 b1s maz| 21 231 b15[32]

61 |aag = a1 + ag| my | 6 | 25T [25T aay = aap[32]

62 [ddo = dis + do|mq1|10] 217 [237 dd}, = ddy[26, 32]

63 |cco = c16 + co | mo |15 25T ccl = cco[—26, 27, 32]

64 | bbo = big + bo | mo |21 231 bb), = bby[26, —32]

How to Break MD5 and Other Hash Functions 33

Table 4. A Set of Sufficient Conditions for the First Iteration Differential

c1 c1,7=0,c¢1,12 =0, c1,20 =0
b1,7 =0, b1,s = c1,s, b1,9 = c1,9, b1,10 = ¢1,10, b1,11 = c1,11, b1,12 = 1, b1,13 = c1,13,
b1 b1,14 = 1,14, b1,15 = c1,15, b1,16 = C1,16, b1,17 = €1,17, b1,18 = €1,18,b1,10 = C1,10,
b1,20 =1, b1 21 = c1,21, bi22 = c1,22, b123 = 1,23, b1,24 =0, b1 30 =1
a1 =1,a23=1,a26 =1, a27=0,a28=0,a29=0,a210=0,a211=0,
az az12 =0, a213 =0, az;14 =0, a2,15 =0, az,16 = 0, az,17 =0, az;18 = 0, az 19 =0,
a220 =0, az21 =0, az 20 =0, az23 =1, az24 =0, az26 =0, ag2os =1, a332 =1
d21 =1,d22=az2,da3=0,da4=az4,des=azs5,dae=0,da7=1,dag=0,
da d29 =0,d210=0,d2,11 =1,d212 =1,d213 =1,d2,14 =1, d2,15 = 0, d2,16 = 1,
d217=1,d218 =1,d219 =1,d2,20 =1,d2,21 =1,d222 =1,d223 =1,d224 =0,
d2 25 = a2 25, d2,26 = 1, d2,27 = a2 27, d2,28 = 0, d2,20 = a2 29, d2,30 = a2 30,
d2 31 = a2.31, d2,32 =0
c21=0,c32=0,c23=0,c24=0,c25=0,ca6=1,co7=0,c28=0,c29=0,
c2 c210=0,c211=0,c212=1,c213=1,¢c214a=1,c215 =1,¢c2,16 =1, c2,17 =0,
c218 =1, c219 =1, c220=1,c221 =1, c220 =1, c223 =1, co24 =1, c2,25 = 1,
c2,26 =1, ca207 =0, c2,28 =0, €2,29 =0, 2,30 =0, c2.31 =0, c2,320 =0
b1 =0,b22=0,b23=0,b24=0,b25=0,b26=0,0b27=1,bag=0,b29=1,
b2 b2,10 =0, b2,11 =1, ba,12 =0, b2,14 =0, b2,16 =0, b2,17 =1, b2,18 =0, b2,19 =0,
b2,20 =0, b2,21 =1, bz 24 =1, bz .25 = 1, ba,26 =0, ba,27 =0, bz,28 =0, b2,29 =0,
b2,30 =0, ba31 =0, ba 320 =0
az1=1,a32=0,a33=1,a34=1,a35=1,a36=1,a37=0,a3s8=0,a39=1,
ag az,i0 =1, ag,;11 =1, ag,i2 = 1, ag,13 = b213, az;1a = 1, az;i6 = 0, az;i7 = 0, az;is = 0,
az,19 =0, az 20 =0, az21 =1, ag,25 =1, ag,e6 = 1, az,27 =0, az 28 = 1, az 29 = 1,
az30 =1,a331 =1, a332 =1
ds d31=0,d32=0,d37=1,d35=0,d39=0,d313 =1, ds314=0,d316 =1,
d3i7=1,d318 =1,d3 19 =1,d300=1,d321 =1, d324 =0,d331=1,d332=0
c3 cg1=0,c32=1,¢c37=1,¢c38=1,¢c39=0,c313=0,c314=0,c315=d315,
c3,17 =1, c318 =0, c3,19 =0, c320 =0, c316 =1, c3.31 =0, c3320 =0
b3 b3,s =0, b3,0 =1, b3 13 =1, b3 ;14 =0, b3,15 =0, b3, 16 =0, bz, 17 =0, b3,15 = 0,
b3 .20 = 1, b3 25 = ¢3,25, b3,26 = 3,26, 03,19 =0, b3 31 =0, b330 =0
a4 4,4 =1,0a48=0,0a49=0,0a414=1,0a415=1,a416 =1, a417 =1, as18 = 1,
ag20=1,a425 =1, a426 =0, a431 =1,a419=1,0a432=0
dy dya=1,dss=1,dsg=1,da1a=1,da15=1,da16 =1,ds17 =1, ds 18 =1,
dg19 =0,da20=1,dg25 =0,dg26 =0,dg30=0,dg32=0
Cq ca4=0,cq16 =1,ca25 =1, ca26 =0,ca30=1,ca32=0
by byz0 =1, by 32 =0
as as,4 = ba,a, a5,16 = ba,16, a5,18 = 0, a5,32 =0
ds ds.1s =1, d5,30 = as,30, d5,32 = 0
cs ¢5,18 =0, ¢5,32 =0
bs bs,30 =0
ag — bg a6,18 = 5,18, a6,32 =0, dg,32 =0, c6,32 =0, bg 32 = cg32 + 1
co, bi2 ¢34,32 = 0, b12.32 = di12,32
a1z — b1z |ai13,32 = 12,32, d13,32 = bi2.32 + 1, 13,32 = a13,32, b13 32 = d13,32
a14 —bia |a14,32 = c13,32, d14,32 = b13,32, C14,32 = a14,32, b14,32 = d14,32
ais a15,32 = C14,32
dis di5,32 = b14 32
C15 C15,32 = Q15,32
bis bis,26 =0, bis,320 = di5,32 + 1
aap = a1 + aolaie,26 = 1, aie,27 = 0, a16,32 = c15,32
ddo = dig + do|ddo 26 = 0, di6,32 = b15,32
cco = c16 + co [cco,26 = 1, cco,27 = 0, cco,32 = ddo 32, c16,32 = d16,32 \
bbo = big + bo [bbo,26 = 0, bbo,27 = 0, bbg,6 = 0, bbo,32 = cco,32 |

34

X. Wang and H. Yu

Table 5. All the Differential Characteristics in the Second Iteration Differential

Step|The output| w; | s; | Aw; [The output Difference| The output in i-th step for M
in 7-th step in i-th step

for M
1A% aap, dd() aao[32], ddo [26, 32]

cco, bbo cco[—26, 27, 32], bbo[26, —32]
1 ax mo | 7 275 4 25T a1[26, —32]
2 dy my |12 25 + 275 25T d1[6,26, —32]
3 c1 ms |17 25 4 21T 276 c1[—6,—7,8,—12,13,

4225 4 231 -17,...,-21,22,-26,. .. ,-30,31,-32]

4 b1 ms |22 —2+ 2% +2%5 1+ 257 [b,[2,3,4, 5,6, —26,27, —32]
5 as ma | 7] 25T |14+ 2% 28 429 + 23T as[1, —7,8,9, —10, — 11, —12, 13, 32]
6 do ms |12 —216 _ 220 4 93T do[17,—18,21, —22, 32]
7 c2 me | 17 —26 277 1 231 c2[7,8,9,—10,28, —29, —32]
8 bo my |22 2t _oI7 973 1 931 1p,[—16, 17, —18, 24, 25, 26, —27, —32]
9 as ms |7 1425 4237 as[—1,2,—7,—-8,—-9,10, —32]
10 ds mo |12 212 1 23T d3[13, —32]
11 C3 mio 17 231 C3 —32]
12 b3 ma1|22|—2T[—27 — 213 4 27T b3[—8, 14, 15,16, 17, 18,19, —20, —32]
13 aq maa| 7 PRENEDEE as[—25,...,—30,31,32]
14 dy mais|12 251 d4[32]
15 ca maia|17] 23T |25 427 4 23T c4[4,16,32]
16 b4 mis|22 —279 + 27T b4[—30, 32]
17 as mi| b 251 as[32]
18 ds me | 9 257 d5[32]
19 cs ma | 14]—2T5[2T7 231 c5[18, 32]
20 bs mo |20 231 bs[32]
21 as ms| 5 23T as[32
22 de mio| 9 23T ds[32
23 Ce mis 14 Ce 52}
24 be ma |20] 2%7 be[32]
25 ar mo | 5 ar
26 d7 mi4 9 251 d7
27 (e mas |14 (&g
34 dg ms 11 dg
35 co ma|16]—215]23T co[*32]
36 bo maa|23] 2°T [2%7 dy[+32]
37 ailo ma1 4 231 ailo *32
38 d1o ma |11] 23T [237 d1o[*32
39 c10 mr |16 231 c10[*32]
49 a3 mo 6 231 als 32]
50 di3 mr |10 251 dy13[—32]
51 c13 maa|15] 23T 23T c13[32]
52 b13 ms |21 251 b13[—32]
59 c1s me |15 23T c15[32
60 b1s maz|21 23T b15[32
61 | ais +aao |mal| 6| 2°T ais + aao = alg + aajg
62 | dig + ddo |mai1]10]—2"° dis + ddo = dig + ddj
63 | ci6 +cco |me |15 c16 + cco = Cig + ccp
64 b16 + bb() mo |21 bl(j + bb() — bllﬁ + bbé)

How to Break MD5 and Other Hash Functions 35

Table 6. A Set of Sufficient Conditions for the Second Iteration Differential

a1 a16 =0,a112=0,a122=1,a126=0,a127r=1,0a128=0,a132=1
di2=0,d13=0,d16=0,d17r =0a1,7, dig=a1g, di,12 =1, d1,13 = a1,13, d1,16 = 0,

dy |di17 = a1,17, di,18 = a1,18, di,19 = G1,19, d1,20 = a1,20, d1,21 = a1,21, d1,22 = 0,
di26 =0, dior =1, di28 = 1, d1,20 = a1,29, d1,30 = a1,30, d1,31 = a1,31, di,32 =1
cag=1lcaz=1ca=dia,ca5=dis,c16=1c17=1c18=0,c10=1,c1,12=1,

c1 c1,13=0,crir=1,c1is=1,c119=1,c120=1,c121 =1, c1220 =0, c126 = 1, c127 = 1,
cios=1,c1p0=1,c130=1,c131=0,c132=1
bii=ci1,012=0,b13=0,014=0,b15=1,b16=0,b1,7=0,b18=0, b1,9 =0,

b b1,10 = ¢1,10, b1,11 = c1,11, b1,12 =0, b1,13 =0, b1,17 =0, b1,18 =0, b1,19 = 1, b1,20 = 0,
b121 =0,b1,22=0,b126 =1, b127=0,b128 =1, b120=1,b130=1,b131 =0, b130 =1
a21=0,a22=0,a23=0,a24=0,a25=1,0a26=0,a27=1,a28=0, az9 =0,

a2 az10=1,a211 =1,a212=1,0a213=0,a217 =1, az;18 =1, az;190 = 1, az;20 = 1,
a227 =0, az28 =1, az20 =0, a230 =0, az 21 =0, az22 =1, az31 =1, az 32 =0
d21=0,d22=1,do3=1,dos=0,d25=1,d26=0,do7=1,dos=0,d29=0,

da d20=0,do11 =1,do12=1,d213=0,d217 =0, dois =1, doo1 =0, d2o2 =1,
da26 =0, daar =1, do2s =0, d220 =0, d232 =0
c21=1,c7=0,c08=0,c20=0,c210=1,¢c211=1,¢c212=1,¢c213=1,

c2 |26 =d216, 2,17 =1, €2,18 =0, €221 = 0, c2,22 = 0, 2,04 = d2,24, 2,25 = d2,25,
c226 =1,co07=1,c028=0,c220=1,C232=1

ba |b21 =0,b22=c22,b27=1,bag=1,b2o=1,ba10=1,0b216=1,0b217=0,b218 =1,
bao1r =1, bapo =1, b224 =0, b225 =0, b226 =0, baor =1, baog =0, ba2g =0, bazo =1

a3 |azi =1,a32=0,a37=1,a338=1,as39 =1, as10 =0, az13 = b2,13, as,16 =0,
a317 =1,0a318 =0, a324 =0, az25 =0, az26 =0, az 27 =1, az2s =1, az o9 = 1,
azz2 =1

ds |d31=0,d32=0,d37=1,d3g=1,d39=1,d310=1,d313=0,d316=1,d317=1,
d3is =1,d310=0,d324 =1,d325 =1,d326 =1,d32or=1,d3z3=1

s |eai=1,c2=1c37=1,c38=1,¢c390=1,¢c310=1,c313=0, c3,14 = d3 14,
c3,15 = d3,15, 3,16 = 1, c3,17 =1, 3,18 = 0, €310 = 1, €3,20 = d3,20, c3,32 = 1
bss =1,b313=1,b314 =0, b315 =0, bs;16 =0, b3,17 =0, bz,18 =0, bz,19 =0,

bs b3,20 = 17 b3,25 = C3,25, b3,26 = C3,26, b3,27 = C3,27, b3,28 = C3,28, b3,29 = 3,29,
b3,30 = C3,30, b3,31 = C3,31, b3,32 =1

as |aga=1,a48=0,a414a=1a415=1,aa16 =1, a417=1,a418 =1, a419 =1, ag20 =1
as25 =1, a426 =1, asp7 =1, aa28 =1, as20 = 1, as30 = 1, as 31 =0, asg,320 =0

dy |daa=1dsg=1,ds1a=1,ds15=1,ds16=1,ds1r=1,ds18=1,ds10=0,ds20 =1
daos =0, dgos =0, daor =0, daog =0, dao9 =0, da30 =0, daz1 =1, dazo =0

c4 cs4=0,c416 =0, ca25=1,c406 =0,ca07=1,ca28=1,c400=1,ca30=1
c431=1,c432=0

by baz0 =1, bazz =0

as |as,4 = baa, as,;16 = ba,16, a5,18 =0, a5 32 =0

ds |ds1s =1, d5.30 = a5,30, d5,32 =0

cs |c518 =0, c532 =0

bs |bs32 =0,

ag — be |as,18 = bs,18,a6,32 =0, de,32 =0, c6,320 =0, bs 32 = ce,32 + 1
g, bia |¢34,32 =1, b12,320 = di12,32,
a1z — b3 a13,32 = C12,32, d13,32 = b12,32 + 1, C13,32 = Q13,32, b13,32 = d13,32
a14 — bia|aia32 = 13,32, d14,32 = b13,32, C14,32 = Q14,32, b14,32 = d14,32
a15 — bis a15,32 = C14,32, d15132 = b14,32, C15,32 = Q15,32, b15,32 = d15,32 +1

a1 |a16,26 = 1, a16,32 = C15,32

dis |dis26 = 1,d16,32 = b15,32

¢ |c16,26 = 1,C16,32 = 016,32

b16

bis,26 = 1

Collisions of SHA-0 and Reduced SHA-1*

Eli Biham®**, Rafi Chen', Antoine Joux?:3:***
Patrick Carribault?, Chrlstophe Lemuet3 and William J alby?®

L Computer Science Department,
Technion — Israel Institute of Technology,
Haifa 32000, Israel
{biham, rafi hen}@cs.technion.ac.il
http://www.cs.technion.ac.il/~biham/
> DGA
antoine. joux@m4x.org
3 Laboratoire PRISMT,

Université de Versailles St-Quentin-en-Yvelines,
45, avenue des Etats-Unis,

78035 Versailles Cedex, France
{Patrick.Carribault, Christophe.Lemuet, William.Jalby}@prism.uvsq.fr

Abstract. In this paper we describe improvements to the techniques
used to cryptanalyze SHA-0 and introduce the first results on SHA-
1. The results include a generic multi-block technique that uses near-
collisions in order to find collisions, and a four-block collision of SHA-0
found using this technique with complexity 2°'. Then, extension of this
and prior techniques are presented, that allow us to find collisions of
reduced versions of SHA-1. We give collisions of variants with up to 40
rounds, and show the complexities of longer variants. These techniques
show that collisions up to about 53-58 rounds can still be found faster
than by birthday attacks.

1 Introduction

The hash function SHA was designed by the National Security Agency (NSA)
and issued by NIST in 1993 as a Federal Information Processing Standard (FIPS-
180) [3]. A revised version called SHA-1, which specifies an additional rotate
operation to the message expansion, was later issued in 1995 as FIPS-180-1 [4].
The revised version is aimed to be a more secure replacement, that improves
the security provided by the hash function. No details of the weaknesses found
in SHA-0 were provided. In order to refer more clearly to the first version, we
denote it as SHA-0, which is a widely used but non standardized name.

* Part of the results of this paper were given by the first author in an invited talk
in SAC 2004, Waterloo, Canada.
** Part of this work was done while visiting Ecole normale supérieure, Paris, France.
*** This work was mostly done while the author was at DCSSI Crypto Lab.
" CNRS UMR-8144.

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 36-57, 2005.
© International Association for Cryptologic Research 2005

Collisions of SHA-0 and Reduced SHA-1 37

SHA-0 and SHA-1 are based on the principles of MD4 [5] and MD5 [6]. They
take messages of any length (up to 24 bits) and compute 160-bit hash values.

At CRYPTO98 Chabaud and Joux [2] proposed a theoretical attack on the
full SHA-0 with a complexity of 261. It is a differential attack that uses a weakness
of the expansion algorithm of SHA-0. Their attack is faster than the generic
birthday paradox attack and partially explain the withdrawal of SHA-0 by NSA.
It is interesting to note that they count the complexity in term of the number
of message pairs to be tried and not in term of the number of SHA-0O calls.
At first, it may seem to be an artificial way to reduce the claimed complexity
by 2. However, due to the use of an early abort strategy in the implementation,
the effective complexity in term of SHA-0 calls is roughly 1/4 of the announced
value. For the sake of clarity, we continue this tradition and announce all the
complexity results by giving the average number of necessary message pairs.

In [1] Biham and Chen discussed near-collisions of SHA-0. By using some
of the ideas that originally appeared in [2], they showed that in SHA-O near-
collisions are easier to find than full collisions, and proposed an efficient searching
algorithm that eliminates the probabilistic behavior of more than 20 rounds of
the algorithm, using the notion of neutral bits. When applied to the attack of
Chabaud and Joux, this improves the complexity by an approximate factor of 32.

In our current research we improve over the results of [1] in several directions:
we first present a tool that uses near-collisions in order to find collisions using a
multi-block technique. This tool can be used to attack variants that cannot be
attacked by the original technique, as well as to reduce complexities of attacking
other variants. With some additional refinements, it also improves the attack on
full SHA-0, reducing the complexity down to 2°!. Then we present our attacks
on reduced-round SHA-1, which can find collisions of up to 53-58 rounds faster
than the birthday attack, and show new techniques to attack SHA-1.

In parallel to this paper, Rijmen and Oswald also recently studies reduced
versions of SHA-1 [9)].

This paper is organized as follows: In Section 2 we describe how near-collisions
can be used to find collisions by a multi-block technique. In section 3, we show
how the multi-block technique can be refined in order to work on the full SHA-0,
this leads to a full collision on SHA-0 using messages of four blocks. In Section 4
we describe how the attack on SHA-0 is expanded to attack SHA-1. This section
presents various attacks on reduced versions of SHA-1, where each attack em-
phasizes different aspects and techniques. A 34-round SHA-1 collision that can
be found with relatively low complexity is introduced. With this reduced version
we show how collisions can be found with messages that have only ASCII letters
and even messages with some meaningful words. We continue with a collision of
36-round SHA-1 that uses a message of two blocks, where the first block changes
the initial value to a value that is convenient for the attack, and the collision is
found in the second block. This attack also shows some differences between the
attack of SHA-0 and SHA-1, where the non-linearity of SHA is used in the attack.
We then discuss how to bypass the consecutive disturbances problem in the IF
rounds. The last attack in this section is a two-block collision of 40-round SHA-

38 E. Biham et al.

1 that uses the same characteristic in both blocks. All the collisions of reduced
SHA-1 that we present were found within a few seconds of computation on a PC.
Section 5 analyzes the complexity of attacking various reduced versions of SHA-1
with more rounds, and shows that SHA-1 up to 53-58 rounds can be attacked
faster than the birthday attack. The assessments are based on the best charac-
teristics we could find for each reduced version. Section 6 summarizes the paper.

Due to lack of space, we removed the descriptions of SHA-0 [3] and SHA-1 [4],
and the description of prior techniques related to this paper, e.g., the original
technique for analysis of SHA-0 [2], the improved technique and neutral bits [1].
For descriptions of SHA and these techniques, see the respective references. We
also shortened the descriptions of some results and removed some detailed ex-
planations about the attack complexity. The full details will appear in the full
version of the paper.

Note. This paper is the result of the merge of two papers by non-intersecting
groups of authors. The first group consists of the Technion authors, and the
other consists of the DGA and PRISM authors. The multi-block technique as a
generic tool including the 50-rounds SHA-0 application and the results on SHA-
1 are due to the first group. Motivated by their work, the first author within
the second group restarted searching on old, non-working results about iterated
collisions in SHA-0. It resulted in an improved multi-block cryptanalysis for full
SHA-0, which was then ported and optimized for the supercomputer by the other
authors within the group.

2 The Multi-block Tool

SHA uses an iterative process in which each block M; along with an intermediate
value hj_; is subjected to a compression function, whose output is the value
of the next intermediate value h;. Previous works on hash functions, and in
particular on SHA, use only one block for the attack. Those attacks start with
the initial value hy and construct a pair of messages M; and M7 that output the
same h; to find a collision, or hy, h} with a small difference R/ for near-collisions.

The tool we present in this section uses the iterative process of SHA to find
collisions. The idea of this technique is to start with a pair of blocks M; and
M7 that create a near-collision R, and continue with a construction of a second
block. In the first block we base the message on a characteristic that has a zero
input difference h{, and a non-zero output difference hf, with some message
difference Mj. In the second block we use a characteristic with a non-zero input
difference R}, and a zero output difference hj.

The attack proceeds as follows: Given messages M;, M{ that conform to the
first characteristic, we receive the pair of intermediate hash values h; and hj.
Using these values, we search for a second block Ma, M35 whose input values are
hi, ki, and which conforms to the second characteristic. Such a pair will then
have hf, = 0, which means a collision after the second block.

As a result we succeed in finding a near-collision in the first block, and then
finding a second block, constructed in a similar way, but in which each message

Collisions of SHA-0 and Reduced SHA-1 39

ho =0
M,y My
h1 near-collision hi
M M3
hy =0
collision

Fig. 1. Using Intermediate Near-Collisions to Find Collisions with Two Blocks

starts with a different input value (rather than same value as is usually done in
hash functions) in order to find a collision. An illustration of a two-block attack
is given in Figure 1.

The multi-block tool is particularly useful when there is no characteristic that
predicts a full collision in one block, and to reduce the complexity of an attack
when a single-block collision is more complex.

It should be noted that Wang [7, 8] independently used two message blocks
to find the collision of MD5, using a first block that creates a near-collision, and
a second block that restarts from this near-collision and ends with a collision.

Applications. In order to illustrate the multi-block technique, we can apply to
SHA-0 reduced to 50-rounds. This example is interesting, since this reduced ver-
sion does not have any characteristic (i.e., any disturbance vector) that predicts
a collision with a single block. However, it is very easy to find near-collisions
with complexity of about 2'7. Using the multi-block technique, we can restart
from this near-collision in order to find a longer message pair that collides after
the second block. The total complexity remains about 2'7.

Collisions with More than Two Blocks. This technique can be generalized to
several blocks. In the case of two blocks the first block of the messages M, M* is
constructed by using a characteristic that has a zero input difference h{, and, a
non-zero output difference h}. In the second block we use a characteristic whose
input difference is h}, and which has a non-zero output difference k). In the case
of two blocks hY = 0, which means a collision. However, in case hj # 0, it is
possible to use h as the input difference of a third block which leads to a collision
(see Figure 2). Alternatively the third block can lead to another near-collision
that may later be converted to a collision of the fourth block. In general the
technique can find k-block collisions, where the first block starts with hj = 0,
with & — 1 intermediate near-collisions h, # 0 (¢ = 1,...,k — 1), which lead

40 E. Biham et al.

ho =0
M,y My
h1 near-collision hi
Mo M3
ha near-collision h
| |
| |
| |
| | .
hr—1 near-collision hi_1
My, M
=0
collision

Fig. 2. The Multi-Block Technique—Using Intermediate Near-Collisions to Find Col-
lisions

to a collision with hj, = 0 after k blocks. The complexity of finding the k-block
collision is the sum of the complexities of finding the £ —1 near-collisions and the
final collision. More information on usage of multi-block collisions will appear in
the full paper.

3 A Multi-block Collision of SHA-0

Since the multi-block technique described above is very promising, it is extremely
tempting to apply it to the full 80 rounds SHA-0. Unfortunately, contrarily to
what happens with the 50-rounds version, there is no attack of this type which
behaves better than the single block attack proposed by Chabaud and Joux. All
the other paths that use near collisions happen to be dead-ends.

In order to remove this obstruction, another key idea is necessary. We should
note that in the early rounds of SHA-0, an IF function is used. This means, that
during the early rounds, SHA-0 may in some case behave differently than the
linearized model of [2]. This misbehavior might allow us to connect differentials
which do not belong together in the linearized model of SHA-0. In order to make
this idea precise, we first introduce some notations to describe the differences
before and after each block. First, remark that in each register A to E, after

Collisions of SHA-0 and Reduced SHA-1 41

a successful application of a one block differential, a difference may occur at
a single, fixed, position. In A and B a difference may occur at bit 1, in C', D
and F at bit 31. As a consequence, to describe an initial or final difference, a
5-bit number suffices. We assign the high order bit to A and the low order bit
to E. Thus, a state with a single difference D will be referred to as state 2.
The second step is to compare the expected behavior of a reference state in
the linearized model with the possible behaviors of a given state when the IF
function is used, i.e., in real-life SHA-0. This is done by examining how the initial
difference propagates in the five first rounds.! To start with a simple example,
assume that reference state 2 is considered in the linearized model. In that case,
we have a single initial difference on bit 31 of D. Due to the XOR function,
this difference propagates in the update formula for the next value of A. Thanks
to the disturbance vector, it will be adequately corrected, however, this is not
relevant for this part of the discussion, we just need to know that it propagates
in the formula. Then, the registers are shifted and the initial difference moves
to E. In the next update formula, it will also propagate, again on bit 31. After
that round, the initial difference has vanished and no longer propagates. Now,
consider that state 3 enters the real SHA-0O. Then, in the first formula, both D
and F have a difference on bit 31, however, depending on the result of the IF
function the difference on D may either propagate or not. More precisely, if bit
31 of register B (which is the same in both messages) is a 1, the difference on D
does not propagate. On the other hand, the difference on E always propagates.
The gross result is that a single difference propagates on bit 31, thus at this point
state 3 behaves as reference state 2 in the linearized model. After the registers
shift, a difference remains on E and it propagates in the second update formula.
As a consequence, we see that real state 3 may behave as reference state 2. Thus,
we may start a differential attack from state 3 by using a disturbance vector that
“expects” state 2. Moreover, state 3 may also behave like reference state 3. This
implies, that it is possible to connect together much more differentials than
initially expected. Thus, the graph of possible paths is considerably richer than
first predicted and we expect to find a better attack.

With this translation table in mind, we now try to assemble several differen-
tials with different disturbance vectors into a global attack. For any disturbance
vector, we add five extra bits, the “negative” bits which indicate the starting
reference state. Similarly, the value of the last five bits indicate the expected
state after the block cipher part of the compression function. To incorporate
such a disturbance vector into the global attack, we proceed as follows: Assume
that the current state is a and that we are given a disturbance vector a’ — b,
i.e., a disturbance that goes from reference state a’ to expected state b, then if a

! We further remark that this representation can be extended to a general kind of
characteristics describing the evolution of differences in registers A, ..., E, and in
the expanded message, in a similar way to the characteristics used in related-key
differential cryptanalysis. In such a case, the intermediate differences can be very
different than predicted by the model of [2], while still leading to collisions.

42 E. Biham et al.

is compatible with a’, we have a differential that goes from state a to next state
a @ b after the final addition. Thus, we can build a transition graph, where each
possible state is a node, and each differential, with good enough probability, is
an edge. In this graph, we now search for a path from state 0 to itself, with low
expected complexity. The best path we could find has length 4, it starts from
state 0, goes to 3, 25, 8 and finally comes back to zero. It is build on the following
disturbance vectors:

Ref (DV) DV Actual Compatible
States States With
0 — 3 00000 00010000101001000111 10010110000011100000 0 — 3 2 3
00000011000000110110 00000110001011011000
2 — 26 01000 10000000010000101001 00011110010110000011 3 — 25 17 18 28 31
10000000000011000000 11011000000110001011
17 — 17 10001 00100101000100101111 11000010000100001100 25 — 8 8 11 13 14
00101100100000000001 11010011101000010001
11 — 8 11010 00100000000100001010 01000111100101100000 8 — 0 collision
11100000000000110000 00110110000001100010

One can easily check that this sequence of block differences can possibly
lead to a full collision. Initially, the difference between the two messages of a
pair corresponds to state 0. After the first block, we intend to reach state 3.
Of course, for this block the final additions add equal values on each branch,
thus the difference is expected to remain at state 3. Since state 3 is compatible
with reference state 2, we restart from there and go to state 26. For this second
block, the additions change state 26 into state 25. Again, the compatibility of 25
with reference state 17 allows us to restart with the third block difference. The
expected state is 17 before the final additions and 8 after them. Thanks to
the compatibility of 8 with 11, we use the fourth difference and expect a state
of 8 before the additions. Since the two states 8 correspond to differences on
the same bits, we expect that they cancel each other. Thus, we finally reach a
full collision. Evaluating the exact complexity of this attack requires a detailed
analysis that, for lack of space, is not given here. The total cost is 2°' message
pairs, as confirmed by our implementation.

3.1 Implementation and Optimization

The theoretical complexity of our collision search algorithm is 2°'. This com-
plexity is expressed in term of the number of pairs of messages to test. As is the
case with the original attack of Chabaud and Joux, this roughly corresponds to
the cost of 24 evaluations of the SHA-0 compression function.

In order to demonstrate feasibility of this collision search, we implemented
this algorithm on an Intel Itanium 2 processor. This processor allows a wide de-
gree of instruction level parallelism (ILP). More precisely, it is able to execute up
to six instructions per cycle, and a wide variety of combinations is possible (e.g.,
6 arithmetical operations, or 4 memory operations and 2 floating point multi-

Collisions of SHA-0 and Reduced SHA-1 43

ply add, or 3 logical operations and 3 branches, etc.). Furthermore, this wide
ILP capability is enhanced by a large register file and many duplicated functional
units. The processor also offers several mechanisms to implement control/branch
structures with speculative execution, predication, and multi-way branches (up
to three branches per cycle). Due to the complex nature of the processor, the
performance of programs running on it heavily relies on the capability of the
compiler to produce efficient code. Our algorithm was compiled by the Intel
compiler (ICC) whose performance in this respect is usually above average.

To optimize our code, a profiling step was performed to detect the most time-
consuming code sections. This study revealed that the main function, which
enumerates pairs of messages derived from a reference pair and its’ neutral set
represented a large majority of the execution time. Focusing on this part, we
checked the behavior of the code at the hardware level during execution through
the use of hardware counters.

We, thus, determined that the main performance limiting factors were:

— Limited amount of parallelism: All rounds of SHA-0 contain chains of bitwise
operations (+, ROL,, ...) depending on each other, which limited the effect
of the internal parallelism.

— Complex control flow: Due to the probabilistic nature of the collision search,
the control flow is quite complex and statistically (at compile time) unpre-
dictable.

— Cached memory access: Despite being in a very favorable case where all data
fits in the first level data cache (L1D) of the Itanium 2 (16KB), the number of
accesses to the cached memory is very high, when arrays are used to represent
the intermediate values during the computation. As a consequence, memory
access in L1D was a bottleneck in our basic implementation.

Due to the complex control flow, the Intel compiler could not determine a
good way to execute branches. Even the use of advanced optimization tools such
as profile guided optimization, did not help much. The compiler still used specu-
lative execution, which led to bad performance. A first step in our tuning process
was to make the compiler avoid speculation, by writing each round differently,
depending on the probability of success at this point.

Since the number of L1D memory accesses was critical, the second step con-
sisted in reducing them. This was done by replacing all arrays by registers thus
avoiding many memory stores and loads. This optimization makes good use of
the large number of registers of the Itanium 2. Such a technique is called register
promotion and is usually performed by the compilers. However, in this example,
this had to be done on a large number of source lines and the compiler was
unable to deal with this. Moreover, we had to extend the technique to deal with
the complex control structure.

All the fine tuning techniques allowed to gain an additional 20% of perfor-
mance compared to the best compiler options (which are not the standard 03
options and had to be determined through exhaustive search). On average, 4
instructions per cycle were effectively executed, out of a maximum 6.

44 E. Biham et al.

3.2 A Full Collision of SHA-0

Once the program was ported to the supercomputer, it processed a large number
of messages pairs for each block. Very precisely, the total number of trial pairs
was:

First block 796 682307 091 035 ~ 249>
Second block 1572177940314 628 ~ 2°0-5
Third block 1712558626669 268 ~ 2506
Fourth block 17049400703 749 ~ 244

We can remark that the number of computations is higher than expected
for the first two blocks. At first, we simply assumed that we had been unlucky,
however, a deeper investigation revealed a subtle bug in the neutral bits identi-
fication code. Due to this bug, some messages pairs were processed more than
once, and up to four times, by the program. These useless computations explain
the mismatch between the predicted complexity of the first two blocks and the
effective numbers of messages pairs processed. Luckily, the bug did not affect
the computation of block 3, thus the total slowdown was limited. Finally, we
reached the following messages (written in hexadecimal):

a766a602 b65cffe7 73bcf258 26b322b3 d01b1a97 2684ef53 3e3b4db7f 53fe3762
24c08e47 e959b2bc 3b519880 19286568 247d110f 70f5cbe2 b4590ca3 f55f52fe
effd4c8f e68de835 329e603c c51e7f02 545410d1 671d108d £5a4000d cf20a439
4949d72c d14fbb03 45cf3a29 5dcda89f 998£f8755 2c9ab8bl bdc38483 5e477185
£96e68be bb0025d2 d2b69edf 21724198 £688b41ld eb9b4913 fbe696b5 457ab399
21e1d759 1£89de84 57e8613c 6c9e3b24 2879d4d8 783b2d9c a993beab 26a729cO
6edfcb501 37e69330 be976012 ccbdfelc 14c4c68b dldb3ecb 24438a59 al09b5db4
35563e0d 8bdf572f 77b53065 cef31f32 dc9dbaal 4146261e 9994bdbc d0758e3d

and

a766a602 b65cffe7 73bcf258 26b322bl dO1blad7 2684ef51 be3b4db7f d3fe3762
a4c08e45 e959b2fc 3b519880 39286528 a47d110d 70f5cbe0 34590ce3 755f52fc
6ffd4c8d 668de875 329e603e 451e7£02 d45410d1 e71d108d £5a4000d cf20a439
4949d72c d14fbb01 45cf3a69 5dcda89d 198£8755 ac9ab8bl 3dc38481 5e4771cbh
796e68fe bb0025d0 52b69edd al7241d8 7688b41f 6b9b4911 7be696£f5 c57ab399
aleld719 9£89de86 57e8613c ec9e3b26 a879d498 783b2d9%e 29935ea7 ab6a72980
6edfcb503 37e69330 3e976010 4cbdfebSc 14c4c689 51db3ecb a4438a59 209b5db4
35563e0d 8bdf572f 77b53065 cef31f30 dc9dbaeO 4146261c 1994bdbc 50758e3d

which have the same hash values. More precisely, the intermediate hashes for
both messages are compatible with the predictions of our differential attack and
their precise values are:

Collisions of SHA-0 and Reduced SHA-1 45

Iv 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1FO0
Block 1 83C1CE2D C5BF5480 C2AF2358 104B337B 9E78A1E7
Block 2 27AE025A 9D36F7B6 29FA88E7 87B70063 984119F3
Block 3 4DD120B4 DEEC801F 468628A7 0CC26464 371F36B2
Block 4 81FB4643 O8FDF1F4 A3C4F3A3 6188FED3 FD2378E6
Padding C9F16077 7D4086FE 8095FBA5 8B7E20C2 28A4006B
Iv 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0
Block 1 83C1CE2D C5BF5480 C2AF2358 904B337B 1E78A1E7
Block 2 27AE0258 9D36F7B4 29FA88E7 87B70063 184119F3
Block 3 4DD120B4 D6EC801D 468628A7 0CC26464 371F36B2
Block 4 81FB4643 O8FDF1F4 A3C4F3A3 6188FED3 FD2378E6
Padding C9F16077 7D4086FE 8095FBA5 8B7E20C2 28A4006B

In this table, the underlined values highlight the difference between the two
hash processes. These differences are as predicted by our differential attack. After
the fourth blocks, the two messages collide. Of course, since the two messages
have the same length, the padding blocks are identical. Thus, the final values
inherit from the fourth block collision.

4 SHA-1 Results

Our attack on SHA-1 extends the techniques of [1] designed for SHA-0. The
only difference between SHA-1 and SHA-0 is an additional rotation operation
in the expansion process. Due to this rotation SHA-1 mixes the bits in the
expanded message in a more efficient way than SHA-0 does, thus making the
attack much less efficient against SHA-1 (as was already noted in [1]). In this
section we observe that with some modifications, the attack can be applied to
reduced versions of SHA-1. In the next subsections we present collisions of 34—40
rounds SHA-1 that we found using this application.

4.1 A Collision of 34-Round SHA-1

The attacks of SHA-0 use only bit 1 as the location of disturbances. This bit
is selected to eliminate the probabilistic behavior of the carry when corrections
are applied to bit 31, thus increasing the total probability of the characteristic.
Since the expansion process in SHA-0 does not mix bits in different locations
in the 32-bit word, all the disturbances in the expanded message are in bit 1,
but this is not the case in SHA-1. Therefore, other bits can be used as distur-
bances. With this change in the selection, a disturbance vector in SHA-1 is not
boolean, in which each entry tells whether there is a disturbance in bit 1, but
instead a 32-bit word that represents all the disturbances in a round. Following
this change, the corrections associated with a disturbance vector are derivated
slightly differently than in [1] (i.e., corrections are applied to each disturbance
relative to its location).

We observe that for 34-round reduced SHA-1 (unlike longer versions) there is
a disturbance vector with a very low Hamming weight, which is given in Table 1.
In this table D.Vec column shows the expected values of 4], for i =0,...,33,

46 E. Biham et al.

Table 1. The Disturbance Vector Used for 34-round SHA-1 (in 32-bit hex words)

Rnd D.Vec D&C Rnd D.Vec D&C Rnd D.Vec D&C

—5 00000000 8 00000000 80000003 21 00000000 00000040
—4 00000000 9 00000002 40000002 22 00000002 00000000
—3 00000000 10 00000000 €0000040 23 00000000 80000040
—2 00000000 11 00000000 C0000002 24 00000000 80000002
—1 00000000 12 00000000 80000000 25 00000000 00000000

0 00000002 00000002 13 00000000 80000000 26 00000000 80000000
1 00000000 00000040 14 00000002 80000002 27 00000000 80000000
2 00000002 00000000 15 00000000 00000040 28 00000000 00000000
3 00000000 80000040 16 00000000 00000002 29 00000000 00000000
4 00000002 80000000 17 00000000 80000000 30 00000000 00000000
5 00000000 00000040 18 00000000 80000000 31 00000000 00000000
6 00000003 80000001 19 00000000 80000000 32 00000000 00000000
7 00000000 00000060 20 00000002 00000002 33 00000000 00000000

Table 2. Collision of SHA-1 Reduced to 34 Round (in 32-bit hex words)

Message 1:
F1641C2B 242BFDB5 EAEO1E30 F4BBBA6F 18D45ESE DE68AEBA 74EC8CF9 FC204957
45AAA8BF 1CD3AE7D D845C2F3 AC737464 F25BEBBB BESFFF1D 2ADB2818 0B1D13FB
Message 2:
F1641C29 242BFDF5 EAEO1E30 74BBBA2F 98D45ESE DE68AEFA FAEC8CF8 FC204937
C5AAA8BC 5CD3AE7F 1845C2B3 6C737466 725BEBBB 3ESFFF1D AADB281A 0B1D13BB

which we denote by 6;11 (note that the indices of § here are 1, ..., 34, rather
than 0, ..., 33, as é; is the difference at the input of round 7). The D&C col-
umn shows the message difference (which is underlined and shown in rounds
0,...,15), and the differences of the expanded messages in rounds 16,...,33.
6_4,...,00 are also shown in this table (in rounds —5,...,—1), and their values
are related to the initial value differences. Intermediate rounds after which colli-
sions are predicted are marked in boldface. This disturbance vector is unique in
that almost all the disturbances are in one location (bit 1), and in all of the 34
rounds there is only a single disturbance in a different location, which is bit 0
in round 6. This disturbance succeeds to cancel the avalanche effect that is ex-
pected in SHA-1 due to the additional rotate operation, and that does exist in
other disturbance vectors.

By using the neutral bits method of [1], the complexity of an attack can
be estimated based on the number of disturbances after round 20. Thus, using
this disturbance vector, that has only two disturbances after round 20, we easily
found millions of collisions, one of which is given in Table 2.

Since the complexity of finding collisions in this 34-round attack is so low,
we were able to generate collisions with additional constraints, which caused
some increase in the complexity. This way we found collisions whose all bytes

Collisions of SHA-0 and Reduced SHA-1 47

Table 3. Two Messages in ASCII Letters that Collide Under 34-Round SHA-1

Message 1:
IkGDQVMwISGGcBMpNHMYavPTsmUlykPTzokJOkwnrSgJSfDmlpeqsmDzWbA jmNxP
Message 2:
IkgDqRMwISGGCFEpNHEYarPTsmM1ymPTzoSJ0kSnrWkJSfhmlpmgsmLzWbi jmJxP

Table 4. Two Examples of Partially Meaningful Messages that Collide Under 34-
Round SHA-1

Message 1:
I Am 0ilMANgujnPay916472136314$USAKNOWwTkjepMFXG1lmfHNGcpodE1GEvL
Message 2:
I am KilMANgunfPay11607213.312$USASNOWSTknipMFtGlmnHNGkpodmlGbvL
Message 1:
OhG, not this mess,age notThat onenot U, oh noHRtBMTkK11L1IluvpB
Message 2:
Ohg, jot this$eessPaga notLhar oneVot g, kd nodRtBETkKdlLlalurpB

are formed of ASCII letters. The disturbance vector of Table 2 does not allow
that, as some bytes of the message differ in the most significant bits. However,
by rotating the locations of the disturbances (by the same number of bits in
all the rounds) we can move the differences to lower bits, while increasing the
complexity of the attack by a small factor. A colliding pair of messages consisting
entirely of letters in ASCII is given in Table 3.

With some additional creativity, and some additional increase in the com-
plexity, it was also possible to force some of the bytes into partial English text.
Table 4 lists two examples. The first example is an attempt to force the two
colliding messages to contain meaningful text. However, there are still many
constraints on the possible text, thus it can be seen that some letters are capi-
talized, while other are not, that some spaces appear between words, while they
do not appear between other words, and that some random letters must be
allowed in some locations in order to allow more text afterwards. The second
example in Table 4 is an attempt to further improve the text of one message in
the expense of the text of the other message.

4.2 A Collision of 36-Round SHA-1

In this section we present a collision of 36-round reduced SHA-1 along with
several techniques that were used to find it.

In our attack on 36-round SHA-1 we use the best characteristic that predicts
a collision after one block. We show this disturbance vector in Table 5.

It should be noted that this characteristic cannot be used with the standard
initial value of SHA-1, i.e., with

ho = (67452301,, EFCDABS9,, 98BADCFE,, 10325476,, C3D2E1F0,),

48

E. Biham et al.

Table 5. The Disturbance Vector Used for 36-Round SHA-1 (in 32-bit hex words)

6 00000001 40000042
7 00000002 80000020
8 40000000 00000041

Rnd D.Vec D&C Rnd D.Vec D&C Rnd D.Vec D&C
—5 00000000 9 00000002 00000008 23 00000000 80000050
—4 00000000 10 00000002 00000042 24 80000003 80000001
—3 00000000 11 80000000 50000042 25 00000000 A0000070
—2 00000000 12 00000002 10000010 26 00000000 20000003
—1 00000000 13 00000000 90000040 27 00000002 40000002

0 80000000 80000000 14 00000002 20000000 28 00000000 E0000040
1 00000000 00000010 15 00000000 20000040 29 00000000 E0000002
2 00000001 80000001 16 80000003 20000001 30 00000002 80000002
3 00000000 20000020 17 00000000 00000070 31 00000000 80000040
4 00000003 20000002 18 00000000 00000003 32 00000000 80000002
5 00000002 60000062 19 00000002 60000002 33 00000000 80000000

20 00000000 E0000040
21 00000000 E0000002
22 80000002 00000002

34 00000000
3500000000

80000000
80000000

Table 6. The Second Block of the Collision of 36-Round SHA-1 (in 32-bit hex words)

Common block 1: sixteen 00000000 words

Message 1, block 2:

9F29DESD BBD58270 1F11EB22 A6637C3E 7E6FBOCO 63E9BF5E C4FF7010 073174B3
3133689A 579A753E 2D17124D 7D37E853 5B5BBB01 F0371FBB 025A725C 8FBOFE33
Message 2, block 2:

1F29DE8D BBD58260 9F11EB23 86637C1E 5E6FBOC2 O3E9BF3C 84FF7052 87317493
313368DB 579A7536 2D17120F 2D37E811 4B5BBB11 60371FFB 225A725C AFBOFE73

due to the observation that in round 2 there is a difference in the most significant
bit of register B (B’ = 80000000,), but both most significant bits of C' and D
are zero (where C' = 67452301, <€ 30 and D = EFCDABS89, <« 30). Thus,
considering the differences of the messages (W5 = 80000001,) in that bit, the
new content of A must have a difference in this bit, in contrary to the prediction
of the disturbance vector.

In order to be able to use the disturbance vector of Table 5, the initial value
is replaced by another value by adding an additional first block, which in this
case is the whole zero block (M; = M = 0). The resultant intermediate hash
value is

hy = (37970DFF,,, 5FE912289,, C78B3705,, 923B82E9,, CC36E948,,).

With this intermediate value A1, we can now proceed to the next block with the
disturbance vector of Table 5. The second block of the collision of the 36-round
SHA-1 is presented in Table 6.

Collisions of SHA-0 and Reduced SHA-1 49

Table 7. Comparison of §; and Aj in the 36-Round Collision (in 32-bit hex words)

Round D&C Bit1 ;+1 1{+1 1{+1 §+1
0 80000000 80000000 80000000 00000000 00000000 00000000
1 00000010 00000000 00000000 80000000 OOO00000 00000000
2 80000001 00000001 00000001 00000000 20000000 00000000
3 20000020 00000000 00000000 00000001 00000000 20000000
4 20000002 00000003 00000001 00000000 40000000 OOOO0000
5 60000062 00000002 00000002 00000001 00000000 40000000
6 40000042 00000001 00000001 00000002 40000000 00000000
7 80000020 00000002 00000002 00000001 80000000 40000000
8 00000041 40000000 40000000 00000002 40000000 80000000
9 00000008 00000002 00000002 40000000 80000000 40000000
10 00000042 00000002 00000002 00000002 10000000 80000000
11 50000042 80000000 80000000 00000002 80000000 10000000
12 10000010 00000002 00000002 80000000 80000000 80000000
13 90000040 00000000 00000000 00000002 20000000 80000000
14 20000000 00000002 00000002 00000000 80000000 20000000
15 20000040 00000000 00000000 00000002 00000000 80000000

A Generalized Test for Conformance. The 36-round collision of Table 6
presents an additional change in respect to the attack of SHA-0. In the attack on
SHA-0, the intermediate differences A/ are necessarily equal to é; fori =1,...,r,
where 7 is the number of rounds of the analyzed compression function. In SHA-1
this is not the case, since more than a single location of a bit are selected for the
disturbances. In cases where there are two or more disturbances or corrections
in adjacent bits, it may happen that the more significant bit is not correctly
approximated, e.g., the IF function does not output the XOR of its inputs for
the particular values of the registers. However, it may happen that the carry
of the less significant bit cancels this wrong approximation, resulting with the
expected difference A, = §;. In other cases, a wrong approximation of the less
significant bit cancels the correct approximation of the more significant bit, e.g.,
the addition modulo 232 of the less significant bit changes the carry. In these
cases A # é;, and the difference is in this more significant bit. The difference
that the more significant bit expects to create in A} is now canceled, but the
corrections for this expected difference still exist in the following five rounds.
These corrections are now used to correct wrong approximations of the less
significant bit which change the carries in the next five rounds. If we are lucky,
the less significant bit creates additional differences in the carry, thus corrects
the differences in A} in the next rounds.

Table 7 shows the differences of first 16 rounds of the compression function
in the second block of the 36-round collision (shown in Table 6). In this table
the D&C column shows the message difference M’, §;,1 shows the expected
difference in Aj,, and the other four columns show the actual difference A7,
Bj,,, Ci_,, and Dj_ ;. The table shows a situation where two disturbances are

K2

applied to bit 0 and 1, and the carry change of bit 0 cancel the disturbance of

50 E. Biham et al.

bit 1. The entry of round 4 in the table shows (in boldface) that the expected
difference 65 is different from the actual value of AL. This difference between the
expected and actual values is due to a carry change of the disturbance of bit 0
that cancels the difference in bit 1. The five corrections in the next five rounds
do not have a disturbance in registers A, B, C, D, nor E, but other properties of
the IF and carry overcome the missing difference and ensure correct differences
in the following rounds.

We call bits whose difference may differ from the expected value of the char-
acteristic, but whose effect can be canceled immediately afterwards, by the name
T bits. In some cases a simultaneous modification of a few bits makes a similar
effect. We can view T bits as extending the notion of characteristics into differ-
entials in which most information on the intermediate differences is fixed, but
a few can have any value, describing several different paths leading to the same
differential. There are several T bits in the intermediate differences characteristic
of 36-round SHA-1, and also in other characteristics used in this paper.

Due to such cases we extended our program to check for conformance by
testing for a generalized kind of differences instead of testing exactly whether
Al = 6;.

Consecutive Disturbances in the IF Rounds. In the attack on SHA-0 two
consecutive disturbances in the first 17 rounds (i.e., rounds 0,...,16) have a
probability zero to be corrected (see [2]). This limitation forces a higher Ham-
ming weight to occur in the expanded disturbance vector, but an attack is still
feasible (i.e., there are still few disturbance vectors that predict collisions, and
do not have two consecutive disturbances in the first 17 rounds). We observed
that all the disturbance vectors that we could find that predict one-block colli-
sions of SHA-1 reduced to 35 or more rounds have consecutive disturbances, i.e.,
two disturbances at the same bit locations in two consecutive rounds. Thus, this
limitation seems to be much more restrictive in SHA-1. However, this stronger
limitation comes with the ability to bypass it by various techniques in some frac-
tion of the cases. The characteristic we use for the collision of 36-round SHA-1
is an example for such a case.

In the following discussion, we first explain the limitation of the two con-
secutive disturbances in SHA-0, and then we show how they behave in SHA-1.
In SHA-0, two consecutive disturbances in rounds ¢ and ¢ + 1 (in bit 1) create
differences in D2, and C2},, respectively. The two corrections to these differ-
ences are applied to the same bit, thus cancel each other in the approximation
leading to no difference in 6;;14. On the other hand, the IF function applied on
these two differences, where the difference of Bf’_}_; is zero, causes the result to be
complemented always. Thus, in Aj, , we have a difference with no corrections.
With SHA-1 the same arguments apply, but we allow disturbances at any bit
location. Thus, we can use the carry bit from another disturbance (or correction)
as an additional source of corrections.

The following two examples, which are taken from our 36-round attack,
should clarify the above: In the first example we show how a carry can be used
as follows: At rounds 4 and 5 there are disturbances in bit 1, from which we

Collisions of SHA-0 and Reduced SHA-1 51

expect to get AL and Aj equal to 85 = 00000003, and d = 00000002, respec-
tively, which lead after three rounds to the differences D§ = C0000000, and
C4 = 80000000,. With these differences the IF function applied on D3'" and
Cg’ll always complement the output, but it is never complemented in the ap-
proximation. Thus, we have a difference that cannot be corrected. However, in
the messages we use the carry from bit 0 at round 4 cancels the disturbance at
bit 1 of this round, and therefore the created differences are Aj = 00000001,
and Ay = 00000002, (see Table 7). Thus, in round 8 the differences are C§ =
80000000,, and Dg§ = 40000000, which can be corrected by the non-linear be-
havior of the IF function to fit the approximation.

In the second example we show how the problem of two consecutive dis-
turbances can be bypassed when there is another disturbance in one of a few
different locations. In rounds 9 and 10 (see Table 7) we have two consecutive
disturbances in bit 1 (619 = 00000002, and 617 = 00000002,), but in this case
there is also a disturbance in round 11 in bit 31 (612 = 80000000,). Thus, in
round 13 we have Bj; = Cl3 = D)5 = 80000000,, which fit the approximation
with probability 1/2.

In general, consecutive disturbances in bit j of rounds 7 and ¢ + 1 can be
corrected, if there is a correction or disturbance in a less significant bit that may
change the carry to bit 7 — 2 in round ¢ + 4 (i.e., in bit j — 8 of ;43, bit j — 1
of §; 49, or bit j — 1 of §;11, 6; or of §;_1 where the bit numbers are mod 32),
leaving the rest of the differences behave as expected.

4.3 A Two-Block Collision of 40-Round SHA-1

In this section we present a collision of 40-round reduced SHA-1. The best (one-
block) characteristic that we could find has 19 disturbances from round 20 to
round 39, so the complexity of the attack is expected to be around 2°7. However,
it is easy to find near-collisions of 40 rounds with only five disturbances from
round 20 to 39. Thus, we construct a two-block attack where the first block
generate such a near-collision, and the second block uses the difference of the
initial value that are created by the first block and generate a collision.

We observe that the hash values of multi-block messages are computed as
the sum of the initial value and the states g; of the compression function before
the final addition operations, i.e.,

hn=ho+ Y gi-
i=1

Therefore, for colliding pairs of messages the following equation holds

n

> (gi—gp) =0,

i=1

which when the addition is approximated by XOR becomes

igé =0.
i=1

52 E. Biham et al.

Table 8. The Disturbance Vector Used for the Two-Blocks Collision of 40-round SHA-1
(in 32-bit hex words)

Rnd D.Vec D&C Rnd D.Vec D&C Rnd D.Vec D&C
—5 00000000 10 00000000 0C000004 25 00000000 00000000
—4 00000000 11 00000000 2C000000 26 00000000 08000000
—3 00000000 12 00000000 08000000 27 00000000 08000000
—2 00000000 13 00000000 08000000 28 00000000 00000000
—1 00000000 14 20000000 28000000 29 00000000 00000000

0 20000000 20000000 15 00000000 00000004 30 00000000 OOOOOOOO
1 00000000 00000004 16 00000000 20000000 31 00000000 00000000
2 20000000 00000000 17 00000000 08000000 32 00000000 00000000
3 00000000 08000004 18 00000000 08000000 33 00000000 00000000
4 20000000 08000000 19 00000000 08000000 34 40000000 40000000
5 00000000 00000004 20 20000000 20000000 35 (00000000) 00000008
6 30000000 18000000 21 00000000 00000004 36 (00000000) 40000000
7 00000000 00000006 22 20000000 00000000 37 (80000000) 90000000
8 00000000 38000000 23 00000000 08000004 38 (40000000) 50000010
9 20000000 24000000 24 00000000 28000000 39 (00000000) 90000008

Therefore, when searching for multi-block collisions it may be best to find char-
acteristics for which this sum is zero, and verify that all the other requirements
are satisfied, rather than vice versa.

In the particular case of a two-block collision this equation means that ¢gj =
g4, i.e., the two disturbance vectors should have same differences in the last
five rounds. This leads to the question why should we use different disturbance
vectors for both blocks. The answer would be that the initial value difference of
the second block is necessarily different than of the first block (as hy = 0 and
h} # 0), where the initial value is related to the difference of the first five rounds
of the disturbance vector (rounds —5, ..., —1). But this is only a partial answer,
as we can extend the technique (using for example T bits, with similarities to
the extension of Section 3 in the case of SHA-0, but with much more flexibility),
and use a disturbance vector whose first five rounds are different than the initial
value difference (in the second block). Once we say that, we observe that in the
case of the disturbance vector that we use for the first round, the intermediate
value h} fits as a replacement initial difference for the same disturbance vector,
i.e., if we replace rounds —5, ..., —1 of the disturbance vector by the last five
rounds from the first block, we still get differences that can be corrected later
by the disturbance vector. In terms of characteristics, this means that we have
two characteristics with different input differences, but same message differences
and output differences (and that in most of the rounds they have the same
intermediate differences).

Table 8 describes the disturbance vector we use for this attack. This distur-
bance vector is the same vector used in our 34-round collision (Table 1) rotated
by 28 bits to the left and expanded to 40 rounds. In the first five rounds (-5, .. .,

Collisions of SHA-0 and Reduced SHA-1 53

Table 9. The Beginning of Both Blocks of the Disturbance Vector Used for 40-round
SHA-1 (in 32-bit hex words)

Round First Block Second Block Common

D.Vec D.Vec D&C
—5 00000000 (00000000)
—4 00000000 (00000000)
—3 00000000 (80000000)
—2 00000000 (40000000)
—1 00000000 (00000000)

o

20000000 20000000 20000000
00000000 00000000 00000004
20000000 20000000 00000000
00000000 00000000 08000004
20000000 20000000 08000000
00000000 00000000 00000004
30000000 30000000 18000000
00000000 00000000 00000006
00000000 00000000 38000000
20000000 20000000 24000000

© 00 3O Ut W N

—1) of the disturbance vector the differences are zero, and in the last five rounds
they have two active bits (these rounds are marked in parentheses). Therefore,
we expect that k] will have two active bits in these locations (up to the rotation
by 30 bits), so the disturbance vector for the next block should have the first
five rounds with the same differences as given in parentheses in the table. Now,
we observe that when we replace the first five rounds of the same disturbance
vector with the values in parentheses (see Table 9) we still receive a correctable
result. The disturbance vector itself, from round 0 to round 39 is unchanged,
thus the modified five rounds do not fit to the expansion function of SHA-1, but
as these difference come from the initial value, they are not calculated anyway
by this expansion. These values should only ensure that the probability of the
rounds in which they participate (as A, B, C, D, or E) is greater than zero, and
this is the case with these replaced differences.

We would also wish to add that the change of the initial rounds of the dis-
turbance vector can be even extended to a few additional rounds, as long as the
message differences remain unchanged, i.e., it would be possible to expect for
different values in round 0 (or even 1) of the disturbance vector when changing
the initial five rounds, but without changing the message differences. Also, it is
possible to make replacements in the last few rounds. This phenomena is similar
to the usual technique of differential cryptanalysis, where iterative characteristics
are used with modified first and last rounds, allowing even larger probabilities
than in the full iterative case.

The messages of the 40-round collision are presented in Table 10. The output
difference hj of the compression function of the first block becomes the input

54 E. Biham et al.

Table 10. The Two-Block Collision of 40-Round SHA-1 (in 32-bit hex words)

Message 1, block 1:
404B674C B70CB385 D2DDACOD 3AOE9BD3 CA7F1780 7FEFDA17 OBE43AF2 444344C2
641A2CB6 86C2CFE6 EBCDEF67 6577E095 1A9CAD10 CFE48484 78639157 B13B759A
Message 2, block 1:
604B674C B70CB381 D2DDACOD 320E9BD7 C27F1780 7FEFDA13 1DE43AF2 444344C4
5C1A2CB6 A2C2CFE6 E7CDEF63 4977E095 129CAD10 C7E48484 50639157 B13B759E
Message 1, block 2:
E63C47F7 OAB5F259 47DE1E6B 09E06877 6229CC42 604CF1AB 9B14B8F3 7261186C
1A5370F9 822E13EB FB7157EF 6B0919C5 1F3D744B FA4DE198 FBB10C06 FDA3C3E9
Message 2, block 2:
C63C47F7 OAB5F25D 47DE1E6B 01E06873 6A29CC42 604CF1AF 8314B8F3 7261186A
225370F9 A62E13EB F77157EB 470919C5 173D744B F24DE198 D3B10C06 FDA3C3ED

difference entering the second application. These intermediate differences can be
corrected by the same message difference that we use in the first block. Thus,
by using the same message difference in the second block the difference of the
intermediate value is corrected. We expect to get g5 = h} (i.e., the differences
in the registers after the last round of the compression function are equal to the
intermediate value differences), which with probability 1/4 cancels the differences
after the final addition of hy = go + h;.

5 Strength of Reduced Versions of SHA-1 with More
Rounds

SHA-1 with more than 40 rounds is also vulnerable to the attacks described in
this paper. Though all the disturbance vectors that we found have consecutive
disturbances in the first 17 rounds, many of them contain correctable consecutive
disturbances. We therefore list here two set of results: the first is the results for
SHA-1 reduced to fewer rounds, where these rounds are set at the first rounds
of SHA-1, i.e., the first 20 rounds use the IF function. This case is denoted later
by SHA-1. The second set of results, denoted later by NO-IF, have consecutive
disturbances, so if the reduced version starts with 20 IF rounds, the probability
of success is reduced to 0, but if the reduced version of SHA-1 starts at a different
location, the attack is still possible (such as when the reduced version contains
the last rounds of SHA-1, rather than the first ones).

Table 11 lists the results for 34 up to 61 rounds. For each number of rounds,
and each set of results (SHA-1 or NO-IF) the table lists the Hamming weight of
the disturbance vector from rounds 20 and on for three cases: the first, marked
by HW, is the Hamming weight of the best disturbance vector predicting a one-
block collision we found. The second, marked by 2B, is the best disturbance
vector predicting a two-block collision, and the last, marked by NC is the best
disturbance vector predicting a near-collision. Entries that we used to actually
find a collision are marked in boldface.

Collisions of SHA-0 and Reduced SHA-1 55

Table 11. The Hamming Weights of the Best Disturbance Vectors that We Found
(Counted from Round 20)

Rounds SHA-1 NO-IF Rounds SHA-1 NO-IF

HW 2B NC HW 2B NC HW 2B NC HW 2B NC
34 2 2 48 28 25 13 14 14 13
35 7 6 3 4 5 3 49 32 22 15 14 14 14
36 7T 3 3 5 3 3 50 35 29 16 14 14 14
37 11 9 3 5 5 3 51 38 26 19 15 15 15
38 12 7 4 8 6 3 52 42 32 19 16 16 15
39 12 11 5 8 8 4 53 42 32 20 16 16 16
40 19 5 5 11 5 5 54 39 42 24 36 34 16
41 17 14 6 12 10 6 55 39 48 27 39 38 16
42 17 14 7 1311 7 56 41 39 28 41 29 16
43 17 15 8 1713 7 57 61 56 29 42 23 17
44 19 17 9 1515 8 58 58 52 29 42 17 17
45 25 16 10 15 15 10 59 64 53 29 51 17
46 25 18 10 23 13 10 60 45 45 29 18
47 26 23 12 24 21 11 61 45 38 30 19

The complexities of the attacks that use the mentioned disturbance vectors
can be approximated by 23HW where HW is the Hamming weight of the dis-
turbance vector from round 20 and on (i.e., the value in the table). The exact
complexity may vary (between 227" to 24HW) by some factor which depends on
the exact functions (IF, MAJ, XOR) used, by the rounds where the disturbances
occur, and by a few additional details.

We can thus see that entries with up to about 26 Hamming weight predict
a collision with complexity (slightly) faster than the generic birthday attack (as
2326 = 278 < 280) 'We marked the location of this threshold by underlines. Ham-
ming weights much smaller than 26 predict much more practical complexities,
and as can be seen from the table, Hamming weights up to about 10 require only
a short computation on a personal computer (all the found collisions marked in
boldface were found within a few seconds of computation).

It is especially interesting to see the huge increase of the Hamming weight in
the case of NO-IF after 53 rounds, where the Hamming weight of 53 rounds is 16
and of 54 rounds is 36. Similarly in the two-block attack the Hamming weight is
17 for 58 rounds. Thus, we expect that one-block collisions of 53-round reduced
SHA-1 can be found with complexity about 2°, and two-block collisions of 58-
round SHA-1 can be found with complexity about 27° (this is a more accurate
approximation than 237" for this case), where the reduction is to the last 53
(respectively 58) rounds of SHA-1, but we have no hope according to the table
to find one-block collisions of 54-round reductions. In the case of the first rounds
of SHA-1, the maximal number of rounds according to the table is 51 using the
two-block technique, but the complexity of this attack would be only marginally
faster than the birthday attack (though much easier to parallelize).

56 E. Biham et al.

We are now working on improvements for further rounds, some of them are
by applications of the techniques described in this paper in more complex ways,
and some using new ideas. Note that the NC column is a lower bound for any
multiple-block attack, thus we see that there is still some hope for the attacker
to find better results.

In particular, we succeed to show that the NO-IF figures hold also for the
case of the first rounds of SHA-1 (starting with IF rounds) by using different
characteristic paths for the first rounds, but leaving the same input, output, and
message differences.

6 Summary

This paper presents various attacks on reduced versions of SHA-0 and SHA-1
along with various techniques for the analysis of hash functions. These tech-
niques, along with the neutral bit technique and other prior techniques, form
a set of tools that enable practical attacks on the full SHA-0, and reduces the
complexity of attacking SHA-1 reduced to 58 or fewer rounds to less than the
complexity of the birthday attack.

As this work is still in progress, we expect to further improve some of the
attacks presented in this paper, and to incorporate several new ideas that may
increase the total number of rounds that we can attack, such as three-block
attacks and attacks with more than three blocks. In particular, it is possible to
use the 53-round and the 58-round attacks on SHA-1 even against the first 53
and 58 rounds.

Finally we observe that a search for one-block near-collisions is easier than
search for one-block collisions, as when searching for near-collisions, there is no
need to fix the initial value of the compression function, but instead it is possible
to fix an intermediate value, and search backwards in the direction of the initial
value, and then forward for the output. In such a search, we found that the
number of neutral bits is much larger than in the regular case, thus allowing to
increase the number of rounds that we get for free from about 20-22 rounds to
about 30 rounds, thus decreasing the number of rounds that should be analyzed
by the probabilistic stage. Moreover, it is possible to select the 30 rounds to
be the 30 consecutive rounds with the lowest probability in the characteristic,
thus increasing the probability even further. For example, with such a technique

it is possible to find pseudo-collisions of the full SHA-O with probability about
2307233_

References

1. Eli Biham, Rafi Chen, Near-Collisions of SHA-0, Advances in Cryptology, proceed-
ings of CRYPTO 2004, LNCS 3152, pp. 290-305, Springer Verlag, 2004.

2. Florent Chabaud, Antoine Joux, Differential Collisions in SHA-0, Advanced in
Cryptology, proceedings of CRYPTO ’98, LNCS 1462, pp. 56—71, Springer Verlag,
1999.

Collisions of SHA-0 and Reduced SHA-1 57

. National Institute of Standards and Technologies, Secure Hash Standard, Federal
Information Processing Standards Publication, FIPS-180, May 1993.

. National Institute of Standards and Technologies, Secure Hash Standard, Federal
Information Processing Standards, Publication FIPS-180-1, April 1995.

. Ron Rivest, The MD/ Message-Digest Algorithm, Network Working Group, Request
for Comments:1186, October 1990.

. Ron Rivest, The MD5 Message-Digest Algorithm, Network Working Group, Request
for Comments:1321, April 1992.

. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu, Cryptanal-
ysis for Hash Functions MD/J and RIPEMD, these proceedings.

. Xiaoyun Wang, Hongbo Yu, How to Break MD5 and Other Hash Functions, these
proceedings.

. V. Rijmen, E. Oswald. Update on SHA-1. In RSA Crypto Track 2005, LNCS 3376,
2005.

Reducing Complexity Assumptions for
Statistically-Hiding Commitment

Iftach Haitner!*, Omer Horvitz®**, Jonathan Katz?***, Chiu-Yuen Koo?,
Ruggero Morselli?, and Ronen Shaltiel®

! Department of Computer Science, Weizmann Institute of Science
iftach.haitner@weizmann.ac.il
2 Department of Computer Science, University of Maryland
{horvitz, jkatz, cykoo, ruggero}@cs.umd.edu
3 Department of Computer Science, University of Haifa
ronen@cs.haifa.ac.il

Abstract. Determining the minimal assumptions needed to construct
various cryptographic building blocks has been a focal point of research in
theoretical cryptography. Here, we revisit the following question: what are
the minimal assumptions needed to construct statistically-hiding commit-
ment schemes? Previously, it was known how to construct such schemes
based on one-way permutations. We improve upon this by construct-
ing statistically-hiding commitment schemes based on approximable-pre-
image-size one-way functions. These are one-way functions for which
there is an efficient way to approximate the number of preimages of a
given output. A special case (for which we show a somewhat simpler
construction) is that of regular one-way functions where all outputs have
the same number of preimages.

We utilize two different approaches in constructing statistically-hiding
commitment schemes. Our first approach proceeds by showing that the
scheme of Naor et al. can be implemented using any one-way func-
tion having an output distribution which is “sufficiently similar” to uni-
form. We then construct one-way functions with this property from
approximable-preimage-size one-way functions. Our second approach be-
gins by constructing a commitment scheme which is statistically hiding
against an honest-but-curious receiver. We then demonstrate a compiler
which transforms any such commitment scheme into one which is sta-
tistically hiding even against a malicious receiver. This compiler and its
analysis may be of independent interest.

1 Introduction

A central focus of modern cryptography has been to investigate the weakest
possible assumptions under which various cryptographic primitives exist. This

* Research supported by U.S.-Israel Binational Science Foundation grant 2002246.
** Research supported by U.S. Army Research Office award DAAD19-01-1-0494.
*** Supported by NSF CAREER award 0447075.

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 58-77, 2005.
© International Association for Cryptologic Research 2005

Reducing Complexity Assumptions for Statistically-Hiding Commitment 59

direction of research has been quite fruitful, and minimal assumptions are known
for a wide variety of primitives: e.g., pseudorandom generators, pseudorandom
functions, symmetric-key encryption/message authentication, and digital signa-
tures [21, 12,13, 20,24, 26, 29]. In other cases, black-box separation results exist
which indicate the difficulty — if not impossibility — of constructing “strong”
cryptographic protocols (say, key-exchange) from “weak” building blocks (say,
one-way permutations; see [22]).

The above may give the impression that exact characterizations for all prim-
itives of interest (at least in terms of equivalent complexity-theoretic assump-
tions) are known; however, this is not the case. Questions that remain open (to
choose two examples) include the possibility of constructing efficient-prover non-
interactive zero-knowledge proofs [4] based on assumptions weaker than trapdoor
permutations [9], as well as determining whether constant-round ZK proofs exist
based only on the assumption of one-way functions (see [10-Chap. 4]).

Another key cryptographic primitive in which a weakest possible assump-
tion is not known is statistically-hiding commitment. Informally, a commitment
scheme defines a two-phase interactive protocol between a sender S and a re-
ceiver R; after the commitment phase, S is uniquely bound to (at most) one value
which is not yet revealed to R, and in the decommitment phase R finally learns
this value. The two security properties hinted at in this informal description are
known as binding (namely, that S is bound to at most one value after the com-
mitment phase) and hiding (namely, that R does not learn the value to which S
commits before the decommitment phase). In a statistically-hiding commitment
scheme the hiding property holds even against all-powerful receivers (i.e., hiding
holds information-theoretically), while the binding property is required to hold
only for computationally-bounded (say, polynomial-time) senders.

Statistically-hiding commitment schemes can be used as a building block
in constructions of statistical zero-knowledge arguments [6,25] or certain coin-
tossing protocols [2,23]. They are also advantageous when used within protocols
in which certain commitments are never revealed; in this case, it need only be
infeasible to violate the binding property during the period of time the protocol
is run, whereas the committed values will remain hidden forever (i.e., regardless
of how much time the receiver invests after completion of the protocol). Indeed,
this is part of the motivation for statistical zero-knowledge as well. For further
discussion, the reader is referred to [27, 28, 25].

Perfectly-hiding! commitment schemes were first shown to exist based on spe-
cific number-theoretic assumptions [6, 5] or, more generally, based on any collec-
tion of claw-free permutations [18] with an efficiently-recognizable index set [15]
(see [15] for a definition of a weaker variant of statistically-hiding commitment
which suffices for some applications and for which an efficiently-recognizable

! Very informally, in a statistically-hiding commitment scheme the receiver learns
only a negligible amount of information about the sender’s committed value,
whereas in a perfectly-hiding commitment scheme the receiver learns nothing. Note
that any perfectly-hiding scheme is also statistically-hiding.

60 1. Haitner et al.

index set is not needed). Naor, et al. [25], using techniques developed earlier
by Ostrovsky, et al. [27,28], later showed a construction of a perfectly-hiding
commitment scheme based on one-way permutations. Statistically-hiding com-
mitment schemes can also be constructed from collision-resistant hash functions
[8,19] (see [30] for minimal assumptions for the existence of the latter).

1.1 Our Results

We show how to construct a statistically-hiding commitment scheme given any
approzimable-preimage-size one-way function. Informally, this is a one-way func-
tion f satisfying the additional property that, given any y in the image of f,
the value | {x : f(z) = y}| (i.e., the number of points mapping to y) can be effi-
ciently estimated. An interesting special case, for which our construction may be
somewhat simplified, is that of regular one-way functions for which every point
in the image of f has the same number of preimages. (We still require that it
be feasible to approximate the number of preimages.) A variety of conjectured
one-way functions are regular; we refer the reader to [16] for examples.

We show two different approaches to constructing statistically-hiding com-
mitment schemes: the first is more direct and achieves better computational
efficiency, while the second achieves better round complexity (in fact, it achieves
round complexity identical to [25]). As part of our second approach, we show
a compiler transforming any commitment scheme which is statistically-hiding
against an honest-but-curious (a.k.a. semi-honest) receiver into one which is
statistically-hiding against an arbitrarily-malicious receiver. Since our compiler
requires only the existence of one-way functions, our result implies an equiva-
lence between the two formulations of the problem. (Due to space limitations
the details of our second approach do not appear in this version.)

Our results may be viewed as an example of the paradigm in which a se-
quence of works constructs a given primitive from ever-weaker assumptions;
e.g., in the cases of pseudorandom generators and universal one-way hash func-
tions/signature schemes (see [L0-Chap. 2] and [11-Chap. 6]), constructions were
first based on specific, number-theoretic assumptions [3, 18], and then the min-
imal assumptions were gradually reduced to trapdoor permutations [1] (in the
case of signatures), one-way permutations [17, 26], regular one-way functions [16,
31], and (finally) one-way functions [20, 29]. We hope our work will similarly serve
as a step toward resolving the question of the minimal assumptions required for
statistically-hiding commitment.

1.2 Overview of Our Techniques

Our constructions are based on the protocol of Naor et al. [25], which is shown
there to be perfectly hiding (as well as computationally binding) when applied
using a one-way permutation. It is natural to ask what happens when this pro-
tocol is applied using some other function f : {0,1}" — {0,1}*. We first ob-
serve that the main argument of [25] shows that the protocol is computationally
binding as long as f cannot be efficiently inverted with respect to the uniform

Reducing Complexity Assumptions for Statistically-Hiding Commitment 61

distribution U, (more formally, no efficient algorithm can compute f~*(y), for
uniformly-chosen y, with non-negligible probability). We call a function with
this property one-way over its range. Note that a function with this property is
not necessarily one-way.

As our first main technical result, we then show that the protocol of Naor et al.
is “somewhat hiding” when applied using a function f for which the distribution
f(Uy) is balanced. (By “somewhat hiding” we mean that the receiver cannot
guess the committed bit with probability better than some constant p < 1.
Such a protocol can be “amplified” using repetition to give a statistically-hiding
protocol.) Loosely speaking, a distribution over {0, 1}5 is balanced if it assigns
to “most” elements y € {0,1}* a probability that is close to 27¢ (say between
(99/100) - 2=¢ and (101/100) - 27¢). (In the precise definition we allow some
elements to have probability outside this range as long as both the number of
such elements and their total weight are small.)

The remainder of the paper is devoted to constructing functions that are
both balanced and one-way over their range.? Intuitively, both these proper-
ties require the output distribution f(U,) to be “somewhat similar” to uni-
form. While we do not know how to construct such a function given a general
one-way function, we show how to construct such functions given regular or
approximable-preimage-size one-way functions. We achieve this goal using poly-
wise independent hashing, inspired by [20,29]. More precisely, given a regular
one-way function f (the case of approximable-preimage-size one-way functions
is more complex), we define f'(h,x) = (h,h(f(z))) where h is selected from a
family of O(k)-wise independent hash functions (here, k is the security param-
eter). This hashing “smoothes” the output distribution, and we show that by
choosing the output length of h appropriately we obtain an f/ which is both
balanced and one-way over its range. Note that making the output length of h
“too small” makes f’ more balanced, but possibly no longer one-way over its
range (and vice versa); we use the fact that f is regular (and that the number
of preimages is known) when setting the output length of h. This is why our
approach does not extend for general one-way functions.

Due to space limitations, some proofs have been omitted or shortened.

2 Preliminaries

Throughout this paper, we let k denote the security parameter. If X; and X5 are
two distributions over a set X, their statistical difference (written SD(X1, X3))

is defined as: .
def
SD(X1, X2) = 5 ; |Prx, [z] — Prx,[z]].
xr

2 We remark that known constructions of “almost-everywhere one-to-one” one-way
functions [14], “almost one-to-one” one-way functions [10-Sect. 3.5], and the con-
structions of [20] do not suffice for our purposes.

62 1. Haitner et al.

Two distribution ensembles X; = {X; (k) }reny and Xo = {Xo(k) }ren have statis-
tical difference p (for p a function of k) if SD(X1(k), X2(k)) < p(k) for all k large
enough. If p is negligible, we say the ensembles are statistically indistinguishable.

For a function f : {0,1}" — {0, 1}*, we let image(f) et {f(z) |z e{0,1}"}.

2.1 Commitment Schemes

An interactive bit commitment scheme is defined via a triple of PPT algorithms
(S8, R1, R2). Looking ahead, S and R4 will interact during what is called a com-
mitment phase, while Ry will be used during the (non-interactive) decommitment
phase. More formally:

— S (the sender) is an interactive Turing machine (ITM) which receives as
initial input the security parameter 1% and a bit b. Following its interaction,
it outputs some information decom (the decommitment).

— Ry (the receiver) is an ITM which receives the security parameter 1% as
initial input. Following its interaction, it outputs some state information s.

— Ro (acting as a receiver, in the decommitment phase) is a deterministic
algorithm which receives as input state information s and a decommitment
decom; it outputs either a bit b or the distinguished value L.

Denote by (decom | s) « (S(1¥,b),R1(1%)) the experiment in which S and R4
interact (using the given inputs and uniformly random coins), and then S outputs
decom while R; outputs s. We make the following correctness requirement: for
all k, all b, and every pair (decom | s) that may be output by (S(1%,b), R1(1%)),
it is the case that Ry(s,decom) = b.

The security of a commitment scheme can be defined in two complementary
ways, protecting against either an all-powerful sender or an all-powerful receiver.
Since we are interested in the case of statistically-hiding commitment (i.e., the
latter case), we only provide the definition for this case.

Definition 1. Commitment scheme (S,R1,Rz2) is p-hiding (for p a function
of k) if the following holds: Given a deterministic ITM R, let view s() =1 (k)
denote the distribution on the view of R} when interacting with S(1%,b) (this
view simply consists of the sequence of messages it receives from §), where this
distribution is taken over the random coins of S. Then we require that for any
(even all-powerful) R} the ensembles {view sy r+)(k)} and {views1)rx)(k)}
have statistical difference at most p.

Note that in the above, considering a deterministic R} is without loss of gener-
ality. We say a scheme is statistically hiding if it is p-hiding for negligible p. A
0-hiding scheme is called perfectly hiding.
Definition 2. Commitment scheme (S,R1,R2) is computationally-binding if
the following is negligible for all ppT S*:

Ra(s,decom), R (s, decom’) €{0,1}

Pr| ((decom, decom’) | s)—(S*(1¥), R1(1%)): A Ra(s, decom) £ Ry(s, decom’) |

where the probability is taken over the random coins of both §* and R;.

Reducing Complexity Assumptions for Statistically-Hiding Commitment 63

Given the above, we now define a statistically-secure commitment scheme:

Definition 3. Commitment scheme (S,R1, R2) is p-secure (resp., statistically
secure, perfectly secure) if it is computationally binding and p-hiding (resp.,
statistically hiding, perfectly hiding).

2.2 One-Way Function Families and Variants

Let n,/ = poly(k) be poly-time computable and let F = {f, : {0,1}**) —
{0, 1} cn be a function family. We say F is one-way if the following hold:

— (efficiently computable) There exists a (deterministic) polynomial-time
algorithm E such that, for all k and all z € {0,1}"®) E(1*,2) = fi.(x).
— (one-way) For all ppT algorithms A, the following is negligible (in k):

Pr [fi(A(L", fi(2))) = fi(@)].

z+—{0,1}n(k)
We consider two additional properties of function families:

— F is r(k)-regular if for every k and every x € {0,1}"*) we have
{o' € {0. 13"V | fila') = fula)}] =2

and r(k) is poly-time computable.® In other words, for each z € {0,1}"(®)
there are exactly 2"(®) elements (including itself) which f, maps to the
same value.

— F is approximable-preimage-size if the function Dgz(y,k) def
Mog(|f; ' (y)|] is polynomial-time computable.*

For simplicity, we drop the explicit dependence on k£ when clear. Note that any
regular function family is also approximable-preimage-size.

2.3 Entropy Measures

Let U,, denote the uniform distribution over {0, 1}™. Given a function f : {0,1}" —
{0,1}*, we let f(U,,) denote the distribution over {0, 1}* induced by f operating
on the uniform distribution. Given a distribution D over some set X, the support
of D is defined to be the set {x € X|D(x) > 0}. For D a distribution over some
finite domain X, we use the following “measures” of entropy:

— The min-entropy of D is Huo (D) def minge x log(ﬁw)).

— The maz-entropy of D is Hypar (D) def maxg,e x log(Déx)).

3 Some previous definitions of regular functions do not require that r be poly-time
computable. However, we do not know how to extend our results to this case.

* Our constructions generalize to the case where 7(k) (resp., D#(y, k)) are not com-
puted precisely, but rather approximated to within an additive factor of O(log(k)).

64 1. Haitner et al.

e log(=m-7), where CP(D) o

— The Renyi entropy of D is Hs(D) TP(D)

> wex D(2)? is the collision probability of D.

We will be interested in distributions of the form D = f(U,) for f : {0,1}" —
{0,1}!. Note that if f is r-regular, then D is uniform over some subset of {0, 1}
and the above three measures coincide (and D has entropy ¢ =n — r).

2.4 Universal Hashing and an Extended Chernoff Bound

Let H = {Hj }ren be a sequence of function families, where each Hy, is a family
of functions mapping strings of length ¢(k) to strings of length v(k). We say Hy,
is an n(k)-universal hash family (following [7]) if for any distinct 21, ..., 2, €
{0,1}®) | and any v, ... Yn(k) €10, 1}°(F) we have:

Prym [h(z1) = y1 A~ Ah(z,) = y,] = 2700,

In this paper, it is convenient to assume that for every k, the size of Hj is a
power of two. This allows us to identify functions h € Hj with binary strings.
We use s(k) to denote the length of these strings.

We say that H is an n(k)-universal hash family if for every k, Hy, is an n(k)-
universal hash family and furthermore there is a polynomial time algorithm that
given 1%, 2 € {0,1}™® and a string h € {0,1}**) outputs h(z) (where h € Hy
is the function described by the string h € {0,1}*®). Tt is well-known that
there is a family of functions with this property for every choice of £ and v with
s(k) = O(n(k) - max(¢(k),v(k))).

The following Chernoff-like bound will be useful in our analysis:

Lemma 1. (Extended Chernoff Bound [32—Theorem 5]) Let X be the
sum of (any number of) n-wise independent random variables, each taking values
in the interval [0,1], such that E[X] = p. Then for any e < 1 for which n >
|e2pe 3] we have Pr[|X — u| > ep] < el n/3),

2.5 Interactive Hashing and the Construction of [25]

Interactive hashing was introduced by Ostrovsky, et al. [27,28], and used by
Naor, et al. [25] to construct a statistically-secure (actually, perfectly-secure)
commitment scheme based on any one-way permutation family. We review in-
teractive hashing, as well as the resulting commitment scheme, below. In what
follows, we let z - y denote >, z;y; mod 2 for z,y € {0,1}™.

Construction 4 (Interactive hashing). The protocol is defined by algorithms
S and R, where S begins with an m-bit value y (with m known to R), and
proceeds as follows:

1. The parties interact in m — 1 stages. In stage i (fori=1,....m—1), R
chooses r; € {0,1}™~% uniformly at random and sends the “query” q; =
07117, to S (in case R aborts, S simply takes g; to be some default value);
in response, S sends ¢; = q; - Y.

Reducing Complexity Assumptions for Statistically-Hiding Commitment 65

2. At the conclusion of the above, there are exactly two strings yo,y1 € {0, 1}™
satisfying the system of equations {q; - X = ¢;}i<i<m—1; let yo denote the
lexicographically smaller of the two. Both parties compute (yo,y1), and S
chooses v such that y = vy,.

We define the output of the protocol to be (yo,y1,v) for S and (yo,y1) for R.
We denote by TH(y) an execution of the interactive hashing protocol, where S
begins with input y.

The above was used in [25] to construct a perfectly-secure commitment scheme
based on one-way permutations via the following approach:

Construction 5. Let F = {f : {0,1}"*®) — {0,1}*®)} be a function fam-
ily. Commitment scheme (S,R1,Ra) is defined as follows: S(1¥,b) chooses x €
{0, 1Y% uniformly at random, computes y = fr(x), and then executes IH(y)
with Ry ; this protocol results in output (yo,y1,v) for S and (yo,y1) for Ri. The
commitment phase concludes by having S send v = v ® b to Ry. Finally, S
outputs decom = x while Rq outputs state s = (yo,y1,0)-

In the decommitment phase, Ra((yo,y1,0),x) proceeds as follows: if fi(x) =
Yo, output 0; if fr(x) =y1, output O ® 1; otherwise, output L.

It is relatively easy to observe that the above protocol is perfectly hiding if F
is a permutation family (regardless of whether F is one-way). The main result of
[25] was to prove that the above is computationally binding when F is a one-way
permutation family. In fact, careful examination of their proof shows the above
commitment scheme is computationally binding under a weaker condition on F;
it suffices for F to be what we call “one-way over its range”, defined as follows:

Definition 6. Let n,¢ = poly(k) be poly-time computable functions and let
F ={fr:{0,1}"*) — {0, 1}¥F) 1, oy be a function family. We say F is one-way
over its range if the following hold:

— (efficiently computable) There exists a (deterministic) polynomial-time
algorithm E such that, for all k and all z € {0, 1}"®) B(1*,2) = fi().
— (one-way over range) For all PPT A, the following is negligible (in k):
P A1, y)) = y).
P LAAGY) =
Theorem 1 (Implicit in [25]). If F is one-way over its range, then Construc-
tion 5 is computationally binding.

3 Statistical Hiding from Balanced Functions

In this section we define a notion of “balance” and show that if a function
family F is “sufficiently balanced” then Construction 5 yields a protocol that is
“somewhat hiding”. Roughly speaking, a distribution D on {0,1} is balanced
if D is “close” to uniform “most” of the time. A function f : {0,1}" — {0,1}*
is then defined to be balanced if the distribution f(U,,) is balanced. Formally:

66 1. Haitner et al.

Definition 7. Distribution D on {0, 1} is (o, §)-balanced if there is a set Bad C
{0,1}* such that:

1. |Bad| < - 2%
2. Pry_ply € Bad] < a.
3. For every yo ¢ Bad, |Pry<_D[y =] — 2—1e| < % (we will always have § < 1).

Function f : {0,1}" — {0,1}* is (a, 6)-balanced if the distribution f(U,,) is
(v, 6)-balanced. Function family F = {f, : {0,1}"*) — {0,1}*®)} is (a,d)-
balanced if, for all k large enough, fi is (a(k), d(k))-balanced.

Our main result of this section is the following:

Theorem 2. If F = {f;, : {0,1}**) — {0,1}*)} is an (o, §)-balanced function
family, then Construction 5 is p-hiding for p = 2a + § + ad.

Proof. Fix k large enough so that fi is (a(k),d(k))-balanced; from now on we
simply write f, «a,d, p without explicitly indicating their dependence on k. For a
given execution of the scheme, let 7 denote the initial transcript resulting from
the interactive hashing sub-protocol; thus, the view of R} consists of 7 and the
bit ¥ sent in the final round. Given a particular (deterministic) R}, we therefore

write Exp(b) Lof (7,0) « view(s(),) (cf. Definition 3) to denote the experiment
in which S chooses a uniform random tape and then executes the protocol with
R} using this random tape and the bit b, resulting in view (7,9) for R}. Below,
we define a “good” set of initial transcripts Good, and show that:

Claim. With probability at least 1 — (2 + d), we have 7 € Good.

Claim. The following holds for all 7* € Good and o* € {0,1}:

These claims suffice to prove the Theorem, since the statistical difference between
the view of R} when the sender commits to 0 (i.e., b = 0) and the view of R}
when the sender commits to 1 (i.e., b = 1) may be bounded as follows:

1

= Pr [(r,0) = (7%,9%)] — Pr [(r,0) = (7",0"

3 3 |) =) = P () = ()
1 * ~ Ak * * ~ A~k *

== Pr [r=7"] Pr [0=0%r=7"] — Pr [r=7"] Pr [0=0"|r=7"]
2 p Exp(0) Exp(0) Exp(1) Exp(1)

< Pr{r ¢ Good]+ - Y Prlr=r7| Pr [p=0"|r=7"]- Pr [6=0"|r=7"]
r(r = r[r=1 r [0=0"r=7"]— Pr [0=0%|r=T7

= 2 Exp(0) Exp(1)

7*€Good,v*

1 *
Soz(2—|—5)—|—§ Z Prir=7"1-0 < «2+490)+5,

7*€Good;v*

Reducing Complexity Assumptions for Statistically-Hiding Commitment 67

where we use the fact that Pregpg)[7 = 7°] = Pregp)[r = 7] for any 7%, since
the initial transcript 7 does not depend on b.

We proceed with the proof of the first claim by defining the set of good initial
transcripts. Let Bad C {0,1}* be the subset whose existence is guaranteed by
Definition 7 (using the fact that f is balanced). Recall that the initial transcript
7 defines two strings y,y7 € {0,1}* (cf. Construction 4). We say 7 € Good iff
v, y7 & Bad.

We first bound the probability that y, = y is in Bad (we are using here the
notation from Construction 5). Since f is (a, §)-balanced and since the value of
y depends only on the choices of the sender (who is assumed honest here), it
follows that this probability is at most «.

Next, we bound the probability that y, ¢ Bad but y; € Bad. Since f is
balanced, we have |Bad| < a2’. Now, since R} is deterministic, we have that
Y5 is uniquely determined by ¥,. Let ¢ be the function mapping the sender’s
chosen value y, to the second value y; resulting from the interactive hashing
protocol. Observe that if ¢(y) = 3/ then ¢(y') = y; this is because, for either
of these choices, the sender responds with the exact same answer to each of the
receiver’s queries during the interactive hashing sub-protocol. It follows that ¢

is a permutation. Letting MapToBad def ¢~ 1(Bad), we get:
Pr [yv ¢ Bad /\ ys € Bad] = Pry, € MapToBad \ Bad]

= Z Pr [yv = y*]

y* EMapToBad\Bad

< > (1+6)%

y* EMapToBad\Bad
using the definition of Bad. Continuing:

1 1
> (1+8)5; = [MapToBad \ Bad| - (1 +6);
y* EMapToBad\Bad

1
< |MapToBad| - (1 +5)?
<(1+0) -« (1)

(using the fact that |MapToBad| = |Bad|). It follows that 7 ¢ Good with proba-
bility at most (2 + §) - «, completing the proof of the first claim.

We proceed to prove the second claim. Let P(g) of Procio1yn[f(z) = g]. For
any 7% and any 9* € {0, 1} we have

Pr [0=0"|7=7%]= Pr v=0"@®b|71="17
Exp(b) Exp(b)
= Pr [y= Z: e {yi .yl
Exp(b)[y Yoean | ¥ € {yo »ui

_ P(yg:@b)
P(yg")+ P(y7")

68 1. Haitner et al.

If 7* € Good, then ¢ ,y] ¢ Bad and so P(yj), P(y]) lie in the range
[(1—8)27% (14 6)27¢). Tt follows that when 7* € Good the following holds for
any v* € {0,1}:
P(y§") — Pyl
Pr 0= i |7 =] — Pr o= o |7 =1 = Wi) — PLi)l
Exp(0) Exp(1) Plys") + Pyl

which proves the claim. This completes the proof of the Theorem 2.

4 Achieving Our Main Result: A Roadmap

We now outline our approach to constructing statistically-secure commitment
schemes based on assumptions weaker than one-way permutations. It follows
from Theorems 1 and 2 that if we can construct an (o, d)-balanced F that is
also one-way over its range, then we can construct a p-secure commitment scheme
for p = O(a +). For o and ¢ sufficiently-small constants we thus obtain a p-
secure commitment scheme for some constant p < 1. Using standard techniques,
we can then “amplify” this scheme to obtain a statistically-secure commitment
scheme. (Exact details of this amplification will appear in the full version.)

It remains to construct F with the desired properties. In Section 5 we show
how to construct such an F based on any regular one-way function family, while
in Section 6 we show how to base the construction on an approximable-preimage-
size one-way function family. These, in turn, yield statistically-secure commit-
ment schemes based on these assumptions. Altogether we conclude that:

Theorem 3 (Main Theorem). If there exists an approximable-preimage-size
one-way function family then there exists a statistically-secure commitment scheme.

5 Starting from Regular One-Way Functions

In this section we show a construction of statistically-secure commitment based
on any regular one-way function family. More concretely, given an r(k)-regular
one-way function family F, we show how to construct a balanced function F’
which is also one-way over its range. Note that n(k) —r(k) measures the entropy
of the output distribution of fi, and this holds for all the measures of entropy
defined in this paper.

Construction 8. Let F = {fx : {0,1}"®) — {0,1}¥")}, oy be a family of
functions, let t = t(k) be a function, and let ¢ > 0 be a constant. Let H = {Hy} be
a 3k-universal collection of hash families where each Hy, is a family of functions
mapping strings of length ((k) to strings of length t(k)—log(ck), and furthermore
|Hy| = 25 where s(k) = poly(k). Define:

F = { s Hiox {0,137 — Hy x {0, 1} el |
keN

such that fi.(h,x) = (h, h(fr(x))).

Reducing Complexity Assumptions for Statistically-Hiding Commitment 69

The main result of this section is the following.

Theorem 4. Let 0 < 0 < 1 be an arbitrary constant. Let F be an r(k)-reqular
one-way function family. Set t(k) = n(k) —r(k), c = 61n2/6%, and let F' be the
function family defined in Construction 8. Then F' is a (27%,8)-balanced and
one-way over its range.

5.1 Showing that F’ is Balanced

We begin by showing that F’ is (27%,4)-balanced. Preparing for the case of
approximable-preimage-size one-way function families, we prove a more general
statement here.

Lemma 2. Let ¢ > 61In2 be an arbitrary constant and k > 2 be an integer, and
set § = (61n2/c)Y/? and t > log(ck). Let H be a 3k-universal hash family map-
ping strings of length £ to strings of length t —log(ck), and let Z be a distribution
on {0,1}* with Hy(Z) > t. Then the distribution D = {(h,h(2))}he .z is
(2%, §)-balanced.

Note that it follows that F’ is (27%,d)-balanced, as the output distribution of
fx has min-entropy at least ¢(k) (in fact, exactly t(k)).

Proof. For any z € {0,1}¢ and y € {0,1}'718(¢k) " define the random variable

X, (over choice of h € H) to take the value 2" - Pry[z] if h(z) = y, and 0

otherwise. Note that X, , € [0, 1] since Z has min-entropy at least ¢. Let X, wef

2 ce{o1y¢ Xzy- For any z,y we have E[X] = Prpp[h(z) = y] - 2t . Prylz] =
2~ (t=log(ck)) . 9t . Pry (2] = ck - Pry[z]. It follows that

n® Ex,) =Y BIX.,) = ck.

Furthermore, since H is a 3k-universal hash family, the random variables {X, ,}
are 3k-wise independent. Thus, by Lemma 1, we have that (for any y)

Py ny - ck’ > 6016} < e lus?/3) L o=k 2)

Define ¢(h, y) def gt > oh(z)=y Prz[2], and Bad={(h,y):[¢(h, y) —ck|>dck}.
We show that, setting a = 27", the set Bad satisfies the three requirements
of Definition 7. (Note that the quantity 2¢ in the text of Definition 7 becomes
|H|-2t-1°8(¢k) in the current context.) Noting that ¢(h,y) = 2! Pr._z[h(2) = v,
observe that

Bad| = Z [H] - Px{(h,y) € Bad]

=2t

S 2t710g(ck) . |H| . 2716,

2! PrZ[h(z) =y] —ck

> 504

70 1. Haitner et al.

using Eq. (2) and the fact that, once h is chosen, X, = 2" - Pr,.z[h(z) = y].
This proves property 1.
We move on to property 2. We proceed as above except that now, for each

¢,z € {0,1}*, we define the binary random variable R, ¢ to be 2! - Pry[z] if

h(z) = h(€), and 0 otherwise. Again, R..¢ € [0,1]. Let Re © S, 1y R

For an arbitrary z € {0,1}*\ {¢} we have E[R, ¢] = 2~ (t71os(ck) . 9t . Pry[2] =
ck Pryz[z]; also Re ¢ = 2" Pry[€] with probability 1. It follows that

ZE R.¢] = ck + (2¢ — ck) Pri¢]

/ def

for any €. Note that ck < p/ < ck + 1. Furthermore, since H is a 3k-universal
hash family, the random variables {R, ¢} are (3k — 1)-wise independent. Thus,
by Lemma 1 we have

3 o,
Pr [|R£ = 45'1/} < e Bn 52/16] <9k)

where we use the fact that p/:6%e1/3 < (ck + 1)%0%e1/3 < 3k — 1 (recall
k > 2). We then derive:

o P () € Bad] = ;P;r[f] Pr H(b(h, h(€)) — ck‘ > 5ck}

<> prig] P “Rf - E[Rg}‘ > iéE[Rg]] <27k,

where the first inequality uses the stated bounds on y’ and the fact that, once h
is chosen, R¢ = 2'-Pr,. z[h(z) = h(£)], while the second inequality uses Eq. (3).
This gives property 2.

Property 3 holds, since for any (ho, yo) we have

#(ho, yo) .

Pr [(n9) = (hosyo)] = Prlh=hol- 3 Prle) = =y

(hy)=D z:ho(2)=yo

If (ho,yo) ¢ Bad, this probability is in the range (1 +) —-%5; as needed.

IH\Q

5.2 Showing that F’ is One-Way over Its Range

We now show that if the initial function family F is one-way, then the de-
rived function family F’ is one-way over its range. Preparing for the case of
approximable-preimage-size one-way function families, we once more prove a
more general statement here. For this purpose we define the following;:
Definition 9. Distribution D has (trenyi, tmaz)-entropy if (1) Ha(D) > trenyi,
and (2) Hpae(D) < tmas. Function f : {0,1}" — {0,1} has (tRenyis tmaz)-
entropy if the distribution f(Uy,) has (trenys, tmaz)-entropy. A function family

= {fr : {0,131 — {0,1}*®)} has (trenyis tmaz)-entropy if, for all k large
enough, fr has (trenyi(k), tmaz (k))-entropy.

Reducing Complexity Assumptions for Statistically-Hiding Commitment 71

Note that if f is a member of an r-regular function family then it has (¢, t)-
entropy for t = n — r. The following lemma shows that Construction 8, when
given a (trenyi, tmaz)-entropy family of one-way functions, produces a function
family which is one-way over its range.

Lemma 3. Let F = {f : {0,1}"(k) — {0,1}2(’“)} be a (trenyis tmax)-€Ntropy
one-way function family and let ¢ > 0 be a constant. Let t(k) be a function and
let m >0 be a constant such that tpyq. (k) —mlog(k) < t(k) < trenyi(k). Let F'
be the result of applying Construction 8 with F, t(-), and c. Then F' is one-way
over its range.

Note that it follows that F’ is one-way over its range by using the aforemen-
tioned observation that the regular function family F has (¢(k),t(k))-entropy.
We remark that the proof uses only the fact that H is 2-universal.

Proof. Let v(k) ef t(k) — log(ck). We start by proving that the Renyi-entropy
of the output of F’ is high. We then use this fact to show that F’ is one-way (in
the usual sense). Finally we derive that F’ is one-way over its range.

Claim. H(Uty Unii)) > s(k) + v(k) — L.
Proof.

CP(fr.(Usry: Un(iy))

- ¥

(h,y)E€image(fr)

2
P (R, 2) = (h
((h’,w) (Hki{o,l}”(k))[fk()x) (73/)])

2
1
= Z Z 225(k) Z wk{glr}n(k)[fk(l’) - Z]
y€{0,1}v(*) h€ Hy, z€h~1(y)
Continuing, we have:
CP(fUskys Unry))
2
1
=mm 2 X Z (HSD fw[z])
y€{0,1}v(k) he Hy z€h— :
1
T 2 2 Z
y€{0,1}v(k) h€H z1#zo€h—1(y)
(P @ =l P [=)
1 1 9s(k)
= 9s(k) CP(fe(Unay)) + 925 (k) Z 220(k) Z
ye{0,1}v() z1#22€{0,1}1(F)
P = . P =
~ (I%{O f}"(k)[fk(x) Zl] aj%{o,lr}”(’“)[fk(x) z2])

1 2
(Cp(fk(n(k))) + 2v(k)) = 9s(k)+v(k) "

<

72 1. Haitner et al.

Therefore Ho(fy(Us(ry: Un(r))) = —log(CP(f;,(Usk), Unrry))) = s(k) +v(k) — 1.
We now use the above claim to prove the one-wayness of F’.

Claim. F' is one-way (in the usual sense).

Proof. Let A’ be a PPT adversary attempting to invert F’ and let Expt,, (k)
denote the experiment “h « Hy;x « {0,1}"%); (h,y) = fi(h,2); (W, 2") «
A'(1% h,y)”. Let

def
Advar r (k) = PrlExpty (k) : fi(R,2") = (h,y)]. (4)
Now construct a PPT adversary A (attempting to invert F) as follows:

AR 2) /) z = fx(x) for some 2 € {0,1}™*) chosen at random.
Choose h € Hy, at random, and set y = h(z);
Run A’(1% h,y) and obtain output h’, 2’;
Output .

Note that the distribution over the inputs of A’ in the above experiment is
identical to the distribution over the inputs of A’ in Equation 4. For any k € N,
h € Hy and y € {0,1}**) such that Pr,_(o,13m0 [fr(h,z) = (h,y)] > 0 let:

det M0 cimage(fy) A h(2)=y {PTocqo1)n00 [fr(2) = 2]}
Pry (0,130 [fe(@, h) = (h,y)]

On(y)

Observe that:

def /
Ad k) = P —
va (k) x(_{o,l}n(k);Z:fg(x);x,%(m)[fk(m) =7l

> P @) =y Alhy) = (9] - 0,9).
h, A

We will make use of the following standard fact (proof in full version).

Claim. Let D be a distribution over some finite domain X such that Hy(D) > k

and let € be any positive constant, then there exists a set B C X such that the
"k

following hold: (1) Prp[B] < 4e, and (2) Vy ¢ B Prply] < :

Let ¢ % Adv a7 (k). Using the previous claims we have that there exists a
set Bad C (Hj, x {0,1}*(*)) such that:

3
1. Pr ¢(h,x) € Bad] < -
(h,x>~<Hkx{o,1}"t>[f’“<) I=3
32
2.V(h',y') ¢ Bad p c(hox) = (W y)] < ——-
(7)) ¢ Ba (h,m)H(Her{OJ}")[fk(@) = ’y)]—e2s<k>+v(k)

Moreover, by our choice of the probability of Bad the following holds,

[fi(h,2') = (h,y) /\(h,y) ¢ Bad] > =

ExptA/ (k) 2

Reducing Complexity Assumptions for Statistically-Hiding Commitment 73

Finally, by the definition of v(k) the following holds for any (h,y) ¢ Bad

b (y) > g2v(k) S € _ €
MY 3y Stmaa (k) = 32 (ck) - k™ — 32-c- kmil
Hence:
Advas(k) = > Pro [h(fi(@) =y A\(hy) = (b 9)] - 6,9)
(hg)gBad

g

> et 2 el @) =y Alhy) = ()

(h,9)¢Bad
- AW 2’y = (hoy) \(h.y) ¢ Bad]

32 c-kmtl ExptA/(k)
>__ & e___ &
T 32-c kmtl 2 64-c- kAt
Since Adv 4 7 (k) is negligible by assumption, it must be the case that Adva/ # (k)

is negligible as well and thus F’ is one way.

To finish the proof we show that F’ is one-way over its range.

Claim. F' is one-way over its range.

Proof. Consider any PPT algorithm A” inverting F’ “over its range”. The
advantage of A” (in this sense) is given by:

* def N,
Ad " = P ,h, - h,
vanz hHHk;ye{o SECH A//(lk,h,wm() =y)

- k)+v(k Z Z Pr[A” inverts (h,y)],

he€Hy ye{0,1}t(k)

where “A” inverts (h,y)” has the obvious meaning.
Consider now the advantage of A” in inverting F’ in the standard sense:
Adv 4rr def Pr [A” inverts (h, h(fi(z)))]

heHj,;x«—{0,1}7 (k)

. W ST S PrlA” inverts (h, h(fi(@)))]

heHy ze{0,1}n (k)

= W Z Z Pr [frx(z) = 2] - Pr[A” inverts (h, h(2))]

. k
he€Hy, inmage(fk)x {0,130

1 7
> S5 T tman () Z Z Z Pr[A” inverts (h, h(2))]

heHy, ycimage(h(fy)) zeh—1(y)
1 " s
2 QT () > >, Pr[A” inverts (h,y)]
h€Hy ye{0,1}v(k)

9s(k)+u(k) . Advyr 5
= 25(M)ttmaz (k) Advar g 2 c. mtl

74 1. Haitner et al.

Since Advar 7 is negligible (by the one-wayness of F'), Adv}y, z is negligible
as well. This completes the proof that F’ is one-way over its range.

6 Starting from Approximable-Preimage-Size One-Way
Functions

Given an approximable-preimage-size one-way function family we first use a re-
sult by Hastad et al. [20] to transform it into a one-way function family that
is “closer” to regular. From there we use the same construction of the previ-
ous section with a more careful analysis. The main result of this section is the
following:

Theorem 5. If there exists an approximable-preimage-size one-way function
family then for any 0 < § < 1 there exists a (0,0)-balanced function family
which is one-way over its range.

6.1 From Approximable to Dense

The following construction appeared in [20]:

Construction 10. Let F={f; : {0,1}"*) — {0,1}*®*) }, o bean approzimable-
preimage-size one-way function family and let H = {Hy} be a 2-universal col-
lection of hash families where each Hy is a family of functions mapping strings
of length n(k) to strings of length n(k), and furthermore |Hy| = 2°%) where
s(k) = poly(k). Define:

F= {fk L Hy, x {0,13"®) — Hy x {0, 1}l(k)+"(k)}keN

such that fi(h,z) = (fk(sc),h(x)l'..(bf(fk(m)’kHQ),O”f(DF(f’V(m)’kH”,h), where
h(x)1..m stands for the first m bits of h(x).

The following lemma, proven in [20-Lemma 5.2], shows that F is a family of
(s(k) +n(k) — 1, s(k) + n(k))-entropy one-way functions:

Lemma 4. F as defined in Construction 10 is one-way, and for all k € N,
Ha(fe(Usry, Unry)) > s(k) + n(k) — 1.

6.2 Starting from a Dense One-Way Function

Given an approximable-preimage-size one-way function family, we can transform
it using Lemma 4 into a one-way function family F that has (n(k) — 1, n(k))-
entropy. Intuitively, such a function is “close” to being 1-regular. The following
lemma shows how to use this property to construct a balanced function family
which is one-way over its range.

Reducing Complexity Assumptions for Statistically-Hiding Commitment 75

Lemma 5. Let F = {fy : {0,1}"*) — {0,1}*®) ey be an (n(k) — 1,n(k))-
entropy family of one-way functions, let ¢ > 241n2 be an arbitrary constant, let
§ = (241n2/c)'/? and let F' be the result of applying Construction 8 with F,
t(k) = n(k) — 1 —log(n(k)) and c. Then F' is (2% + 12/dn(k),§)-balanced as
well as one-way over its range.

Theorem 5 follows immediately.

Proof. (of Lemma 5) Note that since n(k) is polynomial in k, there exists a
constant m > 0 such that ¢(k) > n(k)—mlog(k). Hence by applying Lemma 3 we
have that 7’ is one-way on range. It is left to prove that F’ is (27 ¥ +12/0n(k), §)-
balanced. We use the following standard fact. The proof appears in the full
version.

Claim. Let D be a distribution over some finite domain X such that Hy(D) > k
then for every € > 0 there exists a distribution D’ over X such that Ho(D') >
k—log(t) and SD(D,D’) <

Since the Renyi-entropy of fi(n(k)) is at least (n(k) — 1), we have that
Jr(Un@y) is 1/n(k)-close to having min-entropy (n(k) — log(n(k)) — 1). We
now apply Lemma 2 and deduce that the output distribution of f;, that is
(ho h(f(Un(r)))), is 1/n(k)-close to a distribution that is (27%,§/2)-balanced.
The proof concludes by the following claim.

Claim. Let P’ be a distribution over {0, 1}¢ that is e-close to some distribution
P that is («,0)-balanced. Then, P’ is ((« + 6¢/9), 25)-balanced.

Proof. Let Bad be the set of bad elements for P. Let A be the set of elements
y & Bad such that | Prp/[y] — 1/2°| > 26/2°. Note that the set of bad elements
Bad’ of P’ is a subset of (Bad U A) and therefore it is enough to bound the size
and probability of this set. Note that since A[Bad = () we have that Vy € A
| Prply] — 1/2¢] < 6/2% and thus | Prp/[y] — Prply]| > §/2°. Thus SD(P', P) >
1]A]- /2% As the two distributions are e-close, it follows that 1|A|-§/2¢ < e or
equivalently that |A| < 2%f2. Therefore we have that

Pr[Bad’] < Pr[Bad U4 < >1[Bad] + Pr[A].
Since for all y € A we have Prp[y] < (14 5)/2Z7 it follows that

2 2
Pr(Bad’] < a+ [A|(1+6)/2' < a+ (1 +5)§ =a+2+ ?‘5

Hence: 6
PriBad] < a 425+ 2 + 2% —a+de+ 2 <at E,
P 5 5 5

To complete the proof we have to show that [Bad’| < (a+ %)2°. But [Bad'| <
Bad| + 4| < a2’ + 22 2 = (a+ 28)2°

76

1. Haitner et al.

Acknowledgments

We are grateful to Virgil Gligor, Oded Goldreich, Danny Harnik, Omer Rein-
gold, and Alon Rosen for helpful conversations. The third author thanks Yan
Zong Ding for reading a preliminary version of this manuscript and for his en-
couragement. We thank the anonymous referees for comments that improved the
presentation.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Bellare and S. Micali. How to sign given any trapdoor permutation. J. ACM,
39(1):214-233, 1992.

M. Blum. Coin flipping by phone. In IEEE COMPCOM, 1982.

M. Blum and S. Micali. How to generate cryptographically-strong sequences of
pseudorandom bits. STAM J. Computing, 13(4):850-864, 1984.

M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge.
SIAM J. Computing, 20(6):1084-1118, 1991.

J.F. Boyar, S.A. Kurtz, and M.W. Krentel. Discrete logarithm implementation of
perfect zero-knowledge blobs. Journal of Cryptology, 2(2):63-76, 1990.

G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
J. Computer and System Sciences, 37(2):156-189, 1988.

J.L. Carter and M.N. Wegman. Universal classes of hash functions. J. Computer
and System Sciences, 18(2):143-154, 1979.

I. Damgard, T. Pedersen, and B. Pfitzmann. On the existence of statistically-hiding
bit commitment and fail-stop signatures. In Crypto, 1993.

U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge
proofs under general assumptions. SIAM J. Computing, 29(1):1-28, 1999.

O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge Uni-
versity Press, 2001.

O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge
University Press, 2004.

O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of
random functions. In Crypto '84.

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792-807, 1986.

O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuckerman. Security
preserving amplification of hardness. In FOCS, 1990.

O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167-190, 1996.

O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom
generators. SIAM J. Computing, 22(6):1163-1175, 1993.

O. Goldreich and L.A. Levin. Hard-core predicates for any one-way function. In
STOC, 1989.

S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. on Computing, 17(2):281-308, 1988.
S. Halevi and S. Micali. Practical and provably-secure commitment schemes from
collision-free hashing. In Crypto, 1996.

J. Hastad, R. Impagliazzo, L.A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM J. Comput., 28(4):1364-1396, 1999.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Reducing Complexity Assumptions for Statistically-Hiding Commitment 7

R. Impagliazzo and M. Luby. One-way functions are essential for complexity-based
cryptography. In FOCS, 1989.

R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In STOC, 1989.

Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation.
Journal of Cryptology, 16(3):143-184, 2003.

M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151-158, 1991.

M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge
arguments for NP using any one-way permutation. J. Crypto., 11(2):87-108, 1998.
M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
application. In STOC, 1989.

R. Ostrovsky, R. Venkatesan, and M. Yung. Secure commitment against a powerful
adversary. In STACS, 1992.

R. Ostrovsky, R. Venkatesan, and M. Yung. Fair games against an all-powerful
adversary. In DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, volume 13, 1993.

J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOC, 1990.

A. Russel. Necessary and sufficient conditions for collision-free hashing. J. Cryp-
tology, 8(2):87-100, 1995.

A. De Santis and M. Yung. On the design of provably-secure cryptographic hash
functions. In Eurocrypt, 1990.

J.P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for appli-
cations with limited independence. SIAM J. Discrete Math., 8(2):223-250, 1995.

Smooth Projective Hashing and Two-Message
Oblivious Transfer

Yael Tauman Kalai

Massachusetts Institute of Technology™
taumanOmit.edu
http://www.mit.edu/~tauman

Abstract. We present a general framework for constructing two-message
oblivious transfer protocols using a modification of Cramer and Shoup’s
notion of smooth projective hashing (2002). Our framework is actually
an abstraction of the two-message oblivious transfer protocols of Naor
and Pinkas (2001) and Aiello et al. (2001), whose security is based on
the Decisional Diffie Hellman Assumption. In particular, we give two
new oblivious transfer protocols. The security of one is based on the
N’th-Residuosity Assumption, and the security of the other is based on
both the Quadratic Residuosity Assumption and the Extended Riemann
Hypothesis. Our security guarantees are not simulation based, and are
similar to those of previous constructions.

When using smooth projective hashing in this context, we must deal
with maliciously chosen smooth projective hash families. This raises new
technical difficulties, and in particular it is here that the Extended Rie-
mann Hypothesis comes into play.

1 Introduction

In [CS98], Cramer and Shoup introduced the first CCA2 secure encryption
scheme, whose security is based on the Decisional Diffie Hellman (DDH) As-
sumption. They later presented an abstraction of this scheme based on a new
notion which they called “smooth projective hashing” [CS02]. This abstrac-
tion yielded new CCA2 secure encryption schemes whose security is based on
the Quadratic Residuosity Assumption or on the N’th Residuosity Assumption
[Pa99].! This notion of smooth projective hashing was then used by Genarro
and Lindell [GLO03] in the context of key generation from humanly memoriz-
able passwords. Analogously, their work generalizes an earlier protocol for this
problem [KOY01], whose security is also based on the DDH Assumption.

In this paper, we use smooth projective hashing to construct efficient two-
message oblivious transfer protocols. Our work follows the above pattern, in that

* Supported in part by NSF CyberTrust grant CNS-0430450.
! The N’th Residuosity Assumption is also referred to in the literature as the Deci-
sional Composite Residuosity Assumption and as Paillier’s Assumption.

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 78-95, 2005.
© International Association for Cryptologic Research 2005

Smooth Projective Hashing and Two-Message Oblivious Transfer 79

it generalizes earlier protocols for this problem [NP01, ATR01] whose security is
based on the DDH assumption. Interestingly, using smooth projective hashing
in this context raises a new issue. Specifically, we must deal with maliciously
chosen smooth projective hash families. This issue did not arise in the previous
two applications because these were either in the public key model or in the
common reference string model.

1.1 Oblivious Transfer

Oblivious transfer is a protocol between a sender, holding two strings -y and
1, and a receiver holding a choice bit b. At the end of the protocol the receiver
should learn the string of his choice (i.e., v,) but learn nothing about the other
string. The sender, on the other hand, should learn nothing about the receiver’s
choice 0.

Oblivious transfer, first introduced by Rabin [Rab81], is a central primitive
in modern cryptography. It serves as the basis of a wide range of cryptographic
tasks. Most notably, any secure multi-party computation can be based on a
secure oblivious transfer protocol [Y86, GMW87, Kil88]. Oblivious transfer has
been studied in several variants, all of which have been shown to be equivalent.
The variant considered in this paper is the one by Even, Goldreich and Lempel
[EGL85] (a.k.a. 1-out-of-2 oblivious transfer), shown to be equivalent to Rabin’s
original definition by Crépeau [Cre87].

The study of oblivious transfer has been motivated by both theoretical and
practical considerations. On the theoretical side, much work has been devoted
to the understanding of the hardness assumptions required to guarantee obliv-
ious transfer. In this context, it is important to note that known construc-
tions for oblivious transfer are based on relatively strong computational as-
sumptions — either specific assumptions such as factoring or Diffie Hellman
(cf. [Rab81, BM89,NP01, ATR01]) or generic assumption such as the existence
of enhanced trapdoor permutations (cf. [EGL85, Gol04, Hai04]). Unfortunately,
oblivious transfer cannot be reduced in a black box manner to presumably weaker
primitives such as one-way functions [IR89]. On the practical side, research has
been motivated by the fact oblivious transfer is considered to be the main bottle-
neck with respect to the amount of computation required by secure multiparty
protocols. This makes the construction of efficient protocols for oblivious transfer
a well-motivated task.

In particular, constructing round-efficient oblivious transfer protocols is an
important task. Indeed, [NPO1] (in Protocol 4.1) and [AIR01] independently
constructed a two-message (1-round) oblivious transfer protocol based on the
DDH Assumption (with weaker security guarantees than the simulation based
security). Their work was the starting point of our work.

1.2 Smooth Projective Hashing

Smooth projective hashing is a beautiful notion introduced by Cramer and Shoup
[CS02]. To define this notion they rely on the existence of a set X (actually a

80 Y.T. Kalai

distribution on sets), and an underlying A'P-language L C X (with an associ-
ated N'P-relation R). The basic hardness assumption is that it is infeasible to
distinguish between a random element in L and a random element in X \ L. This
is called a hard subset membership problem.

A smooth projective hash family is a family of hash functions that operate on
the set X. Each function in the family has two keys associated with it: a hash
key k, and a projection key «(k). The first requirement (which is the standard
requirement of a hash family) is that given a hash key k and an element = in
the domain X, one can compute Hy(z). There are two additional requirements:
the “projection requirement” and the “smoothness requirement.”

The “projection requirement” is that given a projection key a(k) and an
element in x € L, the value of Hi(x) is uniquely determined. Moreover, com-
puting H(x) can be done efficiently, given the projection key a(k) and a pair
(z,w) € R. The “smoothness requirement,” on the other hand, is that given a
random projection key s = a(k) and any element in « € X \ L, the value Hy(x)
is statistically indistinguishable from random.

1.3 Our Results

We present a methodology for constructing a two-message oblivious transfer pro-
tocol from any (modification of a) smooth projective hash family. In particular,
we show how the previously known (DDH based) protocols of [NP01, ATR01] can
be viewed as a special case of this methodology. Moreover, we show that this
methodology gives rise to two new oblivious transfer protocols; one based on the
N’th Residuosity Assumption, and the other based on the Quadratic Residuosity
Assumption along with the Extended Riemann Hypothesis.

Our protocols, similarly to the protocols of [NP0O1, ATR01], are not known
to be secure according to the traditional simulation based definition. Yet, they
have the advantage of providing a certain level of security even against malicious
adversaries without having to compromise on efficiency (see Section 3 for further
discussion on the guaranteed level of security).

The basic idea. Given a smooth projective hash family for a hard subset mem-
bership problem (which generates pairs X, L according to some distribution),
consider the following two-message protocol for semi-honest oblivious transfer.
Recall that the sender’s input is a pair of strings 7o, y1 and the receiver’s input
is a choice bit b.

R — S: Choose a pair X, L (with an associated N P-relation Rj) according
to the specified distribution. Randomly generate a triplet (zg, z1,w,) where
zy €r L, (mb,wb) € Rp,and z1_p € X \ L. Send (X, ,To,ail).

S — R: Choose independently two random keys ko, k; for H and send (ko)
and (k) along with yo = v ® Hy,(x0) and y1 = v1 & Hy, (z1).

R: Retrieve v, by computing y, & Hy, (xp), using the witness w;, and the pro-
jection key a(ky).

The security of the receiver is implied by the hardness of the subset mem-
bership problem on X. Specifically, guessing the value of b is equivalent to dis-

Smooth Projective Hashing and Two-Message Oblivious Transfer 81

tinguishing between a random element in L and a random element in X \ L.
The security of the sender is implied by the smoothness property of the hash
family H. Specifically, given a random projection key a(k) and any element in
x € X \ L, the value Hy(x) is statistically indistinguishable from random. Thus,
the message y1_p gives no information about v, (since x1_, € X \ L). Note
that the functionality of the protocol is implied by the projection property.

Technical difficulty. Notice that when considering malicious receivers, the se-
curity of the sender is no longer guaranteed. The reason is that there is no
guarantee that the receiver will choose x1_, € X \ L. A malicious receiver might
choose xg,r1 € L and learn both values. To overcome this problem, we extend
the notion of a hard subset membership problem so that it is possible to verify
that at least one of xq, 21 belongs to X \ L. This should work even if the set X
is maliciously chosen by the receiver.

It turns out that implementing this extended notion in the context of the
DDH assumption is straightforward [NP0O1, ATR01]. Loosely speaking, in this
case X is generated by choosing a random prime p, and choosing two random
elements go, g1 in Z, of some prime order q. The resulting set X is defined
by X £ {(g,°,97") : 70,71 € Z4}, the corresponding language L is defined by
L 2 {(g5,97) : v € Zy}, and the witness of each element (gj,g%) € L is its
discrete logarithm r. In order to enable the sender to verify that two elements
o, r1 are not both in L, we instruct the receiver to generate xg,x1 by choosing
at random two distinct elements ro, r1 € Z,, setting z, = (g(°, 91°), wp = ro, and
z1-p = (90°, 91")- Notice that x, is uniformly distributed in L, z1_; is uniformly
distributed in X \ L, and the sender can easily check that it is not the case
that both x¢ and z; are in L by merely checking that they agree on their first
coordinate and differ on their second coordinate.

Implementing this verifiability property in the context of the N’th Residuos-
ity Assumption and the Quadratic Residuosity Assumption is not as easy. This
part contains the bulk of technical difficulties of this work. In particular, this
is where the Extended Riemann Hypothesis comes into play in the context of
Quadratic Residuosity.

2 Smooth Projective Hash Functions

Our definition of smooth projective hashing differs from its original definition in
[CS02]. The main difference (from both [CS02] and [GLO03]) is in the definition
of the smoothness requirement, which we relax to Y -smoothness, and in the
definition of a subset membership problem, where we incorporate an additional
requirement called Y -verifiability.

Notation. The security parameter is denoted by n. For a distribution D, x < D
denotes the action of choosing x according to D, and x € support(D) means that
the distribution D samples the value x with positive probability. We denote by
x €r S the action of uniformly choosing an element from the set .S. For any two

82 Y.T. Kalai

random variables X, Y, we say that X and Y are e-close if Dist(X,Y) < ¢, where
Dist(X,Y) denotes the statistical difference between X and V.2 We say that the
ensembles { X, }nen and {Y}, },, e are statistically indistinguishable if there exists
a negligible function e(-) such that for every n € N, the random variables X,
and Y,, are e(n)-close.® Recall that a function v : N — N is said to be negligible
if for every polynomial p(-) and for every large enough n, v(n) < 1/p(n).

Hard subset membership problems. A subset membership problem M
specifies a collection {1, },en of distributions, where for every n, I,, is a probabil-
ity distribution over instance descriptions. Each instance description A specifies
two finite non-empty sets X, W C {0, 1}°¥(") and an NP-relation R C X x W,
such that the corresponding language L = {x : 3w s.t. (z,w) € R} is non-empty.
For every z € X and w € W, if (z,w) € R, we say that w is a witness for z. We
use the following notation throughout the paper: for any instance description A
we let X (A), W(A), R(A) and L(A) denote the sets specified by A.

Loosely speaking, subset membership problem M = {I,, } en is said to be
hard if for a random instance description A « I, it is hard to distinguish
random members of L(A) from random non-members.

Definition 1 (Hard subset membership problem). Let M = {I,},en be
a subset membership problem as above. We say that M is hard if the ensem-
bles { Ay, 22} hen and {An, 2k }nen are computationally indistinguishable, where
Ay — I, 29 €g L(A,), and 2}, €r X (A,) \ L(A,).2

Projective hash family. We next present the notion of a projective hash
family with respect to a hard subset membership problem M = {I,},en. Let
H = {H }kex be a collection of hash functions. K, referred to as the key space,
consists of a set of keys such that for each instance description A € M,? there
is a subset of keys K(A) C K corresponding to A. For every A and for every
k € K(A), Hy is a hash function from X (A) to G(A), where G(A) is some finite
non-empty set. We denote by G' = | ,cp G(A). We define a projection key func-
tion a : K — S, where S is the space of projection keys. Informally, a family
(H, K, S, a,G) is a projective hash family for M if for every instance description
A € M and for every © € L(A), the projection key s = a(k) uniquely deter-
mines Hy(x). (We stress that the projection key s = a(k) is only guaranteed to
determine Hy(z) for x € L(A), and nothing is guaranteed for z € X (A)\ L(A).)

? Recall that Dist(X,Y) £ L3 _o|Pr[X = s] — Pr[Y = s]|, or equivalently,
Dist(X,Y) & maxgcg |Pr[X € S'] — Pr[Y € §’]|, where S is any set that con-
tains the support of both X and Y.

3 For simplicity, throughout this paper we say that two random variables X, and
Y. are statistically indistinguishable, meaning that the corresponding distribution
ensembles { X, }nen and {Y;, }nen are statistically indistinguishable.

4 Note that this hardness requirement also implies that it is hard to distinguish be-
tween a random element = €g L(A) and a random element x €r X (A). We will use
this fact in the proof of Theorem 1.

® We abuse notation and let A € M denote the fact that A € support(I,) for some n.

Smooth Projective Hashing and Two-Message Oblivious Transfer 83

Definition 2 (Projective hash family). (H, K, S, a,G) is a projective hash
family for a subset membership problem M if for every instance description
A € M there is a well defined (not necessarily efficient) function f such that for
every x € L(A) and every k € K(A), f(z,a(k)) = Hy(z).

Efficient projective hash family. We say that a projective hash family is
efficient if there exist polynomial time algorithms for: (1) Sampling a key k €
K(A) given A; (2) Computing a projection a(k) from A and k € K(A); (3)
Computing Hy(x) from A, k € K(A) and x € X(A); and (4) Computing Hy(x)
from A, (z,w) € R(A) and «a(k), where k € K(A). Notice that this gives two
ways to compute Hy(x): either by knowing the hash key k, or by knowing the
projection key a(k) and a witness w for x.

Y-smooth projective hash family. Let Y be any function from instance de-
scriptions A € M to subsets Y (A4) C X (A)\ L(A). Loosely speaking, a projective
hash family for M is Y-smooth if for every instance description A = (X, W, R),
for every x € Y(A), and for a random k €r K(A), the projection key «(k)
reveals (almost) nothing about Hy(z).

Definition 3 (Y-smooth projective hash family). A projective hash family
(H, K, S, a,G) for a subset membership problem M is said to be Y-smooth if for
every (even maliciously chosen) instance description A = (X, W, R) and every
x € Y(A), the random wvariables (a(k), Hip(x)) and (a(k),g) are statistically
indistinguishable, where k € K(A) and g €r G(A).°

A Y-smooth projective hash family thus has the property that a projection of a
(random) key enables the computation of Hy(z) for = € L, but gives almost no
information about the value of Hy(z) for x € Y(A).

Remark. This definition of Y-smooth projective hash family differs from the
original definition proposed in [CS02] in two ways. First, it requires the smooth-
ness property to hold against maliciously chosen instance descriptions A, whereas
in [CS02] the smoothness is only with respect to A € M. Second, it requires the
smoothness property to hold with respect to every « € Y, whereas in [CS02] the
smoothness condition is required to hold for randomly chosen z €z X \ L.

The main reason for our divergence from the original definition in [CS02]
is that we need to cope with maliciously chosen A. We would like to set Y =
X \ L (as in [CS02]), and construct a (X \ L)-smooth projective hash fam-
ily. However, we do not know how to construct such a family, for which the
smoothness condition holds for every (even maliciously chosen) A.” Therefore,
we relax our smoothness requirement and require only Y-smoothness, for some

6 We assume throughout this paper, without loss of generality, that a (maliciously
chosen) A has the same structure as an honestly chosen A.

" We note that [CS02, GL03] did not deal with maliciously chosen A’s, and indeed the
smoothness property of their constructions does not hold for maliciously chosen A’s.

84 Y.T. Kalai

Y C X\ L. In both our constructions of Y-smooth projective hash families,
Y (A) € X(A)\ L(A) for maliciously chosen A ¢ M, and Y (A4) = X (A)\ L(A) for
every honestly chosen A € M. Jumping ahead, the latter will enable the (honest)
receiver to choose xp €r L(A), z1-p €r X(A) \ L(A) such that z1_; is also in
Y (A). This will enable the (honest) sender to be convinced of its security by
checking that either zg or x; is in Y (A4), and it will enable the (honest) receiver
to be convinced that a (dishonest) sender cannot guess the bit b, assuming the
underlying subset membership problem is hard. (From now on the reader should
think of Y'(A4) as equal to X (A) \ L(A) for every A € M.)

Thus, we need a subset membership problem M such that for every honestly
chosen A € M it is easy to sample uniformly from both L(A) and X (A4) \ L(A).
On the other hand, for every (even maliciously chosen) (A, xg,x1) it is easy to
verify that either zo € Y (A) or 21 € Y(A). To this end we define the notion of
a “Y-verifiably samplable” subset membership problem.

Definition 4 (Y-verifiably samplable subset membership problem). A
subset membership problem M = {I,,}nen s said to be Y-verifiably samplable if
the following conditions hold.

1. Problem samplability: There exists a probabilistic polynomial-time algorithm
that on input 1™, samples an instance A = (X, W, R) according to I,,.

2. Member samplability: There exists a probabilistic polynomial-time algorithm
that on input an instance description A = (X, W, R) € M, outputs an ele-
ment x € L together with its witness w € W, such that the distribution of x
18 statistically close to uniform on L.

3. Non-member samplability: There exists a probabilistic polynomial-time al-
gorithm A that given an instance description A = (X,W,R) € M and an
element o € X, outputs an element x1 = A(A, xo), such that if xo €Eg L
then the distribution of x; is statistically close to uniform on X \ L, and if
xg €r X then the distribution of x1 is statistically close to uniform on X.

4. Y-Verifiability: There exists a probabilistic polynomial-time algorithm B, that
given any triplet (A, xo,x1), verifies that there exists a bit b such that x €
Y (A). This should hold even if A is maliciously chosen. Specifically:

— For every A and every xg,x1, if both xg & Y (A) and 1 € Y (A) then
B(A, Zo, 1‘1) =0.

— For every honestly chosen A € M and every xg,x1, if there exists b such
that xp € L(A) and x1_p, € support(A(A,zp)), then B(A, xo,z1) = 1.

For simplicity, throughout the paper we do not distinguish between uniform
and statistically close to uniform distributions. This is inconsequential.

3 Security of Oblivious Transfer

Our definition of oblivious transfer is similar to the ones considered in previous
works on oblivious transfer in the Bounded Storage Model [DHRS04, CCM98].

Smooth Projective Hashing and Two-Message Oblivious Transfer 85

A similar (somewhat weaker) definition was also used in [NP01] in the context
of their DDH based two message oblivious transfer protocol.

In what follows we let viewg(g(z), R(b)) denote the view of a cheating sender
S(z) after interacting with R(b). This view consists of its input z, its random
coin tosses, and the messages that it received from R(b) during the interaction.
Similarly, we let view(S(v0,71), R(z)) denote the view of a cheating Receiver
R(z) after interacting with S(yo, 1)

Definition 5 (Secure implementation of Oblivious Transfer). A two party
protocol (S, R) is said to securely implement oblivious transfer if it is a protocol in
which both the sender and the receiver are probabilistic polynomial time machines
that get as input a security parameter n in unary representation. Moreover, the
sender gets as input two strings vo,v1 € {0, 1}‘3(”), the receiver gets as input a
choice bit b € {0,1}, and the following conditions are satisfied:

— Functionality: If the sender and the receiver follow the protocol then for any
security parameter n, any two input strings yo,v1 € {0, 1}5(" , and any bit
b, the receiver outputs 7y, whereas the sender outputs nothing.®

- Recelver s security: For any probabilistic polynomial-time adversary S, exe-
cuting the sender’s part, for any security parameter n, and for any auxiliary
input z of size polynomial in n, the view that S'(z) sees when the receiver
tries to obtain the first message is computationally indistinguishable from the
view it sees when the receiver tries to obtain the second message. That is,

{viewg(S(2), R(1™,0))} .. = {viewg(S(2), R(1™,1))}n..

— Sender’s security: For any deterministic (not necessarily polynomial-time)
adversary R executing the receiver’s part, for any security parameter n, for
any auziliary input z of size polynomial in n, and for any vo, 71 € {0 1}2("
there exists a bit b such that for every ¢ € {0 1}‘}(”) the view of R(z) when
interacting with S(1™,v,v), and the view of R(z) when interacting with
S(1™,70,71), are statistically indistinguishable.® That is,

{view(S(1",70,7), R(2) .= = {viewy (S, 7, 9), R(2)) bny e

Note that Definition 5 (similarly to the definitions in [DHRS04, NPO01]) de-
parts from the traditional, simulation based, definition in that it handles the
security of the sender and of the receiver separately. This results in a some-
what weaker security guarantee, with the main drawback being that neither the
sender nor the receiver are actually guaranteed to “know” their own input. (This
is unavoidable in two message protocols using “standard” techniques).

It is easy to show that Definition 5 implies simulatability for semi honest
adversaries (the proof is omitted due to lack of space). More importantly, Defini-
tion 5 also gives meaningful security guarantees in face of malicious participants.

8 This condition is also referred to as the completeness condition.
® We abuse notation by letting S(1™,vs,1) denote S(1™,70,%) if b = 0, and letting it
denote S(1™,1,v1) if b = 1.

86 Y.T. Kalai

In the case of a malicious sender, the guarantee is that the damage incurred by
malicious participation is limited to “replacing” the input strings 7,71 with a
pair of strings that are somewhat “related” to the receiver’s first message (with-
out actually learning anything about the receiver’s choice). In the case of a mali-
cious receiver, Definition 5 can be shown to provide exponential time simulation
of the receiver’s view of the interaction (similarly to the definition of [NP01]). In
particular, the interaction gives no information to an unbounded receiver beyond
the value of 7;. (Again, the proof is omitted due to lack of space.)

4 Constructing 2-Round OT Protocols

Let M = {I,}nen be a hard subset membership problem which is Y-verifiably
samplable, and let (H, K, S, «,G) be a an efficient Y-smooth projective hash
family for M . Recall that the Y-verifiably samplable condition of M implies
the existence of algorithms A4 and B as described in Section 2.

We assume for simplicity that for any n and for any A € I,,, G(A) = {0, 1}¢("),
and that the two messages 7, v1, to be transferred in the OT protocol, are binary
strings of length at most £(n). Let n be the security parameter. Let (yo,7v1) be
the input of the sender and let b € {0, 1} be the input of the receiver.

R — S: The receiver chooses a random instance description A = (X, W, R) «
I,,. It then samples a random element x, €r L together with its corre-
sponding witness wy, using the member samplability algorithm, and invokes
Algorithm A on input (A, x3) to obtain a random element z1_, € X \ L. It
sends (A, xg, z1).

S — R: The sender invokes algorithm B on input (A, zo, 1) to verify that there
exists a bit b such that x;_, € Y(A). If B outputs 0 then it aborts, and if
B outputs 1 then it chooses independently at random ko, k1 € K(A), and
sends a(ko) and «a(k;) along with yo = v @ Hy, (20) and y1 = 1 & Hy, (21).

R: The receiver retrieves ~y, by computing y, @ Hy,(x,) using the projection
key a(kp) and the pair (zp, wp).

We next prove that the above protocol is secure according to Definition 5.
Intuitively, the receiver’s security follows from the fact that z;, is uniformly
distributed in L, 1 _p is uniformly distributed in X \ L, and from the assumption
that it is hard to distinguish random L elements from random X \ L elements.
The sender’s security follows from the assumption that (H, K, S,«,G) is a Y-
smooth projective hash family for M, and from the assumption that one of xg
or x1 is in Y(A) (otherwise, it will be detected by B and the sender will abort).

Theorem 1. The above 2-round OT protocol is secure according Definition 5,
assuming M is a Y -verifiably samplable hard subset membership problem, and
assuming (H, K, S, a, G) is a Y -smooth projective hash family for M.

Proof. we start by proving the receiver’s security. Assume for the sake of con-
tradiction that there exists a (malicious) probabilistic polynomial-time sender S

Smooth Projective Hashing and Two-Message Oblivious Transfer 87

such that for infinitely many n’s there exists a polynomial size auxiliary input
2, such that S(z,) can predict (with non-negligible advantage) the choice bit b
when interacting with R(1,b). In what follows, we use S(z,) to break the hard-
ness of M, by distinguishing between = € L and = €z X. Given an instance
description A = (X, W, R) < (I,,) and an element = € X:

1. Choose at random a bit b and let 2, = x

2. Apply algorithm A on input (4, x3) to obtain an element x1 .

3. Feed S(z,) the message (A, zo,x1), and obtain its prediction bit b'.
4. If v/ = b then predict “z €g L” and if b’ # b then predict “x € L.”

Notice that if 2, €r L then S(z,) will predict the bit b with non-negligible
advantage (follows from our contradiction assumption). On the other hand, if
xp €r X then xq_y is also uniformly distributed in X. In this case it is impossible
(information theoretically) to predict b.

We now turn to prove the sender’s security. Let R be any (not necessarily
polynomial time) malicious receiver, and for any n € N, let z, be any polynomial
size auxiliary information given to R. Let (A, xo, z1) be the first message sent by
R(zn) Our goal is to show that for every n € N and for every v, v1 € {0, 1}¢("),
there exists b € {0, 1} such that the random variables view 5 (S(1",v0,71), R(z,))

and view 5 (S(1™, m, 1), R(zy)) are statistically indistinguishable.

We assume without loss of generality that either xg € Y(A,,) or z1 € Y(A,,).
If this is not the case, the sender aborts the execution and b can be set to either 0
or 1. Let b be the bit satisfying z1_j, € Y (4,,). By the Y-smoothness property of
the hash family, the random variables (a(k), Hx(z1-3)) and (a(k), g) are statis-
tically indistinguishable, for a random k €p K(A,,) and a random g €g G(4,).
This implies that the random variables (a(k),y1-p ® Hg(z1-p)) and (a(k), g)
are statistically indistinguishable, which implies that view s (S(1™,70,71), R(2))

and view;(S(1", 1, %), R(z)) are statistically indistinguishable.

5 Constructing Smooth Projective Hash Families

We next present two constructions of Y-smooth projective hash families for hard
subset membership problems which are Y -verifiably samplable. One based on the
N’th Residuosity Assumption, and the other based on the Quadratic-Residuosity
Assumption together with the Extended Reimann Hypothesis. A key vehicle in
both constructions is the notion of an (e, Y)-universal projective hash family.

Definition 6 (Universal projective hash families). Let M = {I,,},en be
any hard subset membership problem. A projective hash family (H, K, S, a, G)
for M is said to be (e,Y)-universal if for every n, every (maliciously chosen) A
corresponding to the security parameter n, every x € Y (A) and every g € G(A),

Pricpr[Hi(x) = g | (k)] < €(n).

As shown in [CS02], it is possible to reduce the error rate in a (e, Y)-universal
projective hash family from € to €' (via independent repetitions). Once the error

88 Y.T. Kalai

rate is reduced to be a negligible function €!, it is possible to transform the
(¢!, Y)-universal projective hash family into a Y-smooth projective hash family
by applying the Leftover Hash Lemma. Both transformations preserve efficiency
(up to polynomial factors). Due to lack of space we omit the details of these
transformations, and we refer the interested reader to [CS02].

We conclude that it suffices to construct subset membership problems which
are Y-verifiably samplable and for which there exists an efficient (%, Y')-universal
projective hash family. In the remaining of this paper we present two such con-
structions — the first based on the N’th Residuosity Assumption, and the second
based on the Quadratic-Residuosity Assumption together with the Extended
Reimann Hypothesis.

5.1 N’th Residuosity Assumption

The N’th Residuosity Assumption. Let p, g be distinct safe primes; namely
p = % and ¢ = % are odd primes. Let N = pq and let Jy2 be the subgroup
of Z%2, consisting of all elements with Jacobi symbol 1. Let P be the subgroup
consisting of all N’th powers of elements in Jyz. The N’th Residuosity Assump-
tion, originally introduced by Paillier [Pa99], asserts that given only N, it is hard

to distinguish random elements of Jy> from random elements of P.'0>!!

Overview of the constructions under the N’th Residuosity Assump-
tion. We would like to use the constructions given in [CS02]. They construct
a subset membership problem that generates instances where X = Jy2 and
L = P (so that the hardness property follows from the N’th Residuosity As-
sumption). They define a corresponding universal projective hash family by
Hy(z) = 2¥(mod N?), with the projection key of k being a (k) = ¢™V*(mod N?),
where g% (mod N?2) is an a priori chosen generator for L. In their proof of the
universal property, they make strong use of the fact that for honestly chosen N’s
(N’s which are a product of two safe primes), P can also be characterized by
P = {z € Jy2 : order(z) is co-prime to N}. In our case we must also consider
maliciously chosen N’s, in which case this characterization does not remain true.

In order to ensure that for every N (even maliciously chosen), it still holds
that every element in L is of order which is co-prime to N, we change the
definition of L: rather than taking L to be all the N’th powers elements in Jy2,
we take L to be all the T’th powers elements in Jyz2, where T & NllogN1+1,
As we shall see shortly, this ensures that for every (even maliciously chosen) N,
every element in L is of order which is co-prime to N, and for every honestly

10 Actually, Paillier did not make the restriction to safe primes or to elements in Jye.
We note that the N’th Residuosity Assumption without these restrictions implies
the N’th Residuosity Assumption with these restrictions, assuming that safe primes
are sufficiently dense, as we do here. We refer the reader to [CS02] for more details.

1 Jumping ahead, the reason that we restrict our attention to elements in Jy= is that
this results with the subgroup L being cyclic. This is an important point that will
be elaborated on below.

Smooth Projective Hashing and Two-Message Oblivious Transfer 89

chosen N, this new L is equal to the previous one, and thus it remains hard
to distinguish random X elements from random L elements, under the N’th
Residuosity Assumption.

The subset membership problem M.

1. Problem samplability: For every n, I,, is a samplable distribution that gen-

erates an instance description A as follows: On input 17,
(a) Generate two random n bit safe primes p, ¢; namely, primes p and ¢ such
that p’ = ”2;1 and ¢ = ‘72;1 are odd primes. Let N = pq, N’ = p'q’, and
T 4 N[logN]Jrl.
(b) Generate a random (non-square) element g € Z.. with Jacobi symbol 1,
by choosing a random element 1 € g Z},» and setting g= —p?(mod N?2).12
(¢) Output A = (N,), which specifies (X,W,R) in the following way:
X 2 Jy2, L £ (g7) is the subgroup generated by g7 (mod N?), W £
{0,1,...,|N/2]}, and R =2 {(¢g7",r): 7€ W}
Notice that for every (even maliciously chosen) N, it holds that L C {x €
Jnz2 1 order(x) is co-prime to N}. This is the case since the order of g divides
N¢(N) (which is the order of Z%.), p and ¢ divide ¢(NN) at most [log N]
times, and they divide N exactly once. Thus p and ¢ divide N¢(N) at most
[log N1 + 1 times, and thus they divide the order of g at most [log N] + 1
times. This implies that the order of g7 (mod N?) (where T = Nleg N1+1)
is co-prime to both p and ¢, and thus is co-prime to NN.
Moreover, for every honestly chosen N, with overwhelming probability L =
P = {x € Jy2 : order(x) is co-prime to N}. This follows from the fact that
|Jn2| = No(N)/2 = 2N N’, which implies that P is a cyclic group of order
2N’. Thus, for any random non-square element ¢ in Jy2, ¢g" is a generator of
P with overwhelming probability. Moreover, since the order of " is co-prime
to N, it follows that (g7) = (g™V).
Let Y(A) = {z € Jy= : order(z) is not co-prime to N}.'3

2. Member samplability: On input A = (N, u), choose a random r €p W and
output g7 € L(A) together with its corresponding witness 7, where g =
—p?(mod N?)

3. Non-member samplability: On input A = (N,) and = € L(A), A chooses a
random a €g {1,..., N — 1}, and outputs 2(1 + aN) € X(A) \ L(A).
Notice that for every a € {1,..., N — 1}, order(1 4+ aN) divides N (and is
different than 1), which implies that 1 + aN € Y (4).

4. Y-Verifiability: On input (1", A, zg, 1), B outputs 1 if and only if xg, 21 €
JInz, 2o # 21, and (zo/x1)Y = 1(mod N?).

The fact that M is a hard subset membership problem follows from the N’th
Residuosity Assumption and from the fact that for every honestly chosen A € M,
with overwhelming probability L(A) = P.

12 Recall that for N which is a product of two safe primes —1 € Jn \ QRn.
13 Notice that for every (even maliciously chosen) 4, it holds that Y(A4) C X\ L, and for
honestly chosen A it holds that Y (A) = X (A)\ L(A) with overwhelming probability.

90 Y.T. Kalai

We next show that M is Y-verifiably samplable, under the Nth Residuos-
ity Assumption. Fix any A = (N,u) € M. It is easy to see that the member
samplability algorithm samples a random element in L. Moreover, notice that
X=P-H2{x-y:2€P,yc H}, where H = (1 + N). This is the case since
for every N which is a product of two safe primes, it holds that PN H = {1}
(since the order of elements in P divide 2N’; the order of elements in H divide
N, and GCD(2N’,N) = 1). This implies that |P- H| = |P|-|H| = 2N'N, which
together with the fact that P - H C Jy2 implies that P - H = Jy2. Now, recall
that A(A,x) = (1 4+ aN) for some uniformly chosen a € {1,..., N — 1}. Thus,
if v €g X then A(A,z) €g X, and if x €g L then A(A,x) €g X \ L, which
implies that the non-member samplability requirement holds.

It remains to show that the Y-verifiability requirement holds. Notice that
for every (even maliciously chosen) N and for every x # 1 such that 2V =
1(mod N?), it holds that x € Y'(A). Thus, for every distinet xg, 21, if (zo/x1)" =
1(mod N?) then zg/x; € Y (A), which implies that either zg € Y(A) or 1 €
Y (A).

(3,Y)-Universal Projective Hashing for M . Consider the projective hash
family (H, K, S, «, G), defined as follows. For every A = (N, u) € M:

— Let K(A) = {0,1,..., [2|} and let K =, epg K(A).

— Let G(A) = Jy2 and let G = |J ;o0 G(A).

For every k € K(A), let Hy(z) = 2¥(mod N?).

For every k € K(A), let a(k) = g"%(mod N?), where T' & Nlee N1+1 apq
g = —p?(mod N?).

Claim. (H,K,S,«,G) is an efficient (%, Y')-universal projective hash family for
M.

Proof. It is straightforward to verify that all the efficiency requirements hold. As
for the projection requirement, this follows from the fact that for every k € K(A)
and every x = g7"(mod N?) € L(A),
Hy(x) = 2*(mod N?) = (¢T")*(mod N?) = (¢7*)"(mod N?) = a(k)"(mod N?).
We next show that it is (3,Y)-universal. Fix any (even maliciously chosen)
A= (N,p), and let Z £ ¢(N?)/GCD(¢(N?),T). Notice that GCD(N, Z) = 1,
which implies that for every y € Y (A), y% # 1(mod N?) (since the order of y is
not co-prime to N). Also notice that for every hash key k, a(k) = a(k + Z). Fix
any y € Y(A). Since for every s there are at least two elements k, k + Z € K(A)
such that s = a(k) = a(k + Z), and since y? # 1, it follows that s does not
uniquely determine Hy(y), implying that (H, K, S,a,G) is a (3,Y)-universal
projective hash family.

5.2 The Quadratic Residuosity Assumption

The Quadratic Residuosity Assumption. Let p, ¢ be distinct safe primes;

namely, p/ = % and ¢ = %1 are odd primes. Let N = pq, let Jy be the

Smooth Projective Hashing and Two-Message Oblivious Transfer 91

subgroup of Z3; consisting of all elements with Jacobi symbol 1, and let Q Ry be
the subgroup of Z%, consisting of all quadratic residues (note that QRy C Jy).
The Quadratic Residuosity Assumption asserts that given only NV, it is hard to
distinguish random elements of Jy from random elements of QR .

Overview of the constructions under the Quadratic Residuosity As-
sumption. We would like to use the constructions given in [CS02]. They con-
struct a subset membership problem that generates instances where X = Jy and
L = QRx (so that the hardness property follows from the Quadratic Residuosity
Assumption). They define a corresponding universal projective hash family by
Hy(z) = z¥(mod N), with the projection key of k being a(k) = ¢g?*(mod N),
where g?(mod N) is an a priori chosen generator for L. In their proof of the
universal property, they make strong use of the fact that for honestly chosen
N’s (N’s which are a product of two safe primes), QRy can also be character-
ized by QRy = {z € Jn : order(x) is odd}. In our case we must also consider
maliciously chosen N’s, in which case this characterization does not remain true.

In order to ensure that for every N (even maliciously chosen), it still holds
that every element in L is of odd order, we change the definition of L: rather
than taking L to be the set of all squares in Jy, we take L to be the set of all
the T’th powers elements in Jy, where T £ 2[1°8 N1 Ag we shall see shortly,
this ensures that for every (even maliciously chosen) NN, every element in L is of
odd order, and for every honestly chosen N, this new L is equal to the previous
one, and thus it remains hard to distinguish random X elements from random
L elements, under the Quadratic Residuosity Assumption.

We would like to prove that this subset membership problem, which gener-
ates instances with X = Jy and L = QRy (with overwhelming probability for
honestly chosen N’s), is Y-verifiably samplable for some Y C Jy \ QRy. How-
ever, achieving the non-member samplability property is quite problematic. The
crux of the problem is that we cannot efficiently sample an element in Jy \ QRy
for maliciously chosen N’s.1* What we do know (under the Extended Reimann
Hypothesis) is how to sample log® N elements such that at least one of them is
in Jy \ QRy (though we don’t know which one).!® Thus, rather than construct-
ing a Y-verifiably samplable subset membership problem, which is associated
with a single algorithm A for sampling a non-member element, we will construct
a subset membership problem with many (t = log® N) algorithms A, ..., A,
with the guarantee that at least one of them is actually sampling a non-member
element. Correspondingly, there will be many verification algorithms By, ..., By,
with the guarantee that for every 7 it holds that B;(A,z, A;(z)) = 1, and that

14 Indeed, for N’s that are a product of two safe primes —1 € Jy \ QRxy, but this is
not guaranteed in general.

15 There is a subtle issue here. The above statement is not true if N is a power of a
single prime (i.e., if N is of the form N = p®, for some prime p and some « > 1), since
in this case Jy \ QRx = 0. Fortunately, we can assume from now on (without loss
of generality) that NN is never of that form, since this can be checked in polynomial
time.

92 Y.T. Kalai

at least one of the B;’s outputs 1 on input (A, zg,x1) only if either xg € Y (A) or
xr1 € Y(A)

The idea would be to use this subset membership problem to construct an
oblivious transfer protocol as follows:

R — S: On input b € {0, 1}, the receiver chooses a random instance description
A together with ¢ pairs (2, x1),..., (zf,2}), and corresponding ¢ witnesses
wi,...,wh, such that for each i € {1,...,t} it holds that =} €r L(A),
(z},w}) € R(A), and z'_, = A;(A,2}). It sends (xd,21),..., (24, h).

S — R: The sender first checks that B;(A, x},z%) = 1 for all ie{l,...,t}
If this check does not pass then he aborts. If the check does pass then the
sender splits his input (70, 1) into ¢ random shares (v3,71) ..., (76, 7}). He
then chooses t pairs of random hash keys (k{, k1), ... (kb kt), and sends for
each i € {1,...,t} the projection keys a(ky) and oz(l#) together with the
values yf = le (z5) ® 76 and yi = Hy (1) @ i

R: The receiver retrieves 7, by computing beBH ki (xb), using the projection key
a(ki) and the pair (z},w}), and by computing the XOR of all these values.

The sender’s security is ensured since we know (under the Extended Reimann
Hypothesis) that one of the B;’s outputs 1 only if one of the elements zf or ¢ is
in Y'(A), which implies that at least one of the 7} is statistically hidden, which
in turn implies that ~y, is statistically hidden. The receiver’s security follows
from the fact that for every i and for A « I, it is hard to distinguish between
xo €g L(A) and A;(A, zp).

The subset membership problem M. Our subset membership problem M =
{I.}nen is based on the one defined in [CS02]. However, we incorporate here
several modifications.

1. Problem samplability. For every n, I, is a samplable distribution that gen-
erates an instance description A as follows: On input 17,
(a) Generate two random n blt safe primes p, ¢; namely, primes p and g such
that p’ = E5= Land ¢ = = L are odd primes. Let N = pg and T £ 2/log N1,
(b) Choose a random element w €r Z%, and output A = (N, p), which
specifies (X, W, R) in the following way: X = Jy, L £ (uT) is the
subgroup generated by u?'(mod N), W £ {0,1,...,|N/4|}, and R &
{(pTr r)y:r e W}
Notice that L C {x € Jy : order(z) is odd}, for every (even maliciously
chosen) N. This is the case since the order of u divides ¢(N) (which is the
order of Z%), and 2 divides ¢(NN) at most [log N| times. Thus, 2 divides the
order of y at most [log N times. This implies that the order of u” (mod N)
(where T = 2M1°8 N1) is co-prime to 2, and thus is odd.
Moreover, for every honestly chosen N, with overwhelming probability L =
QRN = {x € Jy : order(z) is odd}. This follows from the fact that QRyx
is a cyclic group of order N’, which implies that a random element in QRy
generates Q Ry with overwhelming probability. Moreover, since the order of
every element in QRy is co-prime to 2, it follows that (u?) = (u?).

Smooth Projective Hashing and Two-Message Oblivious Transfer 93

For every A = (N, u), let Y(A) = Jy\QRx. Then for every (even maliciously
chosen) 4, it holds that Y (A) C {x € Jy : order(z) is even}.

2. Member samplability: On input A = (N, u), choose a random r € W, and
output x?"(mod N) together with its corresponding witness r.

3. Non-member samplability A;: On input A = (N,) and z € X(A), ifi € Iy
then A;(A, z) outputs the element ¢ - z(mod N). If ¢ ¢ Jy then A;(A, z)
outputs x.16

4. Y-Verifiability B;: On input (A, xg,x1), if ¢ € Jy, then B;(A, xo, z1) outputs
1 when both xg, 21 € Jy and zp/xp—1 = i(mod N) for some b € {0,1}. If
1 ¢ Jy then B;(A, zg, 1) always outputs 1.

We would like to prove that M is a Y-verifiably samplable hard subset member-
ship problem. The hardness of M follows from the fact that with overwhelming
probability over A = (N,pu) « I, it holds that L(A) = QRy. In order to
prove that M is Y-verifiably samplable, we need to prove that M satisfies the
following three properties: member samplablility, non-member samplability, and
Y -verifiability. It is easy to see that the member samplability property holds.
In order to see that the non-member samplability property holds it suffices to
notice that under the Quadratic Residuosity Assumption, for every large enough
n, for A = (N,u) — I, and for every i = 1,... ,log® N, it is hard to distinguish
between © € L(A) and 2’ = A;(A, z). In order to show that the Y-verifiability
property holds, it suffices to show that the Y -verifiability property holds for
a single ¢. This we show under the Extended Riemann Hypothesis, using the
following well known result from algebraic number theory.

Lemma 1 ([BS96], 8.5.9). Assume the Extended Riemann Hypothesis. Let H
be a non-trivial subgroup of Zy, of index d, and let C' be a coset of H. Then the
least prime whose residue belongs to C is O(d?log® N).

Assume the Extended Riemann Hypothesis. We first use Lemma 1 to prove that
for every (maliciously chosen) N one of the elements in {1,...,log® N} N Jy is
also an element in Jy \ QRx.'7

Consider any N = pi*..pp". Let G be the subgroup of Z} consisting of all
elements which are squares modulo p;. Let H £ Jy N G. Notice that both G
and Jy are subgroups of Z3 of index 2, and that H is a subgroup of Z% of
index 4. Now let g be any element in Jy which is not a square modulo p; (i.e.,
g € Jy\G), and let C = gH be a coset of H. According to Lemma 1, the
Extended Riemann Hypothesis implies that one of the elements in {1,2,...,z},
where = O(d?log® N) < log® N, must be an element in C. Notice that all
elements in C' are non-squares modulo p;, which implies that C C Jy \ QRy.

16 For i ¢ Jn, = can be distinguished from 4 - z, since it is easy to check whether an
element in Z has Jacobi symbol 1. Thus, in this case we simply let A;(A, z) output
x, to make sure that it is hard to distinguish z from A;(A, x).

17 In what follows we use our assumption that N is not a power of a single prime (if
N is a power of a single prime then Jy \ QRy = 0).

94 Y.T. Kalai

Thus, we conclude that one of the elements in {1,2,...,z} C {1,2,...,log® N}
isin Jy \ QRn.

Fix any (even maliciously chosen) A = (N, u), and let i € {1, ...,log® N}NJy
be an element in Jy \ QRy. It is easy to see that for every g, z1, if both are
not in Y(A) = Jy \ QRy then B;(A, xg,x1) outputs 0. Moreover, for any xg, z1,
such that x, € L(A) and x1_p € A;(A, xp) (for some b), it holds that x1_p = i-ap
and xg,z1 € Jy (since i € Jy), and thus B;(A, xg,x1) outputs 1.

(%7Y)-universal projective hash family for M. Consider the projective
hash family (H, K, S, «, G), defined as follows. For every A = (N, u) € M:

Let K(A) ={0,1,..., 5]} and let K =, ey, K(A).

Let G(A) = Jn and let G = J, o, G(A).

— For every k € K(A), let Hy(x) = z¥(mod N).

For every k € K(A), let a(k) = p"*(mod N), where T £ 2log N1,

Claim. The hash family (H, K, S, a, G) is an efficient (%, Y')-universal projective
hash family for M.

Proof. Tt is straightforward to verify that all efficiency requirements hold. As for
the projection requirement, it follows easily from the fact for every k € K(A),
and for every x € L(A):

Hy(x) = 2%(mod N) = (uT")¥(mod N) = (u%)"(mod N) = a(k)"(mod N)

We next prove that this projective hash family is (3,Y)-universal. Fix any
(even maliciously chosen) A = (N, u), and fix any € Y(A) = Jy \ QRN. As
was previously mentioned, z is of even order. Let Z £ ¢(N)/GCD(¢(N),T).
Note that Z is an odd number, and that y74 = 1(mod N). Also note that for
every s there are (at least) two distinct elements k,k + Z € K(A) such that
s = a(k) = a(k+ Z). Thus, in order to prove that the (%, Y')-universal property
holds, it remains to prove that % # 1(mod N), which follows immediately from
the fact that x is of even order.

Acknowledgements. First and foremost I would like to thank Alon Rosen.
Although he refused to be a co-author of this paper, Alon’s comments, sug-
gestions and involvement played an essential part in the creation of this work.
I would like to thank Ronald Cramer for pointing out and explaining the no-
tion of smooth projective hashing. I would like to thank Shien Jin Ong for
pointing out a crucial mistake that I had in the initial stage of this work. I
would like to thank Eric Bach for pointing out Lemma 1. Finally, I would like to
thank Shai Halevi and Shafi Goldwasser for their great comments and simplifying
suggestions.

Smooth Projective Hashing and Two-Message Oblivious Transfer 95

References

[AIRO1] William Aiello, Yuval Ishai, Omer Reingold. Priced Oblivious Transfer:
How to Sell Digital Goods. In EUROCRYPT 2001, pages 119-135, 2001.

[BS96] E.Bach and J. Shallit. Algorithmic Number Theory, Vol. 1: Efficient Algo-
rithms. MIT Press, 1996.

[BM89)] M. Bellare and S. Micali. Non-Interactive Oblivious Transfer and Applica-
tions. In CRYPTO 89, pages-547-557, 1989.

[CS98] R. Cramer and V.Shoup. A Practical Public Key Cryptosystem Provably
Secure Against Adaptive Chosen Ciphertext Attack. In CRYPTO 1998,
pages 13-25, 1998.

[CS02] R. Cramer and V.Shoup. Universal Hash Proofs and a Paradigm for Adap-
tive Chosen Ciphertext Secure Public-Key Encryption. In Eurocrypt 2002,
Springer-Verlag (LNCS 2332), pages 45-64, 2002.

[Cre87] C. Crépeau. Equivalence between two flavours of oblivious transfers. In
CRYPTO 1987, pages 350-354, 1987.

[CCM98] C. Cachin, C. Crépeau, Julien Marcil. Oblivious Transfer with a Memory-

Bounded Receiver. In FOCS 1998, pages 493-502, 1998.

[DHRS04] Y. Z. Ding, D. Harnik, A. Rosen, R. Shaltiel. Constant-Round Oblivious

[FrO8]

[EGLS5]

[GLO3|
[Gol04]

[GMWS7]

[Hai04]
[IR89)

[KOYO01]

[Kil8s]
[NPO1]
[Pag9]
[Rab81]

[Y86]

Transfer in the Bounded Storage Model. In TCC 2004, pages 446-472,2004.
John B. Fraleigh. A first course in abstract algebra , 7th edition, Addison-
Wesley 1998.

S. Even and O. Goldreich and A. Lempel. A Randomized Protocol for
Signing Contracts. In Communications of the ACM 28:6, pages 637647,
1985.

R. Gennaro and Y. Lindell. A Framework for Password-Based Authenti-
cated Key Exchange. In EUROCRYPT 2003, pages 524-543, 2003.

O. Goldreich. Foundations of Cryptography - Volume 2 (Basic Applica-
tions). Cambridge University Press, 2004.

O. Goldreich and S. Micali and A. Wigderson. How to Play any Mental
Game - A completeness Theorem for Protocols with Honest Majority. In
STOC 1987, pages 218-229, 1987.

Iftach Haitner. Implementing Oblivious Transfer Using Collection of Dense
Trapdoor Permutations. In TCC 2004, pages 394-409, 2004.

R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of
One-Way Permutations. In STOC 89, pages 44—61, 1989.

J. Katz, R. Ostrovsky, M. Yung. Efficient Password-Authenticated Key
Exchange Using Human-Memorable Passwords. In FEUROCRYPT 2001,
pages 475-494, 2001.

J. Kilian. Founding Cryptography on Oblivious Transfer. 20th ACM Sym-
posium on the Theory of Computing, pages 20-31, 1988.

M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA
2001, pages 448-457,2001

P. Paillier. Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes. In FEUROCRYPT 1999, pages 223-238, 1999.

M. O. Rabin. How to Exchange Secrets by Oblivious Transfer. TR-81,
Harvard, 1981.

A. C. Yao. How to Generate and Exchange Secrets. In FOCS 1986, pages
162-167, 1986.

On Robust Combiners for Oblivious Transfer
and Other Primitives

Danny Harnik'*, Joe Kilian?, Moni Naor'*, Omer Reingold"{,
and Alon Rosen?

! Dept. of Computer Science and Applied Math., Weizmann Institute of Science
{danny.harnik, moni.naor, omer.reingold}@weizmann.ac.il
2 Yianilos Labs
joe@pnylab.com
3 CSAIL, MIT
alon@csail.mit.edu

Abstract. A (1,2)-robust combiner for a cryptographic primitive P is
a construction that takes two candidate schemes for P and combines
them into one scheme that securely implement P even if one of the
candidates fails. Robust combiners are a useful tool for ensuring better
security in applied cryptography, and also a handy tool for constructing
cryptographic protocols. For example, we discuss using robust combiners
for obtaining universal schemes for cryptographic primitives (a universal
scheme is an explicit construction that implements P under the sole
assumption that P exists).

In this paper we study what primitives admit robust combiners. In
addition to known and very simple combiners for one-way functions and
equivalent primitives, we show robust combiners for protocols in the
world of public key cryptography, namely for Key Agreement(KA).

The main point we make is that things are not as nice for Oblivious
Transfer (OT) and in general for secure computation. We prove that
there are no “transparent black-box” robust combiners for OT, giving an
indication to the difficulty of finding combiners for OT. On the positive
side we show a black box construction of a (2, 3)-robust combiner for OT,
as well as a generic construction of (1, n)-robust OT-combiners from any
(1,2)-robust OT-combiner.

At the mouth of two witnesses ... shall the matter be established
Deuteronomy Chapter 19.

1 Introduction

Not putting all your eggs in one basket is commonly considered good advice and
this should be no different in cryptography. Suppose that we have a two cryp-
tographic schemes that we generally trust to be secure for some task. It makes

* Research supported in part by a grant from the Israel Science Foundation.
T Research supported by US-Israel Binational Science Foundation Grant 2002246.

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 96-113, 2005.
© International Association for Cryptologic Research 2005

On Robust Combiners for Oblivious Transfer and Other Primitives 97

a lot of sense to try and combine these two into one scheme that is guaranteed
to be secure even in case that one of the two original schemes was broken. For
example, we have several encryption schemes that are based on various unproven
number theoretic assumptions, such as the hardness of factoring or of computing
discrete logarithms. We would like to combine these into one encryption scheme
that is secure if at least one of these unproven assumptions happens to be true.
We call such a construction a Robust Combiner.! This is a scheme that combines
two different schemes and is robust to the failure of just one of them.

Definition 1.1 ((k,n)-Robust Combiner (Informal)). A4 (k,n)-Robust Com-
biner for a cryptographic primitive P is a construction that takes n candidate
schemes for P and combines them into one scheme such that if at least k of the
candidates indeed implement P then the combiner also implements P.

In general, the most interesting combiners are (1,2)-robust combiners as they
are essential and at times sufficient for constructing (1, n)-robust combiners (n
is some parameter, typically related to the security parameter). For ease of no-
tations we will sometimes write just robust combiner or simply combiner when
we actually mean a (1,2)-robust combiner.

Robust combiners are by all means not new in cryptography. Several practi-
cal constructions try to combine several primitives to achieve stronger security
guarantees. For example, Asmuth and Blakely [1] suggest a method of combining
two encryption schemes of which only one can be trusted. Another example is the
widely used idea of repeatedly encrypting a message several times with different
keys in order to enhance security, an idea that dates back as far as Shannon and
found in many applications since. This relates to combiners as security holds in
the case that the integrity of some of the keys is compromised, but at least one
remains secure. Also, Herzberg [15] discusses the notion of combiners explicitly
(see the related work section, Section 1.2).

There are plenty of other practical motivations for combiners, we briefly give a
few: For example, using software from a few sources that are not entirely trusted
(e.g., when running an election and using electronic ballots from a few vendors).
Combiners can also be used to avoid bugs in software, rather than checking the
correctness of a software (as in [5]), combine several different versions, hoping
that at least one is correct. One can also consider physical sources used for
cryptography (e.g. noisy channels) that cannot necessarily be trusted.

From the point of view of theoretical cryptography robust combiners are also
valuable. Combiners are useful tools in constructions and reductions between
cryptographic primitives. This happens in scenarios where it is guaranteed that
one of several constructions exist. We give two examples:

— Levin [21] (see exposition in [13]) introduced a Universal-one way funcion
(OWF) which is an explicit construction that is guaranteed to be a OWF
under the sole assumptions that one-way functions exist at all. The property

! This notion is called a Tolerant Construction in [15].

98 D. Harnik et al.

of one-way functions that allows for this universal constructions is the fact
that they admit robust combiners.

— In the construction of pseudo-random generators (PRG) from OWFs by
Hastad et al. [14] a polynomial number of candidates for PRG are given, one
of which is guaranteed to be a PRG. These are then combined (the combiner
is a simple XOR of the output) into one PRG construction.

1.1 Our Contributions

In this paper we study what cryptographic primitives have or don’t have robust
combiners. We start by showing that simple robust combiners exist for OWF
(this is common knowledge) and its equivalents (such as private key encryption,
pseudo-random generators, functions and permutations, digital signatures and
bit commitment). We then present a robust combiner for Key Agreement (KA)
and, similarly, Public Key Encryption (PKE).

On Robust Combiners for Oblivious transfer: The abundance and relative sim-
plicity of robust combiners may lead to the belief that all primitives have simple
combiners. However, this is not the case for the fundamental oblivious transfer
primitive (OT) and thus for any non trivial task of secure computation. We de-
fine the notion of black-box combiners, giving several refinements to this notion.
Our main result shows the following:

Theorem 1.2 (informal) There exists no “transparent black-box” construction
of a robust OT-combiner.

Transparent black-box combiners are black-box combiners with a specific prop-
erty. In general, it is required that every time a party calls one of the candidates,
then the other party learns about this call (all messages generated by the can-
didate are actually sent to the other party).

Theorem 1.2 can be viewed as an indication of the hardness of the problem
of constructing combiners for OT. The point being that most of the known
examples of combiners are transparent black-box combiners. More precisely, this
indicates that achieving a combiner for OT will likely use the OT protocol outside
of its context (and perhaps not as an interactive process).

A good example and an exception to the generally simple combiners is the
combiner for bit commitments. This combiner uses the commitment candidates
in a non interactive manner in order to generate a OWEF. It then uses the HILL
reduction [14] together with [22] to build a commitment from a OWF. Such a
strategy seems hard for OT since there are black box separations of OT from
simpler and less structured primitives such as OWFs and KA [18,12].

Positive results for OT: On a more positive note, we show a very efficient black
box construction of a (2,3)-robust OT-combiner. We also point out that it is
easy to construct an OT protocol based on the assumption that at least one of
the assumptions regarding factoring or the discrete logarithms is correct. This
is because there are known constructions of OT from such assumptions (and in
general from any trapdoor permutation [11]) that have perfect (and guaranteed)
security for the receiver, in which case constructing combiners is simple.

On Robust Combiners for Oblivious Transfer and Other Primitives 99

(1,n)-robust combiners and universal schemes: We discuss the notion of a univer-
sal scheme for a cryptographic primitive (following Levin’s [21] universal OWF)
and show that primitives that admit (1,n)-robust combiners also have universal
schemes. We then study cases where (1,2)-combiners are sufficient for (1,n)-
combiners. Among others, it is shown that a (1,2)-robust combiner for OT also
gives a construction of a universal scheme for OT (the construction makes use
of the efficient (2,3)-robust combiner for OT shown here).

Other points: A delicate point when discussing combiners for a primitive P is
the question of functionality. In some settings, while one of the input candidates
is guaranteed to be secure, the other one is not even guaranteed to have the func-
tionality of P, making things more involved. In general, one way to overcome this
is by first testing the functionality of a possibly faulty candidate. For instance,
the combiner for KA first constructs a KA where the two parties agree only with
reasonably high probability, and then reduces the probability of disagreement to
a negligible one using an error correcting code.

1.2 Related Work

As mentioned before, robust combiners have already been used and studied. In
particular the work of Herzberg [15] focuses on robust combiners in cryptogra-
phy. This work puts more emphasis on efficiency and specifically the use of the
parallel and cascade constructions as combiners and shows combiners for various
primitives including OWF, signatures, MACs and others.

Implicit use of combiners is abundant. For example, the idea of using multiple
encryptions is widely used in practice. This practice is in fact advocated in the
NESSIE consortium recommendations [23]. Also the TLS (Transport Layer Se-
curity) specification [17] combines two hash functions (SHA1 and MD5) to give
better assurance of security. We quote from [17]: “ In order to make the PRF as
secure as possible, it uses two hash algorithms in a way which should guaran-
tee its security if either algorithm remains secure.”? Lately Dodis and Katz [10]
studied the use of multiple encryptions with respect to CCA2 security, giving
a robust combiner for CCA2 secure encryption schemes using signatures. Ho-
henberger and Lysyanskaya [16] discuss how to securely combine two potentially
insecure software implementations. Another related concept is given in Brickell
and McCurley [6] and Shoup [25] that show schemes that achieve two different
types of security based on two different number theoretic assumptions.

The work of Damgard, Kilian and Salvail [9] is somewhat relevant to the OT-
combiner. This work discusses a weak version of OT called (p,¢)-OT that has
probability p of compromising the sender’s security and probability ¢ of com-
promising the receiver’s. It is shown that a fully secure OT can be constructed
from a (p,q)-OT if and only if p + ¢ < 1. In our setting where two candidates

2 Note that the concatenation of hash functions as suggested in the TLS [17] is indeed
a combiner in the sense that it is guaranteed to be as secure as the candidate that
remains secure. This does not however guarantee an increase of the security in case
that candidates are secure, as was shown by Joux [19].

100 D. Harnik et al.

for OT are given, one can obtain a (p,q)-OT with p = ¢ = % simply by choos-
ing one of the candidates at random. Therefore, the impossibility result of [9]
for p+ ¢ > 1 gives some intuition for the impossibility of OT-combiners. How-
ever the result for p + ¢ > 1 relies heavily on the fact that the errors p and ¢
are assumed to be uncorrelated events, which is not the case in the setting of
combiners. On the other hand, for (2,3)-robust combiners, we can get an OT
protocol with p = ¢ = 1 and use the reduction from [9] (although the (2,3)-
robust OT-combiner presented here is much more efficient, a property that is

used in Section 5.1).

2 Notations and Definitions

We denote by PPTM a probabilistic polynomial time Turing machine. In general,
our definitions view adversaries as uniform machines, though all results in this
paper also apply for definitions of security against non-uniform adversaries. An
Oracle PPTM is a PPTM that also has access to one or more oracles.

2.1 Cryptographic Primitives

The notion of a cryptographic primitive ranges from basic non-interactive con-
structs such as one-way functions, digital signatures and encryption to more
“high-level” interactive protocols such as secret key exchange and oblivious
transfer. Due to lack of space and the difficulty of actually giving a complete def-
inition to this notion, we refrain from presenting a full definition of a primitive,
and only highlight the key issues (see [24] for a formal definition).

In principle, the definition of a primitive P includes a description of the func-
tionality of the primitive (computable in polynomial time), along with a defini-
tion of security. The functionality defines what the primitive should do, whereas
the security deals with the ability of an adversary of a certain class (e.g., all
PPTMs) to learn something from an implementation of the functionality. This
ability is captured by a relation between possible machines (modelling the adver-
sary) and functions (modelling the implementation). The relation defines when a
machine breaks an implementation. For an implementation to be secure, it is re-
quired that no machine in the class of adversaries can break this implementation.

In the special case of interactive primitives, the functionality of the prim-
itive can be divided into two parts: (1) The next message function M, which
determines the next message to be sent by a party (given its partial view of the
interaction). (2) An output function O, which determines a party’s local output
(given the view of the entire interaction). A protocol is then obtained by let-
ting each of the sides alternately generate their next message by applying the
function M to their own local inputs, randomness and partial view (up to that
point in the interaction). At the end of interaction each side feeds its view to
the function O to get its local output.

2.2 Robust Combiners

Combiners receive as input candidates for implementing a primitive P. In prin-
ciple, the candidates can be either given as the code of a PPTM, or via an oracle

On Robust Combiners for Oblivious Transfer and Other Primitives 101

that implements it. The basic definition of a combiner does not take this issue
into consideration and admits any kind of usage of the candidate implementa-
tions.

Definition 2.1 ((k,n)-Robust Combiner). Let P be a cryptographic primi-
tive. A (k,n)-Robust Combiner for P is a PPTM that gets n candidate schemes
as inputs, and implements P while satisfying the following two properties:

1. If at least k candidates securely implement P then the combiner also securely
implements P.

2. The running time of the combiner is polynomial in the security parameter
m, inn and in the lengths of the inputs to P.3

Note that in general a combiner could completely ignore the candidate imple-
mentations and implement P directly. However, we are interested in combiners
whose security relies on the security guarantees of the candidates. It thus makes
sense to consider a more restrictive notion of a combiner, in which both the

)

construction and its proof are conducted in a “black-box” manner.

Definition 2.2 (Black-Box Combiner). A (1,2)-robust combiner is said to
be black-box if the following conditions hold:

1. Black-box implementation: The combiner is an oracle PPTM given access
to the candidates via oracle calls to their implementation function.

2. Black-box proof: For every candidate there exists an oracle PPTM R* (with
access to A) such if adversary A breaks the combiner, then the oracle PPTM
R breaks the candidate.*

In the case of interactive primitives several additional restrictions on the usage
of the underlying candidate implementations make sense. One natural restric-
tion that comes into mind is to require that the combiner totally ignores the
implementation and simply relies on the functionality and security of one of the
candidates (e.g., the combiner for KA presented in Section 3.3).

Definition 2.3. A third party black-box combiner is a black-box combiner
where the candidates behave like trusted third parties. The candidates give no
transcript to the players, but rather take their inputs and return outputs.

In some situations the above notion is too restrictive and a transcript is actually
needed for enabling the construction of a combiner (for example, constructing a
OWF cannot be done from a third party implementation for OT). In this paper
we also discuss a relaxation of third party black-box combiners, that allows access
to the transcripts of the protocols as well.

3 Here we make the implicit assumption that the candidates themselves run in poly-
nomial time. See a further discussion in Section 3.1.

* In the case of (k,n)-robust combiners then there are at least n — k + 1 candidates
that can be broken in this manner.

102 D. Harnik et al.

Definition 2.4. A transparent black-box combiner is a black-box combiner
for an interactive primitive, where every call to a candidate’s next message func-
tion M 1is followed by this message being sent to the other party.

This notion can be thought of as allowing the use of the primitive only in the
context of the protocol (rather than allowing free off-line use of its oracles).
Note that the notion of black-box combiners (considered in Definition 2.2) is
less restrictive than the third party and transparent ones. A black-box combiner
is given unlimited off-line access to the oracles that generate the protocol whereas
the other combiners are not. Note that in the case of non-interactive primitives
the three notions defined above are equivalent.

3 Positive Results

3.1 The General Framework for Robust Combiners

Cryptographic primitives are mainly about security. So naturally the emphasis
when constructing robust combiners will be that these primitives indeed remain
secure in face of the unfortunate case that one of the candidates actually breaches
security. However, there are some subtleties that need to be discussed. In some
settings, hardly anything is known about the candidates at hand other than the
fact that one of them is good. Specifically, only one candidate is guaranteed to
have the intended functionality. For example, a faulty candidate for a OWF,
may not only be easy to invert, but might also be hard to compute in the easy
direction (computing the function might be impossible for all PPTM). Other
primitives might have additional functionalities (other than running time) that
should be taken into consideration. For example, in the KA (key agreement) both
parties should output the same key (the agreement). In this section we present
approaches for dealing with these issues, dealing separately with running time
and other functionalities.

Running time: In general, one cannot expect to be able to check that a candidate
for a cryptographic primitive always halts in polynomial time unless the specific
polynomial bound on the running time is known in advance. We therefore assume
that the polynomial bound is given as input to the scheme. For example, a robust
OWF-combiner gets as input a polynomial p(-) and the security parameter 1™
along with the two candidates f 4, f5. Now, when a combiner invokes a candidate,
it allows it to run for at most p(m) steps, and if it does not halt then the output
of the candidate is set to some fixed value (e.g. to the all zero string).?

Functionality Test: A possible approach for testing the functionality of a candi-
date (such as agreement in key agreement or the transfer of the chosen secret in
oblivious transfer) is presented. This method may sometimes be helpful but at
other times impossible, depending on the specific primitive at hand. The idea is

® Unless relevant, we omit the parameter p(+) from the text and simply assume that
the running time of all candidates is polynomial (a fact that is essential for most
proofs of security).

On Robust Combiners for Oblivious Transfer and Other Primitives 103

to have each party simulate n? random off-line executions of the candidate, and
accept only if the candidate always satisfies its defined functionality. For exam-
ple, in key agreement, each party simulates a random execution by playing the
roles of both players and checking whether they agree. After passing the test we
are assured that with probability 1 — O(27") the candidate does what it is sup-
posed to with probability at least 1 — % While this is a rather weak guarantee,
it is sometimes sufficient (as in the case of KA-combiners, see Section 3.3).

Note: The functionality and time tests may not be always necessary. For exam-
ple, when trying to combine two constructions based on two different computa-
tional assumptions, the functionality and running time are usually guaranteed
by the design of these constructions. These tests are necessary however in the
general case where nothing is known (e.g., in universal schemes, see Section 5.1).

3.2 Robust Combiners for OWFs and Equivalents

It is has long been known that one-way functions (OWF) have simple robust
combiners. For example, as pointed out in [15], simple concatenation of the OWF
candidates on independent inputs suffices . More precisely, given candidates f4
and fp, let F(z,y) = fa(x)|fB(y) (where f4 and fp run in polynomial time).

Lemma 3.1 F is a robust OWFE-combiner.

Lemma 3.1 (proof omitted) implies that all the primitives that are known to
be equivalent to OWF have robust combiners. By equivalent we mean, primitives
that have reductions to and from OWFs. Some of the more noteworthy equiv-
alent primitives are semantically secure private key encryption, pseudo-random
generators, functions and permutations, digital signatures and bit commitments.
The combiners for these primitives follow since given two candidates for prim-
itive P (from the list above), one can use the reduction from OWF to P to
create two candidates for OWFs. These two are then combined using the OWF-
combiner, which in turn is used to construct the primitive P from a OWF (with
the opposite reduction from P to OWFs).

Note, however, that for most of these primitives going via the reductions to
and from OWF is an overkill, and much more efficient and direct combiners can
be found. For example a combiner for pseudo-random generator is simply one that
XORs the outputs (thus the heavy reduction of [14] from pseudo-random genera-
tors to OWF's may be avoided). An exception is the case of bit commitments for
which we are only aware of the combiner via the OWF. Unlike the non-interactive
primitives in the list (that have very simple combiners), the suggested combiner
for commitment is highly inefficient (this issue is further discussed in Section 6).

3.3 Robust Key Agreement Combiner

Theorem 3.2 There exists a robust KA-combiner. The combiner reaches agree-
ment with all but a negligible probability. Furthermore, its round complexity is
at most that of the candidate with the higher number of rounds.

6 By round complexity we mean the worst-case round complexity.

104 D. Harnik et al.

Observe that a KA-combiner can be easily achieved if the functionality of both
candidates is guaranteed. The KA-combiner simply outputs an XOR of the out-
puts in the two candidates. If the functionality is not guaranteed, then the com-
biner for KA is constructed in two stages. First a KA-combiner with relazed
agreement is constructed (a protocol in which the parties agree with all but a
polynomially small fraction). Then this is turned into a KA were the agreement
happens with overwhelming probability using an error correction code.

We note that the KA-combiner is a third party BB combiner. Also, since a 2
message KA protocol is equivalent to semantically secure (against chosen plain-
text attacks) Public Key Encryption (PKE), and since the KA-combiner main-
tains the same round complexity, we also get for free a robust PKE-combiner.

4 On Robust Combiners for Oblivious Transfer

4.1 Impossibility of Black Box Robust OT-Combiner

In contrast to all the other primitives mentioned here that had robust combiners
(and usually very simple ones), the situation of OT is left open. We do not know
of any OT-combiner, simple or complicated. The main result in this section
indicates that this is indeed a much harder problem.

We start by giving some intuition: Suppose that a combiner does exist for
OT, then this combiner works for every two candidates that we plug in, as long
as one of them is actually secure. The idea is to show that the OT-combiner will
work just as well when given two faulty candidates where one candidates is secure
only for Alice while the other is secure only for Bob. But this immediately yields
a contradiction, since two such faulty candidates can be naively constructed
under no assumptions at all, giving rise to an OT protocol based on no hardness
assumptions, which is impossible. An actual proof of this idea shows that any
attack on the combined OT taking the two faulty candidates, can be translated
to an attack on the combined OT that takes one truly secure candidate (and
one faulty candidate), thus breaking the security of the combiner. This intuition
is formalized in the following theorem:

Theorem 4.1 There exists no construction of a transparent black-box robust
OT-combiner.

We note that it is simpler to show the impossibility for third party BB combin-
ers. However, we work a bit harder in order to capture the notion of transparent
BB combiners, and in particular combiners that can also use the transcript of
the protocol. Recall that a transparent black-box combiner (defined in Section
2) is one in which the candidates are given via a “next message” oracle and
an output oracle. Whenever one of the parties calls a next message oracle it is
required to send the message generated to the other party.

Proof: Similarly to many black box impossibility results (starting with the
seminal paper of Impagliazzo and Rudich [18]), Theorem 4.1 is proved by trying
to show a “world” in which OT exists, but OT-combiners do not. The argument

On Robust Combiners for Oblivious Transfer and Other Primitives 105

however must be changed, since in every world that has OT, an OT-combiner
does exists, simply by running the correct OT protocol. Instead, the actual proof
shows two worlds such that every transparent black-box OT-combiner is insecure
in at least one of them (we show this even in the semi-honest model”).

We define two oracle worlds: Worldl and World2. Both worlds contain a
PSPACE-complete oracle and an implementation of two OTs: OT4 and OTp.
The implementation is rather straightforward and each OT is composed of three
oracles (presented below). In each world one of the implementations is made
flawed by adding an inverter for some of the oracles. Specifically, in World1 OT'4
is insecure and OT'g is secure and in World2 OT 4 is secure and OT'g is insecure.
‘We now consider the application of the combiner on candidates OT'4 and OTg in
these two worlds. Let us denote the resulting protocol by OT,;,. Note that OT'4
and OTp look identical from the point of view of the combiner in both worlds.
Since in each of the worlds one of the OTs is secure, then by the definition of the
combiner, OT,,,, should be secure in both worlds. We claim that OT,,,; fails in
at least one of these worlds, thus contradicting the existence of a combiner.

To prove our claim, we appeal to a “bare” world containing solely a PSPACE-
complete oracle (this oracle already exists in World1l and World2 and we will
explain its significance shortly). In the bare world we simulate OT¢,,;. Note that
OT.mp is well defined once we plug in an implementation for OT4 and OTg.
Therefore, in order to implement OT,,,; we give a naive implementation of both
OT4 and OTp in the bare world. For this the sender (of OTy,,;) simulates OT 4
and the receiver (of OT,,,;) simulates OTp. Meaning for example that whenever
OT.pmp requires the receiver (of OTg,,p) to query one of the functions of OT'4
(either as a receiver or as a sender of this invocation of OTy), the receiver will
ask the sender (of OT,;,) this query (in the clear) and the sender will return the
answer (again in the clear). These simulations of OT4 and OTp are obviously
insecure and therefore the resulting implementation of OT,,; is also be insecure
(in fact, no implementation of OT can be secure in the bare world since with
the PSPACE oracle no crypto is possible).

So what is the point of considering this naive implementation of OT,,; in a
world where this implementation is bound to fail? The point is that the failure
of OT,,,; in the bare world translates to a failure of OT,,,; either in World1 or in
World2. This is exactly what we need to complete the proof. Assume for example
that the receiver of OT,,,; in the bare world learns both secrets. In this case,
the receiver of OT,,,, in World2 can also learn both secrets. This is because the
receiver of in the bare world gains precisely the same knowledge as the receiver
of in World2: Both learn all inputs to OTg. In the bare world the receiver learns
it as it simulates OTp and in World2 the receiver learns it through the inverter
for OTp. We next give a formal proof.

We present an oracle that enables the execution of an OT protocol. This
oracle is composed of a triplet of functions OT = (fi, f2, R) as follows:

" Recall that in the Semi-Honest model the parties follow the protocol as prescribed,
but perhaps later try to learn more information than intended.

106 D. Harnik et al.

— f1 is a length tripling random function® that takes the receiver’s choice bit ¢
and randomness rr and outputs my = f1(rg, ¢) that is used as the receiver’s
message.

— fo2 is also a length tripling random function that takes the sender’s inputs
Sp, 1 and randomness rg and the receiver’s message m; and outputs the
sender’s message mo = fa(rg, So, S1,M1).

— R is called by the receiver, it takes mso along with rz and ¢ and outputs the
secret s, (if the inputs are consistent).

Using the above oracle it is possible to implement a secure OT protocol in a
straightforward manner. Notice that the receiver learns the secret of his choice.
On the other hand since the parties cannot invert the random functions, then
the messages give them essentially no additional information. Moreover, this is
true even in the presence of a PSPACE-complete oracle as stated in the following
claim (given here without a proof):

Claim 4.2 The procedure defined by the oracle (f1, fa, R) is a secure OT pro-
tocol even in the presence of a PSPACE-complete oracle.

In addition to the functions enabling an OT oracle, we may add another oracle
for breaking such an OT. This oracle simply inverts the functions fi, fa, and
thus leaks both secrets to the receiver and the choice bit to the sender.”

The two worlds: We can now define the two oracle worlds.

— World1, contains:
1. A PSPACE-complete oracle.
2. Two OT oracles OT4 = (f{*, f5*, RY) and OTy = (f£, f£, RP).
3. The oracle Inv, for inverting OT 4.

— World2, contains:

1. A PSPACE-complete oracle.
2. Two OT oracles OTy = (f{*, f5, R4) and OTg = (f&, f8, RP).
3. The oracle Invp for inverting OTg.

Now consider a robust OT-combiner that takes OT4 and OTg as candidates
and call this protocol OTg,,,. By the definition of a combiner, OT,,; should
securely implement an OT protocol in each of the two worlds, since in both
worlds one of the two candidates remains secure. We achieve a contradiction by
showing that if the OT-combiner is transparent black-box then there exists an
attack on the protocol OT,,,; in at least one of the two worlds.

8 A length tripling random function is a function f : {0,1}" — {0,1}*" that sends
each input value to an independently chosen random value in the output domain.

9 This inverting oracle is possible since with overwhelming probability f1 and f» are
one-to-one functions (as they are random function and by a simple birthday argu-
ment are not likely to have any collisions).

On Robust Combiners for Oblivious Transfer and Other Primitives 107

The Bare World and Simulating OTp: To show the attack on OT,,,;, we turn
to the “bare” world that contains just the PSPACE oracle but not the OT
oracles. For every instantiation of OT.,; in worlds 1 and world 2, we give a
matching protocol called OTpqe in the bare world. The new protocol in the bare
world imitates OT,,,;, with the exception that the sender of OT,,,; simulates the
oracle OT4 (we explain below what we mean by simulating an OT oracle) and
the receiver of OT,,,;, simulates OTg. Note that the sender of OT,,;, simulates
OT 4 whether he acts as sender or receiver in the specific invocation of OT'4 (and
likewise for the receiver of OT,,,; simulating OTp).

A party simulates an oracle by answering every query to the functions f; or
f2 by a random value. In addition, the party records all the answers he gave to
queries during the protocol’s execution. When the function R of the OT oracle
is queried, the party simply inverts the functions using the records he stored in
memory, allowing him to reply with the proper answer.!?

The first thing to notice is that OTpq.e indeed has the functionality of an
OT protocol (perhaps up to a negligible error). This is since the simulations of
OT4 and OTpg are consistent with actual OT implementations. On the other
hand, OTp4re cannot be a secure OT protocol. This is simply due to the known
fact that there exists no unconditional construction for OT (this may be traced
back to [7] or even [4]). We give a more precise interpretation of this claim:
An OT protocol is defined by the parties inputs s, s; and ¢, along with their
respective random coins rg and 7. Denote by view§? (and view$T) the view
of the sender (receiver) in this protocol (including the party’s input, randomness
and the messages in the transcript).

Claim 4.3 For every implementation of OT, there exist poly-time procedures Ag
and Ag with access to the PSPACE-complete oracle such that for every choice of

80,81, ¢,Ts, TR we have that either Ag(vieng) =c or AR(m’ew%T) = (sp, $1)-

In particular, there exist two procedures Ag and Ag as above that constitute a
break of OTpqre. Claim 4.3 is given here without a proof.

The attack on OT,p,,: To conclude the proof, we show that the attack Ag on
OTyare can be equally successful when applied in World1l on OTy,,;. Likewise,
the attack Ag, can be used on OT,,,;, in World2.

The attack of the sender of OT,,;, in Worldl1 is achieved as follows: Let the
sender simulate the view of the sender in OT} 4, and run Ag on this view. Denote
the simulated view by view? °'¥l which is generated as follows: The sender
runs OT,,,, as prescribed (recall that OTpe.. follows the same prescription),
but whenever the oracle OTy4 is called (by either side), the sender calls the
inverting oracle Invy and records the inputs and outputs to the oracle. Here it
is crucial that the sender is aware of all the answers that the receiver got for his
queries to OT4, which is guaranteed by the transparent black-box structure of
the combiner.

10 We assume here that the OT oracle answers a | whenever an illegal input is given.
The simulator simply does the same when he gets a query with an input that was
not previously in his memory (and thus not a legal input).

108 D. Harnik et al.

The way OTpqe was constructed ensures that every choice of oracles OT4 and
OTpg is consistent with some randomness of the sender and receiver in OTpg.c.
Thus for every execution of OT,,,;, with inputs sg,s; and ¢, there exists an
execution of OTp,re with the same inputs, for which viewngldl is identical to
the view in OTpare (denoted view’). Thus whenever Ag(view’™®) = c in the
bare world, then is also Ag(view? °"'4) = ¢ in World1. Respectively, in World2,
for the exact same execution of OT¢,,p, the receiver can simulate the view in the
same corresponding execution of OT}q... Now whenever A R(viewﬂ}“”e) = (51, 82)
in the bare world, then is also Apg(view} °'4?) = (s1, s5) in World2. Combining
this with Claim 4.3 we get that there exist procedures A and A’ such that
for every execution of OTy, either A breaks it in Worldl or A, breaks it in

‘World2. O

4.2 (2,3)-Robust OT-Combiner

The results of the previous section indicate that (1,2)-Robust OT-combiners
seem out of our reach at this point. We can however give a solution to the
slightly more modest task of (2,3)-Robust OT-combiner. This solution is a third
party black-box combiner and relies on some often used techniques of Crépeau
and Kilian [8] for amplifying the security in weak versions of OT protocols.

Claim 4.4 There exists a (2,3)-robust OT-combiner scheme.

Furthermore, the (2,3)-combiner is very efficient, making just 6 calls to the can-
didates. The efficiency is essential for the application Section 5. Due to space
limitations we give here only a description of the construction and defer the
proof of its security to the full version of this paper. For simplicity we will dis-
cuss OT on single bits, although everything can be generalized for strings in a
straightforward manner.

Consider 3 candidates for oblivious transfer OTy, OTg, OTc. We first use a
construction that takes 2 OT candidates and always maintains the security of
the receiver.

R(OT4,0Tg)(s0, s1; ¢) is defined as follows:

. The sender chooses a random bit r

. The receiver chooses random bits cg, ¢; such that ¢y @ c; = ¢

. The parties run OT4(r,7 @ sg ® s1;¢0) and OTg(r @ sg,T B s1;¢1)
. The receiver outputs the XOR of his outputs in both executions.

N N

We next present another construction that takes 3 candidates for OT and
strongly protects the sender. Define S(OTa,O0Tg,0T¢)(s0,s1;¢) as follows:

1. The sender chooses random bits rg', r&, r§ and v, rP r{ subject to rg' @
rEor§ =soand r! @rP @ rf =s;.

2. The parties run OT(rg, r{';¢), OTs(rE,r8;¢) and OTc(r§,r{;c).

3. The receiver outputs the XOR of his outputs in the three candidates.

Finally, define OTap = R(OT4,0Tg), OTac = R(OT4,0T¢) and OTpc =
R(OTg,OT¢). The (2,3)-robust OT-combiner is defined as S(OTap, OTac, OTpc).

On Robust Combiners for Oblivious Transfer and Other Primitives 109

An alternative construction is to create an OT that is secure with probabil-
ity % simply by first randomly choosing one of the three candidates and then
applying it. In [9] it was shown how such an OT can be amplified to one that is
secure with all but a negligible probability. However the construction presented
here is much more efficient, a fact that is later used in Section 5.

5 From (1,2)-Combiners to (1,n)-Combiners

(1,2)-robust combiners are essential for the existence of (1,n)-robust combiners.
It is interesting to study under what conditions (1,2)-combiners suffice for the
construction of (1,n)-combiners.

For some primitives, (1,k)-combiners can be reached as a simple extension
of the construction of (1,2)-combiners (for instance, the KA-combiner presented
in Section 3.3 extends easily). However, this is not clear for all combiners, and
depends on the specific primitive at hand. We try to give more generic answers
to the question posed above.

The natural construction takes the k candidates and organizes them as leaves
of a binary tree, and applies the (1,2)-Robust P-combiner scheme for every in-
ternal node (in a bottom up fashion). Now, by the properties of the combiner,
for every node that securely implements P, its ancestor must also securely im-
plement P. The output of the whole tree must therefore also securely implement
P since the root is an ancestor to all leaves. This construction is indeed a (1.k)-
combiner provided that the running time is polynomial. However, the depth of
the tree is logarithmic in k, and if the running time of the (1,2)-combiner is m
times that of its candidates, then the running time of the whole construction
is m*?(ogk) Thus, in order for the running time to be polynomial, m must be
a constant. We distinguish between general (polynomial time) combiners and
very efficient ones. A combiner is said to be very efficient if its running time
is bounded by a constant times the running time of its candidates (for example,
the combiners for OWFs and pseudorandom generators are very efficient).

Lemma 5.1 For any P and for all k, any very efficient (1, 2)-Robust P-combiner
can be turned into a (1, k)-Robust P-combiner.

As suggested above, the tree construction is not efficient when the running
time of the (1,2)-combiner is polynomial time. This is troubling since if a (non-
BB) OT-combiner is eventually found, it is not very likely that it will be a very
efficient one. Nevertheless, it will still suffice for constructing (1,n)-combiners
for OT. We show that given a very efficient (2,3)-combiner, one can construct
(1,n)-combiners from any (not necessarily very efficient) (1,2)-combiner. This
result along with the very efficient (2,3)-combiner for OT (Section 4.2) allow us
to focus our attention on constructing (1,2)-combiners for OT.

Theorem 5.2 Any (1,2)-robust combiner for OT, can be used to construct a
(1, k)-Robust combiner for OT.

110 D. Harnik et al.

Proof: The construction of the (1,k)-combiner makes use of the (2,3)-robust
OT-combiner presented in Section 4.2. The crux being that the (2,3)-combiner
for OT is very efficient (in fact it makes just 6 calls to its candidates, though
we simply use the multiplicative constant ¢). Divide the k candidates into three
groups of size %k‘ such that each candidate appears in at least two of the groups.
For instance, take the first two thirds as group 1, the second two thirds as group
2 and the first and last thirds as group 3. The construction recursively computes
a (1, %k)—combiner on each of these groups. The 3 outcomes of these combiners
are given as input to the (2,3)-combiner.

Since one candidate is guaranteed to be secure, at least 2 of the combiners on
the 3 groups implement secure OT protocols. Therefore the outcome of the (2,3)-
combiner securely implements OT. Let ¢(k) be the running time of the (1,k)-
combiner. The base of the recursion is a (1,2)-combiner that takes a polynomial
time (say ¢(2) = n? for constant d). The recursion gives us running time ¢(k) =
3c-t(2E). Altogether this gives t(k) = (3¢)'*2s/2* . n which is polynomial.

Note that the (1,n)-combiner can be made to work even if the OT func-
tionality!! of the candidates is not guaranteed. This is achieved by testing the
functionality of all candidates in advance and using an error correcting code as
well. ad

5.1 Universal Schemes for Primitives

Definition 5.3 (Universal Schemes). A universal scheme U for a crypto-
graphic primitive P is an explicit construction with the property that if the prim-
itive P exists, then U is a secure implementation of P.

Levin [21] introduced such a scheme for OWFs. He showed an explicit function
which is a OWF under the sole assumption that OWFs exist. In a sense, the
meaning of such a universal scheme U for P is that any proof of existence for P is
guaranteed to be a constructive one, since, once P is proved to exist then I/ is an
explicit implementation of P. The property that allowed Levin’s universal-OWF
schemes is the existence of robust combiners for OWFs. We try to formalize this
connection for other primitives as well.

Lemma 5.4 For any cryptographic primitive P, a Universal-P scheme can be
provided if:

1. There is a known polynomial p(-) such that if there exists an implementation
for P then there also exists an an implementation for P with running time
bounded by p(n).

2. P admits (1, k)-robust combiners (for k a super-constant (w(1)) in the secu-
rity parameter n).

Proof: The general idea of the universal scheme is to go over all possible im-
plementation programs, hoping that at least one of them will fulfill our need.
Then use the combiner to unite all of the programs into one that implements

' The OT functionality is that the receiver gets the bit of his choice.

On Robust Combiners for Oblivious Transfer and Other Primitives 111

the primitive P. More precisely, the universal scheme U with security parameter
1™ goes over all of the Turing machines'? of description length at most log n and
unites them into one program using the (1,n)-Robust P-combiner with polyno-
mial p(n) as a time bound. So if a program implementing P exists then for some
large enough n, this program is included in the n programs that U executes, and
by the robustness of the P-combiner we have that I/ is also an implementation
of P. a

Lemma 5.4 requires two properties of a primitive, the first asks that a time
bound will be known on some implementation of P. This property is very likely
to be true about cryptographic primitives due to a padding argument similar
to the one used for universal OWF in [13] (omitted her due to space limitations).
The padding argument works for most of the primitives we can think of. However
care needs to be taken with primitives such as pseudorandom generators where
padding of the input must also involve padding of the output. In the case of
pseudorandom generators, for instance, it is easy to find a slightly modified
argument that will work.

As corollaries of the above claims we get explicit constructions of many cryp-
tographic primitives such as Universal-OWF and Universal-KA. Due to Theorem
5.2 We further get:

Corollary 5.5 Any (1,2)-robust combiner for OT, can be used to construct a
universal-OT scheme.

Note that in a computational setting, a (1,2)-combiner for OT can simply ignore
the candidate and run a universal-OT scheme (this is a non-black-box combiner).
Thus, in this setting we can say that (1,2)-combiners for OT exist if and only if
universal schemes for OT exist.

6 Open Problems

The most intriguing question that rises from this paper is whether robust OT-
combiners exist or not. Black box impossibility results have already been by-
passed in the past, for instance, in the work of Barak [2]. We believe however,
that solving this problem will require an altogether new technique. The tech-
niques of [2,3] do not seem to help here. The reason being that this technique
makes use of an explicit description of the adversary’s program, which is of im-
portance when dealing with malicious behavior. However our problem is inter-
esting also in the semi-honest model, where such a program is constant. Another
direction would be to try and reach a full impossibility result for general (rather
then transparent) black-box combiners.

An interesting question about combiners regards the bit commitment prim-
itive. For computationally hiding and statistically binding bit commitments we

12 This step depends highly on the nature of the primitive P. For example, if P is
an interactive protocol (like key agreement), then we enumerate interactive Turing
machines.

112 D. Harnik et al.

know how to build robust combiners, via the reduction to OWFs (given a OWF,
commitments can be constructed using the reductions of Naor [22] and Hastad
et al. [14]) which gives an inefficient combiner. It would be interesting to find
a direct and more efficient combiner for commitments. For statistically hiding
(computationally Binding) commitments the question of combiners is altogether
open. '3 It is worth noting that no third party BB combiners for commitments
exist (for both types of commitments). This can be shown using the same tech-
nique from our impossibility result for OT (Theorem 4.1). On the positive side,
there is a very efficient (2,3)-robust combiner for commitments (shown in [15]).
Also, if the security of one of the party’s is guaranteed then constructing com-
biners for commitments is easy. An example for such a case is commitments to
strings where the commitment is much shorter than the secret (as in [20]).

Acknowledgements. We thank the anonymous referees for their helpful com-
ments.

References

1. C.A. Asmuth and G.R. Blakely. An efficient algorithm for constructing a cryp-
tosystem which is harder to break than two other cryptosystems. Computers and
Mthematics and Applications, 7:447-450, 1981.

2. B. Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS,
pages 106—115, 2001.

3. B. Barak. Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In /8rd FOCS, pages 345-355, 2002.

4. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In 20th STOC, 1988.

5. M. Blum and S. Kannan. Designing programs that check their work. In 21st ACM
Sympostum on the Theory of Computing, pages 86-97, 1989.

6. E. Brickell and K. McCurley. An interactive identification scheme based on discrete
logarithms and factoring. Journal of Cryptology, 5(1):29-39, 1992.

7. B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM Journal
on Disc. Math., 4(1):36-47, 1991.

8. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions. In 29th FOCS, pages 42—-52, 1988.

9. 1. Damgard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In Eurocrypt ’99,
pages 5673, 1999.

10. Y. Dodis and J. Katz. Chosen ciphertext security of multiple encryption. In TCC
05, pages 188-209, 2005.

11. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6):637-647, 1985.

12. Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The re-
lationship between public key encryption and oblivious transfer. In 41st FOCS,
pages 325-335, 2000.

13 A reduction of statistically hiding commitments to OWFs would suffice for con-
structing combiners, however, at this point such a reduction is not known.

13
14

15.
16.

17.
18.

19.

20.

21.

22.

23.
24.

25.

On Robust Combiners for Oblivious Transfer and Other Primitives 113

. O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.

. J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal of Computing, 29(4):1364-1396, 1999.
A. Herzberg. On tolerant cryptographic constructions. ECCC, TR02-135, 2002.
S. Hohenberger and A. Lysyanskaya. How to securely outsource cryptographic
computations. In TCC 05, pages 264-282, 2005.

IETF. The tls protocol, version 1.1. www.ietf.org, 2002.

R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In 21st ACM STOC, pages 44—61, 1989.

A. Joux. Multicollisions in iterated hash functions. application to cascaded con-
structions. In CRYPTO °04, volume 3152, pages 306-316. Springer.

J. Kilian. A note on efficient zero-knowledge proofs and arguments. In 24th STOC,
pages 723-732, 1992.

L. A. Levin. One-way functions and pseudorandom generators. Combinatorica,
7:357-363, 1987.

M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151-158, 1991.

Nessie. Recommended cryptographic primitives. www.cryptonessie.org, 2003.

O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between crypto-
graphic primitives. In TCC 04, pages 1-20, 2004.

V. Shoup. Using hash functions as a hedge against chosen ciphertext attack. In
Advances in Cryptology — EUROCRYPT ’ 2000, volume 1807, pages 275-288, 2000.

Efficient Identity-Based Encryption Without
Random Oracles

Brent Waters

Stanford University
bwaters@cs.stanford.edu

Abstract. We present the first efficient Identity-Based Encryption (IBE)
scheme that is fully secure without random oracles. We first present our
IBE construction and reduce the security of our scheme to the decisional
Bilinear Diffie-Hellman (BDH) problem. Additionally, we show that our
techniques can be used to build a new signature scheme that is secure
under the computational Diffie-Hellman assumption without random or-
acles.

1 Introduction

Identity-Based Encryption allows for a party to encrypt a message using the
recipient’s identity as a public key. The ability to use identities as public keys
avoids the need to distribute public key certificates. This can be very useful in
applications such as email where the recipient is often off-line and unable to
present a public-key certificate while the sender encrypts a message.

The first efficient and secure method for Identity-Based Encryption was put
forth by Boneh and Franklin [4]. They proposed a solution using efficiently com-
putable bilinear maps that was shown to be secure in the random oracle model.
Since then, there have been schemes shown to be secure without random oracles,
but in a weaker model of security know as the Selective-ID model [9, 1]. Most
recently, Boneh and Boyen [2] described a scheme that was proved to be fully
secure without random oracles; the possibility of such a scheme was to that point
an open problem. However, their scheme is too inefficient to be of practical use.

We present the first efficient Identity-Based Encryption scheme that is fully
secure without random oracles. The proof of our scheme makes use of an algebraic
method first used by Boneh and Boyen [1] and the security of our scheme reduces
to the decisional Bilinear Diffie-Hellman (BDH) assumption.

We additionally show that our IBE scheme implies a secure signature scheme
under the computational Diffie-Hellman assumption without random oracles.
Previous practical signature schemes that were secure in the standard model
relied on the Strong-RSA assumption [12,11] or the Strong-BDH assumption [3].

1.1 Related Work
Shamir [16] first presented the idea of Identity-Based Encryption as a challenge
to the research community. However, the first secure and efficient scheme of

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 114-127, 2005.
© International Association for Cryptologic Research 2005

Efficient Identity-Based Encryption Without Random Oracles 115

Boneh and Franklin[4] did not appear until much later. The authors took a
novel approach in using efficiently computable bilinear maps in order to achieve
their result.

Canetti et. al. [9] describe a weaker model of security for Identity-Based
Encryption that they term the Selective-ID model. In the Selective-ID model
the adversary must first declare which identity it wishes to be challenged on
before the global parameters are generated. The authors provide a scheme that
is provably secure in the Selective-ID model without random oracles. Boneh and
Boyen [1] improve upon this result by describing an efficient scheme that is secure
in the Selective-ID model.

Finally, Boneh and Boyen [2] describe a scheme that is fully secure without ran-
dom oracles. However, their construction is too inefficient to be of practical use.

1.2 Organization

We organize the rest of the paper as follows. In Section 2 we give our security
definition. In Section 3 we describe our complexity assumptions. In Section 4 we
present the construction of our IBE scheme and follow with a proof of security
in Section 5. In Section 6 we discuss how our scheme can be extended to a hier-
archical identity-based encryption scheme and how that can be used to achieve
CCA-security. We discuss the transformation to a signature scheme in Section 7.
Finally, we conclude in Section 8.

2 Security Definitions

In this section we present the definition of semantic security against passive
adversaries for Identity-Based Encryption. This definition was first described by
Boneh and Franklin [4]. Consider the following game played by an adversary.
The game has four distinct phases:

Setup. The challenger generates the master public parameters and gives them
to the adversary.

Phase 1. The adversary is allowed to make a query for a private key, v, where v
is an identity specified by the adversary. The adversary can repeat this multiple
times for different identities.

Challenge. The adversary submits a public key, v*, and two messages M, and
M. The adversary’s choice of v* is restricted to the identities that he did not
request a private key for in Phase 1. The challenger flips a fair binary coin,y,
and returns an encryption of M, under the public key v*.

Phase 2. Phase 1 is repeated with the restriction that the adversary cannot
request the private key for v*.

Guess. The adversary submits a guess, v/, of .

116 B. Waters

Definition 1 (IBE Semantic Security). An Identity-Based Encryption
scheme is (t,q,€)-semantically secure if all t-time adversaries making at most
q private key queries have at most an € in breaking our scheme.

3 Complexity Assumptions

We briefly review the facts about groups with efficiently computable bilinear
maps. We refer the reader to previous literature [4] for more details.

Let G, Gy be s groups of prime order p and g be a generator of G;. We say
G has an admissible bilinear map, e : G x G — Gy, into G if the following two
conditions hold. The map is bilinear; for all a,b we have e(g%,¢%) = e(g,).
The map is non-degenerate; we must have that e(g, g) # 1.

3.1 Decisional Bilinear Diffie-Hellman (BDH) Assumption

The challenger chooses a, b, ¢, z € Z, at random and then flips a fair binary coin
B. If 3 = 1 it outputs the tuple (g, A = ¢%, B = ¢°,C = ¢°,Z = e(g, g)*°).
Otherwise, if 3 = 0, the challenger outputs the tuple (9,4 = ¢, B = ¢*,C =
9%, Z =e(g,9)?). The adversary must then output a guess 3’ of 3.

An adversary, B, has at least an e advantage in solving the decisional BDH
problem if

Pr[B(g,9% ¢" g e(g.9)*) = 1]

~Pr[B(g.9.9%9" g% el9,9)7) =1] | > 2¢

where the probability is over the randomly chosen a, b, ¢, z and the random bits
consumed by B. We refer to the left hand side as Pgpy and the right hand side
as RBDH .

Definition 2. The decisional (t,e)-BDH assumption holds if no t-time adver-
sary has at least € advantage in solving the above game.

3.2 Computational Diffie-Hellman (DH) Assumption

The challenger chooses a,b € Z, at random and outputs (¢, A = ¢%, B = q°).
The adversary then attempts to output ¢?® € G. An adversary, B, has at least
an e advantage if

Pr(B(g.g%¢") =g"] > €
where the probability is over the randomly chosen a,b and the random bits
consumed by B.

Definition 3. The computational (t,€)-DH assumption holds if no t-time ad-
versary has at least € advantage in solving the above game.

Efficient Identity-Based Encryption Without Random Oracles 117

4 Construction

Our construction can be viewed as a modification of the Boneh-Boyen [1] scheme.
We first present our construction then describe its relation to the Boneh-Boyen
scheme.

Let G be a group of prime order, p, for which there exists an efficiently
computable bilinear map into G;. Additionally, let ¢ : G x G — G; denote
the bilinear map and g be the corresponding generator. The size of the group is
determined by the security parameter. Identities will be represented as bitstrings
of length n, a separate parameter unrelated to p. We can also let identities be
bitstrings of arbitrary length and n be the output length of a collision-resistant
hash function, H : {0,1}* — {0,1}". Our construction follows.

Setup. The system parameters are generated as follows. A secret o € Zj, is
chosen at random. We choose a random generator, g € G, and set the value
g1 = g% and choose g5 randomly in G. Additionally, the authority chooses a
random value v’ € G and a random n-length vector U = (u;), whose elements
are chosen at random from G. The published public parameters are g,g1, go2,u’,
and U. The master secret is g5.

Key Generation. Let v be an n bit string representing an identity, v; denote the
ith bit of v, and ¥V C {1,...,n} be the set of all 4 for which v; = 1. (That is V is
the set of indicies for which the bitstring v is set to 1.) A private key for identity
v is generated as follows. First, a random r € Z,, is chosen. Then the private key

is constructed as:
T
dy = (gg <u/ Hul> ’gr) .
ey

Encryption. A message M € G is encrypted for an identity v as follows. A
value t € Zj, is chosen at random. The ciphertext is then constructed as

C: (glaQQ Mg (Huz>

i€V

Decryption. Let C' = (Cy,Cs,C3) be a valid encryption of M under the identity
v. Then C can be decrypted by d, = (di,dz) as

e(g”, (v [Tiey “i)t)
e(g8 (v Tiey “i)r '9")
) e(g, (v Tliey “i)m)
e(g1, 92)t€((ul HiGV Ui)rt ,9)

6(d2, 03)

Cle(dl,C'g)

= (6(91, gQ)tM)

= (6(91, gQ)tM

118 B. Waters

4.1 Efficiency

If the value of e(g1, g2) i