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Preface

These are the proceedings of the 24th Annual IACR Eurocrypt Conference.
The conference was sponsored by the International Association for Cryptologic
Research (IACR; see www.iacr.org), this year in cooperation with the Computer
Science Department of the University of Aarhus, Denmark. As General Chair,
Ivan Damg̊ard was responsible for local organization.

The Eurocrypt 2005 Program Committee (PC) consisted of 30 internationally
renowned experts. Their names and affiliations are listed on pages VII and VIII
of these proceedings. By the November 15, 2004 submission deadline the PC
had received a total of 190 submissions via the IACR Electronic Submission
Server. The subsequent selection process was divided into two phases, as usual.
In the review phase each submission was carefully scrutinized by at least three
independent reviewers, and the review reports, often extensive, were committed
to the IACR Web Review System. These were taken as the starting point for the
PC-wide Web-based discussion phase. During this phase, additional reports were
provided as needed, and the PC eventually had some 700 reports at its disposal.
In addition, the discussions generated more than 850 messages, all posted in
the system. During the entire PC phase, which started in August 2003 with my
earliest invitations to PC members and which continued until March 2005, more
than 1000 email messages were communicated. Moreover, the PC received much
appreciated assistance from a large body of external reviewers. Their names are
listed on page VIII of these proceedings.

The selection process for Eurocrypt 2005 was finalized by the end of January
2005 with a one-day PC meeting held in Amsterdam, The Netherlands. This
meeting was attended by most of the PC members. The PC ultimately selected
33 papers for publication in these proceedings and presentation at the confer-
ence. After notification of acceptance the authors were provided with the review
comments and were granted one month to prepare the final versions, which were
due by February 28, 2005. These final versions were not subjected to further
scrutiny by the PC and their authors bear full responsibility.

It was a great pleasure to work with this PC, and I thank all members for
contributing so much of their scientific expertise, advice, opinions, preferences
and devotion, and for their very hard work in the relatively short time frame
that a PC has to operate in.

The Eurocrypt 2005 “Best Paper Award” was shared by Xiaoyun Wang, Xue-
jia Lai, Dengguo Feng, Hui Chen and Xiuyuan Yu for their paper “Cryptanalysis
of the Hash Functions MD4 and RIPEMD” and by Xiaoyun Wang and Hongbo
Yu for their paper “How to Break MD5 and Other Hash Functions.”

Besides the above-mentioned 33 regular presentations, the Eurocrypt 2005
scientific program featured two invited speakers: René Schoof (University of
Rome, Italy), with a survey talk on algebraic geometry algorithms in cryptology,



VI Preface

in particular on point counting algorithms for algebraic varieties over finite fields,
and Joe Kilian (Yianilos Labs, Princeton, USA), with a talk on “Confusion,
Quagmire and Irrelevancy: an Optimist’s View of the Future of Cryptographic
Research.”

Many others have, in one way or another, helped the PC, contributed to
these proceedings or the Eurocrypt conference as such, thereby also serving the
international cryptology community as a whole, directly or indirectly.

The Eurocrypt conference continues to attract many very high quality sub-
missions from all over the world; so many in fact that not all good papers could
be selected. All authors who submitted their work for consideration by the PC
are hereby acknowledged for their contributions.

CWI1 in Amsterdam and the Mathematical Institute at Leiden University,
my employers, are gratefully acknowledged for their support.

Eurocrypt 2004 PC Co-chairs Christian Cachin and Jan Camenisch (IBM Re-
search), as well as Crypto 2004 PC Chair Matt Franklin (UC Davis), gave useful
advice on a number of occasions. Also many thanks to Springer for its collabo-
ration. Peter Landrock (Cryptomathic) is kindly acknowledged for agreeing to
organize and chair the Eurocrypt 2005 rump session, a traditional, entertain-
ing Tuesday evening session with brief research announcements and “any other
business.”

Hats off to John Tromp (Quantum Computing and Advanced Systems Re-
search Group, CWI), who reallocated, from the summer of 2004 until February
2005, substantial amounts of his precious research time to expertly manage the
technical infrastructure for electronic submissions and eb review. The software
was run on the network of CWI’s INS Department. I hereby acknowledge the sup-
port of INS head Martin Kersten and his system manager Matthijs Mourits. Also
many thanks to Harry Buhrman and Paul Vitányi! Thomas Herlea from KU Leu-
ven’s IACR submission server and webreview system development team offered
prompt technical assistance to John whenever needed. Michael Smeding (Com-
puter Support Team, CWI) provided prompt service to me and my group.

Serge Fehr of my Cryptology and Information Security Research Group at
CWI was in charge of “General Affairs.” In particular, he assisted me during the
very busy week following the submission deadline, organized the PC meeting
in collaboration with Wilmy van Ojik (Conference Organization, CWI), helped
the PC by logging the entire decision process during the meeting, and provided
instrumental assistance when I edited this volume. Serge, thanks a lot!

Finally, I thank Ivan Damg̊ard, Eurocrypt 2005 General Chair, for our very
pleasant collaboration during the organization of Eurocrypt 2005, a memorable
addition to our many joint scientific endeavors (and friendship!)

March 2005 Ronald Cramer

1 CWI is the National Research Institute for Mathematics and Computer Science in
The Netherlands.
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Ignacio Gracia
Louis Granboulan
Stuart Haber
Helena Handschuh
Alex Healy
Javier Herranz
Florian Hess
Jason Hinek
Martin Hirt
Susan Hohenberger
Thomas Holenstein
Nick Howgrave-Graham
Yuval Ishai
Markus Jakobsson
Stanislaw Jarecki
Antoine Joux
Ari Juels
Jonathan Katz
Alexander Kholosha
Eike Kiltz
Tetsutaro Kobayashi
Tadayoshi Kohno
Yuichi Komano
Hugo Krawczyk
Gunnar Kreitz
Caroline Kudla

Noboru Kunihiro
Jeff Lagarias
Tanja Lange
Joseph Lano
Kristin Lauter
Yehuda Lindell
Helger Lipmaa
Moses Liskov
Phil MacKenzie
Subhamoy Maitra
Tal Malkin
John Malone-Lee
Stefan Mangard
Keith Martin
Alexander May
Mira Meyerovich
Silvio Micali
Anton Mityagin
Paz Morillo
Siguna Mueller
Sourav Mukhopadhyay
Enric Nart
Kenny Nguyen
Minh-Huyen Nguyen
Antonio Nicolosi
Jesper Nielsen
Kobbi Nissim
Satoshi Obana
Miyako Ohkubo
Kazuo Ohta
Elisabeth Oswald
Pascal Paillier
Rafael Pass
Kenny Paterson



Organization IX

Maura Paterson
Souradyuti Paul
Thomas Pedersen
Jan Pelzl
Giuseppe Persiano
Erez Petrank
Birgit Pfitzmann
Duong Hieu Phan
Krzysztof Pietrzak
David Pointcheval
Manoj Prabhakaran
Bartosz Przydatek
Jordi Pujolàs
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Cryptanalysis of the Hash Functions
MD4 and RIPEMD

Xiaoyun Wang1, Xuejia Lai2, Dengguo Feng3, Hui Chen1, and Xiuyuan Yu4

1 Shandong University, Jinan250100, China
xywang@sdu.edu.cn

2 Shanghai Jiaotong University, Shanghai200052, China
3 Chinese Academy of Science China, Beijing100080, China

4 Huangzhou Teacher College, Hangzhou310012, China

Abstract. MD4 is a hash function developed by Rivest in 1990. It serves
as the basis for most of the dedicated hash functions such as MD5, SHAx,
RIPEMD, and HAVAL. In 1996, Dobbertin showed how to find collisions
of MD4 with complexity equivalent to 220 MD4 hash computations. In
this paper, we present a new attack on MD4 which can find a collision
with probability 2−2 to 2−6, and the complexity of finding a collision
doesn’t exceed 28 MD4 hash operations. Built upon the collision search
attack, we present a chosen-message pre-image attack on MD4 with com-
plexity below 28. Furthermore, we show that for a weak message, we can
find another message that produces the same hash value. The complex-
ity is only a single MD4 computation, and a random message is a weak
message with probability 2−122.

The attack on MD4 can be directly applied to RIPEMD which has
two parallel copies of MD4, and the complexity of finding a collision is
about 218 RIPEMD hash operations.

1 Introduction

MD4 [14] is an early-appeared hash function that is designed using basic arith-
metic and Boolean operations that are readily available on modern computers.
Such type of hash functions are often referred to as dedicated hash functions,
and they are quite different from hash functions based on block ciphers. After the
publication of MD4, several dedicated hash functions are successively designed,
including MD5 [15], HAVAL [18], RIPEMD [13], RIPEMD-160 [9], SHA-1 [10],
SHA-256 [11], etc. These hash functions, although more complex, all follow the
same design philosophy as MD4 and have similar structures as MD4. In partic-
ular, RIPEMD consists of two parallel copies of MD4, and each copy is identical
to MD4 except for some internal constants.

There have been several important cryptanalytical results for both MD4 and
RIPEMD. In 1996, H. Dobbertin [5] gave a collision attack on MD4 which finds
a collision with probability 2−22. He also showed how to find collisions of mean-
ingful messages. In 1998, H. Dobbertin [8] showed that the first two (out of the

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 1–18, 2005.
c© International Association for Cryptologic Research 2005



2 X. Wang et al.

total three) rounds of MD4 is not one-way, and this means that there is an ef-
ficient attack for finding a preimage and a second preimage. For RIPEMD, H.
Dobbertin [7] gave an attack that finds a collision of RIPEMD reduced to two
rounds with 231 hash operations.

Along with the development of the MD4-family of hash functions, there have
also been security analysis on these functions. For example, B. den Boer and
A. Bosselaers [3] found pseudo-collisions (same message with two different ini-
tial values) for MD5. In Eurocrypto’96, H. Dobbertin [6] presented a collisions of
MD5, under another initial value. In Crypto’98, F. Chabaud and A. Joux [4] pre-
sented a differential attack on SHA-0 with probability 2−61. At Asiacrypt 2003,
B.V. Rompay etc. [16] gave a collision attack on HAVAL-128 with probability
2−29.

Some very interesting results on hash functions came out simultaneously in
Crypto 2004. Eli Biham and Rafi Chen [2] presented a near-collision attack
on SHA-0, and described their improved results on SHA-0 and SHA-1 in the
rump session. Then, A. Joux [12] presented a real collision of SHA-0 with four
message blocks. X.Y. Wang etc. [17] also announced real collisions of a series of
hash functions including MD4, MD5, HAVAL-128, and RIPEMD in the rump
session. All these research work were done independently.

The purpose of this paper is to analyze the security of MD4 and RIPEMD
and present more efficient attacks. The main results are summarized below.

1. Collision search attack on MD4: we can find collisions with probability 2−2

to 2−6 and with complexity less than 28 MD4 hash operations.
2. A theoretical second pre-image attack on MD4 for weak messages: For a weak

message, we can find another message that produces the same hash value.
The complexity is only a single MD4 computation and a random selected
message is a weak message with probability 2−122.

3. Collision search attack on RIPEMD: we can find collisions with probability
2−16 and with complexity less than 218 RIPEMD hash operations.

In addition to presenting the new attacks on MD4 and RIPEMD, we also
introduce a set of new analytical techniques that are applicable to all the hash
functions in the MD4-family. More specifically, we show how to derive a set of the
sufficient conditions on the chaining values to ensure the differential path to hold,
and how to use message modification techniques to greatly improve the success
probability of the attack. Such techniques have proved to be very effective in
cryptanalyzing other dedicated hash functions such as MD5, RIPEMD, HAVAL-
128, HAVAL-160, SHA0, and especially SHA-1.

All the existing attacks on dedicated hash functions belong to differential
attacks [1], since a collision can be regarded as a special differential which has
non-zero input difference and zero output difference. We remark that unlike
other existing attacks on hash functions, our attack presented in this paper is
a “precise” differential attack in which the differential path is more restrictive
since it depends on both the difference as well as the specific value of the bit
involved.
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The paper is organized as follows. In Section 2 we provide a description
of MD4 and RIPEMD. In Section 3, we summarize some useful properties of
the Boolean functions in two hash functions and introduce the notation used
in the paper. As our main result, the collision attack on MD4 is presented in
Section 4, the collision attack on RIPEMD is presented in Section 5. In Section 6,
we describe a theoretical second pre-image attack on MD4. In Section 7, we
summarize our work together with some remarks, especially on the implication
for the analysis of the hash function SHA-0.

2 Description of MD4 and RIPEMD

2.1 MD4 Algorithm

The message digest algorithm MD4 compresses any arbitrary bit-length message
into a 128-bit hash value. Given any message, the algorithm first pads it into a
message with a length that is a multiple of 512 bits We omit the padding method
here since it is irrelevant to our attack.

For each 512-bit message block, MD4 compresses it into a 128-bit hash value
using a compression function. The MD4 compression function has three rounds.
Each round uses a different nonlinear Boolean function defined as follows:

F (X,Y,Z) = (X ∧ Y ) ∨ (¬X ∧ Z)
G(X,Y,Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z)
H(X,Y,Z) = X ⊕ Y ⊕ Z

Here X,Y,Z are 32-bit words. The operations of three functions are all bitwise.
¬X is the bitwise complement of X, ∧, ⊕ and ∨ are respectively the bitwise
AND, XOR and OR.

Each round of the compression function repeats 16 similar step operations,
and in each step one the four chaining variables a, b, c, d is updated.

φ0(a, b, c, d,mk, s) = ((a+ F (b, c, d) +mk) mod 232) ≪ s

φ1(a, b, c, d,mk, s) = ((a+G(b, c, d) +mk + 0x5a827999) mod 232) ≪ s

φ2(a, b, c, d,mk, s) = ((a+H(b, c, d) +mk + 0x6ed9eba1) mod 232) ≪ s

The initial value for MD4 is defined as:

(a, b, c, d) = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476)

MD4 Compression Function. For one 512-bit block M of the padded mes-
sage M , M = (m0,m1, ...,m15), the compression function is defined as follows:

1. Let (aa, bb, cc, dd) be input chaining variables for M . If M is the first mes-
sage block to be hashed, then (aa, bb, cc, dd) are set to be the initial value.
Otherwise they are the output from compressing the previous message block.
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2. Perform the following 48 steps (three rounds):
For j = 0, 1, 2 and i = 0, 1, 2, 3

a = φj(a, b, c, d, wj,4i, sj,4i)
d = φj(d, a, b, c, wj,4i+1, sj,4i+1)
c = φj(c, d, a, b, wj,4i+2, sj,4i+2)
b = φj(b, c, d, a, wj,4i+3, sj,4i+3)

Here sj,4i+k (k = 0, 1, 2, 3) are step-dependent constants, wj,4i+k is a
message word and ≪ sj,4i+k is circularly left-shift by sj,4i+k bit positions.
The specific message order and shift positions are given in Table 5.

3. Add the chaining variables a, b, c and d respectively to the input chaining
variables to produce the final chaining variables for the current message
block.

aa = (a+ aa) mod 232

bb = (b+ bb) mod 232

cc = (c+ cc) mod 232

dd = (d+ dd) mod 232

If M is the last message block, H(M) = aa|bb|cc|dd is the hash value for the
message M . Otherwise repeat the above process with the next 512-bit message
block and (aa, bb, cc, dd) as the input chaining variables.

2.2 RIPEMD Algorithm

RIPEMD employs the same nonlinear round functions as MD4 and they are
used in the following six operations:

ϕ0(a, b, c, d,mk, s) = ((a+ F (b, c, d) +mk) mod 232) ≪ s

ϕ1(a, b, c, d,mk, s) = ((a+G(b, c, d) +mk + 0x5a827999) mod 232) ≪ s

ϕ2(a, b, c, d,mk, s) = ((a+H(b, c, d) +mk + 0x6ed9eba1) mod 232) ≪ s

ψ0(a, b, c, d,mk, s) = ((a+ F (b, c, d) +mk + 0x50a28be6) mod 232) ≪ s

ψ1(a, b, c, d,mk, s) = ((a+G(b, c, d) +mk) mod 232) ≪ s

ψ2(a, b, c, d,mk, s) = ((a+H(b, c, d) +mk + 0x5c4dd124) mod 232) ≪ s

In order to easily describe the RIPEMD compression function, we denote MD4
compression function with three operations φ0, φ1 and φ2 as MD4(φ0, φ1, φ2,M).

RIPEMD Compression Function. The RIPEMD compression function em-
ploys two copies of MD4 compression function: the left copy is MD4
(ϕ0, ϕ1, ϕ2,M), and the right copy is MD4(ψ0, ψ1, ψ2,M). Both copies have the
same initial value as MD4. The details of the message order and shift positions
are given in Table 7.

1. Let (a, b, c, d) be the input chaining variables for M which is the same as
MD4.
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2. Perform two copies of the MD4 operation

(aa, dd, cc, bb, )← MD4(ϕ0, ϕ1, ϕ2,M),

(aaa, ddd, ccc, bbb)← MD4(ψ0, ψ1, ψ2,M).

3. The output (a, b, c, d) for compressing M is the following:

a = (b+ cc+ ddd) mod 232

b = (c+ dd+ aaa) mod 232

c = (d+ aa+ bbb) mod 232

d = (a+ bb+ ccc) mod 232

3 Preliminaries

3.1 Basic Properties of the Boolean Functions

Some properties of three nonlinear Boolean functions are very helpful for de-
termining sufficient conditions for the differential paths that are used in our
collision search attack on MD4 and RIPEMD. In what follows, we summarize
some well-known properties of these functions.

Proposition 1. For the nonlinear function F (X,Y,Z) = (X ∧ Y ) ∨ (¬X ∧ Z)
in the first round, there are the following properties:

1. F (x, y, z) = F (¬x, y, z) if and only if y = z.

2. F (x, y, z) = F (x,¬y, z) if and only if x = 0.

3. F (x, y, z) = F (x, y,¬z) if and only if x = 1.

Proposition 2. For the nonlinear function G(X,Y,Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨
(Y ∧ Z) in the second round, there are the following properties:

1. G(x, y, z) = G(¬x, y, z) if and only if y = z.

2. G(x, y, z) = G(x,¬y, z) if and only if x = z.

3. G(x, y, z) = G(x, y,¬z) if and only if x = y.

Proposition 3. For the nonlinear function H(X,Y,Z) = X ⊕ Y ⊕ Z in the
third round, there are the following properties:

1. H(x, y, z) = ¬H(¬x, y, z) = ¬H(x,¬y, z) = ¬H(x,¬y, z)

2. H(x, y, z) = H(¬x,¬y, z) = H(x,¬y,¬z) = H(¬x, y,¬z)
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3.2 Notation

Here we introduce the notation used in our analysis. Since our attack is a “pre-
cise” differential attack, we need to keep track of both the difference as well as
the specific value of the bit involved. Therefore, the notation may seem quite
complex at a first glance, but the intuition behind these notation will become
more clear as we proceed in describing the attacks.

1. M = (m0,m1, ...,m15) and M ′ = (m′
0,m

′
1, ...,m

′
15) represent two 512-bit

messages.
2. ai, di, ci, bi respectively denote the outputs of the (4i − 3)-th, (4i − 2)-th,

(4i− 1)-th and 4i-th steps for compressing M , for 1 ≤ i ≤ 16.
3. a′i, b

′
i, c

′
i, d

′
i respectively denote the outputs of the (4i − 3)-th, (4i − 2)-th,

(4i− 1)-th and 4i-th steps for compressing M ′.
4. Δmi = m′

i −mi denotes the difference between two message words mi and
m′

i.
5. ai,j , bi,j , ci,j , di,j represent respectively the j − th bit of ai, bi, ci, di, where

the least significant bit is the 1-st bit, and the most significant bit is 32-th
bit.

6. xi[j], xi[−j] (x can be a, b, c, d) is the resulting values by only changing the
j− th bit of the word xi. xi[j] is obtained by changing the j-th bit of xi from
0 to 1. xi[−j] is obtained by changing the j-th bit of xi from 1 to 0.

7. xi[±j1,±j2, ...,±jl] is the value by change j1 − th, j2 − th, ..., jl − th bits
of xi. The ”+” sign means that the bit is changed from 0 to 1, and the ”–”
sign means that the bit is changed from 1 to 0.

Note that we use integer modular subtraction difference as the measure of dif-
ference, not the exclusive-or difference. In addition, we also need to specify the
precise values of each bit when considering the carry effect in the differential
path. This is better understood using an example. Let us consider step 7 in
Table 5. The output difference is

Δc2 = c′2 − c2 = −218 + 221.

Using our notation, c′2 = c2[−19, 22]. For the specific differential path, we need
to expand the one-bit subtraction difference in bit 19 into a three-bit difference
in bits 19,20,21. That is, we expand c2[19] as c2[19, 20,−21]. Hence, the output
c′2 is represented as

c′2 = c2[19, 20,−21, 22],

as showed in the last column of Table 5.

4 The Collision Attack on MD4

In this section, we will describe a collision attack on MD4 with a success prob-
ability 2−2 to 2−6. The complexity is below 28 MD4 computations. The attack
includes three parts:
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1. Find a collision differential in which M and M ′ produces a collision.
2. Derive a set of sufficient conditions which ensure the collision differential to

hold.
3. For any random message M , make some modification to M such that almost

all the sufficient conditions hold.

4.1 The Collision Differential for MD4

We select a collision differential for MD4 as follows:

ΔH0 = 0
(M,M ′)−→ ΔH = 0

such that
�M = M ′ −M = (�m0,�m1, ......,�m15)

�m1 = 231, �m2 = 231 − 228, �m12 = −216

�mi = 0, 0 ≤ i ≤ 15, i 	= 1, 2, 12.

All the characteristics in the collision differential can be found in Table 5.
The first column denotes the step, the second column is the chaining variable
in each step for M , the third is the message word for M in each step, the
fourth is shift rotation, the fifth and the sixth are respectively the message word
difference and chaining variable difference for M and M ′, and the seventh is
the chaining variable for M ′. Especially, the empty items both in fifth and sixth
columns denote zero differences, and steps those aren’t listed in the table have
zero differences both for message words and chaining variables.

It is clear that the collision differential consists of two internal collisions
respectively from 2-25 steps and 36-41 steps.

The sufficient conditions (Table 6) that ensure all the characteristics to hold
can be easily verified by the properties of the Boolean functions given in Sec-
tion 3. This further means that if M satisfies all the conditions in Table 6, M
and M ′ consists of a collision.

The following is the derivation for the sufficient conditions in the step 9 of
Table 5. The differential characteristic in step 9 is:

(b2[−13,−14, 15], c2[19, 20,−21, 22], d2[14], a2)

−→ (a3[17], b2[−13,−14, 15], c2[19, 20,−21, 22], d2[14])

1. According to (1) of Proposition 1, the conditions c2,13 = d2,13 and c2,15 =
d2,15 ensure that the changes in 13-th and 15-th bits in b2 result in no change
in a3.

2. According to (2) of Proposition 1, the conditions b2,19 = 0, b2,20 = 0, b2,21 =
0, and b2,22 = 0 ensure that the changes in 19-th, 20-th, 21-th and 22-th bits
in c2 result in no change in a3.

3. From the property of function f , the conditions b2,14 = 1, d2,14 = 0 and
c2,14 = 0 result in f(b2,14, c2,14, d2,14) = 0 and f(¬b2,14, c2,14,¬d2,14) = 1. So
�a3 = 216.

4. The condition a3,17 = 0 ensures that a′3 = a3[17].
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Thus the above 10 conditions consists of a set of sufficient conditions for the
differential characteristic in step 9.

4.2 Message Modification

From the conditions listed in Table 6, we know that the (M,M ′) is a collision
with probability 2−122. This is greatly lower than the birthday attack probability
2−64. We can improve the probability to 2−6 ∼ 2−2 by two types of message
modification techniques, which we term as “single-step modification” and “multi-
step modification.”

Single-Step Modification. It is easy to modify M such that the conditions in
round 1 hold. For example, m1 can be modified as :

d1 ← d1 ⊕ (d1,7 ≪ 6)⊕ ((d1,8 ⊕ a1,8) ≪ 7)⊕ ((d1,11 ⊕ a1,11) ≪ 10)

m1 ← (d1 ≫ 7)− d0 − F (a1, b0, c0)

After simple-message modification, (M,M ′) is a collision with probability 2−25

by Table 6.

Multi-step Modification. Although the probability 2−25 is high enough for us
to find many collisions of MD4, we also introduce a multi-message modification to
correct the conditions in second round, and that greatly improves the probability.
This modification technique is very important for analyzing other hash functions
such as MD5, SHA-0, especially SHA-1.

The principle for multi-message modification is that the modifications for
some messages consist of a partial collision in the first round which remains all
the conditions in the first round to hold, but only change a bit of the second
round. The details are as follows:

1. Modify m0, m1, m2, m3, m4 successively by Table 1 to correct 5 conditions
of a5 in Table 6. For example, if a5,19 = c4,19, modify m0, m1, m2, m3, m4

by Table 1 (i = 19). The changed message words don’t change any condition
of first round in Table 6, but correct a5,19 = c4,19 to a5,19 = c4,19.
It is noted that, the conditions in step 17 should be corrected from low bit
to high bit, i.e. the order of the bits needed to be changed is:

a5,19 → a5,26 → a5,27 → a5,29 → a5,32

2. Similarly, modify m4, m5, m6, m7, m8 successively to correct 4 conditions
of d5.

d5,19 = a5,19, d5,26 = b4,26, d5,27 = b4,27, d5,29 = b4,29

3. Utilize more precise modification to correct some other conditions. For ex-
ample, we can use the internal collision in Table 2 in which there are three
message words are changed to correct c5,i, i = 26, 27, 29, 32. The precise
modification should add some extra conditions in the first rounds (see Ta-
ble 2) in advance. There are many other precise modifications. c5,30 can be
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Table 1. Message Modification for Correcting a5,i, i = 19, 26, 27, 29, 32

Modify mi Chaining values
after message modification

1 m0 3 m0 ←− m0 ± 2i−4 a1
new = a1[±i], b0, c0, d0

2 m1 7 m1 ←− (d1 ≫ 7) − d0 − f(a′
1, b0, c0) d1, a1

new, b0, c0

3 m2 11 m2 ←− (c1 ≫ 11) − c0 − f(d1, a
′
1, b0) c1, d1, a1

new, b0

4 m3 19 m3 ←− (b1 ≫ 19) − b0 − f(c1, d1, a
′
1) b1, c1, d1, a1

new

5 m4 3 m4 ←− (a2 ≫ 3) − a′
1 − f(b1, c1, d1) a2, b1, c1, d1

Table 2. The Modification for Correcting c5,i, i = 26, 27, 29, 32

Modify mi Chaining values after The extra conditions
message modification in first round

6 d2 m5 7 m5 ← m5 + 2i−17 d2[i − 9], a2, b1, c1 d2,i−9 = 0

7 c2 m6 11 c2, d2[i − 9], a2, b1 a2,i−9 = b1,i−9

8 b2 m7 19 b2, c2, d2[i − 9], a2 c2,i−9 = 0

9 a3 m8 3 m8 ← m8 − 2i−10 a3, b2, c2, d2[i − 9] b2,i−9 = 0

10 d3 m9 11 m9 ← m9 − 2i−10 d3, a3, b2, c2

Table 3. Two collisions for MD4. H is the hash value with little-endian and no message

padding, and H∗ is the hash value with big-endian and message padding

M1 4d7a9c83 56cb927a b9d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31 97e31fe5 2794bf08 b9e8c3e9

M ′
1 4d7a9c83 d6cb927a 29d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dc8e31 97e31fe5 2794bf08 b9e8c3e9

H 5f5c1a0d 71b36046 1b5435da 9b0d807a

H∗ 4d7e6a1d efa93d2d de05b45d 864c429b

M2 4d7a9c83 56cb927a b9d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31 97e31fe5 f713c240 a7b8cf69

M ′
2 4d7a9c83 d6cb927a 29d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dc8e31 97e31fe5 f713c240 a7b8cf69

H e0f76122 c429c56c ebb5e256 b809793

H∗ c6f3b3fe 1f4833e0 697340fb 214fb9ea

corrected by other modification. By various modifications, besides two con-
ditions in the third round, almost all the conditions in rounds 1-2 will be
corrected. The probability can be among 2−6 ∼ 2−2.

The complexity of finding a collision doesn’t exceed 28 MD4 computations.
To select a message M is only to change the last two words from the previous se-
lected message M . So, finding (M,M ′) only needs about one-time single-message
modification for the first 14 words. This time can be neglected. For each selected
message M , it is only needs two-time single-message modifications for the last
two words and about 20 -time advanced modifications for correcting 20 condi-
tions in the second round, and each multi-message modification only needs about
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a few step operations, so the total time for both kinds of modifications is about
two MD4 computations for each selected message. According to the probability
of the collision differential, it is easy to know that the complexity of finding
(M,M ′) does not exceed 28 MD4 computations. We give two collisions for MD4
in the Table 3.

5 The Collision Attack on RIPEMD

We select a collision differential for RIPEMD as follows:

ΔH0 = 0
(M,M ′)−→ ΔH = 0

such that

m′
3 = m3 + 220, m′

10 = m10 + 218 + 231, m′
15 = m15 + 231,

m′
i = mi, i 	= 3, 10, 15.

The reason for the choice of M ′ is that M and M ′ can easily collide in round
3 with probability 2−4.

The differential characteristics and sufficient conditions can be referred to
Table 7 and Table 8.

The following mainly describes the message modification for RIPEMD. Be-
cause RIPEMD has two copies of MD4, the modification is more complicated
than that of MD4.

Message Modification for Correcting Conditions in the First Round.
Select M , we make the modification for M word by word so that both copies
with the modified M satisfy the conditions in the first round.

1. Modify mi−1 such that i-th step conditions in the left copy hold. The mod-
ification is the same as the single-message modification in Section 4.

2. Correct the conditions in the right copy from low bit to high bit. There are
many kinds of modifications. The following gives two kinds of modification
techniques.
For example, we correct aaai,j = 0 to aaai,j = 1 by the following methods.
(a) Correct the condition by bit carry. If j−1-bit has no constraint condition

in table 8, and aai,j−1 = aai,j−1, let

mi ← mi ± 2j−2−si .

We select the modification which results in bit carry in the right and no
carry in the left.

(b) Correct the condition by changing (j − si)− th bit of chaining variables
in the nonlinear round function ψ.
i. Change (j − si)− th bit of some chaining variables in the nonlinear

round function F by modifying a previous message word, such that
the changed bit doesn’t occur in Table 8, and the changed bit only
causes one of aai,j and aaai,j changes.
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ii. If aai,j = aaai,j = 0, modify the next bit of aaai.
iii. If aai,j = aaai,j = 1, let

mi ← mi − 2j−1−si ,

then modify the next bit of aaai.

By combining the above two methods, we can get some other methods to correct
aaai,j . For example, if j − 1-bit has no constraint condition in table 8, and
aai,j−1 = aai,j−1, the bit-carry correction of (a) isn’t available. We can use (b)
or the lower bit carry to change aai,j−1 or aaai,j−1 such that aai,j−1 = aaai,j−1,
and then use the bit carry.

Remarks. For RIPEMD, a non-zero differential in the first round is an im-
possible differential with a very high probability. The reason that results in the
phenomenon is that, the conditions of both copies in some step cannot hold si-
multaneously. Among 30 collision differentials we selected, only one can produce
the real collisions.

Message Modification for Correcting Some Second Round Conditions.
By the multi-message modification in Section 4 to correct the conditions of left
copy in the second round. There are about 16 conditions are left, so the modified
M and M ′ is a collision with probability 2−16, and the complexity is about 218

RIPEMD computations. Two collisions for RIPEMD can be seen in Table 4.

Table 4. Two collisions for RIPEMD. H is the hash value with little-endian and no

message padding, and H∗ is the hash value with big-endian and message padding

M1 579faf8e 9ecf579 574a6aba 78413511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 47bc6d7d 9abdd1b1 a45d2015 817104ff 264758a8 61064ea5

M ′
1 579faf8e 9ecf579 574a6aba 78513511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 c7c06d7d 9abdd1b1 a45d2015 817104ff 264758a8 e1064ea5

H 1fab152 1654a31b 7a33776a 9e968ba7

H∗ dd6478dd 9a7d821c aa018648 e5e792e9

M2 579faf8e 9ecf579 574a6aba 78413511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 47bc6d7d 9abdd1b1 a45d2015 a0a504ff b18d58a8 e70c66b6

M ′
2 579faf8e 9ecf579 574a6aba 78513511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 c7c06d7d 9abdd1b1 a45d2015 a0a504ff b18d58a8 670c66b6

H 1f2c159f 569b31a6 dfcaa51a 25665d24

H∗ 88cea096 c773c29f 04cd9698 4a41d139

6 Theoretical Pre-image Attack on MD4

For a secure hash function, there are two important security properties, one
property is collision-resistance, another is one-wayness which is to find a second
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pre-image or a pre-image. In this section, we will show that we can give a second
pre-image attack on MD4 for a set of weak messages.

For a hash function with l-bit hash value, it’s ideal security strength against
the second pre-image attack is that, for any message M , to find another message
M ′ such that h(M) = h(M ′) is not higher than the exhaustive search probability
of 2−l.

Theorem 1 (Second Pre-image Attack for Weak Messages). For a weak
message, we can find another message such that these two different messages
produce the same hash code. The complexity is only one-time MD4 computation.
A random selected message is weak with probability 2−122.

Proof. For any message M , we select M ′ such that

M ′ = M +�M

�M = M ′ −M = (�m0,�m1, ......,�m15)

�m1 = 231,�m2 = 231 − 228,�m12 = −216,

�mi = 0, 0 ≤ i ≤ 15, i 	= 1, 2, 12.

From the conditions in Table 6, we know that, ifM satisfies all the 122 conditions,
M ′ is the second pre-image of h(M).

There are 2512/2122 = 2391 one-block messages satisfy all the conditions. This
completes the proof. �

Any message M can be modified with the techniques in Section 4 so that
almost all the conditions in rounds 1-2 hold. For the resulting message, say M ′,
we then find a second pre-image M ′′ of h(M ′) with probability 2−2 to 2−6.
This fact can be interpreted as a chosen-message 2nd pre-image attack, since
M ′ is not chosen freely but “close” to M . One message ”close” to other message
implies that the hamming weight of the difference for two messages is low. For
example, given any random message M , if we only fulfil the the single-message
modification, the chosen message M ′ is the 2nd pre-image of other message M ′′

with probability 223 (excluding two conditions in 17-step). According to the
conditions in Table 6, we can get M ′ by modifying M about 50 bits, so the
difference hamming weight for two messages is 50 on average. When applying
the multi-message modification, although the probability can be improved to
2−2 to 2−6, the hamming weight may be greatly increased. The best method
is to fulfil a kind of precise message modification, and correct a condition by
increasing about 3 hamming weights. So, the difference hamming weight can be
controlled within 110 on average.

7 Conclusion

In this paper, we have presented efficient collision search attacks on MD4 and
RIPEMD. We have shown that only about 4 to 64 random selected messages are
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needed in order to find a collision of MD4, and only about 216 random selected
messages to for RIPEMD.

We have introduced three important analytical techniques that are very im-
portant for the effectiveness of the attacks:

1. How to find an efficient differential that is composed of one collision.
2. Determine all the conditions under which the collision happens.
3. For any message M , make some modification to M to guarantee that almost

all the conditions hold.

Remarks. Our collision search attack on MD4 implies that for a weak message
a 2nd pre-image can be found with complexity below 28. The probability for a
random messages to be weak with respect to MD4 is 2−122. However, this can
be improved significantly. In fact note that Theorem 1 directly come from the
collision differential path in Section 4, where the differential path is chosen to
minimize the complexity of our collision attack. Hence it is not optimal for our
pre-image attack. The number of weak messages is determined by the number of
conditions specified in Table 1. By finding other differential paths with the least
number of conditions, we believe that the probability of weak messages can be
increased significantly. In fact, the latest 2nd pre-image attack can be improved
to 2−72 which is found by Hongbo Yu Gaoli Wang et al.

We also note that for SHA-0, given any random message, it is a weak mes-
sage with about probability 2−107 which is a surprising result compared to the
exhaustive search probability 2−160.
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Appendix

In the appendix, we give the tables for the differential paths and the set of
sufficient conditions that are used in our collision search attacks on MD4 and
RIPEMD.
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Table 5. Differential Characteristics in the Collision Differential for MD4

Chaining The i-th step The i-th output
Step value wj,i Shift Δmi difference for M ′

for M

1 a1 m0 3 a1

2 d1 m1 7 231 26 d1[7]

3 c1 m2 11 −228 + 231 −27 + 210 c1[−8, 11]

4 b1 m3 19 225 b1[26]

5 a2 m4 3 a2

6 d2 m5 7 213 d2[14]

7 c2 m6 11 −218 + 221 c2[19, 20,−21, 22]

8 b2 m7 19 212 b2[−13,−14, 15]

9 a3 m8 3 216 a3[17]

10 d3 m9 7 219 + 220 − 225 d3[20,−21,−22, 23,−26]

11 c3 m10 11 −229 c3[−30]

12 b3 m11 19 231 b3[32]

13 a4 m12 3 −216 222 + 225 a4[23, 26]

14 d4 m13 7 −226 + 228 d4[−27,−29, 30]

15 c4 m14 11 c4

16 b4 m15 19 218 b4[19]

17 a5 m0 3 225 − 228 − 231 a5[−26, 27,−29,−32]

18 d5 m4 5 d5

19 c5 m8 9 c5

20 b5 m12 13 −216 −229 + 231 b5[−30, 32]

21 a6 m1 3 231 228 − 231 a6[−29, 30,−32]

22 d6 m5 5 d6

23 c6 m9 9 c6

24 b6 m13 13 b6

25 a7 m2 3 −228 + 231 a7

... ... ..........

36 b9 m12 15 −216 231 b9[−32]

37 a10 m2 3 −228 + 231 231 a10[−32]

38 d10 m10 9 d10

39 c10 m6 11 c10

40 b10 m14 15 b10

41 a11 m1 3 231 a11
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Table 6. A Set of Sufficient Conditions for Collisions of MD4

a1 a1,7 = b0,7

d1 d1,7 = 0, d1,8 = a1,8, d1,11 = a1,11

c1 c1,7 = 1, c1,8 = 1, c1,11 = 0, c1,26 = d1,26

b1 b1,7 = 1, b1,8 = 0, b1,11 = 0, b1,26 = 0

a2 a2,8 = 1, a2,11 = 1, a2,26 = 0, a2,14 = b1,14

d2 d2,14 = 0, d2,19 = a2,19, d2,20 = a2,20, d2,21 = a2,21, d2,22 = a2,22, d2,26 = 1

c2 c2,13 = d2,13, c2,14 = 0, c2,15 = d2,15, c2,19 = 0, c2,20 = 0, c2,21 = 1, c2,22 = 0

b2 b2,13 = 1, b2,14 = 1, b2,15 = 0, b2,17 = c2,17, b2,19 = 0, b2,20 = 0, b2,21 = 0
b2,22 = 0

a3 a3,13 = 1, a3,14 = 1, a3,15 = 1, a3,17 = 0, a3,19 = 0, a3,20 = 0, a3,21 = 0,
a3,23 = b2,23 a3,22 = 1, a3,26 = b2,26

d3 d3,13 = 1, d3,14 = 1, d3,15 = 1, d3,17 = 0, d3,20 = 0, d3,21 = 1, d3,22 = 1, d3,23 = 0,
d3,26 = 1, d3,30 = a3,30

c3 c3,17 = 1, c3,20 = 0, c3,21 = 0, c3,22 = 0, c3,23 = 0, c3,26 = 0, c3,30 = 1, c3,32 = d3,32

b3 b3,20 = 0, b3,21 = 1, b3,22 = 1, b3,23 = c3,23, b3,26 = 1, b3,30 = 0, b3,32 = 0

a4 a4,23 = 0, a4,26 = 0, a4,27 = b3,27, a4,29 = b3,29, a4,30 = 1, a4,32 = 0

d4 d4,23 = 0, d4,26 = 0, d4,27 = 1, d4,29 = 1, d4,30 = 0, d4,32 = 1

c4 c4,19 = d4,19, c4,23 = 1, c4,26 = 1, c4,27 = 0, c4,29 = 0, c4,30 = 0

b4 b4,19 = 0, b4,26 = c4,26 = 1, b4,27 = 1, b4,29 = 1, b4,30 = 0

a5 a5,19 = c4,19, a5,26 = 1, a5,27 = 0, a5,29 = 1, a5,32 = 1

d5 d5,19 = a5,19, d5,26 = b4,26, d5,27 = b4,27, d5,29 = b4,29, d5,32 = b4,32

c5 c5,26 = d5,26, c5,27 = d5,27, c5,29 = d5,29, c5,30 = d5,30, c5,32 = d5,32

b5 b5,29 = c5,29, b5,30 = 1, b5,32 = 0

a6 a6,29 = 1, a6,32 = 1

d6 d6,29 = b5,29

c6 c6,29 = d6,29, c6,30 = d6,30 + 1, c6,32 = d6,32 + 1

b9 b9,32 = 1

a10 a10,32 = 1
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Table 7. Differential Characteristics in a Collision Differential of RIPEMD

Chaining The i-th step The i-th output
Step value wj,i Shift Δmi difference for M ′

for M

0 a1 m0 11 a1

1 d1 m1 14 d1

2 c1 m2 15 c1

3 b1 m3 12 220 1 b1[−1,−2,−3, 4]

4 a2 m4 5 26 a2[7]

5 d2 m5 8 29 − 211 d2[10,−12]

6 c2 m6 7 216 − 218 c2[17,−19]

7 b2 m7 9 29 + 225 + 227 b2[10,−26, 27, 28]

8 a3 m8 11 −25 + 217 a3[−6, 18]

9 d3 m9 13 −223 d3[24, 25,−26]

10 c3 m10 14 218 + 231 −213 + 230 c3[−14, 31]

11 b3 m11 15 210 + 224 b3[11, 25]

12 a4 m12 6 −211 + 223 a4[12, 13,−14, 24]

13 d4 m13 7 d4

14 c4 m14 9 27 − 223 c4[8, 24,−25]

15 b4 m15 8 231 −27 + 218 b4[−8, 19]

16 a5 m7 7 −218 a5[−19]

17 d5 m4 6 d5

18 c5 m13 8 231 c5[−32]

19 b5 m1 13 −220 b5[-21]

20 a6 m10 11 218+231 a6

21 d6 m6 9 d6

22 c6 m15 7 231 c6

23 b6 m3 15 220 b6

24 a7 m12 7 a7

25 d7 m0 12 d7

26 c7 m9 15 c7

27 b7 m5 9 b7

28 a8 m14 7 a8

29 d8 m2 11 d8

30 c8 m11 13 c8

31 b8 m8 12 b8

32 a9 m3 11 220 231 a9[32]

33 d9 m10 13 218 + 231 231 d9[32]

34 c9 m2 14 c9

35 b9 m4 7 b9

36 a10 m9 14 a10

37 d10 m15 9 231 d10



18 X. Wang et al.

Table 8. A Set of Sufficient Conditions for Collisions of RIPEMD

a1

d1 d1,2 = 1

c1 c1,1 = d1,1, c1,2 = 0, c1,3 = d1,3, c1,4 = d1,4

b1 b1,1 = 1, b1,2 = 1, b1,3 = 1, b1,4 = 0, b1,7 = c1,7

a2 a2,7=0, a2,1 = 0, a2,2 = 1, a2,3 = 1, a2,4 = 0, a2,10 = b1,10 = 1, a2,12 = ¯b1,12 = 1
a2,17 = 0

d2 d2,1 = 1, d2,2 = 1, d2,3 = 1, d2,4 = 1, d2,7 = 0, d2,10 = 0, d2,12 = 1, d2,17 = 1,
d2,19 = a2,19 = 0

c2 c2,17 = 0, c2,19 = 1, c2,10 = 0, c2,7 = 1, c2,12 = 0, c2,26 = d2,26, c2,27 = d2,27 = 0,
c2,28 = d2,28

b2 b2,6 = c2,6, b2,10 = 0, b2,12 = 1, b2,17 = 0, b2,18 = c2,18, b2,19 = 0, b2,26 = 1,
b2,27 = 0, b2,28 = 0

a3 a3,6 = 1, a3,10 = 1, a3,17 = 1, a3,18 = 0,a3,19 = 1, a3,24 = b2,24, a3,25 = b2,25,
a3,26 = 0, a3,27 = 0, a3,28 = 0

d3 d3,6 = 0, d3,10 = 1, d3,14 = a3,14, d3,18 = 0, d3,24 = 0, d3,25 = 0, d3,26 = 1, d3,27 = 1,
d3,28 = 1, d3,31 = a3,31

c3 c3,6 = 1, c3,11 = d3,11, c3,14 = 1, c3,18 = 1, c3,24 = 0, c3,25 = 0, c3,26 = 1, c3,31 = 0

b3 b3,11 = 0, b3,12 = c3,12, b3,13 = c3,13, b3,14 = 0, b3,24 = 1, b3,25 = 0, b3,26 = 1, b3,31 = 0

a4 a4,11 = 0, a4,12 = 0, a4,13 = 0, a4,14 = 1, a4,24 = 0, a4,25 = 0, a4,31 = 1

d4 d4,8 = a4,8, d4,11 = 1, d4,12 = 0, d4,13 = 0, d4,14 = 1, d4,24 = 0, d4,25 = 1,

c4 c4,8 = 0, c4,12 = 1, c4,13 = 1, c4,14 = 1, c4,19 = d4,19, c4,24 = 0, c4,25 = 1,

b4 b4,8 = 1, b4,19 = 0, b4,24 = d4,24, b4,25 = d4,25

a5 a5,19 = 1, a5,24 = b4,24, a5,25 = b4,25

d5 d5,8 = a5,8, d5,32 = a5,32

c5 c5,19 = d5,19, c5,21 = d5,21, c5,32 = 1

b5 b5,21 = 1, b5,32 = d5,32

a6 a6,21 = c5,21, a6,32 = b5,32

d6 d6,21 = a6,21

a9 a9,32 = 0,

d9 d9,32 = 0

a10
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Abstract. MD5 is one of the most widely used cryptographic hash func-
tions nowadays. It was designed in 1992 as an improvement of MD4, and
its security was widely studied since then by several authors. The best
known result so far was a semi free-start collision, in which the initial
value of the hash function is replaced by a non-standard value, which is
the result of the attack. In this paper we present a new powerful attack
on MD5 which allows us to find collisions efficiently. We used this attack
to find collisions of MD5 in about 15 minutes up to an hour computation
time. The attack is a differential attack, which unlike most differential
attacks, does not use the exclusive-or as a measure of difference, but
instead uses modular integer subtraction as the measure. We call this
kind of differential a modular differential. An application of this attack
to MD4 can find a collision in less than a fraction of a second. This attack
is also applicable to other hash functions, such as RIPEMD and HAVAL.

1 Introduction

People know that digital signatures are very important in information security.
The security of digital signatures depends on the cryptographic strength of the
underlying hash functions. Hash functions also have many other applications
in cryptography such as data integrity, group signature, e-cash and many other
cryptographic protocols. The use of hash functions in these applications not only
ensure the security, but also greatly improve the efficiency. Nowadays, there are
two widely used hash functions – MD5 [18] and SHA-1 [12].

MD5 is a hash function designed by Ron Rivest as a strengthened version of
MD4 [17]. Since its publication, some weaknesses has been found. In 1993, B.
den Boer and A. Bosselaers [3] found a kind of pseudo-collision for MD5 which
consists of the same message with two different sets of initial values. This attack
discloses the weak avalanche in the most significant bit for all the chaining vari-
ables in MD5. In the rump session of Eurocrypt’96, H. Dobbertin [8] presented
a semi free-start collision which consists of two different 512-bit messages with
a chosen initial value IV ′

0 .

a0 = 0x12ac2375, b0 = 0x3b341042, c0 = 0x5f62b97c, d0 = 0x4ba763ed

A general description of this attack was published in [9].

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 19–35, 2005.
c© International Association for Cryptologic Research 2005
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Although H. Dobbertin cannot provide a real collision of MD5, his attack
reveals the weak avalanche for the full MD5. This provides a possibility to find
a special differential with one iteration.

In this paper we present a new powerful attack that can efficiently find a col-
lision of MD5. From H. Dobbertin’s attack, we were motivated to study whether
it is possible to find a pair of messages, each consists of two blocks, that pro-
duce collisions after the second block. More specifically, we want to find a pair
(M0,M1) and (M ′

0,M
′
1) such that

(a, b, c, d) = MD5(a0, b0, c0, d0,M0),
(a′, b′, c′, d′) = MD5(a0, b0, c0, d0,M

′
0),

MD5(a, b, c, d,M1) = MD5(a′, b′, c′, d′,M ′
1),

where a0, b0, c0, d0 are the initial values for MD5. We show that such collisions
of MD5 can be found efficiently, where finding the first blocks (M0,M

′
0) takes

about 239 MD5 operations, and finding the second blocks (M1,M
′
1) takes about

232 MD5 operations. The application of this attack on IBM P690 takes about
an hour to find M0 and M0

′, where in the fastest cases it takes only 15 minutes.
Then, it takes only between 15 seconds to 5 minutes to find the second blocks
M1 and M1

′. Two such collisions of MD5 were made public in the Crypto’04
rump session [19].

This attack is applicable to many other hash functions as well, including MD4,
HAVAL-128 and RIPEMD ([17], [20], [15]). In the case of MD4, the attack can
find a collision within less than a second, and can also find second pre-images
for many messages.

In Crypto’04 Eli Biham and Rafi Chen presented a near-collision attack on
SHA-0 [2], which follows the lines of the technique of [4]. In the rump session they
described their new (and improved) results on SHA-0 and SHA-1 (including a
multi-block technique and collisions of reduced SHA-1). Then, A.J̃oux presented
a 4-block full collision of SHA-0 [14], which is a further improvement of these
results. Both these works were made independently of this paper.

This paper is organized as follows: In Section 2 we briefly describe MD5.
Then in Section 3 we give the main ideas of our attack, and in Section 4 we
give a detailed description of the attack. Finally, in Section 5 we summarize the
paper, and discuss the applicability of this attack to other hash functions.

2 Description of MD5

In order to conveniently describe the general structure of MD5, we first recall
the iteration process for hash functions.

Generally a hash function is iterated by a compression function X = f(Z)
which compresses l-bit message block Z to s-bit hash value X where l > s. For
MD5, l = 512, and s = 128. The iterating method is usually called the Merkle-
Damgard meta-method (see [6], [16]). For a padded message M with multiples
of l-bit length, the iterating process is as follows:

Hi+1 = f(Hi,Mi), 0 ≤ i ≤ t− 1.
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Here M = (M0,M2, · · · ,Mt−1), and H0 = IV0 is the initial value for the hash
function.

In the above iterating process, we omit the padding method because it has
no influence on our attack.

The following is to describe the compression function for MD5. For each
512-bit block Mi of the padded message M , divide Mi into 32-bit words, Mi =
(m0,m1, ....,m15). The compression algorithm for Mi has four rounds, and each
round has 16 operations. Four successive step operations are as follows:

a = b+ ((a+ φi(b, c, d) + wi + ti) ≪ si),
d = a+ ((d+ φi+1(a, b, c) + wi+1 + ti+1) ≪ si+1),
c = d+ ((c+ φi+2(d, a, b) + wi+2 + ti+2) ≪ si+2),
b = c+ ((b+ φi+3(c, d, a) + wi+3 + ti+3) ≪ si+3),

where the operation + means ADD modulo 232. ti+j and si+j (j = 0, 1, 2, 3)
are step-dependent constants. wi+j is a message word. ≪ si+j is circularly left-
shift by si+j bit positions. The details of the message order and shift positions
can be seen in Table 3.

Each round employs one nonlinear round function, which is given below.

Φi(X,Y,Z) = (X ∧ Y ) ∨ (¬X ∧ Z), 0 ≤ i ≤ 15,
Φi(X,Y,Z) = (X ∧ Z) ∨ (Y ∧ ¬Z), 16 ≤ i ≤ 31,
Φi(X,Y,Z) = X ⊕ Y ⊕ Z, 32 ≤ i ≤ 47,
Φi(X,Y,Z) = Y ⊕ (X ∨ ¬Z), 48 ≤ i ≤ 63,

where X, Y , Z are 32-bit words.
The chaining variables are initialized as:

a = 0x67452301, b = 0xefcdab89, c = 0x98badcfe, d = 0x10325476.

We select a collision differential with two iterations as follows: Let Hi−1 =
(aa, bb, cc, dd) be the chaining values for the previous message block. After four
rounds, the compression value Hi is obtained by wordwise addition of the chain-
ing variables to Hi−1.

3 Differential Attack for Hash Functions

3.1 The Modular Differential and the XOR Differential

The most important analysis method for hash functions is differential attack
which is also one of most important methods for analyzing block ciphers. In
general, the differential attack especially in block ciphers is a kind of XOR dif-
ferential attack which uses exclusive-or as the difference. The differential attack
was introduced by E. Biham and A. Shamir to analyze the security of DES-like
cryptosystems. E. Biham and A. Shamir [1], described that differential crypt-
analysis is a method which analyzes the effect of particular differences in plain
text pairs on the differences of the resultant cipher text pairs.
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The differential definition in this paper is a kind of precise differential which
uses the difference in term of integer modular subtraction. A similar definition
about the differential with the integer subtraction as the measure of difference
were described in [5] for differential analysis of RC6.

We also use modular characteristics, which describe for each round with both
the differences in term of integer modular subtraction and the differences in term
of XOR. The combination of both kinds of differences give us more information
than each of them keep by itself. For example, when the modular integer sub-
traction difference is X ′−X = 26 for some value X, the XOR difference X ′⊕X
can have many possibilities, which are

1. One-bit difference in bit 7, i.e., 0x00000040. In this case X ′−X = 26 which
means that bit 7 in X ′ is 1 and bit 7 in X is 0.

2. Two-bit difference, in which a different carry is transferred from bit 7 to
bit 8, i.e., 0x000000C0. In this case X ′ − X = 26, but the carry to bit 8
is different in X and X ′, so X ′

7 is now 0, and X7 = 1, while X ′
8 = 1, and

X8 = 0. (i.e., bits 7 and 8 together in X ′ are 10 in binary, and in X there
are 01 in binary).

3. Three-bit difference, in which a different carry is transferred from bit 7 to bit
8 and then to bit 9, i.e., 0x000001C0. In this case bits 7, 8, and 9 in X ′ are
0, 0, and 1, respectively, and in X they are the complement of these values.

4. Similarly, there can be more carries to further bits, and the binary form of
X ′ is 1000. . . , and of X is 0111. . . .

5. In case the former difference is negative, the XOR differences still look the
same, but the values of X and X ′ are exchanged (i.e., X is of the form
1000. . . , and X ′ of the form 0111. . . ).

In order to explain our attack clearly, we refer to the modular differences in the
differential path (see Table 3) with both kinds of differences together, i.e., the
difference is marked as a positive or a negative integer (modulo 232) and also
with the XOR difference. But then the XOR difference is marked by the list of
active bits with their relative sign, i.e., in the list of bits, the bits whose value in
X is zero are marked without a sign, and the values whose value in X is 1 are
marked with a negative sign. For example, the difference−26, [7, 8, 9, . . . , 22,−23]
marks the integer modular subtraction difference X ′ − X = −26 (with X ′ <
X), with many carries which start from bit 7 up to bit 23. All bits of X
from bit 7 to bit 22 are 0, and bit 23 is 1, while all bits of X ′ from bit 7
to bit 22 are 1, and bit 23 is 0. A more complicated example is −1 − 26 +
223−227, [1, 2, 3, 4, 5,−6, 7, 8, 9, 10, 11,−12,−24,−25,−26, 27, 28, 29, 30, 31,−32],
where the integer modular subtraction difference is composed of several (positive
and negative) exponents of 2, and the XOR difference has many difference due
to carries. Note that when the carry arrives to bit 32, a further (dropped) carry
may happen, and then there is no negative sign in bit 32.

It should be noted that the modular differential has been used earlier to
analyze some hash functions ([4], [7], [10]). Compared with these attacks, our
attack has the following advantages:
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1. Our attack is to find collisions with two iterations, i. e., each message in the
collision includes two message blocks (1024-bit).

2. Our attack is a precise differential attack in which the characteristics are
more restrictive than used, and that they gives values of bits in addition to
the differences.

3. Our attack gives a set of sufficient conditions which ensure the differential
to occur.

4. Our attack use a message modification technique to greatly improve the
collision probability.

3.2 Differential Attacks on Hash Functions

The difference for two parameters X and X ′ is defined as ΔX = X ′ −X. For
any two messages M and M ′ with l-bit multiples, M = (M0,M1, · · · ,Mk−1),
M = (M0

′,M1
′, · · · ,Mk−1

′), a full differential for a hash function is defined as
follows:

ΔH0
(M0,M ′

0)−→ ΔH1
(M1,M ′

1)−→ ΔH2
(M2,M ′

2)−→ · · · · · ·ΔHk−1

(Mk−1,M ′
k−1)−→ ΔH,

where ΔH0 is the initial value difference which equals to zero. ΔH is the output
difference for the two messages. ΔHi = ΔIVi is the output difference for the
i-th iteration, and also is the initial difference for the next iteration.

It is clear that if ΔH = 0, there is a collision for M and M ′. We call the
differential that produces a collision a collision differential.

Provided that the hash function has 4 rounds, and each round has 16 step
operations. For more details, we can represent the i-th iteration differential

ΔHi
(Mi,M

′
i)−→ ΔHi+1 as follows:

ΔHi
P1−→ ΔRi+1,1

P2−→ ΔRi+1,2
P3−→ ΔRi+1,3

P4−→ ΔRi+1,4 = ΔHi+1.

The round differential ΔRj−1 −→ ΔRj(j = 1, 2, 3, 4) with the probability Pj is
expanded to the following differential characteristics.

ΔRj−1
Pj1−→ ΔX1

Pj2−→ · · · · · · Pj16−→ ΔX16 = ΔRj ,

where ΔXt−1
Pjt−→ ΔXt, t = 1, 2, · · · · · · , 16 is the differential characteristic in the

t-th step of j-th round.

The probability P of the differential ΔHi
(Mi,M

′
i)−→ ΔHi+1 satisfies

P ≥
∏4

i=1 Pj and Pj ≥
∏16

t=1 Pjt.

3.3 Optimized Collision Differentials for Hash Functions

In Section 3.1, we mentioned that our attack uses a message modification tech-
nique to improve the collision probability. According to the modification tech-
nique, we can get a rough method to search for optimized differentials (including
collision differentials) of a hash function.
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There are two kinds of message modifications:

1. For any two message blocks (Mi,M
′
i) and a 1-st round non-zero differential

ΔHi
(Mi,M

′
i)−→ ΔRi+1,1.

Our attack can easily modify Mi to guarantee the 1-st round differential to
hold with probability P1 = 1.

2. Using multi-message modification techniques, we can not only guarantee the
first-round differential to hold with the probability 1, but also improve the
second-round differential probability greatly.

To find an optimized differential for a hash function, it is better to select a
message block difference which results in a last two-round differential with a
high probability.

4 Differential Attack on MD5

4.1 Notation

Before presenting our attack, we first introduce some notation to simplify the
discussion.

1. M = (m0,m1, ...,m15) and M ′ = (m′
0,m

′
1, ...,m

′
15) represent two 512-bit

messages. ΔM = (Δm0,Δm1, ...,Δm15) denotes the difference of two mes-
sage blocks. That is, Δmi = m′

i −mi is the i− th word difference.
2. ai, di, ci, bi respectively denote the outputs of the (4i − 3)-th, (4i − 2)-th

(4i − 1)-th and 4i-th steps for compressing M , where 1 ≤ i ≤ 16. a′i, b
′
i, c

′
i,

d′i are defined similarly.
3. ai,j , bi,j , ci,j , di,j represent respectively the j − th bit of ai, bi, ci, di, where

the least significant bit is the 1-st bit, and the most significant bit is 32-th
bit.

4. φi,j is the j-th bit of the output for the nonlinear function φi in the i-th step
operation.

5. Δxi,j = x′i,j − xi,j = ±1 is the bit difference that is produced by changing
the j-bit of xi. xi[j], xi[−j] (x can be a, b, c, d, φ) is the resulting values by
only changing the j− th bit of the word xi. xi[j] is obtained by changing the
j-th bit of xi from 0 to 1, and xi[−j] is obtained by changing the j-th bit of
xi from 1 to 0.

6. Δxi[j1, j2, ..., jl] = xi[j1, j2, ..., jl]−xi denotes the difference that is produced
by the changes of j1 − th, j2 − th, ..., jl − th bits of xi. xi[±j1,±j2, ...,±jl]
is the value by change j1 − th, j2 − th, ..., jl − th bits of xi. The “+” sign
(usually is omitted) means that the bit is changed from 0 to 1, and the “–”
sign means that the bit is changed from 1 to 0.
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4.2 Collision Differentials for MD5

Our attack can find many real collisions which are composed of two 1024-bit
messages (M0,M1) and (M0

′,M1
′) ) with the original initial value IV0 of MD5:

IV0 : a0 = 0x67452301, b0 = 0xefcdab89, c0 = 0x98badcfe, d0 = 0x10325476.

We select a collision differential with two iterations as follows:

ΔH0
(M0,M ′

0)−→ ΔH1
(M1,M ′

1)−→ ΔH = 0

where
ΔM0 = M ′

0 −M0 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0)

ΔM1 = M ′
1 −M1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0)

ΔH1 = (231, 231 + 225, 231 + 225, 231 + 225).

Non-zero entries of ΔM0 and ΔM1 are located at positions 5, 12 and 15. ΔH1 =
(Δa,Δb,Δc,Δd) is the difference of the four chaining values (a, d, c, b) after the
first iteration.

We select ΔM0 to ensure that both 3-4 round differential happens with a
high probability. ΔM1 is selected not only to ensure both 3-4 round differential
happens with a high probability, but also to produce an output difference that
can be cancelled with the output difference ΔH1.

The collision differential with all the characteristics can be referred to Table 3
and Table 5. The columns of both tables have the same meanings. We just give
the explanation for Table 3. The first column denotes the step, the second column
is the chaining variable in each step for M0, the third is the message word for M0

in each step, the fourth is shift rotation, the fifth and the sixth are respectively
the message word difference and chaining variable difference for M0 and M ′

0, and
the seventh is the chaining variable for M ′

0. Especially, the empty items both in
sixth and fifth columns denote zero differences, and steps those aren’t listed in
the table have zero differences both for message words and chaining variables.

4.3 Sufficient Conditions for the Characteristics to Hold

In what follows, we describe how to derive a set of sufficient conditions that
guarantee the differential characteristic in Step 8 of MD5 (Table 3) to hold.
Other conditions can be derived similarly.

The differential characteristic in Step 8 of MD5 is:

(Δc2,Δd2,Δa2,Δb1) −→ Δb2.

Each chaining variable satisfies one of the following equations.

b′1 = b1

a′2 = a2[7, ..., 22,−23]
d′2 = d2[−7, 24, 32]
c′2 = c2[7, 8, 9, 10, 11,−12,−24,−25,−26, 27, 28, 29, 30, 31, 32, 1, 2, 3, 4, 5,−6]
b′2 = b2[1, 16,−17, 18, 19, 20,−21,−24]
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According to the operations in the 8-th step, we have

b2 = c2 + ((b1 + F (c2, d2, a2) +m7 + t7) ≪ 22

b′2 = c′2 + ((b1 + F (c′2, d
′
2, a

′
2) +m′

7 + t7) ≪ 22

φ7 = F (c2, d2, a2) = (c2 ∧ d2) ∨ (¬c2 ∧ a2)

In the above operations, c2 occurs twice in the right hand side of the equation.
In order to distinguish the two, let cF2 denote the c2 inside F , and cNF

2 denote
the c2 outside F .

The derivation is based on the following two facts:

1. Since Δb1 = 0 and Δm7 = 0, we know that Δb2 = ΔcNF
2 + (Δφ7 ≪ 22).

2. Fix one or two of the variables in F so that F is reduced to a single variable.

We get a set of sufficient conditions that ensure the differential characteristic
holds.

1. The conditions for each of the non-zero bits in Δb2.
(a) The conditions d2,11 = 1 and b2,1 = 0 ensure the change of 1-st bit of b2.

i. If d2,11 = a2,11 = 1, we know that Δφ7,11 = 1.
ii. After ≪ 22, Δφ7,11 is in the position 1.
iii. Since ΔcNF

2,1 = 0, so, Δb2,1 = ΔcNF
2,1 +Δφ7,11 = 1.

(b) The conditions d2,26 = a2,26 = 1, b2,16 = 0 and b2,17 = 1 ensure the
changes of 16-th bit and 17-th bit of b2.

(c) The conditions d2,28 = a2,28 = 0, b2,i = 0, i = 18, 19, 20 and b2,21 = 1
ensure the changes of 18-th, 19-th, 20-th, 21-th bits of b2.

(d) The conditions d2,3 = a2,3 = 0 and b2,24 = 1 ensure the change of 24-th
bit of b2. This can be proven by the equation:

ΔcNF
2 [−24,−25,−26, 27] + (Δφ7[3] ≪ 22) = 223 − 224 = −223.

2. The conditions for each of the zero bits in Δb2.
(a) The condition c2,17 = 0 ensures the changed bits from 7-th bit to 12-th

bit in c′2
NF and 17-th bit of a′2 result in no bit change in b2. It is easily

proven by the following equation:

ΔcNF
2 [7, . . . 11,−12] + (Δφ7[17] ≪ 22) = −26 + 26 = 0.

(b) The conditions d2,i = a2,i ensure that the changed i-th bit in cF2 result
in no change in b2, where i ∈ {1, 2, 4, 5, 25, 27, 29, 30, 31}.

(c) The conditions c2,i = 1 ensure that the changed i-th bit in a2 result in
no change in b2, where i ∈ {13, 14, 15, 16, 18, 19, 20, 21, 22, 23}.

(d) The condition d2,6 = a2,6 = 0 ensures that the 6-th bit in cF2 result in
no change in b2.

(e) The condition a2,32 = 1 ensures that the changed 32-th bit in cF2 and
the 32-th bit in d2 result in no change in b2.

(f) The condition d2,i = 0 ensures that the changed i-th bit in a2 and the
i-th bit in cF2 result in no change in b2, where i ∈ {8, 9, 10}.
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(g) The condition d2,12 = 1 ensures that the changed 12-th bit in a2 and the
12-th bit in cF2 result in no change in b2.

(h) The condition a2,24 = 0 ensures that the changed 24-th bit in cF2 and
the 24-th bit in d2 result in no change in b2.

(i) The changed 7-th bits in cF2 , d2 and a2 result in no change in b2.

By the similar method, we can derive a set of sufficient conditions (see Table 4
and Table 6) which guarantee all the differential characteristics in the collision
differential to hold.

4.4 Message Modification

Single-Message Modification. In order to make the attack efficient, it is very
attractive to improve over the probabilistic method that we describe, by fixing
some of the message words to a prior fulfilling some of the conditions. We observe
that it is very easy to generate messages that fulfill all the conditions of the first
16 steps of MD5. We call it single-message modification.

For each message block M0 (or similarly M1) and intermediate values (H0, or
for the second block H1 and H ′

1), we apply the following procedures to modify
M0 (or M1, respectively), so that all the conditions of round 1 (the first 16 steps)
in Table 4 and Table 6 hold.

It is easy to modify M0 such that the conditions of round 1 in Table 4 hold
with probability 1.

For example, to ensure that 3 conditions for c1 in Table 4 hold, we modify
m2 as follows:

cnew
1 ← cold

1 − cold
1,7 · 26 − cold

1,12 · 211 − cold
1,20 · 219

mnew
2 ← ((cnew

1 − cold
1 ) ≫ 17) +mold

2 .

By modifying each message word of message M0, all the conditions in round 1
of Table 4 hold. The first iteration differential hold with probability 2−43.

The same modification is applied to M1. After modification, the second iter-
ation differential hold with probability 2−37.

Multi-message Modification. We further observe that it is even possible to
fulfill a part of the conditions of the first 32 steps by an multi-message modification.

For example, if a5,32 = 1, we correct it into a5,32 = 0 by modifyingm1,m2,m3,
m4,m5 such that the modification generates a partial collision from 2-6 steps,
and remains that all the conditions in round 1 hold. See Table 1. Some other
conditions can be corrected by the similar modification technique or other more
precise modification techniques. By our modification, 37 conditions in round 2-4
are undetermined in the table 4, and 30 conditions in round 2-4 are undetermined
in the table 6. So, the 1-st iteration differential holds with probability 2−37, and
the second iteration differential holds with probability 2−30.
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Table 1. The Message Modification for Correcting a5,32

Modify mi anew, bnew, cnew, dnew

2 m1 12 m1 ←− m1 + 226 dnew
1 , a1, b0, c0

3 m2 17 m2 ←− ((c1 − dnew
1 )≫ 17)− c0 −φ2(d

new
1 , a1, b0)− t2 c1, dnew

1 , a1, b0

4 m3 22 m3 ←− (b1 − c1) ≫ 22) − b0 − φ3(c1, d
new
1 , a1) − t3 b1, c1, dnew

1 , a1

5 m4 7 m4 ←− ((a2 − b1) ≫ 7) − a1 − φ4(b1, c1, d
new
1 − t4 a2, b1, c1, dnew

1

6 m5 12 m5 ←− ((d2 − a2) ≫ 12) − dnew
1 − φ5(a2, b1, c1) − t5 d2, a2, b1, c1

4.5 The Differential Attack on MD5

From the above description, it is very easy to show our attack on MD5.
The following is to describe how to find a two-block collision, of the following

form
H0

(M0,M ′
0),2

−37

−→ ΔH1
(M1,M ′

1),2
−30

−→ ΔH = 0.

1. Repeat the following steps until a first block is found
(a) Select a random message M0.
(b) Modify M0 by the message modification techniques described in the pre-

vious subsection.
(c) Then, M0 and M ′

0 = M0 +ΔM0 produce the first iteration differential

ΔM0 −→ (ΔH1,ΔM1)

with the probability 2−37.
(d) Test if all the characteristics really hold by applying the compression

function on M0 and M ′
0.

2. Repeat the following steps until a collision is found
(a) Select a random message M1.
(b) Modify M1 by the message modification techniques described in the pre-

vious subsection.
(c) Then, M1 and M1 +ΔM1 generate the second iteration differential

(ΔH1,ΔM1) −→ ΔH = 0

with the probability 2−30.
(d) Test if this pair of messages lead to a collision.

The complexity of finding (M0,M
′
0) doesn’t exceed the time of running 239 MD5

operations. To select another message M0 is only to change the last two words
from the previous selected message M0. So, finding (M0,M

′
0) only needs about

one-time single-message modification for the first 14 words. This time can be ne-
glected. For each selected message M0, it is only needs two-time single-message
modifications for the last two words and 7-time multi-message modifications for
correcting 7 conditions in the second round, and each multi-message modification
only needs about a few step operations, so the total time for both kinds of mod-
ifications is not exceeds about two MD5 operations for each selected message.
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According to the probability of the first iteration differential, it is easy to know
that the complexity of finding (M0,M

′
0) is not exceeds 239 MD5 operations.

Similarly, we can show that the complexity of finding (M1,M
′
1) is not exceeds

232 MD5 operations.

Two collisions of MD5 are given in Table 2. It is noted that the two collisions

Table 2. Two pairs of collision for MD5. H is the hash value with little-endian and

no message padding, and H∗ is the hash value with big-endian and message padding

M0 2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780

M1 d11d0b96 9c7b41dc f497d8e4 d555655a c79a7335 cfdebf0 66f12930 8fb109d1

797f2775 eb5cd530 baade822 5c15cc79 ddcb74ed 6dd3c55f d80a9bb1 e3a7cc35

M0
′ 2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780

M1
′ d11d0b96 9c7b41dc f497d8e4 d555655a 479a7335 cfdebf0 66f12930 8fb109d1

797f2775 eb5cd530 baade822 5c154c79 ddcb74ed 6dd3c55f 580a9bb1 e3a7cc35

H 9603161f a30f9dbf 9f65ffbc f41fc7ef

H∗ a4c0d35c 95a63a80 5915367d cfe6b751

M0 2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780

M1 313e82d8 5b8f3456 d4ac6dae c619c936 b4e253dd fd03da87 6633902 a0cd48d2

42339fe9 e87e570f 70b654ce 1e0da880 bc2198c6 9383a8b6 2b65f996 702af76f

M0
′ 2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780

M1
′ 313e82d8 5b8f3456 d4ac6dae c619c936 34e253dd fd03da87 6633902 a0cd48d2

42339fe9 e87e570f 70b654ce 1e0d2880 bc2198c6 9383a8b6 ab65f996 702af76f

H 8d5e7019 61804e08 715d6b58 6324c015

H∗ 79054025 255fb1a2 6e4bc422 aef54eb4

start with the same 1-st 512-bit block, and that given a first block that satisfies
all the required criteria, it is easy to find many second blocks M1,M

′
1 which lead

to collisions.

5 Summary

In this paper we described a powerful attack against hash functions, and in
particular showed that finding a collision of MD5 is easily feasible.

Our attack is also able to break efficiently other hash functions, such as
HAVAL-128, MD4, RIPEMD, and SHA-0. The analysis results for these hash
functions are as follows:

1. The time complexity for finding a collision for MD4 is about 223 MD4 oper-
ations without the multi-message modification, and is about 28 MD4 oper-
ations with the multi-message modification.
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2. The time complexity for finding a collision for HAVAL-128 is about 213 MD4
operations without the multi-message modification, and is 27 HAVAL-128
operations with the multi-message modification.

3. The time complexity for finding a collision for RIPEMD is about 230RIPEMD
operations without the multi-message modification, and is 218 RIPEMD op-
erations with the multi-message modification.

4. The time complexity for finding a collision for SHA-0 is about 261 SHA-0
operations without the multi-message modification, and is 245 SHA-0 oper-
ations with the multi-message modification.
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Table 3. The Differential Characteristics in the First Iteration Differential

Step The output wi si Δwi The output difference The output in i-th step for M ′
0

in i-th step in i-th step
for M0

4 b1 m3 22

5 a2 m4 7 231 −26 a2[7, . . . , 22,−23]

6 d2 m5 12 −26 + 223 + 231 d2[−7, 24, 32]

7 c2 m6 17 −1 − 26 + 223 − 227 c2[7, 8, 9, 10, 11,−12,−24,−25,−26,
27, 28, 29, 30, 31, 32, 1, 2, 3, 4, 5,−6]

8 b2 m7 22 1 − 215 − 217 − 223 b2[1, 16,−17, 18, 19, 20,−21,−24],

9 a3 m8 7 1 − 26 + 231 a3[−1, 2, 7, 8,−9,−32]

10 d3 m9 12 212 + 231 d3[−13, 14, 32]

11 c3 m10 17 230 + 231 c3[31, 32]

12 b3 m11 22 215 −27 − 213 + 231 b3[8,−9, 14, . . . , 19,−20, 32]

13 a4 m12 7 224 + 231 a4[−25, 26, 32]

14 d4 m13 12 231 d4[32]

15 c4 m14 17 231 23 − 215 + 231 c4[4,−16, 32]

16 b4 m15 22 −229 + 231 b4[−30, 32]

17 a5 m1 5 231 a5[32]

18 d5 m6 9 231 d5[32]

19 c5 m11 14 215 217 + 231 c5[18, 32]

20 b5 m0 20 231 b5[32]

21 a6 m5 5 231 a6[32]

22 d6 m10 9 231 d6[32]
23 c6 m15 14 c6

24 b6 m4 20 231 b6
25 a7 m9 5 a7

26 d7 m14 9 231 d7
27 c7 m3 14 c7
. . . . . . . . . . . . . . . . . . . . .
34 d9 m8 11 d9

35 c9 m11 16 215 231 c9[∗32]
36 b9 m14 23 231 231 b9[∗32]
37 a10 m1 4 231 a10[∗32]
38 d10 m4 11 231 231 d10[∗32]
39 c10 m7 16 231 c10[∗32]
. . . . . . . . . . . . . . . . . . . . .

45 a12 m9 4 231 a12[∗32]
46 d12 m12 11 231 d12[32]

47 c12 m15 16 231 c12[32]

48 b12 m2 23 231 b12[32]

49 a13 m0 6 231 a13[32]

50 d13 m7 10 231 d13[−32]

51 c13 m14 15 231 231 c13[32]

52 b13 m5 21 231 b13[−32]
. . . . . . . . . . . . . . . . . . . . .

58 d15 m15 10 231 d15[−32]

59 c15 m6 15 231 c15[32]

60 b15 m13 21 231 b15[32]

61 aa0 = a16 + a0 m4 6 231 231 aa′
0 = aa0[32]

62 dd0 = d16 + d0 m11 10 215 231 dd′
0 = dd0[26, 32]

63 cc0 = c16 + c0 m2 15 231 cc′0 = cc0[−26, 27, 32]

64 bb0 = b16 + b0 m9 21 231 bb′0 = bb0[26,−32]
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Table 4. A Set of Sufficient Conditions for the First Iteration Differential

c1 c1,7 = 0, c1,12 = 0, c1,20 = 0
b1,7 = 0, b1,8 = c1,8, b1,9 = c1,9, b1,10 = c1,10, b1,11 = c1,11, b1,12 = 1, b1,13 = c1,13,

b1 b1,14 = c1,14, b1,15 = c1,15, b1,16 = c1,16, b1,17 = c1,17, b1,18 = c1,18,b1,19 = c1,19,
b1,20 = 1, b1,21 = c1,21, b1,22 = c1,22, b1,23 = c1,23, b1,24 = 0, b1,32 = 1
a2,1 = 1, a2,3 = 1, a2,6 = 1, a2,7 = 0, a2,8 = 0, a2,9 = 0, a2,10 = 0, a2,11 = 0,

a2 a2,12 = 0, a2,13 = 0, a2,14 = 0, a2,15 = 0, a2,16 = 0, a2,17 = 0, a2,18 = 0, a2,19 = 0,
a2,20 = 0, a2,21 = 0, a2,22 = 0, a2,23 = 1, a2,24 = 0, a2,26 = 0, a2,28 = 1, a2,32 = 1
d2,1 = 1, d2,2 = a2,2, d2,3 = 0, d2,4 = a2,4, d2,5 = a2,5, d2,6 = 0, d2,7 = 1, d2,8 = 0,

d2 d2,9 = 0, d2,10 = 0, d2,11 = 1, d2,12 = 1, d2,13 = 1, d2,14 = 1, d2,15 = 0, d2,16 = 1,
d2,17 = 1, d2,18 = 1, d2,19 = 1, d2,20 = 1, d2,21 = 1, d2,22 = 1, d2,23 = 1, d2,24 = 0,
d2,25 = a2,25, d2,26 = 1, d2,27 = a2,27, d2,28 = 0, d2,29 = a2,29, d2,30 = a2,30,
d2,31 = a2,31, d2,32 = 0
c2,1 = 0, c2,2 = 0, c2,3 = 0, c2,4 = 0, c2,5 = 0, c2,6 = 1, c2,7 = 0, c2,8 = 0, c2,9 = 0,

c2 c2,10 = 0, c2,11 = 0, c2,12 = 1, c2,13 = 1, c2,14 = 1, c2,15 = 1, c2,16 = 1, c2,17 = 0,
c2,18 = 1, c2,19 = 1, c2,20 = 1, c2,21 = 1, c2,22 = 1, c2,23 = 1, c2,24 = 1, c2,25 = 1,
c2,26 = 1, c2,27 = 0, c2,28 = 0, c2,29 = 0, c2,30 = 0, c2,31 = 0, c2,32 = 0
b2,1 = 0, b2,2 = 0, b2,3 = 0, b2,4 = 0, b2,5 = 0, b2,6 = 0, b2,7 = 1, b2,8 = 0, b2,9 = 1,

b2 b2,10 = 0, b2,11 = 1, b2,12 = 0, b2,14 = 0, b2,16 = 0, b2,17 = 1, b2,18 = 0, b2,19 = 0,
b2,20 = 0, b2,21 = 1, b2,24 = 1, b2,25 = 1, b2,26 = 0, b2,27 = 0, b2,28 = 0, b2,29 = 0,
b2,30 = 0, b2,31 = 0, b2,32 = 0
a3,1 = 1, a3,2 = 0, a3,3 = 1, a3,4 = 1, a3,5 = 1, a3,6 = 1, a3,7 = 0, a3,8 = 0, a3,9 = 1,

a3 a3,10 = 1, a3,11 = 1, a3,12 = 1, a3,13 = b2,13, a3,14 = 1, a3,16 = 0, a3,17 = 0, a3,18 = 0,
a3,19 = 0, a3,20 = 0, a3,21 = 1, a3,25 = 1, a3,26 = 1, a3,27 = 0, a3,28 = 1, a3,29 = 1,
a3,30 = 1, a3,31 = 1, a3,32 = 1

d3 d3,1 = 0, d3,2 = 0, d3,7 = 1, d3,8 = 0, d3,9 = 0, d3,13 = 1, d3,14 = 0, d3,16 = 1,
d3,17 = 1, d3,18 = 1, d3,19 = 1, d3,20 = 1, d3,21 = 1, d3,24 = 0, d3,31 = 1, d3,32 = 0

c3 c3,1 = 0, c3,2 = 1, c3,7 = 1, c3,8 = 1, c3,9 = 0, c3,13 = 0, c3,14 = 0, c3,15 = d3,15,
c3,17 = 1, c3,18 = 0, c3,19 = 0, c3,20 = 0, c3,16 = 1, c3,31 = 0, c3,32 = 0

b3 b3,8 = 0, b3,9 = 1, b3,13 = 1, b3,14 = 0, b3,15 = 0, b3,16 = 0, b3,17 = 0, b3,18 = 0,
b3,20 = 1, b3,25 = c3,25, b3,26 = c3,26, b3,19 = 0, b3,31 = 0, b3,32 = 0

a4 a4,4 = 1, a4,8 = 0, a4,9 = 0, a4,14 = 1, a4,15 = 1, a4,16 = 1, a4,17 = 1, a4,18 = 1,
a4,20 = 1, a4,25 = 1, a4,26 = 0, a4,31 = 1, a4,19 = 1, a4,32 = 0

d4 d4,4 = 1, d4,8 = 1, d4,9 = 1, d4,14 = 1, d4,15 = 1, d4,16 = 1, d4,17 = 1, d4,18 = 1,
d4,19 = 0, d4,20 = 1, d4,25 = 0, d4,26 = 0, d4,30 = 0, d4,32 = 0

c4 c4,4 = 0, c4,16 = 1, c4,25 = 1, c4,26 = 0, c4,30 = 1, c4,32 = 0
b4 b4,30 = 1, b4,32 = 0
a5 a5,4 = b4,4, a5,16 = b4,16, a5,18 = 0, a5,32 = 0
d5 d5,18 = 1, d5,30 = a5,30, d5,32 = 0
c5 c5,18 = 0, c5,32 = 0
b5 b5,32 = 0

a6 − b6 a6,18 = b5,18, a6,32 = 0, d6,32 = 0, c6,32 = 0, b6,32 = c6,32 + 1
c9, b12 φ34,32 = 0, b12,32 = d12,32

a13 − b13 a13,32 = c12,32, d13,32 = b12,32 + 1, c13,32 = a13,32, b13,32 = d13,32
a14 − b14 a14,32 = c13,32, d14,32 = b13,32, c14,32 = a14,32, b14,32 = d14,32

a15 a15,32 = c14,32
d15 d15,32 = b14,32
c15 c15,32 = a15,32
b15 b15,26 = 0, b15,32 = d15,32 + 1

aa0 = a16 + a0 a16,26 = 1, a16,27 = 0, a16,32 = c15,32
dd0 = d16 + d0 dd0,26 = 0, d16,32 = b15,32
cc0 = c16 + c0 cc0,26 = 1, cc0,27 = 0, cc0,32 = dd0,32, c16,32 = d16,32
bb0 = b16 + b0 bb0,26 = 0, bb0,27 = 0, bb0,6 = 0, bb0,32 = cc0,32
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Table 5. All the Differential Characteristics in the Second Iteration Differential

Step The output wi si Δwi The output Difference The output in i-th step for M ′
1

in i-th step in i-th step
for M1

IV aa0, dd0 aa0[32], dd0[26, 32]
cc0, bb0 cc0[−26, 27, 32], bb0[26,−32]

1 a1 m0 7 225 + 231 a1[26,−32]

2 d1 m1 12 25 + 225 + 231 d1[6, 26,−32]

3 c1 m2 17 25 + 211 + 216 c1[−6,−7, 8,−12, 13,
+225 + 231 -17,. . . ,-21,22,-26,. . . ,-30,31,-32]

4 b1 m3 22 −2 + 25 + 225 + 231 b1[2, 3, 4,−5, 6,−26, 27,−32]

5 a2 m4 7 231 1 + 26 + 28 + 29 + 231 a2[1,−7, 8, 9,−10,−11,−12, 13, 32]

6 d2 m5 12 −216 − 220 + 231 d2[17,−18, 21,−22, 32]

7 c2 m6 17 −26 − 227 + 231 c2[7, 8, 9,−10, 28,−29,−32]

8 b2 m7 22 215 − 217 − 223 + 231 b2[−16, 17,−18, 24, 25, 26,−27,−32]

9 a3 m8 7 1 + 26 + 231 a3[−1, 2,−7,−8,−9, 10,−32]

10 d3 m9 12 212 + 231 d3[13,−32]

11 c3 m10 17 231 c3[−32]

12 b3 m11 22 −215 −27 − 213 + 231 b3[−8, 14, 15, 16, 17, 18, 19,−20,−32]

13 a4 m12 7 224 + 231 a4[−25, . . . ,−30, 31, 32]

14 d4 m13 12 231 d4[32]

15 c4 m14 17 231 23 + 215 + 231 c4[4, 16, 32]

16 b4 m15 22 −229 + 231 b4[−30, 32]

17 a5 m1 5 231 a5[32]

18 d5 m6 9 231 d5[32]

19 c5 m11 14 −215 217 + 231 c5[18, 32]

20 b5 m0 20 231 b5[32]

21 a6 m5 5 231 a6[32]

22 d6 m10 9 231 d6[32]

23 c6 m15 14 c6[32]

24 b6 m4 20 231 b6[32]

25 a7 m9 5 a7

26 d7 m14 9 231 d7

27 c7 m3 14 c7

. . . . . . . . . . . . . . . . . . . . .

34 d9 m8 11 d9

35 c9 m11 16 −215 231 c9[∗32]

36 b9 m14 23 231 231 d9[∗32]

37 a10 m1 4 231 a10[∗32]

38 d10 m4 11 231 231 d10[∗32]

39 c10 m7 16 231 c10[∗32]

. . . . . . . . . . . . . . . . . . . . .

49 a13 m0 6 231 a13[32]

50 d13 m7 10 231 d13[−32]

51 c13 m14 15 231 231 c13[32]

52 b13 m5 21 231 b13[−32]

. . . . . . . . . . . . . . . . . . . . .

59 c15 m6 15 231 c15[32]

60 b15 m13 21 231 b15[32]

61 a16 + aa0 m4 6 231 a16 + aa0 = a′
16 + aa′

0

62 d16 + dd0 m11 10 −215 d16 + dd0 = d′
16 + dd′

0

63 c16 + cc0 m2 15 c16 + cc0 = c′16 + cc′0
64 b16 + bb0 m9 21 b16 + bb0 = b′16 + bb′0
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Table 6. A Set of Sufficient Conditions for the Second Iteration Differential

a1 a1,6 = 0, a1,12 = 0, a1,22 = 1, a1,26 = 0, a1,27 = 1, a1,28 = 0, a1,32 = 1

d1,2 = 0, d1,3 = 0, d1,6 = 0, d1,7 = a1,7, d1,8 = a1,8, d1,12 = 1, d1,13 = a1,13, d1,16 = 0,
d1 d1,17 = a1,17, d1,18 = a1,18, d1,19 = a1,19, d1,20 = a1,20, d1,21 = a1,21, d1,22 = 0,

d1,26 = 0, d1,27 = 1, d1,28 = 1, d1,29 = a1,29, d1,30 = a1,30, d1,31 = a1,31, d1,32 = 1

c1,2 = 1, c1,3 = 1, c1,4 = d1,4, c1,5 = d1,5, c1,6 = 1, c1,7 = 1, c1,8 = 0, c1,9 = 1, c1,12 = 1,
c1 c1,13 = 0, c1,17 = 1, c1,18 = 1, c1,19 = 1, c1,20 = 1, c1,21 = 1, c1,22 = 0, c1,26 = 1, c1,27 = 1,

c1,28 = 1, c1,29 = 1, c1,30 = 1, c1,31 = 0, c1,32 = 1

b1,1 = c1,1, b1,2 = 0, b1,3 = 0, b1,4 = 0, b1,5 = 1, b1,6 = 0, b1,7 = 0, b1,8 = 0, b1,9 = 0,
b1 b1,10 = c1,10, b1,11 = c1,11, b1,12 = 0, b1,13 = 0, b1,17 = 0, b1,18 = 0, b1,19 = 1, b1,20 = 0,

b1,21 = 0, b1,22 = 0, b1,26 = 1, b1,27 = 0, b1,28 = 1, b1,29 = 1, b1,30 = 1, b1,31 = 0, b1,32 = 1

a2,1 = 0, a2,2 = 0, a2,3 = 0, a2,4 = 0, a2,5 = 1, a2,6 = 0, a2,7 = 1, a2,8 = 0, a2,9 = 0,
a2 a2,10 = 1, a2,11 = 1, a2,12 = 1, a2,13 = 0, a2,17 = 1, a2,18 = 1, a2,19 = 1, a2,20 = 1,

a2,27 = 0, a2,28 = 1, a2,29 = 0, a2,30 = 0, a2,21 = 0, a2,22 = 1, a2,31 = 1, a2,32 = 0

d2,1 = 0, d2,2 = 1, d2,3 = 1, d2,4 = 0, d2,5 = 1, d2,6 = 0, d2,7 = 1, d2,8 = 0, d2,9 = 0,
d2 d2,10 = 0, d2,11 = 1, d2,12 = 1, d2,13 = 0, d2,17 = 0, d2,18 = 1, d2,21 = 0, d2,22 = 1,

d2,26 = 0, d2,27 = 1, d2,28 = 0, d2,29 = 0, d2,32 = 0

c2,1 = 1, c2,7 = 0, c2,8 = 0, c2,9 = 0, c2,10 = 1, c2,11 = 1, c2,12 = 1, c2,13 = 1,
c2 c2,16 = d2,16, c2,17 = 1, c2,18 = 0, c2,21 = 0, c2,22 = 0, c2,24 = d2,24, c2,25 = d2,25,

c2,26 = 1, c2,27 = 1, c2,28 = 0, c2,29 = 1, c2,32 = 1

b2 b2,1 = 0, b2,2 = c2,2, b2,7 = 1, b2,8 = 1, b2,9 = 1, b2,10 = 1, b2,16 = 1, b2,17 = 0, b2,18 = 1,
b2,21 = 1, b2,22 = 1, b2,24 = 0, b2,25 = 0, b2,26 = 0, b2,27 = 1, b2,28 = 0, b2,29 = 0, b2,32 = 1

a3 a3,1 = 1, a3,2 = 0, a3,7 = 1, a3,8 = 1, a3,9 = 1, a3,10 = 0, a3,13 = b2,13, a3,16 = 0,
a3,17 = 1, a3,18 = 0, a3,24 = 0, a3,25 = 0, a3,26 = 0, a3,27 = 1, a3,28 = 1, a3,29 = 1,
a3,32 = 1

d3 d3,1 = 0, d3,2 = 0, d3,7 = 1, d3,8 = 1, d3,9 = 1, d3,10 = 1, d3,13 = 0, d3,16 = 1, d3,17 = 1,
d3,18 = 1, d3,19 = 0, d3,24 = 1, d3,25 = 1, d3,26 = 1, d3,27 = 1, d3,32 = 1

c3 c3,1 = 1, c3,2 = 1, c3,7 = 1, c3,8 = 1, c3,9 = 1, c3,10 = 1, c3,13 = 0, c3,14 = d3,14,
c3,15 = d3,15, c3,16 = 1, c3,17 = 1, c3,18 = 0, c3,19 = 1, c3,20 = d3,20, c3,32 = 1

b3,8 = 1, b3,13 = 1, b3,14 = 0, b3,15 = 0, b3,16 = 0, b3,17 = 0, b3,18 = 0, b3,19 = 0,
b3 b3,20 = 1, b3,25 = c3,25, b3,26 = c3,26, b3,27 = c3,27, b3,28 = c3,28, b3,29 = c3,29,

b3,30 = c3,30, b3,31 = c3,31, b3,32 = 1

a4 a4,4 = 1, a4,8 = 0, a4,14 = 1, a4,15 = 1, a4,16 = 1, a4,17 = 1, a4,18 = 1, a4,19 = 1, a4,20 = 1
a4,25 = 1, a4,26 = 1, a4,27 = 1, a4,28 = 1, a4,29 = 1, a4,30 = 1, a4,31 = 0, a4,32 = 0

d4 d4,4 = 1, d4,8 = 1, d4,14 = 1, d4,15 = 1, d4,16 = 1, d4,17 = 1, d4,18 = 1, d4,19 = 0, d4,20 = 1
d4,25 = 0, d4,26 = 0, d4,27 = 0, d4,28 = 0, d4,29 = 0, d4,30 = 0, d4,31 = 1, d4,32 = 0

c4 c4,4 = 0, c4,16 = 0, c4,25 = 1, c4,26 = 0, c4,27 = 1, c4,28 = 1, c4,29 = 1, c4,30 = 1
c4,31 = 1, c4,32 = 0

b4 b4,30 = 1, b4,32 = 0

a5 a5,4 = b4,4, a5,16 = b4,16, a5,18 = 0, a5,32 = 0

d5 d5,18 = 1, d5,30 = a5,30, d5,32 = 0

c5 c5,18 = 0, c5,32 = 0

b5 b5,32 = 0,

a6 − b6 a6,18 = b5,18, a6,32 = 0, d6,32 = 0, c6,32 = 0, b6,32 = c6,32 + 1

c9, b12 φ34,32 = 1, b12,32 = d12,32,

a13 − b13 a13,32 = c12,32, d13,32 = b12,32 + 1, c13,32 = a13,32, b13,32 = d13,32

a14 − b14 a14,32 = c13,32, d14,32 = b13,32, c14,32 = a14,32, b14,32 = d14,32

a15 − b15 a15,32 = c14,32, d15,32 = b14,32, c15,32 = a15,32, b15,32 = d15,32 + 1

a16 a16,26 = 1, a16,32 = c15,32

d16 d16,26 = 1,d16,32 = b15,32

c16 c16,26 = 1,c16,32 = a16,32

b16 b16,26 = 1
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Abstract. In this paper we describe improvements to the techniques
used to cryptanalyze SHA-0 and introduce the first results on SHA-
1. The results include a generic multi-block technique that uses near-
collisions in order to find collisions, and a four-block collision of SHA-0
found using this technique with complexity 251. Then, extension of this
and prior techniques are presented, that allow us to find collisions of
reduced versions of SHA-1. We give collisions of variants with up to 40
rounds, and show the complexities of longer variants. These techniques
show that collisions up to about 53–58 rounds can still be found faster
than by birthday attacks.

1 Introduction

The hash function SHA was designed by the National Security Agency (NSA)
and issued by NIST in 1993 as a Federal Information Processing Standard (FIPS-
180) [3]. A revised version called SHA-1, which specifies an additional rotate
operation to the message expansion, was later issued in 1995 as FIPS-180-1 [4].
The revised version is aimed to be a more secure replacement, that improves
the security provided by the hash function. No details of the weaknesses found
in SHA-0 were provided. In order to refer more clearly to the first version, we
denote it as SHA-0, which is a widely used but non standardized name.
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SHA-0 and SHA-1 are based on the principles of MD4 [5] and MD5 [6]. They
take messages of any length (up to 264 bits) and compute 160-bit hash values.

At CRYPTO’98 Chabaud and Joux [2] proposed a theoretical attack on the
full SHA-0 with a complexity of 261. It is a differential attack that uses a weakness
of the expansion algorithm of SHA-0. Their attack is faster than the generic
birthday paradox attack and partially explain the withdrawal of SHA-0 by NSA.
It is interesting to note that they count the complexity in term of the number
of message pairs to be tried and not in term of the number of SHA-0 calls.
At first, it may seem to be an artificial way to reduce the claimed complexity
by 2. However, due to the use of an early abort strategy in the implementation,
the effective complexity in term of SHA-0 calls is roughly 1/4 of the announced
value. For the sake of clarity, we continue this tradition and announce all the
complexity results by giving the average number of necessary message pairs.

In [1] Biham and Chen discussed near-collisions of SHA-0. By using some
of the ideas that originally appeared in [2], they showed that in SHA-0 near-
collisions are easier to find than full collisions, and proposed an efficient searching
algorithm that eliminates the probabilistic behavior of more than 20 rounds of
the algorithm, using the notion of neutral bits. When applied to the attack of
Chabaud and Joux, this improves the complexity by an approximate factor of 32.

In our current research we improve over the results of [1] in several directions:
we first present a tool that uses near-collisions in order to find collisions using a
multi-block technique. This tool can be used to attack variants that cannot be
attacked by the original technique, as well as to reduce complexities of attacking
other variants. With some additional refinements, it also improves the attack on
full SHA-0, reducing the complexity down to 251. Then we present our attacks
on reduced-round SHA-1, which can find collisions of up to 53–58 rounds faster
than the birthday attack, and show new techniques to attack SHA-1.

In parallel to this paper, Rijmen and Oswald also recently studies reduced
versions of SHA-1 [9].

This paper is organized as follows: In Section 2 we describe how near-collisions
can be used to find collisions by a multi-block technique. In section 3, we show
how the multi-block technique can be refined in order to work on the full SHA-0,
this leads to a full collision on SHA-0 using messages of four blocks. In Section 4
we describe how the attack on SHA-0 is expanded to attack SHA-1. This section
presents various attacks on reduced versions of SHA-1, where each attack em-
phasizes different aspects and techniques. A 34-round SHA-1 collision that can
be found with relatively low complexity is introduced. With this reduced version
we show how collisions can be found with messages that have only ASCII letters
and even messages with some meaningful words. We continue with a collision of
36-round SHA-1 that uses a message of two blocks, where the first block changes
the initial value to a value that is convenient for the attack, and the collision is
found in the second block. This attack also shows some differences between the
attack of SHA-0 and SHA-1, where the non-linearity of SHA is used in the attack.
We then discuss how to bypass the consecutive disturbances problem in the IF
rounds. The last attack in this section is a two-block collision of 40-round SHA-
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1 that uses the same characteristic in both blocks. All the collisions of reduced
SHA-1 that we present were found within a few seconds of computation on a PC.
Section 5 analyzes the complexity of attacking various reduced versions of SHA-1
with more rounds, and shows that SHA-1 up to 53–58 rounds can be attacked
faster than the birthday attack. The assessments are based on the best charac-
teristics we could find for each reduced version. Section 6 summarizes the paper.

Due to lack of space, we removed the descriptions of SHA-0 [3] and SHA-1 [4],
and the description of prior techniques related to this paper, e.g., the original
technique for analysis of SHA-0 [2], the improved technique and neutral bits [1].
For descriptions of SHA and these techniques, see the respective references. We
also shortened the descriptions of some results and removed some detailed ex-
planations about the attack complexity. The full details will appear in the full
version of the paper.

Note. This paper is the result of the merge of two papers by non-intersecting
groups of authors. The first group consists of the Technion authors, and the
other consists of the DGA and PRISM authors. The multi-block technique as a
generic tool including the 50-rounds SHA-0 application and the results on SHA-
1 are due to the first group. Motivated by their work, the first author within
the second group restarted searching on old, non-working results about iterated
collisions in SHA-0. It resulted in an improved multi-block cryptanalysis for full
SHA-0, which was then ported and optimized for the supercomputer by the other
authors within the group.

2 The Multi-block Tool

SHA uses an iterative process in which each block Mj along with an intermediate
value hj−1 is subjected to a compression function, whose output is the value
of the next intermediate value hj . Previous works on hash functions, and in
particular on SHA, use only one block for the attack. Those attacks start with
the initial value h0 and construct a pair of messages M1 and M∗

1 that output the
same h1 to find a collision, or h1, h

∗
1 with a small difference h′

1 for near-collisions.
The tool we present in this section uses the iterative process of SHA to find

collisions. The idea of this technique is to start with a pair of blocks M1 and
M∗

1 that create a near-collision h′
1, and continue with a construction of a second

block. In the first block we base the message on a characteristic that has a zero
input difference h′

0, and a non-zero output difference h′
1, with some message

difference M ′
1. In the second block we use a characteristic with a non-zero input

difference h′
1, and a zero output difference h′

2.
The attack proceeds as follows: Given messages M1, M

∗
1 that conform to the

first characteristic, we receive the pair of intermediate hash values h1 and h∗
1.

Using these values, we search for a second block M2, M
∗
2 whose input values are

h1, h
∗
1, and which conforms to the second characteristic. Such a pair will then

have h′
2 = 0, which means a collision after the second block.

As a result we succeed in finding a near-collision in the first block, and then
finding a second block, constructed in a similar way, but in which each message
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Fig. 1. Using Intermediate Near-Collisions to Find Collisions with Two Blocks

starts with a different input value (rather than same value as is usually done in
hash functions) in order to find a collision. An illustration of a two-block attack
is given in Figure 1.

The multi-block tool is particularly useful when there is no characteristic that
predicts a full collision in one block, and to reduce the complexity of an attack
when a single-block collision is more complex.

It should be noted that Wang [7, 8] independently used two message blocks
to find the collision of MD5, using a first block that creates a near-collision, and
a second block that restarts from this near-collision and ends with a collision.

Applications. In order to illustrate the multi-block technique, we can apply to
SHA-0 reduced to 50-rounds. This example is interesting, since this reduced ver-
sion does not have any characteristic (i.e., any disturbance vector) that predicts
a collision with a single block. However, it is very easy to find near-collisions
with complexity of about 217. Using the multi-block technique, we can restart
from this near-collision in order to find a longer message pair that collides after
the second block. The total complexity remains about 217.

Collisions with More than Two Blocks. This technique can be generalized to
several blocks. In the case of two blocks the first block of the messages M,M∗ is
constructed by using a characteristic that has a zero input difference h′

0 and, a
non-zero output difference h′

1. In the second block we use a characteristic whose
input difference is h′

1, and which has a non-zero output difference h′
2. In the case

of two blocks h′
2 = 0, which means a collision. However, in case h′

2 	= 0, it is
possible to use h′

2 as the input difference of a third block which leads to a collision
(see Figure 2). Alternatively the third block can lead to another near-collision
that may later be converted to a collision of the fourth block. In general the
technique can find k-block collisions, where the first block starts with h′

0 = 0,
with k − 1 intermediate near-collisions h′

i 	= 0 (i = 1, . . . , k − 1), which lead
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Fig. 2. The Multi-Block Technique—Using Intermediate Near-Collisions to Find Col-

lisions

to a collision with h′
k = 0 after k blocks. The complexity of finding the k-block

collision is the sum of the complexities of finding the k−1 near-collisions and the
final collision. More information on usage of multi-block collisions will appear in
the full paper.

3 A Multi-block Collision of SHA-0

Since the multi-block technique described above is very promising, it is extremely
tempting to apply it to the full 80 rounds SHA-0. Unfortunately, contrarily to
what happens with the 50-rounds version, there is no attack of this type which
behaves better than the single block attack proposed by Chabaud and Joux. All
the other paths that use near collisions happen to be dead-ends.

In order to remove this obstruction, another key idea is necessary. We should
note that in the early rounds of SHA-0, an IF function is used. This means, that
during the early rounds, SHA-0 may in some case behave differently than the
linearized model of [2]. This misbehavior might allow us to connect differentials
which do not belong together in the linearized model of SHA-0. In order to make
this idea precise, we first introduce some notations to describe the differences
before and after each block. First, remark that in each register A to E, after
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a successful application of a one block differential, a difference may occur at
a single, fixed, position. In A and B a difference may occur at bit 1, in C, D
and E at bit 31. As a consequence, to describe an initial or final difference, a
5-bit number suffices. We assign the high order bit to A and the low order bit
to E. Thus, a state with a single difference D will be referred to as state 2.
The second step is to compare the expected behavior of a reference state in
the linearized model with the possible behaviors of a given state when the IF
function is used, i.e., in real-life SHA-0. This is done by examining how the initial
difference propagates in the five first rounds.1 To start with a simple example,
assume that reference state 2 is considered in the linearized model. In that case,
we have a single initial difference on bit 31 of D. Due to the XOR function,
this difference propagates in the update formula for the next value of A. Thanks
to the disturbance vector, it will be adequately corrected, however, this is not
relevant for this part of the discussion, we just need to know that it propagates
in the formula. Then, the registers are shifted and the initial difference moves
to E. In the next update formula, it will also propagate, again on bit 31. After
that round, the initial difference has vanished and no longer propagates. Now,
consider that state 3 enters the real SHA-0. Then, in the first formula, both D
and E have a difference on bit 31, however, depending on the result of the IF
function the difference on D may either propagate or not. More precisely, if bit
31 of register B (which is the same in both messages) is a 1, the difference on D
does not propagate. On the other hand, the difference on E always propagates.
The gross result is that a single difference propagates on bit 31, thus at this point
state 3 behaves as reference state 2 in the linearized model. After the registers
shift, a difference remains on E and it propagates in the second update formula.
As a consequence, we see that real state 3 may behave as reference state 2. Thus,
we may start a differential attack from state 3 by using a disturbance vector that
“expects” state 2. Moreover, state 3 may also behave like reference state 3. This
implies, that it is possible to connect together much more differentials than
initially expected. Thus, the graph of possible paths is considerably richer than
first predicted and we expect to find a better attack.

With this translation table in mind, we now try to assemble several differen-
tials with different disturbance vectors into a global attack. For any disturbance
vector, we add five extra bits, the “negative” bits which indicate the starting
reference state. Similarly, the value of the last five bits indicate the expected
state after the block cipher part of the compression function. To incorporate
such a disturbance vector into the global attack, we proceed as follows: Assume
that the current state is a and that we are given a disturbance vector a′ → b,
i.e., a disturbance that goes from reference state a′ to expected state b, then if a

1 We further remark that this representation can be extended to a general kind of
characteristics describing the evolution of differences in registers A, . . . , E, and in
the expanded message, in a similar way to the characteristics used in related-key
differential cryptanalysis. In such a case, the intermediate differences can be very
different than predicted by the model of [2], while still leading to collisions.
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is compatible with a′, we have a differential that goes from state a to next state
a⊕ b after the final addition. Thus, we can build a transition graph, where each
possible state is a node, and each differential, with good enough probability, is
an edge. In this graph, we now search for a path from state 0 to itself, with low
expected complexity. The best path we could find has length 4, it starts from
state 0, goes to 3, 25, 8 and finally comes back to zero. It is build on the following
disturbance vectors:

Ref (DV) DV Actual Compatible

States States With

0 → 3 00000 00010000101001000111 10010110000011100000 0 → 3 2 3

00000011000000110110 00000110001011011000

2 → 26 01000 10000000010000101001 00011110010110000011 3 → 25 17 18 28 31

10000000000011000000 11011000000110001011

17 → 17 10001 00100101000100101111 11000010000100001100 25 → 8 8 11 13 14

00101100100000000001 11010011101000010001

11 → 8 11010 00100000000100001010 01000111100101100000 8 → 0 collision
11100000000000110000 00110110000001100010

One can easily check that this sequence of block differences can possibly
lead to a full collision. Initially, the difference between the two messages of a
pair corresponds to state 0. After the first block, we intend to reach state 3.
Of course, for this block the final additions add equal values on each branch,
thus the difference is expected to remain at state 3. Since state 3 is compatible
with reference state 2, we restart from there and go to state 26. For this second
block, the additions change state 26 into state 25. Again, the compatibility of 25
with reference state 17 allows us to restart with the third block difference. The
expected state is 17 before the final additions and 8 after them. Thanks to
the compatibility of 8 with 11, we use the fourth difference and expect a state
of 8 before the additions. Since the two states 8 correspond to differences on
the same bits, we expect that they cancel each other. Thus, we finally reach a
full collision. Evaluating the exact complexity of this attack requires a detailed
analysis that, for lack of space, is not given here. The total cost is 251 message
pairs, as confirmed by our implementation.

3.1 Implementation and Optimization

The theoretical complexity of our collision search algorithm is 251. This com-
plexity is expressed in term of the number of pairs of messages to test. As is the
case with the original attack of Chabaud and Joux, this roughly corresponds to
the cost of 249 evaluations of the SHA-0 compression function.

In order to demonstrate feasibility of this collision search, we implemented
this algorithm on an Intel Itanium 2 processor. This processor allows a wide de-
gree of instruction level parallelism (ILP). More precisely, it is able to execute up
to six instructions per cycle, and a wide variety of combinations is possible (e.g.,
6 arithmetical operations, or 4 memory operations and 2 floating point multi-
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ply add, or 3 logical operations and 3 branches, etc.). Furthermore, this wide
ILP capability is enhanced by a large register file and many duplicated functional
units. The processor also offers several mechanisms to implement control/branch
structures with speculative execution, predication, and multi-way branches (up
to three branches per cycle). Due to the complex nature of the processor, the
performance of programs running on it heavily relies on the capability of the
compiler to produce efficient code. Our algorithm was compiled by the Intel
compiler (ICC) whose performance in this respect is usually above average.

To optimize our code, a profiling step was performed to detect the most time-
consuming code sections. This study revealed that the main function, which
enumerates pairs of messages derived from a reference pair and its’ neutral set
represented a large majority of the execution time. Focusing on this part, we
checked the behavior of the code at the hardware level during execution through
the use of hardware counters.

We, thus, determined that the main performance limiting factors were:

– Limited amount of parallelism: All rounds of SHA-0 contain chains of bitwise
operations (+, ROLx, . . . ) depending on each other, which limited the effect
of the internal parallelism.

– Complex control flow : Due to the probabilistic nature of the collision search,
the control flow is quite complex and statistically (at compile time) unpre-
dictable.

– Cached memory access: Despite being in a very favorable case where all data
fits in the first level data cache (L1D) of the Itanium 2 (16KB), the number of
accesses to the cached memory is very high, when arrays are used to represent
the intermediate values during the computation. As a consequence, memory
access in L1D was a bottleneck in our basic implementation.

Due to the complex control flow, the Intel compiler could not determine a
good way to execute branches. Even the use of advanced optimization tools such
as profile guided optimization, did not help much. The compiler still used specu-
lative execution, which led to bad performance. A first step in our tuning process
was to make the compiler avoid speculation, by writing each round differently,
depending on the probability of success at this point.

Since the number of L1D memory accesses was critical, the second step con-
sisted in reducing them. This was done by replacing all arrays by registers thus
avoiding many memory stores and loads. This optimization makes good use of
the large number of registers of the Itanium 2. Such a technique is called register
promotion and is usually performed by the compilers. However, in this example,
this had to be done on a large number of source lines and the compiler was
unable to deal with this. Moreover, we had to extend the technique to deal with
the complex control structure.

All the fine tuning techniques allowed to gain an additional 20% of perfor-
mance compared to the best compiler options (which are not the standard O3
options and had to be determined through exhaustive search). On average, 4
instructions per cycle were effectively executed, out of a maximum 6.
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3.2 A Full Collision of SHA-0

Once the program was ported to the supercomputer, it processed a large number
of messages pairs for each block. Very precisely, the total number of trial pairs
was:

First block 796 682 307 091 035 ≈ 249.5

Second block 1 572 177 940 314 628 ≈ 250.5

Third block 1 712 558 626 669 268 ≈ 250.6

Fourth block 17 049 400 703 749 ≈ 244

We can remark that the number of computations is higher than expected
for the first two blocks. At first, we simply assumed that we had been unlucky,
however, a deeper investigation revealed a subtle bug in the neutral bits identi-
fication code. Due to this bug, some messages pairs were processed more than
once, and up to four times, by the program. These useless computations explain
the mismatch between the predicted complexity of the first two blocks and the
effective numbers of messages pairs processed. Luckily, the bug did not affect
the computation of block 3, thus the total slowdown was limited. Finally, we
reached the following messages (written in hexadecimal):

a766a602 b65cffe7 73bcf258 26b322b3 d01b1a97 2684ef53 3e3b4b7f 53fe3762

24c08e47 e959b2bc 3b519880 b9286568 247d110f 70f5c5e2 b4590ca3 f55f52fe

effd4c8f e68de835 329e603c c51e7f02 545410d1 671d108d f5a4000d cf20a439

4949d72c d14fbb03 45cf3a29 5dcda89f 998f8755 2c9a58b1 bdc38483 5e477185

f96e68be bb0025d2 d2b69edf 21724198 f688b41d eb9b4913 fbe696b5 457ab399

21e1d759 1f89de84 57e8613c 6c9e3b24 2879d4d8 783b2d9c a9935ea5 26a729c0

6edfc501 37e69330 be976012 cc5dfe1c 14c4c68b d1db3ecb 24438a59 a09b5db4

35563e0d 8bdf572f 77b53065 cef31f32 dc9dbaa0 4146261e 9994bd5c d0758e3d

and

a766a602 b65cffe7 73bcf258 26b322b1 d01b1ad7 2684ef51 be3b4b7f d3fe3762

a4c08e45 e959b2fc 3b519880 39286528 a47d110d 70f5c5e0 34590ce3 755f52fc

6ffd4c8d 668de875 329e603e 451e7f02 d45410d1 e71d108d f5a4000d cf20a439

4949d72c d14fbb01 45cf3a69 5dcda89d 198f8755 ac9a58b1 3dc38481 5e4771c5

796e68fe bb0025d0 52b69edd a17241d8 7688b41f 6b9b4911 7be696f5 c57ab399

a1e1d719 9f89de86 57e8613c ec9e3b26 a879d498 783b2d9e 29935ea7 a6a72980

6edfc503 37e69330 3e976010 4c5dfe5c 14c4c689 51db3ecb a4438a59 209b5db4

35563e0d 8bdf572f 77b53065 cef31f30 dc9dbae0 4146261c 1994bd5c 50758e3d

which have the same hash values. More precisely, the intermediate hashes for
both messages are compatible with the predictions of our differential attack and
their precise values are:
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IV 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0

Block 1 83C1CE2D C5BF5480 C2AF2358 104B337B 9E78A1E7

Block 2 27AE025A 9D36F7B6 29FA88E7 87B70063 984119F3

Block 3 4DD120B4 D6EC801F 468628A7 0CC26464 371F36B2

Block 4 81FB4643 08FDF1F4 A3C4F3A3 6188FED3 FD2378E6

Padding C9F16077 7D4086FE 8095FBA5 8B7E20C2 28A4006B

IV 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0

Block 1 83C1CE2D C5BF5480 C2AF2358 904B337B 1E78A1E7

Block 2 27AE0258 9D36F7B4 29FA88E7 87B70063 184119F3

Block 3 4DD120B4 D6EC801D 468628A7 0CC26464 371F36B2

Block 4 81FB4643 08FDF1F4 A3C4F3A3 6188FED3 FD2378E6

Padding C9F16077 7D4086FE 8095FBA5 8B7E20C2 28A4006B

In this table, the underlined values highlight the difference between the two
hash processes. These differences are as predicted by our differential attack. After
the fourth blocks, the two messages collide. Of course, since the two messages
have the same length, the padding blocks are identical. Thus, the final values
inherit from the fourth block collision.

4 SHA-1 Results

Our attack on SHA-1 extends the techniques of [1] designed for SHA-0. The
only difference between SHA-1 and SHA-0 is an additional rotation operation
in the expansion process. Due to this rotation SHA-1 mixes the bits in the
expanded message in a more efficient way than SHA-0 does, thus making the
attack much less efficient against SHA-1 (as was already noted in [1]). In this
section we observe that with some modifications, the attack can be applied to
reduced versions of SHA-1. In the next subsections we present collisions of 34–40
rounds SHA-1 that we found using this application.

4.1 A Collision of 34-Round SHA-1

The attacks of SHA-0 use only bit 1 as the location of disturbances. This bit
is selected to eliminate the probabilistic behavior of the carry when corrections
are applied to bit 31, thus increasing the total probability of the characteristic.
Since the expansion process in SHA-0 does not mix bits in different locations
in the 32-bit word, all the disturbances in the expanded message are in bit 1,
but this is not the case in SHA-1. Therefore, other bits can be used as distur-
bances. With this change in the selection, a disturbance vector in SHA-1 is not
boolean, in which each entry tells whether there is a disturbance in bit 1, but
instead a 32-bit word that represents all the disturbances in a round. Following
this change, the corrections associated with a disturbance vector are derivated
slightly differently than in [1] (i.e., corrections are applied to each disturbance
relative to its location).

We observe that for 34-round reduced SHA-1 (unlike longer versions) there is
a disturbance vector with a very low Hamming weight, which is given in Table 1.
In this table D.Vec column shows the expected values of A′

i+1 for i = 0, . . . , 33,
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Table 1. The Disturbance Vector Used for 34-round SHA-1 (in 32-bit hex words)

Rnd D.Vec D&C Rnd D.Vec D&C Rnd D.Vec D&C

−5 00000000 8 00000000 80000003 21 00000000 00000040
−4 00000000 9 00000002 40000002 22 00000002 00000000
−3 00000000 10 00000000 C0000040 23 00000000 80000040
−2 00000000 11 00000000 C0000002 24 00000000 80000002
−1 00000000 12 00000000 80000000 25 00000000 00000000

0 00000002 00000002 13 00000000 80000000 26 00000000 80000000
1 00000000 00000040 14 00000002 80000002 27 00000000 80000000
2 00000002 00000000 15 00000000 00000040 28 00000000 00000000
3 00000000 80000040 16 00000000 00000002 29 00000000 00000000
4 00000002 80000000 17 00000000 80000000 30 00000000 00000000
5 00000000 00000040 18 00000000 80000000 31 00000000 00000000
6 00000003 80000001 19 00000000 80000000 32 00000000 00000000
7 00000000 00000060 20 00000002 00000002 33 00000000 00000000

Table 2. Collision of SHA-1 Reduced to 34 Round (in 32-bit hex words)

Message 1:
F1641C2B 242BFDB5 EAE01E30 F4BBBA6F 18D45E8E DE68AEBA 74EC8CF9 FC204957

45AAA8BF 1CD3AE7D D845C2F3 AC737464 F25BEBBB BE5FFF1D 2ADB2818 0B1D13FB

Message 2:
F1641C29 242BFDF5 EAE01E30 74BBBA2F 98D45E8E DE68AEFA F4EC8CF8 FC204937

C5AAA8BC 5CD3AE7F 1845C2B3 6C737466 725BEBBB 3E5FFF1D AADB281A 0B1D13BB

which we denote by δi+1 (note that the indices of δ here are 1, . . . , 34, rather
than 0, . . . , 33, as δi is the difference at the input of round i). The D&C col-
umn shows the message difference (which is underlined and shown in rounds
0, . . . , 15), and the differences of the expanded messages in rounds 16, . . . , 33.
δ−4, . . . , δ0 are also shown in this table (in rounds −5, . . . ,−1), and their values
are related to the initial value differences. Intermediate rounds after which colli-
sions are predicted are marked in boldface. This disturbance vector is unique in
that almost all the disturbances are in one location (bit 1), and in all of the 34
rounds there is only a single disturbance in a different location, which is bit 0
in round 6. This disturbance succeeds to cancel the avalanche effect that is ex-
pected in SHA-1 due to the additional rotate operation, and that does exist in
other disturbance vectors.

By using the neutral bits method of [1], the complexity of an attack can
be estimated based on the number of disturbances after round 20. Thus, using
this disturbance vector, that has only two disturbances after round 20, we easily
found millions of collisions, one of which is given in Table 2.

Since the complexity of finding collisions in this 34-round attack is so low,
we were able to generate collisions with additional constraints, which caused
some increase in the complexity. This way we found collisions whose all bytes
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Table 3. Two Messages in ASCII Letters that Collide Under 34-Round SHA-1

Message 1:
IkGDqVMwISGGcBMpNHMYavPTsmUlykPTzokJOkwnrSgJSfDmlpeqsmDzWbAjmNxP

Message 2:
IkgDqRMwISGGcFEpNHEYarPTsmMlymPTzoSJOkSnrWkJSfhmlpmqsmLzWbijmJxP

Table 4. Two Examples of Partially Meaningful Messages that Collide Under 34-

Round SHA-1

Message 1:
I Am OilMANgujnPay916472136314$USAkNOWwTkjepMFXGlmfHNGcpodElGfvL

Message 2:
I am KilMANgunfPay11607213.312$USASNOWSTknipMFtGlmnHNGkpodmlGbvL

Message 1:
OhG, not this mess,age notThat onenot U, oh noHRtBMTkKllLlIluvpB

Message 2:
Ohg, jot this$eess$aga notLhar oneVot q, kd nodRtBETkKdlLlalurpB

are formed of ASCII letters. The disturbance vector of Table 2 does not allow
that, as some bytes of the message differ in the most significant bits. However,
by rotating the locations of the disturbances (by the same number of bits in
all the rounds) we can move the differences to lower bits, while increasing the
complexity of the attack by a small factor. A colliding pair of messages consisting
entirely of letters in ASCII is given in Table 3.

With some additional creativity, and some additional increase in the com-
plexity, it was also possible to force some of the bytes into partial English text.
Table 4 lists two examples. The first example is an attempt to force the two
colliding messages to contain meaningful text. However, there are still many
constraints on the possible text, thus it can be seen that some letters are capi-
talized, while other are not, that some spaces appear between words, while they
do not appear between other words, and that some random letters must be
allowed in some locations in order to allow more text afterwards. The second
example in Table 4 is an attempt to further improve the text of one message in
the expense of the text of the other message.

4.2 A Collision of 36-Round SHA-1

In this section we present a collision of 36-round reduced SHA-1 along with
several techniques that were used to find it.

In our attack on 36-round SHA-1 we use the best characteristic that predicts
a collision after one block. We show this disturbance vector in Table 5.

It should be noted that this characteristic cannot be used with the standard
initial value of SHA-1, i.e., with

h0 = (67452301x, EFCDAB89x, 98BADCFEx, 10325476x, C3D2E1F0x),
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Table 5. The Disturbance Vector Used for 36-Round SHA-1 (in 32-bit hex words)

Rnd D.Vec D&C Rnd D.Vec D&C Rnd D.Vec D&C

−5 00000000 9 00000002 00000008 23 00000000 80000050
−4 00000000 10 00000002 00000042 24 80000003 80000001
−3 00000000 11 80000000 50000042 25 00000000 A0000070
−2 00000000 12 00000002 10000010 26 00000000 20000003
−1 00000000 13 00000000 90000040 27 00000002 40000002

0 80000000 80000000 14 00000002 20000000 28 00000000 E0000040
1 00000000 00000010 15 00000000 20000040 29 00000000 E0000002
2 00000001 80000001 16 80000003 20000001 30 00000002 80000002
3 00000000 20000020 17 00000000 00000070 31 00000000 80000040
4 00000003 20000002 18 00000000 00000003 32 00000000 80000002
5 00000002 60000062 19 00000002 60000002 33 00000000 80000000
6 00000001 40000042 20 00000000 E0000040 34 00000000 80000000
7 00000002 80000020 21 00000000 E0000002 35 00000000 80000000
8 40000000 00000041 22 80000002 00000002

Table 6. The Second Block of the Collision of 36-Round SHA-1 (in 32-bit hex words)

Common block 1: sixteen 00000000 words

Message 1, block 2:
9F29DE8D BBD58270 1F11EB22 A6637C3E 7E6FB0C0 63E9BF5E C4FF7010 073174B3

3133689A 579A753E 2D17124D 7D37E853 5B5BBB01 F0371FBB 025A725C 8FB9FE33

Message 2, block 2:
1F29DE8D BBD58260 9F11EB23 86637C1E 5E6FB0C2 03E9BF3C 84FF7052 87317493

313368DB 579A7536 2D17120F 2D37E811 4B5BBB11 60371FFB 225A725C AFB9FE73

due to the observation that in round 2 there is a difference in the most significant
bit of register B (B′ = 80000000x), but both most significant bits of C and D
are zero (where C = 67452301x ≪ 30 and D = EFCDAB89x ≪ 30). Thus,
considering the differences of the messages (W ′

2 = 80000001x) in that bit, the
new content of A must have a difference in this bit, in contrary to the prediction
of the disturbance vector.

In order to be able to use the disturbance vector of Table 5, the initial value
is replaced by another value by adding an additional first block, which in this
case is the whole zero block (M1 = M∗

1 = 0). The resultant intermediate hash
value is

h1 = (37970DFFx, 5E912289x, C78B3705x, 923B82E9x, CC36E948x).

With this intermediate value h1, we can now proceed to the next block with the
disturbance vector of Table 5. The second block of the collision of the 36-round
SHA-1 is presented in Table 6.
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Table 7. Comparison of δi and A′
i in the 36-Round Collision (in 32-bit hex words)

Round D&C δi+1 A′
i+1 B′

i+1 C′
i+1 D′

i+1

0 80000000 80000000 80000000 00000000 00000000 00000000
1 00000010 00000000 00000000 80000000 00000000 00000000
2 80000001 00000001 00000001 00000000 20000000 00000000
3 20000020 00000000 00000000 00000001 00000000 20000000
4 20000002 00000003 00000001 00000000 40000000 00000000
5 60000062 00000002 00000002 00000001 00000000 40000000
6 40000042 00000001 00000001 00000002 40000000 00000000
7 80000020 00000002 00000002 00000001 80000000 40000000
8 00000041 40000000 40000000 00000002 40000000 80000000
9 00000008 00000002 00000002 40000000 80000000 40000000
10 00000042 00000002 00000002 00000002 10000000 80000000
11 50000042 80000000 80000000 00000002 80000000 10000000
12 10000010 00000002 00000002 80000000 80000000 80000000
13 90000040 00000000 00000000 00000002 20000000 80000000
14 20000000 00000002 00000002 00000000 80000000 20000000
15 20000040 00000000 00000000 00000002 00000000 80000000

A Generalized Test for Conformance. The 36-round collision of Table 6
presents an additional change in respect to the attack of SHA-0. In the attack on
SHA-0, the intermediate differences A′

i are necessarily equal to δi for i = 1, . . . , r,
where r is the number of rounds of the analyzed compression function. In SHA-1
this is not the case, since more than a single location of a bit are selected for the
disturbances. In cases where there are two or more disturbances or corrections
in adjacent bits, it may happen that the more significant bit is not correctly
approximated, e.g., the IF function does not output the XOR of its inputs for
the particular values of the registers. However, it may happen that the carry
of the less significant bit cancels this wrong approximation, resulting with the
expected difference A′

i = δi. In other cases, a wrong approximation of the less
significant bit cancels the correct approximation of the more significant bit, e.g.,
the addition modulo 232 of the less significant bit changes the carry. In these
cases A′

i 	= δi, and the difference is in this more significant bit. The difference
that the more significant bit expects to create in A′

i is now canceled, but the
corrections for this expected difference still exist in the following five rounds.
These corrections are now used to correct wrong approximations of the less
significant bit which change the carries in the next five rounds. If we are lucky,
the less significant bit creates additional differences in the carry, thus corrects
the differences in A′

i in the next rounds.
Table 7 shows the differences of first 16 rounds of the compression function

in the second block of the 36-round collision (shown in Table 6). In this table
the D&C column shows the message difference M ′, δi+1 shows the expected
difference in A′

i+1, and the other four columns show the actual difference A′
i+1,

B′
i+1, C

′
i+1, and D′

i+1. The table shows a situation where two disturbances are
applied to bit 0 and 1, and the carry change of bit 0 cancel the disturbance of
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bit 1. The entry of round 4 in the table shows (in boldface) that the expected
difference δ5 is different from the actual value of A′

5. This difference between the
expected and actual values is due to a carry change of the disturbance of bit 0
that cancels the difference in bit 1. The five corrections in the next five rounds
do not have a disturbance in registers A, B, C, D, nor E, but other properties of
the IF and carry overcome the missing difference and ensure correct differences
in the following rounds.

We call bits whose difference may differ from the expected value of the char-
acteristic, but whose effect can be canceled immediately afterwards, by the name
T bits. In some cases a simultaneous modification of a few bits makes a similar
effect. We can view T bits as extending the notion of characteristics into differ-
entials in which most information on the intermediate differences is fixed, but
a few can have any value, describing several different paths leading to the same
differential. There are several T bits in the intermediate differences characteristic
of 36-round SHA-1, and also in other characteristics used in this paper.

Due to such cases we extended our program to check for conformance by
testing for a generalized kind of differences instead of testing exactly whether
A′

i = δi.

Consecutive Disturbances in the IF Rounds. In the attack on SHA-0 two
consecutive disturbances in the first 17 rounds (i.e., rounds 0, . . . , 16) have a
probability zero to be corrected (see [2]). This limitation forces a higher Ham-
ming weight to occur in the expanded disturbance vector, but an attack is still
feasible (i.e., there are still few disturbance vectors that predict collisions, and
do not have two consecutive disturbances in the first 17 rounds). We observed
that all the disturbance vectors that we could find that predict one-block colli-
sions of SHA-1 reduced to 35 or more rounds have consecutive disturbances, i.e.,
two disturbances at the same bit locations in two consecutive rounds. Thus, this
limitation seems to be much more restrictive in SHA-1. However, this stronger
limitation comes with the ability to bypass it by various techniques in some frac-
tion of the cases. The characteristic we use for the collision of 36-round SHA-1
is an example for such a case.

In the following discussion, we first explain the limitation of the two con-
secutive disturbances in SHA-0, and then we show how they behave in SHA-1.
In SHA-0, two consecutive disturbances in rounds i and i + 1 (in bit 1) create
differences in D31′

i+4 and C31′
i+4, respectively. The two corrections to these differ-

ences are applied to the same bit, thus cancel each other in the approximation
leading to no difference in δi+4. On the other hand, the IF function applied on
these two differences, where the difference of B31′

i+4 is zero, causes the result to be
complemented always. Thus, in A′

i+4 we have a difference with no corrections.
With SHA-1 the same arguments apply, but we allow disturbances at any bit
location. Thus, we can use the carry bit from another disturbance (or correction)
as an additional source of corrections.

The following two examples, which are taken from our 36-round attack,
should clarify the above: In the first example we show how a carry can be used
as follows: At rounds 4 and 5 there are disturbances in bit 1, from which we
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expect to get A′
5 and A′

6 equal to δ5 = 00000003x and δ6 = 00000002x respec-
tively, which lead after three rounds to the differences D′

8 = C0000000x and
C ′

8 = 80000000x. With these differences the IF function applied on D31′
8 and

C31′
8 always complement the output, but it is never complemented in the ap-

proximation. Thus, we have a difference that cannot be corrected. However, in
the messages we use the carry from bit 0 at round 4 cancels the disturbance at
bit 1 of this round, and therefore the created differences are A′

5 = 00000001x

and A′
6 = 00000002x (see Table 7). Thus, in round 8 the differences are C ′

8 =
80000000x and D′

8 = 40000000x, which can be corrected by the non-linear be-
havior of the IF function to fit the approximation.

In the second example we show how the problem of two consecutive dis-
turbances can be bypassed when there is another disturbance in one of a few
different locations. In rounds 9 and 10 (see Table 7) we have two consecutive
disturbances in bit 1 (δ10 = 00000002x and δ11 = 00000002x), but in this case
there is also a disturbance in round 11 in bit 31 (δ12 = 80000000x). Thus, in
round 13 we have B′

13 = C ′
13 = D′

13 = 80000000x, which fit the approximation
with probability 1/2.

In general, consecutive disturbances in bit j of rounds i and i + 1 can be
corrected, if there is a correction or disturbance in a less significant bit that may
change the carry to bit j − 2 in round i + 4 (i.e., in bit j − 8 of δi+3, bit j − 1
of δi+2, or bit j − 1 of δi+1, δi or of δi−1 where the bit numbers are mod 32),
leaving the rest of the differences behave as expected.

4.3 A Two-Block Collision of 40-Round SHA-1

In this section we present a collision of 40-round reduced SHA-1. The best (one-
block) characteristic that we could find has 19 disturbances from round 20 to
round 39, so the complexity of the attack is expected to be around 257. However,
it is easy to find near-collisions of 40 rounds with only five disturbances from
round 20 to 39. Thus, we construct a two-block attack where the first block
generate such a near-collision, and the second block uses the difference of the
initial value that are created by the first block and generate a collision.

We observe that the hash values of multi-block messages are computed as
the sum of the initial value and the states gi of the compression function before
the final addition operations, i.e.,

hn = h0 +
n∑

i=1

gi.

Therefore, for colliding pairs of messages the following equation holds
n∑

i=1

(gi − g∗i ) = 0,

which when the addition is approximated by XOR becomes
n∑

i=1

g′i = 0.
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Table 8. The Disturbance Vector Used for the Two-Blocks Collision of 40-round SHA-1

(in 32-bit hex words)

Rnd D.Vec D&C Rnd D.Vec D&C Rnd D.Vec D&C

−5 00000000 10 00000000 0C000004 25 00000000 00000000
−4 00000000 11 00000000 2C000000 26 00000000 08000000
−3 00000000 12 00000000 08000000 27 00000000 08000000
−2 00000000 13 00000000 08000000 28 00000000 00000000
−1 00000000 14 20000000 28000000 29 00000000 00000000

0 20000000 20000000 15 00000000 00000004 30 00000000 00000000
1 00000000 00000004 16 00000000 20000000 31 00000000 00000000
2 20000000 00000000 17 00000000 08000000 32 00000000 00000000
3 00000000 08000004 18 00000000 08000000 33 00000000 00000000
4 20000000 08000000 19 00000000 08000000 34 40000000 40000000
5 00000000 00000004 20 20000000 20000000 35 (00000000) 00000008
6 30000000 18000000 21 00000000 00000004 36 (00000000) 40000000
7 00000000 00000006 22 20000000 00000000 37 (80000000) 90000000
8 00000000 38000000 23 00000000 08000004 38 (40000000) 50000010
9 20000000 24000000 24 00000000 28000000 39 (00000000) 90000008

Therefore, when searching for multi-block collisions it may be best to find char-
acteristics for which this sum is zero, and verify that all the other requirements
are satisfied, rather than vice versa.

In the particular case of a two-block collision this equation means that g′1 =
g′2, i.e., the two disturbance vectors should have same differences in the last
five rounds. This leads to the question why should we use different disturbance
vectors for both blocks. The answer would be that the initial value difference of
the second block is necessarily different than of the first block (as h′

0 = 0 and
h′

1 	= 0), where the initial value is related to the difference of the first five rounds
of the disturbance vector (rounds −5, . . . , −1). But this is only a partial answer,
as we can extend the technique (using for example T bits, with similarities to
the extension of Section 3 in the case of SHA-0, but with much more flexibility),
and use a disturbance vector whose first five rounds are different than the initial
value difference (in the second block). Once we say that, we observe that in the
case of the disturbance vector that we use for the first round, the intermediate
value h′

1 fits as a replacement initial difference for the same disturbance vector,
i.e., if we replace rounds −5, . . . , −1 of the disturbance vector by the last five
rounds from the first block, we still get differences that can be corrected later
by the disturbance vector. In terms of characteristics, this means that we have
two characteristics with different input differences, but same message differences
and output differences (and that in most of the rounds they have the same
intermediate differences).

Table 8 describes the disturbance vector we use for this attack. This distur-
bance vector is the same vector used in our 34-round collision (Table 1) rotated
by 28 bits to the left and expanded to 40 rounds. In the first five rounds (−5, . . . ,
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Table 9. The Beginning of Both Blocks of the Disturbance Vector Used for 40-round

SHA-1 (in 32-bit hex words)

Round First Block Second Block Common
D.Vec D.Vec D&C

−5 00000000 (00000000)
−4 00000000 (00000000)
−3 00000000 (80000000)
−2 00000000 (40000000)
−1 00000000 (00000000)

0 20000000 20000000 20000000
1 00000000 00000000 00000004
2 20000000 20000000 00000000
3 00000000 00000000 08000004
4 20000000 20000000 08000000
5 00000000 00000000 00000004
6 30000000 30000000 18000000
7 00000000 00000000 00000006
8 00000000 00000000 38000000
9 20000000 20000000 24000000
...

...
...

...

−1) of the disturbance vector the differences are zero, and in the last five rounds
they have two active bits (these rounds are marked in parentheses). Therefore,
we expect that h′

1 will have two active bits in these locations (up to the rotation
by 30 bits), so the disturbance vector for the next block should have the first
five rounds with the same differences as given in parentheses in the table. Now,
we observe that when we replace the first five rounds of the same disturbance
vector with the values in parentheses (see Table 9) we still receive a correctable
result. The disturbance vector itself, from round 0 to round 39 is unchanged,
thus the modified five rounds do not fit to the expansion function of SHA-1, but
as these difference come from the initial value, they are not calculated anyway
by this expansion. These values should only ensure that the probability of the
rounds in which they participate (as A, B, C, D, or E) is greater than zero, and
this is the case with these replaced differences.

We would also wish to add that the change of the initial rounds of the dis-
turbance vector can be even extended to a few additional rounds, as long as the
message differences remain unchanged, i.e., it would be possible to expect for
different values in round 0 (or even 1) of the disturbance vector when changing
the initial five rounds, but without changing the message differences. Also, it is
possible to make replacements in the last few rounds. This phenomena is similar
to the usual technique of differential cryptanalysis, where iterative characteristics
are used with modified first and last rounds, allowing even larger probabilities
than in the full iterative case.

The messages of the 40-round collision are presented in Table 10. The output
difference h′

1 of the compression function of the first block becomes the input
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Table 10. The Two-Block Collision of 40-Round SHA-1 (in 32-bit hex words)

Message 1, block 1:
404B674C B70CB385 D2DDAC0D 3A0E9BD3 CA7F1780 7FEFDA17 05E43AF2 444344C2

641A2CB6 86C2CFE6 EBCDEF67 6577E095 1A9CAD10 CFE48484 78639157 B13B759A

Message 2, block 1:
604B674C B70CB381 D2DDAC0D 320E9BD7 C27F1780 7FEFDA13 1DE43AF2 444344C4

5C1A2CB6 A2C2CFE6 E7CDEF63 4977E095 129CAD10 C7E48484 50639157 B13B759E

Message 1, block 2:
E63C47F7 0AB5F259 47DE1E6B 09E06877 6229CC42 604CF1AB 9B14B8F3 7261186C

1A5370F9 822E13EB FB7157EF 6B0919C5 1F3D744B FA4DE198 FBB10C06 FDA3C3E9

Message 2, block 2:
C63C47F7 0AB5F25D 47DE1E6B 01E06873 6A29CC42 604CF1AF 8314B8F3 7261186A

225370F9 A62E13EB F77157EB 470919C5 173D744B F24DE198 D3B10C06 FDA3C3ED

difference entering the second application. These intermediate differences can be
corrected by the same message difference that we use in the first block. Thus,
by using the same message difference in the second block the difference of the
intermediate value is corrected. We expect to get g′2 = h′

1 (i.e., the differences
in the registers after the last round of the compression function are equal to the
intermediate value differences), which with probability 1/4 cancels the differences
after the final addition of h2 = g2 + h1.

5 Strength of Reduced Versions of SHA-1 with More
Rounds

SHA-1 with more than 40 rounds is also vulnerable to the attacks described in
this paper. Though all the disturbance vectors that we found have consecutive
disturbances in the first 17 rounds, many of them contain correctable consecutive
disturbances. We therefore list here two set of results: the first is the results for
SHA-1 reduced to fewer rounds, where these rounds are set at the first rounds
of SHA-1, i.e., the first 20 rounds use the IF function. This case is denoted later
by SHA-1. The second set of results, denoted later by NO-IF, have consecutive
disturbances, so if the reduced version starts with 20 IF rounds, the probability
of success is reduced to 0, but if the reduced version of SHA-1 starts at a different
location, the attack is still possible (such as when the reduced version contains
the last rounds of SHA-1, rather than the first ones).

Table 11 lists the results for 34 up to 61 rounds. For each number of rounds,
and each set of results (SHA-1 or NO-IF) the table lists the Hamming weight of
the disturbance vector from rounds 20 and on for three cases: the first, marked
by HW, is the Hamming weight of the best disturbance vector predicting a one-
block collision we found. The second, marked by 2B, is the best disturbance
vector predicting a two-block collision, and the last, marked by NC is the best
disturbance vector predicting a near-collision. Entries that we used to actually
find a collision are marked in boldface.
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Table 11. The Hamming Weights of the Best Disturbance Vectors that We Found

(Counted from Round 20)

Rounds SHA-1 NO-IF Rounds SHA-1 NO-IF
HW 2B NC HW 2B NC HW 2B NC HW 2B NC

34 2 2 48 28 25 13 14 14 13
35 7 6 3 4 5 3 49 32 22 15 14 14 14
36 7 3 3 5 3 3 50 35 29 16 14 14 14
37 11 9 3 5 5 3 51 38 26 19 15 15 15
38 12 7 4 8 6 3 52 42 32 19 16 16 15
39 12 11 5 8 8 4 53 42 32 20 16 16 16
40 19 5 5 11 5 5 54 39 42 24 36 34 16
41 17 14 6 12 10 6 55 39 48 27 39 38 16
42 17 14 7 13 11 7 56 41 39 28 41 29 16
43 17 15 8 17 13 7 57 61 56 29 42 23 17
44 19 17 9 15 15 8 58 58 52 29 42 17 17
45 25 16 10 15 15 10 59 64 53 29 51 17
46 25 18 10 23 13 10 60 45 45 29 18
47 26 23 12 24 21 11 61 45 38 30 19

The complexities of the attacks that use the mentioned disturbance vectors
can be approximated by 23HW, where HW is the Hamming weight of the dis-
turbance vector from round 20 and on (i.e., the value in the table). The exact
complexity may vary (between 22HW to 24HW ) by some factor which depends on
the exact functions (IF, MAJ, XOR) used, by the rounds where the disturbances
occur, and by a few additional details.

We can thus see that entries with up to about 26 Hamming weight predict
a collision with complexity (slightly) faster than the generic birthday attack (as
23·26 = 278 < 280). We marked the location of this threshold by underlines. Ham-
ming weights much smaller than 26 predict much more practical complexities,
and as can be seen from the table, Hamming weights up to about 10 require only
a short computation on a personal computer (all the found collisions marked in
boldface were found within a few seconds of computation).

It is especially interesting to see the huge increase of the Hamming weight in
the case of NO-IF after 53 rounds, where the Hamming weight of 53 rounds is 16
and of 54 rounds is 36. Similarly in the two-block attack the Hamming weight is
17 for 58 rounds. Thus, we expect that one-block collisions of 53-round reduced
SHA-1 can be found with complexity about 260, and two-block collisions of 58-
round SHA-1 can be found with complexity about 275 (this is a more accurate
approximation than 23HW for this case), where the reduction is to the last 53
(respectively 58) rounds of SHA-1, but we have no hope according to the table
to find one-block collisions of 54-round reductions. In the case of the first rounds
of SHA-1, the maximal number of rounds according to the table is 51 using the
two-block technique, but the complexity of this attack would be only marginally
faster than the birthday attack (though much easier to parallelize).
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We are now working on improvements for further rounds, some of them are
by applications of the techniques described in this paper in more complex ways,
and some using new ideas. Note that the NC column is a lower bound for any
multiple-block attack, thus we see that there is still some hope for the attacker
to find better results.

In particular, we succeed to show that the NO-IF figures hold also for the
case of the first rounds of SHA-1 (starting with IF rounds) by using different
characteristic paths for the first rounds, but leaving the same input, output, and
message differences.

6 Summary

This paper presents various attacks on reduced versions of SHA-0 and SHA-1
along with various techniques for the analysis of hash functions. These tech-
niques, along with the neutral bit technique and other prior techniques, form
a set of tools that enable practical attacks on the full SHA-0, and reduces the
complexity of attacking SHA-1 reduced to 58 or fewer rounds to less than the
complexity of the birthday attack.

As this work is still in progress, we expect to further improve some of the
attacks presented in this paper, and to incorporate several new ideas that may
increase the total number of rounds that we can attack, such as three-block
attacks and attacks with more than three blocks. In particular, it is possible to
use the 53-round and the 58-round attacks on SHA-1 even against the first 53
and 58 rounds.

Finally we observe that a search for one-block near-collisions is easier than
search for one-block collisions, as when searching for near-collisions, there is no
need to fix the initial value of the compression function, but instead it is possible
to fix an intermediate value, and search backwards in the direction of the initial
value, and then forward for the output. In such a search, we found that the
number of neutral bits is much larger than in the regular case, thus allowing to
increase the number of rounds that we get for free from about 20–22 rounds to
about 30 rounds, thus decreasing the number of rounds that should be analyzed
by the probabilistic stage. Moreover, it is possible to select the 30 rounds to
be the 30 consecutive rounds with the lowest probability in the characteristic,
thus increasing the probability even further. For example, with such a technique
it is possible to find pseudo-collisions of the full SHA-0 with probability about
230–233.
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Abstract. Determining the minimal assumptions needed to construct
various cryptographic building blocks has been a focal point of research in
theoretical cryptography. Here, we revisit the following question: what are
the minimal assumptions needed to construct statistically-hiding commit-
ment schemes? Previously, it was known how to construct such schemes
based on one-way permutations. We improve upon this by construct-
ing statistically-hiding commitment schemes based on approximable-pre-
image-size one-way functions. These are one-way functions for which
there is an efficient way to approximate the number of preimages of a
given output. A special case (for which we show a somewhat simpler
construction) is that of regular one-way functions where all outputs have
the same number of preimages.

We utilize two different approaches in constructing statistically-hiding
commitment schemes. Our first approach proceeds by showing that the
scheme of Naor et al. can be implemented using any one-way func-
tion having an output distribution which is “sufficiently similar” to uni-
form. We then construct one-way functions with this property from
approximable-preimage-size one-way functions. Our second approach be-
gins by constructing a commitment scheme which is statistically hiding
against an honest-but-curious receiver. We then demonstrate a compiler
which transforms any such commitment scheme into one which is sta-
tistically hiding even against a malicious receiver. This compiler and its
analysis may be of independent interest.

1 Introduction

A central focus of modern cryptography has been to investigate the weakest
possible assumptions under which various cryptographic primitives exist. This
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direction of research has been quite fruitful, and minimal assumptions are known
for a wide variety of primitives: e.g., pseudorandom generators, pseudorandom
functions, symmetric-key encryption/message authentication, and digital signa-
tures [21, 12, 13, 20, 24, 26, 29]. In other cases, black-box separation results exist
which indicate the difficulty — if not impossibility — of constructing “strong”
cryptographic protocols (say, key-exchange) from “weak” building blocks (say,
one-way permutations; see [22]).

The above may give the impression that exact characterizations for all prim-
itives of interest (at least in terms of equivalent complexity-theoretic assump-
tions) are known; however, this is not the case. Questions that remain open (to
choose two examples) include the possibility of constructing efficient-prover non-
interactive zero-knowledge proofs [4] based on assumptions weaker than trapdoor
permutations [9], as well as determining whether constant-round ZK proofs exist
based only on the assumption of one-way functions (see [10–Chap. 4]).

Another key cryptographic primitive in which a weakest possible assump-
tion is not known is statistically-hiding commitment. Informally, a commitment
scheme defines a two-phase interactive protocol between a sender S and a re-
ceiverR; after the commitment phase, S is uniquely bound to (at most) one value
which is not yet revealed to R, and in the decommitment phase R finally learns
this value. The two security properties hinted at in this informal description are
known as binding (namely, that S is bound to at most one value after the com-
mitment phase) and hiding (namely, that R does not learn the value to which S
commits before the decommitment phase). In a statistically-hiding commitment
scheme the hiding property holds even against all-powerful receivers (i.e., hiding
holds information-theoretically), while the binding property is required to hold
only for computationally-bounded (say, polynomial-time) senders.

Statistically-hiding commitment schemes can be used as a building block
in constructions of statistical zero-knowledge arguments [6, 25] or certain coin-
tossing protocols [2, 23]. They are also advantageous when used within protocols
in which certain commitments are never revealed; in this case, it need only be
infeasible to violate the binding property during the period of time the protocol
is run, whereas the committed values will remain hidden forever (i.e., regardless
of how much time the receiver invests after completion of the protocol). Indeed,
this is part of the motivation for statistical zero-knowledge as well. For further
discussion, the reader is referred to [27, 28, 25].

Perfectly-hiding1 commitment schemes were first shown to exist based on spe-
cific number-theoretic assumptions [6, 5] or, more generally, based on any collec-
tion of claw-free permutations [18] with an efficiently-recognizable index set [15]
(see [15] for a definition of a weaker variant of statistically-hiding commitment
which suffices for some applications and for which an efficiently-recognizable

1 Very informally, in a statistically-hiding commitment scheme the receiver learns
only a negligible amount of information about the sender’s committed value,
whereas in a perfectly-hiding commitment scheme the receiver learns nothing. Note
that any perfectly-hiding scheme is also statistically-hiding.
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index set is not needed). Naor, et al. [25], using techniques developed earlier
by Ostrovsky, et al. [27, 28], later showed a construction of a perfectly-hiding
commitment scheme based on one-way permutations. Statistically-hiding com-
mitment schemes can also be constructed from collision-resistant hash functions
[8, 19] (see [30] for minimal assumptions for the existence of the latter).

1.1 Our Results

We show how to construct a statistically-hiding commitment scheme given any
approximable-preimage-size one-way function. Informally, this is a one-way func-
tion f satisfying the additional property that, given any y in the image of f ,
the value | {x : f(x) = y} | (i.e., the number of points mapping to y) can be effi-
ciently estimated. An interesting special case, for which our construction may be
somewhat simplified, is that of regular one-way functions for which every point
in the image of f has the same number of preimages. (We still require that it
be feasible to approximate the number of preimages.) A variety of conjectured
one-way functions are regular; we refer the reader to [16] for examples.

We show two different approaches to constructing statistically-hiding com-
mitment schemes: the first is more direct and achieves better computational
efficiency, while the second achieves better round complexity (in fact, it achieves
round complexity identical to [25]). As part of our second approach, we show
a compiler transforming any commitment scheme which is statistically-hiding
against an honest-but-curious (a.k.a. semi-honest) receiver into one which is
statistically-hiding against an arbitrarily-malicious receiver. Since our compiler
requires only the existence of one-way functions, our result implies an equiva-
lence between the two formulations of the problem. (Due to space limitations
the details of our second approach do not appear in this version.)

Our results may be viewed as an example of the paradigm in which a se-
quence of works constructs a given primitive from ever-weaker assumptions;
e.g., in the cases of pseudorandom generators and universal one-way hash func-
tions/signature schemes (see [10–Chap. 2] and [11–Chap. 6]), constructions were
first based on specific, number-theoretic assumptions [3, 18], and then the min-
imal assumptions were gradually reduced to trapdoor permutations [1] (in the
case of signatures), one-way permutations [17, 26], regular one-way functions [16,
31], and (finally) one-way functions [20, 29]. We hope our work will similarly serve
as a step toward resolving the question of the minimal assumptions required for
statistically-hiding commitment.

1.2 Overview of Our Techniques

Our constructions are based on the protocol of Naor et al. [25], which is shown
there to be perfectly hiding (as well as computationally binding) when applied
using a one-way permutation. It is natural to ask what happens when this pro-
tocol is applied using some other function f : {0, 1}n → {0, 1}�. We first ob-
serve that the main argument of [25] shows that the protocol is computationally
binding as long as f cannot be efficiently inverted with respect to the uniform
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distribution U� (more formally, no efficient algorithm can compute f−1(y), for
uniformly-chosen y, with non-negligible probability). We call a function with
this property one-way over its range. Note that a function with this property is
not necessarily one-way.

As our first main technical result, we then show that the protocol of Naor et al.
is “somewhat hiding” when applied using a function f for which the distribution
f(Un) is balanced. (By “somewhat hiding” we mean that the receiver cannot
guess the committed bit with probability better than some constant ρ < 1.
Such a protocol can be “amplified” using repetition to give a statistically-hiding
protocol.) Loosely speaking, a distribution over {0, 1}� is balanced if it assigns
to “most” elements y ∈ {0, 1}� a probability that is close to 2−� (say between
(99/100) · 2−� and (101/100) · 2−�). (In the precise definition we allow some
elements to have probability outside this range as long as both the number of
such elements and their total weight are small.)

The remainder of the paper is devoted to constructing functions that are
both balanced and one-way over their range.2 Intuitively, both these proper-
ties require the output distribution f(Un) to be “somewhat similar” to uni-
form. While we do not know how to construct such a function given a general
one-way function, we show how to construct such functions given regular or
approximable-preimage-size one-way functions. We achieve this goal using poly-
wise independent hashing, inspired by [20, 29]. More precisely, given a regular
one-way function f (the case of approximable-preimage-size one-way functions
is more complex), we define f ′(h, x) = (h, h(f(x))) where h is selected from a
family of O(k)-wise independent hash functions (here, k is the security param-
eter). This hashing “smoothes” the output distribution, and we show that by
choosing the output length of h appropriately we obtain an f ′ which is both
balanced and one-way over its range. Note that making the output length of h
“too small” makes f ′ more balanced, but possibly no longer one-way over its
range (and vice versa); we use the fact that f is regular (and that the number
of preimages is known) when setting the output length of h. This is why our
approach does not extend for general one-way functions.

Due to space limitations, some proofs have been omitted or shortened.

2 Preliminaries

Throughout this paper, we let k denote the security parameter. If X1 and X2 are
two distributions over a set X , their statistical difference (written SD(X1, X2))
is defined as:

SD(X1, X2)
def=

1
2

∑
x∈X
|PrX1 [x]− PrX2 [x]| .

2 We remark that known constructions of “almost-everywhere one-to-one” one-way
functions [14], “almost one-to-one” one-way functions [10–Sect. 3.5], and the con-
structions of [20] do not suffice for our purposes.
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Two distribution ensembles X1 = {X1(k)}k∈N and X2 = {X2(k)}k∈N have statis-
tical difference ρ (for ρ a function of k) if SD(X1(k), X2(k)) ≤ ρ(k) for all k large
enough. If ρ is negligible, we say the ensembles are statistically indistinguishable.
For a function f : {0, 1}n → {0, 1}�, we let image(f) def= {f(x) | x ∈ {0, 1}n}.

2.1 Commitment Schemes

An interactive bit commitment scheme is defined via a triple of ppt algorithms
(S,R1,R2). Looking ahead, S and R1 will interact during what is called a com-
mitment phase, whileR2 will be used during the (non-interactive) decommitment
phase. More formally:

– S (the sender) is an interactive Turing machine (ITM) which receives as
initial input the security parameter 1k and a bit b. Following its interaction,
it outputs some information decom (the decommitment).

– R1 (the receiver) is an ITM which receives the security parameter 1k as
initial input. Following its interaction, it outputs some state information s.

– R2 (acting as a receiver, in the decommitment phase) is a deterministic
algorithm which receives as input state information s and a decommitment
decom; it outputs either a bit b or the distinguished value ⊥.

Denote by (decom | s) ← 〈S(1k, b),R1(1k)〉 the experiment in which S and R1

interact (using the given inputs and uniformly random coins), and then S outputs
decom while R1 outputs s. We make the following correctness requirement: for
all k, all b, and every pair (decom | s) that may be output by 〈S(1k, b),R1(1k)〉,
it is the case that R2(s, decom) = b.

The security of a commitment scheme can be defined in two complementary
ways, protecting against either an all-powerful sender or an all-powerful receiver.
Since we are interested in the case of statistically-hiding commitment (i.e., the
latter case), we only provide the definition for this case.

Definition 1. Commitment scheme (S,R1,R2) is ρ-hiding (for ρ a function
of k) if the following holds: Given a deterministic ITM R∗

1, let view〈S(b),R∗
1〉(k)

denote the distribution on the view of R∗
1 when interacting with S(1k, b) (this

view simply consists of the sequence of messages it receives from S), where this
distribution is taken over the random coins of S. Then we require that for any
(even all-powerful) R∗

1 the ensembles {view〈S(0),R∗
1〉(k)} and {view〈S(1),R∗

1〉(k)}
have statistical difference at most ρ.

Note that in the above, considering a deterministic R∗
1 is without loss of gener-

ality. We say a scheme is statistically hiding if it is ρ-hiding for negligible ρ. A
0-hiding scheme is called perfectly hiding.

Definition 2. Commitment scheme (S,R1,R2) is computationally-binding if
the following is negligible for all ppt S∗:

Pr
[
((decom, decom′) |s)←〈S∗(1k),R1(1k)〉:R2(s, decom),R2(s, decom′)∈{0, 1}∧

R2(s, decom) 	= R2(s, decom′)

]
,

where the probability is taken over the random coins of both S∗ and R1.
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Given the above, we now define a statistically-secure commitment scheme:

Definition 3. Commitment scheme (S,R1,R2) is ρ-secure (resp., statistically
secure, perfectly secure) if it is computationally binding and ρ-hiding (resp.,
statistically hiding, perfectly hiding).

2.2 One-Way Function Families and Variants

Let n, 	 = poly(k) be poly-time computable and let F = {fk : {0, 1}n(k) →
{0, 1}�(k)}k∈N be a function family. We say F is one-way if the following hold:

– (efficiently computable) There exists a (deterministic) polynomial-time
algorithm E such that, for all k and all x ∈ {0, 1}n(k), E(1k, x) = fk(x).

– (one-way) For all ppt algorithms A, the following is negligible (in k):

Pr
x←{0,1}n(k)

[fk(A(1k, fk(x))) = fk(x)].

We consider two additional properties of function families:

– F is r(k)-regular if for every k and every x ∈ {0, 1}n(k) we have∣∣∣{x′ ∈ {0, 1}n(k) | fk(x′) = fk(x)}
∣∣∣ = 2r(k)

and r(k) is poly-time computable.3 In other words, for each x ∈ {0, 1}n(k)

there are exactly 2r(k) elements (including x itself) which fk maps to the
same value.

– F is approximable-preimage-size if the function D̃F (y, k) def=
�log(|f−1

k (y)| � is polynomial-time computable.4

For simplicity, we drop the explicit dependence on k when clear. Note that any
regular function family is also approximable-preimage-size.

2.3 Entropy Measures

LetUn denote the uniform distribution over {0, 1}n. Given a function f : {0, 1}n →
{0, 1}�, we let f(Un) denote the distribution over {0, 1}� induced by f operating
on the uniform distribution. Given a distribution D over some set X, the support
of D is defined to be the set {x ∈ X|D(x) > 0}. For D a distribution over some
finite domain X, we use the following “measures” of entropy:

– The min-entropy of D is H∞(D) def= minx∈X log( 1
D(x) ).

– The max-entropy of D is Hmax(D) def= maxx∈X log( 1
D(x) ).

3 Some previous definitions of regular functions do not require that r be poly-time
computable. However, we do not know how to extend our results to this case.

4 Our constructions generalize to the case where r(k) (resp., D̃F (y, k)) are not com-
puted precisely, but rather approximated to within an additive factor of O(log(k)).
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– The Renyi entropy of D is H2(D) def= log( 1
CP (D) ), where CP (D) def=∑

x∈X D(x)2 is the collision probability of D.

We will be interested in distributions of the form D = f(Un) for f : {0, 1}n →
{0, 1}l. Note that if f is r-regular, then D is uniform over some subset of {0, 1}�
and the above three measures coincide (and D has entropy t = n− r).

2.4 Universal Hashing and an Extended Chernoff Bound

Let H = {Hk}k∈N be a sequence of function families, where each Hk is a family
of functions mapping strings of length 	(k) to strings of length v(k). We say Hk

is an n(k)-universal hash family (following [7]) if for any distinct x1, . . . , xn(k) ∈
{0, 1}�(k), and any y1, . . . , yn(k) ∈ {0, 1}v(k) we have:

Prh←Hk
[h(x1) = y1 ∧ · · · ∧ h(xn) = yn] = 2−v(k)·n.

In this paper, it is convenient to assume that for every k, the size of Hk is a
power of two. This allows us to identify functions h ∈ Hk with binary strings.
We use s(k) to denote the length of these strings.

We say that H is an n(k)-universal hash family if for every k, Hk is an n(k)-
universal hash family and furthermore there is a polynomial time algorithm that
given 1k, x ∈ {0, 1}n(k) and a string h ∈ {0, 1}s(k) outputs h(x) (where h ∈ Hk

is the function described by the string h ∈ {0, 1}s(k)). It is well-known that
there is a family of functions with this property for every choice of 	 and v with
s(k) = O(n(k) ·max(	(k), v(k))).

The following Chernoff-like bound will be useful in our analysis:

Lemma 1. (Extended Chernoff Bound [32–Theorem 5]) Let X be the
sum of (any number of) n-wise independent random variables, each taking values
in the interval [0, 1], such that E[X] = μ. Then for any ε ≤ 1 for which n ≥
�ε2μe−1/3� we have Pr[|X − μ| ≥ εμ] ≤ e−
ε2μ/3�.

2.5 Interactive Hashing and the Construction of [25]

Interactive hashing was introduced by Ostrovsky, et al. [27, 28], and used by
Naor, et al. [25] to construct a statistically-secure (actually, perfectly-secure)
commitment scheme based on any one-way permutation family. We review in-
teractive hashing, as well as the resulting commitment scheme, below. In what
follows, we let x · y denote

∑m
i=1 xiyi mod 2 for x, y ∈ {0, 1}m.

Construction 4 (Interactive hashing).The protocol is defined by algorithms
S and R, where S begins with an m-bit value y (with m known to R), and
proceeds as follows:

1. The parties interact in m − 1 stages. In stage i (for i = 1, . . . ,m − 1), R
chooses ri ∈ {0, 1}m−i uniformly at random and sends the “query” qi =
0i−11ri to S (in case R aborts, S simply takes qi to be some default value);
in response, S sends ci = qi · y.
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2. At the conclusion of the above, there are exactly two strings y0, y1 ∈ {0, 1}m
satisfying the system of equations {qi · X = ci}1≤i≤m−1; let y0 denote the
lexicographically smaller of the two. Both parties compute (y0, y1), and S
chooses v such that y = yv.

We define the output of the protocol to be (y0, y1, v) for S and (y0, y1) for R.
We denote by IH(y) an execution of the interactive hashing protocol, where S
begins with input y.

The above was used in [25] to construct a perfectly-secure commitment scheme
based on one-way permutations via the following approach:

Construction 5. Let F = {fk : {0, 1}n(k) → {0, 1}�(k)} be a function fam-
ily. Commitment scheme (S,R1,R2) is defined as follows: S(1k, b) chooses x ∈
{0, 1}n(k) uniformly at random, computes y = fk(x), and then executes IH(y)
with R1; this protocol results in output (y0, y1, v) for S and (y0, y1) for R1. The
commitment phase concludes by having S send v̂ = v ⊕ b to R1. Finally, S
outputs decom = x while R1 outputs state s = (y0, y1, v̂).

In the decommitment phase, R2((y0, y1, v̂), x) proceeds as follows: if fk(x) =
y0, output v̂; if fk(x) = y1, output v̂ ⊕ 1; otherwise, output ⊥.

It is relatively easy to observe that the above protocol is perfectly hiding if F
is a permutation family (regardless of whether F is one-way). The main result of
[25] was to prove that the above is computationally binding when F is a one-way
permutation family. In fact, careful examination of their proof shows the above
commitment scheme is computationally binding under a weaker condition on F ;
it suffices for F to be what we call “one-way over its range”, defined as follows:

Definition 6. Let n, 	 = poly(k) be poly-time computable functions and let
F = {fk : {0, 1}n(k) → {0, 1}�(k)}k∈N be a function family. We say F is one-way
over its range if the following hold:

– (efficiently computable) There exists a (deterministic) polynomial-time
algorithm E such that, for all k and all x ∈ {0, 1}n(k), E(1k, x) = fk(x).

– (one-way over range) For all ppt A, the following is negligible (in k):

Pr
y←{0,1}�(k)

[fk(A(1k, y)) = y].

Theorem 1 (Implicit in [25]). If F is one-way over its range, then Construc-
tion 5 is computationally binding.

3 Statistical Hiding from Balanced Functions

In this section we define a notion of “balance” and show that if a function
family F is “sufficiently balanced” then Construction 5 yields a protocol that is
“somewhat hiding”. Roughly speaking, a distribution D on {0, 1}� is balanced
if D is “close” to uniform “most” of the time. A function f : {0, 1}n → {0, 1}�
is then defined to be balanced if the distribution f(Un) is balanced. Formally:
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Definition 7. Distribution D on {0, 1}� is (α, δ)-balanced if there is a set Bad ⊂
{0, 1}� such that:

1. |Bad| ≤ α · 2�.
2. Pry←D[y ∈ Bad] ≤ α.
3. For every y0 	∈ Bad,

∣∣Pry←D[y = y0]− 1
2�

∣∣ ≤ δ
2� (we will always have δ < 1).

Function f : {0, 1}n → {0, 1}� is (α, δ)-balanced if the distribution f(Un) is
(α, δ)-balanced. Function family F = {fk : {0, 1}n(k) → {0, 1}�(k)} is (α, δ)-
balanced if, for all k large enough, fk is (α(k), δ(k))-balanced.

Our main result of this section is the following:

Theorem 2. If F = {fk : {0, 1}n(k) → {0, 1}�(k)} is an (α, δ)-balanced function
family, then Construction 5 is ρ-hiding for ρ = 2α + δ + αδ.

Proof. Fix k large enough so that fk is (α(k), δ(k))-balanced; from now on we
simply write f, α, δ, ρ without explicitly indicating their dependence on k. For a
given execution of the scheme, let τ denote the initial transcript resulting from
the interactive hashing sub-protocol; thus, the view of R∗

1 consists of τ and the
bit v̂ sent in the final round. Given a particular (deterministic) R∗

1, we therefore
write Exp(b) def= (τ, v̂)← view〈S(b),R∗

1〉 (cf. Definition 3) to denote the experiment
in which S chooses a uniform random tape and then executes the protocol with
R∗

1 using this random tape and the bit b, resulting in view (τ, v̂) for R∗
1. Below,

we define a “good” set of initial transcripts Good, and show that:

Claim. With probability at least 1− α(2 + δ), we have τ ∈ Good.

Claim. The following holds for all τ∗ ∈ Good and v̂∗ ∈ {0, 1}:∣∣∣∣ Pr
Exp(0)

[v̂ = v̂∗ | τ = τ∗]− Pr
Exp(1)

[v̂ = v̂∗ | τ = τ∗]
∣∣∣∣ ≤ δ.

These claims suffice to prove the Theorem, since the statistical difference between
the view of R∗

1 when the sender commits to 0 (i.e., b = 0) and the view of R∗
1

when the sender commits to 1 (i.e., b = 1) may be bounded as follows:

1
2

∑
τ∗,v̂∗

∣∣∣∣ Pr
Exp(0)

[(τ, v̂) = (τ∗, v̂∗)] − Pr
Exp(1)

[(τ, v̂) = (τ∗, v̂∗)]
∣∣∣∣

=
1
2

∑
τ∗,v̂∗

∣∣∣∣ Pr
Exp(0)

[τ=τ∗] Pr
Exp(0)

[v̂= v̂∗|τ=τ∗] − Pr
Exp(1)

[τ=τ∗] Pr
Exp(1)

[v̂= v̂∗|τ=τ∗]
∣∣∣∣

≤Pr[τ 	∈Good]+
1
2

∑
τ∗∈Good,v̂∗

Pr[τ=τ∗]
∣∣∣∣ Pr
Exp(0)

[v̂= v̂∗|τ=τ∗]− Pr
Exp(1)

[v̂= v̂∗|τ=τ∗]
∣∣∣∣

≤ α(2 + δ) +
1
2

∑
τ∗∈Good;v̂∗

Pr[τ = τ∗] · δ ≤ α(2 + δ) + δ,
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where we use the fact that PrExp(0)[τ = τ∗] = PrExp(1)[τ = τ∗] for any τ∗, since
the initial transcript τ does not depend on b.

We proceed with the proof of the first claim by defining the set of good initial
transcripts. Let Bad ⊂ {0, 1}� be the subset whose existence is guaranteed by
Definition 7 (using the fact that f is balanced). Recall that the initial transcript
τ defines two strings yτ

0 , y
τ
1 ∈ {0, 1}� (cf. Construction 4). We say τ ∈ Good iff

yτ
0 , y

τ
1 	∈ Bad.

We first bound the probability that yv = y is in Bad (we are using here the
notation from Construction 5). Since f is (α, δ)-balanced and since the value of
y depends only on the choices of the sender (who is assumed honest here), it
follows that this probability is at most α.

Next, we bound the probability that yv 	∈ Bad but yv̄ ∈ Bad. Since f is
balanced, we have |Bad| ≤ α2�. Now, since R∗

1 is deterministic, we have that
yv̄ is uniquely determined by yv. Let φ be the function mapping the sender’s
chosen value yv to the second value yv̄ resulting from the interactive hashing
protocol. Observe that if φ(y) = y′ then φ(y′) = y; this is because, for either
of these choices, the sender responds with the exact same answer to each of the
receiver’s queries during the interactive hashing sub-protocol. It follows that φ
is a permutation. Letting MapToBad

def= φ−1(Bad), we get:

Pr
[
yv 	∈ Bad

∧
yv̄ ∈ Bad

]
= Pr [yv ∈ MapToBad \ Bad]

=
∑

y∗∈MapToBad\Bad

Pr [yv = y∗]

≤
∑

y∗∈MapToBad\Bad

(1 + δ)
1
2�

using the definition of Bad. Continuing:∑
y∗∈MapToBad\Bad

(1 + δ)
1
2�

= |MapToBad \ Bad| · (1 + δ)
1
2�

≤ |MapToBad| · (1 + δ)
1
2�

≤ (1 + δ) · α (1)

(using the fact that |MapToBad| = |Bad|). It follows that τ 	∈ Good with proba-
bility at most (2 + δ) · α, completing the proof of the first claim.

We proceed to prove the second claim. Let P (ỹ) def= Prx∈{0,1}n [f(x) = ỹ]. For
any τ∗ and any v̂∗ ∈ {0, 1} we have

Pr
Exp(b)

[v̂ = v̂∗ | τ = τ∗] = Pr
Exp(b)

[v = v̂∗ ⊕ b | τ = τ∗]

= Pr
Exp(b)

[y = yτ∗
v̂∗⊕b | y ∈ {yτ∗

0 , yτ∗
1 }]

=
P (yτ∗

v̂∗⊕b)
P (yτ∗

0 ) + P (yτ∗
1 )

.
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If τ∗ ∈ Good, then yτ∗
0 , yτ∗

1 	∈ Bad and so P (yτ∗
0 ), P (yτ∗

1 ) lie in the range
[(1− δ)2−�, (1 + δ)2−�]. It follows that when τ∗ ∈ Good the following holds for
any v̂∗ ∈ {0, 1}:∣∣∣∣ Pr

Exp(0)
[v̂ = v̂∗ | τ = τ∗]− Pr

Exp(1)
[v̂ = v̂∗ | τ = τ∗]

∣∣∣∣ =
∣∣P (yτ∗

0 )− P (yτ∗
1 )
∣∣

P (yτ∗
0 ) + P (yτ∗

1 )
≤ δ,

which proves the claim. This completes the proof of the Theorem 2.

4 Achieving Our Main Result: A Roadmap

We now outline our approach to constructing statistically-secure commitment
schemes based on assumptions weaker than one-way permutations. It follows
from Theorems 1 and 2 that if we can construct an (α, δ)-balanced F that is
also one-way over its range, then we can construct a ρ-secure commitment scheme
for ρ = O(α + δ). For α and δ sufficiently-small constants we thus obtain a ρ-
secure commitment scheme for some constant ρ < 1. Using standard techniques,
we can then “amplify” this scheme to obtain a statistically-secure commitment
scheme. (Exact details of this amplification will appear in the full version.)

It remains to construct F with the desired properties. In Section 5 we show
how to construct such an F based on any regular one-way function family, while
in Section 6 we show how to base the construction on an approximable-preimage-
size one-way function family. These, in turn, yield statistically-secure commit-
ment schemes based on these assumptions. Altogether we conclude that:

Theorem 3 (Main Theorem). If there exists an approximable-preimage-size
one-way function family then there exists a statistically-secure commitment scheme.

5 Starting from Regular One-Way Functions

In this section we show a construction of statistically-secure commitment based
on any regular one-way function family. More concretely, given an r(k)-regular
one-way function family F , we show how to construct a balanced function F ′

which is also one-way over its range. Note that n(k)−r(k) measures the entropy
of the output distribution of fk, and this holds for all the measures of entropy
defined in this paper.

Construction 8. Let F = {fk : {0, 1}n(k) → {0, 1}�(k)}k∈N be a family of
functions, let t = t(k) be a function, and let c > 0 be a constant. Let H = {Hk} be
a 3k-universal collection of hash families where each Hk is a family of functions
mapping strings of length 	(k) to strings of length t(k)−log(ck), and furthermore
|Hk| = 2s(k) where s(k) = poly(k). Define:

F ′ =
{
f ′

k : Hk × {0, 1}n(k) → Hk × {0, 1}t(k)−log(ck)
}

k∈N

such that f ′
k(h, x) = (h, h(fk(x))).
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The main result of this section is the following.

Theorem 4. Let 0 < δ < 1 be an arbitrary constant. Let F be an r(k)-regular
one-way function family. Set t(k) = n(k)− r(k), c = 6 ln 2/δ2, and let F ′ be the
function family defined in Construction 8. Then F ′ is a (2−k, δ)-balanced and
one-way over its range.

5.1 Showing that F ′ is Balanced

We begin by showing that F ′ is (2−k, δ)-balanced. Preparing for the case of
approximable-preimage-size one-way function families, we prove a more general
statement here.

Lemma 2. Let c > 6 ln 2 be an arbitrary constant and k ≥ 2 be an integer, and
set δ = (6 ln 2/c)1/2 and t > log(ck). Let H be a 3k-universal hash family map-
ping strings of length 	 to strings of length t− log(ck), and let Z be a distribution
on {0, 1}� with H∞(Z) ≥ t. Then the distribution D = {(h, h(z))}h←H,z←Z is
(2−k, δ)-balanced.

Note that it follows that F ′ is (2−k, δ)-balanced, as the output distribution of
fk has min-entropy at least t(k) (in fact, exactly t(k)).

Proof. For any z ∈ {0, 1}� and y ∈ {0, 1}t−log(ck), define the random variable
Xz,y (over choice of h ∈ H) to take the value 2t · PrZ [z] if h(z) = y, and 0

otherwise. Note that Xz,y ∈ [0, 1] since Z has min-entropy at least t. Let Xy
def=∑

z∈{0,1}� Xz,y. For any z, y we have E[Xz,y] = Prh←H [h(z) = y] · 2t · PrZ [z] =
2−(t−log(ck)) · 2t · PrZ [z] = ck · PrZ [z]. It follows that

μ
def= E[Xy] =

∑
z

E[Xz,y] = ck.

Furthermore, since H is a 3k-universal hash family, the random variables {Xz,y}
are 3k-wise independent. Thus, by Lemma 1, we have that (for any y)

Pr
h

[ ∣∣∣Xy − ck
∣∣∣ ≥ δck

]
≤ e−
μδ2/3� < 2−k (2)

Define φ(h, y) def= 2t ·
∑

z:h(z)=y PrZ [z], and Bad={(h, y) : |φ(h, y)−ck|>δck}.
We show that, setting α = 2−k, the set Bad satisfies the three requirements
of Definition 7. (Note that the quantity 2� in the text of Definition 7 becomes
|H| ·2t−log(ck) in the current context.) Noting that φ(h, y) = 2t Prz←Z [h(z) = y],
observe that

|Bad| =
∑

y

|H| · Pr
h

[(h, y) ∈ Bad]

=
∑

y

|H| · Pr
h

[∣∣∣2t · Pr
z←Z

[h(z) = y]− ck
∣∣∣ > δck

]
≤ 2t−log(ck) · |H| · 2−k,
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using Eq. (2) and the fact that, once h is chosen, Xy = 2t · Prz←Z [h(z) = y].
This proves property 1.

We move on to property 2. We proceed as above except that now, for each
ξ, z ∈ {0, 1}�, we define the binary random variable Rz,ξ to be 2t · PrZ [z] if

h(z) = h(ξ), and 0 otherwise. Again, Rz,ξ ∈ [0, 1]. Let Rξ
def=
∑

z∈{0,1}� Rz,ξ.
For an arbitrary z ∈ {0, 1}� \ {ξ} we have E[Rz,ξ] = 2−(t−log(ck)) · 2t · PrZ [z] =
ckPrZ [z]; also Rξ,ξ = 2t PrZ [ξ] with probability 1. It follows that

μ′ def= E[Rξ] =
∑

z

E[Rz,ξ] = ck + (2t − ck) Pr
Z

[ξ]

for any ξ. Note that ck ≤ μ′ ≤ ck + 1. Furthermore, since H is a 3k-universal
hash family, the random variables {Rz,ξ} are (3k − 1)-wise independent. Thus,
by Lemma 1 we have

Pr
[
|Rξ − μ′| ≥ 3

4
δμ′
]
≤ e−
3μ′δ2/16� ≤ 2−k, (3)

where we use the fact that μ′ 9
16δ2e−1/3 ≤ (ck + 1) 9

16δ2e−1/3 ≤ 3k − 1 (recall
k ≥ 2). We then derive:

Pr
(h,y)←D

[(h, y) ∈ Bad] =
∑

ξ

Pr
Z

[ξ] · Pr
h

[ ∣∣∣φ(h, h(ξ))− ck
∣∣∣ > δck

]
≤
∑

ξ

Pr
Z

[ξ] · Pr
h

[ ∣∣∣Rξ − E[Rξ]
∣∣∣ ≥ 3

4
δE[Rξ]

]
≤ 2−k,

where the first inequality uses the stated bounds on μ′ and the fact that, once h
is chosen, Rξ = 2t ·Prz←Z [h(z) = h(ξ)], while the second inequality uses Eq. (3).
This gives property 2.

Property 3 holds, since for any (h0, y0) we have

Pr
(h,y)←D

[(h, y) = (h0, y0)] = Pr
h←H

[h = h0] ·
∑

z:h0(z)=y0

Pr
Z

[z] =
φ(h0, y0)
|H|2t

.

If (h0, y0) 	∈ Bad, this probability is in the range (1± δ) ck
|H|2t as needed.

5.2 Showing that F ′ is One-Way over Its Range

We now show that if the initial function family F is one-way, then the de-
rived function family F ′ is one-way over its range. Preparing for the case of
approximable-preimage-size one-way function families, we once more prove a
more general statement here. For this purpose we define the following:

Definition 9. Distribution D has (tRenyi, tmax)-entropy if (1) H2(D) ≥ tRenyi,
and (2) Hmax(D) ≤ tmax. Function f : {0, 1}n → {0, 1}� has (tRenyi, tmax)-
entropy if the distribution f(Un) has (tRenyi, tmax)-entropy. A function family
F = {fk : {0, 1}n(k) → {0, 1}�(k)} has (tRenyi, tmax)-entropy if, for all k large
enough, fk has (tRenyi(k), tmax(k))-entropy.
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Note that if f is a member of an r-regular function family then it has (t, t)-
entropy for t = n − r. The following lemma shows that Construction 8, when
given a (tRenyi, tmax)-entropy family of one-way functions, produces a function
family which is one-way over its range.

Lemma 3. Let F = {fk : {0, 1}n(k) → {0, 1}�(k)} be a (tRenyi, tmax)-entropy
one-way function family and let c > 0 be a constant. Let t(k) be a function and
let m ≥ 0 be a constant such that tmax(k)−m log(k) ≤ t(k) ≤ tRenyi(k). Let F ′

be the result of applying Construction 8 with F , t(·), and c. Then F ′ is one-way
over its range.

Note that it follows that F ′ is one-way over its range by using the aforemen-
tioned observation that the regular function family F has (t(k), t(k))-entropy.
We remark that the proof uses only the fact that H is 2-universal.
Proof. Let v(k) def= t(k) − log(ck). We start by proving that the Renyi-entropy
of the output of F ′ is high. We then use this fact to show that F ′ is one-way (in
the usual sense). Finally we derive that F ′ is one-way over its range.

Claim. H2(f ′
k(Us(k), Un(k))) ≥ s(k) + v(k)− 1.

Proof.

CP (f ′
k(Us(k), Un(k)))

=
∑

(h,y)∈image(fk)

(
Pr

(h′,x)←(Hk×{0,1}n(k))
[f ′

k(h′, x) = (h, y)]
)2

=
∑

y∈{0,1}v(k)

∑
h∈Hk

1
22s(k)

⎛⎝ ∑
z∈h−1(y)

Pr
x←{0,1}n(k)

[fk(x) = z]

⎞⎠2

.

Continuing, we have:

CP (f ′
k(Us(k), Un(k)))

=
1

22s(k)

∑
y∈{0,1}v(k)

∑
h∈Hk

∑
z∈h−1(y)

(
Pr

x←{0,1}n(k)
[z]
)2

+
1

22s(k)

∑
y∈{0,1}v(k)

∑
h∈Hk

∑
z1 �=z2∈h−1(y)

×
(

Pr
x←{0,1}n(k)

[fk(x) = z1] · Pr
x←{0,1}n(k)

[fk(x) = z2]
)

=
1

2s(k)
CP (fk(Un(k))) +

1
22s(k)

∑
y∈{0,1}v(k)

2s(k)

22v(k)

∑
z1 �=z2∈{0,1}l(k)

×
(

Pr
x←{0,1}n(k)

[fk(x) = z1] · Pr
x←{0,1}n(k)

[fk(x) = z2]
)

≤ 1
2s(k)

(CP (fk(Un(k))) +
1

2v(k)
) ≤ 2

2s(k)+v(k)
.
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Therefore H2(f ′
k(Us(k), Un(k))) = − log(CP (f ′

k(Us(k), Un(k)))) ≥ s(k) + v(k)− 1.

We now use the above claim to prove the one-wayness of F ′.

Claim. F ′ is one-way (in the usual sense).

Proof. Let A′ be a ppt adversary attempting to invert F ′ and let ExptA′(k)
denote the experiment “h ← Hk;x ← {0, 1}n(k); (h, y) = f ′

k(h, x); (h′, x′) ←
A′(1k, h, y)”. Let

AdvA′,F ′(k) def= Pr[ExptA′(k) : f ′
k(h′, x′) = (h, y)]. (4)

Now construct a ppt adversary A (attempting to invert F) as follows:

A(1k, z) // z = fk(x) for some x ∈ {0, 1}n(k) chosen at random.
Choose h ∈ Hk at random, and set y = h(z);
Run A′(1k, h, y) and obtain output h′, x′;
Output x′.

Note that the distribution over the inputs of A′ in the above experiment is
identical to the distribution over the inputs of A′ in Equation 4. For any k ∈ N,
h ∈ Hk and y ∈ {0, 1}v(k) such that Prx←{0,1}n(k) [f ′

k(h, x) = (h, y)] > 0 let:

θh(y) def=
minz∈image(fk)

∧
h(z)=y

{
Prx←{0,1}n(k) [fk(x) = z]

}
Prx←{0,1}n(k) [f ′

k(x, h) = (h, y)]
.

Observe that:

AdvA,F (k) def= Pr
x←{0,1}n(k);z=fk(x);x′←A(1k,z)

[fk(x′) = z]

≥
∑
ĥ,ŷ

Pr
ExptA′ (k)

[h(fk(x′)) = y
∧

(h, y) = (ĥ, ŷ)] · θĥ(ŷ).

We will make use of the following standard fact (proof in full version).

Claim. Let D be a distribution over some finite domain X such that H2(D) ≥ k
and let ε be any positive constant, then there exists a set B ⊆ X such that the
following hold: (1) PrD[B] ≤ 4ε, and (2) ∀y /∈ B PrD[y] ≤ 21−k

ε .

Let ε def= AdvA′,F ′(k). Using the previous claims we have that there exists a
set Bad ⊆ (Hk × {0, 1}v(k)) such that:

1. Pr
(h,x)←(Hk×{0,1}n)

[f ′
k(h, x) ∈ Bad] ≤ ε

2

2. ∀(h′, y′) /∈ Bad Pr
(h,x)←(Hk×{0,1}n)

[f ′
k(h, x) = (h′, y′)] ≤ 32

ε2s(k)+v(k)
.

Moreover, by our choice of the probability of Bad the following holds,

Pr
ExptA′ (k)

[f ′
k(h′, x′) = (h, y)

∧
(h, y) /∈ Bad] ≥ ε

2
.
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Finally, by the definition of v(k) the following holds for any (h, y) /∈ Bad

θh(y) ≥ ε2v(k)

32 · 2tmax(k)
≥ ε

32 · (ck) · km
=

ε

32 · c · km+1

Hence:

AdvA,F (k) ≥
∑

(ĥ,ŷ)/∈Bad

Pr
ExptA′ (k)

[h(fk(x′)) = y
∧

(h, y) = (ĥ, ŷ)] · θĥ(ŷ)

≥ ε

32 · c · km+1

∑
(ĥ,ŷ)/∈Bad

Pr
ExptA′ (k)

[h(fk(x′)) = y
∧

(h, y) = (ĥ, ŷ)]

=
ε

32 · c · km+1
Pr

ExptA′ (k)
[f ′

k(h′, x′) = (h, y)
∧

(h, y) /∈ Bad]

≥ ε

32 · c · km+1
· ε
2

=
ε2

64 · c · km+1
.

Since AdvA,F (k) is negligible by assumption, it must be the case that AdvA′,F ′(k)
is negligible as well and thus F ′ is one way.

To finish the proof we show that F ′ is one-way over its range.

Claim. F ′ is one-way over its range.

Proof. Consider any ppt algorithm A′′ inverting F ′ “over its range”. The
advantage of A′′ (in this sense) is given by:

Adv∗A′′,F ′
def= Pr

h←Hk;y←{0,1}v(k);(h′,x′)←A′′(1k,h,y)
[f ′

k(h′, x′) = (h, y)]

=
1

2s(k)+v(k)
·
∑

h∈Hk

∑
y∈{0,1}t(k)

Pr[A′′ inverts (h, y)],

where “A′′ inverts (h, y)” has the obvious meaning.
Consider now the advantage of A′′ in inverting F ′ in the standard sense:

AdvA′′,F′
def
= Pr

h←Hk;x←{0,1}n(k)
[A′′ inverts (h, h(fk(x)))]

=
1

2s(k)+n(k)

∑
h∈Hk

∑
x∈{0,1}n(k)

Pr[A′′ inverts (h, h(fk(x)))]

=
1

2s(k)+n(k)

∑
h∈Hk

∑
z∈image(fk)

Pr
x←{0,1}n(k)

[fk(x) = z] · Pr[A′′ inverts (h, h(z))]

≥ 1

2s(k)+tmax(k)

∑
h∈Hk

∑
y∈image(h(fk))

∑
z∈h−1(y)

Pr[A′′ inverts (h, h(z))]

≥ 1

2s(k)+tmax(k)

∑
h∈Hk

∑
y∈{0,1}v(k)

Pr[A′′ inverts (h, y)]

=
2s(k)+v(k)

2s(k)+tmax(k)
Adv∗A′′,f ′ ≥ Adv∗A′′,F′

c · km+1
.
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Since AdvA′′,F ′ is negligible (by the one-wayness of F ′), Adv∗A′′,F ′ is negligible
as well. This completes the proof that F ′ is one-way over its range.

6 Starting from Approximable-Preimage-Size One-Way
Functions

Given an approximable-preimage-size one-way function family we first use a re-
sult by H̊astad et al. [20] to transform it into a one-way function family that
is “closer” to regular. From there we use the same construction of the previ-
ous section with a more careful analysis. The main result of this section is the
following:

Theorem 5. If there exists an approximable-preimage-size one-way function
family then for any 0 < δ < 1 there exists a (δ, δ)-balanced function family
which is one-way over its range.

6.1 From Approximable to Dense

The following construction appeared in [20]:

Construction 10. Let F={fk : {0, 1}n(k)→ { 0,1}�(k) }k∈N bean approximable-
preimage-size one-way function family and let H = {Hk} be a 2-universal col-
lection of hash families where each Hk is a family of functions mapping strings
of length n(k) to strings of length n(k), and furthermore |Hk| = 2s(k) where
s(k) = poly(k). Define:

F̂ =
{
f̂k : Hk × {0, 1}n(k) → Hk × {0, 1}l(k)+n(k)

}
k∈N

such that f̂k(h, x) = (fk(x), h(x)1...(D̃F (fk(x),k)+2), 0
n−(D̃F (fk(x),k)+2), h), where

h(x)1...m stands for the first m bits of h(x).

The following lemma, proven in [20–Lemma 5.2], shows that F̂ is a family of
(s(k) + n(k)− 1, s(k) + n(k))-entropy one-way functions:

Lemma 4. F̂ as defined in Construction 10 is one-way, and for all k ∈ N,
H2(f̂k(Us(k), Un(k))) > s(k) + n(k)− 1.

6.2 Starting from a Dense One-Way Function

Given an approximable-preimage-size one-way function family, we can transform
it using Lemma 4 into a one-way function family F that has (n(k) − 1, n(k))-
entropy. Intuitively, such a function is “close” to being 1-regular. The following
lemma shows how to use this property to construct a balanced function family
which is one-way over its range.
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Lemma 5. Let F = {fk : {0, 1}n(k) → {0, 1}�(k)}k∈N be an (n(k) − 1, n(k))-
entropy family of one-way functions, let c > 24 ln 2 be an arbitrary constant, let
δ = (24 ln 2/c)1/2 and let F ′ be the result of applying Construction 8 with F ,
t(k) = n(k) − 1 − log(n(k)) and c. Then F ′ is (2−k + 12/δn(k), δ)-balanced as
well as one-way over its range.

Theorem 5 follows immediately.

Proof. (of Lemma 5) Note that since n(k) is polynomial in k, there exists a
constant m ≥ 0 such that t(k) ≥ n(k)−m log(k). Hence by applying Lemma 3 we
have that F ′ is one-way on range. It is left to prove that F ′ is (2−k+12/δn(k), δ)-
balanced. We use the following standard fact. The proof appears in the full
version.

Claim. Let D be a distribution over some finite domain X such that H2(D) ≥ k
then for every ε > 0 there exists a distribution D′ over X such that H∞(D′) ≥
k − log( 1

ε ) and SD(D,D′) ≤ ε.

Since the Renyi-entropy of fk(Un(k)) is at least (n(k) − 1), we have that
fk(Un(k)) is 1/n(k)-close to having min-entropy (n(k) − log(n(k)) − 1). We
now apply Lemma 2 and deduce that the output distribution of f ′

k, that is
(h, h(fk(Un(k)))), is 1/n(k)-close to a distribution that is (2−k, δ/2)-balanced.
The proof concludes by the following claim.

Claim. Let P ′ be a distribution over {0, 1}� that is ε-close to some distribution
P that is (α, δ)-balanced. Then, P ′ is ((α + 6ε/δ), 2δ)-balanced.

Proof. Let Bad be the set of bad elements for P . Let A be the set of elements
y 	∈ Bad such that |PrP ′ [y] − 1/2�| > 2δ/2�. Note that the set of bad elements
Bad′ of P ′ is a subset of (Bad ∪A) and therefore it is enough to bound the size
and probability of this set. Note that since A

⋂
Bad = ∅ we have that ∀y ∈ A

|PrP [y] − 1/2�| ≤ δ/2� and thus |PrP ′ [y] − PrP [y]| > δ/2�. Thus SD(P ′, P ) ≥
1
2 |A| · δ/2�. As the two distributions are ε-close, it follows that 1

2 |A| · δ/2� ≤ ε or
equivalently that |A| ≤ 2ε·2�

δ . Therefore we have that

Pr
P

[Bad′] ≤ Pr
P

[Bad
⋃

A] ≤ Pr
P

[Bad] + Pr
P

[A].

Since for all y ∈ A we have PrP [y] ≤ (1 + δ)/2�, it follows that

Pr
P

[Bad′] ≤ α+ |A|(1 + δ)/2� ≤ α+ (1 + δ)
2ε
δ

= α + 2ε+
2ε
δ
.

Hence:
Pr
P ′

[Bad′] ≤ α+ 2ε+
2ε
δ

+ 2ε = α+ 4ε+
2ε
δ
≤ α+

6ε
δ
.

To complete the proof we have to show that |Bad′| ≤ (α+ 6ε
δ )2�. But |Bad′| ≤

|Bad|+ |A| ≤ α2� + 2ε·2�

δ = (α + 2ε
δ )2�.
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Abstract. We present a general framework for constructing two-message
oblivious transfer protocols using a modification of Cramer and Shoup’s
notion of smooth projective hashing (2002). Our framework is actually
an abstraction of the two-message oblivious transfer protocols of Naor
and Pinkas (2001) and Aiello et al. (2001), whose security is based on
the Decisional Diffie Hellman Assumption. In particular, we give two
new oblivious transfer protocols. The security of one is based on the
N ’th-Residuosity Assumption, and the security of the other is based on
both the Quadratic Residuosity Assumption and the Extended Riemann
Hypothesis. Our security guarantees are not simulation based, and are
similar to those of previous constructions.

When using smooth projective hashing in this context, we must deal
with maliciously chosen smooth projective hash families. This raises new
technical difficulties, and in particular it is here that the Extended Rie-
mann Hypothesis comes into play.

1 Introduction

In [CS98], Cramer and Shoup introduced the first CCA2 secure encryption
scheme, whose security is based on the Decisional Diffie Hellman (DDH) As-
sumption. They later presented an abstraction of this scheme based on a new
notion which they called “smooth projective hashing” [CS02]. This abstrac-
tion yielded new CCA2 secure encryption schemes whose security is based on
the Quadratic Residuosity Assumption or on the N ’th Residuosity Assumption
[Pa99].1 This notion of smooth projective hashing was then used by Genarro
and Lindell [GL03] in the context of key generation from humanly memoriz-
able passwords. Analogously, their work generalizes an earlier protocol for this
problem [KOY01], whose security is also based on the DDH Assumption.

In this paper, we use smooth projective hashing to construct efficient two-
message oblivious transfer protocols. Our work follows the above pattern, in that
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sional Composite Residuosity Assumption and as Paillier’s Assumption.
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it generalizes earlier protocols for this problem [NP01, AIR01] whose security is
based on the DDH assumption. Interestingly, using smooth projective hashing
in this context raises a new issue. Specifically, we must deal with maliciously
chosen smooth projective hash families. This issue did not arise in the previous
two applications because these were either in the public key model or in the
common reference string model.

1.1 Oblivious Transfer

Oblivious transfer is a protocol between a sender, holding two strings γ0 and
γ1, and a receiver holding a choice bit b. At the end of the protocol the receiver
should learn the string of his choice (i.e., γb) but learn nothing about the other
string. The sender, on the other hand, should learn nothing about the receiver’s
choice b.

Oblivious transfer, first introduced by Rabin [Rab81], is a central primitive
in modern cryptography. It serves as the basis of a wide range of cryptographic
tasks. Most notably, any secure multi-party computation can be based on a
secure oblivious transfer protocol [Y86, GMW87, Kil88]. Oblivious transfer has
been studied in several variants, all of which have been shown to be equivalent.
The variant considered in this paper is the one by Even, Goldreich and Lempel
[EGL85] (a.k.a. 1-out-of-2 oblivious transfer), shown to be equivalent to Rabin’s
original definition by Crépeau [Cre87].

The study of oblivious transfer has been motivated by both theoretical and
practical considerations. On the theoretical side, much work has been devoted
to the understanding of the hardness assumptions required to guarantee obliv-
ious transfer. In this context, it is important to note that known construc-
tions for oblivious transfer are based on relatively strong computational as-
sumptions – either specific assumptions such as factoring or Diffie Hellman
(cf. [Rab81, BM89, NP01, AIR01]) or generic assumption such as the existence
of enhanced trapdoor permutations (cf. [EGL85, Gol04, Hai04]). Unfortunately,
oblivious transfer cannot be reduced in a black box manner to presumably weaker
primitives such as one-way functions [IR89]. On the practical side, research has
been motivated by the fact oblivious transfer is considered to be the main bottle-
neck with respect to the amount of computation required by secure multiparty
protocols. This makes the construction of efficient protocols for oblivious transfer
a well-motivated task.

In particular, constructing round-efficient oblivious transfer protocols is an
important task. Indeed, [NP01] (in Protocol 4.1) and [AIR01] independently
constructed a two-message (1-round) oblivious transfer protocol based on the
DDH Assumption (with weaker security guarantees than the simulation based
security). Their work was the starting point of our work.

1.2 Smooth Projective Hashing

Smooth projective hashing is a beautiful notion introduced by Cramer and Shoup
[CS02]. To define this notion they rely on the existence of a set X (actually a
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distribution on sets), and an underlying NP-language L ⊆ X (with an associ-
ated NP-relation R). The basic hardness assumption is that it is infeasible to
distinguish between a random element in L and a random element in X \L. This
is called a hard subset membership problem.

A smooth projective hash family is a family of hash functions that operate on
the set X. Each function in the family has two keys associated with it: a hash
key k, and a projection key α(k). The first requirement (which is the standard
requirement of a hash family) is that given a hash key k and an element x in
the domain X, one can compute Hk(x). There are two additional requirements:
the “projection requirement” and the “smoothness requirement.”

The “projection requirement” is that given a projection key α(k) and an
element in x ∈ L, the value of Hk(x) is uniquely determined. Moreover, com-
puting Hk(x) can be done efficiently, given the projection key α(k) and a pair
(x,w) ∈ R. The “smoothness requirement,” on the other hand, is that given a
random projection key s = α(k) and any element in x ∈ X \L, the value Hk(x)
is statistically indistinguishable from random.

1.3 Our Results

We present a methodology for constructing a two-message oblivious transfer pro-
tocol from any (modification of a) smooth projective hash family. In particular,
we show how the previously known (DDH based) protocols of [NP01, AIR01] can
be viewed as a special case of this methodology. Moreover, we show that this
methodology gives rise to two new oblivious transfer protocols; one based on the
N ’th Residuosity Assumption, and the other based on the Quadratic Residuosity
Assumption along with the Extended Riemann Hypothesis.

Our protocols, similarly to the protocols of [NP01, AIR01], are not known
to be secure according to the traditional simulation based definition. Yet, they
have the advantage of providing a certain level of security even against malicious
adversaries without having to compromise on efficiency (see Section 3 for further
discussion on the guaranteed level of security).
The basic idea. Given a smooth projective hash family for a hard subset mem-
bership problem (which generates pairs X,L according to some distribution),
consider the following two-message protocol for semi-honest oblivious transfer.
Recall that the sender’s input is a pair of strings γ0, γ1 and the receiver’s input
is a choice bit b.

R → S: Choose a pair X,L (with an associated NP -relation RL) according
to the specified distribution. Randomly generate a triplet (x0, x1, wb) where
xb ∈R L, (xb, wb) ∈ RL, and x1−b ∈R X \ L. Send (X,x0, x1).

S → R: Choose independently two random keys k0, k1 for H and send α(k0)
and α(k1) along with y0 = γ0 ⊕Hk0(x0) and y1 = γ1 ⊕Hk1(x1).

R: Retrieve γb by computing yb ⊕Hkb
(xb), using the witness wb and the pro-

jection key α(kb).

The security of the receiver is implied by the hardness of the subset mem-
bership problem on X. Specifically, guessing the value of b is equivalent to dis-
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tinguishing between a random element in L and a random element in X \ L.
The security of the sender is implied by the smoothness property of the hash
family H. Specifically, given a random projection key α(k) and any element in
x ∈ X \L, the value Hk(x) is statistically indistinguishable from random. Thus,
the message y1−b gives no information about γ1−b (since x1−b ∈ X \ L). Note
that the functionality of the protocol is implied by the projection property.

Technical difficulty. Notice that when considering malicious receivers, the se-
curity of the sender is no longer guaranteed. The reason is that there is no
guarantee that the receiver will choose x1−b ∈ X \L. A malicious receiver might
choose x0, x1 ∈ L and learn both values. To overcome this problem, we extend
the notion of a hard subset membership problem so that it is possible to verify
that at least one of x0, x1 belongs to X \ L. This should work even if the set X
is maliciously chosen by the receiver.

It turns out that implementing this extended notion in the context of the
DDH assumption is straightforward [NP01, AIR01]. Loosely speaking, in this
case X is generated by choosing a random prime p, and choosing two random
elements g0, g1 in Z

∗
p of some prime order q. The resulting set X is defined

by X � {(gr0
0 , gr1

1 ) : r0, r1 ∈ Zq}, the corresponding language L is defined by
L � {(gr

0, g
r
1) : r ∈ Zq}, and the witness of each element (gr

0, g
r
1) ∈ L is its

discrete logarithm r. In order to enable the sender to verify that two elements
x0, x1 are not both in L, we instruct the receiver to generate x0, x1 by choosing
at random two distinct elements r0, r1 ∈ Zq, setting xb = (gr0

0 , gr0
1 ), wb = r0, and

x1−b = (gr0
0 , gr1

1 ). Notice that xb is uniformly distributed in L, x1−b is uniformly
distributed in X \ L, and the sender can easily check that it is not the case
that both x0 and x1 are in L by merely checking that they agree on their first
coordinate and differ on their second coordinate.

Implementing this verifiability property in the context of the N ’th Residuos-
ity Assumption and the Quadratic Residuosity Assumption is not as easy. This
part contains the bulk of technical difficulties of this work. In particular, this
is where the Extended Riemann Hypothesis comes into play in the context of
Quadratic Residuosity.

2 Smooth Projective Hash Functions

Our definition of smooth projective hashing differs from its original definition in
[CS02]. The main difference (from both [CS02] and [GL03]) is in the definition
of the smoothness requirement, which we relax to Y -smoothness, and in the
definition of a subset membership problem, where we incorporate an additional
requirement called Y -verifiability.

Notation. The security parameter is denoted by n. For a distribution D, x ← D
denotes the action of choosing x according to D, and x ∈ support(D) means that
the distribution D samples the value x with positive probability. We denote by
x ∈R S the action of uniformly choosing an element from the set S. For any two
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random variables X,Y , we say that X and Y are ε-close if Dist(X,Y ) ≤ ε, where
Dist(X,Y ) denotes the statistical difference between X and Y .2 We say that the
ensembles {Xn}n∈N and {Yn}n∈N are statistically indistinguishable if there exists
a negligible function ε(·) such that for every n ∈ N, the random variables Xn

and Yn are ε(n)-close.3 Recall that a function ν : N → N is said to be negligible
if for every polynomial p(·) and for every large enough n, ν(n) < 1/p(n).

Hard subset membership problems. A subset membership problem M
specifies a collection {In}n∈N of distributions, where for every n, In is a probabil-
ity distribution over instance descriptions. Each instance description Λ specifies
two finite non-empty sets X,W ⊆ {0, 1}poly(n), and an NP-relation R ⊂ X×W ,
such that the corresponding language L � {x : ∃w s.t. (x,w) ∈ R} is non-empty.
For every x ∈ X and w ∈W , if (x,w) ∈ R, we say that w is a witness for x. We
use the following notation throughout the paper: for any instance description Λ
we let X(Λ), W (Λ), R(Λ) and L(Λ) denote the sets specified by Λ.

Loosely speaking, subset membership problem M = {In}n∈N is said to be
hard if for a random instance description Λ ← In, it is hard to distinguish
random members of L(Λ) from random non-members.

Definition 1 (Hard subset membership problem). Let M = {In}n∈N be
a subset membership problem as above. We say that M is hard if the ensem-
bles {Λn, x0

n}n∈N and {Λn, x1
n}n∈N are computationally indistinguishable, where

Λn ← In, x0
n ∈R L(Λn), and x1

n ∈R X(Λn) \ L(Λn).4

Projective hash family. We next present the notion of a projective hash
family with respect to a hard subset membership problem M = {In}n∈N. Let
H = {Hk}k∈K be a collection of hash functions. K, referred to as the key space,
consists of a set of keys such that for each instance description Λ ∈ M,5 there
is a subset of keys K(Λ) ⊆ K corresponding to Λ. For every Λ and for every
k ∈ K(Λ), Hk is a hash function from X(Λ) to G(Λ), where G(Λ) is some finite
non-empty set. We denote by G =

⋃
Λ∈M G(Λ). We define a projection key func-

tion α : K → S, where S is the space of projection keys. Informally, a family
(H,K, S, α,G) is a projective hash family for M if for every instance description
Λ ∈ M and for every x ∈ L(Λ), the projection key s = α(k) uniquely deter-
mines Hk(x). (We stress that the projection key s = α(k) is only guaranteed to
determine Hk(x) for x ∈ L(Λ), and nothing is guaranteed for x ∈ X(Λ) \L(Λ).)

2 Recall that Dist(X, Y ) � 1
2 s∈S |P r[X = s] − P r[Y = s]|, or equivalently,

Dist(X, Y ) � maxS′⊂S |P r[X ∈ S′] − P r[Y ∈ S′]|, where S is any set that con-
tains the support of both X and Y .

3 For simplicity, throughout this paper we say that two random variables Xn and
Yn are statistically indistinguishable, meaning that the corresponding distribution
ensembles {Xn}n∈N and {Yn}n∈N are statistically indistinguishable.

4 Note that this hardness requirement also implies that it is hard to distinguish be-
tween a random element x ∈R L(Λ) and a random element x ∈R X(Λ). We will use
this fact in the proof of Theorem 1.

5 We abuse notation and let Λ ∈ M denote the fact that Λ ∈ support(In) for some n.
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Definition 2 (Projective hash family). (H,K, S, α, G) is a projective hash
family for a subset membership problem M if for every instance description
Λ ∈M there is a well defined (not necessarily efficient) function f such that for
every x ∈ L(Λ) and every k ∈ K(Λ), f(x, α(k)) = Hk(x).

Efficient projective hash family. We say that a projective hash family is
efficient if there exist polynomial time algorithms for: (1) Sampling a key k ∈R

K(Λ) given Λ; (2) Computing a projection α(k) from Λ and k ∈ K(Λ); (3)
Computing Hk(x) from Λ, k ∈ K(Λ) and x ∈ X(Λ); and (4) Computing Hk(x)
from Λ, (x,w) ∈ R(Λ) and α(k), where k ∈ K(Λ). Notice that this gives two
ways to compute Hk(x): either by knowing the hash key k, or by knowing the
projection key α(k) and a witness w for x.

Y -smooth projective hash family. Let Y be any function from instance de-
scriptions Λ ∈M to subsets Y (Λ) ⊆ X(Λ)\L(Λ). Loosely speaking, a projective
hash family for M is Y -smooth if for every instance description Λ = (X,W, R),
for every x ∈ Y (Λ), and for a random k ∈R K(Λ), the projection key α(k)
reveals (almost) nothing about Hk(x).

Definition 3 (Y -smooth projective hash family). A projective hash family
(H,K, S, α,G) for a subset membership problem M is said to be Y -smooth if for
every (even maliciously chosen) instance description Λ = (X,W, R) and every
x ∈ Y (Λ), the random variables (α(k),Hk(x)) and (α(k), g) are statistically
indistinguishable, where k ∈R K(Λ) and g ∈R G(Λ).6

A Y -smooth projective hash family thus has the property that a projection of a
(random) key enables the computation of Hk(x) for x ∈ L, but gives almost no
information about the value of Hk(x) for x ∈ Y (Λ).

Remark. This definition of Y -smooth projective hash family differs from the
original definition proposed in [CS02] in two ways. First, it requires the smooth-
ness property to hold against maliciously chosen instance descriptions Λ, whereas
in [CS02] the smoothness is only with respect to Λ ∈M. Second, it requires the
smoothness property to hold with respect to every x ∈ Y , whereas in [CS02] the
smoothness condition is required to hold for randomly chosen x ∈R X \ L.

The main reason for our divergence from the original definition in [CS02]
is that we need to cope with maliciously chosen Λ. We would like to set Y =
X \ L (as in [CS02]), and construct a (X \ L)-smooth projective hash fam-
ily. However, we do not know how to construct such a family, for which the
smoothness condition holds for every (even maliciously chosen) Λ.7 Therefore,
we relax our smoothness requirement and require only Y -smoothness, for some

6 We assume throughout this paper, without loss of generality, that a (maliciously
chosen) Λ has the same structure as an honestly chosen Λ.

7 We note that [CS02,GL03] did not deal with maliciously chosen Λ’s, and indeed the
smoothness property of their constructions does not hold for maliciously chosen Λ’s.
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Y ⊆ X \ L. In both our constructions of Y -smooth projective hash families,
Y (Λ) ⊂ X(Λ)\L(Λ) for maliciously chosen Λ 	∈M, and Y (Λ) = X(Λ)\L(Λ) for
every honestly chosen Λ ∈M. Jumping ahead, the latter will enable the (honest)
receiver to choose xb ∈R L(Λ), x1−b ∈R X(Λ) \ L(Λ) such that x1−b is also in
Y (Λ). This will enable the (honest) sender to be convinced of its security by
checking that either x0 or x1 is in Y (Λ), and it will enable the (honest) receiver
to be convinced that a (dishonest) sender cannot guess the bit b, assuming the
underlying subset membership problem is hard. (From now on the reader should
think of Y (Λ) as equal to X(Λ) \ L(Λ) for every Λ ∈M.)

Thus, we need a subset membership problem M such that for every honestly
chosen Λ ∈M it is easy to sample uniformly from both L(Λ) and X(Λ) \ L(Λ).
On the other hand, for every (even maliciously chosen) (Λ, x0, x1) it is easy to
verify that either x0 ∈ Y (Λ) or x1 ∈ Y (Λ). To this end we define the notion of
a “Y -verifiably samplable” subset membership problem.

Definition 4 (Y -verifiably samplable subset membership problem). A
subset membership problem M = {In}n∈N is said to be Y -verifiably samplable if
the following conditions hold.

1. Problem samplability: There exists a probabilistic polynomial-time algorithm
that on input 1n, samples an instance Λ = (X,W, R) according to In.

2. Member samplability: There exists a probabilistic polynomial-time algorithm
that on input an instance description Λ = (X,W, R) ∈ M, outputs an ele-
ment x ∈ L together with its witness w ∈W , such that the distribution of x
is statistically close to uniform on L.

3. Non-member samplability: There exists a probabilistic polynomial-time al-
gorithm A that given an instance description Λ = (X,W, R) ∈ M and an
element x0 ∈ X, outputs an element x1 = A(Λ, x0), such that if x0 ∈R L
then the distribution of x1 is statistically close to uniform on X \ L, and if
x0 ∈R X then the distribution of x1 is statistically close to uniform on X.

4. Y -Verifiability: There exists a probabilistic polynomial-time algorithm B, that
given any triplet (Λ, x0, x1), verifies that there exists a bit b such that xb ∈
Y (Λ). This should hold even if Λ is maliciously chosen. Specifically:
– For every Λ and every x0, x1, if both x0 	∈ Y (Λ) and x1 	∈ Y (Λ) then
B(Λ, x0, x1) = 0.

– For every honestly chosen Λ ∈M and every x0, x1, if there exists b such
that xb ∈ L(Λ) and x1−b ∈ support(A(Λ, xb)), then B(Λ, x0, x1) = 1.

For simplicity, throughout the paper we do not distinguish between uniform
and statistically close to uniform distributions. This is inconsequential.

3 Security of Oblivious Transfer

Our definition of oblivious transfer is similar to the ones considered in previous
works on oblivious transfer in the Bounded Storage Model [DHRS04, CCM98].
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A similar (somewhat weaker) definition was also used in [NP01] in the context
of their DDH based two message oblivious transfer protocol.

In what follows we let viewŜ(Ŝ(z), R(b)) denote the view of a cheating sender
Ŝ(z) after interacting with R(b). This view consists of its input z, its random
coin tosses, and the messages that it received from R(b) during the interaction.
Similarly, we let viewR̂(S(γ0, γ1), R̂(z)) denote the view of a cheating Receiver
R̂(z) after interacting with S(γ0, γ1).

Definition 5 (Secure implementation of Oblivious Transfer). A two party
protocol (S, R) is said to securely implement oblivious transfer if it is a protocol in
which both the sender and the receiver are probabilistic polynomial time machines
that get as input a security parameter n in unary representation. Moreover, the
sender gets as input two strings γ0, γ1 ∈ {0, 1}�(n), the receiver gets as input a
choice bit b ∈ {0, 1}, and the following conditions are satisfied:

– Functionality: If the sender and the receiver follow the protocol then for any
security parameter n, any two input strings γ0, γ1 ∈ {0, 1}�(n), and any bit
b, the receiver outputs γb whereas the sender outputs nothing.8

– Receiver’s security: For any probabilistic polynomial-time adversary Ŝ, exe-
cuting the sender’s part, for any security parameter n, and for any auxiliary
input z of size polynomial in n, the view that Ŝ(z) sees when the receiver
tries to obtain the first message is computationally indistinguishable from the
view it sees when the receiver tries to obtain the second message. That is,

{viewŜ(Ŝ(z), R(1n, 0))}n,z
c≡ {viewŜ(Ŝ(z), R(1n, 1))}n,z

– Sender’s security: For any deterministic (not necessarily polynomial-time)
adversary R̂, executing the receiver’s part, for any security parameter n, for
any auxiliary input z of size polynomial in n, and for any γ0, γ1 ∈ {0, 1}�(n),
there exists a bit b such that for every ψ ∈ {0, 1}�(n), the view of R̂(z) when
interacting with S(1n, γb, ψ), and the view of R̂(z) when interacting with
S(1n, γ0, γ1), are statistically indistinguishable.9 That is,

{viewR̂(S(1n, γ0, γ1), R̂(z))}n,γ0,γ1,z
s≡ {viewR̂(S(1n, γb, ψ), R̂(z))}n,γb,ψ,z

Note that Definition 5 (similarly to the definitions in [DHRS04, NP01]) de-
parts from the traditional, simulation based, definition in that it handles the
security of the sender and of the receiver separately. This results in a some-
what weaker security guarantee, with the main drawback being that neither the
sender nor the receiver are actually guaranteed to “know” their own input. (This
is unavoidable in two message protocols using “standard” techniques).

It is easy to show that Definition 5 implies simulatability for semi honest
adversaries (the proof is omitted due to lack of space). More importantly, Defini-
tion 5 also gives meaningful security guarantees in face of malicious participants.

8 This condition is also referred to as the completeness condition.
9 We abuse notation by letting S(1n, γb, ψ) denote S(1n, γ0, ψ) if b = 0, and letting it

denote S(1n, ψ, γ1) if b = 1.
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In the case of a malicious sender, the guarantee is that the damage incurred by
malicious participation is limited to “replacing” the input strings γ0, γ1 with a
pair of strings that are somewhat “related” to the receiver’s first message (with-
out actually learning anything about the receiver’s choice). In the case of a mali-
cious receiver, Definition 5 can be shown to provide exponential time simulation
of the receiver’s view of the interaction (similarly to the definition of [NP01]). In
particular, the interaction gives no information to an unbounded receiver beyond
the value of γb. (Again, the proof is omitted due to lack of space.)

4 Constructing 2-Round OT Protocols

Let M = {In}n∈N be a hard subset membership problem which is Y -verifiably
samplable, and let (H,K, S, α,G) be a an efficient Y -smooth projective hash
family for M . Recall that the Y -verifiably samplable condition of M implies
the existence of algorithms A and B as described in Section 2.

We assume for simplicity that for any n and for any Λ ∈ In, G(Λ) = {0, 1}�(n),
and that the two messages γ0, γ1, to be transferred in the OT protocol, are binary
strings of length at most �(n). Let n be the security parameter. Let (γ0, γ1) be
the input of the sender and let b ∈ {0, 1} be the input of the receiver.

R → S: The receiver chooses a random instance description Λ = (X,W, R) ←
In. It then samples a random element xb ∈R L together with its corre-
sponding witness wb, using the member samplability algorithm, and invokes
Algorithm A on input (Λ, xb) to obtain a random element x1−b ∈ X \ L. It
sends (Λ, x0, x1).

S → R: The sender invokes algorithm B on input (Λ, x0, x1) to verify that there
exists a bit b such that x1−b ∈ Y (Λ). If B outputs 0 then it aborts, and if
B outputs 1 then it chooses independently at random k0, k1 ∈R K(Λ), and
sends α(k0) and α(k1) along with y0 = γ0⊕Hk0(x0) and y1 = γ1⊕Hk1(x1).

R: The receiver retrieves γb by computing yb ⊕ Hkb
(xb) using the projection

key α(kb) and the pair (xb, wb).

We next prove that the above protocol is secure according to Definition 5.
Intuitively, the receiver’s security follows from the fact that xb is uniformly
distributed in L, x1−b is uniformly distributed in X \L, and from the assumption
that it is hard to distinguish random L elements from random X \ L elements.
The sender’s security follows from the assumption that (H,K, S, α, G) is a Y -
smooth projective hash family for M, and from the assumption that one of x0

or x1 is in Y (Λ) (otherwise, it will be detected by B and the sender will abort).

Theorem 1. The above 2-round OT protocol is secure according Definition 5,
assuming M is a Y -verifiably samplable hard subset membership problem, and
assuming (H,K, S, α,G) is a Y -smooth projective hash family for M.

Proof. we start by proving the receiver’s security. Assume for the sake of con-
tradiction that there exists a (malicious) probabilistic polynomial-time sender Ŝ
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such that for infinitely many n’s there exists a polynomial size auxiliary input
zn such that Ŝ(zn) can predict (with non-negligible advantage) the choice bit b
when interacting with R(1n, b). In what follows, we use Ŝ(zn) to break the hard-
ness of M, by distinguishing between x ∈R L and x ∈R X. Given an instance
description Λ = (X,W, R) ← (In) and an element x ∈ X:

1. Choose at random a bit b and let xb = x
2. Apply algorithm A on input (Λ, xb) to obtain an element x1−b.
3. Feed Ŝ(zn) the message (Λ, x0, x1), and obtain its prediction bit b′.
4. If b′ = b then predict “x ∈R L” and if b′ 	= b then predict “x ∈R L.”

Notice that if xb ∈R L then Ŝ(zn) will predict the bit b with non-negligible
advantage (follows from our contradiction assumption). On the other hand, if
xb ∈R X then x1−b is also uniformly distributed in X. In this case it is impossible
(information theoretically) to predict b.

We now turn to prove the sender’s security. Let R̂ be any (not necessarily
polynomial time) malicious receiver, and for any n ∈ N, let zn be any polynomial
size auxiliary information given to R̂. Let (Λn, x0, x1) be the first message sent by
R̂(zn). Our goal is to show that for every n ∈ N and for every γ0, γ1 ∈ {0, 1}�(n),
there exists b ∈ {0, 1} such that the random variables viewR̂(S(1n, γ0, γ1), R̂(zn))
and viewR̂(S(1n, γb, ψ), R̂(zn)) are statistically indistinguishable.

We assume without loss of generality that either x0 ∈ Y (Λn) or x1 ∈ Y (Λn).
If this is not the case, the sender aborts the execution and b can be set to either 0
or 1. Let b be the bit satisfying x1−b ∈ Y (Λn). By the Y -smoothness property of
the hash family, the random variables (α(k),Hk(x1−b)) and (α(k), g) are statis-
tically indistinguishable, for a random k ∈R K(Λn) and a random g ∈R G(Λn).
This implies that the random variables (α(k), γ1−b ⊕ Hk(x1−b)) and (α(k), g)
are statistically indistinguishable, which implies that viewR̂(S(1n, γ0, γ1), R̂(z))
and viewR̂(S(1n, γb, ψ), R̂(z)) are statistically indistinguishable.

5 Constructing Smooth Projective Hash Families

We next present two constructions of Y -smooth projective hash families for hard
subset membership problems which are Y -verifiably samplable. One based on the
N ’th Residuosity Assumption, and the other based on the Quadratic-Residuosity
Assumption together with the Extended Reimann Hypothesis. A key vehicle in
both constructions is the notion of an (ε, Y )-universal projective hash family.

Definition 6 (Universal projective hash families). Let M = {In}n∈N be
any hard subset membership problem. A projective hash family (H,K, S, α, G)
for M is said to be (ε, Y )-universal if for every n, every (maliciously chosen) Λ
corresponding to the security parameter n, every x ∈ Y (Λ) and every g ∈ G(Λ),
P rk∈RK(Λ)[Hk(x) = g | α(k)] ≤ ε(n).

As shown in [CS02], it is possible to reduce the error rate in a (ε, Y )-universal
projective hash family from ε to εt (via independent repetitions). Once the error
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rate is reduced to be a negligible function εt, it is possible to transform the
(εt, Y )-universal projective hash family into a Y -smooth projective hash family
by applying the Leftover Hash Lemma. Both transformations preserve efficiency
(up to polynomial factors). Due to lack of space we omit the details of these
transformations, and we refer the interested reader to [CS02].

We conclude that it suffices to construct subset membership problems which
are Y -verifiably samplable and for which there exists an efficient (1

2 , Y )-universal
projective hash family. In the remaining of this paper we present two such con-
structions – the first based on the N ’th Residuosity Assumption, and the second
based on the Quadratic-Residuosity Assumption together with the Extended
Reimann Hypothesis.

5.1 N ’th Residuosity Assumption

The N ’th Residuosity Assumption. Let p, q be distinct safe primes; namely
p′ = p−1

2 and q′ = q−1
2 are odd primes. Let N = pq and let JN2 be the subgroup

of Z
∗
N2 , consisting of all elements with Jacobi symbol 1. Let P be the subgroup

consisting of all N ’th powers of elements in JN2 . The N ’th Residuosity Assump-
tion, originally introduced by Paillier [Pa99], asserts that given only N , it is hard
to distinguish random elements of JN2 from random elements of P .10,11

Overview of the constructions under the N ’th Residuosity Assump-
tion. We would like to use the constructions given in [CS02]. They construct
a subset membership problem that generates instances where X = JN2 and
L = P (so that the hardness property follows from the N ’th Residuosity As-
sumption). They define a corresponding universal projective hash family by
Hk(x) = xk(mod N2), with the projection key of k being α(k) = gNk(mod N2),
where gN (mod N2) is an a priori chosen generator for L. In their proof of the
universal property, they make strong use of the fact that for honestly chosen N ’s
(N ’s which are a product of two safe primes), P can also be characterized by
P = {x ∈ JN2 : order(x) is co-prime to N}. In our case we must also consider
maliciously chosen N ’s, in which case this characterization does not remain true.

In order to ensure that for every N (even maliciously chosen), it still holds
that every element in L is of order which is co-prime to N , we change the
definition of L: rather than taking L to be all the N ’th powers elements in JN2 ,
we take L to be all the T ’th powers elements in JN2 , where T � N�log N�+1.
As we shall see shortly, this ensures that for every (even maliciously chosen) N ,
every element in L is of order which is co-prime to N , and for every honestly

10 Actually, Paillier did not make the restriction to safe primes or to elements in JN2 .
We note that the N ’th Residuosity Assumption without these restrictions implies
the N ’th Residuosity Assumption with these restrictions, assuming that safe primes
are sufficiently dense, as we do here. We refer the reader to [CS02] for more details.

11 Jumping ahead, the reason that we restrict our attention to elements in JN2 is that
this results with the subgroup L being cyclic. This is an important point that will
be elaborated on below.
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chosen N , this new L is equal to the previous one, and thus it remains hard
to distinguish random X elements from random L elements, under the N ’th
Residuosity Assumption.

The subset membership problem M.

1. Problem samplability: For every n, In is a samplable distribution that gen-
erates an instance description Λ as follows: On input 1n,
(a) Generate two random n bit safe primes p, q; namely, primes p and q such

that p′ = p−1
2 and q′ = q−1

2 are odd primes. Let N = pq, N ′ = p′q′, and
T � N�log N�+1.

(b) Generate a random (non-square) element g ∈ Z
∗
N2 with Jacobi symbol 1,

by choosing a random element μ ∈R Z
∗
N2 and setting g=−μ2(mod N2).12

(c) Output Λ = (N, μ), which specifies (X,W, R) in the following way:
X � JN2 , L � 〈gT 〉 is the subgroup generated by gT (mod N2), W �
{0, 1, . . . , �N/2�}, and R � {(gTr, r) : r ∈ W}.

Notice that for every (even maliciously chosen) N , it holds that L ⊆ {x ∈
JN2 : order(x) is co-prime to N}. This is the case since the order of g divides
Nφ(N) (which is the order of Z∗

N2), p and q divide φ(N) at most �logN�
times, and they divide N exactly once. Thus p and q divide Nφ(N) at most
�logN� + 1 times, and thus they divide the order of g at most �logN� + 1
times. This implies that the order of gT (mod N2) (where T = N�log N�+1)
is co-prime to both p and q, and thus is co-prime to N .
Moreover, for every honestly chosen N , with overwhelming probability L =
P = {x ∈ JN2 : order(x) is co-prime to N}. This follows from the fact that
|JN2 | = Nφ(N)/2 = 2NN ′, which implies that P is a cyclic group of order
2N ′. Thus, for any random non-square element g in JN2 , gN is a generator of
P with overwhelming probability. Moreover, since the order of gN is co-prime
to N , it follows that 〈gT 〉 = 〈gN 〉.
Let Y (Λ) = {x ∈ JN2 : order(x) is not co-prime to N}.13

2. Member samplability: On input Λ = (N, μ), choose a random r ∈R W and
output gTr ∈ L(Λ) together with its corresponding witness r, where g =
−μ2(mod N2)

3. Non-member samplability: On input Λ = (N, μ) and x ∈ L(Λ), A chooses a
random a ∈R {1, . . . ,N − 1}, and outputs x(1 + aN) ∈ X(Λ) \ L(Λ).
Notice that for every a ∈ {1, ...,N − 1}, order(1 + aN) divides N (and is
different than 1), which implies that 1 + aN ∈ Y (Λ).

4. Y -Verifiability: On input (1n,Λ, x0, x1), B outputs 1 if and only if x0, x1 ∈
JN2 , x0 	= x1, and (x0/x1)N = 1(mod N2).

The fact that M is a hard subset membership problem follows from the N ’th
Residuosity Assumption and from the fact that for every honestly chosen Λ ∈M,
with overwhelming probability L(Λ) = P .

12 Recall that for N which is a product of two safe primes −1 ∈ JN \ QRN .
13 Notice that for every (even maliciously chosen) Λ, it holds that Y (Λ) ⊆ X\L, and for

honestly chosen Λ it holds that Y (Λ) = X(Λ)\L(Λ) with overwhelming probability.
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We next show that M is Y -verifiably samplable, under the Nth Residuos-
ity Assumption. Fix any Λ = (N, μ) ∈ M. It is easy to see that the member
samplability algorithm samples a random element in L. Moreover, notice that
X = P ·H � {x · y : x ∈ P , y ∈ H}, where H � 〈1 +N〉. This is the case since
for every N which is a product of two safe primes, it holds that P ∩ H = {1}
(since the order of elements in P divide 2N ′, the order of elements in H divide
N , and GCD(2N ′,N) = 1). This implies that |P ·H| = |P | · |H| = 2N ′N , which
together with the fact that P ·H ⊆ JN2 implies that P ·H = JN2 . Now, recall
that A(Λ, x) = x(1 + aN) for some uniformly chosen a ∈ {1, . . . ,N − 1}. Thus,
if x ∈R X then A(Λ, x) ∈R X, and if x ∈R L then A(Λ, x) ∈R X \ L, which
implies that the non-member samplability requirement holds.

It remains to show that the Y -verifiability requirement holds. Notice that
for every (even maliciously chosen) N and for every x 	= 1 such that xN =
1(mod N2), it holds that x ∈ Y (Λ). Thus, for every distinct x0, x1, if (x0/x1)N =
1(mod N2) then x0/x1 ∈ Y (Λ), which implies that either x0 ∈ Y (Λ) or x1 ∈
Y (Λ).

(1
2 , Y )-Universal Projective Hashing for M . Consider the projective hash

family (H,K, S, α,G), defined as follows. For every Λ = (N, μ) ∈M:

– Let K(Λ) = {0, 1, . . . , �N2

2 �} and let K =
⋃

Λ∈MK(Λ).
– Let G(Λ) = JN2 and let G =

⋃
Λ∈M G(Λ).

– For every k ∈ K(Λ), let Hk(x) = xk(mod N2).
– For every k ∈ K(Λ), let α(k) = gTk(mod N2), where T � N�log N�+1 and
g = −μ2(mod N2).

Claim. (H,K, S, α,G) is an efficient ( 1
2 , Y )-universal projective hash family for

M.

Proof. It is straightforward to verify that all the efficiency requirements hold. As
for the projection requirement, this follows from the fact that for every k ∈ K(Λ)
and every x = gTr(mod N2) ∈ L(Λ),

Hk(x) = xk(mod N2) = (gTr)k(mod N2) = (gTk)r(mod N2) = α(k)r(mod N2).

We next show that it is ( 1
2 , Y )-universal. Fix any (even maliciously chosen)

Λ = (N, μ), and let Z � φ(N2)/GCD(φ(N2),T ). Notice that GCD(N, Z) = 1,
which implies that for every y ∈ Y (Λ), yZ 	= 1(mod N2) (since the order of y is
not co-prime to N). Also notice that for every hash key k, α(k) = α(k + Z). Fix
any y ∈ Y (Λ). Since for every s there are at least two elements k, k + Z ∈ K(Λ)
such that s = α(k) = α(k + Z), and since yZ 	= 1, it follows that s does not
uniquely determine Hk(y), implying that (H,K, S, α, G) is a (1

2 , Y )-universal
projective hash family.

5.2 The Quadratic Residuosity Assumption

The Quadratic Residuosity Assumption. Let p, q be distinct safe primes;
namely, p′ = p−1

2 and q′ = q−1
2 are odd primes. Let N = pq, let JN be the
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subgroup of Z
∗
N consisting of all elements with Jacobi symbol 1, and let QRN be

the subgroup of Z
∗
N consisting of all quadratic residues (note that QRN ⊆ JN ).

The Quadratic Residuosity Assumption asserts that given only N , it is hard to
distinguish random elements of JN from random elements of QRN .

Overview of the constructions under the Quadratic Residuosity As-
sumption. We would like to use the constructions given in [CS02]. They con-
struct a subset membership problem that generates instances where X = JN and
L = QRN (so that the hardness property follows from the Quadratic Residuosity
Assumption). They define a corresponding universal projective hash family by
Hk(x) = xk(mod N), with the projection key of k being α(k) = g2k(mod N),
where g2(mod N) is an a priori chosen generator for L. In their proof of the
universal property, they make strong use of the fact that for honestly chosen
N ’s (N ’s which are a product of two safe primes), QRN can also be character-
ized by QRN = {x ∈ JN : order(x) is odd}. In our case we must also consider
maliciously chosen N ’s, in which case this characterization does not remain true.

In order to ensure that for every N (even maliciously chosen), it still holds
that every element in L is of odd order, we change the definition of L: rather
than taking L to be the set of all squares in JN , we take L to be the set of all
the T ’th powers elements in JN , where T � 2�log N�. As we shall see shortly,
this ensures that for every (even maliciously chosen) N , every element in L is of
odd order, and for every honestly chosen N , this new L is equal to the previous
one, and thus it remains hard to distinguish random X elements from random
L elements, under the Quadratic Residuosity Assumption.

We would like to prove that this subset membership problem, which gener-
ates instances with X = JN and L = QRN (with overwhelming probability for
honestly chosen N ’s), is Y -verifiably samplable for some Y ⊆ JN \QRN . How-
ever, achieving the non-member samplability property is quite problematic. The
crux of the problem is that we cannot efficiently sample an element in JN \QRN

for maliciously chosen N ’s.14 What we do know (under the Extended Reimann
Hypothesis) is how to sample log3 N elements such that at least one of them is
in JN \QRN (though we don’t know which one).15 Thus, rather than construct-
ing a Y -verifiably samplable subset membership problem, which is associated
with a single algorithm A for sampling a non-member element, we will construct
a subset membership problem with many (t = log3 N) algorithms A1, . . . ,At,
with the guarantee that at least one of them is actually sampling a non-member
element. Correspondingly, there will be many verification algorithms B1, . . . ,Bt,
with the guarantee that for every i it holds that Bi(Λ, x,Ai(x)) = 1, and that

14 Indeed, for N ’s that are a product of two safe primes −1 ∈ JN \ QRN , but this is
not guaranteed in general.

15 There is a subtle issue here. The above statement is not true if N is a power of a
single prime (i.e., if N is of the form N = pα, for some prime p and some α ≥ 1), since
in this case JN \ QRN = ∅. Fortunately, we can assume from now on (without loss
of generality) that N is never of that form, since this can be checked in polynomial
time.
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at least one of the Bi’s outputs 1 on input (Λ, x0, x1) only if either x0 ∈ Y (Λ) or
x1 ∈ Y (Λ).

The idea would be to use this subset membership problem to construct an
oblivious transfer protocol as follows:

R → S: On input b ∈ {0, 1}, the receiver chooses a random instance description
Λ together with t pairs (x1

0, x
1
1), . . . , (x

t
0, x

t
1), and corresponding t witnesses

w1
b , . . . , wt

b, such that for each i ∈ {1, . . . , t} it holds that xi
b ∈R L(Λ),

(xi
b, w

i
b) ∈ R(Λ), and xi

1−b = Ai(Λ, xi
b). It sends (x1

0, x
1
1), . . . , (x

t
0, x

t
1).

S → R: The sender first checks that Bi(Λ, xi
0, x

i
1) = 1 for all i ∈ {1, . . . , t}.

If this check does not pass then he aborts. If the check does pass then the
sender splits his input (γ0, γ1) into t random shares (γ1

0 , γ1
1) . . . , (γt

0, γ
t
1). He

then chooses t pairs of random hash keys (k1
0, k

1
1), . . . (k

t
0, k

t
1), and sends for

each i ∈ {1, . . . , t} the projection keys α(ki
0) and α(ki

1) together with the
values yi

0 = Hki
0
(xi

0)⊕ γi
0 and yi

1 = Hki
1
(xi

1)⊕ γi
1.

R: The receiver retrieves γb by computing yi
b⊕Hki

b
(xi

b), using the projection key
α(ki

b) and the pair (xi
b, w

i
b), and by computing the XOR of all these values.

The sender’s security is ensured since we know (under the Extended Reimann
Hypothesis) that one of the Bi’s outputs 1 only if one of the elements xi

0 or xi
1 is

in Y (Λ), which implies that at least one of the γi
b is statistically hidden, which

in turn implies that γb is statistically hidden. The receiver’s security follows
from the fact that for every i and for Λ ← In, it is hard to distinguish between
x0 ∈R L(Λ) and Ai(Λ, x0).

The subset membership problem M. Our subset membership problem M =
{In}n∈N is based on the one defined in [CS02]. However, we incorporate here
several modifications.

1. Problem samplability. For every n, In is a samplable distribution that gen-
erates an instance description Λ as follows: On input 1n,
(a) Generate two random n bit safe primes p, q; namely, primes p and q such

that p′ = p−1
2 and q′ = q−1

2 are odd primes. Let N = pq and T � 2�log N�.
(b) Choose a random element μ ∈R Z

∗
N , and output Λ = (N, μ), which

specifies (X,W, R) in the following way: X � JN , L � 〈μT 〉 is the
subgroup generated by μT (mod N), W � {0, 1, . . . , �N/4�}, and R �
{(μTr, r) : r ∈W}.

Notice that L ⊆ {x ∈ JN : order(x) is odd}, for every (even maliciously
chosen) N . This is the case since the order of μ divides φ(N) (which is the
order of Z∗

N ), and 2 divides φ(N) at most �logN� times. Thus, 2 divides the
order of μ at most �logN� times. This implies that the order of μT (mod N)
(where T = 2�log N�) is co-prime to 2, and thus is odd.
Moreover, for every honestly chosen N , with overwhelming probability L =
QRN = {x ∈ JN : order(x) is odd}. This follows from the fact that QRN

is a cyclic group of order N ′, which implies that a random element in QRN

generates QRN with overwhelming probability. Moreover, since the order of
every element in QRN is co-prime to 2, it follows that 〈μT 〉 = 〈μ2〉.
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For every Λ = (N, μ), let Y (Λ) = JN\QRN . Then for every (even maliciously
chosen) Λ, it holds that Y (Λ) ⊆ {x ∈ JN : order(x) is even}.

2. Member samplability: On input Λ = (N, μ), choose a random r ∈ W , and
output μTr(mod N) together with its corresponding witness r.

3. Non-member samplability Ai: On input Λ = (N, μ) and x ∈ X(Λ), if i ∈ JN

then Ai(Λ, x) outputs the element i · x(mod N). If i 	∈ JN then Ai(Λ, x)
outputs x.16

4. Y -Verifiability Bi: On input (Λ, x0, x1), if i ∈ JN , then Bi(Λ, x0, x1) outputs
1 when both x0, x1 ∈ JN and xb/xb−1 = i(mod N) for some b ∈ {0, 1}. If
i 	∈ JN then Bi(Λ, x0, x1) always outputs 1.

We would like to prove that M is a Y -verifiably samplable hard subset member-
ship problem. The hardness of M follows from the fact that with overwhelming
probability over Λ = (N, μ) ← In, it holds that L(Λ) = QRN . In order to
prove that M is Y -verifiably samplable, we need to prove that M satisfies the
following three properties: member samplablility, non-member samplability, and
Y -verifiability. It is easy to see that the member samplability property holds.
In order to see that the non-member samplability property holds it suffices to
notice that under the Quadratic Residuosity Assumption, for every large enough
n, for Λ = (N, μ) ← In, and for every i = 1, . . . , log3 N , it is hard to distinguish
between x ∈R L(Λ) and x′ = Ai(Λ, x). In order to show that the Y -verifiability
property holds, it suffices to show that the Y -verifiability property holds for
a single i. This we show under the Extended Riemann Hypothesis, using the
following well known result from algebraic number theory.

Lemma 1 ([BS96], 8.5.9). Assume the Extended Riemann Hypothesis. Let H
be a non-trivial subgroup of Z∗

N of index d, and let C be a coset of H. Then the
least prime whose residue belongs to C is O(d2 log2 N).

Assume the Extended Riemann Hypothesis. We first use Lemma 1 to prove that
for every (maliciously chosen) N one of the elements in {1, ..., log3 N} ∩ JN is
also an element in JN \QRN .17

Consider any N = pa1
1 ...pak

k . Let G be the subgroup of Z∗
N consisting of all

elements which are squares modulo p1. Let H � JN ∩ G. Notice that both G
and JN are subgroups of Z∗

N of index 2, and that H is a subgroup of Z∗
N of

index 4. Now let g be any element in JN which is not a square modulo p1 (i.e.,
g ∈ JN \ G), and let C = gH be a coset of H. According to Lemma 1, the
Extended Riemann Hypothesis implies that one of the elements in {1, 2, . . . , x},
where x = O(d2 log2 N) < log3 N , must be an element in C. Notice that all
elements in C are non-squares modulo p1, which implies that C ⊆ JN \ QRN .

16 For i 	∈ JN , x can be distinguished from i · x, since it is easy to check whether an
element in Z

∗
N has Jacobi symbol 1. Thus, in this case we simply let Ai(Λ, x) output

x, to make sure that it is hard to distinguish x from Ai(Λ, x).
17 In what follows we use our assumption that N is not a power of a single prime (if

N is a power of a single prime then JN \ QRN = ∅).
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Thus, we conclude that one of the elements in {1, 2, . . . , x} ⊂ {1, 2, . . . , log3 N}
is in JN \QRN .

Fix any (even maliciously chosen) Λ = (N, μ), and let i ∈ {1, ..., log3 N}∩JN

be an element in JN \ QRN . It is easy to see that for every x0, x1, if both are
not in Y (Λ) = JN \QRN then Bi(Λ, x0, x1) outputs 0. Moreover, for any x0, x1,
such that xb ∈ L(Λ) and x1−b ∈ Ai(Λ, xb) (for some b), it holds that x1−b = i ·xb

and x0, x1 ∈ JN (since i ∈ JN ), and thus Bi(Λ, x0, x1) outputs 1.

( 1
2 , Y )-universal projective hash family for M. Consider the projective

hash family (H,K, S, α,G), defined as follows. For every Λ = (N, μ) ∈M:

– Let K(Λ) = {0, 1, . . . , �N
2 �} and let K =

⋃
Λ∈Mi

K(Λ).
– Let G(Λ) = JN and let G =

⋃
Λ∈Mi

G(Λ).

– For every k ∈ K(Λ), let Hk(x) = xk(mod N).
– For every k ∈ K(Λ), let α(k) = μTk(mod N), where T � 2�log N�.

Claim. The hash family (H,K, S, α,G) is an efficient ( 1
2 , Y )-universal projective

hash family for M.

Proof. It is straightforward to verify that all efficiency requirements hold. As for
the projection requirement, it follows easily from the fact for every k ∈ K(Λ),
and for every x ∈ L(Λ):

Hk(x) = xk(mod N) = (μTr)k(mod N) = (μTk)r(mod N) = α(k)r(mod N)

We next prove that this projective hash family is (1
2 , Y )-universal. Fix any

(even maliciously chosen) Λ = (N, μ), and fix any x ∈ Y (Λ) = JN \ QRN . As
was previously mentioned, x is of even order. Let Z � φ(N)/GCD(φ(N),T ).
Note that Z is an odd number, and that μTZ = 1(mod N). Also note that for
every s there are (at least) two distinct elements k, k + Z ∈ K(Λ) such that
s = α(k) = α(k + Z). Thus, in order to prove that the (1

2 , Y )-universal property
holds, it remains to prove that xZ 	= 1(mod N), which follows immediately from
the fact that x is of even order.
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Abstract. A (1,2)-robust combiner for a cryptographic primitive P is
a construction that takes two candidate schemes for P and combines
them into one scheme that securely implement P even if one of the
candidates fails. Robust combiners are a useful tool for ensuring better
security in applied cryptography, and also a handy tool for constructing
cryptographic protocols. For example, we discuss using robust combiners
for obtaining universal schemes for cryptographic primitives (a universal
scheme is an explicit construction that implements P under the sole
assumption that P exists).

In this paper we study what primitives admit robust combiners. In
addition to known and very simple combiners for one-way functions and
equivalent primitives, we show robust combiners for protocols in the
world of public key cryptography, namely for Key Agreement(KA).

The main point we make is that things are not as nice for Oblivious
Transfer (OT) and in general for secure computation. We prove that
there are no “transparent black-box” robust combiners for OT, giving an
indication to the difficulty of finding combiners for OT. On the positive
side we show a black box construction of a (2, 3)-robust combiner for OT,
as well as a generic construction of (1, n)-robust OT-combiners from any
(1, 2)-robust OT-combiner.

At the mouth of two witnesses ... shall the matter be established
Deuteronomy Chapter 19.

1 Introduction

Not putting all your eggs in one basket is commonly considered good advice and
this should be no different in cryptography. Suppose that we have a two cryp-
tographic schemes that we generally trust to be secure for some task. It makes
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a lot of sense to try and combine these two into one scheme that is guaranteed
to be secure even in case that one of the two original schemes was broken. For
example, we have several encryption schemes that are based on various unproven
number theoretic assumptions, such as the hardness of factoring or of computing
discrete logarithms. We would like to combine these into one encryption scheme
that is secure if at least one of these unproven assumptions happens to be true.
We call such a construction a Robust Combiner.1 This is a scheme that combines
two different schemes and is robust to the failure of just one of them.

Definition 1.1 ((k, n)-Robust Combiner (Informal)). A (k, n)-Robust Com-
biner for a cryptographic primitive P is a construction that takes n candidate
schemes for P and combines them into one scheme such that if at least k of the
candidates indeed implement P then the combiner also implements P.

In general, the most interesting combiners are (1, 2)-robust combiners as they
are essential and at times sufficient for constructing (1, n)-robust combiners (n
is some parameter, typically related to the security parameter). For ease of no-
tations we will sometimes write just robust combiner or simply combiner when
we actually mean a (1, 2)-robust combiner.

Robust combiners are by all means not new in cryptography. Several practi-
cal constructions try to combine several primitives to achieve stronger security
guarantees. For example, Asmuth and Blakely [1] suggest a method of combining
two encryption schemes of which only one can be trusted. Another example is the
widely used idea of repeatedly encrypting a message several times with different
keys in order to enhance security, an idea that dates back as far as Shannon and
found in many applications since. This relates to combiners as security holds in
the case that the integrity of some of the keys is compromised, but at least one
remains secure. Also, Herzberg [15] discusses the notion of combiners explicitly
(see the related work section, Section 1.2).

There are plenty of other practical motivations for combiners, we briefly give a
few: For example, using software from a few sources that are not entirely trusted
(e.g., when running an election and using electronic ballots from a few vendors).
Combiners can also be used to avoid bugs in software, rather than checking the
correctness of a software (as in [5]), combine several different versions, hoping
that at least one is correct. One can also consider physical sources used for
cryptography (e.g. noisy channels) that cannot necessarily be trusted.

From the point of view of theoretical cryptography robust combiners are also
valuable. Combiners are useful tools in constructions and reductions between
cryptographic primitives. This happens in scenarios where it is guaranteed that
one of several constructions exist. We give two examples:

– Levin [21] (see exposition in [13]) introduced a Universal-one way funcion
(OWF) which is an explicit construction that is guaranteed to be a OWF
under the sole assumptions that one-way functions exist at all. The property

1 This notion is called a Tolerant Construction in [15].
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of one-way functions that allows for this universal constructions is the fact
that they admit robust combiners.

– In the construction of pseudo-random generators (PRG) from OWFs by
Hastad et al. [14] a polynomial number of candidates for PRG are given, one
of which is guaranteed to be a PRG. These are then combined (the combiner
is a simple XOR of the output) into one PRG construction.

1.1 Our Contributions

In this paper we study what cryptographic primitives have or don’t have robust
combiners. We start by showing that simple robust combiners exist for OWF
(this is common knowledge) and its equivalents (such as private key encryption,
pseudo-random generators, functions and permutations, digital signatures and
bit commitment). We then present a robust combiner for Key Agreement (KA)
and, similarly, Public Key Encryption (PKE).

On Robust Combiners for Oblivious transfer: The abundance and relative sim-
plicity of robust combiners may lead to the belief that all primitives have simple
combiners. However, this is not the case for the fundamental oblivious transfer
primitive (OT) and thus for any non trivial task of secure computation. We de-
fine the notion of black-box combiners, giving several refinements to this notion.
Our main result shows the following:

Theorem 1.2 (informal) There exists no “transparent black-box” construction
of a robust OT-combiner.

Transparent black-box combiners are black-box combiners with a specific prop-
erty. In general, it is required that every time a party calls one of the candidates,
then the other party learns about this call (all messages generated by the can-
didate are actually sent to the other party).

Theorem 1.2 can be viewed as an indication of the hardness of the problem
of constructing combiners for OT. The point being that most of the known
examples of combiners are transparent black-box combiners. More precisely, this
indicates that achieving a combiner for OT will likely use the OT protocol outside
of its context (and perhaps not as an interactive process).

A good example and an exception to the generally simple combiners is the
combiner for bit commitments. This combiner uses the commitment candidates
in a non interactive manner in order to generate a OWF. It then uses the HILL
reduction [14] together with [22] to build a commitment from a OWF. Such a
strategy seems hard for OT since there are black box separations of OT from
simpler and less structured primitives such as OWFs and KA [18, 12].

Positive results for OT: On a more positive note, we show a very efficient black
box construction of a (2,3)-robust OT-combiner. We also point out that it is
easy to construct an OT protocol based on the assumption that at least one of
the assumptions regarding factoring or the discrete logarithms is correct. This
is because there are known constructions of OT from such assumptions (and in
general from any trapdoor permutation [11]) that have perfect (and guaranteed)
security for the receiver, in which case constructing combiners is simple.
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(1,n)-robust combiners and universal schemes: We discuss the notion of a univer-
sal scheme for a cryptographic primitive (following Levin’s [21] universal OWF)
and show that primitives that admit (1,n)-robust combiners also have universal
schemes. We then study cases where (1,2)-combiners are sufficient for (1,n)-
combiners. Among others, it is shown that a (1,2)-robust combiner for OT also
gives a construction of a universal scheme for OT (the construction makes use
of the efficient (2,3)-robust combiner for OT shown here).

Other points: A delicate point when discussing combiners for a primitive P is
the question of functionality. In some settings, while one of the input candidates
is guaranteed to be secure, the other one is not even guaranteed to have the func-
tionality of P, making things more involved. In general, one way to overcome this
is by first testing the functionality of a possibly faulty candidate. For instance,
the combiner for KA first constructs a KA where the two parties agree only with
reasonably high probability, and then reduces the probability of disagreement to
a negligible one using an error correcting code.

1.2 Related Work

As mentioned before, robust combiners have already been used and studied. In
particular the work of Herzberg [15] focuses on robust combiners in cryptogra-
phy. This work puts more emphasis on efficiency and specifically the use of the
parallel and cascade constructions as combiners and shows combiners for various
primitives including OWF, signatures, MACs and others.

Implicit use of combiners is abundant. For example, the idea of using multiple
encryptions is widely used in practice. This practice is in fact advocated in the
NESSIE consortium recommendations [23]. Also the TLS (Transport Layer Se-
curity) specification [17] combines two hash functions (SHA1 and MD5) to give
better assurance of security. We quote from [17]: “ In order to make the PRF as
secure as possible, it uses two hash algorithms in a way which should guaran-
tee its security if either algorithm remains secure.”2 Lately Dodis and Katz [10]
studied the use of multiple encryptions with respect to CCA2 security, giving
a robust combiner for CCA2 secure encryption schemes using signatures. Ho-
henberger and Lysyanskaya [16] discuss how to securely combine two potentially
insecure software implementations. Another related concept is given in Brickell
and McCurley [6] and Shoup [25] that show schemes that achieve two different
types of security based on two different number theoretic assumptions.

The work of Damgard, Kilian and Salvail [9] is somewhat relevant to the OT-
combiner. This work discusses a weak version of OT called (p, q)-OT that has
probability p of compromising the sender’s security and probability q of com-
promising the receiver’s. It is shown that a fully secure OT can be constructed
from a (p, q)-OT if and only if p + q < 1. In our setting where two candidates

2 Note that the concatenation of hash functions as suggested in the TLS [17] is indeed
a combiner in the sense that it is guaranteed to be as secure as the candidate that
remains secure. This does not however guarantee an increase of the security in case
that candidates are secure, as was shown by Joux [19].
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for OT are given, one can obtain a (p, q)-OT with p = q = 1
2 simply by choos-

ing one of the candidates at random. Therefore, the impossibility result of [9]
for p + q ≥ 1 gives some intuition for the impossibility of OT-combiners. How-
ever the result for p + q ≥ 1 relies heavily on the fact that the errors p and q
are assumed to be uncorrelated events, which is not the case in the setting of
combiners. On the other hand, for (2,3)-robust combiners, we can get an OT
protocol with p = q = 1

3 and use the reduction from [9] (although the (2,3)-
robust OT-combiner presented here is much more efficient, a property that is
used in Section 5.1).

2 Notations and Definitions

We denote by PPTM a probabilistic polynomial time Turing machine. In general,
our definitions view adversaries as uniform machines, though all results in this
paper also apply for definitions of security against non-uniform adversaries. An
Oracle PPTM is a PPTM that also has access to one or more oracles.

2.1 Cryptographic Primitives

The notion of a cryptographic primitive ranges from basic non-interactive con-
structs such as one-way functions, digital signatures and encryption to more
“high-level” interactive protocols such as secret key exchange and oblivious
transfer. Due to lack of space and the difficulty of actually giving a complete def-
inition to this notion, we refrain from presenting a full definition of a primitive,
and only highlight the key issues (see [24] for a formal definition).

In principle, the definition of a primitive P includes a description of the func-
tionality of the primitive (computable in polynomial time), along with a defini-
tion of security. The functionality defines what the primitive should do, whereas
the security deals with the ability of an adversary of a certain class (e.g., all
PPTMs) to learn something from an implementation of the functionality. This
ability is captured by a relation between possible machines (modelling the adver-
sary) and functions (modelling the implementation). The relation defines when a
machine breaks an implementation. For an implementation to be secure, it is re-
quired that no machine in the class of adversaries can break this implementation.

In the special case of interactive primitives, the functionality of the prim-
itive can be divided into two parts: (1) The next message function M , which
determines the next message to be sent by a party (given its partial view of the
interaction). (2) An output function O, which determines a party’s local output
(given the view of the entire interaction). A protocol is then obtained by let-
ting each of the sides alternately generate their next message by applying the
function M to their own local inputs, randomness and partial view (up to that
point in the interaction). At the end of interaction each side feeds its view to
the function O to get its local output.

2.2 Robust Combiners

Combiners receive as input candidates for implementing a primitive P. In prin-
ciple, the candidates can be either given as the code of a PPTM, or via an oracle
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that implements it. The basic definition of a combiner does not take this issue
into consideration and admits any kind of usage of the candidate implementa-
tions.

Definition 2.1 ((k, n)-Robust Combiner). Let P be a cryptographic primi-
tive. A (k, n)-Robust Combiner for P is a PPTM that gets n candidate schemes
as inputs, and implements P while satisfying the following two properties:

1. If at least k candidates securely implement P then the combiner also securely
implements P.

2. The running time of the combiner is polynomial in the security parameter
m, in n and in the lengths of the inputs to P.3

Note that in general a combiner could completely ignore the candidate imple-
mentations and implement P directly. However, we are interested in combiners
whose security relies on the security guarantees of the candidates. It thus makes
sense to consider a more restrictive notion of a combiner, in which both the
construction and its proof are conducted in a “black-box” manner.

Definition 2.2 (Black-Box Combiner). A (1,2)-robust combiner is said to
be black-box if the following conditions hold:

1. Black-box implementation: The combiner is an oracle PPTM given access
to the candidates via oracle calls to their implementation function.

2. Black-box proof: For every candidate there exists an oracle PPTM RA (with
access to A) such if adversary A breaks the combiner, then the oracle PPTM
RA breaks the candidate.4

In the case of interactive primitives several additional restrictions on the usage
of the underlying candidate implementations make sense. One natural restric-
tion that comes into mind is to require that the combiner totally ignores the
implementation and simply relies on the functionality and security of one of the
candidates (e.g., the combiner for KA presented in Section 3.3).

Definition 2.3. A third party black-box combiner is a black-box combiner
where the candidates behave like trusted third parties. The candidates give no
transcript to the players, but rather take their inputs and return outputs.

In some situations the above notion is too restrictive and a transcript is actually
needed for enabling the construction of a combiner (for example, constructing a
OWF cannot be done from a third party implementation for OT). In this paper
we also discuss a relaxation of third party black-box combiners, that allows access
to the transcripts of the protocols as well.

3 Here we make the implicit assumption that the candidates themselves run in poly-
nomial time. See a further discussion in Section 3.1.

4 In the case of (k,n)-robust combiners then there are at least n − k + 1 candidates
that can be broken in this manner.
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Definition 2.4. A transparent black-box combiner is a black-box combiner
for an interactive primitive, where every call to a candidate’s next message func-
tion M is followed by this message being sent to the other party.

This notion can be thought of as allowing the use of the primitive only in the
context of the protocol (rather than allowing free off-line use of its oracles).
Note that the notion of black-box combiners (considered in Definition 2.2) is
less restrictive than the third party and transparent ones. A black-box combiner
is given unlimited off-line access to the oracles that generate the protocol whereas
the other combiners are not. Note that in the case of non-interactive primitives
the three notions defined above are equivalent.

3 Positive Results

3.1 The General Framework for Robust Combiners

Cryptographic primitives are mainly about security. So naturally the emphasis
when constructing robust combiners will be that these primitives indeed remain
secure in face of the unfortunate case that one of the candidates actually breaches
security. However, there are some subtleties that need to be discussed. In some
settings, hardly anything is known about the candidates at hand other than the
fact that one of them is good. Specifically, only one candidate is guaranteed to
have the intended functionality. For example, a faulty candidate for a OWF,
may not only be easy to invert, but might also be hard to compute in the easy
direction (computing the function might be impossible for all PPTM). Other
primitives might have additional functionalities (other than running time) that
should be taken into consideration. For example, in the KA (key agreement) both
parties should output the same key (the agreement). In this section we present
approaches for dealing with these issues, dealing separately with running time
and other functionalities.

Running time: In general, one cannot expect to be able to check that a candidate
for a cryptographic primitive always halts in polynomial time unless the specific
polynomial bound on the running time is known in advance. We therefore assume
that the polynomial bound is given as input to the scheme. For example, a robust
OWF-combiner gets as input a polynomial p(·) and the security parameter 1m

along with the two candidates fA, fB . Now, when a combiner invokes a candidate,
it allows it to run for at most p(m) steps, and if it does not halt then the output
of the candidate is set to some fixed value (e.g. to the all zero string).5

Functionality Test: A possible approach for testing the functionality of a candi-
date (such as agreement in key agreement or the transfer of the chosen secret in
oblivious transfer) is presented. This method may sometimes be helpful but at
other times impossible, depending on the specific primitive at hand. The idea is

5 Unless relevant, we omit the parameter p(·) from the text and simply assume that
the running time of all candidates is polynomial (a fact that is essential for most
proofs of security).
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to have each party simulate n2 random off-line executions of the candidate, and
accept only if the candidate always satisfies its defined functionality. For exam-
ple, in key agreement, each party simulates a random execution by playing the
roles of both players and checking whether they agree. After passing the test we
are assured that with probability 1−O(2−n) the candidate does what it is sup-
posed to with probability at least 1− 1

n . While this is a rather weak guarantee,
it is sometimes sufficient (as in the case of KA-combiners, see Section 3.3).

Note: The functionality and time tests may not be always necessary. For exam-
ple, when trying to combine two constructions based on two different computa-
tional assumptions, the functionality and running time are usually guaranteed
by the design of these constructions. These tests are necessary however in the
general case where nothing is known (e.g., in universal schemes, see Section 5.1).

3.2 Robust Combiners for OWFs and Equivalents

It is has long been known that one-way functions (OWF) have simple robust
combiners. For example, as pointed out in [15], simple concatenation of the OWF
candidates on independent inputs suffices . More precisely, given candidates fA

and fB , let F (x, y) = fA(x)|fB(y) (where fA and fB run in polynomial time).

Lemma 3.1 F is a robust OWF-combiner.

Lemma 3.1 (proof omitted) implies that all the primitives that are known to
be equivalent to OWF have robust combiners. By equivalent we mean, primitives
that have reductions to and from OWFs. Some of the more noteworthy equiv-
alent primitives are semantically secure private key encryption, pseudo-random
generators, functions and permutations, digital signatures and bit commitments.
The combiners for these primitives follow since given two candidates for prim-
itive P (from the list above), one can use the reduction from OWF to P to
create two candidates for OWFs. These two are then combined using the OWF-
combiner, which in turn is used to construct the primitive P from a OWF (with
the opposite reduction from P to OWFs).

Note, however, that for most of these primitives going via the reductions to
and from OWF is an overkill, and much more efficient and direct combiners can
be found. For example a combiner for pseudo-random generator is simply one that
XORs the outputs (thus the heavy reduction of [14] from pseudo-random genera-
tors to OWFs may be avoided). An exception is the case of bit commitments for
which we are only aware of the combiner via the OWF. Unlike the non-interactive
primitives in the list (that have very simple combiners), the suggested combiner
for commitment is highly inefficient (this issue is further discussed in Section 6).

3.3 Robust Key Agreement Combiner

Theorem 3.2 There exists a robust KA-combiner. The combiner reaches agree-
ment with all but a negligible probability. Furthermore, its round complexity is
at most that of the candidate with the higher number of rounds.6

6 By round complexity we mean the worst-case round complexity.
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Observe that a KA-combiner can be easily achieved if the functionality of both
candidates is guaranteed. The KA-combiner simply outputs an XOR of the out-
puts in the two candidates. If the functionality is not guaranteed, then the com-
biner for KA is constructed in two stages. First a KA-combiner with relaxed
agreement is constructed (a protocol in which the parties agree with all but a
polynomially small fraction). Then this is turned into a KA were the agreement
happens with overwhelming probability using an error correction code.

We note that the KA-combiner is a third party BB combiner. Also, since a 2
message KA protocol is equivalent to semantically secure (against chosen plain-
text attacks) Public Key Encryption (PKE), and since the KA-combiner main-
tains the same round complexity, we also get for free a robust PKE-combiner.

4 On Robust Combiners for Oblivious Transfer

4.1 Impossibility of Black Box Robust OT-Combiner

In contrast to all the other primitives mentioned here that had robust combiners
(and usually very simple ones), the situation of OT is left open. We do not know
of any OT-combiner, simple or complicated. The main result in this section
indicates that this is indeed a much harder problem.

We start by giving some intuition: Suppose that a combiner does exist for
OT, then this combiner works for every two candidates that we plug in, as long
as one of them is actually secure. The idea is to show that the OT-combiner will
work just as well when given two faulty candidates where one candidates is secure
only for Alice while the other is secure only for Bob. But this immediately yields
a contradiction, since two such faulty candidates can be naively constructed
under no assumptions at all, giving rise to an OT protocol based on no hardness
assumptions, which is impossible. An actual proof of this idea shows that any
attack on the combined OT taking the two faulty candidates, can be translated
to an attack on the combined OT that takes one truly secure candidate (and
one faulty candidate), thus breaking the security of the combiner. This intuition
is formalized in the following theorem:

Theorem 4.1 There exists no construction of a transparent black-box robust
OT-combiner.

We note that it is simpler to show the impossibility for third party BB combin-
ers. However, we work a bit harder in order to capture the notion of transparent
BB combiners, and in particular combiners that can also use the transcript of
the protocol. Recall that a transparent black-box combiner (defined in Section
2) is one in which the candidates are given via a “next message” oracle and
an output oracle. Whenever one of the parties calls a next message oracle it is
required to send the message generated to the other party.

Proof: Similarly to many black box impossibility results (starting with the
seminal paper of Impagliazzo and Rudich [18]), Theorem 4.1 is proved by trying
to show a “world” in which OT exists, but OT-combiners do not. The argument
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however must be changed, since in every world that has OT, an OT-combiner
does exists, simply by running the correct OT protocol. Instead, the actual proof
shows two worlds such that every transparent black-box OT-combiner is insecure
in at least one of them (we show this even in the semi-honest model7).

We define two oracle worlds: World1 and World2. Both worlds contain a
PSPACE-complete oracle and an implementation of two OTs: OTA and OTB .
The implementation is rather straightforward and each OT is composed of three
oracles (presented below). In each world one of the implementations is made
flawed by adding an inverter for some of the oracles. Specifically, in World1 OTA

is insecure and OTB is secure and in World2 OTA is secure and OTB is insecure.
We now consider the application of the combiner on candidates OTA and OTB in
these two worlds. Let us denote the resulting protocol by OTcmb. Note that OTA

and OTB look identical from the point of view of the combiner in both worlds.
Since in each of the worlds one of the OTs is secure, then by the definition of the
combiner, OTcmb should be secure in both worlds. We claim that OTcmb fails in
at least one of these worlds, thus contradicting the existence of a combiner.

To prove our claim, we appeal to a “bare” world containing solely a PSPACE-
complete oracle (this oracle already exists in World1 and World2 and we will
explain its significance shortly). In the bare world we simulate OTcmb. Note that
OTcmb is well defined once we plug in an implementation for OTA and OTB .
Therefore, in order to implement OTcmb we give a naive implementation of both
OTA and OTB in the bare world. For this the sender (of OTcmb) simulates OTA

and the receiver (of OTcmb) simulates OTB . Meaning for example that whenever
OTcmb requires the receiver (of OTcmb) to query one of the functions of OTA

(either as a receiver or as a sender of this invocation of OTA), the receiver will
ask the sender (of OTcmb) this query (in the clear) and the sender will return the
answer (again in the clear). These simulations of OTA and OTB are obviously
insecure and therefore the resulting implementation of OTcmb is also be insecure
(in fact, no implementation of OT can be secure in the bare world since with
the PSPACE oracle no crypto is possible).

So what is the point of considering this naive implementation of OTcmb in a
world where this implementation is bound to fail? The point is that the failure
of OTcmb in the bare world translates to a failure of OTcmb either in World1 or in
World2. This is exactly what we need to complete the proof. Assume for example
that the receiver of OTcmb in the bare world learns both secrets. In this case,
the receiver of OTcmb in World2 can also learn both secrets. This is because the
receiver of in the bare world gains precisely the same knowledge as the receiver
of in World2: Both learn all inputs to OTB . In the bare world the receiver learns
it as it simulates OTB and in World2 the receiver learns it through the inverter
for OTB . We next give a formal proof.

We present an oracle that enables the execution of an OT protocol. This
oracle is composed of a triplet of functions OT = (f1, f2, R) as follows:

7 Recall that in the Semi-Honest model the parties follow the protocol as prescribed,
but perhaps later try to learn more information than intended.
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– f1 is a length tripling random function8 that takes the receiver’s choice bit c
and randomness rR and outputs m1 = f1(rR, c) that is used as the receiver’s
message.

– f2 is also a length tripling random function that takes the sender’s inputs
s0, s1 and randomness rS and the receiver’s message m1 and outputs the
sender’s message m2 = f2(rS , s0, s1,m1).

– R is called by the receiver, it takes m2 along with rR and c and outputs the
secret sc (if the inputs are consistent).

Using the above oracle it is possible to implement a secure OT protocol in a
straightforward manner. Notice that the receiver learns the secret of his choice.
On the other hand since the parties cannot invert the random functions, then
the messages give them essentially no additional information. Moreover, this is
true even in the presence of a PSPACE-complete oracle as stated in the following
claim (given here without a proof):

Claim 4.2 The procedure defined by the oracle (f1, f2, R) is a secure OT pro-
tocol even in the presence of a PSPACE-complete oracle.

In addition to the functions enabling an OT oracle, we may add another oracle
for breaking such an OT. This oracle simply inverts the functions f1, f2, and
thus leaks both secrets to the receiver and the choice bit to the sender.9

The two worlds: We can now define the two oracle worlds.

– World1, contains:
1. A PSPACE-complete oracle.
2. Two OT oracles OTA = (fA

1 , f
A
2 , R

A) and OTB = (fB
1 , fB

2 , RB).
3. The oracle InvA for inverting OTA.

– World2, contains:
1. A PSPACE-complete oracle.
2. Two OT oracles OTA = (fA

1 , f
A
2 , R

A) and OTB = (fB
1 , fB

2 , RB).
3. The oracle InvB for inverting OTB .

Now consider a robust OT-combiner that takes OTA and OTB as candidates
and call this protocol OTcmb. By the definition of a combiner, OTcmb should
securely implement an OT protocol in each of the two worlds, since in both
worlds one of the two candidates remains secure. We achieve a contradiction by
showing that if the OT-combiner is transparent black-box then there exists an
attack on the protocol OTcmb in at least one of the two worlds.

8 A length tripling random function is a function f : {0, 1}n → {0, 1}3n that sends
each input value to an independently chosen random value in the output domain.

9 This inverting oracle is possible since with overwhelming probability f1 and f2 are
one-to-one functions (as they are random function and by a simple birthday argu-
ment are not likely to have any collisions).
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The Bare World and Simulating OTcmb: To show the attack on OTcmb, we turn
to the “bare” world that contains just the PSPACE oracle but not the OT
oracles. For every instantiation of OTcmb in worlds 1 and world 2, we give a
matching protocol called OTbare in the bare world. The new protocol in the bare
world imitates OTcmb with the exception that the sender of OTcmb simulates the
oracle OTA (we explain below what we mean by simulating an OT oracle) and
the receiver of OTcmb simulates OTB . Note that the sender of OTcmb simulates
OTA whether he acts as sender or receiver in the specific invocation of OTA (and
likewise for the receiver of OTcmb simulating OTB).

A party simulates an oracle by answering every query to the functions f1 or
f2 by a random value. In addition, the party records all the answers he gave to
queries during the protocol’s execution. When the function R of the OT oracle
is queried, the party simply inverts the functions using the records he stored in
memory, allowing him to reply with the proper answer.10

The first thing to notice is that OTbare indeed has the functionality of an
OT protocol (perhaps up to a negligible error). This is since the simulations of
OTA and OTB are consistent with actual OT implementations. On the other
hand, OTbare cannot be a secure OT protocol. This is simply due to the known
fact that there exists no unconditional construction for OT (this may be traced
back to [7] or even [4]). We give a more precise interpretation of this claim:
An OT protocol is defined by the parties inputs s0, s1 and c, along with their
respective random coins rS and rR. Denote by viewOT

S (and viewOT
R ) the view

of the sender (receiver) in this protocol (including the party’s input, randomness
and the messages in the transcript).

Claim 4.3 For every implementation of OT, there exist poly-time procedures AS

and AR with access to the PSPACE-complete oracle such that for every choice of
s0, s1, c, rS , rR we have that either AS(viewOT

S ) = c or AR(viewOT
R ) = (s0, s1).

In particular, there exist two procedures AS and AR as above that constitute a
break of OTbare. Claim 4.3 is given here without a proof.

The attack on OTcmb: To conclude the proof, we show that the attack AS on
OTbare can be equally successful when applied in World1 on OTcmb. Likewise,
the attack AR, can be used on OTcmb in World2.

The attack of the sender of OTcmb in World1 is achieved as follows: Let the
sender simulate the view of the sender in OTbare, and run AS on this view. Denote
the simulated view by viewWorld1

S , which is generated as follows: The sender
runs OTcmb as prescribed (recall that OTbare follows the same prescription),
but whenever the oracle OTA is called (by either side), the sender calls the
inverting oracle InvA and records the inputs and outputs to the oracle. Here it
is crucial that the sender is aware of all the answers that the receiver got for his
queries to OTA, which is guaranteed by the transparent black-box structure of
the combiner.

10 We assume here that the OT oracle answers a ⊥ whenever an illegal input is given.
The simulator simply does the same when he gets a query with an input that was
not previously in his memory (and thus not a legal input).
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The way OTbare was constructed ensures that every choice of oracles OTA and
OTB is consistent with some randomness of the sender and receiver in OTbare.
Thus for every execution of OTcmb with inputs s0, s1 and c, there exists an
execution of OTbare with the same inputs, for which viewWorld1

S is identical to
the view in OTbare (denoted viewbare

S ). Thus whenever AS(viewbare
S ) = c in the

bare world, then is also AS(viewWorld1
S ) = c in World1. Respectively, in World2,

for the exact same execution of OTcmb, the receiver can simulate the view in the
same corresponding execution of OTbare. Now whenever AR(viewbare

R ) = (s1, s2)
in the bare world, then is also AR(viewWorld2

R ) = (s1, s2) in World2. Combining
this with Claim 4.3 we get that there exist procedures A′

S and A′
R, such that

for every execution of OTcmb, either A′
S breaks it in World1 or A′

R breaks it in
World2. ��

4.2 (2,3)-Robust OT-Combiner

The results of the previous section indicate that (1,2)-Robust OT-combiners
seem out of our reach at this point. We can however give a solution to the
slightly more modest task of (2,3)-Robust OT-combiner. This solution is a third
party black-box combiner and relies on some often used techniques of Crépeau
and Kilian [8] for amplifying the security in weak versions of OT protocols.

Claim 4.4 There exists a (2,3)-robust OT-combiner scheme.

Furthermore, the (2,3)-combiner is very efficient, making just 6 calls to the can-
didates. The efficiency is essential for the application Section 5. Due to space
limitations we give here only a description of the construction and defer the
proof of its security to the full version of this paper. For simplicity we will dis-
cuss OT on single bits, although everything can be generalized for strings in a
straightforward manner.

Consider 3 candidates for oblivious transfer OTA,OTB ,OTC . We first use a
construction that takes 2 OT candidates and always maintains the security of
the receiver.
R(OTA,OTB)(s0, s1; c) is defined as follows:

1. The sender chooses a random bit r
2. The receiver chooses random bits c0, c1 such that c0 ⊕ c1 = c
3. The parties run OTA(r, r ⊕ s0 ⊕ s1; c0) and OTB(r ⊕ s0, r ⊕ s1; c1)
4. The receiver outputs the XOR of his outputs in both executions.

We next present another construction that takes 3 candidates for OT and
strongly protects the sender. Define S(OTA,OTB ,OTC)(s0, s1; c) as follows:

1. The sender chooses random bits rA
0 , r

B
0 , r

C
0 and rA

1 , r
B
1 , r

C
1 subject to rA

0 ⊕
rB
0 ⊕ rC

0 = s0 and rA
1 ⊕ rB

1 ⊕ rC
1 = s1.

2. The parties run OTA(rA
0 , r

A
1 ; c), OTB(rB

0 , r
B
1 ; c) and OTC(rC

0 , r
C
1 ; c).

3. The receiver outputs the XOR of his outputs in the three candidates.

Finally, define OTAB = R(OTA,OTB), OTAC = R(OTA,OTC) and OTBC =
R(OTB,OTC). The (2,3)-robust OT-combiner is defined as S(OTAB ,OTAC ,OTBC).
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An alternative construction is to create an OT that is secure with probabil-
ity 2

3 simply by first randomly choosing one of the three candidates and then
applying it. In [9] it was shown how such an OT can be amplified to one that is
secure with all but a negligible probability. However the construction presented
here is much more efficient, a fact that is later used in Section 5.

5 From (1,2)-Combiners to (1,n)-Combiners

(1,2)-robust combiners are essential for the existence of (1,n)-robust combiners.
It is interesting to study under what conditions (1,2)-combiners suffice for the
construction of (1,n)-combiners.

For some primitives, (1,k)-combiners can be reached as a simple extension
of the construction of (1,2)-combiners (for instance, the KA-combiner presented
in Section 3.3 extends easily). However, this is not clear for all combiners, and
depends on the specific primitive at hand. We try to give more generic answers
to the question posed above.

The natural construction takes the k candidates and organizes them as leaves
of a binary tree, and applies the (1,2)-Robust P-combiner scheme for every in-
ternal node (in a bottom up fashion). Now, by the properties of the combiner,
for every node that securely implements P, its ancestor must also securely im-
plement P. The output of the whole tree must therefore also securely implement
P since the root is an ancestor to all leaves. This construction is indeed a (1,k)-
combiner provided that the running time is polynomial. However, the depth of
the tree is logarithmic in k, and if the running time of the (1,2)-combiner is m
times that of its candidates, then the running time of the whole construction
is mΩ(logk). Thus, in order for the running time to be polynomial, m must be
a constant. We distinguish between general (polynomial time) combiners and
very efficient ones. A combiner is said to be very efficient if its running time
is bounded by a constant times the running time of its candidates (for example,
the combiners for OWFs and pseudorandom generators are very efficient).

Lemma 5.1 For any P and for all k, any very efficient (1, 2)-Robust P-combiner
can be turned into a (1, k)-Robust P-combiner.

As suggested above, the tree construction is not efficient when the running
time of the (1,2)-combiner is polynomial time. This is troubling since if a (non-
BB) OT-combiner is eventually found, it is not very likely that it will be a very
efficient one. Nevertheless, it will still suffice for constructing (1,n)-combiners
for OT. We show that given a very efficient (2,3)-combiner, one can construct
(1,n)-combiners from any (not necessarily very efficient) (1,2)-combiner. This
result along with the very efficient (2,3)-combiner for OT (Section 4.2) allow us
to focus our attention on constructing (1,2)-combiners for OT.

Theorem 5.2 Any (1,2)-robust combiner for OT, can be used to construct a
(1, k)-Robust combiner for OT.
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Proof: The construction of the (1,k)-combiner makes use of the (2,3)-robust
OT-combiner presented in Section 4.2. The crux being that the (2,3)-combiner
for OT is very efficient (in fact it makes just 6 calls to its candidates, though
we simply use the multiplicative constant c). Divide the k candidates into three
groups of size 2

3k such that each candidate appears in at least two of the groups.
For instance, take the first two thirds as group 1, the second two thirds as group
2 and the first and last thirds as group 3. The construction recursively computes
a (1, 2

3k)-combiner on each of these groups. The 3 outcomes of these combiners
are given as input to the (2,3)-combiner.

Since one candidate is guaranteed to be secure, at least 2 of the combiners on
the 3 groups implement secure OT protocols. Therefore the outcome of the (2,3)-
combiner securely implements OT. Let t(k) be the running time of the (1,k)-
combiner. The base of the recursion is a (1,2)-combiner that takes a polynomial
time (say t(2) = nd for constant d). The recursion gives us running time t(k) =
3c · t(2k

3 ). Altogether this gives t(k) = (3c)log3/2 k · nd which is polynomial.
Note that the (1, n)-combiner can be made to work even if the OT func-

tionality11 of the candidates is not guaranteed. This is achieved by testing the
functionality of all candidates in advance and using an error correcting code as
well. ��

5.1 Universal Schemes for Primitives

Definition 5.3 (Universal Schemes). A universal scheme U for a crypto-
graphic primitive P is an explicit construction with the property that if the prim-
itive P exists, then U is a secure implementation of P.

Levin [21] introduced such a scheme for OWFs. He showed an explicit function
which is a OWF under the sole assumption that OWFs exist. In a sense, the
meaning of such a universal scheme U for P is that any proof of existence for P is
guaranteed to be a constructive one, since, once P is proved to exist then U is an
explicit implementation of P. The property that allowed Levin’s universal-OWF
schemes is the existence of robust combiners for OWFs. We try to formalize this
connection for other primitives as well.

Lemma 5.4 For any cryptographic primitive P, a Universal-P scheme can be
provided if:

1. There is a known polynomial p(·) such that if there exists an implementation
for P then there also exists an an implementation for P with running time
bounded by p(n).

2. P admits (1, k)-robust combiners (for k a super-constant (ω(1)) in the secu-
rity parameter n).

Proof: The general idea of the universal scheme is to go over all possible im-
plementation programs, hoping that at least one of them will fulfill our need.

11 The OT functionality is that the receiver gets the bit of his choice.

Then use the combiner to unite all of the programs into one that implements
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the primitive P. More precisely, the universal scheme U with security parameter
1n goes over all of the Turing machines12 of description length at most logn and
unites them into one program using the (1,n)-Robust P-combiner with polyno-
mial p(n) as a time bound. So if a program implementing P exists then for some
large enough n, this program is included in the n programs that U executes, and
by the robustness of the P-combiner we have that U is also an implementation
of P. ��

Lemma 5.4 requires two properties of a primitive, the first asks that a time
bound will be known on some implementation of P. This property is very likely
to be true about cryptographic primitives due to a padding argument similar
to the one used for universal OWF in [13] (omitted her due to space limitations).
The padding argument works for most of the primitives we can think of. However
care needs to be taken with primitives such as pseudorandom generators where
padding of the input must also involve padding of the output. In the case of
pseudorandom generators, for instance, it is easy to find a slightly modified
argument that will work.

As corollaries of the above claims we get explicit constructions of many cryp-
tographic primitives such as Universal-OWF and Universal-KA. Due to Theorem
5.2 We further get:

Corollary 5.5 Any (1,2)-robust combiner for OT, can be used to construct a
universal-OT scheme.

Note that in a computational setting, a (1,2)-combiner for OT can simply ignore
the candidate and run a universal-OT scheme (this is a non-black-box combiner).
Thus, in this setting we can say that (1,2)-combiners for OT exist if and only if
universal schemes for OT exist.

6 Open Problems

The most intriguing question that rises from this paper is whether robust OT-
combiners exist or not. Black box impossibility results have already been by-
passed in the past, for instance, in the work of Barak [2]. We believe however,
that solving this problem will require an altogether new technique. The tech-
niques of [2, 3] do not seem to help here. The reason being that this technique
makes use of an explicit description of the adversary’s program, which is of im-
portance when dealing with malicious behavior. However our problem is inter-
esting also in the semi-honest model, where such a program is constant. Another
direction would be to try and reach a full impossibility result for general (rather
then transparent) black-box combiners.

An interesting question about combiners regards the bit commitment prim-
itive. For computationally hiding and statistically binding bit commitments we

12 This step depends highly on the nature of the primitive P. For example, if P is
an interactive protocol (like key agreement), then we enumerate interactive Turing
machines.
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know how to build robust combiners, via the reduction to OWFs (given a OWF,
commitments can be constructed using the reductions of Naor [22] and Hastad
et al. [14]) which gives an inefficient combiner. It would be interesting to find
a direct and more efficient combiner for commitments. For statistically hiding
(computationally Binding) commitments the question of combiners is altogether
open. 13 It is worth noting that no third party BB combiners for commitments
exist (for both types of commitments). This can be shown using the same tech-
nique from our impossibility result for OT (Theorem 4.1). On the positive side,
there is a very efficient (2,3)-robust combiner for commitments (shown in [15]).
Also, if the security of one of the party’s is guaranteed then constructing com-
biners for commitments is easy. An example for such a case is commitments to
strings where the commitment is much shorter than the secret (as in [20]).

Acknowledgements. We thank the anonymous referees for their helpful com-
ments.
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Abstract. We present the first efficient Identity-Based Encryption (IBE)
scheme that is fully secure without random oracles. We first present our
IBE construction and reduce the security of our scheme to the decisional
Bilinear Diffie-Hellman (BDH) problem. Additionally, we show that our
techniques can be used to build a new signature scheme that is secure
under the computational Diffie-Hellman assumption without random or-
acles.

1 Introduction

Identity-Based Encryption allows for a party to encrypt a message using the
recipient’s identity as a public key. The ability to use identities as public keys
avoids the need to distribute public key certificates. This can be very useful in
applications such as email where the recipient is often off-line and unable to
present a public-key certificate while the sender encrypts a message.

The first efficient and secure method for Identity-Based Encryption was put
forth by Boneh and Franklin [4]. They proposed a solution using efficiently com-
putable bilinear maps that was shown to be secure in the random oracle model.
Since then, there have been schemes shown to be secure without random oracles,
but in a weaker model of security know as the Selective-ID model [9, 1]. Most
recently, Boneh and Boyen [2] described a scheme that was proved to be fully
secure without random oracles; the possibility of such a scheme was to that point
an open problem. However, their scheme is too inefficient to be of practical use.

We present the first efficient Identity-Based Encryption scheme that is fully
secure without random oracles. The proof of our scheme makes use of an algebraic
method first used by Boneh and Boyen [1] and the security of our scheme reduces
to the decisional Bilinear Diffie-Hellman (BDH) assumption.

We additionally show that our IBE scheme implies a secure signature scheme
under the computational Diffie-Hellman assumption without random oracles.
Previous practical signature schemes that were secure in the standard model
relied on the Strong-RSA assumption [12, 11] or the Strong-BDH assumption [3].

1.1 Related Work

Shamir [16] first presented the idea of Identity-Based Encryption as a challenge
to the research community. However, the first secure and efficient scheme of

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 114–127, 2005.
c© International Association for Cryptologic Research 2005
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Boneh and Franklin[4] did not appear until much later. The authors took a
novel approach in using efficiently computable bilinear maps in order to achieve
their result.

Canetti et. al. [9] describe a weaker model of security for Identity-Based
Encryption that they term the Selective-ID model. In the Selective-ID model
the adversary must first declare which identity it wishes to be challenged on
before the global parameters are generated. The authors provide a scheme that
is provably secure in the Selective-ID model without random oracles. Boneh and
Boyen [1] improve upon this result by describing an efficient scheme that is secure
in the Selective-ID model.

Finally, Boneh and Boyen [2] describe a scheme that is fully secure without ran-
dom oracles. However, their construction is too inefficient to be of practical use.

1.2 Organization

We organize the rest of the paper as follows. In Section 2 we give our security
definition. In Section 3 we describe our complexity assumptions. In Section 4 we
present the construction of our IBE scheme and follow with a proof of security
in Section 5. In Section 6 we discuss how our scheme can be extended to a hier-
archical identity-based encryption scheme and how that can be used to achieve
CCA-security. We discuss the transformation to a signature scheme in Section 7.
Finally, we conclude in Section 8.

2 Security Definitions

In this section we present the definition of semantic security against passive
adversaries for Identity-Based Encryption. This definition was first described by
Boneh and Franklin [4]. Consider the following game played by an adversary.
The game has four distinct phases:

Setup. The challenger generates the master public parameters and gives them
to the adversary.

Phase 1. The adversary is allowed to make a query for a private key, v, where v
is an identity specified by the adversary. The adversary can repeat this multiple
times for different identities.

Challenge. The adversary submits a public key, v∗, and two messages M0 and
M1. The adversary’s choice of v∗ is restricted to the identities that he did not
request a private key for in Phase 1. The challenger flips a fair binary coin,γ,
and returns an encryption of Mγ under the public key v∗.

Phase 2. Phase 1 is repeated with the restriction that the adversary cannot
request the private key for v∗.

Guess. The adversary submits a guess, γ′, of γ.
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Definition 1 (IBE Semantic Security). An Identity-Based Encryption
scheme is (t, q, ε)-semantically secure if all t-time adversaries making at most
q private key queries have at most an ε in breaking our scheme.

3 Complexity Assumptions

We briefly review the facts about groups with efficiently computable bilinear
maps. We refer the reader to previous literature [4] for more details.

Let G, G1 be s groups of prime order p and g be a generator of G1. We say
G1 has an admissible bilinear map, e : G×G → G1, into G1 if the following two
conditions hold. The map is bilinear; for all a, b we have e(ga, gb) = e(g, g)ab.
The map is non-degenerate; we must have that e(g, g) 	= 1.

3.1 Decisional Bilinear Diffie-Hellman (BDH) Assumption

The challenger chooses a, b, c, z ∈ Zp at random and then flips a fair binary coin
β. If β = 1 it outputs the tuple (g,A = ga,B = gb,C = gc, Z = e(g, g)abc).
Otherwise, if β = 0, the challenger outputs the tuple (g,A = ga,B = gb,C =
gc, Z = e(g, g)z). The adversary must then output a guess β′ of β.

An adversary, B, has at least an ε advantage in solving the decisional BDH
problem if

∣∣∣∣Pr
[
B
(
g, ga, gb, gc, e(g, g)abc

)
= 1
]

− Pr
[
B
(
g, g, ga, gb, gc, e(g, g)z

)
= 1
] ∣∣∣∣ ≥ 2ε

where the probability is over the randomly chosen a, b, c, z and the random bits
consumed by B. We refer to the left hand side as PBDH and the right hand side
as RBDH .

Definition 2. The decisional (t, ε)-BDH assumption holds if no t-time adver-
sary has at least ε advantage in solving the above game.

3.2 Computational Diffie-Hellman (DH) Assumption

The challenger chooses a, b ∈ Zp at random and outputs (g,A = ga,B = gb).
The adversary then attempts to output gab ∈ G. An adversary, B, has at least
an ε advantage if

P r
[
B
(
g, ga, gb

)
= gab

]
≥ ε

where the probability is over the randomly chosen a, b and the random bits
consumed by B.

Definition 3. The computational (t, ε)-DH assumption holds if no t-time ad-
versary has at least ε advantage in solving the above game.
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4 Construction

Our construction can be viewed as a modification of the Boneh-Boyen [1] scheme.
We first present our construction then describe its relation to the Boneh-Boyen
scheme.

Let G be a group of prime order, p, for which there exists an efficiently
computable bilinear map into G1. Additionally, let e : G × G → G1 denote
the bilinear map and g be the corresponding generator. The size of the group is
determined by the security parameter. Identities will be represented as bitstrings
of length n, a separate parameter unrelated to p. We can also let identities be
bitstrings of arbitrary length and n be the output length of a collision-resistant
hash function, H : {0, 1}∗ → {0, 1}n. Our construction follows.

Setup. The system parameters are generated as follows. A secret α ∈ Zp is
chosen at random. We choose a random generator, g ∈ G, and set the value
g1 = gα and choose g2 randomly in G. Additionally, the authority chooses a
random value u′ ∈ G and a random n-length vector U = (ui), whose elements
are chosen at random from G. The published public parameters are g,g1, g2,u′,
and U . The master secret is gα

2 .

Key Generation. Let v be an n bit string representing an identity, vi denote the
ith bit of v, and V ⊆ {1, . . . , n} be the set of all i for which vi = 1. (That is V is
the set of indicies for which the bitstring v is set to 1.) A private key for identity
v is generated as follows. First, a random r ∈ Zp is chosen. Then the private key
is constructed as:

dv =

(
gα
2

(
u′
∏
i∈V

ui

)r

, gr

)
.

Encryption. A message M ∈ G1 is encrypted for an identity v as follows. A
value t ∈ Zp is chosen at random. The ciphertext is then constructed as

C =

⎛⎝e(g1, g2)tM, gt,

(
u′
∏
i∈V

ui

)t
⎞⎠ .

Decryption. Let C = (C1,C2,C3) be a valid encryption of M under the identity
v. Then C can be decrypted by dv = (d1, d2) as:

C1
e(d2,C3)
e(d1,C2)

=
(
e(g1, g2)tM

) e(gr,
(
u′
∏

i∈V ui

)t)
e(gα

2

(
u′
∏

i∈V ui

)r
, gt)

=
(
e(g1, g2)tM

) e(g,
(
u′
∏

i∈V ui

)rt)

e(g1, g2)te(
(
u′
∏

i∈V ui

)rt
, g)

= M.
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4.1 Efficiency

If the value of e(g1, g2) is cached then encryption requires on average n
2 (and at

most n) group operations in G, two exponentiations in G, one exponentiation
in G1, and one group operation in G1. Decryption requires two bilinear map
computations, one group operation in G1 and one inversion in G1.

4.2 Similarity to Boneh-Boyen

Our construction is a modification of Boneh and Boyen’s [1] in that that for an
identity v we evaluate u′

∏
i∈V ui whereas in their scheme they evaluate u′gv

1 ,
where v is interpreted as an integer. (We technically are referring to the first
scheme presented in Boneh-Boyen [1] when only a level one hierarchy is used. Al-
though, our scheme can be extended to be a hierarchical scheme in an analogous
manner.) In the next section we show that, remarkably, this small modification
is all that is needed to make the scheme fully secure.

5 Security

We now prove the security of our scheme.

Theorem 1. Our IBE- scheme is (t, q, ε) secure assuming the decisional (t +
O(ε−2 ln(ε−1)λ−1 ln(λ−1)), ε

32(n+1)q ) BDH assumption holds, where λ = 1
8(n+1)q .

Proof. Suppose there exists a (t, q, ε)-adversary, A against our scheme. We con-
struct a simulator, B, to play the decisional BDH game. The simulator will
take BDH challenge (g,A = ga,B = gb,C = gc, Z) and outputs a guess, β′, as
to whether the challenge is a BDH tuple. The simulator runs A executing the
following steps.

5.1 Simulator Description

Setup. The simulator first sets an integer, m = 4q, and chooses an integer, k,
uniformly at random between 0 and n. It then chooses a random n-length vector,
−→x = (xi), where the elements of −→x are chosen uniformly at random from the
integers between 0 and m−1 and a value, x′, chosen uniformly at random between
0 and m− 1. Let X∗ denote the pair (x′,−→x ) Additionally, the simulator chooses
a random y′ ∈ Zp and an n-length vector, −→y = (yi), where the elements of −→y
are chosen at random in Zp. These values are all kept internal to the simulator.

Again, for an identity v we will let V ⊆ {1, . . . , n} be the set of all i for
which vi = 1 For ease of analysis we define three functions. We define F (v) =
(p −mk) + x′ +

∑
i∈V xi and define J(v) = y′ +

∑
i∈V yi. Finally, we define a

binary function K(v) as

K(v) =

{
0, if x′ +

∑
i∈V xi ≡ 0 (mod m)

1, otherwise.
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The simulator assigns g1 = A and g2 = B. It then assigns the public pa-
rameters u′ = gp−km+x′

2 gy′
and U as ui = gxi

2 gyi . From the perspective of the
adversary the distribution of the public parameters is identical to the real con-
struction.

Phase 1. The adversary, A, will issue private key queries. Suppose the adversary
issues a query for an identity v. If K(v) = 0 the simulator aborts and randomly
chooses its guess β′ of the challenger’s value β.

Otherwise, the simulator chooses a random r ∈ Zp. Using the technique
described by Boneh and Boyen [1] it constructs the private key, d, as

d = (d0, d1) =

(
g

−J(v)
F (v)

1 (u′
∏
i∈V

ui)r, g
−1

F (v)
1 gr

)
.

Let r̃ = r − a
F (v) . Then we have

d0 = g
−J(v)
F (v)

1 (u′
∏

i∈v ui)r

= g
−J(v)
F (v)

1 (gF (v)
2 gJ(v))r

= ga
2 (gF (v)

2 gJ(v))−
a

F (v) (gF (v)
2 gJ(v))r

= ga
2 (u′

∏
i∈V ui)

r− a
F (v)

= ga
2 (u′

∏
i∈V ui)r̃.

Additionally, we have

d1 = g
−1

F (v)
1 gr = gr− a

F (v) = gr̃.

This simulator will be able to perform this computation iff F (v) 	= 0 mod p.
For ease of analysis the simulator will only continue (not abort) in the sufficient
condition where K(v) 	= 0. (If we have K(v) 	= 0 this implies F (v) 	= 0 mod p
since we can assume p > nm for any reasonable values of p, n, and m).

Challenge. The adversary next will submit two messages M0, M1 ∈ G1 and an
identity, v∗. If x′+

∑
i∈V∗ xi 	= km the simulator will abort and submit a random

guess for β′. Otherwise, we have F (v∗) ≡ 0 (mod p) and the simulator will flip
a fair coin, γ, and construct the ciphertext

T = (ZMγ ,C,CJ(v∗)).

Suppose that the simulator was given a BDH tuple, that is Z = e(g, g)abc.
Then we have

T =
(
e(g, g)abcMγ , gc, gcJ(v∗)

)
=

(
e(g1, g2)cMγ , gc, (u′

∏
i∈V∗

ui)c

)
.

We see that T is a valid encryption of Mγ .
Otherwise, we have that Z is a random element of G. In that case the cipher-

text will give no information about the simulator’s choice of γ.
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Phase 2. The simulator repeats the same method it used in Phase 1.

Guess. Finally, the adversary A outputs a guess γ′ of γ.

Artificial Abort. At this point the simulator is still unable to use the output
from the adversary. An adversary’s probability of success could be correlated
with the probability that the simulator needs to abort. This stems from the
fact that two different sets of q private key queries may cause the simulator
to abort with different probabilities. In the worst case we might worry that
Pr[γ = γ′|abort] − 1

2 = 0 (or some negligible value) in the simulation even if
Pr[γ = γ′]− 1

2 = ε for some non-negligible ε.
The simulator corrects for this by forcing all possible sets of queries of the

adversary to cause the simulator to abort with (almost) the same probability
(1-λ), where (1-λ) is a lower bound on any set of private key queries causing an
abort before this stage.

Let −→v = v1, . . . vq denote the private key queries made in Phase 1 and Phase
2 and let v∗ denote the challenge identity and we let V∗ ⊆ {1, . . . , n} be the
set of all i for which v∗

i = 1. (All of these values are defined at this point in
the simulation.) First, we define the function τ(X ′,−→v , v∗), where X ′ is a set of
simulation values x′, x1, . . . , xn, as

τ(X ′,−→v , v∗) =

{
0, if (

∧q
i=1 K(vi) = 1) ∧ x′ +

∑
i∈V∗ xi = km

1, otherwise.

The function τ(X ′,−→v , v∗) will evaluate to 0 if the private key and challenge
queries −→v , v∗ will not cause an abort for a given choice of simulation values, X ′.
We can now consider the probability over the simulation values for a given set
of queries, −→v , v∗, as η = PrX′ [τ(X ′,−→v , v∗) = 0].

The simulator samples O(ε−2 ln(ε−1)λ−1 ln(λ−1)) times the probability η by
choosing a random X ′ and evaluating τ(X ′,−→v , v∗) to compute an estimate η′.
We emphasize that the sampling does not involve running the adversary again.
Let λ = 1

8nq , be the lower bound on the probability of not aborting for any set of
queries. (We show how to calculate λ below.) Then if η′ ≥ λ the simulator will
abort with probability η′−λ

η′ (not abort with probability λ
η′ ) and take a random

guess β′. Otherwise, the simulator will not abort.
If the simulator has not aborted at this point it will take check to see if the

adversary’s guess, γ′ = γ. If γ′ = γ then the simulator outputs a guess β′ = 1,
otherwise it outputs β = 0.

This concludes the description of the simulator.

5.2 Analysis

Our simulator is difficult to analyze directly since it might abort before all of the
queries are made. For ease of exposition we now describe a second simulation,
which we will use to reason about the output distribution of the first simulation.
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Setup. The simulator chooses the secret key gα
2 as in the construction and then

chooses X∗,−→y as in the first simulation and derives u′, U in the same way. It
then runs the adversary.

Phase 1. The simulator responds to private key queries by using the master key
as in the construction, in this way all queries can be answered.

Challenge. The simulator receives the challenge messages M0, M1. The second
simulator will flip two coins β and γ. If β = 0 then it encrypts a random message
and if β = 1 it encrypts Mγ .

Phase 2. Same as Phase 1.

Guess. The simulator receives a guess γ′ from the adversary. At this point the
simulator has seen as the private key queries and the challenge query (−→v , v∗). It
evaluates the function τ(X∗,−→v , v∗) and aborts if it evaluates to 1, outputting a
random guess of β′.

Artificial Abort. The last step is done in exactly the same way as the first sim-
ulation. This ends the description.

We first equate the probabilities of the both simulators with the following
claim.

Claim. The probabilities Pr[β′ = β] are the same in both the first and second
simulations we described.

Proof. The second simulation runs the adversary completely and receives all of
its queries. In the guess phase it checks if τ(X∗,−→v , v∗) = 1 and aborts if so. The
check decides if there was a point where the first simulator would have needed
to abort during the simulator and take a random guess. If so the second simula-
tor aborts and takes a random guess itself. Additionally, all public parameters,
private key queries, and challenge ciphertexts have the same distribution up to
the point of a possible abortion. The artificial abort stages are also identical.
Therefore, we can reason that the output distributions will be the same. ��

For purpose of exposition, we will now derive the success of the simulator in
terms of the second simulator. However, due to Claim 5.2 the discussion applies
to both simulators equally.

Claim. The probability of the simulation not aborting by the guess phase is at
least λ = 1

8(n+1)q .

Proof. We calculate a lower bound, λ as the lower bound of PrX′ [τ(X ′,−→v , v∗) =
0] for all −→v , v∗. Without loss of generality we can assume the adversary always
makes the maximum number of queries, q. For any set of q queries v1, . . . , vq and
challenge identity, v∗, we have Pr[abort] = Pr[(

∧q
i=1 K(vi) = 1) ∧

∑
i∈V∗ xi =

km]. We can then lower bound the probability of not aborting as follows.
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Pr[(
q∧

i=1

K(vi) = 1) ∧
∑
i∈V∗

xi = km] (1a)

= (1− Pr[
q∨

i=1

K(vi) = 0]) Pr[
∑
i∈V∗

xi = km|
q∧

i=1

K(vi) = 1] (1b)

≥ (1−
q∑

i=1

Pr[K(vi) = 0]) Pr[
∑
i∈V∗

xi = km|
q∧

i=1

K(vi) = 1] (1c)

= (1− q

m
) Pr[

∑
i∈V∗

xi = km|
q∧

i=1

K(vi) = 1] (1d)

=
1

n + 1
(1− q

m
) Pr[K(v∗) = 0|

q∧
i=1

K(vi) = 1] (1e)

=
1

n + 1
(1− q

m
)

Pr[K(v∗) = 0]
Pr[
∧q

i=1 K(vi) = 1]
Pr[

q∧
i=1

K(vi) = 1|K(v∗) = 0] (1f)

≥ 1
(n + 1)m

(1− q

m
) Pr[

q∧
i=1

K(vi) = 1|K(v∗) = 0] (1g)

=
1

(n + 1)m
(1− q

m
)(1− Pr[

q∨
i=1

K(vi) = 0|K(v∗) = 0]) (1h)

≥ 1
(n + 1)m

(1− q

m
)(1−

q∑
i=1

Pr[K(vi) = 0|K(v∗) = 0]) (1i)

=
1

(n + 1)m
(1− q

m
)2 (1j)

≥ 1
(n + 1)m

(1− 2
q

m
) (1k)

Equations 1d and 1g come from the fact that Pr[K(v) = 0] = 1
m for any query,

v. The 1
n+1 factor of Equation 1e comes from the simulator taking a guess of k.

Equation 1j is derived from the pairwise independence of the probabilities that
K(v) = 0,K(v′) = 0 for any pair of different queries v, v′. The probabilities are
pairwise independent since the sums x′ +

∑
i∈V xi (mod m) and x′ +

∑
i∈V ′ xi

(mod m) will differ in at least one random xj .
We can optimize the last equation by setting m = 4q (as we did in the

simulation), where q is the maximum number of queries. (If the adversary makes
less queries the probability of not aborting can only be greater). Solving for this
gives us a lower bound λ = 1

8(n+1)q . ��

We now can calculate the distributions PBDH and RBDH . The distribution
RBDH is simply 1

2 . When the simulator is given a random element as the last
term in the tuple the simulator will either abort (and guess β′ = 1 with prob-
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ability 1
2 ) or it will guess β′ = 1 when the adversary is correct in guessing γ.

However, the γ will be completely hidden from the adversary in this case so the
adversary will be correct with probability 1

2 .
The calculation of PBDH is somewhat more complicated. In the second sim-

ulation the adversary’s view of the simulation will be identical to the real game.
We want to know the probability that the guess β′ = 1.

We then break the event into the abort and non-abort cases and see that Pr[β′ =
1] is the sum of Pr[β′ = 1|abort] Pr[abort] and P r[β′ = 1|abort] Pr[abort]. We
observe that Pr[β′ = 1|abort] = 1

2 and that when the simulator does not abort
β′ = 1 when the adversary correctly guesses γ′ = γ. Then, we have PBDH =
1
2 + 1

2 (Pr[abort|γ′ = γ] Pr[γ′ = γ]−Pr[abort|γ′ 	= γ] Pr[γ′ 	= γ]). By our assump-
tion, this is equal to 1

2 + 1
2 (Pr[abort|γ′ = γ](1

2 +ε)−Pr[abort|γ′ 	= γ](1
2−ε)). All

that is left to do is to both lower and upper bound the probability of not aborting
in our simulation. We state the following claim.

Claim. If the simulator takes takes O(ε−2 ln(ε−1)λ−1 ln(λ−1)) samples when
computing the estimate η′, then (1

2 + ε) Pr[abort|γ′ = γ]− ( 1
2 − ε) Pr[abort|γ′ =

γ] ≥ 3
2λε.

We prove the claim in Appendix A.
Plugging in the claim we have PBDH ≥ 1

2 + 3
4λε. Then, 1

2 (PBDH −RBDH) ≥
3
4λε ≥

ε
32(n+1)q . ��

We note that if there was a way for the simulator to efficiently compute the
abort probability, η, for a given set of queries (as opposed to sampling) then
we could improve the time component of our reduction could be significantly
improved in addition to simplifying our analysis.

6 Hierarchical IBE and CCA Security

In Section 4 we discussed the similarity of our scheme to the 1-level hierarchical
IBE (HIBE) scheme of Boneh and Boyen [1]. We can further take advantage of
the similarity of our schemes to construct an �-level HIBE scheme in an obvious
manner. (For each level we must generate new parameters u′ and U .)

The problem with using our techniques to construct an HIBE scheme is that
the reduction becomes inefficient for all but small values of �. In particular to
construct a scheme in which any efficient adversary has at most ε advantage it
must be true that all efficient adversaries have at most an O((nq)�ε) advantage
in the decisional BDH game. The intuition behind this is that in the simulation
the setup must be “match” the challenge identity at all � different levels in order
to not abort. (However, our reduction still provides a stronger reduction than
that of Boneh and Boyen [1] for a fully secure HIBE scheme.) For this reason we
still consider the construction of a fully secure HIBE scheme without random
oracles to be an open problem.

Recent results of Canetti et al. [10], further improved upon by Boneh and
Katz [6], show how to build a CCA-secure Identity-Based encryption scheme
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from a 2-level HIBE scheme. We can actually build a hybrid 2-level HIBE [15,
13] scheme that uses our scheme at the first level and the scheme of Boneh
and Boyen [1] at the second level. Since the transformations [10, 6] only require
Selective-ID security at the second level our hybrid construction is CCA secure
without any significant further degradation in the security reduction relative to
our non-hierarchical construction.

7 A Signature Scheme

Boneh and Franklin [5] describe a generic method for converting any Identity-
Based Encryption scheme into a signature scheme. The public key of the signa-
ture scheme corresponds to the global parameters of the IBE scheme. To sign a
message, M , in the signature scheme the signer gives an IBE private key of M
as the signature of M . To verify a signature of M the verifier encrypts a random
value, R, to the identity M , then attempts to decrypt the ciphertext with the
private key. The signature is accepted if the decryption successfully decrypts to
R. We note that this is a randomized verification algorithm.

In the generic transformation the security of the resulting signature scheme
reduces to the security of the Identity-Based Encryption scheme. Thus, we imme-
diately have a signature scheme which is secure as the decisional BDH problem.
However, we can use the bilinear map in order to deterministically verify a sig-
nature and get a signature scheme that reduces to the weaker computational
Diffie-Hellman assumption. We note that similar techniques have been used pre-
viously. For example, the signatures in the scheme of Boneh, Lynn, Shacham [7]
correspond to private keys of the Boneh-Franklin IBE system. We describe our
signature scheme for completeness.

7.1 Construction

Let G be a group of prime order, p, for which there exists an efficiently com-
putable bilinear map into G1. Additionally, let e : G × G → G1 denote the
bilinear map and g be the corresponding generator. The size of the group is
determined by the security parameter. We will sign messages of n bits; again,
we can use a collision-resistant hash function, H : {0, 1}∗ → {0, 1}n, to sign
messages of arbitrary length.

Setup. The public key is generated as follows. A secret α ∈ Zp is chosen at
random. We choose a random generator, g, and set the value g1 = gα and
choose g2 randomly in G. Additionally, the algorithm chooses a random value
u′ ∈ G and a random n-length vector U = (ui), whose elements are chosen at
random from G. The published public key is g,g1, g2,u′, and U . The secret key
is gα

2 .

Signing. Let M be an n-bit message to be signed and Mi denote the ith bit of
M , and M ⊆ {1, . . . , n} be the set of all i for which Mi = 1. A signature of M
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is generated as follows. First, a random r ∈ Zp is chosen. Then the signature is
constructed as:

σM =

(
gα
2

(
u′
∏

i∈M
ui

)r

, gr

)
.

Verification. Suppose we wish to check if σ = (σ1,σ2) is a signature for a message
M . The signature is accepted if e(σ1, g)/e(σ2,u

′∏
i∈M ui) = e(g1, g2).

7.2 Security

Theorem 2. The signature scheme is (t, q, ε) existentially unforgeable assuming
the decisional-(t, ε

16(n+1)q ) BDH assumption holds, where λ = 1
8(n+1)q .

We omit the proof of this theorem, but note that it is analogous to the proof
our IBE scheme. The fact that the adversary returns a forgery results in two im-
portant differences though. First, the forgery is used to solve the computational
Diffie-Hellman problem. Secondly, since a forgery is returned there is no need
for an artificial abort stage as in the previous reduction.

Other efficient schemes that are secure against existential forgery under an
adaptive chosen-message attack [14] in the standard model depend upon the
Strong-RSA assumption [12, 11] or the Strong Diffie-Hellman assumption [3].
Additionally Boneh, Mironov, and Shoup [8] describe a tree-based signature
scheme based on the computational Diffie-Hellman assumption.

8 Conclusions

We presented the first efficient Identity-Based Encryption scheme that is secure
in the full model without random oracles. We proved our the security of our
scheme by reducing it to the decisional Bilinear Diffie-Hellman problem. Addi-
tionally, we showed how our Identity-Based encryption scheme can be converted
to an efficient signature scheme that depends only upon the computational Diffie-
Hellman assumption in the standard model.

This work motivates two interesting open problems. The first is to find an
efficient Identity-Based Encryption system (without random oracles) that has
short public parameters. The second, is to find an IBE system with a tight re-
duction in security. Such a solution would also likely permit an efficient reduction
for an analogous HIBE scheme.
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A Proof of Claim 3

In order to show that (1
2 + ε) Pr[abort|γ′ = γ]− ( 1

2 − ε) Pr[abort|γ′ = γ] ≥ 3
2λε

we first upper bound the term (1
2 + ε) Pr[abort|γ′ = γ].
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Let η be the probability of not aborting associated for a set of private key
queries and challenge query on a particular run where γ′ = γ. The simulator will
make O(ε−2 ln(ε−1)λ−1 ln(λ−1)) samples to calculate η′ and we can use Chernoff
bounds to show that Pr[η′ > η(1 + ε

8 )] < λ ε
8 . We then have

Pr[abort|γ′ = γ] ≥ (1− λ
ε

8
)η

λ

η(l + ε
8 )
≥ λ(1− ε

8
)2 ≥ λ(1− 1

4
ε)

where the probability calculation is taken of the sampling of η. We now have

(
1
2

+ ε) Pr[abort|γ′ = γ] ≥ λ(
1
2

+
3
4
ε).

(Note that the artificial abort stage aborts with probability λ
max(λ,η′) . Since η(1+

ε
8 ) > λ, we were able to ignore the maximum function.)

We now lower bound the term (1
2 + ε) Pr[abort|γ′ 	= γ]. The simulator will

make O(ε−2 ln(ε−1)λ−1 ln(λ−1)) samples to calculate the estimate η′ and we can
use Chernoff bounds to show that Pr[η′ < η(1− ε

8 )] < λ ε
8 . We then have

Pr[abort|γ′ 	= γ] ≤ λ
ε

8
+ λ

η

η(1− ε
8 )
≤ λ

ε

8
+ λ(1 +

2ε
8

) = λ(1 + ε
3
8
)

where the probability calculation is taken of the sampling of η. We now have

(
1
2
− ε) Pr[abort|γ′ = γ] ≤ λ(

1
2
− 3

4
ε).

We now see that ( 1
2 + ε) Pr[abort|γ′ = γ]− ( 1

2 − ε) Pr[abort|γ′ = γ] ≥ 3
2λε.
��



Tag-KEM/DEM: A New Framework for Hybrid
Encryption and New Analysis of

Kurosawa-Desmedt KEM�

Masayuki Abe1, Rosario Gennaro2, Kaoru Kurosawa3,
and Victor Shoup4

1 NTT Information Sharing Platform Laboratories, NTT Corporation, Japan
2 IBM T.J.Watson Research Center, USA

3 Ibaraki University, Japan
4 New York University, USA

Abstract. This paper presents a novel framework for generic construc-
tion of hybrid encryption schemes secure against chosen ciphertext at-
tack. Our new framework yields new and more efficient CCA-secure
schemes, and provides insightful explanations about existing schemes
that do not fit into the previous frameworks. This could result in finding
future improvements. Moreover, it allows immediate conversion from a
class of threshold public-key encryption to a hybrid one without consid-
erable overhead, which is not possible in the previous approaches.

Finally we present an improved security proof of the Kurosawa-
Desmedt scheme, which removes the original need for information-
theoretic key derivation and message authentication functions. We show
that the scheme can be instantiated with any computationally secure
such functions, thus extending the applicability of their paradigm, and
improving its efficiency.

1 Introduction

A fundamental task of cryptography is to protect the secrecy of messages trans-
mitted over public communication lines. For this purpose we use encryption
schemes which use some secret information (a key) to encode a message in a
way that an eavesdropper cannot decode it. However, as networks become more
open and accessible, it becomes apparently clear that an adversary may not
be limited to eavesdropping, but may take a more active role. She may try to
interact with honest parties, by, for example, sending ciphertexts to them (possi-
bly related to the ciphertexts she intends to decrypt) and analyze their response.
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Such active attacks can be proven to be much more powerful and hard to combat
than passive ones (see for example [6]).

To model this type of attacks, the notion of chosen-ciphertext security was
introduced by Naor and Yung [22] and developed by Rackoff and Simon [24],
and Dolev, Dwork, and Naor [17]. Security against a chosen ciphertext attack
(CCA security, in short) means that, even if the adversary is allowed to query
a decryption oracle on ciphertexts of her choosing, then she obtains no infor-
mation about messages encrypted in other ciphertexts. The first CCA-secure
cryptosystems were presented in [22, 24, 17], but they were quite impractical, as
they rely on generic techniques for non-interactive zero-knowledge. In a break-
through result, Cramer and Shoup in [12] presented the first truly practical
CCA-secure cryptosystem, whose security is based on the hardness of the deci-
sional Diffie-Hellman problem. This construction was generalized in [13], using
a new cryptographic primitive called projective hash functions.

Public-key encryption schemes often limit the message space to a particular
group, which can be restrictive when one wants to encrypt arbitrary messages.
For this purpose hybrid schemes are devised, composed by two parts. First a
Key Encapsulation Mechanism (KEM) is invoked: a random group element is
encrypted and then mapped via a key derivation function into a random key
K. Then a Data Encapsulation Mechanism is performed: the previous key K is
used to encrypt the message using a symmetric encryption scheme. A formal
treatment is found in [27, 14].

In order to obtain a CCA-secure hybrid encryption, it is sufficient that both
KEM and DEM are CCA-secure. (Accordingly, we refer the framework of [27,
14] as CCA KEM/DEM framework in this paper). Recently in [21], Kurosawa
and Desmedt introduced a hybrid encryption scheme which is a modification of
the hybrid scheme presented in [25]. Their scheme is interesting from both a
theoretical and a practical point of view. When one looks at it as a KEM/DEM
scheme, we do not know if their KEM is CCA-secure, yet the resulting scheme
is CCA-secure and more efficient than the one in [25] both in computation and
bandwidth. Thus the Kurosawa-Desmedt scheme points out that to obtain CCA-
secure hybrid encryption, requiring both KEM/DEM to be CCA-secure, while
being a sufficient condition, may not be a necessary one, and might indeed be an
overkill. There are other hybrid encryption schemes in the literature, e.g.,[5, 23],
which are very efficient, mostly in the random oracle model, but do not fit to
the CCA KEM/DEM framework.

Our Contribution. Prompted by the above observation, we set out to in-
vestigate another framework that yields more efficient hybrid encryption and
captures a wider variety of existing schemes. Our results can be summarized as
follows:

– We introduce Tag-KEM: a KEM which also takes as input a tag. Though
such a notion is known in the literature, e.g., [27], we give an extended syntax
and show, somewhat surprisingly, that if one uses a CCA-secure Tag-KEM
in a novel way then it is sufficient for the DEM to be secure simply against
passive attackers in order to yield CCA-secure hybrid encryption.
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– We present several constructions of CCA-secure Tag-KEMs based on various
combinations of assumptions.

– We show that the Tag-KEM/DEM framework provides a simple way to
create threshold versions of CCA-secure hybrid encryption schemes, which
is not possible in the CCA KEM/DEM framework.

– We show how several schemes in the literature can be casted in our Tag-
KEM/DEM framework. Furthermore we show that some of those schemes
can actually be simplified when considered as instances of our framework.

– Finally, we present an improved proof of the Kurosawa-Desmedt scheme.
The original proof required the use of information-theoretic key derivation
and message authentication functions. We show that any computationally
secure such function suffices for the security of the scheme. The improvement
is not just theoretical, but it has important practical implications as well.
First of all it allows for a modular design in which any secure key derivation
and MAC function can be used. Moreover our proof yields shorter security
parameters and thus improved efficiency.

2 Definitions

2.1 Key Encapsulation Mechanism with Tags

In CCA KEM/DEM framework of [14], a KEM consists of three algorithms as
public-key encryption does, except that the encryption algorithm takes only pk
and outputs a random one-time key and its encryption. The encryption function
may also take an extra string (called tag) as an input associated to every cipher-
text. In our model, we divide the encryption function into two functions in such
a way that the first one selects a random key and the second one encrypts the
key along with a given tag. We call a KEM that meets this model a Tag-KEM.
Formally:

(pk , sk) ← TKEM.Gen(1λ) : A probabilistic algorithm that generates public-key
pk and private-key sk . The public-key defines spaces for tags and encapsu-
lated keys denoted by T and KK , respectively.

(ω, dk) ← TKEM.Key(pk) : A probabilistic algorithm that outputs one-time key
dk ∈ KD and internal state information ω that essentially carries dk . KD is
the key-space of DEM.

ψ ← TKEM.Enc(ω, τ) : A probabilistic algorithm that encrypts dk (embedded
in ω) into ψ along with τ , where τ is called a tag.

dk ← TKEM.Decsk (ψ, τ) : A decryption algorithm that recovers dk from ψ and
τ . For soundness,TKEM.Decsk (ψ, τ) = dk must hold for any sk , dk , ψ, and
τ , associated by the above three functions.

Note that, in the above syntactic definition, τ is not included in ψ and explicitly
given to TKEM.Dec. Such explicit treatment of τ has some notational advantages
when we consider an adversary who tries to alter the tag without affecting to
the ciphertext.
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Tag-KEM is a generalization of KEM because if the tag is a fixed string, it is
a KEM. Tags associated to PKE or KEM can be found in the literature (e.g. see
[28, 27]), but their syntactic definition and the purpose are different from those
of ours; A tag is supposed to carry an identity of the encryptor and has to be
fixed before DEM key is selected in their definition. Despite the limitations, their
particular implementation fits also to our model without essential modification.

The security of Tag-KEM requires that the adversary should fail to dis-
tinguish whether a given dk is the one embedded in cipehrtext (ψ, τ) or not,
with adaptive access to the decryption oracle. Let O be the decryption oracle,
TKEM.Decsk (·, ·). Let AT be a polynomial-time oracle machine that plays the
following game.

[GAME.TKEM]

Step 1. (pk , sk) ← TKEM.Gen(1λ)
Step 2. υ1 ← AT

O(pk)
Step 3. (ω, dk1) ← TKEM.Key(pk), dk0 ← KD, δ ← {0, 1}.
Step 4. (τ, υ2) ← AT

O(υ1, dkδ)
Step 5. ψ ← TKEM.Enc(ω, τ)
Step 6. δ̃ ← AT

O(υ2, ψ)

In Step 6, AT is restricted not to ask (ψ, τ) to the decryption oracle O. Vari-
able υ1, υ2 are the internal state information of the adversary. Variable dkδ

is set to either dk0 or dk1 according to the value of δ ∈ {0, 1}. Such conven-
tion is used throughout the paper unless otherwise noted. We define εtkem,AT

=∣∣∣Pr[δ̃ = δ]− 1
2

∣∣∣ and εtkem = maxAT
(εtkem,AT

) where the maximum is taken over
all machines. We say that a Tag-KEM is CCA-secure if εtkem is negligible in λ.

2.2 Data Encapsulation Mechanism and Public-Key Encryption

DataEncapsulationMechanism(DEM). ADEMis a symmetric encryption scheme
that consists of two algorithms, DEM.Enc and DEM.Dec such that DEM.Enc is an
encryption algorithm that encrypts m into ciphertext χ by using symmetric-key
dk ∈ KD and DEM.Dec is a corresponding decryption algorithm that recovers mes-
sage m from input ciphertext χ by using the same symmetric-key.

For our purpose, we only require DEM to be indistinguishable against passive
attacks. Namely, adversary AD chooses two same-length messages and given
a ciphertext of either of the messages from the encryption oracle and decide
which of the messages is encrypted. It is stressed that the ciphertext is made
by a random key and the key is used only once. DEM is one-time secure if
any polynomial-time adversary succeeds in distinguishing the encryption oracle’s
choice with probability at most 1

2 + εdem where εdem is negligible in the security
parameter. One-time pad is a simple example that fulfills this security notion.

Public-key Encryption (PKE). A public-key encryption scheme consists of key-
generation algorithm PKE.Gen, encryption algorithm PKE.Enc, and decryption
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algorithm PKE.Dec, which are defined in a standard way. We also define chosen
ciphertext security for PKE in the standard sense. That is, the adversary chooses
two messages from the message space, and is given a ciphertext of either of them
from the encryption oracle. The adversary is also given access to the decrypiton
oracle that will decrypt any ciphertext except for the one made by the encryp-
tion oracle. PKE is CCA secure if any polynomial-time adversary succeeds in
distinguishing the encryption oracle’s choice with probability at most 1

2 + εpke

where εpke is negligible in the security parameter.

3 Generic Construction of Hybrid PKE

In GAME.TKEM, it is important to see that the same ψ can be asked to the
decryption oracle as long as τ is different. Therefore, to conform CCA-security,
the pair (ψ, τ) must be non-malleable, which means that CCA-secure Tag-KEM
provides integrity to τ . We exploit this property to protect the DEM part so as
to be non-malleable.

Now in our construction of hybrid PKE, we require that Tag-KEM accepts
any string as a tag, i.e., T = {0, 1}∗. First of all, PKE.Gen is the same as
TKEM.Gen; Given security parameter λ, it outputs pubic-key pk and private-
key sk . Encryption and decryption functions are as follows.

Function: PKE.Encpk (m)

(ω, dk) ← TKEM.Key(pk)
χ ← DEM.Encdk(m)
ψ ← TKEM.Enc(ω,χ)
Output c = (ψ,χ)

Function: PKE.Dec(sk , c)

(ψ,χ) ← c
dk ← TKEM.Decsk (ψ,χ)
m ← DEM.Decdk(χ)
Output m

When the length of DEM key varies depending on the length of message, like
one-time pad, the syntax of Tag-KEM will be modified so that TKEM.Enc and
TKEM.Dec can take necessary information.

Theorem 1. If Tag-KEM is CCA secure and DEM is one-time secure then the
Hybrid PKE scheme in Section 3 is CCA secure. In particular, εpke < 2εtkem +
εdem.

Proof. Let AE be a polynomial-time oracle machine that launches a chosen-
ciphertext attack against the above hybrid encryption scheme. Let O denote the
decryption oracle. Call this attack GAME.PKE.

[GAME.PKE]

Step 1. (pk , sk) ← TKEM.Gen(1λ)
Step 2. (m0,m1, υ) ← AE

O(pk)
Step 3. b ← {0, 1}, (ω, dk) ← TKEM.Key(pk), χ ← DEM.Encdk(mb),

ψ ← TKEM.Enc(ω,χ)
Step 4. b̃ ← AE

O(υ, (ψ,χ))
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Let X denote the event that b̃ = b happens in GAME.PKE. The goal of
this proof is to bound Pr[X]. First we modify Step-3 so that DEM.Enc takes
random key dk× instead of the legitimate one generated by TKEM.Key. Call
this game GAME.PKE’. Let X ′ denote the event of b̃′ = b in GAME.PKE’. We
claim that |Pr[X]− Pr[X ′]| ≤ 2 εtkem, which is shown by constructing AT that
attacks the underlying Tag-KEM scheme by using AE . First AT is given public-
key pk and passes it to AE . Given m0 and m1 from AE , AT requests dkδ to the
encryption oracle of GAME.TKEM. AT then selects b ← {0, 1} and computes
χ = DEM.Encdkδ

(mb). By sending TKEM.Enc χ as a tag, AT receives ψ and
sends ciphertext (ψ,χ) to AE . Every decryption query from AE is forwarded to
decryption oracle TKEM.Dec. If ⊥ is returned, it is forwarded to AE . Otherwise,
AK decrypts χ by using the key given from oracle TKEM.Dec and pass the
resulting message to AE . When AE outputs b̃ = b, AK outputs δ̃ = 1 meaning
that dkδ is the real key. Otherwise, if AE outputs b̃ 	= b, AK outputs δ̃ = 0
meaning that dkδ is random. Now observe that the view of AE is identical to that
in GAME.PKE when δ = 1, and that in GAME.PKE’ when δ = 0. Accordingly,
Pr[b̃ = b|δ = 1] = Pr[X] and Pr[b̃ = b|δ = 0] = Pr[X ′]. Therefore,

Pr[δ̃ = δ]− 1
2

=
1
2
(Pr[δ̃ = 1|δ = 1]− Pr[δ̃ = 1|δ = 0])

=
1
2
(Pr[b̃ = b|δ = 1]− Pr[b̃ = b|δ = 0])

=
1
2
(Pr[X]− Pr[X ′])

Since
∣∣∣Pr[δ̃ = δ]− 1

2

∣∣∣ ≤ εtkem, we have |Pr[X]− Pr[X ′]| ≤ 2εtkem.
Next, we show that AE playing GAME.PKE’ essentially conducts a passive

attack to DEM, i.e.,
∣∣Pr[X ′]− 1

2

∣∣ ≤ εdem. It is shown by constructing AD that
plays GAME.DEM by using AE . AD first generates (pk , sk) by using PKE.Gen
and gives pk to AE . When m0 and m1 are given from AE , AD forwards them to
encryption oracle of GAME.DEM and receives cipehrtext χ. It then computes ψ
by following TKEM.Key and TKEM.Enc by using χ as a tag, and sends c = (ψ,χ)
to AE . Note that the key chosen by the encryption oracle of GAME.DEM and
the one embedded in ψ are independent and randomly chosen. All decryption
queries are correctly processed by using sk . When AE outputs b̃, AD outputs
ξ̃ = b̃. It is now easy to see that, in this construction, GAME.PKE’ is perfectly
simulated and whenever AE wins, so does AD. Hence

∣∣Pr[X ′]− 1
2

∣∣ ≤ εdem. The
major factors of the running time of AD is that of AE and that for simulating
the decryption oracle which grows linearly in the number of decryption queries.

In summary, we have:

|(Pr[X]− 1
2
)− (Pr[X ′]− 1

2
)| ≤ 2εtkem

εpke − εdem ≤ 2εtkem
εpke ≤ 2εtkem + εdem

where εtkem and εdem are assumed negligible. ��
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4 Construction of Tag-KEM

This section develops some methods for obtaining Tag-KEM from PKE or KEM.
Note that KEM is generally obtained from PKE. Hence starting from KEM is
more general.

4.1 Based on PKE with Long Plaintext

When CCA-secure PKE is available, the first idea would be to encrypt the tag as
a part of the plaintext together with the DEM key to encapsulate. It indeed works
well if there is enough space in a plaintext. Lengthy tags would be compressed
by using a hash function. We can show that a target collision-free hash function
[14], which is implied by universal one-way hash function, is sufficient for this
purpose.

Formally, the construction is as follows. TKEM.Gen is essentially the same
as PKE.Gen; It outputs (pk , sk). It also selects hash function H. (For notational
simplicity, we assume that H is included in pk and sk .) TKEM.Key chooses ran-
dom dk from KD. It also outputs state information ω = pk ||dk. The encryption
and decryption functions are as follows.

Function: TKEM.Enc(ω, τ)

(pk , dk) ← ω
τ ′ = H(τ)
ψ = PKE.Encpk (dk||τ ′)
Output ψ.

Function: TKEM.Decsk (ψ, τ)

dk||τ ′ ← PKE.Dec(sk , ψ)
If τ ′ = H(τ), return dk.
Return ⊥, otherwise.

The resulting Tag-KEM is as secure as attacking the underlying PKE or hash
function. Let εtch be the success probability of finding a target collision for H.
The following theorem holds.

Theorem 2. If PKE is CCA-secure and H is target collision-free, the above
Tag-KEM is CCA-secure. Especially, εtkem ≤ εpke + εtch.

The RSA-based simple KEM [27] can be seen as an instance of this method
in the random oracle model. Applying Theorem 1 yields a hybrid PKE that is
a special case of [15]. Also, similar hybrid PKE is found in legendary protocols
such as [4].

4.2 Based on CCA-Secure KEM and MAC

In this section we present a CCA-secure Tag-KEM based on a CCA-secure KEM
and a secure message authentication code (MAC). Here, MAC is assumed to
be strongly unforgeable against one-time chosen message and unbound MAC
verification attack. That is, a MAC adversary is given a MAC for an arbitrary
message of its choice and attempts to create a valid message-MAC pair that
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is different from the observed pair. The adversary also has polynomially many
access to MAC verification oracle that verifies an arbitrary pair of a message
and a MAC. We say MAC is one-time secure if it satisfies this security notion.
Theoretically, such a MAC is available without intractability assumptions.

The idea is to encrypt a random key K using the KEM, and derive two keys
dk, mk from K. The first, dk is the actual encryption key, while mk is used to
MAC the tag. The resulting MAC is appended to the ciphertext. A decryptor
not only checks that the KEM decryption is correct, but also checks that the
MAC on the tag, using the decrypted key mk, is correct. A formal description
follows.

Construction of Tag-KEM: LetΠL =(KEM.Gen,KEM.Enc,KEM.Dec) be a KEM.
Let MAC = (MAC.Sign,MAC.Ver) be a MAC. Let KDF2 : KK → KD × KM be
a key derivation function where KD is the key-space of DEM and KM is the
key-space of MAC. By using these components, we construct a Tag-KEM as fol-
lows. TKEM.Gen is the same as PKE.Gen; It outputs (pk , sk). TKEM.Key is that,
given pk , it computes (K, φ) ← KEM.Encpk () and (dk, mk) ← KDF2(K). Then
it outputs dk and state information ω = (mk, φ). The encryption and decryption
functions are as in the table below.

The security of KDF2 requires that its output distribution is indistinguish-
able from uniform one over the key-spaces. By εkdf, we denote the maximum
advantage over all polynomial-time distinguisher. If εkdf is negligible, we say
that KDF2 is secure. If KDF2 requires a key, it is generated by TKEM.Gen and
included in pk and sk .

Function: TKEM.Enc(ω, τ)

(mk, φ) ← ω
σ ← MAC.Signmk(τ)
Output ψ = (φ,σ)

Function: TKEM.Decsk (ψ, τ)

(φ,σ) ← ψ
K ← KEM.Decsk (φ)
(dk, mk) ← KDF2(K)
If K = ⊥ or MAC.Vermk(σ, τ) 	= 1,
output ⊥.
Otherwise, output dk.

Clearly the CCA security of the KEM scheme will prevent an adversary from
gaining any advantage by manipulating the KEM ciphertext. On the other hand
the security of the MAC will prevent an adversary from gaining any advantage
by manipulating the MAC. The following theorem holds.

Theorem 3. If ΠL is CCA secure, MAC is one-time secure, and KDF2 is se-
cure then the resulting Tag-KEM is CCA secure. In particular, εtkem ≤ 4εkem +
qD εmac + 5εkdf where qD is the maximum number of decryption queries.

Applying Theorem 1 to the above Tag-KEM yields the same hybrid encryp-
tion scheme as in CCA KEM/DEM framework. But by analysing the same
scheme in our framework, we can show that CCA KEM is an overkill. In [3],
it is shown that there exists a class of KEM that is strictly weaker than CCA
but suffices for this construction.
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4.3 Based on KEM with Hash Function

We show another approach that might be available when the underlying PKE
does not have enough plaintext length as needed in Section 4.1 and/or increasing
ciphertext length as in Section 4.2 is not acceptable.

If a KEM uses a hash function, probably for integrity of ciphertext or plain-
text, the KEM may be converted to a Tag-KEM simply by including the tag
into the hash function. This approach is correct if the hash function is involved
in the scheme in a ’meaningful’ way and provides ’sufficient’ security. Although
generic construction that follows formal version of these intuitive terms can be
shown, it does not seem quite useful due to its complexity. Showing that a KEM
fits to the generic framework may not be simpler than directly proving that
the resulting Tag-KEM scheme is secure. Indeed, in all cases we have in mind,
the security proof can be done by minor or obvious modification of that of the
original KEM (or PKE). Therefore, we only show two concrete constructions of
Tag-KEM based on well known encryption schemes; OAEP+ [26] and Cramer-
Shoup encryption [12]. In the following, the description of the original schemes
are obtained just by dropping the tag τ .

From OAEP+. Let f be a one-way trapdoor permutation. OAEP+ encrypts
dk with tag τ into ciphertext ψ in the following way:

r′ = H ′(r||dk ||τ), s = (G(r)⊕ dk)||r′, w = H(s)⊕ r, ψ = f(s||w)

where r and r′ are random and G, H, H ′ are random oracles [5].
Security is argued in the same way as the original one except the case that, for

challenge ciphertext (ψ, τ) the adversary finds another valid ciphertext (ψ, τ ′).
Since ψ uniquely identifies r, r′ and K, (ψ, τ ′) is valid only if H ′(r||dk ||τ) =
H ′(r||dk ||τ ′) holds. When H ′ outputs a k1-bit string, such an event happens with
probability at most qH′ 2−k1 where qH′ is the maximum number of queries to
H ′. Based on this observation, we define game GAME.0’ where decryption oracle
returns ⊥ for all queries that differs only in the tag part with the challenge
ciphertext. The rest of the security proof is done in the same way as in the
original paper [26] except for obvious modifications. Accordingly, only qH′ 2−k1

is an extra reduction cost to that of OAEP+.

From Cramer-Shoup Encryption. A Tag-KEM scheme based on Cramer-
Shoup encryption over a multiplicative group, say Gq, of prime order q is the
following. A private-key is (x1, x2, y1, y2, z1, z2) ∈ Zq and the public-key is
g1, g2 ← G2

q, and c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz1
1 gz2

2 . The encryption func-
tion yields dk = hr where r is random, and ciphertext (u1,u2, v) such that

u1 = gr
1, u2 = gr

2, α = H(u1||u2||τ), v = crdαr

where H is a hash function. Decryption first checks if v
?= ux1+αy1

1 ux2+αy2
2 and

then recovers dk = uz1
1 uz2

2 . Applying Theorem 1 results in the hybrid PKE briefly
mentioned in [12].
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In contrast to [12] where H can be Target Collision Free, we need slightly
stronger assumption to prove the security in our framework, which nevertheless
has little practical impact. We say that H is Random Prefix Collision-Free if
any adversary wins the following game with at most negligible probability. The
adversary is first given H and outputs τ and then given random x and finally
outputs x′ and τ ′ such that H(x||τ) = H(x′||τ ′). We can prove that the above
scheme is secure Tag-KEM when H is random prefix collision free.

It holds that (Collision-Free) ⇒ (Random Prefix Collision-Free) ⇒ (Target
Collision-Free). Hence it is reasonable to use cryptographic hash functions like
SHA-1 which can be assumed collision-free. Nevertheless, we stress that ran-
dom prefix collision-freeness may not necessarily be equivalent to collision-free
because, for example, it is not clear how to perform a birthday attack in the
above game (if the randomness of x affects to the output). Theoretically, we
do not know constructions of random prefix collision-free hash functions from
target collision-free or universal one-way hash functions, thus we resort to strong
collision-freeness. The only drawback is that this requires a longer output (about
twice as much because the birthday paradox applies here), but that does not af-
fect our construction.

4.4 Based on ID-Based PKE

An ID-based encryption scheme is selective-ID secure when it is secure against
chosen ciphertext and chosen ID attacks provided that the target ID is commit-
ted at the beginning and the ID must not be included in any decryption query. It
is shown in [10] that selective-ID ID-based encryption schemes (sIBE in short)
can be strengthened to a full CCA secure ones by using one-time signature.
Then, according to CCA KEM/DEM framework, an ID-based hybrid encryp-
tion scheme can be obtained by combining it with a CCA secure DEM. We show
that the conversion from sIBE to full IBE also yields a Tag-KEM. Accordingly,
the DEM part can be simplified to be a one-time secure DEM. The resulting
scheme yields shorter ciphertexts than before.

Let (SIG.Gen,SIG.Sign,SIG.Ver) be a one-time signature scheme where SIG.Gen
is a key generation algorithm, SIG.Sign is a signature generation algorithm, and
SIG.Ver is a signature verification algorithm. Let sIBE.Enc(pk , ID, m) be the en-
cryption function of an sIBE. Then, we construct a Tag-KEM scheme as follows:
It encrypts (pk , dk) and τ into ciphertext ψ = (vk , φ,σ) where

(vk , sk) ← SIG.Gen(1λ), φ ← sIBE.Enc(pk , vk , dk), σ = SIG.Sign(sk , φ||τ).

Including τ into the message to be signed provides integrity to the tag with-
out affecting the security of the original scheme. Indeed, the security proof is
almost the same as in [10] with obvious modification. The reduction cost does
not change, either. One can extend the above Tag-KEM to ID-based Tag-KEM
in the same way starting from a 2nd-level ID Encryption function that takes
two ID’s. (A given ID is assigned to the first ID and vk is assigned to the sec-
ond ID.) For efficient implementations of sIBE based on standard cryptographic
assumptions, we refer to [7].
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In [8], Boneh and Katz improved the efficiency of [10] by replacing the one-
time signature with commitment scheme (using hash function) and MAC. Part
of their scheme can also be seen as a Tag-KEM.

5 Applications

5.1 Threshold Hybrid PKE

Designing a threshold hybrid PKE is not a trivial task. Even though thresh-
old PKE is available, it is not clear how it can be extended to hybrid thresh-
old PKE. By following CCA KEM/DEM framework, one will suffer from shar-
ing KDF and MAC.Ver, which are often implemented by number-theoretically
unstructured primitives. Although these tasks are feasible using generic tech-
niques from multi-party computation, we are focusing on efficient and practical
solutions.

Since Tag-KEM/DEM framework allows the DEM part to be CPA, it im-
mediately yields a threshold hybrid PKE once a shared Tag-KEM is available.
Decrypting the DEM part is a local task. By defining CCA security for thresh-
old PKE and DEM as in [28, 18], we can translate and prove Theorem 1 in the
threshold setting. Accordingly, one can concentrate on constructing threshold
Tag-KEM. A threshold KEM or PKE can be converted into a threshold Tag-
KEM by following the construction in Section 4.3 or 4.1 without considerable
overheads.

Threshold Cramer-Shoup encryption, secure against static adversaries, is
shown in [1, 9], and the conversion technique in Section 4.3 (or result of section
4.1 with larger security parameter) can be used to obtain a threshold Cramer-
Shoup Tag-KEM. Accordingly, by following the threshold version of Theorem
1, one can have a secure threshold hybrid encryption scheme in the standard
model. Adaptive security can be achieved as well based on the adaptively secure
threshold Cramer-Shoup encryption of [2].

5.2 Refined Fujisaki-Okamoto Conversion and More

We revisit the Fujisaki-Okamoto conversion [19] that provides secure construc-
tion of hybrid encryption in the random oracle model. By fitting their scheme
into Tag-KEM/DEM framework, we can see that one of their assumptions can
be eliminated and a refined version is obtained without loss of efficiency.

Let PKE.Encpk (· ; ·) be public-key encryption function where the last argu-
ment denotes a random coin used in the function. Fujisaki-Okamoto conversion
combines PKE and DEM by using two random oracles, H and G, as follows:

ψ ← PKE.Encpk (K;H(K||m)),χ ← DEM.EncG(K)(m).

A ciphertext is (ψ,χ). The resulting hybrid PKE is CCA-secure if PKE is one-
way and DEM is one-time secure and DEM.Enc is a bijection between ciphertexts
and messages for every fixed key.



Tag-KEM/DEM: A New Framework for Hybrid Encryption 139

Now one can observe that PKE.Encpk (K;H(K||τ)) works as a Tag-KEM
encryption function that encapsulates DEM key G(K). Then, according to Tag-
KEM/DEM framework, we have slightly modified hybrid encryption:

ψ ← PKE.Encpk (K;H(K||χ)),χ ← DEM.EncG(K)(m)

which does not require DEM.Enc to be a bijection.
Similar observation applies to Bellare-Rogaway scheme [5], which is a special

case of Fujisaki-Okamoto construction, and REACT-RSA [23].

5.3 Revisiting RCCA-Secure PKE

This section revisits RCCA-secure PKE in [11] and show that their construc-
tion of CCA-secure hybrid PKE from RCCA-secure PKE can be improved by
following our Tag-KEM/DEM framework.

The notion of RCCA-secure PKE is introduced in [11]. RCCA is a variant of
CCA where the decryption oracle returns a special nonce ’test’ when it receives
a ciphertext that yields one of the questioned message, m0 and m1. Accordingly,
even if the adversary can tweak the challenge ciphertext without affecting the
embedded plaintext (such a feature is called benign-malleability [27]), sending it
to the decryption oracle will give no advantage to the adversary in determining
which of the questioned messages is hidden there. ’R’ stands for ’replayable’ in
this sense. RCCA-security is a strict relaxation of CCA-security and proven use-
ful for several cryptographic tasks, though, currently, there is no known instance
of RCCA-secure PKE that is more efficient than known CCA-secure ones.

In [11], it is shown that combining RCCA-secure PKE and CCA-secure sym-
metric encryption can yield CCA-secure hybrid PKE. Suppose that a CCA-
secure symmetric encryption is made by combining passively secure DEM and
one-time MAC. Then, their construction is summarized as follows. Given mes-
sage m, output ciphertext (φ,χ,σ) such that;

φ ← PKE.Encpk (dk||mk), χ ← DEM.Encdk(m||φ), σ ← MAC.Signmk(χ)

where dk and mk, are chosen randomly from appropriate domains. It is stressed
that φ is encrypted by DEM and this double-encryption structure is essential in
their security proof. Due to this special structure, the construction does not fit
to Tag-KEM/DEM framework. Below, we show a slightly more efficient variant
that avoids double encryption and fits to Tag-KEM/DEM framework.

φ ← PKE.Encpk (dk||mk), χ ← DEM.Encdk(m), σ ← MAC.Signmk(χ||φ)

Intuitively, applying MAC to φ offsets the benign-malleability of φ. The modified
scheme yields shorter ciphertexts.

From the above, we derive a Tag-KEM scheme which is summarized as fol-
lows.

(K, φ) ← KEM.Encpk (), (dk, mk) ← KDF2(K), σ ← MAC.Signmk(τ ||φ)
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It can be seen as a variant of the construction shown in Section 4.2; MAC is
applied to τ ||φ rather than to τ .

By defining RCCA-security for KEM in the same way as that for PKE, the
following theorem can be proven.
Theorem 4. If KEM is RCCA-secure, MAC is one-time secure, and DEM is
secure, the above Tag-KEM is CCA-secure. Especially, εtkem ≤ 2εrkem + (qD +
3)εkdf + qD

2 εmac

According to Theorem 1, the modified hybrid PKE is CCA-secure. This uncovers
the superfluousness of the double-encryption in the original construction and
obtains a more efficient scheme.

6 New Proof for Kurosawa-Desmedt Scheme

Let us briefly recall the Kurosawa-Desmedt scheme from [21]. The group G,
the hash function H and the public and secret key are as in the Cramer-Shoup
scheme described earlier. It also uses a key derivation function KDF, such that
for v ∈ G, KDF(v) = (k,K), where k is a message authentication key, and K is
a symmetric encryption key.

Encryption of m ∈ {0, 1}∗:
r ← Zq, u1 ← gr

1 ∈ G, u2 ← gr
2 ∈ G, α ← H(u1,u2) ∈ Zq

v ← crdrα ∈ G, (k,K) ← KDF(v), e ← EK(m), t ← MACk(e)
output C := (u1,u2, e, t)

Decryption of C = (u1,u2, e, t):

α ← H(u1,u2) ∈ Zq, v ← ux1+y1α
1 ux2+y2α

2 ∈ G, (k,K) ← KDF(v)
if t 	= MACk(e) then reject
else output m ← DK(e)

It is possible to formalize this scheme as a Tag-KEM protocol. Indeed we can
consider (u1,u2, t) as the Tag-KEM part (where (u1,u2) is the proper KEM part,
e is the tag and t is a MAC on it), while e is the one-time DEM. This analysis
seems identical to the one in Section 4.2, but here the basic KEM is not known
to be CCA secure, so we can’t invoke Theorem 3, and a proof specifically for
this case is required.

The proof of security in [21] requires the MAC and KDF functions to be
information-theoretically secure, i.e. if v ∈ G is random, then at least the first
component k of the output of KDF(v) should be (statistically close to) uniform;
also for all e and t, if k is chosen at random, then Pr[MACk(e) = t] is negligible.
Our new proof of security, relaxes the above assumptions as follows: (i) if v ∈ G
is random, then at least the first component k of the output of KDF(v) should be
computationally indistinguishable from uniform; (ii) the MAC function should be
unforgeable. As we pointed out in the introduction this has a significant practical
impact on the scheme.

Our proof shows that the Tag-KEM described above is CCA-secure. Using
Theorem 1 we get that the hybrid scheme is CCA-secure as well.
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Game 0. We start the proof by defining a game, called Game 0, which is an
interactive computation between an adversary and a simulator. This game is
simply the usual game used to define CCA security for Tag-KEM, in which the
simulator provides the adversary’s environment.

Initially, the simulator runs thekeygenerationalgorithm, obtaining thedescrip-
tion of G, generators g1 and g2, keys for KDF and H (if any), along with the values
x1, x2, y1, y2 ∈ Zq and c, d ∈ G. The simulator gives the public key to the adversary.

During the execution of the game, the adversary makes a number of “de-
cryption requests.” Assume these requests are C(1), . . . ,C(Q), where C(i) =
(u(i)

1 ,u
(i)
2 , e(i), t(i)). For each such request, the simulator decrypts the given ci-

phertext, and gives the adversary the result. We denote by α(i), v(i), k(i), and
K(i) the corresponding intermediate quantities computed by the decryption al-
gorithm on input C(i). The oracle returns K(i) to the adversary.

The adversary may also make a single “challenge request.” When such re-
quest is issued, the Tag-KEM encryption oracle generates u1 = gr

1,u2 = gr
2, α =

H(u1,u2), v = crdrα and sets (k1,K1) = KDF(v). It also generates K0 at ran-
dom, and a random bit δ. The value Kδ is returned to the adversary who then
produces a tag e and receives back (u1,u2, t) where t = MACk1(e).

The only restriction on the adversary’s requests is that after it makes a chal-
lenge request, subsequent decryption requests must be different from (u1,u2, e, t).
At the end of the game, the adversary outputs δ̂ ∈ {0, 1}.

Let X0 be the event that δ̂ = δ. Security means that |Pr[X0] − 1/2| should
be negligible.

We prove this by considering other games, Game 1, Game 2, etc. These games
will be quite similar to Game 0 in their overall structure, and will only differ
from Game 0 in terms of how the simulator works. However, in each game, there
will be well defined bits δ̂ and δ, so that in Game i, we always define Xi to the
event that δ̂ = δ in that game. All of these games should be viewed as operating
on the same underlying probability space.

Before moving on, we make a couple of additional assumptions about the
internal structure of Game 0 that will be convenient down the road. First, the
simulator computes v as (u1)x1+y1α(u2)x2+y2α. This change is purely conceptual,
since v has the same value either way. Second, we assume that g2 is computed
as g2 := gw

1 for w ∈R Z
∗
q . Second, we assume that the quantities r, u1, u2, α, v,

k, and K0,K1 are computed at the very start of the game (they do not depend
on values provided later by the adversary, so this can be done).

Game 1. This is the same as Game 0, except for the following differences. If
the adversary ever submits C(i) for decryption with (u(i)

1 ,u
(i)
2 ) 	= (u1,u2) and

α(i) = α, the simulator rejects the given ciphertext.
In Game 1, the simulator may reject ciphertexts that would not have been

rejected in Game 0. Let us call Rejection Rule 0 the rule by which ciphertexts
are rejected as in the ordinary decryption algorithm (i.e., the message authen-
tication tags do not match). Let us call Rejection Rule 1 this new rejection
rule, introduced in Game 1.
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Let F1 be the event that the simulator applies Rejection Rule 1 in Game 1
to a ciphertext to which Rejection Rule 0 does not apply. Because Game 0 and
Game 1 proceed identically until the this event occurs, we have

|Pr[X0]− Pr[X1]| ≤ Pr[F1] and Pr[F1] ≤ εtcr, (1)

where εtcr is the success probability that one can find a collision in H using
resources similar to those of the given adversary. By assumption, εtcr is negligible.

Game 2. Now generate u2 as gr′
2 where r′ ∈R Zq. We have

|Pr[X2]− Pr[X3]| ≤ εddh, (2)

where εddh is the advantage with which one can solve the DDH problem, us-
ing resources similar to those of the given adversary. By assumption, εddh is
negligible.

Game 3. In this game, the simulator makes use of the value w ∈ Zq, where
g2 = gw

1 . The simulator did not need to make explicit use of this value in previous
games. Indeed, we could not have used the DDH assumption if the simulator had
to use w. However, we are now finished with the DDH assumption, and so the
simulator is free to make use of w in this and subsequent games.

Game 3 is the same as Game 2, except that we introduce a new Rejec-
tion Rule 2: in responding to decryption requests, the simulator rejects any
ciphertext C(i) such that (u(i)

1 )w 	= u
(i)
2 , which is equivalent to saying that

logg1
u

(i)
1 	= logg2

u
(i)
2 .

Define F4 to be the event that a ciphertext is rejected during Game 3 using
Rejection Rule 2 to which Rejection Rules 0 and 1 are not applicable.

Clearly, we have
|Pr[X3]− Pr[X4]| ≤ Pr[F4], (3)

and we want to show that Pr[F4] is negligible.
We postpone this until later. This is the step that allows us to avoid a circular

argument in the original Kurosawa-Desmedt proof and forced them to make
the information theoretic assumptions. Instead of attempting to bound Pr[F4]
right now, we shall patiently wait until Game 5, where it will be much easier.
However, at this point we augment Game 3 just slightly: the simulator chooses
j ∈ {1, . . . ,Q}, and we define F ′

4 to be the event that in Game 3, Rejection Rules
0 and 1 do not apply to C(j), but Rejection Rule 2 does apply to C(j). Clearly,

Pr[F4] ≤ QPr[F ′
4], (4)

and so it suffices to show that Pr[F ′
4] is negligible.

Game 4. Moving from Game 3 to Game 4 is a bit involved technically, yet
the basic idea is exactly the same as that underlying the analysis in [12] of the
original Cramer-Shoup encryption scheme. To motivate Game 4, we begin with
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some observations about Game 3. Let x := x1 + wx2 and y := y1 + wy2. Then
we have c = gx

1 and d = gy
1 . Also, for i = 1, . . . ,Q, if logg1

u
(i)
1 = logg2

u
(i)
2

v(i) = ux+yα(i)

1 . Moreover, v is uniformly distributed over G, independently of
x and y. Further, if α(j) 	= α and logg1

u
(j)
1 	= logg2

u
(j)
2 then v(j) is uniformly

distributed over G, independently of x, y, and v. These observations follow from
simple linear algebra considerations, as in [12].

Based on these observations, in Game 4, we compute a number of quantities
in a different, but equivalent, manner. Let x̄, ȳ be random elements of Zq, and
let v̄1, v̄2 be random elements of G. Let (k̄i, K̄i) := KDF(v̄i).

The key generation algorithm is modified as follows: c ← gx̄
1 , d ← gȳ

1 . The
values k1 and K1 are set equal to (k̄1, K̄1).

In processing decryption requests, for a given C(i) that is not subject to
Rejections Rules 1 or 2, the value v(i) is computed as (u(i)

1 )x̄+ȳα(i)
. Finally, we

define the event F ′
5 to be the event in Game 4 that C(j) is subject to Rejection

Rule 2, C(j) is not subject to Rejection Rule 1, and

– (u(j)
1 ,u

(j)
2 ) = (u∗1,u

∗
2) and t(j) = MACk̄1

(e(j)), or
– (u(j)

1 ,u
(j)
2 ) 	= (u∗1,u

∗
2) and t(j) = MACk̄2

(e(j)).

Note that the values x1, x2, y1, y2, v
∗, v(j) are not used in Game 4.

We claim that

Pr[X4] = Pr[X5] and Pr[F ′
4] = Pr[F ′

5]. (5)

This follows from the observations above — we have simply replaced one set of
random variables by another set with same joint distribution.

It is perhaps helpful at this point to state how Game 4 works, starting from
scratch:

– The simulator generates the description of G, along with a random generator
g1, and any keys for KDF and H. It computes w, r, r′, x̄, ȳ ∈R Z

∗
q , g2 := gw

1 ,
c := gx̄

1 , d := gȳ
1 , u1 := gr

1, u2 := gwr′
1 , v̄1, v̄2 ∈R G, (k̄i, K̄i) ← KDF(v̄i) and

j ∈R [1..Q].
The simulator gives the description of G, the generators g1 and g2, keys for
KDF and H (if any), along with c and d to the adversary.

– In processing a decryption request C(i) = (u(i)
1 ,u

(i)
2 , e(i), t(i)), the simulator

first checks if (u(i)
1 )w 	= u

(i)
2 ; if so, the ciphertext is rejected. Otherwise, the

simulator computes α(i) := H(u(i)
1 ,u

(i)
2 ) and checks if (u(i)

1 ,u
(i)
2 ) 	= (u1,u2)

and α(i) = α; if so, the ciphertext is rejected. Otherwise, the simulator
computes v(i) as ux̄+ȳα(i)

1 and (k(i),K(i)) ← KDF(v(i)). It then tests if
t(i) = mack(i)(e(i)); if not, the ciphertext is rejected. Otherwise, the sim-
ulator returns DK(i)(e(i)) to the adversary.

– In processing the challenge request, the simulator sets K1 = K̄1, then chooses
a random key K0 and a random bit δ and gives Kδ to the adversary who
responds with a tag e. Now the simulator computes t ← MACk̄1

(e), and gives
C := (u1,u2, t) to the adversary.
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Note that the values j and v̄2 (and the derived values k̄2 and K̄2) are not used
in this game, other than to define the event F ′

5.

Game 5. This is the same as Game 4, except that instead of applying KDF to
derive the keys k̄1, K̄1, k̄2, K̄2, these keys are simply generated at random. Define
the event F ′

6 in Game 5 in the same way as it was defined in Game 4.
It is easy to see that

|Pr[X5]− Pr[X6]| ≤ 2εkdf and |Pr[F ′
5]− Pr[F ′

6]| ≤ 2εkdf, (6)

where εkdf is the advantage of distinguishing the output of the KDF from a
random key pair, using resources similar to those of the given adversary. The
factor of 2 comes from applying a standard “hybrid” argument to the two KDF
outputs to be distinguished in moving from Game 4 to Game 5. By assumption,
εkdf is negligible.

We claim that
Pr[X6] = 1/2 (7)

This follows by construction — note that the key K̄1 in Game 5 is random, and
is not used at all in the game, other than to define K1. Therefore, conditioned on
either δ = 0 or δ = 1, the adversary’s view has the same conditional distribution;
from this, it follows that the distribution of δ is independent of the adversary’s
view.

We also claim that
Pr[F ′

6] ≤ 2εmac, (8)

where εmac is the probability of breaking the message authentication code,
using resources similar to those of the given adversary. This also follows by
construction — one has to make a simple “hybrid” argument to account for
the fact that we are breaking one out of two message authentication schemes
(one keyed with k̄1 and the other keyed with k̄2, whence the factor of 2). By
assumption, εmac is negligible.

We are now in a position to complete the proof of security. By using Eqs.
(4), (5), (6), (8), we get

Pr[F4] ≤ Q(2εmac + 2εkdf). (9)

Finally, combining (1), (2), (3), (5), (6), (7), and (9), we have:

|Pr[X0]− 1/2| ≤ εtcr + εddh + 2εkdf +Q(2εmac + 2εkdf). (10)

By assumption, the right-hand side of (10) is negligible, which finishes the proof.
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Abstract. Biometric data offer a potential source of high-entropy, secret
information that can be used in cryptographic protocols provided two
issues are addressed: (1) biometric data are not uniformly distributed;
and (2) they are not exactly reproducible. Recent work, most notably
that of Dodis, Reyzin, and Smith, has shown how these obstacles may
be overcome by allowing some auxiliary public information to be reliably
sent from a server to the human user. Subsequent work of Boyen has
shown how to extend these techniques, in the random oracle model, to
enable unidirectional authentication from the user to the server without
the assumption of a reliable communication channel.

We show two efficient techniques enabling the use of biometric data
to achieve mutual authentication or authenticated key exchange over a
completely insecure (i.e., adversarially controlled) channel. In addition
to achieving stronger security guarantees than the work of Boyen, we
improve upon his solution in a number of other respects: we tolerate a
broader class of errors and, in one case, improve upon the parameters of
his solution and give a proof of security in the standard model.

1 Using Biometric Data for Secure Authentication

Biometric data, as a potential source of high-entropy, secret information, have
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tion of human users without requiring them to remember or store traditional
cryptographic keys. Before such data can be used in existing cryptographic pro-
tocols, however, two issues must be addressed: first, biometric data are not uni-
formly distributed and hence do not offer provable security guarantees if used
as is, say, as a key for a pseudorandom function. While the problem of non-
uniformity can be addressed using a hash function, viewed either as a random
oracle [2] or a strong extractor [20], a second and more difficult problem is that
biometric data are not exactly reproducible, as two biometric scans of the same
feature are rarely identical. Thus, traditional protocols will not even guarantee
correctness when the parties use a shared secret derived from biometric data.

Much work has focused on addressing these problems in efforts to develop se-
cure techniques for biometric authentication [8, 15, 19, 14, 22, 21]. Most recently,
Dodis, Reyzin, and Smith [9] showed how to use biometric data to securely de-
rive cryptographic keys which could then be used, in particular, for the purposes
of authentication. Roughly speaking (see Section 2 for formal definitions), they
introduce two primitives: a secure sketch which allows recovery of a shared secret
given a close approximation thereof, and a fuzzy extractor which extracts a uni-
formly distributed string s from this shared secret in an error-tolerant manner.
Both primitives work by constructing a “public” string pub which is stored by
the server and transmitted to the user; loosely speaking, pub encodes the redun-
dancy needed for error-tolerant reconstruction. The primitives are designed so
as to be “secure” even when an adversary learns the value of this public string.

Unfortunately, although these primitives suffice to obtain security in the pres-
ence of an eavesdropping adversary who learns pub as it is sent to the user, the
work of Dodis et al. does not address the issue of malicious modification of pub.
As a consequence, their work does not provide a method for secure authentica-
tion in the presence of an active adversary who may modify the messages sent
between the server and the user. Indeed, depending on the specific sketch or
fuzzy extractor being utilized, an adversary who maliciously alters the public
string sent to a user may be able to learn that user’s biometric data in its en-
tirety. A “solution” is for the user to store pub himself rather than obtain it from
the server (or to authenticate pub using a certificate chain), but this defeats the
purpose of using biometric data in the first place: namely, to avoid the need
for the user to store any additional cryptographic information — even if that
information need not be kept secret.

Boyen [5], inter alia, partially addresses potential adversarial modification
of pub (although his work focuses primarily on the orthogonal issue of re-using
biometric data with multiple servers, which we do not explicitly address here).
The main drawback of his technique in our context is that it provides only uni-
directional authentication from the user to the server. Indeed, Boyen’s approach
cannot be used to achieve authentication of the server to the user since his def-
inition of “insider security” (cf. [5–Section 5.2]) does not preclude an adversary
from knowing the (incorrect) value s′ of the shared secret recovered by the user
when the adversary forwards a specially crafted pub′ to this user; if the adversary
knows s′, then from the viewpoint of the user the adversary can do anything the
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server could do, and hence authentication of the server to the user is impossible.
The lack of mutual authentication implies that — when communicating over
an insecure network — the user and server cannot securely establish a shared
session key with which to encrypt and authenticate future messages: the user
may unwittingly share a key with an adversary who can then decrypt any data
sent by that user as well as authenticate arbitrary data.

1.1 Our Contributions

In this paper, we provide the first full solution to the problem of secure remote
authentication using biometric data1: in particular, we show how to achieve
mutual authentication and/or authenticated key exchange over a completely
insecure channel. We offer two constructions. The first one is a generic solution
which protects against modification of the public value pub in any context in
which secure sketches or fuzzy extractors are used; thus, this solution serves as
a drop-in replacement that “compiles” any protocol which is secure when pub is
assumed to be transmitted reliably into one which is secure even when pub might
be tampered with (we do not formalize this notion of “compilation”, but rather
view it as an intuitive way to understand our results). Our second construction
is specific to the settings of remote authentication and key exchange, where it
offers some improvements to the generic solution.

Compared with the work of Boyen [5], which was mostly concerned with the
re-usability of biometrics, our constructions enjoy the following key advantages:

– Both of our solutions tolerate a stronger class of errors. In particular, Boyen’s
work only allows for data-independent errors, whereas our analysis handles
arbitrary (but bounded) errors. We remark that small yet data-dependent
errors seem natural in the context of biometric data.

– Our second solution is proven secure in the standard model.
– Our second solution achieves improved bounds on the entropy loss, on the

order of 128 bits of entropy for practical choices of the parameters. This point
is particularly important since the entropy of certain biometric features is
roughly this order of magnitude (e.g., 173–250 bits for an iris scan [8, 13]).

Organization. We review some basic definitions as well as the sketches/fuzzy
extractors of Dodis et al. [9] in Section 2. In Section 3 we introduce the notion of
robust sketches/fuzzy extractors which are resilient to modification of the public
value, and can be used as a generic replacement for sketches/fuzzy extractors in
any application. Our second solution, which is specific to the problem of using
biometric data for authentication and offers some advantages with respect to
our generic construction, is described in Section 4.

1 Of course, our techniques are applicable to any scenario which relies on secret data
that, like biometric data, are non-uniform and/or not exactly reproducible.
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2 Definitions

Unless explicitly stated otherwise, all logarithms are base 2. We let U� denote
the uniform distribution over 	-bit strings. A metric space (M, d) is a finite
set M equipped with a symmetric distance function d : M×M → Z

+ ∪ {0}
satisfying the triangle inequality and such that d(x, y) = 0⇔ x = y. (All metric
spaces considered in this work are discrete, and the distances integer-valued.)
For our application, we assume that the format of the biometric data is such
that it forms a metric space under some appropriate distance function. We will
not need to specify any particular metric space in our work, as our results build
in a generic way on earlier sketch and fuzzy extractor constructions over any
such space (e.g., those constructed in [9] for a variety of metrics).

A probability space (Ω,P ) is a finite set Ω and a function P : Ω → [0, 1] such
that

∑
ω∈Ω P (ω) = 1. A random variable W defined over the probability space

(Ω,P ) and taking values in a set M is a function W : Ω → M. If (Ω,P ) is a
probability space over which two random variables W and W ′ taking values in a
metric space (M, d) are defined, then we say that d(W,W ′) ≤ t if for all ω ∈ Ω
it holds that d(W (ω),W ′(ω)) ≤ t.

Given a metric space (M, d) and a point x ∈M we define

VolMt (x) def= |{x′ ∈M | d(x, x′) ≤ t}| , VolMt
def= max

x∈M
{VolMt (x)}.

The latter is the maximum number of points in any “ball” of radius t in (M, d).
Following [9], for a pair of random variables A and B, we define the min-

entropy H∞(A) of A, and the average min-entropy of A given B, as

H∞(A) = − log(max
a

Pr[A = a]), H̄∞(A|B) def= − log(Expb←B [2−H∞(A|B=b)]).

The statistical difference between random variables A and B taking values in
the same set D is defined as SD(A,B) def= 1

2

∑
d∈D |Pr[A = d]− Pr[B = d]|.

2.1 Secure Sketches and Fuzzy Extractors

We review the definitions from [9] using slightly different terminology. Recall
from the introduction that a secure sketch provides a way to recover a shared
secret w from any value w′ which is a “close” approximation of w. More formally:

Definition 1. An (m,m′, t)-secure sketch over a metric space (M, d) comprises
a sketching procedure SS :M→ {0, 1}∗ and a recovery procedure Rec, where:

(Security) For all random variables W over M such that H∞(W ) ≥ m, we
have H̄∞(W | SS(W )) ≥ m′.

(Error tolerance) For all pairs of points w,w′ ∈M with d(w,w′) ≤ t, it holds
that Rec(w′,SS(w)) = w. ♦

While secure sketches address the issue of error correction, they do not address
the issue of the possible non-uniformity of W . Fuzzy extractors, defined next,
correct for this.
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Definition 2. An (m, 	, t, δ)-fuzzy extractor over a metric space (M, d) com-
prises a (randomized) extraction algorithm Ext : M → {0, 1}� × {0, 1}∗ and a
recovery procedure Rec such that:

(Security) For all random variables W over M that satisfy H∞(W ) ≥ m, if
〈R, pub〉 ← Ext(W ) then SD(〈R, pub〉, 〈U�, pub〉) ≤ δ.

(Error tolerance) For all pairs of points w,w′ ∈ M with d(w,w′) ≤ t, if
〈R, pub〉 ← Ext(w) then it is the case that Rec(w′, pub) = R. ♦

As shown in [9–Lemma 3.1], it is easy to construct a fuzzy extractor over a metric
space (M, d) given any secure sketch defined over the same space, by applying
a strong extractor [20] using a random “key” which is then included as part of
pub. Starting with an (m,m′, t)-secure sketch and with an appropriate choice of
extractor, this transformation yields an (m,m′ − 2 log( 1

δ ), t, δ)-fuzzy extractor.

2.2 Modeling Error in Biometric Applications

As error correction is a key motivation for our work, it is necessary to develop
some formal model of the types of errors that may occur. In prior work by
Boyen [5], the error in various biometric readings was assumed to be under
adversarial control, with the restriction that the adversary could only specify
data-independent errors (e.g., constant shifts, permutations, etc.). It is not clear
that this is a realistic model in practice, as one certainly expects, say, portions of
the biometric data where “features” are present to be more susceptible to error.

Here, we consider a much more general error model where the errors may be
data-dependent and hence correlated not only with each other but also with the
biometric secret itself. Furthermore, as we are ultimately interested in modeling
“nature” — as manifested in the physical processes that cause fluctuations in the
biometric measurements — we do not even require that the errors be efficiently
computable (although we will impose this requirement in Section 4). The only
restriction we make is that the errors be “small” and, in particular, less than
the desired error-correction bound; since the error-correction bound in any real-
world application should be selected to ensure correctness with high probability,
this restriction seems reasonable. Formally:

Definition 3. A t-bounded distortion ensemble W = {Wi}i=0,... is a sequence
of random variables Wi : Ω →M such that for all i we have d(W0,Wi) ≤ t. ♦

For our application, W0 represents the biometric reading obtained when a
user initially registers with a server, and Wi represents the biometric reading
on the ith authentication attempt by this user. Note that, regardless of the
protocol used, an adversary can always impersonate the server if the adversary
can guess Wi for some i > 0. The following lemmas give bound the probability
of this occurrence. First, we show that the min-entropy of each Wi is, at worst,
log(VolMt ) bits less than that of W0. Moreover, we show that Wi is no easier to
guess than W0 when SS(W0) is available.
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Lemma 1. Let W0,W1 be random variables over M satisfying d(W0,W1) ≤ t,
and let B be an arbitrary random variable. Then

H̄∞(W1 | B) ≥ H̄∞(W0 | B)− log VolMt .

Proof. Fix x ∈ M and any outcome B = b. Since d(W0,W1) ≤ t, we have
Pr[W1 = x | B = b] ≤

∑
x′|d(x,x′)≤t Pr[W0 = x′ | B = b] ≤ VolMt · 2−H∞(W0|B=b),

which means that H∞(W1 | B = b) ≥ H∞(W0 | B = b) − log VolMt . Since this
relation holds for every b, the lemma follows. ��
Secure sketches imply the following, stronger form of Lemma 1 which essentially
states that points close to W0 cannot be easier to guess than W0 if the value of
the sketch SS(W0) is known.

Lemma 2. Let W0,W1 be random variables over M satisfying d(W0,W1) ≤ t,
and let B be an arbitrary random variable. Let (SS,Rec) be a (�, �, t)-secure
sketch. Then

H̄∞(W1 | SS(W0),B) ≥ H̄∞(W0 | SS(W0),B).

Proof. Notice that since d(W0,W1) ≤ t, we have Rec(W1,SS(W0)) = W0, which
means that if for some x, b, pub we have Pr(W1 = x | SS(W0) = pub,B = b) ≥ α,
then Pr(W0 = Rec(x, pub) | SS(W0) = pub,B = b) ≥ α as well. Since this holds
for all x, b and pub, the lemma follows. ��
The analogue of Lemma 2 for fuzzy extractors holds as well (with SS(W0) re-
placed by pub).

3 Robust Sketches and Fuzzy Extractors

Recall that a secure sketch, informally speaking, takes a secret w and returns
some value pub which allows the recovery of w given any “close” approximation
w′ of w. When pub is transmitted to a user over an insecure network, however,
an adversary might modify pub in transit. In this section, we define the notion
of a robust sketch which protects against this sort of attack in a very strong way:
with high probability, the user will detect that pub has been modified and can
thus immediately abort in this case. A robust fuzzy extractor is defined similarly.
We then show: (1) a construction of a robust sketch in the random oracle model,
starting from any secure sketch; and (2) a conversion from any robust sketch
to a robust fuzzy extractor; this conversion does not require random oracles.
We conclude this section by showing the immediate application of robust fuzzy
extractors to the problem of mutual authentication.

We first define a slightly stronger notion of a secure sketch:

Definition 4. An (m,m′, t)-secure sketch (SS,Rec) is said to be well-formed
if it satisfies the conditions of Definition 1 except for the following modifica-
tions: (1) Rec may now return either an element in M or the distinguished
symbol ⊥; and (2) for all w′ ∈ M and arbitrary pub′, if Rec(w′, pub′) 	=⊥ then
d(w′,Rec(w′, pub′)) ≤ t. ♦



Secure Authentication Using Biometric Data 153

It is straightforward to transform any secure sketch (SS,Rec) into a well-formed
secure sketch (SS,Rec′): Rec′ runs Rec and then verifies that its output w is
within distance t of the input w′. If yes, it outputs w; otherwise, it outputs ⊥.

We now define the notion of a robust sketch:

Definition 5. Given algorithms (SS,Rec) and random variablesW = {W0, W1,
. . ., Wn} over metric space (M, d), consider the following game between an ad-
versary A and a challenger: Let w0 (resp., wi) be the value assumed by W0

(resp., Wi). The challenger computes pub ← SS(w0) and gives pub to A. Next,
for i = 1, . . . , n, the adversary A outputs a “challenge” pubi 	= pub and is given
Rec(wi, pubi) in return. If there exists an i such that Rec(wi, pubi) 	=⊥ we say
that the adversary succeeds and this event is denoted by Succ.

We say that (SS,Rec) is an (m,m′′, n, ε, t)-robust sketch over (M, d) if it is a
well-formed (m, �, t)-secure sketch and: (1) for all t-bounded distortion ensembles
W with H∞(W0) ≥ m and all adversaries A we have Pr[Succ] ≤ ε; and (2) the
average min-entropy of W0, conditioned on the entire view of A throughout the
above game, is at least m′′.2 ♦

A simpler definition would be to consider only random variables {W0,W1} and
to have A only output a single value pub1 	= pub. A standard hybrid argu-
ment would then imply the above definition with ε increased by a multiplicative
factor of n. We have chosen to work with the more general definition above
as it potentially allows for a tighter concrete security analysis. Also, although
the above definition allows all-powerful adversaries, we will consider adversaries
whose queries to a random oracle are bounded (but which are otherwise compu-
tationally unbounded). We remark that for a truly unbounded adversary (i.e.,
where even the oracle queries — if any — are unbounded), it is necessarily the
case that m′′ ≥ log 1

ε since at the last step of the game the adversary can guess
Wn with probability 2−m′′

and thus succeed with probability ε ≥ 2−m′′
.

3.1 Constructing a Generic Robust Sketch

Let H : {0, 1}∗ → {0, 1}k be a hash function. We construct a robust sketch
(SS,Rec) from any well-formed secure sketch (SS∗,Rec∗) as follows:

SS(w)
pub∗ ← SS∗(w)
h = H(w, pub∗)
return pub = 〈pub∗, h〉

Rec(w, pub = 〈pub∗, h〉)
w′ = Rec∗(w, pub∗)
if w′ =⊥ output ⊥
if H(w′, pub∗) 	= h output ⊥
otherwise, output w′

Theorem 1. If (SS∗,Rec∗) is a well-formed (m,m′, t)-secure sketch over metric
space (M, d) and H : {0, 1}∗ → {0, 1}k is a random oracle, then (SS,Rec) is an

2 In particular, this implies that (SS, Rec) is an (m, m′′, t)-secure sketch.
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(m,m′′, n, ε, t)-robust sketch over (M, d) for any adversary making at most qH

queries to H, where

ε = (q2
H + n) · 2−k + (3qH + 2n · VolMt ) · 2−m′

,

m′′ = − log ε.

When k ≥ m′ + log qH (which can be enforced in practice), the above simplifies
to ε ≤ (4qH + 2n · VolMt ) · 2−m′

and m′′ ≥ m′ − log(4qH + 2n · VolMt ).

Proof (Sketch). It is easy to see that (SS,Rec) is an (m, �, t)-secure sketch
and thus we only need to prove the latter two conditions of Definition 5. In
order to provide intuition, the following proof is somewhat informal; however,
the arguments given here can easily be formalized. Let pub = 〈pub∗, h〉 denote
the value output by SS in an execution of the game described in Definition 5.
Note that ifA ever outputs pubi = 〈pub∗i , hi〉 with pub∗i = pub∗ then the response
is always ⊥, since then we must have hi 	= h and so Rec will output ⊥. Thus, we
simply assume that pub∗i 	= pub∗.

Fix a t-bounded distortion ensemble {W0,W1, . . . ,Wn} with H∞(W0) ≥ m.
For any output pubi = 〈pub∗i , hi〉 of A, define the random variable W ′

i
def=

Rec∗(Wi, pub∗i ). In order not to complicate notation, we define

H∞(W ′
i )

def= − log
(

max
x∈M

Pr[W ′
i = x]

)
;

i.e., we ignore the probability that W ′
i =⊥ since A does not succeed in this case.

H̄∞(W ′
i | X) for a random variable X is defined similarly. Let w0, wi, and w′

i

denote the values taken by the random variables W0, Wi, and W ′
i , respectively.

We classify the random oracle queries of A into two types: type 1 queries are
those of the form H(·, pub∗), and type 2 queries are all the others. Informally,
type 1 queries represent attempts by A to learn the value of w0; in particular,
if A finds w such that H(w, pub∗) = h then it is “likely” that w0 = w. Type 2
queries represent attempts by A to determine an appropriate value for some hi;
i.e., if A “guesses” that w′

i = w for a particular choice of pub∗i then a “winning”
strategy is for A to obtain hi = H(w, pub∗i ) and output pubi = 〈pub∗i , hi〉.

Without loss of generality, we assume that A makes all its type 1 queries first,
then makes all its type 2 queries, and finishes by making its n queries to the
challenger (cf. Definition 5) in parallel (i.e., non-adaptively). The validity of the
assumption on the ordering of the type 1 and type 2 queries follows essentially
from the analysis that follows. The assumption that all queries to the random
oracle are made before any queries to the challenger is justified by the observation
that if Rec(Wi, pubi) 	=⊥ then the adversary has already succeeded, in which case
we can end the game, whereas the only remaining response Rec(Wi, pubi) =⊥
can be simulated by the adversary itself. This also justifies why we may assume
that the adversary’s challenges are made in parallel.

Let Q1 (resp., Q2) be a random variable denoting the sequence of type 1
(resp., type 2) queries made by A and the corresponding responses, and let q1
(resp., q2) denote the value assumed by Q1 (resp., Q2). For some fixed value of
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pub, define γpub
def= H∞(W0|pub). Notice, since (SS∗,Rec∗) is an (m,m′, t)-secure

sketch, we have Exppub[2−γpub ] ≤ 2−m′
. Now, define γ′

pub,q1

def= H∞(W0 | pub, q1),
and let us call the value q1 “bad” if γ′

pub,q1
≤ γpub − 1. We consider two cases: If

2γpub ≤ 2qH we will not have any guarantees, but using Markov’s inequality we
have Pr[2γpub ≤ 2qH ] = Pr[2−γpub ≥ 2−m′ · (2m′

/2qH)] ≤ 2qH · 2−m′
. Otherwise, if

2γpub > 2qH , we observe that the type 1 queries of A may be viewed as guesses
of w0. In fact, it is easy to see that we only improve the success probability
of A if in response to a type 1 query of the form H(w, pub∗) we simply tell A
whether w0 = w or not.3 It is immediate that A learns the correct value of w0

with probability at most qH ·2−γpub . Moreover, when this does not happen, A has
eliminated at most qH ≤ 2γpub/2 (out of at least 2γpub) possibilities for w0, which
means that γ′

pub,q1
≥ γpub − 1, or in other words that q1 is “good”. Therefore,

the probability that q1 is “bad” in this second case is at most qH · 2−γpub .
Combining the above two arguments, we see that

Exppub[Pr[q1 bad]] ≤ Prpub[2γpub ≤ 2qH ] + Exppub[qH · 2−γpub ]

≤ 2qH · 2−m′
+ qH · 2−m′

= 3qH · 2−m′
. (1)

Next, define γ′′
pub,q1

def= mini(H∞(W ′
i | pub, q1)). Recall that {W0,W1, . . .} is a

t-bounded distortion ensemble which means d(W0,Wi) ≤ t. Furthermore, since
(SS∗,Rec∗) is well-formed, {Wi,W

′
i} is also a t-bounded distortion ensemble4

regardless of pub∗i , which means d(Wi,W
′
i ) ≤ t. Applying Lemma 2 on {W0,Wi}

(noticing that pub contains pub∗), followed by Lemma 1 on {Wi,W
′
i}, we have

γ′′
pub,q1

≥ min
i

(H∞(Wi | pub, q1))− log VolMt ≥ γ′
pub,q1

− log VolMt . (2)

We now consider the type 2 queries made by A. Clearly, the answers to these
queries do not affect the conditional min-entropies of W ′

i (since these queries do
not include pub∗), so the best probability for the attacker to predict any of the
W ′

i is still given by 2−γ′′
pub,q1 , for fixed pub and q1. Assume for a moment that

there are no collisions in the outputs of any of the adversary’s random oracle
queries, and consider the adversary’s ith query 〈pub∗i , hi〉 to the challenger. The
probability that this query is “successful” is at most the probability thatA asked
a type 2 query of the form H(w′

i, ·) for the correct w′
i plus the probability that

such a query was not asked, yet A nevertheless managed to predict the value
H(w′

i, pub∗i ). Clearly, the second case happens with probability at most 2−k. As
for the first case, for any hi there is at most one w for which H(w, ·) = hi, since,
by assumption, there are no collisions in these type 2 queries. Thus, the adversary
succeeds on its ith query if this w is equal to the correct value w′

i. By what we just
argued, the probability that this occurs is at most 2−γ′′

pub,q1 , irrespective of pub∗i .

3 This has no effect when H(w, pub∗) 	= h as then A learns anyway that w 	= w0. The
modification has a small (but positive) effect on the success probability of A when
H(w, pub∗) = h since this fact by itself does not definitively guarantee that w = w0.

4 This ignores the case when W ′
i =⊥; see the definition of H∞(W ′

i ) given earlier.
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Therefore, assuming no collisions in type 2 queries, the success probability of A
in any one of its n parallel queries is at most n · (2−γ′′

pub,q1 + 2−k). Furthermore,
by the birthday bound the probability of a collision is at most q2

H/2
k. Therefore,

conditioned on pub and q1 and for the corresponding value of γ′′
pub,q1

, we find

that Pr[Succ | pub, q1] ≤ n · 2−γ′′
pub,q1 + (q2

H + n) · 2−k.
To conclude, the adversary’s overall probability of success is thus bounded

by the expectation, over pub and q1, of this previous quantity; that is:

Pr[Succ] = Exppub,q1
[Pr[Succ | pub, q1]]

≤ (q2
H + n) · 2−k

+ Exppub

⎡⎣ Pr
q1←Q1

[q1 bad | pub] +
∑

q1 good

n · 2−γ′′
pub,q1 · Pr[Q1 = q1 | pub]

⎤⎦ .
Using Equation 2, we see that 2−γ′′

pub,q1 ≤ VolMt · 2−γ′
pub,q1 . Moreover, for good q1

we have γ′
pub,q1

≥ γpub− 1, which means that 2−γ′′
pub,q1 ≤ 2 ·VolMt · 2−γpub . Finally,

using Equation 1, we have Exppub[Pr[q1 bad | pub]] ≤ 3qH · 2−m′
. Combining all

these, we successively derive:

Pr[Succ] ≤ (q2
H + n) · 2−k + 3qH · 2−m′

+ Exppub

[
2n · VolMt · 2−γpub · Pr

q1←Q1
[q1 good]

]
≤ (q2

H + n) · 2−k + 3qH · 2−m′
+ 2n · VolMt · Exppub

[
2−γpub

]
≤ (q2

H + n) · 2−k + (3qH + 2n · VolMt ) · 2−m′
= ε.

As for the claimed value of m′′, we omit the details since they follow almost
the same argument. As above, assuming that q1 is good, that no collisions occur
in type 2 queries, and that the adversary does not manage to guess any of the
values H(w′

i, pub∗i ), the conditional min-entropy of W0 is at least γ′
pub,q1

− log(n ·
VolMt ) ≥ γpub−1− log(n ·VolMt ). On the other hand, all these bad events leading
to a possibly smaller min-entropy of W0 happen with (expected) probability (over
pub) at most (q2

H +n) · 2−k +3qH · 2−m′
. From this, it is easy to see that if View

represents the adversary’s view in the experiment, then

H̄∞(W0|View) ≥ − log
(
(q2

H + n) · 2−k + 3qH · 2−m′
(3)

+ Exppub

[
2n · VolMt · 2−γpub

])
≥ − log

(
(q2

H + n) · 2−k + (3qH + 2n · VolMt ) · 2−m′)
= m′′.

��
We remark that the above proof uses only a non-programmable random oracle.

The bound on ε that we derive in the above proof has an intuitive interpre-
tation. The sub-expression

(
qH + n · VolMt

)
· 2−m′

that appears (up to a small
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constant factor due to the analysis) can be viewed as the probability that the
adversary “gets information” about the point w0: The contribution qH · 2−m′

is due to the type 1 oracle queries where, for each of at most qH queries, the
adversary “hits” the correct value of w0 with probability 2−m′

. Then, each of
the adversary’s n challenges cover no more than VolMt candidates for w0, since
each such query eliminates at most one value for w′

i (unless collisions in type 2
queries occur), which in turn eliminates up to VolMt candidates for wi, each of
which can only eliminate one candidate Rec(wi, pub∗) for w0. Besides the above,
the other contributions to ε are due to the probability of collisions in the random
oracle, plus a small term to account for the possibility that the adversary can
guess the output of the random oracle at an unqueried point.

In practice, one can set k large enough so that max(qH , n · VolMt ) is the
dominant factor determining the amount of the additional “loss” incurred as
compared to regular “non-robust” sketches.

3.2 From Robust Sketches to Robust Fuzzy Extractors

In a manner exactly analogous to the above, we may define the notion of a robust
fuzzy extractor. We include the definition here since we refer to it in the next
subsection:

Definition 6. Given algorithms (Ext,Rec) and random variables W = {W0,
W1, . . ., Wn} over a metric space (M, d), consider the following game between
an adversary A and a challenger: Let w0 (resp., wi) be the value assumed by
W0 (resp., Wi). The challenger computes (R, pub) ← Ext(w0) and gives pub to
A. Next, for i = 1, . . . , n, the adversary A outputs pubi 	= pub and is given
Rec(wi, pubi) in return. If there exists an i such that Rec(wi, pubi) 	=⊥, we say
the adversary succeeds and this event is denoted by Succ.

We say (Ext,Rec) is an (m, 	, n, ε, t, δ)-robust fuzzy extractor over (M, d) if
the following hold for all t-bounded distortion ensembles W with H∞(W0) ≥ m:

(Robustness) For all adversaries A, it holds that Pr[Succ] ≤ ε.
(Security) Let View denote the entire view of A at the conclusion of the above

game. Then, SD(〈R,View〉, 〈U�,View〉) ≤ δ.
(Error-tolerance) For all w′ with d(w0, w

′) ≤ t, we have Rec(w′, pub) = R. ♦

By applying a pairwise-independent hash function (i.e., a strong extractor) al-
most exactly as in [9–Lemma 3.1], we can convert any robust sketch to a robust
fuzzy extractor in the standard model (losing, as there, 2 log δ−1 bits of entropy).
A subtlety is that we need to “bind” the hash function key to the sketch itself.
We do this using a primitive we call a labeled robust sketch which, in a nut-
shell, defines a family of robust sketches indexed by a label. (For example, in
the specific construction of robust sketches from the previous section labels can
be incorporated by including the label as the input to the hash function which
is modeled as a random oracle.) By using the key to the hash function as a
label, we can bind the key to the sketch as needed. Details will appear in the
full version.
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We remark that if we are content to assume a random oracle G (as we anyway
only know how to construct robust sketches in the random oracle model), we can
trivially “extract” from a random variable w by computing G(w). This has the
advantage of not losing 2 log δ−1 bits of entropy when extracting. In this case,
we achieve δ ≤ qG · 2−m′′

, where qG is the number of queries to G and m′′ is as
in Theorem 1.

3.3 Application to Secure Authentication

The application of a robust fuzzy extractor to achieve mutual authentication or
authenticated key exchange over an insecure channel is immediate. Given any
secure protocol Π (say, for authenticated key exchange) based on a uniformly-
distributed shared key of length 	, any (m, 	, n, ε, t, δ)-robust fuzzy extractor
(Ext,Rec), and any source W0 with H∞(W0) ≥ m, consider the protocol Π ′

constructed as follows:

Initialization. The user samples w0 according to W0 (i.e., takes a scan of
his biometric data) and computes (R, pub) ← Ext(w0). The user registers
(R, pub) at the server.

Protocol execution. The ith time the user wants to run the protocol, the user
will sample wi according to some distribution Wi (i.e., the user re-scans
his biometric data). The server sends pub to the user, who then computes
R̂ = Ext(wi, pub). If R̂ =⊥, the user immediately aborts. Otherwise, the
server and user execute protocol Π, with the server and the user respectively
using the keys R and R̂.

Assume thatW = {W0,W1, . . .} is a t-bounded distortion ensemble. Correctness
of the above protocol is easily seen to hold: if the user obtains the correct value
of pub from the server then, because d(w0, wi) ≤ t, the user will recover R̂ = R
and thus both user and server will end up using the same key R in the underlying
protocol Π. The security of Π ′ with respect to the definitions of [3, 1], which
consider an active adversary who may control all messages sent between the user
and the server, follows from the following observations:

– If the adversary forwards pub′ 	= pub to at most n different user-instances,
these instances will all abort immediately (without running Π) except with
probability at most ε. Thus, except with this probability, the adversary is
limited to forwarding the correct value of pub.

– When the adversary forwards pub unchanged, the user and server run an
execution of Π using a key R which is within statistical difference δ from a
uniformly distributed 	-bit key. Note that this is true even when conditioned
on the view of the adversary in sessions when it does not forward pub un-
changed (cf. Definition 6). Thus, assuming Π is secure, the adversary will
not succeed in “breaking” Π ′ in this case either.

In terms of concrete security, if the security of Π against an adversary who ex-
ecutes at most n sessions with the user and the server is εΠ , then the security
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of Π ′ is ε+δ+εΠ . A formal proof following the above intuition is straightforward,
and will appear in the full version of this work.

4 Improved Solution Tailored for Mutual Authentication

As discussed in the introduction, the robust sketches and fuzzy extractors de-
scribed in the previous section provide a general mechanism for dealing with
adversarial modification of the public value pub. In particular, taking any proto-
col based on the secure sketches or fuzzy extractors of [9] which is secure when
the public value is assumed not to be tampered with, and plugging in a robust
sketch or fuzzy extractor, yields a protocol secure against an adversary who may
either modify the contents of the server — as in the case where the server itself
is malicious — or else modify the value of pub when it is sent to the user.

For specific problems of interest, however, it remains important to explore so-
lutions which might improve upon the general-purpose solution described above.
In this section, we show that for the case of mutual authentication and/or au-
thenticated key exchange an improved solution is indeed possible. As compared
to the generic solution based on robust fuzzy extractors (cf. Section 3.3), the
solution described here has the advantages that: (1) it is provably secure in
the standard model; and (2) it can achieve improved bounds on the “effective
entropy loss”. We provide an overview of our solution now.

Given the proof of Theorem 1, the intuition behind our current solution is
actually quite straightforward. As in that proof, letW = {W0, . . .} be a sequence
of random variables where W0 represents the initial recorded value of the user’s
biometric data and Wi denotes the ith scanned value of the biometric data. Given
a well-formed secure sketch (SS∗,Rec∗) and a value pub∗i 	= pub∗ = SS∗(W0)
chosen by the adversary, let W ′

i
def= Rec(Wi, pub∗i ) and define the min-entropy

of W ′
i as in the proof of Theorem 1. At a high level, Theorem 1 follows from

the observations that: (1) the average min-entropy of W ′
i is “high” for any value

pub∗i ; and (2) since the adversary succeeds only if it can also output a value
hi = H(W ′

i , pub∗i ), where H is a random oracle, the adversary is essentially
unable to succeed with probability better than 2−H∞(W ′

i ) in the ith iteration.
Crucial to the proof also is the fact that, except with “small” probability, the
value h = H(W0, pub∗) does not reduce the entropy of W0 “very much” (again
using the fact that H is a random oracle).

The above suggests that another way to ensure that the adversary does not
succeed with probability better than 2−H∞(W ′

i ) in any given iteration would be
to have the user run an “equality test” using its recovered value W ′

i . If this
equality test is “secure” (in some appropriate sense we have not yet defined)
then the adversary will effectively be reduced to simply guessing the value of
W ′

i , and hence its success probability in that iteration will be as claimed. Since
we have already noted that the average min-entropy of W ′

i is “high” when any
well-formed secure sketch is used (regardless of the value pub∗i chosen by the
adversary), this will be sufficient to ensure security of the protocol overall.
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Thinking about what notion of security this “equality test” should satisfy,
one realizes that it must be secure for arbitrary distributions on the user’s secret
value, and not just uniform ones. Also, the protocol must ensure that each inter-
action by the adversary corresponds to a guess of (at most) one possible value
for W ′

i . Finally, since the protocol is meant to be run over an insecure network,
it must be “non-malleable” in some sense so that the adversary cannot execute a
man-in-the-middle attack when the user and server are both executing the pro-
tocol. Finally, the adversary should not gain any information about the user’s
true secret W0 (at least in a computational sense) after passively eavesdropping
on multiple executions of the protocol. With the problem laid out in this way, it
becomes clear that one possibility is to use a password-only authenticated key
exchange (PAK) protocol [4, 1, 6] as the underlying “equality test”.

Although the above intuition is appealing, we remark that a number of sub-
tleties arise when trying to apply this idea to obtain a provably secure solution.
In particular, we will require the PAK protocol to satisfy a slightly stronger
definition of security than that usually considered for PAK (cf. [1, 6, 12]); infor-
mally, the PAK protocol should remain “secure” even when: (1) the adversary
can dynamically add clients to the system, with (unique) identities chosen by the
adversary; (2) the adversary can specify non-uniform and dependent password
distributions for these clients; and (3) the adversary can specify such distribu-
tions adaptively at the time the client is added to the system. Luckily, it is not
difficult to verify that at least some existing protocols (e.g., [1, 17, 18, 11, 16])
satisfy a definition of this sort.5 (Interestingly, the recent definition of [7] seems
to imply the above properties.) Due to lack of space, the formal definition of
security required for our application is deferred to the full version.

4.1 A Direct Construction

With the above in mind, we now describe our construction. Let Π be a PAK
protocol and let (SS,Rec) be a well-formed secure sketch. Construct a modified
protocol Π ′ as follows:

Initialization. User U samples w0 according to W0 (i.e., takes a scan of his
biometric data) and computes pub ← SS(w0). The user registers (w0, pub)
at the server S.

Protocol execution (server). The server sends pub to the user. It then exe-
cutes protocol Π using the following parameters: it sets its own “identity”
(within Π) to be S‖pub, its “partner identity” to be pid = U‖pub, and the
“password” to be w0.

Protocol execution (user). The ith time the user executes the protocol, the
user first samples wi according to distribution Wi (i.e., the user re-scans his
biometric data). The user also obtains a value pub′ in the initial message it

5 In fact, it is already stated explicitly in [17, 11] that the given protocols remain
secure even under conditions 1 and 2, and it is not hard to see that they remain
secure under condition 3 as well.
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receives, and computes w′ = Rec(wi, pub′). If w′ =⊥ then the user simply
aborts. Otherwise, the user executes protocol Π, setting its own “identity”
to U‖pub′, its “partner identity” to S‖pub′, and using the “password” w′.

It is easy to see that correctness holds, since if the user and the server interact
without any interference from the adversary then: (1) the identity used by the
server is equal to the partner ID of the user; (2) the identity of the user is the
same as the partner ID of the server; and (3) the passwords w0 and w′ are
identical. Before discussing the security of this protocol, we need to introduce a
slight restriction of the notion of a t-bounded distortion ensemble in which the
various random variables in the ensemble are (efficiently) computable:

Definition 7. Let (M, d) be a metric space. An explicitly computable t-bound-
ed distortion ensemble is a sequence of boolean circuits W = {W0, . . .} and a
parameter 	 such that, for all i, the circuit Wi computes a function from {0, 1}�
to M and, furthermore, for all r ∈ {0, 1}� we have d(W0(r),Wi(r)) ≤ t. ♦

In our application, W will be output by a ppt adversary, ensuring both that
the ensemble contains only a polynomial number of circuits and that each such
circuit is of polynomial size (and hence may be evaluated efficiently). We re-
mark that it is not necessary for our proof that it be possible to efficiently
verify whether a given W satisfies the “t-bounded” property or whether the
min-entropy of W0 is as claimed, although the security guarantee stated below
only holds if W does indeed satisfy these properties.6 With the above in mind,
we now state the security achieved by our protocol:

Theorem 2. Let Π be a secure PAK protocol (with respect to the definition
sketched earlier) and let A be a ppt adversary. If (SS,Rec) is a well-formed
(m,m′, t)-secure sketch over a metric space (M, d), and W = {W0, . . .} is
an explicitly-computable t-bounded distortion ensemble (output adaptively by A)
with H∞(W0) ≥ m, then the success probability of A in attacking protocol Π ′ is at
most qs ·2−m′′

+negl(κ), where qs represents the number of sessions in which the
adversary attempts to impersonate one of the parties, and m′′ = m′ − log VolMt .

Due to space limitations, the proof is deferred to the full version.

Specific instantiations. As noted earlier, a number of PAK protocols satisfying
the required definition of security are known. If one is content to work in the
random oracle model then the protocol of [1] may be used (note that this still
represents an improvement over the solution based on robust fuzzy extractors
since the “effective key size” will be larger, as we discuss in the next paragraph).
To obtain a solution in the standard model which is only slightly less efficient, the

6 As to whether the adversary can be “trusted” to output a W satisfying these
properties, recall that W anyway is meant to model naturally-occurring errors.
Clearly, if a real-world adversary has the ability to, e.g., introduce arbitrarily-large
errors then only weaker security guarantees can be expected to hold.
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PAK protocols of [17, 11, 16] could be used.7 Note that although these protocols
were designed for use with “short” passwords, they can be easily modified to
handle “large” passwords without much loss of efficiency; we discuss this further
in the full version.

4.2 Comparing Our Two Solutions

It is somewhat difficult to compare the security offered by our two solutions
(i.e., the one based on robust fuzzy extractors and the one described in this
section) since an exact comparison depends on a number of assumptions and
design decisions. As we already observed, the main advantage of the solution
described in this section is that it does not rely on random oracles. On the other
hand, the solution based on robust fuzzy extractors is simpler and more efficient.

The solution presented in this section does not require any randomness extrac-
tion, and it therefore “saves” 2 log δ−1 bits of entropy as compared with solutions
that apply standard randomness extractors to the recovered biometric data. Since
a likely value in practice is δ ≤ 2−64, this results in a potential savings of at least
128 bits of entropy. When the entropy of the original biometric data is “large”,
however, we notice that (1) as mentioned already in the previous section, we may
use a random oracle as our randomness extractor and thereby avoid the loss of
2 log δ−1 bits of entropy; and (2) our two approaches can be combined, and one
can use a PAK protocol with any robust sketch. If this is done then additional
extraction is not required, and so we again avoid losing 2 log δ−1 bits of entropy.

On the other hand, the solution of the present section offers a clear advantage
when the entropy of the original biometric data is “small”.Although in this case the
adversary can succeed by an exhaustive, on-line “dictionary” attack, the security
of our second solution implies that this is the best an adversary can do. In contrast,
our solutionbased on robust sketcheswouldnot be appropriate in this case since the
adversary could determine the user’s secret biometric data using off-line queries to
the random oracle (cf. the factor proportional to qH · 2−m′

in Theorem 1).
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Abstract. Shoup proved that various message-authentication codes of
the form (n, m) �→ h(m) + f(n) are secure against all attacks that see at

most
√

1/ε authenticated messages. Here m is a message; n is a nonce
chosen from a public group G; f is a secret uniform random permutation
of G; h is a secret random function; and ε is a differential probability
associated with h.

Shoup’s result implies that if AES is secure then various state-of-the-
art message-authentication codes of the form (n, m) �→ h(m) + AESk(n)

are secure up to
√

1/ε authenticated messages. Unfortunately,
√

1/ε
is only about 250 for some state-of-the-art systems, so Shoup’s result
provides no guarantees for long-term keys.

This paper proves that security of the same systems is retained up
to

√
#G authenticated messages. In a typical state-of-the-art system,√

#G is 264. The heart of the paper is a very general “one-sided” security
theorem: (n, m) �→ h(m)+f(n) is secure if there are small upper bounds
on differential probabilities for h and on interpolation probabilities for f .

1 Introduction

This paper proves that various state-of-the-art 128-bit authenticators are secure
against all attacks that see at most 264 authenticated messages. Previous proofs
broke down at a smaller number of messages, often below 250.

A typical example

Here is a well-known polynomial-evaluation message-authentication code over a
field of size 2128.
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Each message is a polynomial in one variable over the field. The polynomial’s
constant coefficient is required to be 0. One authenticates the polynomial by
evaluating it at a point and adding a function of the message number: the sender’s
nth message, say mn, is transmitted as (n,mn,mn(r) + f(n)). Here r and f are
secrets shared by the sender and the receiver.

It is easy to prove information-theoretic security of this system if r and f
are independent, r is a uniform random element of the field, and f is a uniform
random function from {n} to the field—in other words, if r, f(1), f(2), . . . are
independent uniform random elements of the field. The attacker’s chance of
successfully forging a message is at most LD/2128, where L is the maximum
degree of a message and D is the number of forgeries attempted. The idea of the
proof is that mn(r) + f(n) leaks no information about mn(r).

What if f is a uniform random injective function—in other words, what
if f(1), f(2), . . . are chosen to be distinct? What is the attacker’s chance of
successfully forging a message? Here are three answers:

• The easy bound: Say the sender transmits only C messages, where C is small.
Then f(1), f(2), . . . , f(C) are nearly independent, and one can easily prove
that the attacker’s chance of success is at most LD/2128 + C(C − 1)/2129.
This bound becomes useless as C approaches 264.

• Another bound: Shoup proved in [19–Theorem 2] that the attacker’s chance
of success is at most 2LD/2128 if C ≤ 264/

√
L.

• A better bound: This paper proves that the attacker’s chance of success is
below 1.002LD/2128 if C ≤ 260, and below 1.7LD/2128 if C ≤ 264, and below
3000LD/2128 if C ≤ 266.

For example, say the sender authenticates C = 260 messages, the attacker tries
D = 260 forgeries, and the maximum message degree is L = 216. The easy bound
is about 1/29, which is not at all comforting. Shoup’s bound is inapplicable. The
bound in this paper is 1.002/252.

Consequences for AES-based authenticators

Despite the high speed and information-theoretic security of mn(r)+f(n), users
often prefer mn(r)+AESk(n). Why? Because r, k occupy only 32 bytes, whereas
r, f(1), f(2), . . . occupy an additional 16 bytes for each message.

Define δ as the attacker’s chance of distinguishing AESk from f , where f is
a uniform random injective function on 16-byte blocks. The important feature
of AES for this paper is that δ is believed to be extremely small, even after 264

or more queries, even for an attacker with incredible computational resources.
This was an explicit design goal of AES: [ –Section 4] identified “the extent to
which the algorithm output is indistinguishable from [the output of] a [uniform]
random permutation” as one of the “most important” factors in evaluating AES
proposals, and [17–Table 1] shows that AES evaluators considered many attacks
aimed at this feature.

The attacker’s success chance against mn(r) + AESk(n) is at most δ plus
the attacker’s success chance against mn(r) + f(n). The point of this paper is

2
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that the second chance is extremely small, even for C = 264. Consequently,
mn(r) + AESk(n) is secure if δ is small, i.e., if AESk meets its design goals.

In short, this paper guarantees that mn(r) + AESk(n) is as secure as AES
up to 264 messages. The best previous results did not handle nearly as many
messages.

The importance of injectivity

Suppose that, in the above discussion of AES, I modify the definition of f by
omitting the word “injective.” Does the rest of the argument lead to the same
security guarantee? No!

It is still true that the attacker’s success chance against mn(r) + AESk(n) is
bounded by the sum of two chances: first, the attacker’s chance of distinguishing
AESk from f ; second, the attacker’s success chance against mn(r) + f(n). It is
still true—and easy to prove, without the new techniques in this paper—that
the second chance is small. But it is not true that AES was designed to make
the first chance small. In fact, for C = 264, the first chance is not small. The
attacker has a good chance of distinguishing AESk from f by trying 264 inputs
and checking for collisions.

The importance of injectivity in this context was highlighted by Shoup in
[19–Section 1] nearly ten years ago. As C and D grow, the usual theorems say
“nothing at all about the security of the message authentication scheme,” Shoup
wrote, pointing out examples of this problem in the literature.

Unfortunately, the literature has continued to sprout problems of this type.
Example: [9–Section 6.1] claims, for one message-authentication code, that any
attack with success probability larger than “about 2−60” has been “rigorously
proven” to imply an attack that distinguishes AES from “a [uniform] family
of random permutations.” In fact, the security analysis considered the uniform
distribution on all functions, not the uniform distribution on permutations; see
[16–page 15]. The error is below 2−60 if C + D < 234, but neither [16] nor [9]
puts any such limit on C + D. Apparently the security “guarantee” in [9] has
not been proven.

Generalization

This paper considers much more general message-authentication codes of the
form (n,m) $→ h(m) + f(n). The main theorem of this paper, Theorem 5.1, is
that h(m) + f(n) is secure if (1) differential probabilities for h are small and (2)
interpolation probabilities for f are small.

The “differential probabilities for h” are probabilities of the form Pr[h(m′) =
h(m) + g]. The “interpolation probabilities for f” are probabilities of the form
Pr[(f(n1), . . . , f(nk)) = (x1, . . . , xk)]. See Appendix A for further discussion of
terminology.

In particular, assume that f is a uniform random injective function from {n}
to a finite commutative group G, and that the differential probabilities for h
are small. Then h(m) + f(n) is secure against all attacks that see at most

√
#G

authenticated messages. As a special case, if G is the set of 16-byte strings with a
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group structure, then h(m) + f(n) is secure against all attacks that see at most
264 authenticated messages. Consequently h(m) + AESk(n) is secure against
any attacker who cannot break AES and who sees at most 264 authenticated
messages.

The form h(m) ⊕ f(n) for an authenticator, where f is a uniform random
function, was introduced by Wegman and Carter in [22–Section 4]. Here ⊕ is
vector addition modulo 2. Brassard in [10] considered h(m)⊕ f(n) where f is a
random function determined by a short key. Shoup in [19], as discussed above,
considered h(m)⊕ f(n) where f is a uniform random injective function.

There are many choices of h in the literature. The choices for any particular
output size (say 128 bits) vary in speed, entropy (e.g., 128 bits), maximum
differential probability ε (e.g., L/2128), et al. For example, Gilbert, MacWilliams,
and Sloane in [12] proposed m1,m2, . . . ,mL $→ m1r1 +m2r2 + · · ·+mLrL, which
has ε = 1/2128 but a very long r = (r1, r2, . . . , rL). This is, at first glance, just
as fast as univariate polynomial evaluation, but in practice the large r creates a
huge speed penalty: cache misses become much more common and much more
expensive. Evaluating a polynomial in a few variables over a larger field achieves
the same ε with a much smaller speed penalty. The larger field means a larger
output size, but Bierbrauer, Johansson, Kabatianskii, and Smeets in [7–page
336] pointed out that the result could be safely truncated after an appropriate
twist; the bandwidth savings of truncation may justify the computation cost of
the twist. There is much more to say about the choice of h; see [4–Section 10]
for a survey.

The more general shape h(m)+f(n) for an authenticator, where + can be any
commutative group operation, accommodates choices of h that rely on addition
in large characteristic rather than characteristic 2—in particular, functions that
can take advantage of the high-speed multiplication circuits included in common
CPUs. Several examples of such functions are “MMH,” “hash127,” “UMAC,”
“CWC-HASH,” and my new “Poly1305”; see [13], [4], [16], [15], and [5].

Shoup stated his theorems only for ⊕, but his proof technique can be used
in the same level of generality as mine. His proof technique breaks down as
C passes

√
1/ε, where ε is the maximum differential probability of h, whereas

mine continues working until
√

#G, where G is the authenticator group. The
magnitude of the improvement depends on how far ε is from 1/#G. In the
Gilbert-MacWilliams-Sloane system, for example, ε = 1/#G and there is no
improvement; in Poly1305, ε ≈ 225L/#G and there is a large improvement.

All of the security proofs in the literature rely on two-sided bounds for the
interpolation probabilities for f . One computes lower bounds on the probability
of any particular sequence of authenticators; one computes nearby upper bounds
on the probability of that sequence of authenticators given h; one deduces that
the authenticators reveal very little information about h, and hence very little
information about the authenticator for a new message. See, e.g., [22–Section
4, Theorem] and [19–Appendix A, Lemma 1]. The heart of the improvement in
this paper is a new “one-sided” proof strategy that moves directly from upper
bounds for f and h to upper bounds on the attacker’s chance of success.
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2 Protocol

This section describes a very general message-authentication protocol. Section 3
formalizes the notion of an attack on the protocol. Section 5 analyzes the success
chance of all attacks.

The protocol has several parameters:

• G, a finite commutative group of authenticators. I will always write the
group operation as +. (More general groups, or even loops, would suffice,
but I see no application of the extra generality.) Typical example: G is the
set of 16-byte strings, with the group operation being exclusive-or. Another
example: G is the set

{
0, 1, 2, . . . , 2128 − 1

}
, with the group operation being

addition modulo 2128.
• M , a nonempty set of messages. Typical example: M is the set of all strings

of bytes. Another example: M is the set of all strings of at most 1024 bytes.
• N , a finite set of nonces, with #N ≤ #G. Typical example: N is the set{

1, 2, 3, . . . , 232 − 1
}
. Another example: N is the set of 16-byte strings.

The protocol has several participants:

• A message generator creates messages.
• A nonce generator accepts messages m from the message generator and

attaches a nonce n to each message m. The nonce generator must never
use the same nonce for two different messages: if it generates (n1,m1) and
(n2,m2), and if m1 	= m2, then n1 must not equal n2. This uniqueness rule
is automatically satisfied if the nonce generator uses nonce 1 for the first
message, nonce 2 for the second message, etc.
• A sender accepts pairs (n,m) from the nonce generator and attaches an

authenticator a to each pair, as discussed below.
• A network accepts a sequence of vectors (n,m, a) from the sender and

transmits a sequence of vectors (n′,m′, a′). Perhaps the sequence of vectors
transmitted is the same as the sequence of vectors sent; perhaps not.
• A receiver receives vectors (n′,m′, a′) from the network. It accepts (n′,m′)

if a′ is the authenticator that the sender would have attached to (n′,m′);
otherwise it discards (n′,m′).

If the network transmits exactly what the sender sent, then the pairs (n,m)
accepted by the receiver are exactly the pairs (n,m) given to the sender; but
what if the network makes changes? The objective of the protocol is forgery
elimination: ensuring that each pair (n′,m′) accepted by the receiver is one of
the pairs (n,m) that was authenticated by the sender.

Users also want additional protocol features:

• The receiver should notice if the network repeats messages or transmits
messages out of order. One standard way to do this is for the nonce generator
to use increasing nonces (in some specified ordering of the set N), and for
the receiver to discard (n′,m′, a′) unless n′ is larger than the last accepted
nonce.
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• The receiver should notice if the network loses a message. There’s no way
to recover if the network is losing all messages, but there are retransmission
protocols that eventually succeed in transmitting all data if the network
delivers (e.g.) 1% of all messages.

But this paper focuses on the cryptographic problem of forgery elimination.
The sender’s authenticator for a pair (n,m) is h(m) + f(n): i.e., the sender

gives (n,m, h(m) + f(n)) to the network. Here h is a random function from
M to G, and f is a random function from N to G. The pair (f, h) is a secret
shared by the sender and receiver; this means that the actions of the message
generator, nonce generator, and network are independent of (f, h). In particular,
if the message generator encrypts messages, it does so using a key independent
of (f, h). The proof strategy in this paper can be extended to cover protocols
that reuse f for encryption, as long as separate f inputs are used for encryption
and for authentication; but that extension is not included in the statement of
Theorem 5.1.

3 Attacks

The combined behavior of the message generator, nonce generator, and network
is called an “attack.” The attack creates messages; it creates nonces, subject
to the rule that nonces never repeat; it inspects the authenticators provided by
the sender; and it provides some number of forgery attempts to the receiver.
The network is presumed to be able to provide data to the message generator
and nonce generator, so each message can depend on previous authenticators.
The attacker is presumed to be able to tell whether the receiver has accepted a
forgery attempt.

More formally: An attack is an algorithm given oracle access to two functions
S and R. The algorithm feeds chosen messages to the first oracle:

• The algorithm chooses a nonce n1 and message m1. The algorithm issues
the query (n1,m1) and receives an authenticator a1 = S(n1,m1).
• The algorithm then chooses a nonce n2 and message m2, obeying the rule

that n2 	= n1 if m2 	= m1. The algorithm issues the query (n2,m2) and
receives an authenticator a2 = S(n2,m2).

• The algorithm then chooses a nonce n3 and message m3, obeying the rule
that n3 	= n1 if m3 	= m1, and the rule that n3 	= n2 if m3 	= m2. The
algorithm issues the query (n3,m3) and receives an authenticator a3 =
S(n3,m3).

• The algorithm continues in this way for any number of messages.

Meanwhile, the algorithm feeds any number of forgery attempts (n′,m′, a′) to
the second oracle, receiving responses R(n′,m′, a′).

The attack succeeds against S and R if at least one forgery attempt
(n′,m′, a′) has R(n′,m′, a′) = 1 with (n′,m′) different from the previous queries
(n1,m1), (n2,m2), . . . to the first oracle.
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Attacks against this system

Take, in particular, S(n,m) = h(m) + f(n) and R(n,m, a) = [a = h(m) + f(n)];
i.e., R(n,m, a) = 1 if a = h(m) + f(n) and R(n,m, a) = 0 if a 	= h(m) + f(n).
Is there an attack that succeeds against S and R with noticeable probability?

Theorem 5.1 states, under certain assumptions on f and h, that the answer
is no. The receiver is overwhelmingly likely to discard every forgery—no matter
how the message generator chooses messages; no matter how the nonce generator
chooses unique nonces; no matter how the network chooses forgeries.

The rest of this section discusses the strength of this theorem, under the same
assumptions on f and h.

Forgeries versus selective forgeries

A selective forgery is a forged message chosen in advance by the attacker. Some
protocols prevent selective forgeries but allow attackers to find authenticators
for random-looking messages. These protocols assume—often incorrectly—that
random-looking messages will not cause any damage. In contrast, h(m) + f(n)
rejects all forgeries.

Attacks versus blind attacks

Some protocols prevent blind attacks but allow forgeries when attackers can
inspect authenticated messages. (Trivial example: use a secret password as an
authenticator for every message.) In contrast, h(m) + f(n) rejects all forgeries
even after the attacker sees a large number of authenticated messages.

Chosen messages versus known messages

Some protocols are secure for some message generators but insecure for others.
An attacker who can influence the message generator can often obtain enough
information to forge messages. In contrast, h(m) + f(n) rejects all forgeries no
matter what the message generator does.

Of course, if an attacker can convince the message generator to produce a
message, then he does not need to forge an authenticator for that message. An
easily corrupted message generator is often a problem. It is, however, not the
cryptographic problem considered in this paper.

Receiver interaction

As pointed out by Bellare, Goldreich, and Mityagin in [3], some (admittedly
unrealistic) protocols are secure against an attacker carrying out a single forgery
attempt but insecure against an attacker that tries several forgery attempts. In
contrast, the security bound for h(m) + f(n) is linear in the number of forgery
attempts.

The crucial point, as emphasized by Bellare et al., is that the attacker can
recognize all (n′,m′, a′) that will be accepted by the receiver without being
forgeries: namely, the results (n1,m1, a1), (n2,m2, a2), . . . already obtained from
the sender. In other words, the only way an attacker can learn anything new
from the receiver is by succeeding at a forgery. Thus receiver interaction does not
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improve the attacker’s success probability. Receiver interaction can change the
number of successful forgeries if the attacker succeeds, but this paper guarantees
that the attacker will not succeed in the first place.

4 Interpolation Probabilities

Let f be a random function from N to G. The hypothesis on f in Section 5 is that
f has maximum k-interpolation probability on the scale of 1/#Gk, for various
k ∈ {0, 1, . . . ,#N}. Here the maximum k-interpolation probability of f is
the maximum, for all x1, x2, . . . , xk ∈ G and all distinct n1, n2, . . . , nk ∈ N , of
the probability that (f(n1), f(n2), . . . , f(nk)) = (x1, x2, . . . , xk).

This section proves that this condition is satisfied by a uniform random func-
tion and by a uniform random injective function.

Theorem 4.1. Let f be a uniform random function from a finite set N to a
finite set G. Assume that #N ≤ #G. Then f has maximum k-interpolation
probability 1/#Gk for each k ∈ {0, 1, . . . ,#N}.

Proof. (f(n1), f(n2), . . . , f(nk)) = (x1, x2, . . . , xk) with probability 1/#Gk. ��

Theorem 4.2. Let f be a uniform random injective function from a finite set N
to a finite set G. Assume that #N ≤ #G. Then f has maximum k-interpolation
probability at most (1− (k − 1)/#G)−k/2/#Gk for each k ∈ {0, 1, . . . ,#N}.

Proof. Fix distinct n1, n2, . . . , nk ∈ N . Fix x1, x2, . . . , xk ∈ G.
Case 1: There are collisions in x1, x2, . . . , xk. Then (f(n1), . . . , f(nk)) =

(x1, . . . , xk) with probability 0.
Case 2: There are no collisions. Then f(n1) = x1 with probability 1/#G;

if that happens then f(n2) = x2 with conditional probability 1/(#G − 1);
if that happens then f(n3) = x3 with conditional probability 1/(#G − 2);
and so on. The probability that (f(n1), f(n2), . . . , f(nk)) = (x1, x2, . . . , xk) is
exactly

∏
0≤i≤k−1 1/(#G − i) =

√∏
0≤i≤k−1 1/(#G− i)(#G− (k − 1− i)) ≤√∏

0≤i≤k−1 1/(#G)2(1− (k − 1)/#G) =
√

(1− (k − 1)/#G)−k/(#G)2k. ��

5 The Main Theorem

Theorem 5.1 is the main theorem of this paper: (n,m) $→ h(m)+f(n) is secure if
h has small differential probabilities and f has small interpolation probabilities.

Theorems 5.2 and 5.3 consider two special cases: a uniform random function
f , and a uniform random injective function f .

Theorem 5.4 proves that (n,m) $→ h(m) + AESk(n) is secure if h has small
differential probabilities and AESk is secure, i.e., AESk is difficult to distinguish
from a uniform random injective function.



172 D.J. Bernstein

Theorem 5.1. Let h be a random function from a nonempty set M to a finite
commutative group G. Let f be a random function from a finite set N to G. Let
C and D be positive integers. Assume that C + 1 ≤ #N ≤ #G. Assume, for all
g ∈ G and all distinct m,m′ ∈M , that h(m) = h(m′)+g with probability at most
ε. Assume that f has maximum C-interpolation probability at most δ/#GC and
maximum (C +1)-interpolation probability at most δε/#GC . Assume that h and
f are independent. Then any attack using at most C distinct chosen messages
and at most D forgery attempts succeeds against (n,m) $→ h(m) + f(n) and
(n,m, a) $→ [a = h(m) + f(n)] with probability at most Dδε.

Proof. Standard reduction #1: It suffices to consider D = 1, for the following
reason. For D > 1, split the attack into two pieces:

• The first piece is the original attack with one change: it stops immediately
after the first forgery attempt (if there are any forgery attempts). This piece
uses at most C distinct chosen messages and at most 1 forgery attempt.
• The second piece is the original attack with one change: it simulates the

the first forgery attempt internally (if there are any forgery attempts) rather
than sending the forgery attempt as an oracle query. The simulator returns 1
if the forgery attempt n′,m′, a′ matches an authenticator a′ already provided
in response to a chosen message m′ with nonce n′; otherwise the simulator
returns 0. This piece uses at most C distinct chosen messages and at most
D − 1 forgery attempts.

Success of the original attack on its first forgery attempt is equivalent to success
of the first piece—which occurs with probability at most δε. Failure of the original
attack on its first forgery attempt, but success on a subsequent attempt, implies
success of the second piece—which, by induction on D, occurs with probability
at most (D − 1)δε. Therefore the original attack succeeds with probability at
most Dδε.

Standard reduction #2: If there are no forgery attempts then the attack
succeeds with probability 0 ≤ δε. Assume from now on that there is exactly one
forgery attempt.

Standard reduction #3: If the attack chooses any messages after the forgery
attempt, modify it to discard those oracle queries; this has no effect on the
attack’s success chance. Assume from now on that all chosen messages are issued
before the forgery attempt.

Standard reduction #4: If the attack might use fewer than C distinct chosen
messages, modify it to use additional chosen messages with new nonces and to
discard the results; new nonces are available since #N ≥ C, and at least one
message is available since #M ≥ 1. Assume from now on that the attack uses
exactly C distinct chosen messages.

Standard reduction #5: If the attack might repeat chosen messages, modify
it to cache queries and responses to the sender oracle. Assume from now on that
the attack does not repeat chosen messages.

Write (ni,mi) for the ith query to the sender oracle. Then n1, n2, . . . , nC

are distinct. Write ai for the ith response from the oracle, when the attack is
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applied to (n,m) $→ h(m) + f(n); then ai = h(mi) + f(ni). Write (n′,m′, a′) for
the attempted forgery.

Everything that the attack does is determined by (1) an infinite sequence b of
coin flips, by definition independent of h and f , and (2) the sequence of sender
responses a1, a2, . . . , aC . In particular, n1, n2, . . . , nC ,m1,m2, . . . ,mC , n

′,m′, a′

are equal to various functions evaluated at b, a1, a2, . . . , aC . Furthermore, f(ni)
is determined by ai and h(mi), so f(ni) is equal to a function evaluated at
h, b, a1, a2, . . . , aC .

Fix (g1, g2, . . . , gC) ∈ GC . Define X as the following event: (n′,m′, a′) is a
successful forgery and (a1, a2, . . . , aC) = (g1, g2, . . . , gC). It suffices to show that
event X has probability at most δε/#GC .

(A referee suggests some added emphasis: I am considering the probability
that the forgery attempt succeeds and the authenticators match (g1, g2, . . . , gC).
Previous proofs considered the probability that the forgery attempt succeeds
given that the authenticators match (g1, g2, . . . , gC).)

Define p as the probability that b satisfies the following measurable constraint:
if (a1, a2, . . . , aC) = (g1, g2, . . . , gC) then n′ /∈ {n1, n2, . . . , nC}. I claim, for each
b satisfying the constraint and for each h, that f has conditional probability at
most δε/#GC of producing event X.

Indeed, assume that b satisfies the constraint, that (n′,m′, a′) is a successful
forgery, and that (a1, a2, . . . , aC) = (g1, g2, . . . , gC). Then #{n1, . . . , nC , n

′} =
C +1, and the pairs (n1, f(n1)), . . . , (nC , f(nC)), (n′, f(n′)) are equal to various
functions evaluated at h, b, g1, g2, . . . , gC . By hypothesis, f is independent of h; f
is also independent of b; and g1, g2, . . . , gC are fixed. The conditional probability
of f interpolating those pairs is at most the maximum (C + 1)-interpolation
probability of f , which by hypothesis is at most δε/#GC .

I also claim, for each b not satisfying the constraint, that h has conditional
probability at most ε of satisfying a necessary differential condition; and, for
each b and each qualifying h, that f has conditional probability at most δ/#GC

of producing event X.
Indeed, assume that b does not satisfy the constraint, that (a1, a2, . . . , aC) =

(g1, g2, . . . , gC), and that (n′,m′, a′) is a successful forgery. Then n′ = ni for a
unique i; note that m′ 	= mi. Next a′ = h(m′)+ f(ni) and ai = h(mi)+ f(ni) so
h(mi)− h(m′) = ai − a′. The inputs mi,m

′ and the output ai − a′ are equal to
various functions evaluated at b, g1, g2, . . . , gC , and thus are independent of h; by
hypothesis, h satisfies the condition h(mi)− h(m′) = ai− a′ with probability at
most ε. Furthermore, the pairs (n1, f(n1)), (n2, f(n2)), . . . , (nC , f(nC)) are equal
to various functions evaluated at h, b, g1, g2, . . . , gC ; f is once again independent
of h, b, g1, g2, . . . , gC ; so the conditional probability of f interpolating those pairs
is at most the maximum C-interpolation probability of f , which by hypothesis
is at most δ/#GC .

The total probability of event X is at most p(δε/#GC)+(1−p)(ε)(δ/#GC) =
δε/#GC . ��

Theorem 5.2. Let h be a random function from a nonempty set M to a finite
commutative group G. Let f be a uniform random function from a finite set
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N to G. Let C and D be positive integers. Assume that C + 1 ≤ #N ≤ #G.
Assume, for all g ∈ G and all distinct m,m′ ∈ M , that h(m) = h(m′) + g
with probability at most ε. Assume that h and f are independent. Assume that
ε ≥ 1/#G. Then any attack using at most C distinct chosen messages and at
most D forgery attempts succeeds against (n,m) $→ h(m)+f(n) and (n,m, a) $→
[a = h(m) + f(n)] with probability at most Dε.

The condition ε ≥ 1/#G is redundant if #M ≥ 2: any distinct m,m′ ∈ M
have #G possibilities for h(m)−h(m′), each occurring with probability at most
ε by hypothesis, so 1 ≤ ε#G.

Proof. Write δ = 1. Then f has maximum C-interpolation probability 1/#GC =
δ/#GC , and maximum (C + 1)-interpolation probability 1/#GC+1 ≤ δε/#GC ,
by Theorem 4.1. By Theorem 5.1, the attack succeeds with probability at most
Dδε = Dε. ��

Theorem 5.3. Let h be a random function from a nonempty set M to a finite
commutative group G. Let f be a uniform random injective function from a finite
set N to G. Let C and D be positive integers. Assume that C + 1 ≤ #N ≤ #G.
Assume, for all g ∈ G and all distinct m,m′ ∈ M , that h(m) = h(m′) + g
with probability at most ε. Assume that h and f are independent. Assume that
ε ≥ 1/#G. Then any attack using at most C distinct chosen messages and at
most D forgery attempts succeeds against (n,m) $→ h(m)+f(n) and (n,m, a) $→
[a = h(m) + f(n)] with probability at most D(1− C/#G)−(C+1)/2ε.

In the special case C =
⌊√

#G
⌋
, the extra factor (1−C/#G)−(C+1)/2 is below

1.7 for all reasonably large G; it converges to exp(1/2) ≈ 1.64872 as #G→∞.

Proof. Write δ = (1 − C/#G)−(C+1)/2. By Theorem 4.2, f has maximum C-
interpolation probability at most (1 − (C − 1)/#G)−C/2/#GC ≤ δ/#GC . By
Theorem 4.2 again, f has maximum (C + 1)-interpolation probability at most
(1− C/#G)−(C+1)/2/#GC+1 ≤ δε/#GC . By Theorem 5.1, the attack succeeds
with probability at most Dδε. ��

Theorem 5.4. Let G be the set of 16-byte strings with a group structure. Let k
be a random AES key. Let h be a random function from a nonempty set M to G.
Assume that the distribution of h is computable. Let C and D be positive integers.
Assume that C + 1 ≤ 2128. Assume, for all g ∈ G and all distinct m,m′ ∈ M ,
that h(m) = h(m′) + g with probability at most ε. Assume that h and k are
independent. Assume that ε ≥ 1/2128. Let A be an attack using at most C distinct
chosen messages and at most D forgery attempts. Assume that A succeeds against
(n,m) $→ h(m)+AESk(n) and (n,m, a) $→ [a = h(m)+AESk(n)] with probability
γ. Define A′ as the algorithm that, given an oracle for a function f , chooses h
randomly, applies A to (n,m) $→ h(m)+f(n) and (n,m, a) $→ [a = h(m)+f(n)],
and prints 1 if A succeeded. Then A′ distinguishes AESk from a uniform random
permutation of G with probability at least γ −D(1−C/2128)−(C+1)/2ε, using at
most C + D oracle queries.
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Consequently, A succeeds against (n,m) $→ h(m)+AESk(n) and (n,m, a) $→
[a = h(m) + AESk(n)] with probability at most δ + D(1 − C/2128)−(C+1)/2ε,
where δ is the probability that an algorithm as fast as A′ can distinguish AESk

from a uniform random permutation of G.

Proof. A′ makes one oracle query for each chosen message from A, and one oracle
query for each attempted forgery from A, for a total of at most C + D oracle
queries.

When A′ is given an oracle for AESk, it applies A to (n,m) $→ h(m)+AESk(n)
and (n,m, a) $→ [a = h(m) + AESk(n)], so it prints 1 with probability γ by
hypothesis.

When A′ is given an oracle for a uniform random permutation f of G, it
applies A to (n,m) $→ h(m) + f(n) and (n,m, a) $→ [a = h(m) + f(n)], so it
prints 1 with probability at most D(1− C/2128)−(C+1)/2ε by Theorem 5.3.

Therefore A′ distinguishes AESk from a uniform random permutation of G
with probability at least γ −D(1− C/2128)−(C+1)/2ε. ��
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A Appendix: General Terminology

This section discusses various conflicts between (1) the terminology used in some
cryptographic papers and (2) the standard terminology of probability theory
used by a much larger community of mathematicians. This section also discusses
my choice of terminology for a few concepts that are more specialized.

1
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“Random” versus “uniform random”

A random element v of a finite set S is uniform if Pr[v = s] = 1/#S for each
s ∈ S. This terminology is standard in probability theory and is used in this
paper.

Examples: A coin flip c—a random bit—is uniform if Pr[c = 0] = 1/2 and
Pr[c = 1] = 1/2. If k is a uniform random 16-byte string then (k, 0) is a non-
uniform random 17-byte string; k[0], the first byte of k, is a uniform random
byte; AESk is a non-uniform random permutation of the set of 16-byte strings.

Some cryptographic papers use the word “random” to mean uniform random.
If these papers state theorems regarding a “random element of S,” for example,
then those theorems don’t apply to a random element of

{
0, 1, 2, . . . , 2127 − 2

}
that’s 0 twice as often as anything else—even though this slightly non-uniform
distribution is much more widely used than the uniform distribution. If these
papers state theorems regarding a “random RSA key” then those theorems are
incompatible with every prime-generation algorithm that’s actually used.

Some people try to work around this terminological deficiency by viewing all
random variables as images of uniform random variables. My random element
of
{
0, 1, 2, . . . , 2127 − 2

}
might be viewed as the reduction modulo 2127 − 1 of

a uniform random element of
{
0, 1, 2, . . . , 2256 − 1

}
; maybe this is how it was

generated in the first place.
The big problem with this workaround is that it buries every random variable

in a pointless thicket of notation—one has to introduce an irrelevant input set
and an irrelevant function instead of simply focusing on the resulting variable.
For example, rather than simply stating a theorem for a random function h from
messages to 16-byte strings, I’d have to state a theorem for a (uniform) random
element r of some set R together with some function H that, for each r, gives
me a function from messages to 16-byte strings.

“Random” versus “discrete random”

The set of values of a random variable is not required to be finite, or even
countable. A discrete random variable is a random element of a countable set.
This terminology is standard in probability theory and is used in this paper.

Consider, for example, the coin flips provided as an auxiliary input to a
probabilistic algorithm: an infinite random sequence of bits b = (b1, b2, b3, . . .).
This random sequence is a non-discrete random variable; it has uncountably
many values.

As a concrete example, consider the usual probabilistic algorithm to generate
a uniform random element of {1, 2, 3}: flip two coins; if the results are (0, 1) or
(1, 0) or (1, 1), print 1 or 2 or 3 correspondingly and stop; otherwise try again.
It is easy to prove that this algorithm succeeds with probability 1 (i.e., that
b = (0, 0, 0, 0, . . .) with probability 0), that the algorithm flips 8/3 coins on
average, etc. These are statements about non-discrete probabilities.

Some cryptographic papers use the word “random” to mean discrete random,
thus excluding such fundamental objects as coin-flip sequences. This restriction
is intolerable for any serious discussion of probabilistic algorithms.
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Warning to undergraduates: Pr[b ∈ S], the probability that b is in S, is defined
only for some sets S, namely the measurable sets. Here are the rules:

(1) the empty set is measurable;
(2) if S is measurable then its complement S is measurable;
(3) if S1, S2, . . . are measurable then S1 ∪ S2 ∪ · · · is measurable;
(4) if S is measurable then Pr[b ∈ S] ≥ 0;
(5) if S is measurable then Pr[b ∈ S] + Pr[b ∈ S] = 1;
(6) Pr[b ∈ S1 ∪ S2 ∪ · · ·] = Pr[b ∈ S1] + Pr[b ∈ S2] + · · · if S1, S2, . . . are disjoint

measurable sets;
(7) if u1, . . . ,uk are bits then {b : (b1, . . . , bk) = (u1, . . . ,uk)} is measurable and

Pr[(b1, . . . , bk) = (u1, . . . ,uk)] = 1/2k;
(8) nothing is measurable except as guaranteed above.

“Random” versus “independent random”

Random variables u, v, w are independent if the distribution of (u, v, w) is the
product of the distribution of u, the distribution of v, and the distribution of w:
i.e., Pr[(u, v, w) ∈ A×B×C] = Pr[u ∈ A] Pr[v ∈ B] Pr[w ∈ C] for all measurable
sets A,B,C. This terminology is standard in probability theory and is used in
this paper.

For example, if k is a uniform random 16-byte string, then k[0], k[1], and
k[2] are independent uniform random bytes; k[0], k[1], and k[0] ⊕ k[1] are non-
independent uniform random bytes; k[0] and k[0]⊕k[1] are independent uniform
random bytes; (k[0], 0) and (k[1], 0) are independent non-uniform random 2-byte
strings.

Suppose Theorem X says “Let u and v be independent random bytes. Then
u and v satisfy . . . .” I can apply Theorem X to the independent random bytes
k[1], k[2]. I can apply it to the independent random bytes k[0], k[0]⊕k[1]. I simply
have to say “k[0] and k[0]⊕ k[1] are independent; therefore, by Theorem X, k[0]
and k[0]⊕ k[1] satisfy . . . .”

Some cryptographic papers omit the word “independent” in many situations.
For example, Theorem X would say “Let u and v be random bytes. Then u and
v satisfy . . . ” implicitly also requiring that u and v be independent. The scope
of this implicit independence is unclear to me: for example, if the proof begins
“Note that if r is a random byte then . . . ,” then is r implicitly required to be
independent of u and v? The obvious way to avoid confusion is to make all
independence assumptions explicit.

Distributions versus random variables

What is a random variable?
A random element v of X is, intuitively, a function to X from the set of

possible universes. The value that v takes in a possible universe u is exactly the
function value v(u). For example, a coin flip is a function that assigns 0 to some
possible universes and 1 to other possible universes.

To formalize this, we fix a probability space Pr—intuitively, the set of possible
universes, although this intuition does not constrain the definition. A random
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element of X, where X is a measurable space, is a measurable function from
Pr to X. This terminology is standard in probability theory and is used in this
paper.

(Notes for undergraduates: A measurable space is a set together with a
designated collection of measurable subsets satisfying rules 1, 2, 3 above. A
probability space is a set together with a designated collection of measurable
subsets S and probabilities Pr[S] satisfying rules 1, 2, 3, 4, 5, 6 above. A function
v is measurable if {u ∈ Pr : v(u) ∈ S} is measurable for every measurable set
S.)

Random variables can be combined to produce new random variables. For
example, if v is a random element of X and w is a random element of Y then
(v, w), the function that takes u to (v(u), w(u)), is a random element of X × Y .
Similarly, if ϕ is a measurable function from X to Y , then ϕ(v), the function
that takes u to ϕ(v(u)), is a random element of Y .

Consider, for example, the measurable function s $→ s[0] that extracts the
first byte of a 16-byte string. This function induces a function k $→ k[0] that
extracts a random byte from a random 16-byte string: the composition of k (a
function from Pr to 16-byte strings) with [0] (a function from 16-byte strings to
bytes) is k[0] (a function from Pr to bytes).

Some cryptographers forbid all use of random variables. For example, one
is forbidden from considering a random function f and defining the maximum
2-interpolation probability of f as the maximum, over all x1, x2 and all distinct
n1, n2, of Pr[(f(n1), f(n2)) = (x1, x2)]. One is forced to use distributions instead:
consider a distribution F on the set of functions, and define the maximum 2-
interpolation probability of F as the maximum, over all x1, x2 and all distinct
n1, n2, of the fraction of functions f in F such that (f(n1), f(n2)) = (x1, x2).

The most glaring deficiency in this approach is its inability to discuss the
dependence of separate random variables. The independence of p and q is not
determined by the distribution of p and the distribution of q; in any situation
where p and q might be dependent, these papers are forced to start from the
distribution of the pair (p, q). How, then, does one feed p by itself to a lower-level
theorem? One has to average the joint distribution to obtain the distribution of
p, then apply the lower-level theorem, then undo the averaging; or generalize the
lower-level theorem to allow a joint distribution as input—effectively reinventing
the concept of random variables but with a much less pleasant notation.

Interpolation probabilities, collision probabilities, differential
probabilities

The following concepts are much more specialized than the fundamental concepts
of probability theory discussed earlier in this appendix. They are nevertheless
sufficiently common that the community would benefit from settling on good
terminology for them.

Let f be a random function from a set X to a finite set Y . Consider the
probability that f interpolates the points (x1, y1), (x2, y2), . . . , (xk, yk), where
x1, x2, . . . , xk are distinct: i.e., that (f(x1), f(x2), . . . , f(xk)) = (y1, y2, . . . , yk).
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This is what I call an interpolation probability, and more specifically a k-
interpolation probability.

Now consider the sum of 2-interpolation probabilities along the diagonal:
fix distinct x1, x2 ∈ X, and consider the probability that f(x1) = f(x2). This
is what I call a collision probability. More generally, assume that Y is a
commutative group, fix g ∈ Y , and consider the probability that f(x1)−f(x2) =
g. This is what I call a differential probability.

In the context of message authentication, it is useful to have upper bounds
on interpolation probabilities and upper bounds on differential probabilities, as
illustrated by this paper. Other authenticators can use upper bounds on collision
probabilities. It is also useful to have lower bounds on interpolation probabilities,
as illustrated by [6].

Many papers write “h is ε-almost-universal” (sometimes replacing h by its
distribution) to mean that all collision probabilities of h are below ε. There are
several flaws in this “ε-almost-universal” terminology:

• The phrase “almost universal” is highly non-descriptive. Readers who have
not seen the definition cannot even begin to guess what it refers to. Readers
who have seen the definition need to expend unnecessary mental energy to
remember it.
• The phrase “almost universal” provides no way to refer to individual collision

probabilities, lower bounds for collision probabilities, etc. The same papers
often end up talking about “collision probabilities” anyway.
• The phrase “almost universal” begs the question of what “almost” refers

to. The answer is that “h is universal” is reserved for the special case ε =
1/#Y , which is close to (although not exactly) the minimum achievable.
This terminology misleads readers into believing that the special case is
important; in fact, the general case is far more important.

Some papers on Wegman-Carter authenticators use the phrase “h is ε-almost-
xor-universal” to mean that all differential probabilities of h are below ε, in the
special case of the group operation being ⊕. Similar criticisms apply to this
phrase. A few papers refer to the general case using the phrase “h is ε-almost-
Δ-universal,” which is a poor choice of terminology for yet another reason: the
letter Δ is part of the terminology, not a modifiable variable name.



3-Move Undeniable Signature Scheme

Kaoru Kurosawa1 and Swee-Huay Heng2

1 Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
kurosawa@cis.ibaraki.ac.jp

2 Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia
shheng@mmu.edu.my

Abstract. In undeniable signature schemes, zero-knowledgeness and
non-transferability have been identified so far. In this paper, by sep-
arating these two notions, we show the first 3-move confirmation and
disavowal protocols for Chaum’s undeniable signature scheme which is
secure against active and concurrent attacks. Our main observation is
that while the signer has one public key and one secret key, there ex-
ist two witnesses in the confirmation and disavowal proofs of Chaum’s
scheme.
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1 Introduction

1.1 Background and Motivation

The concept of undeniable signatures was due to Chaum and van Antwerpen [11].
As opposed to the standard digital signatures which are universally verifiable, the
validity of undeniable signatures can be verified only with the signer’s consent, by
engaging interactively or non-interactively in either a confirmation protocol or a
disavowal protocol. There have been a wide range of research covering a variety of
different schemes for undeniable signatures over the past 15 years. Among others,
we have [8, 3, 10, 9, 22, 15, 20, 24, 6, 19, 18, 23, 5, 25, 26]. Most of these schemes are
discrete logarithm based, with the exception of a few RSA-based schemes [20, 19,
18], a pairing-based (identity-based) scheme [23] and some other schemes [5, 25,
26]. These schemes possess variable degrees of security and additional features
such as convertibility [3, 15, 24, 18], designated verifier technique [22], designated
confirmer technique [9, 27], and so on. At the same time, undeniable signatures
also find various applications in cryptography such as in licensing softwares (this
is in fact the original motivation of Chaum and van Antwerpen) [11], electronic
cash [12, 4, 28], electronic voting and auctions.

An undeniable signature scheme is said to be secure (against active attack)
if it is unforgeable, invisible and the confirmation and disavowal protocols are
both zero-knowledge. The zero-knowledgeness is required to make undeniable
signatures non-transferable, which is indeed the purpose of undeniable signature
schemes. Further, it is believed that a 3-move protocol cannot be zero-knowledge
from the result of [17].

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 181–197, 2005.
c© International Association for Cryptologic Research 2005
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Therefore, no 3-move undeniable signature scheme which is secure against
active attack is known. In fact, in the existing literature, the zero-knowledge
confirmation protocol is at least 4 moves. No constant moves zero-knowledge
disavowal protocol has been known so far.

This is mainly because zero-knowledgeness and non-transferability have been
identified so far implicitly or explicitly. In other words, the search for a 3-move
undeniable signature scheme which is provably secure against active attack re-
mains as an challenging open problem since the introduction of the concept of
undeniable signatures in 1989.

1.2 Our Contributions

We say that an undeniable signature scheme is “3-move” if the confirmation
protocol and the disavowal protocol are both 3-move (where the signer S sends
a to the verifier V , V sends b to S and S sends c to V ).

In this paper, we propose the first “3-move” undeniable signature scheme
which is provably secure against active and concurrent attacks, by exploiting
the fact that DH-tuples possess two witnesses, and also that non DH-tuples
possess two witnesses. It is achieved

– by separating two notions, zero-knowledgeness and non-transferability, and
– by incorporating the concept of witness indistinguishability [16] in a novel

way.

A naive approach for witness indistinguishability would be to use two public
keys, where the two corresponding secret keys are two witnesses, as suggested
by Feige and Shamir in [16]. More precisely, the signer issues two undeniable sig-
natures σ1 and σ2 on a message m. He then proves that σ1 is valid or σ2 is valid
by a witness indistinguishable protocol. Unfortunately, this approach does not
work. This is because, from De Morgan’s law (X ∨ Y = X ∧Y ), both the confir-
mation protocol and the disavowal protocol cannot be witness indistinguishable
simultaneously. For more details, see Section 6. Further, such a two public-key
scheme would be costly.

On the other hand, we show 3-move confirmation and disavowal protocols for
Chaum’s undeniable signature scheme [8], where the signer has only one pub-
lic key. Our main idea is as follows. In the confirmation (disavowal) protocol,
the signer proves that a tuple (g, gu, gv, gw) is a DH-tuple (non DH-tuple). Now
observe that a DH-tuple (g, gu, gv, guv) has two witnesses, u and v. A similar ob-
servation holds for non DH-tuples too. Thus, our main observation is that while
the signer has one public key and one secret key, there exist two witnesses in the
confirmation and disavowal proofs of Chaum’s scheme. This allows us to use the
concept of witness indistinguishability (WI) in the confirmation and disavowal
protocols. As a result, we manage to circumvent the problem encountered earlier
in the naive approach.

More precisely, in order to prove that (g, gu, gv, guv) is a DH-tuple, knowledge
of either one of the two witnesses, i.e. u or v is sufficient. This observation is
critical in the simulation of the confirmation/disavowal oracle in the security
analyses.
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Chaum’s original scheme (which does not employ a cryptographic hash func-
tion) is not secure as it succumbed to the basic multiplicative attacks. Therefore,
we apply the above idea on the full-domain hash (FDH) [14] variant of Chaum’s
scheme so that we can treat the hash function as a random oracle in the security
analyses. In this scheme, the signer has a single public key y = gx and a single
secret key x. Remember that the signer does not have to prove that he knows
x in the confirmation protocol. All he needs to prove is the validity of a signa-
ture σ on a message m under the public key y, i.e. he proves that a given tuple
(g, y,H(m),σ) is a DH-tuple where σ = H(m)x and H is a random oracle. We
notice that the DH-tuple has two witnesses by accident in this case. The same
argument applies in proving the invalidity of a signature σ 	= H(m)x, i.e. by
proving that (g, y,H(m),σ) is a non DH-tuple using a disavowal protocol.

Traditionally, two main security notions for undeniable signatures are the no-
tion of existential unforgeability and invisibility under adaptive chosen message
attack. The existential unforgeability of our proposed scheme is equivalent to
the computational Diffie-Hellman (CDH) problem while it is invisible assuming
the hardness of the decisional Diffie-Hellman (DDH) problem.

In this paper, we also introduce another important security notion with re-
gard to undeniable signatures, namely, the security against impersonation at-
tack. As all of us are aware that the purpose of undeniable signature scheme is
to construct a signature which is non-transferable. This is equivalent to prevent
impersonation by employing confirmation and disavowal protocols. This secu-
rity notion has not been formalized so far mainly because zero-knowledgeness
implies non-transferability. Since our newly proposed scheme is a novel work sep-
arating zero-knowledgeness and non-transferability while adopting the witness-
indistinguishability property, we are led to this particular security notion. We
manage to prove that the security against impersonation attack of our proposed
scheme is equivalent to the discrete logarithm (DLOG) problem.

A brief summary of security analyses of our newly proposed scheme is given
in the following table. The table holds in the random oracle model while our
confirmation (disavowal) protocol is a WI protocol for a (non-) DH tuple in the
standard model.

Security Unforgeability Invisibility Impersonation
Equivalence CDH ≥ DDH DLOG

As a result, we successfully devise a 3-move undeniable signature scheme
which is secure against active and concurrent attacks with respect to the secu-
rity notions of existential unforgeability, invisibility and impersonation, with a
weaker requirement than zero-knowledgeness.

Notice that schemes which adopt the non-interactive designated verifier proof
technique [22] is trivially secure against impersonation attack. It is true that if
a verifier has a public key, then we can make the confirmation and disavowal
protocols non-interactive by using the designated verifier proof technique. How-
ever, if the verifier does not have a public key, then obviously the confirmation
and disavowal protocols must remain interactive. Otherwise, non-transferability
is broken.
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As an aside, we remark that the idea we obtain from the observation that
there exist two witnesses in a DH-tuple is of independent interest. Hopefully,
it may find applications on some other interactive protocols which involve the
proving of the validity of a DH-tuple in the security analyses. For example, the
same idea can be readily applied to the identity-based undeniable signatures
by Libert and Quisquater [23]. In [23], the scheme is proven secure using the
non-interactive designated verifier proof technique only.

2 Preliminaries

Let G be an Abelian group of prime order q, and let g be a generator of G. We
say that (g, gu, gv, gw) is a DH-tuple if w = uv mod q.

The DDH problem is to decide if (g, gu, gv, gw) is a DH-tuple. The CDH
problem is to compute guv from (g, gu, gv) and the DLOG problem is to compute
u from gu.

2.1 The FDH Variant of Chaum’s Scheme

The full domain hash (FDH) variant [14] of Chaum’s undeniable signature
scheme [8] is described as follows.

Let G be an Abelian group of prime order q, and let g be a generator of G.

– Key Generation. On input 1k, choose x ∈ Zq randomly and compute
y = gx. Choose a cryptographic hash function H : {0, 1}∗ → G. Set the
public key as (g, y,H) and the secret key as x.

– Signing. On input the public key (g, y,H), the secret key x and a message
m ∈ {0, 1}∗, the algorithm returns the signature as σ = H(m)x.

– Confirmation Protocol. Given a message-signature pair (m,σ), the signer
proves that (g, y,H(m),σ) is a DH-tuple in zero-knowledge.

– Disavowal Protocol. Given a pair (m,σ), the signer proves that (g, y,H(m),
σ) is not a DH-tuple in zero-knowledge.

The existing zero-knowledge confirmation protocol requires 4 moves and no
zero-knowledge disavowal protocol with constant moves is known so far [8].

3 How to Formalize the Security

Traditionally, an adversary in an undeniable signature scheme intends to achieve
two main adversarial goals, namely, to forge a signature and to distinguish
whether a message-signature pair is valid or invalid, which correspond to the
security notions of existential unforgeability and invisibility, respectively.

In this section, we introduce another new adversarial goal which is imper-
sonation. We are led to this notion since our proposed confirmation/disavowal
protocols are not zero-knowledge but witness indistinguishable, linking imper-
sonation attack for identification schemes to non-transferability. Surprisingly,
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this goal impersonation has been overlooked in the past while being different
from the notions of unforgeability and invisibility.

Meanwhile, there exist three kinds of attacks, namely, passive attack, active
attack and concurrent attack. We will elaborate more on this in the sequel.

3.1 Unforgeability

The first security notion is similar to the one for ordinary digital signatures,
which is the notion of existential unforgeability against adaptive chosen message
attack [21]. The only difference is that besides the signing oracle access, the
adversary is also allowed to access to the confirmation/disavowal oracle. The
confirmation/disavowal oracle is simulated based on the kind of attacks mounted,
i.e. passive attack or active/concurrent attack. Generally, in a passive attack the
adversary does not interact with the signer/prover. What the adversary does is
eavesdropping and she is in possession of transcripts of conversations between
the prover and the verifier. In an active/concurrent attack, the adversary gets to
play the role of a cheating verifier, interacting with the prover several times, in an
effort to extract some useful information. We will give a more formal definition
shortly.

To the best of our knowledge, this is the first time passive, active and con-
current attacks are being defined explicitly and rigorously with respect to the
security notions of undeniable signatures. Specifically, concurrent attack is more
relevant to identification scheme [2]. However, we remark that since confirmation
and disavowal protocols of an undeniable signature scheme are usually performed
interactively as in an identification protocol, concurrent attack should be taken
into account as well.

The difference between active and concurrent attacks is that in an active
attack, the adversary interacts serially with the prover “clones”; while in a con-
current attack, the adversary is allowed to interact with many different prover
“clones” concurrently. Apparently, the active/concurrent adversary has higher
capability than the passive adversary.

We consider the following game.

1. Let pk be the input to a forger F .
2. The forger F is permitted to issue a series of queries:

– Signing queries: F submits a message m and receives a signature σ on m.
(We consider adaptive queries here – subsequent queries is made based
on previously obtained signatures.)

– Confirmation/disavowal queries: F submits a message-signature pair
(m,σ), and the oracle responds based on whether a passive attack or
an active/concurrent attack is mounted.

3. At the end of this attack game, F outputs a message-signature pair (m∗,σ∗).

– In a passive attack, the confirmation/disavowal oracle first checks the validity
of (m,σ). If it is a valid pair, then the oracle returns a bit μ = 1 and
a transcript of confirmation protocol. Otherwise, the oracle returns a bit
μ = 0 and a transcript of disavowal protocol.
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– In an active/concurrent attack, the confirmation/disavowal oracle first checks
the validity of (m,σ). If it is a valid pair, then the oracle returns a bit μ = 1
and proceeds with the execution of the confirmation protocol with the forger
F (acting as a cheating verifier). Otherwise, the oracle returns a bit μ = 0
and executes the disavowal protocol with F accordingly.

The forger F wins the game if F outputs a valid message-signature pair
(m∗,σ∗) such that m∗ has never been queried to the signing oracle, or it queries
a valid (m∗,σ∗) to the confirmation/disavowal oracle such that m∗ has never
been queried to the signing oracle.

F ’s advantage in this game is defined to be Adv(F ) = Pr[Fwins].

Definition 1. An undeniable signature scheme is said to be existential unforge-
able under adaptive chosen message attack if no probabilistic polynomial time
(PPT) forger F has a non-negligible advantage in the above game.

3.2 Invisibility

The second security notion of undeniable signatures is invisibility, a notion due
to Chaum, van Heijst and Pfitzmann [10]. This notion is essentially the inability
to determine whether a given message-signature pair is valid. There are many
variations in defining invisibility, for example it is defined in terms of simulata-
bility in [10] and it is defined in terms of distinguishing whether a signature σ
is corresponding to a message m0 or m1 in [6].

In this paper, we adopt the following definition given by Galbraith and Mao
[18] as they have proven that if a scheme satisfies invisibility in the sense of
Definition 2 then it also satisfies invisibility in the sense of [6].

Consider the following game.

1. Let pk be the input to a distinguisher D.
2. The distinguisher D is permitted to issue a series of queries: signing queries

and confirmation/disavowal queries as in Section 3.1.
3. At some point, D outputs a message m∗ which has never been queried to the

signing oracle, and requests a challenge signature σ∗ on m∗. The challenge
signature σ∗ is generated based on the outcome of a hidden coin toss b. If
b = 1, then σ∗ is generated as usual using the signing oracle, otherwise σ∗

is chosen uniformly at random from the signature space S.
4. D performs some signing and confirmation/disavowal queries again with

the restriction that no signing query on m∗ is allowed, and no confirma-
tion/disavowal query on the challenge message-signature pair (m∗,σ∗) is
allowed.

5. At the end of this attack game, D outputs a guess b′.

The distinguisher D wins the game if b′ = b. D’s advantage in this game is
defined to be Adv(D) = |Pr[b′ = b]− 1

2 |.

Definition 2. An undeniable signature scheme is said to have the property of
invisibility under adaptive chosen message attack if no PPT distinguisher D has
a non-negligible advantage in the above game.
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The difference between the above definition and the one in [6] is such that in
the latter the distinguisher D outputs two messages m0 and m1 and the challenge
signature σ∗ is generated for mb where b is the hidden bit.

3.3 Impersonation

As noted earlier, the third (and new) security notion of undeniable signatures is
the security against impersonation attack. We consider the following game.

1. Let pk be the input to an impersonator I.
2. The impersonator I enters the learning phase where it performs a series of

queries: signing queries and confirmation/disavowal queries as in Section 3.1
and Section 3.2. At the end of this phase, I outputs a tuple (m∗,σ∗, μ) which
consists of a message-signature pair and a bit μ (where μ = 1 indicates valid
and μ = 0 indicates invalid).

3. In the impersonation phase, if μ = 1, then the impersonator I executes the
confirmation protocol with a verifier on input (m∗,σ∗). If μ = 0, I executes
the disavowal protocol with a verifier on input (m∗,σ∗).

The impersonator I wins the game if it can convince the verifier that (m∗,σ∗)
is either valid or invalid (depending on the bit μ it outputs earlier). I’s advantage
in this game is defined to be Adv(I) = Pr[Iwins].

Definition 3. An undeniable signature scheme is said to be secure against im-
personation under adaptive chosen message attack if no PPT impersonator I
has a non-negligible advantage in the above game.

4 WI Protocol on DH-Tuple

In this section, we present our main idea, that is, we give the descriptions of DH-
tuple witness indistinguishable (WI) protocol and non DH-tuple WI protocol.

The concept of witness indistinguishability and witness hiding was introduced
by Feige and Shamir [16]. Generally speaking, a two-party protocol between a
prover and a verifier, in which the prover uses one of the several secret witnesses
to an NP assertion, is witness indistinguishable if the verifier cannot tell which
witness the prover is actually using. The protocol is witness hiding if at the end
of the protocol the verifier cannot compute any new witness which he did not
know before the protocol began. The result in [16] says that if a statement has at
least two independent witnesses, then any witness indistinguishable protocol for
this statement is also witness hiding. WI protocols have been used to construct
identification schemes [16] and blind signature schemes [29, 1].

In our proposal, the prover demonstrates the knowledge of 1-out-of-2 wit-
nesses corresponding to a problem instance (a DH-tuple) without revealing which
is known, thus it is a witness indistinguishable and witness hiding protocol.
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4.1 WI Protocol for DH-Tuple

Let (g, U, V,W ) be a DH-tuple, where U = gu, V = gv,W = guv. Now we observe
that there are two witnesses, u and v. Then by using the technique of [13], we
can construct a 3-move witness indistinguishable protocol such that the prover
knows u or v of a DH-tuple.

We start from a 3-move honest verifier zero-knowledge proof system (HVZK)
such that the prover knows u of a DH-tuple [12]. It is depicted in Fig. 1-(a).
We can obtain a similar HVZK protocol such that the prover knows v. It is
symmetry to Fig. 1-(a) and thus we omit the details.

Prover Verifier

r
R← Zq

z1 = gr

1 z2 = V r z1,z2−→
2

c←− c
R← Zq

3 d = r + cu mod q
d−→

gd ?
= z1U

c

V d ?
= z2W

c

(a) Prover knows u of a DH-tuple

Prover Verifier

r
R← Zq

A = (V u/W )r

α, β
R← Zq

z1 = V α/W β

1 z2 = gα/Uβ A,z1,z2−→ A
?

	= 1

2
c←− c

R← Zq

d1 = α + c(ur) mod q

3 d2 = β + cr mod q
d1,d2−→

V d1/W d2 ?
= z1A

c

gd1/Ud2 ?
= z2

(b) Prover knows u of a non DH-tuple

Fig. 1. 3-move protocols

We finally present a 3-move WI protocol such that the prover knows u or v
of a DH-tuple. For this protocol, we assume that the prover knows u (but not
v).

1. The prover chooses c2, d2 ∈ Zq randomly. He computes z′1 = gd2/V c2 and
z′2 = Ud2/W c2 .
He also chooses r ∈ Zq randomly and computes z1 = gr and z2 = V r.
Next, he sends (z1, z2, z′1, z

′
2) to the verifier.

2. The verifier chooses c ∈ Zq randomly and sends c to the prover.
3. The prover computes c1 = c − c2 mod q and d1 = r + c1u mod q. He sends

(c1, c2, d1, d2) to the verifier.
4. The verifier checks if c = c1 + c2 mod q and

gd1 = z1U
c1 , V d1 = z2W

c1 ;
gd2 = z′1V

c2 , Ud2 = z′2W
c2 .

4.2 WI Protocol for Non DH-Tuple

Suppose that (g, U, V,W ) is not a DH-tuple, where U = gu, V = gv,W = gw

and w 	= uv mod q. Then similarly to Section 4.1, we can construct a 3-move WI
protocol such that the prover knows u or v of a non DH-tuple.
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We start from a 3-move HVZK protocol such that the prover knows u of a
non DH-tuple, as proposed in [7]. The protocols is as illustrated in Fig. 1-(b).
Similarly, we can obtain a 3-move HVZK protocol such that the prover knows
v. It is the symmetric counterpart of Fig. 1-(b).

We finally present a 3-move WI protocol such that the prover knows u or v
of a non DH-tuple. For this protocol, we assume that the prover knows u (but
not v).

1. The prover chooses c2, d′1, d
′
2 ∈ Zq randomly and A′ ∈ G such that A′ 	= 1

randomly. He computes z′1 = Ud′
1/(W d′

2A′c2) and z′2 = gd′
1/V d′

2 .
He also chooses r ∈ Zq randomly and computes A = (V u/W )r. Next, he
chooses α,β ∈ Zq randomly and computes z1 = V α/W β and z2 = gα/Uβ .
Finally, he sends (A,A′, z1, z2, z′1, z

′
2) to the verifier.

2. The verifier first checks if A 	= 1 and A′ 	= 1. Next, he chooses c ∈ Zq

randomly and sends c to the prover.
3. The prover computes c1 = c − c2 mod q, and d1 = α + c1(ur) mod q and

d2 = β + c1r mod q. He sends (c1, c2, d1, d2, d
′
1, d

′
2) to the verifier.

4. The verifier checks if c = c1 + c2 mod q and

V d1/W d2 = z1A
c1 , gd1/Ud2 = z2;

Ud′
1/W d′

2 = z′1A
′c2 , gd′

1/V d′
2 = z′2.

5 Proposed 3-Move Undeniable Signature Scheme

In this section, we show a 3-move undeniable signature scheme which is secure
against active and concurrent attacks. Our scheme builds on the FDH variant of
Chaum’s scheme which is described earlier, by incorporating the idea from the
previous section.

Since the core of this paper is to propose a 3-move undeniable signature
scheme which is secure against active and concurrent attacks, we consider only
security against these two kinds of attacks. Nevertheless, a scheme which is secure
against active/concurrent attack will definitely secure against passive attack too.

5.1 Scheme

The key generation algorithm and the signing algorithm are the same as those
of the FDH variant of Chaum’s undeniable signature scheme.

(Confirmation protocol) By using the 3-move WI protocol of Section 4.1,
the signer proves that (g, y,H(m),σ) is a DH-tuple, where (m,σ) is a valid
message-signature pair.

(Disavowal protocol) By using the 3-move WI protocol of Section 4.2, the
signer proves that (g, y,H(m),σ) is not a DH-tuple, where (m,σ) is not a
valid message-signature pair.
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5.2 Security

We show that the existential unforgeability of our proposed scheme against ac-
tive and concurrent attacks is equivalent to the CDH problem in the random
oracle model. Similarly, we prove that our scheme is invisible under the DDH
assumption and the impersonation is equivalent to the DLOG problem.

Theorem 1. The existential unforgeability of the above 3-move undeniable sig-
nature scheme against active and concurrent attacks is equivalent to the CDH
problem in the random oracle model.

Proof. Please refer to Appendix A. ��

Theorem 2. The above 3-move undeniable signature scheme is invisible against
active and concurrent attacks under the DDH assumption in the random oracle
model.

Proof. Please refer to Appendix B. ��

Theorem 3. The security against impersonation under active and concurrent
attacks of the above 3-move undeniable signature scheme is equivalent to the
DLOG problem in the random oracle model.

Proof. Please refer to Appendix C. ��

6 Discussion

A naive approach for witness indistinguishability would be to use two public
keys, where the two corresponding secret keys are two witnesses, as suggested in
[16]. However, this approach does not work as shown below.

In this approach, the signer has two public keys, y1 = gx1 and y2 = gx2 .
The undeniable signature on a message m is σ = (σ1,σ2), where σ1 = H(m)x1

and σ2 = H(m)x2 . The secret key of the signer is x1 or x2. In the confirmation
protocol, the signer proves that σ1 is valid OR σ2 is valid.

However, in the disavowal protocol, the signer has to prove that “σ1 is in-
valid AND σ2 is invalid” because De Morgan’s law claims that X ∨ Y = X ∧ Y .
Therefore, the disavowal protocol cannot be witness indistinguishable. In gen-
eral, from De Morgan’s law, both the confirmation protocol and the disavowal
protocol cannot be witness indistinguishable simultaneously. On the other hand,
we manage to circumvent this problem by our new approach.

We further remark that our proposed scheme is almost as efficient as the FDH
variant of Chaum’s scheme, except that the computation and communication
complexity in the confirmation and disavowal protocols are almost twice the
original scheme. However, we stress that this slight efficiency loss is worthwhile
in achieving the security against active and concurrent attacks with only 3-move
confirmation and disavowal protocols. This is indeed a significant contribution
to the literature of undeniable signatures.
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7 Conclusion

We proposed the first 3-move undeniable signature scheme which is provably se-
cure against active and concurrent attacks, by exploiting the fact that DH-tuples
possess two witnesses, and also that non DH-tuples possess two witnesses. Thus,
this allows us to use the concept of witness indistinguishability and witness hid-
ing in the confirmation and disavowal protocols of the FDH variant of Chaum’s
scheme. The existential unforgeability of our proposed scheme against adaptive
chosen message attack is equivalent to the CDH problem. The scheme satis-
fies the property of invisibility assuming the intractability of the DDH problem.
Moreover, we also introduced another security notion which is impersonation at-
tack. We proved that the security against impersonation of our proposed scheme
is equivalent to the DLOG problem.
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A Proof of Theorem 1

Firstly, we show that if there exists an algorithm M that solves the CDH problem
with advantage εM , then one can construct a forger F that can forge in the
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universal way with advantage εF , by running M as a subroutine. The forger F
is given the public key (g, y,H) where y = gx. For any message m, F computes
h = H(m) and gives the triple (g, y, h) as input to M . When M outputs hx,
F simply outputs the forgery as (m,σ = hx). It is clear that εF = εM . This
completes the first half of our proof.

Secondly, we show that if there exists an existential forger F with advantage
εF , then one can construct an algorithm M that can solve the CDH problem
with advantage εM , by running F as a subroutine. Suppose the input to M is
(g, gx, gz). M then starts running F by feeding F with the public key (g, y =
gx,H) where H is a random oracle that will be simulated by M . M also simulates
the signing oracle and the confirmation/disavowal oracle itself. Let qS and qH

be the number of signing queries and H queries that F issues respectively. We
assume that when F requests a signature on a message mi, it has already made
the corresponding H query on mi.

When F makes a H query for a message mi, M responds with hi = H(mi) =
gvi with probability δ and hi = H(mi) = (gz)vi with probability 1 − δ, where
vi is chosen randomly from Zq and δ is a fixed probability which will be de-
termined later. Suppose that F makes a signing query for a message mi. If M
has responded with hi = gvi to the H query for a message mi, then M returns
σi = yvi as the valid signature (since yvi = (gx)vi = hx

i = H(mi)x). Otherwise,
M aborts and it fails to solve the CDH problem.

Next, we consider the case when F makes a confirmation/disavowal query. Let
qv be the number of queries that F issues to the confirmation/disavowal oracle.
For convenience, we consider that the final output of F is the (qv + 1)th query.
We say that (mi,σ

′
i) is special if it is a valid message-signature pair queried by F

to the confirmation/disavowal oracle such that mi has never been queried to the
signing oracle. M guesses the first special query. More precisely, M guesses the
first i such that the ith query (mi,σ

′
i) is special. So, at the beginning, M chooses

Guess ∈ {1, 2, · · · , qv + 1} randomly. There are two cases to be considered here,
namely, i < Guess and i = Guess. First suppose that i < Guess.

– If F has never made a signing query for mi, then M returns μ = 0 and runs
the disavowal protocol with F .

– Otherwise, F has already made a signing query for mi, and M answered with
a valid signature σi with probability δ (with probability (1− δ) M aborts).
If σi = σ′

i then M returns μ = 1 and runs the confirmation protocol with F .
Otherwise, M returns μ = 0 and runs the disavowal protocol with F .

Notice that since M knows vi, it can simulate the confirmation/disavowal oracle
perfectly. (Recall that the execution of the confirmation/disavowal oracle is to
prove whether (g, gx,H(mi) = gvi ,H(mi)x = gvix) is a DH-tuple or not. Since
M knows one of the witnesses which is vi, it can simulate the interactive proof
perfectly.)

Now suppose that i = Guess. Let (m∗,σ∗) be the ith query. If F has queried
m∗ to the signing oracle, then M aborts. Otherwise, we assume that F has
queried the H-oracle on m∗ and so m∗ = mj for some j. If hj = (gz)vj , then
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we have σ∗ = hx
j = (gzvj )x. Consequently, M outputs gxz = (σ∗)1/vj and thus

it solves the CDH problem. Otherwise, M aborts and it fails to solve the CDH
problem.

To complete the proof, it remains to calculate the probability that M does
not abort. M guesses the first special query with probability 1/(qv + 1). The
probability that M answers to all the signing queries is δqS and M outputs gzr

with probability 1− δ. Therefore, the probability that M does not abort during
the simulation is δqS (1−δ)/(qv+1). This value is maximized at δopt = 1−1/(qS+
1). This shows that M ’s advantage εM is at least (1/e(1+qS))εF /(qv +1), where
e is the base of the natural logarithm. This is because the value (1−1/(qS +1))qS

approaches 1/e for large qS . This completes our proof.

B Proof of Theorem 2

We show that if there exists an invisibility distinguisher D with advantage εD,
then one can construct an DDH distinguisher D′ with advantage εD′ , by run-
ning D as a subroutine. Suppose the input to D′ is (g, gx, gz, gt). D′ then starts
running D by feeding D with the public key (g, y = gx,H) where H is a ran-
dom oracle that will be simulated by D′. D′ also simulates the signing oracle
and the confirmation/disavowal oracle itself. Let qS and qH be the number of
signing queries and H queries that D issues respectively. We assume that when
D requests a signature on a message mi, it has already made the corresponding
H query on mi.

When D makes a H query for a message mi, D′ responds with hi = H(mi) =
gvi with probability δ and hi = H(mi) = (gz)vi with probability 1 − δ, where
vi is chosen randomly from Zq and δ is a fixed probability which will be de-
termined later. Suppose that D makes a signing query for a message mi. If D′

has responded with hi = gvi to the H query for a message mi, then D′ returns
σi = yvi as the valid signature (since yvi = (gx)vi = hx

i = H(mi)x). Otherwise,
D′ aborts and it fails to solve the DDH problem.

Eventually, D outputs a message m∗. We assume that D has queried the
H-oracle on m∗ and so m∗ = mi for some i. If hi = (gz)vi , then D′ returns
the challenge signature σ = (gt)vi . Otherwise, D′ aborts and it fails to solve the
DDH problem.

Next, D performs someH queries, signing queries and confirmation/disavowal
queries again with the restriction that no signing queries on m∗ is allowed, and no
confirmation/disavowal query on the challenge message-signature pair (m∗,σ∗)
is allowed.

Finally, D outputs a bit b′ which it thinks is equal to the hidden bit b. More
precisely, D outputs b′ = 1 if it finds that (m∗,σ∗) is a valid message-signature
pair and it outputs b′ = 0 if it finds that σ∗ is chosen uniformly at random from
the signature space S.

Subsequently, D′ provides the same output as D which is b′. Note that if
(m∗,σ∗) is a valid message-signature pair, then (g, gx, gz, gt) is a DH-tuple. This
is indeed the case since σ∗ = hx

i implies that t = xz mod q, where σ∗ = (gt)vi
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and hi = (gz)vi . Otherwise (g, gx, gz, gt) is not a DH-tuple. This is indeed the
case since σ∗ 	= hx

i implies that t 	= xz mod q. Therefore, if D is an invisibility
distinguisher then D′ is a DDH distinguisher.

Now, we show how to simulate the confirmation/disavowal oracle. If CDH
problem is easy, then DDH problem is easy. Hence D′ can solve the DDH problem
(without using D) in this case.

Suppose that CDH problem is hard. Then D cannot forge (mi,σi) with non-
negligible probability because forgery is equivalent to CDH problem from Theo-
rem 1. Now assume that D queries (mi,σ

′
i) to the confirmation/disavowal oracle.

– If D has never made a signing query for mi, then D′ returns μ = 0 and runs
the disavowal protocol with D. This is justified because D cannot forge as
mentioned above.

– Otherwise, D has already made a signing query for mi, and D′ has answered
with a valid signature σi. If σi = σ′

i then D′ returns μ = 1 and runs the
confirmation protocol with D. Otherwise, D′ returns μ = 0 and runs the
disavowal protocol with D.

(M can run the confirmation/disavowal protocol as in the proof of Theorem 1.)
To complete the proof, it remains to calculate the probability that D′ does

not abort. The probability that D′ answers to all the signing queries is δqS and
D′ succeeds in distinguishing the DDH problem with probability 1−δ. Therefore,
the probability that D′ does not abort during the simulation is δqS (1− δ). This
value is maximized at δopt = 1− 1/(qS +1). This shows that D′’s advantage εD′

is at least (1/e(1 + qS))εD, where e is the base of the natural logarithm. This is
because the value (1−1/(qS +1))qS approaches 1/e for large qS . This completes
our proof.

C Proof of Theorem 3

Firstly, we show that if there exists an algorithm M that solves the DLOG
problem with advantage εM , then one can construct an impersonator I that can
succeed in an impersonation by running M as a subroutine, with advantage εI .
At first, the impersonator I is given the public key (g, y,H) where y = gx. Since
I can obtain the secret key x by feeding y to the algorithm M , it can impersonate
the signer with the knowledge of x. It is clear that εI = εM . This completes the
first half of our proof.

Secondly, we show that if there exists an impersonator I with advantage εI ,
then one can construct an algorithm M that can solve the DLOG problem with
advantage εM , by running I as a subroutine. Suppose the input to M is (g, gx).
M first chooses a bit coin.

Suppose that coin = 0. M then starts running I by feeding I with the public
key (g, y = gx,H) where H is a random oracle that will be simulated by M .
M also simulates the signing oracle and the confirmation/disavowal oracle itself.
We assume that when I requests a signature on a message mi, it has already
made the corresponding H query on mi.
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In the learning phase, I starts a series of queries. When I makes a H query for
a message mi, M responds with hi = H(mi) = gvi , where vi is chosen randomly
from Zq. When I makes a signing query for a message mi, M returns σi = yvi

as the valid signature (since yvi = (gx)vi = hx
i = H(mi)x).

Suppose that I makes a confirmation/disavowal query for a message-signature
pair (mi,σ

′
i). If mi has never been queried to the signing oracle by I, then M

simulates the signing oracle as above by itself. Hence M knows a valid signature
σi anyway. Then M returns μ = 1 if σ′

i = σi and μ = 0 if σ′
i 	= σi. M also

runs the confirmation or disavowal protocol accordingly, where M can run the
confirmation/disavowal protocol as in the proof of Theorem 1.

At the end of this learning phase, I outputs a tuple (m∗,σ∗, μ).
Next, I enters the impersonation phase. If μ = 1, then I executes the con-

firmation protocol with M (acting as a verifier) on input (m∗,σ∗). M runs I to
obtain its commitment (z1, z2, z′1, z

′
2), randomly selects a challenge c ∈ Zq, and

runs I to obtain its response (c1, c2, d1, d2). M next resets I to the step whereby
I has sent (z1, z2, z′1, z

′
2). M then randomly selects a fresh challenge c′ ∈ Zq, and

re-runs I to obtain its response (c′1, c
′
2, d

′
1, d

′
2).

If both conversations are accepted and c 	= c′, then M can extract the DLOG
of y (which is x) or the DLOG of H(m∗) (which is v = vi for some vi) as follows.
Before this, remember that c = c1 + c2 mod q and c′ = c′1 + c′2 mod q. This
implies that c1 	= c′1 or c2 	= c′2, otherwise c1 = c2 which contradicts the above
assumption.

From the first conversation, we obtain

gd1 = z1y
c1 , H(m∗)d1 = z2(σ∗)c1 ;

gd2 = z′1H(m∗)c2 , yd2 = z′2(σ
∗)c2 .

From the second conversation, we obtain

gd′
1 = z1y

c′1 , H(m∗)d′
1 = z2(σ∗)c′1 ;

gd′
2 = z′1H(m∗)c′2 , yd′

2 = z′2(σ
∗)c′2 .

Then it is not difficult to see that

gd1−d′
1 = yc1−c′1 , H(m∗)d1−d′

1 = (σ∗)c1−c′1 ; (1)

gd2−d′
2 = H(m∗)c2−c′2 , yd2−d′

2 = (σ∗)c2−c′2 . (2)

When c1 	= c′1, since y = gx and σ∗ = H(m∗)x, M can extract x = d1−d′
1

c1−c′1
mod

q from (1). When c2 	= c′2, M can extract v = d2−d′
2

c2−c′2
mod q from (2).

On the other hand, if μ = 0, then the impersonator I executes the disavowal
protocol with M (acting as a verifier) on input (m∗,σ∗). M runs I to obtain
its commitment (A,A′, z1, z2, z′1, z

′
2), randomly selects a challenge c ∈ Zq, and

runs I to obtain its response (c1, c2, d11, d12, d
′
11, d

′
12). M next resets I to the

step whereby I has sent (A,A′, z1, z2, z′1, z
′
2). M then randomly selects a fresh

challenge c′ ∈ Zq, and re-runs I to obtain its response (c′1, c
′
2, d21, d22, d

′
21, d

′
22).
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Again, if both conversations are accepted and c 	= c′, then M can extract the
DLOG of y (which is x) or the DLOG of H(m∗) (which is v) as follows. With
the same argument as above, since c = c1 + c2 mod q and c′ = c′1 + c′2 mod q,
this implies that c1 	= c′1 or c2 	= c′2.

From the first conversation, we obtain

H(m∗)d11(σ∗)−d12 = z1A
c1 , gd11y−d12 = z2;

yd′
11(σ∗)−d′

12 = z′1A
′c2 , gd′

11H(m∗)−d′
12 = z′2.

From the second conversation, we obtain

H(m∗)d21(σ∗)−d22 = z1A
c′1 , gd21y−d22 = z2;

yd′
21(σ∗)−d′

22 = z′1A
′c′2 , gd′

21H(m∗)−d′
22 = z′2.

From the above equations, we would obtain

H(m∗)d11−d21(σ∗)−(d12−d22) = Ac1−c′1 , gd11−d21y−(d12−d22) = 1; (3)

yd′
11−d′

21(σ∗)−(d′
12−d′

22) = A′c2−c′2 , gd′
11−d′

21H(m∗)−(d′
12−d′

22) = 1. (4)

When c1 	= c′1, since y = gx and A = (H(m∗)x/(σ∗))r, M can extract
x = d11−d21

d12−d22
mod q from (3). When c2 	= c′2, since y = gx and A′ = ((gx)v/(σ∗))r,

M can extract v = d′
11−d′

21
d′
12−d′

22
mod q from (4).

Finally, for both confirmation and disavowal protocols, by Reset Lemma [2],
the probability that algorithm M accepts both conversations and that c 	= c′ is
at least (εI − 1

q )2. This shows that M can extract the DLOG of y (which is x)
or the DLOG of H(m∗) (which is v = vi for some vi) with probability at least
(εI − 1

q )2.
Suppose that coin = 1. In this case, M behaves as above with the modifica-

tions as follows: M chooses α ∈ Zq randomly, and let y = gα, H(mi) = (gx)vi

and σi = (gx)αvi , where vi is chosen randomly from Zq. Finally, M can extract
the DLOG of y (which is α) or the DLOG of H(m∗) (which is xvi for some vi)
with probability at least (εI − 1

q )2 as in the case of coin = 0.
This means that M ’s advantage in extracting x is at least 1

2 (εI − 1
q )2 because

I has no information on coin. This completes our proof.
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Abstract. A group signature is a basic privacy mechanism. The group
joining operation is a critical component of such a scheme. To date all
secure group signature schemes either employed a trusted-party aided
join operation or a complex joining protocol requiring many interactions
between the prospective user and the Group Manager (GM). In addi-
tion no efficient scheme employed a join protocol proven secure against
adversaries that have the capability to dynamically initiate multiple con-
current join sessions during an attack.

This work presents the first efficient group signature scheme with a
simple Joining protocol that is based on a “single message and signature
response” interaction between the prospective user and the GM. This
single-message and signature-response registration paradigm where no
other actions are taken, is the most efficient possible join interaction
and was originally alluded to in 1997 by Camenisch and Stadler, but its
efficient instantiation remained open till now.

The fact that joining has two short communication flows and does
not require secure channels is highly advantageous: for example, it allows
users to easily join by a proxy (i.e., a security officer of a company can
send a file with all registration requests in his company and get back their
certificates for distribution back to members of the company). It further
allows an easy and non-interactive global system re-keying operation as
well as straightforward treatment of multi-group signatures. We present
a strong security model for group signatures (the first explicitly taking
into account concurrent join attacks) and an efficient scheme with a
single-message and signature-response join protocol.

1 Introduction

Group signatures is a useful anonymous non-repudiable multi-use credential
primitive that was introduced by Chaum and Van Heyst [17]. It involves a group
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of users, each holding a membership certificate that allows a user to issue a pub-
licly verifiable signature while hiding the identity of the actual signer within
the group. The public-verification procedure employs only the public-key of the
group. Furthermore, in the case of any dispute or abuse, it is possible for the
group manager (GM) to “open” an individual signature and reveal the identity
of its originator.

Constructing an efficient group signature has been a research target for many
years, see e.g., [18, 16, 13, 14, 9, 26, 3, 1, 11, 24, 8, 2, 10, 12]. A scalable scheme that
provides constant signature size and has resistance to attacks by coalitions of
users was given in [1]. Earlier constructions were designed without a formal
model and definition of security of such schemes, and thus with partial security
proofs at the best case (while many were actually broken).

A central issue in group signatures has been the way by which users join the
group. Recently, [5] gave the first formal model of a somewhat “relaxed” group
signature primitive where a trusted party generates and hands out all users’ keys.
They also produced a generic solution thus demonstrating the polynomial-time
plausibility of their notion of trusted-party aided join group signatures. This is
in contrast with users who dynamically join the system and get their individual
keys by interacting with the group manager (as in the protocol of [1]). Dynamic
joins that allow users to register sequentially were studied formally in [23, 25]
where efficient constructions were given and in [5, 6] where a generic plausibility
proof was provided.

The most efficient and conceptually simple joining procedure for a group
signature scheme (what we will call the “single-message and signature-response
paradigm”) was illustrated by Camenisch and Stadler [16] who sketched a generic
solution (which was followed in careful details in [5, 6]). In this type of joining
protocol, the prospective user has an appropriately distributed secret x′ and
it computes a one way function f on it to obtain x = f(x′). The user sends
x to the GM who, in turn, signs x and returns the signature v to the user
using an appropriate signing algorithm. This completes the interaction of the
join protocol. The possession ofthe signature v on x = f(x′) enables a user to
sign anonymously a message m by simply encrypting x probabilistically into
ψ (under the GM’s public key or whatever entity is supposed to execute the
opening algorithm) and by providing a zero-knowledge proof of (i) the fact that
the ψ is an encryption of some x known to the prover, (ii) the fact that the prover
knows x′ a preimage of that x under f , (iii) the fact that the prover knows a
signature issued by the GM on that x.

While the Camenisch-Stadler approach is elegant and advantageous (as we ar-
gue below), its instantiation by an efficient scheme turned out to be elusive, since
the many schemes that have been suggested in the last eight years approximated
it but none really employed it. In fact, all the efficient schemes in the non-trusted-
party-aided joining setting that were not broken used additional communications
during the join protocol usually to assure that certain constraints and certain
knowledge of the joining user is present, i.e., the prospective user had to engage
in an interactive zero-knowledge proof with the GM. It was not at all appar-
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ent whether the single-message and signature-response join would actually be
instantiable in an efficient manner in a provably secure scheme. Moreover the
employment of such proofs of knowledge has the usual shortcomings with respect
to adversaries operating in the concurrent setting (namely, rewinding cannot be
employed and a “straight-line” approach needs to be followed that makes the
joining protocols even more involved).

To conclude the motivation for our result, we summarize the advantages of
a group signature employing a single-message and signature-response joining
protocol:

1. Concurrency: Joining of users can be done concurrently where a batch of
users join at the same time. This enables group managers over the Internet
(where servers are multi-thread machines).

2. Proxy Join: Users can be joined by a proxy collecting all their requests
and then collecting the responses from the group manager; this is a very
effective way to enroll companies and organizations by delegating collection
and distribution to security officers. It is highly effective in enrolling to an
identity escrow scheme without the need for random oracle proofs.

3. Multi-Group Scenario: There may be a number of groups; since single-
message and signature-response joins require essentially no interaction be-
tween the GM and the prospective user users may accumulate many GM
membership signatures on the same x value non-interactively thus easily
becoming members of multiple-groups.

1.1 Our Result

In this work we implement the first group signature scheme with a single-message
and signature-response join protocol to be exploited for concurrent joins and
other advantages as above, thus implementing efficiently the Camenisch-Stadler
approach for the first time1.

We start by presenting the first model of “group signature with concurrent
joins” which builds on the recent formal models and consists of a set of attacks.
We note that in a privacy primitive interacting users may be conducting simul-
taneous attacks against each other and these need to be captured formally. We
call our attacks: misidentification attack, framing attack and anonymity attack
and is an extension of our sequential-join formal model for group signatures in
[25]. We then implement a scheme based on specific assumptions and prove its
security. The scheme allows adversarial opening of signatures and its signature
size is only about twice the size of the scheme of [1] (that did not allow for
adversarial opening or concurrent join attacks).

1 In some recent schemes of group signatures and related primitives based on dynamic
accumulators [28, 19], a simple two message join was implemented; nevertheless this
was to be followed by local modifications of keys of all existing users; we do not
consider such a protocol efficient. In our solution, keys of other users are unaffected
when new members are introduced to the group.
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Fig. 1. Overview of our general group signature design. The BB signature can be

substituted by potentially other signatures that are suitable for algebraic encryption

with efficient validity proof

From a technical viewpoint we employ a number of complex primitives in-
cluding the digital signature scheme of Boneh and Boyen [7] (hence referred to
as the BB signature) as well as verifiable encryption for discrete-logarithms that
are based on the Paillier encryption function [27, 20, 15, 22].

A novelty of our technical approach (and perhaps an explanation why we
manage to achieve an efficient single-message and signature-response join) is that
we deviate from most of group signature literature by instantiating the one-way
function employed by the prospective user during the join with multiplication
instead of exponentiation. Our general design approach is outlined in figure 1:
users sample an RSA modulus and merely obtain a BB certificate on it. This
modest interaction (which is simply a PKI registration in a domain employing
RSA moduli with a BB signature for certification) allows users to sign as group
members.

Our security proofs follow a modular approach: in a nutshell, a misidentifica-
tion adversary is turned into a BB-forger, a framing adversary is turned into a
factoring algorithm and an anonymity attacker is turned into a CCA2 adversary
against the encryption algorithm we employ. The group signature itself is based
on the Fiat-Shamir paradigm, by essentially turning an identity escrow (anony-
mous identification) system into a signature and employing a random oracle. We
note that the interactive version of our group signature yields an identity escrow
scheme in a straightforward manner that can also have concurrent group signing
by employing general transformation techniques for Σ-protocols, e.g. [21].

2 Preliminaries

Interactive Turing Machines and Concurrent Executions. A two-party
protocol is a pair of probabilistic polynomial-time bounded Interactive Turing
machines 〈A,B〉. Each of A,B has a private input tape, work-tapes, a (joint)
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communication tape and a private output tape. An execution of a protocol 〈A,B〉
on inputs x, y for the two players will be denoted by [A(x),B(y)]. For an execution
of a protocol we will consider the following random variables: (i) Trans[A(x),B(y)]
is the contents of the communication tape after the two parties terminate. (ii)
OutA[A(x),B(y)] is the contents of the private output tape of player A after
termination. (iii) OutB[A(x),B(y)] is the contents of the private output tape of
player B after termination.

Now suppose that P = 〈A,B〉 is a protocol. An “interface oracle” for concur-
rent simulation of player B, denoted by I[P↔B(y)], is an oracle that accepts the
following queries:

Q1. Start− Session: The interface oracle I[P↔B(y)] initiates a session for the
protocol P: it selects a session identifier s and if B is the player that goes
first in the protocol P, the interface simulates the first move of B on input
y; the interface returns as answer to the Start− Session query the session
identifier s and the output of the simulation of player B’s first move (if any).
The interface keeps a database with the state of player B for the session
identifier s; the state includes all coin tosses of B, and the contents of all
tapes including the communication tape.

Q2. Advance− Session(s,msg): The interface oracle looks up the table of ses-
sions and recovers the state of player B for the session with identifier s (if
there is no such session the interface returns ⊥ as answer to the oracle query).
If session s exists the interface appends msg to the communication tape of
the session and continues the simulation of player B (as if msg is the message
that is written to the communication tape of player B by player A).

We will use the notation MI[P↔B(·)] to denote any probabilistic Turing ma-
chine M that has access to an interface oracle as defined above. Note that the
interface oracle I[P↔A(x)] (for concurrent executions of player A in the protocol
P) can be defined in the same fashion as above. Frequently protocol executions
are stateful, e.g. there is a database, or state St in general that an instantiation
of the protocol P may consult. This state St will be maintained by the interface
oracle I. In this case we will write ISt[P↔B(·)]. In the case that a TM M has
access to a stateful interface oracle I we will write MISt[P↔B(·)]. Depending on
the case, I may modify the state St or even allow read and write access to St
by M .

Bilinear Maps. Let G1,G2 two groups of prime order p so that (i) G1 = 〈g1〉
and G2 = 〈g2〉; (ii) τ : G2 → G1 is an isomorphism with τ(g2) = g1 and (iii)
e : G1 × G2 → GT is a bilinear map. We remark that in many cases it can
be that G1 = G2 (and in this case ψ would be the identity mapping). Let
G1 = 〈g1〉,G2 = 〈g2〉 groups as above with |G1| = |G2| = p; a bilinear map
is a map e s.t. for all (u, v) ∈ G1 × G2 it holds that e(ux, vy) = e(u, v)xy and
e(g1, g2) 	= 1.

Intractability Assumptions. We will employ the following four intractability
assumptions:
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The Strong Diffie Hellman Assumption (SDH) was put forth by Boneh and
Boyen [7]. The q-SDH problem over two groups G1,G2 is defined as follows:

given a (q+2)-tuple 〈g1, g2, g
γ
2 , . . . , g

(γ)q

2 〉 as input, output a pair (g
1

γ+x

1 , x) where
x ∈ Z

∗
p. The q-SDH assumption suggests that any probabilistic polynomial-time

(PPT) algorithm solving the q-SDH problem has negligible success probability.
When q is any polynomial-time function on the security parameter we will write
simply SDH.

The Strong-RSA problem [4] is as follows: given n, z ∈ QR(n), where QR(n)
is the group of quadratic residues of Z

∗
n asks for two integers u, e > 1 so that

ue ≡n z. The Strong-RSA assumption suggests that any PPT algorithm solving
the Strong-RSA problem has negligible success probability.

The Linear Decisional Diffie Hellman assumption (Linear-DDH) [8] is as fol-
lows: the distribution of tuples of the form (u, v, h,uα, vβ , hα+β) where u, v, h←R

G1 and α,β ←R Zp, is computationally indistinguishable from the distribu-
tion of tuples of the form (u, v, h,uα, vβ , η) where where u, v, h, η ←R G1 and
α,β ←R Zp. The Linear-DDH is assumed to be true, even in groups where DDH
fails (e.g., groups G1 for which we have a bilinear mapping).

The Decisional Composite Residuosity (DCR) assumption [27] is defined as
follows: it is computationally hard to distinguish between the distributions of
tuples of the form (N,uN mod N2) where N is an RSA safe composite modulus
and u ←R Z

∗
N2 and the distribution of tuples of the form (N, v) where N is an

RSA safe composite modulus and v ←R Z
∗
N .

3 Group Signatures with Concurrent Join: Modeling

In this section we give the formal definition of group signatures with concurrent
join. First we start with the syntax of the signature. The parties that are involved
in the scheme include the Group Manager (GM), the Users and the Verifiers.

Definition 1. A group signature scheme with concurrent joins is a digital sig-
nature scheme that is comprised of the following five procedures:

SETUP: it is a probabilistic algorithm that on input a security parameter 1ν ,
it outputs the group public key Y (including all system parameters) and
the secret key S for the GM. SETUP initializes a public state string St =
(Stusers, Stjoin−trans) with two components Stusers = ε and Stjoin−trans =
ε. The public state string St will hold the user identity database and the
database of the Join protocol transcripts. This information will be publicly
available and will grow as more users are introduced into the system.

JOIN: A protocol between the GM and a user that results in the user becoming
a new group member. The user’s output is a membership certificate and a
membership secret. We will denote the i-th user’s membership certificate by
certi and the corresponding membership secret by seci.
Since JOIN is a two-party protocol, its specification includes the description
of two interactive Turing Machines (ITM) Juser, JGM. Only Juser will have a
private output.
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According to the notations of section 2 an execution of the protocol is denoted
as [Juser(St,Y)↔ JGM(St,Y,S)] and has two “output” components:
1. the user private output, 〈i, certi, seci〉 ← User[Juser(St,Y)↔ JGM(St,Y,S)],

and
2. the public transcript, transcripti ← Trans[ Juser(St,Y)↔ JGM(St,Y,S)].
After a successful execution of JOIN the following updates are made: Stusers =
Stusers||〈i〉 and Stjoin−trans = Stjoin−trans|| 〈i, transcripti〉. The identity-tag
i will be selected from a space of possible identity tags denoted by ID.

SIGN: A probabilistic algorithm that given the group’s public-key, a member-
ship certificate, a membership secret and a message m, it outputs a group
signature for the message m. We write SIGN(Y, certi, seci,m) to denote the
application of the signing algorithm on the message m.

VERIFY: An algorithm for establishing the validity of an alleged group signature
on a message with respect to a group public-key. If σ is a signature on a
message m, then we have VERIFY(Y,m,σ) ∈ {',⊥}.

OPEN: An algorithm that, given a message, a valid group signature on it, a
group public-key, the GM’s secret-key and the public-state it determines the
identity of the signer. In particular OPEN(m,σ, St,Y,S) ∈ Stusers ∪ {⊥}.

Notation. Below we will introduce a helpful notation for describing the rela-
tionship between transcripts and membership certificates and secrets. Given
〈Y,S〉 ← SETUP(1ν) we define the following relations over strings based on Y
and some public state St,

〈i, cert, sec〉 �(Y,St) transcript if there exist coin tosses ρ for JGM and JUser so
that

〈i, cert, sec〉 = User[JUser(St,Y)↔ JGM(St,Y,S)](ρ)

and
transcript = Trans[JUser(St,Y)↔ JGM(St,Y,S)](ρ)

Similarly we will define cert �Y sec, if there exist coin tosses ρ for JGM and
JUser and a state St so that

〈i, cert, sec〉 = User[JUser(St,Y)↔ JGM(St,Y,S)](ρ)

Finally we define the set of all valid public states Valid as follows: St0 ∈ Valid
if there exists a PPT Turing machine M and 〈Y,S〉 ← SETUP(1ν) so that when
MISt[JOIN↔GM(St,Y,S),READSt] terminates it holds that St = St0 and the interface
oracle I given to M initializes St = (ε, ε) and allows M to have read access to
St through READ queries (that ISt allowes to M in addition to Start− Session
and Advance− Session queries). If ISt initializes St to some St0 ∈ Valid that is
not (ε, ε) then this defines the set of all valid extensions of the public-state St0
that will be denoted by ValidSt0 . Obviously Valid = Valid(ε,ε).

Correctness. Below we define the correctness of a group signature scheme that
satisfies the above syntax. Note that a group signature is a tuple 〈SETUP, JOIN,
SIGN, VERIFY, OPEN〉 with JOIN = 〈JUser, JGM〉.
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Definition 2. A group signature with concurrent join is correct if the following
are true:

C1. (users are assigned unique names) For any St ∈ Valid it holds that Stusers

contains no multiply defined identity-tags, i.e., if Stusers = 〈i1〉|| . . . ||〈iK〉 it
holds that j 	= j′ ⇒ ij 	= ij′ .

C2. (signing is correct) For any 〈Y,S〉 ← SETUP(1ν), any strings cert �Y sec
and any m ∈ {0, 1}∗, it holds that VERIFY(Y,m, SIGN(Y, cert, sec,m)) = '.

C3. (open is correct) For any 〈Y,S〉 ← SETUP(1ν), any St ∈ Valid, any m ∈
{0, 1}∗, and any 〈i, cert, sec〉�(Y,St) transcript it holds that OPEN(m, SIGN(Y,
cert, sec, m), St′′,Y,S) = i, where St′′ ∈ ValidSt′ and St′ is defined as fol-
lows: St′users = Stusers||〈i〉 and St′join−trans = Stjoin−trans||〈i, transcript〉.

Property C1 requires that the JOIN protocol assigns a different identity tag
to all users. Property C2 ensures the correctness of the underlying signing and
verification for any valid signing key (that includes a membership secret and a
membership certificate). Finally, property C3 ensures that the OPEN algorithm
correctly identifies all signers: in particular it says that if a user is introduced at
some moment in the system’s operation and the public-state St is updated with
the user’s identity tag resulting to state St′ then it holds that whenever this
user issues a group signature the user will be correctly identified for every public
state St′′ that succeeds the public-state St′ of the system. We note that it may
be viable to collapse C1 and C3 but, given the intuitiveness of the formulation,
we keep them as separate properties.

Definition of Security. Security against group signatures with concurrent
join, will be broken into three basic properties following the model designs of
[23, 25]. The properties are formalized as games between the adversary and an
entity called the interface, denoted by I that represents the uncorrupted aspect
of the system in each attack.

Misidentification. In a misidentification attack, the adversary joins the system
through possibly many concurrent sessions of the JOIN protocol and it attempts
to produce a signature that cannot be opened to any of the users that are
adversarially controlled. We note that without loss of generality we will assume
that all users introduced in the system are adversarially controlled; this means
that the goal of the adversary is to simply make the OPEN algorithm to fail. We
remark that adversaries that make the OPEN algorithm to point to an innocent
user will be handled in the framing attack (next paragraph).

Below, ISt[JOIN↔GM ] will denote the interface oracle for concurrent simula-
tion of the GM party in the protocol JOIN (refer to section 2 for the definition).
Note that the interface I has access to the public state string St and it updates
it accordingly whenever a new user (the adversary that is) successfully completes
the JOIN dialog. Also, an oracle READSt is provided to the adversary that allows
him to read the contents of the public state database that contains the identifi-
cation transcripts and user identity tags. Finally, an oracle OPEN is provided to
the adversary that allows him to submit signatures and obtain the output of the
opening algorithm.
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The Misidentification-Attack Game GA
mis (denoted by GA

mis(1
ν)):

1. 〈Y,S〉 ← SETUP(1ν); St = (Stusers, Stjoin−trans) = (ε, ε);
2. 〈m,σ〉 ← AISt[JOIN↔GM(St,Y,S),READSt,OPEN](Y);
3. If (VERIFY(Y,m,σ) = ')∧ (OPEN(m,σ,Y,S, St) = ⊥) then return ' else ⊥;

We will say that a group signature is secure against misidentification attacks
with concurrent join provided that for all A it holds that Prob[GA

mis(1
ν) = '] =

1− negl(ν).

Framing. In a framing attack the adversary plays the role of the system where
the interface represents a handful of innocent users. A framing attack is meant
to capture any adversarial behavior that allows the adversary to make the open
algorithm point to an innocent user. We remark that this captures the notion of
exculpability as well as any other adversarial behavior that frames an innocent
user. In the concurrent setting, we allow the adversary to initiate many concur-
rent executions of the JOIN dialog playing the role of a malicious GM. The goal
of the adversary now is to produce a signature that opens to one of the innocent
users.

Naturally in modeling such an attack we cannot allow to the adversary to do
all the bookkeeping for the user database himself (otherwise an OPEN operation
would be without meaning). Every time the adversary successfully terminates a
JOIN dialog with an innocent user that is controlled by the interface I, the inter-
face will add the user identity into the Stusers and will append the whole com-
munication transcript to Stjoin−trans. Moreover it will keep a private database
containing the secrets of the innocent users that will have the format 〈i, seci〉
(these will not be accessible to the adversary). In addition to the above, we will
allow the adversary to submit queries to a SIGN oracle that will be handled by
the interface oracle I and accepts the identity of one of the innocent users and
a message and returns a signature of this message with the signing mechanism
of the named user.

We allow the adversary to have appropriately restricted modify access to the
public-state St; this access will be handled by I in the form of the MODIFYSt

oracle query. As mentioned already we will not give to the adversary full write
capability to the public state St since if he is allowed to this, opening any signa-
ture correctly would be meaningless (e.g., if the adversary erases the database of
JOIN transcripts it is straightforward that the opening capability is cancelled).
The restrictions are as follows: MODIFYSt will not permit the adversary to insert
a join transcript that reuses an identity tag (this restriction is essential to main-
tain the semantics of the OPEN unambiguous) and will not allow the adversary
to modify any of the identity tags or join transcripts of the innocent users (to
these the adversary will have read-only access). Any other modification of the
public-state will be allowed by I (in particular the adversary is allowed to in-
troduce users to the public-state as well as erase them — for this reason there
is no need for a “corrupt” oracle).

We will use the notation StIusers to denote all innocent users in the system
that are introduced by the execution of the concurrent JOIN oracle and are
managed by the interface oracle I.
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The Framing-Attack Game GA
fra (denoted by GA

fra(1
ν)):

1. 〈Y,S〉 ← SETUP(1ν); St = (Stusers, Stjoin−trans) = (ε, ε);
2. 〈m,σ〉 ← AI[JOIN↔User(Y),SIGN,READSt,MODIFYSt](Y,S)
3. i = OPEN(m,σ, St,Y,S);
4. If (VERIFY(Y,m,σ) = ') ∧ (i ∈ StIusers) then return ' else return ⊥;

We say that a group signature satisfies security against framing attacks with
concurrent join provided that for all A it holds that Prob[GA

fra(1
ν) = '] =

1− negl(ν).

Anonymity. Finally, anonymity is modeled as a sort of CCA2 attack against
the identity encryption embedding mechanism of the group signature.

The Anonymity-attack Game GA
anon (denoted by GA

anon(1
ν)):

1. 〈Y,S〉 ← SETUP(1ν); St = (Stusers, Stjoin−trans) = (ε, ε);
2. 〈aux,m, cert1, sec1, cert2, sec2, 〉 ← AI[JOIN↔GM(St,Y,S),READSt,OPEN](play,Y)
3. if ¬((cert1 �Y sec1) ∧ (cert2 �Y sec2)) or cert1 = cert2 then stop; return ⊥;
4. Choose b←R {1, 2};
5. ψ ← SIGN(Y, certb, secb,m);
6. b∗ ← AI[JOIN↔GM(St,Y,S),READSt,OPEN

¬ψ](guess, aux);
7. if b = b∗ return ' else return ⊥;

We note that the OPEN¬ψ oracle operates as the OPEN oracle with the usual
restriction that it should return ⊥ if the adversary submits ψ as the signature
to be opened.

A group signature is said to be secure against anonymity attacks with con-
current join provided that for all A it holds that 2Prob[GA

anon(1
ν) = '] − 1 =

negl(ν).

Based on all the above we will say that a group signature with concurrent
join is secure provided that it is secure against misidentification, framing and
anonymity attacks.

4 Group Signatures with Efficient Concurrent Join:
Construction

In this section we describe our efficient group signature construction. A num-
ber of primitives proved to be instrumental in our construction, namely: BB
signatures [7], Linear ElGamal encryption [8], and a CCA2 variant of Pailier
encryption [27, 22, 15]. We first begin by describing the public-parameters our
system will employ.
Public-parameters. The public parameters of the scheme are as follows:
p1 two groups of order p where p is a 	p-bit prime, p > 2�p−1, denoted by

G1 = 〈g1〉 and G2 = 〈g2〉, so that there is e and GT and e : G1 ×G2 → GT

is a bilinear map.
p2 an RSA-modulus n, of 	n bits; n is selected so that Strong-RSA will be

infeasible over QR(n).
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p3 three integer ranges S, S′, S′′. We define the integer rangeS=df S(2�−1, 2�p−2)
= {2�−1−2�p−2+1, . . . , 2�−1+2�p−2−1}. Observe that if x, y ∈ S(2�−1, 2�p−2)
and x ≡p y then it holds that x = y; indeed, p | x − y means that
x = y + kp; assume without loss of generality that k ≥ 0. Now, since
2�p−1 < p < 2�p we have that y ≥ x+2�p−1; this is a contradiction, since even
if x = minS = 2�−1− 2�p−2 +1 we have that y ≥ 2�−1 +2�p−1− 2�p−2 +1 ≥
2�−1 + 2�p−2 + 1 > maxS. It follows that k = 0 and as a result x = y.
Now let k, ε > 1 be parameters and select the ranges S′, S′′ as follows: S′ =df

S(2�′ , 2μ′
) = S(2�−1, 2
(�p−4)/ε�−k) and S′′ =df S(2�′′ , 2μ′′

) = S(2�′/2, 2μ′/2),
so that S(2�′′ , 2εμ′′+k+2) does not contain an integer smaller than 2 and
is disjoint from the range S. The ranges S, S′, S′′ are assumed subsets of
{1, . . . , φ(n)}.

p4 a safe RSA-modulus N of 	N bits with N = PQ and P = 2P ′+1,Q = 2Q′+1,
so that in the group Z

∗
N2 it holds that the DCR assumption is hard, and the

value G = (G0)2N (modN2) is selected with G0 ←R Z
∗
N2. Note that with

overwhelming probability 〈G〉 is the subgroup of quadratic residues modulo
N2 that are simultaneously N -th residues; note that #〈G〉 = P ′Q′.

Regarding the size of parameters we observe the following: 	p can be quite
small, e.g., 170 bits is sufficient to achieve security that is equivalent to security
of 1020 bits in multiplicative groups for the discrete-log problem (cf. also [8]).
On the other hand 	n, 	, 	N will be selected so that an RSA modulus with this
number of bits is hard to factor and thus 	n, 	, 	N ≥ 1024 ( 	p. The above
public parameters will be selected by the setup procedure of the group signature
system as described below.

SETUP. The procedure first generates the public-parameters p1 and p2 and p3 as
described above. Then, it executes the following steps:

It selects two values γ, δ ←R Zp and sets w = gγ
2 and v = gδ

2; this is the setup
for BB signatures, cf. [7].

It selects two values α,β ←R Zp and u ←R G1 and sets u′ = uα/β and h =
uα(u′)β ; observe that it holds that uα = (u′)β . This is the key-setup for
linear ElGamal encryption, cf. [8].

It selects g, f1, f2, f3 ←R QR(n). These will be used for commitments.
(Opening functionality) the public parameters N, G according to p4 are selected

as well as H1,H2,H3 ∈ 〈G〉 with Hi = Gai , ai ←R Z
N/4� for i = 1, 2, 3
and a hash-key hk for a universal one-way hash function family UOHF. We
remark that this step can be entirely separated from the GM’s setup phase
and executed by an opening authority. Nevertheless for convenience and
simplification of the presentation we do not make further distinction in the
present version of the paper.

The public-key Y is set to 〈g1, g2,u,u
′, h, w, v,desc(G1||G2||GT ||e||UOHF), g,

f, n,N, G,H1,H2, H3, hk〉 and the secret key S is set to to 〈γ, δ; a1, a2, a3〉. Note
that the factorization of n as well as the values α,β (the decryption key for the
linear ElGamal encryption) are not needed and thus they are discarded.
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JOIN. In the join protocol execution, the user will obtain a BB signature on
an RSA modulus that he selects. A user’s membership certificate is the signa-
ture itself together with the RSA modulus; a user’s membership secret on the
other hand is the factorization of the modulus. The join procedure between a
prospective user and the GM is described in detail below:

• (User→GM) The user initiates the procedure and selects random x ∈ S′ to
be an 	-bit RSA modulus with x1, x2 its two prime divisors, so that x1 ∈ S′′.
The User transmits x.

• (GM→User) The GM checks whether x ∈ S′ and whether x was submitted
by another user in a previous JOIN; if the check fails the GM terminates the
JOIN protocol; otherwise (i) it reads the public-state St, selects i ∈ ID so that
i 	∈ Stusers and in such a manner that i is distinct from any other concurrent
executions and writes to its communication tape the values 〈i,σ, r〉 where
r ←R Zp and σ = g

1/(γ+x+δr)
1 ; finally it updates Stjoin−trans by appending

to it the tuple 〈i,σ, r〉 and sets Stusers = Stusers||〈i〉.
• The user verifies that e(σ, wgx

2v
r) = e(g1, g2) and that i 	∈ Stusers; if either

test fails the user fails the JOIN dialog. Otherwise, it terminates successfully
by setting his membership certificate to cert = 〈x,σ, r〉 and his membership
secret to sec = 〈x1, x2〉.

Observe that the user does not prove that x was selected appropriately; Per-
haps surprisingly, we show that this is still sufficient for security in the concurrent
setting. Naturally if the user chooses x inappropriately two things may happen:
(i) the user may not be able to issue group signatures, e.g., this may happen
when x is a prime; this naturally is of no concern to the GM, (ii) the user selects
x as an integer that is easy to factor; while this is of concern there is nothing
that can be done about it: this case is conceptually the same as the case that
the user just leaks its secret-key; while this possibility is annoying there is little
that can be done to prevent this in any group signature scheme.

As a side-note the reader perhaps would be concerned with the fact that the
BB-signature above (that typically operates over short messages of, say, about
170 bits) will be used to sign RSA moduli that are over 1000 bits. Our scheme
prevents any kind of naive forgery based on the wrap-around by employing range
proofs that ensure that the integers employed by users, while they are large they
all fall within an integer range S′ that contains sufficiently less than 2170 elements
(cf. the parameter selection p3).

SIGN. We present the signing algorithm. The user possesses the following: a
membership certificate 〈x,σ, r〉 and the corresponding membership secret x1, x2.
The signing algorithm will be obtained by applying the Fiat-Shamir Heuristic
on an appropriately designed proof of knowledge. First, the signer computes the
following values:
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T1 = uz z ←R Zp in G1

T2 = (u′)z′
z′ ←R Zp in G1

T3 = hz+z′
σ in G1

T4 = gyfx1
1 y ←R S(1, 2�n−2) in QR(n)

T5 = gy′
fx2
2 f t

3 y′ ←R S(1, 2�n−2) in QR(n)
C0 = Gt t←R S(1, 2�N−2) in Z

∗
N2

C1 = Ht
1(1 + N)x in Z

∗
N2

C2 = ||(H2H
H(hk,C0,C1)
3 )t|| in Z

∗
N2

Note that ||x|| = x if x ≤ N2/2 and ||x|| = N2 − x otherwise. Also re-
call that S(a, b) =df {a − b, . . . , a + b}. Subsequently the signer will construct
the signature “of knowledge” on the given message m by providing a proof of
knowledge for the relations given in figure 2 that involve the fourteen witnesses
θz, θz′ , θx, θxz, θxz′ , θr, θrz, θrz′ , θx1 , θx2 , θy, θy′ , θyx2 , θt.

T−1
1 uθz = 1 T−1

2 (u′)θz′ = 1

T−θx
1 uθxz = 1 T−θx

2 (u′)θxz′ = 1

T−θr
1 uθrz = 1 T−θr

2 (u′)θrz′ = 1

e(T3, v)θr e(T3, g2)
θxe(h, g2)

−θxz−θxz′ e(h, v)−θrz−θrz′ e(h, w)−θz−θz′ e(T3, w) = e(g1, g2)

T−1
4 gθy fθx1 = 1 T

−θx2
4 gθyx2 fθx = 1

T−1
5 gθy′ fθx2 fθt

2 = 1

C0 = Gθt C1 = Hθt
1 (1 + N)θx (C2)2 = (H2H

H(hk,C0,C1)
3 )2θt

θx ∈ S′ θx1 ∈ S′′

Fig. 2. The relations defining the signature of knowledge

Given the coin tosses of the signer for the selection of T1,T2,T3,T4,T5,C0,C1,
the witnesses needed in figure 2 are selected as follows: θz = z, θz′ = z′, θx =
x, θxz = x · z(modp), θxz′ = x · z′(modp), θr = r, θrz = r · z(modp), θrz′ =
r · z′(modp), θx1 = x1, θx2 = x2, θy = y, θy′ = y′, θyx2 = y · x2 in Z, θt = t. Now,
given a message m, the signature will be constructed as follows:
1. (choose blindings) the values ρz, ρz′ , ρxz, ρxz′ , ρr, ρrz, ρrz′ ←R Zp and ρx ←R

±{0, 1}εμ′+k, ρx1 ←R ±{0, 1}εμ
′′+k and ρx2 , ρy, ρy′←R ±{0, 1}ε(�n−2)+k, ρyx2←R

±{0, 1}2ε(�n−2)+k and ρt←R ±{0, 1}ε(�N−2)+k are selected. Using these values
the following are computed:

R1 = uρz R2 = (u′)ρz′

R3 = T ρx

1 u−ρxz R4 = T ρx

2 (u′)−ρxz′

R5 = T ρr

1 u−ρrz R6 = T ρr

2 (u′)−ρrz′

R7 = e(T3, v)ρre(T3, g2)ρxe(h, g2)−ρxz−ρxz′ e(h, v)−ρrz−ρrz′ e(h,w)ρz+ρz′

R8 = gρyf
ρx1
1 R9 = T

ρx2
4 g−ρyx2 f−ρx
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R10 = gρy′ f
ρx2
2 fρt

3

R11 = Gρt R12 = Hρt

1 (1 + N)ρx R13 = (H2H
H(hk,C0,C1)
3 )2ρt

2. (calculate challenge) using a hash function denoted by HASH the value

c← HASH(m||T1|| . . . ||T4||T5||R1|| . . . ||R12, R13)

is computed. The range of HASH is considered to be {0, 1}k.

3. (calculate response) Subsequently the following values are computed:

sz = ρz − cz in Zp sz′ = ρz′ − cz′ in Zp

sxz = ρxz − cxz′ in Zp sxz′ = ρxz′ − cxz′ in Zp

sr = ρr − cr in Zp srz′ = ρrz′ − crz′ in Zp

srz′ = ρrz′ − crz′ in Zp sx = ρx − c(x− 2�′) in Z

sx1 = ρx1 − c(x1 − 2�′′) in Z sx2 = ρx2 − c(x2 − 1) in Z

sy = ρy − c(y − 1) in Z sy′ = ρy′ − c(y′ − 1) in Z

syx2 = ρyx2 − c(y · x2 − 2) in Z st = ρt − c(t− 1) in Z

The output of the signing algorithm is the tuple: 〈T1,T2,T3,T4,T5,C0,C1,
C2, c, sz, sz′ , sxz, sxz′ , sr, srz, srz′ , sx, sx1 , sx2 , sy, sy′ , syx2 , st〉.

VERIFY. Signature verification is achieved by the following tests:

sx

?
∈ ±{0, 1}εμ′+k+1 ∧ sx1

?
∈ ±{0, 1}εμ′′+k+1 ∧ C0,C1,C2

?
∈ Z

∗
N2 ∧ C2

?
≤ N2/2

c
?= HASH

(
m ||T1 ||T2 ||T3 ||T4 ||T5 ||
||uszT c

1 ||(u′)sz′ T c
2

||T−sx+c2�′

1 usxz ||T−sx+c2�′

2 (u′)sxz′

||T sr
1 u−srz ||T sr

2 (u′)−srz′

|| e(T3, v)sre(T3, g2)sx−c2�′
e(h, g2)−sxz−sxz′

e(h, v)−srz−srz′ e(h,w)sz+sz′ e(g1, g2)ce(T3, w)−c

||T c
4 gsy−cf

sx1−c2�′′

1 ||T sx2−c
4 g−syx2+2cf−sx+c2�′

1 ||T c
5 gsy′−cf

sx2−c
2 fst−c

3

||Cc
0G

st−c||Cc
1H

st−c
1 (1 + N)sx−c2�′ ||Cc

2(H22H
2H(hk,C0,C1)
3 )st−c

)
OPEN. Given a signature as described above: first the signature is verified as well
as the relation (C2)2 = C

2(a2+θH(hk,C0,C1)
0 is checked. if the test passes. If any

check fails OPEN returns ⊥. Otherwise, OPEN computes m̃ = C1C
−a1
0 ; due to

the properties enforced by the proof of knowledge (cf. figure 2) it holds that
x = (m̃− 1)/N . Then, the OPEN algorithm searches Stjoin−trans for transcripts
of the form 〈j, xj ,σj , rj〉 with xj = x the identity j of the signer is recovered. If
no such xj is found, OPEN returns ⊥.
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5 Proof of Security

The proof of security is described here, it relies on the random oracle model (we
prove the group signature rather than the interactive identity escrow scheme).

Theorem 1. The signature of knowledge that specifies the SIGN algorithm sat-
isfies: completeness, special soundness under the Strong-RSA assumption and
statistical honest verifier zero-knowledge.

Theorem 2. Any misidentification attacker in the random oracle model against
our group signature can be transformed to an adaptive chosen message attacker
in the standard model against the BB signature assuming the Strong-RSA as-
sumption.

Theorem 3. Any framing attacker in the random oracle model against our
group signature can be transformed to a factoring algorithm in the standard
model assuming the Strong-RSA assumption.

Theorem 4. Any anonymity adversary against our group signature in the ran-
dom oracle model can be transformed to a CCA2 attacker against the public-key
encryption that is employed in our scheme; this is conditional on the validity of
(i) the Linear-DDH assumption, (ii) the assumption that the digital signature
scheme employed (BB-signature) satisfies strong existential unforgeability. (iii)
the DLOG assumption over the subgroup of 2N -th residues inside Z

∗
N2.

The above three theorems culminate to the following theorem:

Theorem 5. Our group signature is correct and secure in the random oracle
model under the assumptions: SDH, Linear-DDH, Strong-RSA and DCR as-
sumptions.
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Abstract. The Lenstra-Lenstra-Lovász lattice basis reduction algorithm
(LLL or L3) is a very popular tool in public-key cryptanalysis and in
many other fields. Given an integer d-dimensional lattice basis with vec-
tors of norm less than B in an n-dimensional space, L3 outputs a so-
called L3-reduced basis in polynomial time O(d5n log3 B), using arith-
metic operations on integers of bit-length O(d log B). This worst-case
complexity is problematic for lattices arising in cryptanalysis where d
or/and log B are often large. As a result, the original L3 is almost never
used in practice. Instead, one applies floating-point variants of L3, where
the long-integer arithmetic required by Gram-Schmidt orthogonalisation
(central in L3) is replaced by floating-point arithmetic. Unfortunately,
this is known to be unstable in the worst-case: the usual floating-point
L3 is not even guaranteed to terminate, and the output basis may not
be L3-reduced at all. In this article, we introduce the L2 algorithm, a
new and natural floating-point variant of L3 which provably outputs L3-
reduced bases in polynomial time O(d4n(d + log B) log B). This is the
first L3 algorithm whose running time (without fast integer arithmetic)
provably grows only quadratically with respect to log B, like the well-
known Euclidean and Gaussian algorithms, which it generalizes.

Keywords: LLL, L3, Lattice Reduction, Public-Key Cryptanalysis.

1 Introduction

Let b1, . . . , bd be linearly independent vectors in R
n with n ≥ d: often n = d

or n = O(d). We denote by L[b1, . . . , bd] =
{∑d

i=1 xibi | xi ∈ Z

}
the set of all

integer linear combinations of the bi’s. This set is called a lattice and [b1, . . . , bd]
a basis of that lattice. A lattice basis is usually not unique, but all the bases
have the same number d of elements, called the dimension of the lattice. If
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507932 ECRYPT.
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d ≥ 2, there are infinitely many bases, but some are more interesting than others:
they are called reduced. Roughly speaking, a reduced basis is a basis made of
reasonably short vectors which are almost orthogonal. Finding good reduced
bases has proved invaluable in many fields of computer science and mathematics
(see [12, 8]), particularly in cryptology (see [30, 24]). This problem is known as
lattice reduction and can intuitively be viewed as a vectorial generalisation of
gcd computations.

The first breakthrough in lattice reduction dates back to 1981 with Lenstra’s
celebrated work on integer programming [20, 21], which was, among others, based
on a novel lattice reduction technique (which can be found in the preliminary
version [20] of [21]). Lenstra’s reduction technique was only polynomial-time for
fixed dimension, which was however sufficient in [20]. This inspired Lovász to
develop a polynomial-time variant of the algorithm, which reached a final form
in the seminal paper [19] where Lenstra, Lenstra and Lovász applied it to factor
rational polynomials in polynomial time (back then, a famous problem), from
which the name LLL or L3 comes. Further refinements of the L3 algorithm were
later proposed, notably by Schnorr [33, 34]. Reduction algorithms (in particular
L3) have arguably become the most popular tool in public-key cryptanalysis
(see the survey [30]). In the past twenty-five years, they have been used to
break many public-key cryptosystems, including knapsack cryptosystems [31],
RSA in particular settings [9, 7, 6], DSA and similar signatures in particular
settings [14, 26], etc.

Given as input an integer d-dimensional lattice basis whose n-dimensional
vectors have norm less than B, L3 outputs a so-called L3-reduced basis in
time O(d5n log3 B) without fast integer arithmetic, using arithmetic operations
on integers of bit-length O(d log B). This worst-case complexity turns out to be
problematic in practice, especially for lattices arising in cryptanalysis where d
or/and log B are often large. For instance, in a typical RSA application of Cop-
persmith’s lattice-based theorem [9], we may need to reduce a 64-dimensional
lattice with vectors having RSA-type coefficients (1024-bit), in which case the
complexity becomes “d5n log3 B = 266 ”. As a result, the original L3 algorithm is
seldom used in practice. Instead, one applies floating-point (fp) variants, where
the long-integer arithmetic required by Gram-Schmidt orthogonalisation (which
plays a central role in L3) is replaced by floating-point arithmetic (fpa) on much
smaller numbers. The use of fpa in L3 goes back to the early eighties when
L3 was used to solve low-density knapsacks [17]. Unfortunately, fpa may lead to
stability problems, both in theory and practice, especially when the dimension
increases: the running time of fp variants of L3 such as Schnorr-Euchner’s [36] is
not guaranteed to be polynomial nor even finite, and the output basis may not
be L3-reduced at all. This phenomenon is well-known to L3 practitioners, and is
usually solved by sufficiently increasing the precision. For instance, experimental
problems arose during the cryptanalyses [29, 25] of lattice-based cryptosystems,
which led to improvements in Shoup’s NTL library [41].

There is however one provable fp-variant of L3, due to Schnorr [34], which
significantly improves the worst-case complexity. Schnorr’s variant outputs an
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approximate L3-reduced basis in time O(d3n log B(d + log B)2), using O(d +
log B) precision fp numbers. However, this algorithm is mostly of theoretical
interest and is not implemented in any of the main computational libraries [41,
22, 4, 1]. This can be explained by at least three reasons: it is not clear which fpa-
model is used, the algorithm is difficult to describe, and the hidden complexity
constants are rather large. More precisely, the required precision of fp numbers
in [34] seems to be higher than 12d+ 7 log2 B.

Our Results. We present the L2 algorithm, a new and simple fp-variant of L3 in
a standard fpa-model, which provably outputs approximate L3-reduced bases in
polynomial time. More precisely, its complexity is O(d4n(d+ log B) log B) using
only a (d log2 3)-bit precision, which is independent of log B. This is the first
L3 whose running time grows only quadratically with respect to log B (hence
the name L2), whereas the growth is cubic – without fast integer arithmetic –
for all other provable L3 algorithms known. This improvement is significant for
lattices where log B is larger than d, for example those arising from minimal
polynomials [8] and Coppersmith’s technique [9]. Interestingly, L3 can be viewed
as a generalisation of the famous Euclidean and Gaussian algorithms whose
complexities are quadratic, not cubic like the original L3. This arguably makes
L2 closer to Euclid algorithm.

L3[19] Schnorr[34] L2

Required precision O(d log B) > 12d + 7 log2 B d log2 3 ≈ 1.58d

Complexity O(d5n log3 B) O(d3n(d + log B)2 log B) O(d4n(d + log B) log B)

Fig. 1. Comparison of different L3 algorithms

The L2 algorithm is based on several improvements, both in the L3 algorithm
itself and more importantly in its analysis. From an algorithmic point of view,
we improve the accuracy of the usual Gram-Schmidt computations by a system-
atic use of the Gram matrix, and we adapt Babai’s nearest plane algorithm [3]
to fpa in order to stabilize the so-called size-reduction process extensively used
in L3. We give tight bounds on the accuracy of Gram-Schmidt computations
to prove the correctness of L2. The analysis led to the discovery of surprisingly
bad lattices: for instance, we found a 55-dimensional lattice [28] with 100-bit
vectors which makes NTL’s LLL FP [41] (an improved version of [36]) loop for-
ever, which contradicts [16] where it is claimed that double precision is sufficient
in [36] to L3-reduce lattices up to dimension 250 with classical Gram-Schmidt.
However, for random looking lattice bases, stability problems seem to arise only
in dimension much higher than 55, due perhaps to the well-known experimental
fact that for such input bases, L3 outputs better bases than for the worst-case.
Finally, to establish a quadratic running time, we generalize a well-known cas-
cade phenomenon in the complexity analysis of the Gaussian and Euclidean al-
gorithms. This was inspired by the so-called greedy lattice reduction algorithm
of [27], which is quadratic in low dimension thanks to another cascade. The
cascade analysis is made possible by the efficiency of our fp-variant of Babai’s

’s
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algorithm, and cannot be adapted to the standard L3 algorithm. Besides, our
tight bound on Babai’s algorithm may be of independent interest. For instance,
in Micciancio’s variant [23] of the GGH cryptosystem [10], Babai’s algorithm is
used to decrypt.

Related Work. Much work [38, 34, 42, 15, 16, 35] has been devoted to im-
prove L3, specifically the exponent of d in the complexity, but none has improved
the log3 B factor (except [44, 39] for dimension two). Some of these improvements
might be adaptable to L2.

Floating-point stability has long been a mysterious issue in L3. When it
was realized during experiments that classical Gram-Schmidt orthogonalisation
could be very unstable, it was suggested in the late nineties to use well-known
alternative techniques (see [18, 11]) like Givens rotations (implemented in NTL)
or Householder reflections, which are more expensive but seem to be more stable
in practice. However, from a theoretical point of view, the best results known on
the worst-case accuracy of such techniques are not significantly better than the
so-called Modified Gram-Schmidt algorithm. Besides, most numerical analysis
results refer to backward stability and not accuracy: such a mistake is made
in [16], where a theorem from [18] is incorrectly applied. At the moment, it
is therefore not clear how to exploit known results on Givens rotations and
Householder reflections to improve L3 theoretically. This is why L2 only uses a
process close to classical Gram-Schmidt.

Road map. In Section 2 we provide necessary background on lattices and L3.
We describe the L2 algorithm in Section 3. Section 4 proves the correctness
of L2, while Section 5 analyzes its complexity. Additional information (such as
complete proofs of technical lemmata and experimental results) will be given in
the journal version of the present work.

Remarks. Like L3, the L2 algorithm works in fact with the underlying quadratic
form and can therefore be used to reduce positive definite integer quadratic
forms. It can be checked (see the full version) that L2 can be extended to lin-
early dependent vectors, leading to what is to our knowledge the fastest algo-
rithm known to construct a lattice basis from a generating set. Schnorr pointed
out that the required precision in L2 can be slightly decreased by using a better
summation algorithm than ours (e.g. a tree-like algorithm), which may be inter-
esting if one is restricted to a fixed precision. For the sake of simplicity, we keep
a basic summation algorithm.

2 Background

Notation. All logarithms are in base 2. Let ‖.‖ and 〈., .〉 be the Euclidean norm
and inner product of R

n. The notation �x� denotes a closest integer to x. Bold
variables are vectors. All the lattices we consider are integer lattices, as usual.
The complexity model we use is the RAM model, and the computational cost is
measured in elementary operations on bits, without fast integer arithmetic [40].
Our fpa-model is a smooth extension of the IEEE-754 standard [2], as provided
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by NTL [41] and MPFR [32]. With an 	-bit working precision, a fp-number
is of the form x = ±mx · 2ex where the mantissa mx ∈ [1/2, 1) is 	-bit long
and the exponent ex is an integer. We expect all four basic fp-operations to be
correctly rounded: the returned value )(a op b) for op ∈ {+,−, /, ∗} is a closest
fp-number to (a op b). In our complexity analysis, we do not consider the cost
of the arithmetic on the exponents: it can be checked that the exponents are
integers of length O(log(d+ log B)), so that the cost is indeed negligible.
We recall basic notions from algorithmic geometry of numbers (see [24]).

Gram matrix. Let b1, . . . , bd be vectors. Their Gram matrix G(b1, . . . , bd) is
the d× d symmetric matrix (〈bi, bj〉)1≤i,j≤d formed by all the inner products.
Lattice volume. A lattice L has infinitely many lattice bases when dim(L) ≥ 2.
Any two bases are related to each other by a unimodular matrix (integral matrix
of determinant ±1), and therefore the determinant of the Gram matrix of a basis
only depends on the lattice. The square root of this determinant is the volume
vol(L) (or determinant) of the lattice.
Gram-Schmidt orthogonalisation. Let [b1, . . . , bd] be linearly independent
vectors. The Gram-Schmidt orthogonalisation (GSO) [b∗

1, . . . , b
∗
d] is the orthog-

onal family defined recursively as follows: b∗i is the component of bi orthogo-
nal to the linear span of b1, . . . , bi−1. We have b∗

i = bi −
∑i−1

j=1 μi,jb
∗
j where

μi,j = 〈bi, b
∗
j 〉/‖b∗

j‖2. For i ≤ d we let μi,i = 1. The lattice L spanned by the
bi’s satisfies vol(L) =

∏d
i=1 ‖b∗

i ‖. The GSO family depends on the order of the
vectors. If the bi’s are integer vectors, the b∗

i ’s and the μi,j ’s are rational.
QR factorisation. The GSO corresponds to the “R” part of the Q ·R factori-
sation of the matrix representing the basis [b1, . . . , bd], where Q is an orthogonal
matrix (Q ·Qt = Qt ·Q = Id) and R is lower triangular. If R = (ri,j), for any i
we have ri,i = ‖b∗

i ‖2 and for any i ≥ j we have ri,j = μi,j‖b∗
j‖2. In what follows,

the GSO family denotes the ri,j ’s and μi,j ’s. Some information is redundant in
rational arithmetic, but in the context of our fp calculations, it is useful to have
all these variables to minimize the number of arithmetic operations and thus the
precision loss.

Size-reduction. A basis [b1, . . . , bd] is size-reduced with factor η ≥ 1/2 if its
GSO family satisfies |μi,j | ≤ η for all 1 ≤ j < i ≤ d. The i-th vector bi is
size-reduced if |μi,j | ≤ η for all j < i. Size-reduction usually refers to η = 1/2,
but it is essential for L2 to allow larger η.

L3-reduction. A basis [b1, . . . , bd] is L3-reduced with factor (δ, η) where 1/4 <
δ ≤ 1 and 1/2 ≤ η <

√
δ if the basis is size-reduced with factor η and if its GSO

satisfies the (d−1) Lovász conditions (δ−μ2
κ,κ−1)rκ−1,κ−1 ≤ rκ,κ (or equivalently

δ‖b∗κ−1‖2 ≤ ‖b∗
κ + μκ,κ−1b

∗
κ−1‖2), which implies that the GSO vectors never

drop too much. Such bases have useful properties (see [19, 8, 24]), like providing
approximations to the shortest vector problem and the closest vector problem. In
particular, their first vector is relatively short: ‖b1‖ ≤ (δ−η2)−(d−1)/4vol(L)1/d.
L3-reduction usually refers to the factor (3/4, 1/2) initially chosen in [19]. But the
closer δ and η are respectively to 1 and 1/2, the shorter b1 should be. In practice,
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Input: A basis [b1, . . . , bd] and δ ∈ (1/4, 1).
Output: An L3-reduced basis with factor (δ, 1/2).
1. Compute the rational GSO, i.e., all the μi,j ’s and ri,i’s.
2. κ:=2. While κ ≤ d do
3. Size-reduce bκ using Babai’s algorithm (Fig. 3), which updates the GSO.

4. κ′:=κ. While κ ≥ 2 and δrκ−1,κ−1 ≥ rκ′,κ′ +
∑κ′−1

i=κ−1 μ2
κ′,iri,i, do κ:=κ − 1.

5. For i = 1 to κ − 1, μκ,i:=μκ′,i.
6. Insert bκ′ right before bκ.
7. κ:=κ + 1.
8. Output [b1, . . . , bd].

Fig. 2. The L3 Algorithm

one usually selects δ ≈ 1 and η ≈ 1/2, so that ‖b1‖ ≤ (4/3)(d−1)/4vol(L)1/d

approximately. The L3 algorithm obtains in polynomial time a basis reduced
with factor (δ, 1/2) where δ < 1 can be chosen arbitrarily close to 1. The new
L2 algorithm achieves a factor (δ, η), where δ < 1 can be arbitrarily close to 1
and η > 1/2 arbitrarily close to 1/2. It is unknown whether or not δ = 1 can
be achieved in polynomial time, and whether or not η = 1/2 can be achieved in
quadratic time like L2. The case (δ, η) = (1, 1/2) is closely related to a notion of
reduction invented by Hermite [13] in the language of quadratic forms.
The L3 algorithm. The L3 algorithm [19] is described in Fig. 2. It computes
an L3-reduced basis in an iterative fashion: the index κ is such that at any
stage of the algorithm, the truncated basis [b1, . . . , bκ−1] is L3-reduced. At each
loop iteration, κ is either incremented or decremented: the loop stops when κ
reaches the value d+ 1, in which case the entire basis [b1, . . . , bd] is L3-reduced.
L3 performs two kinds of operations: swaps of consecutive vectors and Babai’s
nearest plane algorithm [3] (see Fig. 3), which uses at most d translations of the
form bκ:=bκ−mbi, where m is some integer and i < κ. Swaps are used to achieve
Lovász’s conditions, while Babai’s algorithm is used to size-reduce vectors. We
explain Steps 4–7: if Lovász’s condition is satisfied, nothing happens in Steps 5
and 6, and κ is incremented like in classical descriptions of the L3 algorithm.
Otherwise, Step 4 finds the right index to insert bκ, thus collecting successive
failures of Lovász’s test.

If L3 terminates, it is clear that the output basis is L3-reduced. What is less
clear a priori is why L3 has a polynomial-time complexity. A standard argument

Input: A basis [b1, . . . , bd], its GSO and an index κ.
Output: The basis with bκ size-reduced and the updated GSO.
1. For i = κ − 1 downto 1 do
2. bκ:=bκ − �μκ,i�bi.
3. For j = 1 to i do
4. μκ,j :=μκ,j − �μκ,i�μi,j .

Fig. 3. Babai’s algorithm to size-reduce bκ, so that |μκ,i| ≤ 1/2 for all i < κ
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shows that each swap decreases the quantity Δ =
∏d

i=1 ‖b∗
i ‖2(d−i+1) by at least

a factor δ < 1, while Δ ≥ 1 because the bi’s are integer vectors and Δ can be
viewed as a product of squared volumes of lattices spanned by some of the bi’s.
This proves that there can be no more than O(d2 log B) swaps, and therefore
loop iterations, where B is an upper bound on the norms of the input basis
vectors. It remains to estimate the cost of each loop iteration. This cost turns
out to be dominated by O(dn) arithmetic operations on the basis matrix and
GSO coefficients μi,j and ri,i which are rational numbers of bit-length O(d log B).
Thus, the overall complexity of the L3 algorithm described in Fig. 2 without fast
integer arithmetic is O((d2 log B) · dn · (d log B)2)) = O(d5n log3 B).
L3 with fpa. The cost of L3 is dominated by arithmetic operations on the
GSO coefficients which are rationals with huge numerators and denominators. It
is therefore tempting to replace the exact GSO coefficients by fp approximations.
But doing so in a straightforward manner leads to instability. The algorithm is no
longer guaranteed to be polynomial-time: it may not even terminate, because the
quantity Δ used to bound the complexity of L3 no longer necessarily decreases
at each swap. And if ever the algorithm terminates, the output basis may not
be L3-reduced, due to potential inaccuracy in the GSO coefficients. Prior to
this work, the only provable fp-L3 was the one of Schnorr [34], which simulates
the behavior of L3 using fp-approximations of the coefficients of the inverse
matrix of the μi,j ’s: it computes a (0.95, 0.55)-L3-reduced basis. The number
of loop iterations and the number of arithmetic operations (in each iteration)
remain the same as L3: only the cost of each arithmetic operation related to
the GSO decreases. Instead of handling integers of length O(d log B), [34] uses
fp-numbers with O(d + log B)-bit long mantissæ (with large hidden constants,
as mentioned in the introduction), which decreases the worst-case complexity of
L3 to O(d4 log B(d+log B)2). This is still cubic in log B. Because this algorithm
is mostly of theoretical interest, the main number theory computer packages [41,
22, 4] only implement heuristic fp-variants of L3 à la Schnorr-Euchner [36] which
suffer from stability problems in high dimension.

3 The L2 Algorithm

We now describe the L2 algorithm, which is a natural fp-variant of L3. The main
principle is to keep sufficiently good fp-approximations of the GSO coefficients
during the execution of the algorithm. Accuracy is crucial for size-reduction and
for checking Lovász’s conditions. If one is not careful, swaps and translations
may decrease the accuracy to the point of having meaningless fp-values.

3.1 Gram-Schmidt Computations

It is important for L2 to have accurate formulas for the computation of the GSO
coefficients. In [36], the following recursive formulas are used:

μi,j =
〈bi, bj〉 −

∑j−1
k=1 μj,k · μi,k · ‖b∗

k‖2
‖b∗

j‖2
and ‖b∗

i ‖2 = ‖bi‖2 −
i−1∑
j=1

μ2
i,j · ‖b∗

j‖2.
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In these formulas, the inner products 〈bi, bj〉 are computed in fpa, which leads
to a potential inaccuracy of 2−�‖bi‖‖bj‖, with the following drawback: to ensure
that the basis returned by L2 is size-reduced, absolute error bounds on the μi,j ’s
are required; if the error is therefore larger than 2−�‖bi‖‖bj‖, the precision 	 must
be Ω(log B) in the worst case. The analyses of [34, 35] do not tackle this issue.
We use slightly different formulas by introducing the quantity ri,j = μi,j‖b∗

j‖2 =
〈bi, b

∗
j 〉 for all i ≥ j:

ri,j = 〈bi, bj〉 −
j−1∑
k=1

μj,k · ri,k and μi,j =
ri,j

rj,j
.

Accuracy is improved because the inner products are extracted from the exact
Gram matrix and because each term of the sum now only requires one multiplica-
tion instead of two. For i = j, the first formula is ri,i = ‖bi‖2 −

∑i−1
k=1 μi,k · ri,k,

which suggests to define sj = ‖bi‖2 −
∑j−1

k=1 μi,k · ri,k for all 1 ≤ j ≤ i, so
that ‖b∗

i ‖2 = ri,i = si. The quantities si will be useful to check consecutive
Lovász’s conditions. Indeed, Lovász’s condition (δ − μ2

κ,κ−1)‖b∗
κ−1‖2 ≤ ‖b∗

κ‖2
can be rewritten as δ‖b∗

κ−1‖2 ≤ ‖b∗
κ‖2 + μ2

κ,κ−1‖b∗
κ−1‖2,i.e.,

δrκ−1,κ−1 ≤ sκ−1.

Whenever the condition is not satisfied, L3 would swap bκ−1 and bκ, and check
the following Lovász’s condition:

δrκ−2,κ−2 ≤ sκ−2.

Thus, storing the sj ’s enables us to check consecutive Lovász’s conditions (when
consecutive swaps occur) without any additional cost since they appear in the
calculation of rκ,κ. The computation of ri,j , μi,j and sj is summarized in the so-
called Cholesky Factorisation Algorithm (CFA) of Fig. 4. Of course, because one

Input: The Gram matrix of [b1, . . . , bd].
Output: All the ri,j ’s, μi,j ’s and sj ’s.
1. For i = 1 to d do
2. For j = 1 to i do
3. ri,j :=〈bi, bj〉,
4. For k = 1 to j − 1 do ri,j :=ri,j − ri,kμj,k,
5. μi,j :=ri,j/rj,j .
6. s0:=‖bd‖2. For j = 1 to d do sj :=sj−1 − μd,jrd,j .
7. rd,d:=sd.

Fig. 4. The Cholesky Factorisation Algorithm (CFA)

uses fpa, the exact values are unknown. Instead, one computes fp-approximations
r̄i,j , μ̄i,j and s̄i. Steps 4–6 are performed in the following way:

r̄i,j := ) (r̄i,j −)(r̄i,k · μ̄j,k)), μ̄i,j := ) (r̄i,j/r̄j,j) and s̄j := ) (s̄j−1−)(μ̄d,j · r̄d,j)).
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Input: A factor η > 1/2, a fp-precision �, an integer κ, a basis [b1, . . . , bd],
G(b1, . . . , bd), and fp numbers r̄i,j and μ̄i,j ’s for j ≤ i < κ.

Output: fp numbers r̄κ,j , μ̄κ,j and s̄j for j ≤ κ, [b1, . . . , bκ−1, b
′
κ, bκ+1, . . . , bd] ,

and G(b1, . . . , bκ−1, b
′
κ, bκ+1, . . . , bd) where b′

κ = bκ −∑i<κ xibi

for some integers xi’s and: |〈b′
κ, b∗

i 〉| ≤ η‖b∗
i ‖2 for any i < κ.

1. η̄:= η+1/2
2

. Repeat
2. Compute the r̄κ,j ’s, μ̄κ,j ’s, s̄j ’s with Steps 2–7 of the CFA with “i = κ”.
3. For i = κ − 1 downto 1 do
4. If |μ̄κ,i| ≥ η̄, then Xi:=�μ̄κ,i�, else Xi:=0,
5. For j = 1 to i − 1, μ̄κ,j := � (μ̄κ,j − �(Xi · μ̄i,j)).

6. Update [b1, . . . , bd] and G(b1, . . . , bd), according to bκ:=bκ −∑κ−1
i=1 Xibi.

7. Until all Xi’s are zero.

Fig. 5. The Iterative Babai Nearest Plane Algorithm

We will not use CFA directly in L2. Instead, we will use parts of it during the
execution of the algorithm: because the orthogonalisation is performed vector
by vector, there is no need recomputing everything from scratch if the ri,j ’s and
μi,j ’s are already known for i and j below some threshold. Notice that the ri,j ’s
can be updated at the same location, except for rd,d because the different sj ’s
need being returned to check Lovász’s conditions. The CFA will prove useful to
estimate in Section 4 the precision required to guarantee the correctness of L2.

3.2 An Iterative Floating-Point Version of Babai’s Algorithm

The core of L2 is an iterative fp-version of Babai’s nearest plane algorithm,
described in Fig. 5. Instead of size-reducing bκ at once like in Fig. 3, our fp-
version of Babai performs an iterative process using parts of the CFA algorithm
of Fig. 4. Here, the xi’s of Babai’s algorithm are computed progressively: the
most significant bits in the first loop iteration, then more bits in the second
iteration, and so on. This has two nice properties: first it terminates and gives
correct results, and, more importantly, it makes L2 efficient because very few
bits of the GSO are required. At Step 4, η̄ = η+1/2

2 ∈ (1/2, η) is used instead
of η to take into account the fact that μκ,i is known only approximately. At
Step 6, it suffices to update the scalar products 〈bi, bκ〉 for i ≤ d according to
the following relations:

‖b′
κ‖2 = ‖bκ‖2 +

∑
j �=κ

x2
j‖bj‖2 − 2

∑
j �=κ

xj〈bj , bκ〉+ 2
∑

j �=κ,i�=κ

xixj〈bi, bj〉

〈bi, b
′
κ〉 = 〈bi, bκ〉 −

∑
j �=κ

xj〈bi, bj〉 for i 	= κ.

3.3 Main Results

A description of L2 is given in Fig. 6. There is no need keeping approximations of
all the GSO coefficients: because L2 is iterative, it suffices to have approximations
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Input: A valid pair (δ, η) like in Th. 1, a basis [b1, . . . , bd] and a fp-precision �.
Output: An L3-reduced basis with factor pair (δ, η).
Variables: A matrix G, two d × d fp-matrices (r̄i,j) and (μ̄i,j), a fp-vector s̄.
1. Compute exactly G = G(b1, . . . , bd).
2. δ̄:= δ+1

2
, r̄1,1:= � (〈b1, b1〉), κ:=2. While κ ≤ d, do

3. Size-reduce bκ using the algorithm of Fig. 5. It updates the fp-GSO.
4. κ′:=κ. While κ ≥ 2 and δ̄r̄κ−1,κ−1 ≥ s̄κ−1, do κ:=κ − 1.
5. For i = 1 to κ − 1 do μ̄κ,i:=μ̄κ′,i, r̄κ,i:=r̄κ′,i, r̄κ,κ:=s̄κ.
6. Insert bκ′ right before bκ and update G accordingly.
7. κ:=κ + 1.
8. Output [b1, . . . , bd].

Fig. 6. The L2 algorithm

up to the threshold κ. Notice that the cost of the first step is bounded by
O(d2n log2 B) and is thus negligible compared to the rest of the reduction. At
Step 4, δ̄ = δ+1

2 ∈]δ, 1[ is used instead of δ to take into account the fact that
r̄κ−1,κ−1 and s̄κ−1 are known only approximately. The main result of this paper
is the following:

Theorem 1. Let (δ, η) such that 1/4 < δ < 1 and 1/2 < η <
√

δ. Let c >

log (1+η)2

δ−η2 be a constant. Given as input a d-dimensional lattice basis [b1, . . . , bd]
in Z

n with maxi‖bi‖ ≤ B, the L2 algorithm of Fig. 6 with precision 	 = cd+o(d)
outputs a (δ, η)-L3-reduced basis in time O(d4n log B(d+log B)). More precisely,
if τ denotes the number of loop iterations, then the running time is O( (τ +
d log dB)(d+ log B)).

Let us make a few remarks. First, L2 decreases the complexity bound O(d3n
log B(d + log B)2) of [34] by a factor d+log B

d . We can choose δ arbitrarily close

to 1 and η arbitrarily close to 1/2, so that the coefficient c > log (1+η)2

δ−η2 becomes
arbitrarily close to log 3 < 1.585. The additional statement related to the number
of loop iterations is useful for certain lattices which arise in practice, like lattices
arising in knapsacks and minimal polynomials, where τ = O(d log B) instead of
the usual O(d2 log B). Finally, the o(d) term in the condition 	 = c · d+ o(d) can
be made effective and may be used backwards: if we perform calculations with
a fixed number of bits, the correctness will be guaranteed up to a computable
dimension.

4 Correctness of the L2 Algorithm

To guarantee the correctness of L2, we need to estimate the accuracy of the
fp-approximations at various stages of the algorithm.

4.1 Accuracy of Gram-Schmidt Computations

In general, the classical Gram-Schmidt algorithm is known to have very poor
numerical stability [5, 11, 18, 43]. However, it must be stressed that in the context

d n2
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of L3, bases are reduced in an iterative fashion, which implies that we can study
the accuracy of Gram-Schmidt computations under the hypothesis that the first
d−1 vectors of the input basis are L3-reduced. In this particular setting, because
an L3-reduced basis is roughly orthogonal, the following result shows that a
working precision of ≈ d log 3 bits is sufficient for the CFA if the reduction
factor (δ, η) is sufficiently close to the optimal pair (1, 1/2).

Theorem 2. Let (δ, η) be a valid factor pair like in Th. 1. Let ρ = (1+η)2

δ−η2 .
Let [b1, . . . , bd] in Z

n be a d-dimensional lattice basis whose Gram matrix is
given as input to the CFA algorithm from Fig. 4. Suppose [b1, . . . , bd−1] is (δ, η)-
L3-reduced. In the case of fpa with a precision 	 satisfying dρd2−�+2 ≤ 1, the
fp-numbers returned by the CFA of Fig. 4 satisfy the following equations: for all
j ≤ i < d,

|r̄i,j − ri,j | ≤ dρj−12−�+4 · rj,j and |μ̄i,j − μi,j | ≤ dρj−12−�+6.

Moreover, if M = maxj<d|μd,j |, then we have for any j < d:

|r̄d,j − rd,j | ≤ dρj−1M2−�+4 · rj,j and |μ̄d,j − μd,j | ≤ dρj−1M2−�+6.

Finally, if bd is η-size-reduced with respect to [b1, . . . , bd−1], then for any j ≤ d:

|s̄j − sj | ≤ dρj−12−�+7 · rj,j + d2−� · sj .

The second set of inequalities is useful for the analysis of Babai’s algorithm,
while the last set provides guarantees when checking Lovász’s conditions. We
now give a sketch of the proof of Theorem 2 for the case η ≈ 1/2 and δ ≈ 1.
Most of the accuracy loss comes from Step 4, which amplifies the error. We define
errj = maxi<d

|r̄i,j−ri,j |
rj,j

, i.e., the error on ri,j relative to rj,j , and we estimate

its growth as j increases. Obviously err1 ≤ 2−�maxi<d
|〈bi,b1〉|
‖b1‖2 ≤ 2−�, because

of size-reduction. We now choose j ∈ [2, d − 1]. The result for i = d can be
derived from the proof for i ≤ d− 1, intuitively by replacing “bd” by “ 1

M bd” in
it. Because of Step 5, for any i < d and any k < j:

|μ̄i,k − μi,k| ≤
∣∣∣∣rk,k

r̄k,k

∣∣∣∣ errk + |ri,k|
∣∣∣∣ 1
r̄k,k
− 1

rk,k

∣∣∣∣ ≤ (3
2

+ ε

)
errk,

where we neglected low-order terms and used the fact that |ri,k| ≤
(

1
2 + ε

)
‖bk‖2,

which comes from size-reduction. This implies that:

| ) (μ̄j,k · r̄i,k)− μj,kri,k| ≤ |μ̄j,k − μj,k| · |r̄i,k|+ |μj,k| · |r̄i,k − ri,k|

≤
(

5
4

+ ε

)
errk · ‖b∗

k‖2,

where we also neglected low-order terms and used size-reduction twice. Thus,

errj ≤
(

5
4

+ ε

)∑
k<j

‖b∗
k‖2

‖b∗
j‖2

errk ≤
(

5
4

+ ε

)∑
k<j

(
4
3

+ ε

)j−k

errk,
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by using Lovász’s conditions. This last inequality finally gives errj ≤ (3 + ε)j ·
err1 ≤ (3 + ε)j2−�, since we have

(
4
3 + ε

) (
5
4 + ε + 1

)
≈ 3 + ε. ��

The bound in Theorem 2 seems to be tight, at least in practice: the classical
Gram-Schmidt algorithm or the CFA become experimentally inaccurate with a
precision ≤ d log 3 bits for certain bases. Consider indeed the L3-reduced lattice
basis given by the rows of the following d× d matrix L:

Li,i = (
√

4/3)d−i

Li,j = (−1)i−j+1Li,i · random[0.49, 0.5] if j > i
Li,j = 0 if j < i.

To obtain an integral lattice, one can multiply L by a large scaling factor and
round its entries. By definition, this matrix is already L3-reduced. With double
precision calculations, i.e., with 53-bit mantissæ, the error on the μi,j ’s becomes
significant (higher than 0.5) in dimension 35. These bases show the tightness of
our log 3·d bound. By inserting a suitable random vector to such a basis, we were
able to make the LLL FP routine of NTL loop forever in dimension 55 (see [28]).
This invalidates the claim of [36, 37, 15] which states that double precision suffices
for lattices of dimension up to ≈ 250 using classical Gram-Schmidt.

4.2 Accuracy of Babai’s Nearest Plane Algorithm

To estimate the accuracy of the iterative fp-version of Babai’s algorithm given
in Fig. 5 and used in L2, we first study a simpler fp-version described in Fig. 7.

Input: A fp-precision �, a basis [b1, . . . , bd], G(b1, . . . , bd)
and fp numbers r̄i,j ’s and μ̄i,j ’s for j ≤ i < d.

Output: x1, . . . , xd−1 ∈ Z and G(b1, . . . , bd−1, b
′
d), where b′

d = bd −∑i<d xibi.
1. Compute the μ̄d,j ’s for j < d with Steps 2–7 of the CFA with “i = d”.

2. η̄:= η+1/2
2

. For i = d − 1 downto 1 do

3. If |μ̄d,i| ≥ η̄, then xi:=�μ̄(i+1)
d,i �, else xi:=0,

4. For j = 1 to i − 1 do μ̄d,j := � (μ̄d,j − �(xi · μ̄i,j)).
5. Compute G(b1, . . . , bd−1, b

′
d) from G(b1, . . . , bd−1, bd).

Fig. 7. Babai’s Nearest Plane Algorithm

We use Theorem 2 to show stability properties of Babai’s algorithm:

Theorem 3. Let (δ, η) be a valid reduction factor (like in Th. 1) and ρ = (1+η)2

δ−η2 .
Let [b1, . . . , bd] in Z

n be a d-dimensional lattice basis given as input to the al-
gorithm of Fig. 7, and B = maxi‖bi‖. Suppose that [b1, . . . , bd−1] is (δ, η)-L3-
reduced and that the given r̄i,j’s and μ̄i,j’s are those that would have been re-
turned by the CFA with working precision 	. Let M = maxj |μd,j |. If 	 satisfies
d2ρd2−�+2 ≤ 1, the algorithm of Fig. 7 finds integers x1, . . . , xd−1 such that for
any i < d:
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|xi| ≤ 2(1 + η)d−1−i(M + 1) and
|〈b′

d, b
∗
i 〉|

‖b∗
i ‖2

≤ η̄ + dρd(M + 1)2−�+4.

Moreover it works in time O(dn	(d+ log B)) as long as 	 = O(d+ log B).

Notice that by using the relation logM = O(d + log B) (coming from the
fact that the d − 1 first vectors are L3-reduced), this result implies that taking
	 = O(d+ log B) is sufficient to make the |μd,i|’s smaller than η. The drawback
of this approach is that one should have previously computed the ri,j ’s and μi,j ’s
with precision O(d+log B). This seems an overkill since O(d+logM) bits suffice
and M is usually far smaller than B. Indeed, in the case of the Euclid algorithm,
the analogy is that the quotients would be computed by using all the bits of the
remainders, instead of only the most significant ones.

The iterative Babai algorithm from Fig. 5 is a way to work around the dif-
ficulty that M cannot be tightly bounded in advance. Using only a O(d)-bit
precision, it finds the xj ’s progressively by performing successive Babai steps,
each one making logM decrease by Ω(d), until we reach M ≤ η. This strategy
is somewhat similar to the Babai routine of the floating-point L3 algorithm of
NTL [41], which repeatedly applies Babai’s algorithm until nothing happens.

The iterative Babai algorithm will use a precision 	 =
(
log (1+η)2

δ−η2 + C
)
d +

o(d) with an arbitrary C > 0. The CFA with working precision 	 gives the in-
put r̄i,j ’s and μ̄i,j ’s, which by Theorem 2 have their ≈ Cd leading bits correct.
Therefore, the ri,j ’s and μi,j ’s may not be known sufficiently well to perform
Babai’s algorithm in one single step, but Theorem 3 gives that their approxima-
tions suffice to make M = maxi<κ

|〈bκ,b∗
i 〉|

‖b∗
i ‖2 decrease by ≈ Cd bits. By making

O
(
1 + log M

d

)
such calls to Babai’s algorithm, size-reduction can be achieved.

Theorem 4. Let (δ, η) be a valid pair (like in Th. 1) and ρ = (1+η)2

δ−η2 . Let C > 0
be a constant. Let [b1, . . . , bd] be a d-dimensional lattice basis in Z

n given as
input to the algorithm of Fig. 7, and B = maxi‖bi‖. Suppose that [b1, . . . , bκ−1]
is (δ, η)-L3-reduced and that the given r̄i,j’s, μ̄i,j’s are those that would have
been returned by the CFA with precision 	. Let M = maxj<κ|μκ,j |. If 	 satisfies
d2ρd2−�+6+Cd ≤ η − 1

2 , the algorithm of Fig. 5 provides a correct output and
the returned r̄κ,j’s, μ̄κ,j’s, s̄j’s are those that would have been returned by the
CFA with precision 	. Moreover, if 	 = O(d), then the running time is O(dn(d+
log B)(d+ logM)).

Proof. We start by the correctness properties of the algorithm. At the last it-
eration of the main loop, the computed Xj ’s are all zero, which implies that
nothing happens during Steps 3–6. This gives that for any j < κ, |μ̄κ,j | ≤ η−,
from which we derive |〈b′

κ,b∗
i 〉|

‖b∗
i ‖2 ≤ η, by using Theorem 3 and the hypothesis on 	.

This also gives the correctness of the returned r̄κ,j ’s, μ̄κ,j ’s and s̄j ’s.
We now consider the impact of one iteration of the main loop on M . Let M1

be the “new M” after the loop iteration. Theorem 3 and the hypothesis on 	
give the inequality:
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M1 ≤ η̄ + dρd(1 +M)2−�+4 ≤ 1/2 + 2η

3
+ 2−CdM.

As a consequence, there can be at most 1+ 1
Cd (log η−1/2

3 +logM) loop iterations.
Theorem 3 gives that the cost of one loop iteration is bounded by O(d2n(d+

log B)), because during the execution of the algorithm, the entries of the Gram
matrix remain integers of length bounded by O(d + log B). The fact that we
have additional vectors in the basis (namely bκ+1, . . . , bd) is taken into account
in the complexity bound. Finally, the overall cost of the algorithm is bounded
by:

O
(
d2n(d+ log B)

(
1 + log M

d

))
= O(dn(d+ log B)(d+ logM)). ��

4.3 Application to L2

We now prove the correctness of L2. To do this, we show the following:

Theorem 5. Let [b(0)
1 , . . . , b

(0)
d ] in Z

n be a lattice basis given as input to the
L2 algorithm. For any loop iteration t, let [b(t)

1 , . . . , b
(t)
d ] denote the current basis

at the beginning of the t-th iteration. We have:

1. For any i ≤ κ(t)−1, b
(t)
i is η-size-reduced, and [b(t)

1 , . . . , b
(t)
κ(t)−1] is L3-reduced

with factor pair (δ, η).
2. For any i ≤ d, maxj≤i‖b(t)∗

j ‖ ≤ maxj≤i‖b(0)∗
j ‖ and ‖b(t)

i ‖ ≤
√
dmaxj≤i‖b(0)‖.

Proof. Clearly, all these properties are valid for t = 0, and size-reduction comes
from Theorem 4. Assume now that we are performing the t-th loop iteration.

We now show that Lovász’s tests work as desired. Recall that bκ is swapped
with bi for i < κ if and only if for any j ∈ [i, κ− 1] we have s̄j ≤ δ̄r̄j,j . Assume
first that bκ is swapped with bj . Theorem 2 gives that:

sj(1− d2−�) ≤ r̄j,j(δ̄ + dρj−12−�+8).

Therefore, as soon as dρd2−�+5 ≤ 1 − δ, if a swap is done in L2 then Lovász’s
condition was not fulfilled for the factor 2−δ

3 ∈ (δ, 1). On the opposite, assume
that bκ and bj are not swapped. Theorem 2 gives:

sj(1 + d2−�) ≥ rj,j(δ̄ − dρj−12−�+8).

Thus, as soon as dρd2−�+4 ≤ 1− δ, if there is no swap, then Lovász’s condition
was fulfilled for δ. This gives the first statement for the new loop iteration. For
the second statement, observe that during a swap between bk and bk−1:

– ‖b∗new
k−1 ‖ ≤ ‖b∗old

k−1‖ because of Lovász’s condition,
– ‖b∗new

k ‖ ≤ ‖b∗old
k−1‖ because b∗new

k is an orthogonal projection of b∗old
k−1,

which gives the first part of the second statement. Finally, if b
(t)
i appears during

the execution of the algorithm and is size-reduced, we have:

‖b(t)
i ‖2 ≤ d ·maxj≤i‖b(t)∗

j ‖2 ≤ d ·maxj≤i‖b(0)∗
j ‖2 ≤ d ·maxj≤i‖b(0)

j ‖2.

j
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This proves the second part for i < κ(t). If i ≥ κ(t), we consider the largest
t′ < t such that κ(t′ +1)−1 = i. The iteration t′ was the one which created b

(t)
i .

If t′ does not exist, this vector is an initial vector and the result is obvious.
Otherwise b

(t)
i = b

(t′+1)
κ(t′+1)−1 is size-reduced at the (t′ + 1)-th iteration. Thus

we have ‖b(t)
i ‖2 ≤ d · maxj≤κ(t′+1)−1‖b(0)

j ‖2. Since κ cannot increase by more
than 1 in a single iteration, we must have i ≥ κ(t′ + 1) − 1, which ends the
proof.

5 Complexity Analysis of the L2 Algorithm

We now prove the complexity statement of Theorem 1.

5.1 On the Number of Loop Iterations of L2

In Section 4.3, we showed that the accuracy suffices to check Lovász’s conditions.
For any Lovász test, either κ increases or decreases by one and when it decreases,
the quantity

∏d
i=1 ‖b∗

i ‖2(d−i) decreases by a factor of at least 3
2δ+1 > 1. It is a

standard L3 argument that this quantity is actually an integer (it is a product
of squared volumes of integer lattices) and is initially bounded by BO(d2). But
during the execution of the algorithm, the difference between the numbers of
decreases and increases of κ is exactly d, so there are at most O(d2 log B) loop
iterations.

In the rest of this section we show how to achieve the complexity bound
O(d4n log B(d + log B)). This is done by generalizing a cascade phenomenon
which appears in the analyses of the Euclidean and Gaussian algorithms.

5.2 Analyses of the Euclidean Algorithm

As mentioned in the introduction, the L3 algorithm can be viewed as a high-
dimensional generalisation of the Euclidean algorithm to compute gcds. But
this analogy is incomplete: the Euclidean algorithm has a quadratic complexity
bound, whereas the L3 algorithm is cubic for any fixed dimension. In some sense,
the analysis of the standard L3 algorithm corresponds to a naive analysis of the
Euclidean algorithm which also gives a cubic complexity. Recall the Euclidean
algorithm: given as input two numbers r0 > r1 > 0, Euclid successively computes
the quotients qi and remainders ri defined by qi = �ri−1/ri� and ri+1 = ri−1 −
qiri, until rτ+1 = 0 for some τ . Then rτ is the gcd of r0 and r1. It is well-
known that the remainders decrease at least geometrically, so that the number of
Euclidean divisions is τ = O(log r0). A naive analysis of the Euclidean algorithm
states that the algorithm performs O(log r0) arithmetic operations on integers of
lengths bounded by O(log r0), so that the overall cost is bounded by O(log3 r0).
A well-known more subtle analysis notices that the cost of computing qi and ri+1

without fast integer arithmetic is bounded by O(log ri−1 · log qi) = O(log r0 · (1+
log ri−1 − log ri)). Summed over all the steps, all but two terms “log ri” vanish,
leading to the classical quadratic complexity bound.
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This improved Euclidean analysis cannot unfortunately be extended to the
standard L3, because the GSO coefficients are too big. The bit-length of the
numerator and denominator of most GSO coefficients is O(d log B): computing
the exact GSO of an L3-reduced basis already takes cubic time. Surprisingly,
the improved Euclidean analysis can be extended to L2: this would not be pos-
sible without a working precision independent of log B. The main difficulty is to
generalize the cancellation of all but a very few terms in the sum of the costs
of consecutive loop iterations. In the Euclidean and Gaussian algorithms, this
cancellation is trivial because two consecutive costs compensate each other di-
rectly. The phenomenon is much more complicated in higher dimension: the cost
of the t-th iteration will not necessarily be balanced by the cost of the previous
(t− 1)-th iteration, but by the cost of the t′-th iteration for some t′ < t. Special
care must be taken so that the t′’s do not collide.

5.3 A Cascade in Arbitrary Dimension

In this subsection we complete the proof of Theorem 1. We already know that
the number of loop iterations is τ = O(d2 log B). The t-th loop iteration costs
O(dn(d+ log B)(d+ logM(t))) where M(t) = maxj<κ(t) |μκ(t),j(t)|. By analogy
with the Euclidean algorithm, we make terms cancel out in the sum over the
loop iterations of the “logM(t)’s”. For this purpose, we define the index α(t) as
the smallest swapping index since the last time κ was at least κ(t).

Lemma 1. Let t be a loop iteration. Let φ(t) = max(t′ < t | κ(t′) ≥ κ(t)) if it
exists and 1 otherwise, and let α(t) = min(κ(t′) | t′ ∈ [φ(t), t)) − 1. Then we
have logM(t) ≤ d+ log ‖b(t)

κ(t)‖ − log ‖b(t)
α(t)‖.

We are to subdivide the sum of the logM(t)’s over the successive loop itera-
tions into O(d) subsums according to the value of κ(t):

∑
t≤τ

[
d+ log ‖b(t)

κ(t)‖ − log ‖b(t)
α(t)‖

]
≤ τd+

d∑
k=2

∑
{t|κ(t)=k}

[
log ‖b(t)

k ‖ − log ‖b(t)
α(t)‖

]
.

For each of these subsums, we keep k−1 positive terms and k−1 negative terms,
and make the others vanish in a progressive cancellation. Terms proportional to d
can appear from such cancellations, but they will be absorbed in “O(τd)”. The
crucial point to do this is the following:

Lemma 2. Let k ∈ [2, d] and t1 < . . . < tk be loop iterations of the L2 algorithm
such that for any j ≤ k, κ(tj) = k. Then there exists j < k with:

‖b(tj)

α(tj)
‖ ≥ d(δ − η2)−d/2‖b(tk)

k ‖.

To prove this result, we need the following technical fact:

Lemma 3. Let T and j be integers such that κ(T ) ≥ j ≥ κ(T + 1). We have:

maxi≤j‖b(T+1)∗
i ‖ ≤ maxi<j‖b(T )∗

i ‖ and maxi≤j‖b(T+1)
i ‖ ≤

√
d ·maxi<j‖b(T )

i ‖.
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It is now possible to finish the complexity analysis. Let k ∈ [2, d] and t1 <
. . . < tτk

= {t ≤ τ | k(t) = k}. We extract from the global sum the terms
corresponding to these loop iterations. Theorem 5 and the fact we are dealing
with an integer lattice ensures that:

τk∑
i=1

log
‖b(ti)

k ‖
‖b(ti)

α(ti)
‖
≤ (k − 1) log(

√
dB) +

τk∑
i=k

log ‖b(ti)
k ‖ −

τk−k+1∑
i=1

log ‖b(ti)
α(ti)
‖.

Lemma 2 helps to tighly bound the right-hand term above. First, we apply it
with t1, . . . , tk. This shows that there exists j < k such that ‖b(tk)

k ‖ ≤ d(δ −
η2)−d/2‖b(tj)

α(tj)
‖. The indices “i = k” in the positive sum and “i = j” in the

negative sum cancel out and a term “d
2 log(δ − η2)−1 + log d” appears. Then

we use Lemma 2 with tk+1 and the k − 1 first ti’s that remain in the negative
sum. It is easy to see that tk+1 is larger than any of them, so that we can have
another “positive-negative” pair which cancels out in a “d

2 log(δ−η2)−1 +log d”.
We perform this operation τk − k + 1 times, to obtain:

τk∑
i=1

log
‖b(ti)

k ‖
‖b(ti)

α(ti)
‖
≤ (k − 1) log(

√
dB) + τk

[
d

2
log(δ − η2)−1 + log d

]
.

The fact that
∑

k τk = τ finally gives
∑

t≤τ (d+logM(t)) = O(τd+d2 log(dB)).
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Abstract. At Crypto 2004, van Dijk and Woodruff introduced a new
way of using the algebraic tori Tn in cryptography, and obtained an
asymptotically optimal n/φ(n) savings in bandwidth and storage for a
number of cryptographic applications. However, the computational re-
quirements of compression and decompression in their scheme were im-
practical, and it was left open to reduce them to a practical level. We
give a new method that compresses orders of magnitude faster than the
original, while also speeding up the decompression and improving on the
compression factor (by a constant term). Further, we give the first effi-
cient implementation that uses T30, compare its performance to XTR,
CEILIDH, and ECC, and present new applications. Our methods achieve
better compression than XTR and CEILIDH for the compression of as
few as two group elements. This allows us to apply our results to ElGa-
mal encryption with a small message domain to obtain ciphertexts that
are 10% smaller than in previous schemes.

Keywords: torus-based cryptography, discrete-log based cryptography.

1 Introduction

When Diffie and Hellman introduced their key agreement scheme in a finite
field of prime order, they made the assumption that a birthday attack was the
best one can do (the Pohlig-Hellman algorithm [20] was in submission). Hence
it made sense to use a subgroup of size about that of the field itself. Since then,
the discrete logarithm problem in the multiplicative group of a finite field has
been studied with increased interest. For prime order subgroups the best known

� Rubin was supported by NSF grant DMS-0140378.
�� Silverberg was supported by NSA grant MDA904-03-1-0033.

� � � Woodruff was supported by an NDSEG fellowship.

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 234–250, 2005.
c© International Association for Cryptologic Research 2005



Practical Cryptography in High Dimensional Tori 235

attacks today are the birthday attack in the subgroup itself and the Number
Field Sieve in the full finite field. It is now common practice to use a subgroup
whose cardinality is substantially smaller than the field size. This raises the
question whether it is possible to efficiently represent elements in this subgroup
with fewer bits than generic elements of the full field, thus providing compres-
sion.

Brouwer, Pellikaan and Verheul [4] showed that compression can be achieved
by going up to an extension field. They conjectured that one can attain a com-
pression ratio of n/φ(n), where n is the degree of the extension. For n = 2, the
LUC cryptosystem [14] already achieved these savings. For n = 6, Brouwer et
al. described a system that was later improved upon by Lenstra and Verheul
[15, 16], resulting in the XTR public key cryptosystem.

Rubin and Silverberg [23] recast the problem of compression for extension
fields in terms of algebraic tori. They showed that if the algebraic torus Tn is
rational, the conjectured compression factor n/φ(n) can in fact be achieved. If
n is the product of at most two prime powers then Tn is known to be rational
[30, 12]. Based on the rationality of T6, Rubin and Silverberg [23] developed the
CEILIDH public key cryptosystem.

Although Tn is not known to be rational in general, van Dijk and Woodruff [6]
show that one can obtain key agreement, signature and encryption schemes with
a compression factor asymptotically n/φ(n) as the number of keys, signatures,
or messages grows, without relying on the rationality of Tn. This helps explain
the potential of, and increasing interest in, torus-based cryptography.

The torus Tn is rational if there are efficiently computable “almost bijec-
tions”1 between Tn(Fq) and F

φ(n)
q , where φ is Euler’s totient function. Though

the tori Tn in general are only conjectured to be rational, it is known [30] that
they are always stably rational, i.e., for every n there is an m such that there is
an “almost bijection” between Tn(Fq)× F

m
q and F

φ(n)+m
q .

Using the fact that Tn is stably rational, van Dijk and Woodruff [6] developed
bijections between Tn(Fq)×F

m
q and F

φ(n)+m
q with m =

∑
d|n, μ(n/d)=−1 d, where

μ is the Möbius function, leading to asymptotically optimal n/φ(n) savings in
bandwidth and storage. However, a major drawback of their solution is its large
computational requirements.

The present work gives a new and efficient construction of bijections between
Tn(Fq) × F

m
q and F

φ(n)+m
q with significantly smaller m than in [6], as well as

an optimised implementation when n = 30. The latter uses some known tech-
niques [9] to efficiently implement CEILIDH.

Note that n = 30 = 2 · 3 · 5 is the next cryptographically interesting case,
since its compression is up to 20% better than that of systems based on n = 6.
In addition to our computational savings, in this case we are able to reduce the
original affine surplus m = 32 [6] to m = 2. As we show, this reduction has
immediate practical implications.

1 The maps may be undefined on a small number of points.
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Since we are interested in the practicality of our construction, we perform
timings for exponentiations, compression and decompression for both the new
T30(Fq) system and for a CEILIDH-based T6(FqL

) system with qL ≈ q5. For an
equivalent of 1024-bit RSA security, the computational costs of the operations
in both systems are comparable, while the compression of our scheme is better
by a factor of 5/4 = (30/φ(30))/(6/φ(6)).

Observe that the security of ECC systems is based on a different mathemat-
ical problem and (still) has the advantage that the best known attack is via a
birthday paradox argument. So, one works in a subgroup that is almost the same
size as the elliptic curve itself. Consequently, compression is much less of an is-
sue there. Yet the same ECC systems provide an additional reason to study the
compression methods we do, since the rise of pairing-based cryptography leads
to elements in the torus (although at present no efficient curves with embedding
degree 30 are known). Note that compression for elliptic curves over extension
fields has also been considered [22].

Outline: §2 discusses some tools we use. In §3 we present the new mapping. §4
gives cryptographic applications. In §5 we show how to implement our mapping,
and in §6 we present simulation results.

2 Preliminaries

In this section we provide some background on the algebraic tori used in cryp-
tography. See [23, 24] for more details. Let Fq denote the finite field with q
elements, let φ be Euler’s totient function, and let Φn(x) be the n-th cyclotomic
polynomial. Write Gq,n for the subgroup of F

×
qn of order Φn(q). Let A

n denote
n-dimensional affine space. Recall that the Möbius function μ(m) is 0 if m is not
square-free, and is (−1)k if m is a product of k distinct primes.

2.1 Algebraic Tori

For any positive integer n one can define an algebraic torus Tn over Fq whose
Fq-points consist of the elements of F

×
qn whose norm is one down to every proper

subfield of Fqn/Fq. The following provides some useful properties of Tn (see
Lemma 7 of [23] and Lemma 1 of [2]).

Lemma 1. 1. Tn(Fq) ∼= Gq,n, and thus #Tn(Fq) = Φn(q).
2. If h ∈ Tn(Fq) has prime order not dividing n, then h /∈ Fqd for any d | n

with d < n.

The variety Tn has dimension φ(n). Since Tn(Fq) embeds into F
×
qn , one can

perform the group operation as ordinary multiplication in the field, or use other
more efficient possibilities [9]. The subgroup Tn(Fq) may be regarded as the
“primitive” subgroup of F

×
qn , since by Lemma 1 its elements do not lie in a proper

subfield of Fqn . Thus, Tn(Fq) is believed to be the most cryptographically secure
subgroup of F

×
qn .



Practical Cryptography in High Dimensional Tori 237

2.2 Rationality of Tori over Fq

The interpretation of Gq,n as an algebraic torus is motivated by the possibility,
for some n, to exploit birational maps between Tn and affine space [23].

Definition 1. The torus Tn is rational if there is a birational map ρ : Tn(Fq)→
A

φ(n).

That is, Tn(Fq) is rational if there are Zariski open subsets W ⊂ Tn and U ⊂
A

φ(n), and rational functions ρ1, . . . , ρφ(n) ∈ Fq(x1, . . . , xn) and ψ1, . . . , ψn ∈
Fq(y1, . . . , yφ(n)), such that ρ = (ρ1, . . . , ρφ(n)) : W → U and ψ = (ψ1, . . . , ψn) :
U →W are inverse isomorphisms (as quasi-projective varieties).

The existence of a birational map allows one to represent elements of Tn(Fq)
with just φ(n) elements of Fq, providing an effective compression factor of n/φ(n)
over the embedding into Fqn . The torus Tn is known to be rational when n is
either a prime power or a product of two prime powers [30, 12], and is conjectured
to be rational for all n [30].

2.3 CEILIDH

The torus-based public key system CEILIDH was introduced at Crypto 2003 by
Rubin and Silverberg [23]. The system is based on the rational torus T6, and
achieves a compression factor of three. They construct an efficiently computable
bijection

ψ : A
2(Fq) \ V (f)→ T6(Fq) \ {1, a},

together with an efficiently computable inverse

ρ : T6(Fq) \ {1, a} → A
2(Fq) \ V (f),

where V (f) denotes a small subvariety of A
2, and 1 and a in T6(Fq) are points

excluded by ρ and ψ. This allows one to represent all (bar two) elements of
T6(Fq) with just two elements of Fq. This system attains the same compression
factor as the public key system XTR [15, 29]. Granger, Page and Stam [9] give
a comparison of XTR and CEILIDH in the case q ≡ 2 mod 9 or q ≡ 5 mod 9.

2.4 Asymptotically Optimal Torus-Based Cryptography

Since Tn is known to be rational only for special values of n, the above ideas do
not lead to an optimal compression factor of n/φ(n) in general. Van Dijk and
Woodruff [6] overcome this problem in the case where several elements of Tn are
to be compressed. They construct a bijection:

θ : Tn(Fq)× (×d|n,μ(n/d)=−1F
×
qd)→ ×d|n,μ(n/d)=1F

×
qd . (1)

Specializing their map to the case n = 30 gives

T30(Fq)× F
×
q × F

×
q6 × F

×
q10 × F

×
q15 → F

×
q2 × F

×
q3 × F

×
q5 × F

×
q30 ,
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which can be reinterpreted as an “almost bijection” (see [6])

T30(Fq)× A
32(Fq)→ A

40(Fq).

One can use this map to achieve an asymptotic compression factor of 30/8.
Indeed, to compress m elements of T30(Fq), one can compress an element x and
split its image into y1 ∈ A

8(Fq) and y2 ∈ A
32(Fq). Then y1 forms the affine input

of the next compression. In the end, 8m+32 elements of Fq are used to represent
m elements of T30(Fq). Observe that their map comes from the equation

Φ30(x)(x− 1)(x6− 1)(x10− 1)(x15− 1) = (x2− 1)(x3− 1)(x5− 1)(x30− 1), (2)

relating the orders of all the different component groups of domain and range.
Since these groups are cyclic, one can map to and from their products as long as
the orders of the component groups are coprime. For the map above there are
some small primes that occur in the order of several component groups, but van
Dijk and Woodruff are able to isolate and handle them separately.

3 The New Construction

The bijection (1), while asymptotically optimal, leaves open the question of
whether one can obtain better compression for a fixed number of elements. Our
new compression map, given by (4) below (see Theorems 2 and 4), has this
property. Using the fact that Φn(x) =

∏
d|n(xd − 1)μ(n/d), we have

Proposition 1. If p is a prime, and a is a positive integer not divisible by p,
then

Φap(x)Φa(x) = Φa(xp).

The following result can be deduced from Proposition 1 above, using Lemma
6 of [6] (see also pp. 60–61 of [30]). Here, Res denotes the Weil restriction of
scalars (see for example [30] or [24]).

Theorem 2. If p is a prime, q is a prime power, a is a positive integer, qa is
not divisible by p, and gcd(Φap(q), Φa(q)) = 1, then

Tap(Fq)× Ta(Fq) ∼= (ResFqp /Fq
Ta)(Fq) ∼= Ta(Fqp).

The next result follows from Proposition 1, by doing double induction on the
number of prime divisors of n and the number of prime divisors of m.

Theorem 3. If n is square-free and m is a divisor of n, then

Φn(x)
∏

d| n
m , μ( n

md )=−1

Φm(xd) =
∏

d| n
m , μ( n

md )=1

Φm(xd).

The next result follows from Theorem 3, using the ideas in the proof of Theorem
3 of [6].
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Theorem 4. If n is square-free and m is a divisor of n, then there is an efficiently
computable bijection (with an efficiently computable inverse)

Tn(Fq)×
∏

d| n
m , μ( n

md )=−1

Tm(Fqd)→
∏

d| n
m , μ( n

md )=1

Tm(Fqd).

Note that [6] is based on the case m = 1 of Theorem 4. Theorem 4 is most useful
to us when Tm is rational. If Tm is rational, then Theorem 4 gives efficiently
computable “almost bijections” between Tm and A

φ(m), and we have

Tn × A
D(m,n) ∼ A

φ(n)+D(m,n) (3)

where
D(m,n) = φ(m)

∑
d| n

m , μ( n
md )=−1

d

and ∼ denotes efficient “almost bijections”. The smaller D(m,n) is, the better
for our applications. Given the current state of knowledge about the rationality
of the tori Tm, we take m with at most two prime factors. Ideally, m = 6. One
could also take m = 2. When m = 6, then (3) gives

T30 × A
2 ∼ A

10 and T210 × A
24 ∼ A

72.

As a comparison with the original bijection (1) for n = 30 which requires 8m+32
elements of Fq to represent m elements in T30(Fq), we see that this provides a
considerable improvement.

Even better, using Proposition 1 and induction on the number of prime di-
visors of n, we also obtain the following.

Theorem 5. If n = p1 · · · pk is a product of k ≥ 2 distinct primes, then

Φn(x)
k−1∏
i=2

Φp1···pi
(xpi+2···pk) = Φp1p2(x

p3···pk).

Applying this to n = 210 = 2 · 3 · 5 · 7, one can similarly show

T210(Fq)× T30(Fq)× T6(Fq7) ∼ T6(Fq35).

Now since T6 ∼ A
2, we obtain T210×T30×A

14 ∼ A
70. Using T30×A

2 ∼ A
10 now

gives T210×A
22 ∼ T210×A

10×A
12 ∼ T210×(T30×A

2)×A
12 ∼ T210×T30×A

14 ∼
A

70, so
T210 × A

22 ∼ A
70.

More generally, the above reasoning shows that if n = p1 · · · pk (square-free),
then

Tn × A
φ(p1p2)p3···pn−φ(n) ∼ A

φ(p1p2)p3···pn ,

which for 6 | n gives
Tn × A

n/3−φ(n) ∼ A
n/3. (4)

Using (4), one can compress m elements of Tn(Fq) down to just (m−1)φ(n)+n/3
elements of Fq by either sequential or tree-based chaining as explained in §4.
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3.1 Applying the Construction to T30

Henceforth we focus on n = 30 since this improves upon previous schemes, has
a straightforward parameter generation (see §5), and will be computationally
efficient. Note that gcd(Φ30(q), Φ6(q)) = 1. Indeed, using the first paragraph of
the proof of Lemma 6 of [6], the only possible prime dividing gcd(Φ30(q), Φ6(q))
is 5, but it is easy to see that regardless of q we have Φ6(q) mod 5 ∈ {1, 2, 3},
which proves our claim. By Theorem 2 we now have

T30(Fq)× T6(Fq) ∼= T6(Fq5).

The compression is based on a sequence of maps

T30(Fq)× (A2(Fq) \ V (f))→ T30(Fq)× T6(Fq)→ T6(Fq5)→ A
2(Fq5) \ V (f5),

where V (f5) denotes V (f) over Fq5 . We denote by θ the forward composition of
the three maps above, and by θ−1 the composition of the inverses. Note that if
we have m elements in T30(Fq), we compress them down to 8m + 2 elements of
Fq. Thus the compression outperforms CEILIDH and XTR when as few as two
elements are compressed.

The first and last maps are based on CEILIDH decompression and com-
pression, respectively. We discuss some possibilities for the map σ(·, ·) between
T30(Fq)× T6(Fq) and T6(Fq5) in §5 below.

3.2 Missing Points

With regard to the functionality of θ, the only remaining issue is that the outer
two maps based on CEILIDH do not give everywhere-defined injections.

We can slightly modify the CEILIDH maps, so that for compression we get
an injection ψ′ : A

2(Fq) → T6(Fq) × {0, 1} and for decompression an injection
ρ′ : T6(Fq)×{0, 1} → A

2(Fq). Note that ψ′ and ρ′ need not be inverses. The two
missing points in ρ’s domain can easily be added by using a table lookup into
two arbitrarily chosen points in V (f). The resulting map is ρ′.

Given the different cardinalities of T6(Fp) (namely p2 − p + 1) and A
2(Fp)

(namely p2), there are certain points in A
2(Fp) that do not decompress. If we

concentrate on the case p ≡ 2 mod 9 or p ≡ 5 mod 9, then the variety V (f) is
defined by f(v1, v2) = 1− v2

1 − v2
2 + v1v2. For fixed v2 this has at most 2 roots,

and if this is the case then their difference is (4−3v2
2)1/2. If this expression equals

2 then v2 = 0, in which case v1 ∈ {−1, 1}. Thus we have a map ψ′ : A
2(Fq) →

T6(Fq)× {0, 1}:

– If f(v1, v2) 	= 0, then ψ′(v1, v2) = (ψ(v1, v2), 0),
– Else if v2 	= 0, then ψ′(v1, v2) = (ψ(v1 + 2, v2), 1),
– Else ψ′(v1, v2) = (ψ(v1 + 1, v2), 1),

where the extra bit indicates whether the input landed in the variety.
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4 Applications

Our new map saves a significant amount of communication in applications where
many group elements are transmitted. For instance the compression can be used
to agree on a sequence of keys using Diffie-Hellman as in §5.1 of [6]. Other
applications include verifiable secret sharing, electronic voting and mix-nets,
and private information retrieval.

In our applications we compress many elements. This is done by using part of
the output of the i-th element as the affine input for the compression of the (i+1)-
st element. This sequential chaining is simple, but has the drawback of needing
to decompress all elements in order to obtain the first element. Alternatively, one
can use trees to allocate the output of previous compressions. For instance, the
output of the first compression is split into five pieces, which are subsequently
used as the affine input when compressing elements two through six. The output
of the second compression is used to compress elements seven through twelve,
etc. When compressing m elements, decompressing a specific element now takes
O(logm) atomic decompressions on average.

4.1 ElGamal Encryption

Our first application is ElGamal encryption with a small message domain, where
we obtain an additional 10% compression over CEILIDH even for the encryption
of a single message. This contrasts starkly with the original mapping of [6] that
cannot be used to achieve any savings for single-message encryption.

Let q and l be primes such that l | Φ30(q). Let g ∈ F
×
q30 have order l, so that

〈g〉 ⊆ T30(Fq). For random a, 1 ≤ a ≤ l − 1, let a be Bob’s private key and
A = ga his public key. Without loss of generality, let M = {0, 1, . . . ,m− 1} be
the set of possible messages. We assume that m, the cardinality ofM, is small.
We apply the mapping of §3 to the generalized ElGamal encryption scheme.

Encryption (M):

1. Alice represents the message M as gM ∈ 〈g〉.
2. Alice selects a random integer k, 1 ≤ k ≤ l, and computes d = gk.
3. Alice sets e = gM · (ga)k.
4. Alice expresses d ∈ T6(Fq5) as (d1, d2) ∈ A

8(Fq)×A
2(Fq) ∼= A

2(Fq5) by using
CEILIDH. Alice compresses e ∈ T30(Fq) and d2 ∈ A

2(Fq) as θ(e, d2) = T ,
and outputs (d1,T ).

Decryption (d1,T ):

1. Bob computes θ−1(T ) = (e, d2) and uses CEILIDH to reconstruct d.
2. Bob uses his private key a to recover gM = d−ae.
3. Bob recovers M from gM using the fact that M comes from a small domain

(e.g., using Pollard lambda or a table lookup).

The ciphertext is represented as 18 symbols in Fq, which is a 10% improvement
over a solution in which CEILIDH is used to compress both d and e. Note that
the mapping of [6] in §2.4 cannot be used to achieve any savings in this case.
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Our scheme preserves homomorphy, that is, without knowing the secret key
a one can compute the encryption of M1 + M2 given encryptions of M1 and
M2 separately. This is useful in applications such as the efficient two-party com-
putations proposed by Schoenmakers and Tuyls [26] which use homomorphic
ElGamal encryption for a small number of messages.

Exactly as for XTR and CEILIDH (with 6 replaced by 30), the security of
our schemes follows from the difficulty of the DDH problem in F

×
q30 , the fact

that T30(Fq) is the primitive subgroup of F
×
q30 , and the fact that our map and

its inverse are efficiently computable.
The representation of M as gM in 〈g〉 is not efficient when m is large. We

leave it as an open problem to adapt our scheme to handle a larger message
domain. We note that one solution is to use hybrid ElGamal encryption instead.
Indeed, we may apply the mapping of §3 to hybrid ElGamal encryption, adapting
a protocol in §5.3 of [6]. In general, though, this solution does not preserve the
homomorphic property.

4.2 ElGamal Signatures

We apply the mapping of §3 to the generalized ElGamal signature scheme, adapt-
ing a protocol in §5.2 of [6]. Here the signature has the form (d, e), where d ∈ 〈g〉
and 1 ≤ e ≤ l−1. The idea is to use part of e in the affine component of θ, which
can be done without any loss since log2 e ≈ 160 while 2 log2 q ≈ 70; see §5.5 for
a discussion of parameters. Since the affine component of [6] is much larger, this
is not possible in their setting.

For a random a, 1 ≤ a ≤ l − 1, let a be Alice’s private key and A = ga her
public key. Let h : {0, 1}∗ → Zl be a cryptographic hash function. We have the
following generalized ElGamal signature scheme for input message M :

Signature Generation (M):

1. Alice selects a random secret integer k, 1 ≤ k ≤ l, and computes d = gk.
2. Alice then computes e = k−1(h(M)− ah(d)) mod l.
3. Alice expresses e as (e1, e2) ∈ F

2
q × {0, 1}∗, computes θ(d, e1) = T , and

outputs (e2,M,T ) as her signature.

Signature Verification (e2,M,T ):

1. Bob computes θ−1(T ) = (d, e1) and recovers e.
2. Bob accepts the signature if and only if Ah(d)de = gh(M).

We note that in practice one has the alternative of using Schnorr’s signature
scheme, which already achieves optimal compression.

4.3 Voting Schemes

We will discuss a recent voting scheme by Kiayias and Yung [11], which is based
on the discrete logarithm problem and for which we propose to use T30. We give
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a comparison with a cutting edge scheme based on Paillier encryption due to
Damg̊ard and Jurik [5].

Let L denote the number of voters. Each voter has a secret key ai, and a
public key gai . The i-th voter chooses L random exponents si,j ∈ Zl which
satisfy

∑
j si,j = 0, where j ranges from 1 to L (the scheme is self-tallying,

which basically means that the voters themselves serve as the talliers). Voter i
computes and posts gajsi,j for all j, and a zero-knowledge proof that his post is
well-formed. Define tj =

∑
i si,j and observe that

(a)
∑

j tj = 0,
(b) tj is a random element in Zl if at least one user is honest.

From the posts, the j-th voter can compute gajtj , and then by using aj can also
compute gtj . If f is another public generator of 〈g〉, the vote of the j-th voter
is a bit bj from which he can calculate and post gtjf bj . From all such posts,
we have

∏
j gtjf bj = f

∑
j bj . Since the tally

∑
j bj ≤ L, it can be found with

Pollard’s lambda method in O(
√

L) multiplications (and one already needs Θ(L)
multiplications to compute

∏
j gtjf bj ).

Damg̊ard and Jurik [5] propose a similar scheme as Kiayias and Yung, but
use Paillier encryption [19] as a starting point. Again, there are L voters, L
secret keys Ski and public keys Pki. The i-th voter chooses L random integers
si,j in a predefined range with

∑
j si,j = 0. Voter i posts EPkj

(si,j) for all j, and
a zero-knowledge proof that these values are well-formed. Define tj as above,
and observe properties (a) and (b) again hold (the latter statistically). From the
posts, voter j computes EPkj

(tj), and using Skj gets tj . If his vote is bj , he
then posts pj = tj + bj . Observe that

∑
j pj =

∑
j bj . Hence, tallying is more

efficient than in the scheme of Kiayias and Yung, using L additions versus O(L)
multiplications.

Although the Paillier-based scheme can be expected to be faster, a scheme
based on T30 is considerably more compact. We give an analysis of the communi-
cation required for both schemes under the assumption that one wants log2 n =
1024, and that one achieves the same level of security with 30 log2 q = 1024 and
a subgroup size of 160 bits.

The communication of the Kiayias-Yung scheme is dominated by the sending
of gajsi,j for all i, j, together with their zero-knowledge proofs. When looking
at the zero-knowledge proofs used, one sees that each voter transmits 4L group
elements and L exponents. Thus we can use T30 compression in Fq30 here. This
results in roughly 4L ·8 log2 q+160L = 32L log2 q+160L ≈ 1253L bits per voter.

The communication of the Damg̊ard-Jurik scheme is similarly dominated by
the sending of the EPKj

(si,j) for all i, j with their zero-knowledge proofs. We
note that their encryption scheme E is not exactly the same as that of Paillier,
but a modification of it where the ciphertext size is at least 3 log2 n bits, n being
an RSA modulus. Moreover, each proof that EPKj

(si,j) is well-formed costs at
least 5 log2 n bits. Thus 8L log2 n = 8192L bits are transmitted per voter in this
stage.

Hence our improvement is roughly a factor of 6.5. An additional optimization
is for the bulletin board to compress the list of public keys gai when distributing
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this at the beginning. We note that although we improve in communication and
bulletin board size, the computational workload has clearly increased.

4.4 Mix-Nets

A typical re-encrypting mix-net involves M servers that each process n cipher-
texts. To process the batch, a server randomly permutes and rerandomises the
ciphertexts. In the literature, both ElGamal and Paillier type schemes are used.
We save on the communication for both sequential and parallel mix-nets [8].
In a sequential re-encrypting mix-net, server i processes the n ciphertexts, then
passes them to server i+1, and after the M -th server is done, they perform some
kind of threshold decryption. Here n·M bits are communicated using either Pail-
lier or ElGamal, but we save using ElGamal together with T30 compression. Our
savings is a factor of 30/8. In parallel mixing, the servers process disjoint batches
of input ciphertexts in parallel, and in between processing rounds they transmit
n/M ciphertexts to each other, and again we save using T30 compression.

5 Representations and Algorithms for T30

In this section we discuss implementation issues concerning field representation,
key generation, and efficient exponentiation.

5.1 Field Representations

Since T30(Fq) ⊂ F
×
q30 , we need a model of the latter that permits fast multipli-

cation, squaring, inversion and a fast Frobenius automorphism. We also require
arithmetic for T6, over both Fq and Fq5 . Since T30(Fq) ⊂ T6(Fq5), we may model
the arithmetic of T30(Fq) by the latter, possibly at the risk of losing some opti-
mizations.

The base field Fq. We base our implementation on high performance arith-
metic in Fq using the representational method of Montgomery [17, 3]. For T30 one
is likely to use characteristics q between 32 and 64 bits long, corresponding to a
2-word value on a 32-bit architecture. We are careful to distinguish between those
small, 2-word values required by T6(Fq5) and more general values of q (which we
need for comparison purposes). Essentially, we employ the trivial program spe-
cialisation techniques described by Avanzi [1] to construct compact, straight line
code sequences for the 2-word case. This affords a significant improvement over
code for general sizes of q. Other than the length, we do not rely on assumptions
on the value of q, although one could expect incremental improvements by doing
so. Also, our choice of extension degree poses some congruence conditions on q.

The extension Fq5 . We use a degree five subfield of the degree 10 extension
Fq[t]/(Φ11(t)), and use the Gaussian normal basis {t+t10, t7+t4, t5+t6, t2+t9, t3+
t8}. For this to work we require that q 	= ±1 mod 11 [18]. Since the extension
degree is small, we perform inversions using the Itoh-Tsujii algorithm [10].
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Table 1. Arithmetic costs

Fq5 T6(Fq) T6(Fq5)

Multiply 15M + 75A 18M + 53A 270M + 1615A
Square 6M + 21A 90M + 555A
Inverse 65M + 300A + I 2A 10A
Frobenius 0 1A 5A

Compress 15M + 31A + I 290M + 1580A + I
Decompress 27M + 52A + I 470M + 2585A + I

The torus T6. For the torus T6 we take q ≡ 2 mod 9 or q ≡ 5 mod 9 and use
arithmetic based on the degree six extension field defined by adjoining a primitive
ninth root of unity to the base field, as in [28, 23, 9]. Note that in T6 we have
virtually free inversion, as it is just the cube of the Frobenius automorphism.

5.2 Compression and Decompression

Our new compression and decompression algorithms require two components:
CEILIDH and CRT. We use an implementation of CEILIDH as given in [9].

Although it seems that Chinese remaindering is straightforward, there is some
flexibility in choosing the map σ : T30(Fq)× T6(Fq)→ T6(Fq5). Following [6] we
have σ(x, y) = xβyα, where αΦ30(q) + βΦ6(q) = 1. The inverse is given by
σ−1(z) = (zΦ6(q), zΦ30(q)). The cost of the forward computation (i.e., σ) is an
exponentiation in T30(Fq), an exponentiation in T6(Fq), and a multiplication.
Depending on the context, the exponentiation in T30(Fq) may be combined with
an exponentiation performed as part of a particular protocol. The inverse is a
double exponentiation.

Also attractive is the simple σ′(x, y) = xy with inverse (σ′)−1(z) = (zy−1, y)
where y = zαΦ30(q). Clearly the forward map only costs a multiplication. For the
inverse we first compute y using a single exponentiation. Note that the exponent
here is larger than in the case of σ, but the total amount of exponent is similar
in both cases (although asymptotically it is not the total amount that counts,
it is what is relevant in practice). Moreover, we are typically concerned with
the case where the preimage x ∈ T30(Fq) has an order l dividing Φ30(q) so we
know that z has order dividing l(q2 − q + 1), which we can use to reduce the
exponent αΦ30(q). As noted before, the computation of y−1 is virtually free, so
this method is clearly preferable to the first suggestion.

5.3 Arithmetic Costs

Let M,A, S and I represent the cost of multiplication, addition, squaring and
inversion in Fq, respectively. In Table 1 (cf. [9–Lemma 3]) we detail the relative
costs for arithmetic in Fq5 , and for both T6(Fq) and T6(Fq5). Compression and
decompression are based on CEILIDH.
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5.4 Exponentiation in T30

In protocols, one is required to perform one of three operations involving ex-
ponentiation: a single exponentiation in T30(Fq), a double exponentiation in
T30(Fq), or a single exponentiation in T6(Fq5) (for the map (σ′)−1 described
above). Since T30(Fq) ⊂ T6(Fq5), we can perform all three of these in T6(Fq5)
using the methods developed in [28]; the main properties one can exploit are the
degree two Frobenius automorphism and fast squaring.

In a subgroup of order l where l|(q10 − q5 + 1), we write an exponent m
as m ≡ m1 + m2q

5 mod l, where m1 and m2 are approximately half the bit-
length of l (as in [28]). One can find m1 and m2 very quickly having performed
a one-time Gaussian two dimensional lattice basis reduction, and using this ba-
sis to find the closest vector to (m, 0)T . Having split the exponent, to compute
am for random a and m, we perform a double exponentiation am1(aq5

)m2 using
the Joint Sparse Form (JSF) of the integers m1 and m2 [27], which on average
halves the number of pairs of non-zero bits in their paired binary expansion.
The use of the JSF in the above is possible since we have virtually free inver-
sion.

To perform a double exponentiation, we split both exponents as with the
single exponentiation, and perform the necessary four-fold multi-exponentiation
as a product of two double exponentiations, combining the required squarings.

In general one may also be able to exploit the additional structure of T30,
which possesses an automorphism of degree eight, namely, the Frobenius auto-
morphism. One can in principle employ exactly the same method as above and
perform an eight-fold multi-exponentiation. However for the parameter sizes we
consider in this paper, we use a much simpler method based on the q-ary ex-
pansion of an exponent m. Specifically, since our value of q will be small we can
write an exponent m as m =

∑
miq

i.
For our implementation where q30 has size approximately 1024 bits, expo-

nentiating by a 160 bit exponent consists of five terms in the q-ary expansion,
and hence we perform a five-fold multi-exponentiation. To perform this one can
use ideas of Proos [21], which extend the JSF to more than two exponents.
However due to the amount of precomputation required, for exponents of cryp-
tographic interest we use a naive combination of the JSF and the non-adjacent
form (NAF). This results in an effective exponent length of around the same
size as q, significantly reducing the number of squarings needed for exponentia-
tion.

With regard to decompression, the exponent in this case is slightly longer
than for a single exponentiation. Again we use a q-ary expansion, consisting of
seven terms in this instance, and apply the JSF to three pairs of them and the
NAF to the remaining one.

Note that for larger parameter choices, one can clearly construct more efficient
multi-exponentiation methods than those we have optimised for 1024 bit fields.
We omit the details.
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Table 2. Parameter examples with 32-bit primes q

q l

2229155309 931607823866669709267930039057677132828697751771
2527138379 963373263959318090938089232997832791220899903311
2559356147 922800311037389261880873570251585702571121590451
2925130259 899122187666688780457417063691715267976198516591
3020282723 734463532846449031549478184170595775906318188901
3734718203 789572131486790156853093352977895757720566978441

Table 3. Parameter examples with 64-bit primes q

5.5 Parameter Selection

Rubin and Silverberg discuss parameter selection for T30 in §3.10 of [25]. We
followed their method, starting with primes p ≡ 1 mod 30 of about 30 (resp.,
61) bits, finding 32-bit (resp., 64-bit) primes q of order 30 mod p such that q ≡ 2
mod 9 and q ≡ 7 mod 11, then using the Elliptic Curve Method to remove small
prime factors from Φ30(q)/p, and checking to see if what remains is a prime of
about 160 (resp., 200) bits. This results in parameters with q a 32-bit (resp., 64-
bit) prime with the property that the order of T30(Fq) is divisible by a 160-bit
(resp., 200-bit) prime l. These choices give security equivalent to 960-bit (resp.,
1920-bit) RSA security.

By suitably optimizing the Elliptic Curve Method parameter choices, we were
able to generate parameters at a rate of about one example every minute or two
for 32-bit primes q (with 160-bit primes l), using a Macintosh G5 dual 2.5GHz
computer. For 64-bit primes q, we obtained examples with l a prime of between
198 and 202 bits at a rate of one every few hours. The parameters are like Diffie-
Hellman parameters, in the sense that the same parameters can be used for all
users, and for many applications do not need to be changed frequently. In Table
2 we list some examples with 32-bit primes q and 160-bit primes l. In Table 3
we list some examples with 64-bit primes q and 200-bit primes l.

6 Timings

In order to understand the real-world performance of our construction, we imple-
mented the entire system and ran a number of timing experiments. Our main goal

q l

9909125592335111369 1056384871088595423227115173568048528184621140903052910805301
10640772970658245433 3170119585137777422832938014760851013504258723575431018642871
11042402719715204339 1179345732085674283659621603717770735788409366766144466686061
11391285666382073129 1293678412210548537320558698939727346786705884728706067133651
11868436123416952031 1230352242796051691760643717809792393751225110105630495113071
17174393702711641469 1070675878645369998848869455205552403869773154208635001001721
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Table 4. Timings of basic field and torus arithmetic

FqL FqS FqS
5 T6(FqL) T30(FqS )

Addition 0.80μs 0.52μs 0.82μs
Frobenius 0.48μs 1.64μs 1.10μs
Square 2.51μs 0.61μs 13.80μs 21.61μs
Multiply 2.58μs 0.62μs 3.78μs 32.30μs 65.92μs
Inverse 92.71μs 2.04μs 16.03μs 1.82μs 1.29μs

Table 5. Timings for exponentiations

T6(FqL) T30(FqS )

Compression

Compress 131.30μs 0.13ms
Decompress 188.61μs 4.92ms

Exponentiation

Binary 5.21ms 9.12ms
Sliding Window 4.39ms 7.53ms
q-ary 3.11ms
JSF Single 2.79ms 4.57ms

is to compare the performance of an implementation of T6(FqL
) using CEILIDH

against an implementation of T30(FqS
) of similar cardinality using our construc-

tion. Here, we denote the special cases of large and small q as qL and qS . We
used log2(qL) ≈ 5 · log2(qS) ≈ 176 bits, so that in both cases, there is a subgroup
of roughly log2(l) ≈ 160 bits in size. These parameters heuristically provide the
equivalent of 1024-bit RSA security.

We constructed our implementation entirely in C++, apart from small se-
quences of assembly language to accelerate arithmetic in Fq, using the GCC 3.4.2
compiler suite. The timing experiments were carried out on a Linux based PC
housing a 2.8 GHz Intel Pentium 4 processor and 1 GB of memory. We selected
our system parameters as in §5.5. In all of our timing experiments we generated
random operands and averaged the timings of many experiments to get a rep-
resentative result. Note that exponents are reduced modulo l in all cases. Our
sliding window had a maximum size of four.

Table 4 shows timings for basic field and torus arithmetic. Arithmetic in
FqL

is used in T6(FqL
) and arithmetic in FqS

and FqS
5 is used in T30(FqS

).
One interesting feature of these results is the low cost ratio between inversion
and multiplication in FqS

, which is potentially interesting to follow up. Table 5
details the cost of mapping between different representations (compress and
decompress) and the cost of different exponentiation methods which might be
used within an actual cryptosystem.

It is difficult to get an exact comparison with other work on ECC and XTR,
partly because of differences in host processor and levels of optimisation used
by different authors in producing benchmark timings. However, a comparison
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with the highly optimised ECC results of Avanzi [1], for example, gives some
insight. For similar levels of security, direct comparison shows an exponentia-
tion in T30(FqS

) is only around twice as costly as an ECC point multiplication;
correcting for the difference in processors still means that T30(FqS

) is at least
competitive. The case of XTR is easier to compare against since we essentially use
the same experimental platform as that given in Granger, Page and Stam [9].
It turns out that XTR is marginally faster. Solely from the point of view of
performance, we conclude that our construction is a competitive alternative to
existing cryptosystems.

7 Conclusions

We construct an efficient “almost bijection” between T30(Fq) × A
2(Fq) and

A
10(Fq) which achieves better compression than XTR and CEILIDH for the

compression of as few as two group elements. We give several applications, and
obtain ElGamal ciphertexts that are 10% smaller than in previous schemes. We
also develop an efficient implementation, using a variety of techniques for reduc-
ing the computational requirements and obtaining a scheme much more practical
than that in [6]. From experimental results we conclude that our construction is
a competitive alternative to the best existing public key cryptosystems.
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Abstract. We present a new and flexible formulation of Coppersmith’s
method for finding small solutions of bivariate polynomials p(x, y) over
the integers. Our approach allows to maximize the bound on the solu-
tions of p(x, y) in a purely combinatorial way. We give various construc-
tion rules for different shapes of p(x, y)’s Newton polygon. Our method
has several applications. Most interestingly, we reduce the case of solv-
ing univariate polynomials f(x) modulo some composite number N of
unknown factorization to the case of solving bivariate polynomials over
the integers. Hence, our approach unifies both methods given by Cop-
persmith at Eurocrypt 1996.

Keywords: Coppersmith’s method, univariate vs. bivariate, RSA

1 Introduction

In 1996, Coppersmith [6, 7, 8, 9] introduced two rigorous lattice-based meth-
ods for finding small roots of polynomials: One for univariate modular and
another one for bivariate integer polynomial equations. Additionally, Copper-
smith proposed heuristic multivariate extensions for both approaches. The goal
in both methods is to maximize the bounds up to which roots of the polyno-
mials can be found in polynomial time. Coppersmith’s method for finding small
solutions of modular polynomial equations has been applied in many settings,
mainly for cryptanalytic purposes [1, 3, 4, 11] but also for proving the security of
schemes [2, 15].

In contrast, the method for finding roots of polynomial equations over the
integers has not found so many applications, yet. The most well-known result
is the so-called factoring with high bits known [7, 8]: Let N = pq be an RSA
modulus and suppose we are given half of the high-order bits of p, then N can
be factored in polynomial time. Recently, May [13] gave another application for
the bivariate method: He showed that if the RSA secret key is known, then N
can be factored in deterministic polynomial time. However, both results can also
be proven using univariate polynomial equations.

In 1997, Howgrave-Graham [10] gave an easily applicable reformulation of
Coppersmith’s univariate modular method. This might be one of the reasons

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 251–267, 2005.
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that up to now the univariate modular approach has found more applications
than the bivariate integer approach. At Eurocrypt ’04, Coron [5] succeeded to
give a similar reformulation of Coppersmith’s method over the integers.

While it is clear how to optimize a lattice basis for a given univariate polyno-
mial of fixed degree, the construction of an optimal lattice basis for a bivariate
polynomial p(x, y) depends on the monomials that appear in p(x, y). Copper-
smith [8] analyzed the cases where p(x, y) either has degree δ in x and y sepa-
rately or degree δ in total.

Let us define the Newton polygon of p(x, y) as the convex hull of the point
set

{(i, j) ∈ N
2 | monomial xiyj appears in p(x, y) with non-zero coefficient}.

For p(x, y) with degree δ in each variable separately, the shape of the Newton
polygon is a square. For p(x, y) with total degree δ, the shape is an equilateral
lower triangle (having his right angle in the lower left corner). These two shapes
were also analyzed by Coron [5]. In addition, Coppersmith [8] mentions the case
where the maximal degree of p(x, y) in x is δx and the maximal degree in y is
δy, which corresponds to a rectangle with side lengths δx and δy.

In this work, we provide a method that can be used to analyze arbitrary
shapes of the Newton polygon of p(x, y). One advantage of our main result is
that we can formulate it just in terms of the monomials of p(x, y). Although
the proof of our main result requires lattice-based techniques, using our theorem
the analysis of different shapes of p(x, y) is purely combinatorial and can be
done without any lattice theory. Hence, one can view our approach as a tool
kit: If we are given a polynomial p(x, y), we can maximize the bounds up to
which a solution can be found in polynomial time. More precisely, let X and
Y be upper bounds on the desired roots of p(x, y). I.e., we want to find all
solutions (x0, y0) such that p(x0, y0) = 0 and |x0| ≤ X, |y0| ≤ Y . Our goal is to
maximize X and Y . The formulation of our main theorem allows to specify this
maximization problem as an optimization problem over two sets of monomials.
No lattice theory is required and the theorem can be used as a black box for
cryptanalysts.

The proof of our main theorem is a variation of Coppersmith’s original proof
for the bivariate method [8]. We could use Coron’s approach [5] for the proof of
our result as well, but we prefer Coppersmith’s approach since it has a crucial
advantage: We usually obtain bounds of the form XY ≤W g(δ)−ε, where g(δ) is
some function in the degree of p(x, y) in x, y and W = ||p(xX, yY )||∞ is the max-
norm of the coefficient vector of p(xX, yY ). The running time of Coppersmith’s
algorithm is polynomial in (log W, δ, 1

ε ), while Coron’s approach is polynomial
in (log W, δ) but exponential in 1

ε . This difference is due to a clever trick of
Coppersmith which significantly reduces the dimension of the lattice involved
by considering only a certain sublattice.

As applications of our main result, we provide rules to analyze different shapes
of a Newton polygon of p(x, y), thereby deriving some of the most well-known
cryptographic results of Coppersmith’s method. Hence, one can also see our
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new method as a unifying method for certain different approaches to find small
roots of polynomial equations. In particular, we obtain the following results for
different shapes of the Newton polygons:

Rectangle: The rectangle can be seen as a warm-up example. Let us define
W = ||p(xX, yY )||∞. For polynomials of degree δ in each variable separately, we
show the Coppersmith bound [8]

XY ≤W
2
3δ −ε.

Lower triangle: We analyze p(x, y) with variable degree in x and y. When the
total degree of p(x) is δ, we obtain Coppersmith’s bound [8]

XY ≤W
1
δ −ε.

Moreover, let us consider a univariate modular polynomial equation f(x) =
0 mod N , where f has degree δ. This can also be written as a bivariate poly-
nomial p(x, y) = f(x) − yN over the integers. The shape of p(x, y)’s Newton
polygon is also a lower triangle, but with side-lengths δ and 1.

Our analysis shows that one can find all roots (x0, y0) of p(x, y) over the
integers provided that

|x0| ≤ N
1
δ ,

which is exactly Coppersmith’s result for univariate modular equations [8]. This
unifies both approaches of Coppersmith from Eurocrypt ’96 [6, 7]: The univariate
modular case is already included in the bivariate integer case.

Surprisingly, the lattice basis underlying this result does not use powers of the
polynomial p(x, y), whereas in the univariate modular case it seems necessary to
use powers of p(x) in order to achieve the bound N

1
δ .

Upper triangle: To our knowledge, the shape of an upper triangle (where the
right angle is in the upper right corner) has not been analyzed in the literature
before.

We use this shape to analyze the factorization algorithm for RSA-moduli
N = prq, r ≥ 1 of Boneh, Durfee and Howgrave-Graham [4]. In the original
work, this is done using a variant of Coppersmith’s univariate approach, namely
one works modulo the divisor pr of N . Interestingly, one can solve equations
modulo pr although one knows only N . Boneh, Durfee and Howgrave-Graham
propose to exhaustively search approximations p̃ of p. For each guess p̃, they try
to solve the polynomial equation (p̃ + x)r = 0 mod pr, which has the solution
p− p̃.

Alternatively, for each guess p̃ we consider the bivariate polynomial f(x, y) =
(p̃ + x)ry − N with the solution (x0, y0) = (p − p̃, q). Notice that the shape of
f(x, y)’s Newton polygon is an upper triangle. Our analysis yields the same
result as the one in the work of Boneh, Durfee and Howgrave-Graham: One can
find the factorization of N provided that

|x0| ≤ N
r

(r+1)2 .
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Surprisingly, for r > 1 the following approach gives a smaller bound: Compute
q̃ = N

p̃ and try to solve the polynomial f ′(x, y) = (p̃ + x)r(q̃+ y)−N . Let X, Y
be upper bounds on the desired solution (x0, y0) = (p− p̃, q− q̃). At first glance,
the polynomial f ′(x, y) seems to be superior since we can decrease the size of
Y . On the other hand, W = ||p(xX, yY )||∞ decreases as well and the shape of
f ′(x, y)’s Newton polygon now is a rectangle, which has an inferior analysis.
These two facts together outweigh the benefit of decreasing Y and we obtain a
smaller bound.

In the case r = 1, both approaches give the same bound |x0| = |p− p̃| ≤ N
1
4 .

But still, the first approach should be preferred in practice since it uses a smaller
lattice basis. So counterintuitively, one should sometimes ignore information
about one variable in order to obtain a better shape of the Newton polygon.
As the moral of this story, one should keep in mind that optimizing Copper-
smith’s bivariate method is not only a matter of optimizing the bounds X, Y
but also of optimizing the structure of the underlying polynomial p(x, y) itself!

In addition to the results above, we also prove general bounds for univariate
polynomials of degree δ modulo some divisor b of N . The bounds are functions
of the sizes of δ, b and N .

Rectangle and lower triangle: As a last example, we show how to combine
two basic shapes such that all results for rectangles and/or for lower triangles
follow as special cases by parameter settings.

We expect that similar to Coppersmith’s approach [8] our bivariate method
extends to a heuristic method for general multivariate equations, but we have
not checked this so far.

The paper is organized as follows: In Section 2, we give our main result that
allows to formulate the maximization problem of X and Y as an optimization
problem for sets of monomials. In Section 3, we formulate our construction rules
for the different shapes of Newton polygons of p(x, y). Applications of these
shapes are given in Section 4.

2 The Main Theorem

In this section we state our main theorem. We also describe the general setting
in which we are going to apply the theorem in the following sections. First we
need a couple of preliminary remarks and definitions.

Let M be a set of monomials in the variables x, y. We say that a polynomial
g(x, y) is defined over M or is a polynomial over M iff g(x, y) can be written as

g(x, y) =
∑
μ∈M

cμμ, cμ ∈ Z.

The proof of our main result uses a certain resultant that is required to be non-
zero. In order to prove this property, the following definition is going to be useful.
Later we will elaborate on this definition.
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Definition 1. Let p(x, y) be a bivariate integer polynomial and S,M be finite
non-empty sets of monomials in the variables x, y. The sets S,M are called
admissible for p(x, y) iff

1. For every monomial α ∈ S the polynomial α · p(x, y) is defined over M .
2. For every polynomial g defined over M , if g(x, y) = f(x, y) ·p(x, y) for some

polynomial f , then f is defined over S.

We say that an integer polynomial p(x, y) ∈ Z[x, y] is irreducible if p(x, y) =
f(x, y) · g(x, y) with f(x, y), g(x, y) ∈ Z[x, y] implies that either f(x, y) = ±1 or
g(x, y) = ±1. In particular, the gcd of all coefficients of an irreducible polynomial
p(x, y) must be 1.

Using these definitions we can already state our main theorem. Its proof can
be found in the full version of the paper.

Theorem 2. Let p(x, y) ∈ Z[x, y] be an irreducible integer polynomial in two
variables with degree at most dx, dy ≥ 1 in the variables x and y, respectively.
Let X,Y ∈ N and set W := ‖p(xX, yY )‖∞. Furthermore let S,M, S ⊆ M, be
admissible for p(x, y). Set

s := |S|, m := |M |

sx :=
∑

xiyj∈M\S

i, sy :=
∑

xiyj∈M\S

j.

All pairs (x0, y0) ∈ Z
2 satisfying

p(x0, y0) = 0 with |x0| ≤ X, |y0| ≤ Y

can be found in time polynomial in m, dx, dy and log(W ) provided

XsxY sy < W s · 2−(8+c)sdxdy , (1)

where we assume that (m− s)2 ≤ csdxdy for some constant c.

In the following we call elements of the set S shift monomials. The set S itself
will be called the set of shift monomials. Let us describe how we are going
to apply Theorem 2. To do so, we will identify sets of monomials with sets
in the Euclidean plane R

2. More precisely, for a set A of monomials in two
variables x, y we define {(i, j) ∈ N

2|xiyj ∈ A} and the convex hull conv({(i, j) ∈
N

2|xiyj ∈ A}) of this set. To simplify the notation we call these sets A as
well. It will always be clear from the context whether we talk about a set of
monomials or about the corresponding sets in the plane. Next, for a polynomial
g(x, y) =

∑
cijx

iyj , cij ∈ R we define a convex set N(g) in the Euclidean plane,
called the Newton polygon of g. We set

N(g) := conv{(i, j) ∈ N
2|cij 	= 0}.

The Newton polygon of the polynomial p(x, y) = 2+y+3xy is depicted in Fig. 1.
Now suppose we want to use Theorem 2 to determine roots of some polyno-

mial p(x, y). Of course, we want to choose the bounds X,Y as large as possible.
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Fig. 1. Newton polygon of

2 + y + 3xy

To do so, we need to choose sets S and M carefully
under the constraint that S,M are admissible for
p(x, y). Once we have chosen S, there is an obvious
choice for M in order to guarantee the first property
in Definition 1. That is, we choose M as the set of
monomials xiyj such that (i, j) lies in the so-called
Minkowski sum N(p) + S of the Newton polygon
N(p) and S. Here the Minkowski sum A+B of two
sets A,B in R2 is defined as

A+B := {(a1, a2)+(b1, b2) | (a1, a2) ∈ A, (b1, b2) ∈ B}.

As will be seen in our applications of Theorem 2, setting M := N(p) + S will
usually lead to a pair S,M of sets of monomials that also satisfies the second
property of Definition 1, i.e. S,M will be admissible for the polynomial p(x, y).

It remains to explain how to choose S in order to achieve large bounds X,Y ,
that satisfy Equation (1) in Theorem 2. Choosing good sets S requires a trade-off
between the size s of S and the quantities sx, sy that depend on monomials in
M \S, where M = N(p)+S. We want s to be large, while sx and sy should stay
relatively small. We have no provable method to find optimal sets S. However,
the following general strategy proves to be successful.

We consider a whole class of sets S, that may be parametrized by several
parameters. The shape of these sets resembles N(p). Given these parametrized
sets we determine the values s, sx, sy as functions of the parameters used to
describe the sets. Finally, based on Equation (1) we determine the optimal setting
for our parameters in order to get sets S,M and large bounds X,Y satisfying
the conditions of Theorem 2.

3 The Constructions

Let us explain the construction of parametrized sets S for a few important
shapes of Newton polygons N(p) of polynomials p(x, y). Applications of these
examples and analysis of the bounds for X and Y that we can derive using
these constructions will be given in the following section. First we define some
important geometric shapes.

Definition 3. In the following all parameters are real positive numbers.

1. Sets R(a, b) := {xiyj | 0 ≤ j ≤ a, 0 ≤ i ≤ b} are called rectangles.
2. Sets L(c, a,λ) := {xc+iyj | 0 ≤ j ≤ a, 0 ≤ i ≤ λ(a − j)} are called lower

triangles.
3. Sets U(c, a,λ) := {xc+iyj | 0 ≤ j ≤ a, 0 ≤ i ≤ λj} are called upper triangles.
4. Sets E(c, a,λ) := R(a, c) ∪ L(c, a,λ) are called extended rectangles.

Illustrations for these definitions are given in Fig. 2.
With these definitions we can state our main constructions.
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Fig. 2. Illustrations for Definition 3

Construction 4 (Rectangle construction).Assume theNewton polygon N(p)
of polynomial p(x, y) is the rectangle R(d,λd),λ > 0. Then we use sets S such
that

xiyj ∈ S ⇔ (i, j) ∈ R(k, γk).

Here k ∈ N and γ > 0. Consequently, the sets M of monomials are defined by

xiyj ∈M ⇔ (i, j) ∈ R(k + d, γk + λd).

Furthermore

s =
k∑

j=0

γk∑
i=0

1, m =
k+d∑
j=0

γk+λd∑
i=0

1

sx =
k+d∑
j=0

γk+λd∑
i=0

i−
k∑

j=0

γk∑
i=0

i, sy =
k+d∑
j=0

γk+λd∑
i=0

j −
k∑

j=0

γk∑
i=0

j.

In this construction the parameter γ is used to optimize the bounds X,Y .

In the rectangle construction as well as in the subsequent constructions, the
parameter k is not used to optimize X,Y . Mainly it is used to control the size
of certain low order error terms.

As it turns out the optimal γ is given by
√

λ, not by λ itself. Using the convex
hulls of S and M instead of S,M itself, this construction is shown in Fig. 3.
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Fig. 3. The rectangle construction

Similarly, we define constructions for the lower and upper triangle, shown in
Fig. 4. In the lower triangle construction we need no parameter to optimize the
bounds X,Y .

Construction 5 (Lower triangle construction). Assume the Newton poly-
gon N(p) of polynomial p(x, y) is the lower triangle L(0, d,λ),λ > 0. Then we
use sets S such that

xiyj ∈ S ⇔ (i, j) ∈ L(0, k,λ).

Here k ∈ N. Consequently, the sets M of monomials are defined by

xiyj ∈M ⇔ (i, j) ∈ L(0, k + d,λ).

Using Definition 3, the formulas for s,m, sx, and sy can expressed in a similar
fashion as in the rectangle construction.

Construction 6 (Upper triangle construction). Assume the Newton poly-
gon N(p) of polynomial p(x, y) is the upper triangle U(0, d,λ),λ > 0. Then we
use sets S such that

xiyj ∈ S ⇔ (i, j) ∈ R(k, ck) ∪ U(ck, k,λ).

Here k ∈ N and c ≥ 0. Consequently, the sets M of monomials are defined by

xiyj ∈M ⇔ (i, j) ∈ R(k + d, ck) ∪ U(ck, k + d,λ).

Again using Definition 3, the formulas for s,m, sx, and sy can expressed in a
similar fashion as in the rectangle construction.

Of course, one can combine some or even all of these constructions into a
single construction using several parameters to describe the shapes of N(p) and
S. For example, combining the rectangle and the lower triangle construction leads
to the extended rectangle construction. This construction is shown in Fig. 5.

Our applications of Theorem 2 only use the constructions defined above.
The following lemma shows that these constructions always yield admissible
sets S and M . Hence in the subsequent sections we need not worry about the
admissibility of the sets S and M that are used.
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Fig. 4. Lower and upper triangle construction

Fig. 5. The extended rectangle construction

Lemma 7. The rectangle, lower triangle, upper triangle, and extended rectangle
constructions as defined above lead to admissible sets S and M for the respective
polynomials.

Proof: We only show the lemma for the rectangle construction. The proofs
for the other constructions are similar. As mentioned above, since M is the
Minkowski sum of N(p) and S, the sets S,M have the first property of Def-
inition 1. To see that S,M also have the second property, consider a polyno-
mial f(x, y) =

∑
fijx

iyj that is not defined over S. We need to show that
f(x, y) · p(x, y) is not defined over M . By lx, ly denote the degree of f in x, y,
respectively. Since f(x, y) is not defined over S, we have that lx > γk or ly > k.
Since the two cases are symmetric, we only consider the case that ly > k.

Let g be maximal over all i with fily 	= 0. Then the coefficient of xi+λdyly+d

in f(x, y) · p(x, y) will be non-zero. Since ly > k we get ly + d > k + d and
xi+λdyly+d 	∈M . Hence f(x, y) · p(x, y) is not defined over M .

4 Applications of Our Method

The following lemma is due to Coppersmith [8]. It is often used in the subsequent
proofs to remove small error terms from the bounds. Namely, whenever we have
a bound of B for the size of our solution, we can enlarge this bound to cB by
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doing some brute-force search. This search increases the time complexity also by
a factor of c.

Lemma 8 (Coppersmith). Let p(x, y) ∈ Z[x, y]. Assume that we have an
algorithm A that finds all pairs (x0, y0) ∈ Z

2 satisfying

p(x0, y0) = 0 with |x0 · y0| ≤ B

in time complexity T . Then one can find all (x0, y0) satisfying

p(x0, y0) = 0 with |x0 · y0| ≤ cB

in time complexity cT .

Proof: We split our interval [−cB, cB] into c subintervals of the size 2B cen-
tered at some xi. For each of the subintervals with center xi, we apply algorithm
A to the polynomial p(x− xi, y) and output the roots in this subinterval.

By Lemma 8, whenever we derive a bound of B2−O(δ) in the following the-
orems, we can also derive a bound of B by increasing the time complexity by a
factor polynomial in 2δ.

4.1 Rectangular Shape

We start by analyzing the case, where p(x, y) has degree δ in x and y seperately.

Theorem 9 (Coppersmith). Let p(x, y) ∈ Z[x, y] be an irreducible polyno-
mial of degree δ in each variable separately. Let X,Y ∈ N and define W =
||p(xX, yY )||∞. Then we can find all pairs (x0, y0) ∈ Z

2 satisfying

p(x0, y0) = 0 with |x0| ≤ X, |y0| ≤ Y

in time polynomial in log W and δ provided that

XY ≤W
2
3δ 2−O(δ).

Proof: Since the Newton polygon of our polynomial p(x, y) is a rectangle, we
apply Construction 4. We use the parameter setting

k = max{log W, δ}, γ = 1 and λ = 1.

According to Construction 4, we shift our polynomial p(x, y) with all the mono-
mials in S = R(k, k). Let M = R(k + δ, k + δ). By Lemma 7, the sets S and M
are admissible for p(x, y) and Theorem 2 is applicable.
Plugging our values of γ = λ = 1 in the formulas for sx, sy, s and m gives us

sx = sy =
3δ

2
k2
(
1 +O

( δ

k

))
, s ≥ k2 and s,m = O(k2).
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Furthermore, we have dx = dy = δ. One easily checks the condition (m− s)2 =
O(sdxdy) of Theorem 2. An application of Theorem 2 with the values of sx, sy,
s, dx and dy leaves us with the condition

(XY )
3δ
2 k2(1+O( δ

k )) ≤W k2
2−O(k2δ2)

This implies the bound

XY ≤W
k2

3δ
2 k2(1+O( δ

k
)) 2−O(δ).

Now we observe that for any x, we have 1
1+x ≤ 1− x. Therefore, we can bound

the exponent of W by 2
3δ (1−O( δ

k )). This leads to the new condition

XY ≤W
2
3δ W−O( 1

k )2−O(δ).

Since we chose k ≥ log W , our term WO( 1
k ) is of constant size. An application

of Lemma 8 shows that we can omit this term by increasing the running time
only by a constant factor. This concludes the proof of the theorem.

4.2 Lower Triangular Shape

First, we state the case where p(x, y) has total degree δ. The proof of the following
theorem can be found in the full version of the paper.

Theorem 10 (Coppersmith). Let p(x, y) ∈ Z[x, y] be an irreducible polyno-
mial of total degree δ. Let X,Y ∈ N and define W = ||p(xX, yY )||∞. Then we
can find all pairs (x0, y0) ∈ Z

2 satisfying

p(x0, y0) = 0 with |x0| ≤ X, |y0| ≤ Y

in time polynomial in log W and δ provided that

XY ≤W
1
δ 2−O(δ).

Next, let us analyze the case p(x, y) = f(x)− yN , where f(x) is a univariate
polynomial of degree δ. This is exactly the univariate modular case and the
following result reduces Coppersmith’s univariate modular method [6] to the
bivariate integer method [7].

In order to stateTheorem11,weuse the following notation: Let a1, a2, . . . , an ∈
Z. We denote by gcd(a1, a2, . . . , an) the greatest integer that divides all ai, i =
1 . . . n.

Theorem 11 (Coppersmith). Let N be a composite integer of unknown fac-
torization. Let f(x) =

∑
fix

i ∈ Z[x] be a polynomial of degree δ with
gcd(f1, f2, . . . , fδ,N) = 1. Furthermore, let X ∈ N. Then we can find all point
x0 ∈ Z satisfying

f(x0) = 0 mod N with |x0| ≤ X

in time polynomial in log N and δ provided that

X ≤ N
1
δ .
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Proof: We define the following bivariate polynomial

p(x, y) = fN (x)− yN,

where fN (x) = f(x) mod N . I.e., we reduce the coefficients of f(x) modulo N .
Notice that x0 is a root of f(x0) modulo N iff p(x, y) has the root (x0, y0) for
some y0 over the integers. Furthermore, p(x, y) is irreducible. Since we reduced
f(x) by N , we can upper bound the size of y0 by

|y0| ≤
|fN (x0)|

N
≤ Xδ +Xδ−1 + · · ·+X0 ≤ (δ + 1)Xδ.

Let us define Y = (δ + 1)Xδ. Then we obtain W = ||f(xX, yY )||∞ = YN .
The shape of the Newton polygon of p(x, y) is a lower triangle. Therefore, we

apply Construction 5. Here, we use the parameter setting

k = max{log W, δ}, d = 1 and λ = δ.

That means, we apply the shifts with the monomials in S = L(0, k, δ) to the
polynomial f(x, y). Let M = L(0, k + δ, δ). By Lemma 7 the sets S and M are
admissible for p(x, y), and Theorem 2 is applicable.

Setting the values d = 1 and λ = δ in our formulas for sx, sy, s and m
provides us with the bounds

sx =
δ2

2
k2
(
1 +O

(1
k

))
, sy =

δ

2
k2
(
1 +O

(1
k

))
, s ≥ δ

2
k2 and s,m = O(δk2).

Furthermore, we observe that dx = δ and dy = 1. One easily checks that our
parameters satisfy the condition (m− s)2 = O(sdxdy) of Theorem 2.
Using these values in combination with Theorem 2 leads to the condition

X
δ2
2 k2(1+O( 1

k ))Y
δ
2 k2(1+O( 1

k )) ≤W
δ
2 k2

2−O(δ2k2)

Since W = YN , we obtain

X
δ2
2 k2(1+O( 1

k )) ≤ N
δ
2 k2

Y −O(δk)2−O(δ2k2)

Analogous to the reasoning in the proof of Theorem 9, this implies the bound

X ≤ N
1
δ N−O( 1

δk )Y −O( 1
δk )2−O(1). (2)

By our setting, we have k ≥ log W which bounds the term (NY )−O( 1
δk ) =

W−O( 1
δk ) by a constant. An application of Lemma 8 shows that we can increase

the bound in (2) to the desired bound X ≤ N
1
δ by increasing the running time

by a constant factor.
By Theorem 2, we know that the running time of our algorithm is poly-

nomial in log W and δ. It remains to show that log W is also a polynomial in
log N and δ. Since our condition in inequality (2) implies that X ≤ N

1
δ , we have

W = YN = (δ+1)XδN ≤ (δ+1)N2 or equivalently log W ≤ log(δ+1)+2 log N .
This concludes the proof of the theorem.
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4.3 Upper Triangular Shape

In this subsection, we analyze a variant of Coppersmith’s univariate modular
approach, where one solves polynomial equations modulo a divisor of N . We
start by reproducing the Boneh, Durfee and Howgrave-Graham [4] lattice-based
factoring for RSA-moduli N = prq, r ≥ 1, which is a generalization of “factoring
with high bits known” of Coppersmith [8].

Theorem 12 (BDH). Let N = prq be an RSA modulus, where p and q are
primes of the same bit-size and r ≥ 1 is an integer. Suppose we are given an
approximation p̃ of p with

| p− p̃ | ≤ N
r

(r+1)2 .

Then we can find the factorization of N in time polynomial in log N and r.

Proof: We define the polynomial

f(x, y) = (p̃ + x)ry −N.

with the root (x0, y0) = (p − p̃, q). Let X = N
r

(r+1)2 , then by our assumption
|x0| ≤ X. Now, let us also find an upper bound Y for the size of y0 = q. Since
p and q are of the same bit-size, we know that p > q

2 . Therefore, we obtain q =
N
pr < 2rN

qr which gives us qr+1 < 2rN . This yields the upper bound q < 2N
1

r+1 .

Thus, we set Y = 2N
1

r+1 . Obviously, we have W = ||f(xX, yY )||∞ ≥ N .
Since the structure of the Newton polygon of our polynomial f(x, y) is an

upper triangle, we apply Construction 6. Here we use the parameter setting

k = max{log N, r}, d = 1,λ = r and c = 1.

Thus, we use the shifts of the polynomial f(x, y) with all the monomials in
S = R(k, k)∪U(k, k, r). Let M = R(k + 1, k)∪U(k, k + 1, r). By Lemma 7, the
sets S and M are admissible. Therefore, Theorem 2 is applicable.
Plugging the values d = 1,λ = r and c = 1 into our formulas for sx, sy, s and
m yields

sx = (r+1)2

2 k2
(
1 +O

(
1
k

))
, sy =

(
r + 1

)
k2
(
1 +O

(
1
k

))
s ≥

(
r
2 + 1

)
k2 and s,m = O(rk2)

Furthermore, we have dx = r and dy = 1. One can check that these parameters
meet the condition (m− s)2 = O(sdxdy) of Theorem 2.
Now we apply Theorem 2 with the above parameters, which gives us

X
(r+1)2

2 k2(1+O( 1
k ))Y (r+1)k2(1+O( 1

k )) ≤W ( r
2 +1)k2

2−O(r2k2).

Using Y = 2N
1

r+1 and W ≥ N leads to the new condition

X
(r+1)2

2 k2(1+O( 1
k )) ≤ N

r
2 k2−O(k)2−O(r2k2).
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This in turn gives us

X ≤ N

r
2 k2

(r+1)2
2 k2(1+O( 1

k
)) N−O( 1

r2k
)2−O(1),

which can be transformed into

X ≤ N
r

(r+1)2 N−O( 1
rk )2−O(1).

Since k ≥ log N , an application of Lemma 8 gives us the desired bound X ≤
N

r
(r+1)2 by an increase of the running time by a constant factor.

For the special case r = 1, we use the polynomial p(x, y) = (p̃ + x)y −N in the
analysis of the proof of Theorem 12. In contrast, Coppersmith [8] proposed to
use the polynomial p′(x, y) = (p̃ + x)(q̃ + y)−N , where q̃ = N

p̃ .
For r = 1, both polynomials give the same bound (but p(x, y) yields smaller

lattice bases, so it should lead to a faster algorithm in practice). Interestingly, for
r > 1 the polynomial (p̃ + x)ry −N yields a better bound than its counter-part
with q̃, although we have to increase the bound on y0. But this disadvantage is
outweighed by the fact that the shape of p(x, y) is upper triangular rather than
rectangular, and that we can increase W to N .

In the following theorem, we analyze the more general case where we want to
solve a univariate polynomial f(x) with f(x0) = c̄b for some small root x0 and
some (unknown) divisor b of N. Here, we assume that c̄ is a known constant. By
the result of the theorem, a large c̄ helps to improve the bound. Unfortunately,
we are not aware of an application with c̄ > 1.

Theorem 13. Let N be a composite integer of unknown factorization with di-
visor b ≥ Nβ. Let f(x) =

∑
fix

i ∈ Z[x] be a polynomial of degree δ with
gcd(f1, f2, . . . , fδ, c̄N) = 1. Then we can find all points x0 ∈ Z satisfying f(x0) =
c̄b for some known constant c̄ = Nγ , γ ≥ 0 in time polynomial in log N, δ and γ
provided that

|x0| ≤ N
(β+γ)2

δ(1+γ) .

Proof: We define the following bivariate polynomial

p(x, y) = f(x)y − c̄N.

Notice that p(x, N
b ) has the same roots as f(x) − c̄b over the integers. Fur-

thermore, p(x, y) is irreducible. Define y0 = N
b . Since b ≥ Nβ , we know that

y0 ≤ N1−β . Let Y = N1−β denote this upper bound for y0.
Next, we will determine all integer roots (x0, y0) of p(x, y) with the property

that |x0| ≤ X and |y0| ≤ Y . Among these roots must be all roots of f(x)− c̄b. (It
may happen that we additionally find roots of f(x)− c̄b′ for some other divisor
b′ of N .)
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We observe that W = ||f(xX, yY )||∞ ≥ c̄N .
Notice that the structure of the Newton polygon of p(x, y) is an upper tri-

angle. Therefore, we apply Construction 6. In this case, we use the parameter
setting

k = max{log N, δ, γ}, d = 1, λ = δ and c =
(1− β)δ
β + γ

That means that we shift the polynomial p(x, y) with all the monomials in the
set S = R(k, ck)∪U(ck, k, δ). Let M = R(k+1, ck)∪U(ck, k+1, δ). By Lemma 7
the sets S and M are admissible for p(x, y). Therefore, Theorem 2 is applicable.

If we plug in the values of d,λ and c in our formulas for sx, sy, s and m, we
obtain

sx = δ2(1+γ)2

2(β+γ)2 k
2
(
1 +O( 1

k )
)
, sy = δ(1+γ)

β+γ k2
(
1 +O( 1

k )
)
,

s ≥ δ(2−β+γ)
2(β+γ) k2 and s,m = O(δk2)

Notice that dx = δ and dy = 1. We easily check that the condition (m − s)2 =
O(sdxdy) of Theorem 2 is satisfied.
Using Y = N1−β and W ≥ c̄N = N1+γ , an application of Theorem 2 yields

X
δ2(1+γ)2

2(β+γ)2
k2(1+O( 1

k ))
N

δ(1+γ)(2−2β)
2(β+γ) k2(1+O( 1

k )) ≤ N
δ(1+γ)(2−β+γ)

2(β+γ) k2

2−O(δ2k2).

This can be rewritten as

X
δ2(1+γ)2

2(β+γ)2
k2(1+O( 1

k )) ≤ N

(
δ(1+γ)(2−β+γ)

2(β+γ) − δ(1+γ)(2−2β)
2(β+γ)

)
k2

N−O(δk)2−O(δ2k2),

which simplifies to

X
δ2(1+γ)2

2(β+γ)2
k2(1+O( 1

k )) ≤ N
δ(1+γ)

2 k2
N−O(δk)2−O(δ2k2)

This in turn gives us the new condition

X ≤ N
(β+γ)2

δ(1+γ) N−O( 1
δk )2−O(1)

Since k ≥ log N , an application of Theorem 8 yields the desired bound.

As the special case c̄ = 1 of Theorem 13, we obtain the following corollary.

Corollary 14. Let N be a composite integer of unknown factorization with di-
visor b ≥ Nβ. Let f(x) =

∑
fix

i ∈ Z[x] be a polynomial of degree δ with
gcd(f1, f2, . . . , fδ,N) = 1. Then we can find all points x0 ∈ Z satisfying f(x0) =
b in time polynomial in log N and δ provided that

|x0| ≤ N
β2

δ .
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An application of Corollary 14 is again “factoring with high bits known” [8]:
Let N = pq with p > q. Define f(x) = p̃ + x. We want to find x0 = p − p̃

with f(x0) = p. We have p ≥ N
1
2 , which implies β = 1

2 . Hence, we obtain the
well-known bound |x0| ≤ N

1
4 .

Another application is the deterministic reduction of May [13]: Let N = pq
be an RSA modulus and let (e, d) satisfy ed = 1 mod φ(N). Suppose, we are
given (N, e, d). Define f(x) = N −x. We want to find x0 = p + q− 1 ≈ N

1
2 with

f(x0) = φ(N). Notice that we know the multiple ed−1 of φ(N). Let ed−1 = Nα

with α ≤ 2. Then we can set β = 1
α . Therefore, we can recover x0 as long as

|x0| ≤ N
1
α . Since α ≤ 2, our bound is at least of the desired size N

1
2 .

Similar to the case of “factoring with high bits known”, the reduction yields
another polynomial than originally proposed by May. Here, we obtain the poly-
nomial p(x, y) = (N − x)y + 1 − ed, whereas May suggested to use p′(x, y) =
(N − x)(k̃ + y) + 1 − ed with k̃ = ed−1

N . Again, we can ignore the knowledge
provided by k̃ in the analysis without affecting the bound. As before, p(x, y)
should be preferred in practice since it yields smaller lattice bases.

We want to point out that a result similar to the bound given in Corollary 14
has been given by Howgrave-Graham [11]. He showed a bound of Nβ2

for solv-
ing f(x) = 0 mod b, where f(x) has degree 1. This was later generalized by

May [14] to N
β2

δ for f(x) of degree δ. Notice that these approaches allow to
solve f(x) = c′b for some unknown c′ as opposed to f(x) = c̄b for some known c̄
as in Theorem 13.

We pose the open problem to reduce this case of unknown c′ to the bivariate
integer case or a provable trivariate integer case. To our knowledge, this is the
only rigorous variant of Coppersmith’s method which is not covered by our new
approach.
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Abstract. We introduce a problem of distinguishing between two quan-
tum states as a new underlying problem to build a computational crypto-
graphic scheme that is “secure” against quantum adversary. Our problem
is a natural generalization of the distinguishability problem between two
probability distributions, which are commonly used in computational
cryptography. More precisely, our problem QSCDff is the computational
distinguishability problem between two types of random coset states
with a hidden permutation over the symmetric group. We show that
(i) QSCDff has the trapdoor property; (ii) the average-case hardness
of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is
at least as hard in the worst case as the graph automorphism prob-
lem. Moreover, we show that QSCDff cannot be efficiently solved by
any quantum algorithm that naturally extends Shor’s factorization algo-
rithm. These cryptographic properties of QSCDff enable us to construct
a public-key cryptosystem, which is likely to withstand any attack of a
polynomial-time quantum adversary.

1 Introduction

Since Diffie and Hellman [15] first used a computationally intractable problem to
build a key exchange protocol, computational cryptography has been extensively
investigated; especially, a number of practical cryptographic systems (e.g., public-
key cryptosystems (PKCs), bit commitment schemes (BCSs), pseudorandom gen-
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computational assumptions, such as the hardness of the integer factorization prob-
lem (IFP) and the discrete logarithm problem (DLP), where we have not found
any efficient classical (deterministic or probabilistic) algorithm. Nevertheless, if
an adversary runs a quantum computer (we call such an adversary a quantum ad-
versary), he can efficiently solve various problems, including IFP (and quadratic
residuosity problem) [40], DLP (and Diffie-Hellman problem) [10, 26, 40], and the
principal ideal problem [22]. Therefore, the quantum adversary can easily break
any cryptosystem whose security relies on the hardness of these problems.

A new area of cryptography, so-called quantum cryptography, has emerged to
deal with quantum adversary and has been dramatically developed over the past
two decades. In 1984, Bennett and Brassard [7] proposed a quantum key distribu-
tion scheme, which is a key distribution protocol using quantum communication.
Later, Mayers [33] proved its unconditional security. Nevertheless, Mayers [32]
and Lo and Chau [30] independently demonstrated that quantum mechanics can-
not necessarily make all cryptographic schemes information-theoretically secure.
In particular, they proved that no quantum BCS can be both concealing and
binding unconditionally. Therefore, it is still important to take “computational”
approaches to quantum cryptography. In the literature, there are a number of
quantum cryptographic properties discussed from the complexity-theoretic point
of view [1, 12, 13, 14, 16, 36].

Recall that a quantum computer is capable of breaking many computational
assumptions on which the security of existing cryptographic protocols rely. To
build a secure cryptosystem against any attack of a quantum adversary, it is
important to discover computationally-hard problems that can be used as a
building block of the cryptosystem. For example, the subset sum (knapsack)
problem and the shortest vector problem are used as a basis of knapsack-based
cryptosystems [24, 36] and lattice-based cryptosystems [4, 38]. Although quan-
tum adversaries are currently ineffective in the attack on these cryptosystems,
it is unknown whether they can essentially withstand quantum adversaries. We
therefore continue searching for better underlying problems to build quantum
cryptosystems which can withstand any attack of quantum adversaries. We dis-
cuss this issue in depth in Section 1.2.

This paper proposes a new problem, called QSCDff (quantum state com-
putational distinguishability with fully flipped permutations), which satisfies
useful cryptographic properties to build a quantum cryptosystem. Our prob-
lem QSCDff generalizes the distinguishability problems between two probability
distributions used in [8, 18, 43].

Definition 1. The advantage of a polynomial-time quantum algorithm A that
distinguishes between two l-qubit states ρ0 and ρ1 is the function δ(l) defined as:

δ(l) =
∣∣∣Pr
A

[A(ρ0) = 1]− Pr
A

[A(ρ1) = 1]
∣∣∣ ,

where the subscript A means that outputs of A are determined randomly by
measuring the final state of A on the computational basis. The distinguishability

erators, and digital signature schemes) have been constructed under reasonable
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problem between ρ0 and ρ1 is said to be solvable by A with absolute (infinitely-
often, resp.) advantage δ(l) if the above equation holds for any sufficiently large
(infinitely many, resp.) number l.

The problem QSCDff is defined as the distinguishability problem between
two random coset states ρ+

π and ρ−π with a hidden permutation π. Let Sn be
the symmetric group of degree n and let Kn = {π ∈ Sn : π2 = id and ∀i ∈
{1, ..., n}[π(i) 	= i]}, where n is described as 2(2k + 1) for some k ∈ N.

Definition 2. QSCDff is the distinguishability problem between the following
two quantum states:

ρ+
π =

1
2n!

∑
σ∈Sn

(|σ〉+ |σπ〉)(〈σ|+〈σπ|) and ρ−π =
1

2n!

∑
σ∈Sn

(|σ〉−|σπ〉)(〈σ|−〈σπ|),

where π ∈ Kn.

The parameter n of the above definition is used to measure the computa-
tional complexity of our problem and is called the security parameter in the
cryptographic context. From a technical reason, this security parameter must be
of the form 2(2k + 1) for a certain k ∈ N as stated above. Moreover, we assume
that any permutation σ can be represented in binary using O(n log n) bits.

1.1 Our Contributions

This paper shows three cryptographic properties of QSCDff and its applica-
tion to quantum cryptography. These properties are summarized as follows:
(1) QSCDff has the trapdoor property; namely, given a hidden permutation
π, we can efficiently distinguish between ρ+

π and ρ−π ; (2) the average-case hard-
ness of QSCDff over randomly chosen permutations π ∈ Kn coincides with its
worst-case hardness; and (3) the hardness of QSCDff is lower-bounded by the
worst-case hardness of the graph automorphism problem, defined as

Graph Automorphism Problem: (GA)
input: an undirected graph G = (V,E);
output: YES if G has a non-trivial automorphism, and NO otherwise.

Since GA is not known to be solved efficiently, QSCDff seems hard to solve.
Moreover, we show that QSCDff cannot be efficiently solved by any quantum
algorithm that naturally extends Shor’s factorization algorithm.

Technically speaking, the cryptographic properties of QSCDff follows mainly
from the definition of the set Kn of the hidden permutations. Although the def-
inition seems somewhat artificial, the following properties of Kn lead to crypto-
graphic and complexity-theoretic properties of QSCDff : (i) π ∈ Kn is of order 2,
which provides the trapdoor property of QSCDff . (ii) For any π ∈ Kn, the conju-
gacy class of π is equal to Kn, which enables us to prove the equivalence between
the worst-case/average-case hardness of QSCDff . (iii) GA is (polynomial-time
Turing) equivalent to its subproblem with the promise that a given graph has
a unique non-trivial automorphism in Kn or none at all. This equivalence is
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exploited to give a complexity-theoretic lower bound of QSCDff , that is, the
worst-case hardness of GA. For these proofs, we introduce new techniques: a
new version of the so-called coset sampling method , which is broadly used in ex-
tensions of Shor’s algorithm (see, e.g., [37]) and a quantum version of the hybrid
argument, which is a strong tool for security reduction in modern cryptography.

As for an application of QSCDff , we also construct a public-key cryptosystem.
Several advantages of using QSCDff will be discussed in depth in Section 1.2.

1.2 Comparison Between Our Work and Previous Work

In recent literature, computational-complexity aspects of quantum states have
been spotlighted in connection to quantum cryptography. For instance, the no-
tion of statistical distinguishability between quantum states was investigated
by Watrous [42] and Kobayashi [27] in the context of quantum zero-knowledge
proofs. They proved that certain problems of statistically distinguishing between
two quantum states are promise-complete for quantum zero-knowledge proof sys-
tems. Aharonov and Ta-Shma [2] also studied the computational complexity of
quantum-state generation and showed its connection to quantum adiabatic com-
puting and statistical zero-knowledge proofs.

Our distinguishability problem QSCDff is also rooted in computational com-
plexity theory. In this subsection, we briefly discuss various advantages of using
QSCDff as a basis of quantum cryptosystems in comparison with other existing
cryptosystems and their underlying problems.

Average-case Hardness versus Worst-case Hardness. In general, the effi-
cient solvability of a problem on average does not guarantee that the problem can
be solved efficiently by a worst-case algorithm. It is therefore desirable to show
that the average-case hardness of cracking a cryptographic system is equivalent
to its worst-case hardness. Unfortunately, there are few cryptographic problems
known to be reduced from average-case hardness to worst-case hardness.

There are two types of worst-case/average-case reductions discussed in the
literature. The first one is a strong reduction, which transforms an arbitrary
instance of length n to a random instance of the same length or length poly-
nomial in n. Ajtai [3] found a remarkable connection between the average-case
and the worst-case hardness for certain versions of the shortest vector problem
(SVP) in this strong sense. He showed an efficient reduction from the prob-
lem of approximating the shortest vector in a given n-dimensional lattice in the
worst case to the approximation problem of the shortest vectors in a random
lattice over a certain class of lattices with a larger polynomial approximation
factor in n. A reduction between average-case and worst-case hardness has since
then been extensively studied. Micciancio and Regev [34], for instance, gave the
average-case/worst-case connection factor of approximately n for approximating
SVP (see [9] by Bogdanov and Trevisan and references therein for general results
with respect to worst-case/average-case reductions).

The second type of reduction is a weak reduction of Tompa and Woll [41],
where the reduction is randomized only over part of its instances. A typical
example is DLP, which can be randomly reduced to itself by a reduction that
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maps instances to not all instances of the same length but rather all instances
of the same underlying group. It is, nonetheless, unknown that there exists a
reduction from DLP with the worst-case prime to DLP with a random prime.

In this paper, we show that QSCDff has a worst-case/average-case reduction
of the first kind. Our reduction depends only on the length of the instance unlike
a reduction for DLP and the average-case hardness of QSCDff coincides with
its worst-case hardness unlike reductions for lattice problems. Note that DLP
and the inverting problem of the RSA function, whose worst-case/average-case
reductions are of the second kind, can be efficiently solved in the worst case
by Shor’s algorithm [40]. The graph isomorphism problem (GI) and GA—well-
known graph-theoretical problems—also have the connection of the second kind
[41]. Although no efficient quantum algorithm is discovered yet for them, there
is no known cryptographic system whose security are reduced from them. Our
distinguishability problem QSCDff is the first cryptographic problem with the
worst-case/average-case reduction of the first kind, which has not been solved
efficiently on a quantum computer.

Most problems seem to lack any strong connection between their average-case
harness and worst-case hardness. In particular, there is no known cryptographic
system that is based on the worst-case hardness of the subset sum problem or
its subproblems.

Exponential time versus Subexponential time. The hidden subgroup prob-
lem (HSP) has been a central issue discussed for both positive and negative as-
pects of the power of quantum computation. Both IFP and DLP can be viewed
as special cases of HSP on Abelian groups (AHSP). Kitaev [26] showed that
AHSP can be efficiently solved. He introduced a polynomial-time algorithm for
the quantum Fourier transform on Abelian groups, which is a generalization of
the original quantum Fourier transform used in Shor’s algorithm [40]. Although
AHSP can be efficiently solved, the more general non-Abelian group case is
unlikely to be solved by simply applying currently known techniques. (Some
special non-Abelian group cases were studied in [17, 20, 23, 29, 35, 37].) Another
important variant is the HSP on the dihedral groups (DHSP). Recently, Regev
[37] demonstrated a quantum reduction from the unique shortest vector prob-
lem (uSVP) to a slightly different variant of DHSP. Note that uSVP is used in
lattice-based PKCs [4, 38]. Moreover, Kuperburg [29] gave a subexponential-time
quantum algorithm for DHSP. Although these results do not directly imply a
subexponential-time quantum algorithm for uSVP, they may be an important
clue to find the desired algorithm.

Our problem QSCDff is closely related to a much harder problem: HSP on the
symmetric groups (SHSP). No subexponential-time quantum algorithm is known
for SHSP. A distinguishability problem, similar to QSCDff , defined in terms of
SHSP was introduced by Hallgren, Russell and Ta-Shma [23], who showed that
any standard algorithm1 takes exponential time to solve their problem. Here,

1 The algorithms that run an essential part of Shor’s algorithm [40] are simply called
standard methods.
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we show that their problem is polynomial-time reducible to QSCDff . This im-
mediately implies that that any standard algorithm that solves QSCDff also
requires exponential time. The hardness result of Hallgren et al. was recently
strengthened by Grigni et al. [20] and Kempe and Shalev [25]. Finding even a
subexponential algorithm for QSCDff seems a daunting task. On the contrary,
this suggests that our problem QSCDff is more reliable than, e.g., uSVP. This
situation is similar to the case of DLP over different groups on classical compu-
tation. DLP over Z

∗
p (p is a prime) is classically solved in subexponential time

whereas there is no known classical subexponential-time algorithm for DLP over
certain groups used in elliptic curve cryptography. It is believed that DLP over
such groups is more reliable than DLP over Z

∗
p.

We prove that the computational complexity of QSCDff is lower-bounded by
that of GA, which is not known to be in NP∩ co-NP. Well-known upper bounds
of GA are NP ∩ co-AM [19, 39], SPP [5], and UAP [11]. To our best knowledge,
most cryptographic problems fall in NP∩ co-NP and few cryptographic systems
are lower-bounded by the worst-case hardness of the problems not known to be
in NP ∩ co-NP.

Quantum Computational Cryptography. Quantum key distribution gives a
foundation to symmetric-key cryptosystems (SKCs). For instance, the quantum
key distribution scheme in [7] achieves unconditionally secure sharing of secret
keys for SKCs using an authenticated classical communication channel. Both
SKCs and PKCs have their own advantages and disadvantages. For instance,
PKCs save a number of secret keys compared with SKCs in a large network;
however, they need computational assumptions for their security and is vulnera-
ble to, for instance, the man-in-the-middle attack. As an application of QSCDff ,
we propose a new computational quantum PKC whose security relies on the
computational hardness of QSCDff .

Of many existing PKCs, few make their security solely based on the worst-
case hardness of their underlying problems. Quantum adversaries can break
many PKCs whose underlying problems are number-theoretic problems because
these problems are solvable by efficient quantum algorithms. Recently, Okamoto,
Tanaka, and Uchiyama [36] proposed a quantum analogue of PKCs based on a
certain subset of the knapsack problem and showed that their cryptosystem
withstands certain known attacks of a quantum adversary. Our quantum PKC
also seems to resist a quantum adversary since we can prove the existence of
a security reduction from the problem GA, which is not known to be solved
efficiently even on a quantum computer.

2 Cryptographic Properties of QSCDff

We show three cryptographic properties of QSCDff introduced in the previous
section. These properties will help us construct a cryptographic system in Sec-
tion 3. Hereafter, we assume the reader’s familiarity with basics of quantum com-
putation. Recall the two quantum states ρ+

π = 1
2n!

∑
σ∈Sn

(|σ〉+ |σπ〉)(〈σ|+〈σπ|)
and ρ−π = 1

2n!

∑
σ∈Sn

(|σ〉 − |σπ〉)(〈σ| − 〈σπ|) for a hidden permutation π ∈ Kn.
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For simplicity, let ι denote the maximally mixed state, i.e., ι = 1
n!

∑
σ∈Sn

|σ〉〈σ|,
which appears later as a technical tool.

2.1 Trapdoor Property

We prove that QSCDff has the trapdoor property, which plays a key role in
various cryptosystems. We present an efficient distinction algorithm between ρ+

π

and ρ−π with a hidden permutation π in Kn.

Theorem 1. There exists a polynomial-time quantum algorithm that, given
π ∈ Kn, distinguishes between ρ+

π and ρ−π with certainty.

Proof. Let χ be any given unknown state, which is either ρ+
π or ρ−π . The desired

distinction algorithm for χ is given as follows.

(D1) Prepare two quantum registers: the first register holds a control bit and
the second one holds χ. Apply the Hadamard transformation H to the first
register. The state of the system now becomes H|0〉〈0|H ⊗ χ.

(D2) Apply the Controlled-π operator Cπ to the two registers, where Cπ|0〉|σ〉 =
|0〉|σ〉 and Cπ|1〉|σ〉 = |1〉|σπ〉 for any σ ∈ Sn. Since π2 = id for any π ∈ Kn,
the state of the entire system is expressed as 1

n!

∑
σ∈Sn

|ψ+
π,σ〉〈ψ+

π,σ| if χ = ρ+
π

and 1
n!

∑
σ∈Sn

|ψ−
π,σ〉〈ψ−

π,σ| if χ = ρ−π , where

|ψ±
π,σ〉 = Cπ

(
1
2
|0〉 (|σ〉 ± |σπ〉) + |1〉 (|σ〉 ± |σπ〉)

)
=

1
2
|0〉(|σ〉 ± |σπ〉) +

1
2
|1〉(|σπ〉 ± |σ〉).

(D3) Apply the Hadamard transformation to the first register. If χ is
ρ+

π and ρ−π , then the state of the system becomes (H ⊗ I)|ψ+
π,σ〉 =

1√
2
|0〉 (|σ〉+ |σπ〉) and (H ⊗ I)|ψ−

π,σ〉 = 1√
2
|1〉 (|σ〉 − |σπ〉) , respectively.

Measure the first register on the computational basis. If the result is 0,
output YES; otherwise, output NO. Clearly, we obtain the correct answer
with probability 1. ��

2.2 Reduction from the Worst Case to the Average Case

We reduce the worst-case hardness of QSCDff to its average-case hardness. Such
a reduction implies that QSCDff with a random π is at least as hard as QSCDff
with the most difficult π.

Theorem 2. Assume that there exists a polynomial-time quantum algorithm
A that solves QSCDff with absolute (infinitely-often, resp.) non-negligible ad-
vantage for a uniformly random π ∈ Kn; namely, there exists a polynomial p
such that, for any sufficiently large (infinitely many, resp.) number n,∣∣∣∣Pr

π,A
[A(ρ+

π ) = 1]− Pr
π,A

[A(ρ−π ) = 1]
∣∣∣∣ > 1/p(n),



Computational Indistinguishability Between Quantum States 275

where π is chosen uniformly at random from Kn. Then, there exists a polynomial-
time quantum algorithm B that solves QSCDff with absolute (infinitely-often,
resp.) non-negligible advantage in the worst case.

Proof. Let χ be any given state, which is either ρ+
π or ρ−π . The desired worst-case

algorithm B is built from the average-case algorithm A in the following way.

(R1) Choose a permutation τ ∈ Sn uniformly at random and then multiply χ
by τ from the right. If χ = ρ+

π , then we obtain the quantum state

χ′ =
1

2n!

∑
σ∈Sn

(|στ〉+ |σττ−1πτ〉)(〈στ |+ 〈σττ−1πτ |)

=
1

2n!

∑
σ′∈Sn

(|σ′〉+ |σ′τ−1πτ〉)(〈σ′|+ 〈σ′τ−1πτ |).

If χ = ρ−π , then we obtain χ′ =
1

2n!

∑
σ∈Sn

(|σ〉 − |στ−1πτ〉)(〈σ| − 〈στ−1πτ |).

(R2) Invoke the average-case algorithm A on the input χ′.
(R3) Output the outcome of A.

Note that τ−1πτ ∈ Kn for any τ and there exists a τ ∈ Sn satisfying that
τ−1πτ = π′ for any π′ ∈ Kn. Hence, the conjugacy class of π is equal to Kn.
Moreover, the number of all τ ∈ Sn for which τ−1πτ = π′ is independent of the
choice of π′ ∈ Kn. From these properties, τ−1πτ is uniformly distributed over
Kn. Therefore, feeding the input χ′ to algorithm A guarantees the non-negligible
advantage. ��

2.3 Hardness of QSCDff

We show that the computational complexity of QSCDff is lower-bounded by
that of GA by constructing an efficient reduction from GA to QSCDff . Our
reduction constitutes two parts: a reduction from GA to a variant of GA, called
UniqueGAff , and a reduction from UniqueGAff to QSCDff . We also discuss a
relationship between QSCDff and SHSP, which suggests that QSCDff may be
hard for polynomial-time quantum algorithms to solve.

To describe the desired reduction, we begin with introducing two variants of
GA. Earlier, Köbler, Schöning and Torán [28] introduced the following unique
graph automorphism problem (UniqueGA).

Unique Graph Automorphism Problem: (UniqueGA)
input: an undirected graph G = (V,E);
promise: G has a unique non-trivial automorphism or no non-trivial

automorphisms;
output: YES if G has the non-trivial automorphism, and NO otherwise.

Notice that UniqueGA is called (1GA, GA) as a promise problem in [28]. In
connection to our distinguishability problem, we introduce the unique graph
automorphism with fully-flipped permutation (UniqueGAff ), which plays an im-
portant role in the reduction.
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Unique Graph Automorphism with Fully-Flipped Permuta-
tion: (UniqueGAff )
input: an undirected graph G = (V,E), where |V | = n = 2(2k + 1) for

some k ∈ N;
promise: G has a unique non-trivial automorphism π ∈ Kn, or no non-trivial

automorphisms;
output: YES if G has the non-trivial automorphism, and NO otherwise.

Next, we discuss the so-called coset sampling method, which has been largely
used in many extensions of Shor’s algorithm.

Lemma 1. There exists a polynomial-time quantum algorithm that, given an
instance G of UniqueGAff , generates a quantum state ρ+

π if G is an “YES”
instance with its unique non-trivial automorphism π, or ι = 1

n!

∑
σ∈Sn

|σ〉〈σ| if
G is a “NO” instance.

Proof. Given an instance G of UniqueGAff , we first prepare the quantum state
1√
n!

∑
σ∈Sn

|σ〉|σ(G)〉, where σ(G) is the graph resulting from by relabeling its
nodes according to a permutation σ. By discarding the second register, we obtain
the unique quantum state χ in the first register. Then, χ = ρ+

π if G is an “YES”
instance with the unique non-trivial automorphism π, and χ = ι otherwise, as
requested. ��

Now, we introduce a new version of the coset sampling method as a technical
tool for our reduction. Note that this algorithm essentially requires the fact that
the hidden π is an odd permutation, which is one of the special properties of
Kn.

Lemma 2. There exists a polynomial-time quantum algorithm that, given an
instance G of UniqueGAff , generates a quantum state ρ−π if G is an “YES” in-
stance with the unique non-trivial automorphism π, or ι if G is a “NO” instance.

Proof. Similar to the algorithm of Lemma 1, we prepare the quantum state
1√
n!

∑
σ∈Sn

|σ〉|σ(G)〉. Next, we compute the sign of each permutation in the
first register and then invert its phase if the permutation is odd. We obtain the
quantum state 1√

n!

∑
σ∈Sn

(−1)sgn(σ)|σ〉|σ(G)〉, where sgn(σ) = 0 if σ is even,
and sgn(σ) = 1 otherwise. By discarding the second register, we can obtain a
quantum state χ in the first register. Note that, since π is odd, if σ is odd (even,
resp.) then σπ is even (odd, resp.). Therefore, χ = ρ−π if G is an “YES” instance
with the unique non-trivial automorphism π, and χ = ι otherwise. ��

We are now ready to present a reduction from GA to QSCDff , which implies
that QSCDff is computationally at least as hard as GA.

Theorem 3. If there exists a polynomial-time quantum algorithm that solves
QSCDff with absolute non-negligible advantage, there exists a polynomial-time
quantum algorithm that solves any instance of GA in the worst case with non-
negligible probability.
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Proof. We first show that GA is polynomial-time Turing equivalent to
UniqueGAff and then give a reduction from UniqueGAff to QSCDff . The re-
duction from GA to UniqueGAff is similar to the one given by Köbler, Schöning
and Torán [28], who presented a polynomial-time Turing reduction from GA to
UniqueGA. Their polynomial-time algorithm for GA invokes UniqueGA as an
oracle with a promised input, that is, a graph with even number of nodes which
has either the unique non-trivial automorphism without fixed points or no non-
trivial automorphisms. Carefully reading the construction of their reduction, we
can easily modify it to fit our reduction from GA to UniqueGAff . Moreover,
slightly modifying the gadgets for their reduction, we can satisfy the condition
that n = 2(2k + 1) for some k ∈ N. Thus, we obtain the following lemma.

Lemma 3. UniqueGAff is polynomial-time Turing equivalent2 to GA.

The complete proof of this lemma is placed in Appendix. It therefore suffices
to show a reduction from UniqueGAff to QSCDff . Assume that there exists a
polynomial-time quantum algorithm A that solves QSCDff with absolute non-
negligible advantage. For a given instance G of UniqueGAff , we perform the
following procedure:

(S1) Generate two sequences S+ = (χ+, ...,χ+) and S− = (χ−, ...,χ−) of
8p2(n)n quantum states from G using the algorithms of Lemmas 1 and 2,
respectively.

(S2) Invoke A on each component in S+ and S− as an input. Let R+ =
(A(χ+), ...,A(χ+)) and R− = (A(χ−), ...,A(χ−)) be the resulting sequences.

(S3) Output YES if the gap between the numbers of 1’s in R+ and R− is at
least 4p(n)n, output NO otherwise.

Note that if G is an “YES” instance, S+ = (

8p2(n)n︷ ︸︸ ︷
ρ+

π , ..., ρ
+
π ) and S− = (

8p2(n)n︷ ︸︸ ︷
ρ−π , ..., ρ

−
π ),

otherwise S+ = S− =

8p2(n)n︷ ︸︸ ︷
(ι, ..., ι). Therefore, if G is an “YES” instance, then there

is a gap between the numbers of 1’s in R+ and in R− because of the property
of A; otherwise, there is no gaps between them.

We now estimate this gap by the Hoeffding bound. Let X+ and X− be two
random variables expressing the numbers of 1’s in R+ and in R−, respectively. If
G is an “YES” instance, Pr[|X+ −X−| > 4p(n)n] > 1− 2e−n by the Hoeffding
bound since |Pr[A(ρ+

π ) = 1] − Pr[A(ρ−π ) = 1]| > 1/p(n). Similarly, if G is a
“NO” instance, Pr[|X+−X−| < 4p(n)n] > 1− 2e−n. This guarantees the above
procedure to solve UniqueGAff efficiently, as requested. ��

As stated in Section 1, the distinguishability problem QSCDff is rooted in
SHSP. It is shown that a natural extension of Shor’s algorithm cannot solve

2 If a Turing reduction to a promise problem makes only queries that satisfy the
promise, the reduction is called smart [21]. Smart reductions are desirable for security
reductions. The reduction from GA to UniqueGA in [28] is indeed smart and thus,
so is this reduction.



278 A. Kawachi et al.

the distinguishability problem between ρ+
π and ι in [23, 20, 25]. Here, we give a

theorem on a relationship between QSCDff and the distinguishability problem
between ρ+

π and ι.
Before stating the theorem, we give a conversion algorithm for ρ+

π and ρ−π .
This algorithm will be used in the proof of the theorem as well as the construction
of a PKC in the subsequent section.

Lemma 4. There exists a polynomial-time quantum algorithm that converts
ρ+

π into ρ−π and keeps ι as it is with certainty.

Proof. Given ρ+
π , the desired algorithm inverts its phase according to the sign

of the permutation by performing the following transformation:

|σ〉+ |σπ〉 $−→ (−1)sgn(σ)|σ〉+ (−1)sgn(σπ)|σπ〉.

Recall that sgn(σ) = 0 if σ is even and sgn(σ) = 1 otherwise. Note that deciding
the sign of a given permutation takes only polynomial time. Since π is odd, the
above algorithm converts ρ+

π into ρ−π . Clearly, the algorithm does not alter the
quantum state ι. ��

The following theorem implies that QSCDff cannot be efficiently solved by
any algorithm that naturally extends Shor’s factoring algorithm. To prove the
theorem, we need a quantum version of the so-called hybrid argument.

Theorem 4. If there exists a polynomial-time quantum algorithm that solves
QSCDff with absolute (infinitely-often, resp.) non-negligible advantage, then
there exists a polynomial-time quantum algorithm that solves the distinguisha-
bility problem between ρ+

π and ι with absolute (infinitely-often, resp.) non-
negligible advantage.

Proof. We prove only the absolute advantage case. Assume that a polynomial-
time quantum algorithm A solves QSCDff with absolute non-negligible advan-
tage; namely, there exist a number n0 ≥ 1 and a polynomial q(n) such that∣∣∣Pr

A
[A(ρ+

π ) = 1]− Pr
A

[A(ρ−π ) = 1]
∣∣∣ > 1/q(n)

for all numbers n ≥ n0. Let A′ be the algorithm that applies the conversion
algorithm of Lemma 4 to a given state χ (= ρ+

π or ι) and then feeds the resulting
state χ′ (= ρ−π or ι) to A. Note that A′(ρ+

π ) = A(ρ−π ) and A′(ι) = A(ι). It
immediately follows by the triangle inequality that, for any number n ≥ n0,∣∣∣Pr

A
[A(ρ+

π ) = 1]− Pr
A

[A(ι) = 1]
∣∣∣+ ∣∣∣Pr

A′
[A′(ρ+

π ) = 1]− Pr
A′

[A′(ι) = 1]
∣∣∣ > 1/q(n).

This inequality implies that, for each number n ≥ n0, we obtain either∣∣∣Pr
A

[A(ρ+
π ) = 1]− Pr

A
[A(ι) = 1]

∣∣∣ > 1/2q(n)

or ∣∣∣Pr
A′

[A′(ρ+
π ) = 1]− Pr

A′
[A′(ι) = 1]

∣∣∣ > 1/2q(n).
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The desired algorithm B first chooses either A or A′ at random and then simu-
lates the chosen algorithm. Obviously, this algorithm solves the distinguishability
problem between ρ+

π and ι with absolute non-negligible advantage, completing
the proof. ��

3 Application

We have shown useful cryptographic properties of QSCDff . As an application
of QSCDff , we build a quantum public-key cryptosystem (PKC) whose security
relies on the hardness of QSCDff . First, we give an efficient quantum algorithm
that generates ρ+

π from π.

Lemma 5. There exists a polynomial-time quantum algorithm that, given π ∈
Kn, generates the quantum state ρ+

π with certainty.

Proof. The desired generation algorithm uses two registers and is given as fol-
lows. The correctness of the algorithm is obvious.

(G1) Choose a permutation σ from Sn uniformly at random and store it in the
second register. Then, the entire system is in the state |0〉|σ〉.

(G2) Apply the Hadamard transformation to the first register: 1√
2
(|0〉+ |1〉)|σ〉.

(G3) Apply the Controlled-π to the both registers: 1√
2
(|0〉|σ〉+ |1〉|σπ〉).

(G4) Apply the Hadamard transformation to the first register again: 1
2 ((|0〉 +

|1〉)|σ〉+ (|0〉 − |1〉)|σπ〉).
(G5) Measure the first register on the computational basis. If 0 is observed, then

the quantum state in the second register is ρ+
π . Otherwise, the state of the

second register is ρ−π . Now, apply the conversion algorithm given in Lemma 4
to ρ−π . ��

Next, we describe our quantum PKC and give its security proof. For the
security proof, we need to specify the model of attacks. Of all attack models in [6],
we pay our attention to a quantum analogue of the indistinguishability against
the chosen plaintext attack (IND-CPA). In particular, we adopt the weakest
scenario in quantum counterparts of IND-CPA as follows.

Alice (sender) wants to send securely a classical message to Bob (receiver) via
a quantum channel. Assume that Alice and Bob are polynomial-time quantum
Turing machines. Bob first generates certain quantum states for encryption keys.
Alice then requests Bob for his encryption keys. Note that anyone can request
him for the encryption keys. Now, we assume that Eve (adversary) can pick
up the encrypted messages from the quantum channel, and tries to extract the
original message using her quantum computer, i.e., a polynomial-time quantum
Turing machine. Since Eve can also obtain Bob’s encryption keys as well as
Alice does, she can exploit polynomially many encryption keys to distinguish
the encrypted message. Thus, we assume that Eve attacks the protocol during
the message transmission phase to reveal the content of the encrypted message.
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The protocol to transmit a message using our PKC consists of two phases:
the key transmission phase and the message transmission phase. We will give a
reduction from the worst-case hardness of GA to such Eve’s attack.

Fig. 1. Our public-key cryptosystem

We first describe the protocol of our quantum PKC as follows.
[Key transmission phase]
(A1) Bob chooses a decryption key π uniformly at random from Kn.
(A2) Bob generates sufficiently many copies of the encryption key ρ+

π .
(A3) Alice obtains encryption keys from Bob.
[Message transmission phase]
(A4) Alice encrypts 0 or 1 into ρ+

π or ρ−π , respectively, and sends it to Bob.
(A5) Bob decrypts Alice’s message using the decryption key π.

Step (A1) can be easily implemented by uniformly choosing transpositions one
by one in such a way that all transpositions are different and by forming the
product of these transpositions. Step (A2) is done by the generation algorithm
of Lemma 5. For Step (A4), we exploit the conversion algorithm of Lemma 4.
Note that Alice sends Bob either the received state ρ+

π or its converted state
ρ−π depending on Alice’s bit. Finally, the distinction algorithm in Theorem 1
achieves Step (A5).

The security of our PKC is shown by reducing GA to Eve’s attack during the
message transmission phase. Our reduction is a modification of the reduction
given in Theorem 3.

Proposition 1. Assume that there exists a polynomial-time quantum adver-
sary A in the message transmission phase that, for any sufficiently large n,
satisfies the following inequality∣∣∣∣Pr

π,A
[A(ρ+

π , ρ
+⊗l(n)
π ) = 1]− Pr

π,A
[A(ρ−π , ρ

+⊗l(n)
π ) = 1]

∣∣∣∣ > 1/p(n)

for a certain polynomial l(n) indicating the number of the encryption keys in
use by A and another polynomial p(n). Then, there exists a polynomial-time
quantum algorithm that solves any instance of GA in the worst case with non-
negligible probability.

Proof. The proof immediately follows by replacing ρ+
π , ρ−π , and ι in the proof of

Theorem 3 with (ρ+
π , ρ

+⊗l(n)
π ), (ρ−π , ρ

+⊗l(n)
π ), and (ι, ι⊗l(n)), respectively. ��
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4 Concluding Remarks

The computational distinguishability problem QSCDff has shown useful prop-
erties to build a computational PKC whose security is based on the computa-
tional hardness of GA. Although GA is reducible to QSCDff , the gap between
the hardness of GA and that of QSCDff seems large because a combinatorial
structure of its underlying graphs which GA enjoys is completely lost in QSCDff .
It is therefore important to discover a classical problem, such as the problems
of finding a centralizer or finding a normalizer [31], which captures the true
hardness of QSCDff . Discovering an efficient quantum algorithm for QSCDff
is likely to require a new tool and a new technique, which also bring a break-
through in quantum computation. It is important to discover useful quantum
states whose computational distinguishability is used for constructing a more
secure cryptosystem.
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on key ideas, to Donald Beaver, Louis Salvail, and the anonymous reviewers for
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Appendix: Reduction from GA to UniqueGAff

In this Appendix, we prove Lemma 3. Köbler, Schöning and Torán [28] proved
the polynomial-time Turing equivalence between GA and UniqueGA. We first
review their reduction and then show how to modify it to obtain the reduction
from GA to UniqueGAff . Note that the reduction from UniqueGAff to GA is
obvious.

We begin with a technical tool and notations. The reduction of Köbler et
al. uses a technical tool called a label to distinguish each node of a given graph
G from the others. The label j attached to node i consists of two chains, one
of which is of length 2n + 3 connected to node i and the other is of length j
connected to the n+ 2-nd node of the first chain (Fig. 2).

i

j

1n + 1n +

i

j

1n + 1n +

Fig. 2. Label

Note that the total size of the label j is 2n + j + 3. Let G[i] denote the graph
obtained from G by attaching label 1 to node i. Similarly, G[i1,...,ij ] is defined as
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the graph with labels 1, ..., j respectively attached to nodes i1, ..., ij . Note that
any automorphism of G[i] maps the node i into itself and any label adds no new
automorphism into the modified graph. Let Aut(G) be the automorphism group
of the graph G and let Aut(G)[1,...,i] be the point-wise stabilizer of {1, ..., i} in
Aut(G), i.e., Aut(G)[1,...,i] = {σ ∈ Aut(G) : ∀j ∈ {1, ..., i}[σ(j) = j]}.

Köbler et al. [28] proved the following theorem. The reduction from GA to
UniqueGA in [28] is described in its proof.

Theorem 5. [28–Theorem 1.31] GA is polynomial-time Turing reducible to
UniqueGA.

Proof. Given an oracle O for UniqueGA, the following algorithm solves GA in
polynomial time. Let G be any given instance of GA.

(U1) Repeat (U2)-(U3) for each i starting with n down to 1.
(U2) Repeat (U3) for each j ranging from i+ 1 to n.
(U3) Invoke O with input graph G[1,...,i−1,i] ∪G[1,...,i−1,j]. If the outcome of O

is YES, output YES and halt.
(U4) Output NO.

If G is an “YES” instance, there is at least one non-trivial automor-
phism. Take the largest number i ∈ {1, ..., n} such that there exists a num-
ber j ∈ {1, ..., n} and a non-trivial automorphism π ∈ Aut(G)[1,...,i] for which
π(i) = j and i 	= j. We claim that there is exactly one such non-trivial auto-
morphism. This is seen as follows. First, note that Aut(G)[1,...,i−1] is expressed
as Aut(G)[1,...,i−1] = π1Aut(G)[1,...,i] + · · · + πdAut(G)[1,...,i]. For any two dis-
tinct cosets πsAut(G)[1,...,i] and πtAut(G)[1,...,i] and for any two automorphisms
σ ∈ πsAut(G)[1,...,i] and σ′ ∈ πtAut(G)[1,...,i], it holds that σ(i) 	= σ′(i). Since
|Aut(G)[1,...,i]| = 1 and there exists the unique coset πkAut(G) such that σ(i) = j
for any σ ∈ πkAut(G) by the definition of i, we obtain |πkAut(G)[1,...,i]| = 1. This
implies that the non-trivial automorphism π is unique. Note that the unique non-
trivial automorphism interchanges two subgraphs G[1,...,i−1,i] and G[1,...,i−1,j].
Therefore, the above algorithm successfully outputs YES at Step (U3).

On the contrary, if G is a “NO” instance, then for every distinct i and j,
the modified graph has no non-trivial automorphism. Thus, the above algorithm
correctly rejects such a graph G. ��

Finally, we describe the reduction from GA to UniqueGAff by slightly mod-
ifying the reduction given in the above proof.

Lemma 6. GA is polynomial-time Turing reducible to UniqueGAff .

Proof. We only need to change the number of nodes to invoke oracle UniqueGAff
in (U3). To do so, we first modify the size of each label. Since the number m
of all nodes G[1,...,i−1,i] ∪ G[1,...,i−1,j] is even, if there is no k such that m =
2(2k + 1) then we add one more node appropriately to the original labels. We
then attach our modified labels of length 2n+i+4 and 2n+j+4 to nodes i and j,
respectively. Note that this modified graph satisfies the promise of UniqueGAff .
Our algorithm therefore works correctly for any instance of GA. ��
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1 Introduction

Quantum computers are likely to be highly susceptible to errors from a vari-
ety of sources, much more so than classical computers. Therefore, the study of
quantum error correction is vital not only to the task of quantum communica-
tions but also to building functional quantum computers. In addition, quantum
error correction has many applications to quantum cryptography. For instance,
there is a strong connection between quantum error-correcting codes and se-
cret sharing schemes [6], and that connection was combined with fault-tolerant
quantum computation to perform multiparty secure quantum computations [9].
Many quantum key distribution schemes also rely on ideas from quantum error-
correction for their proofs of security. Thus, bounds on the performance of quan-
tum error-correcting codes (QECCs) in various scenarios are relevant both to the
foundations of quantum information theory and to quantum cryptography.

It is an immediate result of the no-cloning theorem [24] that no quantum
error-correcting code of length n can fix n/2 erasures: such a code would allow
one to reconstruct two copies of an encoded quantum state from two halves of the
full codeword, which would be cloning the state. This result is valid regardless
of the dimension of the coding Hilbert space. Another well known result from
the theory of quantum error correction is that a length n code can fix t arbitrary
single position errors if and only if it can fix 2t erasure errors [11]. This follows
immediately from the quantum error-correction conditions [11]

〈ψi|E†
aEb|ψj〉 = Cabδij (1)

(for basis encoded states {|ψi〉} and correctable errors {Ea}) and implies that
no QECC of length n can fix more than n/4 arbitrary errors, regardless of the
dimension of the coding and encoded Hilbert spaces. In contrast, a classical
repetition code can correct up to �(n− 1)/2� errors.

In this paper, we describe QECCs of length n that can correct arbitrary
errors which affect up to t = �(n− 1)/2� positions, with the guarantee that
the fidelity of the reconstructed state will be exponentially close to 1. That is,
approximate quantum error-correcting codes have the capability of correcting
errors in a regime where no exact QECC will function. The scheme is also a
secret-sharing scheme, in that no t positions reveal any information at all about
the message. The result has a number of implications for both cryptography and
quantum information theory:

◦ It may be possible to build approximate QECCs which are highly efficient and
yet useful in common error correction scenarios, improving on exact QECCs
for the same scenarios. In most cases, exact reconstruction of the quantum
state is not necessary, so a more efficient approximate QECC would be wel-
come.
◦ The connection between correcting general errors and erasure errors breaks

down for approximate QECCs. This suggests there is no sensible notion of
distance for an approximate quantum error-correcting code.
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◦ The proof of the impossibility of verifiable quantum secret sharing (VQSS)
with t ≥ n/4 cheaters in [9] is incorrect, since it assumes that the t < n/4
bound on error correction extends to approximate quantum codes. In par-
ticular, the construction described here immediately yields an honest-dealer
verifiable quantum secret sharing scheme which is secure for t = �(n− 1)/2�.
Similar constructions may allow verifiable quantum secret sharing (VQSS)
with a dishonest dealer and secure multiparty quantum computation (MPQC)
beyond previously known bounds. We have devised candidate protocols for
these tasks allowing up to (n − 1)/2 cheaters, but we do not present them
here, as we have not yet proved their security and they are, in any case, quite
complex.
◦ Secret sharing may serve as a better classical analogue to quantum error

correction than does classical error correction. The sharp difference we see
between perfect and approximate quantum error correction parallels to some
extent a similar difference between error-tolerant secret sharing schemes (ex-
plained below) with zero error and those with exponentially small error [19].
The codes here use such secret sharing schemes as a building block.
◦ More generally, our results demonstrate that there can be a dramatic differ-

ence in behavior between the exact performance of some quantum-mechanical
task and approximate performance of the task, even when the approximation
is exponentially good. A similar divergence between exact and approximate
bounds has recently been seen in the context of private quantum channels
[13]. These examples serve as a caution — especially valid in cryptography —
that intuition about approximate performance of quantum protocols may be
misleading.

The idea of using a randomized encoding algorithm is not new in QECC.
In particular [4] have devised codes that can correct more (malicious) errors on
average than any deterministic QECC. However, their model significantly differs
from ours in one of two ways: they assume either that the errors occur at random
or that the code is randomly agreed on by the coder and the decoder but is kept
secret from the adversarial noise source. This model does not seem suitable
in cryptographic applications such as VQSS and MPQC [9]. In our model no
secret is shared by the coder and decoder. However, part of our code can be
viewed as providing a way for the coder to information-theoretically encrypt the
necessary secret. (This is possible since the adversary only has access to part of
the transmitted state, though it could be any part.)

A closer analogue to our codes is present in [15], which gave a pure-state
encoding to approximately correct a specific error model more efficiently than
a typical minimum-distance code. (Note, however, that the nature of the er-
ror model in fact precludes any exact quantum error-correcting code.) Closer
yet is [21], which considered approximate quantum error correction in precisely
our sense, and studied conditions for approximate error correction to be possi-
ble. They did not, however, present any specific codes or suggest that approxi-
mate QECCs might allow significant improvements in the number of correctable
registers.
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Secret Sharing and Quantum Error Correction. Classically, an (n, d)-secret shar-
ing scheme splits a secret into n pieces so that no d−1 shares reveal any informa-
tion about the secret, but any d shares allow one to reconstruct it. Such a scheme
is already an error-correcting code, since it allows one to correct up to n−d era-
sures. Error-correcting codes need not be secret sharing schemes: a repetition
code, for example, provides no secrecy at all. In the quantum world, the connec-
tion is much tighter. Cleve et al. [6] observed that any (perfect) QECC correcting
t erasures is itself a secret sharing scheme, in that no t components of the code
reveal any information about the message. This follows from the principle that
information implies disturbance. Furthermore, most known (perfect) classical
secret sharing schemes (and “ramp” schemes) can be directly transformed into
(perfect) QECC’s with the related parameters [22].

The quantum code construction described here illustrates a further connec-
tion to classical secret sharing. An error-tolerant secret sharing scheme (ETSS)
can recover the secret even when t shares have been maliciously corrupted. Or-
dinary (n, d)-secret sharing schemes are error-tolerant: such a scheme corrects
n− d erasures and hence t = (n− d)/2 errors (this fact was first highlighted for
Shamir secret sharing in [16]). If we also want any t shares to reveal no infor-
mation, then we get t < d, and thus t < n/3. This is optimal for schemes with
zero error probability. On the other hand, if one allows a small probability of
mistaken error correction, then one can in fact get error-tolerant secret sharing
schemes which correct t = �(n− 1)/2� errors (see the Preliminaries for more
details). Thus, the best classical analogue for approximate quantum codes are
error-tolerant classical secret sharing schemes which correct any t errors with
high probability. These have been studied more or less explicitly in work on
multi-party computation [19, 7, 8].

It is worth noting that the construction of quantum error-tolerant secret
sharing schemes has farther reaching implications than analogous classical con-
structions. Our approximate quantum codes correct a number of general errors
for which no exact code would suffice, whereas the classical constructions can
be better understood as reducing the number of erasures that can be corrected
via secret sharing techniques. A straightforward classical repetition code already
corrects up to �(n− 1)/2� arbitrary errors exactly, so there is no need to resort
to sophisticated techniques to achieve this with classical ECCs.

Results. Our construction produces quantum codes which encode 	 qubits into
n registers of �

(n−2t) + O(ns) qubits each and which correct any t adversarial
errors with probability 2−s (the bound assumes log n < 	 < 2s for simplicity).
This is done by transforming [[n, 1, n/2]]n QECCs on n-dimensional registers
into better codes on 2O(ns)-dimensional registers. The codes we construct are
always decodable in polynomial time, since the only necessary operations are
verification of quantum authentication and erasure correction for a stabilizer
code, and since erasure correction for a stabilizer code only requires solving a
system of linear equations.
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2 Preliminaries

Classical Authentication. For our purposes, a classical (one-time) authentication
scheme is a function ha(m) that takes a secret key a and a message m as input
(and no other randomness), and outputs a tag for the message. Typically, Alice
sends the pair m,ha(m) to Bob, with whom she shares the key a. Bob receives
a pair m′, tag′ and accepts the message as valid if and only if tag′ = ha(m′).
Bob will always accept a message that really came from Alice. The scheme has
error ε if, given a valid pair m,ha(m), no adversary Oscar can forge a tag for a
different message m′ with probability better than ε. That is, for all messages m
and all (computationally-unbounded, randomized) algorithms O(), if a is chosen
randomly from a set of keys K, then:

Pr
a←K

[m′, tag′ ← O(m,ha(m)) : tag′ = ha(m′)] ≤ ε.

We make no assumptions on the running time of the adversary. If the message
is 	 bits long, then one can find a polynomial time authentication scheme where
both the key and the tags have length O(log 	+ log (1

ε )) (see, e.g., [10]).

For the remainder of this paper, we assume the reader is familiar with the
basic notions and notation of quantum computing (see a textbook such as [17]
if necessary).

Quantum Authentication. Intuitively, a quantum authentication scheme [2] is a
keyed system which allows Alice to send a state ρ to Bob with a guarantee:
if Bob accepts the received state as “valid”, the fidelity of that state to ρ is
almost 1. Moreover, if the adversary makes no changes, Bob always accepts and
the fidelity is exactly 1. The following definition is from Barnum et al. [2]. We
first define what constitutes a quantum authentication scheme, and then give a
definition of security.

Definition 1 ([2]). A quantum authentication scheme (qas) is a pair of poly-
nomial time quantum algorithms A and V together with a set of classical keys
K such that:

◦ A takes as input an m-qubit message system M and a key k ∈ K and outputs
a transmitted system C of m+ t qubits.
◦ V takes as input the (possibly altered) transmitted system Ĉ and a classical
key k ∈ K and outputs two systems: a m-qubit message state M̂ , and a single
(verdict) qubit V which indicates acceptance or rejection. The classical basis
states of V are called |acc〉, |rej〉 by convention.

For any fixed key k, we denote the corresponding super-operators by Ak and Vk.

Bob may measure the qubit V to see whether or not the transmission was
accepted or rejected. Nonetheless, we think of V as a qubit rather than a classical
bit since it will allow us to describe the joint state of the two systems M̂, V with
a density matrix. Given a pure state |ψ〉 ∈ HM , consider the following test on
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the joint system M̂, V : output a 1 if the first m qubits are in state |ψ〉 or if the
last qubit is in state |rej〉 (otherwise, output a 0). The projectors corresponding
to this measurement are

P
|ψ〉
1 = |ψ〉〈ψ| ⊗ |acc〉〈acc| + IM̂ ⊗ |rej〉〈rej|

P
|ψ〉
0 = (IM̂ − |ψ〉〈ψ|)⊗ (|acc〉〈acc|)

We want that for all possible input states |ψ〉 and for all possible interventions
by the adversary, the expected fidelity of V’s output to the space defined by P |ψ〉

1

is high. This is captured in the following definition of security.

Definition 2 ([2]). A qas is secure with error ε for a state |ψ〉 if it satisfies:

◦ Completeness: For all keys k ∈ K: Vk(Ak(|ψ〉〈ψ|)) = |ψ〉〈ψ| ⊗ |acc〉〈acc|
◦ Soundness: For a super-operator O, let ρBob be the state output by Bob
when the adversary’s intervention is characterized by O, that is: ρBob =
1
|K|
∑

k Vk(O(Ak(|ψ〉〈ψ|))) (this is the expectation over all values of the key
of the state output by Bob). The qas has soundness error ε for |ψ〉 if for all
super-operators O,

Tr
(
P

|ψ〉
1 ρBob

)
≥ 1− ε

A qas is secure with error ε if it is secure with error ε for all states |ψ〉. We
make no assumptions on the running time of the adversary.

In order to authenticate a message of 	 qubits, the authentication scheme of
[2] uses a (classical) key of length 2	 + O(log (1

ε )) random bits and produces a
transmitted system of 	+O(log (1

ε )) qubits. The large part 2	 of the classical key
is used to the encrypt the quantum state, which is necessary for any quantum
authentication scheme to be secure [2]. In the special case where Alice wishes to
authenticate half of a maximally entangled state

∑
|i〉|i〉, in fact only O(log (1

ε ))
classical key bits are necessarily [18, 12], effectively because Alice’s message is
already a maximally mixed state, making encryption redundant.

Composability of Quantum Authentication. We will need authentication proto-
cols that have an additional composability property: If (Ak, Vk) is a qas with
error ε for key k, then the concatenated protocol(

n⊗
i=1

Aki
,

n⊗
i=1

Vki

)
(2)

should be a qas with error ε for the key (k1, . . . , kn), with the understanding
that the concatenated verification protocol accepts if and only if all of the tensor
components accept (i.e. the verdict qubit for the concatenated scheme is the
logical AND of the individual verdict qubits).

This sort of composability holds trivially for a classical authentication scheme,
although the error may increase linearly with the number of compositions. We
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do not know if the same is true in general for quantum authentication schemes.
However, the quantum authentication schemes of [2] are indeed composable, with
no blow-up in the error parameter. This follows because they are constructed
from stabilizer purity testing codes (PTCs), which clearly satisfy a correspond-
ing property (if Qk is a stabilizer PTC with error ε, then

⊗n
i=1 Qki

is a stabilizer
PTC with error ε).

Classical Secret Sharing and Error Correction. A classical (n, d)-secret sharing
scheme [20] is a cryptographic protocol allowing a dealer to share a secret k into
n shares (s1, . . . , sn) with n share-holders P1, . . . , Pn in such a way that any d−1
si’s contains no information about k whereas any d of those si’s completely define
k. We write (s1, . . . , sn) ∈R SSn,d(k), a random instantiation of a set of shares
for secret k. The original construction of Shamir [20], based on Reed-Solomon
codes, allows one to share an 	-bit secret with shares that are each max {	, log n}
bits.

An important component in our construction is a classical secret sharing
scheme which allows the honest players to reconstruct the secret even if the
cheaters alter their shares. Specifically, consider the following game: an honest
dealer takes a secret, splits it into n shares s1, .., sn, and distributes the shares
amongst n participants over secure channels (i.e., player i gets only si). Next, an
adversary (adaptively) corrupts up to t = d−1 of the players. Finally, all players
send their (possibly corrupted) shares over secure channels to a trusted arbiter
who attempts to recover the secret. The secret sharing scheme is called an error-
tolerant secret sharing scheme (ETSS) and is t-error-correcting with error ε if
the arbiter can reconstruct the correct secret with probability 1 − ε, regardless
of the adversary’s strategy. In other words, an ETSS is a secret-sharing scheme
which also acts as an error-correcting code correcting any t errors with high
probability.

Error-tolerant secret sharing has been studied under the names “honest-
dealer VSS with a non-rushing adversary” [8] and “non-interactive Las Vegas
perfectly secure message transmission” [23]. “Robust secret sharing” [5] is a
slightly weaker variant of the problem. Another variant, “honest-dealer VSS
with rushing” is slightly stronger than ETSS; see [8] for a discussion of the
differences.

A number of constructions of ETSS schemes appear in the literature. When
t < n/3, any ordinary secret sharing scheme is in fact an ETSS with zero error
(since it is a code correcting 2t erasures and hence t errors). This connection
was first pointed out by [16]. When t is between n/3 and n/2, one can adapt
constructions from multi-party computation protocols [19, 7, 8]. We will use a
simple construction for the case t = �(n− 1)/2� from [8]. The dealer encodes
the secret using an ordinary secret sharing scheme, and augments the shares by
creating a fresh authentication key and tag for every pair of players: Pi gets the
key aij and Pj gets the tag haij

(sj). If the adversary does not succesfully forge
any authentication tags for keys held by honest players, then the arbiter can
reconstruct the secret by accepting only shares for which at least t + 1 of the
authentication tags are valid.
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The two schemes suggested above tolerate the maximum number of cheaters.
On one hand, schemes with zero error can tolerate at most n/3 errors [19].
On the other hand, it is clear that no ETSS scheme can correct more than
t = �(n− 1)/2� errors: any n− t players must be able to reconstruct the secret
alone (as the adversary could simply erase all its shares), and so we must have
n−t > t. Alternatively, one can view this as an ordinary error correction bound: if
the adversary could control half of the shares, he could make them all consistent
with a value of his choosing (say 0) and force the arbiter to reconstruct 0.

The main complexity measure of an ETSS scheme is the share size. For a
given scheme, let CC(	, ε, t) denote the maximum size (in bits) of a share held
by any player. When t < n/3, the usual Shamir secret sharing scheme is a
zero-error ETSS scheme with zero error and share size CC(	, 0, t) = 	/(n − 3t)
(for 	 > (n − 3t) log n). The errors can be corrected in polynomial time since
the scheme encodes data in a Reed-Solomon code. For t = �(n− 1)/2�, the
augmented scheme using authentication tags produces shares of size CC(	) =
	+ O(n log (1

ε )) (when 	 > log n and log (1
ε ) > max {n, 	}).

Based on [5], Cramer et al. [8] present a more compact scheme for t =
�(n− 1)/2� with share size O(	+n+log (1

ε )). Unfortunately, that scheme is not
known to correct the errors in polynomial time. A second scheme, for t further
away from n/2, generates shares of size CC(	, ε, t) = Ω(n log (1

ε ) + 	/(n − 2t)).
The same work [8] also proved a simple lower bound on the share size of ETSS
schemes: CC(	, ε, t) = Ω(log (1

ε ) + �
(n−2t) ). This bound is tight for log (1

ε ) > n

and n = 2t+ 1.

3 Definition of Approximate Quantum Codes (AQECC)

An approximate quantum error-correcting code allows Alice to send a state ρ
to Bob with the guarantee that if few enough errors occur in transmission, the
fidelity of the state received by Bob to ρ will be almost 1.

Let q = pm and Q = pN for some prime p and integers m, N . We first define
what constitutes an AQECC over FQ, and then give a definition of correctness.
(Note that the definition makes sense over any alphabet, but we restrict to prime
powers for simplicity).

Definition 3. An approximate quantum error correcting code (AQECC) is a
pair of quantum algorithms E (encoder) and D (decoder) such that:

◦ E takes as input a m-quqit message system M and outputs a (mixed state)
codeword C of n quQits.
◦ D takes as input the (possibly altered) transmitted system Ĉ and outputs a
m-quqit message state M̂ .

In our constructions, both the encoding E and error-correction algorithm D
run in polynomial time in the number of qubits of input.

We will define the correctness of an AQECC on pure states, but it follows
from a result of Barnum, Knill and Nielsen ([3], Thm 2) that the output of the
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AQECC also has high fidelity to an input which is mixed or part of an entangled
state.

Given a pure state |ψ〉 ∈ HM , consider the following test on the system M̂ :
output a 1 if the first k quqits are in state |ψ〉 (otherwise, output a 0). The
projectors corresponding to this measurement are

Pψ = |ψ〉〈ψ|
P⊥

ψ = (IM̂ − |ψ〉〈ψ|)

We want that for all possible input states |ψ〉 and for all possible interventions
by the adversary, the expected fidelity of Bob’s output to the space defined by
Pψ is high. This is captured in the following definition of correctness.

Definition 4. An AQECC is t-correct with error ε for a state |ψ〉 if for all super-
operators O acting on at most t quQits (that is, O can be written as In−t ⊗ Õt

for some partition of the system into n− t and t quQits),

Tr (PψρBob) ≥ 1− ε,

where ρBob is the state output by Bob when the adversary’s intervention1 is
characterized by O, that is:

ρBob = D(O(E(|ψ〉〈ψ|))).

An AQECC is t-correct with error ε if it is t-correct with error ε for all
states |ψ〉.

4 A Length 3 Quantum Code Approximately Correcting
One Arbitrary Error

We start with a small example, from a well known code. The code c corrects one
erasure error:

|0〉 → |000〉+ |111〉+ |222〉
|1〉 → |012〉+ |120〉+ |201〉 (3)
|2〉 → |021〉+ |102〉+ |210〉

Let H1 ⊗H2 ⊗H3 be the coding space of the original code

c|ψ〉 ∈ H1 ⊗H2 ⊗H3,

and let (Ak, Vk) be a quantum authentication scheme as constructed in [2].

1 We make no assumptions on the running time of the adversary.
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We construct a three-component code c′ as follows:

c′|ψ〉 = ( Ak1(H1), k2, k3 ) ,
( Ak2(H2), k1, k3 ) , (4)
( Ak3(H3), k2, k1 ) .

Let H ′
1 ⊗H ′

2 ⊗H ′
3 be the coding space of the new code

c′|ψ〉 ∈ H ′
1 ⊗H ′

2 ⊗H ′
3

Note that k1, k2, and k3 are random classical strings which we use as keys for
the quantum authentication protocol Ak. Thus, the H ′

is contain both quantum
and classical information. Intuitively, we use the qas to ensure that an adversary
cannot change the quantum state of a single register without being detected;
thus, we can transform general errors into erasure errors, allowing us to correct
one faulty register out of three (no exact QECC can do this). Then we distribute
the authentication keys among the three registers so that Bob can recover them.
We must, however, do so in a way that prevents an adversary with access to a
single register from either learning the key applying to her own register (which
would allow her to change the quantum state) or from preventing reconstruction
of the classical keys.

Theorem 1. If Ak is a qas secure with error ε then c′ is a 1-correct AQECC
with error prob. poly(ε), correcting one arbitrary error.

We omit the proof of this theorem, as in Section 5 we will prove a more
general result.

4.1 Reconstruction

In all cases, the reconstruction has two phases. First we reconstruct the classical
keys and use them to verify and decode the quantum authentications. This may
result in discarding one register, but at least two remain, which is enough for
the erasure-correcting code to recover the original encoded state. Consider the
following cases:

◦ All ki’s agree in H ′
1,H

′
2,H

′
3:

Recover ki from either H ′
j , j 	= i, check that Aki

(Hi) properly authenticates
Hi. If one authentication fails, ignore the improperly authenticated Hi and
reconstruct the valid codeword as c|ψ〉 ∈ H1 ⊗ H2 ⊗ H3 using the erasure
recovery algorithm from both Hj , j 	= i.
◦ Some H ′

i disagrees with H ′
j ,H

′
h on both keys kh and kj :

Discard register i, which must be corrupted. Recover kj from H ′
h and kh from

H ′
j , and decode the authentications Akj

(Hj) and Akh
(Hh) (which should

both pass, since only one register can fail). Reconstruct the valid codeword as
c|ψ〉 ∈ H1 ⊗H2 ⊗H3 using the erasure recovery algorithm from Hj and Hh.
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◦ H ′
i and H ′

j disagree on key kh, while H ′
h agrees with everyone:

Either register i or j is corrupt. Get ki and kj from H ′
h and check that

Aki
(Hi) properly authenticates Hi, and that Akj

(Hj) properly authenticates
Hj . If neither fails, reconstruct the valid codeword as c|ψ〉 ∈ H1 ⊗H2 ⊗H3

using the erasure recovery algorithm from Hi and Hj . If one fails, say Aki
(Hi),

then conclude register i is corrupt and recover kh from H ′
j , decode Akh

(Hh),
and reconstruct the valid codeword as c|ψ〉 ∈ H1⊗H2⊗H3 using the erasure
recovery algorithm from Hh and Hj .

Other cases cannot arise, since only one register can have been changed from
the original encoding.

5 A General n-Component Approximate QECC Family
Correcting up to d − 1 < n/2 Arbitrary Errors

In order to generalize the above construction to cases with n registers, we need
to systemize the distribution of the classical keys. Again, it is helpful to imagine
that we are trying to defeat an adversary with access to t < n/2 components of
the code. Recall that we needed two conditions: First, the adversary should not
be able to learn the classical key for her register, but the receiver Bob should
be able to reconstruct the keys. Second, the adversary should not be able to
interfere with Bob’s reconstruction of the keys.

These are precisely the properties of an ETSS. This suggests the following
strategy for building a t-correct AQECC: encode |ψ〉 using a distance t+1 QECC,
authenticate the n components using keys k = k1, ..., kn, and then share k using
a classical ETSS. The result could be considered to be a quantum ETSS (that
is, an ETSS for quantum data). However, the ramifications of this construction
for quantum data are more far-reaching than for the classical protocol. Not
only does the quantum ETSS have potential cryptographic applications, but
it demonstrates the possibility of exceeding the no-cloning bound on QECCs.
Indeed, any QECC, exact or approximate, is in some sense a quantum ETSS —
the ability to (approximately) correct erasures on a set of registers implies that
an adversary with access to those registers can gain (almost) no information
about the encoded data [21].

Let Q be a QECC that can correct d − 1 < n/2 arbitrary erasure errors:
Q = [[n, k, d]]. Such a code can be constructed over sufficiently large dimension
Q; for instance, use a polynomial quantum code [1]. The coding space of Q is
defined as

Q|ψ〉 ∈ H1 ⊗H2 ⊗H3 ⊗ ...⊗Hn.

We assume dim(H1) = dim(H2) = ... = dim(Hn).
We construct a new codeQ′ over larger Hilbert spaces that can correct d−1 <

n/2 arbitrary errors except with small probability. Register i of the n-component
code Q′ contains the following:

〈Aki
(Hi), si, [aij(∀j 	= i)], [haji

(si)(∀j 	= i)]〉, (5)
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where we have used the classical authentication scheme (in systematic form):

m, a→ (m,ha(m)), (6)

which has error ε, and (s1, . . . , sn) ∈R SSn,d(k1, . . . , kn), a secret sharing scheme
such that any d− 1 si’s contains no information about (k1, . . . , kn) whereas any
d of those si’s completely define (k1, . . . , kn). The combination of classical secret
sharing and classical authentication forms an ETSS [8], as described above; in
fact, any ETSS would do.

For instance, the n = 3 case of this construction is as follows:

c′|ψ〉 = ( Ak1(H1), s1, [a12, a13], [ha21(s1), ha31(s1)] ) ,
( Ak2(H2), s2, [a21, a23], [ha12(s2), ha32(s2)] ) , (7)
( Ak3(H3), s3, [a31, a32], [ha13(s3), ha23(s3)] ) .

Note that this is more complicated than the scheme in section 4. Instead of
giving the keys ki to the other two players, we have instead shared them among
all three players, so no single component has access to any of the three keys used
for quantum authentication. In section 4, we were able to use the fact that the
quantum register attacked by the adversary must be the same as the classical
register attacked, so it is only necessary to protect information about one of the
keys ki, not all of them. With the extra flexibility granted the adversary by being
able to attack multiple registers, it is more straightforward to protect all n keys
with the classical ETSS.

We are now ready for our main result. Let H ′
1 ⊗H ′

2 ⊗ ...⊗H ′
n be the coding

space of the new code

Q′|ψ〉 ∈ H ′
1 ⊗H ′

2 ⊗ ...⊗H ′
n

Theorem 2. If Ak is a qas secure with error ε, Q is a non-degenerate stabilizer
code with distance d, and ha(·) is a classical authentication scheme with error
ε, then Q′ is an approximate quantum error-correcting code correcting d − 1
arbitrary errors with error at most 2n2ε.

5.1 Reconstruction

The reconstruction procedure is similar to that for the previous protocol, but
slightly more involved, since we must verify the classical authentications as well.
Rather than breaking the procedure into different cases, in this version of the
protocol, we can systematically go through four steps: First, verify the classical
authentications and discard any invalid classical share. Second, reconstruct the
keys ki. Third, verify and decode the quantum authentications. Fourth, discard
any invalid quantum register and reconstruct the encoded quantum state.

1. Verify classical authentications:
For each si, consider it valid if at least half its authentications are correct
according to aji, j 	= i. Discard any share si which is not valid.



Approximate Quantum Error-Correcting Codes and Secret Sharing Schemes 297

2. Reconstruct the keys ki:
Up to d − 1 shares si can have been discarded in the first stage, so at least
n− d+ 1 ≥ n/2 + 1 > d shares remain. Use these to reconstruct (k1, . . . , kn).
If the remaining shares are not all consistent with a single value of the secret,
Bob aborts and outputs the quantum state |0〉.

3. Verify and decode the quantum authentications:
Use the key ki to verify and decode the quantum authentication Aki

(Hi).
4. Reconstruct the encoded quantum state:

Discard any registers which failed the quantum authentication, and use the
remaining registers to reconstruct the valid codeword as c|ψ〉 ∈ H1⊗ . . .⊗Hn

using the erasure recovery algorithm. (At most d− 1 have been discarded.) If
the remaining registers are not consistent with a single quantum codeword,
Bob aborts and outputs the quantum state |0〉.

We prove this assuming the original QECC Q is a nondegenerate CSS code
(which is sufficient to demonstrate that AQECCs exist correcting up to (n−1)/2
errors), but the proof can easily be extended to an arbitrary stabilizer code.

Proof (of Theorem 2). If no errors occurred, the above procedure will exactly
reconstruct the original encoded state. We need to show that it still approx-
imately reconstructs the state when there are up to d − 1 arbitrary errors in
unknown locations. Let B be the set of registers attacked by the adversary, and
let A = [n] \B be the registers held by honest players.

The intuition for the proof is simple. With high probability, the authentica-
tion keys will be reconstructed correctly; conditioned on that event, all compo-
nents of the QECC which pass the authentication test should be “close” to the
encoding of |ψ〉 restricted to those positions, and applying erasure correction
should yield a state very close to |ψ〉. Formalizing this intuition is more delicate
than it would be if the data involved were classical. The quantum version of the
statement “such-and-such event holds with probability 1− ε” is “the state of the
system has fidelity at least 1 − ε to the subspace such-and-such.” The problem
lies in the fact that the union bound from ordinary probability, which is the basis
of the intuition outlined above, does not always hold in the quantum world. Our
solution follows the lines of the “quantum to classical reductions” in [14, 9]. We
define a set of “target” subspaces whose projectors commute (in other words,
there exists a single basis of the state space in which all the projectors are diag-
onal), and show that the system lies close to each of these target subspaces. For
commuting subspaces, the union bound does hold: if the system has high fidelity
to each of the subspaces, then in fact it has high fidelity to their intersection. To
complete the proof it is sufficient to show that for states in the intersection, the
initial input |ψ〉 is reconstructed exactly.

The first step is to take care of the classical component of the encoding
(composed of the shares si, classical authentication keys aij and tags haij

(sj)).
We rely on three observations. First, we may assume w.l.o.g. that the recov-
ery procedure measures all the classical components in the computational basis
before doing any processing; thus, the state received by the reconstructor Bob
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is a mixture (not a superposition) over different bit strings which he might be
sent instead of the original ones. Second, the classical information held by the
adversary is statistically independent of k = (k1, ..., kn), the vector of quantum
authentication keys. (This follows from the fact that any t of the shares s1, ..., sn

are independent of the shared secret.) Third, any classical authentication tags
changed by the adversary will be rejected by Bob with probability at least 1− ε.

We define our first target subspace S0 by the statement “the keys k recon-
structed by Bob are equal to the original keys.” This statement can fail only
if some tag changed by the adversary is accepted by Bob, and by a (classical)
union bound this can occur with probability at most tnε < n2ε. The fidelity to
S0 is thus at least 1− n2ε.

We now look at what happens within the subspace S0. Consider the follow-
ing set of measurements which might be performed by Bob after verifying the
authentications, but before applying erasure correction to the code. We assume
for simplicity that the adversary holds the wires B = {1, ..., t}, and the wires
A = {t+ 1, ..., n} are untouched.

– For each register i ∈ [n], |reji〉〈reji| measures whether or not Bob rejected
the authentication of the i-th quantum system (correspondingly, |acci〉〈acci|
measures whether or not Bob accepts).

– We use the fact that the quantum error-correcting code is a nondegenerate
CSS code. The code can be defined by a sequence of parity checks performed
in two bases: the standard computational basis and the rotated Fourier (or
“diagonal”) basis. We assume there are r independent parity checks in the
rotated basis and s independent parity checks in the standard basis. Denote
by V the linear space of parity checks satisfied in the computational basis,
and by W the corresponding set for the Fourier basis. If the QECC code has
distance at least t+ 1, then there is a basis v1, ..., vs of V such that, for any
i ∈ B, position i is only in the support of vi. Same for W : there is a basis of
parity checks w1, ..., wr such that only wi involves the i-th component of the
code for i ∈ B. We denote by Πvi

, Πwi
the corresponding projectors (that

is, Πvi
preserves the supspace in which the parity check vi is satisfied).

The sets of projectors {|reji〉〈reji|}i∈[n], {Πvi
}i∈[s] and {Πwi

}i∈[r] all com-
mute with each other. The only possible interaction comes from the fact that
the operators {Πvi

} and {Πwi
} operate on the same space, but they commute

by definition of CSS codes. We may ignore projectors with indices i > t since
they correspond to checks which will always be passed within the subspace S0:
Therefore the system will have fidelity 1 to the subspaces defined by {Πvi

} and
{Πwi

} for i > t.
We would like to claim that, whenever Bob accepts the set R of registers, R

satisfies all the parity checks restricted to R. We can quantify this as follows: for
all i between 1 and t, the system should lie in the subspace defined by

Pi = (Πvi
Πwi
⊗ |acci〉〈acci|) + (I ⊗ |reji〉〈reji|). (8)

where I is the identity operator. The security of the quantum authentication
scheme, and the fact that the adversary doesn’t learn anything about the keys
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from the classical secret sharing, imply that the fidelity to each of these sub-
spaces is at least 1 − ε (note: this requires the quantum authentication scheme
to be secure even when composed up to t times). For 1 ≤ i ≤ t, we can de-
fine the subspaces S1, . . . , St corresponding to the projectors P1, . . . , Pt. By a
union bound, the state of the whole system has fidelity at least 1− n2ε − tε to
the intersection S =

⋂t
i=o Si. In words, S is the space of states for which Bob

reconstructs the correct authentication keys, and for which the set of registers
accepted by Bob satisfies all the parity checks restricted to that set.

It remains to prove that within the space S, Bob will always recover the
input state |ψ〉 exactly. We may assume w.l.o.g. that Bob will measure all n of
the registers which indicate whether the authentication failed or not in the basis
{|rej〉, |acc〉}. Thus, the global state may be seen as a mixture over possible
sets of registers accepted by Bob. If Bob also performs the measurements Pi, he
will, with probability at least 1− n2ε − tε, find that the state actually satisfies
all parity checks restricted to the set R of registers he accepts.

When this occurs, it then follows that applying erasure correction to R yields
the same result as if we had used only registers untouched by the adversary. For a
detailed proof of this fact, we refer the reader to Proposition 2.2 in [9]. The intu-
ition behind it is straightforward: Suppose s registers are discarded, leaving up to
t− s registers attacked by the adversary. But because s+ (t− s) < d, the QECC
can both correct s erasures and detect an additional t−s errors, so the adversary is
unable to reach any state in S except the correct input state |ψ〉. We can conclude
that Bob recovers a state ρ with fidelity at least 1− 2n2ε to ψ, as desired.

5.2 Specific Constructions and Parameters

As mentioned above, it is natural to instantiate our construction using the poly-
nomial codes (quantum Reed-Solomon codes) of Aharonov and Ben-Or [1]. These
are nondegenerate CSS codes over an alphabet of size q whenever q is a prime
power and greater than n− 1. For any t < n/2, one can find a [[n, n− 2t, t+1]]q
code (i.e. which encodes (n − 2t) log q qubits and has distance t + 1). This
means that to encode 	 > n qubits, each component of the code will consist
of 	/(n− 2t) qubits. The components of the approximate QECC then consist of
	/(n− 2t) + O(log (1

ε )) qubits and CC(2	/(n− 2t) + O(log (1
ε )), ε, t) bits (where

CC() is the share size of the classical ETSS).
For 2t < n−1, we can modify the ETSS above to get shares of size O(n log (1

ε ))
+ 	/(n − 2t). Putting these constructions together, we can get quantum codes
where each register contains O(n(	/(n− 2t) + log (1

ε ))) qubits.
An immediate improvement can be made to these parameters by noting that,

for any distance d nondegenerate stabilizer code, including the polynomial codes
usedhere, the state of anyd−1 registers ismaximally entangledwith the remaining
registers. Therefore, as noted in section 2, a much shorter classical key suffices for
quantum authentication. In particular, a classical key of lengthO(log 	+log (1

ε )) is
sufficient toauthenticate 	EPRhalves.This leads toanapproximatequantumcode
where each component consists of 	/(n− 2t)+O(log (1

ε )) qubits andCC(n log (1
ε ),

ε, t) bits (when ε < 1/	). This gives a total size of 	/(n− 2t) + O(n log (1
ε )).
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Corollary 3 (to Theorem 2). For t < n/2, there exists an approximate QECC
correcting any t errors with error ε, where each component consists of O(	/(n−
2t) + n log (1

ε ))) qubits. When n = 2t + 1, we get components of size O(	 +
n log (1

ε )).

6 Discussion and Open Questions

We have constructed quantum error correcting codes that are capable of cor-
recting general errors when up to half the registers are affected. This contrasts
considerably with known upper bounds that limit a QECC to correcting errors
on less than one-fourth of all registers. The price for being able to violate this
bound is that we only correct the state approximately; however, we do so with
exponentially good fidelity.

In general, extrapolating from exact performance of a quantum task to ap-
proximate performance is dangerous, but possible. Factors of the dimension may
arise, and since the dimension is exponential in the number of qubits, dramat-
ically different behavior becomes possible. This phenomenon is likely behind
the performance of our codes, and suggests that high-fidelity AQECCs are only
possible when working in high dimension.

Our codes instead consist of a small logical subspace and large registers con-
taining both quantum and classical information. As such, they are not so useful
for practical problems in quantum error correction, but do serve as an inter-
esting in-principle demonstration of the potential power of approximate error
correction. In addition, they act as quantum ETSS schemes, and may be a use-
ful stepping stone towards building VQSS and MPQC with a large number of
cheaters. Any such construction must be more complex, however, to take account
of dishonest senders and receivers, and to allow the participants in the protocol
to alter a state in the correct way without altering it in any unapproved man-
ner. Indeed, it remains possible that the prior bound of n/4 cheaters does in
fact restrict VQSS and MPQC; however, we have shown here that the existing
proof of that bound does not apply to VQSS and MPQC protocols which only
guarantee approximate reconstruction of the quantum state.
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Abstract. This paper presents efficient off-line anonymous e-cash
schemes where a user can withdraw a wallet containing 2	 coins each
of which she can spend unlinkably. Our first result is a scheme, secure
under the strong RSA and the y-DDHI assumptions, where the complex-
ity of the withdrawal and spend operations is O(� + k) and the user’s
wallet can be stored using O(�+k) bits, where k is a security parameter.
The best previously known schemes require at least one of these com-
plexities to be O(2	 · k). In fact, compared to previous e-cash schemes,
our whole wallet of 2	 coins has about the same size as one coin in these
schemes. Our scheme also offers exculpability of users, that is, the bank
can prove to third parties that a user has double-spent. We then extend
our scheme to our second result, the first e-cash scheme that provides
traceable coins without a trusted third party. That is, once a user has
double spent one of the 2	 coins in her wallet, all her spendings of these
coins can be traced. However, the price for this is that the complexity
of the spending and of the withdrawal protocols becomes O(� · k) and
O(� · k + k2) bits, respectively, and wallets take O(� · k) bits of storage.
All our schemes are secure in the random oracle model.

1 Introduction

Electronic cash was invented by Chaum [22, 23], and extensively studied since,
e.g., [24, 26, 37, 7, 41, 20, 21]. The main idea is that, even though the same party
(a bank B) is responsible for giving out electronic coins, and for later accepting
them for deposit, the withdrawal and the spending protocols are designed in
such a way that it is impossible to identify when a particular coin was spent.
I.e., the withdrawal protocol does not reveal any information to the bank that
would later enable it to trace how a coin was spent.

As a coin is represented by data, and it is easy to duplicate data, an electronic
cash scheme requires a mechanism that prevents a user from spending the same
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Rüschlikon, Switzerland.
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coin twice (double-spending). There are two scenarios. In the on-line scenario [23,
24, 25], the bank is on-line in each transaction to ensure that no coin is spent
twice, and each merchant must consult the bank before accepting a payment. In
the off-line [26] scenario, the merchant accepts a payment autonomously, and
later submits the payment to the bank; the merchant is guaranteed that such
a payment will be either honored by the bank, or will lead to the identification
(and therefore punishment) of the double-spender.

In this paper, we give an off-line 2�-spendable unlinkable electronic cash
scheme. Namely, our scheme allows a user to withdraw a wallet with 2� coins,
such that the space required to store these coins, and the complexity of the with-
drawal protocol, are proportional to 	, rather than to 2�. We achieve this with-
out compromising the anonymity and unlinkability properties usually required
of electronic cash schemes. This problem is well-motivated: (1) communication
with the bank is a bottleneck in most electronic cash schemes and needs to be
minimized; (2) it is desirable to store many electronic coins compactly, as one
can imagine that they may be stored on a dedicated device such as a smartcard
that cannot store too much data. This problem has also proved quite elusive:
no one has offered a compact e-cash solution (even for a weaker security model)
since the introduction of electronic cash in the 1980s.

In addition, a good e-cash scheme should allow one to expose double-spenders
to outside third parties in an undeniable fashion. I.e., assuming a PKI, if a
user U with public key pkU spent a coin more times than he is allowed (in our
case, spent 2� + 1 coins from a wallet containing 2� coins), then this fact can
be proven to anyone in a sound fashion. This property of an e-cash scheme is
satisfied by numerous schemes in the literature. Our solution has this property
as well.

Finally, it may often be desirable that an e-cash scheme should allow one
to trace all coins of a cheating user. It was known that this property can be
implemented using a trusted third party (TTP) [40, 10], by requiring that: (1)
in each withdrawal protocol a user gives to the bank an encryption under the
TTP’s public key of a serial number S which will be revealed during the spending
protocol; and (2) in each spending protocol, the user submits to the merchant
an encryption of the user’s public key under the TTP’s public key. Then, should
a coin with serial number S ever be double-spent, the TTP can get involved
and decrypt the serial number of all of this user’s coins. But the existence of
such a TTP contradicts the very definition of electronic cash: to the TTP, the
user is not anonymous! Therefore, another desirable and elusive property of an
electronic cash scheme was traceability without a TTP. Our scheme achieves this
property as well.

Recently, Jarecki and Shmatikov [34] also made a step in this direction. Al-
though their work is not explicitly about electronic cash, it can be thought of in
this way. Their scheme allows to withdraw and linkably (linkability is actually a
feature for them) but anonymously spend a coin K times; but should a user wish
to spend the coin K+1 times, his identity gets revealed. As far as electronic cash
is concerned, our solution is better for two reasons: (1) their scheme does not
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achieve unlinkability; and (2) in their protocol, each time a user spends a coin
he has to run a protocol whose communication complexity is proportional to
K, rather than log K, as we achieve. In 1989, Okamoto and Ohta [37] proposed
an e-cash scheme with similar functionality, without achieving unlinkability or
compact wallets.

Our work can also be viewed as improving on the recent traceable group
signatures by Kiayias, Tsiounis, and Yung [35]. In their scheme, once a special
piece of tracing information is released, it is possible to trace all group signatures
issued by a particular group member; otherwise this member’s signatures are
guaranteed to remain anonymous. Normally, in a group signature setting, this
piece of information must be released by a TTP, as there is no equivalent of a
double-spender whose misbehavior may automatically lead to the release of the
tracing information; however, if a limit is placed on how many signatures a group
member may issue, then our e-cash scheme can be viewed as a bounded group
signature scheme, where a group member can sign a message by incorporating
it into the signature proof of a coin’s validity. A group manager may allocate
signing rights by acting as a bank allocating coins; and if any member exceeds
their allocation, the special tracing information is revealed automatically, and all
signatures produced by that group member may be traced. Our tracing algorithm
is more efficient than that of Kiayias et al. [35]; in our scheme, signatures can
be tracked by a serial number (that appears to be random until the user double-
spends), while in theirs, all existing signatures must be tested, one-by-one, using
the special tracing information provided by the TTP, to determine if a certain
signer created it or not.

Our results. Let us summarize our results. We give a compact e-cash scheme with
all the features described above in the random-oracle model, under the Strong
RSA assumption in combination with the decisional Diffie-Hellman inversion (y-
DDHI) [4, 31] and sum-free DDH [30] assumptions for groups with bilinear maps.
The communication complexity of the spending and of the withdrawal protocol
is O(	 · k) and O(	 · k + k2) bits, respectively; it takes O(	 · k) bits to store all
the coins. This scheme is presented in Section 4.2.

We also give a scheme where the withdrawal and the spending protocols have
complexity only O(	 + k), and it also takes only O(	 + k) bits to store all the
coins, based on the Strong RSA [33, 3] and the y-DDHI [31] assumptions in the
random-oracle model. This less expensive scheme does not allow traceability,
however. This scheme is presented in Section 4.1.

Furthermore, in the model where the bank completely trusts the merchant
(this applies to, for example, a subscription service where the entity creating and
verifying the coins is one and the same), we have solutions based on the same
set of assumptions but in the standard model. Sections 4.1 and 4.2 containing
our random-oracle-based schemes also explain how these security properties are
obtained once the random oracle is removed.

Overview of our construction. Our schemes are based on the signature schemes
with protocols due to Camenisch and Lysyanskaya [14, 15]. These schemes allow
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a user to efficiently obtain a signature on committed messages from the signer.
They further allow the user to convince a verifier that she possesses a signature
by the signer on a committed message. Both of these protocols rely on the
Pedersen commitment scheme.

To explain our result, let us describe how single-use electronic cash can be
obtained with CL-signatures, drawing on a variety of previously known tech-
niques [9, 14].

Let G = 〈g〉 be a group of prime order q where the discrete logarithm problem
is hard. Suppose that a user U has a secret key skU ∈ Zq and a public key
pkU = gskU . An electronic coin is a signature under the bank B’s public key
pkB on the set of values (skU , s, t), where s, t ∈ Zq are random values. The
value s is the serial number of the coin, while t is the value blinding of this
coin. A protocol whereby a user obtains such a signature is called the withdrawal
protocol.

In the spending protocol, the user sends the merchant a Pedersen commit-
ment C to the values (skU , s, t), and computes a non-interactive proof π1 that
they have been signed by the bank. The merchant verifies π1 and then picks
a random value R ∈ Zq. Finally, the user reveals the serial number s, and the
value T = skU + R · t mod q. Let us refer to T as a double-spending equation
for the coin. The user must also compute a proof π2 that the values s and T
correspond to commitment C. Finally, the merchant submits (s,R,T, π1, π2) for
payment.

Note that one double-spending equation reveals nothing about skU because
t is random, but using two double-spending equations, we can solve for skU . So
if the same serial number s is submitted for payment twice, the secret key skU
and therefore the identity of the double-spender pkU = gskU can be discovered.

Now, our goal is to adapt single-use electronic cash schemes so that a coin
can be used at most 2� times. The trivial solution would be to obtain 2� coins.
For our purposes, however, it is unacceptable, as 2� may be quite large (e.g.,
1000) and we want each protocol to be efficient.

The idea underlying our system is that the values s and t implicitly define
several (pseudorandom) serial numbers Si and blinding values Bi, respectively.
In other words, we need a pseudorandom function F(·) such that we can set
Si = Fs(i), and Bi = Ft(i), 0 ≤ i ≤ 2� − 1. Then the user gets 2� pseudoran-
dom serial numbers with the corresponding double-spending equations defined
by (s, t). Here, the double-spending equation for coin i is Ti = gskU (Bi)R, where
R is chosen by the merchant. This leaves us with a very specific technical prob-
lem. The challenge is to find a pseudorandom function such that, given (1) a
commitment to (skU , s, t); (2) a commitment to i; and (3) the values Si and Ti,
the user can efficiently prove that she derived the values Si and Ti correctly from
skU , s, and t, i.e., Si = Fs(i) and Ti = gskU (Ft(i))Ri for some 0 ≤ i ≤ 2�−1 and
public value Ri provided by the merchant.

Recently, Dodis and Yampolsky [31] proposed the following discrete-logarithm-
based pseudorandom function (PRF): Fs(x) = g1/(s+x+1), where s, x ∈ Zq, and
g is a generator of a group G of order q in which the decisional Diffie-Hellman
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inversion problem is hard.1 (In the sequel, we denote this PRF as FDY
(·) (·).) Using

standard methods for proving statements about discrete-logarithm representa-
tions, we obtain a zero-knowledge argument system for showing that a pair of
values (Si,Ti) is of the form Si = FDY

s (i) and Ti = gskU (FDY
t (i))Ri correspond-

ing to the seeds s and t signed by bank B and to some index i ∈ [0, 2� − 1].
Note that if Si and Ti are computed this way, then they are elements of G

rather than of Zq. So this leaves us with the following protocol: to withdraw
a coin, a user obtains a signature on (skU , s, t). During the spending protocol,
the user reveals Si and the double-spending equation Ti = gskU (Bi)Ri , where
skU is the user’s secret key and pkU = gskU the corresponding public key. Now,
with two double-spending equations T1 = gskU BR1

i and T2 = gskU BR2
i we can

infer the value (TR2
1 /TR1

2 )(R2−R1)
−1

= (pkR2
U BR1R2

i /pkR1
U BR1R2

i )(R2−R1)
−1

=
(pkR2−R1

U )(R2−R1)
−1

= pkU . This is sufficient to detect and identify double
spenders. We describe this construction in more depth in Section 4.1.

However, the above scheme does not allow the bank to identify the other
spendings of the coin, i.e., to generate all the serial numbers that the user can
derive from s. Let us now describe how we achieve this. For the moment, let
us assume that the technique described above allows us to infer skU rather
than pkU . If this were the case, we could require that the user, as part of the
withdrawal protocol, should verifiably encrypt [1, 11, 18] the value s under her
own pkU , to form a ciphertext c. The record (pkU , c) is stored by the bank. Now,
suppose that at a future point, the user spends too many coins and thus her skU
is discovered. From this, her pkU can be inferred and the record (pkU , c) can be
located. Now that skU is known, c can be decrypted, the seed s discovered, the
values Si computed for all 0 ≤ i < 2�, and hence the database of transactions
can be searched for records with these serial numbers.

Let us now redefine the way a user’s keys are picked such that we can recover
skU rather than pkU . Suppose that G is a group with a non-degenerate bilinear
map e : G × G $→ G′. Let skU be an element of Zq. Let pkU = e(g, gskU ).
Recently, Ateniese, Fu, Green, and Hohenberger [2] exhibited a cryptosystem
that uses pkU as a public key, such that in order to decrypt it is sufficient to
know the value gskU . So, in our scheme, the user U would encrypt s under
pkU using the cryptosystem due to Ateniese et al. From the double-spending
equations, the same way as before, the bank infers the value gskU . This value
now allows the bank to decrypt s.

This is almost the solution, except for the following subtlety: if G has a
bilinear map, then the decisional Diffie-Hellman problem is easy, and so the
Dodis-Yampolsky construction is not a PRF in this setting! Instead, we must
assume sum-free decisional Diffie-Hellman [30], and slightly change the construc-
tion. This is why the variant of our scheme that allows to trace coins is a factor

1 Another PRF suitable for our purposes is the one due to Naor and Reingold [36].
It is based on the DDH problem, but makes our subsequent schemes less time and
space efficient.
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of 	 more expensive than the one that does not. The details of this construction
are given in Section 4.2.

One of the main remaining problems for electronic cash which this paper
does not address is that of efficiently allowing for multiple denominations in a
non-trivial way; i.e., without executing the spending protocol a number of times.

2 Definition of Security

Notation: if P is a protocol between A and B, then P (A(x),B(y)) denotes that
A’s input is x and B’s is y.

Our electronic cash scenario consists of the three usual players: the user,
the bank, and the merchant; together with the algorithms: BKeygen, UKeygen,
Withdraw, Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership. Let us give
some input-output specifications for these protocols, as well as some informal
intuition for what they do.

– The BKeygen(1k, params) algorithm is a key generation algorithm for the bank
B. It takes as input the security parameter 1k and, if the scheme is in the
common parameters model, it also takes as input these parameters params.
This algorithm outputs the key pair (pkB, skB). (Assume that skB contains
the params, so we do not have to give params explicitly to the bank again.)
Similarly, UKeygen(1k, params) is a key generation algorithm for the user U ,
which outputs (pkU , skU ). Since merchants are a subset of users, they may use
this algorithm to obtain keys as well. (Assume that sk contains the params,
so we do not have to give params explicitly to the user again.)

– In the Withdraw(U(pkB, skU , n),B(pkU , skB, n)) protocol, the user U with-
draws a wallet W of n coins from the bank B. The user’s output is the wallet
W , or an error message. B’s output is some information TW which will allow
the bank to trace the user should this user double-spend some coin, or an
error message. The bank maintains a database D for this trace information,
to which it enters the record (pkU ,TW ).

– In a Spend(U(W, pkM),M(skM, pkB, n)) protocol, a user U gives one of the
coins from his wallet W to the merchant M. Here, the merchant obtains a
serial number S of the coin, and a proof π of validity of the coin. The user’s
output is an updated wallet W ′.

– In a Deposit(M(skM, S, π, pkB),B(pkM, skB)) protocol, a merchant M de-
posits a coin (S, π) into its account held by the bank B. Whenever an honest
M obtained (S, π) by running the Spend protocol with any (honest or other-
wise) user, there is a guarantee that this coin will be accepted by the bank.
B adds (S, π) to to its list L of spent coins. The merchant’s output is nothing
or an error message.

– The Identify(params, S, π1, π2) algorithm allows to identify double-spenders
using a serial number S and two proofs of validity of this coin, π1 and π2,
possibly submitted by malicious merchants. This algorithm outputs a public
key pkU and a proof ΠG. If the merchants who had submitted π1 and π2 are
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not malicious, then ΠG is evidence that pkU is the registered public key of a
user that double-spent coin S.

– The VerifyGuilt(params, S, pkU ,ΠG) algorithm allows to publicly verify proof
ΠG that the user with public key pkU is guilty of double-spending coin S.

– The Trace(params, S, pkU ,ΠG,D, n) algorithm, given a public key pkU of
a double-spender, a proof ΠG of his guilt in double-spending coin S, the
database D, and a wallet size n, computes the serial numbers S1, . . . , Sm of
all of the coins issued to U along with proofs Π1, . . . ,Πm of pkU ’s ownership.
If VerifyGuilt(params, S, pkU , ΠG) does not accept (i.e., pkU is honest), this
algorithm does nothing.

– The VerifyOwnership(params , S,Π, pkU , n) algorithm allows to publicly verify
the proof Π that a coin with serial number S belongs to a double-spender
with public key pkU .

We will now informally define the security properties. The more elaborate
formal definitions are given in the full version of this paper [13].

Correctness. If an honest user runs Withdraw with an honest bank, then nei-
ther will output an error message; if an honest user runs Spend with an honest
merchant, then the merchant accepts the coin.

Balance. From the bank’s point of view, what matters is that no collection of
users and merchants can ever spend more coins than they withdrew. We require
that there is a knowledge extractor E that executes u Withdraw protocols with all
adversarial users and extracts un serial numbers S1, . . . , Sun. We require that
for every adversary, the probability that an honest bank will accept (S, π) as
the result of the Deposit protocol, where S 	= Si ∀1 ≤ i ≤ un, is negligible. If
S1, . . . , Sn is a set of serial numbers output by E when running Withdraw with
public key pkU , we say that coins S1, . . . , Sn belong to the user U with pkU .

Identification of double-spenders. Suppose B is honest. Suppose M1 and M2

are honest merchants who ran the Spend protocol with the adversary, such that
M1’s output is (S, π1) and M2’s output is (S, π2). This property guarantees
that, with high probability, Identify(params, S, π1, π2) outputs a key pkU and
proof ΠG such that VerifyGuilt(params, S, pkU ,ΠG) accepts.

Tracing of double-spenders. Given that a user U is shown guilty of double-
spending coin S by a proof ΠG such that VerifyGuilt accepts, this property
guarantees that Trace(params , S, pkU ,ΠG,D, n) will output the serial numbers
S1, . . . , Sm of all coins that belong to U along with proofs of ownership Π1, . . . ,Πm

such that for all i, with high probability, VerifyOwnership(params, Si,Πi, pkU , n)
also accepts.

Anonymity of users. From the privacy point of view, what matters to users is
that the bank, even when cooperating with any collection of malicious users and
merchants, cannot learn anything about a user’s spendings other than what is
available from side information from the environment. In order to capture this
property more formally, we introduce a simulator S. S has some side information
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not normally available to players. E.g., if in the common parameters model, S
generated these parameters; in the random-oracle model, S is in control of the
random oracle; in the public-key registration model S may hold additional infor-
mation about the bank’s keys, etc. We require that S can create simulated coins
without access to any wallets, such that a simulated coin is indistinguishable
from a valid one. More precisely, S executes the user’s side of the Spend protocol
without access to the user’s secret or public key, or his wallet W .

Exculpability. Suppose that we have an adversary that participates any number
of times in the Withdraw protocol with the honest user with public key pkU ,
and subsequently to that, in any number of legal Spend protocols with the same
user. I.e., if the user withdrew u wallets of n coins each, then this user can
participate in at most un Spend protocols. The adversary then outputs a coin
serial number S and a purported proof Π that the user with public key pkU is
a double-spender and owns coin S. The weak exculpability property postulates
that, for all adversaries, the probability VerifyOwnership(params , S, pkU ,Π, n)
accepts is negligible.

Furthermore, the adversary may continue to engage the user U in Spend
protocols even if it means U must double-spend some coins of her choosing (in
which case the state of her wallet is reset). The adversary then outputs (S,Π).
The strong exculpability property postulates that, for all adversaries, when S is
a coin serial number not belonging to U , the weak exculpability property holds,
and when S is a coin serial number not double-spent by user U with public key
pkU , the probability that VerifyGuilt(params, S,Π, pkU , n) accepts is negligible.

This ends the informal description of our security definition; the descriptions
in the full version of this paper [13] are more precise, but this intuition should
be sufficient for understanding our subsequent security guarantees.

Strengthening the definition: the UC framework. Even though our definition of
security is not in the UC framework, note that our definition would imply UC-
security whenever the extractor E and simulator S are constructed appropriately.
In a nutshell, an ideal electronic cash functionality would allow an honest user
to withdraw and spend n coins. In this case, if the merchant and bank are
controlled by the malicious environment, the simulator S defined above creates
the merchant’s and bank’s view of the Spend protocol. At the same time, the
balance property guarantees that the bank gets the same protection in the real
world as it does in the ideal world, and the exculpability property ensures that
an honest user cannot get framed in the real world, just as he cannot get framed
in the ideal world.

3 Preliminaries

Our e-cash systems use a variety of known protocols as building blocks, which we
now briefly review. Many of these protocols can be shown secure under several
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different complexity assumptions, a flexibility that will extend to our e-cash
systems. The notation G = 〈g〉 means that g generates the group G.

3.1 Complexity Assumptions

The security of our e-cash systems is based on the following assumptions:

Strong RSA Assumption [3, 33]: Given an RSA modulus n and a random
element g ∈ Z

∗
n, it is hard to compute h ∈ Z

∗
n and integer e > 1 such that he ≡ g

mod n. The modulus n is of a special form pq, where p = 2p′ +1 and q = 2q′ +1
are safe primes.

y-Decisional Diffie-Hellman Inversion Assumption (y-DDHI) [4, 31]:
Given a random generator g ∈ G, where G has prime order q, the values
(g, gx, . . . , g(xy)) for a random x ∈ Zq, and a value R ∈ G, it is hard to de-
cide if R = g1/x or not.2

Sum-Free Decisional Diffie-Hellman Assumption (SF-DDH) [30]: Sup-
pose that g ∈ G is a random generator of order q. Let L be any polynomial func-
tion of |q|. Let Oa(·) be an oracle that, on input a subset I ⊆ {1, . . . ,L}, outputs
the value gβI

1 where βI =
∏

i∈I ai for some a = (a1, . . . , aL) ∈ Z
L
q . Further, let

R be a predicate such that R(J, I1, . . . , It) = 1 if and only if J ⊆ {1, . . . ,L} is
DDH-independent from the Ii’s; that is, when v(Ii) is the L-length vector with a
one in position j if and only if j ∈ Ii and zero otherwise, then there are no three
sets Ia, Ib, Ic such that v(J) + v(Ia) = v(Ib) + v(Ic) (where addition is bitwise
over the integers). Then, for all probabilistic polynomial time adversaries A(·),

P r[a = (a1, . . . , aL)← Z
L
q ; (J, α)← AOa(1|q|); y0 = g

∏
i∈J ai ; y1 ← G;

b← {0, 1}; b′ ← AOa(1|q|, yb, α) : b = b′ ∧R(J,Q) = 1] = negl(|q|),

where Q is the set of queries that A made to Oa(·).

3.2 Bilinear Maps

Let Bilinear Setup be an algorithm that, on input the security parameter 1k,
outputs γ = (q, g1, h1, G1, g2, h2, G2, e), where e is a non-degenerate efficiently
computable bilinear map from G1 = 〈g1〉 = 〈h1〉 to G2 = 〈g2〉 = 〈h2〉, both
groups of prime order q = Θ(2k). Let e(g1, g1) = g2 and e(h1, h1) = h2. We
assume that each group element has a unique binary representation. More for-
mally, e : G1 × G1 → G2 is a function that is: (bilinear) for all g1, h1 ∈ G1,
for all a, b ∈ Zq, e(ga

1 , h
b
1) = e(g1, h1)ab; (non-degenerate) if g1 is a generator of

G1, then e(g1, g1) generates G2; and (efficient) computing e(·, ·) is efficient for
all g1, h1 ∈ G1.

2 Others [4, 31] have used a stronger bilinear version of the y-DDHI assumption, where,
given the same input in 〈g〉y+1 it is hard to distinguish e(g, g)1/x from a random R
in 〈e(g, g)〉.
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3.3 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for
proving statements about discrete logarithms, such as (1) proof of knowledge of a
discrete logarithm modulo a prime [39] or a composite [33, 29], (2) proof of knowl-
edge of equality of representation modulo two (possibly different) prime [27] or
composite [17] moduli, (3) proof that a commitment opens to the product of
two other committed values [16, 20, 8], (4) proof that a committed value lies in
a given integer interval [21, 16, 16, 6], and also (5) proof of the disjunction or
conjunction of any two of the previous [28]. These protocols modulo a composite
are secure under the strong RSA assumption and modulo a prime under the
discrete logarithm assumption.

When refering to the proofs above, we will follow the notation introduced by
Camenisch and Stadler [19] for various proofs of knowledge of discrete logarithms
and proofs of the validity of statements about discrete logarithms. For instance,

PK{(α,β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such that
y = gαhβ and ỹ = g̃αh̃δ holds, where u ≤ α ≤ v,” where y, g, h, ỹ, g̃, and h̃ are
elements of some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention is
that Greek letters denote quantities of which knowledge is being proven, while
all other values are known to the verifier. We apply the Fiat-Shamir heuristic [32]
to turn such proofs of knowledge into signatures on some message m; denoted
as, e.g., SPK{(α) : y = gα}(m).

3.4 Pseudorandom Functions

A useful building block of our e-cash systems is the pseudorandom functions
recently proposed by Dodis and Yampolsky [31], which they expand to verifiable
random functions using bilinear maps. Their construction is:
For every n, a function f ∈ Fn is defined by the tuple (G, q, g, s), where G is
group of order q, q is an n-bit prime, g is a generator of G, and s is a seed in Zq.
For any input x ∈ Zq (except for x = −1 mod q), the function fP,q,g,s(·), which
we simply denote as fDY

s (·), is defined as fDY
s (x) = g1/(x+s+1).

This construction is secure under the y-DDHI assumption. As mentioned in
the introduction, we could instead substitute in the Naor-Reingold PRF [36],
and replace the y-DDHI assumption with the more standard DDH assumption,
at the cost of enlarging our wallets from O(	+ k) bits to O(	 · k) bits.

3.5 CL Signatures

Recall the Pedersen commitment scheme [38], in which the public parame-
ters are a group G of prime order q, and generators (g0, . . . , gm). In order
to commit to the values (v1, . . . , vm) ∈ Zq

m, pick a random r ∈ Zq and set
C = PedCom(v1, . . . , vm; r) = gr

0

∏m
i=1 gvi

i .
Camenisch and Lysyanskaya [14] came up with a secure signature scheme

with two protocols: (1) An efficient protocol between a user and a signer with
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keys (pkS , skS). The common input consists of pkS and C, a Pedersen com-
mitment. The user’s secret input is the set of values (v1, . . . , v�, r) such that
C = PedCom(v1, . . . , v�; r). As a result of the protocol, the user obtains a sig-
nature σpkS

(v1, . . . , v�) on his committed values, while the signer does not learn
anything about them. The signature has size O(	 log q). (2) An efficient proof of
knowledge of a signature protocol between a user and a verifier. The common
inputs are pkS and a commitment C. The user’s private inputs are the values
(v1, . . . , v�, r), and σpkS

(v1, . . . , v�) such that C = PedCom(v1, . . . , v�; r). These
signatures are secure under the strong RSA assumption. For the purposes of this
exposition, it does not matter how CL signatures actually work, all that matters
are the facts stated above.

Our subsequent e-cash systems will require the strong RSA assumption inde-
pendently of the CL signatures. By making additional assumptions based on bi-
linear maps, we can use alternative schemes by Camenisch and Lysyanskaya [15]
and Boneh, Boyen and Shacham [5], yielding shorter signatures in practice.

3.6 Verifiable, Bilinear El Gamal Encryption

In Section 4.2, we apply a technique by Camenisch and Damg̊ard [11] for turning
any semantically-secure encryption scheme into a verifiable encryption scheme.
A verifiable encryption scheme is a two-party protocol between a prover and
encryptor P and a verifier and receiver V. Roughly, their common inputs are
a public encryption key pk and a commitment A. As a result of the protocol,
V either rejects or obtains the encryption c of the opening of A. The protocol
ensures that V accepts an incorrect encryption only with negligible probability
and that V learns nothing meaningful about the opening of A. Together with the
corresponding secret key sk , transcript c contains enough information to recover
the opening of A efficiently. We hide some details here and refer to Camenisch
and Damg̊ard [11] for the full discussion.

In particular, we apply the verifiable encryption techniques above to a bilinear
variant of El Gamal encryption due to Ateniese, Fu, Green, and Hohenberger [2].
Assume we run Bilinear Setup on 1k to obtain ζ = (q, g3,G3, g2,G2, e), where we
have bilinear map e : G3 × G3 → G2. Let (G,E,D) denote the standard key
generation, encryption, and decryption algorithms. On input (1k, ζ), the key
generation algorithm G outputs a key pair (pk , sk) = (e(g3, g

u
3 ), gu

3 ) = (gu
2 , g

u
3 )

for a random u ∈ Zq. To encrypt a message m ∈ G2 under pk , select a random k ∈
Zq and output the ciphertext c = (gk

3 , pk
km) = (gk

3 , g
uk
2 m). Then, to decrypt c =

(c1, c2), simply compute c2/e(c1, sk). Ateniese et al. [2] show that this encryption
scheme is semantically-secure under the decisional bilinear DH assumption.

4 Two Compact E-Cash Systems

We present two compact e-cash systems. In System One, an honest bank can
quickly detect double-spending, identify the perpetrator, and prove his guilt to
a third party from two coin deposits with the same serial number. This system
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allows a wallet of 2� coins to be stored in O(	+k) bits. In System Two, the bank
can do everything that it could before, and in addition, the bank can compute
the serial numbers for all the coins that belong to the perpetrator along with
proofs of their ownership. Here, our wallets of 2� coins require O(	 · k) bits,
which is still remarkably small. If a user does not double-spend, her coins are
unlinkable. There is no trusted party.

Global parameters for both systems. Let 1k be the security parameter and
let 	 be any value in O(log k). Our subsequent schemes work most efficiently by
having three different algebraic groups:

– G1 = 〈g1〉, where n is a special RSA modulus of 2k bits, g1 is a quadratic
residue modulo n, and h1 ∈ G1.

– G2 = 〈g2〉, where g2 is an element of prime order q = Θ(2k), and h2 ∈ G2.
– G3 = 〈g3〉, where g3 is an element of the same prime order as G2, and there

exists a bilinear mapping e : G3 × G3 → G2.

Our first scheme will not require G3. Assume that, on input 1k, each system is
initialized with the necessary common parameters, denoted ζ. We also define the
multiple Pedersen commitment as PedCom(x1, . . . , xn; r) = hrΠn

i=1g
xi
i . Some-

times for simplicity we do not explicitly include the randomess r in the input to
the commitment. The values h, {gi} are assumed to be publicly known elements
of the appropriate group.

4.1 System One: Wallets of Size O(� + k) with Public Key
Recovery

Our first system supports the basic algorithms (BKeygen,UKeygen,Withdraw,
Spend, Deposit, Identify, VerifyGuilt). In this scheme, a wallet of size O(	+ k) is
sufficient to hold 2� coins. In the Identify algorithm, the bank can recover the
identity of a double-spender pkU from two deposits with the same coin serial
number S. Using VerifyGuilt, the bank can prove that pkU double-spent coin S
to a third party; while all honest users are guaranteed strong exculpability.

The parties set up their keys as follows. In BKeygen(1k, ζ), the bank B generates a
CL signature key pair (pkB, skB) for message space M such that Zq×Zq×Zq ⊆
M . In UKeygen(1k, ζ), each user U generates a unique key pair (pkU , skU ) =
(gu

2 ,u) for a random u ∈ Zq. Recall that merchants are a subset of users.

Withdraw(U(pkB, skU , 2�),B(pkU , skB, 2�)): A user U interacts with the bank B
as follows:

1. U identifies himself to the bank B by proving knowledge of skU .
2. In this step, the user and bank contribute randomness to the wallet secret

s; the user also selects a wallet secret t. This is done as follows: U selects
random values s′, t ∈ Zq and sends a commitment A′ = PedCom(u, s′, t; r)
to B. B sends a random r′ ∈ Zq. Then U sets s = s′ + r′. U and B locally
compute A = gr′

2 A′ = PedCom(u, s′ + r′, t; r) = PedCom(u, s, t; r).
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3. U and B run the CL protocol for obtaining B’s signature on committed values
contained in commitment A. As a result, U obtains σB(u, s, t).

4. U saves the wallet W = (skU , s, t,σB(u, s, t),J), where s, t are the wallet
secrets, σB(u, s, t) is the bank’s signature, and J is an 	-bit coin counter
initialized to zero.

5. B records a debit of 2� coins for account pkU .

Spend(U(W, pkM),M(skM, pkB, 2�)): U anonymously transfers a coin to M as
follows. (An optimized version appears in the full version of this paper [13].)

1. M (optionally) sends a string info ∈ {0, 1}∗ containing transaction informa-
tion to U and authenticates himself by proving knowledge of skM.

2. M chooses a random R ∈ Z
∗
q and sends R to U . This is for the double-

spending equation (see Section 1).
3. U sends to M the serial number of the coin S = FDY

s (J), and security
tag T = pkUF

DY
t (J)R. Now U must prove their validity, i.e., that S and T

correspond to wallet secrets (u, s, t) signed by B. This is done as follows:
(a) Let A = PedCom(J); prove that A is a commitment to an integer in the

range [0 . . . 2� − 1].
(b) Let B = PedCom(u), C = PedCom(s), D = PedCom(t); prove knowl-

edge of a CL signature from B on the openings of B,C and D in that
order,

(c) Prove S = FDY
s (J) = g

1/(J+s+1)
2 and T = pkUF

DY
t (J)R = g

u+R/(J+t+1)
2 .

More formally, this proof is the following proof of knowledge:

PK{(α,β, δ, γ1, . . . , γ3) : g1 = (AC)αh1
γ1 ∧ S = gα

2∧
g1 = (AD)βh1

γ2 ∧ B = g1
δh1

γ3 ∧ T = gδ
2(g

R
2 )β}

Use the Fiat-Shamir heuristic to turn all the proofs above into one signature
of knowledge on the values (S,T,A,B,C,D, g1, h1, n, g2, pkM, R, info). Call
the resulting signature Φ.

4. If Φ verifies, M accepts the coin (S, π), where π = (R,T , Φ), and uses this
information at deposit time.

5. U updates his counter J = J + 1. When J > 2� − 1, the wallet is empty.

Deposit(M(skM, S, π, pkB),B(pkM, skB)): A merchant M sends to bank B a
coin (S, π = (R,T , Φ)). If Φ verifies and R is fresh (i.e., the pair (S,R) is not
already in the list L of spent coins), then B accepts the coin for deposit, adds
(S, π) to the list L of spent coins, and credits pkM’s account; otherwise, B sends
M an error message.

Note that in this deposit protocol,M must convince B that it behaved hon-
estly in accepting some coin (S, π). As a result, our construction requires the
Fiat-Shamir heuristic for turning a proof of knowledge into a signature. If M
and B were the same entity, and the Withdraw and Spend protocols were inter-
active, then the bank B would not need to verify the validity of the coin that the
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merchant wishes to deposit, and as a result, we could dispense with the Fiat-
Shamir heuristic and thus achieve balance and anonymity in the plain model
(i.e., not just in the random oracle model).

Identify(ζ, S, π1, π2): Suppose (R1,T1) ∈ π1 and (R2,T2) ∈ π2 are two entries in
the bank’s database L of spent coins for serial number S. Then output ΠG =

(π1, π2) and pk =
(
TR1

2 /TR2
1

)(R1−R2)
−1

.
Let us explain why this produces the public key pkU of the double-spender.

Suppose coin S belonged to some user with pkU = gu
2 , then each Ti is of the

form gu+Riα
2 for the same values u and α. (Either this is true or an adversary

has been successful in forging a coin, which we subsequently show happens with
only negligible probability.) As the bank only accepts coins with fresh values of
R (i.e., R1 	= R2), it allows to compute:

(TR1
2

TR2
1

)(R1−R2)
−1

=
(guR1+R1R2α

2

guR2+R1R2α
2

)(R1−R2)
−1

= g
u(R1−R2)
(R1−R2)

2 = gu
2 = pkU .

VerifyGuilt(params, S, pkU ,ΠG) : Parse ΠG as (π1, π2) and each πi as (Ri,Ti, Φi).
Run Identify(params, S, π1, π2) and compare the first part of its output to the
public key pkU given as input. Check that the values match. Next, verify each
Φi with respect to (S,Ri,Ti). If all checks pass, accept; otherwise, reject.

Efficiency Discussion of System One. The dominant computational cost in these
protocols are the single and multi base exponentations. In a good implementa-
tion, a multi-base exponentation is essentially as fast as an ordinary exponenta-
tion. While we do not provide the full details of the Withdraw protocol, it can
easily be derived from the known protocols to obtain a CL-signature on a com-
mitted signature [14, 12]. Depending on how the proof of knowledge protocol is
implemented, Withdraw requires only three moves of communication.

The details of (an optimized version of) the Spend protocol are given in the
full version [13]. One can verify that a user must compute seven multi-base
exponentiations to build the commitments and eleven more for the proof. The
merchant and bank need to do eleven multi-base exponentiations to check that
the coin is valid. The protocols require two rounds of communication between
the user and the merchant and one round between the bank and the merchant.

Theorem 1. System One supports the algorithms (BKeygen, UKeygen, Withdraw,
Spend, Deposit, Identify) and guarantees balance, identification of double-spenders,
anonymity of users, and strong exculpability under the Strong RSA and y-DDHI
assumptions in the random oracle model.

Proof of Theorem 1 appears in the full version of this paper [13].

4.2 System Two: Wallets of Size O(� · k) with Traceable Coins

We now extend System One to allow coin tracing. Suppose for the moment that
the Identify algorithm recovered skU rather than pkU for a double-spender. We
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change the withdrawal protocol so that the user U must also provide the bank B
with a verifiable encryption of her wallet secret s (used to generate the coin serial
numbers) under their own public key pkU . This way, if U double-spends, B can
compute skU , recover her secret s, and output the serial numbers Si = fDY

s (i),
for i = 0 to 2� − 1, of all coins belonging to U . (Observe that recovering skU in
the above scheme allows the bank to trace all coins from all wallets for U and
not just from the wallet from which the coin was double-spent!) If U does not
double-spend a coin, however, her anonymity is computationally guaranteed.

The verifiable encryption techniques of Camenisch and Damg̊ard, as de-
scribed in Section 3.6, can be applied to any semantically-secure encryption
scheme for our withdrawal protocol. Thus, all we need is a coin construction
which allows one to recover a double-spender’s skU . Luckily, the bilinear El
Gamal scheme recently proposed by Ateniese et al. (see Section 3.6) allows for
public keys of the form pkU = e(g3, g

u
3 ) = gu

2 , for u ∈ Zq, where knowing
skU = gu

3 is sufficient for decryption, given the mapping e : G3 × G3 → G2. By
setting our tag Ti = gu

3 (fDY
t (i))R in G3 (where R is a random value chosen by

the merchant), we can now recover skU = gu
3 from a coin spent twice.

One complication with setting T in G3 is that the Dodis-Yampolsky [31]
construction is no longer a PRF when DDH is easy, as it is in G3. This breaks
the anonymity of our coins. Thus, we need a new PRF.

PRF based on the Sum-Free DDH Assumption. Dodis [30] gave a defi-
nition of a sum-free encoding, and proved that if V is any sum-free encoding,
and 〈g3〉 is a group of order q, then fV

(·), defined as follows, is a PRF: the seed
for this PRF consists of values ti ∈ Zq, for 0 ≤ i ≤ 3	; let t = (t0, . . . , t3�); the

function fV
t is defined as fV

t (x) = g
t0
∏

V (x)i=1 ti

3 . This holds under the sum-free
DDH assumption (also introduced by Dodis [30]); note that it seems reasonable
to make such an assumption even of groups where DDH is easy.

For our purposes, we need the encoding V to have nice algebraic properties.
We define an encoding V : {0, 1}� $→ {0, 1}3� as V (x) = x◦x2, where ◦ denotes
concatenation, and multiplication is over the integers. In the full version of this
paper, we recall the sum-free definition and prove that this encoding is sum-free.

Our second system supports all algorithms mentioned in Section 2: (BKeygen,
UKeygen, Withdraw, Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership).
We assume a standard signature scheme (SG ,Sign,SVf ). Then, UKeygen(1k, ζ)
runs SG(1k, ζ) → (vkU , sskU ) and the bilinear El Gamal key generation algo-
rithm G(1k, ζ) → (ekU , dkU ) = (e(g3, g

u
3 ), gu

3 ) = (gu
2 , g

u
3 ), and outputs pkU =

(ekU , vkU ) and skU = (dkU , sskU ). The bank’s keys are as before.

Withdraw(U(pkB, skU , 2�),B(pkU , skB, 2�)): A user U interacts with the bank B
as follows:

1. U identifies himself to the bank B by proving knowledge of skU = (dkU , sskU ).
2. As in System One, in this step U and B contribute randomness to the wallet

secret s, and the user selects wallet secrets t = (t0, . . . , t3�), where ti ∈ Zq for
all i. As before, this is done as follows: U chooses random values s′ and t, and
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sends the commitment A′ = PedCom(u, s′, t) to B, obtains a random r′, sets
s = s′ + r′, and then both U and B locally set A = gr′

2 A′ = PedCom(u, s, t).
3. U forms a verifiable encryption Q of the value s under his own key ekU = gu

3 .
(This encryption can be proved correct relative to commitment A.) Q is
signed by U . B verifies the correctness of Q and the signature σ on Q. U
obtains a CL signature from B on the values committed in A via the protocol
for getting a signature on a set of committed values.

4. B debits 2� from account pkU , records the entry (pkU ,Q,σ) in his database
D, and issues U a CL signature on Y .

5. U saves the wallet W = (skU , s, t,σB(u, s, t),J), where J is an 	-bit counter
set to zero.

Spend(U(W, pkM),M(skM, pkB, 2�)): The only change from System One is in
the calculation of the security tag T and the subsequent proof Φ. Assume info ∈
{0, 1}∗ and R ∈ Z

∗
q are obtained as before.

1. U sends the serial number of the coin S = fDY
s (J) = g

1/(J+s+1)
2 , the security

tag T = pkUf
V
t (J)R = g

u+Rt0
∏

{i:V (J)i=1} ti

3 , and a proof Φ of their validity to
M. The signature proof Φ consists of:

(a) A0 = PedCom(J) and a proof that A is a commitment to an integer in the
range [0, . . . , 2�−1]; a commitment A1 = PedCom(J2) and a proof that it is a
commitment to the square of the opening of A0; and finally, a commitment
A2 = PedCom(V (J)) = PedCom(J ◦ J2) and a proof that it was formed
correctly.

(b) Bi = PedCom(V (J)i) for i = 1 to 3	 (commitments to the bits of V (J)) and
proof that each Bi opens to either 0 or 1; that is, PK{(γ1, γ2) : Bi/g1 =
h1

γ1 ∨Bi = h1
γ2},

(c) proof that A2 and {Bi} are consistent; PK{(γ) : A2/g1

∏3�
i=1 B2i−1

i = h1
γ},

(d) commitments to U ’s secret key u, and wallet secrets s and t: C = PedCom(u),
D = PedCom(s), Ei = PedCom(ti) for i = 0 to 3	, and proof of knowledge
of a CL signature on the openings of C, D, and all Ei’s in that order,

(e) the following commitments that will help in proving that T was formed
correctly: F0 = E0, Fi = PedCom(

∏
{j≤i:V (J)j=1} tj) for i = 1 to 3	,

(f) and a proof that S = fDY
s (J) and T = gu

3 (fV
t (J))R. Proving the statement

about S is done as in System One; proving the statement about T can be
done as follows: Prove, for every 1 ≤ i ≤ 3	 that Fi was formed correctly,
corresponding to the committed value ti and the value contained in the
commitment Bi. That is to say:

PK{(α,β, δ) : Fi = PedCom(α) ∧ Fi−1 = PedCom(β) ∧

Ei = PedCom(δ) ∧
((

Bi = PedCom(0) ∧ α = β
)
∨(

Bi = PedCom(1) ∧ α = βδ
))
}
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Note that, if all Fi’s are formed correctly, then F3� is a commitment to the
discrete logarithm of the value fV

t (J) = t0
∏3�

i=1 t
(V (J))i

i . So we can prove
the validity of tag T as follows:

PK{(α,β) : T = gα+βR
3 ∧ C = PedCom(α) ∧ F3� = PedCom(β)}

2. M and U proceed exactly as before.
As in System One, using the Fiat-Shamir heuristic we turn these multiple

proofs of knowledge into one signature, secure in the random-oracle model.

The Deposit protocol and VerifyGuilt algorithm follow the same outline as System
One. During deposit, the bank may store only (S,R,T ) in database L to obtain
all desired functionality – except the ability to convince a third party of anything,
such as a double-spender’s identity or which coins belong to him. In the Identify
protocol, the proof of guilt ΠG will additionally include the part of the user’s
secret key recovered as gu

3 .

Trace(ζ, S, pkU ,ΠG,D, 2�): Parse ΠG as (dk , π1, π2) and pkU as (ekU , vkU ). The
bank checks that e(g3, dk) = ekU ; if not, it aborts. Otherwise the bank searches
its database D, generated during the withdrawal protocol, for verifiable encryp-
tions tagged with the public key pkU . For each matching entry (pkU ,Q,σ), B
does the following: (1) runs the Camenisch-Damg̊ard decryption algorithm on Q
with dk to recover the value s; and (2) then for i = 0 to 2� − 1, outputs a serial
number Si = fDY

s (i) and a proof of ownership Πi = (Q,σ, dk , i).

VerifyOwnership(ζ, S,Π, pkU , 2�): Parse Π as (Q,σ, dk , i). Check that σ is pkU ’s
signature on Q and that i is in the range [0, . . . , 2� − 1]. Next, verify that dk is
pkU ’s decryption key by checking that e(g3, dk) = ekU . Finally, run the verifiable
decryption algorithm on Q with dk to recover s′ and verify that S = fDY

s′ (i). If
all checks pass, the algorithm accepts, otherwise, it rejects.

Efficiency Discussion of System Two. In Withdraw, the number of communi-
cation rounds does not change from System One, but one of the multi-base
exponentiations will involve 3	 bases and hence its computation will take longer.
Let us discuss the computational load of the verifiable encryption. For a cheating
probability of at most 2−k, the user must additionally compute k exps and 2k
encryptions with the bilinear El Gamal scheme. To verify, the bank also must
perform k exps but only k encryptions. Upon recovery of the double-spender’s
secret key, the bank needs to perform at most k decryptions and k exponentia-
tions. Furthermore, the bank needs to compute all the 2� serial numbers each of
which takes one exponentiation.

In Spend, the user must compute a total of 7 + 9	 and 17 + 21	 multi-base
exponentiations for the commitments and the signature proof, respectively. The
merchant and the bank also need to perform 17+21	 multi-base exponentiations.
For each of these, there is one multi-base exponentiation with 3	 exponents while
all the others involve two to four bases.
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Theorem 2. System Two supports the algorithms (BKeygen,UKeygen, Withdraw,
Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership) and guarantees bal-
ance, identification of double-spenders, tracing of double-spenders, anonymity of
users, and weak and strong exculpability under the Strong RSA, y-DDHI, and
SF-DDH assumptions in the random oracle model.

Proof of Theorem 2 appears in the full version of this paper [13]. Random
oracles can be removed as discussed in System One.
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Abstract. We consider secure multi-party computation in the asyn-
chronous model and present an efficient protocol with optimal resilience.
For n parties, up to t < n/3 of them being corrupted, and security
parameter κ, a circuit with c gates can be securely computed with com-
munication complexity O(cn3κ) bits. In contrast to all previous asyn-
chronous protocols with optimal resilience, our protocol requires access
to an expensive broadcast primitive only O(n) times — independently of
the size c of the circuit. This results in a practical protocol with a very
low communication overhead.

One major drawback of a purely asynchronous network is that the
inputs of up to t honest parties cannot be considered for the evaluation
of the circuit. Waiting for all inputs could take infinitely long when the
missing inputs belong to corrupted parties. Our protocol can easily be
extended to a hybrid model, in which we have one round of synchronicity
at the end of the input stage, but are fully asynchronous afterwards. In
this model, our protocol allows to evaluate the circuit on the inputs of
every honest party.

1 Introduction

Secure multi-party computation. The goal of secure multi-party compu-
tation (MPC) is to allow a set of n players to evaluate an agreed function of
their inputs in a secure way, where security means that an adversary corrupting
some of the players cannot achieve more than controlling the inputs and outputs
of these players. In particular, the adversary does not learn the inputs of the
uncorrupted players, and furthermore, she cannot influence the outputs of the
uncorrupted players except by selecting the inputs of the corrupted players.
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We consider a static active t-adversary who can corrupt up to t of the players
and take full control over them. Furthermore, we focus on asynchronous commu-
nication, i.e., the messages in the network can be delayed for an arbitrary amount
of time (but eventually, all messages are delivered). As a worst-case assumption,
we give the ability of controlling the delay of messages to the adversary.

Asynchronous communication models real-world networks (like the Internet)
much better than synchronous communication. However, it turns out that MPC
protocols for asynchronous networks are significantly more involved than their
synchronous counterparts. One reason for this is that in an asynchronous net-
work, when a player does not receive an expected message, he cannot distinguish
whether the sender is corrupted and did not send the message, or the message was
sent but delayed in the network. This implies also that in a fully asynchronous
setting it is impossible to consider the inputs of all uncorrupted players when
evaluating the function. The inputs of up to t (potentially honest) players have
to be ignored, because waiting for them could turn out to be endless [Bec54].

History and related work. The MPC problem was first proposed by
Yao [Yao82] and solved by Goldreich, Micali, and Wigderson [GMW87] for
computationally bounded adversaries and by Ben-Or, Goldwasser, and Wigder-
son [BGW88] and independently by Chaum, Crépeau, and Damg̊ard [CCD88]
for computationally unbounded adversaries. All these protocols considered a
synchronous network with a global clock. The first MPC protocol for the asyn-
chronous model (with unconditional security) was proposed by Ben-Or, Canetti,
and Goldreich [BCG93]. Extensions and improvements, still in the uncondi-
tional model, were proposed in [BKR94, SR00, PSR02]. A great overview of asyn-
chronous MPC with unconditional security is given in [Can95].

The most efficient asynchronous protocols up to date are the ones of Sri-
nathan and Rangan [SR00] and of Prabhu, Srinathan and Rangan [PSR02]. The
former protocol requires Ω(n2) invocations to the broadcast primitive for every
multiplication, which makes the protocol very inefficient when broadcast is re-
alized with some asynchronous broadcast protocol. The latter protocol is rather
efficient; it requires Ω(n4κ) bits of communication per multiplication. However,
it tolerates only t < n/4 corruptions, which is non-optimal.

Contributions. We present the first asynchronous MPC protocol for the cryp-
tographic model. The protocol is secure with respect to an active adversary
corrupting up to t < n/3 players; this is optimal in an asynchronous network.

The main achievement of the new protocol is its efficiency: Once the in-
puts are distributed, the protocol requires O(cMn3κ) bits of communication to
evaluate a circuit with cM multiplication gates and with security parameter κ.
This is the same communication complexity that is required by the most effi-
cient known protocol for the synchronous model [CDN01], and improves on the
communication complexity of the most efficient optimally-secure asynchronous
MPC protocol [SR00] by a factor of Ω(n). In contrast to both the protocols of
[CDN01] and [SR00], our protocol uses broadcast only in a very limited manner:
the number of broadcast invocations is independent of the size of the circuit. This
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nice property is also achieved in [PSR02], but this protocol is non-optimal (it
tolerates only t < n/4) and requires Ω(n) times more communication than ours.

In an asynchronous MPC, the agreed function can be evaluated only on
a subset of the inputs, i.e., some (potentially honest) player cannot provide
their input into the computation. However, the presented protocol can easily be
extended to consider the input of each (honest) party, at the cost of one round
of synchronization required at the end of the input stage.

2 Preliminaries, Notation and Tools

2.1 Formal Model

We use the model of security of asynchronous protocols from [Can01]. Formally
our model for running a protocol will be the hybrid model with a functionality
for distributing some initial cryptographic keys between the parties using some
function init. The ideal functionality that we wish to realize is given by a circuit
Circ, or more precisely a family of circuits. Namely, the functionality allows the
adversary to specify a set of at least n − t parties, W ⊆ [n] (where [n] denotes
the set {1, . . . , n}), which are to supply the inputs to the computation. The
circuit to be computed, Circ = Circ(W ), is then uniquely defined by the subset
of parties providing the inputs. The informal proofs in this extended abstract do
not require familiarity with specific details of the model in [Can01], and below
we only recall the needed specificities.

Asynchronous protocols. An n-player protocol is a tuple π = (P1, . . . , Pn,
init), where each Pi is a probabilistic interactive Turing machine, and init is an
initialization function, used for the usual set-up tasks (initialize the players, set
up cryptographic keys, etc.). The parties (players) communicate over an asyn-
chronous network, in which the delay between sending and delivery of a mes-
sage is unbounded. More precisely, when a party sends a message, this message is
added to the set of messages already sent but not yet delivered, Msg = {(i, j,m)},
where (i, j,m) denotes a message m from Pi to Pj . The delivery of the messages
is scheduled by the adversary (see below).

We assume that the function to be computed is given as a circuit consisting
of input gates augmented by the party to supply the input, linear gates and
multiplication gates, and output gates augmented by the party to see the output,
all over some ringM.

Adversary. We consider a polynomially bounded adversary, and our construc-
tions are parametrized by a security parameter κ. The adversary controls the de-
livery of messages and can corrupt up to t parties. A corrupted party is under full
control of the adversary, which sees all incoming messages, and determines all out-
going messages. The adversary schedules the delivery of the messages arbitrarily,
by picking a message (i, j,m) ∈ Msg and delivering it to the recipient. The ad-
versary doesn’t see the contents of messages exchanged between honest (i.e., not
corrupted) parties, and any message from an honest party to an honest party is
eventually delivered. In most cases we require that t < n/3, but will sometimes
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consider other thresholds. The set of parties to be corrupted is specified by the
adversary before the execution of the protocol, i.e., we consider static security.

Execution of a protocol. Before the protocol starts, an initialization
function init is evaluated on the security parameter 1κ and on random input
r ∈ {0, 1}∗, to generate a tuple (sv1, . . . , svn,pv) = init(κ, r) of secret values svi

and a public value pv. Each party Pi is initialized with (1κ, svi,pv). At the begin-
ning of the protocol execution, every party Pi receives its input value xi from the
environment, and produces some initial messages (i, ·, ·) which are added to the
set Msg. The adversary is given the public value pv, the values (xj , svj) for each
corrupted party Pj , and the control over the set Msg. Subsequently the protocol
is executed in a sequence of activations. In each activation the adversary picks a
message (i, j,m) ∈ Msg and delivers it to Pj . Upon delivery of a message, party
Pj performs some computation based on its current state, updates its state and
produces some messages of the form (j, ·, ·), which are added to the set Msg.
In some activation the parties can produce the output to the environment and
terminate. The adversary determines the inputs xi and all messages of corrupted
parties. The adversary and the environment can communicate with each other.

Security. The security of a protocol is defined relative to an ideal evaluation
of the circuit by requiring that for any adversary attacking the execution of the
protocol there exists a simulator which can simulate the attack of the adversary
to any environment given only an ideal process for evaluating the circuit. In the
ideal process the simulator has very restricted capabilities: It sees the inputs
of the corrupted parties. Then it specifies a subset W ⊆ [n] of the parties to
be the input providers, under the restriction that |W | ≥ n − t. The set W is
used to pick the circuit Circ = Circ(W ) to be evaluated. The input gates of
Circ are assigned the inputs of the corresponding parties (the adversary specifies
the inputs of the corrupted parties), then Circ is evaluated and the outputs of
the corrupted parties are shown to the simulator. Given these capabilities the
simulator must then simulate to the environment the entire view of an execution
of the protocol, including the messages sent and the possible communication
between the environment and the adversary.

In the following subsections we briefly describe cryptographic tools needed
in our constructions, and introduce a notation for their use in the rest of the
paper.

2.2 Homomorphic Public-Key Encryption with Threshold
Decryption

We assume the existence of a semantically secure probabilistic public-key en-
cryption scheme, which also is homomorphic and enables threshold decryption:

Encryption and decryption. For an encryption key e and a decryption
key d, let Ee :M×R → C denote the encryption function mapping (plaintext,
randomness) pair (c, r) ∈ M×R to a ciphertext C ∈ C, and let Dd : C → M
denote the corresponding decryption function. We require thatM is a ring ZM

for some M > 1, and we use · to denote multiplication in M. We often use
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capital letters to denote an encryption of the corresponding lower-case letter.
When keys are understood, we write E and D instead of Ee resp. Dd, and we
frequently omit the explicit mention of the randomness in encryption function E .

Homomorphic property. We require that there exist (efficiently computable)
binary operations +, ∗, and ⊕, such that (M,+), (R, ∗), and (C,⊕) are algebraic
groups, and that Ee is a group homomorphism, i.e. that

E (a, ra)⊕ E (b, rb) = E (a+ b, ra ∗ rb) .

We use A - B to denote A ⊕ (−B), where −B denotes the inverse of B in the
group C. For an integer a and B ∈ C we use a · B to denote the sum of B with
itself a times in C.
Ciphertext re-randomization. For C ∈ C and r ∈ R we let Re(C, r) =
C⊕Ee(0, r). We use C ′ = Re(C) to denote C ′ = Re(C, r) for uniformly random
r ∈ R. We call C ′ = Re(C) a re-randomization of C. Note that C ′ is a uniformly
random encryption of Dd(C).

Threshold decryption. We require that there exists a threshold function
sharing of Dd among n parties, i.e., for some construction threshold 1 < tD ≤ n
there exists a sharing (d1, . . . , dn) of the decryption key d (where di is intended
for party Pi), such that given decryption shares ci = Di,di

(C) for tD distinct
decryption-key shares di, it is possible to efficiently compute c such that c =
Dd(C). Furthermore, the encryption scheme should be still semantically secure
against chosen plaintext attack when the adversary is given tD − 1 decryption-
key shares. Finally, we require that given a ciphertext C, plaintext c = Dd(C),
and a set of tD − 1 decryption-key shares {di}, it is possible to compute all n
decryption shares cj = Dj,dj

(C), j = 1, . . . , n. We will always have tD = t + 1.
When keys are understood, we write Di(C) to denote the function computing
decryption share of party Pi for ciphertext C, and c = D(C, {ci}) to denote the
process of combining the decryption shares {ci} to a plaintext c.

Robustness. To efficiently protect against cheating servers we require that
there exists an efficient two-party zero-knowledge protocol for proving the cor-
rectness of a decryption share ci = Di,di

(C) given (e,C, ci) as instance, and
given (i, di) and randomness r as witness. We require also that there exists an
efficient two-party zero-knowledge protocol for proving the knowledge of a plain-
text, given (e,C) as instance and the corresponding plaintext c and randomness
r as witness. We require that these protocols communicate O(κ) bits per proof.

2.3 Digital Signatures

We assume the existence of a digital signature scheme unforgeable against an
adaptive chosen message attack. For a signing key s and a verifying key v, let
Signs : {0, 1}∗ → {0, 1}κ denote the signing function, and let Verv : {0, 1}∗ ×
{0, 1}κ → {0, 1} denote the verifying function, where Verv(m,σ) = 1 indi-
cates that σ is a valid signature on m. We write Signi/Veri to denote the sign-
ing/verification operation of party Pi.
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2.4 Threshold Signatures

We assume the existence of a threshold signature scheme unforgeable against
an adaptive chosen message attack. For a signing key s and a verifying key v,
let Ss : {0, 1}∗ → {0, 1}κ denote the signing function, and let Vv : {0, 1}∗ ×
{0, 1}κ → {0, 1} denote the verifying function, where Vv(m,σ) = 1 indicates
that σ is a valid signature on m.
Threshold signing. We require that there exists a threshold function sharing
of Ss among n parties, i.e., for some signing threshold 1 < tS ≤ n there exists a
sharing (s1, . . . , sn) of the signing key s (where si is intended for party Pi), such
that given signature shares σi = Si,si

(m) for tS distinct signing-key shares si,
it is possible to efficiently compute σ such that Vv(m,σ) = 1. Furthermore, the
threshold signature scheme should be still unforgeable against adaptive chosen
message attack when the adversary is given tS − 1 signing-key shares. Finally,
we require that given a signature σ on m, and tS − 1 signing-key shares {si},
it is possible to compute all n signature shares σj = Sj,sj

(m), j = 1, . . . , n.
We will always have tS = n− t. When keys are understood, we write Si(m) to
denote the function computing signature share of party Pi for message m, and
σ = S (m, {σi}) to denote the process of combining the signature shares {σi} to
a signature σ.
Robust threshold signing. To efficiently protect against cheating servers
we require that there exists an efficient two-party zero-knowledge protocol for
proving the correctness of a signature share σi = Si,si

(m), given (v,m,σi) as
instance and given (i, si) as witness. We require that this protocol communicates
O(κ) bits per proof.

2.5 Byzantine Agreement

We assume the existence of a Byzantine agreement (BA) protocol, i.e., a protocol
with the following properties: The input of party Pi is a bit vi ∈ {0, 1} and the
output of the BA is a bit w ∈ {0, 1}. If all honest parties enter the BA, then the
BA eventually terminates. Furthermore, if the BA terminates with output w,
then some honest party entered the BA with input vi = w. In particular, if all
honest parties have the same input vi = v, then the output of the BA is w = v.

2.6 Cryptographic Assumptions and Instantiations of Tools

The security of our constructions is based on decisional composite residuosity
assumption (DCRA) [Pai99]. Alternatively, it could be based also on QRA and
strong RSA. We stress, that our constructions are in the plain model. In partic-
ular, our constructions do not make use of random oracles.
Homomorphic encryption with threshold decryption. An example of
a scheme satisfying all required properties is Paillier’s cryptosystem [Pai99] en-
hanced by threshold decryption as in [FPS00, DJ01]. In this scheme M = ZN

for an RSA modulus N . Another example can be based on the QR assumption
and the strong RSA assumption. [CDN01].
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Digital signatures. As our digital signature scheme we use standard RSA
signatures [RSA78].
Threshold signatures. As an example we can use the threshold signa-
ture scheme by Shoup [Sho00]. The security of the threshold signature scheme
in [Sho00] is based on the assumption that standard RSA signatures are secure.
As presented in [Sho00] the zero-knowledge proofs are non-interactive but for
the random-oracle model. The protocol can be modified to be secure in the plain
(random oracle devoid) model by using interactive proofs (cf. [Nie02]).
Byzantine agreement. In our protocols we employ the efficient Byzantine
agreement protocol of Cachin et al. [CKS00], which has expected constant round
complexity, and expected bit complexity of O(n2κ). As presented in [CKS00]
the security proof of the protocol needs the random-oracle methodology (for the
above mentioned threshold signature scheme). This protocol also can be modified
to be secure in the plain model [Nie02].

3 The New Protocol

Our protocol follows the paradigm of secure multi-party computation based on a
threshold homomorphic encryption scheme, as introduced by Franklin and Haber
[FH96], and made robust by Cramer, Damg̊ard and Nielsen [CDN01]. However,
both protocols use synchrony in an essential manner.
A high-level overview. The protocol proceeds in three stages, an input
stage, an evaluation stage, and a termination stage. In the following, we briefly
summarize the goal of each stage:

– Input stage: Every player provides an encryption of his input to every other
player, and the players jointly agree on a subset of players who have correctly
provided their inputs.

– Evaluation stage: Every player independently evaluates the circuit on a gate-
by-gate basis, with help of the other players. The circuit consists of linear
gates, multiplication gates, and output gates. The circuit may depend on the
selected subset of players that have provided input.

– Termination stage: As soon as a player has completed the circuit evaluation,
he moves into the termination stage, where the players jointly agree that the
circuit evaluation is completed, every player has received (or will eventually
receive) the output(s), and hence every player who is still in the evaluation
stage can safely abort it.

By having every player evaluate the circuit on his own, we bypass the inherent
synchronicity problems of the asynchronous model. We denote the player that
evaluates the circuit as the king, and all other players (who support the king) the
slaves. Note that every player acts (in parallel) once as king, and n times as slave,
once for every king. The kings are not synchronized among each other; it can
happen that one king has almost completed the evaluation of the circuit, while
another king is still at the very beginning. However, each slave is synchronized
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with his king. As soon as the first king completes the evaluation and provably
reveals all outputs, all other kings (and their slaves) can safely truncate their
own evaluation.

In order to achieve robustness, we must require every party to prove (in
zero-knowledge) the correctness of essentially every value she provides during
the protocol execution. These proofs could easily be constructed in the random-
oracle model (by using Fiat-Shamir heuristics), but this would be at the costs of
a non-standard model. We therefore follow another approach: A party who is to
prove some claim, proves this claim interactively to every other party. The verify-
ing party then certifies that she has correctly verified the claim. Once the prover
has collected enough such certificates, she can convince any third party non-
interactively of the validity of the claim. Technically, we use threshold signatures
for the certificates, which allows the prover to compute one short certificate that
proves that tS parties have verified his proof (recall that tS denotes the threshold
of the threshold signature scheme, and we set tS = n− t). Formally, we will say
that “a party Pi constructs and sends a proof πi of <<some claim >>”, denoted as
πi = proof(<<some claim >>), when we mean that Pi bilaterally proves the claim in
zero-knowledge to every party Pj , who then, upon successful completion of the
proof, sends to Pi a signature share Sj(<<some claim >>). After obtaining tS correct
signature shares1 {πi,j}j∈I , party Pi computes πi as S (<<some claim >>, {πi,j}j∈I).
Since this construction is standard, we omit the details from the description of
the protocols. Naturally, we do include the corresponding subprotocols and their
bit complexities in the analysis of the proposed solution (cf. Section 3.8).

Finally we note that we make use of threshold signatures also explicitly, as
specified in the descriptions of the protocols. Their use there has similar purpose,
namely as certificates for the validity of certain claims.

3.1 Main Protocol

The main protocol first invokes the input stage, then the evaluation stage, and
finally the termination stage. At the end of the input stage, the circuit Circ is
determined by the set of parties that provide input. In the evaluation stage,
every party starts one instance of the king protocol, and n instances of the slave
protocol — one for every king.

In order to precisely describe the new protocol, we first formally model the
circuit to be computed, and then give the invariant that is satisfied during the
whole computation. For the clarity of presentation we assume in the following
that every party provides at most one input value and that there is only one
final output value to be disclosed to all parties (i.e., the final output is to be
public). This is without loss of generality for the case with public outputs, and
protocols for the general case with multiple input/output values can be derived
by straightforward modifications. However, the issue of providing private outputs
is more involved, and we discuss it in Section 4.1.

1 The correctness of a signature share is proved to Pi by Pj , using another efficient
zero-knowledge protocol (cf. Sect. 2.4).
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The circuit. We assume that the function to be computed is given as a circuit
Circ over the plaintext space M of the homomorphic encryption scheme in use.
The circuit is a set of labeled gates, where each label is a unique bit-string
G ∈ {0, 1}∗. We use G(Circ) to denote the set of all labels of the circuit Circ. In
the following we let v : G(Circ) →M∪ {⊥} be a map from the labels into the
the plaintext space, where v(G) denotes the value of the gate G. Each gate is
represented by a tuple (G, . . .), and can have one of the following types:

input gate: (G), consisting only of its label G = (Pi, input), where v(G) is equal
to xi, the input value provided by player Pi.

linear gate: (G, linear, a0, a1, G1, . . . , al, Gl), where l ≥ 0, a0, . . . , al ∈ M are
constants, and v(G) = a0 +

∑l
j=1 aj · v(Gj).

multiplication gate: (G,mul, G1, G2), where v(G) = v(G1) · v(G2).
output gate: (G, output, G′), where v(G) = v(G′) is the output value of the cir-

cuit.

Correctness invariant. Throughout the computation each party Pi main-
tains a data structure containing the views of each party Pj on the intermediate
values in the circuit. More precisely, Pi holds a dictionary Γi, which for each
party Pj maps labels G to encryptions computed by the King Pj ,

Γi : [n]×G(Circ)→ C ∪ {⊥} ,

where initially Γi(j,G) =⊥ for all labels and all j ∈ [n]. If Γi(j,G) = C 	=⊥,
then from Pi’s point of view gate G was completed by Pj , and C is a ciphertext
of the homomorphic encryption scheme of the value v(G). We say that C is the
encryption of v(G) reported by Pj to Pi, and that Pi has accepted C from Pj .

The protocol guarantees, that if an honest party Pi accepts a ciphertext C
reported by Pj , then C is an encryption of a correct value for gate G. Moreover,
any two honest parties who accept an encryption of any party Pl for a gate G
agree on the encryption. Formally, we have the following definition.

Definition 1 (Correctness Invariant). The following properties hold at any
point in the protocol:

1. (Agreement on circuit) There exists a set W ⊆ [n] such that |W | ≥ n − t
and such that for all honest parties having defined the circuit Circi it holds
that Circi = Circ(W ).

2. (Agreement on input encryptions) For all pairs of honest parties Pi, Pj, and
all k, l,m ∈W it holds that if Γi(k, (Pl, input)) 	=⊥ and Γj(m, (Pl, input)) 	=⊥,
then

Γi(k, (Pl, input)) = Γj(m, (Pl, input)) := Xl .

Furthermore, if Pl is honest then D(Xl) is the initial input xl of Pl.
3. (Correct gate encryption) For every honest party Pi, if for any G ∈ Circ we

have that Γi(i, G) = C 	=⊥, then D(C) is identical to the value of gate G
obtained by decrypting the input encryptions held by Pi and evaluating the
circuit on the plaintexts.
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4. (Agreement on encryptions of gates by same king) For every two honest
parties Pi and Pj, for any l ∈ [n] and any G ∈ Circ, if Γi(l, G) = C 	=⊥ and
Γj(l, G) = C ′ 	=⊥, then C = C ′.

This invariant is propagated from the initial input stage until the output stage
is reached. Hence, a threshold decryption of the encrypted output value is guar-
anteed to yield correct computation results.
The basis of the correctness invariant. The correctness invariant is
established in the input stage, which determines the values of all input gates. Due
to the security properties of the input-stage protocol, these values are guaranteed
to be correct in the sense that the each party providing input knows the actual
value hidden in the encryption, and that this value is a valid input to the function
to be computed.

3.2 Input Stage

The goal of the input stage is to define an encryption of the input of each party.
To ensure independence of the inputs, the parties are required to prove plaintext
knowledge for their encryptions. In a synchronous network we could simply let
the parties broadcast their encryptions. However, in an asynchronous setting
with an active adversary we cannot guarantee that each party contributes an
input value, since it is impossible to distinguish between an honest slow party
and a corrupted party. Therefore a protocol is used which selects (n−t) so-called
input providers.

First, each party Pi encrypts its input value xi to obtain a ciphertext Xi =
E (xi), and constructs a proof πi = proof(<<Pi knows the plaintext in Xi>>) (using
bilateral zero-knowledge proofs and threshold signatures), which serves as a cer-
tificate that Pi knows the encrypted value, and that Xi is Pi’s unique possible
input encryption to the circuit. Afterwards Pi distributes (Xi, π) to all parties,
and then constructs and distributes another certificate, a certificate of distribu-
tion certi, stating that Pi has distributed (Xi, πi) to at least n− t parties (recall
that n− t is the threshold of the signature scheme).

When a party collects n− t certificates of distributions it knows that at least
n−t parties have their certified inputs distributed to at least n−t parties. So, at
least n− t parties had its certified input distributed to at least (n− t)− t ≥ t+1
honest parties. So, if all honest parties echo the certified inputs they saw and
collect n − t echoes, then all honest parties will end up holding the certified
input of the n− t parties which had their certified inputs distributed to at least
t + 1 honest parties. These n− t parties will eventually be the input providers.
To determine who they are, n Byzantine agreements are run. The protocol for
selecting input providers is given in more detail in Figure 1.

3.3 Computing Linear Gates

Due to the homomorphic property of encryption linear gates can be computed
locally, without interaction. That is, if a party Pi has accepted Pj ’s encryptions
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To define an initial set of inputs, Pi with initial input xi ∈ M proceeds as follows:
Initialize empty sets Ai, Ai, Bi, Bi, Ci and execute the following rules concurrently:

Double Distribution:

1. compute Xi := E (xi) and πi := proof(<<Pi knows the plaintext in Xi >>).

2. send (Xi, πi) to all parties.

3. collect n − t signature shares {σj} on <<Xi is Pi’s input >>

(i.e., σj = Sj(<<Xi is Pi’s input >>))

4. compute certi = S (<<Xi is Pi’s input >>, {σj}); send (Xi, certi) to all parties.

5. collect n − t signature shares {σ′
j} on <<I hold Pi’s input >>

6. compute cert′i = S (<<I hold Pi’s input >>, {σ′
j}); send cert′i to all parties.

Grant Certificate of Uniqueness:

on the first msg. (Xj , πj) from Pj , with V (<<Pj knows the plaintext in Xj >>, πj)=1,
return σi = Si(<<Xj is Pj’s input >>) to Pj .

Grant Certificate of Distribution:

on the first message (Xj , certj) from Pj , with V (<<Xj is Pj’s input >>, certj) = 1,
add j to Ai, add (Xj , certj) to Ai, and return σ′

i := Si(<<I hold Pj’s input >>) to Pj .

Echo Certificate of Distribution:

on a message cert′j , where V (<<I hold Pj’s input >>, cert′j) = 1 and j 	∈ Ci,
add j to Ci, and send cert′j to all parties.

Select Input Providers:

When |Ci| ≥ n − t, stop executing the above rules and proceed as follows:
1. send (Ai, Ai) to all parties.

2. collect a set {(Aj , Aj)}j∈J of (n − t) incoming, well-formed (Aj , Aj).

3. let Bi :=
⋃

j∈J Aj and Bi :=
⋃

j∈J Aj

4. enter n Byzantine Agreements (BAs) with inputs v1, . . . , vn ∈ {0, 1},
where vj = 1 iff j ∈ Bi.

5. let w1, . . . , wn denote the outputs of the BAs,
and let W = {j ∈ {1, . . . , n}|wj = 1}.

6. use W to generate a circuit Circ = Circ(W ).

7. for each j ∈ Bi ∩ W , send (Xj , certj) ∈ Bi to all parties.

8. for each j ∈W wait to receive (Xj , certj) with V (<<Xj is Pj’s input >>, certj)=1.

9. for all j ∈ W and l ∈ {1, . . . , n}, let Γi(l, (Pj , input)) = Xj .

Fig. 1. The input stage code for Pi

of inputs to a linear gate (G, linear, a0, G1, a1, . . . , Gl, al), i.e. when Γi(j,Gu) 	=⊥,
for u = 1 . . . l, then Pi computes locally Γi(j,G) := A0⊕

(⊕l
u=1(aj · Γi(j,Gu))

)
,

where A0 is a “dummy” encryption of a0, computed using a publicly-known, fixed
random string.
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Wait until input stage is completed, resulting in a circuit Circ and an initialized dictio-
nary Γk. Then concurrently execute for each linear, multiplication, or output gate:

linear gate (G, linear, a0, a1, G1, . . . , al, Gl):

1. wait until Γk(k, Gu) 	=⊥, for all u = 1 . . . l.

2. compute Γk(k, G) := A0 ⊕
(⊕l

u=1(au · Γk(k, Gu))
)

.

multiplication gate (G, mul, G1, G2):

1. wait until Γk(k, G1) = C1 	=⊥ and Γk(k, G2) = C2 	=⊥
2. generate a randomizer (R, U, cert) for G, and send it to all parties:

(a) collect a set SG := {(Ri, Ui, σi, πi)}i∈IG , with |IG| ≥ t + 1, where
σi = Signi(<<(Ri, Ui) : part of Pk’s randomizer for G>>), and
πi = proofi(<<Pi knows ri in Ri, and Ui is a randomization of riC1 >>)

(b) send SG to all parties

(c) compute R :=
⊕

i∈IG
Ri, and U :=

⊕
i∈IG

Ui

(d) collect a set cert := {certi}i∈I′
G

, with |I ′
G| ≥ tS, where

certi = Si(<<(R, U) : Pk’s randomizer for G>>)

3. collect a set VG = {(zi, φi)}i∈I′′
G

, with |I ′′
G| ≥ tD, where each zi is a decryption

share of Pi for Z = C2 ⊕ R, and φi is the corresponding validity proof

4. send VG to all parties

5. decrypt z := D(Z, VG) and compute Γk(k, G) := (z · C1) � U

output gate (G, output, G′):

1. wait until Γk(k, G′) = C 	=⊥
2. collect a set {(ci, �i)} of tD decryption shares for C,

with corresponding validity proofs �i

3. compute and output c := D(C, {ci}); mark G as decrypted

Fig. 2. The code for king Pk for evaluating the circuit

3.4 Computing Multiplication Gates

Computation of multiplication gates is more involved. Each king Pk leads the
computation of the encrypted product in his copy of the circuit, that is, given a
gate (G,mul, G1, G2) such that Γk(k,G)=⊥, Γk(k,G1)=C1, and Γk(k,G2)=C2,
with C1,C2 	=⊥, the players proceed as follows. Let c1, c2 denote the values
hidden in the ciphertexts C1,C2, respectively. First a randomizer (R,U, cert)
is generated, where R is a threshold encryption of a random element r ∈ M
(unknown to the parties and the adversary), U = R(rC1), i.e., U is a random
threshold encryption of rc1, and cert is a certificate of the encryptions’ correct-
ness. Then Pk sends the randomizer to all parties, and waits until the parties
answer with decryption shares of the ciphertext Z = C2⊕R, which is an encryp-
tion of z = c2 + r. Once sufficiently many (i.e., at least tD) decryption shares
arrive, Pk sends them to all parties, which allows each Pi to decrypt z, and
compute an encryption of the product c1c2, using the homomorphic property of
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Wait until input stage is completed, resulting in a circuit Circ and an initialized dic-
tionary Γi. Then concurrently execute the following for each linear, multiplication, or
output gate:

linear gate (G, linear, a0, a1, G1, . . . , al, Gl) (only for i 	= k):

1. wait until Γi(k, Gu) 	=⊥, for all u = 1 . . . l.

2. compute Γi(k, G) := A0 ⊕
(⊕l

u=1(au · Γi(k, Gu))
)

.

multiplication gate (G, mul, G1, G2):

1. wait until Γi(k, G1) = C1 	=⊥ and Γi(k, G2) = C2 	=⊥
2. help to generate a randomizer (R, U, cert) for G:

(a) compute Ri = E (ri) and Ui = R(riC1) for a randomly picked ri ∈ M
compute σi := Signi(<<(Ri, Ui) : part of Pk’s randomizer for G>>)
construct a proof
πi := proofi(<<Pi knows ri in Ri, and Ui is a randomization of riC1 >>)

(b) send (Ri, Ui, σi, πi) to king Pk

(c) wait until received from Pk set
SG := {(Rl, Ul, σl, πl)}l∈IG , with |IG| ≥ t + 1

(d) compute R :=
⊕

i∈IG
Ri, and U :=

⊕
i∈IG

Ui

compute certi = Si(<<(R, U) : Pk’s randomizer for G>>)

(e) send certi to king Pk

3. wait until received (R, U, cert) from Pk,
with V (<<(R, U) : Pk’s randomizer for G>>, cert) = 1

4. compute zi, Pi’s decryption share for Z = C2⊕R, and φi = proof(<<zi is valid >>);
send (zi, φi) to Pk

5. wait until received VG from Pk, with |VG| ≥ t + 1

6. decrypt z := D(Z, VG) and compute Γi(k, G) := (z · C1) � U

output gate (G, output, G′):

1. wait until Γi(k, G′) = C 	=⊥
2. compute a decryption share ci := Di(C) and a proof �i = proof(<<ci is valid >>);

send (ci, �i) to Pk

Fig. 3. The code for slave Pi helping king Pk to evaluate the circuit

the encryption, and the fact that c1c2 = (c2 + r)c1 − rc1. That is, Pi computes
Γi(k,G) := (z · C1)- U .

3.5 Output Stage

When Pi notices that the computation of an output gate (G, output, G′) is com-
pleted by some king Pk (i.e. Γi(k,G) = C 	=⊥), but the gate has not been
decrypted so far, then Pi sends a decryption share ci of C to Pk along with a
proof that the decryption share is correct. Then Pk collects enough decryption
shares, and computes the value of the output gate.
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During the protocol each party executes concurrently the following rules:

rule 1:
1. wait until the output gate G ∈ G(C) is marked decrypted

2. vote by sending the value of the gate to all parties

rule 2:
1. wait until receiving t + 1 identical votes for the value of the output gate

2. adopt the value receiving t + 1 votes

3. mark the output gate G ∈ G(C) as decrypted

rule 3:
1. wait until receiving n − t identical votes for the value of the output gate

2. terminate

Fig. 4. The code for terminating Pi

3.6 Termination

As described above each king Pk will eventually learn the value of the output
gate. This however requires that each slave Pi keeps running after king Pk learned
the output values. To allow to also terminate the slaves, the parties execute a
termination protocol. When king Pk learns the output of the circuit it outputs
it and echos the result to all parties as its vote for the output (and does not
yet terminate slave Pk). Since all honest parties compute identical outputs and
there are at most t corrupted parties, if a party receives t+ 1 identical votes for
some output value it can safely adopt this value as its own output, terminate
its own king, and then echo the adopted output value. When a party receives
(n − t) identical votes for the output value it terminates the protocol. This
is essentially a Bracha broadcast of the output value and allows all parties to
eventually terminate.

3.7 Security Analysis

Our protocol can be proved secure in the model described in Section 2. A formal
proof that the protocol can be simulated can be given along the lines of the proof
in [CDN01], using the following helping lemmas.

Lemma 1 (The correctness invariant). The Properties 1, 2, 3 and 4 of
Definition 1 hold at any point in the protocol if there are at most t < n/3
corrupted parties.

Lemma 2 (Termination). If all honest parties start running the protocol and
there are at most t < n/3 corrupted parties, then all honest parties will eventu-
ally terminate the protocol.

The proofs of the lemmas are given in the full version of the paper [HNP04]. Here
we discuss how the lemmas allow to give a proof along the lines of [CDN01].
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By property 1 a set of at least n− t parties have their inputs considered, as
required by the model in Section 2. Furthermore, by Property 3, the output vi

obtained by Pi when decrypting the output ciphertext in Step 3 in output gate
in Fig. 2 will be correctly defined from the plaintexts of the input ciphertexts
held by Pi. Since by Property 2 the parties agree on the input ciphertexts, all
honest parties Pi will agree on the output vi in Step 3 in output gate. This
clearly implies that all honest parties terminate the protocol in Fig. 4 with the
output being the common value v, as no other value can get t + 1 votes when
there are at most t corrupted parties. Since v is the result of evaluating the
circuit on the plaintexts of the input ciphertexts and, by Property 2, the input
ciphertext Xl of honest party Pl contains the correct input xl, the result v can
indeed be obtained by restricting the set of input providers to a set of size at
least n− t and then changing only the inputs of the corrupted parties.

The privacy of the protocol (formally defined by the simulator only being
given the inputs of the corrupted parties in the simulation) mainly follows from
the fact that all inputs are encrypted using a semantic secure encryption scheme
and that all proofs are zero-knowledge. So, the only knowledge leaked about the
inputs of the honest parties is through decryptions of ciphertexts.

The decryptions take place only in Step 4 in multiplication in Fig. 3 and
in Step 2 in output gate in Fig. 3. By the correctness of the protocol the
knowledge leaked in Step 2 in output gate is the result of the computation,
which is allowed to leak by the model. So it remains to argue that no knowledge is
leaked in Step 4 in multiplication. To see this, observe that the value revealed
by the decryption in Step 4 is z = c2 +

∑
i∈IG

ri, which holds the potential
of leaking knowledge about c2 (which is potentially to be kept secret). Since
each term ri from an honest party is chosen uniformly at random and all ri

are chosen independently (this is the purpose of having all parties, in particular
the corrupted parties, prove plaintext knowledge of their ri in Step 2(a)), it is
sufficient to show that each revealed value z = c2 +

∑
i∈IG

ri contains at least
one honest value ri which did not enter another revealed value.

Observe first of all that since |IG| ≥ t+1, at least one ri came from an honest
party. Observe then that each of the randomizers ri are associated uniquely to
one (Pk, G) by the signature σi (issued in Step 2(a) and checked in Step 2(c)).
Therefore ri only enters values z = c2 +

∑
i∈IG

ri leaked in decryptions in Step
4 in multiplication for the specific (Pk, G) in consideration. It is therefore
sufficient to show that for each (Pk, G) there is only one value z = c2 +

∑
i∈IG

ri

for which knowledge is leaked. This follows from the uniqueness guaranteed
by the threshold tS = n − t of the threshold signatures. More precisely, as-
sume that for each king Pk and each gate G at most one value of the form
<<· : Pk’s randomizer for G>> is signed. I.e. there exists at most one value (R,U) for
which there exists cert such that V (<<(R,U) : Pk’s randomizer for G>>, cert) = 1
(this can be seen to be necessary for Property 4 to hold and thus follows from
Lemma 1). Since the honest parties agree on the gate encryptions of Pk (by
Property 4), this implies that there is at most one value Z = C2 ⊕ R for which
honest parties issue decryption shares in Step 4 for a given choice of (Pk, G).
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Therefore each value z = c2 +
∑

i∈IG
ri on which knowledge is leaked through

decryption shares from honest parties, at least one ri came from an honest party
and did not enter another value on which knowledge was leaked, as desired.

3.8 Efficiency Analysis

In this section we consider the communication complexity of the protocol. We
omit computational complexity from the analysis, since it is clearly polynomial,
and the bottleneck of distributed computing is in the communication overhead.
For completeness, we consider the case where each party can have more than one
input, and we denote by cI the total number of input gates. For clarity we use
K =n to denote the number of kings and S=n to denote the number of slaves.

In the protocol in Fig. 1, when each party has more than one input, Xi will
simply be the vector of input encryptions. Assuming that all encryptions, all
signature shares, all signatures and all pairwise proofs use communication O(κ)
and that the communication complexity of a Byzantine agreement is O(n2κ),
it can be seen using simple counting that the communication complexity of the
protocol in Fig. 1 is O(cIn2κ+ n3κ).

In king’s protocol (Fig. 2) the only values sent are the sets SG and VG. These
sets have sizeO(nκ) and are sent to all S slaves. This gives a communication com-
plexity of O(Snκ) each time a set is sent, or a total communication complexity
of O((cM + cO)Snκ) for running the protocol in Fig. 2, where cM is the number
of multiplication gates and cO is the number of output gates. This is done by all
K kings, yielding a total communication complexity of O((cM + cO)KSnκ).

In slave’s protocol (Fig. 3) the sending of the values in Steps 2(b), 2(e) and
4 of multiplication gate, and Step 2 of output gate all use O(κ) bits of
communication. Moreover, the constructions of the proofs in Steps 2(a) and 4
of multiplication gate, and in Step 2 of output gate takes O(nκ) bits of
communication, and thus are the dominating instructions. Each construction of
a proof is done at most once for each gate for each king being helped. This
yields a total of O((cM + cO)Knκ) for running the slave’s protocol. Since the
protocol is run by all S slaves, this yields a total communication complexity of
O((cM + cO)KSnκ).

It is easy to verify that the total communication complexity of the protocol
in Fig. 4 is O(cOn2κ).

Summing the above terms we get a communication complexity of O((cI +
cO)n2κ+ (cM + cO)KSnκ+ n3κ). Using K = S = n and assuming that cO ≥ 1,
this is O(cIn2κ+ (cM + cO)n3κ), as claimed.

4 Extensions and Applications

4.1 Computing Functions with Private Outputs

The description of the new protocol in Section 3 only considers public outputs,
i.e., every party learns the output(s) of the circuit. In the following, we present
an extension that allows for outputs that are delivered only to an authorized
party, say Pj .
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The intuition of the protocol is that the decryption shares are not sent to
the king, but rather directly to Pj . Every decryption share must go along with a
proof of validity. This proof must not be interactive with Pj (the parties cannot
wait for messages of Pj), and the proof must not be given to other parties (this
would violate the privacy of the output protocol). Therefore, we have every slave
Pi blind his decryption share ci with a random value ri, i.e., c′i = ci +ri, encrypt
ri with randomness ρi, i.e., Ri = E (ri, ρi), and prove interactively towards every
auxiliary player Pj knowledge of ri such that ri encrypts to Ri and c′i − ri is a
valid decryption share. Upon accepting the proof, every auxiliary player hands
a signature share for <<(c′i, Ri) is a good decryption share for slave Pi>> to Pi, who
then sends c′i, ri, ρi to Pj . Given this information from at least n− t players, Pj

picks the valid decryption shares and decrypts his private output.
We note that a similar technique has been recently used by Schoenmakers

and Tuyls [ST04].

4.2 A Hybrid Model: Asynchronous Network with Few
Synchronization Rounds

A fully asynchronous MPC protocol inherently cannot consider the input of ev-
ery honest party; once n− t inputs are ready, the protocol must start. This is a
serious drawback which makes the fully asynchronous model unusable for many
real-world applications. We show that with a single round of synchronization,
we can consider the input of every honest party. This model seems very reason-
able in real-world; the parties would wait for other parties to have their input
ready, and if not, use other means of communication (email, phone, fax, etc)
to synchronize. However, the MPC protocol itself should run asynchronously
to comply with the properties of existing networks, namely that the delay of
messages is hard to predict. Note that asynchronous protocols can be looked as
“best effort” protocols where the progress in the protocol is as fast as possible
with the available network, in contrast to synchronous protocols whose progress
is limited by the assumed worst-case delay of the network.

The necessary changes in the input protocol (cf. Fig. 1) are minimal: Every
player Pi moves to the last stage (Select Input Providers) only when either
|Ci| = n, or the synchronization round elapsed.

4.3 Non-robust Computations

In the proposed protocol, robustness is guaranteed by having each party act
as king, who evaluates the whole circuit on his own (with help of his slaves).
This means that the computation and communication overhead for achieving
robustness is a factor of n.

Goldwasser and Lindell have proposed a model for secure MPC in which
output delivery is not guaranteed [GL02], unless some a priori specified party
is honest. In this model, we can improve the communication complexity of our
protocol by a factor of n, simply be letting this designated party act as king, and
all other parties act as his slaves. We stress that the protocol still guarantees
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privacy and correctness of the computation, but termination (with output de-
livery) can only be guaranteed when the king is honest. This simplified protocol
achieves an overall communication complexity of O(cn2κ) for a circuit of size c
and a security parameter κ.

5 Conclusions

We have proposed a secure multi-party computation protocol which substantially
puts forward both theory and practice in this field. From a theoretical point of
view, the protocol is optimally resilient, fully asynchronous, and has an asymp-
totically lower communication complexity than any previous asynchronous MPC
protocol. Indeed, the protocol is as efficient as the most efficient known proto-
col for synchronous communication. Furthermore, the protocol requires very few
invocations of the broadcast primitive (independent of the size of the computed
circuit).

From a practical point of view, the new protocol is designed for real-world
networks with unknown message delay, allows every party to provide his input
under a very reasonable assumption (one round of synchronization), and achieves
best-possible resilience against cheating (up to a third of the parties may misbe-
have). Furthermore, the protocol is very efficient, the constant communication
overhead is minimal. The effective computation of the circuit takes less than
10n3κ bits of communication per multiplication, which makes the protocol ap-
plicable for reasonably sized circuits among small sets of parties. The key set-up
(for the threshold decryption and threshold signatures) is more communication-
intensive; however, this can be performed long in advance.

Acknowledgements. We would like to thank anonymous referees for helpful
comments.
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École normale supérieure,
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Abstract. In this paper we propose a novel cryptanalytic method
against multivariate schemes, which adapts differential cryptanalysis to
this setting. In multivariate quadratic systems, the differential of the
public key is a linear map and has invariants such as the dimension of
the kernel. Using linear algebra, the study of this invariant can be used
to gain information on the secret key. We successfully apply this new
method to break the original Matsumoto-Imai cryptosystem using prop-
erties of the differential, thus providing an alternative attack against this
scheme besides the attack devised by Patarin. Next, we present an at-
tack against a randomised variant of the Matsumoto-Imai cryptosystem,
called PMI. This scheme has recently been proposed by Ding, and ac-
cording to the author, it resists all previously known attacks. We believe
that differential cryptanalysis is a general and powerful method that can
give additional insight on most multivariate schemes proposed so far.

1 Introduction

The design of efficient and secure cryptosystems is a hard task. Many alternatives
to the traditional public key cryptosystems (RSA, ElGamal) have been proposed
so far but few of them are considered secure. An interesting line of research
is based on multivariate quadratic polynomials over a finite field. This line of
research has been initiated by Matsumoto and Imai [12]. These systems are
attractive since the underlying problem is known to be NP-complete and the
decryption algorithm is more efficient than the RSA algorithm.

The original cryptosystem of Matsumoto and Imai (MI or C∗) has been
broken by Patarin [13] who has also proposed various techniques that protect
against this attack [15, 14]. A generalisation of MI, called Hidden Field Equations
(HFE) [17], has higher security, but it has nevertheless been broken by Kipnis
and Shamir [11]. More efficient attacks were proposed by Courtois et al. in [5, 6]
and culminated with Faugère and Joux attack and the use of Gröbner bases
in [9].

Variants of the original MI scheme remain interesting because they achieve
better performance than variants of HFE. The main variants of MI that re-
sist the attack by Patarin are on one hand, the Minus method which consists

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 341–353, 2005.
c© International Association for Cryptologic Research 2005
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in discarding a few polynomials in the public key, and on the other hand the
Minus-Plus method, which proposes to discard some polynomials and to add
a few variables. These methods use external perturbation of the MI scheme,
since variables are removed after the application of the exponentiation func-
tion.

Recently, Ding [7] proposed a new variant of the MI cryptosystem using some
internal perturbation, which occurs before applying the exponentiation func-
tion. He quickly analyses its proposal against all known attacks on multivariate
schemes, and claims that it is immune against such attacks. The new scheme is
nearly as efficient as the original MI and the author gives some arguments in
order to show that its scheme, called Perturbated MI (PMI), is a more secure
extension than the MI Minus and MI Minus-Plus method.

1.1 Our Results

In this paper, we describe a new technique which is extremely powerful and
that could presumably be used to break other multivariate schemes. In order to
illustrate the power and generality of this method, we first propose a new attack
on the original MI scheme and next describe how it can be used to mount an
attack against the PMI cryptosystem.

The key point of our attack is that in the case of quadratic polynomials, the
differential of the public key is a linear map and its kernel or its rank can be anal-
ysed to get some information on the secret key. For example, in the PMI scheme,
we show that the dimension of the kernel can be used to identify elements that
cancel the perturbation. In fact, we design a one-sided error recogniser for the
language of elements that are not in the kernel of the perturbation. From this
test algorithm, we design two algorithms to reconstruct the kernel. These algo-
rithms are of independent interest. With the first method, the complexity of the
attack is a precomputation of order O(nq3r +n6qr), which can be upperbounded
by 249 with the proposed parameters in [7], and O(n3 × qr × qgcd(�,n)), which is
of order 236 binary operations. Finally, this attack works for scheme over finite
fields of characteristic 2 which are the main structure for efficiency reasons and
for MI and PMI this is always the case as we will see. In the case of the original
MI cryptosystem, we use elements in the kernel of the transpose of the differ-
ential in order to propose a new attack. We actually prove a bilinear relation
between the ciphertext and the kernel vector. Thus, the kernel allows to recover
the plaintext by solving a linear system.

1.2 Related Works

Differentials have already been successfully applied to break multivariate schemes
such as the Minus transformation of the original Matsumoto-Imai, or the SFLASH
signature scheme or the“2R”scheme proposed by Patarin [14, 16, 10, 8]. Our work
gives a better insight by bringing a systematic use of the geometric properties
of the differential.
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1.3 Organisation of the Paper

In section 2 of this paper, we describe the MI and PMI cryptosystems. Then,
in section 3 we recall Patarin’s attack on the original MI scheme. Next in sec-
tion 4, we describe our attack on the PMI scheme and some experimental results.
Finally, in section 5, we show a new attack on the original MI scheme.

2 Description of the MI and PMI Schemes

2.1 The Matsumoto-Imai Cryptosystem

This scheme is based on the following fact : over the finite field Fqn , the function
F : x $→ xq�+1 is a permutation, when gcd(q� +1, qn− 1) = 1. Therefore, we can
fix q to be a power of 2 so that Fqn is of characteristic two 1. Its inverse is x $→ xh

where h is the inverse of q� +1 in Zqn−1. Therefore, for any isomorphism π from
the vector space of Fqn to the n-dimensional vector space (Fq)n, the function
F = π ◦ F ◦ π−1 is a bijective system of multivariate quadratic functions since
F can be viewed as the product of two linear maps x $→ xq�

and x $→ x.
The scheme described by Matsumoto and Imai in 1988 [12] generates S and

T , two secret affine bijections of (Fq)n to mask the system F . The system E =
T ◦F ◦S is also a system of multivariate quadratic equations and represents the
public key. Patarin showed in 1995 [13] that the public key has a special form
which allows to invert the function.

2.2 The PMI Cryptosystem

Recently at PKC ’04, Ding proposed a randomised variant of MI, called PMI [7].
Let R : (Fq)n → (Fq)r a secret linear function of small rank (r . n) and H
a secret quadratic system composed of n quadratic equations over r variables.
The PMI public key is the system E′ defined by E′ = T ◦ (F + H ◦R) ◦ S.
The public key can also be written as E′ = T ◦F ◦S +T ◦H ◦R ◦S due to the
linearity of T . Consequently, the PMI scheme can be seen as the MI scheme E
plus a random-looking quadratic term T ◦H ◦R ◦S. Since there is no trapdoor
to invert H or to separate the MI term and the random term, we need to store
all the inputs and the outputs of the H function. Let P be the set of points
which consist of pairs (λ,μ), where λ is a point that belongs to the image of H,
and μ is the set of pre-images of λ under H. The set P contains qr points. The
secret key includes the set of linear functions R, the set P , and the two affine
bijections S and T .

The secret key allows to invert E′ if one can make exhaustive search over
the qr values of P and so r must be small. More precisely, given a ciphertext y,
the decryption process inverses the affine bijection T and recovers y′. Then, all
elements (λ,μ) in P can be tried one-by-one and y′

λ = F−1(y′+λ) is computed.

1 Indeed, if q is odd, we have gcd(q	 + 1, qn − 1) ≥ 2 and since q is a prime power, it
is always a power of 2 and the characteristic of Fqn is 2.
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Next, if H(y′
λ) is not equal to μ, we try the next point in P , otherwise, we

compute xλ by S−1(y′
λ). If we have only one solution, we get the plaintext,

otherwise, we use some added redundancy in the plaintext in order to uniquely
recover it.

In his description of PMI [7], Ding analyses all known attack such as algebraic
attacks of Patarin [13], Kipnis and Shamir [11], or XL attacks [4] and the attack
on MI Minus of Patarin, Goubin and Courtois [16].

He also proposes a practical implementation with q = 2, n = 136, r = 6 and
F (x) = x25×8+1. He claims that the security level for this choice of parameters
is 2136. The value 	 has been chosen with a special form, such that gcd(2n −
1, 2� − 1) = 2gcd(n,�) − 1 = 2gcd(136,5×8) − 1 = 28 − 1. This special form allows
to perform more efficient encryption and decryption using lookup tables for the
multiplications in the finite field.

In this paper, we apply differential cryptanalysis to the PMI scheme, and
we show that the special form of the exponent in the practical system proposed
by Ding allows more efficient attack than the attack in the generic case where
gcd(	, n) = 1.

3 Patarin’s Attack on the MI Cryptosystem

Our attack against the PMI cryptosystem is a probabilistic reduction to Patarin’s
attack on the MI scheme. Therefore, prior the description of our attack, we recall
Patarin’s attack. While we also propose an alternative attack to the MI scheme
in section 5, we present Patarin attack since it is easier to understand. Both his
attack and our attack do not recover the secret key but finds a linear system
which can be solved to recover the plaintext corresponding to a given ciphertext.

Let x ∈ (Fq)n a plaintext and y ∈ (Fq)n the corresponding ciphertext. The
main idea of Patarin attack is to find several bilinear relations in the x and y
coordinates. Using plaintext/ciphertext pairs (x,y), it is possible to recover the
coefficients of the relations by solving a linear system. Finally, knowing these
coefficients and a given ciphertext, it is possible to decrypt y by solving a linear
system.

Let us define a = π−1(S(x)) and b = π−1(T−1(y)). Consequently, F (a) = b

or b = aq�+1. By raising each member of the last equation to the power q� − 1
and by multiplying each one by ab, we get

abq
�

= aq2�

b (1)

which holds over the finite field Fqn . We can rewrite this equation by B(a, b) = 0
where B(a, b) = a · bq� − aq2� · b. If we represent equation (1 ) in (Fq)n, we
get n bilinear equations in the n coordinates of a and of b. As a and b are
affine transformations of x and y via the secret affine bijections S and T , the n
bilinear expressions in a and b, may also be written as n bilinear expressions in
x and y. Each expression can be written as

∑n
i=1

∑n
j=1 βi,jxiyj +

∑n
i=1 βi,0xi +∑n

j=1 β0,jyj + β0,0 = 0.
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For each plaintext/ciphertext pair (x,y), the equation above, where all the
βi,j are the (n + 1)2 unknowns, has at least the n solutions described by the
n bilinear expressions deduced from equation (1). Therefore, using O((n + 1)2)
plaintext/ciphertext pairs, solving the resulting system of O((n+1)2) equations
in the (n+ 1)2 unknowns βi,j will recover the n bilinear expressions.

Finally, given a ciphertext y to decrypt, these n equations will give us n
linear equations in the coefficients of x. Unfortunately, all these equations are
not independent. The solutions of this system correspond to the solutions of
(1). There are qgcd(n,�) such solutions, as shown by Patarin: let us consider the
equation (1) where the unknown is a. A ciphertext y fixes a unique b value. One
solution is a = 0. If a 	= 0 (and so b 	= 0) the equation can be written as

aq2�−1 = bq
�−1

We can write q2�−1 as (q�+1)(q�−1) and take the inverse of q�+1 modulo qn−1
since by assumption F is a permutation. Consequently, the equation becomes
aq�−1 = bh×(q�−1) = b′ where h is the inverse of q� + 1. This last equation has
exactly gcd(q�−1, qn−1) = qgcd(�,n)−1 solutions as shown in appendix A since
the right solution is one solution.

As a consequence, the solution that we are looking for is a particular vector
of the kernel of some system related to the original system, and the second
member of the equation [3–p. 59]. Therefore, we compute the kernel of the system
matrix which is of dimension gcd(n, 	). Next, we perform an exhaustive search
in qgcd(n,�) − 1 coefficients of the kernel vector, in order to recover the correct
value x.

In section 5, we propose a new differential attack on the MI scheme by study-
ing the kernel of the transpose of the differential of the public key. We show that
there exist n bilinear forms between a ciphertext E(k) and the vector fk that
generates the kernel of the transpose of the differential, which is of dimension 1 if
gcd(	, n) = 1. Then, given a ciphertext, we are able to reconstruct the vector fk

since the n bilinear forms are independent as there is a unique solution for the
n bilinear forms. Finally, since the vector fk is in the kernel of the transpose of
the differential and that this map is linear in k, we can solve n linear equations
in the k variables of n coordinates. We refer the reader to section 5 for details.

4 Cryptanalysis of the PMI Cryptosystem

4.1 Overview of the Attack

Let us recall the notations : F is the system of quadratic equations corresponding
to the internal function of the MI cryptosystem, E = T ◦ F ◦ S the public key
of MI, and E′ = E + T ◦H ◦R ◦ S the public key of PMI.

Our attack is based on the following remark: the PMI scheme is a noisy MI
cryptosystem. We find the linear space K that cancels the noise, and apply an
attack of MI to the restriction of PMI to this linear space.
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More precisely, we define the linear space K as follows: it is the kernel of the
linear part of the affine function R◦S. The space K is of dimension dim(kerR) =
n − r because S is a bijection and rank(R) = r. If we are able to compute K,
then we can apply the attacks against MI (either Patarin’s attack or our attack
described in section 5) to the PMI cryptosystem restrict to elements of one of
the qr affine spaces that are parallel to K. When restrict to one of these affine
spaces, the public key of PMI is exactly E translated by a constant. The attack
of PMI amounts to qr attacks against MI (this is feasible because qr must be of
moderate size to allow fast decryption). A ciphertext is decrypted by applying
the attack to the affine space that contains its corresponding plaintext.

In order to recover the space K, we devise an efficient test algorithm that
can spot that a given vector k does not belong to K. The information used in
this test is the dimension of the kernel of the linear part of the differential of the
public key.

4.2 The Dimension of the Kernel of the Differential

For any function G : (Fq)n → (Fq)m, let us consider its differential dGk(x) =
G(x + k)−G(x). Because G is a quadratic function, its differential is an affine
function. Let us consider LG,k(x) = dGk(x) − dGk(0) the linear part of the
differential. In fact, it is a bilinear function that can also be defined by LG,k(x) =
BG(x,k) = G(x+k)−G(x)−G(k)+G(0), and is also called the polar form. We
are interested in dim(kerLG,k) when G is the public key of the cryptosystem.

Property 1. Let k and k′ be elements of (Fq)n, and G and G′ be systems of
quadratic equations, and S and T be affine bijections. The following properties
hold: LG,k+k′ = LG,k + LG,k′ , LG+G′,k = LG,k + LG′,k, LT ◦G◦S,k =
T ◦LG,S(k) ◦ S + T ◦G ◦ S(0)− T ◦G(0), and LG,0 = 0.

Lemma 1. If E is the public key of a MI system over Fq of characteristic 2, of
dimension n and exponent q� + 1, then dim(ker LE,k) = gcd(	, n).

First, dim ker(LE,k) = dim ker(LF,k), because T and S are bijections.
Let us define x = π(x) and k = π(k). If F is the internal function of the MI

cryptosystem, then BF (x,k) is equal to π(xq� · k + x · kq�

). A vector x 	= 0 of
(Fq)n is in the kernel of LF,k if and only if xq� ·k+x ·kq�

= 0. This last equation

can be written as xq�+1 ·
(

k
x +

(
k
x

)q�
)

= 0.

Since x 	= 0, if we denote k/x by X, then the previous equation is X+Xq�

= 0
in the finite field Fqn . If X 	= 0 (k 	= 0), then the equation becomes Xq�−1 = 1
in a finite field of characteristic 2. Since X = 1 is solution, there is at least
one solution. As a consequence, there are qgcd(�,n)− 1 solutions according to the
results in appendix A, and therefore dim(kerLE,k) = gcd(	, n).

Note that X = 1 is always a solution, that means x = k, and therefore k is
always in the kernel. There are no other solutions when gcd(	, n) = 1.
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Lemma 2. If E′ is the public key of the PMI cryptosystem and k ∈ K, then
dim(ker LE′,k) = gcd(	, n).

We prove that if k ∈ K, then LE′,k = LE,k. First we notice that k ∈ K is
equivalent to R ◦ S(k) = R ◦ S(0).

Then we compute LE′,k(x)−LE,k(x) = LT ◦H◦R◦S,k(x) = T ◦H◦R◦S(x+
k)−T ◦H◦R◦S(x)−T ◦H◦R◦S(k)+T ◦H◦R◦S(0), therefore T−1(LE′,k(x)−
LE,k(x)) = H(R ◦S(x + k))−H(R ◦S(x))−H(R ◦S(k)) + H(R ◦S(0)) =
0, which means that T−1 ◦ LE′,k = T−1 ◦ LE,k. Therefore dim(ker LE′,k) =
dim(ker(T−1 ◦LE′,k)) = dim(ker(T−1 ◦LE,k)) = dim(kerLE,k).

Lemma 3. If E′ is the public key of the PMI cryptosystem and k 	∈ K, then
often dim(ker LE′,k) 	= gcd(	, n).

As before, LE′,k is the sum of LE,k and LT ◦H◦R◦S,k. However, when, k 	∈ K,
the second linear application is not null. The argument behind lemma 3 is that
LT ◦H◦R◦S,k is a random-looking linear application, and therefore the dimension
of the kernel of the sum LE′,k follows the distribution of the dimension of the
kernel of random linear maps.

In fact, it is slightly more complicated, because k is always in the kernel of
LT ◦H◦R◦S,k, and therefore also in the kernel of LE′,k, whose dimension then
is at least 1. Moreover, if gcd(	, n) > r, then there are gcd(	, n) − r additional
vectors in the kernel of LE′,k, because ker(LE,k) of dimension gcd(	, n) and
ker(R ◦ S) of dimension n− r in a space of dimension n have an intersection of
dimension at least gcd(	, n)− r. In the case of the practical scheme proposed by
Ding where gcd(	, n) = 8 and r = 6, we can deduce that dim(ker(LE′,k)) ≥ 3.

Lemma 3 can be verified experimentally, as shown in table 1.

Table 1. Experimental results for the probability distribution of dim(ker(LE′,k))

� = 41, n = 137 and r = 6

dimension k ∈ K k 	∈ K
1 1 ≈ 0.59

> 1 0 ≈ 0.41

� = 40, n = 136 and r = 6

dimension k ∈ K k 	∈ K
3 0 ≈ 0.686

4 0 ≈ 0.290

5 0 ≈ 0.023

6 0 ≈ 5.10−4

7 0 ≈ 2.10−6

8 1 ≈ 0

> 8 0 ≈ 0

As a consequence of the lemmas, we get the following corollary.

Corollary1. If E′ is the public key of thePMI cryptosystem and if dim(ker LE′,k)
	= gcd(	, n), then k 	∈ K.

In conclusion, we have now an efficient test to know if a vector is not in K. We
define T (k) to be this test: T (k) = 1 if dim(kerLE′,k) 	= gcd(	, n), meaning that
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k is not in K with probability one, and T (k) = 0 if dim(kerLE′,k) = gcd(	, n),
meaning that k can be in K or not. Now, we must transform this test into an
algorithm for recovering K.

4.3 Recovering K
We are looking for dim(K) independent vectors that generate K. Let us define
α = Pr[T (k) = 0] and β = Pr[k ∈ K] = q−r. The following table summarises
the distribution of the values of T applied to a random k.

k ∈ K k �∈ K
T (k) = 0 β α− β α

T (k) = 1 0 1− α 1 − α

β 1 − β

In the case where gcd(	, n) = 8 we have α − β . β and therefore the test
T has almost no false positives. In the case where gcd(	, n) = 1 we have β . α
and therefore the test T cannot give direct proof of membership of K. A specific
algorithm to recover K is needed.

The property we use is the linearity of K: if k,k′ ∈ K, then k + k′ ∈ K.
Two algorithms are described below. The first algorithm uses a statistical bias
for T (k + k′). The second algorithm searches some large clique in a graph. A
concrete attack of the PMI cryptosystem will use a mix of both techniques.

Technique 1. The key idea is: if for many different k′ ∈ K, k + k′ is in K,
then k is always in K. Therefore, if for many different k′ such that T (k′) = 0,
T (k + k′) = 0, then k is in K with high probability.

We make the hypothesis that for any fixed value k and random value k′ the
probability that T (k +k′) = 0 is independent of the probability that T (k′) = 0.
Under this hypothesis, we compute p(k) = Pr[T (k + k′) = 0 /T (k′) = 0].

For a random k, the value k + k′ when T (k′) = 0 is uniformly distributed
and p(k) = α. However, if k ∈ K, then one can write p(k) = Pr[k′ ∈ K /T (k′) =
0] + Pr[k′ 	∈ K /T (k′) = 0].Pr[T (k + k′) = 0 /k + k′ 	∈ K] = β

α + α−β
α

α−β
1−β .

Under the hypothesis that β . α, if k ∈ K then p(k)/α = (1−β/α)2

1−β + β
α2 /

1 + β(α−1 − 1)2. Therefore the difference between the values of p(k) depending
on whether k ∈ K or not is of the order of αβ and, by taking N = 1/(αβ)2

elements k′ such that T (k′) = 0 and computing the average of T (k + k′), we
can decide whether k ∈ K or not. The complexity of this test is about β−2.

We checked experimentally this hypothesis, for the parameters 	 = 41, n =
137 and r = 6. Testing if p(k)/α− 1 > 1

2β(α−1 − 1)2 is not sufficient to have an
error-free test of membership of K. However, testing if p(k)/α−1 > β(α−1−1)2

appear to be sufficient to detect about half of the members of K.
Each value k has a probability q−r of being in K and we need n distinct

elements of K. The whole complexity for finding K is nq3r.

Technique 2. In this technique, we define a graph whose vertices are the ele-
ments k such that T (k) = 0, i.e. elements that may be in the kernel. For each
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pair (k,k′) of vertices, we compute T (k + k′). If the result is 0, then we put an
edge between these two vertices. All vertices such that k ∈ K are connected, i.e.
the elements of K are in a large clique.

In practice, we don’t construct the whole graph. We construct its restriction
to N vertices. We are looking for vertices that correspond to n− r independent
elements of K. If N > n/β, it is likely that the graph contains such vertices. The
clique containing the elements of K contains at least βN vertices. Under the same
hypothesis as above, that the probability that T (k + k′) = 0 is independent of
the probability that T (k) = 0, this graph restricted to N vertices has αN2

edges. Apart from the vertices that correspond to elements of K, the edges are
randomly distributed. General results on random graph [2] gives us that the
expected number of vertex in the clique of maximal order in random graph
of N vertex with a probability α between each edge is 2 log N

log 1/α + O(log log N).

Therefore, if βN is significantly greater than 2 log N
log 1/α , then there will be a unique

large clique, that gives a basis of K. When β . α, this condition is equivalent
to N ≈ β−1 log β−1 and the whole complexity for finding K is q2r log2 qr.

However, although this technique seems to be better than the previous one,
we do not know a max-clique algorithm that benefits from the fact that we have
a random and dense graph which has a very large clique. In practice, as we said
before, a concrete attack of the PMI cryptosystem will use a mix of technique
1 (to find some elements very likely to be members of K) and technique 2 (to
extract from them a large clique).

4.4 Recovering the Plaintext

Assume we have correctly found the kernel K. Now, we have to reconstruct a
family of n bilinear equations in the x and y variable for each affine subspace
parallel to K. When this has been done, then for fixed y we can try to solve
each system in the x unknowns and decide the correct solution using redun-
dancy.

The question one may ask is whether we still find n− gcd(	, n) independent
equations for each affine subspace. What can be said is that the original n equa-
tions from the MI scheme are clearly friend when x is restricted to a subspace.
Accordingly the number of independent equations can only increase, which is in
favour of the attacker. Now, given a ciphertext y, its corresponding plaintext is
in some subspace parallel to K and for such ciphertext, each family of equations
allow to recover at least n − gcd(	, n) coordinates of x. Finally, an exhaustive
search allows us to find the missing coordinates in time qgcd(�,n) as well as the
correct subspace to choose.

5 Alternative Attack Against the MI Scheme

In this section, we show a new attack against the MI scheme. We apply the same
technique as in the PMI scheme. First of all, we compute the differential and
next we study the kernel of the transpose of this application. In order to simplify
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the exposition of the attack, we assume in the following that gcd(	, n) = 1 and
q = 2.

5.1 Overview

As for Patarin’s attack, this attack tries to find n bilinear forms in the ciphertext
coordinates and in a vector related to the plaintext. Next, when a ciphertext is
given, the n linear equations in the vector related to the plaintext allow us to
recover this vector. Finally, since this vector is related to the plaintext by a linear
system, we can easily decrypt.

More precisely, the attacks computes two bilinear systems, C(x,y) and D(x,y),
such that for fk

� in the kernel of LE,k
� we have

C(E(k),fk) = 0 and D(k,fk) = 0

This allows to compute k from E(k).

5.2 Description

For the MI scheme, the differential can be written as

LF,k(x) = xq� · k + x · kq�

= kq�+1 ·
(
x

k
+
(x
k

)q�)
If we define the following three linear functions over Fqn : μk(x) = F (k) ·x, where
F (k) = kq�+1, ψ(x) = xq�

+ x and θk(x) = x
k , then

LF,k = μk ◦ ψ ◦ θk

Let us define μk = π ◦ μk ◦ π−1, ψ = π ◦ ψ ◦ π−1 and θk = π ◦ θk ◦ π−1 for
k = π−1(S(k)). Therefore

LE,k = T ◦ μk ◦ψ ◦ θk ◦ S

where all terms are linear functions of F
n
q . The matrix of LF,k is a product of

n× n matrices of Fq.
Let fk

� be in the kernel of the transpose LE,k
�. This means that the product

(fk)(LE,k) is the null vector 0, which is equivalent to

(fk)(T .μk.ψ.θk.S) = 0

where fk is a n-dimensional row vector and T , μk, θk, and S are n×n invertible
matrices and ψ is a n×n matrix. Since θk and S are one-to-one, this is equivalent
to (fk)(T .μk) ∈ Ker ψ�, the application ψ� being independent of k.

Recall that in the case where gcd(	, n) = 1 the kernel of LE,k is of dimension
1 and is generated by k. The transpose LE,k

� also has a kernel of dimension 1.
The kernel of ψ� is one-dimensional and independent of k. Therefore if q = 2,
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Ker ψ� = {0, f̂} and the previous equation can be rewritten as (fk)(T .μk) =
(f̂).

From μk(x) = F (k) · x, we deduce that μk is linear in

F (k) = F (π−1(S(k))) = π−1(T−1(E(k)))

i.e. linear in E(k), and therefore the equation (fk)(T .μk) = (f̂) is bilinear
in fk and E(k). Accordingly whenever a ciphertext y = E(k) is given, the
corresponding fk can be found by solving a linear system.

Finally, as (fk)(LE,k) = 0 and LE,k is linear in the k variable we have again
a bilinear relation between k and fk. Now, since fk is known from y, we get a
system with n equations in n coordinates of the variable k. This system has a
kernel of dimension one, and consequently, we can easily decrypt.
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A Some Useful Mathematical Results

Lemma 4. For any integers q, i and n, gcd(qn − 1, qi − 1) = qgcd(n,i) − 1

Proof. Let (rk)k≥0 be the sequence of integers obtained by the Euclidean algo-
rithm from r0 = n and r1 = i. If k0 is the largest integer such that rk0 	= 0, then
rk0 = gcd(n, i).

Similarly, let (Rk)k≥0 be the sequence of polynomials obtained from the Eu-
clidean algorithm from R0 = Xn − 1 and R1 = Xi − 1. We recall that n1 is the
largest integer such that Rn1 = gcd(Xn − 1, Xi − 1). We show by recurrence on
n that for 0 ≤ k ≤ k0 + 1, Rk = Xrk − 1. It is correct by assumption for k = 0
and k = 1. Assuming that k ≥ 2 and k ≤ k0 +1. Let us write rk−2 = αrk−1 +rk.
Then,

Xrk−2 − 1 = (Xrk−1 − 1)(Xrk−2−rk−1 +Xrk−2−2rk−1 + · · ·+Xrk−2−αrk−1)
+Xrk − 1

Therefore, Xrk − 1 is the remainder of the division of Rk−2 = Xrk−2 − 1 by
Rk−1 = Xrk−1 − 1 since rk < rk−1. So, Rk0+1 = X0 − 1 = 0 and Rk0 	= 0.
Consequently, k1 = k0 and Rk1 = Rk0 = Xrk0 − 1 = Xgcd(i,n) − 1. If we replace
X by q, we get the lemma.

The following lemma is useful to exactly estimate the kernel dimension. We
require exact value and not upper bounds on the number of solutions as done
in [13].

Lemma 5. In a finite field Fqn with qn elements, the equation Xj = A has
either 0 solution or gcd(j, qn − 1) solutions.
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Proof. The multiplicative group of the finite field Fqn has qn − 1 elements. The
simple case is when gcd(j, qn− 1) = 1. Therefore, j is invertible modulo (qn− 1)
and we denote by h the inverse of j. Then, if we raise the equation Xj = A to
the power h, we get X = Xjh = Ah = A′, and so there is only one solution.

On the other hand, if gcd(j, qn − 1) = d 	= 1. Let j′ = j/d, then gcd(j′, qn −
1) = 1 and let h′ be the inverse of j′ modulo qn − 1. We can raise the equation
to the power h′ and get Xd = Xjh′

= Xj′dh′
= Ah′

= A′. This equation
may have no solution if A′ is not a d-th power of some value of Fqn . We now
show that the equation Xd = A′ has d solutions when A′ is a d-th power. We
know that there is at least one solution which can be found by a randomised
algorithm of Adleman, Manders and Miller [1]. The other solutions are obtained
by multiplying the original solution by the d roots of unity. We finally explain
why there are d d-th roots of unity. Since the multiplicative group of a finite field
is a cyclic group, there is a primitive element g, that generates the whole group.
Therefore, g′ = g

qn−1
d is a d-th root of unity and for 0 ≤ i < d, g′i ranges over

the set of all roots. This completes the proof of the lemma.

If j = qi− 1, then we can combine both lemmas. In a finite field Fqn with qn

elements, the equation Xqi−1 = A has either 0 solution or qgcd(i,n)−1 solutions.
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Abstract. At Eurocrypt’96, Patarin proposed [9] new cryptographic
schemes based on the Isomorphism of Polynomials with one Secret prob-
lem (IP1S) [9]. We study in this paper a restriction of IP1S called Poly-
nomial Linear Equivalence problem (PLE) [7]. We show that PLE is in
fact not a restriction of IP1S, in the sense that any algorithm solving
PLE can be efficiently transformed into an algorithm for solving IP1S.
Motivated by the cryptanalysis of schemes based on IP1S, we present a
new efficient algorithm for solving PLE. This algorithm is mainly based
on a differential property of PLE. The main advantage of this approach
is to translate PLE into a simple linear algebra problem. The perfor-
mances of our algorithm evidence that, with the parameters proposed
in [9], schemes based on IP1S are far from achieving the security level
required for cryptographic applications.

Keywords: Cryptanalysis, Isomorphism of Polynomials with One Secret
(IP1S), Polynomial Linear Equivalence (PLE), Jacobian Matrix.

1 Introduction

IP1S has been originally introduced by Patarin [9] to circumvent the problem
of practicality encountered when using the Graph Isomorphism problem as an
underlying problem for zero-knowledge authentication protocols [4].

IP1S can be outlined as follows: given multivariate polynomials
(
a1(x1 . . . , xn),

. . . , au(x1 . . . , xn)
)

and
(
b1(x1 . . . , xn), . . . , bu(x1 . . . , xn)

)
over Fq[x1, . . . , xn],

find - if any - an invertible matrix S ∈ GLn(Fq) and a vector T ∈ F
n
q , such that:

bi(x1 . . . , xn) = ai

(
(x1 . . . , xn)S + T

)
, for all i, 1 ≤ i ≤ u.

In other words, Graphs have been replaced by multivariate polynomials and
permutations by bijective affine mappings. A new authentication protocol, based
on IP1S, as well as a public key signature scheme were then designed in [9]. The
main motivation of this paper is to study, from both a theoretical and practical
point of view, the security of these schemes. To do so, we address here a relevant
variant of it. The problem we call Polynomial Linear Equivalence problem (PLE)
[7], which is the restriction of IP1S to bijective linear mappings. We stress that

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 354–370, 2005.
c© International Association for Cryptologic Research 2005
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this is in fact not a restriction since we prove in this paper that IP1S and PLE
are equivalent, in the sense that any algorithm solving PLE can be efficiently
transformed into an algorithm for solving IP1S.

1.1 Previous Work

To the best of our knowledge, the first algorithm presented for IP1S is due to
Geiselmann, Meier and Steinwandt [3]. We here briefly recall its principle and
refer the reader to the original paper for a detailed description.
Let

(
(a1, . . . , au), (b1, . . . , bu)

)
∈ Fq[x1 . . . , xn]u × Fq[x1 . . . , xn]u, and (S,T ) ∈

GLn(Fq)× F
n
q such that:

bi(x1 . . . , xn) = ai

(
(x1 . . . , xn)S + T

)
, for all i, 1 ≤ i ≤ u.

Moreover, let ej ∈ F
n
q be the vector with its jth component equal to one and

zero otherwise. The main idea is to remark that if 	j ∈ F
n
q is the jth row of the

matrix S, then:
bi(ej) = ai

(
	j + T

)
, for all i, 1 ≤ i ≤ u.

When T ∈ F
n
q is given, an exhaustive search among F

n
q is then performed to

recover:
Lj = {	 ∈ F

n
q : bi(ej) = ai(	+ T ), for all i, 1 ≤ i ≤ u},

which is a set of candidate vectors for the jth row of S.
Soon after, Levy-dit-Vehel and Perret in [7] have remarked that the jth row

of S is a zero of the following system of non-linear equations:{
a1(x+ T )− b1(ej) = 0, · · · , au(x+ T )− bu(ej) = 0

}
. (1)

Therefore, the set Lj of candidates for the jth row of S is equal to the set of
zeroes of (1). Hence, they have substituted the exhaustive search of the elements
of Lj by the computation of a Gröbner basis [7]. In this work, we use very basic
tools of linear algebra for solving IP1S.

1.2 Organization of the Paper and Main Results

The paper is organized as follows. We begin in Section 2 by introducing our
notations and defining more formally the PLE and IP1S problems, which are
the main concern of this paper.

In Section 3, we prove that PLE is equivalent to IP1S, i.e. any algorithm
solving PLE can be efficiently transformed into an algorithm for solving IP1S.

In Section 4, differential properties of PLE are presented. These properties
give a strong relation between the Jacobian matrices of an instance of PLE and
solutions of this problem. We also show that structural properties of PLE can
be used to obtain linear equations in the components of a solution of PLE.

A new algorithm for solving PLE is described in Section 5. Using properties
of section 4, we show that a partial knowledge of a solution allows us to recover
it entirely by solving a suitable linear system of equations. It appears that the
algorithm presented in this section is much more efficient than algorithms pre-
viously proposed [3, 7]. This is illustrated in the last part of this paper by giving
experimental results obtained with our algorithm.
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2 Preliminaries

2.1 Notations

We introduce in this part the notations used throughout this paper. We denote
by Fq, the finite field with q = pr elements (p a prime, and r ≥ 1), by x
the vector (x1, . . . , xn), by Fq[x] = Fq[x1, . . . , xn], the polynomial ring in the n
indeterminate x1, . . . , xn over Fq, and f(x) stands for f(x1, . . . , xn). Moreover,
let g and h1, . . . , hn be polynomials of Fq[x]; by g◦h we shall mean the functional
composition g

(
h1, · · · , hn

)
of g and the hi’s.

A monomial is a power product of the variables x1, . . . , xn, and a term is
a coefficient multiplied by a monomial. We shall define the total degree of a
monomial xα1

1 · · ·xαn
n , (α1, . . . , αn) ∈ N

n, by the sum
∑n

i=1 αi. Obviously, the
total degree of a term cxα1

1 · · ·xαn
n , c ∈ F

∗
q , is the total degree of xα1

1 · · ·xαn
n .

The leading term of f is the largest term among the terms of f w.r.t. some
admissible ordering on the monomials. For example, the lexicographical order
≺LEX , defined by:

xα1
1 · · ·xαn

n ≺LEX xβ1
1 · · ·xβn

n ⇐⇒
{

the first coordinates αi and βi from the left
which are different satisfy αi < βi,

is an admissible order.
Let f ∈ Fq[x], the degree of f is the total degree of its leading term. We shall

say that f is homogeneous of degree d if every term appearing in f has total
degree d. An important fact is that every polynomial can be written uniquely as
a sum of homogeneous polynomials. Namely f =

∑
d f

(d), with f (d) being the
sum of all terms of f of total degree d. Notice that each f (d) is homogeneous,
and we call f (d) the dth homogeneous component of f . If f is of maximal total
degree d, we shall call homogenization of f , denoted by F , the polynomial:

F (x1, . . . , xn, z) =
d∑

i=0

f (i)(x1, . . . , xn)zd−i. (2)

The polynomials f and F are related in the following way:

F (x, z) = zdf
(x1

z
, . . . ,

xn

z

)
= zdf

(x
z

)
. (3)

Evaluating F in (x, 1) yields f , i.e. F (x, 1) = f(x). This process is called deho-
mogenization.

We extend now some of the notations previously given to vectors of poly-
nomials. Precisely, for a =

(
a1, · · · , au

)
∈ Fq[x]u, we shall denote by a(d) =

(a(d)
1 , . . . , a

(d)
u ) the dth homogeneous components of the polynomials of a.

We shall denote by Mn,u(Fq) the set of n × u matrices whose components
are in Fq. For M ∈Mn,u(Fq), we set Ker(M) = {x ∈ F

n
q : xM = 0u}, 0u being

the null vector of F
u
q . As usual, GLn(Fq) denotes the set of invertible matrices

ofMn,n(Fq), and we denote by AGLn(Fq) the cartesian product GLn(Fq)×F
n
q .
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2.2 Jacobian Matrix

Let f =
∑

i aix
i ∈ Fq[x], the formal derivative of f is the polynomial df

dx =∑
i iaix

i−1 ∈ Fq[x]. More generally, when f ∈ Fq[x1, . . . , xn], the partial deriva-
tives of f , denoted by ∂f

∂xi
, 1 ≤ i ≤ n, are defined by considering f as a polynomial

in xi with coefficients in Fq[x1 . . . , xi−1, xi+1, . . . , xn]. It is not hard to check that
the ∂/∂xi’s commute with one another.

Definition 1. The Jacobian matrix of f = (f1, . . . , fu) ∈ Fq[x]u, denoted by
Jf (x), is the u × n matrix whose components are the partial derivatives of the
polynomials of f , i.e.:

Jf (x) =
{
∂fi

∂xj
(x)
}1≤i≤u

1≤j≤n

The property of partial derivatives that we use in this paper is the chain rule
condition:

∂(g ◦ h)
∂xi

(x) =
n∑

j=1

∂g

∂xj
(h(x))

∂hj

∂xi
(x), for all i, 1 ≤ i ≤ n.

2.3 The IP1S and PLE Problems

Let
(
a = (a1, . . . , au), b = (b1, . . . , bu)

)
∈ Fq[x]u×Fq[x]u. We shall say that (a, b)

are affine-equivalent, denoted by a ≡A b, if there exists (S,T ) ∈ AGLn(Fq), s.t.:

bi(x1 . . . , xn) = ai

(
(x1 . . . , xn)S + T

)
, for all i, 1 ≤ i ≤ u.

We call such a pair an affine equivalence pair. The Isomorphism of Polynomials
with one Secret problem (IP1S) is then the one of finding - if any - an affine
equivalence pair between the polynomials of a and b. We mention that this
problem is also called Polynomial Affine Equivalence problem (PAE) in [7].

A natural variant of this problem is to consider linear bijective mappings.
We shall say that (a, b) are linear-equivalent, denoted by a ≡L b, if there

exists S ∈ GLn(Fq), such that:

bi(x) = ai(xS), for all i, 1 ≤ i ≤ u. (4)

In the sequel we shall denote, for convenience, equations (4) by b(x) = a(xS).
We call the matrix S a linear equivalence matrix. The Polynomial Linear

Equivalence problem (PLE) is then the one of finding - if any - a linear equiva-
lence matrix between a and b.

3 IP1S and PLE are Equivalent

Before giving our complexity results, we need to present structural properties of
PLE and IP1S.
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Property 1. If b(x) = a(xS + T ), for some (S,T ) ∈ AGLn(Fq), then:

b
(Di)
i (x) = a

(Di)
i (xS), for all i, 1 ≤ i ≤ u,

Di being, for all i, 1 ≤ i ≤ u, the degree of the homogeneous component of
highest degree of bi.

Proof. For all i, 1 ≤ i ≤ u, bi(x) = ai(xS + T ), for some (S,T ) ∈ AGLn(Fq)
implies that bi(x−TS−1) = ai(xS). We stress that b(Di)

i (x−TS−1), which is the
homogeneous component b(Di)

i of bi evaluated in x − TS−1, contains the terms
of total degree Di of bi(x− TS−1).
Indeed, let b(Di)

i (x) =
∑

1≤j1,...,jDi
≤n b

(Di)
i,j1,...,jDi

xj1 · · ·xjDi
, be the homogeneous

component of degree Di of bi. Since:

Di∏
k=1

(
xjk
− (TS−1)jk

)
= xj1 · · ·xjDi︸ ︷︷ ︸

total degree Di

+terms of total degree < Di.

We have:

b
(Di)
i (x− TS−1) =

∑
1≤j1,...,jDi

≤n

b
(Di)
i,j1,...,jDi

Di∏
k=1

(
xjk
− (TS−1)jk

)
= b

(Di)
i (x)︸ ︷︷ ︸

total degree Di

+terms of total degree < Di.

Finally, by equating the terms of total degree Di of bi(x− TS−1) with those of
ai(xS), we get that b(Di)

i (x) = a
(Di)
i (xS), for all i, 1 ≤ i ≤ u. ��

Remark 1. Let
(
a = (a1, . . . , au), b = (b1, . . . , bu)

)
∈ Fq[x]u×Fq[x]u. In the rest

of the paper, Di will always denote the degree of the homogeneous component of
highest degree of bi. Moreover, we set D = max1≤i≤u(Di).

We now give the linear counterpart of property 1. Remark that the next property
already appeared in [7], but is quoted here for the sake of completeness.

Property 2. Let S ∈ GLn(Fq), we have:

b(x) = a(xS)⇐⇒ b(d)(x) = a(d)(xS), for all d, 0 ≤ d ≤ D.

Proof. Let S ∈ GLn(Fq), such that b(x) = a(xS). For each i, 1 ≤ i ≤ u, and for
all d, 0 ≤ d ≤ D, the terms of total degree d of ai(xS) are equal to those of the
homogeneous polynomial a(d)

i evaluated in xS, i.e. the terms of a(d)
i (xS). Thus,

by equating the terms of total degree d of bi(x) with those of ai(xS), we get that
for all i, 1 ≤ i ≤ u:
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b
(d)
i (x) = a

(d)
i (xS), for all d, 0 ≤ d ≤ D.

Let S ∈ GLn(Fq) and suppose now that for all i, 1 ≤ i ≤ u, b
(d)
i (x) = a

(d)
i (xS),

for all d, 0 ≤ d ≤ D. Consequently, we get that
∑D

d=0 b
(d)
i (x) =

∑D
d=0 a

(d)
i (xS),

i.e. b(x) = a(xS). ��
Wenowintroduce some additional notations. We shall call dPLE (resp. dIP1S)

the decisional version of PLE (resp. IP1S); that is, the problem of deciding
whether (a, b) ∈ Fq[x]u × Fq[x]u are linear-equivalent (resp. affine-equivalent).

Finally, we would like to recall that a polynomial-time many-one reduction
(also known as Karp reduction) is defined as follows:

Definition 2. [5] Let A and B be two decisional problems. A is polynomial-time
many-one reducible to B, denoted by A ≤m

p B, iff there exists a polynomial-time
computable function f , such that for any instance x of A, we have:

x ∈ LA ⇐⇒ f(x) ∈ LB ,

LA and LB being the set of YES instances of A and B.
Moreover, A and B are polynomial-time many-one equivalent, denoted by A ≡m

p

B, iff A ≤m
p B and B ≤m

p A.

For dIP1S and dPLE, we have the following (surprising) result:
Proposition 1. dIP1S is polynomial-time many-one reducible to dPLE.

Proof. In order to prove that dIP1S≤m
p dPLE, we define a function f : Fq[x]u ×

Fq[x]u → Fq[x, z]u+1 × Fq[x, z]u+1 as follows. For all (a, b) ∈ Fq[x]u × Fq[x]u:

f
(
a(x), b(x)

)
=
(
A(x, z),B(x, z)

)
,

with A(x, z)=
(
A1(x, z), . . . ,Au(x, z), z

)
and B(x, z)=

(
B1(x, z), . . . ,Bu(x, z), z

)
.

The Ai’s (resp. Bi’s) being the homogenizations of the ai’s (resp. bi’s). One can
see at once that, according to (2), f can be computed in polynomial-time.

Now, let (a, b) ∈ LdIP1S , i.e. b(x)=a(xS+T ), for some
(
S={si,j}1≤i,j≤n,T =

(t1, . . . , tn)
)
∈ AGLn(Fq). From this affine equivalence pair, we define the fol-

lowing matrix:

S′ =

⎛⎜⎜⎜⎝
s1,1 s1,2 . . . s1,n 0
...

...
. . .

...
...

sn,1 sn,2 . . . sn,n 0
t1 t2 . . . tn 1

⎞⎟⎟⎟⎠ .

We mention that since S ∈ GLn(Fq), then S′ ∈ GLn+1(Fq). Indeed, it’s inverse

is
(

S−1 0n
t

−TS−1 1

)
. Moreover, we have:(

x, z
)
S′ =

(∑n
j=1 xjsj,1 + t1z, . . . ,

∑n
j=1 xjsj,n + tnz, z

)
=
(
xS + T z, z

) (5)

Recall that for all i, 1 ≤ i ≤ u, Di denotes the degree of the homogeneous
component of highest degree of bi. Note that for all z 	= 0, zDibi(

x
z ) = zDiai(

x
zS+

T ). Thus, using (3) and (5), we get that for all i, 1 ≤ i ≤ u:
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Bi

(
x, z
)

= zDiai

(x
z
S+T

)
= zDiai

(xS + T z

z

)
= Ai

(
xS+T z, z

)
= Ai

(
(x, z)S′).

To handle the case z = 0, we use property 1. According to it, we know that if
b(x) = a(xS + T ), for some (S,T ) ∈ AGLn(Fq), then b

(Di)
i (x) = a

(Di)
i (xS), for

all i, 1 ≤ i ≤ u. Therefore, for z = 0, and for all i, 1 ≤ i ≤ u:

Ai

(
(x, 0)S′) = Ai

(
xS, 0

)
= a

(Di)
i

(
xS
)

= b
(Di)
i

(
x
)

= Bi

(
x, 0
)
.

Finally, we remark that Au+1

(
(x, z)S′) = Au+1

(
xS + Tz, z

)
= z = Bu+1

(
x, z
)
.

Thus, we get that f
(
a, b
)

=
(
A,B

)
∈ LdPLE .

Now, let f
(
a, b
)

=
(
A,B

)
∈ LdPLE , i.e. B

(
x, z
)

= A
(
(x, z)S′′), for some

S′′ = {s′′i,j}1≤i,j≤n+1 ∈ GLn+1(Fq). Due to the particular shape of the polyno-
mials of A and B, we must have z =

∑n
j=1 xjs

′′
j,n+1 + zs′′n+1,n+1, i.e. s′′j,n+1 = 0,

for all j, 1 ≤ j ≤ n and s′′n+1,n+1 = 1. Thus, the linear equivalence matrix
S′′ must leave z unchanged. Therefore, if we set h1(S′′) = {s′′i,j}1≤i,j≤n and
h2(S′′) = (s′′n+1,1, . . . , s

′′
n+1,n) then for all i, 1 ≤ i ≤ u, we have:

Bi

(
x, z
)

= Ai

(
(x, z)S′′) = Ai

(
xh1(S′′)+zh2(S′′), z

)
= zDiai

(x
z
h1(S′′)+h2(S′′)

)
.

For z = 1, we get in particular that:

B(x, 1) =
(
b(x), 1

)
= A((x, 1)S′′) =

(
a(xh1(S′′) + h2(S′′), 1

)
.

Hence, b(x) = a
(
xh1(S′′)+h2(S′′)

)
. Since S′′ ∈ GLn+1(Fq), h1(S′′) ∈ GLn(Fq)

and it follows that
(
h1(S′′), h2(S′′)

)
is an affine equivalence pair between a and

b, i.e. (a, b) ∈ LdIP1S . ��

Note that in this paper, we are interested in the finding of a solution of PLE (resp.
IP1S) rather than deciding if such a solution exists. However, this result permits
in fact to transform efficiently any algorithm dedicated to PLE to an algorithm
for solving IP1S. Indeed, let the notations be as in the proof of proposition 1
and (a, b) be an instance of IP1S. Any linear equivalence S′′ for f(a, b) =

(
A,B

)
can be efficiently transformed into an affine equivalence pair

(
h1(S′′), h2(S′′)

)
for (a, b). Thus, any solution given by a PLE algorithm, on input

(
A,B

)
, can

be easily transformed to a solution for IP1S, i.e. an affine equivalence pair for
(a, b).

On the other hand, we have the following (less surprising) result:

Proposition 2. dPLE is polynomial-time many-one reducible to dIP1S.

Proof. Let (a, b) ∈ Fq[x]u × Fq[x]u. For proving that dPLE≤m
p dIP1S, we define

f : Fq[x]u × Fq[x]u → Fq[x](D+1)·u × Fq[x](D+1)·u in the following way. For all
(a, b) ∈ Fq[x]u × Fq[x]u, we have:
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f
(
a, b
)

=
(
A,B

)
,

with A =
(
a(D), a(D−1), . . . , a(0)

)
and B =

(
b(D), b(D−1), . . . , b(0)

)
.

Let (a, b) ∈ LdPLE , i.e. b(x) = a(xS), for some S ∈ GLn(Fq).
According to property 2, we have b(d)(x) = a(d)(xS), for all d, 0 ≤ d ≤ D. Thus
B(x) = A(xS), and (S, 0n) is an affine equivalence pair between A and B, i.e.
f(a, b) = (A,B) ∈ LdIP1S .

Now let f
(
a, b
)

=
(
A,B

)
∈ LdIP1S , i.e. B(x) = A(xS′ + T ′), for some

(S′,T ′) ∈ AGLn(Fq). By the very construction of f , B(x) = A(xS′+T ′) implies
that b(d)(x) = a(d)(xS′ + T ′), for all d, 0 ≤ d ≤ D. We then have according to
property 1 that:

b(d)(x) = a(d)(xS′), for all d, 0 ≤ d ≤ D.

By property 2, we get that b(x) = a(xS′), i.e. S′ is a linear equivalence matrix
between a and b, proving that (a, b) ∈ LdPLE . ��

Let the notations be as in the proof of proposition 2 and (a, b) be an instance
of PLE. If (S,T ) is an affine equivalence pair, between f(a, b) =

(
A,B

)
, then

S is a linear equivalence matrix between
(
A,B

)
, and thus between (a, b). Thus,

from any solution given by an IP1S algorithm, on input
(
A,B

)
, one can easily

construct a solution to PLE for (a, b).
Finally, from propositions 1 and 2, we deduce:

Corollary 1. dPLE ≡m
p dIP1S.

This equivalence result also holds for PLE and IP1S (the search problems asso-
ciated to dPLE and dIP1S). Indeed, aboves proofs construct a solution of PLE
(resp. IP1S) from one of IP1S (resp. PLE). Thus, we can w.l.o.g restrict our
attention to only one of these problems. Hereafter, we will focus on PLE. We
have chosen more particularly this problem since it seems to have more useful
algorithmic properties.

4 Properties of PLE

We present in this part new properties of PLE. In 4.1, we give a strong relation
between the Jacobian matrices of an instance (a, b) of PLE and solutions of
this instance. In 4.2, we show that structural properties of PLE permit to obtain
linear equations in the components of a linear equivalence matrix (provided such
a matrix exists).

4.1 Differential Properties

In the one variable case (i.e. n = 1), PLE can be reformulated as follows: given
polynomials a1(x), . . . , au(x) and b1(x), . . . , bu(x) in Fq[x], find - if any - s ∈ Fq,



362 L. Perret

such that the equality bi(x) = ai(xs) holds for all i, 1 ≤ i ≤ u. When computing
the formal derivatives of these equalities, we get that s must be such that:

dbi
dx

(x) = s
dai

dx
(xs), for all i, 1 ≤ i ≤ u.

Thus, if dai

dx (0) 	= 0, for some i, then s =
dbi
dx (0)
dai
dx (0)

. The next theorem, which is is

the main result of this section, extend this idea to multivariate polynomials.

Theorem 1. If b(x) = a(xS), for some S ∈ GLn(Fq), then:

Jb(x) = Ja(xS)St,

Ja(xS) =
{

∂ai

∂xj
(xS)

}1≤i≤u

1≤j≤n
and Jb(x) =

{
∂bi

∂xj
(x)
}1≤i≤u

1≤j≤n
being the Jacobian ma-

trices of a evaluated in xS and of b evaluated in x, respectively.

From this theorem, we deduce the following corollaries:

Corollary 2. Let S ∈ GLn(Fq) be such that b(x) = a(xS), and (p′, p) ∈ F
n
q ×F

n
q

be such that p′ = pS. Then:

i)Jb(p) = Ja(p′)St

ii)Ker
(
J t

a(p′)
)

= Ker
(
J t

b(p)
)
S

Proof. i) is obvious since p′ = pS.
For ii), let ka ∈ Ker

(
J t

a(p′)
)
, we have kaS

−1J t
b(p) = kaJ t

a(p′) = 0u, therefore
kaS

−1 ∈ Ker
(
J t

b(p)
)
, i.e. ka ∈ Ker

(
J t

b(p)
)
S.

Now, let k′ = kbS ∈ Ker(J t
b(p)

)
S, we have 0u = kbJ

t
b(p) = k′J t

a(p′), i.e. k′ ∈
Ker

(
J t

a(p′)
)
. Thus, Ker

(
J t

a(p′)
)

= Ker
(
J t

b(p)
)
S. ��

Corollary 3. If b(x) = a(xS), for some S ∈ GLn(Fq), then:

Jb(d)(x) = Ja(d)(xS)St, for all d, 0 ≤ d ≤ D.

Ja(d)(xS) and Jb(d)(x) being the Jacobian matrices of a(d) evaluated in xS and
of b(d) evaluated in x, respectively.

4.2 Structural Properties

For each homogeneous polynomial p ∈ Fq[x] of degree two there exists Q ∈
Mn,n(Fq), such that p(x) = xQxt. This matrix can be easily constructed from
the knowledge of the coefficients of the terms of p, but is not unique in gen-
eral. For fields of characteristic 	= 2, provided that Q is symmetric (resp. upper
triangular, lower triangular) such a representation is unique. For fields of charac-
teristic 2, the representation is unique if Q is upper triangular or lower triangular.
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Corollary 4. Let Qai
,Qbi

∈ Mn,n(Fq) be, for all i, 1 ≤ i ≤ u, the unique
matrices1 such that a(2)

i (x) = xQai
xt and b

(2)
i (x) = xQbi

xt. If b(x) = a(xS), for
some S ∈ GLn(Fq), then:

i)Qbi
= SQai

St, for all i, 1 ≤ i ≤ u
ii)Ker(Qai

) = Ker(Qbi
)S, for all i, 1 ≤ i ≤ u.

Proof. For i), we obtain by property 2 that if b(x) = a(xS), for some S ∈
GLn(Fq), then b(2)(x) = a(2)(xS). Thus, for all i, 1 ≤ i ≤ u, we have xQbi

xt =
xSQai

Stxt, i.e. Qbi
= SQai

St.
For ii), let kai

∈ Ker(Qai
), we have kai

S−1Qbi
= kai

Qai
St = 0nS

t = 0n, thus
kai

S−1 ∈ Ker(Qbi
), i.e. kai

∈ Ker(Qbi
)S, for all i, 1 ≤ i ≤ u.

Now, let k′ = kbi
S ∈ Ker(Qbi

)S, we have 0n = kbi
Qbi

(St)−1 = k′Qai
, and thus

k′ ∈ Ker(Qai
), for all i, 1 ≤ i ≤ u. ��

We finish this part by extending, thanks to property 2, a result given in [2].

Corollary 5. Let Qai
,Qbi

∈ Mn,n(Fq) be, for all i, 1 ≤ i ≤ u, the unique
matrices such that a(2)

i (x) = xQai
xt and b

(2)
i (x) = xQbi

xt. Moreover, let S ∈
GLn(Fq) be such that b(x) = a(xS). If there exists j, 1 ≤ j ≤ n, such that Qbj

is invertible then for all i, 1 ≤ i 	= j ≤ n:

StQ−1
bj

Qbi
= Q−1

aj
Qai

St. (6)

Proof. According to corollary 4, we have Qbi
= SQai

St, for all i, 1 ≤ i ≤ u.
Moreover, since Qbj

and S are invertible, we get that S−1 = Qaj
StQ−1

bj
. It

follows that, for all i, 1 ≤ i 	= j ≤ n, Qaj
StQ−1

bj
Qbi

= Qai
St. Finally, since Qbj

is invertible then Qaj
is also invertible and we get that StQ−1

bj
Qbi

= Q−1
aj

Qai
St,

for all i, 1 ≤ i 	= j ≤ n. ��

We stress that this corollary extends the result given in [2], since equation (6)
holds for all instances of PLE whereas the result quoted in [2] holds for instances
of PLE composed of homogeneous polynomials of degree 2 only.

5 The PLE Algorithm

Levy-dit-Vehel and Perret have linked PLE with the problem of finding common
zeroes of multivariate polynomials [7]. We go one step further in this section.
Indeed, we show that a partial knowledge of a linear equivalence matrix allows
us to recover it entirely by solving a suitable linear system of equations.

1 In upper triangular form, lower triangular form, or symmetric form, if such a matrix
exists.
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5.1 Description of the PLE Algorithm

In the sequel, we always suppose that b(x) = a(xS), for some S ∈ GLn(Fq).
Let us present now the main ideas of our algorithm.

How to easily recover linear equations in the components of S?
We describe here how to obtain, from properties described in section 4, linear
equations in the components of S. Indeed, let Qai

and Qbi
be, for all i, 1 ≤ i ≤ u,

defined as in corollary 4. By corollary 5, we have that, whenever Qbj
is invertible

for some j, 1 ≤ j ≤ n, then StQ−1
bj

Qbi
= Q−1

aj
Qai

St, for all i, 1 ≤ i 	= j ≤ n.

Moreover, according to corollary 2, we have additionally that Jb(0n) = Ja(0n)St.
Thus, S is a particular solution of the following linear system of equations, with
unknowns the components of X ∈Mn,n(Fq):{

Jb(0n) = Ja(0n)Xt

XtQ−1
bj

Qbi
= Q−1

aj
Qai

Xt,∀i, j1 ≤ i 	= j ≤ n, s.t. Qbj
is invertible (7)

How to start the algorithm?
In our algorithm, we need to find pairs (p′, p) ∈ F

n
q × F

n
q , such that p′ = pS.

Such a pair can obviously be recovered by randomly selecting p ∈ F
n
q and then

performing an exhaustive search, over F
n
q , to find the corresponding vector p′ =

pS. In many cases, we can, thanks to properties of section 4, significantly decrease
the cost of this exhaustive search.

Indeed, according to corollary 2, Ker
(
J t

a(0n)
)

= Ker
(
J t

b(0n)
)
S. Consequently,

any vector p ∈ Ker
(
J t

b(0n)
)

is mapped to Ker
(
J t

a(0n)
)
, i.e. there exists p′ ∈

Ker
(
J t

a(0n)
)

such that p′ = pS. Thus, if we chose a vector p ∈ Ker
(
J t

b(0n)
)

then p′ = pS can be recovered by listing all elements of Ker
(
J t

a(0n)
)
, rather

than all F
n
q .

Similarly, using the quadratic parts of the polynomials of a and b, we obtain,
according to corollary 4, that for all i, 1 ≤ i ≤ u, any vector p ∈ Ker(Qbi

) is
mapped to an element of Ker(Qai

). Thus, by choosing p ∈ Ker(Qbi
), we can

recover p′ = pS by performing an exhaustive search over Ker(Qai
).

How to use Jacobian matrices?
Let (p′, p) ∈ F

n
q × F

n
q be such that p′ = pS. According to corollary 2, we have

Jb(p) = Ja(p′)St. From this equality, we obtain n · u linear equations in n2

unknowns (the components of S), n · Rank
(
Ja(p′)

)
of which are linearly inde-

pendent. When Rank
(
Ja(p′)

)
< n, all the solutions found do not necessarily

give a linear equivalence matrix between a and b. To eliminate superfluous so-
lutions, we need to find new linear equations in the components of S. To do so,
we increase the number of pairs (p′, p) ∈ F

n
q × F

n
q , such that p′ = pS. When one

has found P = {(p′j , pj)1≤j≤�}, such that p′j = pjS, for all j, 1 ≤ j ≤ 	, then S

is a solution of the following linear system of equations:{
Jb(pj) = Ja(p′j)X

t, for all j, 1 ≤ j ≤ 	.

p′j = pjX, for all j, 1 ≤ j ≤ 	.
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In other words, n · 	 linear equations, given by P , relating the components of S
are transformed into n · 	 · (u+1) linear equations in the components of S. Thus
	 must be chosen such that n · 	 · (u + 1) = n2, i.e. 	 ≈

⌈
n

u+1

⌉
in order to obtain

in this way (and without using (7)), n2 linear equations in the components of S.
However, we point out that equations generated in this way are not necessarily
linearly independent.

Finally, we can also use a structural property of PLE to decrease the minimal
value of 	 required. Indeed, according to corollary 3, we have for all d, 1 ≤ d ≤ D:

Jb(d)(p) = Ja(d)(pS)St, for all p ∈ F
n
q .

Notice that this last equation also holds for d = 0, but does not permit to get
linear equations. Therefore, if P = {(p′j , pj)1≤j≤�} is a set of vector such that
p′j = pjS, for all j, 1 ≤ j ≤ 	, then S is a solution of the following linear system
of equations:

⎧⎪⎨⎪⎩
Jb(pj) = Ja(p′j)X

t, for all j, 1 ≤ j ≤ 	.

Jb(d)(pj) = Ja(d)(p′j)S
t, for all d, 1 ≤ d ≤ D and for all j, 1 ≤ j ≤ 	.

p′j = pjX, for all j, 1 ≤ j ≤ 	.

(8)

In the sequel, Sys(P ) shall denote the linear system of equations obtained from
(7) and (8).

We are now ready to present the PLE algorithm.

The algorithm
For a given 	 ≥ 1, we select 	 distinct (non-zero) vectors p1, . . . , p� and perform a
so-called selective exhaustive search, which is detailed after the description of the
PLE algorithm, to recover the corresponding vectors p′1 = p1S, . . . , p

′
� = p�S. The

aim of this selective exhaustive search is to minimize the cost of constructing a
set P = {(p′j , pj)1≤j≤�} such that p′j = pjS, for all j, 1 ≤ j ≤ 	. We then compute

the solutions of Sys
(
(p′j , pj)1≤j≤�

)
, denoted by Sol

(
Sys

(
(p′j , pj)1≤j≤�

))
in our

algorithm, and the number of solutions of this linear system of equations. If it has
less than C solutions (C is a small constant given in input of the algorithm), we
try to find a solution of this system which is at the same time a linear equivalence
matrix. If such a matrix exists then we return it. Otherwise and if, after having
tried all the possible vectors p′1, . . . , p

′
� corresponding to p1, . . . , p�, we have not

obtained a linear equivalence matrix, we increment 	 by 1 and restart the PLE
algorithm with this new value of 	.

In the PLE algorithm, we use an auxiliary function, which we call Order,
taking as input n + 1 pairs of sets of vectors and returning these sets sorted in
decreasing order (with respect to the number of elements in these sets).
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The PLE algorithm
Input: (a, b) ∈ Fq[x]u × Fq[x]u, (	,C) ∈ N

∗ × N
∗.

Output: S ∈ GLn(Fq), such that b(x) = a(xS).
Sol0 ← Sol

(
Sys(0n, 0n)

)
If |Sol0| ≤ C then

If b(x) = a(xS), for some S ∈ Sol0 then return S
EndIf
Selective Exhaustive Search: towards finding suitable pairs (p′, p)
Aux←

((
Ker

(
J t

a(0n)
)
,Ker

(
J t

b(0n)
))
, (Ker(Qa1),Ker(Qb1)), . . . , (Ker(Qan

),
Ker(Qbn

))
)(

(A0,B0), . . . , (An,Bn)
)
← Order

(
Aux

)
and (An+1,Bn+1)← (Fn

q ,F
n
q )

Let k be the minimum index such that | ∪k
j=0 Aj | ≥ 	

For i from 1 to k do
Bi ← Bi \ ∪i−1

j=0Bj and Ai ← Ai \ ∪i−1
j=0Aj

EndFor
k′ ← 	−

∑k−1
j=0 |Ai| and Aux← A

|A0|
0 ×A

|A1|
1 × · · · ×Ak′

k

Select |B0| vectors in B0, |B1| vectors in B1, . . . , and k′ vectors in Bk

Randomly choose (p1, . . . , p�) ∈ B
|B0|
0 ×B

|B1|
1 × · · · ×Bk′

k

Search of a linear equivalence matrix
While b(x) 	= a(xS) or Aux 	= ∅ do

Select |A0| vectors in A0, |A1| vectors in A1,. . . , and k′ vectors in Ak

Randomly choose (p′1, . . . , p
′
�) ∈ A

|A0|
0 ×A

|A1|
1 × · · · ×Ak′

k

P ← {(p′j , pj)1≤j≤�} and Aux← Aux \ {p′1, . . . , p′�}
SolP ← Sol

(
Sys(P )

)
If |SolP ∩ Sol0| ≤ C then

If b(x) = a(xS), for some S ∈ SolP ∩ Sol0 then return S
EndIf

EndWhile

The Selective Exhaustive Search
Let the notations be as in the PLE algorithm. One can see at once that, for all
i, 0 ≤ i ≤ n + 1, we have Ai = BiS. We stress that such a property also holds
after the first for loop. Moreover at each iteration of the PLE algorithm, by the
very definition of k, it holds that | ∪k−1

j=0 Aj | < 	, and thus k′ > 0. Moreover,
we have that 	 = k′ +

∑k−1
j=0 |Bi| = k′ +

∑k−1
j=0 |Ai|, since |Ai| = |Bi|, for all

i, 0 ≤ i ≤ n+ 1.
In order to recover 	 pairs of vectors (p′j , pj)1≤j≤�, such that p′j = pjS, for all

j, 1 ≤ j ≤ 	, we select |B0| vectors p1, . . . , p|B0| ∈ B0, and perform an exhaus-
tive search over A0(= B0S) to recover the corresponding vectors p′1 = p1S, . . . ,
p′|B0| = p|B0|S. We complete these |B0| vectors by choosing |B1| new vectors
p|B0|+1

, . . . ,p|B0|+|B1| ∈ B1. The corresponding vectors p′|B0|+1
= p|B0|+1

S, . . . ,

p′|B0|+|B1| = p|B0|+B1|S are recovered by performing an exhaustive search over

A1(= B1S). Finally, we complete the
∑k−1

j=0 |Bi| vectors already chosen by se-
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lecting k′(= 	 −
∑k−1

j=0 |Bi|) new vectors p
�−k′ , . . . , p� ∈ Bk. The corresponding

vectors p′
�−k′ = p

�−k′S, . . . , p
′
� = p�S are recovered by performing an exhaustive

search over Ak(= BkS). Since, by construction, |A0| ≤ |A1| ≤ · · · ≤ |Ak|, we
minimize in this way the cost of an exhaustive search for recovering the vectors
p′1 = p1S, . . . , p

′
� = p�S.

5.2 Complexity

Let 	∗ ∈ N be the minimum value for which PLE returns a solution, i.e. the
minimum number of pairs in P , for which Sys(P ) has n2 linearly independent
equations. As explained in 5.1, b(x) = a(xS), for some S ∈ GLn(Fq), implies
that the linear equivalence matrix S verifies the following linear equations:{

Jb(0n) = Ja(0n)St

StQ−1
bj

Qbi
= Q−1

aj
Qai

St,∀1 ≤ j ≤ n, s.t. Qbj
is invertible and ∀1 ≤ i 	= j ≤ n

These equalities allow us to obtain say nb0 linearly independent equations in
the components of S. We would like to emphasize that these equations are ob-
tained in polynomial-time. Thus, if nb0 = n2 then our algorithm recovers S in
polynomial-time.

Otherwise, if nb0 < n2, we have to find 	∗ ≥ 1 pairs of non-zero vectors
(p, p′), such that p′ = pS. The cost of recovering these 	∗ additional pairs being
bounded from above by qn�∗ , the complexity of the PLE algorithm is:

O(n6qn�∗),

which is the cost of solving a linear system of n2 unknowns times the cost of
recovering 	∗ suitable pairs of vectors.

It seems difficult to obtain a precise value of 	∗. Anyway, in practice it appears
that it is on the order of

⌈
n

u+1

⌉
. Finally, we mention that in order to minimize

the number of pairs 	∗ which has to be recovered, we can exploit a powerful idea
that we shall call exponentiation process. It will be described in an extended
version of this paper.

5.3 Practical Behaviour

We conclude this paper by giving some experimental results obtained with the
PLE algorithm. The instances (a, b) of PLE have been generated in the fol-
lowing way. The polynomials of a have been randomly chosen of degree 2 or
3 (or more precisely with terms of total degree at most 2 or 3). To construct
the polynomials of b, we have randomly chosen S ∈ GLn(Fq) and computed
b(x) =

(
a1(xS), · · · , au(xS)

)
. The PLE algorithm described in 5.1 has been im-

plemented using Magma software [8]. We have chosen the constant C (given in
input of the PLE algorithm) equals to 10000. The results, obtained on a stan-
dard PC, are quoted in the following table. We mention that the times given in
this table are in fact average times, obtained with our algorithm, for solving 10
instances of PLE (with u, n and q given).
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n u q degree Time degree Time

50 50 F257 2 ≈ 0.3 s. 3 ≈ 10 s.

50 45 F257 2 ≈ 10 min. 3 ≈ 6 h.

60 60 F11 2 ≈ 0.2 s. 3 ≈ 10 s.

60 55 F11 2 ≈ 2 min. 3 ≈ 1 h.

60 50 F11 2 ≈ 2 min. 3 ≈ 1 h.

70 70 F2 2 ≈ 10 s. 3 ≈ 5 min.

70 65 F2 2 ≈ 10 s. 3 ≈ 5 min.

70 60 F2 2 ≈ 9 s. 3 ≈ 5 min.

70 55 F2 2 ≈ 9 s. 3 ≈ 5 min.

We would like to emphasize that the algorithms described in [7] have also been
tested on these instances. The results are not quoted since these algorithms do
not terminate (in a reasonable time). Anyway, we mention that in [11], the algo-
rithms of [7] have been compared with a restricted version of the PLE algorithm
described here. These experiments have been done on smaller instances of PLE
(in terms of u, n and q) than the ones quoted in the above table. It appears
that the PLE algorithm is much more efficient than the algorithms of [7] (which
perform better than the algorithm described in [3]). This is mainly due to the
fact that we have replaced the computation of Gröbner Bases by a Gaussian
elimination.

Interpretation of the results
We first mention that the case u ≈ n is the most interesting for cryptographic
applications of PLE. Indeed, in this setting it is very likely that an instance ad-
mits a unique solution (see [7] for further details). Moreover, Jb(0n) = Ja(0n)St,
allows us to obtain n ∗Rank(Ja(e0)) linearly independent equations in the com-
ponents S. Since u ≈ n, then Rank(Ja(0n)) is also close to n. Therefore, even if
S is not uniquely determined by these equations, it is then very likely that a very
little partial knowledge of S allows us to obtain a linear system of equation with
less than C solutions. Since C is very small, we can quickly find if one of these
C solutions is at the same time a linear equivalence matrix. Typically, in our
experiments it has been sufficient to recover one pair (p′, p) such that p′ = pS,

confirming, at least for these parameters, that 	∗ is close to
⌈

n
u+1

⌉
. Note that

this pair is recovered efficiently using our selective exhaustive search.
Let us now analyze our results.
When u = n, and for p = 257 (resp. p = 11) the matrix Ja(0n) was always

invertible (in the ten instances generated). In this case, the solution is simply
obtained by computing the transpose of Ja(0n)−1Jb(0n). For p = 2, it was not
the case and we had to find only one pair (p′, p) such that p′ = pS in order to
solve PLE. For this reason, our algorithm for u = n is faster for p = 257 (resp.
p = 11) than for p = 2. This result is in fact not surprising since the probability
that a matrix M ∈ Mn,n(Fq) is invertible is larger in F257 (resp. F11) than
in F2. For instances (a, b) of PLE of degree 2, we can efficiently check if S is
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indeed a linear equivalence matrix between (a, b). Let A,B ∈Mn,u(Fq) such that
a(1)(x) = xA and b(1)(x) = xB. Moreover, let Qai

,Qbi
be, for all i, 1 ≤ i ≤ u,

the unique matrices such that a(2)
i (x) = xQai

xt and b
(2)
i (x) = xQbi

xt. According
to property 2, we have b(x) = a(xS) iff B = SA and Qbi

= SQai
St, for all

i, 1 ≤ i ≤ u. Therefore, to check whether b(x) = a(xS), we just have to compute
product of matrices and compare these matrices. For an instance (a, b) of degree
3, such a manipulation is possible only for the homogeneous components of
degree 1, and 2. But, in order to check whether b(3)(x) = a(3)(xS) or not, we have
to compute formally the polynomials a(3)(xS), which is much more costly than
computing product of matrices (explaining the significant difference of results
between instances of degree 2 and 3).

6 Conclusion

We have proved in this paper that IP1S and PLE are equivalent. Moreover,
using a differential approach of PLE, we have presented a fast algorithm for
solving PLE (and consequently also IP1S). It appears that, with the parameters
proposed in [9], schemes based on IP1S are far from achieving the security level
required for cryptographic applications. We recall that, initially, the security
level of schemes based on IP1S has been estimated to q

√
2n3/2

[10].
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Abstract. We present several attacks on RSA that factor the modulus
in polynomial time under the condition that a fraction of the most sig-
nificant bits or least significant bits of the private exponent is available
to the attacker. Our new attacks on RSA are the first attacks of this
type that work up to full size public or private exponent.

Keywords: RSA, cryptanalysis, partial key exposure, lattice reduction,
Coppersmith’s method.

1 Introduction

There have been a number of attacks on RSA given a portion of the private key.
These attacks are so-called partial key exposure attacks, where an attacker has
some knowledge of the bits of the private key and uses it to break the system.
The results are of practical interest, since implementations may leak bits of the
private key, e.g. via side channel attacks.

In 1998, Boneh, Durfee and Frankel presented several partial key exposure
attacks on RSA in [2]. Some of these attacks require knowledge of the least
significant bits (LSBs) of the private exponent, others of the most significant bits
(MSBs). Additionally, in their attacks, the public exponent must be relatively
small. Wiener’s attack [12] and the improvement by Boneh and Durfee [1] can
be seen as partial key exposure attacks where the most significant bits of the
private exponent are known to be equal to zero.

In [2] the question is posed whether there exist partial key exposure attacks on
RSA that work for public exponents larger than the square root of the modulus.

� The work described in this paper has been supported in part by the European Com-
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In 2003, Blömer and May [3] described a number of attacks that do allow larger
public exponents, but not yet to the full size of the modulus. In this paper we
present attacks for full size public exponent that work up to full size private
exponent. Additionally, we present a new attack for full size private exponent
that works up to full size public exponent.

Our attacks use Coppersmith’s ideas of finding small roots of polynomials
[4]. We look at variations on the RSA key equation over the integers, using
Coppersmith’s method of finding small integer roots, reformulated by Coron [5].

Our new results on known MSBs of d for small private exponent d and full
size public exponent e are summarized in the following theorem.

Theorem 1 (MSB small d). Under a common heuristic assumption concern-
ing resultants, for every ε > 0, there exists n0 such that for every n > n0, the
following holds:
Let N = pq be an n-bit RSA-modulus, and p, q primes of bitsize n

2 . Let 0 < δ <
β < 1. Furthermore, let e, d satisfy ed ≡ 1 mod φ(N) with bitsize(e) = n and
bitsize(d) = βn. Given the (β− δ)n MSBs of d, N can be factored in polynomial
time if:

– δ ≤ 5
6 −

1
3

√
1 + 6β − ε (Section 4.1.1), or

– δ ≤ 3
16 − ε and β ≤ 11

16 (Section 4.1.2), or
– δ ≤ 1

3 + 1
3β − 1

3

√
4β2 + 2β − 2− ε and β ≥ 11

16 (Section 4.1.2).

In the case of known MSBs for full size d and small e, we find an improvement
of known results by [2] and [3] for e ∈ [N

1
2 ,N ]. Our result is stated in the theorem

below.

Theorem 2 (MSB small e). Under a common heuristic assumption concern-
ing resultants, for every ε > 0, there exists n0 such that for every n > n0, the
following holds:
Let N = pq be an n-bit RSA-modulus, and p, q primes of bitsize n

2 . Let 0 <
δ < 1

2 < α < 1. Let e, d satisfy ed ≡ 1 mod φ(N), such that bitsize(d) = n and
bitsize(e) = αn.
Given the (1− δ)n MSBs of d, N can be factored in polynomial time if:

– δ ≤ 1
3 + 1

3α−
1
3

√
4α2 + 2α− 2− ε (Section 4.2).

In Fig. 1 and 2 we illustrate our results on known MSBs of d. In Fig. 1, the
fraction of bits required for an attack is plotted as a function of the size of d. It
shows the parts of the key space that are insecure by the attacks in Section 4.1,
and by the results of [12] and [1]. Fig. 2 is a picture of the relation between the
fraction of bits of d required for an attack and the size of e, showing the results
of [2], [3], and Section 4.2.

Note that our attacks for known MSBs have natural starting and ending
points. One MSB attack on small d coincides with the bound d ≤ N0.284 from
[1], the other runs up to the situation where d is of full size and is fully known.
This links our results to that of May [9], proving a deterministic polynomial time
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equivalence between factoring and full knowledge of d. Our MSB attack on small
e is a natural extension of the results of [2] and [3].

Our new result on known LSBs for relatively small d and full size e is as
follows.

Theorem 3 (LSB small d). Under a common heuristic assumption concern-
ing resultants, for every ε > 0, there exists n0 such that for every n > n0, the
following holds:
Let N = pq be an n-bit RSA-modulus, and p, q primes of bitsize n

2 . Let 0 < δ <
β < 1. Furthermore, let e, d satisfy ed ≡ 1 mod φ(N) with bitsize(e) = n and
bitsize(d) = βn. Given the (β − δ)n LSBs of d, N can be factored in polynomial
time when:

– δ < 5
6 −

1
3

√
1 + 6β − ε (Section 4.3).

Fig. 3 illustrates our result on known LSBs. The fraction of bits required
for an attack is plotted as a function of the size of d. Fig. 4 is a picture of the
relation between the fraction of bits required for an attack, and the size of e,
showing the work of [2] and [3]. Analysis of our LSB method in the case where
e is small results in a bound equivalent to the best result of [3].
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Again, notice that the starting point of our new LSB attack for small d
coincides with the bound d ≤ N0.284 from [1].

The bounds of Section 4.1.1 and 4.3 show a symmetry in the outcomes of the
MSB and LSB situations for small d. Likewise, the bound of Section 4.2 and the
second bound of Section 4.1.2 show a symmetry in the outcomes of the MSB cases
for small d and small e. This is a result of the general character of our method.
Instead of studying only special scenarios, we analyze the underlying polynomials
in a general framework, which also makes it possible to study numerous old and
new cryptanalytic situations, on which we shall comment in Section 4.4.

Our results can be viewed as evidence that side channel attacks are even more
dangerous to RSA than we already knew. In essence, we show that there exist
partial key exposure attacks up to full size exponents, hence if either e or d is
chosen to be significantly smaller than φ(N), the system is vulnerable to this type
of attacks. This can be understood as a warning to crypto-designers to choose
both private and public exponent at random, or take sufficient countermeasures
to prevent private key bits from leaking.

This paper is organized as follows. In Section 2, we describe the typical RSA
setting and show how we derive polynomials with small roots from the RSA
key equation when MSBs or LSBs of the private exponent d are known. In
Section 3, we give an overview of the tools we use to find the small roots of these
polynomials. In Section 4 we give the description of our attacks, proving the
results of Theorem 1, 2, and 3. In Section 5, experimental results are provided.

2 Looking at the RSA Key Equation

Let p, q,N, d, e be as usual, i.e. p and q are distinct primes, N = pq is taken
as modulus, and the encryption exponent e and decryption exponent d satisfy
ed ≡ 1 mod φ(N). For all of the attacks in this paper, we assume that p and q
have the same bitsize, thus p + q < 3

√
N . Let k ∈ Z be defined by the RSA key

equation

ed− 1 = kφ(N), where φ(N) = (p− 1)(q − 1) = N − (p + q − 1).

In our scenario, we assume one of the exponents e and d is chosen to be
small and the other one is of full size. We will first focus on the case where d is
small. Therefore, we place no restrictions on e except e < φ(N). It follows that
k < ed

φ(N) < d.

When MSBs of d are known, we write d = d̃+ d0, where d̃ (representing the
most significant bits of d) is known to the attacker, but d0 (representing the
least significant bits of d) is not. To make this precise, let β and δ be parameters
such that d ≤ Nβ , and |d0| = |d− d̃| ≤ N δ.

For the MSB case, we can thus rewrite the RSA key equation into

e(d̃+ d0)− 1 = k(N − (p + q − 1)).

Hence, the polynomial

fMSB1(x, y, z) = ex−Ny + yz +R, where R = ed̃− 1,
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has a root (x0, y0, z0) = (d0, k, p+q−1). Let X := N δ, Y := Nβ , and Z := 3N
1
2 .

Then the root is ’small’ since |x0| < X, |y0| < Y , and |z0| < Z.
The attacker can also compute k̃ = ed̃−1

N as an approximation to k, and set
k0 = k − k̃ as the unknown part of k. It can be shown (as was done in [3])
that |k0| < e

φ(N) (N
δ + 3Nβ− 1

2 ), so in our case we have |k0| < 4Nγ , where γ =
max{δ,β − 1

2}. When we substitute the knowledge of the MSBs of k into the
RSA key equation, we obtain

e(d̃+ d0)− 1 = (k̃ + k0)(N − (p + q − 1)).

Hence,

fMSB2(x, y, z) = ex−Ny + yz + k̃z +R, with R = ed̃− 1− k̃N,

has a root (x0, y0, z0) = (d0, k0, p + q − 1). With X := N δ, Y := 4Nγ , and
Z := 3N

1
2 , we have |x0| < X, |y0| < Y , and |z0| < Z.

When LSBs of d are known, the attacker knows d̄ ≡ d mod M for some M ,
and we write d = d̄+d1M , where d̄ and M are known, and d1 is not. We assume
that d ≤ Nβ , and d1 ≤ N δ. We have no approximation of k in this case, so we
rewrite the RSA key equation as

e(d1M + d̄)− 1 = k(N − (p + q − 1)).

Thus,
fLSB(x, y, z) = eMx−Ny + yz +R, with R = ed̄− 1,

has a root (x0, y0, z0) = (d1, k, p + q − 1). Using X := N δ, Y := Nβ , and
Z := 3N

1
2 , we have |x0| < X, |y0| < Y , and |z0| < Z.

3 Finding Small Roots

We have seen that in several cases, we can obtain d, k and p+q−1 when we can
find a small root of a certain trivariate polynomial. In this section, we describe
some tools that we use to solve this problem of finding small roots. For a polyno-
mial h(x, y, z) =

∑
i,j,k hijkx

iyjzk, we define ||h(x, y, z)||2 :=
∑

i,j,k |hijk|2 and
||h(x, y, z)||∞ := maxi,j,k |hijk|.

In [4], Coppersmith describes rigorous techniques to find small integer roots
of polynomials in a single variable modulo n, and of polynomials in two variables
over the integers. The methods extend to more variables, making them heuris-
tical. Howgrave-Graham reformulated Coppersmith’s ideas of finding modular
roots in [6], of which we use the following lemma.

Lemma 1 (Howgrave-Graham). Let h(x, y, z) ∈ Z[x, y, z] be a polynomial
which is a sum of at most ω monomials. Suppose that h(x0, y0, z0) ≡ 0 mod n
for some |x0| < X, |y0| < Y , |z0| < Z, and ||h(xX, yY, zZ)|| < n√

ω
. Then

h(x0, y0, z0) = 0 holds over the integers.
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Howgrave-Graham’s lemma is usually combined with LLL reduction of lat-
tice bases [7].

Fact 1 (LLL). Let L be a lattice of dimension ω. In polynomial time, the LLL-
algorithm outputs two reduced basis vectors v1 and v2, that satisfy

||v1|| ≤ ||v2|| ≤ 2
ω
4 det(L)

1
ω−1 .

Thus, the condition 2
ω
4 det(L)

1
ω−1 < n√

ω
implies that polynomials corresponding

to the two shortest reduced basis vectors match Howgrave-Graham’s bound. This
condition reduces to det(L) ≤ (2

−ω
4 1√

ω
)ω−1nω−1. In practice, we ignore terms

that do not depend on n, and check only if det(L) ≤ nω−1.
Coppersmith’s technique of finding small roots of polynomials over the inte-

gers has so far been less applied in cryptanalysis methods. Recently, Coron [5]
reformulated this technique analogous to Howgrave-Graham. Essentially, Coron
picks a ’suitable’ integer n and transfers the situation into finding a small root
modulo n, thereby applying Howgrave-Graham’s lemma. In the following sec-
tions, we will study the polynomials fMSB1, fMSB2, and fLSB to find their small
roots over the integers, analogous to Coron.

4 Description of the Attacks

4.1 Known MSBs and Small d

4.1.1 Attack Using fMSB1

We will now describe a method that finds a small root of fMSB1 over the integers,
and prove the first result of Theorem 1, namely that we have a polynomial time
MSB attack when

δ ≤ 5
6
− 1

3

√
1 + 6β − ε.

Recalling the situation where we do not use an approximation of k, we want to
find a small root (x0, y0, z0) of the polynomial fMSB1(x, y, z) = ex−Ny+yz+R.

Our first observation is that fMSB1 is irreducible over the integers. Thus,
if we could construct two polynomials f1, f2 with the same root (x0, y0, z0)
which are not multiples of fMSB1, then they do not share a common divisor
with fMSB1. Hence, the polynomials p1(y, z) = Resx(fMSB1, f1) and p2(y, z) =
Resx(fMSB1, f2) cannot be the zero polynomials. Under the heuristic that the
resultant Resy(p1, p2) does not vanish, we obtain z0 = p + q − 1 from a lin-
ear factor (z − z0) in Resy(p1, p2), which gives us the factorization of N . All
attacks in this paper have a similar heuristic concerning resultants, common in
cryptanalysis using multivariate polynomials. Therefore we will use the following
assumption.

Assumption 1. The resultant computations for the polynomials in this paper
yield non-zero polynomials.
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We will comment on how this assumption holds in practice in Appendix D,
where we also provide experimental results.

Now let us find conditions under which we can construct f1 and f2 as defined
above. Let X,Y,Z be upper bounds for x0, y0, z0, respectively. We fix an integer
m depending on 1

ε , and a parameter t, that we will optimize later in terms of
m. We define W = ||fMSB1(xX, yY, zZ)||∞ and n = (XY )mZm+tW .

First, in order to work with a polynomial with constant term 1, we define

f(x, y, z) ≡ R−1fMSB1(x, y, z) mod n ≡ 1 + ax+ by + cyz.

Let us look at the following collection of polynomials, the so-called shifts:

gijk(x, y, z) = xiyjzkf(x, y, z)Xm−iY m−jZm+t−k,

for i = 0, . . . ,m ; j = 0, . . . ,m− i ; k = 0, . . . , j,
hijk(x, y, z) = xiyjzkf(x, y, z)Xm−iY m−jZm+t−k,

for i = 0, . . . ,m ; j = 0, . . . ,m− i ; k = j + 1, . . . , j + t.

In addition to the polynomials g and h, we also use the polynomials

g′ijk(x, y, z) = nxiyjzk for i = 0, . . . ,m+ 1; j = m+ 1− i; k = 0, . . . , j,

h′ijk(x, y, z) = nxiyjzk for i = 0, . . . ,m+ 1; j = m+ 1− i; k = j + 1, . . . , j + t.

Let us give an intuition of the construction of our collection of polynomials.
When m = t = 1, the polynomials g are constructed by multiplying f by its
monomials 1, x, y, yz and constants. In this way, all the monomials of f2 appear.
In general, the polynomials g are constructed by multiplying f by the monomials
of fm, thereby creating the monomials of fm+1. Additionally, we add the z-shifts
h. In our example, the z-shifts are constructed by multiplying f by the terms
z, xz, and yz2 and constants. The terms z, xz, and yz2 are the multiplications
of z and the original monomials, without yz since this shift was already in g.
The auxiliary polynomials g′, h′ contain the monomials in g and h that were not
used for shifts.

Obviously, g, h, g′, and h′ all have the root (x0, y0, z0) modulo n: g and h
have f as a factor, and g′ and h′ are multiples of n. Let f1 and f2 be linear
combinations of these polynomials. According to Howgrave-Graham’s lemma, if
||f1(xX, yY, zZ)|| and ||f2(xX, yY, zZ)|| are smaller than n√

ω
, then f1 and f2

both have the root (x0, y0, z0) over the integers.
Moreover, we want to ensure that f1(xX, yY, zZ) and f2(xX, yY, zZ) are not

multiples of fMSB1(xX, yY, zZ), which implies that f1, f2 are not multiples of
f . By construction, each of our polynomials gijk(xX, yY, zZ), hijk(xX, yY, zZ),
g′ijk(xX, yY, zZ), h′ijk(xX, yY, zZ) is divisible by (XY )mZm+t. So f1(xX, yY, zZ)
and f2(xX, yY, zZ) must be divisible by this term. According to a lemma of
Coron [5–Lemma 3], for any multiple h(xX, yY, zZ) of fMSB1(xX, yY, zZ) it
holds that

||h(xX, yY, zZ)|| ≥ 2−(ρ+1)2(XY )mZm+t · ||fMSB1(xX, yY, zZ)||∞ = 2−(ρ+1)2n,
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where ρ is the maximum degree of the polynomials h and fMSB1 in each variable
separately. If we let terms that do not depend on n contribute to ε, we find that
a linear combination with norm smaller than n cannot be a multiple of fMSB1,
and must satisfy Howgrave-Graham’s bound.

We build a lattice L using as a basis the coefficient vectors of gijk(xX, yY, zZ),
hijk(xX, yY, zZ), g′ijk(xX, yY, zZ) and h′ijk(xX, yY, zZ). We order the vectors
such that the matrix is triangular, and the diagonal entries of g and h are equal
to (XY )mZm+t. For m = t = 1, after dividing out XY Z2 for simplicity, the
coefficient matrix is the following (the rows correspond to the coefficient vectors
of h, g, h′, and g′, respectively).

z xz yz2 1 x y yz x2z xyz2 y2z3 x2 xy y2 y2z xyz y2z2

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 aX cY Z bY
1 aX cY Z bY

1 aX cY Z bY
1 aX bY cY Z

1 aX bY cY Z
1 aX bY cY Z

1 bY aX cY Z

WX2Z
WXY Z2

WY 2Z3

WX2

WXY
WY 2

WY 2Z
WXY Z

WY 2Z2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In general, the computations in Appendix A show that for t = τm, if

X1+3τY 2+3τZ1+3τ+3τ2 ≤W 1+3τ ,

we find polynomials f1 and f2 that satisfy the Howgrave-Graham bound. Thus,
they have the root (x0, y0, z0) over the integers and are not multiples of f . Under
Assumption 1, the resultant method will reveal the integer root (x0, y0, z0). Note
that the bound can be applied on any irreducible polynomial with the monomials
1, x, y, and yz.

In our case, X = N δ, Y = Nβ , Z = 3N
1
2 and W = max{eX,NY, Y Z,R} ≥

NY = N1+β . We find an optimal value τ = 1
2 − δ, which implies δ ≤ 5

6 −
1
3

√
1 + 6β. Thereby, we have derived the first result of Theorem 1.

4.1.2 Attack Using fMSB2

We will now show how to obtain the second and third result mentioned in The-
orem 1, namely that we have a polynomial time MSB attack whenever

δ ≤ 3
16
− ε and β ≤ 11

16
, or δ ≤ 1

3
+

1
3
β− 1

3

√
4β2 + 2β − 2− ε and β ≥ 11

16
.

For the situation where we use information on MSBs of d to get an approximation
k̃ of k, we want to find a small root (x0, y0, z0) of the polynomial fMSB2(x, y, z) =
ex−Ny + yz + k̃z +R.
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We fix an integer m depending on 1
ε , a parameter t that we optimize later,

and put W = ||fMSB2(xX, yY, zZ)||∞, and n = XmY m+tZmW . We compute
f ≡ R−1fMSB2 mod n ≡ 1 + ax + by + cyz + dz, and define the collection of
polynomials

gijk(x, y, z) = xiyjzkf(x, y, z)Xm−iY m+t−jZm−k,

for i = 0, . . . ,m ; j = 0, . . . ,m− i ; k = 0, . . . ,m− i,

hijk(x, y, z) = xiyjzkf(x, y, z)Xm−iY m+t−jZm−k,

for i = 0, . . . ,m ; j = m− i+ 1, . . . ,m− i+ t ; k = 0, . . . ,m− i,

g′ijk(x, y, z) = nxiyjzk,

for i = 0, . . . ,m+ 1 ; j = 0, . . . ,m+ t+ 1− i ; k = m+ 1− i,

h′ijk(x, y, z) = nxiyjzk,

for i = 0, . . . ,m ; j = m+ t+ 1− i ; k = 0, . . . ,m− i.

As before, the polynomials g are constructed by shifting f with every monomial
of fm. The polynomials h represent extra y-shifts, the shifts used are yl times
the monomials of fm, for l = 1, . . . , t (excluding shifts that were already in g).
The auxiliary polynomials g′ and h′ contain the monomials of g and h that were
not used for the shifts.

We build a lattice L using as a basis the coefficient vectors of gijk(xX, yY, zZ),
hijk(xX, yY, zZ), g′ijk(xX, yY, zZ), and h′ijk(xX, yY, zZ), where we order the
vectors such that the corresponding lattice basis is triangular, and the diagonal
entries of g and h are equal to XmY m+tZm.

The computations in Appendix B show for t = τm, that when

X2+3τY 3+6τ+3τ2
Z3+3τ ≤W 2+3τ

holds, we can find two reduced basis vectors that satisfy the Howgrave-Graham
bound. So under Assumption 1, we can find the factorization of N in polynomial
time.

In our case, we have X = N δ, Y = 4Nγ , with γ = max{δ,β − 1
2}, and

Z = 3N
1
2 . Also, W = max{eX,NY, Y Z, k̃Z,R} ≥ NY = 4N1+γ . The optimal

value τ =
1
2−δ−γ

2γ leads to the condition δ ≤ 1
3γ + 1

2 −
1
3

√
4γ2 + 6γ. If γ = δ,

this implies δ ≤ 3
16 , valid for β ≤ 11

16 . If γ = β − 1
2 , we get δ ≤ 1

3 + 1
3β −

1
3

√
4β2 + 2β − 2 , valid for β ≥ 11

16 .
This concludes the proof of Theorem 1.

4.2 Known MSBs and Small e

In practice, one often chooses the public exponent e to be small. Therefore, we
now let e = Nα and d < φ(N). Note that we are able to use the same polynomials
fMSB1 and fMSB2, when we make some changes in the size of the parameters.
The best result in this situation, as mentioned in Theorem 2, is that we obtain
a polynomial time MSB attack whenever

δ ≤ 1
3

+
1
3
α− 1

3

√
4α2 + 2α− 2 for α >

1
2
.
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We can again use fMSB1(x, y, z) = ex−Ny+yz+R, now with |d0| < X = N δ,
|k| < Y = Nα and |p+ q− 1| < Z = 3N

1
2 . Using W = N1+α, as in Section 4.1.1

we find δ ≤ 5
6 −

1
3

√
1 + 6α. This result only holds for α > 1

2 . In the case α < 1
2 ,

from [2–Theorem 4.1], we can assume that k is known, and the polynomial to
be analyzed becomes bivariate. Since our attack using fMSB1 obtains a worse
bound than the one using fMSB2, it is not mentioned in Theorem 2.

When we use partial information on k, where k is partly unknown (so α > 1
2 ),

we can use fMSB2(x, y, z) = ex −Ny + yz + k̃z + R. We have |d0| < X = N δ,
|k0| < Y = 4Nγ , with γ = max{α + δ − 1, α − 1

2}, and |p + q − 1| < Z =
3N

1
2 . Using W = N1+γ , we get the same condition as in the previous para-

graph, namely δ ≤ 1
3γ + 1

2 −
1
3

√
4γ2 + 6γ, that we analyze for two possibilities

for γ.
If we substitute γ = α+ δ − 1 (in other words, we assume δ > 1

2 ), we obtain
the condition δ < 3+4α−4α2

16α . However, for α > 1
2 , δ < 3+4α−4α2

16α < 1
2 , so we get

no result. If γ = α − 1
2 , we find δ ≤ 1

3 + 1
3α −

1
3

√
4α2 + 2α− 2. This concludes

the proof of Theorem 2.

4.3 Known LSBs and Small d

In this section, we will show how to obtain the result of Theorem 3, namely that
we have a polynomial time LSB attack whenever

δ ≤ 5
6
− 1

3

√
1 + 6β − ε.

The polynomial fLSB(x, y, z) = eMx − Ny + yz + R, where R = ed̄ − 1, has
the same monomials as fMSB1. So we can directly apply the analysis of Section
4.1.1. We use

X1+3τY 2+3τZ1+3τ+3τ2 ≤W 1+3τ ,

on X = N δ, Y = Nβ , Z = 3N
1
2 and W = max{eMX,NY, Y Z,R} ≥ NY =

N1+β . This implies δ ≤ 5
6 −

1
3

√
1 + 6β, which concludes the proof of Theorem 3.

If we adapt the LSB attack for the situation when e is not of full size, we get
exactly the result from Blömer and May in [3–Section 6].

4.4 Other Applications of the General Method

We have already mentioned that the analysis of the approaches using fMSB1

and fMSB2 is general, in the sense that for every irreducible polynomial with
the monomials 1, x, y, yz, the inequality X1+3τY 2+3τZ1+3τ+3τ2 ≤W 1+3τ defines
the condition for a successful (heuristic) attack. Also, for every irreducible poly-
nomial with the monomials 1, x, y, yz, z, the condition X2+3τY 3+6τ+3τ2

Z3+3τ ≤
W 2+3τ implies a successful (heuristic) attack. As a consequence, many known
attacks on RSA are special cases of our general framework.

As could be seen in Fig. 1, and 3, one MSB attack and one LSB attacks for
small d coincide with the bound d < N0.284 from [1]. This result can also be found
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using our method by noticing that fBD(x, y, z) = ex−Ny+yz−1 with the root
(x0, y0, z0) = (d, k, p+q−1) has the same monomials as fMSB1. Therefore, we can
substitute X,Y = Nβ , Z = 3N

1
2 and W = max{eX,NY, Y Z} ≥ NY = N1+β

in X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ , which leads to β ≤ 7
6 −

1
3

√
7 ≈ 0.284. To

get the improved Boneh-Durfee bound one has to use sublattices. We leave this
for further research.

Fig. 1 also shows that the graph of our (asymptotic) attack of Section 4.1.2
goes up to β−δ

β = 1, for the parameter choice β = 1. This links our result to
a recent result of May [9], who proves that if one knows all the bits of d and
ed ≤ N2, then one can factor in deterministic polynomial time.

Moreover, the result on RSA with small prime difference from de Weger [11]
and one of the results for unbalanced RSA with small CRT-exponent by May [8]
are also special cases of our method, as is an interesting situation not analyzed
in the literature before, namely when both some MSBs and some LSBs of the
private exponent are known. We will comment on these other applications of our
general method in Appendix C.

5 Experiments

We state some experimental results to give an idea of the performance of our
methods. In all the cases, N ≈ 21024. The experiments are performed on a server
containing two Pentium III processors of 1000 Mhz, and all the lattice basis
reductions are done using Shoup’s NTL [10].

For our MSB1 attack on small d, a typical case is β = 0.3, δ = 0.21 (e.g. 70%
of d is unknown). An attack using m = 2, t = 1 involved a 10 minute reduction
of the 30-dimensional lattice.

For the MSB2 attack on small d, a typical case is β = 0.6, δ = 0.13 (e.g. 22%
of d is unknown). The attack using m = 2, t = 2 has a 50-dimensional lattice,
that took 31

4 hours to reduce.
We performed the MSB2 attack on small e for α = 0.7, δ = 0.08 (e.g. 8% of

d is unknown), using m = 2, t = 2. The reduction of the 50-dimensional lattice
took 2 3

4 hours.
All typical cases are examples of our attacks where the bound on δ that

we obtain in practice (for the low value m = 2) already exceeds the asymp-
totic bounds of other known attacks. More experimental results are included
in Appendix D, where we also comment on how Assumption 1 holds in
practice.

Last of all, we want to note that one could also apply the original method
of Coppersmith described in [4] instead of Coron’s reformulation [5]. In that
case, the formulation of the method is a bit more technical, and the method
produces essentially the same asymptotic bounds, but it has the advantage
that the dimension of the lattice to reduce drops from a cubic to a quadratic
function in m, which could significantly reduce the time necessary for LLL
reduction.
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A The Bound X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ

In this appendix, we show how to obtain the bound X1+3τY 2+3τZ1+3τ+3τ2 ≤
W 1+3τ for the attack using fMSB1 (Section 4.1.1).

In Section 4.1.1, we described how to construct the lattice. The matrix con-
taining the basis vectors is triangular and has the following diagonal entries
(corresponding to the polynomials g, h, g′ and h′, respectively):

XmY mZm+t for i = 0, . . . ,m; j = 0, . . . ,m− i; k = 0, . . . , j
XmY mZm+t for i = 0, . . . ,m; j = 0, . . . ,m− i; k = j + 1, . . . , j + t
Xm+iY m+jZm+t+kW for i = 0, . . . ,m+ 1; j = m+ 1− i; k = 0, . . . , j
Xm+iY m+jZm+t+kW for i = 0, . . . ,m+ 1; j = m+ 1− i; k = j + 1, . . . , j + t

Since we have to optimize t in terms of m, we put t = τm. Elementary compu-
tations show that the dimension of L is

ω =
1
6
(m3(1 + 3τ) +m2(9 + 15τ)) + o(m2),
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and that

det(L)= X
1
6 (m4(1+3τ)+m3(10+18τ)+o(m3)) · Y 1

6 (m4(1+3τ)+m3(11+18τ)+o(m3))

·Z 1
6 (m4(1+4τ+3τ2)+m3(10+27τ+18τ2)+o(m3)) ·W 1

6 (m2(3+6τ)+o(m2)).

When we apply LLL-reduction to our lattice, the polynomials f1(x, y, z) and
f2(x, y, z) corresponding to the shortest two vectors in the reduced basis sat-
isfy f1(x0, y0, z0) ≡ 0 mod n and f2(x0, y0, z0) ≡ 0 mod n. In order to apply
Howgrave-Graham’s lemma, we explained in Section 3 that

det(L) ≤ (2
−ω
4

1√
ω

)ω−1nω−1.

must hold.
Ignoring terms that do not depend on n = XmY mZm+tW , and ignoring

terms of order o(m3) (we let these terms contribute to ε), we obtain that if

Xm4(1+3τ)+m3(10+18τ)Y m4(1+3τ)+m3(11+18τ)Zm4(1+4τ+3τ2)+m3(10+27τ+18τ2) ≤
(XY Z1+τ )m4(1+3τ)+m3(9+15τ)Wm3(1+3τ)

the polynomials f1(x, y, z) and f2(x, y, z) satisfy the Howgrave-Graham bound.
The condition above simplifies into

X1+3τY 2+3τZ1+3τ+3τ2 ≤W 1+3τ .

B The Bound X2+3τY 3+6τ+3τ2
Z3+3τ ≤ W 2+3τ

In this appendix, we show how to obtain the bound X2+3τY 3+6τ+3τ2
Z3+3τ ≤

W 2+3τ for the attack using fMSB2 (Section 4.1.2).
In Section 4.1.2, we described how to construct the lattice. The matrix con-

taining the basis vectors is triangular and has the following diagonal entries
(corresponding to g, h, g′, and h′):

XmY m+tZm for i = 0, . . . ,m; j = 0, . . . ,m− i; k = 0, . . . ,m− i
XmY m+tZm for i = 0, . . . ,m; j = m− i+ 1, . . . ,m− i+ t;

k = 0, . . . ,m− i
Xm+iY m+t+jZm+kW for i = 0, . . . ,m+ 1; j = 0, . . . ,m+ t+ 1− i;

k = m+ 1− i
Xm+iY m+t+jZm+kW for i = 0, . . . ,m; j = m+ t+ 1− i; k = 0, . . . ,m− i

One can check that

dim(L) = ω =
1
6
(m3(2 + 3τ) +m2(15 + 15τ)) + o(m2),

and the determinant of L is equal to

X
1
6 (m4(2+3τ)+m3(17+18τ)+o(m3)) · Y 1

6 (m4(2+5τ+3τ2)+m3(18+36τ+18τ2)+o(m3))

·Z 1
6 (m4(2+3τ)+m3(18+18τ)+o(m3)) ·W 1

6 (m2(6+6τ)+o(m2)).
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When we apply LLL-reduction to our lattice, the polynomials f1(x, y, z) and
f2(x, y, z) corresponding to the shortest two vectors in the reduced basis sat-
isfy f1(x0, y0, z0) ≡ 0 mod n and f2(x0, y0, z0) ≡ 0 mod n. In order to apply
Howgrave-Graham’s Lemma, it must hold that

det(L) ≤ (2
−ω
4

1√
ω

)ω−1nω−1.

Ignoring terms that do not depend on n = XmY m+tZmW , and ignoring
terms of order o(m3) (we let these terms contribute to ε), we obtain that if

Xm4(2+3τ)+m3(17+18τ)Y m4(2+5τ+3τ2)+m3(18+36τ+18τ2)Zm4(2+3τ)+m3(18+18τ) ≤
(XY 1+τZ)m4(2+3τ)+m3(15+15τ)Wm3(2+3τ)

the polynomials f1(x, y, z) and f2(x, y, z) satisfy Howgrave-Graham’s bound.
The condition above simplifies into

X2+3τY 3+6τ+3τ2
Z3+3τ ≤W 2+3τ .

C Other Special Cases of Our Method

In this appendix, we show that results from [11] and [8] are also special cases of
our method, as is the case where both MSBs and LSBs of d are known.

In the case of RSA with small prime difference, described by de Weger in
[11], we have p − q ≤ Nβ , k ≤ d ≤ N δ and p + q − 2

√
N ≤ N2β− 1

2 . The
function fdW (x, y, z) = ex − y(N − 2

√
N − z) − 1 has the same monomials as

fMSB1. When we substitute X,Y = N δ, Z = N2β− 1
2 , we find that for β < 3

4 ,
we have W = N1+δ. Using X1+3τY 2+3τZ1+3τ+3τ2 ≤W 1+3τ , we get δ ≤ 1

6 (4β +
5) − 1

3

√
(4β + 5)(4β − 1). To obtain de Weger’s second bound, sublattices are

needed.
Also, a bound for unbalanced RSA with small CRT-exponent by May [8] can

be derived from our inequality belonging to fMSB1. The setting is edp − k(p −
1) − 1 = 0, where dp ≤ N δ, p ≥ N1−β , and k ≤ Nβ+δ. Multiplication with q
yields edpq − (k − 1)(N − q) − N = 0. This gives us the polynomial fMa1 =
ex− y(N − z)−N . The upper bounds for the root (x0, y0, z0) = (dpq, k − 1, q)
are X,Y = Nβ+δ and Z = Nβ . Additionally, we have W = N1+β+δ. Plugging
these values in our inequality, we find the bound δ ≤ 1− 2

3 (β +
√

3β + β2).
The last special case we describe in this appendix is the the situation where

both MSBs and LSBs of an exponent d are known. Let dL be a known LSB part
of size Nκ of the key d, followed by an unknown middle part x of size N δ, which
itself is followed by a known MSB part dM , of size Nβ−κ−δ. Hence, we can write
d as d = dL +M1(x+M2dM ), where M1 ≥ Nκ, and M2 ≤ N δ. Note that κ = 0
describes the case where only MSBs are known, whereas κ = β − δ corresponds
to the LSB scenario.
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When we omit partial knowledge of k, the function fMSB+LSB1(x, y, z) =
eM1x − Ny + yz + R, with R = edL + eM1M2dM − 1, has the small root
(x0, y0, z0) = (x, k, p + q − 1), with X = N δ, Y = Nβ , and Z = 3N

1
2 .

As the function has the same monomials as fMSB1, one can use the same
inequality to conclude that the attack works for δ < 5

6 −
1
3

√
1 + 6β. Hence, the

result is exactly the same as when only MSBs or only LSBs are known and
knowledge of k is not used. Apparently, as long as the unknown part of d is
connected, its place does not make a difference, only its length.

When we use the partial knowledge of k provided by the approximation k̃,
we obtain the function fMSB+LSB2(x, y, z) = eM1x − Ny + yz + k̃z + R, with
R = edL + eM1M2dM − k̃N − 1.

Analysis similar to the fMSB2 case shows that if γ = max{δ + κ,β − 1
2} =

δ + κ, we obtain the bound δ ≤ 3−4κ−4κ2

16+16κ , valid for β ≤ 11+4κ−4κ2

16+16κ . In the case
γ = β− 1

2 , we find that the attack works whenever δ ≤ 1
3 + 1

3β− 1
3

√
4β2 + 2β − 2,

valid for β ≥ 11+4κ−4κ2

16+16κ .
Naturally, equivalent bounds can be derived when d is full size and e is not.

D More Experimental Results

In addition to Section 5, we now show more experimental results. The experi-
ments we did for this appendix are only for m = 1 and m = 2, which means
the lattices are relatively small and the lattice reduction can be performed in a
matter of seconds or minutes. In the full version of this paper, experiments for
larger parameters will be included.

As in Section 5, the experiments are performed on a server containing two
Pentium III processors of 1000 Mhz, and all the lattice basis reductions are done
using Shoup’s NTL [10]. In contrast to the experimental results mentioned in
Section 5, we assume here that we have a 256 bit modulus. So one has to keep in
mind that for N ≈ 21024, the running time of the LLL-procedure will be longer.

As the bounds on δ stated in Theorem 1 and 2 are asymptotic bounds, the
goal of the tables in this appendix is to provide some intuition of what bounds
on δ our attacks can achieve in practice. For example, the table in Fig. 5 shows
that for β = 0.3, the asymptotic bound of the attack using fMSB1 from Section
4.1.1 is δ < 0.28 − ε. When we use the parameters m = 2, t = 1, our attack
works for δ < 0.21. The attack involves a lattice of dimension 30, which takes
approximately 25 seconds to reduce.

This example is one of the three so-called ’typical cases’ of Section 5. These
are examples where the bound on δ that we obtain in practice exceeds the
asymptotic bounds of other known attacks. In the tables in this appendix, the
typical cases are written in bold.

For the choice of t, recall from Section 4.1.1 that t = τm, and that we use
τ = 1

2 − δ to obtain the asymptotic result of our attack using fMSB1. This
explains that for m = 1 in Fig. 5, a value of t larger than 1 gives no significant
improvement, but for m = 2, t = 2 may give a better result when the bound on
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β δ m = 1 m = 2
asympt. t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

0.30 0.28 0.19 0.19 0.19 0.19 0.21 0.21
0.35 0.25 0.13 0.14 0.14 0.14 0.16 0.16
0.40 0.22 0.09 0.11 0.11 0.09 0.14 0.15
0.45 0.19 0.04 0.10 0.10 0.05 0.12 0.12
0.50 0.17 0 0.08 0.09 0 0.10 0.11
0.55 0.14 0 0.08 0.08 0 0.09 0.11
0.60 0.12 0 0.04 0.04 0 0.06 0.10
0.65 0.10 0 0 0 0 0 0.06
0.70 0.07 0 0 0 0 0 0.01
0.75 0.05 0 0 0 0 0 0
0.80 0.03 0 0 0 0 0 0
0.85 0.01 0 0 0 0 0 0

Dimension: 10 16 22 20 30 40
LLL (sec): 1 2 8 3 25 100

Fig. 5. Experiments fMSB1 for small d

β δ m = 1 m = 2
asympt. t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2

0.30 0.19 0.19 0.20 0.20 0.20 0.19 0.19 0.19
0.35 0.19 0.15 0.16 0.16 0.16 0.16 0.16 0.16
0.40 0.19 0.12 0.12 0.12 0.12 0.14 0.15 0.15
0.45 0.19 0.10 0.11 0.12 0.12 0.12 0.13 0.13
0.50 0.19 0.08 0.11 0.12 0.12 0.12 0.13 0.13
0.55 0.19 0.08 0.11 0.12 0.12 0.11 0.13 0.13
0.60 0.19 0.05 0.11 0.11 0.11 0.11 0.12 0.13

0.65 0.19 0 0.05 0.06 0.06 0.05 0.08 0.10
0.70 0.18 0 0 0 0 0 0.04 0.05
0.75 0.14 0 0 0 0 0 0 0
0.80 0.11 0 0 0 0 0 0 0
0.85 0.08 0 0 0 0 0 0 0
0.90 0.05 0 0 0 0 0 0 0
0.95 0.03 0 0 0 0 0 0 0

Dimension: 14 20 26 32 30 40 50

LLL (sec): 1 7 17 40 26 180 480

Fig. 6. Experiments fMSB2 for small d

α δ m = 1 m = 2
asymptotic t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2

0.50 0.50 0.25 0.33 0.38 0.40 0.32 0.37 0.41
0.55 0.33 0.17 0.21 0.23 0.25 0.21 0.23 0.24
0.60 0.27 0.09 0.14 0.17 0.18 0.13 0.16 0.19
0.65 0.22 0.02 0.07 0.10 0.10 0.07 0.11 0.13
0.70 0.18 0 0.02 0.03 0.04 0.02 0.04 0.08

0.75 0.14 0 0 0 0 0 0.01 0.02
0.80 0.11 0 0 0 0 0 0 0
0.85 0.08 0 0 0 0 0 0 0
0.90 0.05 0 0 0 0 0 0 0
0.95 0.03 0 0 0 0 0 0 0

Dimension: 14 20 26 32 30 40 50

LLL (sec): 1 5 13 40 33 180 520

Fig. 7. Experiments fMSB2 for small e

δ is ’low’. For the attacks using fMSB2 (Section 4.1.2 and 4.2), τ =
1
2−δ−γ

2γ . This
explains for example, that when e = Nα with α close to 1

2 , using a larger t gives
a better bound on δ in the experiments (as can be seen in Fig. 7).

Having done some experiments, we can now comment on Assumption 1. Let
g(x, y, z) and h(x, y, z) be polynomials that correspond to LLL-reduced vectors
in our method, for which Howgrave-Graham’s bound is satisfied. If g(x0, y0, z0) =
h(x0, y0, z0) = 0, but the resultant computations with g and h yield the zero-
polynomial, then Assumption 1 does not hold. Therefore, we performed some
tests to see how often this occurs. We found that for approximately 0.1% of pairs
(g, h) the heuristic failed. This does not mean that the method will always fail in
these cases. Usually, there are several vectors that satisfy Howgrave-Graham’s
bound, hence if one pair fails, other pairs can yield the solution.

Experiments also show that the theoretical bound under which our methods
works, det(L) ≤ (2

−ω
4 1√

ω
)ω−1nω−1, is far too strict. It would imply that for

m ∈ {1, 2}, the method will never work, which clearly contradicts the practice.
This is both due to the term (2

−ω
4 1√

ω
)ω−1, when it is known that LLL-reduction

achieves much better bounds in practice, and to the fact that we use the LLL-
bound for the second smallest reduced vector. In practice, we experienced that
our method works until we come close to det(L) ≤ nω (the bound for the first
reduced vector to be small enough, omitting the constant term).
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Abstract. We prove, under the strong RSA assumption, that the group
of invertible integers modulo the product of two safe primes is pseudo-
free. More specifically, no polynomial time algorithm can output (with
non negligible probability) an unsatisfiable system of equations over the
free abelian group generated by the symbols g1, . . . , gn, together with a
solution modulo the product of two randomly chosen safe primes when
g1, ..., gn are instantiated to randomly chosen quadratic residues. Ours
is the first provably secure construction of pseudo-free abelian groups
under a standard cryptographic assumption, and resolves a conjecture of
Rivest (TCC 2004).

1 Introduction

The notion of “pseudo-free group”, put forward by Hohenberger in [10] and
subsequently refined by Rivest [20], informally describes a finite computational
group (i.e. a group that admits an efficient algorithmic implementation) with the
security property that it is computationally hard to find solutions to any non-
trivial equation over the group. More specifically, Rivest [20] defines pseudo-free
(abelian) groups as computational (commutative) groups such that no polyno-
mial time adversary, given random group elements g1, . . . , gn (chosen using to an
appropriate sampling procedure), can output (with non negligible probability)
an equation which is unsatisfiable over the free abelian group generated by the
symbols g1, . . . , gn, together with a solution to the equation in the computational
group. As shown in [20], pseudo-freeness is a very strong assumption, and it im-
plies many other computational assumptions typically used in cryptography, like
the hardness of computing discrete logarithms and the RSA assumption in its
standard and strong version. Each of these computational assumptions corre-
sponds to a specific class of equations, e.g., the strong RSA assumption asserts
that it is computationally infeasible to come up with an equation of the form
xe = g (which is unsatisfiable over the free group {gi : i ∈ ZZ} for e > 1) to-
gether with a solution x = h such that he = g in the multiplicative group ZZ∗

N

of the invertible integers modulo the product N = PQ of two large primes.
Free groups are widely used in computer science, and most modern cryptog-

raphy relies on the hardness of computational problems over finite groups. So,

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 387–403, 2005.
c© International Association for Cryptologic Research 2005
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as argued in [20], pseudo-free groups are a very interesting notion from a cryp-
tographic perspective. For example, (non abelian) free groups are used in the so
called Dolev-Yao model [7] for the symbolic analysis of public key cryptographic
protocols. In the last few years, there have been several efforts to bridge the gap
between the symbolic model of [7] (typically used in the area of formal methods
for the analysis of security protocols) and the standard computational model
used in cryptography (see for example [1, 18, 19, 17, 13, 11, 3]) with the goal of
proving computational soundness results for symbolic analysis methods. An in-
teresting question is whether pseudo-free groups can be used to extend (in a
computationally sound way) the Dolev-Yao security model (in which encryption
and decryption are viewed as black-box operations with no algebraic properties)
with richer data structures and cryptographic functions (e.g., homomorphic en-
cryption schemes) that make fundamental use of computational groups. Other
motivations for studying pseudo-free groups mentioned in [20] are the following:

– Using a stronger assumption (that subsumes many other common crypto-
graphic assumptions, like the hardness of computing discrete logarithms, and
the strong RSA assumption) may make proofs easier.

– As the strong RSA assumption has been very useful in the construction
of many cryptographic functions [8, 4, 6] which are not known to be secure
under the standard version of the RSA assumption, assuming that a group
is pseudo-free may allow an even wider range of applications.

– Pseudo-freeness has been linked [10] to the construction of specific crypto-
graphic primitives, like directed transitive signature schemes, for which no
solution is currently known.

The main question left open by Rivest in [20] is: do pseudo-free groups exist?
In [20] Rivest suggested the RSA group ZZ∗

N (where N = PQ is the product
of two large primes) as a possible candidate pseudo-free abelian group, and
nicknamed the corresponding conjecture the “super-strong RSA assumption”.
In this paper we resolve Rivest’s conjecture and prove that ZZ∗

N is pseudo-free
under the strong RSA assumption, at least when N = PQ is the product of two
“safe primes” (i.e., odd primes such that p = (P−1)/2 and q = (Q−1)/2 are also
prime1), a special class of prime numbers widely used in cryptography. In other
words, we prove that if the strong RSA assumption holds true, then the super-
strong RSA assumption also holds. Our result is the first example of provably
secure pseudo-free group based on a standard cryptographic assumption. In fact,
we prove that the RSA group satisfies an even stronger version of the pseudo-
freeness property than the one defined in [20]: we show that no adversary can
efficiently compute an unsatisfiable system of equations (as opposed to a single
equation) together with a solution in the given computational group.

Our proof is based on a rewriting process that, starting from an arbitrary
equation (or system of equations), yields simpler and simpler equations with the
following properties:

1 Equivalently, using more standard mathematical terminology, P = 2p + 1 and Q =
2q + 1 where p and q are Sophie-Germain primes.
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– unsatisfiable equations over the free group are mapped to unsatisfiable equa-
tions over the free group, and

– solutions to the original equations (over a computational group) can be effi-
ciently mapped to solutions to the resulting equations (over the same com-
putational group).

Some of our transformations work for arbitrary groups and might be of inde-
pendent interest. For example, we show how to transform systems of equations
into a single equation (Theorem 4), how to map equations in several variables
to univariate equations (Lemma 3), and how to map unsatisfiable equations of
the form xe = gd (where e and d are arbitrary integers) to equations where the
exponents are of the form e = ch+1 and d = ch (Theorem 3).

Organization. The rest of the paper is organized as follows. In Section 2 we
introduce basic definitions and notation for equations and groups. In Section 3
we prove that the RSA group satisfies the basic definition of pseudo-free group
(involving a single equation). In Section 4 we extend the result to systems of
equations. Section 5 concludes with a discussion of open problems.

2 Preliminaries

A group is an algebra with a binary associative operation ◦, a unary operation
()−1 (inverse) and a constant 1 (identity) satisfying the equational axioms (x ◦
y) ◦ z = x ◦ (y ◦ z), x ◦ 1 = 1 ◦ x = x, and x ◦ (x)−1 = (x)−1 ◦ x = 1. A group is
abelian if the operation ◦ is commutative, i.e., it also satisfies x ◦ y = y ◦ x. In
this paper we are interested in computational groups, i.e., groups that admit an
efficient algorithmic implementation.

Definition 1. A computational group (associated to group (G, ◦, ()−1, 1)) is de-
fined by a mapping 〈·〉:G → {0, 1}∗ (the representation function) such that the
following operations can be performed in polynomial time:

– Test membership in 〈G〉, i.e., given a string x, determine if it is a valid
representation of a group element.

– Given 〈x〉 and 〈y〉, compute 〈x ◦ y〉.
– Given 〈x〉, compute 〈x−1〉.
– Compute the representation of the group identity element 〈1〉.
– Sample a group element 〈g〉 ∈ 〈G〉 (with not necessarily uniform probability

distribution.)

For simplicity, in the definition above, we focused on computational groups in
which each group element has a unique representation, as all the computational
groups studied in this paper have this property. (The definition of computational
group can be easily extended to cases where group elements may have multiple
representations, by introducing an efficiently computable equivalence relation on
group representations.) The requirement that membership in 〈G〉 be efficiently
decidable is also not strictly necessary, but convenient, and all computational
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groups studied in this paper have this property. Also, sometimes the definition of
computational group requires the distribution output by the sampling algorithm
〈g〉 ∈ 〈G〉 to be uniform over G, while other times no sampling algorithm is
required at all. In this paper 〈g〉 ∈ 〈G〉 is an arbitrary sampling procedure,
which is used to generate nontrivial group elements.

For brevity, we identify computational groups with the underlying mathe-
matical group, and write x ◦ y, x−1, etc., to denote the corresponding operation
on the representations of the group elements. Also, we use multiplicative nota-
tion xy for the group binary operation x ◦ y, and use exponential notation xn

to denote the n-fold composition of x with itself. Formally, xn is defined induc-
tively by the rules x0 = 1, xn+1 = x ◦ xn. The notation is extended to negative
exponents in the obvious way x−n = (xn)−1.

For any set of symbols A, the free abelian group F(A) generated by A is the
initial algebra with constant symbols A satisfying the abelian group equations. It
is easy to see that each group element has a unique representation as a product∏

a∈A ada , where da ∈ ZZ for all a ∈ A.
Let X and A be two disjoint finite sets of variable and constant symbols. We

define X−1 = {x−1:x ∈ X} and A−1 = {a−1: a ∈ A}. A group equation over
variables X and constants A, is a pair E = (w1, w2) of words (usually written as
E : w1 = w2) over the alphabet X∪X−1∪A∪A−1. Unless otherwise specified, we
interpret E as an equation over the free group F(A). A solution to E : w1 = w2

(over the free group F(A)) is a function σ:X → F(A) such that σ(w1) = σ(w2),
where σ is extended to words over X ∪X−1 ∪A ∪A−1 homomorphically in the
obvious way. We say that an equation E : w1 = w2 is satisfiable (over the free
group) if it admits a solution. We say it is unsatisfiable otherwise.

Let G be a (computational) group. A group equation over G (denoted Eα)
is defined by an equation E over variables X and constants A, and a function
α:A → G. A solution to equation Eα : w1 = w2 is a function ξ : X → G such
that (α ∪ ξ)(w1) = (α ∪ ξ)(w2).

From a computational point of view, we assume that equations E : w1 = w2

are represented using compact notation for exponential expressions ai, so that
exponentially large exponents i can be stored in polynomial space. This is easily
seen to be equivalent to many other formalisms to compactly represent terms
w1, w2, like, for example, the straight-line programs used in [10].

2.1 Statistical Distance

A function f is negligible if it decreases faster than any inverse polynomial, i.e.,
for any c > 0 there is an n0 such that |f(n)| ≤ 1/nc for any n > n0.

Let X and Y be two discrete random variables over a (countable) set A. The
statistical distance between X and Y is the quantity

Δ(X,Y ) =
1
2

∑
a∈A

|Pr{X = a} − Pr{Y = a}|.

In this paper we use the fact that for any two random variables X and Y over
set A, and predicate p:A→ {0, 1},
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|Pr[p(X) = 1]− Pr[p(Y ) = 1]| ≤ Δ(X,Y ).

In particular, if p(X) happens with non negligible probability, and Δ(X,Y ) is
negligible, then also p(Y ) happens with non negligible probability.

2.2 Pseudo-Free Groups

Intuitively, a computational group is pseudo-free if no efficient algorithm can find
a nontrivial relation among randomly chosen group elements, i.e., an equation (or
system of equations) which is unsatisfiable over the free group, together with a
solution over the computational group. Since for any finite group G, the equation
x|G|+1 = a is unsatisfiable over the free group F({a}), but has solution x = a over
G, in order to properly define pseudo-free groups we need to consider families
of groups {GN} where N is chosen at random from a probability ensemble N .
In particular, given a randomly chosen N ∈ N , the order of the group o(GN )
should be hard to compute.

Definition 2. A family of computational groups G = {GN}N∈N is pseudo-free
if for any set A of polynomial size |A| = p(k) (where k is a security parameter),
and probabilistic polynomial (in k) time algorithm A, the following holds. Let
N ∈ N (k) be a randomly chosen group index, and α:A→ GN a function defin-
ing |A| group elements chosen independently at random according to the compu-
tational group sampling procedure. Then, the probability that A(N, α) = (E, ξ)
outputs an unsatisfiable equation E (over variables X and constants A) together
with a solution ξ:X → GN to Eα over GN , is negligible.

2.3 The RSA Group

In this paper, we study the group ZZ∗
N of invertible integers modulo N . This

is a computational group, with the usual representation of each group element
as an integer in {0, . . . ,N − 1}. Membership g ∈ ZZ∗

N can be easily tested by
computing gcd(g,N) and checking that gcd(g,N) = 1. The group ZZ∗

N can be
efficiently sampled uniformly at random by picking an integer g ∈ {0, . . . ,N−1}
with uniform distribution, and checking if g ∈ ZZ∗

N . However, in this paper, it
is more convenient to consider the computational group ZZ∗

N together with a
different sampling procedure that chooses g at random from a subgroup of ZZ∗

N .
An element g ∈ ZZ∗

N is called a quadratic residue if g = h2 mod N for some
h ∈ ZZ∗

N . The set of quadratic residues modulo N is denoted QRN , and it is
a subgroup of ZZ∗

N . The subgroup QRN can be efficiently sampled by picking
h ∈ ZZ∗

N uniformly at random and setting g = h2 mod N . Unless otherwise
specified, in this paper we always consider the computational group ZZ∗

N with
this sampling procedure that selects g uniformly at random from QRN .

When N = P ·Q is the product of two prime numbers, ZZ∗
N is commonly called

an RSA group, after the encryption function of Rivest, Shamir and Adleman [21],
which started a widespread use of these groups in cryptography. In this paper
we are interested in RSA groups where P and Q are primes of special form. A
prime number p is called a Sophie-Germain prime if 2p + 1 is also prime. In the
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cryptographic literature, the number 2p+1 (where p is a Sophie-Germain prime)
is usually called a safe prime. In other words, a safe prime P = 2p + 1 is an odd
prime number such that p = (P − 1)/2 is also prime. Safe primes are relatively
easy to find in practice (e.g., by choosing p at random and testing p and 2p+1 for
primality), although there is no known mathematical proof showing that there
are infinitely many of them. Safe primes are widely used in cryptography. For
example, the RSA group ZZ∗

N where N = P ·Q is the product of two safe primes
has been used in [8, 9, 6].

Let N be the set of all safe prime products. We assume some standard prob-
ability distribution on N , as typically used in many cryptographic applications.
(E.g., choose N as the product of two random k-bit safe primes.) The following
computational problems are considered hard, and have been used as the basis
for many cryptographic applications:

– Factoring problem: given an integer N ∈ N , compute prime factors P,Q
such that N = P ·Q;

– RSA problem: given an integer N ∈ N , an integer e relatively prime with
φ(N) = (P − 1)(Q − 1), and a randomly chosen group element γ ∈ ZZ∗

N ,
compute a ξ ∈ ZZ∗

N such that ξe = γ mod N ;
– Strong RSA problem: given an integer N ∈ N , and a randomly chosen group

element γ ∈ ZZ∗
N , output an integer e > 1 and a group element ξ ∈ ZZ∗

N

such that ξe = γ mod N .

In this paper we are primarily interested in the strong RSA problem and its
relation to pseudo-freeness. It is convenient to consider the following variant of
the strong RSA problem where the input γ is chosen as a random quadratic
residue:

– Strong QR-RSA problem: given an integer N ∈ N , and a randomly chosen
quadratic residue γ ∈ QRN , output an integer e > 1 and a group element
ξ ∈ ZZ∗

N such that ξe = γ mod N .

It can be easily shown [6] that this variant is not any easier than the standard
strong RSA problem.

Theorem 1 (See [6], Section 4). If the strong RSA problem modulo a safe
prime product is hard, then the strong QR-RSA problem modulo a safe prime
product is also hard.

For any prime product N = P ·Q, the group ZZ∗
N has cardinality o(ZZ∗

N ) =
φ(N) = (P − 1)(Q − 1) and it is isomorphic to ZZ∗

P × ZZ∗
Q, with isomorphism

given by ξ $→ (ξ mod P, ξ mod Q). If P = 2p + 1 and Q = 2q + 1 are safe
primes, the group ZZ∗

N has order 4pq, and the subgroup QRN ⊂ ZZ∗
N has order

o(QRN ) = pq. In particular, all elements in QRN have order2 1, p, q or pq.

2 The order of an element γ in a group G is the smallest positive integer o(γ) ≥ 1 such
that γo(γ) = 1.
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3 The RSA Group is Pseudo-Free

In this section we prove, under the strong RSA assumption, that the RSA group
ZZ∗

N (where N is the product of two safe primes, and elements are sampled
uniformly at random from QRN ) is pseudo-free.

Theorem 2. Let N be a distribution over safe prime products such that the
strong RSA problem modulo N ∈ N is hard. Then the family of computational
groups ZZ∗

N of invertible integers modulo N ∈ N (with the modular multiplication
group operation, and uniform sampling procedure over QRN ) is pseudo-free.

Proof. Assume that ZZ∗
N is not pseudo-free, i.e., there is a probabilistic polyno-

mial time algorithm A that on input a randomly chosen N ∈ N (k) and random
group elements α:A → QRN (for some polynomial sized set A), outputs an
unsatisfiable equation E:w1 = w2 (over constants A and variables X) together
with a solution ξ:X → ZZ∗

N to Eα over the group ZZ∗
N . We use A to solve the

strong QR-RSA problem for the same distribution of the modulus N . Namely,
given a randomly chosen N ∈ N (k) and γ ∈ QRN , we compute an integer e > 1
and group element ξ ∈ ZZ∗

N such that ξe = γ. By Theorem 1 this also implies
an algorithm to solve the standard strong RSA problem.

The reduction works as follows. Let (N, γ) be an instance of the strong QR-
RSA problem. We begin by checking if γ is a generator for QRN . This can be
easily done using the following lemma.3

Lemma 1. Let N = P · Q be the product of two distinct safe primes, and γ ∈
QRN a quadratic residue. Then γ is a generator for QRN if and only if gcd(γ−
1,N) = 1.

If γ is not a generator for QRN , then we can easily solve the strong QR-RSA
problem instance (N, γ) as described below. Given N and γ ∈ QRN , we compute
g = gcd(γ − 1,N). Since N = PQ, it must be g ∈ {1, P,Q, PQ}. We distinguish
three cases.

– If g = PQ = N , then N divides γ − 1, and γ = 1 (mod N). So, we can
immediately output a solution to the strong QR-RSA input problem (N, γ),
e.g., (ξ, e) = (1, 3).

– If g ∈ {P,Q}, then we can easily compute φ(N) = (P − 1) · (Q − 1) =
(g − 1)(N/g − 1). This also easily yields a solution (ξ, e) = (γ, φ(N) + 1) to
the strong QR-RSA problem (N, γ).

– If g = 1, then by Lemma 1 γ is a generator for QRN and we proceed as
follows.

In the rest of the proof we assume that γ is a generator of QRN . We use
γ to sample the group elements α(a) ∈ QRN and generate an input instance
(N, α) for algorithm A. Since A works only with non negligible probability, we

3 The proof of this and other lemmas are omitted because of space limitations. All
proofs can be found in the full version of the paper on the author’s web page.
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need the input values α(a) to be distributed (almost) uniformly at random over
QRN . The following lemma shows that γ can be used to sample QRN almost
uniformly at random.

Lemma 2. For any cyclic group G and generator γ ∈ G, if v ∈ {0, . . . ,B − 1}
is chosen uniformly at random, then the statistical distance between γv and the
uniform distribution over G is at most |G|/2B.

For any a ∈ A, choose va ∈ [0, . . . ,N · |A| ·K − 1] uniformly at random for
some super-polynomial function K(k) = kω(1), and set α(a) = γva . By Lemma 2,
the statistical distance between α(a) and the uniform distribution over QRN is
at most |QRN |/2N |A|K ≤ 1/|A| · K. Since the values α(a) are independently
chosen, the statistical distance between α and a uniformly chosen assignment is
at most 1/2K = k−ω(1).

Invoke algorithm A on input (N, α). We know that when α is distributed
uniformly at random, algorithm A is successful with non negligible probabil-
ity δ(k) = k−O(1). Since α is within negligible statistical distance 1/K(k) from
uniform, A succeeds on input α at least with non negligible probability δ(k) −
1/K(k). In the rest of the proof, we assume A is successful, and we consider the
conditional success probability of the reduction. We will show that the condi-
tional success probability is at least 1/3.

Fix the value of N , generator γ ∈ QRN , and input (N, α) passed to algorithm
A. Let E : w1 = w2 and ξ be the equation and solution to Eα returned by
A. Remember that, for every a ∈ A, α(a) = γva for a randomly chosen va ∈
{0, . . . ,N ·|A|·K−1}. For any a ∈ A, let wa = va mod pq and za = (va−wa)/pq.
We remark that although the values va are known, and wa, za are uniquely
determined by va, the values wa and za cannot be easily computed from va

because the product pq is not known. Therefore, the values wa and za cannot be
used in the reduction process. We will use wa and za only in the analysis of the
reduction.

Notice that, given wa, the conditional distribution of za is uniform over the
set

Sa = {0, . . . , �(N |A|K − 1− wa)/pq�}. (1)

Also, given wa, α(a) = γva = γwa is uniquely determined, and za is uniformly
distributed over the set Sa independently from α, E and ξ. In particular, the
integers za ∈ Sa are uniformly distributed independently from the success of
algorithm A.

Assume that A is successful, i.e., E is unsatisfiable over F(A), and ξ:X →
QRN is a valid solution to Eα. We use equation E and solution ξ to solve the
original strong QR-RSA problem (N, γ). This is done in two steps. First, we
transform equation E and solution ξ to Eα, into a new unsatisfiable equation E′

and solution ξ′ to E′
α containing only one variable symbol. Then, E′ and ξ′ are

used to solve the strong QR-RSA problem (N, γ).
The equation and solution (E, ξ) is transformed into a univariate equation

and solution (E′, ξ′) using the following lemma.
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Lemma 3. For any computational group G, there is a polynomial time algo-
rithm that on input an equation E over constants A and variables X, and a
variable assignment ξ : X → G, outputs a univariate equation E′ and value
ξ′ ∈ G, such that

– if E is unsatisfiable over the free group F(A), then E′ is also unsatisfiable
over F(A); and

– for any assignment α : A→ G, if ξ is a solution to Eα then ξ′ is a solution
to E′

α.

At this point we have an unsatisfiable equation of the form E′ : xe =
∏

a a
da

and a solution ξ′ ∈ ZZ∗
N to E′

α. Notice that E′ is satisfiable over the free group
F(A) if and only if e| gcd(da : a ∈ A). So, it must be e	 | gcd(da : a ∈ A). Also,
from the definition of α(a), we know that

(ξ′)e =
∏
a

α(a)da = γ
∑

a
vada . (2)

Assume without loss of generality that e ≥ 0 and d =
∑

a vada ≥ 0. (Other-
wise, change the sign of e and/or the da for all a ∈ A, and possibly replace ξ′

with (ξ′)−1 in order to satisfy (2).) In the rest of the proof we distinguish various
cases, depending on the value of gcd(e, pq).

– If gcd(e, pq) = pq and e 	= 0, then we can immediately output the solution
(γ, e + 1) to the strong QR-RSA problem (N, γ) because o(γ) = pq and
γe+1 = γ · γe = γ (mod N). We remark that, although we cannot compute
gcd(e, pq) (or even check if gcd(e, pq) = pq) because pq is not know, we can
guess that this is the case, and simply check if γ, e+ 1) is indeed a solution
to the given strong QR-RSA problem. Similar remarks apply to the other
cases below.

– If gcd(e, pq) ∈ {p, q}, then o(γe) = pq/ gcd(e, pq) ∈ {p, q}. In particular, γe

is not a generator of QRN , and, by Lemma 1, gcd(γe − 1,N) 	= 1. Since
γe 	= 1 (mod N), we also have gcd(γe − 1,N) 	= N . Therefore, it must be
g = gcd(γe − 1,N) ∈ {P,Q}. So, we can compute φ(N) = (P − 1)(Q− 1) =
(g−1)(N/g−1), and output the solution (γ, φ(N)+1) to the strong QR-RSA
problem (N, γ).

– The remaining cases are when e = 0 or gcd(e, pq) = 1, and are described
below.

If e = 0, Lemma 4 below shows that d = 0 with probability at most 1/2. It
follows that with probability at least 1/2, (γ, d + 1) is a solution to the strong
QR-RSA problem (N, γ) because d + 1 > d ≥ 1 and γd+1 = γ · γd = γ · ξ0 = γ.
So, the conditional success probability of the reduction is at least 1/2.

Lemma 4. The conditional probability (given α, e = 0, and {da : a ∈ A} such
that e	 | gcd{da : a ∈ A}) that d =

∑
a vada 	= 0 is at least 1/2.

The last case to consider is when gcd(e, pq) = 1. This is the most complicated
of all cases. This time, we first show that e|d with probability at most 2/3.
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Lemma 5. The conditional probability (given α, gcd(e, pq) = 1, and {da : a ∈
A} such that e	 | gcd{da : a ∈ A}) that e divides d =

∑
a vada is at most 2/3.

We conclude the reduction showing that if e > 0 and e	 |d, then we can solve
the strong QR-RSA problem (N, γ). The proof is based on the following theorem.

Theorem 3. For any abelian group, there is a polynomial time algorithm that
on input (γ, ξ, e, d), where γ, ξ are group elements and e, d integers, satisfying
ξe = γd, e 	= 0, e	 |d, outputs (θ, c, h) such that θch+1

= γch

, |c| ≥ 2, ch+1|e and
ch|d.
Proof. We define the algorithm A(γ, ξ, e, d) recursively, by induction on the size
of e and d. At each iteration, either d or e is replaced by a proper factor, while
the other number is unchanged. It follows that the algorithm terminates within
at most log2(de) iterations.

Algorithm A(γ, ξ, e, d) works as follows:

– If d 	 |e, compute d1 = gcd(e, d) using the extended Euclidean algorithm to
find integers e′, d′ such that d1 = e · e′ + d · d′. Then invoke recursively
A(γ, ξd′

γe′
, e, d1) and output the result.

– Otherwise, d|e, and we can compute c = e/d. If d is a power of c, i.e., d = ch

for some integer h, return (ξ, c, h).
– If d is not a power of c, let h be the largest exponent such that ch|d. Invoke

recursively A(γ, ξd/ch

, ch+1, d) and return the result.

We need to prove that the algorithm is correct, and that either e or d decreases
at every iteration.

First consider the case d 	 |e. The input to the recursive call is given by ξ1 =
ξd′

γe′
, e1 = e and d1 = gcd(e, d). Notice that

ξe1
1 = (ξd′

γe′
)e = (ξe)d′

γee′
= γdd′+ee′

= γd1 .

Moreover, e1 = e 	= 0, and e1 	 |d1, because otherwise e = e1|d1|d, contradicting
e	 |d. So, the input to the recursive call is valid, i.e., it satisfies the assumptions in
the theorem. In order to ensure termination, we need to check that d1 properly
divides d. Assume for contradiction d = d1. From the definition of d1, it follows
that d|e, but this contradicts the condition d 	 |e tested by the algorithm.

Now assume d|e. Notice that d 	= 0, because otherwise e|d. So, the quotient
c = e/d is well defined. Moreover, |c| > 1 because e 	= 0, and e	 |d. If d = ch, then
the algorithm terminates with output θ = ξ, c, h. Notice that

θch+1
= ξdc = ξe = γd = γch

,

i.e., the output is correct.
Finally, consider the case when d|e, but d is not a power of c. Notice that

d 	= 0 because e	 |d. Since |c| > 1 and d 	= 0, the maximum h = max{h : ch|d}
is well defined, and d/ch is an integer. This time, the algorithm is recursively
invoked on input ξ1 = ξd/ch

, e1 = ch+1 and d1 = d. This input satisfies

ξe1
1 = ξdch+1/ch

= ξdc = ξe = γd = γd1 .
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Moreover e1 = ch+1 	= 0 because c 	= 0. Also, e1 	 |d1, because otherwise ch+1 =
e1|d1 = d, contradicting the maximality of h. This time, we want to prove that
e1 properly divides e. Clearly, e1 = chc|dc = e. Now, assume e1 = e. Then,
ch = e1/c = e/c = d, and d is a power of c. ��

Applying Theorem 3 to equation ξe = γd, we get values c ≥ 2, h ≥ 0 and
θ ∈ ZZ∗

N such that θch+1
= γch

. If θc = γ, then (θ, c) is a solution to the
strong QR-RSA problem. So, assume (θc/γ) 	= 1, and assume also, without
loss of generality that h is the smallest integer such that (θc/γ)ch

= 1. Let
δ = (θc/γ)ch−1

. We know that δ 	= 1 and δc = 1.
The following lemma shows that δ is a quadratic residue.

Lemma 6. The value δ = (θc/γ)ch−1
is a quadratic residue.

Apply Lemma 1 to quadratic residue δ. Since δ 	= 1, either δ is a generator
for QRN , or gcd(δ−1,N) ∈ {P,Q}. As before, if g = gcd(δ−1,N) ∈ {P,Q}, we
can compute φ(N) = (P − 1)(Q− 1) = (g − 1)(N/g − 1) and output the trivial
strong QR-RSA solution (γ, φ(N) + 1)

So, assume δ is a generator for QRN . Since δc = 1, it must be pq = o(δ)|c. In
particular, we also have γc = 1, and (γ, c+1) is a solution to the strong QR-RSA
problem.

This completes the proof that if the RSA group is not pseudo-free, then we
can solve the strong RSA problem. ��

4 Systems of Equations

The intuition behind the definition of pseudo-free group is that no polynomial
time adversary can “prove” that the given computational group is not free. The
kind of proofs implicit in Definition 2 consist of a single equation which is unsat-
isfiable over the free group, but satisfiable over the computational group. This
choice is motivated by the fact that unsatisfiability of equations over free groups
and satisfiability over computational groups can be efficiently demonstrated.
(Specifically, unsatisfiability over free abelian groups is decidable in polynomial
time, and satisfiability over arbitrary computational groups can be proved by
giving a satisfying assignment.) An immediate extension that comes to mind is
to consider systems of equations. Satisfiability for systems of equations is de-
fined in the obvious way: a variable assignment satisfies a system of equations if
it simultaneously satisfies all the equations in the system. As observed in [20],
for the case of non abelian free groups, the results in [14] (see also [12–Lemma
3 and Corollary 2 and 3]) allow to combine systems of equations into a single
equation. Specifically, the method is based on showing that the two equations
x = 1 and y = 1 are equivalent to the single equation x2ax2a−1 = (ybyb−1)2, and
it allows to transform any finite system of equations into a single equation with
exactly the same set of solutions. Unfortunately, the same is not true for abelian
groups, and the set of solutions of a system of equations cannot in general be
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represented by a single equation. Consider for example the equations x = 1 and
y = 1. The solution to this system is clearly unique. However, no single equation
in two variables can have a unique solution. (Any bivariate equation has always
either zero or infinitely many solutions over the free group.)

In this section we show that in the case of abelian groups, it is still possible
to transform systems of equations into a single equation which is equivalent to
the system, but in a weaker sense than having exactly the same set of solutions.
The transformation maps any system of equations to a single equation whose
solution set is a superset of the solutions to the system. However, if the system is
unsatisfiable, then also the single equation is guaranteed to be unsatisfiable. This
weaker notion of equivalence is enough to prove that Definition 2 is equivalent
to the following seemingly stronger definition.

Definition 3. A family of computational groups G = {GN}N∈N is pseudo-
free if for any set A of polynomial size |A| = p(k) (where k is a security pa-
rameter), and probabilistic polynomial (in k) time algorithm A, the following
holds. Let N ∈ N (k) be a randomly chosen group index, and α:A → GN a
function defining |A| group elements chosen independently at random accord-
ing to the computational group sampling procedure. Then, the probability that
A(N, α) = ({Ei}i∈I , ξ) outputs an unsatisfiable system of equations {Ei}i∈I

(over variables X and constants A) together with a solution ξ:X → GN to
{Ei

α}i∈I over GN , is negligible.

The transformation from systems of equations to single equations is described
in the following theorem.

Theorem 4. There is a polynomial time algorithm that on input a system of
equations {Ei}i∈I over constants A and variables X, outputs a single equation
E over the same sets of constants A and variables X, such that the following
holds.

– If {Ei}i∈I is unsatisfiable (over the free abelian group generated by A), then
E is also unsatisfiable;

– For any computational group G and assignment α:A → G, any solution
ξ:X → G to {Ei

α}i∈I is also a solution to Eα.

The proof of the theorem is based on elementary lattice techniques. For a
detailed introduction to lattices and their computational complexity the reader
is referred to [16]. Here we briefly recall the basic definitions and simple facts
about lattices used in the proof of Theorem 4. For any matrix M with rational
entries the lattice generated by a matrix M = [m1, . . . ,mn] is the set L(M) =
{
∑

i ximi:xi ∈ ZZ for i = 1, . . . , n} of all integer linear combinations of the
columns of M. There is a polynomial time algorithm that on input two rational
matrices M and M′, determines if L(M) ⊆ L(M′), and if not, finds a vector
u ∈ L(M) \ L(M′). The dual of a lattice L(M) is the set of all vectors u
in the linear span of the columns of M that have integer scalar product with
all lattice vectors in L(M). The dual of a lattice is a lattice, and the dual of
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the dual of a lattice equals the original lattice. The dual of a lattice L(M) is
denoted L̂(M). Moreover, there is a polynomial time algorithm that on input a
rational matrix M outputs a rational matrix M′ such that L(M′) = L̂(M). It
immediately follows from the definition of dual lattice that L(M) is a sub-lattice
of L(M′) (i.e., L(M) ⊆ L(M′)) if and only if L̂(M′) is a sub-lattice of L̂(M)
(i.e., L̂(M′) ⊆ L̂(M)). We are now ready to prove Theorem 4.

Proof. Let {Ei}i∈I be a system of equations over the set of constant symbols A
and variables X, and let σ:X → F(A) be a generic variable assignment. Write
each equation Ei and the assignment σ(x) as

Ei:
∏
x∈X

xei,x =
∏
a∈A

adi,a

σ(x) =
∏
a∈A

asx,a ,

where the ei,x, di,a and sx,a are integers for all i ∈ I, x ∈ X and a ∈ A. We use
notation e∗,∗ to denote the matrix with |I| rows and |X| columns with integer
entries (ei,x)i∈I,x∈X , and ei,∗ and e∗,x to denote the rows and columns of matrix
e∗,∗. The matrices d∗,∗, s∗,∗ and vectors di,∗, d∗,a, sx,∗, s∗,a are defined similarly.
Notice that σ is a solution to the system of equations over the free group if and
only if ∑

x∈X

ei,xsx,a = di,a

for all i ∈ I and a ∈ A, or, equivalently, in matrix notation, e∗,∗s∗,∗ = d∗,∗.
So, the system of equations is solvable over the free group if and only if the
integer lattice L(e∗,∗) contains L(d∗,∗) as a sub-lattice. Moreover, the two lattices
satisfy L(e∗,∗) ⊇ L(d∗,∗) if and only if their duals satisfy the reverse inclusion
L̂(e∗,∗) ⊆ L̂(d∗,∗). The inclusion L̂(e∗,∗) ⊆ L̂(d∗,∗) can be checked using standard
techniques, and if it is not satisfied, one can efficiently find a vector (ui)i∈I ∈
L̂(e∗,∗) such that (ui)i∈I /∈ L̂(d∗,∗).

If L̂(e∗,∗) ⊆ L̂(d∗,∗), then the system of equations {Ei}i∈I is satisfiable over
the free group, and the algorithm can simply output an arbitrary equation E =
Ei from the system. Clearly, any solution to the system is also a solution to
E. Moreover, the other condition in the theorem is vacuously satisfied because
{Ei}i∈I is satisfiable over the free group.

So, let us assume that L̂(e∗,∗) 	⊆ L̂(d∗,∗), and let u∗ = (ui)i∈I be a vector
such that (ui)i∈I ∈ L̂(e∗,∗) \ L̂(d∗,∗). We know that

∑
i uiei,x is an integer for

all x ∈ X because u∗ belongs to the dual lattice L̂(e∗,∗). Moreover, since L(e∗,∗)
is an integer lattice, all entries ui are rational numbers. It follows that for any
a ∈ A,

∑
i uidi,a is a rational number, but

∑
i uidi,a is not an integer for some

a ∈ A. Let M be the smallest integer such that M ·
∑

i uidi,a is an integer for all
a ∈ A. In other words, let M be the least common multiple of the denominators
of the fractions

∑
i uidi,a for all a ∈ A. The output of the algorithm is the

equation
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E:
∏
x∈X

xM ·
∑

i
uiei,x =

∏
a∈A

aM ·
∑

i
uidi,a .

We need to show that this equation satisfies the two properties in the theorem.
Let α:A→ GN and ξ:X → GN be two assignments such that ξ is a solution

to the system {Ei
α}i∈I over computational group GN , i.e.,

∏
x∈X ξ(x)ei,x =∏

a∈A α(a)di,a for all i ∈ I. It follows that

ξ

(∏
x∈X

xM ·
∑

i
uiei,x

)
=
∏
i∈I

(∏
x∈X

ξ(x)ei,x

)Mui

=
∏
i∈I

(∏
a∈A

α(a)di,a

)Mui

= α

(∏
a∈A

aM ·
∑

i
uidi,a

)
,

i.e., ξ is also a solution to equation Eα. This proves the second property. For
the first property, since the system is unsatisfiable, we need to prove that E is
also unsatisfiable over the free group F(A). Assume for contradiction that E is
satisfiable over the free group and let σ(x) =

∏
a∈A asx,a be a solution, i.e.,

∏
x∈X

(∏
a∈A

asx,a

)M ·
∑

i
uiei,x

=
∏
a∈A

aM ·
∑

i
uidi,a .

Since the group F(A) is free, this is true if and only if

M
∑
x∈X

sx,a

∑
i∈I

uiei,x = M ·
∑
i∈I

uidi,a

for all a ∈ A. Since
∑

x∈X sx,a

∑
i∈I uiei,x is an integer, the left hand side of the

last equation is a multiple of M . So, the right hand side is also a multiple of M ,
and

∑
i uidi,a is an integer for all a ∈ A. But this is a contradiction because by

construction (namely, by the choice of (ui)i∈I) there exists an a ∈ A such that∑
i uidi,a is not an integer. ��

Corollary 1. A family of computational groups {GN}N∈N satisfies Definition 2
if and only if it satisfies Definition 3.

Proof. If a group family is pseudo-free in the sense of Definition 3, then it sat-
isfies Definition 2 as well because single equations are a special case of systems
containing only one equation. Conversely, assume a group family does not sat-
isfies Definition 3, i.e., there exists an adversary A that on input a group index
N ∈ N and random assignment α:A→ GN , outputs an unsatisfiable system of
equations {Ei}i∈I over constants A and variables X, together with a solution
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ξ:X → GN to the system over the computational group GN . Then, using Theo-
rem 4, A can be easily converted into an adversary A′ contradicting Definition 2.
Namely, on input group index N ∈ N and random assignment α : A→ GN , ad-
versary A′ invokes A on input (N, α) to get an unsatisfiable system of equations
{Ei}i∈I together with a solution ξ over the computational group GN . Finally, A′

transforms {Ei}i∈I into a single equation E using Theorem 4, and outputs E, ξ.
By Theorem 4, equation E is unsatisfiable over the free group, and ξ is a solution
to Eα over GN , proving that the group family does not satisfies Definition 2. ��

The following corollary immediately follows from Theorem 2 and 1.

Corollary 2. Let N be a distribution over safe prime products such that the
strong RSA problem modulo N ∈ N is hard. Then the family of computational
groups ZZ∗

N of invertible integers modulo N ∈ N (with the modular multipli-
cation group operation, and uniform sampling procedure over QRN ) satisfies
Definition 3, i.e., it is pseudo-free with respect to systems of equations.

5 Conclusion

We have given the first example of provably secure pseudo-free group under
standard cryptographic assumptions. In particular, we proved that the RSA
group ZZ∗

N where N is the product of two safe primes is pseudo-free, assuming
the hardness of the strong RSA problem. Many open problems remain. In this
section we illustrate some of them.

Our proof uses the fact that N is the product of two safe primes, and elements
are sampled uniformly at random from the subgroup QRN of quadratic residues.
A natural question is whether ZZ∗

N is pseudo-free even when N is the product of
two arbitrary primes, and elements are sampled uniformly at random from the
whole group ZZ∗

N . Another open problem is to relax the hypothesis of Theorem 2,
and prove that ZZ∗

N is pseudo-free assuming that factoring N is hard. Notice that
this last problem is probably very hard, as it would imply that inverting the
RSA function is at least as hard as factoring, a long standing open problem in
cryptography. However, there are many other cryptographic problems that have
been proved at least as hard as factoring, like the discrete logarithm problem
[2], the Diffie-Hellman problem [15], and the generalized Diffie-Hellman problem
[5] modulo Blum integers. We remark that while computing discrete logarithms
in pseudo-free groups is provably hard [20], no relation between pseudo-freeness
and the Diffie-Hellman problem is currently known. An interesting open question,
already posed in [20], is to show that the Diffie-Hellman problem in pseudo-free
groups is computationally hard.

Another interesting problem is to find other examples of pseudo-free groups,
beside ZZ∗

N , and possibly proving their security based on standard cryptographic
assumptions. Of particular interest would be to find a good candidate of non
abelian pseudo-free group.

Finally, it would be nice to find applications of pseudo-free groups, as those
mentioned in [20] and in the introduction, to demonstrate the usefulness of the
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notion of pseudo-free group. It might be the case that some applications require
even stronger notions of pseudo-freeness than the one defined in [20]. In Section 4
we already considered extending the definition to systems of equations, and
proved that pseudo-freeness with respect to systems of equations (Definition 3
) is equivalent to the basic definition of pseudo-free group. Another possible
extensions is to consider more general boolean combinations of equations, e.g.,
one can consider systems of equations w1 = w2 and inequations w1 	= w2. For
example, x2 = 1 and x 	= 1 cannot be simultaneously satisfied over the free
group, but admit a solution x = N − 1 in ZZ∗

N for any N 	= 2. We remark
that the satisfiability problem over free abelian groups for arbitrary boolean
combinations of equations is NP-hard. (E.g., 3SAT can be immediately reduced
to such a formula mapping each boolean variable x to a corresponding equation
x = 1.) So, some unsatisfiable formula do not have short (polynomial size) proofs
of unsatisfiability, unless NP=coNP. Extensions of the notion of pseudo-free
group to general boolean combinations of formulas should require the adversary
to output not only an unsatisfiable formula over the free group (together with
a solution over the computational group), but also a short and easily verifiable
proof that the formula is indeed unsatisfiable.
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Abstract. We propose and realize a definition of security for password-
based key exchange within the framework of universally composable
(UC) security, thus providing security guarantees under arbitrary com-
position with other protocols. In addition, our definition captures some
aspects of the problem that were not adequately addressed by most prior
notions. For instance, it does not assume any underlying probability
distribution on passwords, nor does it assume independence between
passwords chosen by different parties. We also formulate a definition
of password-based secure channels, and show that such a definition is
achievable given password-based key exchange.

Our protocol realizing the new definition of password-based key ex-
change is in the common reference string model and relies on standard
number-theoretic assumptions. The components of our protocol can be
instantiated to give a relatively efficient solution which is conceivably
usable in practice. We also show that it is impossible to satisfy our def-
inition in the “plain” model (e.g., without a common reference string).

1 Introduction

Protocols for password-based key exchange have received much attention in re-
cent years. In short, the problem is how to enable authenticated generation of a
“high-quality” secret key between two parties whose only a priori shared, secret
information consists of a low-entropy password. In this setting, an attacker can
always correctly determine the correct password via an on-line dictionary attack
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in which the adversary exhaustively enumerates the password space and tries
to impersonate one of the parties using each possible shared secret. Since such
an attack is unavoidable, work in this area focuses on preventing off-line dictio-
nary attacks. Roughly, this guarantees that the exhaustive, on-line attack is the
“best” possible one. That is, the attacker must interact with a legitimate player
in order to verify each password guess, and the interaction leaks no information
other than whether or not the attacker’s guess is correct. Besides their prac-
tical importance, password-based protocols are also interesting from a purely
theoretical point of view: they provide a rare case where bootstrapping “strong
security” from “weak security” has to be modeled, obtained, and argued.

The problem of resistance to off-line password-guessing attacks was first
raised by Gong, et al. [21] in the asymmetric “PKI model” (where, in addi-
tion to a password, the user has the public key of the server). Formal definitions
and proofs of security in this setting were later given by Halevi and Krawczyk
[22]. A more difficult setting for this problem is one where the parties share
only a password (and in particular, neither party knows the other’s public-key).
This setting was first considered by Bellovin and Merritt [5], and their work
was followed by much additional research developing protocols with heuristic
justifications for their security (see [6] for a survey). Formal definitions for this
setting, together with protocols analyzed in the random-oracle/ideal-cipher mod-
els, were given by Bellare, et al. [3] (who proposed an indistinguishability-based
definition) and Boyko, et al. [7] (who proposed a simulation-based definition).
Goldreich and Lindell [19] introduced a third security definition and also gave
the first provably-secure solution to this problem in the standard model, based
on general assumptions; their protocol was recently simplified (at the expense
of achieving a weaker security guarantee) by Nguyen and Vadhan [26]. Another
setting that has been considered for this problem is one where, in addition to
shared low-entropy passwords, all parties share a common reference string. In
this setting, a practical and provably-secure protocol was first developed by
Katz, et al. [24] based on the decisional Diffie-Hellman assumption. This pro-
tocol was subsequently generalized and abstracted by Gennaro and Lindell [18]
who, among other things, obtain protocols that rely on the quadratic residuosity
and N th-residuosity assumptions.

The many definitions that have already been introduced [3, 7, 19, 26] indi-
cate that finding a “good” definition of security for password-based authenti-
cation has been difficult and remains a challenging problem. Furthermore, it
is not clear that any of the above definitions adequately address all aspects of
the problem. For example, none of the above definitions relate to the (realis-
tic) setting where the password-based protocol is used as a component within a
larger protocol. (Rather, it is assumed that the entire network activity consists of
many executions of the password protocol.) Since the problem at hand involves
non-negligible probabilities of “success” by the adversary, providing security-
preserving composition (with reasonable error propagation) is even more deli-
cate than usual. Some of the above definitions have not been proven sufficient for
implementing (any form of) secure channels — a natural goal of key-exchange
protocols (see [9] for motivation). Finally, existing (explicit) definitions assume
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that passwords are chosen from some pre-determined, known distribution, and
(with the exception of [7]) assume also that passwords shared between differ-
ent parties are independent. (However, it is claimed in [24] that their proof
extends to the case of dependent passwords.) These assumptions rarely hold in
practice.

A new definition. In this work, we propose and realize a new definition of se-
curity for password-based key-exchange protocols within the universally com-
posable (UC) security framework [8]. That is, we propose an ideal functionality
for “password-based key exchange” that captures the security requirements of
the problem. (Such an ideal functionality can be thought of as the code for a
“centralized trusted service”, were one actually available to the parties.) Work-
ing in the UC framework allows us to benefit from the universal composition
theorem. Loosely speaking, the theorem states that a protocol secure in this
framework remains secure even when run in an arbitrary network, where many
different protocols (secure or not) may run concurrently. In addition to address-
ing composability, the definition in this work also addresses the other concerns
mentioned above. In particular, security is preserved even in the case of arbitrary
and unknown password distributions, and even if related passwords are used. The
important feature here is that the probability of the adversary succeeding in its
attack is negligibly close to the probability of its guessing the password outright,
even when this guess is based on information about the password that the ad-
versary obtains from the arbitrary network or from related passwords that it has
(either partially or completely) learned. Finally, we show how protocols satisfy-
ing our definition may be used to construct (password-based) secure channels.
Such channels enable private and authenticated communication, which in most
cases is the goal of running the protocol in the first place.

As one might expect, formulating an ideal functionality that captures all the
requirements of password-based key exchange involves a number of non-trivial
definitional choices. Our formulation builds on the known UC formulation of
(standard) key-exchange [8, 9], where security is guaranteed except with negligi-
ble probability. However, unlike standard key-exchange, some mechanism must
be introduced that allows the adversary to “break” the protocols with some non-
negligible probability by guessing the correct password. A natural way of doing
this is to have the functionality choose the passwords for the parties. Then, if
the adversary correctly guesses the password (where this guess is given to the
functionality), it is allowed to choose the session-key that the parties obtain.
Although this formulation is quite intuitive, it is somewhat limited in that it
assumes some pre-determined dictionary or distribution on passwords and that
passwords are chosen independently from each other. It also fails to model pos-
sible leakage of a portion of the password to the adversary (this is due to the
fact that only the functionality knows the password).

We therefore take a different approach and allow the calling protocol (or the
environment) to provide the password as part of the input. While this formula-
tion may seem somewhat counter-intuitive at first, we show that it results in a
definition of security that is at least as strong as that given by the first formu-
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lation.1 Furthermore, it does not make any assumptions as to how the password
is chosen and it imposes no pre-determined probabilities of failure.

Realizing the definition. We construct a protocol that realizes our definition.
The protocol is an extension of the protocols of [24, 18], and as such is in the
common reference string model and may be based on some standard number-
theoretic assumptions (namely the decisional Diffie-Hellman, quadratic residu-
osity, or N th-residuosity assumptions). Our protocol uses building blocks that
have efficient instantiations under these assumptions. As a result, our protocol
is reasonably efficient and is realizable in practice (it has 6 rounds and at most
30 modular exponentiations per party). Some of the efficiency improvements we
use in our protocol are applicable also to the protocol of [24] (and seemingly
[18]); see [23]. Applied there, these improvements yield the most efficient known
password-based protocol meeting the definition of [3] without random oracles.

On the necessity of set-up assumptions. Our protocol is constructed in the com-
mon reference string model, and so requires a trusted setup phase. In fact, we
show that our UC-based definition of password-based key-exchange cannot be
securely realized by any protocol in the plain model (i.e., in a model with no
trusted setup whatsoever). Beyond providing some justification for our use of a
common reference string, this result stands in sharp contrast with the fact that
standard UC-secure key exchange can be realized in the plain model [9]. It also
shows that our definition is strictly stronger than the definition used by [19, 26],
which can be realized in the plain model. (We stress that in contrast to our defi-
nition, the definitions of [19, 26] do not guarantee security even under concurrent
composition of the same protocol with the same password.)

Password-based secure channels. Perhaps the most important application of key-
exchange protocols is for establishing secure communication sessions between
pairs of parties. To advocate the adequacy of our proposed definition we formu-
late a UC notion of password-based secure channels, and show how to realize it
given our notion of password-based key exchange. It is of course impossible to
obtain standard secure channels using short passwords, since the adversary may
guess the password with non-negligible probability. Consequently, our notion of
password-based secure channels relaxes the standard notion in a way similar to
which our notion of password-based key exchange relaxes the standard notion
of key exchange. We then show that the standard protocols for realizing secure
channels based on standard key exchange (see, e.g., [9]), suffice also for realizing
password-based secure channels from password-based key exchange.

Organization. Due to lack of space in this abstract, the main text focuses on our
definition and a high-level description of our protocol, along with motivation as
to its security. The full description of the protocol and its proof of security is

1 The alternative formulation in which the functionality chooses the passwords was
omitted for lack of space. It may be obtained from the authors, along with a proof
that it is implied by the definition presented here.
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provided in the full version. Other results (namely, the impossibility of realizing
our definition in the plain model and the fact that secure channels are implied)
are described briefly in Section 4 and can be found in the full version.

2 Definitions of Security

In this section, we motivate and present our formulation of an ideal functionality
for password-based key exchange in the UC framework. We stress that from here
on, when we say that a protocol securely realizes some functionality, we mean
that it securely realizes it according to the definitions of the UC framework. Our
presentation assumes familiarity the UC framework; see [8] for a full description.

2.1 High-Level Approach

The starting point for our approach is the definition for universally composable
“standard” key-exchange [9] (cf. Figure 1). Our aim is to define a functionality
that achieves the same effect as standard key-exchange (where the parties have
high-entropy keys), except that we also incorporate the inherent “security defect”
due to the use of low-entropy passwords. Two ways of introducing this “security
defect” come to mind:

1. One option is to consider the same functionality FKE as in Figure 1, but
to relax the requirement of indistinguishability between the real and ideal
worlds. I.e., when passwords are assumed to be chosen uniformly from a
dictionary D, one would define a secure protocol as one whose real-world
execution is distinguishable from an interaction with the ideal functionality
with probability at most, say, 1/|D| plus a negligible amount.

2. A second possibility is to incorporate the “defect” directly into the function-
ality, e.g., by allowing the adversary to make explicit password guesses and
to “break” the protocol following a successful guess. Here, the adversary
“breaks” the protocol with noticeable probability even in the ideal world,
and thus the standard notion of realizing an ideal functionality can be used.

Among previous works that used simulation-based definitions of security for
password protocols, the first approach was taken by [19, 26], while the second
was taken by [7]. (Other definitions are not simulation-based and so do not fit
into either approach.) In this work we adopt the second option, for two reasons.
First, this allows us to use the UC composition theorem and thus guarantee
security of password-based key-exchange protocols even when run in arbitrary
protocol environments. Second, this approach easily extends to handle addi-
tional complexities such as multiple users with different distributions on their
passwords, or dependencies among various passwords. These aspects seem hard
(if not impossible) to handle using the first approach.

Before proceeding to our definition, we describe the standard key-exchange
functionality of [9]. (We note that the formulation of FKE in Figure 1 is somewhat
different from the one in [9]; however, the differences are inconsequential for
the purpose of this work.) The main idea behind the FKE functionality is as
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follows: If both participating parties are not corrupted, then they receive the
same uniformly distributed session-key, and the adversary learns nothing of the
key except that it was generated. However, if one of the parties is corrupted, then
the adversary is given the power to fully determine the session-key. The rationale
for this is that the aim of key-exchange is to enable honest parties to generate a
key that is unknown to an external adversary. If one of the participating parties
is corrupted, then the adversary will learn the generated key (because it is one
of the participants), and so the security requirement is meaningless. In such a
case, there is nothing lost by allowing the adversary to determine the key. We
remark that the “role” variable in the NewSession message is included in order
to let a party know if it is playing the initiator or responder role in the protocol.
This has no effect on the security, but is needed for correct executions.

Functionality FKE

FKE is parameterized by a security parameter k. It interacts with an adversary S
and a set of (dummy) parties via the following queries.

Upon receiving a query (NewSession, sid, Pi, Pj , role) from party Pi:
Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there is a
record (Pj , Pi), then record (Pi, Pj).

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:
If there is a record (Pi, Pj), and this is the first NewKey query for Pi, then:
• If either Pi or Pj is corrupted, then output (sid, sk) to player Pi.
• If there is also a record (Pj , Pi), and a key sk′ was sent to Pj , output
(sid, sk′) to Pi.
• In any other case, pick a new random key sk′ of length k and send
(sid, sk′) to Pi.

Fig. 1. The authenticated key-exchange functionality FKE

We now proceed to our definition of the password-based key-exchange func-
tionality FpwKE. Similarly to FKE, if one of the participating parties is corrupted
the adversary is given the power to fully determine the resulting session-key.
However, this power is also given to the adversary in case it succeeds in guess-
ing the parties’ shared password. An additional property of our definition is
that failed adversarial attempts at guessing a key are detected by the partici-
pating parties. Specifically, if the adversary makes a wrong password guess in
a given session, then the session is marked interrupted and the parties are pro-
vided independently-chosen session-keys. (Giving the parties error messages in
this case would correspond to requiring explicit mutual authentication; see ad-
ditional discussion below.)

In the functionality, a session is marked compromised if the adversary makes
a successful password guess (as discussed above, in this case the adversary is
allowed to determine the session-key). If a session is marked fresh, this means
that it is neither interrupted nor compromised. Such sessions (between honest
parties) conclude with both parties receiving the same, uniformly distributed
session-key. See Figure 2 for the full definition of the functionality.



410 R. Canetti et al.

In the definition of FpwKE, the password is chosen by the environment who
then hands it to the parties as input.2 Since we quantify over all (polynomial-
time) environments, this implies that security is preserved for all efficient pass-
word distributions, as well as when arbitrarily related passwords are used in
different session. Furthermore, since the passwords are provided by the “envi-
ronment in which the protocol is run”, security is preserved even when passwords
are used for other, unintended purposes by that same environment. (When we
say that security is preserved here, we mean that the probability that an ad-
versary can break the password-based key-exchange protocol is the same as its
probability of guessing the password outright, given the potential misuse men-
tioned above.) We also remark that our definition guarantees security even in
the case where two honest players execute the protocol with different passwords.
(In fact, this is quite a realistic scenario which occurs every time a user mistypes
a password; previous definitions did not guarantee anything in such a case.)

Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter k. It interacts
with an adversary S and a set of parties via the following queries.

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:
Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there is a
record (Pj , Pi, pw′), then record (Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:
If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If
pw = pw′, then mark the record compromised and reply to S with “correct
guess”. If pw 	= pw′, then mark the record interrupted and reply with
“wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey
query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then output
(sid, sk) to player Pi.
• If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw,
and a key sk′ was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then
output (sid, sk′) to Pi.
• In any other case, pick a new random key sk′ of length k and send
(sid, sk′) to Pi.

Fig. 2. The password-based key-exchange functionality, FpwKE

As additional justification of our definition, we show that it implies password-
based secure channels (arguably the most common application of such protocols).

2 This is in contrast to an alternative approach described in the Introduction where
the functionality chooses the password according to some predetermined distribu-
tion, and this password is hidden even from the environment. As we have men-
tioned, security under our definition implies security under that alternative ap-
proach.
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In addition, we show that our definition implies the “expected” notion of security
against a passive eavesdropper (even one who happens to know the password be-
ing used). Finally, we show that a protocol that securely realizes our functionality
is secure also with respect to the definition of Bellare, et al. [3] (modulo unim-
portant differences regarding the formalization of session identifiers).3 These last
two results can be seen as “sanity checks” of our definition.

Additional discussion. The definition of FpwKE could be strengthened to require
explicit mutual authentication by insisting that after a “wrong guess” of the
password, the session would fail (instead of producing a random and independent
key). Similarly, a session with mismatching passwords would also fail. We chose
not to include these requirements because (a) we want to keep the exposition
simple; (b) mutual authentication is not needed for secure channels; and (c)
it is well known that any secure key-exchange protocol (including ours) can be
augmented to provide mutual authentication by adding two “key confirmation”
flows at the end (and refreshing the session key). The definition could also be
weakened by notifying the simulator whether or not the passwords match in the
two NewSession queries. Roughly, the difference is that the current formulation
requires that an eavesdropper be unable to detect whether the session succeeded
(i.e., both parties got the same key) or failed (i.e., they got different keys).
Although we are not aware of any application where this is needed, it makes the
definition simpler to describe and our protocol anyway satisfies this requirement.

3 A Protocol Securely Realizing FpwKE

In this section, we present our protocol for securely realizing the functionality
FpwKE, in the common reference string model.4 Due to lack of space in this
extended abstract, many details of the protocol and its proof of security are
omitted. We remark that our protocol is proven secure in the model of static
corruptions (where the adversary may corrupt some of the participants, but only
prior to the beginning of the protocol executions) and unauthenticated channels
(where the adversary has full control over the communication channels and can
insert, modify and delete all messages sent by the honest parties). We also note
that although we consider static corruptions, the “weak-corruption model” of [3]
is implied by our definition (and achieved by our protocol); see the full version.
In the weak-corruption model, the adversary may obtain passwords adaptively

3 In our formalization, a unique session identifier sid is assumed to be part of the
input to the functionality. In the two-party setting, such a session identifier can
be obtained by having the parties exchange random strings and then set sid to
be the concatenation of these strings.

4 Our protocol actually realizes the multi-session extension F̂pwKE of this function-
ality (see [11]). This is important for ensuring that the same common reference
string can be used in all executions; see the full version for more details. For the
sake of clarity, in this extended abstract we refer only to the original functionality
FpwKE.
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throughout the execution. This essentially models leakage of passwords, rather
than adaptive corruption of parties.

3.1 Preliminaries

The protocol uses a number of primitives: one-time signatures, CPA-secure and
CCA-secure public-key encryption, simulation-sound zero-knowledge proofs, and
smooth projective hashing. We provide only a brief description of the last two
primitives here.

Simulation-sound zero-knowledge (SSZK) proofs. Informally speaking, a zero-
knowledge proof system is said to be (unbounded) simulation-sound if it has
the property that an adversary cannot provide a convincing proof for a false
statement, even if it has seen simulated proofs. Such simulated proofs may actu-
ally prove false statements, and so the adversary can copy these proofs but do
nothing more. More formally, the adversary is given oracle access to the zero-
knowledge simulator and can request simulated proofs of any statement (true
or false) that it wishes. The adversary is then said to succeed if it generates
a convincing proof of a false statement, and this proof was not received from
the oracle. This concept was first introduced by Sahai [28] and De Santis, et al.
[14] in the context of non-interactive zero-knowledge. For the case of interac-
tive protocols, the notion was formally defined by Garay, et al. [17].5 Efficient
methods for transforming three-round honest-verifier zero-knowledge protocols
(also called Σ-protocols [12]) into simulation-sound zero-knowledge protocols in
the common reference string model have been shown in [17] and [25]. We note
that, according to the definition of [17], simulation-sound zero knowledge pro-
tocols also achieve concurrent zero knowledge; i.e., the zero knowledge property
holds for an unbounded number of asynchronous executions of an honest prover.
Finally, we note that simulation-sound zero knowledge is a weaker requirement
than universally-composable zero-knowledge, and more efficient constructions
for it are known.

Smooth projective hashing [13]. On a very high level, a projective hash family
is a family of hash functions that can be computed using one of two keys: the
(secret) hashing key can be used to compute the function on every point in its
domain, whereas the (public) projected key can only be used to compute the
function on a specified subset of the domain. Such a family is called “smooth” if
the value of the function on a value outside of the specified subset is uniformly
distributed, even given the projected key. More formally (but still far from being
exact), let X be a set and let L ⊂ X. We say that a hash function Hhk that maps
X to some set is projective if there exists a projection function α(·) that maps
hash keys hk into their projections hp = α(hk), such that for every x ∈ L it
holds that the value of Hhk(x) is uniquely determined by hp and x. (In contrast,
for x 	∈ L the value of Hhk(x) need not be determined from hp and x.) A

5 When we say a proof is simulation sound, we will also mean that it is uniquely
applicable [28]; that is, a proof is valid for at most one statement.
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smooth projective hash function has the additional property that for x /∈ L, hp
actually says nothing about the value of Hhk(x). More specifically, given x and
hp = α(hk), the value Hhk(x) is (statistically close to) a uniformly distributed
element in the range of Hhk.

We already mentioned that for x ∈ L the projected key hp fully defines the
value Hhk(x), but so far we said nothing about whether or not this value can be
efficiently computed. An important property of smooth projective hash functions
is that if the subset L is an NP-language, then for x ∈ L it is possible to compute
Hhk(x) using the projected key hp = α(hk) and a witness of the fact that x ∈ L.
Thus, for x ∈ L there are two alternative ways of computing Hhk(x):

1. Given the hashing key hk, compute Hhk(x) directly.
2. Given the projected key hp and a witness w for x ∈ L, compute the hash

value hhp(x;w) = Hhk(x).

Following [18], the set X that we consider in this work is the set {(c,m)} of
all ciphertext/plaintext pairs under a given public-key pke. Furthermore, the
language L is taken to be {(c,m) | c = Epke(m)}; that is, L is the set of all
ciphertext/plaintext pairs (c,m) where c is an encryption of m under the public-
key pke. We note this language is indeed an NP language, with the witness being
the randomness that was used in the encryption of m.

We also comment that the semantic security of the encryption implies that
L is hard on the average (i.e., it is hard to distinguish a random element in X
from a random element in L). For such languages, it was proven in [18] that
given a random x ∈ L and hp = α(hk), the value Hhk(x) is computationally
indistinguishable from a random value in the range of Hhk. (This holds even
though for any x ∈ L, the value Hhk(x) is uniquely determined by x and hp.)

In the description below we denote choosing a hashing key from the family by
hk ← H, and denote the projection of this key by hp = α(hk). We also denote
computing the hash value using the hashing key hk by Hhk(x), and computing
the hash value using the projected key hp and witness w by hhp(x;w). (Note
that the statements x below are actually pairs (c,m), and the witness is the
randomness r, so we write Hhk(c,m) and hhp(c,m; r).)

3.2 The KOY/GL Protocol

The starting point of our protocol is the password-based key-exchange protocol
of Katz, Ostrovsky, and Yung [24], as generalized and abstracted by Gennaro
and Lindell [18]. The “core” of this protocol is sketched in Figure 3 (in this figure
we suppress various details). At a high level, the parties in the KOY/GL protocol
exchange CCA-secure encryptions6 of the password, encrypted with the public-
key found in the common reference string, and then compute the session key by
combining (smooth projective) hashes of the two ciphertext/password pairs. In

6 It is shown in [18] that non-malleable commitments can be used in place of CCA-
secure encryption. However, for our extension of the protocol to the UC framework
we will need to use encryption, and so we describe it in this way.
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Pi (server) Pj (client)

CRS: public key pke

(sk, vk) ← sigKey($)
c1 ← Epke(pw; r1)c1, vk�

c2 ← Epke(pw; r2)
hk ← H
hp ← α(hk) c2, hp �

hk′ ← H
hp′ ← α(hk′)
σ ← Signsk(c2, hp, hp′)hp′, σ�

if (Verifyvk((c2, hp, hp′), σ) = 1)
session-key ← Hhk(c1, pw) session-key ← hhp(c1, pw; r1)

+ hhp′(c2, pw; r2) +Hhk′(c2, pw)

Fig. 3. The core of the KOY/GL protocol

order to do this, each party chooses a hashing key for a smooth projective hash
function and sends the “projected key” to the other party.

Ignoring for the moment the signature keys from Figure 3, let c2, hk and
c1, hk

′ be the encryptions and hashing keys generated by parties Pi and Pj ,
respectively. Party Pi can compute Hhk(c1, pw) since it knows the actual hash-
ing key hk. Furthermore, since it generated the ciphertext c2, it can compute
hhp′(c2, pw; r2) = Hhk′(c2, pw) using its knowledge of the randomness r2 that
was used in generating c2 = Epke(pw; r2). (This relies on the two alternative
ways of computing Hhk(x) described above.) Symmetrically, Pj computes the
same session key using hk′, hp, and its knowledge of r1.

The basic idea behind the security of the protocol can be described as follows.
Denote the shared password of a client and server by pw. If the client receives
an encryption c of the wrong password pw′, then (by the definition of smooth
projective hashing) the hash she computes will be random and independent of
all her communication. (This holds because the statement (c, pw) is not in the
language, so Hhk(c, pw) is close to uniform even given the projected key hp.) A
similar argument holds for the server. Thus, for an adversary to distinguish a
session key from random, it must send one of the parties an encryption of the
correct password pw.

The adversary can get an encryption of the right password by copying a ci-
phertext from another execution of the protocol, but then it does not know the
randomness that was used to generate this ciphertext. By the property that we
discussed above (regarding hard-on-the-average languages), the value Hhk(c, pw)
is computationally indistinguishable from uniform, even given hp. Moreover, since
the encryption scheme is CCA-secure, and thus non-malleable, the adversary can-
not generate a new encryption of pw with probability any better than it would
achieve by simply guessing passwords from the dictionary and encrypting them.
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Finally, the adversary may try to gain information by copying ciphertexts
from a current session faithfully but not copying other values (such as the
hash projected keys). This type of man-in-the-middle attack is prevented us-
ing the one-time signature. We conclude that the adversary succeeds in its
attack if and only if it generates an encryption of the correct password. In
other words, the adversary succeeds if it guesses the secret password, as
required.

3.3 Extending the Protocol to Realize FpwKE

The protocol of Figure 3 serves as a good starting point, but it does not seem to
achieve the security that we require. The main issue that arises here is that an
ideal-model simulator must be able to extract the adversary’s password guess.7

At first glance, it may seem that this is not a problem because in the ideal model
the simulator has control over the common reference string and so can include
a public-key pke for which it knows the corresponding secret key ske. Then,
when the adversary generates an encryption of the password c = Epke(pw), the
simulator can decrypt using ske and obtain the password guess pw. However, as
we will now show, this seems not to suffice.

In order to see where the difficulty arises, consider an ideal-model adver-
sary/simulator S that has access to the functionality FpwKE and needs to sim-
ulate the KOY/GL protocol for a real-life adversary A. Informally, simulating
the server when the adversary impersonates a client can be carried out as fol-
lows: The simulator decrypts the ciphertext c1 generated by the adversary and
recovers the adversary’s “password guess” pw (this decryption can be carried
out because S chooses the common reference string so that it has the corre-
sponding secret key). The simulator then sends pw to FpwKE as its own guess.
If the guess is incorrect, then as described above, the smoothness of the hash
function causes the honest parties to output independent random keys (as re-
quired in the ideal model with an interrupted session). In contrast, if the guess is
correct then the simulator has learned the correct password and can continue the
remainder of the execution exactly as an honest party would when using that
password. However, consider what happens when the adversary impersonates
a server. Here, the simulator must send some c1 (presumably an encryption of
some password pw′) before the adversary replies with c2. As before, the simulator
can decrypt c2, recover the password pw in it, and submit this guess to FpwKE.
However, if it turns out that pw is a correct guess, the simulator is stuck with
a ciphertext c1 that in all likelihood is an encryption of the wrong password.
Not knowing the hashing key hk that A holds, the simulator cannot predict the
value Hhk(c1, pw) that A will compute (since (c1, pw) /∈ L). Thus, the simula-
tor seems to have no way of ensuring that the secret key that A computes is

7 This need to extract is not a mere technicality, but is rather quite central to our
definition. In particular, this enables us to argue that the level of security achieved
is equivalent to the probability of successfully guessing the password, even in the
case that related and partially-leaked passwords are used.
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Pi (client) Pj (server)

CRS: pke, pke′

c0 ← E′
pke′(pw; r0) c0 �

(sk, vk) ← sigKey($)
c1 ← Epke(pw; r1)c1,vk�

c2 ← E′
pke′(pw, r2)

hk ← H
hp ← α(hk; c1) c2,hp �

ZKP(c0≈c2) �
hk′ ← H′

hp′ ← α′(hk′; c2)
σ ← Signsk(c2, hp, hp′)hp′,σ�

if (Verifyvk((c2, hp, hp′), σ) = 1)
session-key ← Hhk(c1, pw) session-key ← hhp(c1, pw; r1)

+ h′
hp′(c2, pw; r2) +H ′

hk′(c2, pw)

Fig. 4. The core of the universally-composable protocol

the same as the one that the environment gets from the functionality (via the
client).8

To overcome this problem, we modify the protocol by having the server send
a “pre-flow” c0 which also contains an encryption of the password; i.e., c0 =
E(pw; r0). Then, when the server later sends c2, it proves in zero knowledge
that c0 and c2 are encryptions of the same value. We stress that the session-key
is still computed using only c1 and c2 and so it is important that consistency hold
between these two only (where by consistency, we mean that they are both an
encryption of the same password). The modified protocol is sketched in Figure 4.
(Note that we switch the “client” and “server” roles so that the client is still the
one who sends the first message.)

We now describe the high-level simulation strategy for the modified protocol
(and thus why this modification solves the above-described problem):

1. Case 1 — the adversary A impersonates the client: The simulator S obtains
the ciphertext c0, decrypts it to obtain pw and sends pw to FpwKE as the
password guess. If this guess is correct, then S continues the simulation using
the same pw and consistency is achieved. Note that the zero-knowledge proof
ensures that the ciphertext c2 later sent by A is also an encryption of pw
(therefore in this case, consistency between c0 and c1 implies consistency
between c1 and c2, as required).

8 This problem does not arise in the proofs of KOY/GL, since the “simulator”
there can just halt and the adversary is declared successful. Our simulator, on the
other hand, must continue to simulate both when the adversary fails and when it
succeeds.
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2. Case 2 — the adversary A impersonates the server: In this case, the simula-
tor S generates the pre-flow ciphertext c0 as an encryption of some default
value (which actually will not be any password). Then, upon receiving c1
from A, the simulator S decrypts it to obtain pw and sends pw to FpwKE as
the password guess. If the guess is correct, then S generates c2 to also be
an encryption of pw. Notice that c1 and c2 are now consistent in that they
both encrypt the correct password pw. The only problem remaining in the
simulation is that S is supposed to prove that c0 and c2 are indeed consistent
(which in this case they are not). It does this by using the zero-knowledge
simulator for the zero-knowledge proof of consistency. By the zero-knowledge
property, this proof is indistinguishable from a real one (and this holds even
though the statement in this case is false). We therefore conclude that in
the case of a correct password guess, consistency is achieved and in addition,
the adversary cannot distinguish its view in the simulation from its view in
a real execution.

We stress that Figure 4 is only a sketch of the protocol and does not contain
all the details. For example, the full protocol uses labeled encryption [29] in order
to bind certain protocol information to the ciphertexts (such as the session-id
and the verification key of the signature scheme) and in order to prevent other
types of man-in-the-middle attacks. (Labels were used implicitly for the same
purpose in [24, 18].) A detailed description of the protocol and its proof can be
found in the full version, where we also provide a formal statement and proof of
the following result:

Theorem 1 (main theorem – informally stated): Assume the existence of CCA-
secure encryption schemes with smooth projective hash functions, and simulation-
sound zero-knowledge proofs. Then there exists a protocol in the common refer-
ence string model that securely realizes the FpwKE functionality in the presence
of static-corruption adversaries.

We remark that all the building blocks of our protocol can be built under
the DDH, quadratic residuosity, or N th-residuosity assumptions, so UC-secure
password-based key exchange is possible under any of these assumptions. For
the most efficient instantiation, we would use encryption and smooth projective
hash proofs based on DDH, a collision-resistant hash function for the one-time
signature, and a simulation-sound zero-knowledge proof system [17, 25] based on
strong RSA. Hence, the end result would rely on all of these assumptions for its
security.

Efficiency notes. Considering the protocol as depicted in Figure 4, we emphasize
that it suffices to use a (simulation sound) zero-knowledge proof of membership,
rather than a proof of knowledge. This allows for efficient solutions; see [17].
Furthermore, it suffices to generate c0 and c2 using an encryption scheme that
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is only CPA-secure, rather than CCA-secure.9 Thus, the encryption scheme E
in Figure 4 (that is used to generate c1) is CCA-secure, but the encryption
scheme E′ (that is used to generate c0 and c2) is only CPA-secure. Using a CPA-
secure scheme for E′ provides efficiency improvements in the encryption itself,
the projective hashing, and the proof of consistency. In [18] a highly efficient and
simple construction of smooth projective hashing was demonstrated for the El
Gamal encryption scheme (which is CPA-secure under the DDH assumption).
Furthermore, proving consistency of El Gamal encryptions is more efficient than
proving consistency of, e.g., CCA-secure Cramer-Shoup encryptions.

4 Additional Results

We describe some additional results that appear in the full version of the paper.

Functionality FpwSC

The functionality FpwSC is parameterized by a security parameter k. It interacts
with an adversary S and a set of parties via the following queries.

Upon receiving a (NewSession, sid, Pi, Pj , pw, role) query from party Pi:
Send (NewSession, sid, Pi, Pj , role), to S. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there is a
record (Pj , Pi, pw′), then record (Pi, Pj , pw) and mark it fresh.

Upon receiving a (TestPwd, sid, Pi, pw′) query from the adversary S:
If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If
pw = pw′, then mark the record compromised and reply to S with “correct
guess”. If pw 	= pw′, then mark it interrupted and reply with “wrong guess”.

Upon receiving a (Send, sid, m) query from Pi:
If there is a record of the form (Pi, Pj , pw) then:
• If this record is compromised, or Pi is corrupted, then send (sid, Pi, m)
to the adversary.
• If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw
that is also fresh, then send (Received, sid, m) to Pj and (sid, Pi, |m|) to
the adversary.
• In any other case, send (sid, Pi, |m|) to the adversary.

Upon receiving an (ExpireSession, sid) query from Pi:
If there is a record of the form (Pi, Pj , pw), it marks the record as expired.

Fig. 5. The password-based secure channels functionality, FpwSC

Password-based secure channels. Arguably, the typical use of a key-exchange
protocol is the establishment of secure channels that enable the parties to com-
municate privately and reliably. The case of password-based key-exchange is no

9 In fact, the second encryption in the KOY/GL protocols can be generated using a
CPA-secure scheme (e.g., El Gamal) as well; see [23]. This yields the most efficient
known password-based key-exchange protocol in the standard model (i.e., without
random oracles), albeit under a weaker definition than the one considered here.
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exception. In Figure 5, we describe the password-based secure channels function-
ality FpwSC. In the full version, we show that our definition of password-based
key-exchange suffices for securely realizing this functionality, thus providing ad-
ditional “justification” for our definition of FpwKE. The definition of FpwSC is
analogous to the password-based key-exchange functionality. Notice that if two
parties have sent NewSession queries with the same identifiers and passwords,
and the adversary has not guessed this password or interrupted the session, then
the functionality faithfully passes messages from the first party to the second.
Furthermore, the adversary learns only the length of the message sent. Thus,
the functionality provides reliable and private communication, as desired. (The
functionality only deals with unidirectional communication from Pi to Pj ; it can
be repeated in order to obtain bidirectional communication.)

Impossibility of realizing FpwKE in the plain model. Our protocol is cast in the
common reference string model which assumes some (albeit, rather minimal)
trusted setup phase. An important question to ask is whether or not this is
necessary for obtaining security. In the full version of this paper, we prove that
the FpwKE functionality cannot be securely realized in the “plain” model (i.e.,
without using a common reference string or some other augmentation to the
basic model). Our proof is similar to the proofs of impossibility in [10]. The
basic idea is as follows. Consider an environment that internally runs the code
of one of the honest parties. The ideal-model simulator for such an environment
must succeed while interacting with it in the same way that real parties interact.
(This holds by the definition of the UC framework which requires a black-box
simulator which cannot rewind.) Now, if simulation can be carried out in such
a scenario, then it can also be carried out while interacting with a real honest
party (because the specific environment we have chosen behaves like an honest
party). This means that anything the ideal-model simulator/adversary can do
with respect to the environment, a real-model adversary can do with respect to
an honest party. In particular, in order for the simulation to succeed, the ideal-
model simulator must be able to set the output session-key to be the same as the
key output by the ideal functionality. Thus, a real-model adversary can also do
this, in contradiction to the security requirements of the key-exchange protocol.
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Abstract. We introduce a new flavor of commitment schemes, which
we call mercurial commitments. Informally, mercurial commitments are
standard commitments that have been extended to allow for soft decom-
mitment. Soft decommitments, on the one hand, are not binding but, on
the other hand, cannot be in conflict with true decommitments.

We then demonstrate that a particular instantiation of mercurial com-
mitments has been implicitly used by Micali, Rabin and Kilian to con-
struct zero-knowledge sets. (A zero-knowledge set scheme allows a Prover
to (1) commit to a set S in a way that reveals nothing about S and (2)
prove to a Verifier, in zero-knowledge, statements of the form x ∈ S and
x /∈ S.) The rather complicated construction of Micali et al. becomes
easy to understand when viewed as a more general construction with
mercurial commitments as an underlying building block.

By providing mercurial commitments based on various assumptions,
we obtain several different new zero-knowledge set constructions.

1 Introduction

1.1 Mercurial Commitments

A traditional cryptographic commitment is often compared to a safe. The sender
places a particular value in the safe, locks it and gives it to the recipient. The
recipient cannot see the value, but is assured that it will not change while inside
the safe. Then, whenever the sender chooses to, he can reveal the secret code
needed to open the safe, enabling the recipient to retrieve the hidden value.
The two usual properties of commitments are therefore hiding and binding : the
sender is bound to the message, but the message is hidden from the recipient.

We propose a variant of traditional commitments, where the opening protocol
is two-tiered. Partial opening, which we call “teasing”, is not truly binding: it
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is possible for the sender to come up with a commitment that can be teased to
any value of the sender’s choice. True opening, on the other hand, is binding in
the traditional (computational) sense: it is infeasible for the sender to come up
with a commitment that he can open to two different values.

Despite the fact that a commitment can potentially be teased to any value, a
tease is not merely a meaningless assertion. A tease of a commitment to a value
m is a guarantee that the commitment cannot be opened to any value other than
m. In other words, the recipient of a tease knows that if the commitment can be
opened at all, then it will be to the same value. It is infeasible for the sender to
come up with a commitment that can be teased to m1 and opened to m2 	= m1.

This immediately implies, of course, that if the sender can open a commitment
at all, then it can be teased to only one value. Thus, the sender must choose,
at the time of commitment, whether to “soft-commit,” so as to be able to tease
to multiple values but not open at all, or to “hard-commit,” so as to be able to
tease and to open to only one particular value. The recipient, however, cannot
tell which of the two options the sender has chosen (this is ensured by the hiding
property).

We call this new primitive mercurial commitment.
Mercurial commitments are different from trapdoor or chameleon commit-

ments of [BCC88]. All chameleon commitments are equivocal whenever the
sender knows a trapdoor for the commitment scheme. In mercurial commit-
ments, on the other hand, the sender is given the choice, at the time of com-
mitment, whether to make the commitment equivocal or binding. Furthermore,
in chameleon commitments, equivocated and regular decommitments look the
same to the recipient; whereas in mercurial commitments, the recipient may be
content with the decommitment that may have been equivocated (tease), or may
require the stronger full decommitment (open).

Note that mercurial commitments directly imply conventional commitments
as a special case, when only hard-commit and open are used (and the soft-commit
and tease functionalities are ignored).

We have not yet addressed the hiding property of mercurial commitments.
For our application, we need a very strong hiding property, namely, simulata-
bility (which we can provide in the shared-random-string or trusted-parameters
model1, or else interactively). However, such strong hiding does not seem to be
an essential property of mercurial commitments, and it is conceivable that, if
mercurial commitments find other applications, weaker hiding properties will
suffice.

We formally define mercurial commitments in Section 2.1. We provide four
constructions in Section 2.2: based on general (possibly noninteractive) zero-

1 The shared-random-string model assumes that a uniform random string is available
for all parties to use. The trusted-parameters model assumes that a public string
from some (possibly complex) distribution has been produced and is available for
all parties to use; furthermore the (uniform) coins used to produce that string are
unknown to the parties (for instance, such a string could be a product n of two large
primes p and q, where the primes themselves are unknown to the parties).
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knowledge, claw-free permutations, discrete logarithms, and factoring respec-
tively. The last two constructions are efficient enough to be useable in practice.

We distilled the notion of mercurial commitments out of the zero-knowledge
set construction of [MRK03], where a particular construction (namely, the one
based on discrete logarithms) of mercurial commitments is implicitly used. We
believe that abstracting this notion and separating its construction from the
construction of zero-knowledge sets themselves is beneficial. First, as we demon-
strate in Section 3.2, the [MRK03] construction of zero-knowledge sets becomes
conceptually simpler when mercurial commitments are used as a building block.
Second, when mercurial commitments can be studied in isolation, it is much
easier to come up with novel constructions for them, and therefore also for zero-
knowledge sets. Finally, mercurial commitments are interesting independently of
this specific application because of their potentially broader applicability.

1.2 Zero-Knowledge Sets

Zero-knowledge sets (ZKS) were recently introduced by Micali, Rabin, and Kil-
ian [MRK03]. ZKS allow a prover to commit to an arbitrary finite set S in such
a way that for any string x he can provide an efficient sound proof of whether
x ∈ S or x /∈ S, without revealing any knowledge beyond this membership as-
sertion. That is, the recipient (verifier) of the proof learns nothing else about
the set S, not even the size of S. We elaborate on the formal definition of ZKS
in Section 3.1.

As pointed out by [MRK03], the notion of zero-knowledge sets can be ex-
tended to zero-knowledge elementary databases, where each element x ∈ S has
a value v(x) associated with it. After committing to S, the prover can provide
an efficient proof for each x of either “x ∈ S and v(x) = v”, or “x /∈ S”, with-
out revealing any further information. Sets, of course, are a special case of this,
where the value associated with each x ∈ S is 1. Throughout this paper, we use
ZKS to refer also to the more general zero-knowledge elementary databases.

Micali, Rabin, and Kilian give a construction of zero-knowledge sets under
the discrete logarithm assumption in the shared random string model. This con-
struction is noninteractive (i.e., both the initial commitment and query answers
require a single message from the prover to the verifier) with O(k2)-bit proofs
for security parameter k. They do not show how to remove the number-theoretic
details of their construction, and leave open whether constructions not based on
the discrete logarithm assumption are possible at all.

It is an interesting problem to consider what alternative constructions are
possible, and under what assumptions these constructions can be realized.

Ostrovsky, Rackoff and Smith [ORS04] provide constructions for consistent
database queries, which allow the prover to commit to a database, and then pro-
vide query answers that are provably consistent with the commitment. They also
consider the problem of adding privacy to such protocols. Their constructions can
handle queries much more general than just membership queries; they yield two
constructions of ZKS as special cases. The first construction is a feasibility result,
showing that interactive ZKS can be built out of (public) collision-resistant hash
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functions (CRHF) and zero-knowledge proofs of NP statements (which require
only one-way functions, which are implied by CRHF); noninteractive ZKS can be
built in the shared random string model out of CRHF and noninteractive zero-
knowledge. The second construction is more efficient, based on the assumptions
of CRHF and homomorphic commitments. Unfortunately, it requires interaction
(which can be removed in the random oracle model) and requires the prover to
keep a counter t of the number of queries asked so far. (For security parameter
k, the proofs are of size O(tk4) and, in particular, grow with t.2)

We provide an alternative proof of the same feasibility result, as well as more
efficient constructions based on different assumptions, as detailed next.

1.3 Zero-Knowledge Sets from Mercurial Commitments

We describe the work of [MRK03] in light of our new primitive, thus showing how
to construct zero-knowledge sets based on mercurial commitments and collision-
resistant hash functions. Different instantiations of mercurial commitments will
result in different ZKS constructions with different security assumptions and
efficiency.

Instantiating our ZKS construction with mercurial commitments based on
general zero-knowledge gives an alternative proof of the feasibility of ZKS from
general assumptions (as mentioned above, another such proof was given inde-
pendently by [ORS04]). It shows that (noninteractive) ZKS can be constructed
in the shared random string model by using as building blocks noninteractive
zero-knowledge (NIZK) proofs [BDMP91, FLS99], (conventional) commitment
schemes (which are anyway implied by NIZK), and CRHF.3 If one is willing
to add interaction to the revealing (membership proof) phase of ZKS, our con-
struction shows that CRHF and interactive ZKS are equivalent (because NIZK
can be replaced with regular zero-knowledge proofs, which can be based on one-
way functions, which are implied by CRHF; on the other hand, it is quite clear
that CRHF is necessary for ZKS, because the initial commitment to the set
must be collision-resistant). Unfortunately, the above discussion applies merely
to feasibility results; none of these constructions is practical.

Instantiating our ZKS construction with mercurial commitments based on
claw-free permutations gives ZKS in the trusted parameters model with proof
length O(k3). The construction based on factoring further improves the effi-
ciency, giving ZKS with proof length O(k2) and verification time O(k4), suitable
for practical implementation in the trusted parameters model.

2 The proof size given in [ORS04] is O(tdsk2), where s is a bound on the length of
each key x, and d is a bound on logarithm of the set size. However, in order to hide
the set size, we must first hash each key to a k-bit value, and set d = k.

3 It is known how to construct NIZK proofs based on the existence of trapdoor per-
mutations (TDP) [FLS99, BY96], or based on the existence of verifiable random
functions (VRF) [GO92,MRV99]. TDP and VRF are, as far as we currently know,
incomparable assumptions. Indeed, VRFs can be constructed based on gap-Diffie-
Hellman groups [Lys02], while no trapdoor permutation is known based on such
groups.
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For the case of ZKS from discrete-logarithm-based mercurial commitments
(which are the ones implicitly used in [MRK03]), we provide a constant-factor
improvement over the [MRK03] construction by utilizing a hash function better
suited for such commitments. The resulting construction is within the realm of
practical implementation in the shared random string model, requiring proofs of
length O(k2) and verification time O(k4) (constants hidden by O here are fairly
small and are further analyzed in Section 5).

2 The New Primitive: Mercurial Commitments

2.1 Definition

As we describe in the introduction, a mercurial commitment is a commitment
scheme with additional features. The first feature is that, in addition to the usual
algorithm for opening a commitment, there is also an algorithm to partially open,
or tease. The partial decommitment of a commitment C to a value x means, in
essence, that if C can be opened at all, then it can be opened only to x. The
second feature of a mercurial commitment scheme is that a commitment C can
be formed in two ways: it may be a hard commitment, that is, a commitment
that can be opened (and teased) in only one way; or a soft commitment that
cannot be opened at all, but can be teased to any value. Let us now describe
this more formally.

A mercurial commitment scheme consists of the following algorithms:

Setup This is a randomized algorithm run by a trusted third party that sets
up the public key for the commitment. We write PK ← Setup(1k). The
chosen public key PK defines the (efficiently samplable) domain of possible
committed values. Let us denote this domain DPK . If this algorithm merely
outputs its random coins, then the mercurial commitment scheme is in the
shared random string model. Else it is in the stronger trusted parameters
model.

Hard-Comm This is the deterministic algorithm used to commit to a value. It
takes as input the public key PK, a value x ∈ DPK , and a random string r,
and outputs the commitment C. We write C = Hard-Comm(PK, x, r).

Soft-Comm This is the deterministic algorithm used to soft-commit. That is
to say, a value produced by this algorithm is not really a commitment be-
cause it can never be opened. But it can be partially opened (teased) to
any value of the committer’s choice. This algorithm takes as input the pub-
lic key PK and the random string r, and outputs a value C. We write
C = Soft-Comm(PK, r).

Tease This is the randomized algorithm for partially opening (teasing) a hard
or soft commitment. On input (PK, x, r,C), where C is either a hard com-
mitment to x with string r, or a soft commitment with string r, Tease
outputs the partial decommitment τ for teaser value x. We write τ ←
Tease(PK, x, r,C).
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Ver-Tease This is the algorithm that either accepts or rejects the partial de-
commitment τ to teaser value x. It takes as input the public key PK, the
commitment C, and the values x and τ .

Open This algorithm opens the commitment C. If C = Hard-Comm(PK, x, r),
then on input (PK, x, r,C), Open will output the decommitment π for the
committed value x. We write π ← Open(PK, x, r,C).

Ver-Open This is the algorithm that either accepts or rejects the decommit-
ment π to the value x. It takes as input the public key PK, the commitment
C, and the values x and π.

As usual for commitment schemes, we require three properties: (1) correct-
ness: Ver-Tease will always accept the correctly formed partial decommitment
τ of C for the correct teaser value x, and Ver-Open will always accept the cor-
rectly formed decommitment π of C for the correct x; (2) binding: no adversary
can create C such that it can be opened to two different values, and no adversary
can create C such that it can be opened to one value but partially decommitted
(teased) to another value; (3) hiding: no adversary can learn whether C is a
soft commitment or hard commitment, and in case it is a hard commitment, no
adversary can learn the committed value x; moreover, we require that there be a
simulator that will be able to form C in such a way that it can not only partially
decommit (tease) it to any teaser value, but also open it to any value, such that
the view of the receiver will be the same whether it is talking to the committer
or to the simulator.

More precisely:

Definition 1. A set of algorithms Setup, Hard-Comm, Soft-Comm, Tease,
Open, Ver-Tease and Ver-Open satisfies the correctness property of mercu-
rial commitments if for all PK ∈ Setup(1k)

– Correctness for Hard-Comm: For all x ∈ DPK , for all strings r, if C =
Hard-Comm(PK, x, r), then
• for all τ ∈ Tease(PK, x, r,C), Ver-Tease(PK,C, x, τ) = OK;
• for all π ∈ Open(PK, x, r), Ver-Open(PK,C, x, π) = OK;

– Correctness for Soft-Comm: For all r, if C = Soft-Comm(PK, r), then
for all x ∈ DPK , for all τ ∈ Tease(PK, x, r,C), Ver-Tease(PK,C, x, τ) =
OK.

Definition 2. A set of algorithms Setup, Ver-Tease and Ver-Open sat-
isfies the binding property of mercurial commitments if for all probabilistic
polynomial-time nonuniform adversaries {Ak} there exists a negligible function
ν such that

Pr[PK ← Setup(1k); (C, x, x′, π, τ)← Ak(PK) :
Ver-Open(PK,C, x, π) = OK ∧

(Ver-Open(PK,C, x′, τ) = OK ∨Ver-Tease(PK,C, x′, τ) = OK) ∧
x 	= x′ ∈ DPK ] = ν(k)
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Definition 3. A set of algorithms Setup, Hard-Comm, Soft-Comm, Tease,
Open satisfies the hiding (simulatability) property of mercurial commitment if

1. There exists a set of algorithms Sim-Setup, Sim-Commit, Sim-Tease,
Sim-Open with the following specifications:
Sim-Setup This is a randomized algorithm that, in addition to creating the

commitment public key PK, also outputs a trapdoor key TK that allows
the simulator some extra power that the legitimate committer does not
have. We write (PK,TK)← Sim-Setup(1k).

Sim-Commit This is the deterministic algorithm that the simulator uses to
compute a commitment. Besides (PK,TK), it takes a random string r
as input. We write C = Sim-Commit(PK,TK, r).

Sim-Tease This is the algorithm that the simulator uses to compute a par-
tial decommitment for any value x ∈ DPK . On input (PK,TK, r, x), it
gives the partial decommitment τ for the commitment C = Sim-Commit
(PK,TK, r). We write τ ← Sim-Tease(PK,TK, r, x).

Sim-Open This is the algorithm that the simulator uses to compute a decom-
mitment for any value x ∈ DPK . On input (PK,TK, r, x), it outputs the
decommitment π for the commitment C = Sim-Commit(PK,TK, r).
We write π ← Sim-Open(PK,TK, r, x).

2. Let the following algorithms be defined as follows:
CommitterPK The committer algorithm CPK is a stateful algorithm that

responds to requests to hard- and soft-commit to specific values by run-
ning Hard-Comm and Soft-Comm, and then, on request runs the
Tease and Open algorithms on the corresponding commitments. It also
maintains a list L of commitments issued so far. Initially, list L is empty.
Here is how CPK responds to various inputs:
– On input (Hard-Comm, x), choose a random string r. Compute C =

Hard-Comm(PK, x, r). Store (Hard-Comm,C, x, r) in the list L.
Output C.

– On input (Soft-Comm), choose a random string r. Compute C =
Soft-Comm(PK, r). Store (Soft-Comm,C, r) in the list L. Output
C.

– On input (Tease,C, x′):
• Check if C ∈ L. If it is not, output “fail.” Else, retrieve the

record corresponding to C.
• If C’s entry on the list is of the form (Hard-Comm,C, x, r): if
x 	= x′, output “fail.” Otherwise, output τ = Tease(PK, x, r,C).
• Else if C’s entry on the list is of the form (Soft-Comm,C, r):

output τ = Tease(PK, x′, r,C).
– On input (Open,C, x), check if for some r, (Hard-Comm,C, x, r)

is on the list. If it is not, output “fail.” Else, output Open(PK, x, r).
Simulator(PK,TK) The simulator S(PK,TK) answers the same types of

queries as the Committer CPK , but by running different algorithms. It
also maintains the same list L, initialized to empty.
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– On input (Hard-Comm, x), choose a random string r. Compute C =
Sim-Commit(PK,TK, r). Store (Hard-Comm,C, x, r) in the list L.
Output C.

– On input (Soft-Comm), choose a random string r. Compute C =
Sim-Commit(PK,TK, r). Store (Soft-Comm,C, r) in the list L.
Output C.

– On input (Tease,C, x′):
• Check if C ∈ L. If it is not, output “fail.” Else, retrieve the

record corresponding to C.
• If C’s entry on the list is of the form (Hard-Comm,C, x, r): if
x 	= x′, output “fail.” Otherwise, output τ ← Sim-Tease(PK,
TK, x, r,C).

• Else if C’s entry on the list is of the form (Soft-Comm,C, r):
output τ ← Sim-Tease(PK,TK, x′, r,C).

– On input (Open,C, x), check if for some r, (Hard-Comm,C, x, r)
is on the list. If it is not, output “fail.” Otherwise, output Sim-Open
(PK,TK, x, r).

Then no polynomial-time distinguisher can tell whether he is talking to a
Committer or to a Simulator. Namely, for all probabilistic polynomial-time
families of oracle Turing machines {D?

k}, there exists a negligible function
ν(k) such that

Pr[PK0 ← Setup(1k); (PK1,TK)← Sim-Setup(1k);
O0 = CPK0 ;O1 = S(PK1,TK);

b← {0, 1}; b′ ← DOb

k (pkb) : b = b′] = 1/2 + ν(k)

(In this definition, we create two oracles: O0 is a Committer, and O1 is a
Simulator. Then the distinguisher interacts with a randomly chosen oracle,
and has to guess which oracle it is talking to.)

Remarks. Note that the notion of simulatability can be defined in three flavors:
perfect, statistical, and computational, corresponding to the strength of the dis-
tinguisher D. Above, we gave the definition for the computational flavor since it
is the least restrictive. Also note that the definition above is noninteractive. The
definition can be extended to an interactive setting, where the decommitment
(opening or teasing) is interactive. Throughout the paper, in order to keep the
presentation clean, we continue by default to consider noninteractive mercurial
commitments (and noninteractive ZKS), and only mention the interactive case
in side remarks.

Definition 4 (Mercurial commitment scheme).
Algorithms Setup, Hard-Comm, Soft-Comm, Tease, Open, Ver-Tease

and Ver-Open constitute a mercurial commitment scheme if they satisfy the
correctness, binding, and hiding (simulatability) properties.
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2.2 Constructions

From General Assumptions. We construct mercurial commitments based on
a many-theorem noninteractive zero-knowledge proof system [BDMP91, FLS99].
Such a proof system can be constructed from any trapdoor permutation
(TDP) [BDMP91, BY96], or from a verifiable random function (VRF) [GO92,
MRV99]. Existence of TDPs and existence of VRFs are, as far as we know,
incomparable assumptions, since VRFs can be constructed based on gap-Diffie-
Hellman groups [Lys02], while no trapdoor permutation is known based on such
groups. This construction is in the shared random string model (not in the
trusted parameters model).

Suppose that we are given a many-theorem noninteractive zero-knowledge
(NIZK) proof system for an NP-complete language L. This proof system oper-
ates in the public random string model, and consists of polynomial-time algo-
rithms Prove and Verify. Further suppose that we are given a conventional
noninteractive unconditionally binding commitment scheme, consisting of algo-
rithms (Comm-Setup,Commit). Note that such a commitment scheme is al-
ready implied by the existence of NIZK, because NIZK implies OWFs, and in
the public-random-string model, OWFs imply setup-free unconditionally bind-
ing bit commitment [Nao91, HILL99]. More detailed definitions of these standard
building blocks, NIZK and commitment schemes, are given in the full version of
the paper.

We now describe a (noninteractive) mercurial commitment scheme based on
a NIZK proof system and any noninteractive commitment scheme. The idea of
this construction is simple: a mercurial commitment will consist of two conven-
tional commitments. The first one determines whether it is a hard-commit or
soft-commit. The second one determines the value itself in case of hard-commit.
To tease, simply prove (using NIZK) that “either this is a soft-commit, or the
committed value is x.” To open, prove (using NIZK) that “this is a hard-commit
to x.” Correctness will follow from the correctness properties of the NIZK and of
the commitment scheme. The binding property will follow from the fact that the
commitment scheme is unconditionally binding, and from the soundness of the
NIZK. Simulatability will follow from the security of the commitment scheme
and from the zero-knowledge property (i.e., existence of the zero-knowledge sim-
ulator) of the NIZK.

An (easily produced) more formal description of the above scheme is con-
tained in the full version of the paper. We thus obtain the following theorem.

Theorem 1. The construction above is a mercurial commitment scheme, as-
suming the underlying primitives satisfy the definitions of NIZK proofs for NP
and unconditionally binding commitment schemes.

As noted in the introduction, the same construction can be used to achieve in-
teractive mercurial commitments, from standard commitments and (interactive)
zero knowledge proofs. Since both these building blocks are implied by OWF,
the construction yields interactive mercurial commitments based on OWF.
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From Claw-Free Trapdoor Bijections. We now construct a mercurial bit-
commitment scheme under the assumption that there exist claw-free trapdoor
bijections.4 Specifically, slightly generalizing the notion of claw-free permuta-
tions of [GMR88], we assume that there exist indexed families of bijections
{fi}i∈I⊆{0,1}n , fi : Dfi

→ Ri and {gi}i∈I⊆{0,1}n , gi : Dgi
→ Ri, and an effi-

ciently computable distribution Δ on pairs (i, ti) ∈ {0, 1}n × {0, 1}poly(n) such
that:

– ti is trapdoor information that allows fi to be inverted efficiently.
– fi and gi are claw-free. That is, when given i sampled according to Δ, no

efficient algorithm can, with nonnegligible probability, find s ∈ Dfi
and

s′ ∈ Dgi
such that fi(s) = gi(s′).

Employing this assumption, we construct mercurial bit-commitmens:

– PK = Setup(1n) = i where (i, ti) is sampled from Δ
– Using randomness (r0, r1) ∈ Dfi

× Dgi
, Hard-Comm(i, 0, (r0, r1)) =

(fi(r0), gi(r1)) and Hard-Comm(i, 1, (r0, r1)) = (gi(r1), fi(r0))
– Using randomness (r0, r1) ∈ Dfi

× Dfi
, Soft-Comm(i, (r0, r1)) =

(fi(r0), fi(r1))
– For hard commitment C = (C0,C1), τ = Tease(i, x, (r0, r1), (C0,C1)) = r0.
– For soft commitment C = (C0,C1), τ = Tease(i, x, (r0, r1), (C0,C1)) = rx.
– Ver-Tease(i, x, τ, (C0,C1)) checks that Cx = fi(τ).
– To open a hard commitment C = (C0,C1) to x, created using the random

string (r0, r1), π = Open(i, x, (r0, r1), (C0,C1)) = (x, r0, r1).
– Given a decommitment π = (x, r0, r1), Ver-Open(i, x, π, (C0,C1))

checks Cx = fi(r0) and C1−x = gi(r1).

The correctness of this commitment scheme is immediate from the above de-
scriptions. Furthermore, it is clear that these commitments are hiding since all
commitments are pairs of completely random elements of Ri. That hard com-
mitments are binding follows from the assumption that fi and gi are claw-free.

It remains to show that this commitment scheme is simulatable. The key step
in showing simulatability is to note that if ti (i.e. the trapdoor for fi) is known,
then one can easily compute f−1

i (s) for any given s ∈ Ri, and in particular, one
can produce an r′ such that s = fi(r′), even if s was chosen to be gi(r) for some
random r ← Dgi

. The details are provided in the full version of the paper.
Claw-free trapdoor bijections are an established cryptographic primi-

tive [GMR88]. They are commonly realized under the assumption that factoring
is hard. However, under the factoring assumption one can construct much more
efficient mercurial commitments, as we do later in this section. Nonetheless, the
above construction based on a claw-free pair is valuable because the existence
of a claw-free pair may be viewed as a generic assumption independent of the
difficulty of factoring. Indeed, the assumption seems reasonable generically: the

4 Note that in contrast to the construction of the previous section, here we construct
a bit-commitment scheme, i.e. we commit only to values x ∈ {0, 1}.
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less the functions fi and gi have to do with each other, the more plausible the
assumption. Note that only fi requires a trapdoor, so gi may be some, com-
pletely unrelated, one-way bijection. It may be reasonable to assume that it is
infeasible to find a claw in such a case.

From the Discrete Logarithm Assumption. The following mercurial com-
mitment scheme relies on the intractability of the discrete logarithm problem in a
group G of prime order. When G is taken to be the subgroup of size q of Z

∗
p where

q|(p−1) (i.e., G is the group of d-th order residues in Z
∗
p for a prime p = dq+1),

this mercurial commitment scheme is implicit in the Zero-Knowledge Sets con-
struction of [MRK03]. Indeed, combining this mercurial commitment with the
Zero-Knowledge Set construction of the next section yields essentially the same
construction as [MRK03].

Recall that the Pedersen commitment scheme [Ped92] employs two randomly
chosen generators, g, h← G, and a commitment to a message m ∈ {0, 1, . . . , |G|−
1} is computed by selecting a random r ← {0, 1, . . . , |G| − 1} and letting the
commitment be gmhr. The commitment is opened by revealing the message m
and the random exponent r. It is not hard to show that if the committer can
open this commitment in more than one way, then he can easily compute logg(h),
a task which is presumed to be intractable. On the other hand, if the committer
knows logg(h), then he can easily open a supposed commitment c = gk ∈ G
to any message m by producing the pair (m, (k − m)/ logg(h) mod |G|). This
observation is essential to the following mercurial commitment scheme which is
based on the Pedersen commitment.

– Setup(1k) selects G and (g, h)← G×G.
– The hard commitment (with random string (r0, r1) ← {0, 1, . . . , |G| − 1}2)

is simply the Pedersen commitment using the generator pair (g, hr1):
Hard-Comm((g, h), x, (r0, r1)) = (gx(hr1)r0 , hr1)

– The soft commitment (with (r0, r1) ← {0, 1, . . . , |G| − 1}2) is
Soft-Comm((g, h), (r0, r1)) = (gr0 , gr1).

– If C = (C0,C1) is hard, then τ = Tease((g, h), x, (r0, r1), (C0,C1)) = r0.
– If C = (C0,C1) is soft, then τ = Tease((g, h), x, (r1, r2), (C0,C1)) = (r0 −
x)/r1 mod |G|.

– In either case, Ver-Tease((g, h), (C0,C1), x, τ) checks that C0 = gx · Cτ
1 .

– Open computes (π0, π1) as Open((g, h), x, (r0, r1), (C0,C1)) = (r0, r1).
– Finally, verification is similar to Pedersen’s, with an additional step to en-

sure that the second generator C1 was chosen as a known power of h,
and hence that logg(C1) is not known to the committer: Ver-Open((g, h),
(C0,C1), x, (π0, π1)) checks that C0 = gx · Cπ0

1 and that C1 = hπ1 .

The correctness of the above algorithms is easily verified. The proof that hard
commitments are binding is just as with the Pedersen commitment; indeed, the
ability to open a commitment C = (C0,C1) in two ways implies knowledge of
logg(h). This scheme is clearly hiding because all commitments consist of random
elements from G×G. As for simulatability, the simulator simply needs to set up
g, h and TK as g ← G, TK ← {0, 1, . . . , |G|−1} and h = gTK . A more detailed
description is contained in the full version of the paper.
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From the Hardness of Factoring. Our final construction is based on the hard-
ness of factoring. Like the discrete logarithm construction, this scheme commits
to many bits simultaneously. This is a modification of the trapdoor commitment
construction implicit in the GMR signature scheme [GMR88]. We note that a
similar mercurial commitment scheme (based on RSA rather than factoring, but
allowing for interesting extensions based on the Strong RSA assumption) was
independently discovered by Gennaro and Micali [GM05].

The mercurial commitment scheme runs as follows:

– Let the message space be {0, 1}�.
– Setup(1n) chooses an RSA modulus N = pq, where p ≡ q ≡ 3 (mod 4),

and a random element y ∈ Z
∗
N . Let U = y2. PK = (N, U).

– Using randomness (r0, r1) ∈ Z
∗
N × Z

∗
N , Hard-Comm((N, U),m, (r0, r1)) =

(Ur2
0, r

2�

1 (Ur2
0)

m).
– Using randomness (r0, r1) ∈ Z

∗
N × Z

∗
N , Soft-Comm((N, U), (r0, r1)) =

(r2�

0 , r2�

1 ).
– If C = (C0,C1) is hard, then τ = Tease((N, U),m, (r0, r1), (C0,C1)) = r1.
– If C = (C0,C1) is soft, then τ = Tease((N, U),m, (r0, r1), (C0,C1)) =

r1r
−m
0 .

– Ver-Tease((N, U),m, τ, (C0,C1)) checks that C1 = Cm
0 (τ)2

�

.
– Open computes π as π = Open((N, U),m, (r0, r1), (C0,C1)) = (m, r0, r1).
– Given a decommitment π = (m, r0, r1), Ver-Open((N, U, 	),m, π, (C0,C1))

checks C0 = Ur2
0 and C1 = Cm

0 r2�

1 .

The correctness of this commitment scheme follows directly from the above defi-
nitions. Simulatability follows if we simply let the simulator set up U as U = y2�

.
The details of the simulator are in the full version of the paper.

We have only to show that this scheme is binding. Suppose there exists a hard
commitment (C0,C1) which can be opened as (m, r0, r1), and (m′, r′0, r

′
1), where

m = b1 . . . b�, and m′ = b′1 . . . b
′
�. Both openings can be successfully verified, thus

we have C0 = Ur2
0 = Ur′20 , and C1 = Cm

0 r2�

1 = Cm′
0 r′2

�

1 . Given that m 	= m′,
this means that r1 	= r′1. Let f0(x) = x2, f1(x) = C0x

2. Note that finding a
claw (i.e. x0, x1 such that f0(x0) = f1(x1)) would give a square root of U : (U =
(x0x

−1
1 r0)2). This would then allow us to factor N . Thus, this is a claw-free pair.

Note also that Cm
0 r2�

1 = fb�
(fb�−1(. . . (fb1(r1)))). Since there are two verifiable

openings, this must be equal to Cm′
0 r′2

�

1 = fb′�(fb′�−1
(. . . (fb′1(r

′
1)))). Let i be the

smallest index such that fbi
(fbi−1(. . . (fb1(r1)))) = fb′i(fb′i−1

(. . . (fb′1(r
′
1)))). Such

an i must clearly exist, and as long as r′1 	= r1 we also have bi 	= b′i. Thus we
have found a claw between f0 and f1 which will allow us to factor N .

A similar proof shows that we cannot tease-open to one value and hard open
to another.

Note that a similar scheme using an arbitrary RSA modulus N can be created
using a modified version of the commitment described in [Fis01].
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3 Constructing Zero-Knowledge Sets

3.1 Definition of Zero-Knowledge Sets

Let us start with an informal definition. A zero-knowledge set scheme (more
generally, an elementary database scheme) [MRK03] consists of three algorithms,
ZKS-Setup, P (the Prover) and V (the Verifier) such that three properties hold:
(1) completeness: for any database D, for any x such that D(x) = v (where v
can be a value if x ∈ D or ⊥ if x /∈ D) an honest Prover who correctly commits
to D can always convince the verifier that D(x) = v; (2) soundness: once a
commitment to the database D has been formed (even by a malicious Prover),
no P ′ can, for the same x, convince the Verifier that D(x) = v1 and D(x) = v2

for v1 	= v2; (3) zero-knowledge: there exists a simulator S such that even for
adversarially chosen D, no adversarial verifier can tell whether he is (a) talking
to an honest prover P committed to D, or (b) talking to S who only has oracle
access to the data set D.

The formalization of this definition, which is a slight revision of the original
definition of [MRK03] (in particular, it extends the original definition to allow
computational zero-knowledge), is given in the full version of the paper.

3.2 ZKS from Mercurial Commitments

In this section we show how, given a mercurial commitment scheme and a
collision-resistant hash function, we can construct a zero-knowledge set. As al-
ready mentioned, this construction is essentially the same as the construction
of [MRK03] with the mercurial commitments abstracted as a building block.

On the Role of Collision-Resistant Hashing. In order to construct
ZKS from mercurial commitments, we need an additional property: that
an ordered pair of commitments produced by Hard-Comm(PK, ·, ·) and/or
Soft-Comm(PK, ·) is in the domain DPK of the commitment scheme (this
property is needed because we will build trees of commitments, with the par-
ent committing to its two children). This can be accomplished for any mercurial
commitment scheme with sufficiently large DPK by combining it with a collision-
resistant hash function H that maps pairs of commitments into DPK . Then, to
commit to a pair of commitments, one would simply commit to its hash value in-
stead. This approach was already used by [MRK03] with the DL-based mercurial
commitment scheme implicitly constructed there.

The key for the hash function can be included as part of the commitment
scheme’s public key. The security of the resulting construction is easy to prove
(we will not do so here for lack of space and because the arguments are standard).
From now on, in describing the ZKS construction from mercurial commitments,
we will assume that domain of a mercurial commitment scheme includes pairs
of commitments.

We note that it is necessary to assume collision-resistant hash functions
(CRHFs) because they are implied by ZKS: to build CRHF from ZKS, sim-
ply run the prover algorithm on the database D to produce a commitment C,
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fixing the prover-randomness to an all-0 string. We can view an arbitrary-length
string b1b2 . . . b� as an elementary database D where D(i) = bi for 1 ≤ i ≤ 	,
and i > 	 is not in the database. It is easy to see that the resulting algorithm is
collision-resistant: an adversary who could produce two strings (databases) that
hash to the same commitment C would contradicts the soundness property of
ZKS.

Building ZKS. Below, we construct ZKS for a database D with keys of length5

l given

– a mercurial commitment scheme (Setup,Hard-Comm,Soft-Comm,
Tease,Open,Ver-Tease,Ver-Open) whose domain includes the values
v contained in the database, as well as pairs of commitments (produced by
Hard-Comm and/or Soft-Comm);

– a pseudorandom function family {Fs}s∈S that maps binary string of
length up to l to binary strings of length needed for random inputs r to
Hard-Comm and Soft-Comm.6

Our construction will be in the shared random string model if the mercurial
commitment scheme (and the collision-resistant hash function, if separate from
the mercurial commitment scheme) both require no more than a shared random
string for their parameters. Otherwise, it will be in the trusted parameters model.

Intuition Informally, to generate a commitment com to the database D, the
prover views each key x as an integer numbering a leaf of a height-l binary tree,
and places a commitment to the information v = D(x) into leaf number x. Each
internal node of the tree is generated to contain the commitment to the contents
of its two children. The result is thus a Merkle tree, except that each internal
node is a commitment to, rather than a hash of, its two children. The value com
is then the value contained in the root of the tree.

To respond to a query about x, the prover simply decommits the correspond-
ing leaf and provides the authenticating path (together with all the decommit-
ments) to the root.

The only problem with the just-described approach is that it requires expo-
nential time (in l) to compute the tree, because the tree has 2l leaves. This is
where mercurial commitments help. Our exponential-size Merkle-like tree will
have large subtrees where every leaf is a commitment to ⊥, because the cor-
responding keys are not in the database. Instead of actually computing such a
subtree ahead of time, the prover simply forms the root of this subtree as a soft-
commitment, and does not do anything for other nodes of the subtree. Thus,

5 As suggested in [MRK03], we can apply collision-resistant hashing to the keys if they
are longer, although we will give up perfect completeness if two keys x1 and x2 such
D(x1) 	= D(x2) hash to the same result.

6 The pseudorandom function family is needed only to save prover storage and make
the prover stateless; if the prover is willing to store the amount of randomness
proportional to l(|D|+ q), where q is the number of queries, then it is not necessary.
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Fig. 1. A commitment tree before and after a query for key 11, whose value is not the

database. The parts built in response to the query are shown in the second tree. Hard

commitments are denoted by ‘H’ and soft commitments by ‘S’. Each leaf contains a

commitment to the value shown rather than the value itself

the resulting Merkle tree gets “pruned” to size at most 2l|D|, because the only
nodes in the tree are ancestors of leaves in D and their siblings. (This is because
if a node is neither an ancestor of a leaf in D nor a sibling of such an ancestor,
then both its and its sibling’s subtrees are empty.)

Answering queries about x ∈ D is still done the same way. In response to
queries about x /∈ D the prover generates the portion of the subtree that is
missing (from x to the root of the empty subtree). The value at the root of the
empty subtree is then teased (soft-decommitted) to its two (newly generated)
children, and the entire authenticating path from x to com is provided using
teasers, rather than hard decommitments. This is illustrated in Figure 1.

To save the prover from the expense of having to remember all the choices it
made when generating the tree (both initially and in response to x /∈ D queries),
we generate all random strings used in the commitments pseudorandomly rather
than randomly.

Soundness follows from the fact that soft decommitments always have the
same semantics, namely that x /∈ D, and that soft decommitments cannot, by
the binding property, disagree with hard decommitments. Zero-knowledgeness
follows from the simulatability of commitments and from the fact that decom-
mitments are consistent: a given node will never be (hard- or soft-) decommit-
ted in two different ways. Note that zero-knowledge will be perfect, statistical,
or computational, depending on the simulatability of mercurial commitments
(however, for perfect and statistical zero-knowledge, the prover must use truly
random, rather than pseudorandom, strings; hence, it must be stateful in order
to remember the random strings it used when responding to queries.)

We formalize the above description in the full version of the paper.

Improving the Efficiency of DL-Based Construction. While in general
any collision-resistant hash function can be used with our DL-based mercurial
commitments, Pedersen’s hash function [Ped92] is suggested by [MRK03] be-
cause it is also based on the discrete logarithm assumption and its parameters
can be selected from a shared random string. Given a group G of prime order q
and two generators g and h, Pedersen’s hash function HG,g,h hashes two integers
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0 ≤ a, b < q into a single element h ∈ G via h = gahb. It is easy to see that this
hash function is collision-resistant if discrete logarithms in G are hard.

It may seem that Pedersen’s hash function is well suited for use with DL-
based mercurial commitments over the same group G. This, however, is not true,
because the range of hash function is G, while the domain of the commitments
is {0, 1, . . . , q−1}. In particular, if G is the subgroup of size q of Z

∗
p for q|(p−1),

one would need to choose two separate sets of parameters: (q1, p1) for the hash
function and (q2, p2) for the commitment scheme, with q2 ≥ p1. This seems to be
necessary for the construction of [MRK03] to work (although it is not explicitly
stated there).

In addition, to hash two commitments (which consist of two elements of
Z
∗
p2

each), multiple iterations of the hash function are needed, because a single
iteration can handle only a pair of elements of Zq1 .

Here, we point out two minor modifications the Pedersen’s hash function
that eliminate the need for a second set of parameters and minimize the number
of iterations necessary to hash two commitments. Both modifications rely on
folklore results.

First, we will modify the hash function to take four inputs instead of two by
using four generators (all in the shared random string), g1, g2, g3, g4, and out-
putting, on input (a, b, c, d), the value ga

1gb
2g

c
3g

d
4 . The proof of collision-resistance

of this function is a simple exercise and is omitted here.
Our second modification relies (in addition to the DL assumption) on the

assumption that Sophie Germain primes are sufficiently dense (recall that a q is
a Sophie Germain prime if p = 2q + 1 is prime). We let q be a Sophie Germain
prime. Then the subgroup G of order q of Z

∗
p is QRp. Consider the following

efficient bijection φ′ between QRp and {1, 2, . . . , q}: if x ≤ q, φ′(x) = x; else
φ′(x) = p − x (this is a bijection because exactly one of (x,−x) is in QRp,
because p ≡ 3 (mod 4) since q is odd). Now let φ(x) = φ′(x) − 1 to make the
range of the bijection {0, 1, . . . , q − 1}.

The bijection φ allows us to view G = QRp and {0, 1, . . . , q−1} as essentially
the same.7 Thus, we will simply modify Pedersen’s hash function to output φ(h)
instead of h, and to take inputs in QRp instead of {0, 1, . . . , q − 1} by applying
φ−1 to them first.

The resulting ZKS scheme takes seven values and seven exponentiations per
level of the hash tree to verify (four for the hash function and three for the
mercurial commitment). Note that two of the generators can be shared between
the hash function and the mercurial commitment scheme. Because verifications
require only products of fixed-base exponentiations with four bases (except in
the case of tease verification, when a single exponentiation with a random base
is required), much precomputation can be done to speed up verification (see,
e.g., [LL94], which can be extended to multiple bases).

7 We remark that, obviously, a bijection between G and {0, 1, . . . , q − 1} always exists
because |G| = q; the reason for using Sophie Germain primes is that we do not know
how construct a simple efficient bijection otherwise.
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Abstract. We present a Hierarchical Identity Based Encryption (HIBE)
system where the ciphertext consists of just three group elements and
decryption requires only two bilinear map computations, regardless of
the hierarchy depth. Encryption is as efficient as in other HIBE systems.
We prove that the scheme is selective-ID secure in the standard model
and fully secure in the random oracle model. Our system has a number
of applications: it gives very efficient forward secure public key and iden-
tity based cryptosystems (with short ciphertexts), it converts the NNL
broadcast encryption system into an efficient public key broadcast sys-
tem, and it provides an efficient mechanism for encrypting to the future.
The system also supports limited delegation where users can be given
restricted private keys that only allow delegation to bounded depth. The
HIBE system can be modified to support sublinear size private keys at
the cost of some ciphertext expansion.

1 Introduction

An Identity Based Encryption (IBE) system [24, 5] is a public key system where
the public key can be an arbitrary string such as an email address. A central
authority uses a master key to issue private keys to identities that request them.
Hierarchical IBE (HIBE) [17, 14] is a generalization of IBE that mirrors an or-
ganizational hierarchy. An identity at level k of the hierarchy tree can issue
private keys to its descendant identities, but cannot decrypt messages intended
for other identities (details are given in Section 2.1). The first construction for
HIBE is due to Gentry and Silverberg [14] where security is based on the Bilin-
ear Diffie-Hellman (BDH) assumption in the random oracle model. A subsequent
construction due to Boneh and Boyen [1] gives an efficient (selective-ID secure)
HIBE based on BDH without random oracles. In both constructions, the length
of ciphertexts and private keys, as well as the time needed for decryption and
encryption, grows linearly in the depth 	 of the hierarchy.

� Extended Abstract. Full version available on the Cryptology ePrint Archives [3].
�� Supported by NSF.

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 440–456, 2005.
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There are currently two principal applications for HIBE. The first, due to
Canetti, Halevi, and Katz [9], is forward secure encryption. Forward secure en-
cryption enables users to periodically update their private keys so that a message
encrypted at period n cannot be read using a private key from period n′ > n.
To provide for T = 2t time periods, the CHK construction uses a HIBE of depth
t where identities are binary vectors of length at most t. At time n, the encryp-
tor encrypts using the identity corresponding to the n-th node of this depth t
binary tree. Consequently, using previous HIBE systems [14, 1], ciphertexts in
this forward secure construction are of size O(t); private keys are of size O(t2)
but can be reduced to size O(t) by using updateable public storage. The second
application for HIBE, due to Dodis and Fazio [11], is using HIBE to convert the
NNL broadcast encryption system [22] into a public-key broadcast system. Un-
fortunately, the resulting public-key broadcast system is no better than simpler
constructions because ciphertext length in previous HIBE constructions is linear
in the depth of the hierarchy.

Our Contribution. We present a HIBE system where the ciphertext size as
well as the decryption cost are independent of the hierarchy depth 	. Ciphertexts
in our HIBE system are always just three group elements and decryption requires
only two bilinear map computations. Private keys in our basic system contain 	
group elements as in previous HIBE constructions.

Our system gives a forward secure encryption system with short ciphertexts
consisting of only three group elements, for any number T = 2t of time periods.
With our basic HIBE system, the private key size in this forward secure encryp-
tion system is O(t2). In Section 4 we describe a hybrid system that borrows
some features from the Boneh-Boyen HIBE [1] and results in a forward secure
encryption scheme where private key size is reduced to O(t3/2) and ciphertext
size is O(

√
t). By using updateable public storage as in CHK [9], private key

size in these systems can be further reduced to size O(t) and O(
√
t) respectively.

In addition, instantiating the Dodis-Fazio [11] system with our HIBE system
results in a public-key broadcast system that is as efficient as the NNL subset
difference method.

It is worth noting that private keys in our system shrink as the identity depth
increases; this shrinkage is the opposite behavior from previous HIBE systems
where private keys become larger as we descend deeper down the hierarchy tree.
This behavior leads to “limited delegation” where an identity at depth k can be
given a restricted private key that only lets it issue private keys to descendants
of limited depth (as opposed to any descendant).

Security of our system is based on a natural assumption that is closely related
to the Diffie-Hellman Inversion assumption [1, 19]. We describe the assumption
in Section 2.3. In the full paper [3], we prove a lower bound on the computa-
tional complexity of the problem in the generic group model and also discuss
its relation to existing assumptions in bilinear groups. We present the system
in Section 3 and prove its security in the selective identity model without using
random oracles. We then observe that a selective-ID secure HIBE results in a
fully secure HIBE in the random oracle model. In Sections 4 and 5 we discuss
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several extensions and applications of the system. For example, in addition to the
applications already mentioned, we show how private keys can be further com-
pressed to sublinear size and also describe an efficient mechanism for encrypting
to the future.

2 Preliminaries

We briefly review the definition of HIBE and bilinear groups, and introduce the
Bilinear Diffie-Hellman Exponent assumption in such groups.

2.1 Fully Secure HIBE Systems

Like an Identity Based Encryption (IBE) system, a Hierarchical Identity Based
Encryption (HIBE) system consists of four algorithms [17, 14, 1]: Setup, KeyGen,
Encrypt, Decrypt. In HIBE, however, identities are vectors; a vector of dimen-
sion k represents an identity at depth k. The Setup algorithm generates system
parameters, denoted by params, and a master key master-key. We refer to the
master-key as the private key at depth 0 and note that an IBE system is a HIBE
where all identities are at depth 1. Algorithm KeyGen takes as input an identity
ID = (I1, . . . , Ik) at depth k and the private key dID|k−1 of the parent identity
ID|k−1 = (I1, . . . , Ik−1) at depth k − 1, and then outputs the private key dID for
identity ID. The encryption algorithm encrypts messages for an identity using
params and the decryption algorithm decrypts ciphertexts using the private key.

Chosen ciphertext security for HIBE systems is defined under a chosen iden-
tity attack where the adversary is allowed to adaptively chose the public key
on which it will be challenged. More precisely, HIBE security (IND-ID-CCA) is
defined by the following game between an adversary A and a challenger C:
Setup: The challenger C runs the Setup algorithm and gives A the resulting
system parameters params, keeping the master-key to itself.

Phase 1: A adaptively issues queries q1, . . . , qm where query qi is one of the
following:

– Private key query 〈IDi〉. C responds by running algorithm KeyGen to generate
the private key di corresponding to the public key 〈IDi〉 and sends di to A.

– Decryption query 〈IDi,Ci〉. C responds by running algorithm KeyGen to gen-
erate the private key d corresponding to IDi. It then runs algorithm Decrypt
to decrypt the ciphertext Ci using the private key d and sends the resulting
plaintext to A.

Challenge: Once A decides that Phase 1 is over, it outputs an identity ID∗ and
two equal length plaintexts M0,M1 ∈ M on which it wishes to be challenged.
The only restriction is that A did not previously issue a private key query for
ID∗ or a prefix of ID∗. C picks a random bit b ∈ {0, 1} and sets the challenge
ciphertext to CT = Encrypt(params, ID∗,Mb), which is sent to A.
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Phase 2: A issues additional queries qm+1, . . . , qn where qi is one of:

– Private key query 〈IDi〉 where IDi 	= ID∗ and IDi is not a prefix of ID∗.
– Decryption query 〈Ci〉 	= 〈C〉 for ID∗ or any prefix of ID∗.

In both cases, C responds as in Phase 1. These queries may be adaptive.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins if b = b′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define the
advantage of the adversary A in attacking the scheme E as

AdvE,A = |Pr[b = b′]− 1/2| .

The probability is over the random bits used by the challenger and the adversary.
Canetti, Halevi, and Katz [9, 10] define a weaker notion of security in which

the adversary commits ahead of time to the public key it will attack. We refer
to this notion as selective identity, chosen ciphertext secure HIBE (IND-sID-
CCA). The game is exactly the same as IND-ID-CCA except that the adversary
A discloses to the challenger the target identity ID∗ before the Setup phase.
The restrictions on private key queries from phase 2 also hold in phase 1.

Definition 1. We say that a HIBE system E is (t, qID, qC , ε)-secure if for any
t-time IND-ID-CCA (respectively IND-sID-CCA) adversary A that makes at most
qID chosen private key queries and at most qC chosen decryption queries, we have
that AdvE,A < ε. As shorthand, we say that E is (t, qID, qC , ε)-IND-ID-CCA (resp.
IND-sID-CCA) secure.

Semantic Security. As usual, we define chosen plaintext security for a HIBE
system as in the preceding game, except that the adversary is not allowed to
issue any decryption queries. The adversary may still issue adaptive private key
queries. This security notion is termed as IND-ID-CPA (or IND-sID-CPA in the
case of a selective identity adversary).

Definition 2. We say that a HIBE system E is (t, qID, ε)-IND-ID-CPA secure
(resp. IND-sID-CPA) if E is (t, qID, 0, ε)-IND-ID-CCA secure (resp. IND-sID-CCA).

2.2 Bilinear Groups

We briefly review bilinear maps and bilinear map groups. We use the following
notation [18, 8]:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e is a bilinear map e : G×G→ G1.

Let G and G1 be two groups as above. A bilinear map is a map e : G×G→ G1

with the properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 	= 1.
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We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists both a group G1 and an efficiently computable bilinear
map e : G×G→ G1 as above.

2.3 Bilinear Diffie-Hellman Exponent (BDHE) Assumption

The 	-BDHE problem in G is as follows: given g, h, and g(αi) in G for i =
1, 2, . . . , 	−1, 	+1, . . . , 2	 as input, output e(g, h)(α

�) ∈ G1. Since g(α�) is missing
from the list of powers, the bilinear map seems to be of no help in computing
e(g, h)(α

�). As a shorthand, let yi = g(αi) ∈ G. An algorithm A has advantage ε
in solving 	-BDHE in G if

Pr
[
A
(
g, h, y1, . . . , y�−1, y�+1, . . . , y2�

)
= e(g, h)(α

�)
]
≥ ε,

where the probability is over the random choice of generators g, h in G, the
random choice of α in Zp, and the random bits used by A. The decisional ver-
sion of the 	-BDHE problem in G is defined in the usual manner. Let −→y g,α,� =
(y1, . . . , y�−1, y�+1, . . . , y2�). An algorithm B that outputs b ∈ {0, 1} has advan-
tage ε in solving decision 	-BDHE in G if∣∣∣∣Pr

[
B
(
g, h,−→y g,α,�, e(g, h)(α

�)
)

= 0
]
− Pr

[
B
(
g, h,−→y g,α,�,T

)
= 0
]∣∣∣∣ ≥ ε,

where the probability is over the random choice of generators g, h in G, the
random choice of α in Zp, the random choice of T ∈ G1, and the random bits
consumed by B. We refer to the distribution on the left as PBDHE and the
distribution on the right as RBDHE .

Definition 3. We say that the (decision) (t, ε, 	)-BDHE assumption holds in G

if no t-time algorithm has advantage at least ε in solving the (decision) 	-BDHE
problem in G.

For conciseness we occasionally drop the t and ε and simply refer to the (deci-
sion) 	-BDHE in G. In the full version of this paper [3], we show that a broad
class of assumptions, including the 	-BDHE assumption, hold in generic bilinear
groups [25]; we also discuss the relation between these assumptions. We show
that the 	-BDHE is a natural extension of the Bilinear Diffie-Hellman Inversion
problem, which was previously used in various constructions [1, 12, 19].

3 A HIBE System with Constant Size Ciphertext

Let G be a bilinear group of prime order p and let e : G × G → G1 be a
bilinear map. For now, we assume that public keys (that is, identities ID) at
depth k are vectors of elements in (Z∗

p)
k. We write ID = (I1, . . . , Ik) ∈ (Z∗

p)
k.

The j-th component corresponds to the identity at level j. We later extend the
construction to public keys over {0, 1}∗ by first hashing each component Ij using
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a collision resistant hash H : {0, 1}∗ → Z
∗
p. We also assume that the messages

to be encrypted are elements in G1. The HIBE system works as follows:

Setup(	): To generate system parameters for an HIBE of maximum depth 	,
select a random generator g ∈ G, a random α ∈ Zp, and set g1 = gα. Next, pick
random elements g2, g3, h1, . . . , h� ∈ G. The public parameters and the master
key are

params = (g, g1, g2, g3, h1, . . . , h�) , master-key = gα
2 .

KeyGen(dID|k−1, ID): To generate a private key dID for identity ID = (I1, . . . , Ik) ∈
(Z∗

p)
k of depth k ≤ 	, pick a random r ∈ Zp and output

dID =
(
gα
2 ·
(
hI1

1 · · ·hIk

k · g3

)r
, gr, hr

k+1, . . . , hr
�

)
∈ G

2+�−k.

Note that dID becomes shorter as the depth of ID increases. The private key for ID
can be generated just given a private key for ID|k−1 = (I1, . . . , Ik−1) ∈ (Z∗

p)
k−1

as required. Indeed, let

dID|k−1 =
(
gα
2 ·
(
hI1

1 · · ·h
Ik−1
k−1 · g3

)r′
, gr′

, hr′
k , . . . , h

r′
�

)
= (a0, a1, bk, . . . , b�)

be the private key for ID|k−1. To generate dID, pick a random t ∈ Zp and output

dID =
(
a0 · bIk

k ·
(
hI1

1 · · ·hIk

k · g3

)t
, a1 · gt, bk+1 · ht

k+1, . . . , b� · ht
�

)
.

This private key is a properly distributed private key for ID = (I1, . . . , Ik) for
r = r′ + t ∈ Zp.

Encrypt(params, ID, M): To encrypt a message M ∈ G1 under the public key
ID = (I1, . . . , Ik) ∈ (Z∗

p)
k, pick a random s ∈ Zp and output

CT =
(
e(g1, g2)s ·M, gs,

(
hI1

1 · · ·hIk

k · g3

)s) ∈ G1 ×G
2.

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik). To decrypt a given ci-
phertext CT = (A,B,C) using the private key dID = (a0, a1, bk+1 . . . , b�), output

A · e(a1,C)
/
e(B, a0) = M.

Indeed, for a valid ciphertext, we have

e(a1,C)
e(B, a0)

=
e
(
gr, (hI1

1 · · ·hIk

k · g3)s
)

e
(
gs, gα

2 (hI1
1 · · ·hIk

k · g3)r
) =

1
e(g, g2)sα

=
1

e(g1, g2)s
.

Observe that for identities at any depth, the ciphertext contains only 3 ele-
ments and decryption takes only 2 pairings. In previous HIBE systems, cipher-
text size and decryption time grow linearly in the identity depth. Also, note that
e(g1, g2) used for encryption can be precomputed (or substituted for g2 in the
system parameters) so that encryption does not require any pairings.
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3.1 Security

We first show that our HIBE scheme is selective identity secure (IND-sID-CPA)
under the decisional Bilinear Diffie-Hellman Exponent assumption. We later de-
scribe how to provide both chosen ciphertext security (IND-sID-CCA) and full
HIBE security (IND-ID-CCA).

Theorem 1. Let G be a bilinear group of prime order p. Suppose the decision
(t, ε, 	 + 1)-BDHE assumption holds in G. Then the previously defined 	-HIBE
system is (t′, qS, ε)-selective identity, chosen plaintext (IND-sID-CPA) secure for
arbitrary 	, qS, and t′ < t − Θ(τ 	 qS), where τ is the maximum time for an
exponentiation in G.

Proof. Suppose A has advantage ε in attacking the 	-HIBE system. Using A, we
build an algorithm B that solves the decision (	+ 1)-BDHE problem in G.

For a generator g ∈ G and α ∈ Zp let yi = g(αi) ∈ G. Algorithm B is given as
input a random tuple (g, h, y1, . . . , y�, y�+2, . . . , y2�+2,T ) that is either sampled
from PBDHE (where T = e(g, h)(α

�+1)) or from RBDHE (where T is uniform and
independent in G1). Algorithm B’s goal is to output 1 when the input tuple is
sampled from PBDHE and 0 otherwise. Algorithm B works by interacting with
A in a selective identity game as follows:

Initialization. The selective identity game begins with A first outputting an
identity ID∗ = (I∗1, . . . , I

∗
m) ∈ (Z∗

p)
m of depth m ≤ 	 that it intends to attack. If

m < 	 then B pads ID∗ with 	 −m zeroes on the right to make ID∗ a vector of
length 	. Hence, from here we assume that ID∗ is a vector of length 	.

Setup. To generate the system parameters, algorithm B picks a random γ in
Zp and sets g1 = y1 = gα and g2 = y� · gγ = gγ+(α�). Next, B picks random
γ1, . . . , γ� in Zp and sets hi = gγi/y�−i+1 for i = 1, . . . , 	. Algorithm B also picks

a random δ in Zp and sets g3 = gδ ·
∏�

i=1 y
I∗

i

�−i+1.
Finally, B gives A the system parameters params = (g, g1, g2, g3, h1, . . . , h�).

Observe that all these values are distributed uniformly and independently in
G as required. The master key corresponding to these system parameters is
gα
2 = gα(α�+γ) = y�+1y

γ
1 , which is unknown to B since B does not have y�+1.

Phase 1. A issues up to qS private key queries. Consider a query for the private
key corresponding to ID = (I1, . . . , Iu) ∈ (Z∗

p)
u where u ≤ 	. The only restriction

is that ID is not ID∗ or a prefix of ID∗. This restriction ensures that there exists
a k ∈ {1, . . . ,u} such that Ik 	= I∗k (otherwise, ID would be a prefix of ID∗).
To respond to the query, algorithm B first derives a private key for the identity
(I1, . . . , Ik) from which it then constructs a private key for the requested identity
ID = (I1, . . . , Ik, . . . , Iu).

To generate the private key for identity (I1, . . . , Ik), B first picks a random r̃

in Zp. We pose r = αk

(Ik−I∗k) + r̃ ∈ Zp. Next, B generates the private key(
gα
2 · (hI1

1 · · ·hIk

k g3)r, gr, hr
k+1, . . . , hr

�

)
, (1)
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which is a properly distributed private key for the identity (I1, . . . , Ik). We show
that B can compute all elements of this private key given the values at its
disposal. We use the fact that y(αj)

i = yi+j for any i, j.
To generate the first component of the private key, first observe that

(hI1
1 · · ·hIk

k g3)r =

(
gδ+

∑k
i=1 Iiγi ·

k−1∏
i=1

y
(I∗i −Ii)
�−i+1 · y

(I∗k−Ik)
�−k+1 ·

�∏
i=k+1

y
I∗i
�−i+1

)r

. (2)

Let Z denote the product of the first, second, and fourth terms. That is,

Z =

(
gδ+

∑k
i=1 Iiγi ·

k−1∏
i=1

y
(I∗i −Ii)
�−i+1 ·

�∏
i=k+1

y
I∗i
�−i+1

)r

.

One can verify that B can compute all the terms in Z given the values at its
disposal. Next, observe that the third term in Eq (2), namely y

r(I∗k−Ik)
�−k+1 , is:

y
r(I∗k−Ik)
�−k+1 = y

r̃(I∗k−Ik)
�−k+1 · y

(I∗k−Ik) αk

(Ik−I∗
k
)

�−k+1 = y
r̃(I∗k−Ik)
�−k+1 /y�+1.

Hence, the first component in the private key (1) is equal to:

gα
2 (hI1

1 · · ·hIk

k g3)r = (y�+1y
γ
1 ) · Z · (yr̃(I∗k−Ik)

�−k+1 /y�+1) = yγ
1 · Z · y

r̃(I∗k−Ik)
�−k+1 .

Since y�+1 cancels out, all the terms in this expression are known to B. Thus, B
can compute the first private key component.

The second component, gr, is y1/(Ik−I∗k)
k gr̃ which B can compute. Similarly,

the remaining elements hr
k+1, . . . , h

r
� can be computed by B since they do not

involve a y�+1 term. Thus, B can derive a valid private key for (I1, . . . , Ik).
Algorithm B uses this private key to derive a private key for the descendant
identity ID and gives A the result.

Challenge. When A decides that Phase 1 is over, it outputs two messages
M0,M1 ∈ G1 on which it wishes to be challenged. Algorithm B picks a random
bit b ∈ {0, 1} and responds with the challenge ciphertext

CT = (Mb · T · e(y1, h
γ), h, hδ+

∑ �
i=1 I∗i γi)

where h and T are from the input tuple given to B. First note that if h = gc (for
some unknown c in Zp) then

hδ+
∑ �

i=1 I∗i γi =

(
�∏

i=1

(gγi/y�−i+1)I
∗
i · (gδ

�∏
i=1

y
I∗i
�−i+1)

)c

= (hI∗1
1 · · ·h

I∗�
� g3)c, and

e(g, h)(α
�+1) · e(y1, h

γ) =
(
e(y1, y�) · e(y1, g

γ)
)c = e(y1, y�g

γ)c = e(g1, g2)c.

Therefore, if T = e(g, h)(α
�+1) (i.e., when the input tuple is sampled from

PBDHE), then the challenge ciphertext is a valid encryption of Mb under the
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original (unpadded) identity ID∗ = (I∗1, . . . , I
∗
m) chosen by the adversary, since

CT =
(
Mb · e(g1, g2)c, gc, (hI∗1

1 · · ·h
I∗m
m · · ·hI∗�

� g3)c
)

=
(
Mb · e(g1, g2)c, gc, (hI∗1

1 · · ·h
I∗m
m g3)c

)
.

On the other hand, when T is uniform and independent in G1 (when the input
tuple is sampled from RBDHE), CT is independent of b in the adversary’s view.

Phase 2. A issues queries not issued in Phase 1. B responds as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own
game by outputting a guess as follows. If b = b′ then B outputs 1 meaning
T = e(g, h)(α

�+1). Otherwise, it outputs 0 meaning T is random in G1.
When the input tuple is sampled from PBDHE (where T = e(g, h)(α

�+1)),
then A’s view is identical to its view in a real attack game and therefore A
satisfies |Pr[b = b′]− 1/2| ≥ ε. When the input tuple is sampled from RBDHE

(where T is uniform in G1) then Pr[b = b′] = 1/2. Therefore, with g, h uniform
in G, α uniform in Zp, and T uniform in G1 we have that∣∣∣∣Pr

[
B
(
g, h,−→y g,α,�, e(g, h)(α

�+1)
)

= 0
]
− Pr

[
B
(
g, h,−→y g,α,�,T

)
= 0
]∣∣∣∣

≥ |(1/2± ε)− 1/2| = ε

as required. This completes the proof of the theorem.

Chosen Ciphertext Security. Canetti et al. [10] show a general method of
building an IND-sID-CCA secure 	-HIBE from a IND-sID-CPA secure 	+1-HIBE.
A more efficient construction is given by Boneh and Katz [7]. Applying either
method to our HIBE construction results in a IND-sID-CCA secure 	-HIBE for
arbitrary 	 where the ciphertext length is independent of the hierarchy height.

Arbitrary Identities. We can extend our HIBE to handle arbitrary identities
ID = (I1, . . . , I�) with Ii ∈ {0, 1}∗ for i = 1, . . . , 	 by hashing each Ii with a
collision resistant hash function H : {0, 1}∗ → Z

∗
p during key generation and

encryption. A standard argument shows that if the original HIBE scheme is
IND-sID-CCA secure, then so is the HIBE scheme using H.

3.2 Full HIBE Security

Theorem 1 shows that our HIBE system is selective-ID secure without random
oracles. Thus, the system is secure when the adversary commits ahead of time to
the identity he intends to attack. Boneh and Boyen [1] observed that IBE systems
that are selective-ID secure are also fully secure (i.e., secure against adversaries
that adaptively select the identity to attack) as long as one hashes the identity
prior to using it. The reduction, however, is not tight. Let H : {0, 1}∗ → {0, 1}d
be a hash function (where, e.g., d = 160 bits). Assuming H is collision resistant,
the reduction introduces a 2d multiplicative security loss factor in the standard
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model. When H is viewed as a random oracle, the reduction introduces a qH

multiplicative security loss factor where qH is the number of the hash oracle
queries.

A similar observation applies to HIBE systems. Let E be a selective-ID secure
HIBE of depth 	. Let EH be an HIBE system where an identity ID = (I1, . . . , Ik)
is hashed to IDH = (H(I1), . . . , H(Ik)) before using it in KeyGen and Encrypt.
Then, if H is collision resistant, it follows that EH is a fully secure HIBE, but
the reduction introduces a loss factor of 2�d. In the random oracle model, EH is
a fully secure HIBE and the reduction introduces a loss factor of q�

H .
We remark that in the random oracle model, the public parameters are of

constant size and contain only the two group elements (g, g1); the other param-
eters (g2, g3, h1, . . . , h�) need not be specified as they can be derived by applying
the oracle on a predetermined input string.

We also note that the construction of Waters [26], for a fixed depth 	, applied
to our HIBE could give a constant ciphertext HIBE with a polynomial time
reduction to the underlying complexity assumption. The resulting private keys
are much larger, namely of size d	, as opposed to 	 in our system.

4 Extensions

We discuss a number of extensions to the HIBE system of the previous section.

4.1 Limited Delegation

Let dID = (a0, a1, bk, . . . , b�) be the private key for the identity ID. Note that the
Decrypt algorithm uses only the terms a0 and a1, and the KeyGen algorithm
uses only the remaining terms bk, . . . , b�.

By removing any number of bk, . . . , b�, an identity ID at depth k can be given
a restricted private key that only lets it issue private keys to descendants of
bounded depth. For example, if the private key for ID only contains bk, bk+1, bk+2

(instead of all bk, . . . , b�), then ID can only issue private keys for three generations
of descendants, and those descendants’ private keys will be limited even further.

4.2 HIBE with Short Private Keys

Certain applications, such as the time lock encryption (to be described in Sec-
tion 5), are better served by using a HIBE system with short private keys rather
than ciphertexts. We show how to construct a HIBE system whose private key
size grows only sublinearly with hierarchy depth.

The idea is to construct a hybrid of the HIBE in Section 3 and the Boneh-
Boyen HIBE [1]. Recall that in the former system the private key shrinks as the
identity depth increases, while in the latter system the private key grows with the
depth of an identity. The hybrid is based on the algebraic similarities between
both systems, and exploits their opposite behavior with regard to private key
size, to ensure that no private key ever contains more than O(

√
	) group elements.
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Specifically, for ω ∈ [0, 1], the hybrid scheme achieves O(	ω+	1−ω) private key
size and O(	ω) ciphertext size at every level in a hierarchy of depth 	. The setting
ω = 0 corresponds to our HIBE, whereas ω = 1 corresponds to the Boneh-Boyen
HIBE [1]. The most efficient hybrids are obtained when ω ∈ [0, 1/2]. For example,
when ω = 1/2, private keys and ciphertexts are of size O(

√
	).

Hybrid Scheme. As before, we assume a bilinear group G and a map e :
G×G→ G1, where G and G1 have prime order p. Let 	1 = �	ω� and 	2 = �	1−ω�.
The basic idea is to partition levels of the hierarchy into 	1 consecutive groups
of size 	2. Within each group we use the system of Section 3. Between groups
we use the Boneh-Boyen HIBE [1].

Let ID = (I1, . . . , Ik) ∈ (Z∗
p)

k be an identity of depth k ≤ 	. We will represent
ID as a pair (k, I) where I ∈ (Z∗

p)
�1×�2 is an 	1 × 	2 matrix filled using the

elements I1, . . . , Ik in typographic order: one row at a time starting from the
top, in each row starting from the left (note that 	1 · 	2 ≥ 	 ≥ k; the unfilled
matrix entries are undefined). For convenience, we decompose the indices k =
1, . . . , 	 into row-column pairs (k1, k2) such that k = 	2 · (k1 − 1) + k2 where
k1, k2 > 0. For shorthand, we write (k1, k2) = k. It follows that in the above
matrix representation of ID we have I(i1,i2) = Ii for all i = 1, . . . , k. Or, pictorially,
for an ID at the maximum depth 	 with I = I1, . . . , I� and 	 = 	1	2:

I =

⎛⎜⎜⎜⎝
I1 I2 . . . I�2

I�2+1 I�2+2 . . . I2 �2
...

...
. . .

...
I(�1−1)�2+1 I(�1−1)�2+2 . . . I�1�2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
I(1,1) I(1,2) . . . I(1,�2)

I(2,1) I(2,2) . . . I(2,�2)

...
...

. . .
...

I(�1,1) I(�1,2) . . . I(�1,�2)

⎞⎟⎟⎟⎠ .

Using this convention, we can now describe the hybrid HIBE system as follows.

Setup(	, ω): For a HIBE of maximum depth 	, first determine 	1 and 	2 as above
so that 	 ≤ 	1 · 	2. Next, select a random generator g in G, a random α ∈ Zp,
and set g1 = gα. Then, pick random elements g2, f1, . . . , f�1 , h1, . . . , h�2 ∈ G.
The public parameters params and the secret master-key are given by

params = ( g, g1, g2, f1, . . . , f�1 , h1, . . . , h�2 ) , master-key = gα
2 .

KeyGen(dID|k−1, ID): To generate private key dID for identity ID = (I1, . . . , Ik) ∈
(Z∗

p)
k of depth (k1, k2) = k ≤ 	, where k1 ≤ 	1 and k2 ≤ 	2, pick random

r1, . . . , rk1 ∈ Zp, and output

dID =

(
gα
2 ·
(

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,�2)

�2
· fi

)ri

)
·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)r′
k1 ,

gr1 , . . . , grk1−1 , gr′
k1 , h

r′
k1

k2+1, . . . , h
r′

k1
�2

)
∈ G

1+k1+�2−k2 .

(3)

Note that the factors (. . .)ri under the
∏

sign contain 	2 identity terms each,
whereas the last factor (. . .)rk1 only has k2 such terms. The size of dID grows with
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k1 and shrinks with k2; the private key thus becomes alternatively shorter and
longer as the depth of ID increases, but never exceeds 	1 + 	2 elements of G.

The private key for ID can be generated with a private key for ID|k−1 =
(I1, . . . , Ik−1) ∈ (Z∗

p)
k−1 as required. Decompose k as (k1, k2) according to our

convention. There are two cases:

1. If k − 1 is written (k1, k2 − 1), namely k and k − 1 have the same row index
k1, then we know that the private key for ID|k−1 is of the form:

dID|k−1 =
(

gα
2 ·

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,�2)

�2
· fi

)ri ·
(
h

I(k1,1)

1 · · ·hI(k1,k2−1)

k2−1 · fk1

)rk1 , gr1 ,

. . . , grk1 , h
rk1
k2

, . . . , h
rk1
�2

)
= (a0, b1, . . . , bk1 , ck2 , . . . , c�2) ∈ G

2+k1+�2−k2 .

In this case, to generate dID from dID|k−1, pick a random r∗ ∈ Zp and output

dID =
(
a0 · c

I(k1,k2)

k2
·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)r∗
, b1, . . . , bk1−1, bk1 · gr∗

,

ck2+1 · hr∗
k2+1, . . . , c�2 · hr∗

�2

)
∈ G

1+k1+�2−k2 .

This tuple is of the same form as Eq (3) where r′k1
= rk1 + r∗.

2. If the row indices differ, then necessarily k − 1 = (k1 − 1, 	2) and k = (k1, 1),
and the private key for ID|k−1 must be of the form:

dID|k−1 =
(

gα
2 ·

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,�2)

�2
· fi

)ri
, gr1 , . . . , grk1−1

)
= (a0, b1, . . . , bk1−1) ∈ G

k1 .

In this case, to generate dID from dID|k−1, pick a random r ∈ Zp and output

dID =
(
a0 ·

(
h

I(k1,1)

1 · fk1

)r
, b1, . . . , bk1−1, gr, hr

2, , . . . , hr
�2

)
∈ G

k1+�2 .

Again, this tuple conforms to Eq (3) in which rk1 has been set to r.

Encrypt(params, ID, M): To encrypt a message M ∈ G1 under the public key
ID = (I1, . . . , Ik) ∈ Z

k
p where k = (k1, k2), pick a random s ∈ Zp and output

CT =
(
e(g1, g2)s ·M, gs,

(
h

I(1,1)
1 · · ·hI(1,�2)

�2
· f1

)s
, . . . ,(

h
I(k1−1,1)

1 · · ·hI(k1−1,�2)

�2
· fk1−1

)s
,
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)s ) ∈ G1 ×G
1+k1 .

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik) with k = (k1, k2). To
decrypt a ciphertext CT = (A,B,C1, . . . ,Ck1−1,Ck1) using the private key dID =
(a0, b1, . . . , bk1 , ck2+1, . . . , c�2), output
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A ·
k1∏

i=1

e(bi,Ci)
/
e(B, a0) = M.

Note that the private key components ck2+1, . . . , c�2 are not used for decryption.

Complexity. It is easy to see that in a hierarchy of depth 	, private keys at
all levels contain at most 	1 + 	2 elements of G, while ciphertexts contain at
most 1 + 	1 elements of G and one element of G1. Encryption, decryption, and
one-level-down key generation, all require O(	1 + 	2) operations, or O(

√
	) for

the choice ω = 1/2 as claimed. We note that the combination of having a se-
lectable parameter ω together with the option of using an asymmetric bilinear
group geared toward reducing the ciphertext or the private key size (described
in Section 4.3), gives great flexibility toward achieving the optimal trade-off for
a given application.

Security. We prove security based on the (	2 + 1)-BDHE assumption (observe
that the BDHE assumption implies the BDH assumption). We note that for
ω = 1/2, security for a 	-level hierarchy is based on the O(

√
	)-BDHE assumption.

Theorem 2. Let G be a bilinear group of prime order p. Consider a hybrid
	-HIBE system with identity hierarchy partitioned into 	1 groups each of size
	2. Suppose the decision (t, ε, 	2 + 1)-BDHE assumption holds in G. Then the
hybrid 	-HIBE system is (t′, qS, ε)-selective identity, chosen plaintext (IND-sID-
CPA) secure for arbitrary 	, qS, and t′ < t−Θ(τ 	 qS), where τ is the maximum
time for an exponentiation in G.

The proof is similar to that for Theorem 1 and is in the full paper [3].

4.3 Asymmetric Bilinear Groups and MNT Curves

It is often desirable to use bilinear maps e : G × G
′ → G1 where G and G

′ are
distinct groups. Such maps let us take advantage of certain curves called MNT
curves [20]. Typically, elements of the group G tend to afford a particularly
compact representation compared to elements of G

′. This property is used for
constructing short signatures [8, 2, 4]. For our system, we can use this property
to shrink either the private keys or the ciphertexts. Details are in the full paper.

5 Applications

We now discuss applications of our compact HIBE system and its extensions.

5.1 Forward Secure Encryption

The main purpose of a forward secure encryption scheme is to guarantee that
all messages encrypted before the secret key is compromised remain secret.

An elegant public key encryption scheme with forward security was proposed
by Canetti, Halevi, and Katz (CHK) [9]. Let T = 2t be the number of distinct
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time periods in the forward secure system. When implemented with previous
HIBE systems [14, 1], the CHK framework results in ciphertexts of size O(t)
and private keys of size O(t2). Using public updateable storage, Canetti et al.
reduce private key size to O(t) without affecting ciphertext length — the idea
is to encrypt the private key for time period i under the public key of time
period i − 1 and store the resulting ciphertext, of size O(t2), in public storage;
consequently, only one HIBE private key of size O(t) is kept in private storage.

Using the HIBE system of Section 3 in the CHK framework, we obtain a for-
ward secure encryption scheme with O(1) ciphertext size and decryption time —
independent of the number of time periods. Private keys using our basic system
are of size O(t2). Alternatively, using the hybrid HIBE of Section 4.2 in which
we set ω = 1/2, we obtain a forward secure encryption scheme with private key
size O(t3/2); in this case ciphertext size and decryption time become O(

√
t).

Following Canetti et al. [9], we can store most of the private key in updateable
public storage in order to lessen the private storage requirement. Applied to our
basic forward secure system, using O(t2) public storage we can reduce the private
key size to O(t) while keeping the ciphertext size constant. Using the hybrid
HIBE system (for ω = 1/2), the private storage requirement can be similarly
reduced to O(

√
t) at the cost of O(t3/2) updateable public storage; ciphertext

size in this case remains O(
√
t).

5.2 Forward Secure HIBE

Recently, a forward secure HIBE scheme was proposed by Yao et al. [27]. Their
scheme essentially uses two HIBE hierarchies in the manner of Canetti et al. [9]
to obtain forward security together with the ability to derive subordinate keys.
Their system has ciphertexts of size O(	 · t) where 	 is the depth of the identity
hierarchy and T = 2t is the number of time periods. Indeed, they pose as an open
problem if a forward secure HIBE scheme with “linear” complexity is possible.

Instantiating both hierarchies in their construction with our HIBE system
immediately gives a forward secure HIBE scheme with ciphertexts of size O(1),
which resolves this question.

We also propose a more specific forward secure HIBE construction that
achieves “linear” O(	 + t) size for all components, including private keys and
public parameters (ciphertexts are no longer constant size in that construction).
The construction is a hybrid between the HIBE given in Section 3 and the
Boneh-Boyen HIBE from [1]; it is described in detail in the full paper [3].

5.3 Public Key NNL Broadcast Encryption

Broadcast encryption schemes, introduced by Fiat and Naor [13], are cryptosys-
tems designed for the efficient broadcast of data to a dynamic group of users
authorized to receive the data. Naor, Naor, and Lotspiech [22] considered broad-
cast encryption in the stateless receiver setting; they provided a general “subset
cover” framework for such broadcast encryption schemes and gave two instances
of the framework — the Complete Subtree (CS) method and the more efficient
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Subset Difference (SD) method. Further improvements have been proposed such
as the Layered Subset Difference (LSD) [16] and the Stratified Subset Differ-
ence (SSD) [15]. In the symmetric key setting, only a “center” that possesses
the secret keys can broadcast to the users. In a public key broadcast encryption
system, anyone is allowed to broadcast to selected subsets of users.

Using the HIBE framework, Dodis and Fazio [11] showed how to translate
the SD and LSD methods to the public key setting. For N users and r revoked
users, their SD and LSD constructions based on previous HIBE systems give
ciphertexts of size O(r · log N), which is no better than the basic CS method.
Substituting the HIBE system of Section 3 restores the full benefits of both SD
and LSD, which results in ciphertexts of size O(r).

5.4 Encrypting to the Future

Mont et al. [21] observed that an IBE system gives a mechanism for encrypting
to the future using a trusted server. Let D be a certain date string. We view D as
a public key in an IBE system. Every day, a trusted server publishes the private
key corresponding to that day, which enables messages encrypted for that day
to be decrypted. Methods for encrypting to the future without a trusted server
were proposed by Rivest, Shamir, and Wagner [23].

One problem with the IBE timelock mechanism is that after n days have
passed, the server has to publish a bulletin board with n private keys on it (one
private key for each day). The amount of data on the bulletin board can be
greatly reduced by using the CHK forward secure encryption scheme in reverse.
Suppose the CHK framework is set up for a total of T time periods (using a tree
of depth log2 T ). To encrypt a message for day n < T , use the CHK public key
for time period T −n. Similarly, on day n the trusted server publishes the CHK
private key corresponding to time period T − n. This single private key enables
anyone to derive the private keys for CHK time periods T −n,T −n+ 1, . . . ,T .
Anyone can thus decrypt messages intended for days in the range 1, . . . , n.

Implementing this encoding using our O(1) ciphertext HIBE, the trusted
server on any day only needs to publish a single private key comprising O(log2 T )
group elements. Using the hybrid HIBE system of Section 4.2, the private key
posted by the server is further reduced to O(log3/2 T ) group elements for cipher-
texts of size O(

√
log T ). These parameters are much better than the IBE based

mechanism [21], where the bulletin board contains as many as T group elements.

6 Conclusions and Open Problems

We presented a new HIBE system where the ciphertexts consist of three group
elements and decryption only requires computing two bilinear maps, both of
which are independent of the hierarchy depth. Encryption time is as efficient as
other HIBE systems. For a hierarchy of depth 	 we proved security based on the
(	+1)-BDHE assumption. We expect 	-BDHE to be very useful for constructing
cryptosystems with short ciphertexts. For example, 	-BDHE was recently used to
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construct a broadcast encryption system [6] where both ciphertexts and private
keys are short.

We discussed several applications of our system, including efficient forward
secure encryption, an efficient public key version of the NNL broadcast encryp-
tion system, and an efficient mechanism for encrypting to the future. Our HIBE
system allows for limited delegation and can be combined with the Boneh-Boyen
HIBE to form a hybrid HIBE that has sublinear private key size.

We note that our selective-ID proof of security is tight. On the other hand, the
proof of full security (either in the random oracle or standard model) discussed
in Section 3.2 degrades exponentially in the hierarchy depth. The same is true
for all existing HIBE systems. It is an open problem to construct a HIBE system
where security does not degrade exponentially in the hierarchy depth.
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Abstract. We introduce a new type of Identity-Based Encryption (IBE)
scheme that we call Fuzzy Identity-Based Encryption. In Fuzzy IBE we
view an identity as set of descriptive attributes. A Fuzzy IBE scheme
allows for a private key for an identity, ω, to decrypt a ciphertext en-
crypted with an identity, ω′, if and only if the identities ω and ω′ are
close to each other as measured by the “set overlap” distance metric. A
Fuzzy IBE scheme can be applied to enable encryption using biometric
inputs as identities; the error-tolerance property of a Fuzzy IBE scheme
is precisely what allows for the use of biometric identities, which inher-
ently will have some noise each time they are sampled. Additionally, we
show that Fuzzy-IBE can be used for a type of application that we term
“attribute-based encryption”.

In this paper we present two constructions of Fuzzy IBE schemes.
Our constructions can be viewed as an Identity-Based Encryption of a
message under several attributes that compose a (fuzzy) identity. Our
IBE schemes are both error-tolerant and secure against collusion attacks.
Additionally, our basic construction does not use random oracles. We
prove the security of our schemes under the Selective-ID security model.

1 Introduction

Identity-Based Encryption [15] (IBE) allows for a sender to encrypt a message to
an identity without access to a public key certificate. The ability to do public key
encryption without certificates has many practical applications. For example,
a user can send an encrypted mail to a recipient, e.g. bobsmith@gmail.com,
without the requiring either the existence of a Public-Key Infrastructure or that
the recipient be on-line at the time of creation.

One common feature of all previous Identity-Based Encryption systems is
that they view identities as a string of characters. In this paper we propose a new
type of Identity-Based Encryption that we call Fuzzy Identity-Based Encryption
in which we view identities as a set of descriptive attributes. In a Fuzzy Identity-
Based Encryption scheme, a user with the secret key for the identity ω is able
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to decrypt a ciphertext encrypted with the public key ω′ if and only if ω and ω′

are within a certain distance of each other as judged by some metric. Therefore,
our system allows for a certain amount of error-tolerance in the identities.

Fuzzy-IBE gives rise to two interesting new applications. The first is an
Identity-Based Encryption system that uses biometric identities. That is we can
view a user’s biometric, for example an iris scan, as that user’s identity described
by several attributes and then encrypt to the user using their biometric identity.
Since biometric measurements are noisy, we cannot use existing IBE systems.
However, the error-tolerance property of Fuzzy-IBE allows for a private key (de-
rived from a measurement of a biometric) to decrypt a ciphertext encrypted with
a slightly different measurement of the same biometric.

Secondly, Fuzzy IBE can be used for an application that we call “attribute-
based encryption”. In this application a party will wish to encrypt a document to
all users that have a certain set of attributes. For example, in a computer science
department, the chairperson might want to encrypt a document to all of its sys-
tems faculty on a hiring committee. In this case it would encrypt to the identity
{“hiring-committee”,“faculty”,“systems”}. Any user who has an identity that
contains all of these attributes could decrypt the document. The advantage to
using Fuzzy IBE is that the document can be stored on an simple untrusted stor-
age server instead of relying on trusted server to perform authentication checks
before delivering a document.

We further discuss the usefulness of using biometrics in Identity-Based and
then discuss our contributions.

Using biometrics in Identity-Based Encryption. In many situations, using
biometric-based identity in an IBE system has a number of important advan-
tages over “standard” IBE. We argue that the use of biometric identities fits
the framework of Identity-Based Encryption very well and is a very valuable
application of it.

First, the process of obtaining a secret key from an authority is very natural
and straightforward. In standard Identity-Based Encryption schemes a user with
a certain identity, for example, “Bob Smith”, will need to go to an authority to
obtain the private key corresponding to the identity. In this process the user will
need to “prove” to the authority that he is indeed entitled to this identity. This
will typically involve presenting supplementary documents or credentials. The
type of authentication that is necessary is not always clear and robustness of
this process is questionable (the supplementary documents themselves could be
subject to forgery). Typically, there will exist a tradeoff between a system that
is expensive in this step and one that is less reliable.

In contrast, if a biometric is used as an identity then the verification pro-
cess for an identity is very clear. The user must demonstrate ownership of the
biometric under the supervision of a well trained operator. If the operator is
able to detect imitation attacks, for example playing the recording of a voice,
then the security of this phase is only limited by the quality of the biometric
technique itself. We emphasize that the biometric measurement for an individual
need not be kept secret. Indeed, it is not if it is used as a public key. We must
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only guarantee that an attacker cannot fool the key authority into believing that
an attacker owns a biometric identity that he does not.

Also, a biometric identity is an inherent trait and will always with a person.
Using biometrics in Identity-Based Encryption will mean that the person will
always have their public key handy. In several situations a user will want to
present an encryption key to someone when they are physically present. For
example, consider the case when a user is traveling and another party encrypts
an ad-hoc meeting between them.

Finally, using a biometric as an identity has the advantage that identities are
unique if the underlying biometric is of a good quality. Some types of standard
identities, such as the name “Bob Smith” will clearly not be unique or change
owners over time.

Security Against Collusion Attacks. In addition to providing error-tolerance in
the set of attributes composing the identity any IBE scheme that encrypts to
multiple attributes must provide security against collusion attacks. In particular,
no group of users should be able to combine their keys in such a way that they can
decrypt a ciphertext that none of them alone could. This property is important
for security in both biometric applications and “attribute-based encryption”.

Our Contributions. We formalize the notion of Fuzzy Identity-Based Encryption
and provide a construction for a Fuzzy Identity-Based Encryption scheme. Our
construction uses groups for which an efficient bilinear map exists, but for which
the Computational Diffie-Hellman problem is assumed to be hard.

Our primary technique is that we construct a user’s private key as a set of
private key components, one for each attribute in the user’s identity. We share
use Shamir’s method of secret sharing [14] to distribute shares of a master secret
in the exponents of the user’s private key components. Shamir’s secret sharing
within the exponent gives our scheme the crucial property of being error-tolerant
since only a subset of the private key components are needed to decrypt a mes-
sage. Additionally, our scheme is resistant to collusion attacks. Different users
have their private key components generated with different random polynomi-
als. If multiple users collude they will be unable to combine their private key
components in any useful way.

In the first version of our scheme, the public key size grows linearly with the
number of potential attributes in the universe. The public parameter growth is
manageable for a biometric system where all the possible attributes are defined
at the system creation time. However, this becomes a limitation in a more general
system where we might like an attribute to be defined by an arbitrary string. To
accommodate these more general requirements we additionally provide a Fuzzy-
IBE system for large universes, where attributes are defined by arbitrary strings.

We prove our scheme secure under an adapted version of the Selective-ID
security model first proposed by Canetti et al. [5]. Additionally, our construc-
tion does not use random oracles. We reduce the security of our scheme to an
assumption that is similar to the Decisional Bilinear Diffie-Hellman assumption.
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1.1 Related Work

Identity-Based Encryption. Shamir [15] first proposed the concept of Identity-
Based Encryption. However, it wasn’t until much later that Boneh and Franklin
[3] presented the first Identity-Based Encryption scheme that was both practical
and secure. Their solution made novel use of groups for which there was an
efficiently computable bilinear map.

Canetti et al. [5] proposed the first construction for IBE that was provably
secure outside the random oracle model. To prove security they described a
slightly weaker model of security known as the Selective-ID model, in which
the adversary declares which identity he will attack before the global public
parameters are generated. Boneh and Boyen [2] give two schemes with improved
efficiency and prove security in the Selective-ID model without random oracles.

Biometrics. Other work in applying biometrics to cryptography has focused on
the derivation of a secret from a biometric [12, 11, 10, 6, 9, 7, 4]. This secret can be
then used for operations such as symmetric encryption or UNIX style password
authentication.

The distinguishing feature of our work from the above related work on bio-
metrics above is that we view the biometric input as potentially public infor-
mation instead of a secret. Our only physical requirement is that the biometric
cannot be imitated such that a trained human operator would be fooled. We
stress the importance of this, since it is much easier to capture a digital reading
of someone’s biometric, than to fool someone into believing that someone else’s
biometric is one’s own. Simply capturing a digital reading of someone’s biometric
would (forever) invalidate approaches where symmetric keys are systematically
derived from biometric readings.

Attribute-based encryption. Yao et al. [17] show how an IBE system that en-
crypts to multiple hierarchical-identities in a collusion-resistant manner implies
a forward secure Hierarchical IBE scheme. They also note how their techniques
for resisting collusion attacks are useful in attribute-based encryption. However,
the cost of their scheme in terms of computation, private key size, and ciphertext
size increases exponentially with the number of attributes.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we formally define
a Fuzzy Identity-Based Encryption scheme including the Selective-ID security
model for one. Then, we describe our security assumptions. In Section 3 we
show why two naive approaches do not work. We follow with a description of
our construction in Section 4 and in Section 5 we prove the security of our
scheme. We describe our second construction in Section 6. Finally, we conclude
in Section 7.
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2 Preliminaries

We begin by presenting our definition of security. We follow with a brief review of
bilinear maps, and then state the complexity assumptions we use for our proofs
of security.

2.1 Definitions

In this section we define our Selective-ID models of security for Fuzzy Identity
Based Encryption. The Fuzzy Selective-ID game is very similar to the standard
Selective-ID model for Identity-Based Encryption with the exception that the
adversary is only allowed to query for secret keys for identities which have less
than d overlap with the target identity.
Fuzzy Selective-ID.

Init. The adversary declares the identity, α, that he wishes to be challenged
upon.

Setup. The challenger runs the setup phase of the algorithm and tells the ad-
versary the public parameters.

Phase 1. The adversary is allowed to issue queries for private keys for many
identities, γj , where |γj ∩ α| < d for all j.

Challenge. The adversary submits two equal length messages M0,M1. The
challenger flips a random coin, b, and encrypts Mb with α. The ciphertext
is passed to the adversary.

Phase 2. Phase 1 is repeated.
Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b]− 1
2 .

Definition 1 (Fuzzy Selective-ID). A scheme is secure in the Fuzzy Selective-
ID model of security if all polynomial-time adversaries have at most a negligible
advantage in the above game.

2.2 Bilinear Maps

We briefly review the facts about groups with efficiently computable bilinear
maps. We refer the reader to previous literature [3] for more details.

Let G1,G2 be groups of prime order p, and let g be a generator of G1. We say
G1 has an admissible bilinear map, e : G1 × G1 → G2, into G2 if the following
two conditions hold. The map is bilinear; for all a, b we have e(ga, gb) = e(g, g)ab.
The map is non-degenerate; we must have that e(g, g) 	= 1.

2.3 Complexity Assumptions

We state our complexity assumptions below.

Definition 2 (Decisional Bilinear Diffie-Hellman (BDH) Assumption).
Suppose a challenger chooses a, b, c, z ∈ Zp at random. The Decisional BDH
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assumption is that no polynomial-time adversary is to be able to distinguish the
tuple (A = ga,B = gb,C = gc, Z = e(g, g)abc) from the tuple (A = ga,B =
gb,C = gc, Z = e(g, g)z) with more than a negligible advantage.

Definition 3 (Decisional Modified Bilinear Diffie-Hellman (MBDH)
Assumption). Suppose a challenger chooses a, b, c, z ∈ Zp at random. The
Decisional MBDH assumption is that no polynomial-time adversary is to be
able to distinguish the tuple (A = ga,B = gb,C = gc, Z = e(g, g)

ab
c ) from

(A = ga,B = gb,C = gc, Z = e(g, g)z) with more than a negligible advantage.

3 Other Approaches

Before describing our scheme we first show three potential approaches to building
a Fuzzy Identity-Based Encryption scheme and show why they fall short. This
discussion additionally motivates our approach to the problem.

Correcting the error. We consider the feasibility of “correcting” the errors of
a biometric measurement and then use standard Identity-Based Encryption to
encrypt a message under the corrected input. However, this approach relies upon
the faulty assumption that each biometric input measurement is slightly devi-
ated from some “true” value and that the set of possible “true” values are well
known. In practice, the only reasonable assumption is that two measurements
sampled from the same person will be within a certain distance of each other.
This intuition is captured by previous work. Dodis, Rezyin, and Smith [7] use
what they call a fuzzy sketch that contains information of a first sampling of a
biometric which allows subsequent measurements to be corrected to it. If the cor-
rection could be done without any additional information then we could simply
do away with the fuzzy sketch.

Key per Attribute. The second naive approach we consider is for an authority to
give a user a different private key for each of the attributes that describe the user.
Such a system easily falls prey to simple collusion attacks where multiple users
combine their keys to form identities that are a combination of their attributes.
The colluders are then able to decrypt ciphertexts that none of them individually
were able to decrypt.

Several Keys. Suppose a key authority measures an input ω for a particular
party. The authority could create a separate standard IBE private key for every
ω′ such that |ω∩ω′| ≥ d, for some error-tolerance parameter d. However, the pri-
vate key storage will grow exponentially in d and the system will be impractical
for even modest values of d.

4 Our Construction

Recall that we view identities as sets of attributes and we let the value d represent
the error-tolerance in terms of minimal set overlap. When an authority is creating
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a private key for a user he will associate a random d−1 degree polynomial, q(x),
with each user with the restriction that each polynomial have the same valuation
at point 0, that is q(0) = y.

For each of the attributes associated with a user’s identity the key generation
algorithm will issue a private key component that is tied to the user’s random
polynomial q(x). If the user is able to “match” at least d components of the
ciphertext with their private key components, then they will be able to perform
decryption. However, since the private key components are tied to random poly-
nomials, multiple user’s are unable to combine them in anyway that allows for
collusion attacks.

A detailed description of our scheme follows.

4.1 Description

Recall that we wish to create an IBE scheme in which a ciphertext created using
identity ω can be decrypted only by a secret key ω′ where |ω ∩ ω′| ≥ d.

Let G1 be bilinear group of prime order p, and let g be a generator of G1.
Additionally, let e : G1×G1 → G2 denote the bilinear map. A security parameter,
κ, will determine the size of the groups.

We also define the Lagrange coefficient Δi,S for i ∈ Zp and a set, S, of
elements in Zp:

Δi,S(x) =
∏

j∈S,j �=i

x− j

i− j
.

Identities will be element subsets of some universe, U , of size |U|. We will
associate each element with a unique integer in Zp

∗. (In practice an attribute
will be associated with each element so that identities will have some semantics.)
Our construction follows:

Setup(d). First, define the universe, U of elements. For simplicity, we can take
the first |U| elements of Zp

∗ to be the universe. Namely, the integers 1, . . . , |U|
(mod p).

Next, choose t1, . . . , t|U| uniformly at random from Zp. Finally, choose y uni-
formly at random in Zp. The published public parameters are:

T1 = gt1 , . . . ,T|U| = gt|U| , Y = e(g, g)y.

The master key is:

t1, . . . , t|U|, y.

Key Generation. To generate a private key for identity ω ⊆ U the following steps
are taken. A d − 1 degree polynomial q is randomly chosen such that q(0) = y.

The private key consists of components, (Di)i∈ω, where Di = g
q(i)
ti for every

i ∈ ω.
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Encryption. Encryption with the public key ω′ and message M ∈ G2 proceeds
as follows.

First, a random value s ∈ Zp is chosen. The ciphertext is then published as:

E = (ω′,E′ = MY s, {Ei = T s
i }i∈ω′).

Note that the identity, ω′, is included in the ciphertext.

Decryption. Suppose that a ciphertext, E, is encrypted with a key for identity
ω′ and we have a private key for identity ω, where |ω ∩ ω′| ≥ d. Choose an
arbitrary d-element subset, S, of ω ∩ ω′.

Then, the ciphertext can be decrypted as:

E′/
∏
i∈S

(e(Di,Ei))
Δi,S(0)

= Me(g, g)sy/
∏
i∈S

(
e(g

q(i)
ti , gsti)

)Δi,S(0)

= Me(g, g)sy/
∏
i∈S

(
e(g, g)sq(i)

)Δi,S(0)

= M.

The last equality is derived from using polynomial interpolation in the expo-
nents. Since, the polynomial sq(x) is of degree d− 1 it can be interpolated using
d points.

4.2 Efficiency and Key Sizes

The number of exponentiations in the group G1 to encrypt to an identity will
be linear in the number of elements in the identity’s description. The cost of
decryption will be dominated by d bilinear map computations.

The number of group elements in the public parameters grows linearly with
the number attributes in the system (elements in the defined universe). The
number of group elements that compose a user’s private key grow linearly with
the number of attributes associated with her identity. Finally, the number of
group elements in a ciphertext grows linearly with the size of the identity we are
encrypting to.

4.3 Flexible Error-Tolerance

In this construction the error-tolerance is set to a fixed value d. However, in prac-
tice a party constructing a ciphertext might want more flexibility. For example,
if a biometric input device happens to be less reliable it might be desirable to
relax the set overlap parameters. In the example of attribute-based encryption
we would like to have flexibility in the number of attributes required to access a
document.
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There are two simple methods for achieving flexible error-tolerance. First, we
can create multiple systems with different values of d and the party encrypting a
message can choose the appropriate one. For m different systems the size of the
public parameters and private keys both increase by a factor of m. In the second
method the authority will reserve some attributes that it will issue to every key-
holder as part of their identity. The party encrypting the message can increase the
error-tolerance by increasing the number of these “default” attributes it includes
in the encryption identity. In this approach ciphertexts must be at least as long
as the maximum number of attributes that can be required in an encryption.
Additionally, we can combine the above two techniques and explore tradeoffs
between ciphertext size and public parameter and private key size.

5 Proof of Security

We prove that the security of our scheme in the Selective-ID model reduces to
the hardness of the Decisional MBDH assumption.

Theorem 1. If an adversary can break our scheme in the Fuzzy Selective ID
Model, then a simulator can be constructed to play the Decisional MBDH game
with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversary, A, that can attack our
scheme in the Selective-ID model with advantage ε. We build a simulator B that
can play the Decisional MBDH game with advantage ε

2 . The simulation proceeds
as follows:

We first let the challenger set the groups G1 and G2 with an efficient bilinear
map, e and generator g. The challenger flips a fair binary coin, μ, outside of B’s
view. If μ = 0, the challenger sets (A,B,C, Z) = (ga, gb, gc, e(g, g)

ab
c ); otherwise

it sets (A,B,C, Z) = (ga, gb, gc, e(g, g)z) for random a, b, c, z. We assume the
universe, U is defined.

Init. The simulator B runs A and receives the challenge identity, α.

Setup. The simulator assigns the public key parameters as follows. It sets the
parameter Y = e(g,A) = e(g, g)a. For all i ∈ α it chooses random βi ∈ Zp and
sets Ti = Cβi = gcβi . For all i ∈ U − α it chooses random wi ∈ Zp and sets
Ti = gwi .

It then gives the public parameters to A. Notice that from the view A all
parameters are chosen at random as in the construction.

Phase 1. A makes requests for private keys where the identity set overlap be-
tween the identities for each requested key and α is less than d.

Suppose A requests a private key γ where |γ ∩ α| < d. We first define three
sets Γ, Γ ′, S in the following manner:

Γ = γ ∩ α,
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Γ ′ be any set such that Γ ⊆ Γ ′ ⊆ γ and |Γ ′| = d− 1, and

S = Γ ′ ∪ {0}.

Next, we define the decryption key components, Di, for i ∈ Γ ′ as:

If i ∈ Γ : Di = gsi where si is chosen randomly in Zp.

If i ∈ Γ ′ − Γ : Di = g
λi
wi where λi is chosen randomly in Zp.

The intuition behind these assignments is that we are implicitly choosing a
random d− 1 degree polynomial q(x) by choosing its value for the d− 1 points
randomly in addition to having q(0) = a. For i ∈ Γ we have q(i) = cβisi and for
i ∈ Γ ′ − Γ we have q(i) = λi.

The simulator can calculate the other Di values where i /∈ Γ ′ since the
simulator knows the discrete log of Ti for all i /∈ α. The simulator makes the
assignments as follows:

If i /∈ Γ ′ : Di = (
∏
j∈Γ

C
βjsjΔj,S(i)

wi )(
∏

j∈Γ ′−Γ

g
λjΔj,S(i)

wi )Y
Δ0,S(i)

wi

Using interpolation the simulator is able to calculate Di = g
q(i)
ti for i /∈ Γ ′

where q(x) was implicitly defined by the random assignment of the other d− 1
variables Di ∈ Γ ′ and the variable Y .

Therefore, the simulator is able to construct a private key for the identity γ.
Furthermore, the distribution of the private key for γ is identical to that of the
original scheme.

Challenge. The adversary, A, will submit two challenge messages M1 and M0 to
the simulator. The simulator flips a fair binary coin, ν, and returns an encryption
of Mν . The ciphertext is output as:

E = (α,E′ = MνZ, {Ei = Bβi}i∈α).

If μ = 0, then Z = e(g, g)
ab
c . If we let r′ = b

c , then we have E0 = MνZ =
Mνe(g, g)

ab
c = Mνe(g, g)ar′

= MνY
r′

and Ei = Bβi = gbβi = g
b
c cβi = gr′cβi =

(Ti)r′
. Therefore, the ciphertext is a random encryption of the message mν under

the public key α.
Otherwise, if μ = 1, then Z = gz. We then have E′ = Mνe(g, g)z. Since z is

random, E′ will be a random element of G2 from the adversaries view and the
message contains no information about Mν .

Phase 2. The simulator acts exactly as it did in Phase 1.

Guess. A will submit a guess ν′ of ν. If ν = ν′ the simulator will output μ′ = 0
to indicate that it was given a MBDH-tuple otherwise it will output μ′ = 1 to
indicate it was given a random 4-tuple.
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As shown in the construction the simulator’s generation of public parameters
and private keys is identical to that of the actual scheme.

In the case where μ = 1 the adversary gains no information about ν. There-
fore, we have Pr[ν 	= ν′|μ = 1] = 1

2 . Since the simulator guesses μ′ = 1 when
ν 	= ν′, we have Pr[μ′ = μ|μ = 1] = 1

2 .
If μ = 0 then the adversary sees an encryption of mν . The adversary’s advan-

tage in this situation is ε by definition. Therefore, we have Pr[ν = ν′|μ = 0] =
1
2 + ε. Since the simulator guesses μ′ = 0 when ν = ν′, we have Pr[μ′ = μ|μ =
0] = 1

2 + ε.
The overall advantage of the simulator in the Decisional MBDH game is

1
2Pr[μ′ = μ|μ = 0] + 1

2Pr[μ′ = μ|μ = 1]− 1
2 = 1

2 ( 1
2 + ε) + 1

2
1
2 −

1
2 = 1

2ε. ��

5.1 Chosen-Ciphertext Security

Our security definitions and proofs have been in the chosen-plaintext model.
Our scheme can be extended to the chosen-ciphertext model by applying the
technique of using simulation-sound NIZK proofs to achieve chosen-ciphertext
security [13]. Alternatively, if we are willing to use random oracles, then the we
can use standard techniques such as the Fujisaki-Okamoto transformation [8].

5.2 Security in Full IBE Model

Suppose all identities are composed of n attributes and we have a universe of
attributes, U . We make the observation [2] that our scheme is secure in the full
model with a factor of

(|U|
n

)
in the reduction.

The original IBE scheme of Boneh and Franklin [3] and a later schemes of
Boneh and Boyen [2] and Waters [16] achieve IBE in the full model with non-
exponential reductions. However, all methods achieve this by essentially remov-
ing the relationships between nearby identities. In Fuzzy-IBE it is essential that
there exists a relationship between nearby identities. Therefore, we conjecture
that a scheme that has a non-exponential loss of security in the full model will
require significantly different methods than those seen in prior work.

6 Large Universe Construction

In the previous construction the size of the public parameters grows linearly with
the number of possible attributes in the universe. We describe a second scheme
which uses all elements of Zp

∗ as the universe, yet the public parameters only
grow linearly in a parameter n, which we fix as the maximum size identity we
can encrypt to.

In addition to decreasing the public parameter size, having a large universe
allows us to apply a collision-resistant hash function H : {0, 1}∗ → Zp

∗ and
use arbitrary strings as attributes. We can now use attributes that were not
necessarily considered during the public key setup. For example, we can add any
verifiable attribute, such as “Ran in N.Y. Marathon 2005”, to a user’s private
key.
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Our large universe construction is built using similar concepts to the previous
scheme and uses an algebraic technique of Boneh and Boyen [2]. Additionally,
we reduce the security of this scheme to the Decisional BDH problem. We now
describe our construction and give our proof of security.

6.1 Description

Let G1 be bilinear group of prime order p, and let g be a generator of G1. Addi-
tionally, let e : G1 × G1 → G2 denote the bilinear map. We restrict encryption
identities to be of length n for some fixed n.

We define the Lagrange coefficient Δi,S for i ∈ Zp and a set, S, of elements
in Zp:

Δi,S(x) =
∏

j∈S,j �=i

x− j

i− j
.

Identities will be sets of n elements of Zp
∗.1 Alternatively, we can describe an

identity as a collection of n strings of arbitrary length and use a collision resistant
hash function, H, to hash strings into members of Zp

∗. Our construction follows:

Setup(n, d). First, choose g1 = gy, g2 ∈ G1.
Next, choose t1, . . . , tn+1 uniformly at random from G1. Let N be the set

{1, . . . , n+ 1} and we define a function, T , as:

T (x) = gxn

2

n+1∏
i=1

t
Δi,N (x)
i .

We can view T as the function gxn

2 gh(x) for some n degree polynomial h. The
public key is published as: g1, g2, t1, . . . , tn+1 and the private key is y.

Key Generation. To generate a private key for identity ω the following steps are
taken. A d− 1 degree polynomial q is randomly chosen such that q(0) = y. The
private key will consist of two sets. The first set, {Di}i∈ω, where the elements
are constructed as

Di = g
q(i)
2 T (i)ri ,

where ri is a random member of Zp defined for all i ∈ ω.
The other set is {di}i∈ω where the elements are constructed as

di = gri .

Encryption. Encryption with the public key ω′ and message M ∈ G2 proceeds
as follows.

First, a random value s ∈ Zp is chosen. The ciphertext is then published as:

E = (ω′,E′ = Me(g1, g2)s,E′′ = gs, {Ei = T (i)s}i∈ω′).

1 With some minor modifications to our scheme, which we omit for simplicity, we can
encrypt to all identities of size ≤ n.
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Decryption. Suppose that a ciphertext, E, is encrypted with a key for identity
ω′ and we have a key for identity ω, where |ω ∩ ω′| ≥ d. Choose an arbitrary
d-element subset, S, of ω ∩ ω′.

Then, the ciphertext can be decrypted as:

M = E′∏
i∈S

(
e(di,Ei)
e(Di,E′′)

)Δi,S(0)

= Me(g1, g2)s
∏
i∈S

(
e(gri ,T (i)s)

e(gq(i)
2 T (i)ri , gs)

)Δi,S(0)

= Me(g1, g2)s
∏
i∈S

(
e(gri ,T (i)s)

e(gq(i)
2 , gs)e(T (i)ri , gs)

)Δi,S(0)

= Me(g, g2)ys
∏
i∈S

1
e(g, g2)q(i)sΔi,S(0)

= M.

The last equality is derived from using polynomial interpolation in the expo-
nents. Since, the polynomial sq(x) is of degree d− 1 it can be interpolated using
d points.

6.2 Efficiency and Key Sizes

Again, he number of exponentiations in the group G1 to encrypt to an identity
will be linear in the number of elements in the identity’s description. The cost
of decryption will be dominated by 2 · d bilinear map computations.

The key feature of the scheme is that the number of group elements in the
public parameters only grows linearly with, n, the maximum number of at-
tributes that can describe an encryption identity. The number of group elements
that compose a user’s private key grow linearly with the number of attributes as-
sociated with her identity. Finally, the number of group elements in a ciphertext
grows linearly with the size of the identity we are encrypting to.

6.3 Proof of Security

We prove that the security of our scheme in the Selective-ID model reduces to
the hardness of the Decisional BDH assumption.

Theorem 2. If an adversary can break our scheme in the Fuzzy Selective ID
Model, then a simulator can be constructed to play the Decisional BDH game
with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversary, A, that can attack our
scheme in the Selective-ID model with advantage ε. We build a simulator B that
can play the Decisional BDH game with advantage ε

2 .
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The simulation proceeds as follows:
We first let the challenger set the groups G1 and G2 with an efficient bilinear

map, e and generator g. The challenger flips a fair binary coin μ outside of B’s
view. If μ = 0, the challenger sets (A,B,C, Z) = (ga, gb, gc, e(g, g)abc); otherwise
it sets (A,B,C, Z) = (ga, gb, gc, e(g, g)z) for random a, b, c, z.

Init. B will run A and receive the challenge identity, α, an n element set of
members of Zp.

Setup. The simulator assigns the public parameters g1 = A and g2 = B. It
then chooses a random n degree polynomial f(x) and calculates an n degree
polynomial u(x) such that u(x) = −xn for all x ∈ α and where u(x) 	= −xn for
some other x. Since −xn and u(x) are two n degree polynomials they will either
agree on at most n points or they are the same polynomial. Our construction
assures that ∀x u(x) = −xn if and only if x ∈ α.

Then, for i from 1 to n+ 1 the simulator sets ti = g
u(i)
2 gf(i). Note that since

f(x) is a random n degree polynomial all ti will be chosen independently at
random as in the construction and we implicitly have T (x) = g

in+u(i)
2 gf(i).

Phase 1. A makes requests for private keys where the identity set overlap be-
tween the identities for the requested keys and α is less than d.

Suppose A requests a private key γ. We first define three sets Γ, Γ ′, S in the
following manner:

Γ = γ ∩ α,
Γ ′ be any set such that Γ ⊆ Γ ′ ⊆ γ and |Γ ′| = d− 1, and

S = Γ ′ ∪ {0}.
Next, we define the decryption key components Di and di for i ∈ Γ ′ as:

Di = gλi
2 T (i)ri where ri,λi are chosen randomly in Zp and we let di = gri .

The intuition behind these assignments is that we are implicitly choosing a
random d− 1 degree polynomial q(x) by choosing its value for the d− 1 points
in Γ randomly by setting q(i) = λi in addition to having q(0) = a.

The simulator also needs to calculate the decryption key values for all i ∈
γ − Γ ′. We calculate these points to be consistent with our implicit choice of
q(x). The key components are calculated as:

Di = (
∏

j∈Γ ′
g

λjΔj,S(i)
2 )

(
g

−f(i)
in+u(i)
1 (gin+u(i)

2 gf(i))r′
i

)Δ0,S(i)

and
di = (g

−1
in+u(i)
1 gr′

i)Δ0,S(i).
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The value in +u(i) will be non-zero for all i /∈ α ,which includes all i ∈ γ−Γ ′.
This follows from the our construction of u(x).

Let ri = (r′i− a
in+u(i) )Δ0,S(i) and let q(x) be defined as above. We then have:

Di = (
∏

j∈Γ ′
g

λjΔj,S(i)
2 )

(
(g

−f(i)
in+u(i)
1 )(gin+u(i)

2 gf(i))r′
i

)Δ0,S(i)

= (
∏

j∈Γ ′
g

λjΔj,S(i)
2 )

(
(g

−af(i)
in+u(i) )(gin+u(i)

2 gf(i))r′
i

)Δ0,S(i)

= (
∏

j∈Γ ′
g

λjΔj,S(i)
2 )

(
(ga

2 (gin+u(i)
2 gf(i))

−a
in+u(i) )(gin+u(i)

2 gf(i))r′
i

)Δ0,S(i)

= (
∏

j∈Γ ′
g

λjΔj,S(i)
2 )

(
ga
2 (gin+u(i)

2 gf(i))r′
i− a

in+u(i)

)Δ0,S(i)

= (
∏

j∈Γ ′
g

λjΔj,S(i)
2 )gaΔ0,S(i)

2 (T (i))ri

= g
q(i)
2 T (i)ri

Additionally, we have:

di = (g
−1

in+u(i)
1 gr′

i)Δ0,S(i) = (gr′
i− a

in+u(i) )Δ0,S(i) = gri

Therefore, the simulator is able to construct a private key for the identity γ.
Furthermore, the distribution of the private key for γ is identical to that of the
original scheme since our choices of λi induce a random d− 1 degree polynomial
and our construction of the private keys components di and Di.

Challenge. The adversary, A, will submit two challenge messages M1 and M0 to
the simulator. The simulator flips a fair binary coin, ν, and returns an encryption
of Mν . The ciphertext is output as:

E = (α,E′ = MνZ,E
′′ = C, {Ei = Cf(i)}i∈α).

If μ = 0, then Z = e(g, g)abc. Then the ciphertext is:

E = (α,E′ = Mνe(g, g)abc,E′′ = gc, {Ei = (gc)f(i) = T (i)c}i∈α).

This is a valid ciphertext for the message Mν under the identity α.
Otherwise, if μ = 1, then Z = e(g, g)z and E′ = Mνe(g, g)z. Since z is

random, E′ will be a random element of G2 from the adversaries view and the
message contains no information about Mν .
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Phase 2. The simulator acts exactly as it did in Phase 1.

Guess. A will submit a guess ν′ of ν. If ν = ν′ the simulator will output μ′ = 0
to indicate that it was given a BDH-tuple otherwise it will output μ′ = 1 to
indicate it was given a random 4-tuple.

As shown in the construction the simulator’s generation of public parameters
and private keys is identical to that of the actual scheme.

In the case where μ = 1 the adversary gains no information about ν. There-
fore, we have Pr[ν 	= ν′|μ = 1] = 1

2 . Since the simulator guesses μ′ = 1 when
ν 	= ν′, we have Pr[μ′ = μ|μ = 1] = 1

2 .
If μ = 0 then the adversary sees an encryption of Mν . The adversary’s ad-

vantage in this situation is ε by definition. Therefore, we have Pr[ν = ν′|μ =
0] = 1

2 + ε. Since the simulator guesses μ′ = 0 when ν = ν′, we have Pr[μ′ =
μ|μ = 0] = 1

2 + ε.
The overall advantage of the simulator in the DecisionalBDH game is 1

2Pr[μ′=
μ|μ = 0] + 1

2Pr[μ′ = μ|μ = 1]− 1
2 = 1

2 ( 1
2 + ε) + 1

2
1
2 −

1
2 = 1

2ε. ��

7 Conclusions

We introduced the concept of Fuzzy Identity Based Encryption, which allows
for error-tolerance between the identity of a private key and the public key used
to encrypt a ciphertext. We described two practical applications of Fuzzy-IBE
of encryption using biometrics and attribute-based encryption.

We presented our construction of a Fuzzy IBE scheme that uses set overlap
as the distance metric between identities. Finally, we proved our scheme under
the Selective-ID model by reducing it to an assumption that can be viewed as a
modified version of the Bilinear Decisional Diffie-Hellman assumption.

This work motivates a few interesting open problems. The first is whether
it is possible to create a Fuzzy IBE scheme where the attributes come from
multiple authorities. While, it is natural for one authority to certify all attributes
that compromise a biometric, in attribute-based encryption systems there will
often not be one party that can act as an authority for all attributes. Also,
a Fuzzy-IBE scheme that hides the public key that was used to encrypt the
ciphertext [1] is intriguing. Our scheme uses set-overlap as a similarity measure
between identities. (We note a Hamming-distance construction can also be built
using our techniques.) An open problem is to build other Fuzzy-IBE schemes
that use different distance metrics between identities.
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Abstract. We expand a previous result of Dean [Dea99] to provide
a second preimage attack on all n-bit iterated hash functions with
Damg̊ard-Merkle strengthening and n-bit intermediate states, allowing a
second preimage to be found for a 2k-message-block message with about
k×2n/2+1+2n−k+1 work. Using RIPEMD-160 as an example, our attack
can find a second preimage for a 260 byte message in about 2106 work,
rather than the previously expected 2160 work. We also provide slightly
cheaper ways to find multicollisions than the method of Joux [Jou04].
Both of these results are based on expandable messages–patterns for pro-
ducing messages of varying length, which all collide on the intermediate
hash result immediately after processing the message. We provide an al-
gorithm for finding expandable messages for any n-bit hash function built
using the Damg̊ard-Merkle construction, which requires only a small mul-
tiple of the work done to find a single collision in the hash function.

1 Introduction

The security goal for an n-bit hash function is that collisions require about
2n/2 work, while preimages and second preimages require about 2n work. In
[Dea99], Dean demonstrated that this goal could not be accomplished by hash
functions whose compression functions allowed the easy finding of fixed points,
such as MD5 [Riv92] and SHA1 [SHA02]. In this paper, we use the multicollision-
finding result of [Jou04] to demonstrate that the standard way of constructing
iterated hash functions (the Damg̊ard-Merkle construction) cannot meet this
goal, regardless of the compression function used. Thus, hash functions such
as RIPEMD-160 [DBP96] and Whirlpool [BR00] (when used with a full 512-
bit result) provide less than the previously-expected amount of resistance to
second-preimage attacks, just as do hash functions like SHA1.

For a message of 2k message blocks, we provide a second preimage attack re-
quiring about k×2n/2+1+2n−k+1 work. Like Dean’s attack, ours is made possible
by the notion of expandable messages–patterns of messages of different lengths
which all yield the same intermediate hash value after processing them. These
expandable messages do not directly yield collisions on the whole hash function

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 474–490, 2005.
c© International Association for Cryptologic Research 2005



Second Preimages on n-Bit Hash Functions for Much Less than 2n Work 475

because of the length padding done at the end of modern hash functions, and in
any event are no easier to find than collisions. However, they allow second preim-
ages and multicollisions to be found much more cheaply than had previously been
expected. This result may be compared with an earlier generic preimage attack by
Merkle: the attacker is given 2k distinct n-bit hash outputs, and expects to find a
preimage for one of the outputs with about 2n−k work, but has no ability to choose
which of the outputs is to be matched. (Note that Merkle’s attack is truly generic,
in that it applies to any hash fuction with an n-bit output, even a random oracle.)

Our attack, like the earlier attack of Dean, probably has no practical impact
on the security of any system currently relying upon a hash function such as SHA1,
Whirlpool, or RIPEMD-160. This is true because the attack is always at least as
expensive as collision search on the hash function, and because the difficulty of
the attack grows quickly as the message gets shorter. For example, a 160-bit hash
function like SHA1 or RIPEMD-160 requires about 2128 work to find a second
preimage for a 238-byte message, and a target message of only one megabyte (220

bytes) requires about 2146 work to find a second preimage. Also, the attack only
recovers second preimages–it doesn’t allow an attacker to invert the hash function.

The significance of our result is in demonstrating another important way
in which the behavior of the hash functions we know how to construct differs
from both the commonly claimed security bounds of these functions, and from
the random oracles with which we often model them. When combined with the
recent results of Joux [Jou04], our results raise questions about the usefulness of
the widely-used Damg̊ard-Merkle construction for hash functions where attackers
can do more than 2n/2 work.

The remainder of the paper is organized as follows: First, we discuss basic
hash function constructions and security requirements. Next, we demonstrate a
generic way to find expandable messages, and review the method of Dean. We
then demonstrate how these expandable messages can be used to violate the
second preimage resistance of nearly all currently specified cryptographic hash
functions with less than 2n work. Finally, we demonstrate an even more efficient
(albeit much less elegant) way to find multicollisions than the method of Joux,
using Dean’s fixed-point-based expandable messages. We end with a discussion
of how this affects our understanding of iterated hash function security.

2 Hash Function Basics

In 1989, Merkle and Damg̊ard [Mer89, Dam89] independently provided security
proofs for the basic construction used for almost all modern cryptographic hash
functions1. Here, we describe this construction2, and its normal security claims.

1 These functions date back to Rabin, and were widely used by hash function designers
throughout the 1980s [Pre05,MvOV96].

2 Damg̊ard proposed two methods for constructing hash functions. This paper ad-
dresses only the more commonly used one, which was independently invented by
Merkle.
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A hash function with an n-bit output is expected to have three minimal
security properties. (In practice, a number of other properties are expected, as
well.)

1. Collision-resistance: An attacker should not be able to find a pair of messages
M 	= M ′ such that hash(M) = hash(M ′) with less than about 2n/2 work.

2. Preimage-resistance: An attacker given an output value Y in the range of
hash should not be able to find an input X from its domain so that Y =
hash(X) with less than about 2n work.

3. Second preimage-resistance: An attacker given one message M should not
be able to find a second message, M ′ to satisfy hash(M) = hash(M ′) with
less than about 2n work.

A collision attack on an n-bit hash function with less than 2n/2 work, or a
preimage or second preimage attack with less than 2n work, is formally a break
of the hash function. Whether the break poses a practical threat to systems
using the hash function depends on specifics of the attack.

Following the Damg̊ard-Merkle construction, an iterated hash function is
built from a fixed-length component called a compression function, which takes
an n-bit input chaining value and an m-bit message block, and derives a new
n-bit output chaining value. In this paper, F (H,M) is used to represent the ap-
plication of this compression function on hash chaining variable H and message
block M .

In order to hash a full message, the following steps are carried out:

1. The input string is padded to ensure that it is an integer multiple of m bits
in length, and that the length of the original, unpadded message appears in
the last block of the padded message.

2. The hash chaining value h[i] is started at some fixed IV, h[−1], for the hash
function, and updated for each successive message block M [i] as

h[i] = F (h[i− 1],M [i])

3. The value of h[i] after processing the last block of the padded message is the
hash output value.

This construction gives a reduction proof: If an attacker can find a collision
in the whole hash, then he can likewise find one in the compression function. The
inclusion of the length at the end of the message is important for this reduction
proof, and is also important for preventing a number of attacks, including long-
message attacks [MvOV96].

Besides the claimed security bounds, there are two concepts from this brief
discussion that are important for the rest of this paper:

1. A message made up of many blocks, M [0, 1, 2, ..., 2k−1], has a corresponding
sequence of intermediate hash values, h[0, 1, 2, ..., 2k − 1].

2. The padding of the final block includes the length, and thus prevents colli-
sions between messages of different lengths in the intermediate hash states
from yielding collisions in the full hash function.
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3 Finding Expandable Messages

An expandable message is a kind of multicollision, in which the colliding messages
have different lengths, and the message hashes collide in the input to the last
compression function computation, before the length of the message is processed.
Consider a starting hash value h[−1]. Then an “expandable message” from h[−1]
is a pattern for generating messages of different lengths, all of which yield the
same intermediate hash value when they are processed by the hash, starting from
h[−1], without the final padding block with the message length being included. In
the remainder of the paper, an expandable message that can take on any length
between a and b message blocks, inclusive, will be called an (a, b)-expandable
message.

3.1 Dean’s Fixed-Point Expandable Messages

In [Dea99], there appears a technique for building expandable messages when
fixed points can easily be found in the compression function3. For a compression
function h[i] = F (h[i− 1],M [i]), a fixed point is a pair (h[i− 1],M [i]) such that
h[i − 1] = F (h[i − 1],M [i]). Compression functions based on the Davies-Meyer
construction [MvOV96], such as the SHA family [SHA02], MD4, MD5 [Riv92],
and Tiger [AB96], have easily found fixed points. Similarly, Snefru [Mer90] has
easily found fixed points. Techniques for finding these fixed points for com-
pression functions based on the Davies-Meyer construction appear in [MOI91],
and are briefly discussed in an appendix to this paper, along with techniques
for finding fixed points in Snefru. Note that these techniques produce a pair
(h[i− 1],M [i]), but allow no control over the value of h[i− 1].

We can construct an expandable message using fixed points for about twice
as much work as is required to find a collision in the hash function. This is done
by first finding about 2n/2 randomly-selected fixed points for the compression
function, and then trying first message blocks until one leads from the initial
hash value to one of the fixed points.

ALGORITHM: MakeFixedPointExpandableMessage(h[in])
Make an expandable message from initial hash value h[in], using a fixed point

finding algorithm.

Variables:
1. h[in] = initial chaining value for the expandable messages.
2. FindRandomFixedPoint() = an algorithm returning a pair (h[i],M [i])

such that h[i] = F (h[i],M [i]).
3. A,C = two lists of hash values.
4. B,D = two lists of message blocks.
5. i, j = integers.

3 We were made aware of Dean’s work by a comment from one of the anonymous
referees.
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6. M(i) = a function that produces a unique message block for each integer
i less than 2n.

7. n = width of hash function chaining value and output.

Steps:

1. Construct a list of 2n/2 fixed points:
– For i = 0 to 2n/2 − 1:
• h,m = FindRandomFixedPoint()
• A[i] = h
• B[i] = m

2. Construct a list of 2n/2 hash values we can reach from h[−1]:
– For i = 0 to 2n/2 − 1:
• h = F (h[in],M(i))
• C[i] = h
• D[i] = M(i)

3. Find a match between lists A and C; let i, j satisfy A[i] = C[j].
4. Return expandable message (D[j],B[i]).

Work: About 2n/2+1 compression function computations, assuming 2n/2+1

memory.

If an n-bit hash function has a maximum of 2k blocks in its messages, then
this technique takes about 2n/2+1 work to discover (1, 2k)-expandable messages.
Producing a message of the desired length is trivial, consisting of one copy of
the starting message block, and as many copies of the fixed-point message block
as necessary to get a full message of the desired length.

ALGORITHM: ProduceMessageFP(R,X, Y )
Produce a message of desired length from the fixed-point expandable mes-

sages.

Variables:

1. R = the desired length in message blocks; must be at least one and no
more than the maximum number of message blocks supported by the
hash.

2. X = the first message block in the expandable message.
3. Y = the second (repeatable) block in the expandable message.

Steps:

1. M = X.
2. For i = 0 to R− 2:

– M = M ||Y
3. Return M .

Work: Negligible work, about R steps.
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3.2 A Generic Technique: Multicollisions of Different Lengths

Finding an expandable message for any compression function with n-bit inter-
mediate hash values takes only a little more work than finding a collision in
the hash function. This technique is closely related to the technique for finding
k-collisions in iterated hash functions from Joux.

In Joux’s technique, a sequence of single-message-block collisions is found,
and then pasted together to provide a large number of different messages of equal
length that lead to the same hash value. In our technique, a sequence of collisions
between messages of different lengths is found, and pasted together to provide
a set of messages that can take on a wide range of different lengths without
changing the resulting intermediate hash value—an expandable message.

Finding a Collision on Two Messages of Different Lengths. Finding
an expandable message requires the ability to find many pairs of messages of
different specified lengths that have the same resulting intermediate hash value.
Finding such a pair is not fundamentally different than finding a pair of equal-
length messages that collide: The attacker who wants a collision between a one-
block message and an α-block message constructs about 2n/2 messages of length
1, and about the same number of length α, and looks for a collision. For efficiency,
the attacker chooses a set of α-block messages whose hashes can be computed
about as efficiently as the same number of single-block messages.

ALGORITHM: FindCollision(α, hin)
Find a collision pair with lengths 1 and blocks, starting from hin.

Variables:
1. α = desired length of second message.
2. A,B = lists of intermediate hash values.
3. q = a fixed “dummy” message used for getting the desired length.
4. hin = the input hash value for the collision.
5. htmp = intermediate hash value used in the attack.
6. M(i) = the ith distinct message block used in the attack.
7. n = width of hash function chaining value and output in bits.

Steps:
1. Compute the starting hash for the α-block message by processing α− 1

dummy message blocks:
– htmp = hin.
– For i = 0 to α− 2:
• htmp = F (htmp, q)

2. Build lists A and B as follows:
– for i = 0 to 2n/2 − 1:
• A[i] = F (hin,M(i))
• B[i] = F (htmp,M(i))

3. Find i, j such that A[i] = B[j]
4. Return colliding messages (M(i), q||q||...||q||M(j)), and the resulting in-

termediate hash F (hin,M(i)).
Work: α− 1 + 2n/2+1 compression function calls
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Building a Full (k, k+2k −1)-expandable message. We can use the above
algorithm to construct expandable messages that cover a huge range of possi-
ble lengths, in a technique derived from the multicollision-finding technique of
[Jou04]. We first find a colliding pair of messages, where one is of one block,
and the other of 2k−1 + 1 blocks. Next, we find a collision pair of length ei-
ther 1 or 2k−2 + 1, then 1 or 2k−3 + 1, and so on, until we reach a collision
pair of length 1 or length 2. The result is a list of pairs of message components
of different lengths, which lead to the same intermediate hash after processing
them. The first such pair allows a choice of adding 2k−1 blocks to the expanded
message, the second allows a choice of adding 2k−2 blocks, and so on. Thus,
expanding the message is just writing the difference between the desired length
and the number of message components in binary, and using each bit in that
binary string to choose the corresponding short or long message component to
include.

ALGORITHM: MakeExpandableMessage(hin, k)
Make a (k, k + 2k − 1)-expandable message.

Variables:
1. htmp = the current intermediate hash value.
2. C = a list of pairs of messages of different lengths; C[i][0] is the first

message of pair i, while C[i][1] is that pair’s second message.
Steps:

1. Let htmp = hin.
2. For i = 0 to k − 1:

– (m0,m1, htmp) = FindCollision(2i + 1, htmp)
– C[k − i− 1][0] = m0

– C[k − i− 1][1] = m1

3. Return the list of message pairs C.
Work: k × 2n/2+1 + 2k ≈ k × 2n/2+1 compression function calls.

At the end of this process, we have an k× 2 array of messages, for which we
have done approximately 2k + k × 2n/2+1 compression function computations,
and with which we can build a message consisting of between k and k + 2k − 1
blocks, inclusive, without changing the result of hashing the message until the
final padding block.

Producing a Message of Desired Length. Finally, there is a simple algo-
rithm for producing a message of desired length from an expanded message. This
amounts to simply including the different-length pieces based on the bit pattern
of the desired length.

ALGORITHM: ProduceMessage(C, k,L)
Produce a message of length L, if possible, from the expandable message

specified by (C, k).
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Variables:
1. L = desired message length.
2. k = parameter specifying that C contains a (k, k + 2k − 1)-expandable

message.
3. C = a k × 2 array of message fragments of different lengths.
4. M = the message to be constructed.
5. T = a temporary variable holding the remaining length to be added.
6. S[0..k − 1] = a sequence of bits from T .
7. i = an integer counter.

Steps:
1. Start with an empty message M = ∅.
2. If L > 2k + k − 1 or L < k, return an error condition.
3. Let T = L− k.
4. Let S = the bit sequence of T , from low-order to high-order bits.
5. Concatenate message fragments from the expandable message together

until we get the desired message length. Note that this is very similar to
writing T in binary.
– for i = 0 to k − 1:
• if S[i] = 0 then M = M ||C[i][0]
• else M = M ||C[i][1]

6. Return M .
Work: Negligible (about k table lookups and string copying operations).

The result of this is a message of the desired length, with the same hash
result before the final padding block is processed as all the other messages that
can be produced from this expandable message.

3.3 Variants

The expandable messages found by both of these methods can start at any given
hash chaining value. As a result, we can build expandable messages with many
useful properties:

1. The expandable message can start with any desired prefix.
2. The expandable message can end with any desired suffix.
3. While both algorithms given here for finding expandable messages assume

complete freedom over choice of message block, a variant of the generic
method can be used even if the attacker is restricted to only two possible
values for each message block.

4. The fixed-point method requires about 2n/2 possible values for each message
block, but this is sufficiently flexible that for existing hash functions, it can
typically be used with only ASCII text, legitimate sequences of Pentium
opcodes, etc.

5. The multicollision technique from Joux allows an attacker to discover 2k

messages with the same hash for an n-bit iterated hash function, using only
about k×2n/2 compression functions of work. This technique can be used to
make a set of 2k expandable messages which all yield the same hash output.
The full power of combining these techniques remains to be investigated.
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4 Using Expandable Messages to Find Second Preimages

An n-bit hash function is supposed to resist second preimage attacks up to
about 2n work. That is, given one message M , the attacker ought to have to
spend about 2n work to find another message that has the same hash value as
output.

4.1 The Long Message Attack

Here is a general (and previously known) way to violate the second-preimage
resistance of a hash function without Damg̊ard-Merkle strengthening [MvOV96]:
Start with an extremely long message of 2R + 1 blocks. An attacker who wishes
to find another message that hashes to the same value with a 160-bit hash
function can do so by finding a message block Mlink such that, from the IV of
the hash, h[−1], h∗ = F (h[−1],Mlink) yields a value h∗ that matches one of the
intermediate values of the hash function in processing the long message. Since
the message has 2R such intermediate values, the attacker expects to need to try
only about 2160−R message blocks to get a match. That is, when R = 64, the
attacker has 264 available target values, so each message block he tries has about
a 2−96 chance of yielding the same hash output as some intermediate hash value
from the target message. The result is a shorter message, which has the same
hash output up until the final block is processed.

The length padding at the end of the Damg̊ard-Merkle construction foils
this attack. Note that in the above situation, the attacker has a message that is
shorter than the 255-block target message, which leads to the same intermediate
hash value . But now, the last block has a different length field, and so the attack
fails—the attacker can find something that’s almost a second preimage, but the
length block changes, and so the final hash output is different.

4.2 Long-Message Attacks with Expandable Messages

Using expandable messages, we can bypass this defense, and carry out a second-
preimage attack despite the length block at the end. This attack was first discov-
ered by Dean [Dea99]. We start with a long message as our target for a second
preimage, find an expandable message which will provide messages over a wide
range of lengths, and then carry out the long-message attack from the end of
that expandable message. We then expand the expandable message to make up
for all the message blocks that were skipped by the long message attack, yielding
a new message of the same length as the target message, with the same hash
value.

ALGORITHM: LongMessageAttack(Mtarget)
Find the second preimage for a message of 2k + k + 1 blocks.

Variables:
1. Mtarget = the message for which a second preimage is to be found.
2. Mlink = a message block used to link the expandable message to some

point in the target message’s sequence of intermediate hash values.
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3. A = a list of intermediate hash values
4. hexp = intermediate chaining value from processing an expandable mes-

sage.
Steps:

1. C = MakeExpandableMessage(k)
2. hexp = the intermediate hash value after processing the expandable mes-

sage in C.
3. Compute the intermediate hash values for Mtarget:

– h[−1] = the IV for the hash function
– m[i] = the ith message block of Mtarget.
– h[i] = F (h[i−1],m[i]), the ith intermediate hash output block. Note

that h will be organized in some searchable structure for the attack,
such as a hash table, and that elements h[0, 1, ..., k] are excluded
from the hash table, since the expandable message cannot be made
short enough to accommodate them in the attack.

4. Find a message block that links the expandable message to one of the
intermediate hash values for the target message after the kth block.
– Try linking messages Mlink until F (hexp,Mlink) = h[j] for some
k + 1 ≤ j ≤ 2k + k + 1.

5. Use the expandable message to produce a message M∗ that is j−1 blocks
long.

6. Return second preimage M∗||Mlink||m[j + 1]||m[j + 2]...m[2k + k + 1]
(if j = 2k + k + 1, then no original message blocks are included in the
second preimage).

Work: The total work done is the work to find the expandable message plus
the work to find the linking message.
1. For the generic expandable message-finding algorithm, this is k×2n/2+1+

2n−k+1 compression function calls.
2. For the fixed-point expandable message-finding algorithm, this is 3 ×

2n/2+1 + 2n−k+1

The longer the target message, the more efficient the attack relative to a
brute-force preimage search, until the search for the expandable message be-
comes more expensive than the long-message attack. For SHA1 and SHA256,
the maximum allowed message length is 264 − 1 bits, which translates to about
255 512-bit blocks of message. For SHA384 and SHA512, the maximum allowed
message length is 2128− 1 bits, which translates to about 2118 1024-bit blocks of
message. Let 2R be the maximum number of message blocks allowed by the hash
function. The total work of the generic expandable-message form of the attack
is then R× 2n/2+1 + 2n−R+1 compression function calls.

An Illustration. To illustrate this, consider a second preimage attack on the
RIPEMD-160 hash function [DBP96]. The longest possible message for RIPEMD-
160 is 264−1 bits, which translates into just under 255 blocks. For simplicity, we
will assume the target message is 254 + 54 + 1 message blocks (about 260 bytes)
long.



484 J. Kelsey and B. Schneier

1. Receive the target message and compute and store all the intermediate hash
values.

2. Produce a (1, 54 + 254)-expandable message. This requires about 54 × 281

compression function computations.
3. Starting from the end of the expandable message, we try about 2106 different

message blocks, until we find one whose hash output is the same as one of the
last 54 + 254 intermediate hash values of the target message. This requires
computing about 2106 compression functions on average.

4. Expand the expandable message to compensate for the message blocks of
the target message skipped over, and thus produce a second preimage. This
takes very little time.

Summary of the Attack. The long-message attack can be summarized as
follows: For a target message substantially less than 2n/2 blocks in length, the
work is dominated by the long message attack. Thus, a second preimage attack
on a 2k-block message takes about 2n−k+1 compression function computations,
assuming abundant memory.

4.3 Variations on the Attack

Some straightforward variations of this attack are also possible, drawing from
the variations available to the expandable messages. For example, the algorithms
for producing an expandable message work from any starting hash value, and
are not affected by the message blocks that come after the expanded message.
Thus, this attack can be used to “splice together” two very long messages, with
an expandable part in the middle. Similarly, if it is important that the second
preimage message start with the same first few hundred or thousand message
blocks as the target message, or end with the same last few hundred or thou-
sand blocks, this can easily be accommodated in the attack. Another variation
is available by using Joux’s multicollision-finding trick, or the related ones de-
scribed below: By setting up the expandable message to be a 2u-multicollision, we
can find 2u distinct second preimages for a given long message, without adding
substantial cost to the attack. Additionally, keyed constructions that leave the
attacker with offline collision search abilities are vulnerable to the attack; for
example, the “suffix mac” construction [MvOV96], MACK(X) = Hash(X||K)
is vulnerable to a second preimage attack, as well as the much more practical,
previously-known collision attack.

Low-Memory and Parallel Versions of the Attack. These methods for
finding expandable messages assume unlimited memory. In the real world, mem-
ory is limited, and bandwidth between processing units and memory units is
likewise limited. This doesn’t raise a difficulty to the attack. For n-bit hash
functions whose maximum input size in message blocks is substantially less than
2n/2, the parallel collision search techniques of [vOW96, vOW99] allow both our
generic attack and the fixed-point attack of Dean to go forward at approximately
the stated cost; the search for a linking message (the long message attack) dom-
inates the work.
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4.4 The Attack in Perspective

Our attack allows the finding of a second preimage on a 2k block long target
message with a certainty of success. A previously known attack originally noted
by Merkle is somewhat similar in spirit [MvOV96, Pre05]: an attacker is given
2k candidate target messages, and finds one preimage with 2n−k work. While
that attack wasn’t able to find a second preimage for a specific desired message,
it makes our result and the earlier result of Dean somewhat less surprising. It is
worth noting that Merkle’s result applies to any n-bit hash function, even one
constructed from random oracles.

Our attack differs from that of Dean only in its universality–Dean’s attack
applies only to hash functions whose compression functions allow easy finding
of second preimages, whereas ours apply to any iterated hash function with an
n-bit intermediate hash value.

5 Expandable Messages and Multicollisions

In [Jou04], Joux demonstrates a beautiful way to produce a large number of
messages that collide for an iterated hash function, with only a little more work
than is needed to find a single pair of messages that collide. Here, we demonstrate
ways to use expandable messages to find multicollisions, and ways to combine
the Joux technique with expandable messages to add flexibility to the structure
of the multicollisions.

We construct a multicollision by concatenating two or more expandable mes-
sages, and then varying the length of each so that the sum of their lengths stays
the same. For example, if we concatenate a (1,1024)-expandable message with
another (1,1024)-expandable message, we get a 1024-collision of 1025 block long
messages. By concatenating a large number of such messages, we can get a much
larger multicollision.

5.1 Multicollisions Using Fixed Points

Using fixed-point expandable messages, multicollisions which are much cheaper
than those found by Joux are available. Recall that for an n-bit hash func-
tion, finding a fixed-point expandable message which is expandable up to the
maximum message length of the hash function costs about 2n/2+1 compression
function computations.

Consider a 160-bit hash function with a maximum of 255 message blocks.
Now, a very simple 255-collision is available for about 282 = 4 × 280 work, as
opposed to 55 × 280 work–this is constructed by concatenating two fixed-point
expandable messages, and always making the sum of their lengths 255 blocks.
Concatenating three such expandable messages produces a 2107-collision, and
so on, following the rule that a multicollision consisting of K expandable mes-
sages in a hash function with a maximum length of R blocks produces

(
R

K−1

)
-

multicollisions with about K × 281 work.
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These multicollisions are of unreasonable length, but they’re generally
cheaper than Joux’ multicollisions. At more reasonable lengths, they’re still inter-
esting, but they become more expensive than Joux’ multicollisions. For example,
concatenating ten expandable messages together and limiting message length to
1034 blocks total, we get about a 280-multicollision using this technique; for the
same cost, Joux’ technique would give a 21024-multicollision.

5.2 Using Generic Expandable Messages

The cost of finding a single fixed-point expandable message is within a factor of
two of the cost of finding a single collision in Joux’ scheme. The cost of finding
a generic (1,K)-expandable message is about lg(K) × 2n/2. This means that
in general, generic expandable messages cannot be used to make multicollisions
cheaper than those of Joux.

5.3 Combining with Joux

Finally, it is possible to combine Joux multicollisions with expandable-message
multicollisions. This allows multicollisions to be constructed that look quite dif-
ferent from the Joux multicollisions, and are somewhat more flexible in structure.
This may allow Joux attacks to go forward even on cascaded constructions that
attempt to foil his attack.

As an example, a multicollision may be formed by alternating (1, 2)-
expandable messages and individual collisions as sought by Joux’ method, with
a final (10, 1024)-expandable message at the end. This permits the individual
colliding message blocks to appear at different positions in different messages,
without altering the final hash value.

6 Conclusions and Open Questions

In this paper, we have described a generic way to carry out long-message second
preimage attacks, despite the Damg̊ard-Merkle strengthening done on all modern
hash functions.

These attacks are theoretical because 1) they require more work than is nec-
essary to find collisions on the underlying hash functions, and 2) the messages for
which second preimages may be found are generally impractically long. However,
they demonstrate some new lessons about hash function design:

1. An n-bit iterated hash function provides fundamentally different security
properties than a random oracle with an n-bit output. This was demon-
strated in one way by Joux in [Jou04], and by another here.

2. An n-bit iterated hash function begins to show some surprising properties
as soon as an attacker can do the work necessary to find collisions in the
underlying compression function.

3. An n-bit iterated hash function cannot support second-preimage resistance
at the n-bit security level, as previously expected, for long messages.
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4. Easily found fixed points in compression functions (such as those based
on the Davies-Meyer construction) allow an even more powerful second-
preimage attack described in [Dea99].

The important lesson here is that the standard construction of iterated
hashes from Merkle and Damg̊ard does not provide all the protection we might
expect against attackers that can do more than 2n/2 compression function com-
putations. In some sense, the hash function is “brittle,” and begins to lose its
claimed security properties very quickly once the attacker can violate its collision
resistance by brute force.

We believe these results, when combined with those of Dean and Joux, re-
quire a rethinking of what security properties are expected of an iterative hash
function with an n-bit intermediate state. We see three sensible directions for
this rethinking to take:

1. A widespread consensus that an n-bit iterated hash function should never
be expected to resist attacks requiring more than 2n/2 operations. This
would invalidate current uses of hash functions in cryptographic random-
number generation, as in [KSF99, DHL02, Bal98], key derivation functions
as described in [AKMZ04, NIST03, X963], and many other applications, and
seems the least palatable outcome.

2. A clear theoretical treatment of the limits that exist for n-bit hash func-
tions, and precisely what attacks more demanding than collision search they
may be expected to resist. (For example, none of these recent results appear
to be applicable when the attacker cannot do offline collision search. Simi-
larly, these attacks do not apply when only a single message block is being
processed. Perhaps these observations can be formalized.)

3. New constructions for hash-function round functions. For example, XORing
in a monotomic counter as part of the round function would resist the attacks
in this paper.

4. New constructions for hash functions in the vein of [Luc04], which maintain
much more than n bits of intermediate state in order to make collision attacks
on intermediate states harder (require 2n work).

We believe that the region between 2n/2 and 2n is a rich area for the crypt-
analysis of iterated hash functions, and expect to see other research results in
the future. Absent a solid theoretical treatment of the security properties of n-
bit iterative hashes along the lines of [PGV93] and [BRS02], expanded to deal
thoroughly with the full hash construction, at this point it is difficult to justify
using them in applications requiring more than n/2 bits of security for messages
longer than one block with any confidence.

We hope this work spurs such a treatment, as well as further cryptanalysis.
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A Finding Fixed Points Efficiently in Many Compression
Functions

Finding fixed points in many hash compression functions is simple.

A.1 Davies-Meyer

Most widely used hash functions have compression functions designed around
very large block-cipher-like constructions, following the general Davies-Meyer
model. For the SHA and MD4/MD5 families, as well as Tiger, if E(K, X) is a
very wide block cipher, with K the key and X the value being encrypted, then
the compression function is:

F (H,M) = E(M,H) +H

for some group operation “+”. For these compression functions, it is possible to
compute the inverse of this block-cipher-like construction, which we can denote
as E−1(K, X). This makes it possible to find fixed points in a simple way, as
discussed in [MOI91] and [PGV93]:

1. Select a message M .
2. Compute H = E−1(M, 0).
3. The result gives a fixed point: F (H,M) = H.

A property of this method for finding fixed points is that the attacker is able
to choose the message, but he has no control whatsoever over the hash value
that is a fixed point for a given message. Also note that for these hash functions,
each message block has exactly one fixed point.
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A.2 Snefru

Snefru is derived from a block-cipher-like operation that operates on a much
larger block than the hash output, and which effectively has a fixed “key.” Let
E(X) be this fixed “encryption” of a block. Further, let n be the hash block
size, m be the message block size, lsbn(X) be the least significant n bits of X,
and msbn(X) be the most significant n bits of X. Note that E(X) operates on
n+m-bit blocks.

The compression function is derived from E(X):

F (H,M) = lsbn(E(H||M)) +H

where the hash input and output are each n bits wide, and where lsbx(Y ) rep-
resents the least significant x bits of the value Y . We can find fixed points for
Snefru-like compression functions as follows, letting E−1(X) be the inverse of
E(X) once again:

1. Choose any X whose least significant n bits are 0.
2. Compute Y = E−1(X).
3. Let H = msbn(Y ) and M = lsbm(Y ).
4. The result gives a fixed point: F (H,M) = H.

This method gives the attacker no control over the message block. Unlike the
Davies-Meyer construction, there is no guarantee that a given message block has
even one fixed point; we would expect for some message blocks to have many,
and for others to have none.

Note that the Snefru construction could easily be altered to make fixed points
very hard to find, when the size of the message and hash blocks are equal, by
the compression function as:

F (H,M) = lsbn(E(H||M)) +H +M

or
F (H,M) = lsbn(E(H||M)) +H +M + msbm(E(H||M))

Also note that many other compression function constructions, such as the
Miyaguchi-Preneel construction used by Whirlpool and N-Hash and the con-
struction used by RIPEMD and RIPEMD-160, do not appear to permit a generic
method for finding fixed points.
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Abstract. In this paper we analyze the statistical distribution of the
keystream generator used by the stream ciphers RC4 and RC4A. Our
first result is the discovery of statistical biases of the digraphs distribu-
tion of RC4/RC4A generated streams, where digraphs tend to repeat
with short gaps between them. We show how an attacker can use these
biased patterns to distinguish RC4 keystreams of 226 bytes and RC4A
keystreams of 226.5 bytes from randomness with success rate of more than
2/3. Our second result is the discovery of a family of patterns in RC4
keystreams whose probabilities in RC4 keystreams are several times their
probabilities in random streams. These patterns can be used to predict
bits and words of RC4 with arbitrary advantage, e.g., after 245 output
words a single bit can be predicted with probability of 85%, and after
250 output words a single byte can be predicted with probability of 82%,
contradicting the unpredictability property of PRNGs.

Keywords: RC4, Stream ciphers, Cryptanalysis, Distinguishing attacks,
Predicting attacks.

1 Introduction

RC4 is the most widely used stream cipher in software applications. Among
numerous applications it is used to protect Internet traffic as part of the SSL
and is integrated into Microsoft Windows. It was designed by Ron Rivest in 1987
and kept as a trade secret until it leaked out in 1994. RC4 has a secret internal
state which is a permutation of all the N = 2n possible n bits words, associated
with two indices in it, when in practical applications n = 8, and thus RC4 has
a huge state of log2(28!× (28)2) ≈ 1700 bits.

In this paper we explore several classes of RC4 states, and analyze their
statistical properties and cryptanalytic significance. RC4 was already proven to
contain many patterns with unique statistical behavior and many correlations
between the output words and the internal state. The main innovation of our
work is in moving the focus of RC4 analysis from consecutive sequences of rounds
to non-consecutive ones. We show classes of RC4 partial states that cause unique
behavior of the output stream, when the unique patterns are in correlations
between output words in distant rounds.

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 491–506, 2005.
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Our first result is based on analysis of RC4 1-states (partial states are defined
later), which cause digraphs to repeat with short gaps in RC4 output stream,
e.g., ABAB, ABCAB, ABCDAB, etc, when the relative bias (the ratio be-
tween the additional probability and the original probability) of these patterns
is approximately 1/N for a zero gap (ABAB) and gradually decreases when
the gap length increases. We show how these patterns can be used to mount
a distinguisher of RC4 streams from randomness that requires only 226 output
words, about a third of the data needed by the best known distinguisher from
[4] for the same success rate of 2/3. In addition, we show that these patterns
appear also in RC4A with the same biased probability as in RC4, and describe
a slightly less efficient distinguishing algorithm for RC4A.

Our second result is based on new analysis of RC4 predictive states, which are
partial states (usually small) that suffice for determining keystream output for sev-
eral rounds. We define a recyclability property for these states and show that re-
cyclable predictive states have relatively high probability to repeat in shifts of N
rounds, creating the same predicted output pattern repetitively. We prove that
some of the known predictive states are indeed recyclable and use these observa-
tions to extend the significance of every recyclable predictive state from a single
short biased pattern to a family of patterns that occur with various probabilities
andwith various relative biases.Theprobabilities are lower than the one of the orig-
inal pattern, whereas the relative biases are significantly larger than the one of the
original pattern and can grow to arbitrary values, allowing the attacker to predict
output bits with arbitrary advantage. In addition, we discuss how the recyclable
states can be used to construct state recovery attacks on RC4 internal state.

The rest of the paper is organized in the following way: In section 2 we
describe RC4 and previous results about its security. In Section 3 we present
the digraphs repetition pattern, analyze its statistical properties in RC4/RC4A
generated streams and discuss how the cryptanalyst can exploit these properties.
In Section 4 we define recyclable states and discuss their availability and their
cryptanalytic usability. We summarize our work in Section 5.

2 RC4 and Its Security

2.1 Description of RC4

RC4 consists of 2 parts (described in Figure 1): A key scheduling algorithm
KSA which turns a random key (whose typical size is 40-256 bits) into an initial
permutation S of {0, . . . ,N − 1}, and an output generation part PRGA which
uses this permutation to generate a pseudo-random output sequence.

The PRGA initializes two indices i and j to 0, and then loops over four
simple operations which increment i as a counter, increment j pseudo randomly,
exchange the two values of S pointed to by i and j, and output the value of S
pointed to by S[i] + S[j]1.

1 Here and in the rest of the paper all the additions are carried out modulo N .
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KSA(K[0 . . . � − 1])
Initialization:

For i = 0 . . . N − 1
S[i] = i

j = 0
Scrambling:

For i = 0 . . . N − 1
j = j + S[i] + K[i mod �]
Swap(S[i], S[j])

PRGA(K)
Initialization:

i = 0
j = 0
S = KSA(K)

Generation loop:
i = i + 1
j = j + S[i]
Swap(S[i], S[j])
Output z = S[S[i] + S[j]]

Fig. 1. The Key Scheduling Algorithm and the Pseudo-Random Generation Algorithm

2.2 Previous Attacks on RC4

Cryptanalysis of RC4 is divided into two main parts, analysis of the initialization
of RC4 and analysis of the keystream generation. The first part focuses on the
KSA, the PRGA initialization and the integration of both, whereas the last
focuses on the internal state and the round operation of the PRGA.

The simplicity of the initialization part and the major difference between the
amount of hidden information between this part and the keystream generation
part attracted a lot of attention in the cryptographic community and indeed
numerous significant weaknesses were discovered in this part of many types,
including classes of weak keys ([18]), patterns that appear twice and three times
the expected probability ([5]), propagation of key patterns through the KSA to
the initial permutation and through the PRGA initialization to the prefix of the
stream ([6]), modes of operation that allow related key attacks ([17]), partial
message recovery ([5]) and full key recovery attacks ([6]) with practical time
complexities, statistical biases in different prefixes of the generated stream ([6]
and [9]) and analysis of the biased distribution of RC4 initial permutation ([7]
and [16]).

The weaknesses that were discovered in [6] where the most distructive ones,
as they were translated to practical attack on the usage of RC4 in the security
protocols (WEP) of the international standard for wireless LAN communication
802.11b. The discovery of this attack affected the trust of cryptographers and
security designers in RC4 and the common practice for using RC4 today includes
hardening of the initialization process by truncating some prefix of the keystream
(RSA and Ron Rivest recommendation is N words). This hardening neutralizes
most of the attacks and weaknesses that were discovered in RC4 initialization.

The analysis of the keystream generation part was far less successful in
mounting severe attacks, but still several interesting weaknesses where discov-
ered. Golić ([1]) and Fluhrer and McGrew ([4]) designed distinguishers of RC4
streams from random streams that require 244.7 and 230.6 keystream words re-
spectively. Several classes of RC4 partial states were defined and analyzed in [4],
[5] and [8] as such that create unique patterns in the output stream and allow
a viewer of the output stream to recover parts of the internal state with more
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than trivial probability (chapter 2 of [16] contains an overview of these classes).
The cycles structure of RC4 state progression was also analyzed in [3] and [15],
where the last describes short cycles that are unreachable by RC4. [2] and [3]
describe state recovery attacks with complexity that is less than the square root
of an exhaustive search over all possible states. However, due to the hugeness of
the state (1700 bits for n = 8), these attacks are completely impractical as they
require more than 2700 steps.

Two variants of RC4 were recently proposed, both slightly more complex
than the original RC4 and are claimed to be more secure than it. RC4A ([9])
was designed by Paul and Preneel and works with two RC4 tables (we describe
the algorithm in more details in Section 3.4). The generation stage of RC4A is
slightly more efficient than RC4’s, but the initialization stage requires at least
twice the effort of RC4 initialization. VMPC ([10]) was designed by Zoltak and
includes several changes to the initialization (j not initialized to 0), the round
operation (different progression for j) and the output generation stage (different
calculation of the output index). Maximov described in [13] distinguishers for
both variants, requiring 254 data for VMPC and 258 data for RC4A.

The trend of side-channel attacks had not skipped RC4 and efficient fault
attacks were described in [11] and [12].

3 The Digraph Repetition Bias

In this section we describe a special scenario that occurs when the value 1 is
used to update the index j, analyze the expression of this scenario on the statis-
tical behavior of RC4 output streams and exploit these observations to mount a
distinguishing attack on RC4.

We use the notations it, jt and St for the indices i and j and the permutation
S after round t.

3.1 The Queue Model

The behavior of RC4 permutation was described in [16] as a unique queue with
some interesting properties. The queue has N ordered elements (permutation
elements) and when one reaches its turn, it is used to update the index j through
the function j ← j + S[i]. However, instead of going to the end of the line, the
updating element selects a pseudo-random location in the queue (pointed to by
j), pushes itself to this location and sends the deprived element that was there
to the end of the line. One of the properties of this special queue is that values
that were recently used (to update j) are likely to be used again in less than N
rounds, whereas values that were not used for N rounds must have been pushed
back at least once and thus have lower probability to be used.

The permutation itself changes in two locations within every round and in
2k locations (possibly with repetitions) within sequences of k rounds due to
the swapping, where half of these changes are in predicted locations and the
other half are in pseudo-random locations. Lemma 1 measures the effect of these
changes on the permutation entries.
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Lemma 1. Let I be a set of r permutation locations. Suppose that RC4 is in a
state where the predictable course of the index i in the next k rounds does not
visit I. Then the probability of the permutation k rounds later to have the same
values in I is approximately e−kr/N .

Proof. The index i does not reach any of the indices in I and the index j
progresses in a pseudo-random manner and will reach each of the the r positions
in each of the k rounds with probability 1/N . Thus failing in these kr trials results
with having the set I untouched. The probability of this event is (1− 1/N)kr ≈
e−kr/N . ��

3.2 The Digraph Repetition Scenario

Consider the situation where the value 1 is used to update j, i.e. (in “queue
terms”), 1 reaches the head of the line. We will denote the round where that
happens as round r and the pair of rounds [r − 1, r] as the origin pair. Notice
that this situation occurs quite often, approximately once in every N rounds.
Suppose now that the pseudo-random location selected by 1 after the j update
(jr) is not very far from the head of the line, making it unlikely that this element
will be moved from there before being used again to update j. We denote the
distant which 1 passes in the swap by the gap g = jr − ir. And lastly, suppose
that when i reaches the new location of 1, j points exactly to the original location
of 1. We denote this round and the previous one as the end pair [r + g − 1, r +
g]. Our observation is that when that happens, a unique equivalence occurs
between the origin pair of rounds and the end pair of rounds, making it likely
that they produce the same pair of output words. We formalize this observation
in Lemma 2.

Lemma 2. Suppose that Sr−1[ir] = 1 and let g = jr−1 − ir−1 (the gap). If
jr+g−1 = ir−1 then the probability of the digraph that is outputted in rounds
[r + g − 1, r + g] to be identical to the digraph outputted in rounds [r − 1, r] is
bounded from below by e(8−8g)/N .

Proof. We first prove that when everything “goes right” the digraphs are iden-
tical and then bound the probability that anything “goes wrong”. In Figure 2
we track the internal state during rounds r, . . . , r + g and show that the same
digraphs are outputted in the origin pair and the end pair.

This scenario assumes that the permutation values in locations that affect
the swaps and the selection of output words in both pairs of rounds, remain
unchanged during the whole process (except for the swaps in the origin and end
pairs). The locations ir−1, ir, ir+g−1 and ir+g cannot be reached by i but can be
changed by j in any of the g − 2 intermediating rounds. By using Lemma 1 we
get that the probability of 4 elements to survive g− 2 rounds is e−4(g−2)/N . The
locations of the output words Sr−1[ir−1]+Sr−1[ir+g−1] and Sr[ir]+Sr[ir+g] are
arbitrary and may fall in the course of i between the round pairs. Each of these
entries need to remain unchanged for g rounds (the first in rounds r, . . . , r+g−1
and the second in rounds r +1, . . . , r + g) and has a probability of g/N to fall in
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S
i j ir − 1 ir . . . ir + g − 1 ir + g S[i] S[j] S[i] + S[j] Output

ir − 2 ir − 1 + g − A A 1 . . . B C / / / /
ir − 1 ir − 1 + g B 1 . . . A C B A B + A Z1

ir ir + g B C . . . A 1 C 1 C + 1 Z2

...
...

...
...

. . .
...

...
...

...
...

...
ir + g − 2 ir − 1 − B B C . . . A 1 / / / /
ir + g − 1 ir − 1 A C . . . B 1 B A B + A Z1

ir + g ir A 1 . . . B C C 1 C + 1 Z2

Fig. 2. The Digraph Repetition Scenario

the i-affected area. Thus the probability of these two indices to remain in place
is (1 − g

N )2 · e−2g/N . For small g/N we can use the approximation e−ε ≈ 1 − ε

to get e−4g/N and thus the overall probability of all indices to be in place is
e(8−8g)/N . ��

Theorem 1. For small values of G the probability of the pattern ABSAB in
RC4 streams where S is a G-word string is (1 + e(−4−8G)/N/N) · 1/N2.

Proof. Notice that g from Lemma 2 actually represents the shift between the
digraphs and the real gap between the digraphs is G = g − 2.

Let ES (source event) be the event where the conditions of Lemma 2 are
satisfied, i.e., Sr−1[ir] = 1, jr−1 = ir+G+1 and jr+G+1 = ir−1 and let ET (target
event) be the event where there is equality between the output digraph of the
origin pair and the end pair. The probability of ES is N−3 and we use it to
calculate the probability of ET .

P[ET ] = P[ET |ES ] · P[ES ] + P[ET |ES ] · P[ES ]
≥ e(−8−8G)/N/N3 + 1/N2 · (1− 1/N3)
= 1/N2 · (1 + e(−8−8G)/N/N) + negl(1/N2)

��

The relative bias is bDBL(G) = e−8/N

N · (e−8/N )G = C1 · CG
2 for the constants

C2 = e−8/N ≈ 0.97 and C1 = C2/N .
For the sake of simplicity the we made many heuristic assumptions during

the analysis. Therefore, we carried out RC4 simulations to support the analy-
sis and put the analytically calculated biases against the simulation result (see
Figure 3)2.

2 In the simulation we used 216 bitstreams of size 224 each, ignoring cross-dependencies
between the examined events and regarding every digraph with every gap as an in-
dependent event, meaning that every bitstream digraph was used for 64 experiments
as the ending digraph and 64 experiments as the beginning digraph.
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Fig. 3. Experimental vs. analytic results for biases of digraph repetitions

3.3 Digraph Repetition Distinguisher

In [4] Fluhrer and McGrew used information theoretic means to estimate the
number of samples that are required for their distinguisher. They showed that
this amount is inversely proportional to the discrimination between these distri-
butions. Lemma 3 estimates the discrimination between two distributions that
differ in a set of independent events.

Lemma 3. Let X and Y be two distributions and suppose that the independent
events {Ei : 1 ≤ i ≤ k} occur with probabilities pX (Ei) = pi in X and pY(Ei) =
(1 + bi)pi in Y. Then the discrimination of the distributions is

∑
i pib

2
i .

We prove this lemma in Appendix A.1.
Let us calculate this sum for the biases of digraphs repetitions with different

gaps of at most M . The probability in random distributions is 1/N2 for all events
and the relative bias in RC4 streams is bDBL(G).∑

0≤G≤M

p · b2DBL(G) = p ·
∑

0≤G≤M

(C1 · CG
2 )2 = p C2

1 ·
∑

0≤G≤M

(C2
2 )G

this is a partial sum of a geometric sequence and for M ≥ N/4 the tail of the
sum is very small

= p C2
1 ·

1− C2M
2

1− C2
2

≈ N−4 · e−16/N

1− e−16/N
≈ N−4

1− (1− 16/N)
=

1
16N3

The biases used by Fluhrer’s distinguisher are in 7N events that has trivial
probability 1/N3 and relative bias of 1/N , and when summing them according
to Lemma 3 we get an induced discrimination of

∑
pb2 = 7/N4. Thus for a

given success rate, a distinguisher based on our observations solely, requires
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102/N (less than half for N = 256) of the samples that are required by one that
is based on Fluhrer’s biases and a combined distinguisher requires 102

N+102 (less
than one third for N = 256) of this number.

Lemma 4. The number of samples that is required for distinguishing two distri-
butions that have discrimination D with success rate 1− α (for both directions)
is (1/D) · (1− 2α) · log2

1−α
α

We prove this lemma in Appendix A.2. We use lemma 4 to estimate the numbers
of samples that are required for different success rates, and get that less than 229

samples are required for success rate of 90%, less than 228 samples are required
for success rate of 80% and less than 226 samples are required for success rate
of 2/3.

3.4 Applicability to RC4A

We divide the RC4 round into three parts

1. The State update part includes the changes in i and j and the swap of the
corresponding values in S.

2. The Output Index Calculation part is the calculation of S[i] + S[j]
3. The Emission part is the selection of the output value from the permutation.

RC4A uses two instances of RC4 tables with cross references between them.
Every round comprises two semi-rounds, in each of which an output word is
emitted, and thus every round results with two output words. During the ini-
tialization stage both tables are initialized to pseudo-random permutations (we
omit detailed description of this part) and during the generation stage both ta-
bles are involved in the generation of every output word; In the first semi-round
the state update and the output index calculation are done in one table, whereas
the emission part is done in the other table, namely the output word is taken
from the other table (in the the calculated index). In the second semi-round, the
roles of the tables change and the output is taken from the first table. Notice
that on every such round both RC4A tables progress identically to a standard
RC4 table and thus the state progression is similar to RC4. We will use this
property to show that the statistics of digraphs repetition in RC4A is similar to
its statistics in RC4.

Before getting to the fine details, let us give some intuition for why the
digraph repetition patterns are biased also in RC4A. Most of the weaknesses
of RC4 keystream generation rely on certain scenarios that are known to occur
during RC4 progression. We refer to these scenarios as special. Most of the special
scenarios rely on a small number of values that appear in certain locations of
the RC4 table, which are used during the scenario. Scenarios that are based on
a large number of values are less frequent and thus in order to maximize the
probability of occurrence, a typical special scenario minimizes the number of
starting conditions (known entries) by re-using the known entries for all three
parts of the round; State update is crucial for assuring the correct progression of
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the scenario. Output index calculation and emission are important for external
expression of the scenario, sometimes resulting with biases in the keystream
distribution. In RC4A the emission part is done in the second table and thus
the same values cannot be used for both parts 1 and 3 or 2 and 3. Thus the
expression of most of the special scenarios vanishes in RC4A and their induced
weaknesses disappear.

However, the digraph repetition scenario is an exceptional one, since the
permutation entries that guarantee the occurrence of the scenario are used only
for state update and output index calculation. The expression of the scenario
does not depend on any particular output value and thus the separation of
the emission part does not affect the expression of the scenario. The output
indices at close pairs of rounds are identical with high probability and the only
requirement from the output values is to remain in the same locations during the
intermediating rounds. This requirement is fully satisfied in RC4A since both
tables evolve in the same rate as RC4 tables and therefore the digraph repetition
scenario occurs in RC4A with similar statistics as in RC4.

The scenario in RC4A is as follows. We use permutations P1 and P2 and same
symbols as in Figure 2. In addition, we ignore every second semi-round (which
does not affect P1).

1. Round t: The index i reaches the position before the value 1 in P1 (ir − 1).
Output of the first semi-round is the value from P2 in location B + A (Z1).

2. Round t + 1: The index i reaches the value of 1 in P1 (ir). Output of the
first semi-round is the value from P2 in location C + 1 (Z2).

3. g − 2 rounds pass. Locations B + A and C + 1 remain unchanged in P2.
Locations t, t+ 1, t+ g and t+ g + 1 remain unchanged in P1.

4. Round t+ g: The index i reaches again the position before the value 1 in P1

(ir + g − 1). Output of the first semi-round is the value from P2 in location
B +A (again Z1). In the second semi-round some arbitrary value is emitted.

5. Round t + g + 1: The index i reaches the value of 1 in P1 (ir + g). Output
is the value from P2 in location C + 1 (again Z2).

Thus when omitting the even output words and concentrating in the sub-stream
of odd words, or alternatively concentrating in sub-stream of even words) the
same pattern Z1Z2 ∗ . . . ∗︸ ︷︷ ︸

g

Z1Z2 occurs with the same biased probability as in RC4

streams. When summing up the biases of these patterns in both sub-streams, we
get a similar induced discrimination of 1

16N3 .

Corollary 1. There exists an algorithm that distinguishes RC4A streams from
randomness with success probability of 2/3 by analyzing less than 226.5 samples.

The difference between the distinguishers is due to the unavailability of Fluhrer’s
biases in RC4A. The best RC4A distinguisher that was described in the literature
([13]) requires 259 output words, which is more than billion times the data for
our distinguisher.
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4 Recycling Attacks

4.1 Partial States and Fortuitous States

A significant part of published RC4 analysis is based on classification of RC4
states and partial states according to their cryptanalytic significance. We recall
the definition of partial states and predictive states from [5].

Definition 1. A d-state is a partially specified RC4 state, that includes i, j and
d (not necessarily consecutive) elements of S.

We use the notation {i0, j0, [x0, x1, . . . , xd−1]} to specify the d-state i = i0,
j = j0, S[i0 + 1, . . . , i0 + d] = [x0, . . . , xd−1].

Definition 2. Let D be a d-state and suppose that for a positive b there exist a
sequence of b words that are output (in certain shifts) by every RC4 state that is
compliant with D. Then D is said to be b-predictive.

It was shown in [5] how b-predictive states can be used to attack RC4 by
revealing parts of the internal state and constructing efficient distinguishing al-
gorithms, in particular when b = d (it was proved in [8] that b ≤ d). A fortuitous
state of order d is a d-predictive d-state in which the predicted d outputs are
emitted immediately after the occurrence of the state. In Figure 4 we demon-
strate predictiveness by presenting a family of N − 1 fortuitous states of order
two, {x− 1, 0, [−1, x + 1]} for every x 	= 2.

4.2 Recyclable States

A very interesting property of the scenario presented in Figure 4 is the fact that
the swap on the second round reverts the swap from the first round, leaving the
permutation in the same situation as it was at the beginning of the scenario. We
formalize this behavior by defining recyclable states and then discuss how the
cryptanalyst can exploit this property.

Definition 3. For some d, let D be a d-state with i = i∗ and let I be the
permutation consecutive interval that begins in i∗+1, contains the d permutation
entries of D and is the minimal interval that satisfies these requirements (thus
|I| >= d). Suppose that in every D-compliant state, the permutation S after i
leaves I satisfies again the permutation constraints of D. Then D is said to be
recyclable.

At the point where i leaves I, the permutation entries that are specified by
D have the same values that they had when D occurred and they have a very

Round i j S[x] S[x + 1] S[i] S[j] S[i] + S[j] Output

x − 1 x − 1 x + 2 −1 x + 1 / / / /

x x x + 1 x + 1 −1 x + 1 −1 x x + 1

x + 1 x + 1 x −1 x + 1 x + 1 −1 x −1

Fig. 4. A Family of Fortuitous States of order 2
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high probability of more than e−d to remain in place during the next N − i
rounds until the index i completes a full traversal of S. Combining in the 1/N
probability of the index j to be also in place at that time, we get an overall
probability of at least e−d/N for another D-compliant state, exactly N rounds
after the first one.

Moreover, D remains recyclable and the second occurrence of D causes a
third occurrence with the same probability of e−d/N and so forth. We formalize
this observation in Theorem 2.

Theorem 2. Let D be a recyclable RC4 d-state and suppose that the state of
round t has the index i as specified by D and that the rest of the state is dis-
tributed uniformly. Then the probability of the states in rounds t, t+N, t+2N, t+
3N, . . . , t+(k−1)N to be D-compliant is bounded from below by e−d(k−1)/Nd+k.

Proof. Since a D-compliant requires (except for i) d specific permutation ele-
ments and specific index j, the probability of the state in round t to be D-
compliant is N−1−d. The probability of round t+ N to have D-compliant state
(given that round t had one) is at least e−d/N and the same situation holds for
round t+2N, t+3N, . . . , t+(k−1)N and thus the overall probability of the whole
sequence to be D-compliant is at least N−1−d·(e−d/N)k−1 =e−d(k−1)/Nd+k. ��

4.3 Availability of Recyclable Fortuitous States

We enumerated the fortuitous states of different orders to check whether and
how many recyclable fortuitous states exist. The results are assorted where for
some orders we found few states (9 states of order 3 and 100 states of order
5), whereas for other orders we found that most of the fortuitous states are
recyclable. 512 out of 516 fortuitous states of order 2 are recyclable, more than
500 of them from the family {x, x + 3, [−1, x + 1 or x + 2]}. 4011 out of 6540
fortuitous states of order 4 are recyclable, more than 4000 of them from the
family {x, x+6, [−3, 1, x+4 or x+5 or x+6 or x+7, x or x+1 or x+2 or x+3]}.
There are no recyclable fortuitous states of order 6.

Due to time limitations, we were not able to complete the research on the
availability of recyclable states of high order. Our intuition and some simulations
we made lead us to the conjecture that recyclable fortuitous states of high order
are rare or unavailable at all. However, when such states occur they tend to come
in families, e.g., recyclable fortuitous states of an even order 2d tend to come
in large families of about N · (2d)d members (as described above for d = 1, 2),
where the index i is “free” and the second half of the permutation constraints
have some “freedom” (each entry has 2d alternatives).

4.4 Recycling Attacks

When the state in question is predictive, the recyclability property becomes
extremely important since the occurrence of these states are expressed in the
output stream.
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Statistical Analysis of RC4 Streams

Theorem 3. Let D be a recyclable b-predictive d-state and suppose that the
predicted outputs of D are the values z0, . . . , zb−1 in distances r0, . . . , rb−1 after
the occurrence of D. Then the following pattern has probability of at least N−dk ·
(1 + Ndk−d−k

ed(k−1) ).

r0
z0, . . . ,

r1
z1, . . . ,

rb−1
zb−1, . . .︸ ︷︷ ︸

N

,
r0+N
z0 , . . . ,

rb−1+N

zb−1 , . . .︸ ︷︷ ︸
N

, . . . ,
r0+(k−1)N

z0 , . . . ,
rb−1+(k−1)N

zb−1 , . . .︸ ︷︷ ︸
N

Proof. Let ET be the target event in which the output values of the dk rounds in
question comply to the pattern. By Theorem 2 the probability for k occurrences
of D in N -distances is e−d(k−1) ·N−d−k. We denote this event by ES . When ES

occurs ET occurs with probability 1 and otherwise ET has the trivial probability
of N−2k.

P[ET ] = P[ES ] · P[ET |ES ] + P[ES ] · P[ET |ES ]
= e−d(k−1) ·N−d−k · 1 + (1− e−d(k−1) ·N−d−k) ·N−dk

= N−dk · (1 +
Ndk−d−k

ed(k−1)
)− e−d(k−1) ·N−d−(d+1)k)︸ ︷︷ ︸

negl(N−dk)

��

Notice that for a fixed d the relative bias is proportional to
(

Nd−1

ed

)k

and thus
can increase to arbitrary values by increasing k. However, despite of the hugeness
of these relative biases, they can be hardly used by distinguishing algorithms.
When k grows, the original probability (N−2k) decreases rapidly and the amount
of data that is required for the distinguishing increases. However, large relative
biases can be used for prediction of output bits and words with large advantages.

Theorem 4. Let X be a distribution and suppose that a particular bit-pattern
B = b0b1 . . . bk−1 occurs with probability p·(1+b) in X (for p = 2−k). In addition,
suppose that for a parameter v < k all the other k-bit strings with the same v-bit
prefix as B have trivial probability of p. Then there exists an algorithm that once
in 2k

2k−v+b
samples (on average) of k-bit strings from X predicts the (k − v)-bit

suffix with success probability 1+b
2k−v+b

.

We prove this theorem in Appendix B. Thus a k-bit pattern that occurs with
relative bias b can be used to predict a bit (v=k−1) with success probability
1+b
2+b = 1/2 + b

4+2b once in every 2k

2+b samples on average. The same pattern can
be used to predict a byte (v=k−8) with success probability 1+b

256+b once in every
2k

256+b samples on average.
We summarize the practical predictions that are derived from the combina-

tion of Theorems 3 and 4 in the table in Figure 5.
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d States k Relative Bias P[ET |ES ] Samples Number Byte Prediction Bit Prediction

2 0.135 2−40 229.9 (223) 1.135/N 0.53
2 512 3 4.7 2−56 244.3 (239) 4.63/N 0.85

4 162 2−72 255.7 (254.3) 0.39 0.994
5 5628 2−88 266.5 0.956 ≈ 1

3 9 2 12.75 2−56 249 (244.8) 0.05 0.93
3 41586 2−80 261.5 ≈ 1 ≈ 1

4 4011 2 1200 2−72 250 0.825 0.999
3 228.5 2−104 263.5 ≈ 1 ≈ 1

Fig. 5. Predictions of bits and bytes. The samples number are calculated for bit pre-

diction and whenever the samples number for byte prediction is significantly different,

we add it in parentheses

State Recovery Attack
Some of the state recovery attacks that are analyzed in [2] work very fast when
more than 100 permutation elements are known. Let us present a way to ob-
tain these 100 elements within relatively small effort using recyclable fortuitous
states. A recyclable fortuitous state of order d repeats k times with probabil-
ity e−d(k−1) ·N−d−k. The attacker can wait for the event where the expression
pattern of this state repeats k times in shifts of N rounds (ed(k−1) ·Nd+k) and
guess that this external pattern stems from the corresponding internal pattern
(with probability of almost 1). The amount of data that is required for this
event to occur for appropriate selections of k = d = 10 is e90N20 ≈ 2290. In
that case, the attacker learns 100 permutation elements with probability 1. An
equivalent attack that is based on occurrences of fortuitous states of order 100
get the hundred elements in a single state, but requires 2800 data in order to
obtain them.

The attacks from [2] were tested in situations where the known elements
are in a single permutation whereas in our case the known entries are actually
k times the same d entries in k relatively close permutations. However, many
situations are impossible under the constraints that the same values appear in
the same entries during the kN rounds, e.g., the index j cannot touch these
values (except for the fortuitous scenario), and the attacker can rule out many
impossible branches and converge faster to the correct solution. Still the 2290

data complexity is a potential one, depending heavily of efficient ways to exploit
these dk values. Another question that remains open at the moment regards the
availability of recyclable fortuitous state of high order. There are such states of
order 5, but there are none of order 6.

5 Summary

In this paper we presented new families of unique statistical patterns of the
keystream generator of RC4. The families are large and the patterns are more
frequent and more biased than previously known ones, and allow stronger attacks
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and new attacks on RC4. These patterns were hidden for a long period mainly
due to the fact that they are spread over distant rounds and thus could not be
accidentally detected. However, the slow evolution of the permutation preserves
many permutation elements with high probability along large number of rounds
and we cannot rule out the possibility that this direction of research was not yet
extracted.
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1. Jovan Dj. Golić: Linear Statistical Weakness of Alleged RC4 Key-Stream Gener-
ator. EUROCRYPT: Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques, EURO-
CRYPT’97 pp. 226–238

2. Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen and Sven Verdoolaege:
Analysis Methods for (Alleged) RC4. ASIACRYPT: Advances in Cryptology, In-
ternational Conference on the Theory and Applications of Cryptology and Infor-
mation Security, ASIACRYPT’98 pp. 327–341

3. Serge Mister and Stafford E. Tavares: Cryptanalysis of RC4-like Ciphers. SAC:
Selected Areas in Cryptography, SAC’98 pp. 131–143

4. Scott R. Fluhrer and David A. McGrew: Statistical Analysis of the Alleged RC4
Keystream Generator. FSE: Fast Software Encryption, FSE’00 pp. 19–30

5. Itsik Mantin and Adi Shamir: A Practical Attack on Broadcast RC4. FSE: Fast
Software Encryption, FSE’01

6. Scott R. Fluhrer, Itsik Mantin and Adi Shamir: Weaknesses in the Key Scheduling
Algorithm of RC4. SAC: Annual International Workshop on Selected Areas in
Cryptography, SAC’01

7. I. Mironov: (Not So) Random Shuffles of RC4. Crypto’02

8. Souradyuti Paul and Bart Preneel: Analysis of Non-fortuitous Predictive States of
the RC4 Keystream Generator. Progress in Cryptology - INDOCRYPT 2003: 4th
International Conference on Cryptology in India INDOCRYPT’03 pp. 52–67

9. Souradyuti Paul and Bart Preneel: A New Weakness in the RC4 Keystream Gen-
erator and an Approach to Improve the Security of the Cipher. Fast Software
Encryption: 11th International Workshop, FSE’04 pp. 245–259

10. B. Zoltak: VMPC one-way function and stream cipher. Fast Software Encryption:
11th International Workshop, FSE’04 pp. 210–225

11. Jonathan J. Hoch and Adi Shamir: Fault Analysis of Stream Ciphers. CHES: Cryp-
tographic Hardware and Embedded Systems, CHES’04 pp. 240–253

12. E. Biham, L. Granboulan and P. Nguyen: Impossible and Differential Fault Anal-
ysis of RC4. Fast Software Encryption: 12th International Workshop, FSE’05

13. Alexander Maximov: Two Linear Distinguishing Attacks on VMPC and RC4A and
Weakness of the RC4 Family of Stream Ciphers. Fast Software Encryption: 12th
International Workshop, FSE’05

14. Richard E. Blahut: Principles and Practice of Information Theory. Addisson-
Wesley (1983)

15. Hal Finney: an RC4 cycle that can’t happen. (1994)

16. Itsik Mantin: The Security of the Stream Cipher RC4. Master Thesis (2001) The
Weizmann Institue of Science



Predicting and Distinguishing Attacks on RC4 505

17. Alexander L. Grosul and Dan S. Wallach: a Related-Key Cryptanalysis of RC4.
Technical Report TR-00-358, Department of Computer Science, Rice University
(2000)

18. Andrew Roos: A Class of Weak Keys in the RC4 Stream Cipher. Posted to sci.crypt
(1995)

A Statistical Biases and Distinguishing Algorithms

A.1 Combining the Effect of Independent Events

We prove here Lemma 3. The discrimination of two distributions is given by the
expression

∑
s pX lg pX (s)

pY (s) where the sum is over all the possible strings. For a
single event E with probabilities p and p(1 + b) the discrimination is (we use

q
def
= 1− p)

p lg
p

p(1 + b)
+ q lg

q

q − pb
= p lg(1− b

1 + b
) + q lg(1 +

pb

q − pb)
)

We use the log approximation to get

≈ −p
b

1 + b
+ q

pb

q − pb
≈ pb2

The following claim measures the effect of combining several distributions on
the discrimination of the overall super-distribution.

Claim. Let X and Y be two distributions over the domain S and let X ′ and Y ′ be
two distributions over the domain S ′. Let XX ′ be the distribution (over S ×S ′)
that is created by concatenating the distributions X and X ′, and let YY ′ be the
equivalent distribution for Y and Y ′. Then D(XX ′,YY ′) = D(X ,Y)+D(X ′,Y ′).

Proof.

D(XX ′,YY ′) =
∑

s∈S,s′∈S′
pXX ′(s, s′) lg

pXX ′(s, s′)
pYY′(s, s′)

=

=
∑
s∈S

∑
s′∈S′

pX (s)pX ′(s′) lg
pX (s)pX ′(s′)
pY(s)pY′(s′)

=

=
∑
s∈S

∑
s′∈S′

pX (s)pX ′(s′)
(

lg
pX (s)
pY(s)

+ lg
pX ′(s′)
pY′(s′)

)
=

=
(∑

s′∈S′
pX ′(s′)

)
·
(∑

s∈S

pX (s) lg
pX (s)
pY(s)

)
+

+
(∑

s∈S

pX (s)
)
·
(∑

s′∈S′
pX ′(s′) lg

pX ′(s′)
pY′(s′)

)
=

= D(X ,Y) + D(X ′,Y ′)

��
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By applying Claim A.1 recursively we can get a generalization of this claim,
saying that the overall discrimination of a combination of several independent
distributions is the sum of the discriminations of these distributions. The combi-
nation of independent events for the same distribution (as described in Lemma
3) is equivalent to the combination of independent distributions and thus the
discrimination can be summed over the events to get

∑
i pib

2
i .

A.2 Discriminations, Samples Numbers and Success Rates

We prove here Lemma 4. We denote the discrimination between two distributions
by D and the discrimination between 	 samples from these distributions by L.
From [14], L is on one hand proportional to the number of samples and on the
other hand induces a bound for the false positive rate α and the false negative
rate β by the inequality

L = 	D ≥ β lg
β

1− α
+ (1− β) lg

1− β

α

For β = α we get 	 ≥ (1/D) · (1− 2α) · log 1−α
α .

B Statistical Biases and Bit Predictions

We prove here Theorem 4.

Proof. Let EPREF and ESUFF be the events where the v-bit prefix of B and the
(k−v)-bit suffix of B occur, and let E be the joint event where B occur (namely,
E = EPREF ∧ESUFF ). Let E′ = EPREF ∧ESUFF . The algorithm analyzes the
output stream of X and locates occurrences of EPREF . Notice that the bias of
E affects the probability EPREF in the following manner:

P[EPREF ] = P[E] + P[E′] = p(1 + b) + (2k−v − 1)p =
2k−v + b

2k

In such occurrences the algorithm predicts that ESUFF will occur with the fol-
lowing success probability

P[ESUFF |EPREF ] =
P[ESUFF ∩ EPREF ]

P[EPREF ]
=

=
P[E]

2−v(1 + 2v−kb)
=

=
2−k(1 + b)

2−v(1 + 2v−kb)
=

1 + b

2k−v + b

��
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Abstract. The boomerang attack and the rectangle attack are two at-
tacks that utilize differential cryptanalysis in a larger construction. Both
attacks treat the cipher as a cascade of two sub-ciphers, where there ex-
ists a good differential for each sub-cipher, but not for the entire cipher.
In this paper we combine the boomerang (and the rectangle) attack with
related-key differentials.

The new combination is applicable to many ciphers, and we demon-
strate its strength by introducing attacks on reduced-round versions of
AES and IDEA. The attack on 192-bit key 9-round AES uses 256 differ-
ent related keys. The 6.5-round attack on IDEA uses four related keys
(and has time complexity of 288.1 encryptions). We also apply these tech-
niques to COCONUT98 to obtain a distinguisher that requires only four
related-key adaptive chosen plaintexts and ciphertexts. For these ciphers,
our results attack larger number of rounds or have smaller complexities
then all previously known attacks.

1 Introduction

The boomerang attack [23] is an adaptive chosen plaintext and ciphertext attack
utilizing differential cryptanalysis [6]. The cipher is treated as a cascade of two
sub-ciphers, where a short differential is used in each of these sub-ciphers. These
two differentials are combined in an elegant way to suggest an adaptive chosen
plaintext and ciphertext property of the cipher that has high probability.

The boomerang attack was further developed in [18] into a chosen plaintext
attack called the amplified boomerang attack. The transformation uses birthday-
paradox techniques to eliminate the adaptive nature of the attack, by encrypting
large sets of plaintexts with the required input difference. After the encryption
of the plaintext pairs, the attacker searches for quartets of plaintexts that sat-
isfy the same conditions as if these quartets were constructed in the boomerang
process. The transformation to a chosen plaintext attack (instead of an adaptive
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gramme.

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 507–525, 2005.
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chosen plaintexts and ciphertexts attack) has price both in a much larger data
complexity and a much more complicated algorithm for the identification of the
right quartets. After its introduction, the amplified boomerang attack was fur-
ther developed into the rectangle attack [4]. The rectangle attack uses a more
careful analysis that shows that the probability of a right quartet is significantly
higher than suggested by the amplified boomerang attack. An optimized algo-
rithm for finding and identifying the right rectangle quartets was given in [5].

Related-key attacks [1] consider the information that can be extracted from
two encryptions using related keys. The concept was used in [19] to present
the idea of related-key differentials. These differentials study the development of
differences in two encryptions under two related keys.

In this paper we show how to combine these attacks with related-key differ-
entials. In [20], a boomerang attack that uses one regular differential along with
one related-key differential is introduced. Both this paper and [16] independently
developed the idea of using two related-key differentials, one for each sub-cipher,
simultaneously. The major difference between this work and [16] is the idea of
using more than one key difference in the differentials to obtain much better
attacks.

The basic related-key boomerang attack (which is similar to the one presented
in [16]) is aimed against ciphers whose subkeys are linear functions of the key.
In this case, a fixed key difference yields a known subkey differences.

The more complicated version of the attack deals with ciphers whose subkeys
are not linear functions of the keys. In this case, the attacker has to take into
consideration the fact that the initial key difference does not guarantee the
subkey differences used in the differential. In order to overcome this problem, we
use differential properties of the key schedule algorithm and use several pairs of
keys. This leads to the introduction of structures of keys under which structures
of plaintexts are being encrypted or decrypted.

We take advantage of the fact that in boomerang and rectangle attacks the
used differentials are shorter, and thus the diffusion of differences in the subkeys
can be used better than in ordinary related-key differential case.

Finally, we apply our attack against several block ciphers:AES[12], IDEA [21],
and COCONUT98 [22]. The attack on 9-round AES-192 requires 287 related-key
chosen plaintexts (279 plaintexts encrypted under 256 different keys), and has
running time of 2125 encryption. The attack on 6.5-round IDEA requires 259.8

related-key chosen plaintexts (257.8 plaintexts encrypted under four keys), and
has time complexity of 288.1 encryptions. We also apply these techniques to CO-
CONUT98 to obtain a distinguisher that requires only four related-key adaptive
chosen plaintexts and ciphertexts encrypted under two different keys. We sum-
marize our results along with previously known results on the respective ciphers
in Table 1.

This paper is organized as follows: In Section 2 we give a brief description
of the boomerang and the rectangle attacks. In Section 3 we describe the new
related-key boomerang and rectangle attacks. In Section 4 we present a related-
key rectangle attack on 9-round AES-192 and 10-round AES-256. In Section 5
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Table 1. Summary of the Previous Attacks and of Our New Attacks

Cipher Number of Complexity Number of Source
Rounds Data Time Keys

AES-192 8 2128 − 2119 CP 2188 1 [14]
(12 rounds) 8 289 RK-CP 2183 2 [17]

8 286.5 RK-CP 286.5 4 [16]
9 286 RK-CP 2125 256 Section 4

AES-256 8 2128 − 2119 CP 2204 1 [14]
(14 rounds) 9 285 RK-CP 5 · 2224 256 [14]

10 2114.9 RK-CP 2171.8 256 Section 4

COCONUT98 full 216 ACPC 238 1 [23]

full† 4 RK-ACPC 1 2 Section 5

IDEA 5 224 CP 2126 1 [13]

(8.5 rounds) 5.5† 251.6 RK-ACPC 1 4 Section 6
6 251.6 RK-ACPC 248 4 Section 6

6.5 259.8 RK-CP 288.1 4 Section 6
† – Distinguishing attack, RK – Related-key, CP – Chosen plaintext,
ACPC – Adaptive chosen plaintext and ciphertext
Time complexity is measured in encryption units

we present a related-key boomerang distinguisher for COCONUT98. Section 6
describes our results on IDEA. Finally, Section 7 summarizes this paper.

2 Boomerang and Rectangle Attacks

The main idea behind the boomerang attack [23] is to use two short differentials
with high probabilities instead of one long differential with a low probability.
The motivation for such an attack is quite apparent, as in many block ciphers
it is easier to find short differential with high probability than to find a long
differential with high enough probability (or even impossible).

We assume that a block cipher E :{0, 1}n×{0, 1}k→{0, 1}n can be described
as a cascade, i.e., E = E1 ◦E0, such that for E0 there exists a differential α→ β
with probability p, and for E1 there exists a differential γ → δ with probability q.
The distinguisher is the following boomerang process:

– Ask for the encryption of a pair of plaintexts (P1, P2) such that P1⊕P2 = α,
and denote the corresponding ciphertexts by (C1,C2).

– Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3,C4). Denote the corresponding plaintexts by (P3, P4).

– Check whether P3 ⊕ P4 = α.

The boomerang attack uses the first differential (α→ β) for E0 with respect to
the pairs (P1, P2) and (P3, P4), and uses the second differential (γ → δ) for E1

with respect to the pairs (C1,C3) and (C2,C4). The first differential is used in
the backward direction for the pairs (P3, P4), and the second differential is used
in the backward direction for both respective pairs.
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For a random permutation the probability that the last condition is satisfied
is 2−n. For E, the probability that the pair (P1, P2) is a right pair with respect
to the first differential (α → β) is p. The probability that both pairs (C1,C3)
and (C2,C4) are right pairs with respect to the second differential is q2. If all
these are right pairs, then E−1

1 (C3) ⊕ E−1
1 (C4) = β = E0(P3) ⊕ E0(P4), and

thus with probability p, P3 ⊕ P4 = α. The total probability of this quartet of
plaintexts and ciphertexts to satisfy the boomerang conditions is (pq)2.

The attack can be mounted for all possible β’s and γ’s simultaneously (as
long as β 	= γ). Thus, a right quartet for E is encountered with probability no
less than (p̂q̂)2, where:

p̂ =
√∑

β

Pr 2[α→ β], and q̂ =
√∑

γ

Pr 2[γ → δ].

For the complete analysis of the boomerang attack see [23].
As the boomerang attack requires adaptive chosen plaintexts and ciphertexts,

many of the techniques that were developed for using distinguishers in key recov-
ery attacks cannot be applied. This led to the introduction of a chosen plaintext
variant of the boomerang attack called the amplified boomerang attack [18]. The
key idea behind the transformation is to encrypt many plaintext pairs with input
difference α, and to look for quartets that conform to the requirements of the
boomerang process.

This kind of transformation is common, and can be achieved by birthday-
paradox arguments. A more careful analysis shows that two pairs, (P1, P2 =
P1 ⊕ α) and (P3, P4 = P3 ⊕ α), form a right quartet if three conditions are
satisfied:

1. E0(P1)⊕ E0(P2) = β = E0(P3)⊕ E0(P4).
2. E0(P1)⊕E0(P3) = γ (which leads to E0(P2)⊕E0(P4) = γ if this condition

and the previous one hold).
3. C1 ⊕ C3 = δ = C2 ⊕ C4.

The usual assumptions are that each of these conditions is independent of the
rest, and that the probability that a quartet would become a right quartet is
p2 · 2−n · q2. We note that if the conditions are dependent on each other, refined
algorithms may use these relations for achieving higher probabilities. The low
probability follows from the fact that the event E0(P1)⊕E0(P3) = γ occurs with
probability of 2−n. The analysis in [18] shows that out of N plaintext pairs, the
number of right quartets is expected to be N22−(n+1)p2q2.

Besides the lower probabilities, the transformation into a chosen plaintext
attack introduces the problem of identifying the right quartets. In the boomerang
attack the pair (P3, P4) that we test is known. In the amplified boomerang attack,
this is not the case. Instead, the attacker has to search for the right quartets
among all possible quartets.

The rectangle attack [4] shows that it is possible to use all the possible β’s
and γ’s simultaneously, and presents additional improvements over the amplified
boomerang attack. These improvements increase the probability of a quartet to



Related-Key Boomerang and Rectangle Attacks 511

be a right quartet, and N plaintext pairs with input difference α are expected to
produce N22−np̂2q̂2 right quartets1, where p̂ and q̂ are as defined above. In [5]
an optimized method of finding the right rectangle quartets is presented.

3 Related-Key Boomerang and Rectangle Attacks

A regular differential deals with some plaintext difference ΔP and a ciphertext
difference ΔC such that

Pr P,K [EK(P )⊕ EK(P ⊕ΔP ) = ΔC]

is high enough (or zero [3]). The common assumption is that this probability is
quite uniform over all keys and plaintexts. If this is not the case, a weak key
class can be found, i.e., a set of keys for which the above probability is far from
average (either very high or very low).

A related-key differential is a triplet of a plaintext difference ΔP , a ciphertext
difference ΔC, and a key difference ΔK, such that

Pr P,K [EK(P )⊕EK⊕ΔK(P ⊕ΔP ) = ΔC]

is high enough (or zero). Again, there is an assumption that this probability
is independent of P and K. Sometimes the relation between the keys is more
complex than XOR with some constant ΔK (see [1, 9]), but for sake of simplicity
we shall deal only with this kind of relation in this paper, even though our
technique is not restricted for this case.

3.1 Related-Key Boomerang Attacks

Let us assume that we have a related-key differential α → β of E0 under a key
difference ΔK0 with probability p. Assume also that we have another related-key
differential γ → δ for E1 under key difference ΔK1 with probability q.

The related-key boomerang process involves four different unknown (but re-
lated) keys — Ka, Kb = Ka⊕ΔK0, Kc = Ka⊕ΔK1, and Kd = Ka⊕ΔK0⊕ΔK1.
The attack is performed by the following algorithm:

– Choose a plaintext Pa at random and compute Pb = Pa ⊕ α.
– Ask for the encryption of Px under Kx, i.e., Ca = EKa

(Pa) and Cb =
EKb

(Pb).
– Compute Cc = Ca ⊕ δ and Cd = Cb ⊕ δ.
– Ask for the decryption of Cx under Kx, i.e., Pc = E−1

Kc
(Cc) and Pd =

E−1
Kd

(Cd).
– Test whether Pc ⊕ Pd = α.

1 This number is a lower bound for the expected number. For the complete analysis
see [4].
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Fig. 1. A Related-Key Boomerang Quartet

It is easy to see that for a random permutation, the probability that the last
condition is satisfied is 2−n. For E the probability that this condition is satisfied
is p2q2 just like for a regular boomerang attack. Figure 1 outlines a quartet
satisfying all the required conditions.

The attack can use multiple differentials for E0 and E1 (just like in a regular
boomerang attack), under the strict condition that all related-key differentials
used in E0 have the same key difference ΔK0 and the same input difference α,
and that all related-key differentials used in E1 have the same key difference
ΔK1 and the same output difference δ. Thus, the probability of a quartet to be
a right quartet is p̂2q̂2.

When the key schedule algorithm is linear then given a key difference all
subkey differences are known, and are easily predicted. In this case the attack
algorithm from [5] can be adapted. Otherwise, if the key schedule algorithm is
non-linear, the exact key difference needed to satisfy the subkey differences of
the related-key differential might be unknown. In the latter case, the attacker
examines the differential properties of the key schedule algorithm and computes
the probability that a given key differences evolves into the required subkey dif-
ferences. Then, the attacker repeats the attack with various key differences, such
that in one (or more) of the cases, the key difference causes the subkey differ-
ences needed for the related-key differential. Note that this attack is actually a
multiple application of the basic related-key boomerang/rectangle attacks. An
example of such an attack is the attack on AES-192 presented in Section 4.

3.2 Related-Key Rectangle Attack

The transformation of the related-key boomerang attack into a related-key rect-
angle attack is similar to the transformation of the boomerang attack into the
rectangle attack. Assume that E can be decomposed as before, where α, δ, p̂, and
q̂ have the same meaning. Then, related-key rectangle distinguisher is as follows:

– Choose N plaintext pairs (Pa, Pb = Pa ⊕ α) at random and ask for the
encryption of Pa under Ka and of Pb under Kb.
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– Choose N plaintext pairs (Pc, Pd = Pc ⊕ α) at random and ask for the
encryption of Pc under Kc and of Pd under Kd.

– Search for quartets of plaintexts (Pa, Pb, Pc, Pd) and the corresponding ci-
phertexts (Ca,Cb,Cc,Cd), satisfying Ca ⊕ Cc = Cb ⊕ Cd = δ.

The analysis of the related-key rectangle attack is similar to the analysis
of the rectangle attack (with the same modifications that were presented at
the related-key boomerang attack). Starting with N plaintext pairs with input
difference α to be encrypted under Ka and Kb, we expect N22−n(p̂q̂)2 right
quartets. We note that under the requirement that we encrypt distinct values N
is no longer bounded by 2n−1 (as in the rectangle attack), but rather can be up
to 2n pairs in most of the cases (when ΔK0 = 0,ΔK1 = 0, or ΔK0 = ΔK1 the
value of 2n−1 is still the bound).

The step of finding the right quartets is technical in nature (the simplest
algorithm is trying all possible quartets, which is very inefficient). When the key
difference predicts the required subkey differences with probability 1, then the
attack algorithm of [5] can be easily adapted. Otherwise, we have to perform
a method similar to the one of the boomerang attack — repeat the attack for
several quartets of keys.

4 Related Key Rectangle Attacks on AES-192

The advanced encryption standard [12] is an SP-network that supports key sizes
of 128, 192, and 256 bits. The 128-bit plaintexts are treated as byte matrices of
size 4x4, where each byte represents a value in GF (28). An AES round applies
four operations to the state matrix: SubBytes (SB) – applying the same S-box
16 times in parallel on each byte of the state, ShiftRows (SR) – cyclic shift of
each row (the i’th row is shifted by i bytes to the right), MixColumns (MC) –
multiplication of each column by a constant 4x4 matrix over the field GF (28),
and AddRoundKey (ARK) – XORing the state and a 128-bit subkey.

The MixColumns operation is omitted in the last round, and an additional
AddRoundKey operation is performed before the first round (a whitening key).
We denote the subkey of round i by superscript Ki+1, i.e., the first (whitening)
key is K0, the subkey of the first round is K1, etc. We also denote the byte in
the i’th row and the j’th column of the state matrix by byte j ∗ 4 + i, where
i, j ∈ {0, 1, 2, 3}.

The number of rounds depends on the key length: 10 rounds for 128-bit
keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. The rounds are
numbered 0, . . . ,Nr− 1, where Nr is the number of rounds (Nr ∈ {10, 12, 14}).
For sake of simplicity we shall denote AES with n-bit keys by AES-n, i.e., AES
with 128-bit keys (and thus with 10 rounds) is denoted by AES-128.

The best published differential-based attack on AES is a boomerang attack
on a 6-round reduced version of AES-128 [7]. The attack requires 271 adaptive
chosen plaintexts and ciphertexts, and its time complexity is equivalent to 271

encryptions. The best known attack on AES-192 is a SQUARE attack on 8
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rounds [14]. The attack requires almost the entire code book (2128 − 2119 cho-
sen plaintexts) and has a time complexity equivalent to 2188 encryptions. The
best related-key attack against AES-192 is a related-key rectangle attack on 8
rounds [16]. It requires 286.5 chosen plaintexts (encrypted under four keys) and
has a time complexity equivalent to 286.5 encryptions.

In this section we present a related-key rectangle attack on 9-round AES-
192. The attack has data complexity of 287 related-key chosen plaintexts (279

chosen plaintexts encrypted under 256 keys), and time complexity of 2125 en-
cryptions. By using similar techniques, one can attack 10-round AES-256 using
2114.9 related-key chosen plaintexts (2106.9 chosen plaintexts encrypted under
256 keys) with time complexity of 2171.8 encryptions.

We concentrate on AES-192, as it demonstrates our attack when the key
schedule is not linear, but is still very close to linear. The attack uses structures
of plaintexts, encrypted under structures of keys, where the structures of keys are
sets of keys selected to assure that there exists a quartet of keys whose subkeys
satisfy the required differences.

4.1 Preliminaries for the Attack on 9-Round AES-192

The application of the related-key rectangle attack to AES-192 is as follows:
We start by finding two good related-key differentials. In the second differential
the key difference cannot guarantee the required subkey differences needed for
the differential. Thus, we repeat the attack with 127 key differences, as we are
assured that for at least one of these values the subkey differences are satisfied.

We decompose 9-round AES-192 (starting in the third round — rounds 2–10)
as follows: rounds 2 and 3 are the rounds before the distinguisher, rounds 4–6
are E0 (without the key addition of round 6), rounds 7–9 (with the key addition
of round 6) are E1, and round 10 is the round after the distinguisher.

Let θ0 be a fixed 8-bit known non-zero difference, and let θ = (θ0, 0, 0, 0) be
a 32-bit difference (the three 0’s are byte differences). Let χ = (χ0,χ1,χ2,χ3) =
MC(θ), where χi are non-zero byte differences, and MC is the MixColumns op-
eration. The value of χ is known as the MC operation is linear, thus, differentials
propagate linearly through it as well.

Let θ by an input difference to the MC(BS()) operations. We denote all 127
possible output differences by MB, i.e., MB = {MC(BS(x))⊕MC(BS(x⊕θ)).

4.2 The First Differential (E0)

The first differential (for rounds 4–6) is as follows: the subkey difference of K4 is
equal to the input difference and being of the form α = ΔK4 = (0, 0,χ,χ) (here
the 0’s are 32-bit differences). After the key addition, the difference of the data
is zero, which remains through round 4 with probability 1. We set ΔK5 = 0,
and we get that the zero difference remains after round 5 with probability 1 as
well. Then, the subkey difference ΔK6 is necessarily (χ, 0, 0, 0), which leads to
the activation of four S-boxes at round 6. As χi are all known and fixed, there
are 127 possible output differences in each of the four active S-boxes, of which
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Fig. 2. The First Differential Used in the Attack (and the Two Preceding Rounds)

one occurs with probability 2−6, and the rest with probability 2−7. Therefore,
the probabilities of the 1274 β output differences are distributed as follows: one
has probability 2−24, 4 ·126 have probability 2−25, and so forth, up to 1264 with
probability 2−28. As we use all these differentials simultaneously, we get that
p̂ =

√∑
β Pr 2[α→ β] = 2−13.96.

We note that the above describes a differential characteristic (we predict
the development of the difference in all rounds). In the case of the AES, the
probability that α→ β is very close to the probability of the characteristic.

We look for the (related-key) input difference to round 2 that leads to an
α difference at the input of round 4. The input difference for round 2 consists
of four S-boxes with a zero input difference (bytes 9, 10, 14, 15), three S-boxes
whose non-zero difference is known (bytes 3, 4, 5), two additional S-boxes with
unknown non-zero difference (bytes 11, 12), and the remaining seven S-boxes
can have any difference. We denote the difference in the bytes whose difference
is known by ΔM0, where we put zeroes in the bytes whose difference in unknown
(ΔM0 has four non-zero bytes). We outline these differences of the differential
and the preceding rounds in Figure 2. The first differential’s key difference is
ΔK0 = (χ, 0, 0, 0,χ, 0), and we outline the subkey differences in Table 2.

4.3 The Second Differential (E1)

The second differential predicts the differences in E1 (rounds 7–9). The input
difference γ equals the subkey difference, and both are γ = ΔK7 = (0, 0, θ, θ).
Thus, after the key addition the difference is zero, which passes with probability 1
through round 7. We take ΔK8 = 0, and thus, the zero difference remains with
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Table 2. Subkey Differences for the Key Difference ΔK0 = (χ, 0, 0, 0, χ, 0) (The subkey

differences of the differential are in bold)

Subkey Difference Subkey Difference Subkey Difference Subkey Difference

K0 (χ, 0, 0, 0) K2 (χ, χ,0,0) K4 (0,0, χ, χ) K6 (χ,0,0,0)
K1 (χ, 0, χ, χ) K3 (χ,0, χ,0) K5 (0,0,0,0)

Fig. 3. The Second Differential Used in the Attack (and the Following Round)

probability 1 also after round 8. Once we select ΔK7 and ΔK8, then necessarily
ΔK9 = (θ, 0, 0, 0). Thus, the key mixing before round 9 introduces a difference
θ0 in byte 0. This byte difference creates a difference in a full column before the
addition of K10. The subkey difference is ΔK10 = (0, 0, θ, θ), hence, the output
difference δ of the differential has four active bytes (in bytes 0, . . . , 3) and twelve
bytes with a zero difference. The difference in bytes 0, . . . , 3 is unknown but is
restricted to a set of 127 possible differences. We outline the differences of this
differential and the following round in Figure 3. We note that the differential
has probability 1, leading to q̂ = 1.

The subkey differences of the second differential are given in Table 3. The key
difference that achieves the required subkey differences for the second differential is
of the formΔK1 = (μ, θ ⊕ μ, θ, 0, θ, 0), where μ = (0, μ1, 0, 0) and θ0 → μ1 by the
S-box. The exact value of μ1 is unknown, but μ1 must be one of 127 possible values.

4.4 The Structure of Keys

Let Ka be the unknown key which we would like to recover. The related-key
that is required for the first differential is Kb = Ka ⊕ΔK0.
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Table 3. Subkey Differences for the Key Difference ΔK1 = (μ, θ ⊕ μ, θ, 0, θ, 0) (The

subkey differences in the rounds of the attack are in bold)

Subkey Difference Subkey Difference Subkey Difference Subkey Difference

K0 (μ, θ ⊕ μ, θ, 0) K3 (θ, 0, 0, 0) K6 (θ, 0, θ, 0) K9 (θ,0,0,0)
K1 (θ, 0, μ, θ) K4 (θ, 0, θ, θ) K7 (0,0, θ, θ) K10 (0,0, θ, θ)
K2 (0, 0, θ, θ) K5 (θ, θ, 0, 0) K8 (0,0,0,0) K11 (θ, θ, θ, θ)

Table 4. The Keys Required for the Related-Key Rectangle Attack

Key Values # Key Values #

Ka Ka 1 Kc {Ka ⊕ (μ, θ ⊕ μ, θ, 0, θ, 0)} 127
Kb Ka ⊕ (χ, 0, 0, 0, χ, 0) 1 Kd {Ka ⊕ (μ ⊕ χ, θ ⊕ μ, θ, 0, θ ⊕ χ, 0)} 127

Examine Ka and the subkey differences needed for the second differential.
There are 127 possible related keys with which Ka may have the required subkey
differences. Denote this set of keys by KSc, which is actually all the keys that
satisfy Ka ⊕ ΔK1 for some value of μ1, where μ = (0, μ1, 0, 0) and ΔK1 =
(μ, θ ⊕ μ, θ, 0, θ, 0). One key of this set satisfies the required subkey differences
with respect to Ka, and we denote it by Kc.

We denote the key with difference ΔK0 from Kc by Kd, i.e., Kd = Kc⊕ΔK0.
If we want to use the four keys, it must hold that Kb and Kd have the subkey
difference required by the second differential, i.e., Kb = Kd ⊕ΔK1. In this case
this is true, as there is no difference between Ka and Kb in the word that we
need the equality (for the S-box application). Thus, Ka⊕Kc = Kb⊕Kd is true.
We outline the sets of keys in Table 4.

Note that we can choose a smaller number of keys, such that using the
birthday-paradox we get with high probability the required quartets of keys,
but then the attack may fail in a small fraction of the cases.

4.5 The Attack

The main idea of the attack is to try all possible quartets of keys (Ka,Kb,Kc,Kd)
that can satisfy the required subkey differences, by performing the rectangle
attack from [5] on each of these possibilities. The attack presented here is an
optimized version of this idea, in which we take advantage of the fact that
once the keys with the right relations are encountered, then there is no need
to continue the attack for other quartets of keys. The attack algorithm is as
follows:

1. Data Generation:
(a) Generate 64 structures Sa

1 , . . . , S
a
64 of 272 plaintexts each, where in each

structure the 56 bits of bytes 3, 4, 5, 9, 10, 14, 15 are fixed. Ask for the
encryption of the structures under Ka.
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(b) XOR any plaintext encrypted under Ka with ΔM0, and ask for the
encryption of the resulting plaintext under Kb (to obtain Sb

1, . . . , S
b
64).

(c) For any possible value μ1 such that θ0 → μ1, letΔK1 = (μ, θ⊕μ, θ, 0, θ, 0),
perform:
i. Generate 64 structures Sc′

1 , . . . , S
c′
64 of 272 plaintexts each, where in

each structure the 56 bits of bytes 3, 4, 5, 9, 10, 14, 15 are fixed. Ask
for the encryption of the structure under Kc′ = Ka ⊕ΔK1.

ii. XOR any plaintext encrypted under Kc′ with ΔM0, and ask for the
encryption of the resulting plaintexts under Kd′ = Kc′ ⊕ ΔK0 (to
obtain Sd′

1 , . . . , Sd′
64).

2. Data Analysis: For any Kc′ , the respective Kd′ , and the corresponding struc-
tures:
(a) For any pair of structures Sb

i , S
d′
j perform:

i. Insert the 272 ciphertexts of Sb
i , S

d′
j into a hash table indexed by the

80 bits of bytes 4, 5, 6, 7, 9, 10, 11, 13, 14, 15. About 272 ·272/280 = 264

collisions are expected.
ii. For each 80-bit collision (where one ciphertext is from Sb

i and one is
from Sd′

j ) check that the ciphertext difference in bytes 2 and 3 may
be caused by an input difference θ0 to the S-box. If this is not the
case, discard the pair.

iii. For each of the expected 262 remaining pairs, try all 232 possible
values of bytes 0, 7, 10, 13 of K11, and partially decrypt the pair. If
the difference of the partially decrypted pair is in MB, add the pair
to a list of pairs related to the subkey. We note that each pair is
expected to be in 127 lists, and that each list contains about 127 ·
230 ≈ 237 pairs.

(b) Insert all the ciphertexts of Sa
1 , . . . , S

a
64, S

c′
1 , . . . , S

c′
64 into a hash table

indexed by the 80 bits of bytes 4, 5, 6, 7, 9, 10, 11, 13, 14, 15. About 278 ·
278/280 = 276 collisions are expected.

(c) For each pair of ciphertexts that collide on the 80 bits (one encrypted
under Ka and one under Kc′) do:
i. Check that the ciphertext difference in bytes 2 and 3 may be caused

by an input difference θ0 to the S-box. If this is not the case, discard
the pair. (about 1/4 of the pairs remain after this step).

ii. Let Ca ∈ Sa
l and Cc′ ∈ Sc′

m be the colliding ciphertexts, and Pa and
Pc′ the respective plaintexts. Try all 232 values for the bytes 0, 7, 10, 13
of K11, and partially decrypt the pair. If the difference of the par-
tially decrypted values is in MB, access the list of pairs that corre-
sponds to this subkey guess and the structures Sb

l , S
d′
m from Step 2(a)

(iii). Consider the pair Pa, Pc′ , and each of the 237 pairs of plaintexts
under that subkey (as part of Kb and Kd′) as a candidate quartet
(this leads to a total of 244 candidate quartets with Pa and Pc′).

iii. For any candidate quartet:
– Check what is the key value for which the pairs (Ca,Cc′) and

(Cb,Cd′) are partially decrypted to have a θ0 difference in byte 8.
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This operation can be performed efficiently using precomputed
tables.

– Do the same for byte 12 of the ciphertext pairs.
– Check what is the key value for which the pairs (Pa, Pb) and

(Pc′ , Pd′) are partially encrypted to have a θ0 difference in byte 2.
– Check what is the key value for which the pairs (Pa, Pb) and

(Pc′ , Pd′) are partially encrypted to have a (x, 0, 0, 0) difference
in bytes 1,5,11,12, where x→ θ0 by the S-box.

– Do the same for the bytes 2, 7, 8, 13 of the plaintext pairs for the
difference (x⊕ χ0,χ1,χ2,χ3), where x→ θ0 by the S-box.

iv. If some quartet still remains at this point, assume that the subkey
that it suggests is the correct one. Either perform an exhaustive key
search on the remaining key bits, or use key ranking methods to find
the right key.

4.6 Analysis of the Attack

We note that the first two tests of Step 2(c)(iii) can be done efficiently by com-
puting for each pair independently the possible subkey values for which the
condition is satisfied. Then, these tests are reduced to the problem of finding the
intersection of these lists.

Once a right quartet is encountered, then it suggests the right value for 120
subkey bits (the relation between Ka and Kc suggests seven more bits of the
key). Due to technical reasons, the time complexity of this search is 2112 (and
not 265 as might be expected).

For a given Kc′ value, out of the 274 · 244 = 2118 quartets composed in
Step 2(c)(ii), we expect 260 quartets to reach Step 2(c)(iv) (a quartet has a
probability of 2−7 to pass each of the first two tests, a probability of 2−8 to pass
the third test, and a probability of 2−18 to pass each of the last two tests). The
time complexity of the attack is 127 · 2112 · 260 ≈ 2179 encryptions.

If we take twice the data (i.e., 128 structures of 272 encrypted under each
key), we expect four right quartets. In that case, for any guess of the relation
between Ka and Kc′ , we shall perform the exhaustive search on the remaining
key bits only if the same 120-bit value is suggested by two (or more) quartets.
The time complexity in this case is dominated by the filtering done in Step 2(c),
and is equal to 2118 encryptions for a given Kc′ . Repeating the attack for every
Kc′ (until one succeeds) has a worst-case time complexity of 2125 encryptions.

We conclude that the data complexity of our attack is 287 chosen plaintexts,
encrypted under 256 related keys (each key is used to encrypt 279 values). The
time complexity of the attack is 2125 9-round encryptions.

The application of the attack to 10-round AES-256 is very similar. The at-
tack AES-192). The data complexity of the attack is 2114.9 related-key chosen
plaintexts (encrypted under 256 related keys) and the time complexity is 2171.8

encryptions.
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5 Related-Key Boomerang Distinguisher for
COCONUT98

COCONUT98 is a block cipher built according to the decorrelation method-
ology [22]. It contains two 4-round Feistel constructions with a decorrelation
module in between. The differential (and linear) behavior of the decorrelation
module is optimal in the sense that given a non-zero input difference, the proba-
bility to get any non-zero output difference is equal, when taken over all the keys.
However, for any given key, the decorrelation module is an affine permutation.

The key schedule algorithm of COCONUT98 takes 256-bit keys, and divides
them into two parts: a 128-bit subkey that enters the decorrelation module, and
four 32-bit values, denoted by K1,K2,K3, and K4 that are used to derive the
eight subkeys for the Feistel rounds. The subkeys of the first 4-round Feistel
construction are: K1,K1 ⊕K3,K1 ⊕K3 ⊕K4,K1 ⊕K4, and the subkeys of the
last 4-round Feistel construction are K2,K2 ⊕K3,K2 ⊕K3 ⊕K4,K2 ⊕K4.

The round function of the Feistel construction of COCONUT98 is

Fi((x, y)) = (y, x⊕ φ((ROL11(φ(y ⊕ ki)) + c) mod 232))
where φ(x) = (x+ 256 · S(x&FFx)) mod 232

where S(·) is an 8-bit to 24-bit S-box, c is a known 32-bit constant, & is the
AND operator, and ki is the 32-bit round subkey.

Our decomposition of COCONUT98 to sub-ciphers is as follows: the first
sub-cipher consists of the first 4-round Feistel construction and the decorrelation
module (denoted by DM). The second sub-cipher consists of the remaining 4-
round Feistel construction.

For the first sub-cipher we use following related-key differential: Let the key
difference be ΔK0 = (0, 0, z, z, 0, 0, 0, 0), then the differential is:

(z, 0)→ (0, z)→ (z, 0)→ (0, z)→ (0, z)
DM
−−→ (z1, z2)

for some two unknown fixed (z1, z2), with probability 1. This is due to the fact
that in each round where a difference z enters the round function, there is a
subkey difference z to cancel it.

The related-key differential for the second sub-cipher is similar — the key
difference is ΔK1 = (0, 0, z, z, 0, 0, 0, 0) and the second differential is:

(z, 0)→ (0, z)→ (z, 0)→ (0, z)→ (z, 0)

with probability 1.
We note that ΔK0 = ΔK1. Hence, Kc = Ka⊕ΔK1 = Ka⊕ΔK0 = Kb, and

Kd = Kb ⊕ΔK1 = Ka.
Thus, to find whether a given black box is COCONUT98, one can use the

following algorithm:
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Fig. 4. One Round of IDEA

– Choose a non-zero value z of 32 bits. Choose a plaintext Pa.
– Ask the encryption of Pa under the key Ka, and denote the ciphertext by

Ca. Ask the encryption of Pb = Pa ⊕ (z, 0) under the related-key Kb, and
denote the ciphertext by Cb.

– Compute Cc = Ca ⊕ (z, 0) and Cd = Cb ⊕ (z, 0).
– Ask the decryption of Cc under Kc = Kb to obtain Pc. Ask the decryption

of Cd under Kd = Ka to obtain Pd.
– If Pc ⊕ Pd = (z, 0), then output COCONUT98.

We note that if the key of the decorrelation module is such that the input dif-
ference of (z, 0) to the decorrelation module remains (z, 0) after the module, then
we get a related-key differential with probability 1 for the entire COCONUT98
cipher. Otherwise, as (z, 0) 	→ (z, 0) we get a related-key impossible differential
(due to the miss in the middle attack [3, 2]).

We conclude that COCONUT98 can be easily distinguished using one related-
key adaptive chosen plaintext and ciphertext quartet under two keys. By using
two different z values, one for the first differential, and one for the second differ-
ential, the distinguisher remains the same in nature, but uses four keys instead
of two.

6 Related-Key Rectangle Attack on IDEA

IDEA [21] is a 64-bit block cipher with 128-bit keys. It uses a composition of
XOR operations, additions modulo 216 and multiplications over GF (216 + 1). It
has 8.5 rounds — 8 full rounds as described in Figure 4, and a final half-round
consists of a layer of key additions and multiplications (Zj

i are round subkeys).
IDEA’s key schedule is linear: each subkey is composed of bits of the key.

Since its introduction in 1991, IDEA has resisted a comprehensive cryptan-
alytic effort [10, 15, 2, 8, 13]. The best known attack against IDEA is on 5-round
reduced version of IDEA. The attack uses 224 chosen plaintexts and has a time
complexity of 2116 encryptions [13]. IDEA also has several weak key classes. The
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largest weak key class (identified by a boomerang technique) contains 264 keys,
and the membership test requires 216 adaptive chosen plaintexts and ciphertexts
and has a time complexity of 216 encryptions [8].

Basically, our rectangle attack on 6.5-round IDEA uses a 6-round boomerang
attack. The 6.5 rounds that we attack, start before the first MA function.

6.1 A Related-Key Boomerang Distinguisher for 5.5-Round IDEA

The 5.5-round distinguisher is used in rounds 2–6.5 (from the second round).
The decomposition of the 5.5-round IDEA into sub-ciphers is as follows: The
first sub-cipher has three rounds, while the second sub-cipher has two and a half
rounds.

The input difference to round 2 (and the first sub-cipher) is α=(0x, 0x, 8000x,
0x). The key difference ΔK0 = e25 (where ei is a difference only in the i’th bit).
The input difference is cancelled by the subkey difference, and the zero difference
remains with probability 1 up to the MA of round 4. The key difference enters
Z4

5 , leading to an unknown β difference after the MA. However, there are at most
232 β values after the MA, and in the worst case all of them are equiprobable
with probability 2−32. As we use all these differentials simultaneously, we obtain
that p̂ = 2−16.

The second differential has a similar structure (but in the backward direc-
tion). The output difference is δ = (0x, 0x, 0100x, 0x) and the key difference is
ΔK1 = e75. In the decryption of a pair with difference δ, the key difference
cancels the difference with probability 1/2. If this is the case, the zero differ-
ence remains through the decryption up till the first half round of round 5. This
time, there are only 216 possible γ values, and in the worst case, all of them are
equiprobable 2 with probability 2−17. Again, we use all of them simultaneously,
and thus, q̂2 = 216 · 2−34 = 2−18, and q̂ = 2−9. We note that there are 8 more δ
values (and respective ΔK1 value) for which the attack can be mounted.

This leads to a distinguishing attack on a 5.5-round IDEA using 251.6 quar-
tets of adaptive chosen plaintexts and ciphertexts (249.6 values are to be en-
crypted/decrypted under four keys).

6.2 A Related-Key Boomerang Attack on 6-Round IDEA

Let Ka be the unknown key, Kb = Ka ⊕ e25, Kc = Ka ⊕ e75, and Kd = Ka ⊕
e25 ⊕ e75. The boomerang attack on six rounds of IDEA (starting at the MA in
round 1 till before the MA in round 7) is as follows:

1. For each guess of bits 64–95 of Ka set a counter initialized to 0.
2. Choose 217.6 32-bit value (r, t), and for each such value:

– Choose a structure A of 232 plaintexts of the form (x, y, z, w), such that
x⊕ z = t and y ⊕ w = r.

2 We have checked the claim experimentally. The values are not equiprobable, and the
true value is q̂ > 2−8.8. For more than 99% of the keys q̂ > 2−8.
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– Choose a structure B of 232 plaintexts of the form (x, y ⊕ 8000x, z, w),
such that x⊕ z = t and y ⊕ w = r.

– Ask for the encryption of the structure A under Ka to receive A′ and
similarly ask for the encryption of B under Kb to receive B′.

– For any ciphertext in A′ compute its XOR with the output difference of
the second differential to obtain C ′. Ask for the decryption of C ′ under
Kc to obtain C.

– For any ciphertext in B′ compute its XOR with the output difference of
the second differential to obtain D′. Ask for the decryption of D′ under
Kd to obtain D.

– Insert all the plaintexts in C and D to a hash table indexed by the XOR
value of the first and third word and by the XOR value of the second
and fourth words.

– Examine a pair of colliding plaintexts (Pc, Pd). Let Pa be the plaintext
that was encrypted, δ-shifted, and decrypted to Pc, and let Pb be the
plaintext that was encrypted, δ-shifted and decrypted to Pd. For any
guess of the bits 64–95 of Ka:
(a) Partially encrypt Pa, Pb, Pc, Pd through the first MA. If the differ-

ences of the partial encryptions of Pa and Pb, and of the pair Pc and
Pd are both α continue the analysis, if not so, try the next subkey.

(b) Verify that the difference after a partial decryption of the respective
ciphertext pairs is zero (bits 64–95 of the subkey contain the entire
subkey which deals with the third word of the ciphertext). If this is
the case, increment the counter of the subkey.

3. Output the subkey whose counter is maximal.

The structures are chosen so that in each pair of structures A,B there are 232

pairs with input α after the first MA. For each such pair of structures we expect
232 pairs of plaintexts (Pc, Pd) that are analyzed. Under random distribution
assumptions, 232 quartets from each pair of structures are encountered. However,
most of them are discarded, and wrong quartet has probability of 2−32 to agree
on the subkey of the first MA. Hence, we have about 217.6 quartets in total, each
suggesting 32-bit subkey value. The second filtering done, reduces this number
by a factor of four.

We conclude that the attack suggests 215.6 possible values to 32 bits of the key.
As we expect four right quartets, then the right value is expected to be with the
maximal counter with very high probability. The data complexity of the attack
is 251.6 adaptive chosen plaintexts and ciphertexts. The time complexity of the
attack is 251.6 MA evaluations which are equivalent to about 248 encryptions.

6.3 A Related-Key Rectangle Attack on 6.5-round IDEA

The attack can be extended to a rectangle attack on 6.5-round IDEA. The 6.5
rounds starts after the first half round, and end after round 7. We use the same
differentials as before. The algorithm of the attack is as follows:

– Choose 225.8 values of the pair (r, t). Generate two structures of plaintexts
for each value of (r, t) like in the boomerang attack.
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– Ask the encryption of the structures under Ka and Kb, as before.
– Ask the encryption under Kc of each plaintext encrypted under Ka.
– Ask the encryption under Kd of each plaintext encrypted under Kb.
– For each guess of the subkey of the last MA, partially decrypt all ciphertexts

under the guessed subkey, and call the boomerang attack on 6 rounds.

Out of the 257.8 plaintexts encrypted under each key, we get about about 251.6

pairs with the differences required for the previous attack. The attack has time
complexity of 232 · (4 · 257.8/13 + 251.6/13) = 288.1 6.5-round IDEA encryptions,
and data complexity of 259.8 chosen plaintexts under four related-keys.

7 Summary and Conclusions

In this paper we introduced related-key boomerang attacks and related-key rect-
angle attacks. The attacks use weaknesses in the key schedule algorithms of
ciphers to achieve significant improvements over ordinary boomerang and rect-
angle distinguishers.

It is commonly believed that linearity of the key schedule is not a threat to the
security of a block cipher if only its design (except for the key schedule) is mod-
erate enough. Many strong block ciphers use linear or close to linear key schedule
algorithms, e.g., AES, and IDEA. Despite the strong related-key requirements,
our attacks show that it is important to maintain some non-linearity in the key
schedule, even if the other components of the cipher seem strong enough.
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Abstract. Fix a small, non-empty set of blockcipher keys K. We say
a blockcipher-based hash function is highly-efficient if it makes exactly
one blockcipher call for each message block hashed, and all blockcipher
calls use a key from K. Although a few highly-efficient constructions have
been proposed, no one has been able to prove their security. In this paper
we prove, in the ideal-cipher model, that it is impossible to construct a
highly-efficient iterated blockcipher-based hash function that is provably
secure. Our result implies, in particular, that the Tweakable Chain Hash
(TCH) construction suggested by Liskov, Rivest, and Wagner [7] is not
correct under an instantiation suggested for this construction, nor can
TCH be correctly instantiated by any other efficient means.

Keywords: Collision-resistant hash functions, tweakable blockciphers,
provable security.

1 Introduction

Background. Essentially all modern hash functions are built by iterating a
compression function according to the Merkle-Damg̊ard paradigm [4, 10]. More-
over, these compression functions are almost always built from a blockcipher.
Constructions like the Matyas-Meyer-Oseas (MMO) compression function [8] are
explicit about their use of a blockcipher, but even so-called “dedicated” hashing
primitives like MD5 and SHA-1 are in fact blockcipher-based. The SHA-1 com-
pression function, for example, uses a 160-bit blockcipher that takes a 512-bit
key; this blockcipher has been named SHACAL-1 [6].

This idea of building hash functions from blockciphers goes back more than
25 years. The earliest construction by Rabin [12] proposed to hash a mes-
sage M = m1m2 · · ·m� by fixing an initial value h0 and computing H(M) =
DESm�

(DESm�−1(· · · (DESm1(h0)))); effectively, this is a Merkle-Damg̊ard con-
struction with blockcipher-based compression function f(hi−1,mi) = Emi

(hi−1).
Other constructions like Davies-Meyers [9] and MMO followed, but it was Pre-
neel, Govaerts, and Vandewalle [11] who conducted the first systematic study
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Fig. 1. The Matyas-Meyer-Oseas (MMO) compression function [8]. E : {0, 1}n ×
{0, 1}n → {0, 1}n is a block cipher; the hatch mark denotes the location of the key.
Iterating this compression function results in a provably-secure hash function [2], however
notice that the above compression function will be rekeyed each round

of blockcipher-based hash functions. They considered the security of 64 iterated
constructions with compression functions of the form f(hi−1,mi) = Ea(b)⊕ c
where a, b, c ∈ {hi−1, mi, hi−1⊕mi, v} for some fixed constant v. The analysis
of PGV was attack-based, and schemes not broken by their attacks were deemed
secure. Subsequently, Black, Rogaway and Shrimpton [2] considered these same
64 constructions using a proof-based approach. They showed that, in the ideal-
cipher model, 20 of the 64 schemes are collision-resistant up to the birthday
bound; Figure 1 gives one example.

Although provably secure, these 20 schemes could be viewed as inefficient
in the following sense: in each, the blockcipher key is changed every round. For
all conventional blockciphers, changing the key each round is undesirable since
scheduling a new key entails a significant computational cost. It is natural to
ask then if it is possible to achieve provable security without incurring this cost,
and this question is the focus of our work.

Main Result. Fix a small, non-empty set of blockcipher keys K. We term a
blockcipher-based hash function highly-efficient if its compression function uses
exactly one call to a blockcipher (ie, it is rate-1), and if the blockcipher uses
only keys from K. Since we can preschedule each key in K, we enjoy a significant
performance gain: key scheduling reduces to looking up a precomputed permuta-
tion. It is possible that those researchers who have worked on blockcipher-based
hash functions over the past 25 years have considered highly-efficient construc-
tions, but found attacks that broke these constructions, or were unable to prove
their security. Indeed, the present authors also spent some time trying to find
highly-efficient constructions without success. We now explain why.

One would like to construct a highly-efficient hash function that is prov-
ably collision resistant. If such a construction did exist, its underlying compres-
sion function could be constructed as follows (see Figure 2): let f1 : {0, 1}n ×
{0, 1}n → {0, 1}n and f2 : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be arbitrary
functions. We define f : {0, 1}n × {0, 1}n → {0, 1}n as

f(hi−1,mi) = f2(hi−1,mi,EK(f1(hi−1,mi))),

where EK is an n-bit blockcipher with key K ∈ K that is the output of a
deterministic key-selection function g.
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Fig. 2. The general compression function built from a blockcipher keyed from K. Functions
f1 : {0, 1}n×{0, 1}n → {0, 1}n and f2 : {0, 1}n×{0, 1}n×{0, 1}n → {0, 1}n are arbitrary;
EK is some n-bit blockcipher with key K ∈ K selected by a deterministic key-selection
function g

It isn’t hard see that this construction captures all possible rate-1 compres-
sion functions built from a blockcipher used in the forward direction and keyed
from K: both f1 and f2 may process every bit of the input to f in any arbi-
trary way. Notice that it isn’t necessary to feed forward the output of f1 to f2,
since f2 can compute f1(hi−1,mi) itself. The key-selection function g must be
deterministic and well-defined, but beyond this may depend on other message
blocks, chaining values, the round number, or other parameters, provided it al-
ways returns a value from K. These notions are made precise in Section 2. (Note
that this approach does not capture all blockcipher-based hash functions with a
fixed key-set, only those that are iterated via Merkle-Damg̊ard and that use the
blockcipher in the forward direction.)

In this paper we prove that any compression function constructed as just
described cannot produce a provably collision-resistant hash function when it-
erated. Specifically, we show—in the ideal-cipher model—that for any func-
tions f1, f2, there exists an information-theoretic adversary that finds a collision
in the iterated function Hf in at most |K|(n + �lg(n)�) blockcipher invoca-
tions. In fact, for many natural functions f1, f2 (like XOR) we find collisions
in just 2|K| blockcipher invocations. This is in stark contrast to the Θ(2n/2)
expected invocations needed to produce a collision in the 20 rekeying construc-
tions proven secure in [2]. Our impossibility proof uses a greedy algorithm that
builds large numbers of messages along with their associated hash outputs. We
prove that this algorithm builds a tree with height at most n + �lg(n)� con-
taining at least 2n(n + �lg(n)�) + 1 hash values, thereby yielding a collision
on some level of the tree. We stress that our results should not be interpreted
as giving practical attacks on all highly-efficient hash functions: our attacks
have exponential running time. Instead we are exhibiting a proof that no highly-
efficient iterated blockcipher-based hash functions can exist, in the model we have
described.

Security of Tweak Chain Hash. Tweakable blockciphers were introduced
by Liskov, Rivest, and Wagner [7]. They define a tweakable blockcipher as a map
Ẽ : {0, 1}k ×{0, 1}t×{0, 1}n → {0, 1}n where the inputs are called the key, the
tweak and the message. We sometimes write ẼK(T,M) instead of Ẽ(K,T,M).
For any fixed K ∈ {0, 1}k and T ∈ {0, 1}t, we require that Ẽ(K,T, ·) is a
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Fig. 3. Two rounds of the Tweak Chain Hash compression function. ẼK is the tweakable
blockcipher, K is a fixed public key; the arc denotes the location of the tweak

permutation on n bits. The idea is for the tweakable blockcipher to act like
a normal blockcipher but with an extra (public) input, the tweak, which adds
variability. The key may be expensive to schedule and to change, but changes
to the tweak should be inexpensive. Security is defined as indistinguishability
of a family of random permutations from ẼK(·, ·) with random key K, where
the adversary controls the tweak and the message. See Section 2 for a formal
definition.

Along with several other constructions, Liskov, Rivest, and Wagner suggest
a new iterated hash-function construction built on tweakable blockciphers called
the “Tweak Chain Hash” (TCH). This is a straightforward adaptation of the
MMO construction into the tweakable setting: let Ẽ be a tweakable blockcipher
with t = n, and fix a key K ∈ {0, 1}k. For any M ∈ ({0, 1}n)+ write M =
m1 · · ·m� where each |mi| = n, define TCHẼK (M) as

function TCHẼK (m1 · · ·m�)
for i← 1 to 	 do hi ← ẼK(hi−1,mi)⊕ mi

return h�

where h0 is a fixed constant, say 0n. See Figure 3. A main motivation for TCH
is efficiency: in each round the (expensive to change) key K remains fixed while
the (cheap to change) tweak and message vary. One might therefore expect TCH
to be substantially faster than MMO.

However the security of TCH is left as an open question. In the same paper,
the authors propose two ways to create tweakable blockciphers from conventional
blockciphers: one construction based on the CBC-MAC and one using universal
hash families. So it is natural to wonder whether TCH is secure when built using
either of these constructions. But inserting the second construction into TCH
yields a fixed-key rate-1 hash function constructed from a conventional blockci-
pher and given our results above, we would expect that any such construction
should be insecure. In fact we show something even stronger.

We demonstrate that using either tweakable-blockcipher construction from
Liskov et al., the resulting TCH construction admits a simple attack. These at-
tacks produce an infinite number of same-length colliding message pairs under
TCH, regardless of the parameters chosen for the underlying tweakable blockci-
pher and regardless of the security model. Appealing to our main result, we fur-
ther show in the ideal-cipher model that any tweakable blockcipher—built using
one call to a conventional blockcipher—will yield an insecure TCH construction.
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Our result does not, however, rule out TCH being secure when constructed from
a tweakable blockcipher primitive, such as the Hasty Pudding cipher [13]. This
is discussed further in Section 4.

Security Model. The standard-model assumption for blockciphers is that
they are good pseudo-random permutations (PRPs) [9]. However this assump-
tion is insufficient for proving the security of hash functions based on block-
ciphers; indeed, Simon has shown [15] that the PRP assumption alone is in-
sufficient for secure blockcipher-based hashing. For this reason, all proofs of
security for blockcipher-based hash functions have been done in the ideal-cipher
model [2, 9, 10, 15, 16]. This model, which dates back to Shannon [14], treats a
blockcipher as a random and independent permutation for each key. Some believe
that modeling blockciphers in this way is not realistic: often we find correlations
and biases in real blockciphers that one would not expect to see if the object
were drawn uniformly from the family of all blockciphers with the same block
and key size. Nonetheless, proofs of security in this model do have meaning: secu-
rity is guaranteed against adversaries that ignore the structure of the underlying
blockcipher.

Except for the two simple attacks given for TCH, all attacks in this paper are
in the ideal-cipher model. We do not make any probabilistic assumptions nor do
we depend on the permutivity of the blockciphers.

The normal measure of security for blockcipher-based hash functions is that
they are secure against information-theoretic adversaries in the ideal-cipher
model [2]. Our adversaries are therefore information-theoretic. While this may
seem to be giving too much power to an adversary when thinking of real-world
attacks, we once again stress that our goal is to demonstrate the nonexistence of
provably collision-resistant schemes, not to give practically instantiable attacks.
Indeed, it is clearly impossible to exhibit a practical attack given the generality
of our setting: f1 could itself be a collision-resistant hash function and a practical
attack on the resulting hash function would imply a practical attack on f1.

Message Lengths. Our definition for collision resistance will count as valid any
pair of messages that produce the same hash value. Finding collisions in prac-
tice is often much harder than this due to techniques such as Merkle-Damg̊ard
strengthening [9]. In view of this, all attacks in this paper produce colliding mes-
sages of the same length, and therefore still apply even in the presence of such
techniques.

2 Security Definitions

Basic Notions. Let k and n be positive integers. A blockcipher is a func-
tion E : {0, 1}k × {0, 1}n → {0, 1}n where for each K ∈ {0, 1}k we require
that EK(·) = E(K, ·) is a permutation on {0, 1}n. Let Perm(n) be the set of
all permutations on {0, 1}n, and let Bloc(k, n) be the set of all blockciphers
E : {0, 1}k × {0, 1}n → {0, 1}n. A function f : Perm(n) × D → {0, 1}c is a
(permutation-based) compression function if D = {0, 1}a × {0, 1}n for some
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a ≥ 1 where a+ n ≥ c. If the program for computing f uses a single query π(x)
to compute fπ(h,m) = f(π, h,m) then f is rate-1.

For non-empty sets K ⊂ {0, 1}k and S ⊆ {0, 1}∗, fix a deterministic key-
selection function g : S × {0, 1}n × {0, 1}n → S × K. Fix a constant h0 and let
σ0 = ε. We define a (highly-efficient, blockcipher-based) hash function by the
following program:

function H[g,K]E(m1 · · ·m�)
for i← 1 to 	 do

(σi,K)← g(σi−1, hi−1,mi)
π ← EK

hi ← fπ (hi−1,mi)
return h�

where f : Perm(n)×{0, 1}n×{0, 1}n → {0, 1}n is a rate-1 compression function.
This program computes a map H[g,K]E : Bloc(k, n)×({0, 1}n)+ → {0, 1}n, and
we say that H[g,K]E is rate-1 because f is. Sometimes we will call H[g,K]E the
iterated hash of f , for obvious reasons.

When it is understood from context, we will omit the superscript π to f ,
and E to H. We will also often omit explicit reference to g and K, simply
writing H for HE [g,K].

We write x
$← S for the experiment of choosing a random element from the

finite set S and calling it x. An adversary is an algorithm with access to one or
more oracles, which we write as superscripts.

Collision resistance. To quantify the collision resistance of a highly-efficient,
blockcipher-based hash function, we model the blockcipher as a randomly cho-
sen E ∈ Bloc(k, n). An adversary A is given oracles for E(·, ·) and its in-
verse E−1(·, ·), and wants to find a collision for H—that is, M,M ′ ∈ D where
M 	= M ′ but H(M) = H(M ′). We look at the number of queries that the
adversary makes and compare this with the probability of finding a collision.

Definition 1. [Collision resistance of a hash function] Fix k, n > 0, and
let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. Let K ⊂ {0, 1}k and S ⊆
{0, 1}∗ be non-empty sets, and let g : S × {0, 1}n × {0, 1}n → S × K be a
key-selection function. Let H[g,K] be a highly-efficient, blockcipher-based hash
function, H[g,K] : Bloc(k, n) × D → {0, 1}n, and let A be an adversary. Then
the advantage of A in finding collisions in H is the real number

Advcoll
H (A) = Pr

[
E

$← Bloc(k, n); (M,M ′) $←AE(·,·),E−1(·,·) :

M 	= M ′ ∧ HE(M) = HE(M ′)
]

For q ≥ 1 we write Advcoll
H (q) = maxA{Advcoll

H (A)} where the maximum is
taken over all adversaries that ask at most q oracle queries.
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Tweakable Blockciphers. Fix k, t, n > 0. A tweakable blockcipher is a func-
tion Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n such that for any K ∈ {0, 1}k and
any T ∈ {0, 1}t we are guaranteed that Ẽ(K,T, ·) = ẼK(T, ·) is a permutation
on {0, 1}n. If we write π̃ $←{0, 1}t×Perm(n) we are choosing 2t random permu-
tations on {0, 1}n, one for each T ∈ {0, 1}t. The permutation associated to T is
π̃(T, ·).
Definition 2. [Security of Conventional and Tweakable Blockciphers]
Let Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n be a tweakable blockcipher, and
let A be an adversary. Then

Advprp
E (A) = Pr[K $←K : AEK(·) = 1]− Pr[π $← Perm(n) : Aπ(·) = 1]

Advtprp

Ẽ
(A) = Pr[K $←{0, 1}k : AẼK(·,·) = 1]−

Pr[π̃ $←{0, 1}t × Perm(n) : Aπ̃(·,·) = 1]

Write Advprp
E (q) = maxA{Advprp

E (A)} and Advtprp

Ẽ
(q) = maxA{Advtprp

Ẽ
(A)}

for q ≥ 1 and where the maxima are taken over all adversaries that ask at most q
oracle queries.

3 Hash Function Constructions and Attacks

We begin this section with a more detailed discussion of the generalized rate-1
blockcipher-based compression function shown in Figure 2, and of certain as-
sumptions we might make in practice (though our later proofs will make no such
assumptions). Next we consider attacks on the iterated hash of this compression
function. The first attack is particularly efficient (it requires only 2|K| blockci-
pher invocations) and we argue that it probably applies to many “reasonable”
constructions for the compression function. The second is more general: it shows
there cannot exist an iterated hash function based on this type of compression
function that is provably collision resistant in our model.

Generalized Rate-1 Blockcipher-based Compression Function. We
consider any compression function f that is built in the following way. Let
f1 : {0, 1}n × {0, 1}n → {0, 1}n and f2 : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n
be arbitrary functions. We define f : Perm(n) × ({0, 1}n × {0, 1}n) → {0, 1}n
as fπ(h,m) = f2(h,m, π(f1(h,m))). See Figure 2 with π = EK . We will not
formally argue that this construction covers all possible 2n to n bit functions
that call π at most once; this would take us quite far afield. Instead we give the
following informal justification.

The function f takes two n-bit inputs, h and m. We make both of these
inputs available to the “preprocessing” function f1 and to the “postprocessing”
function f2. Additionally, f2 has access to the output of π. We do not feed the
output of f1 to f2 since f2 is capable of recomputing f1 itself. Similarly, we do
not feed the output of f2 back to f1 since any computation performed by f2
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only on inputs h and m could have been computed by f1; if the output of f2

depends also on π then it cannot be fed back into f1 (and thus π) because we
are requiring f be rate-1.

Although f1 and f2 are fully arbitrary, we imagine that in practice they will be
simple and fast-to-compute functions. In PGV [11], for example, these functions
are never more complex than XOR. It would make little sense to have f1 be,
say, SHA-1 since our overall construction is itself aiming to be a cryptographic
hash function. Nonetheless, our results continue to hold even for such far-fetched
constructions: since our adversary is information-theoretic, it is able to find all
2n-bit inputs that yield some particular n-bit output for f1 in constant time.

The Two-Fiber Attack. We begin by describing a simple collision-finding
attack called the “two-fiber attack” which works on many natural highly-efficient
constructions, including all of the fixed-key constructions from [11]. In this attack
the function f1 has a certain property, which we call the “two-fiber property.”
We now explain.

Let f−1
1 (i) represent the set {(h,m) : f1(h,m) = i}. This is commonly called

the fiber of f1 under i, or the i-fiber. We now define the notion of a well-balanced
fiber or function.

Definition 3. [Well-Balanced Fibers] Fix integer n > 0, and let f : {0, 1}n×
{0, 1}n → {0, 1}n be a function. Then the fiber f−1(i) is well-balanced if each
h ∈ {0, 1}n appears exactly once as a first coordinate of some ordered pair
of f−1(i). If every fiber of f is well-balanced, then we say that f is well-balanced.

An example of a well-balanced function is f1(h,m) = h⊕m. In fact, it’s not
hard to see that if f1(h, ·) is a permutation on {0, 1}n for each h ∈ {0, 1}n then
f1 will be well-balanced.

For the purposes of the present attack, we require only that there exist dis-
tinct i1, i2 ∈ {0, 1}n such that f−1

1 (i1) and f−1
1 (i2) are well-balanced. If f1 has

two such fibers, we say that f1 has the two-fiber property and the resulting attack
is called the two-fiber attack. Notice that this property can be determined by the
adversary without requiring any E-queries.

The attack is given in the theorem below. The idea behind the attack is that
by doing just 2|K| queries to E on points i1 and i2, an adversary can produce
arbitrarily many same-length messages along with their hash values.

Theorem 1. [Two-Fiber Attack] Fix k, n > 0 and let E : {0, 1}k×{0, 1}n →
{0, 1}n be a blockcipher. Fix K ⊂ {0, 1}k, S ⊆ {0, 1}∗, and let g : S × {0, 1}n ×
{0, 1}n → S × K be a key-selection function. Let the compression function
f : Perm(n) × ({0, 1}n × {0, 1}n) → {0, 1}n be defined as usual by fπ(h,m) =
f2(h,m, π(f1(h,m))), where f1 has the two-fiber property. Finally, let hash
function H[g,K] : Bloc(k, n) × D → {0, 1}n be the iterated hash of f . Then
Advcoll

H (2|K|) = 1.

Proof. Let i1, i2 ∈ {0, 1}n, i1 	= i2, be chosen such that f−1
1 (i1) and f−1

1 (i2) are
well-balanced fibers. We now define AE,E−1

, a collision-finding adversary for H.
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First A makes 2|K| queries to its left oracle at (K, i1) and (K, i2) for each K ∈ K.
With the resulting values, A grows a rooted tree T . Tree T will be annotated with
node-labels and edge-labels; the edge-labels will represent message blocks and
the node-labels will contain the intermediate hash values obtained by traversing
T from the root to that node. Edges are added by specifying an ordered pair
(u, v) of node labels where u is already in T and v is a new node with label v.
Thus each edge-addition always creates a leaf. Each time we add an edge to T
we will also specify the label for that edge.

Let the root of T be labeled h0. Since h0 ∈ {0, 1}n and f−1
1 (i1) and f−1

1 (i2) are
well-balanced fibers, then there exist distinct m1,m2 such that i1 = f1(h0,m1)
and i2 = f1(h0,m2). Therefore A can now compute x1 = f(h0,m1) and x2 =
f(h0,m2) without any oracle queries since EK(i1) and EK(i2) have been pre-
computed for any K that was output by g. If x1 = x2, then A halts returning
the collsion m1,m2. If not, A adds an edge (h0, x1) labeled m1 and an edge
(h0, x2) labeled m2. Then A continues at the leaves of T , doubling their number
using the same technique as above; no additional oracle queries are required.
This process is continued by A until a collision occurs. Since there are only 2n

possible output values for f and because the number of leaves doubles at each
step, we are guaranteed that A will find a collision among the leaves within n+1
iterations of this process.

Note that the proof holds even if EK is not a permutation; we require only
that EK be a map from n bits to n bits. Also notice that the colliding messages
produced by A are the same length; this means that a length-encoding scheme
like MD-strengthening does not help avert the attack.

There are several obvious extensions to the two-fiber attack: for example, had
we not insisted that messages be of the same length, a single well-balanced fiber
would have sufficed. Also, if f1 did not have the two-fiber property, perhaps
it had 	 fibers in which every h ∈ {0, 1}n occurred at least twice among the
first coordinates in those 	 fibers. This would admit an analogous attack using
	|K| oracle queries. Rather than pursue these ideas further, we instead proceed
to the generalized attack that shows that |K|(n + �lg(n)�)) oracle queries are
sufficient to find distinct same-length messages that collide for any generalized
compression function.

Main Result. The central result of this paper is to show that no rate-1 com-
pression function using blockcipher keys from a small fixed set K can give rise to
a provably collision-resistant hash function when iterated. We show this by using
at most |K|(n + �lg(n)�) oracle queries to produce an overwhelming number of
hash outputs that correspond to distinct messages. More specifically, our attack
implements an algorithm to grow a tree of messages where the number of nodes
in the tree at least doubles with each level added to it. We then show that the
tree will have height at most n + �lg(n)� but with more than 2n(n + �lg(n)�)
nodes which means there must exist a collision at some level of the tree.

Although the theorems below hold for all n > 0, we restrict our statements to
n ≥ 8 since small values are of no interest and addressing them would introduce
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special cases into the proofs. Due to space constraints, we present here a proof
sketch. The complete proof can be found in the full version of the paper [1].

Theorem 2. [General Attack] Fix k > 0, n ≥ 8 and let E : {0, 1}k×{0, 1}n →
{0, 1}n be a blockcipher. Fix K ⊂ {0, 1}k, S ⊆ {0, 1}∗, and let g : S × {0, 1}n ×
{0, 1}n → S × K be a key-selection function. Define function f : Perm(n) ×
({0, 1}n ×{0, 1}n)→ {0, 1}n as usual by fπ(h,m) = f2(h,m, π(f1(h,m))), with
f1 and f2 arbitrary. Let H[g,K] : Bloc(k, n)×D → {0, 1}n be the iterated hash
of f . Then Advcoll

H (|K|(n+ �lg(n)�)) = 1.

Proof. We sketch the main ideas. Our goal is to grow a (rooted, directed) tree T
where each edge and each node has a label. A path from the root to any node
represents a message and its hash value; each edge along a given path is labeled
with a message block, and the message associated to a given path is the con-
catenation of the edge-labels along that path. Each node is labeled with an n-bit
chaining value; for any given path, the message associated to that path results
in the hash value indicated at the terminal node of the path. We initialize T
with a single node: the root, labeled by h0. Thus far this is the same as it was
for the two-fiber attack above.

For this sketch, we fix |K| = 1, so g is trivial and K is fixed for all oracle
queries. It is straightforward to generalize for larger K.

Now, let N = 2n and for all i ∈ [0..N − 1] define Ri = {(h,m, s) : h,m ∈
{0, 1}n ∧ f1(h,m) = i)}. Here s ∈ {0, 1}n ∪ {?}, and initially we set s =? for all
triples in the Ri above. The ? is a symbol indicating that the third coordinate
of the triple is unknown; our goal is to have the third coordinate set to f(h,m),
but computing this requires an E-oracle query of (K, i) by A and we will use
our oracle queries sparingly.

Note that once A performs the E-oracle query (K, i) he is able to fill in all
third coordinates for triples in Ri. And the goal is to grow T by as much as
possible using as few queries as possible. Therefore A uses a greedy strategy:
when choosing which (K, i) query to make next, he chooses the one that allows
the largest number of new nodes to be added to T . When A makes this optimal
query (K, i) he fills in the third coordinates of all triples in Ri and then adds
edges to T with the corresponding edge-labels and node-labels.

As A proceeds, he adds at most one level to T for each query performed. The
crux of the proof is to show that the number of nodes in T at least doubles each
time A makes a query and extends T . In the full proof, we show that (except for
the first query) a tree T with t nodes receives at least t + 1 new nodes when A
makes a query according to the greedy strategy above. The idea is a counting
argument over the triples for those Ri that still contain a ?-symbol in their third
coordinates. A simple inductive argument then shows that after 	 queries we will
have at least 2� + 2�−1 − 1 nodes in T .

Now letting m = �lg(n)�, we see that after n+m queries we are guaranteed
at least nN +2m−1N − 1 nodes in n+m+1 levels of T . Ignoring the root node,
this is nN + 2m−1N − 2 nodes in n+m levels. Since n ≥ 8 then 2m−1 ≥ m+ 1
and

nN + 2m−1N − 2 ≥ (n+m)N + N − 2 > (n+m)N.
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Thus there are more than (n + �lg(n)�)N nodes on n + �lg(n)� levels of T
yielding a collision on some level. The same-length messages M and M ′ that
collide under hash function H are extracted from T by traversing T from the
root to each colliding node and reading off the edge labels that form the message
blocks of M and M ′.

Interpreting the Result. We have used the ideal-cipher model for the block-
cipher and endowed the adversary with limitless computational abilities. In this
setting we were able to find an attack far more efficient than we can for known-
secure constructions like MMO. However, we must realize that this model is not
realistic in two ways: (1) When we plug a real blockcipher in for E, say 256-
bit Rijndael, and fix a key-selection algorithm g and key-set K, we do not then
have a random object. We have a fixed public object that can be attacked via
directed cryptanalysis. (2) If we attempt to mount the attacks described here,
we will be using real computers with real computational limitations. Building a
tree with Ω(2n) nodes is not feasible for typical values of n. Of course collisions
will appear long before the tree reaches this size, under reasonable probabilistic
assumptions, but even a tree containing Ω(2n/2) nodes is impractical to store
when n is (say) 160 or 256.

So one might reasonably ask if the attacks just shown are really of any concern
at all. Perhaps we can use 256-bit Rijndael, fix a single key 0256, and find some
fast and simple functions f1 and f2 that do not admit any “obvious” attacks
on the resulting iterated hash function. This may very well produce a collision-
resistant hash function in the same sense that SHA-1 or RIPEMD-160 is thought
to be collision resistant: no one has yet found collisions. However, we are taking
a step backwards in this way of thinking because we are once again relying on
the lack of effective attacks to give evidence of security. In a sense, we would be
designing yet another primitive when we already have several primitives without
any known attacks (at the time of this writing) and a longer established presence.
But one thing we can guarantee about such an object is this: it will never admit
a proof of security in the established model.

4 The Tweak Chain Hash

Tweakable blockciphers [7] are a map Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n
where the inputs are called the “key,” the “tweak,” and the “message,” re-
spectively. We sometimes write ẼK(T,M) instead of Ẽ(K,T,M). For any fixed
K ∈ {0, 1}k and T ∈ {0, 1}t, we require that Ẽ(K,T, ·) is a permutation on n
bits. The idea is for the tweakable blockcipher to act like a normal blockcipher
but with an extra (public) input, the tweak, which adds variability. The key
may be expensive to schedule and to change, but changes to the tweak should
be cheap. Security for a tweakable blockcipher was defined in Section 2.

In their paper, Liskov et al. give (among other things) two proposals for
constructing tweakable blockciphers from conventional blockciphers, along with
several other constructions for using tweakable blockciphers. Their paper sug-
gests a new hash-function construction built on tweakable blockciphers called
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TCH-CBC π(m1m2)

m2

π

π π

π

m1

h0

Fig. 4. Two rounds of the TCH-CBC π hash function. Function π : {0, 1}n → {0, 1}n is
a fixed permutation. We can easily generate an infinite number of same-length message
pairs that collide using this construction

the “Tweak Chain Hash” (TCH), defined as follows: for any m ∈ ({0, 1}n)+

write M = m1 · · ·m� where each |mi| = n, define TCHẼK (M) as

function TCHẼK (m1 · · ·m�)
for i← 1 to 	 do hi ← ẼK(hi−1,mi)⊕ mi

return h�

where h0 is a fixed constant, say 0n, and Ẽ is a tweakable blockcipher with n = t
and key K a constant; see Figure 3. Their is idea is that this construction should
be faster than blockcipher-based constructions that rekey: the key K is fixed
and only the tweak and message change for each message block digested. Since
changing these two inputs should be cheap (ie, nothing equivalent to rescheduling
a key should be required), each round of TCH should be faster than a round of,
say, MMO. The authors leave the security of TCH as an open question. This is
a question we aim to address in this section.

The First Attack: TCH-CBC. Liskov et al. give two provably-secure con-
structions of tweakable blockciphers from conventional blockciphers. The first
construction is the CBC MAC of the two-block message M ‖ T . In other words,
for a given blockcipher E they define ẼK(T,M) = EK(T ⊕ EK(M)). They show
that this construction is birthday-close to the underlying blockcipher E. That
is, Advtprp

Ẽ
(q) < Advprp

E (q) + q2/2n. We call this the “CBC construction.”
Taking the CBC construction and inserting it into the TCH construction

seems like a natural try at building a collision-resistant hash function from
a blockcipher. However, we immediately notice that the resulting TCH-CBC
scheme is rate-1/2; that is, two blockcipher calls are required for each message
block digested. (This means that our analysis from Section 3 does not apply
because the compression function here is not rate-1.) This may in fact be more
expensive than a rate-1 scheme that rekeys (like MMO). But TCH-CBC would
be an interesting scheme nonetheless because it fixes the blockcipher key; no
secure scheme has ever been exhibited that does this.
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Unfortunately TCH-CBC is not collision resistant, as we now show. Fix a
key K: this induces a fixed permutation that, for notational convenience, we
name π = EK . For any M ∈ ({0, 1}n)+ write M = m1 · · ·m� where each |mi| =
n, define TCH-CBC π(M) as

function TCH-CBC π(m1 · · ·m�)
for i← 1 to 	 do hi ← π(hi−1⊕ π(mi))⊕ mi

return h�

where as usual, h0 is some fixed constant. See Figure 4. Now for a two-block
message M = m1m2 we have

TCH-CBC π(M) = π(π(h0⊕ π(m1))⊕ m1⊕ π(m2))⊕ m2.

Let M∗
c = π−1(c ⊕ h0) ‖ c and notice that h(M∗

c ) = h0 for any c ∈ {0, 1}n,
yielding a large number of 2-block collisions. This idea can easily be generalized
to generate collisions for messages of any even number of blocks > 2 as well.

The Second Attack: TCH-AXU. The second tweakable blockcipher con-
struction proposed by Liskov et al. is based on the use of a universal hash
family [3]. The flavor they used are known as ε-AXU2 hash families. This is the
preferred flavor because it leads to an efficient tweakable-blockcipher construc-
tion with good security. However, as we will see, plugging their construction into
TCH allows a simple attack, and this attack does not depend on the ε-AXU2

property.

Definition 4. [ε-AXU2 Hash Families] Fix n > 0. We say a set of functions
U = {u : {0, 1}n × {0, 1}n} is ε-AXU2 if for all x, y, z ∈ {0, 1}n with x 	= y,

Pr
u∈U

[u(x)⊕u(y) = z] ≤ ε.

Now let E be a blockcipher, let U be an ε-AXU2 hash family whose functions
map n bits to n bits and define ẼK,u(T,M) = EK(M ⊕u(T ))⊕u(T ) where
K ∈ {0, 1}k and u ∈ U . Liskov et al. show that Advtprp

Ẽ
(q) < Advprp

E (q)+3εq2.
We call this the “AXU construction.”

Let’s try inserting the AXU construction into TCH and see if the resulting
TCH-AXU construction is secure. Note that the AXU construction has a longer
key since both the key for the underlying blockcipher and the function u must be
specified. However, since TCH is a keyless object, we once again must fix both
of these keys. Of course, fixing u means selecting some single function from U ,
and since U is an ε-AXU2 hash family, most of the functions in this set will be
“good” in the sense that they will be injective or nearly injective. However, as we
will see, the properties of the particular function u are irrelevant in our attack:
it is effective no matter what n-bit to n-bit function is supplied.

Once we have selected a fixed key K and function u, we have a rate-1 fixed-
key blockcipher-based hash function, and our results from Section 3 immediately
tell us the construction is insecure. However, it is even worse than this: there is
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TCH-AXU π(m1m2)π πu

m1

h0 u

m2

Fig. 5. Two rounds of the TCH-AXU π hash function. Function π : {0, 1}n → {0, 1}n

is a fixed permutation and u : {0, 1}n → {0, 1}n is a fixed arbitrary function. We can
easily generate an infinite number of same-length message pairs that collide using this
construction

a very simple attack that yields an infinite number of same-length message pairs
that collide, as we now demonstrate.

Fix a key K and a function u from the family U . For notational convenience
we name π = EK . For any M ∈ ({0, 1}n)+ write M = m1 · · ·m� where each
|mi| = n, define TCH-AXU π(M) as

function TCH-AXU π(m1 · · ·m�)
for i← 1 to 	 do hi ← π(mi⊕ u(hi−1))⊕ mi⊕ u(hi−1)
return h�

where as usual, h0 is some fixed constant. See Figure 5. Now for a two-block
message M = m1m2 we have

TCH-AXU π(M) = π(m2⊕u(π(m1⊕ u(h0))⊕ m1⊕ u(h0)))

⊕ m2⊕u(π(m1⊕ u(h0))⊕ m1⊕ u(h0)).

Let M∗
c = u(h0)⊕ c ‖ u(π(c) ⊕ c) and notice that h(M∗

c ) = π(0) for any c ∈
{0, 1}n, yielding a large number of 2-block collisions. This idea can easily be
generalized to generate collisions for messages of any even number of blocks > 2
as well.

The Security of TCH. The preceding two attacks do not imply that any
tweakable blockcipher constructed as a mode on a conventional blockcipher will
yield an easily-breakable TCH construction. It just so happened that the two
modes given by the authors did fall to simple attacks. However, we can imagine
other tweakable-blockcipher constructions where attacks on the resulting TCH
are not so obvious. But the results of this paper tell us that if the tweakable
blockcipher were constructed from a single call to a conventional blockcipher,
the resulting TCH would not have a proof of security and would therefore have
to be treated as a primitive.

A New Model. It is natural to ask whether TCH works under any model
for tweakable blockciphers. And it’s fairly clear that extending the ideal-cipher
model to the tweakable setting does the trick: let k, t, n ≥ 1 be numbers. Define
TBloc(k, t, n) be the set of all tweakable blockciphers Ẽ : {0, 1}k × {0, 1}t ×
{0, 1}n → {0, 1}n. Choosing a random element of TBloc(k, t, n) means that for
each (K,T ) ∈ {0, 1}k × {0, 1}t one chooses a random permutation EK(T, ·).
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For TCH, we require t = n and we fix the key K to some constant. But
this immediately reduces to MMO in the ideal-cipher model for conventional
blockciphers, which was proven secure previously [2]. We have essentially lost
the distinction between the key and the tweak since in our new ideal-tweakable-
cipher model they are equivalent. The notion that the tweak is public and the
key is secret has been lost. The notion that the tweak should be cheap to change
while the key is normally expensive to change has similarly been lost.

What does provable security in the ideal-tweakable-cipher model mean? No-
tice that in each of the above attacks on TCH we exploited details of the construc-
tion of the underlying tweakable blockcipher. Had we treated these underlying
objects as black boxes, we would have had no effective course of attack; we can
therefore conclude that any attack on TCH must exploit the internal features of
the tweakable blockcipher upon which it is constructed, meaning that perhaps
a a tweakable blockcipher primitive might yield a secure TCH. The Hasty Pud-
ding cipher is the only tweakable blockcipher primitive we know of [13]. Whether
using Hasty Pudding in TCH yields an efficient collision resistant hash function
is left as an open question, but we can be certain that any attacks on TCH-
HP would require the cryptanalyst delve into the inner workings of the Hasty
Pudding cipher.

5 Conclusion and Open Problems

Our results give strong evidence that we cannot build rate-1 collision-resistant
hash functions from a blockcipher that uses only a small set of keys. Does this
mean we are forced to accept constructions that change the key arbitrarily with
each round if we want provable security? Not necessarily. Our results say nothing
about schemes in this framework that rekey, say, every other round. It would
be interesting to show sufficient conditions on how often the blockcipher must
be rekeyed in order to maintain a good collision resistance bound. Alternatively,
perhaps the key can be fixed in a non-Merkle-Damg̊ard construction; the results
of Gennaro et al. [5], although for a different security property than we considered
here, may provide some insight. Or perhaps there is some relaxation of the model
and weakening of the adversary that admit security proofs for highly-efficient
blockcipher-based schemes. We leave these as open questions.
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Abstract. Traitor tracing schemes are of major importance for secure
distribution of digital content. They indeed aim at protecting content
providers from colluding users to build pirate decoders. If such a collu-
sion happens, at least one member of the latter collusion will be detected.
Several solutions have already been proposed in the literature, but the
most important problem to solve remains having a very good cipher-
text/plaintext rate. At Eurocrypt ’02, Kiayias and Yung proposed the
first scheme with such a constant rate, but still not optimal. In this
paper, granted bilinear maps, we manage to improve it, and get an “al-
most” optimal scheme, since this rate is asymptotically 1. Furthermore,
we introduce a new feature, the “public traceability”, which means that
the center can delegate the tracing capability to any “untrusted” person.
This is not the first use of bilinear maps for traitor tracing applications,
but among the previous proposals, only one has remained unbroken:
we present an attack by producing an anonymous pirate decoder. We
furthermore explain the flaw in their security analysis. For our scheme,
we provide a complete proof, based on new computational assumptions,
related to the bilinear Diffie-Hellman ones, in the standard model.

1 Introduction

The secure distribution of digital content to a set of subscribers is an impor-
tant application of global networking (e.g. pay-per-view television.) There are
two main types of schemes in the literature to deal with this topic: broadcast
encryption schemes, which enable a center to prevent a set of users from recov-
ering the broadcasted information; and traitor tracing schemes, which enable
the center to trace users who collude to produce pirate decoders. Both types
of schemes can be trivially combined by XOR’ing the results as shown in [7, 8].
There are also several works considering efficient combinations of the two at-
tributes of broadcast capability and traceability [9, 10, 19, 17]. This paper focuses
on the traceability property. As mentioned in the seminal paper on traitor tracing
of Chor et .al [7, 8], a c-traitor tracing scheme should guarantee that:

1. either the cleartext information itself is continuously transmitted to the en-
emy by a traitor;

2. or any captured pirate decoder will correctly identify a traitor and will pro-
tect the innocent even if up to c traitors collude.

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 542–558, 2005.
c© International Association for Cryptologic Research 2005
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There is indeed no technical way to prevent a pirate from decoding and for-
warding the stream to a user. But this would be rather expensive and commer-
cially unattractive. Therefore, traitor tracing schemes deal with the traceability
of pirate decoders only.

1.1 Transmission Rates

A direct solution to the traitor tracing problem is to give to each subscriber
an individual key and encrypt the data separately under each key. But this is
extremely inefficient because this means that the total size of the broadcast
ciphertext is at least n times the size of the plaintext, where n is the number
of authorized users: the ciphertext/plaintext rate is thus greater than n. The
transmission rate [14] has a quite important practical impact. It actually collects
three parameters: ciphertext rate, encryption-key rate and user-key rate, which
are respectively the ratio of the size of ciphertext, encryption-key and user-key
over the size of the plaintext (in an asymptotic way.) We thus have two main
categories for traitor tracing schemes:

1. Schemes with constant transmission rate [14]. They are well-suited to en-
crypt large messages. Another interesting advantage of these schemes is the
efficient black-box traceability. This means that the tracing procedure does
not have to open the pirate decoder, but just to interact with it. On the
other hand, the constant transmission rate is asymptotically achieved, and
thus for large plaintexts only (this is due to the use of collision-secure codes.)

2. Schemes with no constant transmission rate [4, 2, 15]. The main advantage
of these schemes is about their relatively small size of admissible plaintexts.
However, the transmission rate is often linear w.r.t the maximal number
of colluders. Furthermore, in these schemes, there is no efficient black-box
traitor tracing. It is possible to do black-box traitor tracing [2], but it is
shown that the algorithm is non-realistic because of the complexity which is
larger than the binomial of n and c, where n is the number of users and c is
the maximal number of colluders.

According to the context, one may use a scheme from the first category or
a scheme from the second one: if one wants to distribute large messages, the
first category is much more suitable, however if one simply wants to exchange
a session key, which size is relatively small, the second category may be better
from efficiency point of view, but the actual security can be discussed because of
the inefficient black-box tracing procedure. In this paper, we further improve the
transmission rate of the unique above constant transmission rate scheme [14].

1.2 Traceability

In all known traitor tracing schemes, only the center, owning some crucial private
information, can execute the tracing procedure: delegation is not possible, unless
the center discloses private information allowing to trace, but also to create new
anonymous decoders, which is not reasonable.
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However, such a delegation could be a quite interesting feature: if the center
is the only server able to run the tracing procedure, a bottleneck may appear
because of a possibly large number of pirate decoders.

This paper thus introduces a new property, called public traceability : the trac-
ing procedure can be publicly done, by simply providing the tracing information,
which just helps to trace, but nothing else.

1.3 Bilinear Maps

Let us now turn to the tool recently introduced in cryptographic protocols by
Joux [13]: the use of some specific bilinear maps, such as the modified Weil pair-
ing or the Tate pairing. They have already been widely used to achieve new
features, such as identity-based cryptosystems [3], or to improve the efficiency
of some schemes [1]. However, such particular properties could be used by ad-
versaries too, in order to break underlying schemes such as the attacks from [20]
on the traitor tracing scheme proposed in [16].

In this paper, we show these two sides of the use of bilinear maps. On the
one hand, we show how the pairings can be used for improving a traitor tracing
scheme, in two directions. It indeed helps to get a more efficient scheme as well
as the new feature of public traceability. On the other hand, we show that the
adversaries can also take advantage of them in some schemes: we present an
attack against the only unbroken traitor tracing scheme based on pairings [20].

1.4 Contribution

At Eurocrypt ’02, Kiayias and Yung [14] proposed a new traitor tracing scheme
(named KY in the following) with constant transmission rates: the ciphertext
rate is 3, the encryption-key rate is 4 and the user-key rate is 2.

In this paper we propose a scheme which further improves them: the cipher-
text rate is reduced to 1 (asymptotically), which is optimal; the encryption-key
rate is reduced to 1; and the user-key rate is kept unchanged. As already no-
ticed, these transmission rates are considered in the multi-user setting, when the
number of users is large, and when the size of the plaintext is large too. Above
improvements are achieved, while still keeping the two extremely desirable prop-
erties, as in the KY scheme:

– public-key traitor tracing, where any third party is able to send secure mes-
sages to the set of subscribers;

– efficient black-box traitor tracing in which the tracing procedure can be ac-
complished without opening the pirate decoder.

We furthermore introduce a new quite interesting functionality: the public
traceability. In all previous traitor tracing schemes, only the center, owning some
crucial private information, could execute the tracing procedure. In our scheme,
the center can publish some information in such a way that every one can do
the tracing procedure, at least the interactive part with the pirate decoder.

As already said, pairings are of great help to achieve this goal. But care
is required. To the best of our knowledge, only one such a scheme based on
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pairings has remained unbroken: the scheme proposed by To, Safavi-Naini and
Zhang [20] (named TSZ in the following). In this paper we show an attack on
the TSZ scheme: we exhibit a way to produce an anonymous pirate decoder,
while they provided a security proof. We thereafter explain where is the flaw in
their tracing algorithm.

2 TSZ: The To, Safavi-Naini and Zhang’s Scheme

Mitsunari, Sakai and Kasahara [16] proposed the first traitor tracing scheme us-
ing the bilinear maps. One year later, To, Safavi-Naini and Zhang [20] presented
an attack and tried to repair it. Unfortunately, this modification is not correct
either. Let us first review it, then we present an attack. This scheme and the
attack will help to understand later our new construction which is a combination
of the TSZ scheme and the KY scheme, taking advantage of the best of each.

2.1 Description of the Scheme

The TSZ scheme uses a bilinear map ê : G1 × G1 → G2, where G1,G2 are groups
of prime order q (see section 3 for a brief review.)

Initialization: two arbitrary random generators P,Q ∈ G1 and a unitary poly-
nomial with coefficients in Zq of degree 2k − 1:

f(x) = a0 + a1x+ . . .+ a2k−2x
2k−2 + x2k−1.

Let Q0 = a0Q, Q1 = a1Q, . . . , Q2k−2 = a2k−2Q and g = ê(P,Q) ∈ G2.
Private key of the center: the generator P , and the polynomial f .
Encryption key: the tuple (g,Q,Q0,Q1, . . . ,Q2k−2).
User key (for user u): Ku = f(u)−1

P .
Encryption Algorithm: one generates a random r ∈ Zq, then the session key

s ∈ G2 is encrypted into: c = (sgr, rQ, rQ0, . . . , rQ2k−2).
Decryption Algorithm: user u first computes gr, granted Ku, and then recov-

ers s. Indeed, gr = ê(Ku, rQ0)× . . .× ê(u2k−2Ku, rQ2k−2)× ê(u2k−1Ku, rQ).

2.2 Attack

In [20], authors showed that nobody can build an anonymous decoder, even a
collusion of registered users. Here, we explain how a unique user can build such
an anonymous decoder: user u chooses random elements z0, z1, . . . , z2k−2 in Zq

and produces the following decoder:

– Xi = uiKu + ziQ, for i from 0 to 2k − 2.
– X2k−1 is determined by the relation:

X2k−1 = u2k−1Ku − (z0Q0 + z1Q1 + . . .+ z2k−2Q2k−2). (1)

User u can then publish X0, X1, . . . , X2k−1, which provides everyone with the
ability of recovering gr = ê(X0, rQ0)× . . .× ê(X2k−2, rQ2k−2)× ê(X2k−1, rQ).
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2.3 Flaw in the Security Analysis

While authors provided a tracing procedure, we now show that our above de-
coder, which only uses X0, . . . , X2k−2, X2k−1, cannot trace back user u. First,
X0, . . . , X2k−2, X2k−1 satisfy the following relation:

2k−1∑
0

aiXi =

(
2k−2∑

0

aiu
i

)
Ku +

(
2k−2∑

0

aizi

)
Q + u2k−1Ku −

(
2k−2∑

0

ziai

)
Q

= f(u)Ku = P. (2)

Remark also that for each user, and all i (i = 0, . . . , 2k − 2), the application,
from Zq to G1, which maps zi to Xi, is a bijection. Therefore, instead of choosing
z0, z1, . . . , z2k−2, one can randomly choose X0, . . . , X2k−2 in G1, which uniquely
defines the tuple (z0, z1, . . . , z2k−2). Thereafter, X2k−1 is also uniquely deter-
mined by the relation (1). It also satisfies the relation (2). Hence, one can for-
mally define it from the latter relation: it thus clearly does not depend on u.

As a consequence, one easily sees that all the users would produce the same set
of pirate decoders, with parameters (X0, X1, . . . , X2k−2, X2k−1), so that X0, X1,
. . . , X2k−2 are randomly chosen in G2k−1

1 , while X2k−1 is defined according to
the relation (2).

Note that this attack is quite different from the one in [20]. Our pirate de-
coder indeed combines informations of the user-key, together with the public
information of the system. The latter part points out the flaw in the trac-
ing algorithm from [20], which works as follows: for a suspect set of users
A = {u1, . . . ,ut} (whose size is up to k), they construct another polynomial
f ′(x) = f(x) + α× (x− u1)× . . .× (x− ut). For any user in the set A, his key
in the scheme using f (named Scheme(f)) and the one in the scheme using f ′

(named Scheme(f ′)) are identical. For this reason, they claimed that if the col-
luders are in the set A, then any pirate decoder produced by them in Scheme(f)
is also a pirate decoder in Scheme(f ′). Accordingly, this decoder will decrypt a
ciphertext in Scheme(f ′) as it would be in Scheme(f). Therefore, by sending a
decryption query to the decoder, the center can easily detect whether the set of
colluders is included in A or not.

Unfortunately, their argument is not correct. If the construction of the pirate
decoder depends only on the user-keys of the colluders, their tracing algorithm
works well. But if the construction depends on the public information too (which
are of course available to the colluders), the tracing procedure fails, as shown
above.

3 Bilinear Maps and Computational Assumptions

3.1 Bilinear Maps

Let G1 and G2 be two groups of order q, for some large prime q. We use in
our system a bilinear map ê : G1 × G1 → G2, which must satisfy the following
properties:
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Bilinear: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Zq;
Non-degenerated: The map does not send all pairs in G1 × G1 to the unit in
G2;

Computable: There is an efficient algorithm to compute ê(P,Q) for any ele-
ments P,Q ∈ G1.

A bilinear map satisfying the three above properties is said to be an admissible
bilinear map. Throughout the paper we view G1 as an additive group and G2 as
a multiplicative group. Remark that since G1,G2 are groups of prime order and
ê is non-degenerated, if P is a generator of G1 then ê(P, P ) is a generator of G2.

Example: The modified Weil pairing or the Tate pairing can be used to construct
an admissible bilinear map that satisfies the three above properties.

3.2 Computational Assumptions

In this section, we review some well-known problems such as the computational
bilinear Diffie-Hellman problems. We also propose new problems, we believe
to be hard to solve. Relations claimed in propositions are provided in the full
version [6]. They will be used in the next sections, in the security analysis of our
scheme.

Classical Assumptions and Variants. We first review the most classical
problems in G1.

CDH – the computational Diffie-Hellman problem in G1:
Given (P, aP, bP ) for some a, b ∈ Z

�
q , output abP .

CBDH1 – the computational bilinear Diffie-Hellman problem in G1:
Given (P, aP, bP, cP ) for some a, b, c ∈ Z

�
q , output abcP .

DBDH1 – the decisional bilinear Diffie-Hellman problem in G1:
Given (P, aP, bP, cP, U) for some a, b, c ∈ Z

�
q and U ∈ G1, output yes if

U = abcP and no otherwise.

We now introduce modified versions of the two above Bilinear Diffie-Hellman
problems. They are actually particular cases, where b = c. We then provide some
relations between them and the usual CDH problem.

CBDH1-M – the modified computational bilinear Diffie-Hellman problem in G1:
Given (P, aP, bP ) for some a, b ∈ Z

�
q , output ab2P .

DBDH1-M – the modified decisional bilinear Diffie-Hellman problem in G1:
Given(P, aP, bP, U) for some a, b ∈ Z

�
q and U ∈ G1, output yes if U = ab2P

and no otherwise.

Proposition 1. The CBDH1-M problem is at least as hard as the CBDH1 prob-
lem, which is at least as hard as the usual CDH problem:

(SuccCBDH1-M
G1

(t))2 ≤ SuccCBDH1

G1
(t) ≤ SuccCDH

G1
(t).
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Pairing-Based Problems. We now review the bilinear Diffie-Hellman prob-
lems, all in G1 and G2, with the admissible map ê (we thus omit them in the
notation.)

CBDH2 – the computational bilinear Diffie-Hellman problem:
Given (P, aP, bP, cP ) for some a, b, c ∈ Z

�
q , output gabc, where g = ê(P, P ).

DBDH2 – the decisional bilinear Diffie-Hellman problem:
Given (P, aP, bP, cP, Z) for some a, b, c ∈ Z

�
q and U ∈ G2, output yes if

Z = gabc and no otherwise, where g = ê(P, P ).
CBDH2-E – the extended computational bilinear Diffie-Hellman problem:

Given (P, aP, bP, cP, ab2P ) for some a, b, c ∈ Z
�
q , output gcb2 , where g =

ê(P, P ).
DBDH2-E – the extended decisional bilinear Diffie-Hellman problem:

Given (P, aP, bP, cP, ab2P,Z) for some a, b, c ∈ Z
�
q and U ∈ G2, output yes if

Z = gcb2 and no otherwise, where g = ê(P, P ).

We furthermore introduce a slight variant of the CBDH2, in order to get more
confidence in the above CBDH2-E problem:

CBDH2-V – a variation of the computational bilinear Diffie-Hellman problem:
Given (P, aP, bP, cP, a(a2 − b2)P, b(a2 − b2)P ) for some a, b, c ∈ Z

�
q , output

gabc, where g = ê(P, P ).

Proposition 2. The CBDH2-E problem is at least as hard as the CBDH2-V prob-
lem:

(SuccCBDH2-E
ê,G1,G2

(t))2 ≤ SuccCBDH2-V
ê,G1,G2

(t).

Mixed Problems. Let us now introduce new problems which involve elements
from G1 and G2, still with the admissible map ê (we thus omit them in the
notation.)

MCDH – the mixed computational Diffie-Hellman problem:
Given (P, aP, a2P, gb) for some a, b ∈ Z

�
q , where g = ê(P, P ), output gba2

.
MDDH – the mixed decisional Diffie-Hellman problem:

Given (P, aP, a2P, gb, Z) for some a, b ∈ Z
�
q and Z ∈ G2, where g = ê(P, P ),

output yes if Z = gba2
and no otherwise.

4 The Basic Building Block: The Two-User Case

4.1 The Assumptions for Our Scheme

We have introduced several new problems, which will simplify the security anal-
ysis of our proposal. Let us sum up which assumptions will be really needed,
according to the security level.



Public Traceability in Traitor Tracing Schemes 549

Traitor Tracing. Let us first consider the semantic security of the encryption
scheme. In the random-oracle model, the security will hold under the MCDH
assumption. In the standard model, the security relies on the stronger MDDH
assumption. We believe these are reasonable assumptions.

About the traitor-tracing functionality, the non-incrimination relies on the
CDH assumption, while the traceability of colluders is guaranteed under the
DBDH1-M assumption.

As a consequence, our scheme will achieve the classical security notions of
traitor-tracing under the MDDH and DBDH1-M assumptions.

Public Traceability. Our scheme will provide the new and interesting prop-
erty of public traceability. It however requires stronger assumptions, since more
information is available to the adversary (since the tracing capability can be
provided to a bad guy.)

About the semantic security of the encryption scheme encryption, in the
random-oracle model, the CBDH2-E assumption is required. The latter is in fact
a quite minor extension of the classical CBDH2 assumption (see proposition 2.)
In the standard model, the security relies on the DBDH2-E assumption. Again,
we believe this is a reasonable assumption.

Considering the properties of traitor-tracing, the non-incrimination is cap-
tured by the tracing of colluders, which is again proven under the DBDH1-M
assumption.

Conclusion. Finally, our scheme, with public traceability, will essentially re-
quire the three new assumptions MDDH for the security of encryption, DBDH1-M
for the traitor-tracing property, and the DBDH2-E for the public traceability.

4.2 Kiayias-Yung’s Scheme

Our construction of 2-user traitor tracing scheme is based on the Kiayias and
Yung’s scheme [14], which can be seen as a special case of the Boneh and
Franklin’s scheme [2]. Let us thus first review the KY scheme.

Setup: Given a security parameter κ ∈ Z, the algorithm works as follows:
Step 1: Generate a κ-bit prime q and a group G of order q. Choose an

arbitrary generator g ∈ G.
Step 2: Pick random elements a, z ∈ Z

�
q , and set Q = ga, Z = gz.

Private key of the center: the pair (a, z).
Encryption key: the tuple pk = (g,Q, Z).
User key: user ub (for b ∈ {0, 1}, since we focus on the two-user case) is as-

sociated to a “representation” kb = (αb,βb) of gz with respect to the basis
(g, ga), i.e, the authority selects two vectors (α0,β0) and (α1,β1) in Z

2
q so

that αb + aβb = z mod q for both b ∈ {0, 1}. The two vectors are chosen so
that they are linearly independent. The set of all possible keys is

Kpk = {(α,β)|α + aβ = z mod q}.
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Encryption Algorithm: The encryption algorithm generates a random k ∈ Zq

and outputs a ciphertext (c1, c2, d) into G3: on a plaintext m, assumed to be
in the group G, the center computes C = (c1 = gk, c2 = Qk, d = m × Zk).
We say that a triple (c1, c2, d) ∈ G3 is a valid ciphertext if there exits k ∈ Zq

such that c1 = gk and c2 = Qk. Otherwise, the ciphertext is invalid.
Decryption Algorithm: On a ciphertext (c1, c2, d), user ub computes:

Zk = cα1 × cβ2 and m = d/Zk.

4.3 Our Construction

We now show how we can use bilinear maps in order to improve this scheme.
More precisely, we introduce the notion of public-key traitor tracing with proxy
quantity. Contrarily to usual public-key traitor tracing schemes, the authority
generates for each user a key along with a corresponding proxy quantity. The
authority keeps in his hands the user’s key and gives only to the user the proxy
quantity which is enough for decryption. The user’s key will be later used for
tracing.

Setup: Given a security parameter κ ∈ Z, the algorithm works as follows:
Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an

admissible bilinear map ê : G1×G1 → G2. Choose an arbitrary generator
P ∈ G1 and set g = ê(P, P ) which is a generator of group G2.

Step 2: Pick random elements a, z ∈ Z
�
q , and set Q = aP , Z = gz.

Step 3: Choose a function H : G1 → M. The security analysis will view
H as either a random oracle or a function in a universal hash function
family (using the leftover-hash-lemma [11, 12]).

The message space isM = {0, 1}κ. The ciphertext space is G�
1×G�

1×{0, 1}κ.
The system parameters are params = (q,G1,G2, ê, P,H).

Private key of the center: the pair (a, z).
Encryption key: the tuple pk = (g,Q, Z).
User key: user ub (for b ∈ {0, 1}) is associated to a “representation” kb =

(αb,βb) of gz with respect to the base (g, ga). The set of all possible keys is

Kpk = {(α,β)|α + aβ = z mod q}.

Remark that the authority generates these keys for each user but does not
give them to the users. Each user is just given a proxy quantity, as described
below.

Proxy Quantity: user ub (for b ∈ {0, 1}) receives a proxy quantity Π(kb) =
(αb, πb = βbP ). The set of all possible proxy quantities is

Πpk = {(α, π = βP )|(α,β) ∈ Kpk}.

Encryption Algorithm: The encryption algorithm generates a random k ∈ Zq

and outputs a ciphertext (c1, c2, d) into G1×G1×M: on a plaintext m ∈M,
the center computes C = (c1 = kP, c2 = k2Q, d = m⊕H(Zk2

)). We say that
(c1, c2, d) ∈ G1×G1×M is a valid ciphertext if there exits k ∈ Zq such that
c1 = kP and c2 = k2Q. Otherwise, the ciphertext is invalid.
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Decryption Algorithm: On a ciphertext (c1, c2, d), user ub computes, granted
his proxy quantity Π(kb) = (αb, πb),

Zk2
= ê(αbc1, c1) · ê(πb, c2) and m = d⊕H(Zk2

).

4.4 Rationale

First, one can wonder why we do not encrypt the message by c1 = kP , c2 = kQ
and d = m ⊕ H(Zk), while each user would receive the key kb = (αb,βb) (so
that αb + aβb = z mod q). Such scheme would thus be a simple and natural
variation of the KY scheme using bilinear maps. However, as in our above attack
against the TSZ scheme, the adversary could take advantage of the bilinear
property to combine the secret key and the public information. Actually, any
adversary, although it could not produce a new key, could produce and distribute
an anonymous decoder (X = αP − uQ, Y = βP + uP ), in which u could be
randomly chosen in Zq. Then, everyone could recover Zk = ê(X, c1) · ê(Y, c2).
Because of the random choice of u, the authority cannot trace back the traitor.

In our scheme, we prove that such an adversary cannot exist: users do not
have keys of the form (α,β), but proxy quantities only, of the form (α,βP ). As
a consequence, even if two users collude to produce another key (by a linear
combination of their keys), they cannot learn the secret key (a, z). We will see
that this is crucial to improve the result in the multi-user case.

4.5 Security of the Encryption Scheme

Before considering security properties specific to the traitor tracing functionality,
let us first study the encryption scheme. Actually, if we consider the function H
as a random oracle, the semantic security of the encryption can be proved under
the MCDH problem. If we consider that the function H is randomly chosen in a
universal hash function family [11, 12], the semantic security of the encryption
is proved under the MDDH problem. The proofs of the following theorems can
be found in the full version [6].

Theorem 1. Let H be seen as a random oracle. The above scheme is semanti-
cally secure under the MCDH problem.

Theorem 2. Let H be a function randomly chosen in a universal hash function
family. The above scheme is semantically secure under the MDDH problem.

4.6 Non-incrimination

The main goal of a traitor tracing scheme is to be able to trace a pirate. But a
pirate could try to incriminate another user. E.g., using his private information,
a pirate could try to produce another proxy quantity and distribute it. We show
that this scenario cannot happen. The proof can be found in the appendix.

Theorem 3. Given the encryption key and a proxy quantity (α, π) ∈ Πpk, it is
computationally infeasible to construct another proxy quantity in Πpk under the
CDH problem.
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4.7 Black-Box Traitor Tracing

For practical reasons, it is important not to have to open the pirate decoder
in order to trace back the pirate. We thus show that our scheme is black-box
traitor tracing against a collusion of the 2 users under the DBDH1-M problem,
by constructing a tracing algorithm. For this security result, we assume that
the hash function H is a function randomly chosen in a universal hash function
family. The proof can be found in the full version [6], since it is a simpler case
than the proof of the Theorem 6 (provided in the appendix.)

Theorem 4. Let us assume that, given the encryption key pk and a proxy quan-
tity (α, π = βP ) ∈ Πpk, the adversary A produces a decryption simulator S
that decrypts valid ciphertexts, but when given a “randomized” ciphertext of the
form (kP, ak′2P, d) with k, k′ R← Zq, d

R← M, it outputs a value different from
d⊕H(gαk2+aβk′2

) with probability ε. Then the DBDH1-M problem can be solved
with an advantage ε/2.

Intuitively, the above theorem shows that a “randomized” and thus invalid
ciphertext cannot be distinguished from a regular and valid ciphertext. There-
fore, given a black-box access to a decryption simulator S constructed by one of
two users, one can always decide which one of them has built it: one randomly
chooses k, k′ R← Z

�
q (we suppose that k 	= k′), and sets u0 = α0k

2 + aβ0k
′2 and

u1 = α1k
2 +aβ1k

′2. With high probability (greater than 1− 2/q), u0 is different
from u1, which is thus assumed in the following. One then submits the random-
ized invalid ciphertext (kP, ak′2P, d). If the output of S is d/gu0 then one claims
that u0 is the traitor. If the output is d/gu1 , then u1 is blamed. If the output is
none of these two values, one concludes that the two users colluded. Hence the
following corollary.

Corollary 1. The above scheme is black-box traitor tracing against active ad-
versaries.

4.8 Public Traceability

Let us now turn to the additional and quite interesting property: in order to
execute the black-box traitor tracing procedure, the two user-keys (α0,β0) and
(α1,β1) are used. However, the proxy quantities would be enough, and even less:
(α0P,β0P ) and (α1P,β1P ) are sufficient. From k, k′ R← Z

�
q , one does not really

need u0,u1, but just gu0 and gu1 :

gu0 = ê(α0P, k
2P )× ê(Q, k′2(β0P ));

gu1 = ê(α1P, k
2P )× ê(Q, k′2(β1P )).

This is a quite new and interesting property: one can split the roles of the center.
Moreover, the tracing capability can be delegated to several servers in order to
speed up the tracing. This delegation does not require any trust in these servers,
since the given information does not leak the private key (a, z), nor even any
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information to build a decoder (under an additional computational assumption).
Furthermore, one can thereafter check whether the incriminated people are the
pirates or not.

We now formally state the above security properties in the following theorems
whose proofs can be found in the appendix.

Theorem 5. Let us assume that the tracing information is public, then the en-
cryption scheme is semantically secure: in the random-oracle model, the secu-
rity relies on the CBDH2-E assumption, while the standard model requires the
DBDH2-E assumption.

Theorem 6. Let us assume that A is an algorithm which, given the encryp-
tion key pk, one proxy quantity (α, π = βP ) (among the two (α0, π0 = β0P )
and (α1, π1 = β1P ) provided by the center), and the public tracing information
(α0P,β0P, α1P,β1P ), can produce a decryption simulator S that decrypts valid
ciphertexts, but when given a “randomized” ciphertext of the form (kP, ak′2P, d)
with k, k′ R← Zq, d

R←M, S outputs a value different than d ⊕H(gα0k2+aβ0k′2
)

with probability ε. Then the DBDH1-M problem can be solved with advantage ε/2.

5 The Multi-user Case

5.1 Description

Let C = {ω1, . . . , ωN} be an (N, c, 	, ε)-collusion-secure code over the alphabet
{0, 1} with 	-long codewords, that allows collusions of up to c users and has a
tracing algorithm that succeeds with probability 1− ε (see [4] for more details).
The multi-user case (	-key system) is simply 	-instantiations of the 2-user public-
key 1-traitor tracing scheme with proxy quantities. We indeed build such an 	-key
system using an (N, c, 	, ε)-collusion-secure code C as a combination of 	 2-user
systems S1, S2, . . . , S�:

Setup: Given the security parameters k, c and ε:
Step 1: Generate a k-bit prime q, two groups G1, G2 of order q, and an

admissible bilinear map ê : G1×G1 → G2. Choose an arbitrary generator
P ∈ G1.

Step 2: Generate an (N, c, 	, ε)-collusion-secure code C = {ω1, .., ωN}.
Step 3: Pick random elements a, zj ∈ Z

�
q , and set Q = aP , Zj = gzj , for

j = 1, . . . , 	.
Step 4: Choose a function H : G1 →M.
The system parameters are params = (q,G1,G2, ê, P,H). These parameters
are common for all 2-user systems S1, S2, . . . , S�.

Private key of the center: the element a, and the tuple (zj)j=1,...,�.
Encryption key: this is the combination of the encryption keys from the 	

2-user schemes: pk = (g,Q, {Zj = gzj}j=1,...,�).
User key: user ui (for i ∈ ZN ) is associated to a codeword ωi in C and the cor-

responding “representation” (αωi,j ,j ,βωi,j ,j) of gzj with respect to the basis
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(g, ga), where ωi,j is the j-th bit of the codeword ωi. Recall that (αb,j ,βb,j)
is a “representation”of gzj with respect to the base (g, ga). Again, this user
key is not given to the user, but only the proxy quantity.

Proxy Quantity: user ui (for i ∈ ZN ) is given the proxy quantity Πi =
(Πωi,1,1, . . . ,Πωi,l,�). More precisely, for j = 1, . . . , 	,

Πωi,j ,j = (αωi,j ,j , πωi,j ,j = βωi,j ,jP ).

Encryption algorithm: The plaintext space of the 	-key system is M�. On
input (m1, . . . ,m�), the encryption algorithm uses a random k ∈ Zq and
outputs the ciphertext (c1, c2, d1, . . . , d�) into G1×G1×G�

2, where: c1 = k×P ,
c2 = k2 × aP and dj = mj ⊕H(Zk2

j ).
Decryption Algorithm: On the ciphertext (c1, c2, d1, . . . , d�), user ui com-

putes, granted his proxy quantity, Zk2

j = ê(αωi,j ,jc1, c1) × ê(πωi,j ,j , c2) and
then mj = dj ⊕H(Zk2

j ).

For the security analysis, one could use the following assumption, from [14]:
the threshold assumption says that a pirate-decoder that just returns correctly a
fraction p of a plaintext of length λ where 1−p is a non-negligible function in λ,
is useless. However, as already mentioned in [14], by employing an all-or-nothing
transform [18, 5], this assumption is not necessary.

Proposition 3. The collusion of the users in the (	 − 1) 2-user systems of 	
2-user systems does not affect the security of the remained 2-user system.

This proposition which proof can be found in the full version [6], combined with
the fact that C is an (N, c, 	, ε)-collusion-secure code, leads to following corollary:

Corollary 2. The above scheme is a N -user, c-traitor tracing scheme.

About the public traceability, with the public information, anybody can recover
the codeword associated to the pirate decoder, the interactive and thus costly
phasis. However, classical collusion-secure codes do not allow to publicly trace
back to a guilty, but this is an off-line prodecure, which still must be performed
by a trusted authority.

5.2 Comparison with the Kiayias-Yung’s Scheme

In the KY scheme, the ciphertext rate is 3, while ours is asymptotically 1. One
could wonder why we could use the above construction, while they could not.

The reason is that in our 2-user scheme, even the collusion of the 2 users does
not leak any information about a. In the KY 2-user scheme, such a collusion
immediately reveals a: in the multi-user case, if one uses the same a for the 	
2-user schemes, the collusion of two users could leak this value a and then all
the values zi, which would easily lead to an anonymous pirate decoder. As a
consequence, they have to use distinct a’s in each 2-user scheme instance, while
in our scheme, a common a is possible.
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6 Conclusion

We thus proposed a scheme which improves the Kiayias and Yung’s scheme in
various ways: first, the transmission rates are reduced near optimality; and we
introduce the quite interesting functionality of public traceability. The full feature
of public traceability in the multi-user case, which would lead to a guilty, is
however an open problem.
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A Proof for the Non-incrimination and Traitor-Tracing

A.1 Proof of the Theorem 3

Let us assume that, given a proxy quantity (α, π) ∈ Πpk,A can construct another
proxy quantity. We then construct an algorithm B that solves the inverse Diffie-
Hellman problem, which is well-know to be equivalent to the CDH problem.
Algorithm B is given as input a random instance (P,A = aP ) of the inverse
Diffie-Hellman problem. Let B = a−1P be the solution, that B finds as follows:

Setup: B randomly chooses α
R← Z

�
q and π

R← G1), and then computes Z =
ê(P, αP )ê(A, π). Finally, B sets the public key pk = (g,A, Z). It then sends
pk to A as well as a proxy quantity (α, π).

Attack: A outputs another proxy (α̃, π̃).
Break: B computes c = α̃− α and outputs B = (c−1 mod q)(π − π̃).

We see that, since (α̃, π̃) is a new proxy, for any ciphertext (c1, c2, d),

ê(αc1, c1)× ê(π, c2) = ê(α̃c1, c1)× ê(π̃, c2)
⇐⇒ ê(αkP, kP )× ê(π, ak2P ) = ê(α̃kP, kP )× ê(π̃, ak2P )

⇐⇒ ê(αP, P )× ê(π, aP ) = ê(α̃P, P )× ê(π̃, aP )
⇐⇒ ê((α̃− α)P, P ) = ê(π − π̃, aP ).

From the fact that (α, π), (α̃, π̃) ∈ Πpk, we get that π and π̃ are in the group G1

generated by P . Therefore, π− π̃ = bP for some b. We then have c = α̃−α = ab
and thus:

B = (c−1 mod q)(π − π̃) = (ab)−1 × bP = a−1P. ��
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B Proofs for the Public Traceability

B.1 Proof of the Theorem 5

We focus on the case where the function H is randomly chosen in a universal
hash function family. The case where H is a random oracle is similar to the proof
of the Theorem 1.

Let us assume that the scheme is not semantically secure against passive
adversaries. Then there is an IND-CPA adversary A that, given the public key
pk and the tracing information (α0P,β0P, α1P,β1P ), can break the scheme with
advantage ε. We can then construct an algorithm B that solves the DBDH2-E
problem. Algorithm B is given as input a random DBDH2-E instance (P,A =
aP,B = kP,C = zP,D = ak2P,U) from either the distribution in which U is
the CBDH2-E solution, or the distribution in which U is a random element in
G2. The algorithm B runs as follows:

Setup: B sets the public key pk = (g,Q = A, Z = gz = ê(C, P )). B randomly
chooses β0,β1 and computes:

α0P = zP − β0Q α1P = zP − β1Q.

It sends pk, along with (α0P,β0P, α1P,β1P ) to A.
Challenger: A outputs two message m0,m1 on which it wishes to be chal-

lenged. B picks a random element b ∈ {0, 1} and gives (A,D, d = mb⊕H(U))
as the challenge to A.

Guess: Algorithm A outputs a guess b′ ∈ {0, 1}. At this point, B returns 1 if
b = b′ and 0 otherwise.

Observe that if U is the CBDH2-E solution, then the challenge ciphertext is
an encryption of mb. Otherwise, since H is randomly chosen from a universal
hash function family, the challenge is the ciphertext of a random message, hence
b = b′ holds with probability 1/2. By a standard argument, the adversary B has
an advantage of ε/2 in deciding DBDH2-E. ��

B.2 Proof of the Theorem 6

From such an adversary A, we build an algorithm B that breaks the DBDH1-M
problem: Algorithm B is given as input the DBDH1-M parameters (G1,G2, ê)
together with a random instance (P,A = aP,B = kP,X) (for a, k R← Z

�
q , X

R←
G1). Algorithm B decides whether X = ak2P by interacting with A

Setup: B randomly chooses α0,β0,β1
R← Z

�
q and computes:

zP = α0P + β0A α1P = zP − β1A π0 = β0P Z = ê(P, zP ).

B sets Q = A, pk = (g,Q, Z) and a proxy (α0, π0), as well as the public trac-
ing information (α0P,β0P, α1P,β1P ). The proxy (α0, π0) can be considered
as randomly chosen in the set Πpk. Finally, B gives pk, the proxy (α0, π0)
and the public tracing information (α0P,β0P, α1P,β1P ) to A.
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Ciphertext: B randomly chooses d ∈M and builds a ciphertext (c1 = B, c2 =
X, d). B sends it to A. Because of the random choice of (B, X, d) and the
random choice of the hash function H in a universal hash function family,
the challenge (c1, c2, d) is a random ciphertext.

Break: If algorithm A returns d⊕H(ê(α0c1, c1) · ê(π0, X)), B outputs randomly
yes or no. Otherwise B output no (X is certainly not ak2P ).

Note that when X = ak2P , the ciphertext (kP,X, d) is a random valid ciphertext
and the algorithm A outputs correctly the plaintext m = d ⊕ H(ê(α0c1, c1) ·
ê(π0, X)). In this case, the algorithm B outputs randomly yes or no and the
probability that B gives a correct guess is 1/2.

When X 	= ak2P , the ciphertext (kP,X, d) is a random invalid ciphertext.
Since the decoder behaves differently for invalid ciphertext with probability ε,
A outputs differently than the expected plaintext with probability ε. In such a
case, B answers correctly that X is not equal to ak2P . In the case A outputs the
expected plaintext (which happens with probability less than 1− ε), B answers
randomly yes or no. Therefore, when X 	= ak2P , the probability that B gives a
correct guess is ε+ (1− ε)× 1/2 = 1/2 + ε/2.

Combining the two above cases, we easily see that B can solve the DBDH1-M
problem with advantage ε/2. ��
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Abstract. We propose a new broadcast encryption scheme based on
the idea of ‘one key per each punctured interval’. Let r be the number
of revoked users. In our scheme with p-punctured c-intervals, the trans-
mission overhead is roughly r

p+1 as r grows. Our scheme is very flexible

with two parameters p and c. We may take p as large as possible if a user
device allows a large key storage, and set c as small as possible if the
storage size and the computing power is limited. As variants of the pro-
posed scheme, we further study a combination of a one-way chain and a
hierarchical ring. This combination provides a fine-grained trade-off be-
tween user storage and transmission overhead. As one specific instance,
the combination includes the subset difference (SD) scheme which is con-
sidered the most efficient one in the literature.

1 Introduction

Broadcast encryption (BE) is a cryptographic method for a center to efficiently
broadcast digital contents to a large set of users so that only non-revoked users
can decrypt the contents. In broadcast encryption, the center distributes to each
user u the set Ku of keys, called the user key set of u, in the system setup
stage. We assume that the user keys are not updated afterwards, that is, user
keys are stateless. A session is a time interval during which only one encrypted
message (digital contents) is broadcasted. The session key, say SK, is the key
used to encrypt the contents of the session. In order to broadcast a message M ,
the center encrypts M using the session key SK and broadcasts the encrypted
message together with a header, which contains encryptions of SK and the
information for non-revoked users to recover SK. In other words, the center
broadcasts

〈header ; ESK(M) 〉,

� This work was supported by Samsung Advanced Institute of Technology.
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where ESK(M) is a symmetric encryption of M by SK. Then, every non-revoked
user u computes F (Ku,header) = SK and decrypts ESK(M) with SK, where
F is a predefined algorithm. But for any revoked user v, F (Kv,header) should
not render SK. Furthermore, there should be no polynomial time algorithm that
outputs SK even with all the revoked user keys and the header as input.

The length of the header, the computing time of F and the size of a user
key are called the transmission overhead, the computation cost and the storage
size, respectively. The main issue of broadcast encryption is to minimize the
transmission overhead with practical computation cost and storage size.

The notion of broadcast encryption was first introduced by Berkovits [2]
in 1991 using polynomial interpolation and vector based secret sharing. Fiat
and Naor [7] in 1993 suggested a formal definition of broadcast encryption and
proposed a systematic method of broadcast encryption. The polynomial interpo-
lation method was improved by Naor and Pinkas [14] in 2000 to allow multiple
usage. The first practical broadcast encryption scheme was proposed in 2001 by
Naor et al. [13], called the Subset Difference (SD) method. This was improved by
Halevi and Shamir [11] in 2002 by adopting the notion of layers and thereby the
improved scheme is called the Layered Subset Difference (LSD) method. Both
SD and LSD are based on tree structure and they are the best known broadcast
schemes up to now. To be more precise, let N be the total number of users
and r be the number of revoked users. The SD scheme requires 2r transmis-
sion overhead and O(log2 N) storage size for each user. The computation cost is
only O(log N) computations of one-way permutations. The LSD scheme reduces
the storage size to O(log3/2 N) while keeping the computation cost same. But
the transmission overhead increases to 4r in LSD. For other interesting recent
articles on broadcast encryption, we refer the readers [3, 8].

Our Contribution. In this paper, we propose a new broadcast encryption
scheme based on the idea of “one key per each punctured interval”. It has been
a general belief that at least one key per each revoked user should be included
in the overhead and hence r seems to be the lower bound of the transmission
overhead in any broadcast encryption scheme with reasonable computation cost
and storage size. In our scheme with p-punctured c-intervals, however, the trans-

mission overhead is about r
p+1 + N−r

c which breaks the barrier of r, for the
first time under our knowledge if r is not too small, even when p = 1, where c
is a predetermined constant and r is not too small. Although we set c = 100 or
1000 for comparison purpose here, we can choose any c that is suitable for other
purposes. The computation cost is very cheap with only c − 1 computations of
one-way permutations. The storage size is O(cp+1), which is practical for most
user devices if p is small. Our scheme is very flexible with two parameters p
and c. If a user device allows a large key storage like set-top boxes and mobile
devices, then we may take p as large as possible to reduce the transmission over-
head, which is much more expensive. If a user device has limited storage and
computing power like smart cards and sensors, then we may set c as small as
possible. Another remarkable feature of our scheme is that it does not have to
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preset the total number of users - any number of additional users can join at
any time, which is not possible in tree based schemes.

Our idea is to put all the users on a straight line and divide the line into
subintervals of length at most c beginning and ending with non-revoked users
containing p or less revoked users in between. Then, to each of such intervals,
the center assigns just one key, which can be derived by all non-revoked users in
the interval, for decrypting the session key. For practical purpose, we introduce
a layered variance of our scheme to improve the efficiency for very small r. Com-
pared with SD and LSD, the variance beats them in the transmission overhead.
As for the the storage size, ours is better than SD when p = 0 and a little bit
worse when p ≥ 1.

Furthermore, we study a combination of a one-way chain and a hierarchical
ring to provide a trade-off between transmission overhead and keys storage size
per user. As a building block we first present a simple ring structure of which
transmission overhead is proportional to the number r of revoked users while
each user stores N keys. Then, by transforming the simple ring structure to a
hierarchical ring one recursively, we extend the basic scheme to more generalized
revocation schemes. Interestingly, our specific example of one extreme side is
structurally equivalent to SD [13] with 1+1

2 (log2 n+log n) storage size and 2r−1
transmission overhead.

Organization. The rest of this paper is organized as follows: In section 2, we
propose revocation schemes with p-punctured intervals together with efficiency
and security analysis and introduce layers to our scheme. In Section 3, we pro-
pose two revocation schemes based on a ring structure: The first one is a basic
scheme with r transmission overhead and the second one is an extension to re-
duce the transmission overhead below r. We generalize the schemes of a simple
ring structure to a hierarchical ring structure. In Section 4, we compare our
schemes with SD and LSD schemes, and give concluding remarks in Section 5.

2 The Punctured Interval Scheme π

A broadcast encryption scheme involves the center (the message sender) and
the set of users (the receivers). Our revocation method is based on a so-called
Subset-Cover framework proposed by Naor et. al [13]. It consists of three phases
as follows :

• The initialization phase : the center provides each user with his/her secret
keys that will be used when computing his/her partition key K.
• The broadcast phase : when the center wants to transmit a message M , it

partitions the set of all privileged users into disjoint subsets S1, ..., Sm and
computes the partition key Ki corresponding to each Si, and then broadcasts

〈 info1, info2, . . . , infom ; EK1(SK), EK2(SK), . . . , EKm
(SK) ; ESK(M) 〉,

where infoi is the information on Si, SK is the session key, and E ,E are
symmetric encryption functions. The infoi’s and EKi

(SK)’s together form
the header.
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• The decryption phase : each user first finds the partition Si where he/she
belongs from infoi’s, computes the partition key Ki using his/her secret
keys, and then decrypts SK and M in order.

2.1 Punctured Intervals

Assume that L be a straight line with N dots (users) on it, where N is the number
of total users. In our scheme, each user is indexed by an integer k ∈ [1,N ] and
he/she is represented by the k-th dot, denoted by uk, in the line L. Let p ≥ 0
and c > 0 be integers. By a p-punctured c-interval we mean a subset of L which
contains c or less consecutive users starting from and ending at non-revoked users
and containing p or less revoked users. Let S(p ; c) be the set of all p-punctured
c-intervals.

In each session, the p-punctured c-intervals are to be determined under the
following rule :

• The first p-punctured c-interval starts from the leftmost non-revoked user,
and each of the following starts from the first non-revoked user after the last
non-revoked user of the previous.
• Each p-punctured c-interval contains the maximal possible number of users.

Fig.1 illustrates how to make p-punctured c-intervals with an example when
p = 1, c = 6 :

� � � � � � � � � � � � � � � � � � � �	
 	
 	
 	
 	


� � � � � �� �

Fig. 1. 1-punctured 6-intervals

The p-punctured c-interval starting from ui and ending at uj with ux1 , . . . ,uxq

revoked users is denoted by Pi,j;x1,...,xq
or Pi,j;X in short for X = {x1, . . . , xq},

where 1 ≤ j − i + 1 ≤ c, 0 ≤ q ≤ p, and i < x1 < · · · < xq < j if there are
revoked users.

2.2 Punctured Interval Scheme (p ; c)-π

In this subsection, we propose the punctured interval broadcast encryption
scheme (p ; c)-π (PI - Punctured Interval). We assign just one key to each p-
punctured c-interval, which can be easily derived by all non-revoked users in
that interval, and construct key chains using one-way permutations in order to
reduce the storage size.

Key Generation. Let ht : {0, 1}� → {0, 1}� be one-way permutations for
t = 0, 1, . . . , p, where 	 is the key length. To assign one key to each p-punctured
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interval, we randomly choose N keys K1,1, K2,2, . . . , KN,N to be given to
u1, . . . ,uN , respectively. From each Ki,i the center constructs the one-way key
chains under the following rule : For any possible p-punctured c-interval P start-
ing from ui given,

• The one-way key chain consists only of the keys of all non-revoked users in
P . There are no keys of the revoked users in the chain.

• For any non-revoked user uk ∈ P , if the next user uk+1 ∈ P is also non-
revoked, then just apply h0 to the key of uk to obtain the key of uk+1.
• If the next t users are revoked and the user uk+t+1 ∈ P is non-revoked, then

apply ht to the key of uk to obtain the key of uk+t+1, where 1 ≤ t ≤ p.

The following example illustrates how to construct the key chain of a given
punctured interval (with p = 10, c = 20) :

� � � � � � � � � � � � � � � � � � � �	
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Fig. 2. The key chain of a 10-punctured 20-interval

In the key chain of P = Pi,j;x1,...,xq
, the key of a non-revoked user uk ∈ P is

denoted by Ki,k;x1,...,xt
, where i < x1 < · · · < xt < k < xt+1 < · · · < xq and

0 ≤ t ≤ q ≤ p. For examples,

K5,11 = h6
0(K5,5) ; K5,11;7 = h3

0h1h0(K5,5) ; K4,11;5,6,7,9,10 = h2h3(K4,4) ;
K3,11;4,5,7,8 = h2

0h
2
2(K3,3) ; K3,11;4,5,6,7,9 = h0h1h4(K3,3) ; . . . .

The center assigns these keys to users so that the user uk receives Kk,k and
all possible Ki,k;x1,...,xt

’s, where i < x1 < x2 < · · · < xt < k with 0 ≤ t ≤ p and
2 ≤ k − i + 1 ≤ c. Fig. 3 describes the key assignment in the scheme (3 ; 5)-π
for u5 :

Encryption. For each session, the center divides L into disjoint p-punctured
c-intervals P1, . . . , Pm ∈ S(p ; c), whose union covers all the non-revoked users.
Let P = Pi,j;x1,...,xq

be one of Pμ’s. The last key Ki,j;x1,...,xq
of the key chain

corresponding to P is called the interval key of P . Let’s denote the interval
key of Pμ by Kμ for each μ = 1, 2 . . . ,m, just for convenience. Then the center
broadcasts :

〈 info1, info2, . . . , infom ; EK1(SK), EK2(SK), . . . , EKm
(SK) ; ESK(M) 〉,

where infoμ is information on Pμ, the μ-th interval starting from uiμ
and ending

at ujμ
with qμ revoked users. For each μ, infoμ consists of iμ, 	μ, 	μ,1, . . . , 	μ,qμ

,
where 	μ = jμ − iμ + 1 and 	μ,1, . . . , 	μ,qμ

are the distances from uiμ
to the
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Fig. 3. One-way key chains starting from K1,1, where c = 5

first, . . . , to the last revoked users of Pμ, respectively. The starting position
iμ can be represented by log N bits and the 	’s are at most log c bits. So the
size of all info’s is m(log N + p log c), which will be ignored when computing
the transmission overhead because it is negligible compared to the size of all
EK(SK)’s.

Decryption. Receiving the encrypted message, each non-revoked user uk first
locates the punctured interval that he/she belongs using the info’s. Let the punc-
tured interval be Pi,j;x1,...,xq

, where i ≤ k ≤ j, k 	= x1, . . . , xq. Then uk can find
Ki,j;x1,...,xq

as follows:

• Find t for which xt < k < xt+1, where 0 ≤ t ≤ q. Here, t = 0 and t = q
mean that there is no revoked user before and after uk, respectively.

• Choose Ki,k;x1,...,xt
from the assigned user keys.

• Starting from Ki,k;x1,...,xt
, apply one-way permutation hi’s under the rule

described in Key Generation until the second subscript reaches to j.
• The resulting key is then Ki,j;x1,...,xq

.

With this, uk decrypts EKi,j;x1,...,xq
(SK) and ESK(M) to obtain the session

key SK and the message M , respectively, in order.

2.3 Efficiency

We analyze efficiency - the transmission overhead (TO), the computation cost
(CC) and the storage size (SS) - of the scheme (p ; c)-π.

The transmission overhead of the scheme (p ; c)-π is

TO(p ; c)(N, r) =
⌊

r

p + 1

⌋
+
⌈

N − (p + 2)�r/(p + 1)�
c

⌉
, (1)

where N and r are the total number and revoked users, respectively. Especially,
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TO(1 ; c)(N, r) = �r/2�+
⌈

N − 3�r/2�
c

⌉
.

This occurs when ◦×× is repeated from the leftmost user and then the remaining
privileged users are on the right, where ◦ and × denote a privileged user and
a revoked user, respectively. It is not hard to prove (1), but we omit the proof
because it is long and tedious.

It is trivial that the computation cost CC(p;c) is at most c− 1 computations
of one-way permutations, which is independent of N and r. The storage size of
each user can be easily computed as follows:

SS(p ; c) =
p∑

k=0

(
1

(k + 1)!

k+1∏
i=1

(c− i)

)
+ 1,

which is also independent of N and r.

2.4 Security

Note that even a non-revoked user cannot compute the interval keys of the other
punctured intervals. Those who do not belong to any punctured interval are the
revoked ones and they can never access to the session key. Neither those revoked
users who belong to punctured intervals can access to their interval keys because
they cannot invert the one-way permutations.

The only way to compute the interval key Ki,j;x1,...,xq
of Pi,j;x1,...,xq

is to
obtain one of the keys in the key chain. However, no revoked user is assigned a
key in the key chain and hence they cannot compute the interval key even though
they all collude. Furthermore, the interval keys of previous sessions when the
user was not revoked do not help at all in the present session, in which he/she
is revoked, because the revocation of him/her results in a totally new key chain.

2.5 Layered Punctured Interval Scheme

The scheme (p ; c)-π is less efficient than SD when r is small. This is mainly
because of long intervals consisting of non-revoked users which require several
keys while covering no revoked users at all. To deal with this case, we introduce
another set of user keys, each of which covers a long interval. To reduce the
number of keys, we restrict the starting points of long intervals to some special
nodes (users) on the line such that the distance between every neighboring nodes,
called node-distance is c. This process can be repeated by d−1 more times taking
special nodes with node distances are c2, c3, . . . , cd−1 or cd, respectively, for a
positive integer d. We call this scheme by d-layered p-punctured c-interval scheme
or the (p ; c)-πd scheme.

Layered Structure. As in the (p ; c)-π scheme, the set of all N users are ar-
ranged on a long line L. Given a positive integer d (< logc N − 1), we consider
d layers above the line L. The first layer L1 consists of N1 = �N

c � − 1 users
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u1,uc+1, . . . ,u(N1−1)c+1. Inductively, the t-th layer Lt consists of Nt = �Nt−1
c �−1

users u1,uct+1, . . . ,u(Nt−1)ct+1 for 1 < t ≤ d. We define layered intervals of
length ct in the layer Lt by

LP
(t)
i = {uk|(i− 1)ct + 1 ≤ k ≤ ict}. (2)

Key Assignment. First, the center assigns a random key LK
(t)
i to LP

(t)
i for

each i and gives it to all members of LP
(t)
i . Next, it constructs a one-way key

chain starting from LK
(t)
i . Let g1, . . . , gd : {0, 1}� → {0, 1}� be one-way permu-

tations and h = h0 in (p ; c)-π. Given k with ict ≤ k ≤ (i + c − 1)ct, LK
(t)
i,k is

defined by

LK
(t)
i,k = he0ge1

1 · · · get
t (LK

(t)
i ) (3)

where k− ict = etc
t + et−1c

t−1 + · · ·+ e1t+ e0 (0 ≤ ei < c) is a c-ary expansion
of k − ict.

Let us consider the layered keys for the user uk in the t-th layer. Assume
k = etc

t + · · ·+ e1c+ e0 for 0 ≤ e0, e1, . . . , et−1 < c and et ≥ 0. Then the center
takes j with et + 1 − (c − 1) ≤ j ≤ et + 1 and gives to the user uk all the user
keys LKj;kτ

where k0 = e0 and kτ = �( k
cτ + 1)�cτ for 1 ≤ τ ≤ t.

The center assigns these keys to the user uk along with the interval keys for
the scheme (p ; c)-π. Hence the total number of keys for each user is

SS(p ; c) +
d∑

t=1

{(c− 1)(t+ 1) + 1} = SS(p ; c) +
cd(d+ 3)− d(d+ 1)

2
.

Encryption/Decryption. If there is no layered interval consisting of all non-
revoked users, the center encrypts the session key just as in the scheme (p ; c)-π.
Otherwise, we can save the transmission overhead by using layered keys. First
the center marks all the layered intervals at each layer which has at least one
revoked user as revoked intervals. Next, it finds the leftmost non-revoked interval,
say LP

(d)
i , in the d-th layer. Then the session key is encrypted by LK

(d)
i,k , where

uk+1 is the first revoked user after uicd with k ≤ (i+c)cd. The center then marks
all the users from u(i−1)ct+1 to uk and the layered intervals containing at least
one of them revoked. This process is repeated for the next non-revoked interval.
If there is no non-revoked interval in the d-th layer, go to (d − 1)-st layer and
repeat the same procedure and so on. Finally, if all layered intervals at each layer
are revoked, then the scheme (p ; c)-π is applied for the remaining non-revoked
users.

Note that each non-revoked user uk can decrypt the session key by an interval
key of (p ; c)-π or a layered key. In order to obtain the key (to decrypt the session
key) it costs at most c− 1 and t(c− 1) computations of one-way permutations,
respectively. Hence the computation cost is at most d(c − 1) computations of
one-way permutations.
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Transmission Overhead. First we estimate the transmission overhead for
(p ; c)-π1. If there is no revoked user, then �N

c2 � layered intervals cover entire
straight line L. By inserting one revoked user to an interval, the interval is di-
vided to at most 3 intervals including punctured or long intervals. So the trans-
mission overhead is at most �N

c2 � + 2r. Trivially, the transmission overhead of
this scheme cannot be larger than that of punctured interval scheme. So we can
conclude that the transmission overhead is at most �N

c2 � + 2r for r ≤ 2
3

N(c−1)
c(c+1)

or � r
2�+

⌈
N−�3r/2�

c

⌉
otherwise. The transmission overhead of (p ; c)-πd for d ≥ 2

can be similarly estimated.

3 Revocation Scheme with a Ring Structure

In this section, we present revocation schemes using combination of (punctured)
one-way chains and ring structures. We can further reduce user key storage using
a hierarchical ring structure. In the following schemes we use relatively simple
key assignment applying one permutation to a random label instead of several
one-way permutations.

3.1 Revocation Scheme with a Simple Ring Structure

Initially we assume that N nodes (users) are arranged on a ring in a clockwise
direction. We denote by ui the i-th node from the initial node in a clockwise
direction and identify ui and uj if and only if i ≡ j (mod N). For two nodes
ui and uj , we set S[i,j] = {ui,ui+1, · · · ,uj−1,uj}. Let C[i,j] denote a one-way
chain consisting of all users in S[i,j] that starts from ui and ends at uj . For a
given one-way permutation h : {0, 1}� → {0, 1}� and an input value sd ∈{0, 1}�,
the chain-value of C[i,j] is defined by the value hk(sd), which is computed by
applying h to sd iteratively k(=j − i+ 1 mod N) times.

Key Assignment. First, to each node ui on the ring, a random and indepen-
dent label Li ∈{0, 1}� is selected and assigned. Then the center computes hk(Li),
(1≤k≤N − 1) and assigns hk(Li) to each node ui+k. Finally the center provides
the user ut with a set of N keys,

{GSK0, h
1(Lt−1), h2(Lt−2), · · · ,hN−1(Lt−(N−1)=t+1 mod N )},

where GSK0 is an initial group session key.

Encryption. For a given set of revoked users R = {ui1 ,ui2 , · · · ,uir
}, the center

partitions the remaining legal users into r subsets S[i1+1,i2−1], S[i2+1,i3−1], · · · ,
S[ir−1+1,ir−1], S[ir+1,i1−1]. If uik

and uik+1 in R are adjacent on the ring, then
there is no privileged user between uik

and uik+1 and the subset S[ik+1,ik+1−1] is
empty. For example, if four users u3,u6,u7,u11 are revoked, the set of remaining
privileged users is partitioned into 3 non-empty subsets S[4,5], S[8,11] and S[12,2]

(see Fig. 4). For each non-empty subset S[i,j], the center assigns a one-way chain
C[i,j] and computes its chain-value hk(Li−1) where k=j− i+1 mod N . Because
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there are r arcs in the worst case and a one-way chain is assigned to each arc,
the transmission overhead is r.

Decryption. Upon receipt of a broadcast message, each privileged user ut finds
a subset S[i,j] including ut from the information of indices of revoked users.
We note that the subset including ut is unique. To find the subset S[i,j], ut

performs a binary search on the sequence of indices of the revoked users. Then,
by using a value KV=h(t−i+1) mod N (Li−1) given initially, ut computes a key
hj−i+1 mod N (Li−1) by applying h to KV (j−t mod N) times. Each user should
compute function h, in the worst case, N − 1 times.

Basically revoked users are cannot obtain useful any information to decrypt
the encrypted session key because of one-wayness of h. However, we should show
that the basic scheme is resilient to collusion of any set of revoked users. We can
show that the security of the basic scheme is as strong as that of the SD method
in [13] by using the following lemma.

Lemma 1. The above key assignment satisfies the key-indistinguishability con-
dition [13] under the pseudo-randomness of a given function h.

By using a standard hybrid argument on the length of one-way chains we can
prove the lemma under the pseudo-randomness of a given function h as in [13].
We omit the proof here.
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Fig. 4. Revocation in OFBE(N :1) and OFBE(N :2) for N=16

Now we present a method to further reduce the number of transmission mes-
sages in the basic scheme below r. The basic idea is to cover several subsets of
privileged users separated by revoked users in the basic scheme by using only one
key. This makes the number of messages transmitted drastically goes below r.
For a set of users D, let S[i,j],D denote a difference set S[i,j]\D, i.e., {u | u∈S[i,j]

and u/∈D}. We define a ‘jumping’ one-way chain C[i,j],D for S[i,j],D such that, for
two nodes ui and uj (ui 	=uj) and a subset D={uk1 ,...,uks

} of S[i,j], it starts from
ui, proceeds in a clockwise direction, but jumps over the nodes uk1 ,...,uks

, and
ends at uj . First we concentrate on the case that D contains only one revoked
user.



One-Way Chain Based Broadcast Encryption Schemes 569

Key Assignment. To provide a user with an initial key-set, the center performs
the followings : First the center performs the key assignment in the basic scheme.
Next, for every pair of (potential revoked) users ui and uj not adjacent each other
on the ring, the center additionally chooses a random and independent label Li,j

(1≤i<j≤N). We exclude the cases that ui and uj are adjacent on the ring since
those cases are covered by one-way chains of the basic scheme. Then the center
computes chain-values hk(Li,j), (1≤k≤N − 1) and assigns it to each node ui+k,
(1≤k≤N − 1) except ui and uj . In this case, the total number of the keys which
a user should store is N+

(
N−1

2

)
−(N −2) =

(
N−1

2

)
+2 = (N−1)(N−2)

2 +2 since the
number of keys assigned by the basic scheme is N , the number of cases choosing
two different users in the remaining N − 1 users is

(
N−1

2

)
, and the number of

cases covered by keys assigned in the basic scheme is N − 2.

Encryption. To revoke users, the center constructs one-way chains as follows.
Starting from any remaining user in a clockwise direction on the ring, the first
one-way chain proceeds until it meets the first revoked user ui1 . If the next
revoked users ui2 in a clockwise direction is adjacent to ui1 , the chain ends at
ui1−1, just before ui1 . Otherwise the chain jumps over ui1 and continues until
it meets ui2 , and ends at ui2−1, just before ui2 . This process is repeated until
all remaining users are covered by one-way chains. For example as in Fig. 4,
suppose that users u4, u7, u11, u12, and u15 are to be revoked. Starting from u5,
the first one-way chain proceeds in clockwise directions, jumps u7, and ends at
u10. The second one-way chain starts at u13, jumps over u15, and ends at u3.
Hence all remaining users are covered by two chains in this example.

By applying the method for r revoked users {ui1 ,...,uir
}, the center broadcasts

at most � 12 · r�+1 encrypted keys where �·� is a floor function. If r is even, 1
2 · r

one-way chains sufficiently cover the remaining privileged users at worst case. If
r is odd then we need to cover a last subset S[uir+1,ui1−1], which is not covered
by directly assigning ‘jumping’ one-way chain. In this case, we use a one-way
chain C[ir+1,i1−1] of the basic scheme.

Extension. The above cover strategy can be generalized, i.e., naturally ex-
tended to cover k subsets by only one key. We denote this method by OFBE(N :k)
where N is the number of users.

In OFBE(N :k), the cover strategy is similar to that of OFBE(N :2). Starting
from any remaining user u in a clockwise direction on the ring, the center jumps
k − 1 revoked users until it meets the k-th revoked user uik

. Next, the center
goes back in counterclockwise direction to find the first remaining user u′. The
first one-way chain starts from u and ends at u′, jumping revoked users between
u and u′ in a clockwise direction. This process is continued until all remaining
users are covered. All remaining users are covered by at most � 1

k · r�+ 1 chains.
To assign an initial key-set to each user, the center generates a label LA for

every subset A = {ui1 ,...,uik
} with k users. Then the center computes ht(LA),

(1≤t≤N − 1) and gives it to node ui1+t not in A. To avoid double key as-
signment, we exclude the cases which can be covered by a key generated in
OFBE(N :j) where 0<j<k. Hence the number of possible selections is Num(N ,k)
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=
(
N−1

k

)
−
(
N−1
k−1

)
+1 where

(
N−1

0

)
=0. In OFBE(N :k), a key assignment method

is performed recursively. Hence the number of keys which a user should store in
OFBE(N :k) is #OFBE(N :k)= #OFBE(N :k− 1)+ Num(N ,k) =

(
N−1

k

)
+k where

#OFBE(N :j) is the number of keys for each user in OFBE(N :j).

3.2 Revocation Scheme with a Hierarchical Ring Structure

In this subsection we generalize the basic scheme OFBE(N :1) by extending a
simple ring structure to a hierarchical one. A hierarchical ring R is recursively
defined such that there is an outmost ring R0 in level 1 having nodes on the
ring, each node on R0 has children arranged on a ring in level 2, and each node
in level 2 again has children on a ring in level 3, and so on. A node which does
not have any child is called a leaf. The depth of a hierarchical ring is the highest
level of a leaf in the ring. A hierarchical ring R is called w-ary if each node in R
has w children.

Underlying Scheme of Our Generalization. For our generalization, we first
describe an underlying revocation scheme with a relatively simple hierarchical
ring R with depth 2 such that there are two nodes u1 and u2 in level 0 (i.e.,
on the outmost ring). Each ub for b ∈ {1, 2} has m children {ub.1, ..,ub.m} on
a sub-ring Rb, where ub.j denotes the j-th user from ub.1 on ring Rb. Hence the
number of users in R are 2 ·m. We denote this scheme by HOC(2,m).

Let Sb̄,[b.i,b.j] denote a union set Rb̄ ∪ S[b.i,b.j], i.e., {u|u∈S[b.i,b.j] and u∈Rb̄}
where b̄=2(b mod 2). We define a simple ‘hierarchical’ one-way chain Cb̄,[b.i,b.j]

for Sb̄,[b.i,b.j] such that it starts from a node ub̄, goes through children ub.i,ub.i+1

,..., ub.j−1 of ub in a clockwise direction and ends at ub.j on Rb. Cb̄,[b.i,b.j] is used
to cover users on two separated rings by one key, i.e., all users on Rb̄ and some
users on Rb. For example as in Fig. 5, suppose that u1.6, u1.11, and u1.15 on
R1 are to be revoked. the center partitions the remaining privileged users into
disjoint subsets R2∪S[1.7,1.10], S[1.12,1.14] and S[1.16,1.5]. Then the center assigns
one-way chains C2,[1.7,1.10], C[1.12,1.14], C[1.16,1.5] to those subsets, respectively.

Key Assignment. To exploit the previous hierarchical cover strategy using two
types of one-way chains, two types of labels are selected by the center initially:
One is a label used in the basic scheme. The other is a label Lb associated to a
node vb, which is used to compute a chain-value corresponding to a hierarchical
one-way chain. In this case, we use a cryptographic pseudo-random sequence
generator G:{0, 1}� → {0, 1}m�. We denote by G(L)i the i-th output block of
length 	 of G on L. A similar function which triples an input is used in the SD
scheme [13] to achieve a similar purpose.

The center provides a user ub.t with n keys by using the following key assign-
ment method: First the center performs the key assignment of the basic scheme to
cover only privileged users in one sub-ring of m users. That is, for each b ∈ {1, 2}
and ub.i ∈ Rb, a label Lb.i ∈{0, 1}κ is selected. Then the center computes hk(Lb.i),
(1≤k≤m−1) and assigns it to ub.i+k. Next, for each b ∈ {1, 2}, a label Lb ∈{0, 1}�
is selected. Then the center computes hk(G(h(Lb))i), (1≤k≤m− 1) and assigns
it to ub̄.i+k. Finally the center provides ub.t with a set of the following keys;
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Fig. 5. Revocation in HOC(2, m)

{ GSK0, h(Lb.j−1), h2(Lb.j−2), · · · , hm−1(Lb.(j−(m−1)=j+1 mod m)),
h(Lb),h(G(h(Lb))j−1),h2(G(h(Lb))j−2),· · · ,hm−1(G(h(Lb))j−(m−1)=j+1 mod m)}

Encryption. To revoke users, the center covers the remaining legal users as fol-
lows: If all revoked users are included in only one sub-ring Rb, the center generates
one-way chains Cb̄,[b.i1+1,b.i2−1] and {C[b.i2+1,b.i3−1],· · · ,C[b.irb+1,b.i1−1]}. Other-
wise, the center performs the revocation method of the basic scheme on each sub-
ring. Then the center encrypts a group session key GSK by using chain-values as
keys and broadcasts the ciphertexts. In particular, for a chain-value of the hierar-
chical one-way chain Cb̄,[b.i,b.j], the center computes hj−i+1 mod m(G(h(Lb))i−1).
The number of messages to be transmitted is at most r as in the basic scheme.

Security. The security of this scheme depends on the association of the secu-
rities of two functions, h and G. However, without considering the association,
we can use one function instead of two independent functions. In this case, for
the expansion of labels, we can define the output of h as the first output block
of G, namely, h(L)=G(L)1 for L∈{0, 1}�. Using the similar idea in [13] we can
prove the security under the pseudo-randomness of G.

Generalization. Naturally, we can extend the previous HOC(2,m) by allowing
more levels and more nodes in each level. In general schemes the center uses a
hierarchical one-way chain traversing nodes in many levels, which starts from a
node of level d and goes through some nodes of the same level in a clockwise
direction and ends at uj , and comes down to a children node of uj+1 in level d+1
and iterates this process. For space limitation, we omit the concrete explanation
of the general scheme.

One important thing is that there is a trade-off relation between transmission
overhead and keys stored at a user. Using the deepest hierarchical ring struc-
ture such as a complete binary ring of depth log2 n, we gain reduction in user
storage up to log2

2 n+log2 n
2 + 1 while the transmission overhead increases up to

2r. Interestingly, the revocation scheme for a binary (2-way) ring is structurally
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equivalent to SD based on a binary tree proposed by Naor et. al [13]. The forms
of subsets to be covered in both schemes are equivalent, since a binary ring is
structurally equivalent to a binary tree.

To further reduce the transmission overhead, we can use ‘jumping’ hierarchi-
cal one-way chains which jump potential revoked users and cover several subsets
of privileged users separated by revoked users at a time. Our generalization pro-
vides a generic method for any application in terms of setting specific values for
parameters to achieve a desirable trade-off.

3.3 Specific Revocation Scheme

In this section we present a specific revocation scheme where the transmission
overhead is less than r while storage requirement per user is reasonably low.
First we notice that different OFBE(N :k) schemes can be independently com-
bined with revocation schemes using hierarchical one-way chains. In particular
OFBE(m:2) can be directly applied to each sub-ring Rb of HOC(2,m), which
contains m=N

2 users. In this case, the number of keys which a user should store
reduces from N2−3N+6

2 to m2−m+6
2 while the transmission overhead is still at

most � 12 · r�+1. We denote this method by HOC(2,[m:2]).

Lemma 2. In HOC(2,[m:2]), the number of keys stored by a user is m2−m+6
2

and the transmission overhead is at most � 12 · r�+1, for N = 2m.

Though, in HOC(2,[m:2]), the number of keys storage per user is reduced
while the number of transmission messages is still at most � 12 ·r�+1, the method
is still not applicable for a large number of group users. To reduce user storage
further with slight increase in transmission complexity, we can use divisional
approach as follows: First partition a group of N (=2m·s) users into s sub-
groups and then apply HOC(2,[m:2]) to each sub-group of 2m users where m
is a predetermined constant. We denote this method by HOC(2,[m:2])p. In this
case, the transmission overhead is � 12 ·r�+

N
2m at worst case and each user should

store m2−m+6
2 keys.

4 Comparison

Table 1 shows the complexity of the storage sizes, the transmission overhead
and the computation costs of our schemes, SD and LSD when N = 108 and r
is 0.1, 0.5, 1, 5, 10 and 20% of N . In the table, we assume that the size of a user
key is 128 bits, which is considered reasonably secure, currently.

Figure 6 shows the comparison of the worst-case transmission overheads by
graphs when the revocation rate ranges from 0% to 3%. Among the graphs, the
dotted line represents the transmission overhead of the scheme (1 ; 100)-π1. The
dotted graph is very close to that of SD for small r. It has steeper slope than
the graph of (1 ; 100)-π, but a lower y-intercept at �N

c �. As we mentioned above,
the layered π scheme improves the transmission overhead when the revocation
rate is small. For large r, it has the same transmission overhead as that of the
scheme (p ; c)-π.
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Table 1. Examples when N = 108

Scheme Storage TO (Mbits) CC

r revoked (KBytes) 0.1% 0.5% 1% 5% 10% 20%

(0 ; 100)-π 1.60 141 191 253 755 1380 2640 100

(1 ; 100)-π 79.2 134 159 190 438 749 1370 100

(0 ; 100)-π1 4.80 26.9 129 253 755 1380 2640 198

(1 ; 100)-π1 82.4 26.9 129 190 438 749 1370 198

HOC(2, [100 : 2])p 79.2 70.4 96 128 384 704 1344 100

HOC(2, [50 : 2])p 19.6 134.4 160 192 448 768 1408 50

SD 5.8 25.6 128 256 1280 2560 5120 27

LSD 2.3 51.2 256 512 2560 5120 10240 27

� r

N
× 100%

�
TO

-

-1·106
-

-2·106
-

-3·106
-
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-

-

-

5·106

0.5% 1.0% 1.5% 2.0% 2.5% 3.0%
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�
�
�
�
�
�
�
�
�
�
�
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(0; 100)-π

(1; 100)-π, HOC(2,[50:2])p
(1; 100)-π1

�������������
HOC(2,[100:2])p

�������������

Fig. 6. TO for N = 1 · 108 in the worst case

The transmission overhead of HOC(2,[50:2])p or HOC(2,[100:2])p is relatively
larger than that of SD at initial interval where the number r of revoked users is
smaller than 0.75 % of the total users. But, except this interval, the transmission
overhead of HOC(2,[50:2])p becomes, at worst case, about 1

3.5 of the transmission
overhead of SD. This should be a good trade-off in most applications since the
number of initial messages is relatively small. The number of keys per user in
HOC(2,[50:2])p is about 3.5 times as many as that of SD as the number of
revoked users increases. But this difference may be acceptable in many practical
applications.

5 Conclusion

In this paper, we proposed efficient broadcast encryption schemes based on lin-
ear and circular structures. Introducing the idea of punctured one-way chain to
these strucutres, we could reduce the transmission overhead below r. Particu-
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larly, our specific schemes have about 1/3 transmission overhead than SD while
maintaining the computation cost and the storage size in a reasonable bound.

Moreover our methods provide many flexibility on the system efficiency. The
system can be optimized to have best efficiency for any of the three parameters
of broadcast encryption the transmission overhead, the computation cost and
the storage size.
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